OSGi Service Platform
Core Specification

The OSGi Alliance

Release 4, Version 4.2

June 2009

OSGi

Alliance

Digitally signed
by OSGi

OSGix
DN: cn=0SGi
Al

, c=US,

16:01:09
-04'00"

Copyright © OSGi Alliance (2000,2009).
All Rights Reserved.

0OSGi Specification License, Version 1.0

The OSGi Alliance (“OSGi Alliance”) hereby grants you a fully-paid, non-exclusive,
non-transferable, worldwide, limited license (without the right to sublicense), under
the OSGi Alliance’s applicable intellectual property rights to view, download, and
reproduce the OSGi Specification (“Specification”) which follows this License
Agreement (“Agreement”). You are not authorized to create any derivative work of the
Specification. The OSGi Alliance also grants you a perpetual, non-exclusive,
worldwide, fully paid-up, royalty free, limited license (without the right to sublicense)
under any applicable copyrights, to create and/or distribute an implementation of the
Specification that: (i) fully implements the Specification including all its required
interfaces and functionality; (ii) does not modify, subset, superset or otherwise extend
the OSGi Name Space, or include any public or protected packages, classes, Java
interfaces, fields or methods within the OSGi Name Space other than those required
and authorized by the Specification. An implementation that does not satisfy
limitations (i)-(ii) is not considered an implementation of the Specification, does not
receive the benefits of this license, and must not be described as an implementation of
the Specification. An implementation of the Specification must not claim tobe a
compliantimplementation of the Specification unless it passes the OSGi Alliance
Compliance Tests for the Specification in accordance with OSGi Alliance processes.
“OSGiName Space” shall mean the public class or interface declarations whose names
begin with “org.osgi" or any recognized successors or replacements thereof.

THE SPECIFICATION ISPROVIDED "ASIS," AND THE OSGi ALLIANCE, ITS
MEMBERS AND ANY OTHER AUTHORS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE SPECIFICATION
ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH
CONTENTS WILLNOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS. THE OSGi ALLIANCE, ITSMEMBERS AND ANY
OTHER AUTHORS WILLNOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
SPECIFICATION OR THE PERFORMANCE OR IMPLEMENTATION OF THE
CONTENTS THEREOF.

The name and trademarks of the OSGi Alliance or any other Authors may NOT be used
in any manner, including advertising or publicity pertaining to the Specification orits
contents without specific, written prior permission. Title to copyright in the
Specification will at all times remain with the Authors.

No otherrights are granted by implication, estoppel or otherwise.

Trademarks

OSGi™ is a trademark, registered trademark, or service mark of the OSGi
Alliance in the US and other countries. Java is a trademark, registered trade-
mark, or service mark of Sun Microsystems, Inc. in the US and other coun-
tries. All other trademarks, registered trademarks, or service marks used in
this document are the property of their respective owners and are hereby
recognized.

Feedback

This specification can be downloaded from the OSGi Alliance web site:
http: //www. osgi.org

Comments about this specification can be raised at:

http: //www. 0osgi.org/bugzilla/

i-332 OSGi Service Platform Release 4

1.1
1.2
1.3
1.4
1.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

4.1
4.2
43
4.4

Table Of Contents

Introduction 1
OSGi Framework OVEIVIEWcueirurueiriieieirteieteteie ettt et b et seseneenene 1
REAAET LEVEI vttt ettt ettt e et ens s et enseneen 3
ConVENtioNS @NA TEIMNS ..uocvieeeieeieeeeeerecteeee ettt ettt ettt seaserestensenes 4
Version INFOrMationccceceieieirieieieiieiei ettt eaees 8
RETEIEINCES .ttt ettt ettt et et se s et enseseesenseseeseesenees 9
Security Layer 11
INEFOAUCTION -ttt sttt 1
SECUMIY OVEIVIEW ..uiiiuiiiiucicieacicieei ettt ettt 11
Digitally Signed JAR Files...c.ci it 12
PEIIMISSIONS ..ttt ettt ettt ettt et et e et e ebesbeeteeeaeeaeeasebeeseesseeseeasesbeseensensenseens 23
CRANEES ettt ettt sttt sttt st sttt 24
REFEIENCES ..ot ees 24
Module Layer 27
INEFOAUCEION ..ttt ettt ettt ev et et ssese et e s et ensetensesserens 27
BUNAIES ettt ettt et et ereenteea s eae et e s e ereenaeeaeententeeasensenreereens 27
EXecution ENVIFONMENT ..c.eeiiiieieieeeeeeee ettt ens 35
Class Loading ArChit@CIUTE ...c.cueueueueeeeieieieeeeeee s 36
RESOIVING METAAALA ...cuueuiuenieiciiee ettt 39
CONSEIAINT SOIVING ..vviieieieteieieieieiete ettt e 44
RESOIVING PrOCESS ...ecuueiuiicieneiceci ettt ettt eaenn 52
RUNtIME Class LOAAING c.vvevuieueiiicieicicieecieietcicietcieieteerete e 53
Loading Native Code LiDrariescoeeueueeeurueieieieieieieieieieieeieie e 63
LOCAITZATION ettt 68
BUNGIE VAlIAILY .ot 70

Requiring Bundles..
Fragment Bundles..
Extension Bundles .

Security .c.coeeeene .79

Changes... .83
REFEIENCES ...ttt sttt sttt sttt 83
Life Cycle Layer 85
INETOAUCTION ..ttt ettt ettt eve et eese s seebe s e s ensesensensesees 85
FrAMEBWOTKS ..ottt 86
BUNAIES ettt ettt ea ettt es e b e s s esa b senseneesennennenens 95
The BUNAIE ODBJECL...ucirieieeiieieeeieteetete ettt s et s e e e sese s 96

OSGi Service Platform Release 4 ii-332

4.5
4.6
4.7
4.8
4.9

4.10

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

5.11

6.1
6.2

7.1
7.2
73
7.4
7.5

8.1
8.2
8.3
8.4
8.5
8.6

9.1
9.2
9.3

The BUNAIE CONEEXE.ueririeiiiereieiieieeiet e et te et e e s e e sese s se e sesesesassesanens 108

The System BUNAIEc.coueueeiirieeiee ettt ettt 113
BV NS ettt ettt e et e eetae e e e aa e e s ba e e eeabaeeeernaeeeetraeeeenranen 114
SECUTIEY cveveveteeeieerteteen ettt er ettt bt se e et s e se s sa b sesenenesennenean 117
CRANEES .ttt ettt ettt bbbt 120
REFEIENECES ... 120
Service Layer 123
INETOAUCTION 1ottt ettt et et ee et ereeae s seebesenseseesensensenenan 123
SBIVICES cuiuvereerteeteeteesteeseeseesteeteesteeseeseeseeeseessessebeessensenbeessensesaseasenssessensenseessensenses 124
SEIVICE EVENES oottt ettt et st et s e s s s ssese s ssebeese s enaesenne 131
SHAlE RETEIENCES vttt ettt ettt a e ete s s et esensensetenns 132
FIIERIS 1ottt ettt ettt ettt et et e ettt e eae e e e b et e essesbe b eessenseeseenseesesasensenseessensesens 133
SEIVICE FACLOTY wouveveieniieieiieteeeeie ettt st ses e e st s e e tese e naesesesessenennns 134
REIEASING SEIVICES ..euuiuieieieieieeiee ettt 135
UNTegiStering SEIVICES ...cueveuiueueueieieiiieieieteteteteteiet ettt ettt ses et seaens 135
Multiple Version Export COnsiderationscccceueveerirerreeneneerereriereeresseseenennens 136
SECUTIEY teueueteteetetetete ettt et ettt ettt ettt e st sttt e e st b et st bt b b e e seeneneae 137
CRANEES .ttt ettt ettt 137
Framework API 139
OFg.0SEIfTAMEWOTK .ot 139
0rg.05gi.framework.launCh c.....cccucvreccueiriiceccccc s 219
Package Admin Service Specification 225
INETOAUCEION 1ttt ettt ettt ettt et ettt ere et bee b eaeeasessenseessensesens 225
PACKage AdMIN ..ot b e aenene 226
SEOUTTEY ctevuenteeeieert ettt ettt ettt ettt ettt et sttt et b st be et b ebenesaebenene 228
CRANEES .ttt ettt ettt bbb 228
0rg.05gi.service.packageadmin ...t 228
Start Level Service Specification 235
INEFOAUCTION ottt ettt ettt et e ettt eaeeae s seeaensersetesensenenen 235
SHATE LEVEI SEIVICE cuveuvierieeeiteetecee ettt ettt ettt ve et veeseeseetsesseaeenee 236
Compatibility MOeouviieiiirr e 240
EXample APPliCatioNns ...c.c.ccueueieieieieieieieiete ettt 240
SCUTIEY teveuenteteuetet ettt ettt ettt ettt sttt et st sttt b et st b st et e e sbebeseaeseeneneas 241
0rg.05gi.SeTVICe.StATtIEVEl . 241

Conditional Permission Admin Specification 247

INEFOAUCTION 1ottt ettt ettt ettt b et et a e seeaensessetesensenenan 247
Permission Management Modelcccceueueueirieinnennienicieeceeeeeeeneneenene 250
EffeCtiVe PEIMISSIONS ...c.ecviveeieeeeteteieeee ettt ettt se e nseaeene e e e nennes 256

iii-332

OSGi Service Platform Release 4

9-4
9:5
9.6
9.7
9.8
9-9
9.10
9.11
9.12
9.13
9.14
9.15
9.16

10

10.1
10.2
10.3

10.4

11

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8

11.9

12

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8

12.9

Conditional PEIrMISSIONScveveuierireeierieteeeeete ettt ee e s eneenenne 257

CONAITIONS ceteiieeieteteieteee ettt ettt eseeae st e e e sbesseseesesseseesesesaesnans 259
The Permission Checkcc.oueiriiiiiiiciciicrcceie e 260
Permission ManagemeNt c.c..c.c.cecrueucireruererenieeirteeeeeetes et seesenens 267
Implementing Conditions......c.ccceueereeeieiereiiereeeeeeeeeeresereere et renenen 270
Standard CONAItIONS ...cecveeveeerieieiereereeeeee ettt ee e et b reene s enas 272
Bundle Permission RESOUTCEecveveeeerieeeeeereeteeeteeteetes e ereereveeseeseeereeseasenseneenenes 273
Relation to Permission AdMiNc.ceuieieiieeieieerece ettt sae v e 274
IMPIEMENLALION ISSULS ..ttt ettt es et eseseees 275
SECUTTLY weuerveneeeeteeeetrtetetrt ettt et b st e b et a e sttt s s et seseseessenenenees 277
CRANEES ettt et be e 277
0rg.05gi.service.condpermadminc.ccceeeeerureeurireeinieeeieeeeeieeeeeeeeeeeeeeseee e eeeees 278
RETEIENCES .ttt ettt ettt s ese et eas s esesseneereane 289
Permission Admin Service Specification 201
INETOAUCEION ettt ettt ettt et ettt er e eas et bt eaeeeae e e enseeteensenseeseennenns 291
Permission AdMIN SEIVICEc.cecveeveeeriereieeeteet ettt s s e s neesenne 292
SECUTTLY weutreerentteteertete et ettt ettt b ettt ebe sttt sttt se e b et sa et et et ebeneeas 294
0rg.05gi.service.permissionadmin......c.cccceueueeueueeeieierereierereiererenenesesesenesenenene 294
URL Handlers Service Specification 299
INEFOAUCHION et nane

Factories in java.net

Framework PrOCEAUIEScovievieveeeeceecreete ettt ettt er v et eae e eseenbeeaeenne 303
Providing @ New SCheme.....cciiiiiiiieiieeeieectceteeeere ettt 307
Providing @ Content Handler........cc.eueueurieirieieieieieieieieieieeeieiee e 308
Security CoNSIAErationscccceeeeeiririereieieieetete ettt sttt 309
CRANEES ettt bbb 309
OTE.OSEI.SEIVICEUTT 1ottt 309
RETEIEICES .ttt ettt ettt eae et et se st st et esensenessensenene 313
Service Hooks Specification 315
INEFOAUCEION ...ttt ettt ettt st be s se b ease s eneesennennens 315
SEIVICE HOOKS ..ttt ettt ettt ettt eae et eas e esesaeneenene 317
USAEE SCENATIOS w.ovevevevrerieiieteieieteteietetesetetereseseseseseseseseseaesesesesesebesesesesesesenesenenen 318
EVENE HOOK ..vviiectiteeceetee ettt ettt e ere v s s ese s e s e s eneenennennens 322
FINA HOOK ettt ettt eae ettt ens et eve st nseaenaennns 323
LiSTENET HOOK .veveeeeeeteceeeetecteet ettt ettt ettt eae et ettt easenaenbeeneenne 324
ArChit@CtUTAl NOTES c.vovievcvitiiee ettt ettt et 326
SECUTTLY weutreeuenenteteertetet ettt ettt ettt be e bbbttt be sttt sa b ebe e s ebeneneas 327
0rg.05gi.framework.nN00KS.SEIVICE ...c.oveueuuririuiicirireicicirece et 328

OSGi Service Platform Release 4 iv-332

v-332 OSGi Service Platform Release 4

Introduction

OSGi Framework Overview

1

1.1

Introduction

The OSGi™ Alliance was founded in March 1999. Its mission is to create
open specifications for the network delivery of managed services to local
networks and devices. The OSGi organization is the leading standard for
next-generation Internet services to homes, cars, mobile phones, desktops,
small offices, and other environments.

The OSGi Service Platform specification delivers an open, common architec-
ture for service providers, developers, software vendors, gateway operators
and equipment vendors to develop, deploy and manage services in a coordi-
nated fashion. It enables an entirely new category of smart devices due to its
flexible and managed deployment of services. OSGi specifications target set-
top boxes, service gateways, cable modems, consumer electronics, PCs,
industrial computers, cars, mobile phones, and more. Devices that imple-
ment the OSGi specifications will enable service providers like telcos, cable
operators, utilities, and others to deliver differentiated and valuable services
over their networks.

This is the fourth release of the OSGi Service Platform specification devel-
oped by representatives from OSGi member companies. The OSGi Service
Platform Release 4 mostly extends the existing APIs into new areas. The few
modifications to existing APIs are backward compatible so that applications
for previous releases should run unmodified on Release 4 Frameworks. The
built-in version management mechanisms allow bundles written for the
new release to adapt to the old Framework implementations, if necessary.

OSGi Framework Overview

The Framework forms the core of the OSGi Service Platform Specifications.
It provides a general-purpose, secure, and managed Java framework that
supports the deployment of extensible and downloadable applications
known as bundles.

OSGi-compliant devices can download and install OSGi bundles, and
remove them when they are no longer required. The Framework manages
the installation and update of bundles in an OSGi environment in a
dynamic and scalable fashion. To achieve this, it manages the dependencies
between bundles and services in detail.

It provides the bundle developer with the resources necessary to take advan-
tage of Java’s platform independence and dynamic code-loading capability
in order to easily develop services for small-memory devices that can be
deployed on a large scale.

The functionality of the Framework is divided in the following layers:

. Security Layer

- Module Layer

. Life Cycle Layer
- Service Layer

« Actual Services

OSGi Service Platform Release 4 1-332

OSGi Framework Overview Introduction

Figure 1

This layering is depicted in Figure 1.

Layering

Bundles | Service |

| Life cycle |

Security

| Module |

| Execution Environment |

| Hardware/OS |

The Security Layer is based on Java 2 security but adds a number of con-
straints and fills in some of the blanks that standard Java leaves open. It
defines a secure packaging format as well as the runtime interaction with
the Java 2 security layer. The Security Layer is described in Security Layer on
page 11.

The Module Layer defines a modularization model for Java. It addresses
some of the shortcomings of Java’s deployment model. The modularization
layer has strict rules for sharing Java packages between bundles or hiding
packages from other bundles. The Module Layer can be used without the
life cycle and Service Layer. The Life Cycle Layer provides an API to manage
the bundles in the Module Layer, while the Service Layer provides a commu-
nication model for the bundles. The Module Layer is described in Module
Layer on page 27.

The Life Cycle Layer provides a life cycle API to bundles. This API provides a
runtime model for bundles. It defines how bundles are started and stopped
as well as how bundles are installed, updated and uninstalled. Additionally,
it provides a comprehensive event API to allow a management bundle to
control the operations of the service platform. The Life Cycle Layer requires
the Module Layer but the Security Layer is optional. A more extensive
description of the Life Cycle layer can be found at Life Cycle Layer on page 85

The Service Layer provides a dynamic, concise and consistent programming
model for Java bundle developers, simplifying the development and deploy-
ment of service bundles by de-coupling the service’s specification (Java
interface) from its implementations. This model allows bundle developers
to bind to services only using their interface specifications. The selection of
a specific implementation, optimized for a specific need or from a specific
vendor, can thus be deferred to run-time.

A consistent programming model helps bundle developers cope with scal-
ability issues in many different dimensions — critical because the Frame-
work is intended to run on a variety of devices whose differing hardware
characteristics may affect many aspects of a service implementation. Con-
sistent interfaces insure that the software components can be mixed and
matched and still result in stable systems.

2-332

OSGi Service Platform Release 4

Introduction

Reader Level

Figure 2

1.2

The Framework allows bundles to select an available implementation at
run-time through the Framework service registry. Bundles register new ser-
vices, receive notifications about the state of services, or look up existing
services to adapt to the current capabilities of the device. This aspect of the
Framework makes an installed bundle extensible after deployment: new
bundles can be installed for added features or existing bundles can be modi-
fied and updated without requiring the system to be restarted.

The Service Layer is described in Service Layer on page 123.

The interactions between the layers is depicted in Figure 2.

Interactions between layers

— register
g .
unregister

get
unget

manage

Life Cycle

Install
uninstall

stop

Bundle

class load

execute

Reader Level

This specification is written for the following audiences:

+ Application developers
- Framework and system service developers (system developers)
« Architects

The OSGi Specifications assume that the reader has at least one year of prac-
tical experience in writing Java programs. Experience with embedded sys-
tems and server environments is a plus. Application developers must be
aware that the OSGi environment is significantly more dynamic than tradi-
tional desktop or server environments.

System developers require a very deep understanding of Java. At least three
years of Java coding experience in a system environment isrecommended. A
Framework implementation will use areas of Java that are not normally
encountered in traditional applications. Detailed understanding is required
of class loaders, garbage collection, Java 2 security, and Java native library
loading.

OSGi Service Platform Release 4 3-332

Conventions and Terms Introduction

1.3

Architects should focus on the introduction of each subject. This introduc-
tion contains a general overview of the subject, the requirements that influ-
enced its design, and a short description of its operation as well as the
entities that are used. The introductory sections require knowledge of Java
concepts like classes and interfaces, but should not require coding experi-
ence.

Most of these specifications are equally applicable to application developers
and system developers.

Conventions and Terms

1.3.1 Typography
A fixed width, non-serif typeface (sample) indicates the term is a Java pack-
age, class, interface, or member name. Text written in this typeface is always
related to coding.
Emphasis (sample) is used the first time an important concept is introduced.
Its explanation usually follows directly after the introduction.
When an example contains a line that must be broken into multiple lines,
the « character is used. Spaces must be ignored in this case. For example:
http: //www. acme. com/sp/ «
file?abc=12
is equivalent to:
http: //www.acme.com/sp/file?abc=12
1.3.2 General Syntax Definitions
In many cases in these specifications, a syntax must be described. This syn-
tax is based on the following symbols:
* Repetition of the previous element zero or
more times, e.g. (', element) %
+ Repetition one or more times
? Previous element is optional
(...) Grouping
L Literal
| Or
[...] Set (one of)
.. list, e.g. 1..5 is the list 123 45
<o Externally defined token
The following tokens are pre defined and used throughout the specifica-
tions:
digit = [0..9]
alpha = [a..zA..Z]
alphanum = alpha | digit
token = (alphanum | " | -7)+
number = digit+
jletter = «<see [5] Lexical Structure Java Language for
JavalLetter>
4-332 OSGi Service Platform Release 4

Introduction

Conventions and Terms

1.3.3

jletterordigit::= <See [5] Lexical Structure Java Language for
JavaletterOrDigit »

gname = /* See [5] Lexical Structure Java Language for
fully qualified class names */

identifier = jletter jletterordigit =

extended = (alphanum | * " | "=] 7.7)+

quoted-string::= """ ([""\#xOD#xO0A#x00] | "\""|"\\")* " "’

argument = extended | quoted-string

parameter = directive | attribute

directive = token ’:=" argument

attribute = token =" argument

unique-name ::= identifier (’.’ identifier)*

symbolic-name ::= token('.'token)x

package-name ::= unique-name

path = path-unquoted | ("’ path-unquoted '"")

1]

path-unquoted::= path-sep | path-sep? path-element
(path-sep path-element)x
path-element [/ "\#x0D#x0A#x00] +

path-sep si=

1]

Whitespaces between terminals are ignored unless specifically noted. Any
value that contains a space, a comma, semi-colon, colon, equal sign or any
other character that is part of a terminal in the grammar must be quoted.

Object Oriented Terminology

Concepts like classes, interfaces, objects, and services are distinct but subtly
different. For example, “LogService” could mean an instance of the class
LogService, could refer to the class LogService, or could indicate the func-
tionality of the overall Log Service. Experts usually understand the meaning
from the context, but this understanding requires mental effort. To high-
light these subtle differences, the following conventions are used.

When the class is intended, its name is spelled exactly as in the Java source
code and displayed in a fixed-width typeface: for example, the “HttpService
class”, “a method in the HttpContext class” or “ajavax.servlet.Servlet
object”. A class name is used in its fully qualified form, like
javax.servlet.Servlet, when the package is not obvious from the context,
nor is it in one of the well known java packages like java.lang, java.io,

java.util and java.net. Otherwise, the package is omitted like in String.

In many cases, a type can be used as a scalar but also a collection of that type
or an array of that type. In those cases, a simple + will be suffixed to the type.
For example String+, indicates that a String, a String[],and a
Collection<String> are all valid forms.

Exception and permission classes are not followed by the word “object”.
Readability is improved when the “object” suffix is avoided. For example, “to
throw a Security Exception” and to “to have File Permission” is more read-
able then “to have a FilePermission object”.

OSGi Service Platform Release 4 5-332

Conventions and Terms Introduction

1.3.4

Figure 3

Figure 4

Permissions can further be qualified with their actions.
ServicePermission[com.acme.*,GET|REGISTER] means a
ServicePermission with the action GET and REGISTER for all service names
starting with com.acme. A ServicePermission[Producer|Consumer,
REGISTER] means the ServicePermission for the Producer or Consumer
class with REGISTER action.

When discussing functionality of a class rather than the implementation
details, the class name is written as normal text. This convention is often
used when discussing services. For example, “the User Admin service” is
more readable.

Some services have the word “Service” embedded in their class name. In
those cases, the word “service” is only used once but is written with an
upper case S. For example, “the Log Service performs”.

Service objects are registered with the OSGi Framework. Registration con-
sists of the service object, a set of properties, and a list of classes and inter-
faces implemented by this service object. The classes and interfaces are used
for type safety and naming. Therefore, it is said that a service object is regis-
tered under a class/interface. For example, “This service object is registered
under PermissionAdmin.”

Diagrams

The diagrams in this document illustrate the specification and are not nor-
mative. Their purpose is to provide a high-level overview on a single page.
The following paragraphs describe the symbols and conventions used in
these diagrams.

Classes or interfaces are depicted as rectangles, as in Figure 3. Interfaces are
indicated with the qualifier <<interface>> as the first line. The name of the
class/interface is indicated in bold when it is part of the specification. Imple-
mentation classes are sometimes shown to demonstrate a possible imple-
mentation. Implementation class names are shown in plain text. In certain
cases class names are abbreviated. This is indicated by ending the abbrevia-
tion with a period.

Class and interface symbol

«class»> «interface>> UserAdmin
Admin Bundle Implementation
Permission Context

class interface implementation class

If an interface or class is used as a service object, it will have a black triangle
in the bottom right corner.

Service symbol

«interface>>
Permission
Admin

6-332

OSGi Service Platform Release 4

Introduction

Conventions and Terms

Figure 5

Figure 6

Figure 7

Service are crucial interaction elements and they can occur many times in
diagrams describing services. Therefore, an alternative service symbol is the
triangle. Triangles can be connected in different ways, representing differ-
ent meanings:

. Point— Connections to the point of a triangle indicate the registration.
This makes the point of the triangle point to the object that receives the
method calls from the service users.

. Straight Side — Connections to the straight side indicate service clients.
Clients call the methods of the service.

« Angled Side—The angled side is reserved for service listeners.

Alternative Service symbol

Service Call Direction -» Servce
Client - Provider
get register
listen
Servce
Listener

Inheritance (the extends orimplements keyword in Java class definitions)
is indicated with an arrow. Figure 6 shows that the AdminPermission class
implements or extends the Permission class.

Inheritance (implements or extends) symbol

<«class>>

«class>>
Admin P Permission
Permission

Relations are depicted with a line. The cardinality of the relation is given
explicitly when relevant. Figure 7 shows that each (1) BundleContext object
isrelated to 0 or more BundleListener objects, and that each BundleListener
object is related to a single BundleContext object. Relations usually have
some description associated with them. This description should be read
from left to right and top to bottom, and includes the classes on both sides.
For example: “A BundleContext object delivers bundle events to zero or
more Bundlelistener objects.”

Relations symbol

«interface>> . «interface>>
1 delivers bundle events 0.

Bundle Bundle

Context Listener

Associations are depicted with a dashed line. Associations are between
classes, and an association can be placed on a relation. For example, “every
ServiceRegistration object has an associated ServiceReference object.” This
association does not have to be a hard relationship, but could be derived in
some way.

OSGi Service Platform Release 4 7-332

Version Information Introduction

Figure 8

Figure 9

1.3.5

1.4

Implementation

bundle

When a relationship is qualified by a name or an object, it is indicated by
drawing a dotted line perpendicular to the relation and connecting this line
to a class box or a description. Figure 8 shows that the relationship between
aUserAdmin class and a Role class is qualified by a name. Such an associa-
tion is usually implemented with a Dictionary or Map object.

Associations symbol
«interface>> I . «interface>>
UserAdmin I | 9-* | Role

|
name

Bundles are entities that are visible in normal application programming. For
example, when a bundle is stopped, all its services will be unregistered.
Therefore, the classes/interfaces that are grouped in bundles are shown on a
grey rectangle as is shown in Figure 9.

Bundles

«interface>>
Role

«interface>>
UserAdmin

Permission

11

UserAdminimpl Rolelmpl

Key Words

This specification consistently uses the words may, should, and must. Their
meaning is well-defined in [1] Bradner, S., Key words for use in RFCs to Indicate
Requirement Levels. A summary follows.

must— An absolute requirement. Both the Framework implementation
and bundles have obligations that are required to be fulfilled to conform
to this specification.

« should—Recommended. It is strongly recommended to follow the
description, but reasons may exist to deviate from this recommendation.
may or can— Optional. Implementations must still be interoperable
when these items are not implemented.

Version Information

This document specifies OSGi Service Platform Core Specification, Release
4. This specification is backward compatible to releases 1, 2, and 3.

All Security, Module, Life Cycle and Service Layers are part of the Frame-
work Specification

8-332

OSGi Service Platform Release 4

Introduction References

Components in this specification have their own specification version,
independent of the document release number. The following table summa-
rizes the packages and specification versions for the different subjects.

When a component is represented in a bundle, a version is needed in the
declaration of the Import-Package or Export-Package manifest headers.

Table 1 Packages and versions OSGi Service Platform, Release 4, Version 4.2
Item Package Version
Framework Specification (all layers) org.osgi.framework Version 1.5
Framework Launching org.osgi.framework.launch Version 1.0
9 Conditional Permission Admin Specifi- org.osgi.service.condpermission- Version 1.1
cation admin

7 Package Admin Service Specification org.osgi.service.packageadmin Version 1.2
10 Permission Admin Service Specification org.osgi.service.permissionadmin Version 1.2
8 Start Level Service Specification org.osgi.service.startlevel Version 1.1
11 URL Handlers Service Specification org.osgi.service.url Version 1.0
12 Service Hooks Specification org.osgi.framework.hooks.service Version 1.0
1.5 References

(1 Bradner, S., Key words for use in RFCs to Indicate Requirement Levels
http://www.ietf.org/rfc/rfc2119.txt, March 1997.

[2] OSGi Service Gateway Specification 1.0, May 2000
http://www.osgi.org/resources/spec_download.asp

3] OSGi Service Platform, Release 2, October 2001
http://www.osgi.org/resources/spec_download.asp

[4] OSGi Service Platform, Release 3, March 2003
http://www.osgi.org/resources/spec_download.asp

(5] Lexical Structure Java Language
http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html

OSGi Service Platform Release 4 9-332

References Introduction

10-332 OSGi Service Platform Release 4

Security Layer Version 1.5 Introduction

2

2.1

2.1.1

2.2

2.2.1

Security Layer

Version 1.5

Introduction

The OSGi Security Layer is an optional layer that underlies the OSGi Service
Platform. The layer is based on the Java 2 security architecture. It provides
the infrastructure to deploy and manage applications that must run in fine-
grained controlled environments.

Essentials

. Fine-grained— The control of applications running in an OSGi
Framework must allow for detailed control of those applications.

« Manageable— The security layer itself does not define an API to control
the applications. The management of the security layer is left to the life
cycle layer.

« Optional—The security layer is optional.

Security Overview

The Framework security model is based on the Java 2 specification. If secu-
rity checks are performed, they must be done according to [8] Java 2 Security
Architecture. It is assumed that the reader is familiar with this specification.
The security layer is optional, see Optional Security on page 12.

Code Authentication
The OSGi Service Platform can authenticate code in the following ways:

- Bylocation
+ Bysigner

At higher layers there are defined services that can manage the permissions
that are associated with the authenticated unit of code. These services are:

- Permission Admin service— Manages the permission based on full location
strings.

« Conditional Permission Admin service—Manages the permissions based on
a comprehensive conditional model, where the conditions can test for
location or signer.

For signing, this requires the JAR files to be signed; this is described in Digi-
tally Signed JAR Files on page 12.

OSGi Service Platform Release 4 11-332

Digitally Signed |AR Files Security Layer Version 1.5

2.2.2

2.3

Optional Security

The Java platform on which the Framework runs must provide the Java
Security APIs necessary for Java 2 permissions. On resource-constrained
platforms, these Java Security APIs may be stubs that allow the bundle
classes to be loaded and executed, but the stubs never actually perform the
security checks. The behavior of these stubs must be as follows:

checkPermission — Return without throwing a SecurityException.
checkGuard —Return without throwing a SecurityException.
implies —Return true.

This behavior allows code to run as if all bundles have AllPermission.

Digitally Signed AR Files

This section defines in detail how JAR files must be signed. This section
therefore overlaps with the different JAR file specifications that are part of
the different versions of Java. The reason for this duplication is that there
are many aspects left as optional or not well-defined in these specifications.
A reference was therefore insufficient.

Digitally signing is a security feature that verifies the following:

Authenticates the signer
. Ensures that the content has not been modified after it was signed by the
principal.

In an OSGi Framework, the principals that signed a JAR become associated
with that JAR. This association is then used to:

+ Grant permissions to a JAR based on the authenticated principal
Target a set of bundles by principal for a permission to operate on or
with those bundles

For example, an Operator can grant the ACME company the right to use net-
working on their devices. The ACME company can then use networking in
every bundle they digitally sign and deploy on the Operator’s device. Also, a
specific bundle can be granted permission to only manage the life cycle of
bundles that are signed by the ACME company.

Signing provides a powerful delegation model. It allows an Operator to
grant a restricted set of permissions to a company, after which the company
can create JARs that can use those permissions, without requiring any inter-
vention of, or communication with, the Operator for each particular JAR.
This delegation model is shown graphically in Figure 2.1.

12-332

OSGi Service Platform Release 4

Security Layer Version 1.5 Digitally Signed |AR Files

Figure 2.1

2.3.1

Delegation model

S e, X

Developer Enterprise

instausi @

. OSGi :
Ues o ' Service ! 4&
' ' ermissions
Employee ! Platform: permisst Operator

Digital signing is based on public key cryptography. Public key cryptography
uses a system where there are two mathematically related keys: a public and
a private key. The public key is shared with the world and can be dispersed
freely, usually in the form of a certificate. The private key must be kept a
secret.

Messages signed with the private key can only be verified correctly with the
public key. This can be used to authenticate the signer of a message (assum-
ing the public key is trusted, this is discussed in Certificates on page 17).

The digital signing process used is based on Java 2 JAR signing. The process
of signing is repeated, restricted and augmented here to improve the inter-
operability of OSGi bundles.

JAR Structure and Manifest

ATJAR can be signed by multiple signers. Each signer must store two
resources in the JAR file. These resources are:

- Asignature instruction resource that has a similar format like the Man-
ifest. It must have a .SF extension. This file provides digests for the com-
plete manifest file.

- APKCS#7 resource that contains the digital signature of the signature
instruction resource. See [16] Public Key Cryptography Standard #7 for
information about its format.

These JAR file signing resources must be placed in the META-INF directory.
For signing, the META-INF directory is special because files in there are not
signed in the normal way. These signing resources must come directly after
the MANIFEST.MF file, and before any other resources in a JAR stream. If this
isnot the case, then a Framework should not accept the signatures and must
treat the bundle as unsigned. This ordering is important because it allows
the receiver of the JAR file to stream the contents without buffering. All the
security information is available before any resources are loaded. This
model is shown in Figure 2.2.

OSGi Service Platform Release 4 13-332

Digitally Signed |AR Files Security Layer Version 1.5

Figure 2.2 Signer files in JAR
MANIFEST.MF

META-INF/ ACME.SF

... other files ACMERSA
——— DAFFY.SF
 — DAFFY.DSA
———

———

————

The signature instruction resource contains digests of the Manifest
resource, not the actual resource data itself. A digest is a one way function
that computes a value from the bytes of a resource in such a way that it is
very difficult to create a set of bytes that matches that digest value.

The JAR Manifest must therefore contain one or more digests of the actual
resources. These digests must be placed in their name section of the mani-
fest. The name of the digest header is constructed with its algorithm fol-
lowed by -Digest. An example is the SHA1-Digest. It is recommended that
OSGi Framework implementations support the following digest algo-
rithms.

MD5 —Message Digest 5, an improved version of MD4. It generates a 128-
bit hash. It is described at page 436 in [12] RFC 1321 The MD5 Message-
Digest Algorithm.

SHA1- An improved version of SHA, delivers a 160 bit hash. It is defined
in [11] Secure Hash Algorithm 1.

The hash must be encoded with a Base 64 encoding. Base 64 encoding is
defined in [13] RFC 1421 Privacy Enhancement for Internet Electronic Mail.

For example, a manifest could look like:

Manifest-Version: 1.0

Bundle-Name: DisplayManifest

|

Name: x/A.class

SHA1-Digest: RTpDp+igo]1lkxs8CSFeDtMbMq78=
|

Name: x/B.class

SHA1-Digest: 3EuIPcx414w2QfFSXSZEBfLgKYA=
|

Graphically this looks like Figure 2.3.

Figure 2.3 Signer files in JAR
META-INF/ Manifest-Version: 1.0
.. other files 8 el
—— ame: x/A.class .
— L SHA1-Digest:RTpDp+igo] 1k.
x/Aclass
C— Name: x/B.class

| _—— | SHA1-Digest: 3EuIPcx414w2.| .

C_——— 1
x/Bclass — |

MANIFEST.MF

14-332 OSGi Service Platform Release 4

Security Layer Version 1.5 Digitally Signed |AR Files

OSGi JARs must be signed by one or more signers that sign all resources
except the ones in the META-INF directory; the default behavior of the jar-
signer tool. This is a restriction with respect to standard Java JAR signing;
there is no partial signing for an OSGi JAR. The OSGi specification only sup-
ports fully signed bundles. The reason for this restriction is because partially
signing can break the protection of private packages. It also simplifies the
security API because all code of a bundle is using the same protection
domain.

Signature files in nested JAR files (For example JARs on the Bundle-
ClassPath) must be ignored. These nested JAR files must share the same pro-
tection domain as their containing bundle. They must be treated as if their
resources were stored directly in the outer JAR.

Each signature is based on two resources. The first file is the signature
instruction file; this file must have a file name with an extension .SF. A sig-
nature file has the same syntax as the manifest, except that it starts with
Signature-Version: 1.0 instead of Manifest-Version: 1.0.

The only relevant part of the signature resource is the digest of the Manifest
resource. The name of the header must be the name algorithm (e.g. SHA1)
followed by -Digest-Manifest. For example:

Signature-Version: 1.0
SHA1-Digest-Manifest: R]pDp+igo]1lkxs8CSFeDtMbMq78=
MD5-Digest-Manifest: IIsI6HranRNHMY27SK8M5qMunR4=

The signature resource can contain name sections as well. However, these
name sections should be ignored.

If there are multiple signers, then their signature instruction resources can
be identical if they use the same digest algorithms. However, each signer
must still have its own signature instruction file. That is, it is not allowed to
share the signature resource between signers.

The indirection of the signature instruction files digests is depicted in Fig-
ure 2.4 for two signers: ACME and DAFFY.

Figure 2.4 Manifest, signature instruction files and digests in JAR
I —
signature
with private key
... other files —— certificates
[N ——
ACME.RSA
[| — ACME.SF
L [
M ——— signature
; MANIFEST.MF with private key
certificates
e Vianifest entry DAFFY.DSA

—— Digest functions DAFFY.SF

[Resource

OSGi Service Platform Release 4 15-332

Digitally Signed |AR Files Security Layer Version 1.5

2.3.2

2.3.3

2.3.4

Java AR File Restrictions

OSGi bundles are always valid JAR files. However, there are a few restric-
tions that apply to bundles that do not apply to JAR files.

- Bundles do not support partially signed bundles. The manifest must
contain name sections for all resources but should not have entries for
resources in the META-INF directory. Signed entries in the META-INF
directory must be verified. Sub directories of META-INF must be treated
like any other JAR directory.

The name sections in the signature files are ignored. Only the Manifest
digest is used.

Valid Signature

A bundle can be signed with a signature by multiple signers. A signature con-
tains a pair of a signature file, with a SF extension and a PKCS#7 resource
that has the same name as the signature file but with either an RSA or DSA
extension.

Such a signature is valid when:

The signature file has an entry for the META-INF/MANIFEST.MF
resource.

« The manifest entry must contain an SHA1 and/or MD5 digest for the
complete manifest.
All listed digests match the manifest.
The PCKS#7 resource is a valid signature (either signed using RSA or
DSA as indicated by the extension) for the signature resource.

For a complete bundle to be validly signed it is necessary that all signatures
are valid. That is, if one of the signatures is invalid, the whole bundle must
be treated as unsigned.

Signing Algorithms

Several different available algorithms can perform digital signing. OSGi
Framework implementations should support the following algorithms:

DSA - The Digital Signature Algorithm. This standard is defined in [14]
DSA. This is a USA government standard for Digital Signature Standard.
The signature resource name must have an extension of .DSA.

« RSA-—Rivest, Shamir and Adleman. A public key algorithm that is very
popular. It is defined in [15] RSA. The extension of the signature resource
name must be .RSA.

The signature files for RSA and DSA are stored in a PCKS#7 format. Thisis a
format that has a structure as defined in [16] Public Key Cryptography Stan-
dard #7. The PKCS#7 standard provides access to the algorithm specific sign-
ing information as well as the certificate with the public key of the signer.
The verification algorithm uses the public key to verify that:

The digital signature matches the signature instruction resource.
The signature was created with the private key associated with the certif-
icate.

The complete signing structure is shown in Figure 2.4.

16-332

OSGi Service Platform Release 4

Security Layer Version 1.5 Digitally Signed |AR Files

2.3.5

Figure 2.5

Certificates

A certificate is a general term for a signed document containing a name and
public key information. Such a certificate can take many forms but the
OSGiJAR signing is based on the X.509 certificate format. It has been around
for many years and is part of the OSI group of standards. X.509 is defined in
[7] X.509 Certificates.

An X.509 certificate contains the following elements:

« Subject Name— The subject name is a unique identifier for the object
being certified. In the case of a person this might include the name,
nationality and e-mail address, the organization, and the department
within that organization. This identifier is a Distinguished Name, which
is defined in Distinguished Names on page 18.

. Issuer Name—The Issuer name is a Distinguished Name for the principal
that signed this certificate.

« Certificate Extensions— A certificate can also include pictures, codification
of fingerprints, passport number, and other extensions.

« Public Key Information— A public key can be used with an encryption
technique that requires its private counterpart to decrypt, and vice versa.
The public key can be shared freely, the private key must be kept secret.
The public key information specifies an algorithm identifier (such as
DSA or RSA) and the subject's public key.

- Validity— A Certificate can be valid for only a limited time.

« Certifying Authority Signature— The Certificate Authority signs the first
elements and thereby adds credibility to the certificate. The receiver of a
certificate can check the signature against a set of trusted certifying
authorities. If the receiver trusts that certifying authority, it can trust the
statement that the certificate makes.

The structure of a certificate is depicted in Figure 2.5.

Structure of a certificate

subject DN O digital signing algorithm

issuer DN

validity

extensions digest

public key

private key from other certificate

signature

Certificates can be freely dispersed; they do not contain any secret informa-
tion. Therefore, the PKCS#7 resource contains the signing certificate. It can-
not be trusted at face value because the certificate is carried in the bundle
itself. A perpetrator can easily create its own certificate with any content.
The receiver can only verify that the certificate was signed by the owner of
the public key (the issuer) and that it has not been tampered with. However,
before the statement in the certificate can be trusted, it is necessary to
authenticate the certificate itself. It is therefore necessary to establish a trust
model.

OSGi Service Platform Release 4 17-332

Digitally Signed |AR Files Security Layer Version 1.5

One trust model, supported but not required by the OSGi specifications, is
placing the signing certificate in a repository. Any certificate in this reposi-
toryis treated as trusted by default. However, placing all possible certificates
in this repository does not scale well. In an open model, a device would have
to contain hundreds of thousands of certificates. The management of the
certificates could easily become overwhelming.

The solution is to sign a certificate by another certificate, and this process
can be repeated several times. This delegation process forms a chain of certifi-
cates. All certificates for this chain are carried in the PKCS#7 file: if one of
those certificates can be found in the trusted repository, the other depen-
dent ones can be trusted, on the condition that all the certificates are valid.
This model scales very well because only a few certificates of trusted signers
need to be maintained. This is the model used in web browsers, as depicted
in Figure 2.6.

Figure 2.6 Certificate authorities fan out

App

—> Signs Cert

Thawte
Signing

Thawte

Trusted Repository
Root

This specification does not specify access to the trusted repository. It is
implementation specific how this repository is populated and maintained.

2.3.6 Distinguished Names

An X.509 name is a Distinguished Name (DN). A DN is a highly structured
name, officially identifying a node in an hierarchical name space. The DN
concept was developed for the X.500 directory service which envisioned a
world wide name space managed by PTTs. Today, the DN is used as an iden-
tifier in a local name space, as in a name space designed by an Operator. For
example, given a name space that looks like Figure 2.7, the DN identifying
Bugs looks like:

cn=Bug, o=ACME, c=US

18-332 OSGi Service Platform Release 4

Security Layer Version 1.5

Digitally Signed |AR Files

Figure 2.7

Country, Company, Person based name space.

Root
T
A
C = Country
1
*
O =

Organization

1
*

CN =Common

Name

The traversal of the name space is reversed from the order in the DN, the first
part specifies the least significant but most specific part. That is, the order of
the attribute assertions is significant. Two DNs with the same attributes but
different order are different DNs.

In the example, a node is searched in the root that has an attribute c
(countryName) with a value that is US. This node is searched for a child that
has an attribute o (organizationName) with a value of ACME. And the
ACME node is searched for a child node with an attribute cn
(commonName) that has a value "Bugs Bunny".

The tree based model is the official definition of a DN from the X.500 stan-
dards. However, in practice today, many DNs contain attributes that have
no relation to a tree. For example, many DNs contain comments and copy-
rights in the ou (organizationalUnit) attribute.

The DN from an X.509 certificate is expressed in a binary structure defined
by ASN.1 (a type language defined by ISO). However, the Distinguished
Name is often used in interaction with humans. Sometimes, users of a sys-
tem have to acknowledge the use of a certificate or an employee of an Oper-
ator must grant permissions based on a Distinguished Name of a customer.
It is therefore paramount that the Distinguished Name has a good human
readable string representation. The expressiveness of the ASN.1 type lan-
guage makes this non-trivial. This specification only uses DN strings as
defined in [6] RFC 2253 with a number of extensions that are specified by the
javax.security.auth.xs00.XsooPrincipal class in CANONICAL form.

However, the complexity of the encoding/decoding is caused by the use of
rarely used types and features (binary data, multi-valued RDNs, foreign
alphabets, and attributes that have special matching rules). These features
must be supported by a compliant implementation but should be avoided
by users. In practice, these features are rarely used today.

The format of a string DN is as follows:

dn s:=rdn (7, rdn) %
rdn = attribute ('+ attribute) =x
attribute = name '=" value

OSGi Service Platform Release 4 19-332

Digitally Signed |AR Files Security Layer Version 1.5

name ::= readable | oid

oid ::= number ('." number) % // See 1.3.2
readable ::= <see attribute table>

value ::= <escaped string>

Spaces before and after the separators are ignored, spaces inside a value are
significant but multiple embedded spaces are collapsed into a single space.
Wildcard characters (*’ \uoo2A) are not allowed in a value part. The fol-
lowing characters must be escaped with a back slash:

comma *,7 \u002C
plus "+ \u002B
double quote *"’ \u0022
back slash "\’ \u005C
less then "<’ \u003C
greater then ’>’ \uOO3E
semicolon ", \u003B

Backslashes must already be escaped in Java strings, requiring 2 backslashes
in Java source code. For example:

DN: cn = Bugs Bunny, o = ACME++, C=US
Canonical form: cn=bugs bunny, o=acme\+\+, c=us
JTava String: "cn=Bugs Bunny, 0=ACME\\+\\+, c=US"

The full unicode character set is available and can be used in DNs. String
objects must be normalized and put in canonical form before being com-

pared.
DN: cn = Bugs Bunny, o = D P, C=US
Canonical form: cn=bugs bunny,o=d b, c=us
Tava String: “cn = Bugs Bunny, o = b p, C=US"

The names of attributes (attributes types as they are also called) are actually
translated into an Object IDentifier (OID). An OID is a dotted decimal num-
ber, like 2.5.4.3 for the cn (commonName) attribute name. It is therefore not
possible to use any attribute name because the implementation must know
the aliasing as well as the comparison rules. Therefore only the attributes
that are listed in the following table are allowed (in short or long form):

commonName cn 2.5.4.3 ITU X.520
surName sn 2.5.4.4
countryName C 2.5.4.6
localityName 1 2.5.4.7
stateOrProvinceName st 2.5.4.8
organizationName o 2.5.4.10
organizationalUnitName ou 2.5.4.11

title 2.5.4.12
givenName 2.5.4.42

initials 2.5.4.43
generationQualifier 2.5.4.44
dnQualifier 2.5.4.46
streetAddress street RFC 2256
domainComponent dc RFC 1274
userid uid RFC 1274727987

20-332 OSGi Service Platform Release 4

Security Layer Version 1.5 Digitally Signed |AR Files

emailAddress RFC 2985
serialNumber RFC 2985
The following DN:

2.5.4.3=Bugs Bunny,organizationName=ACME,2.5. 4. 6=US
Is therefore identical to:
cn=Bugs Bunny, 0=ACME, c=US

The attribute types officially define a matching rule, potentially allowing
cases sensitive and case insensitive. The attributes in the previous list all
match case insensitive. Therefore, an OSGi DN must not depend on case sen-
sitivity.

The X.500 standard supports multi-valued RDNs, however, their use is not
recommended. See [18] Understanding and Deploying LDAP Directory Services
for the rationale of this recommendation. Multi-valued RDNs separate their
constituents with a plus sign (+" \uoo2B). Their order is not significant. For
example:

cn=Bugs Bunny+dc=x.com+title=Manager, 0o=ACME, c=US
Which is the same as

dc=x. com+cn=Bug Bunny+title=Manager, o=ACME, c=US"

2.3.7 Certificate Matching

Certificates are matched by their Subject DN. Before matching, DNs, they
must first be put in canonical form according to the algorithm specified in
javax.security.auth.xsoo.XsooPrincipal.

DNs can also be compared using wildcards. A wildcard '+’ \u002A) replaces
all possible values. Due to the structure of the DN, the comparison is more
complicated than string-based wildcard matching.

A wildcard can stand for a number of RDNSs, or the value of a single RDN.
DNs with a wildcard must be canonicalized before they are compared. This
means, among other things, that spaces must be ignored, except in values.

The format of a wildcard DN match is:

CertificateMatch::= dn-match (’;’ dn-match) *
dn-match = (’*" | rdn-match)
(", rdn-match) * | -’
rdn-match = name '=" value-match
value-match ::= "%’ | value-star
value-star = < value, requires escaped '’ and '-’ >

The most simple case is a single wildcard; it must match any DN. A wildcard
can also replace the first list of RDNs of a DN. The first RDNs are the least
significant. Such lists of matched RDNs can be empty.

For example, a DN with a wildcard that matches all nodes descendant from
the ACME node in Figure 2.7 on page 19, looks like:

*, 0=ACME, c=US
This wildcard DN matches the following DNs:

OSGi Service Platform Release 4 21-332

Digitally Signed |AR Files Security Layer Version 1.5

cn = Bugs Bunny, o = ACME, c = US

ou = Carots, cn=Daffy Duck, o=ACME, c=US
street = 9C\, Avenue St. Drézéry, o=ACME, c=US
dc=ww, dc=acme, dc=com, o=ACME, c=US

0=ACME, c=US

The following DNs must not match:

street = 9C\, Avenue St. Drézéry, o=ACME, c=FR
dc=ww, dc=acme, dc=com, c=US

If a wildcard is used for a value of an RDN, the value must be exactly *. The
wildcard must match any value, and no substring matching must be done.
For example:

cn=x%, 0=ACME, c=+
This DN with wildcard must match the following DNs:

cn=Bugs Bunny, 0=ACME, c=US
cn = Daffy Duck , o = ACME , ¢ = US
cn=Road Runner, o=ACME, c=NL

But not:

0=ACME, c=NL
dc=acme.com, cn=Bugs Bunny, o0=ACME, c=US

Both forms of wildcard usage can be combined in a single matching DN. For
example, to match any DN that is from the ACME company worldwide, use:

*, 0=ACME, c=%

Matching of a DN takes place in the context of a certificate. This certificate
is part of a certificate chain, see Certificates on page 17. Each certificate hasa
Subject DN and an Issuer DN. The Issuer DN is the Subject DN used to sign
the first certificate of the chain. DN matching can therefore be extended to
match the signer. The semicolon ("; " \u003B) must be used to separate
DNsin a chain.

The following example matches a certificate signed by Tweety Inc. in the
Us.

* ; ou=S &V, o=Tweety Inc., c=US
The wildcard matches zero or one certificates,

however, sometimes it is necessary to match a longer chain. The minus sign
('-" \uoo2D) represents zero or more certificates, whereas the asterisk only
represents a single certificate. For example, to match a certificate where the
Tweety Inc. isin the certificate chain, use the following expression:

- ; %, o=Tweety Inc., c=US

The previous example matched if the Tweety Inc. certificate was trusted, or
was signed by a trusted certificate. Certain certificates are trusted because
they are known by the Framework, how they are known is implementation-
defined.

22-332

OSGi Service Platform Release 4

Security Layer Version 1.5 Permissions

2.4 Permissions

The OSGi Framework uses Java 2 permissions for securing bundles. Each
bundle is associated with a set of permissions. During runtime, the permis-
sions are queried when a permission is requested through the Security Man-
ager. If a Framework uses postponed conditions, then it must install its own
security manager, otherwise it can use any Security Manager.

The management of the bundle’s permissions is handled through Condi-
tional Permission Admin, Permission Admin, or another security agent.

2.4.1 Implied Permissions

Implied permissions are permissions that the framework grants a bundle
without any specific action. These permissions are necessary for normal
operation. For example, each bundle gets permissions to read, write, and
delete the bundle persistent storage area. The complete list of implied per-
missions is as follows:

. File Permission for the bundle persistent storage area, for the READ,
WRITE, and DELETE actions

. Property Permission with the READ action for org.osgi.framework.x

« Admin Permission with the RESOURCE, METADATA, CLASS, and
CONTEXT actions for the bundle itself.

2.4.2 Filter Based Permissions

OSGi supports a number of permissions that are granted when the target of
the permissions is related to a bundle. For example, Admin Permission can
grant a bundle the permission to manage other bundles. Thisis expressed by
using a filter expression for the name of the permission. When the permission
is checked, the filter is evaluated with specific permission attributes as well
as attributes that describe the bundle’s identity. For example, a bundle can
get permission to get all services registered by bundles coming from a spe-
cific location:

ServicePermission(" (location=https://www.acme.com/*)", GET)

This provides a very powerful model because it allows operators to let a
group of bundles closely collaborate without requiring ad hoc name spaces
for services, packages, and bundles. Using the signer or location as the target
for a permission, will allow the maintenance of the permission manage-
ment to be significantly reduced. It is not necessary to configure for individ-
ual bundles: the signer or location is effectively used as a grouping
mechanism.

The filter can contain the following keys:

« id—The bundle ID of a bundle. For example:
(1d=256)

« location—The location of a bundle. Filter wildcards for Strings are sup-
ported, allowing the value to specify a set of bundles. For example:

(location=https: //www.acme. com/download/x*)

OSGi Service Platform Release 4 23-332

Changes

Security Layer Version 1.5

2.4.2.1

2.5

2.6

signer— A Distinguished Name chain. See the Certificate Matching on
page 21 for more information how Distinguished Names are matched.
Wildcards in a DN are not matched according to the filter string rules,
but according to the rules defined for a DN chain. The wildcard character
(+* or \u002a) must be escaped with a backslash (V") to avoid being inter-
preted as a filter wildcard. For example:

(signer=\%, 0=ACME, c=NL)

name —The symbolic name of a bundle. Filter wildcards for Strings are
supported allowing the value to specify a set of bundles. A single sym-
bolic name may also map to a set of bundles. For example:

(name=com. acme. %)

The name parameter of the permission can also be a single wildcard charac-
ter C+’ or \u002a). In that case all bundles must match.

Multiple Signers

A bundle can be signed by multiple signers, in that case the signer will
match against any of the signers’ DN. Using multiple signers is both a fea-
ture as well as it is a possible threat. From a management perspective it is
beneficial to be able to use signatures to handle the grouping. However, it
could also be used to maliciously manage a trusted bundle.

For example a trusted bundle signed by T, could later have a signature added
by an untrusted party U. This will grant the bundle the permissions of both
T and U, which ordinarily is a desirable feature. However, If the permissions
associated with signer U also allow the management of bundles signed by U,
then U could unexpectedly gain the permission to manage this trusted bun-
dle. For example, it could now start and stop this trusted bundle. This unex-
pected effect of becoming eligible to be managed should be carefully
considered when multiple signers are used. The deny policies in Condi-
tional Permission Admin can be used to prevent this case from causing
harm.

Changes

Introduced a section on permissions with filters.
Added a summary of the implied permissions.
Provided more details about what constitutes a valid signature.

References

RFC 2253
http://www.ietf.org/rfc/rfc2253.txt

X.509 Certificates
http://www.ietf.org/rfc/rfc2459.txt

Java 2 Security Architecture
Version 1.2, Sun Microsystems, March 2002

24-332

OSGi Service Platform Release 4

Security Layer Version 1.5 References

The Java 2 Package Versioning Specification
http://java.sun.com/j2se/1.4/docs/guide/versioning/index.html

Manifest Format
http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html#]AR%20Manifest

Secure Hash Algorithm 1
http://csrc.nist.gov/publications/fips/fips180-2/fips180-
2withchangenotice.pdf

RFC 1321 The MD5 Message-Digest Algorithm
http://www.ietf.org/rfc/rfc1321.txt

RFC 1421 Privacy Enhancement for Internet Electronic Mail
http://www.ietf.org/rfc/rfc1421.txt

DSA

http://www.itl.nist.gov/fipspubs/fip186.htm

RSA
http://www.ietf.org/rfc/rfc2313.txt which is superseded by
http://www.ietf.org/rfc/rfc2437.txt

Public Key Cryptography Standard #7
http://www.rsasecurity.com/rsalabs/node.asp?id=2129
Unicode Normalization UAX # 15
http://www.unicode.org/reports/trl5/

Understanding and Deploying LDAP Directory Services
ISBN 1-57870-070-1

OSGi Service Platform Release 4 25-332

References Security Layer Version 1.5

26-332 OSGi Service Platform Release 4

Module Layer Version 1.5 Introduction

3

3.2

Module Layer

Version 1.5

Introduction

The standard Java platform provides only limited support for packaging,
deploying, and validating Java-based applications and components. Because
of this, many Java-based projects, such as JBoss and NetBeans, have resorted
to creating custom module-oriented layers with specialized class loaders for
packaging, deploying, and validating applications and components. The
OSGi Framework provides a generic and standardized solution for Java mod-
ularization.

Bundles

The Framework defines a unit of modularization, called a bundle. A bundle
is comprised of Java classes and other resources, which together can provide
functions to end users. Bundles can share Java packages among an exporter
bundle and an importer bundle in a well-defined way.

In the OSGi Service Platform, bundles are the only entities for deploying
Java-based applications.

A bundle is deployed as a Java ARchive (JAR) file. JAR files are used to store
applications and their resources in a standard ZIP-based file format. This for-
mat is defined by [27] Zip File Format. Bundles normally share the Java
Archive extension of .jar. However, there is a special MIME type reserved for
OSGi bundles that can be used to distinguish bundles from normal JAR files.
This MIME type is:

application/vnd.osgi.bundle
The type is defined in [34] OSGi IANA Mime Type.
A bundle is a JAR file that:

. Contains the resources necessary to provide some functionality. These
resources may be class files for the Java programming language, as well
as other data such as HTML files, help files, icons, and so on. A bundle
JAR file can also embed additional JAR files that are available as
resources and classes. This is however not recursive.

. Contains a manifest file describing the contents of the JAR file and pro-
viding information about the bundle. This file uses headers to specify
information that the Framework needs to install correctly and activate a
bundle. For example, it states dependencies on other resources, such as
Java packages, that must be available to the bundle before it can run.

- Can contain optional documentation in the OSGI-OPT directory of the
JAR file or one of its sub-directories. Any information in this directory is
optional. For example, the OSGI-OPT directory is useful to store the

OSGi Service Platform Release 4 27-332

Bundles

Module Layer Version 1.5

source code of a bundle. Management systems may remove this infor-
mation to save storage space in the OSGi Service Platform.

Once a bundle is started, its functionality is provided and services are
exposed to other bundles installed in the OSGi Service Platform.

3.2.1 Bundle Manifest Headers
A bundle can carry descriptive information about itself in the manifest file
that is contained in its JAR file under the name of META-INF/MANIFEST.MF.
The Framework defines OSGi manifest headers such as Export-Package and
Bundle-ClassPath, which bundle developers use to supply descriptive infor-
mation about a bundle. Manifest headers must strictly follow the rules for
manifest headers as defined in [28] Manifest Format.
A Framework implementation must:
Process the main section of the manifest. Individual sections of the man-
ifest are only used during bundle signature verification.
- Ignore unrecognized manifest headers. The bundle developer can define
additional manifest headers as needed.
Ignore unknown attributes and directives.
All specified manifest headers are listed in the following sections. All head-
ers are optional, unless specifically indicated.
3.2.1.1 Bundle-ActivationPolicy: lazy
The Bundle-ActivationPolicy specifies how the framework should activate
the bundle once started. See Activation Policies on page 100.
3.2.1.2 Bundle-Activator: com.acme.fw.Activator
The Bundle-Activator header specifies the name of the class used to start and
stop the bundle. See Starting Bundles on page 98.
3.2.1.3 Bundle-Category: osgi, test, nursery
The Bundle-Category header holds a comma-separated list of category
names.
3.2.1.4 Bundle-ClassPath: /jar/http.jar,.
The Bundle-ClassPath header defines a comma-separated list of JAR file path
names or directories (inside the bundle) containing classes and resources.
The period (") specifies the root directory of the bundle’s JAR. The period is
also the default. See Bundle Class Path on page 54.
3.2.1.5 Bundle-ContactAddress: 2400 Oswego Road, Austin, TX 74563
The Bundle-ContactAddress header provides the contact address of the ven-
dor.
3.2.1.6 Bundle-Copyright: OSGi (c) 2002
The Bundle-Copyright header contains the copyright specification for this
bundle.
3.2.1.7 Bundle-Description: Network Firewall
The Bundle-Description header defines a short description of this bundle.
3.2.1.8 Bundle-DocURL: http:/www.acme.com/Firewall/doc
The Bundle-DocURL headers must contain a URL pointing to documenta-
tion about this bundle.
28-332 OSGi Service Platform Release 4

Module Layer Version 1.5 Bundles

3.2.1.9 Bundle-lcon: /icons/acme-logo.png;size=64

The optional Bundle-Icon header provides a list of URLs to icons represent-
ing this bundle in different sizes. The following attribute is permitted:

. size —(integer) Specifies the size of the icon in pixels horizontal. It is rec-
ommended to always include a 64x64 icon.

The URLs are interpreted as relative to the bundle. That is, ifa URL with a
scheme is provided, then this is taken as an absolute URL. Otherwise, the
path points to an entry in the JAR file, taking any attached fragments into
account. Implementations that want to use this header should at least sup-
port the Portable Network Graphics (PNG) format, see [36] Portable Network
Graphics (PNG) Specification (Second Edition).

3.2.1.10 Bundle License: http://www.opensource.org/licenses/jabberpl.php

The Bundle-License header provides an optional machine readable form of
license information. The purpose of this header is to automate some of the
license processing required by many organizations like for example license
acceptance before a bundle is used. The header is structured to provide the
use of unique license naming to merge acceptance requests, as well as links
to human readable information about the included licenses. This header is
purely informational for management agents and must not be processed by
the OSGi Framework.

The syntax for this header is as follows:

Bundle-License ::= ’<<EXTERNAL>>" |

(license (',” license) *)
license ::=name ('; license-attr) *
license-attr ::= description | link
description ::= 'description’ '=' string
link = 'link” ’=" <urls>

This header has the following attributes:

- name —Provides a globally unique name for this license, preferably
world wide, but it should at least be unique with respect to the other
clauses. The magic name <<EXTERNAL>> is used to indicate that this
artifact does not contain any license information but that licensing
information is provided in some other way. This is also the default con-
tents of this header.

Clients of this bundle can assume that licenses with the same name refer
to the same license. This can for example be used to minimize the click
through licenses. This name should be the canonical URL of the license,
it must not be localized by the translator. This URL does not have to exist
but must not be used for later versions of the license. It is recommended
to use URLs from [37] Open Source Initiative. Other licenses should use the
following structure, but this is not mandated:

http: //<domain-name>/licenses/
<license-name>-<versions.<extension»

. description —(optional) Provide the description of the license. This is a
short description that is usable in a list box on a Ul to select more infor-
mation about the license.

OSGi Service Platform Release 4 29-332

Bundles

Module Layer Version 1.5

3.2.1.11

3.2.1.12

3.2.1.13

3.2.1.14

3.2.1.15

3.2.1.16

3.2.1.17

3.2.1.18

3.2.1.19

link —(optional) Provide a URL to a page that defines or explains the
license. If this link is absent, the name field is used for this purpose. The
URL is relative to the root of the bundle. That is it is possible to refer to a
file inside the bundle.

If the Bundle-License statement is absent, then this does not mean that the
bundle is not licensed. Licensing could be handled outside the bundle and
the <<EXTERNAL>> form should be assumed. This header is informational
and may not have any legal bearing. Consult a lawyer before using this
header to automate licensing processing.

Bundle-Localization: OSGI-INF/lion/bundle

The Bundle-Localization header contains the location in the bundle where
localization files can be found. The default value is OSGI-INF/lzon/bundle.
Translations are by default therefore OSGI-INF/l1on/bundle_de.properties,
OSGI-INF/lzon/bundle_nl.properties, etc. See Manifest Localization on page
69.

Bundle-ManifestVersion: 2

The Bundle-ManifestVersion header defines that the bundle follows the
rules of this specification. The Bundle-ManifestVersion header determines
whether the bundle follows the rules of this specification. It is 1 (the
default) for Release 3 Bundles, 2 for Release 4 and later. Future version of the
OSGi Service Platform can define higher numbers for this header.

Bundle-Name: Firewall
The Bundle-Name header defines a readable name for this bundle. This
should be a short, human-readable name that can contain spaces.

Bundle-NativeCode: /lib/http.DLL; osname = QNX; osversion = 3.1

The Bundle-NativeCode header contains a specification of native code
libraries contained in this bundle. See Loading Native Code Libraries on page
63.

Bundle-RequiredExecutionEnvironment: CDC-1.0/Foundation-1.0

The Bundle-RequiredExecutionEnvironment contains a comma-separated
list of execution environments that must be present on the Service Platform.
See Execution Environment on page 35.

Bundle-SymbolicName: com.acme.daffy

The Bundle-SymbolicName header specifies a non-localizable name for this
bundle. The bundle symbolic name together with a version must identify a
unique bundle. The bundle symbolic name should be based on the reverse
domain name convention, see Bundle-SymbolicName on page 39. This header
must be set.

Bundle-UpdatelLocation: http://www.acme.com/Firewall/bundle.jar

The Bundle-UpdateLocation header specifies a URL where an update for this
bundle should come from. If the bundle is updated, this location should be
used, if present, to retrieve the updated JAR file.

Bundle-Vendor: OSGi Alliance
The Bundle-Vendor header contains a human-readable description of the
bundle vendor.

Bundle-Version: 1.1
The Bundle-Version header specifies the version of this bundle. See Version

30-332

OSGi Service Platform Release 4

Module Layer Version 1.5 Bundles

3.2.1.20

3.2.1.21

3.2.1.22

3.2.1.23

3.2.1.24

3.2.1.25

3.2.1.26

3.2.2

3.2.3

3.2.4

on page 32. The default value is 0.0.0

Dynamiclmport-Package: com.acme.plugin.*

The DynamicImport-Package header contains a comma-separated list of
package names that should be dynamically imported when needed. See
Dynamic Import Package on page 56.

Export-Package: org.osgi.util.tracker;version=1.3
The Export-Package header contains a declaration of exported packages. See
Export-Package on page 41.

Export-Service: org.osgi.service.log.LogService
Deprecated.

Fragment-Host: org.eclipse.swt; bundle-version="[3.0.0,4.0.0)"
The Fragment-Host header defines the host bundles for this fragment. See
Fragment-Host on page 75

Import-Package: org.osgi.util.tracker,org.osgi.service.io;version=1.4
The Import-Package header declares the imported packages for this bundle.
See Import-Package Header on page 40.

Import-Service: org.osgi.service.log.LogService
Deprecated

Require-Bundle: com.acme.chess

The Require-Bundle header specifies that all exported packages from
another bundle must be imported, effectively requiring the public interface
of another bundle. See Require-Bundle on page 70

Custom Headers

The manifest an excellent place to provide metadata belonging to a bundle.
This is true for the OSGi Alliance but it is also valid for other organizations.
For historic reasons, the OSGi Alliance claims the default namespace, specif-
ically headers that indicate OSGi related matters like names that contain
Bundle, Import, Export, etc. Organizations that want to use headers that do
not clash with OSGi Alliance defined names or bundle header names from
other organizations should prefix custom headers with x-, for example x-
LazyStart.

Organizations external to the OSGi can request header names in the OSGi
namespace. The OSGi maintains a registry of such names at [35] OSGi
Header Name Space Registry.

Header Value Syntax

Each Manifest header has its own syntax. In all descriptions, the syntax is
defined with [29] W3C EBNF. These following sections define a number of
commonly used tokens.

Common Header Syntax

Many Manifest header values share a common syntax. This syntax consists
of:

header ::= clause (’,” clause) *
clause ::= path (’;’ path) %
(";’ parameter) * /] See 1.3.2

OSGi Service Platform Release 4 31-332

Bundles

Module Layer Version 1.5

3.2.5

3.2.6

Table 3.1
Example

[1.2.3, 4.5.6)
[1.2.3, 4.5.6]
(1.2.3, 4.5.6)
(1.2.3, 4.5.6]

1.2.3

A parameter can be either a directive or an attribute. A directive is an instruc-
tion that has some implied semantics for the Framework. An attribute is
used for matching and comparison purposes.

Version

Version specifications are used in several places. A version token has the fol-
lowing grammar:

version ti=
major('.'

major

minor

micro

qualifier

minor ('.' micro ('.' qualifier)?)?)?
number Il See 1.3.2
number
number
(alphanum | " | "-')+

1]

1]

A version token must not contain any white space. The default value for a
version is 0.0.0.

Version Ranges

A version range describes a range of versions using a mathematical interval
notation. See [31] Mathematical Convention for Interval Notation.

The syntax of a version range is:
version-range ::= interval | atleast
interval ::= ("[" | "(") floor ',' ceiling ('1" | ")')
atleast ::= version

floor ::= version
ceiling ::= version

If a version range is specified as a single version, it must be interpreted as the
range [version,o). The default for a non-specified version range is 0, which
maps to [0.0.0,).

Note that the use of a comma in the version range requires it to be enclosed
in double quotes. For example:

Import-Package: com.acme.foo;version="[1.23, 2)",
com. acme.bar;version="[4.0, 5.0)"

In the following table, for each specified range in the left-hand column, a
version x is considered to be a member of the range if the predicate in the
right-hand column is true.

Examples of version ranges
Predicate

1.2.3 <= X < 4.5.6
1.2.3 <= X <= 4.5.6
1.2.3 < X < 4.5.6
1.2.3 < X <= 4.5.6

1.2.3 <= X

32-332

OSGi Service Platform Release 4

Module Layer Version 1.5 Bundles

3.2.7 Filter Syntax

The OSGi specifications use filter expressions extensively. Filter expressions
allow for a concise description of a constraint.

The syntax of a filter string is based upon the string representation of LDAP
search filters as defined in [23] A String Representation of LDAP Search Filters.
It should be noted that RFC 2254: A String Representation of LDAP Search
Filters supersedes RFC 1960, but only adds extensible matching and is not
applicable to this OSGi Framework APL

The string representation of an LDAP search filter uses a prefix format and is
defined by the following grammar:

filter ::= 7 (° filter-comp *)’
filter-comp ::= and | or | not | operation
and s:= & filter-list

or c:= |7 filter-list

not c:= 17 filter

filter-list ::= filter | filter filter-list
operation ::= simple | present | substring
simple ::= attr filter-type value
filter-type ::= equal | approx | greater-eq | less-eq
equal ii= S’

approx ii= -2

greater-eq ::= =’

less-eq ii= <=

present si=attr T=x’

substring ::= attr '=" initial any final
initial ::= () | value

any ::= %’ star-value

star-value ::= () | value '%’ star-value
final i:= () | value

value 1:= <see text»

attr 1= <see text>

attr is a string representing an attribute, or key, in the properties. Attribute
names are not case sensitive; that is, cn and CN both refer to the same
attribute. attr must not contain the characters '=, >, '<','~','('or ')". attr may
contain embedded spaces but leading and trailing spaces must be ignored.

value is a string representing the value, or part of one, which will be com-
pared against a value in the filtered properties.

If value must contain one of the characters’V, s, ’C or '), then these charac-
ters should be preceded with the backslash (V") character. Spaces are signifi-
cantinvalue. Space characters are defined by Character.isWhiteSpace().

Although both the substring and present productions can produce the
attr=+ construct, this construct is used only to denote a presence filter.

The substring production only works for attributes that are of type String,
Collection of String or String[]. In all other cases the result must be false.

The evaluation of the approximate match (*-=") filter type is implementa-
tion specific but should at least ignore case and white space differences.
Codes such as soundex or other smart closeness comparisons may be used.

OSGi Service Platform Release 4 33-332

Bundles

Module Layer Version 1.5

Values specified in the filter are compared to values in the properties
against which the filter is evaluated. The comparison of these values is not
straightforward. Strings compare differently than numbers, and it is also
possible for a property to have multiple values. Property keys must always
be String objects so that a case insensitive attr can be used to obtain the
property value.

The object class of the property's value defines the comparison type. The
properties values should be of the following types:

Figure 3.8 Primary property types
type = scalar | collection | array
scalar = String | Integer | Long | Float
| Double | Byte | Short
| Character | Boolean
primitive ::= int | long | float | double | byte
| short | char | boolean
array = <Array of primitive>
| <Array of scalar>
collection ::= <Collection of scalar>
The following rules apply for comparison:
String— Use String comparison
Integer, Long, Float, Double, Byte, Short, Character objects and primitives —
Use numerical comparison
« Boolean objects— Use comparison defined by
Boolean.valueOf(v).booleanValue().
Array or Collection elements— Comparison is determined by the object
type of the element
Array and Collection elements may be a mix of scalar types. Array and Col-
lection elements may also be null.
If the type of the property value is not one of the above types, and the type
has a constructor taking a single String argument, then the Framework
must construct an object to compare with the property value by passing
value to the single String argument constructor according to the following
comparison rules:
Comparable objects — Comparison through the Comparable interface
Other objects — Equality comparison
If none of the above comparison rules apply, then the result of the compari-
sonis false.
A filter matches a property with multiple values if it matches at least one of
those values.
For example:
Dictionary dict = new Hashtable();
dict.put("cn", new String[] { "a", "b", "c" });
The dict will match against a filter with (cn=a) as well as (cn=b).
34-332 OSGi Service Platform Release 4

Module Layer Version 1.5 Execution Environment

3.3.1

Service properties are often defined to take a type, a collection of that type,
or an array of that type. In those cases, a simple + will be suffixed to the type
name. For example String+, indicates that a String, a String[],and a
Collection<String> are all valid forms.

Execution Environment

A bundle that is restricted to one or more execution environments must
carry a header in its manifest file to indicate this dependency. This header is
Bundle-RequiredExecutionEnvironment. The syntax of this header is a list
of comma-separated names of execution environments.

Bundle-RequiredExecutionEnvironment ::=

ee-name (', ee-name)x*
ee-name ::= <defined execution environment name>
For example:

Bundle-RequiredExecutionEnvironment: CDC-1.0/Foundation-1.0,
0SGi/Minimum-1.1

If a bundle includes this header in the manifest then the bundle must only
use methods with signatures that are contained within a proper subset of all
mentioned execution environments. Bundles should list all (known) execu-
tion environments on which it can run the bundle.

Abundle can only resolve if the framework is running on a VM which
implements one of the listed required execution environments. Frame-
works should recognize that the current VM can implement multiple exe-
cution environments. For example, Java 6 is backward compatible with Java
5 and a bundle requiring the Java 6 execution environment must resolve on
aJava 6 VM. The Bundle-RequiredExecutionEnvironment header can not
hinder a bundle from being successfully installed.

Naming of Execution Environments
Execution environments require a proper name so that:

- Abundle can require that a Framework provides a certain execution
environment before it is resolved.

- To provide information about which execution environments a
Framework provides.

Execution environment names consist of any set of characters except white
space characters and the comma character (' ,”, or \uoo2C). The OSGi Alli-
ance has defined a number of execution environments.

The naming scheme further uses J2ME configuration and profile names.
There is no clear definition for this naming scheme but similar names are
used in different specifications.

The J2ME scheme uses a configuration and a profile name to designate an
execution environment. The OSGi Alliance naming combines those two
names into a single execution environment name.

OSGi Service Platform Release 4 35-332

Class Loading Architecture Module Layer Version 1.5

3.4

There already exist a number of Execution Environments from J2ME that
are likely available in Service Platform Servers. The value for the execution
environment header must be compatible with these specifications.

ATJ2ME CLDC execution environment name is a combination of a configu-
ration and a profile name. In CLDC, these are two different system proper-
ties. These properties are:

microedition.configuration
microedition.profiles

For example, Foundation Profile has an execution environment name of
CDC-1.0/Foundation-1.0. The structure of the name obeys the following
rules:

ee-name = [<configuration> ’-" <version> '/’]

)

<profile> ’-’ «<version>

Configuration and profile names are defined by the JCP or OSGi Alliance. If
an execution environment does not have a configuration or profile, the pro-
file part is the name identifying the execution environment. These guide-
lines are not normative.

Table 3.2 on page 36, contains a number of examples of the most common
execution environments.

Table 3.2 Sample EE names

Name Description

CDC-1.1/Foundation-1.1 Equal to J2ME Foundation Profile

OSGi/Minimum-1.2 OSGi EE that is a minimal set that allows the
implementation of an OSGi Framework.

J2SE-1.2 Java2 SE 1.2.x

J2SE-1.3 Java2 SE 1.3.x

J2SE-1.4 Java 2 SE 1.4.x

]2SE-1.5 Java 2 SE 1.5.x

JavaSE-1.6 Java SE 1.6.x

CDC-1.1/PersonalBasis-1.1 J2ME Personal Basis Profile

CDC-1.1/Personaljava-1.1 J2ME Personal Java Profile

The org.osgi.framework.executionenvironment property from
BundleContext.getProperty(String) must contain a comma-separated list of
execution environment names implemented by the Framework. This prop-
erty is defined as volatile. A Framework implementation must not cache this
information because bundles may change this system property at any time.
The purpose of this volatility is testing and possible extension of the execu-
tion environments at run-time.

Class Loading Architecture

Many bundles can share a single virtual machine (VM). Within this VM,
bundles can hide packages and classes from other bundles, as well as share
packages with other bundles.

36-332

OSGi Service Platform Release 4

Module Layer Version 1.5 Class Loading Architecture

The key mechanism to hide and share packages is the Java class loader that
loads classes from a sub-set of the bundle-space using well-defined rules.
Each bundle has a single class loader. That class loader forms a class loading
delegation network with other bundles as shown in Figure 3.9.

Figure 3.9 Class Loader Delegation model
importer —— exporter
Bundle
class loader <\ Bundie
class loader
Parent/System
class loader
Bundle /
class loader
\ Bundle System Bundle
class loader | class loader

The class loader can load classes and resources from:

« Boot class path— The boot class path contains the java.* packages and its
implementation packages.

« Framework class path—The Framework usually has a separate class loader
for the Framework implementation classes as well as key service
interface classes.

+ Bundle Space— The bundle space consists of the JAR file that is associated
with the bundle, plus any additional JAR that are closely tied to the
bundle, like fragments, see Fragment Bundles on page 74.

A class spaceis then all classes reachable from a given bundle’s class loader.
Thus, a class space for a given bundle can contain classes from:

« The parent class loader (normally java.* packages from the boot class
path)

- Imported packages

- Required bundles

. The bundle's class path (private packages)

.+ Attached fragments

A class space must be consistent, such that it never contains two classes with
the same fully qualified name (to prevent Class Cast Exceptions). However,
separate class spaces in an OSGi Platform may contain classes with the same
fully qualified name. The modularization layer supports a model where
multiple versions of the same class are loaded in the same VM.

OSGi Service Platform Release 4 37-332

Class Loading Architecture Module Layer Version 1.5

Figure 3.10

3.4.1

Figure 3.11

Class Space

Bundle B

public

private private

Bundle A

public

Class Space for bundle A

private

Bundle C

The Framework therefore has a number of responsibilities related to class
loading. Before a bundle is used, it must resolve the constraints that a set of
bundles place on the sharing of packages. Then select the best possibilities
to create a wiring. See Resolving Process on page 52 for further information.
The runtime aspects are described in Runtime Class Loading on page 53.

Resolving

The Framework must resolve bundles. Resolving is the process where
importers are wired to exporters. Resolving is a process of satisfying con-
straints. This process must take place before any code from a bundle can be
loaded or executed

A wireis an actual connection between an exporter and an importer, which
are both bundles. A wire is associated with a number of constraints that are
defined by its importer’s and exporter’s manifest headers. A valid wire is a
wire that has satisfied all its constraints. Figure 3.11 depicts the class struc-
ture of the wiring model.

Example class structure of wiring

Bundle

1 imports ¥ Wire . Constraint
1 constrained by *

1 exports *

for
1
Package Instance

38-332

OSGi Service Platform Release 4

Module Layer Version 1.5 Resolving Metadata

3.5 Resolving Metadata

The following sections define the manifest headers that provide the meta-
data for the resolver.

3.5.1 Bundle-ManifestVersion

A bundle manifest must express the version of the OSGi manifest header
syntax in the Bundle-ManifestVersion header. Bundles exploiting this ver-
sion of the Framework specification (or later) must specify this header. The
syntax of this header is as follows:

Bundle-ManifestVersion ::= number /1 See 1.3.2

The Framework version 1.3 (or later) bundle manifest version must be’2’.
Bundle manifests written to previous specifications’ manifest syntax are
taken to have a bundle manifest version of '1', although there is no way to
express this in such manifests. Therefore, any other value than 2’ for this
header is invalid unless the Framework explicitly supports such a later ver-
sion.

OSGi Framework implementations should support bundle manifests with-
out a Bundle-ManifestVersion header and assume Framework 1.2 compati-
bility at the appropriate places.

Version 2 bundle manifests must specify the bundle symbolic name. They
need not specify the bundle version since this version header has a default
value.

3.5.2 Bundle-SymbolicName

The Bundle-SymbolicName manifest header is a mandatory header. The
bundle symbolic name and bundle version allow a bundle to be uniquely
identified in the Framework. That is, a bundle with a given symbolic name
and version is treated as equal to another bundle with the same (case sensi-
tive) symbolic name and exact version.

The installation of a bundle with a Bundle-SymbolicName and Bundle-Ver-
sion identical to an existing bundle must fail.

A bundle gets its unique Bundle-SymbolicName from the developer (The
Bundle-Name manifest header provides a human-readable name for a bun-
dle and is therefore not replaced by this header).

The Bundle-SymbolicName manifest header must conform to the following
syntax:

Bundle-SymbolicName ::= symbolic-name
(";" parameter) x /] See 1.3.2

The framework must recognize the following directives for the Bundle-Sym-
bolicName header:

.- singleton —Indicates that the bundle can only have a single version
resolved. A value of true indicates that the bundle is a singleton bundle.
The default value is false. The Framework must resolve at most one
bundle when multiple versions of a singleton bundle with the same sym-

OSGi Service Platform Release 4 39-332

Resolving Metadata Module Layer Version 1.5

3.5-3

3.5.4

bolic name are installed. Singleton bundles do not affect the resolution
of non-singleton bundles with the same symbolic name.

. fragment-attachment — Defines how fragments are allowed to be
attached, see the fragments in Fragment Bundles on page 74. The fol-
lowing values are valid for this directive:
always — Fragments can attach at any time while the host is resolved
or during the process of resolving.

- never —No fragments are allowed.

- resolve-time — Fragments must only be attached during resolving.

For example:

Bundle-SymbolicName: com.acme. foo; singleton:=true

Bundle-Version
Bundle-Version is an optional header; the default value is 0.0.0.
Bundle-Version ::= version // See 3.2.5

If the minor or micro version components are not specified, they have a
default value of o.If the qualifier component isnot specified, it has a default
value of the empty string ("*).

Versions are comparable. Their comparison is done numerically and
sequentially on the major, minor, and micro components and lastly using
the String class compareTo method for the qualifier.

A version is considered equal to another version if the major, minor, micro,
and the qualifier components are equal (using String method compareTo).

Example:
Bundle-Version: 22.3.58.build-345678

Import-Package Header

The Import-Package header defines the constraints on the imports of shared
packages. The syntax of the Import-Package header is:

Import-Package ::= import (',' import)x
import ::= package-names (';' parameter)x
package-names ::= package-name

(';' package-name)% // See 1.3.2

The header allows many packages to be imported. An import definitionis the
description of a single package for a bundle. The syntax permits multiple
package names, separated by semi-colons, to be described in a short form.

Import package directives are:

- resolution —Indicates that the packages must be resolved if the value is
mandatory, which is the default. If mandatory packages cannot be
resolved, then the bundle must fail to resolve. A value of optional indi-
cates that the packages are optional. See Optional Packages on page 46.

The developer can specify arbitrary matching attributes. See Attribute Match-
ing on page 49. The following arbitrary matching attributes are predefined:

40-332

OSGi Service Platform Release 4

Module Layer Version 1.5 Resolving Metadata

3.5.5

. version —Aversion-range to select the exporter's package version. The
syntax must follow Version Ranges on page 32. For more information on
version selection, see Version Matching on page 45. If this attribute is not
specified, it is assumed to be [0.0.0,).

. specification-version — This attribute is an alias of the version attribute
only to ease migration from earlier versions. If the version attribute is
present, the values must be equal.

- bundle-symbolic-name - The bundle symbolic name of the exporting
bundle. In the case of a fragment bundle, this will be the host bundle’s
symbolic name.

. bundle-version — Aversion-range to select the bundle version of the
exporting bundle. The default value is [0.0.0, x). See Version Matching
on page 45. In the case of a fragment bundle, the version is from the host
bundle.

In order to be allowed to import a package (except for packages starting
with java.), a bundle must have PackagePermission[<package-name>,
IMPORT]. See PackagePermission for more information.

An error aborts an installation or update when:

. Adirective or attribute appears multiple times, or
.- There are multiple import definitions for the same package, or
« The version and specification-version attributes do not match.

Example of a correct definition:

Import-Package: com.acme. foo; com.acme.bar;
version="[1.23,1.24]";
resolution: =mandatory

Export-Package

The syntax of the Export-Package header is similar to the Import-Package
header; only the directives and attributes are different.

Export-Package = export (',' export)*

export = package-names (';' parameter)x*

package-names = package-name Il See 1.3.2
(';' package-name)*

The header allows many packages to be exported. An export definition is the
description of a single package export for a bundle. The syntax permits the
declaration of multiple packages in one clause by separating the package
names with a semi-colon. Multiple export definitions for the same package
are allowed for example, when different attributes are needed for different
importers.

Export directives are:

.+ uses — A comma-separated list of package names that are used by the
exported package. Note that the use of a comma in the value requires it
to be enclosed in double quotes. If this exported package is chosen as an
export, then the resolver must ensure that importers of this package wire
to the same versions of the package in this list. See Package Constraints on
page 47.

OSGi Service Platform Release 4 41-332

Resolving Metadata Module Layer Version 1.5

mandatory - A comma-separated list of attribute names. Note that the
use of a comma in the value requires it to be enclosed in double quotes. A
bundle importing the package must specify the mandatory attributes,
with a value that matches, to resolve to the exported package. See Man-
datory Attributes on page 49.

include — A comma-separated list of class names that must be visible to
an importer. Note that the use of a comma in the value requires it to be
enclosed in double quotes. For class filtering, see Class Filtering on page
50.

- exclude -A comma-separated list of class names that must be invisible to
an importer. Note that the use of a comma in the value requires it to be
enclosed in double quotes. For class filtering, see Class Filtering on page
50.

The following attribute is part of this specification:

version —The version of the named packages with syntax as defined in
Version on page 32. It defines the version of the associated packages. The
default value is 0.0.0.

. specification-version — An alias for the version attribute only to ease
migration from earlier versions. If the version attribute is present, the
values must be equal.

Additionally, arbitrary matching attributes may be specified. See Attribute
Matching on page 49.

The Framework will automatically associate each package export definition
with the following attributes:

bundle-symbolic-name —The bundle symbolic name of the exporting
bundle. In the case of a fragment bundle, this is the host bundle’s sym-
bolic name.

- bundle-version — The bundle version of the exporting bundle. In the case
of a fragment bundle, this is the host bundle’s version.

An installation or update must be aborted when any of the following condi-
tions is true:

. adirective or attribute appears multiple times
the bundle-symbolic-name or bundle-version attribute is specified in
the Export-Package header.

An export definition does not imply an automatic import definition. A bun-
dle that exports a package and does not import that package will get that
package via its bundle class path. Such an exported only package can be
used by other bundles, but the exporting bundle does not accept a substitu-
tion for this package from another bundle.

In order to export a package, a bundle must have
PackagePermission[<package>, EXPORTONLY].

Example:

Export-Package: com.acme. foo;com.acme.bar;version=1.23

42-332

OSGi Service Platform Release 4

Module Layer Version 1.5 Resolving Metadata

3.5.6

3.5.7

Exporting and Importing a Package

Exporting a package does not imply the import of that same package (in
Release 3, an export did imply an import). The reason for this separation is
that it enables a bundle to provide a package to other bundles without hav-
ing to take into account that the exported package could be substituted by the
resolver with the same package from another bundle. This isa common case
when an application consists of a set of closely intertwined bundles where
implementation packages are provided to other bundles.

The substitution of packages is crucial for the inter-operability of bundles.
InJava, bundles can only inter-operate when they use the same class loaders
for the same classes. Therefore, two bundles that both export the same pack-
age, but do not import it, cannot share objects from that package. This is
very important for a collaboration mechanism like the Service Layer. Bun-
dles can only use the same service objects if their classes and interfaces
come from the same class loaders.

Bundles should therefore import their exported packages, allowing the
resolver to substitute packages that contain interfaces and other shared
types. The import should be as unconstrained as possible to allow the
resolver maximum flexibility. The imported and exported packages on a
bundle are independent, that is, there is no requirement that the imported
package matches the related exported package. It is valid to export package
p, version 2, and import package p version 1.

Interpretation of Legacy Bundles

Bundles that are not marked with a Bundle-ManifestVersion that equals 2 or
more must treat the headers according the definitions in the Release 3. More
specifically, the Framework must map the Release 3 headers to the appropri-
ate Release 4 headers:

« Import-Package— An import definition must change the specification-
version attribute to the version attribute. An import definition without a
specification version needs no replacement since the default version
value of 0.0.0 gives the same semantics as Release 3.

- Export-Package— An export definition must change the specification-
version attribute to the version attribute. The export definition must be
appended with the uses directive. The uses directive must contain all
imported and exported packages for the given bundle. Additionally, if
there is no import definition for this package, then an import definition
for this package with the given version must be added.

« DynamicImport-Package— A dynamic import definition is unmodified.

Abundle manifest which mixes legacy syntax with bundle manifest version
2 syntax is in error and must cause the containing bundle to fail to install.

The specification-version attribute is a deprecated synonym for the version
attribute in bundle manifest version 2 headers.

OSGi Service Platform Release 4 43-332

Constraint Solving Module Layer Version 1.5

3.6 Constraint Solving

The OSGi Framework package resolver provides a number of mechanisms
to match imports to exports. The following sections describe these mecha-
nisms in detail.

3.6.1 Diagrams and Syntax

Wires create a graph of nodes. Both the wires as well as nodes (bundles)
carry a significant amount of information. In the next sections, the follow-
ing conventions are used to explain the many details.

Bundles are named A, B, C,... That is, uppercase characters starting from the
character A. Packages are named p, q, T, s, t,... In other words, lower case char-
acters starting from p. If a version is important, it is indicated with a dash
followed by the version: q-1.0. The syntax A.p means the package defini-
tion (either import or export) of package p by bundle A.

Import definitions are graphically shown by a white box. Export definitions
are displayed with a black box. Packages that are not exported or imported
are called private packages. They are indicated with diagonal lines.

Bundles are a set of connected boxes. Constraints are written on the wires,
which are represented by lines.

Figure 3.12 Legend of wiring instance diagrams, and example
—— = require bundle version=[1,2) wire
O uses import
[; T] optional import B bundle name

—> fragment host
bundle

For example:

A: Import-Package: p; version="[1,2)"
Export-Package: q; version=2.2.2; uses:=p
Require-Bundle: C

B: Export-Package: p; version=1.5.1

C: Export-Package: r

Figure 3.13 shows the same setup graphically.

44-332 OSGi Service Platform Release 4

Module Layer Version 1.5 Constraint Solving

Figure 3.13

3.6.2

Figure 3.14

Example bundle diagram

Version Matching

Version constraints are a mechanism whereby an import definition can
declare a precise version or a version range for matching an export defini-
tion.

Version ranges encode the assumptions about compatibility. This specifica-
tion does not define any compatibility policy; the policy decision is left to
the importer that specifies a version range. A version range embeds such a
policy.

However, the most common version compatibility policies are:

. major — Anincompatible update
«minor — A backward compatible update
«micro — A change that does not affect the interface: for example, a bug fix

An import definition must specify a version range as the value for its ver-
sion attribute, and the exporter must specify a version as the value for its
version attribute. Matching is done with the rules for version range matches
as described in Version Ranges on page 32.

For example, the following import and export definition resolve correctly
because the version range in the import definition matches the version in
the export definition:

A: Import-Package: p; version="[1,2)"
B: Export-Package: p; version=1.5.1

Figure 3.14 graphically shows how a constraint can exclude an exporter.

Version Constrained

g S i

X ‘

OSGi Service Platform Release 4 45-332

Constraint Solving Module Layer Version 1.5

3.6.3

Figure 3.15

Optional Packages

A bundle can indicate that it does not require a package to resolve correctly,
but it may use the package if it is available. For example, logging is impor-
tant, but the absence of a log service should not prevent a bundle from run-
ning.

Optional imports can be specified in the following ways:

Dynamic Imports — The DynamicImport-Package header is intended to
look for an exported package when that package is needed. The key use
case for dynamic import is the Class forName method when a bundle
does not know in advance the class name it may be requested to load.
Resolution Directive— The resolution directive on an import definition
specifying the value optional. A bundle may successfully resolve if a
suitable optional package is not present.

The key difference between these two mechanisms is when the wires are
made. An attempt is made to establish a wire for a dynamic import every
time there is an attempt to load a class in that package, whereas the wire for
aresolution optional package may only be established when the bundle is
resolved.

The resolution directive of the import definition can take the value
mandatory or optional.

mandatory — (Default) Indicates that the package must be wired for the
bundle to resolve.

optional —Indicates that the importing bundle may resolve without the
package being wired. If the package is not wired, the class loading will
treat this package as if it is not imported.

The following example will resolve even though bundle B does not provide
the correct version (the package will not be available to the code when bun-
dle A is resolved).

A: Import-Package: p;
resolution: =optional;
version=1.6

B: Export-Package: p;
°H
version=1.5.0

Optional import

| p | version=1.6 x P-15.0 B

g-1.5.0
The implementation of a bundle that uses optional packages must be pre-
pared to handle the fact that the packages may not be available: that is, an
exception can be thrown when there is a reference to a class from a missing

package. This can be prevented by including a fallback package on the bun-
dle’s classpath. When an optional package cannot be resolved, any attempts

46-332

OSGi Service Platform Release 4

Module Layer Version 1.5

Constraint Solving

by the bundle to load classes from it will follow normal bundle class loading
search order as if the import never existed. It will load it from the bundle’s
class path or in the end through dynamic class loading when set for that

bundle and package.

3.6.4 Package Constraints

Classes can depend on classes in other packages. For example, when they
extend classes from another package, or these other classes appear in
method signatures. It can therefore be said that a package uses other pack-
ages. These inter-package dependencies are modeled with the uses directive

on the Export-Package header.

For example, org.osgi.service.http depends on the package javax.servlet
because it is used in the API. The export definition of the
org.osgi.service.http must therefore contain the uses directive with the

javax.servlet package as its value.

Class space consistency can only be ensured if a bundle has only one

exporter for each package.

For example, the Http Service implementation requires servlets to extend
the javax.servlet.http.HttpServlet base class. If the Http Service bundle
would import version 2.4 and the client bundle would import version 2.1
then a class cast exception is bound to happen. This is depicted in Figure

3.16.

Figure 3.16 Uses directive in B, forces A to use javax.servlet from D

A | orgosgiservice.http

p

javax.servlet.http

org.osgi.service.http .

javax.servlet.http

javax.servlet.http; 2.1

javax.servlet.http; 2.4

If a bundle imports a package from an exporter then the export definition of
that package can imply constraints on a number of other packages through
the uses directive. The uses directive lists the packages that the exporter

depends upon and therefore constrains the resolver for imports. These con-
straints ensure that a set of bundles share the same class loader for the same

package.

When an importer imports a package with implied constraints, the resolver
must wire the import to the exporter implied by the constraint. This
exporter may in turn imply additional constraints, and so on. The act of wir-
ing a single import of a package to an exporter can therefore imply a large
set of constraints. The term implied package constraints refers to the complete
set of constraints constructed from recursively traversing the wires. Implied
package constraints are not automatic imports; rather, implied package con-
straints only constrain how an import definition must be resolved.

OSGi Service Platform Release 4

47-332

Constraint Solving Module Layer Version 1.5

For example, in Figure 3.17, bundle A imports package p. Assume this
import definition is wired to bundle B. Due to the uses directive (the ellipse
symbols indicates the uses directive) this implies a constraint on package q.

Further, assuming that the import for package q is wired to bundle C, then
this implies a constraint on the import of package r and s. Continuing,
assuming C.s and C.r are wired to bundle D and E respectively. These bun-
dles both add package t to the set of implied packages for bundle A.

Figure 3.17 Implied Packages

Al p

To maintain class space consistency, the Framework must ensure that none
of its bundle imports conflicts with any of that bundle’s implied packages.

For the example, this means that the Framework must ensure that the
import definition of At is wired to package D.t. Wiring this import defini-
tion to package F.t violates the class space consistency. This violation occurs
because bundle A could be confronted with objects with the same class
name but from the class loaders of bundle D and F. This would potentially
create ClassCastExceptions. Alternatively, if all bundles are wired to F.t,
then the problem also goes away.

Another scenario with this case is depicted in Figure 3.16. Bundle A imports
the Http Service classes from bundle B. Bundle B has grouped the
org.osgi.service.http and the javax.servlet and bundle A is therefore con-
strained to wire javax.servlet to the same exporter as bundle B.

As an example of a situation where the uses directive makes resolving
impossible consider the following setup that is correctly resolved:

A: Import-Package: g; version="[1.0,1.0]"
Export-Package: p; uses:="g,r",r

B: Export-Package: g; version=1.0

C: Export-Package: q; version=2.0

These specific constraints can be resolved because the import A.q can be
wired to the export B.q but not C.q due to the version constraint.

Adding a bundle D will now not be possible:

48-332 OSGi Service Platform Release 4

Module Layer Version 1.5 Constraint Solving

Figure 3.18

3.6.5

3.6.6

D: Import-Package: p, q; version=2.0

Package D.p must be wired to package A.p because bundle A is the only
exporter. However, this implies the use of package q due the uses directive
in the package A.q import. Package A.q is wired to B.q-1.0. However, import
package D.q requires version 2.0 and can therefore not be resolved without
violating the class space constraint.

This scenario is depicted in Figure 3.18.

Uses directive and resolving

Attribute Matching

Attribute matching is a generic mechanism to allow the importer and
exporter to influence the matching process in a declarative way. In order for
an import definition to be resolved to an export definition, the values of the
attributes specified by the import definition must match the values of the
attributes of the export definition. By default, a match is not prevented if the
export definition contains attributes that do not occur in the import defini-
tion. The mandatory directive in the export definition can reverse this by
listing all attributes that the Framework must match in the import defini-
tion. Any attributes specified in the DynamicImport-Package is ignored dur-
ing the resolve phase but can influence runtime class loading.

For example, the following statements will match.

A: Import-Package: com.acme. foo;company=ACME
B: Export-Package: com.acme. foo;
company="ACME";
security=false

Attribute values are compared string wise except for the version and bun-
dle-version attributes which use version range comparisons. Leading and
trailing white space in attribute values must be ignored.

Mandatory Attributes

There are two types of attributes: mandatory and optional. Mandatory
attributes must be specified in the import definition to match. Optional
attributes are ignored when they are not referenced by the importer.
Attributes are optional by default.

The exporter can specify mandatory attributes with the mandatory direc-
tive in the export definition. This directive contains a comma-separated list
of attribute names that must be specified by the importer to match.

For example, the following import definition must not match the export
definition because security is a mandatory attribute:

A: Import-Package: com.acme.foo;company=ACME

OSGi Service Platform Release 4 49-332

Constraint Solving Module Layer Version 1.5

3.6.7

B: Export-Package: com.acme. foo;
company="ACME";
security=false;
mandatory:=security

Class Filtering

An exporter can limit the visibility of the classes in a package with the
include and exclude directives on the export definition. The value of each of
these directives is a comma-separated list of class names. Note that the use
of a comma in the value requires it to be enclosed in double quotes.

Class names must not include their package name and do not end with
.class. That is, the class com.acme.foo.Daffy is named Daffy in either list.
The class name can include multiple wildcards (x’).

The default for theinclude directive is’+’ (wildcard matching all names), and
for the exclude directive, so that no classes or resources are excluded, an
empty list that matches no names. If include or exclude directive are speci-
fied, the corresponding default is overridden.

A class is only visible if it is:

Matched with an entry in the included list, and
Not matched with an entry in the excluded list.

In all other cases, loading or finding fails, and a Class Not Found Exception
is thrown for a class load. The ordering of include and exclude is not signifi-
cant.

The following example shows an export statement, and a list of files with
their visibility status.

Export-Package: com.acme.foo; include:="Quxx*,BarImpl";
exclude: =QuxImpl

com/acme/foo
QuxFoo visible
QuxBar visible
QuxImpl excluded
BarImpl visible

Care must be taken when using filters. For example, a new version of a mod-
ule that is intended to be backward compatible with an earlier version
should not filter out classes or resources that were not filtered out by the
earlier version. In addition, when modularizing existing code, filtering out
classes or resources from an exported package may break users of the pack-
age.

For example, packages defined by standard bodies often require an imple-
mentation class in the standardized package to have package access to the
specification classes.

package org.acme. open;
public class Specified {
static Specified implementation;
public void foo() { implementation.foo(); }

50-332

OSGi Service Platform Release 4

Module Layer Version 1.5 Constraint Solving

3.6.8

}

package org.acme.open;
public class Implementation {
public void initialize(Specified implementation) {
Specified.implementation = implementation;
}
}

The Implementation class must not be available to external bundles
because it allows the implementation to be set. By excluding the
Implementation class, only the exporting bundle can see this class. The
export definition for this header could look like:

Export-Package: org.acme.open; exclude:=Implementation

Provider Selection

Provider selection allows the importer to select which bundles can be con-
sidered as exporters. Provider selection is used when there is no specifica-
tion contract between the importer and the exporter. The importer tightly
couples itself to a specific exporter, typically the bundle that was used for
testing. To make the wiring less brittle, the importer can optionally specify a
range of bundle versions that will match.

An importer can select an exporter with the import attributes bundle-
symbolic-name and bundle-version. The Framework automatically pro-
vides these attributes for each export definition. These attributes must not
be specified in an export definition.

The export definition bundle-symbolic-name attribute will contain the
bundle symbolic name as specified in the Bundle-SymbolicName header
without any parameters. The export definition bundle-version attribute is
set to the value of the Bundle-Version header or its default of 0.0.0 when
absent.

The bundle-symbolic-name is matched as an attribute. The bundle-version
attribute is matched using the version range rules as defined in Version
Ranges on page 32. The import definition must be a version range and the
export definition is a version.

For example, the following definitions will match:

A: Bundle-SymbolicName: A
Import-Package: com.acme. foo;
bundle-symbolic-name=B;
bundle-version="{1.41,2.0.0)"

B: Bundle-SymbolicName: B
Bundle-Version: 1.41
Export-Package: com.acme. foo

The following statements will not match because B does not specify a ver-
sion and thus defaults to 0.0.0:

A: Bundle-SymbolicName: A
Import-Package: com.acme. foo;

OSGi Service Platform Release 4 51-332

Resolving Process Module Layer Version 1.5

bundle-symbolic-name=B;
bundle-version="[1.41,2.0.0)"

B: Bundle-SymbolicName: B
Export-Package: com.acme. foo;version=1.42

Selecting an exporter by symbolic name can result in brittleness because of
hard coupling of the package to the bundle. For example, if the exporter
eventually needs to be refactored into multiple separate bundles, all import-
ers must be changed. Other arbitrary matching attributes do not have this
disadvantage as they can be specified independently of the exporting bun-
dle.

The brittleness problem of the bundle symbolic name in bundle refactoring
can be partly overcome by writing a fagade bundle using the same bundle
symbolic name as the original bundle.

3.7 Resolving Process

Resolving is the process that creates a wiring between bundles. Constraints
on the wires are statically defined by:

The required execution environments
Native code

- Import and export packages (the DynamicImport-Package header is
ignored in this phase)
Required bundles, which import all exported packages from a bundle as
defined in Requiring Bundles on page 70.
Fragments, which provide their contents and definitions to the host as
defined in Fragment Bundles on page 74

A bundle can only be resolved when a number of constraints are satisfied:

Execution Environment— The underlying VM implements at least one of
the execution environments listed in the Bundle-RequiredExecutionEn-
vironment header. See Execution Environment on page 35.

« Native code— The native code dependencies specified in the Bundle-
NativeCode header must be resolved. See Loading Native Code Libraries on
page 63.

The resolving process is then a constraint-solving algorithm that can be
described in terms of requirements on wiring relations. The resolving pro-
cess is an iterative process that searches through the solution space.

If a module has both import and export definitions for the same package,
then the Framework needs to decide which to choose.

It must first try to resolve the overlapping import definition. The following
outcomes are possible:

External—1If this resolves to an export statement in another bundle, then
the overlapping export definition in this bundle is discarded.

Internal - If it is resolved to an export statement in this module, then the
overlapping import definition in this module is discarded.

52-332 OSGi Service Platform Release 4

Module Layer Version 1.5 Runtime Class Loading

- Unresolved — There is no matching export definition. This is however a
developer error because it means the overlapping export definition of
the bundle is not compatible with the overlapping import definition.

A bundle can be resolved if the following conditions are met:

- Allits mandatory imports are wired
- Allits mandatory required bundles are available and their exports wired

A wire is only created when the following conditions are met:

- The importer’s version range matches the exporter’s version. See Version
Matching on page 45.

- The importer specifies all mandatory attributes from the exporter. See
Mandatory Attributes on page 49.

- All the importer’s attributes match the attributes of the corresponding
exporter. See Attribute Matching on page 49

. Implied packages referring to the same package as the wire are wired to
the same exporter. See Package Constraints on page 47.

. The wire is connected to a valid exporter.

The following list defines the preferences, if multiple choices are possible,
in order of decreasing priority:

. Aresolved exporter must be preferred over an unresolved exporter.

- Anexporter with a higher version is preferred over an exporter with a
lower version.

« Anexporter with a lower bundle ID is preferred over a bundle with a
higher ID.

Runtime Class Loading

Each bundle installed in the Framework must not have an associated class
loader until after it is resolved. After a bundle is resolved, the Framework
must create one class loader for each bundle that is not a fragment. The
framework may delay creation of the class loader until it is actually needed.

One class loader per bundle allows all resources within a bundle to have
package level access to all other resources in the bundle within the same
package. This class loader provides each bundle with its own name space, to
avoid name conflicts, and allows resource sharing with other bundles.

This class loader must use the wiring as calculated in the resolving process
to find the appropriate exporters. If a class is not found in the imports, addi-
tional headers in the manifest can control the searching of classes and
resources in additional places.

The following sections define the factors that influence the runtime class
loading and then define the exact search order the Framework must follow
when a class or resource is loaded.

OSGi Service Platform Release 4 53-332

Runtime Class Loading Module Layer Version 1.5

3.8.1

Bundle Class Path

JAR, ZIP, directories, etc. are called containers. Containers contain entries
organized in hierarchical paths. In runtime, an entry from a bundle can
actually come from different containers because of attached fragments. The
order in which an entry can be found is significant because it can shadow
other entries. For a bundle, the search order for a named entry is:

First the container of the (host) bundle
Then the (optional) fragment containers in ascending id order

This search order is called the entry path. A resource (or class) is not loaded via
the entry path, but it isloaded through the bundle class path. The bundle class
path provides an additional indirection on top of the entry path. It defines
an ordered list of container paths. Each container path can be found on the
entry path.

The dot (.” \u002E) container path is a synonym for ’/’ or the root of a con-
tainer. The dot is the default value for a bundle or fragment if no Bundle-
ClassPath header is specified.

The Bundle-ClassPath manifest header must conform to the following syn-
tax:

Bundle-ClassPath::
entry

entry (°,” entry)x
target (’;’ target)x
(";’ parameter) x*

path | *.’ /] See 1.3.2

target

1]

The Framework must ignore any unrecognized parameters.

The content of the effective bundle class path is constructed from the bun-
dle’s Bundle-Classpath header, concatenated with the Bundle-Classpath
headers of any fragments, in ascending bundle id order. The effective Bun-
dle-Classpath is calculated during resolve time, however, a dynamically
attached fragment can append elements at the end if the Framework sup-
ports dynamically attached fragments.

An element from the bundle’s Bundle-ClassPath header refers to the first
match when searched through the entry path, while a fragment’s Bundle-
ClassPath can refer only to an entry in its own container.

An example can illustrate this:

A: Bundle-Classpath: .,resource.jar
B: Fragment-Host: A

The previous example uses an effective bundle class path of:
/, resource.jar, B:/

The first element / is the root of a container. The bundle always has a root
and can therefore always be found in the (host) bundle. The second element
is first looked up in the host bundle’s container, and if not found, the entry is
looked up in the container of B. The Framework must use the first entry that
matches. The last element in the effective bundle class path is the / from
fragment B; the / is the default because there is no Bundle-ClassPath speci-

54-332

OSGi Service Platform Release 4

Module Layer Version 1.5 Runtime Class Loading

fied. However, a fragment can only refer to an internal entry. This dot there-
fore refers to the root of the container of fragment B. Assuming, fragment B
contains an entry for resource.jar and bundle A does not, then the search
order must be:

A:/
B:resource. jar
B:/

The Framework must ignore a container path in the bundle class-path if the
container cannot be located when it is needed, which can happen at any
time after the bundle is resolved. However, the Framework should publish a
Framework Event of type INFO once with an appropriate message for each
entry that cannot be located at all.

An entry on the Bundle-ClassPath can refer to a directory in the container.
However, it is not always possible to establish the directory’s existence. For
example, directories can be omitted in JAR/ZIP files. In such a case, a Frame-
work must probe the directory to see if any resources can be found in this
directory. That is, even if the directory construct is absent in the container, if
resources can be found assuming this directory, than it must still be chosen
for the Bundle-ClassPath.

A host bundle can allow a fragment to insert code ahead of its own code by
naming a container in its Bundle-Classpath that will be provided by a frag-
ment. Fragments can never unilaterally insert code ahead of their host’s
bundle class path. The following example illustrates the possibilities of the
bundle class path in more detail:

A: Bundle-SymbolicName: A
Bundle-ClassPath: /,required.jar,optional,default.jar

content ...
required. jar
default.jar

B: Bundle-SymbolicName: B
Bundle-ClassPath: fragment.jar
Fragment-Host: A
content ...
optional/

content ...
fragment. jar

The names of the bundle class path elements indicate their intention. The
required.jar is a container that provides mandatory functionality, it is pack-
aged in bundle A. The optional container is a directory containing optional
classes, and the default.jar is a JAR entry with backup code. In this example,
the effective bundle class path is:

A:/
A:required. jar
B:optional
A:default.jar
B: fragment. jar

This will expand to the following (logical) search order for a resource
X.class:

OSGi Service Platform Release 4 55-332

Runtime Class Loading Module Layer Version 1.5

3.8.2

A:/X.class

A:required. jar!X.class
B:optional/X.class
A:default.jar!X.class
B: fragment.jar!X.class

The exclamation mark () indicates a load from a JAR resource.

Dynamic Import Package

Dynamic imports are matched to export definitions (to form package wir-
ings) during class loading, and therefore do not affect module resolution.
Dynamic imports apply only to packages for which no wire has been estab-
lished and no definition could be found in any other way. Dynamic import
is used as last resort.

DynamicImport-Package ::= dynamic-description
(',' dynamic-description)x*
dynamic-description::= wildcard-names (';' parameter)x
wildcard-names ::= wildcard-name (';' wildcard-name)=*
wildcard-name ::= package-name
| (package-name '.x') // See 1.3.2
|

No directives are architected by the Framework for DynamicImport-Pack-
age. Arbitrary matching attributes may be specified. The following arbitrary
matching attributes are architected by the Framework:

version - A version range to select the version of an export definition.
The default value is 0.0.0..

bundle-symbolic-name — The bundle symbolic name of the exporting
bundle.

bundle-version —a version range to select the bundle version of the
exporting bundle. The default value is 0.0.0.

Packages may be named explicitly or by using wild-carded expressions such
asorg.foo.* and *. The wildcard can stand for any suffix, including multiple
sub-packages. If a wildcard is used, then the package identified by the prefix
must not be included. That is, org.foo.* will include all sub-packages of
org.foo but it must not include package org.foo itself.

Dynamic imports must be searched in the order in which they are specified.
The order is particularly important when package names with wildcards are
used. The order will then determine the order in which matching occurs.
This means that the more specific package specifications should appear
before the broader specifications. For example, the following DynamicIm-
port-Package header indicates a preference for packages supplied by ACME:

DynamicImport-Package: #;vendor=acme, *

If multiple packages need to be dynamically imported with identical param-
eters, the syntax permits a list of packages, separated by semicolons, to be
specified before the parameters.

56-332

OSGi Service Platform Release 4

Module Layer Version 1.5 Runtime Class Loading

During class loading, the package of the class being loaded is compared
against the specified list of (possibly wild-carded) package names. Each
matching package name is used in turn to attempt to wire to an export
using the same rules as Import-Package. If a wiring attempt is successful
(taking any uses constraints into account), the search is forwarded to the
exporter’s class loader where class loading continues. The wiring must not
subsequently be modified, even if the class cannot be loaded. This implies
that once a package is dynamically resolved, subsequent attempts to load
classes or resources from that package are treated as normal imports.

In order for a DynamicImport-Package to be resolved to an export state-
ment, all attributes of the dynamic import definition must match the
attributes of the export statement. All mandatory arbitrary attributes (as
specified by the exporter, see Mandatory Attributes on page 49) must be spec-
ified in the dynamic import definition and match.

Once a wire is established, any uses constraints from the exporter must be
obeyed for further dynamic imports.

Dynamic imports are very similar to optional packages, see Optional Pack-
ages on page 46, but differ in the fact that they are handled after the bundle
isresolved.

3.8.3 Parent Delegation

The Framework must always delegate any package that starts with java. to
the parent class loader.

Certain Java virtual machines, also SUN’s VMs, appear to make the errone-
ous assumption that the delegation to the parent class loader always occurs.
This implicit assumption of strictly hierarchical class loader delegation can
result in NoClassDefFoundErrors. This happens if the virtual machine
implementation expects to find its own implementation classes from any
arbitrary class loader, requiring that packages loaded from the boot class
loader not be restricted to only the java.* packages.

Other packages that must be loaded from the boot class loader can therefore
be specified with the System property:

org.osgi. framework.bootdelegation

This property must contain a list with the following format:

org.osgi. framework.bootdelegation ::= boot-description
('," boot-description)*
boot-description::= package-name /] See 1.3.2
| (package-name '.x')
| s

The .* wildcard means deep matching, that is, com.acme.*, matches any
sub-package of package com.acme, however, it does not match com.acme.
Packages that match this list must be loaded from the parent class loader.
The java.x* prefix is always implied; it does not have to be specified.

The single wildcard means that the Framework must always delegate to the
parent class loader first, which is the same as the Release 3 behavior. For
example, when running on a SUN JVM, it may be necessary to specify a
value like:

OSGi Service Platform Release 4 57-332

Runtime Class Loading Module Layer Version 1.5

3.8.4

org.osgi. framework.bootdelegation=sun., com. sun. %

With such a property value, the Framework must delegate all java.*, sun.x,
and com.sun.x packages to the parent class loader.

Overall Search Order

Frameworks must adhere to the following rules for class or resource load-
ing. When a bundle’s class loader is requested to load a class or find a
resource, the search must be performed in the following order:

1

If the class or resource is in a java.x package, the request is delegated to
the parent class loader; otherwise, the search continues with the next
step. If the request is delegated to the parent class loader and the class or
resource is not found, then the search terminates and the request fails.
If the class or resource is from a package included in the boot delegation
list (org.osgi.framework.bootdelegation), then the request is delegated
to the parent class loader. If the class or resource is found there, the
search ends.

If the class or resource is in a package that is imported using Import-
Package or was imported dynamically in a previous load, then the
request is delegated to the exporting bundle’s class loader; otherwise the
search continues with the next step. If the request is delegated to an
exporting class loader and the class or resource is not found, then the
search terminates and the request fails.

If the class or resource is in a package that is imported from one or more
other bundles using Require-Bundle, the request is delegated to the class
loaders of the other bundles, in the order in which they are specified in
this bundle’s manifest. This entails a depth-first strategy; all required
bundles are searched before the bundle classpath is used. If the class or
resource is not found, then the search continues with the next step.
Search the bundle’s embedded classpath, see Bundle Class Path on page
54. If the class or resource is not found, then continue with the next step.
If the class or resource is in a package that is exported by the bundle or
the package isimported by the bundle (using Import-Package or Require-
Bundle), then the search ends and the class or resource is not found.
Otherwise, if the class or resource is in a package that is imported using
DynamicImport-Package, then a dynamic import of the package is now
attempted. An exporter must conform to any implied package con-
straints. If an appropriate exporter is found, a wire is established so that
future loads of the package are handled in Step 3. If a dynamic wire is not
established, then the request fails.

If the dynamic import of the package is established, the request is dele-
gated to the exporting bundle’s class loader. If the request is delegated to
an exporting class loader and the class or resource is not found, then the
search terminates and the request fails.

When delegating to another bundle class loader, the delegated request
enters this algorithm at Step 4.

The following non-normative flow chart illustrates the search order
described above:

58-332

OSGi Service Platform Release 4

Module Layer Version 1.5 Runtime Class Loading

Figure 3.19 Flow chart for class loading (non-normative)

no

Delegate to Jes
parent class loade

oot yes Delegate to Jes
2 delegation? >—— 1 parent class loade

no
Delegate to
3 imported? >>Y% | i exporter @ yE .
no
no
Search Required
4 bundles @ = '

Search bundle yes
5 class path . O Success
no
Search fragments
6 bundle class path @ = .
no

7 package yes
exported? .

no
9
Gynamic Delegate to o
8 import? ————— wire’s exporter Y ‘
no no

OSGi Service Platform Release 4

59-332

Runtime Class Loading Module Layer Version 1.5

3.8.5

3.8.6

Parent Class Loader

The set of implicitly imported packages are all java.* packages, since these
packages are required by the Java runtime, and using multiple versions at
the same time is not easy. For example, all objects must extend the same
Object class.

A bundle must not declare imports or exports for java.* packages; doing so
is an error and any such bundle must fail to install. All other packages avail-
able through the parent class loader must be hidden from executing bun-
dles.

However, the Framework must explicitly export relevant packages from the
parent class loader. The system property

org.osgi.framework.system.packages

contains the export packages descriptions for the system bundle. This prop-
erty employs the standard Export-Package manifest header syntax:

org.osgi. framework. system.packages ::= package-description (
', ' package-description)*

Some classes on the boot class path assume that they can use any class
loader to load other classes on the boot class path, which is not true for a
bundle class loader. Framework implementations should attempt to load
these classes from the boot class path.

The system bundle (bundle ID zero) is used to export non-java.x packages
from the parent class loader. Export definitions from the system bundle are
treated like normal exports, meaning that they can have version numbers,
and are used to resolve import definitions as part of the normal bundle
resolving process. Other bundles may provide alternative implementations
of the same packages.

The set of export definitions for the parent class loader can either be set by
this property or calculated by the Framework. The export definitions must
have the implementation specific bundle symbolic name and version value
of the system bundle.

Exposing packages from the parent class loader in this fashion must also
take into account any uses directives of the underlying packages. For exam-
ple, the definition of javax.crypto.spec must declare its usage of
javax.crypto.interfaces andjavax.crypto.

Resource Loading

A resource in a bundle can be accessed through the class loader of that bun-
dle butit can also be accessed with the getResource, getEntry or findEntries
methods. All these methods return a URL object or an Enumeration object of
URL objects. The URLs are called bundle entry URLs. The schemes for the
URLs returned by these methods can differ and are implementation depen-
dent.

Bundle entry URLs are normally created by the Framework, however, in cer-
tain cases bundles need to manipulate the URL to find related resources. The
Framework is therefore required to ensure that:

60-332

OSGi Service Platform Release 4

Module Layer Version 1.5 Runtime Class Loading

3.8.7

Figure 3.20

- Bundle entry URLs must be hierarchical (See [32] Uniform Resource Identi-
fiers URI: Generic Syntax)

.+ Usable as a context for constructing another URL.

. Thejava.net.URLStreamHandler class used for a bundle entry URL must
be available to the java.net.URL class to setup a URL that uses the pro-
tocol scheme defined by the Framework.

. The getPath method for a bundle entry URL must return an absolute
path (a path that starts with '/') to a resource or entry in a bundle. For
example, the URL returned from getEntry("myimages/test.gif") must
have a path of /myimages/test.gif.

For example, a class can take a URL to an index.htm| bundle resource and
map URLs in this resource to other files in the same JAR directory.

public class BundleResource implements HttpContext {
URL root; // to index.html in bundle
URL getResource(String resource) {
return new URL(root, resource);

}

}
Bundle Cycles

Multiple required bundles can export the same package. Bundles which
export the same package involved in a require bundle cycle can lead to
lookup cycles when searching for classes and resources from the package.
Consider the following definitions:

A: Require-Bundle: B, C
C: Require-Bundle: D

These definitions are depicted in Figure 3.20.

Depth First search with Require Bundle

C

V
B’
Each of the bundles exports the package p. In this example, bundle A
requires bundle B, and bundle C requires bundle D. When bundle A loads a
class or resource from package p, then the required bundle search order is
the following: B, D, C, A. This is a depth first search order because required
bundles are searched before the bundle classpath is searched (see step 4).
The required bundles are searched in the order that they appear in the

Require-Bundle header. The depth first search order can introduce endless
search cycles if the dependency graph has a cycle in it.

OSGi Service Platform Release 4 61-332

Runtime Class Loading Module Layer Version 1.5

Figure 3.21

3.8.8

Using the previous setup, a cycle can be introduced if bundle D requires
bundle A as depicted in Figure 3.21.

D: Require-Bundle: A

Cycles

- -]

When the class loader for bundle A loads a class or resource from package p
then the bundle search order would be the following: B, B, B,... if cycles were
not taken into account.

Since a cycle was introduced each time bundle D is reached the search will
recurs back to A and start over. The framework must prevent such depen-
dency cycles from causing endless recursive lookups.

To avoid endless looping, the Framework must mark each bundle upon first
visiting it and not explore the required bundles of a previously visited bun-
dle. Using the visited pattern on the dependency graph above will result in

the following bundle search order: B, D, C, A.

Code Executed Before Started

Packages exported from a bundle are exposed to other bundles as soon as the
bundle has been resolved. This condition could mean that another bundle
could call methods in an exported package before the bundle exporting the
package is started.

Finding an Object’s Bundle

The Package Admin service has a method getBundle(Class) that can pro-
vide the bundle of a specific class. In a well written OSGi bundle this should
suffice. However, there are legacy scenarios where a bundle is required in
code that has no access to a Bundle Context, and thereby cannot get the
Package Admin service.

For this reasons, the framework provides the following methods:

Framework Util - Through the FrameworkUtil class with the
getBundle(Class) method. The framework provides this method to
allow code to find the bundle of an object without having the permission
to get the class loader. The method returns null when the class does not
originate from a bundle.

Class Loader— An OSGi framework must ensure that the class loader of a
class that comes from a bundle implements the BundleReference
interface. This allows legacy code to find an object’s bundle by getting its

62-332

OSGi Service Platform Release 4

Module Layer Version 1.5 Loading Native Code Libraries

class loader and casting it to a BundleReference object, which provides
access to the Bundle. However, this requires the code to have the per-
mission to access the class loader. The following code fragment shows
how to obtain a Bundle object from any object.

ClassLoader cl = target.getClassLoader();

if (cl instanceof BundleReference) {
BundleReference ref = (BundleReference) cl;
Bundle b = ref.getBundle();

In an OSGi system, not all objects belong to the framework. It is therefore
possible to get hold of a class loader that does not implement the
BundleReference interface, for example the boot class path loader.

Loading Native Code Libraries

Dependency on native code is expressed in the Bundle-NativeCode header.
The framework must verify this header and satisfy its dependencies before it
attempts to resolve the bundle. However, a bundle can be installed without
an exception if the header is properly formatted according to its syntax. If
the header contains invalid information, or can not be satisfied, errors will
be reported during resolving.

AJava VM has a special way of handling native code. When a class loaded by
abundle's class loader attempts to load a native library, by calling
System.loadLibrary, the findLibrary method of the bundle’s class loader
must be called to return the file path in which the Framework has made the
requested native library available. The parameter to the findLibrary method
is the name of the library in operating system independent form, like http.
The bundle class loader can use the mapLibraryName method from the VM
to map this name to an operating system dependent name, like libhttp.so.

The bundle's class loader must attempt to find the native library by examin-
ing the selected native code clauses, if any, of the bundle associated with the
class loader and each attached fragment. Fragments are examined in ascend-
ing bundle ID order. If the library is not referenced in any of the selected
native code clauses then null must be returned which allows the parent
class loader to search for the native library.

The bundle must have the required RuntimePermission[loadLibrary.
<library name>] in order to load native code in the OSGi Service Platform.

The Bundle-NativeCode manifest header must conform to the following
syntax:

Bundle-NativeCode ::= nativecode
('," nativecode)* (’,’ optional) ?
nativecode ::= path (';' path)% /] See 1.3.2
(';' parameter)+
optional ti=

OSGi Service Platform Release 4 63-332

Loading Native Code Libraries Module Layer Version 1.5

When locating a path in a bundle the Framework must attempt to locate the
path relative to the root of the bundle that contains the corresponding
native code clause in its manifest header.

The following attributes are architected:

osname —Name of the operating system. The value of this attribute must
be the name of the operating system upon which the native libraries run.
A number of canonical names are defined in Environment Properties on
page 110.

osversion — The operating system version. The value of this attribute
must be a version range as defined in Version Ranges on page 32.
processor — The processor architecture. The value of this attribute must
be the name of the processor architecture upon which the native
libraries run. see Environment Properties on page 110.

- language — The ISO code for a language. The value of this attribute must
be the name of the language for which the native libraries have been
localized.
selection-filter — A selection filter. The value of this attribute must be a
filter expression that indicates if the native code clause should be
selected or not.

The following is a typical example of a native code declaration in a bundle's
manifest:

Bundle-NativeCode: lib/http.dll ; lib/zlib.d1l1 ;
osname = Windows95 ;
osname = Windows98 ;
osname = WindowsNT ;
processor = x86 ;
selection-filter=
" (com. acme.windowing=win32)";
language = en ;
language = se ,
lib/solaris/libhttp.so ;
osname = Solaris ;
osname = SunOS ;
processor = sparc,
1lib/1linux/1libhttp.so ;
osname = Linux ;
processor = mips;
selection-filter
" (com. acme.windowing=gtk)

If multiple native code libraries need to be installed on one platform, they
must all be specified in the same clause for that platform.

If a Bundle-NativeCode clause contains duplicate parameter entries, the cor-
responding values must be OR'ed together. This feature must be carefully
used because the result is not always obvious. This is highlighted by the fol-
lowing example:

/1 The effect of this header has probably
/1 not the intended effect!
Bundle-NativeCode: lib/http.DLL ;

osname = Windows95 ;

64-332 OSGi Service Platform Release 4

Module Layer Version 1.5 Loading Native Code Libraries

osversion = "3.1" ;
osname = WindowsXP ;
osversion = "5.1" ;

processor = x86

The above example implies that the native library will load on Windows XP
3.1 and later, which was probably not intended. The single clause should be
split in two clauses:

Bundle-NativeCode: 1lib/http.DLL ;
osname = Windows95 ;
osversion = 3.1;
processor = x86,

lib/http.DLL ;
osname = WindowsXP ;
osversion = 5.1;
processor = x86

Any paths specified in the matching clause must be present in the bundle or
any of its attached fragments for a bundle to resolve. The framework must
report a Bundle Exception with the NATIVECODE_ERROR as error code
when the bundle can not be resolved due to a native code problem.

If the optional’s’ is specified at the end of the Bundle-NativeCode manifest
header, the bundle will still resolve even if the Bundle-NativeCode header
has no matching clauses.

The following is a typical example of a native code declaration in a bundle's
manifest with an optional clause:

Bundle-NativeCode: 1lib/win32/winxp/optimized.dll ;
lib/win32/native.dll ;
osname = WindowsXP ;
processor = x86 ,
lib/win32/native.dll ;

osname = Windows95 ;
osname = Windows98 ;
osname = WindowsNT ;

osname = Windows2000;
processor = x86 ,
*

3.9.1 Native Code Algorithm

In the description of this algorithm, [x] represents the value of the Frame-
work property x and ~= represents the match operation. The match opera-
tion is a case insensitive comparison.

Certain properties can be aliased. In those cases, the manifest header should
contain the generic name for that property but the Framework should
attempt to include aliases when it matches. (See Environment Properties on
page 110). If a property is not an alias, or has the wrong value, the Operator
should set the appropriate system property to the generic name or to a valid

OSGi Service Platform Release 4 65-332

Loading Native Code Libraries Module Layer Version 1.5

value because Java System properties with this name override the Frame-
work construction of these properties. For example, if the operating system
returns version 2.4.2-kwt, the Operator should set the system property
org.osgi.framework.os.version to 2.4.2.

The Framework must select the native code clause using the following algo-
rithm:

1 Only select the native code clauses for which the following expressions
all evaluate to true.
osname -= [org.osgi.framework.os.name]
processor -= [org.osgi.framework.processor]
osversion range includes [org.osgi.framework.os.version] or
osversion is not specified
- language -=[org.osgi.framework.language] orlanguage is not spec-
ified
selection-filter evaluates to true when using the values of the system
properties or selection-filter is not specified
2 Ifno native clauses were selected in step 1, this algorithm is terminated
and a BundleException is thrown if the optional clause is not present.
3 The selected clauses are now sorted in the following priority order:
- osversion: floor of the osversion range in descending order,
osversion not specified
language: language specified, language not specified
Position in the Bundle-NativeCode manifest header: lexical left to
right.
4 The first clause of the sorted clauses from step 3 must be used as the
selected native code clause.

If a native code library in a selected native code clause cannot be found
within the bundle then the bundle must fail to resolve. This is true even if
the optional clause is specified. If the selected clause contains multiple
libraries with the same base file name then only the lexically left most
library with that base file name will be used. For example, if the selected
clause contains the libraries lib1/http.dll; lib2/http.dll; lib3/foo.dll; a/b/c/
http.dll then only http.dll inlib1 and foo.dll will be used.

If a selection filter is evaluated and its syntax is invalid, then the bundle
must fail to resolve. If a selection filter is not evaluated (it may be in a native
code clause where the osname or processor does not match), then the
invalid filter must not cause the bundle to fail to resolve. This is also true
even if the optional clause is specified.

Designing a bundle native code header can become quickly complicated
when different operating systems, libraries, and languages are used. The
best practice for designing the header is to place all parameters in a table.
Every targeted environment is then a row in that table. See Table 3.3 for an
example. This table makes it easier to detect missing combinations. This
table is then mapped to the Bundle-NativeCode header in the following
code example.

Bundle-NativeCode: nativecodewin32.d1ll;
delta.dll;
osname=win32;
processor=x86;

66-332

OSGi Service Platform Release 4

Module Layer Version 1.5 Loading Native Code Libraries

Table 3.3
Libraries

nativecodewin32.dll, delta.dll win32

nativecodegtk.so

nativecodeqt.so

3.9.2

Native code table

oshame
osversion
processor

® language
filter

>
[ee]
(o)}

=<
oo}
(o))
[
5

linux (com.acme.windowing=gtk)

>
[ee]
(o)}

linux en (com.acme.windowing=qt)

language=en,
nativecodegtk. so;
osname=1linux;
processor=x86;
language=en;
selection-filter=
" (com. acme.windowing=gtk)
nativecodeqt. so;
osname=1linux;
processor=x86;
language=en;
selection-filter =
" (com. acme.windowing=qt)

Considerations Using Native Libraries

There are some restrictions on loading native libraries due to the nature of
class loaders. In order to preserve name space separation in class loaders,
only one class loader can load a native library as specified by an absolute
path. Loading of a native library file by multiple class loaders (from multiple
bundles, for example) will result in a linkage error.

Care should be taken to use multiple libraries with the same file name but
in a different directory in the JAR. For example, foo/http.dIl and bar/
http.dll. The Framework must only use the first library and ignore later
defined libraries with the same name. In the example, only foo/http.dll will
be visible.

A native library is unloaded only when the class loader that loaded it has
been garbage collected.

When a bundle is uninstalled or updated, any native libraries loaded by the
bundle remain in memory until the bundle's class loader is garbage col-
lected. The garbage collection will not happen until all references to objects
in the bundle have been garbage collected, and all bundles importing pack-
ages from the updated or uninstalled bundle are refreshed. This implies that
native libraries loaded from the system class loader always remain in mem-
ory because the system class loader is never garbage collected.

It is not uncommon that native code libraries have dependencies on other
native code libraries. This specification does not support these dependen-
cies, it is assumed that native libraries delivered in bundles should not rely
on other native libraries.

OSGi Service Platform Release 4 67-332

Localization

Module Layer Version 1.5

3.10

3.10.1

Localization

A bundle contains a significant amount of information that is human-read-
able. Some of this information may require different translations depending
on the user's language, country, and any special variant preferences, a.k.a.
the locale. This section describes how a bundle can provide common transla-
tions for the manifest and other configuration resources depending on a
locale.

Bundle localization entries share a common base name. To find a potential
localization entry, an underscore (_’ \uoosF) is added plus a number of suf-
fixes, separated by another underscore, and finally appended with the suffix
.properties . The suffixes are defined in java.util.Locale. The order for the
suffixes this must be:

language
. country
+ variant

For example, the following files provide manifest translations for English,
Dutch (Belgium and the Netherlands) and Swedish.

0SGI-INF/110n/bundle_en.properties
0SGI-INF/110n/bundle_nl BE.properties
0SGI-INF/110n/bundle_nl_NL.properties
0SGI-INF/110n/bundle_sv.properties

The Framework searches for localization entries by appending suffixes to
the localization base name according to a specified locale and finally
appending the .properties suffix. If a translation is not found, the locale
must be made more generic by first removing the variant, then the country
and finally the language until an entry is found that contains a valid transla-
tion. For example, looking up a translation for the locale en_GB_welsh will
search in the following order:

0SGI-INF/110n/bundle_en_GB_welsh.properties
0SGI-INF/110n/bundle_en_GB.properties
0SGI-INF/110n/bundle_en.properties
0SGI-INF/110n/bundle.properties

This allows localization files for more specific locales to override localiza-
tions from less specific localization files.

Finding Localization Entries

Localization entries can be contained in the bundle or delivered in frag-
ments. The framework must search for localization entries using the follow-
ing search rules based on the bundle type:

fragment bundle —If the bundle is a resolved fragment, then the search
for localization data must delegate to the attached host bundle with the
highest version. If the fragment is not resolved, then the framework
must search the fragment's JAR for the localization entry.

. other bundle — The framework must first search in the bundle’s JAR for
the localization entry. If the entry is not found and the bundle has frag-

68-332

OSGi Service Platform Release 4

Module Layer Version 1.5 Localization

3.10.2

ments, then the attached fragment JARs must be searched for the local-
ization entry.

The bundle's class loader is not used to search for localization entries. Only
the contents of the bundle and its attached fragments are searched. The bun-
dle will still be searched for localization entries even if dot (.") is not in the
bundle class path.

Manifest Localization

Localized values are stored in property resources within the bundle. The
default base name of the bundle localization property files is OSGI-INF/
[1ton/bundle. The Bundle-Localization manifest header can be used to over-
ride the default base name for the localization files. This location is relative
to the root of the bundle and bundle fragments.

A localization entry contains key/value entries for localized information.
All headers in a bundle's manifest can be localized. However, the Frame-
work must always use the non-localized versions of headers that have
Framework semantics.

Alocalization key can be specified as the value of a bundle's manifest header
using the following syntax:

header-value ::= "% text
text ::= < any value which is both a valid manifest header
value and a valid property key name >

For example, consider the following bundle manifest entries:

Bundle-Name: %acme bundle

Bundle-Vendor: %acme corporation
Bundle-Description: %acme description
Bundle-Activator: com.acme.bundle.Activator
Acme-Defined-Header: %acme special header

User-defined headers can also be localized. Spaces in the localization keys
are explicitly allowed.

The previous example manifest entries could be localized by the following
entries in the manifest localization entry OSGI-INF/110n/bundle.properties.

bundle.properties

acme\ bundle=The ACME Bundle

acme\ corporation=The ACME Corporation

acme\ description=The ACME Bundle provides all of the ACME \
services

acme\ special header=user-defined Acme Data

The above manifest entries could also have French localizations in the man-
ifest localization entry OSGI-INF/110n/bundle_fr FR.properties.

OSGi Service Platform Release 4 69-332

Bundle Validity

Module Layer Version 1.5

3.11

3.12

3.12.1

Bundle Validity

If the Bundle-ManifestVersion is not specified, then the bundle manifest
version defaults to 1, and certain Release 4 syntax, such as a new manifest
header, is ignored rather than causing an error. Release 3 bundles must be
treated according to the R3 specification.

The following (non-exhaustive) list of errors causes a bundle to fail to
install:

- Missing Bundle-SymbolicName.

- Duplicate attribute or duplicate directive (except in the Bundle-Native
code clause).

Multiple imports of a given package.
Export or import of java.x.
Export-Package with a mandatory attribute that is not defined.

- Installing a bundle that has the same symbolic name and version as an
already installed bundle.

Updating a bundle to a bundle that has the same symbolic name and
version as another installed bundle.

Any syntactic error (for example, improperly formatted version or
bundle symbolic name, unrecognized directive value, etc.).

- Specification-version and version specified together (for the same
package(s)) but with different values on manifest headers that treat them
as synonyms. For example:

Import-Package p;specification-version=1;version=2
would fail to install, but:

Import-Package p;specification-version=1, q;version=2
would not be an error.

« The manifest lists a OSGI-INF/permission.perm file but no such file is
present.

Bundle-ManifestVersion value not equal to 2, unless the Framework spe-
cifically recognizes the semantics of a later release.
Requiring the same bundle symbolic name more than once.

Requiring Bundles

The Framework supports a mechanism where bundles can be directly wired
to other bundles. The following sections define the relevant headers and
then discuss the possible scenarios. At the end, some of the (sometimes
unexpected) consequences of using Require-Bundle are discussed.

Require-Bundle

The Require-Bundle manifest header contains a list of bundle symbolic
names that need to be searched after the imports are searched but before the
bundle’s class path is searched. Fragment or extension bundles can not be
required.

The framework must take all exported packages from a required bundle,
including any packages exported by attached fragments, and wire these
packages to the requiring bundle.

70-332

OSGi Service Platform Release 4

Module Layer Version 1.5 Requiring Bundles

The Require-Bundle manifest header must conform to the following syntax:

Require-Bundle ::= bundle-description
('," bundle-description)*
bundle-description ::= symbolic-name /1 See 1.3.2

(';" parameter)*
The following directives can be used in the Require-Bundle header:

- visibility —If the value is private (Default), then all visible packages from
the required bundles are not re-exported. If the value isreexport then
bundles that require this bundle will transitively have access to these
required bundle’s exported packages. That is, if bundle A requires bundle
B, and bundle B requires bundle C with visibility:=reexport then bundle
A will have access to all bundle C’s exported packages as if bundle A had
required bundle C.

. resolution —If the value ismandatory (default) then the required bundle
must exist for this bundle to resolve. If the value is optional, the bundle
will resolve even if the required bundle does not exist.

The following matching attribute is architected by the Framework:

- bundle-version — The value of this attribute is a version range to select
the bundle version of the required bundle. See Version Ranges on page 32.
The default value is[0.0.0,00).

A specific symbolic name can only be required once, listing the same sym-
bolic name multiple times must be regarded as an install error.

Requiring bundles must get wired to all exported packages of all their
required bundles including exported packages from their attached frag-
ments. This means that any mandatory attributes on these exports must be
ignored. However, if a required bundle's exported package is substituted for
an imported package, then the requiring bundles must get wired to the same
exported package that the required bundle is wired to ensure class space
consistency.

For example, assume that bundle A exports and imports package p and bun-
dle B requires bundle A:

Bundle A
Export-Package: p;x=1;mandatory:=x
Import-Package: p

Bundle B
Require-Bundle: A

In this constellation, bundle B will get package p from the same source as
bundle A. Bundle A can get the package from itself if it is chosen as an
exporter for p, but it can also get the package from another bundle because
it also imports it. In all cases, bundle B must use exactly the same exporter
for package p as bundle A.

OSGi Service Platform Release 4 71-332

Requiring Bundles

Module Layer Version 1.5

3.12.2

A given package may be available from more than one of the required bun-
dles. Such packages are named split packages because they derive their con-
tents from different bundles. If these different bundles provide the same
classes unpredictable shadowing of classes can arise, see Issues With Requir-
ing Bundles on page 73. However, split packages without shadowing are
explicitly permitted.

For example, take the following setup:

A: Require-Bundle: B
Export-Package: p
B: Export-Package: p;partial=true;mandatory:=partial

If bundle C imports package p, it will be wired to package A.p, however the
contents will come from B.p > A.p. The mandatory attribute on bundle B’s
export definition ensures that bundle B is not accidentally selected as
exporter for package p. Split packages have a number drawbacks that are
discussed in Issues With Requiring Bundles on page 73.

Resources and classes from a split package must be searched in the order in
which the required bundles are specified in the Require-Bundle header.

As an example, assume that a bundle requires a number of required bundles
and a number of language resources (also bundles) that are optional.

Require-Bundle: com.acme. facade;visibility:=reexport,
com.acme.bar.one;visibility:=reexport,
com. acme. bar. two; visibility:=reexport,
com.acme.bar._nl;visibility:=reexport;resolution:=optional,
com.acme.bar._en;visibility:=reexport;resolution:=optional

A bundle may both import packages (via Import-Package) and require one
or more bundles (via Require-Bundle), but if a package is imported via
Import-Package, it is not also visible via Require-Bundle: Import-Package
takes priority over Require-Bundle, and packages which are exported by a
required bundle and imported via Import-Package must not be treated as
split packages.

In order to be allowed to require a named bundle, the requiring bundle must
have BundlePermission[<bundle symbolic name>, REQUIRE], where the
bundle symbolic name is the name of the bundle that is required. The
required bundle must be able to provide the bundle and must therefore have
BundlePermission[<bundle symbolic name>, PROVIDE], where the name
designates the requiring bundle. In the case a fragment bundle requires
another bundle, the Bundle Permission must be checked against the frag-
ment bundle’s Protection Domain.

Split Package Compatibility

A package is a split package whenever there are multiple sources for the
package; only bundles using the Require-Bundle header can have split pack-
ages.

A source is a bundle that provides the given package. Both the required bun-
dles as well as the requiring bundle can act as a source. The required bundles
and the requiring bundle can only contribute their exported packages.

72-332

OSGi Service Platform Release 4

Module Layer Version 1.5 Requiring Bundles

Exported split packages from two bundles are compatible if the package
sources for one are a subset of the other.

3.12.3 Issues With Requiring Bundles

The preferred way of wiring bundles is to use the Import-Package and
Export-Package headers because they couple the importer and exporter to a
much lesser extent. Bundles can be refactored to have a different package
composition without causing other bundles to fail.

The Require-Bundle header provides a way for a bundle to bind to all the
exports of another bundle, regardless of what those exports are. Though this
can seem convenient at first, it has a number of drawbacks:

« Split Packages — Classes from the same package can come from different
bundles with Require bundle, such a package is called a split package.
Split packages have the following drawbacks:

- Completeness — Split packages are open ended, it is difficult to guaran-
tee that all the intended pieces of a split package have actually been
included.

« Ordering—If the same classes are present in more than one required
bundle, then the ordering of Require-Bundle is significant. A wrong
ordering can cause hard to trace errors, similar to the traditional class
path model of Java.

« Performance— A class must be searched in all providers when packages
are split. This potentially increases the number of times that a
ClassNotFoundException must be thrown which can potentially
introduce a significant overhead.

« Confusing—1It is easy to find a setup where there is lots of potential for
confusion. For example, the following setup is non-intuitive.

A: Export-Package: p;uses:=q
Import-Package: q
B: Export-Package:

q
C: Export-Package: g
D: Require-Bundle: B, C
Import-Package: p
Figure 3.22 Split packages and package constraints

A
: K

Potential

&conﬂict
D
: 2 KR

>

In this example, bundle D merges the split package q from bundles B and
bundle C, however, importing package p from bundle A puts a uses con-
straint on package p for package q. This implies that bundle D can see the
valid package q from bundle B but also the invalid package q from bun-

OSGi Service Platform Release 4 73-332

Fragment Bundles

Module Layer Version 1.5

3-13

dle C. This wiring is allowed because in almost all cases there will be no
problem. However, the consistency can be violated in the rare case when
package C.q contains classes that are also in package B.q.

Mutable Exports— The feature of visibility:=reexport that the export sig-
nature of the requiring bundle can unexpectedly change depending on
the export signature of the required bundle.

Shadowing — The classes in the requiring bundle that are shadowed by
those in a required bundle depend on the export signature of the
required bundle and the classes the required bundle contains. (By con-
trast, Import-Package, except with resolution:=optional, shadows whole
packages regardless of the exporter.)

Fragment Bundles

Fragments are bundles that can be attached to one or more host bundles by the
Framework. Attaching is done as part of resolving: the Framework appends
the relevant definitions of the fragment bundles to the host’s definitions
before the host is resolved. Fragments are therefore treated as part of the
host, including any permitted headers; they must not have their own class
loader though fragments must have their own Protection Domain.

Fragments can be attached to multiple hosts with the same symbolic name
but different versions. If multiple fragments with the same symbolic name
match the same host, then the Framework must only select one fragment,
this must be the fragment with the highest version.

A key use case for fragments is providing translation files for different
locales. This allows the translation files to be treated and shipped indepen-
dently from the main application bundle.

When an attached fragment is updated, the content of the previous frag-
ment must remain attached to its host bundles. The new content of the
updated fragment must not be allowed to attach to the host bundles until
the Framework is restarted or the host bundle is refreshed. During this time,
an attached fragment will have two versions: the old version, attached to the
old version of the host, and a new fragment bundle that can get attached toa
new version or to a different host bundle.

In this case, the Package Admin service must return information only for
the last version of the supplied bundles. In the previous described case, the
getHosts method must return the host bundles of the new version of the
fragment bundle, and the getFragments method must return the fragment
bundles attached to the new version of the host bundle.

When attaching a fragment bundle to a host bundle the Framework must
perform the following steps:

1 Append the import definitions for the Fragment bundle that do not con-
flict with an import definition of the host to the import definitions of the
host bundle. A Fragment can provide an import statement for a private
package of the host. The private package in the host is hidden in that
case.

74-332

OSGi Service Platform Release 4

Module Layer Version 1.5 Fragment Bundles

2 Append the Require-Bundle entries of the fragment bundle that do not
conflict with a Require-Bundle entry of the host to the Require-Bundle
entries of the host bundle.

3 Append the export definitions of a Fragment bundle to the export defini-
tions of the host bundle unless the exact definition (directives and
attributes must match) is already present in the host. Fragment bundles
can therefore add additional exports for the same package name. The
bundle-version attributes and bundle-symbolic-name attributes will
reflect the host bundle.

A hostand a fragment conflict when they cannot resolve to provide a consis-
tent class space. If a conflict is found, the Fragment bundle is not attached to
the host bundle.

A Fragment bundle must enter the resolved state only if it has been success-
fully attached to at least one host bundle.

During runtime, the fragment’s JAR is searched after the host’s bundle class
path as described in Fragments During Runtime on page 76.

A Fragment bundle can not be required by another bundle with the Require-
Bundle header.

3.13.1 Fragment-Host

The Fragment-Host manifest header links the fragment to its potential
hosts. It must conform to the following syntax:

Fragment-Host
bundle-description

bundle-description
symbolic-name
(';' parameter) * // See 1.3.2

The following directives are architected by the Framework for Fragment-
Host:

. extension —Indicates this extension is a system or boot class path
extension. It is only applicable when the Fragment-Host is the System
Bundle. This is discussed in Extension Bundles on page 77. The following
values are supported:

. framework - The fragment bundle is a Framework extension bundle.

- bootclasspath - The fragment bundle is a boot class path extension
bundle.

The fragment must be the bundle symbolic name of the implementation

specific system bundle or the alias system.bundle. The Framework

should fail to install an extension bundle when the bundle symbolic

name is not referring to the system bundle.

The following attributes are architected by the Framework for Fragment-
Host:

. bundle-version —The version range to select the the host bundle. If a
range is used, then the fragment can attach to multiple hosts. See Version
Matching on page 45. The default value is [0.0.0,).

When a fragment bundle is attached to a host bundle, it logically becomes
part of it. All classes and resources within the fragment bundle must be
loaded using the class loader (or Bunde object) of its host bundle. The frag-
ment bundles of a host bundle must be attached to a host bundle in the

OSGi Service Platform Release 4 75-332

Fragment Bundles Module Layer Version 1.5

order that the fragment bundles are installed, which is in ascending bundle
ID order. If an error occurs during the attachment of a fragment bundle then
the fragment bundle must not be attached to the host. A fragment bundle
must enter the resolved state only if it has been successfully attached to one
or more host bundles.

In order for a host bundle to allow fragments to attach, the host bundle must
have BundlePermission[<bundle symbolic name>,HOST]. In order to be
allowed to attach to a host bundle, a fragment bundle must have
BundlePermission[<bundle symbolic name>,FRAGMENT].

3.13.2 Fragments During Runtime

All class or resource loading of a fragment is handled through the host’s
class loader or Bundle object, a fragment must never have its own class
loader, it therefore fails the class and resource loading methods of the
Bundle object. Fragment bundles are treated as if they are an intrinsic part of
their hosts.

Though a fragment bundle does not have its own class loader, it still must
have a separate Protection Domain when it is not an extension fragment.
Each fragment can have its own permissions linked to the fragment bun-
dle’s location and signer.

A host bundle’s class path is searched before a fragment’s class path. This
implies that packages can be split over the host and any of its fragments.
Searching the fragments must be done in ascending bundle ID order. This is
the order that the fragment bundles were installed.

Figure 3.23 Resource/class searching with fragments

/ A.p export is chosen
; "B

1 2
Bl p C g
r s

t t

Figure 3.23 shows a setup with two fragments. Bundle B is installed before
bundle C and both bundle B and bundle C attach to bundle A. The following
table shows where different packages originate in this setup. Note that the
order of the append (») is significant.

76-332 OSGi Service Platform Release 4

Module Layer Version 1.5 Extension Bundles

Table 3.4

Effect of fragments on searching

Package Requested From Remark

p

3.13.3

3.14

A.p > B.p Bundle A exports package p, therefore, it will
search its class path for p. This class path con-
sists of the JAR and then its Fragment bundles.

D.q The import does not handle split packages and
package q is imported from bundle D. Therefore,
C.q is not found.

A.r > B.r Package r is not imported and therefore comes
from the class path.

C.s
B.t » C. t

In the example above, if package p had been imported from bundle D, the

table would have looked quite different. Package p would have come from
bundle D, and bundle A’s own contents as well as the contents of bundle B
would have been ignored.

If package q had bundle D, then the class path would have to be searched,
and A.q would have consisted of A.q > C.q.

Fragments must remain attached to a host as long as the host remains
resolved. When a host bundle becomes unresolved, then all its attached
Fragment bundles must be detached from the host bundle. When a frag-
ment bundle becomes unresolved the Framework must:

- Detach it from the host
. Re-resolve the host bundles
. Reattach the remaining attached fragment bundles.

A Fragment bundle can become unresolved by calling the refreshPackages
method.

Illegal Manifest Header for Fragment Bundles

The following list contains the headers that must not be used in a fragment
bundle:

. Bundle-Activator

Extension Bundles

Extension bundles can deliver optional parts of the Framework implemen-
tation or provide functionality that must reside on the boot class path.
These packages cannot be provided by the normal import/export mecha-
nisms.

Boot class path extensions are necessary because certain package implemen-
tations assume that they are on the boot class path or are required to be
available to all clients. An example of a boot class path extension is an
implementation of java.sql such as JSR 169. Boot class path extensions are
not required to be implemented by a compliant framework.

OSGi Service Platform Release 4 77-332

Extension Bundles Module Layer Version 1.5

3.14.1

Framework extensions are necessary to provide implementation aspects of
the Framework. For example, a Framework vendor could supply the
optional services like Permission Admin service and Start Level service with
Framework extension bundles.

An extension bundle should use the bundle symbolic name of the imple-
mentation system bundle, or it can use the alias of the system bundle, which
issystem.bundle.

The following example uses the Fragment-Host manifest header to specify
an extension bundle for a specific Framework implementation.

Fragment-Host: com.acme.impl.framework; extension:=framework

The following example uses the Fragment-Host manifest header to specify a
boot class path extension bundle.

Fragment-Host: system.bundle; extension:=bootclasspath
The following steps describe the life cycle of an extension bundle:

1 When an extension bundle is installed it enters the INSTALLED state.

2 The extension bundle is allowed to enter the RESOLVED state at the
Frameworks discretion, which can require a Framework re-launch.

3 IfaRESOLVED extension bundle is refreshed then the Framework must
shutdown; the host VM must terminate and framework must be re-
launched.

4 When a RESOLVED extension bundle is updated or UNINSTALLED, it is
not allowed to re-enter the RESOLVED state. If the extension bundle is
refreshed then the Framework must shutdown; the host VM must ter-
minate and framework must be re-launched.

It is valid to update an extension bundle to a bundle of another type. If the
old extension bundle is resolved then it must be attached as a fragment to
the system bundle. When this bundle is updated the old content of the bun-
dle must remain attached to the system bundle until the system bundle is
refreshed or the extension bundle is refreshed (using Package Admin ser-
vice). This must initiate a VM and Framework restart. When the framework
comes back up the new content of the bundle may be resolved.

All Bundle events should be dispatched for extension bundles as for ordi-
nary bundles.

lllegal Manifest Headers for Extension Bundles

An extension bundle must throw a BundleException if it is installed or
updated and it specifies any of the following headers.

Import-Package
Require-Bundle
Bundle-NativeCode

. Dynamiclmport-Package
Bundle-Activator

Both boot class path and framework extension bundles are permitted to
specify an Export-Package header. Any exported packages specified by a
framework extension bundle must be exported by the System Bundle when
the extension bundle is resolved.

78-332

OSGi Service Platform Release 4

Module Layer Version 1.5 Security

3.14.2

3.14.3

3-15

3.15.1

Class Path Treatment

A boot class path extension bundle’s JAR file must be appended to the boot
class path of the host VM. A framework extension bundle’s JAR is appended
to the class path of the Framework.

Extension bundles must be appended to their class path in the order in
which the extension bundles are installed: that is, ascending bundle ID
order.

How a framework configures itself or the boot class path to append the
extension bundle’s JAR is implementation specific. In some execution envi-
ronments, it may be impossible to support extension bundles. In such envi-
ronments, the Framework must throw a BundleException when such an
extension bundle is installed. The resulting Bundle Exception must have a
cause of type UnsupportedOperationException.

Optionality Boot Class Path Extension

This specification provides for one optional mechanism: the boot class path
extension. The reason to make this mechanism optional is that it is not pos-
sible to implement this in a portable way. A compliant framework must set
the following property to true or false depending on the implementation of
the boot class path extension:

. org.osgi.supports.bootclasspath.extension

If the property is not set or the value is unrecognized, then the value
defaults to false. A Framework that does not implement the bootclasspath
extension must refuse to install or update a bundle that carries this option.
It must then throw an exception at install or update time.

Additionally, frameworks must implement fragments, require bundle, and
extensions. They must therefore set the following properties to true.

. org.osgi.supports.framework.requirebundle
. org.osgi.supports.framework.fragments
. org.osgi.supports.framework.extension

Security

Extension Bundles

In an environment that has Java 2 security enabled the Framework must
perform an additional security check before allowing an extension bundle
to be installed. In order for an extension bundle to successfully install, the
Framework must check that the extension bundle has All Permissions
assigned to it. This means that the permissions of an extension bundle must
be setup before the extension bundle is installed.

AllPermission must be granted to extension bundles because they will be
loaded under the Protection Domain of either the boot class path or the
Framework implementation. Both of these Protection Domains have All
Permissions granted to them. It must therefore not be allowed for an exten-
sion bundle to be installed unless it already has been granted AllPermis-
sions.

OSGi Service Platform Release 4 79-332

Security

Module Layer Version 1.5

3.15.2

Figure 3.24

3.15.3

C, provide B| g
"' ~A A, fragment
_ A, require - s
p

The installer of an extension bundle must have AdminPermission[
<extension bundle>,EXTENSIONLIFECYCLE] to install an extension bundle.

Bundle Permission

Most package sharing permissions are based on Package Permission. How-
ever, fragments and required bundles use the bundle symbolic name to han-
dle sharing. The Bundle Permission is used to control this type of package
sharing.

The name parameter of the Bundle Permission is a bundle symbolic name.
The symbolic name is used as the identifier for the target bundle. A wild card
(.*’ \uoo2E,\uoo2A) is permitted at the end of the name.

For example, if fragment bundle A attaches to its host bundle B then frag-
ment bundle A requires BundlePermission("B", "fragment") so that A is per-
mitted to target host bundle B. The direction of the actions is depicted in
Figure 3.24.

Permissions and bundle sharing

B, host

The following actions are architected:

provide —Permission to provide packages to the target bundle.
+ require — Permission to require packages from the target bundle.
host — Permission to attach to the target fragment bundle.
fragment — Permission to attach as a fragment to the target host bundle.

When a fragment contains a Require-Bundle header, the Framework must
check the permission against the domain of the fragment.

Package Permission

Bundles can only import and export packages for which they have the
required permission. A PackagePermission must be valid across all versions
of a package.

A PackagePermission has two parameters:

The name, either the name of the target package (with a possible
wildcard character at the end) or a filter expression that can verify the
exporting bundle. A filter expression can test for the package name with
the package.name key. A filter can only be used for an IMPORT action.
Filters are described in Filter Based Permissions on page 23.

The action, either IMPORT or EXPORTONLY.

For example, the following Package Permission permits to import any pack-
age from a bundle downloaded from ACME:

PackagePermission(" (location=http: //www.acme.com/x", IMPORT)

When a fragment adds imports and exports to the host, the framework must
check the protection domain of the fragment and not of the related host.

80-332

OSGi Service Platform Release 4

Module Layer Version 1.5 Security

3.15.4

Resource Permissions

A Framework must always give a bundle the RESOURCE, METADATA, and
CLASS AdminPermission actions to access the resources contained within:

« Itself
« Any attached fragments
« Anyresources from imported packages

A resource in a bundle may also be accessed by using certain methods on
Bundle. The caller of these methods must have AdminPermission[bundle,
RESOURCE].

If the caller does not have the necessary permission, a resource is not acces-
sible and null must be returned. Otherwise, a URL object to the resource
must be returned. These URLs are called bundle resource URLs. Once the URL
object is returned, no further permission checks are performed when the
contents of the resource are accessed. The URL object must use a scheme
defined by the Framework implementation.

Bundle resource URLs are normally created by the Framework, however, in
certain cases bundles need to manipulate the URL to find related resources.
For example, a URL can be constructed to a resource that is in the same
directory as a given resource.

URLs that are not constructed by the Framework must follow slightly differ-
ent security rules due to the design of the java.net.URL class. Not all con-
structors of the URL class interact with the URL Stream Handler classes (the
implementation specific part). Other constructors call at least the parseURL
method in the URL Stream Handler where the security check can take place.
This design makes it impossible for the Framework check the permissions
during construction of a bundle resource URL.

The following constructors use the parseURL method and are therefore
checked when a bundle resource URL is constructed.

URL (String spec)
URL (URL context, String spec)
URL (URL context, String spec, URLStreamHandler handler)

When one of these constructors is called for a bundle resource URL, the
implementation of the Framework must check the caller for the necessary
permissions in the parseURL method. If the caller does not have the neces-
sary permissions then the parseURL method must throw a Security Excep-
tion. This will cause a Malformed URL Exception to be thrown by the URL
constructor. If the caller has the necessary permissions, then the URL object
is setup to access the bundle resource without further checks.

The following java.net.URL constructors do not call the parseURL method in
the URL Stream Handler, making it impossible for the Framework to verify
the permission during construction.

URL (String protocol, String host, int port, String file)
URL (String protocol, String host, int port, String file,
URLStreamHandler handler)

URL (String protocol, String host, String file)

OSGi Service Platform Release 4 81-332

Security

Module Layer Version 1.5

3.15.5

Bundle resource URLs that are created with these constructors cannot per-
form the permission check during creation and must therefore delay the
permission check. When the content of the URL is accessed, the Framework
must throw a Security Exception if the caller does not have
AdminPermission[bundle, RESOURCE] for the bundle referenced by the
URL.

Permission Checks

Since multiple bundles can export permission classes with the same class
name, the Framework must make sure that permission checks are per-
formed using the correct class. For example, a bundle that calls the check-
Permission method provides an instance of the Permission class:

void foo(String name) {
checkPermission(new FooPermission(name, "foo"));
}

This class of this Permission instance comes from a particular source. Per-
missions can only be tested against instances that come from the same
source.

Therefore, the Framework needs to look up permissions based on class
rather than class name. When it needs to instantiate a permission it must use
the class of the permission being checked to do the instantiation. Thisis a
complication for Framework implementers; bundle programmers are not
affected.

Consider the following example:

Bundle A
Import-Package: p
Export-Package: q
Bundle B
Import-Package: p
Bundle A uses a p.FooService. Usage of this class checks
g.FooPermission whenever one of its methods is invoked.
Bundle B has a FooPermission in its Protection Domain in a (Condi-
tional) Permission Info object.
- Bundle B invokes a method in the FooService that was given by bundle
A.
The FooService calls the checkPermission method with a new
FooPermission instance.
The Framework must use a FooPermission object that is from the same
class loader as the given FooPermission object before it can call the
implies method. In this case, the FooPermission class comes from
package A.q.

After the permission check, bundle B will have a FooPermission instanti-
ated using a class from a package it does not import. It is therefore possible
that the Framework has to instantiate multiple variations of the
FooPermission class to satisfy the needs of different bundles.

82-332

OSGi Service Platform Release 4

Module Layer Version 1.5 Changes

3.16 Changes

The Bundle-RequiredExecutionEnvironment is changed from an install
time check to a resolve time check. See Execution Environment on page 35.
Added the OSGi Mime type for bundles

Added export for package r in example about uses, package r was visible
in the picture but not in the text.

Made the search path for localization entries more clear in Finding Local-
ization Entries on page 68.

Clarified that a requiring bundle must use the same exporter for a
package as the required bundle in the case of import/export substitution
and that mandatory attributes for exported packages are ignored. See
Require-Bundle on page 70.

Clarified that the import and export clauses for the same package are
independent, see Exporting and Importing a Package on page 43.
Fragments During Runtime on page 76 erroneously specified that resolve
Bundles could unresolve a fragment.

Defined how organizations can extend the set of manifest headers. See
Custom Headers on page 31.

Added a Bundle-Icon header, see Bundle-Icon: /icons/acme-logo.png;size=64
on page 29.

Clarified that optional packages that are not found are treated as private
packages.

Added filters to the Package Permission IMPORT.

Allow fragments to attach to multiple hosts

Rewritten Bundle-ClassPath section, see Bundle Class Path on page 54 for
clarification. Removed step 6 in runtime loading because it contradicted
the bundle class path section.

3.17 References

[19] The Standard for the Format of ARPA Internet Text Messages
STD 11, RFC 822, UDEL, August 1982
http://www.ietf.org/rfc/rfc822.txt

[20] The Hypertext Transfer Protocol - HTTP/1.1
RFC 2068 DEC, MIT/LCS, UC Irvine, January 1997
http://www.ietf.org/rfc/rfc2068.txt

[21] The Java 2 Platform API Specification
Standard Edition, Version 1.3, Sun Microsystems
http://java.sun.com/j2se/1.4

[22] The Java Language Specification
Second Edition, Sun Microsystems, 2000
http://java.sun.com/docs/books/jls/index.html

[23] A String Representation of LDAP Search Filters
RFC 1960, UMich, 1996
http://www.ietf.org/rfc/rfc1960.txt

[24] The Java Security Architecture for JDK 1.2
Version 1.0, Sun Microsystems, October 1998

OSGi Service Platform Release 4 83-332

References

Module Layer Version 1.5

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

33]

(34]

35]

(36]

(37]

The Java 2 Package Versioning Specification
http://java.sun.com/j2se/1.4/docs/guide/versioning/index.html

Codes for the Representation of Names of Languages

ISO 639, International Standards Organization
http://lcweb.loc.gov/standards/iso639-2/langhome.html

Zip File Format

The Zip file format as defined by the java.util.zip package.

Manifest Format
http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html#]AR%20Manifest
W3C EBNF

http://www.w3c.org/TR/REC-xmlisec-notation

Lexical Structure Java Language
http://java.sun.com/docs/books/jls/second edition/html/lexical.doc.html
Mathematical Convention for Interval Notation
http://planetmath.org/encyclopedia/Interval. html

Uniform Resource Identifiers URI: Generic Syntax

RFC 2396

http://www.ietf.org/rfc/rfc2396.txt

Codes for the Representation of Names of Languages

ISO 639, International Standards Organization
http://lcweb.loc.gov/standards/iso639-2/langhome.html

OSGi IANA Mime Type
http://www.iana.org/assignments/media-types/application/vnd.osgi.bundle

OSGi Header Name Space Registry
http://www.osgi.org/headers

Portable Network Graphics (PNG) Specification (Second Edition)
http://www.w3.0rg/TR/2003/REC-PNG-20031110/

Open Source Initiative
http://www.opensource.org/

84-332

OSGi Service Platform Release 4

Life Cycle Layer Version 1.5 Introduction

4

4.1.1

4.1.2

Life Cycle Layer

Version 1.5

Introduction

The Life Cycle Layer provides an API to control the security and life cycle
operations of bundles. The layer is based on the module and security layer.

Essentials

Complete— The Life Cycle layer must implement an API that fully covers
the installation, starting, stopping, updating, uninstallation, and moni-
toring of bundles.

Reflective— The API must provide full insight into the actual state of the
Framework.

Secure—It must be possible to use the APIin a secure environment using
fine-grained permissions. However, security must be optional.
Manageable—It must be possible to manage a Service Platform remotely.
Launching—It must be able to launch an implementation of a framework
in a standardized way.

Entities

Bundle— Represents an installed bundle in the Framework.

Bundle Context— A bundle's execution context within the Framework.
The Framework passes this to a Bundle Activator when a bundle is
started or stopped.

Bundle Activator— An interface implemented by a class in a bundle that is
used to start and stop that bundle.

Bundle Event— An event that signals a life cycle operation on a bundle.
This event is received via a (Synchronous) Bundle Listener.

Framework Event— An event that signals an error or Framework state
change. The event is received via a Framework Listener.

Bundle Listener — A listener to Bundle Events.

Synchronous Bundle Listener— A listener to synchronously delivered
Bundle Events.

Framework Listener — A listener to Framework events.

Bundle Exception— An Exception thrown when Framework operations
fail.

System Bundle— A bundle that represents the Framework.

Framework— An interface implemented by an object that represents the
actual framework. It allows external management of a Framework.
Framework Factory — An interface implemented by Framework providers
that allows the creation of a framework object.

OSGi Service Platform Release 4 85-332

Frameworks

Life Cycle Layer Version

1.5

Class diagram org.osgi.framework Life Cycle Layer

implementation
code of bundle

class loaded by

activated with

Figure 4.25
«class>> «interface>»
Bundle Bundle
Exception Activator
0,1
«interface>> activated by
Bundle management representation
T
«interface>> «interface>>
Constants Framework
«interface>> «interface>>
Synchr.Bundle p Bundle o,.nl
Listener Listener |
|
<«class>> |
Bundle Event |} -
4.2 Frameworks

4.2.1

«interface>> class loader
Bundle
Context
A 1
[Bundle Controller
1 code mngmt
Impl
1.0
1
Framework Impl «class>>
- Framework
Event
1| o.n 1 '
_____ i
«interface>>
O-N Eramework
Listener
1
Framework «interface>>
Factory Impl | Framework
Factory

Launching and Controlling a Framework

This section outlines how a launcher can launch a framework implementa-
tion and then manage it, regardless of the implementation type of the
framework. This allows a launcher to embed an OSGi framework without
having to provide code that differs between different implementations.

Code that wants to use one of the OSGi Framework implementations must
provide the chosen framework implementation on the class path, or create a
special class loader that loads the code and resources from that implementa-
tion. How this is achieved, is outside this specification.

86-332

OSGi Service Platform Release 4

Life Cycle Layer Version 1.5 Frameworks

A framework implementation must provide a factory class. A factory class is
an indirection to create a framework implementation object. The imple-
mentation factory class must implement the FrameworkFactory interface.
The launcher can use the following ways to get this class name:

- Service Provider Configuration model, see Java Service Provider Configu-
ration Support on page 95,

.+ Get it from some configuration and use Class.forName, or

« Hardcode the name.

The FrameworkFactory interface has a single method: newFrame-
work(Map). The map provides the sole configuration properties for the
framework object. The result of this method is a framework object, this object
implements the Framework interface. The Framework interface extends the
Bundle interface and adds methods to handle the issues unique to launching
a framework. The framework object can be seen as the system bundle,
though the framework object and the system bundle do not have to be iden-
tical, implementations are allowed to implement them in different objects.

Before the framework object can be used, the launcher must first initialize it
by calling the init method. After initialization, the framework object can
provide a valid Bundle Context and has registered any framework services,
but any installed bundles must be in the INSTALLED state. The launcher can
then configure the framework object by installing bundles, interacting with
the framework services, or registering launcher services. The launcher can
also start bundles, but these bundles will not be started until the framework
object becomes ACTIVE.

After the framework object is properly configured, the launcher can startit
by calling the start method. The framework object will become ACTIVE,
and it will move the startlevel (if present) to the configured start level. This
can then resolve and start any installed bundle. After a framework has
become ACTIVE, it can be stopped from the framework object, or through
the system bundle.

The launcher can wait for a framework object to be stopped with the
waitForStop method. This method will block until the framework is com-
pletely stopped and return a Framework event indicating the cause of the
stop. After the framework object has been shutdown, and the waitForStop
method has returned, all installed bundles will be in the INSTALLED state.
The same framework object can be re-initialized, and started again, any
number of times.

The action diagram in Figure 4.26 shows a typical session. A new framework
is created and initialized. The launcher then gets the Bundle Context,
installs a bundle and starts the framework. It then gets a service, calls a
method and then waits for the framework to stop. The service waits some
time and calls stop on the System Bundle. The dotted lines indicate some
non-specified interactions that are implementation dependent.

OSGi Service Platform Release 4 87-332

Frameworks Life Cycle Layer Version 1.5

Figure 4.26 Action Diagram for Framework Launching
launcher a Framework Framework Bundle a Service
Factory Context

newFramework

init

getBundleContext - — —

installBundle

_ﬁ 1

getServiceReference

getService 1

foo()
waitForStop

—mm 3wl

If security is enabled, then the launcher and the framework require All Per-
mission. If All Permission is not available, then the framework must throw a
Security Exception.

The following code shows how a framework can be launched.

void launch(String factoryName, File[] bundles)
throws Exception {
Map p = new HashMap();
p.put("org.osgi.framework.storage",
System.getProperties("user.home")
+ File.separator+"osgi");

FrameworkFactory factory =
(FrameworkFactory) Class.forName(factoryName)
.newInstance();
Framework framework = factory.newFramework (p);
framework.init();

BundleContext context = framework.getBundleContext();

for (File bundle : bundles)
context.installBundle(bundle.toURL().toString());

framework. start()

framework.waitForStop()

88-332 OSGi Service Platform Release 4

Life Cycle Layer Version 1.5 Frameworks

4.2.2

Table 4

Launching Properties

The Map object given as a parameter to the newFramework method pro-
vides the initialization properties to the framework. This parameter may be
null,in that case the framework must be started with reasonable defaults for
the environment it is started in. For example, the framework should export
the JRE packages as system packages and it should store its bundles in an
appropriate place.

The properties Map may contain any properties for implementation specific
values. However, the properties in Table 4 must be accepted by all conform-
ant frameworks. The framework must not look in the System properties, the
given Map is complete.

Framework Launching Properties

org.osgi.framework.« Set the boot delegation mask, see Parent Delegation on page 57.

bootdelegation

org.osgi.framework.« This property is used to specify what class loader is used for

bundle.parent

boot delegation. That is, java.* and the packages specified on
the org.osgi.framework.bootdelegation. All other packages
must be accessed through a wire.

This property can have the following values:

boot —The boot class loader of the VM. This is the default.
app — The applicaton class loader
ext —The extension class loader

. framework — The class loader of the framework

org.osgi.framework.« Specifies an optional OS specific command to set file permis-
command.execpermission sions on a bundle’s native code. This is required on some oper-

ating systems to use native libraries. For example, on a UNIX
style OS you could have the following value:

org.osgi.framework.command.execpermission=«
"chmod +rx ${abspath}"

The ${abspath} macro will be substituted for the actual file

path.
org.osgi.framework.« The current execution environment. If not set, the framework
executionenvironment must provide an appropriate value. See Execution Environment

on page 35. For example

org.osgi. framework.executionenvironment =
]2SE-1.5

org.osgi.framework.language The language used by the framework for the selection of

native code. If not set, the framework must provide a value.

OSGi Service Platform Release 4 89-332

Frameworks

Life Cycle Layer Version 1.5

Table 4 Framework Launching Properties

org.osgi.framework.library.«
extensions

org.osgi.framework.os.name

org.osgi.framework.os.version

org.osgi.framework.processor

org.osgi.framework.security

org.osgi.framework.startlevel.«
beginning

org.osgi.framework.storage

A comma separated list of additional library file extensions
that must be used when searching for native code. If not set,
then only the library name returned by
System.maplibraryName(String) will be used. This list of
extensions is needed for certain operating systems which
allow more than one extension for native libraries. For exam-
ple, the AIX operating system allows library extensions of .a
and.so, but System.mapLibraryName(String) will only
return names with the .a extension. For example:

org.osgi.framework.library.extensions= a,so,dll
The name of the operating system as used in the native code
clause. See Environment Properties on page 110 for more infor-
mation. If not set, then the framework must provide a default
value.

The version of the operating system as used in the native code
clause. See Environment Properties on page 110 for more infor-
mation. If not set, then the framework must provide a default
value.

The name of the processor as used in the native code clause.
See Environment Properties on page 110 for more information.
If not set, then the framework must provide a value.

Specifies the type of security manager the framework must
use. If not specified then the framework will not set the VM
security manager. The following type is architected:

. osgi — Enables a security manager that supports all
security aspects of the OSGi Release 4 specifications
(including postponed conditions).

If specified, and there is a security manager already installed,
then a SecurityException must be thrown when the Frame-
work is initialized.

For example:

org.osgi.framework.security = osgi

Specifies the beginning start level of the framework. See Start
Level Service Specification on page 235 for more information.

org.osgi.framework.startlevel.beginning = 3
A valid file path in the file system to a directory. If the speci-
fied directory does not exist then the framework must create
the directory. If the specified path exists, but is not a directory,
or if the framework fails to create the storage directory, then
the framework initialization must fail with an exception
being thrown. The framework is free to use this directory as it
sees fit, for example, completely erase all files and directories
in it. If this property is not set, it must use a reasonable plat-
form default.

90-332

OSGi Service Platform Release 4

Life Cycle Layer Version 1.5 Frameworks

Table 4 Framework Launching Properties
org.osgi.framework.storage.« Specifies if and when the storage area for the framework
clean should be cleaned. If no value is specified, the framework stor-

age area will not be cleaned. The possible values is:

onFirstInit - The framework storage area will be cleaned
before the Framework bundle is initialized for the first
time. Subsequent inits, starts or updates of the Framework
bundle will not result in cleaning the framework storage
area.

For example:
org.osgi.framework.storage.clean = onFirstinit

It could seem logical to provide delete on exit and clean at ini-
tialization. However, restrictions in common Java VM imple-
mentations make it impossible to provide this functionality
reliably.
org.osgi.framework.system.« The packages that should be exported from the System Bun-
packages dle. If not set, the framework must provide a reasonable
default for the current VM.

org.osgi.framework.system.« Packages specified in this property are added to the
packages.extra org.osgi.framework.system.packages property and there-
fore have the same syntax. This allows the configurator to
only define the additional packages and leave the standard
VM packages to be defined by the framework. For example:

org.osgi.framework.system.packages.extra=
org.acme. foo; version=1.2, org.acme. foo.impl
org.osgi.framework.trust.« This property is used to configure trust repositories for the

repositories framework. The value is path of files.The file paths are sepa-

rated by the pathSeparator defined in the File class. Each file

path should point to a JKS key store. The framework will use

the key stores as trust repositories to authenticate certificates

of trusted signers. The key stores must only be used as read-

only trust repositories to access public keys. The keystore

must not have a password. For example:

org.osgi. framework. trust.repositories =
[var/trust/keystore. jks:-/.cert/certs. jks

org.osgi.framework.« Provide the name of the current window system. This can be
windowsystem used by the native code clause, Native Code Algorithm on page
65. If not set, the framework should provide a value that
depends on the current environment.

All properties in this map will be available through the getProperty(String)
method at BundleContext, unless they are overridden by the framework. See
Environment Properties on page 110.

OSGi Service Platform Release 4 91-332

Frameworks

Life Cycle Layer Version 1.5

4.2.3

Figure 4.27

update

Life Cycle of a Framework

Once the frameworks is created, it must be in the INSTALLED state. In this
state, the framework is not active and there is no valid Bundle Context. for
the framework object From this point on, the framework object can go
through its life cycle with the following methods.

init —If the framework object is not active, then this method moves the
framework object into the STARTING state.

start — Ensure that the framework is in the ACTIVE state. This method
can be called only on the framework because there are no bundles
running yet.

update — Stop the framework. This returns the Framework event
STOPPED_UPDATE or STOPPED_BOOTCLASSPATH_MODIFIED to the
waitForStop method and then restarts the framework to its previous
state. The launcher should then take the appropriate action and then call
the waitForStop method again or reboot the VM. The update method
can be called on the framework or on the system bundle. If the
framework is not active, this has no effect.

stop —Move the framework into the RESOLVED state via the STOPPING
state. This will return a Framework STOPPED event from the
waitForStop method. The Framework's Bundle Context is no longer
valid. The framework must be initialized again to get a new, valid Bundle
Context. The stop method can be called on the framework or on the
system bundle.

uninstall — Must not be called, will throw an Exception when called.

Figure 4.27 on page 92 shows how the previous methods traverse the state
diagram.

State diagram Framework

newFramework .

update
stop
INSTALLED ..
nit

STARTING

Init, start
RESOLVED start
init
stop start

update CACTIVE

stop
update

init

STOPPING

92-332

OSGi Service Platform Release 4

Life Cycle Layer Version 1.5 Frameworks

4.2.4

4.2.5

4.2.6

Initializing the Framework

Before the framework can be used, it must be initialized. Initialization is
caused by the init method or implicitly the start method. An initialized
framework is operational, but none of its bundles are active. This is reflected
in the STARTING state. Aslong as the framework is in this state, new bun-
dles can be installed without any installed code interfering. Existing bun-
dles must all be in the INSTALLED state. In this state, the framework will run
at start level 0.

A framework object can be initialized multiple times. After initialization:

. Event handling is enabled,

« The security manager is configured,

. Startlevelissetto0,

. The framework object has a valid Bundle Context,
- Anyinstalled bundle is in the INSTALLED state,

.« Framework services are available,

« The framework state is STARTING

Starting the Framework

After the framework has been initialized, it can be started with the start
method. This start method must be called on the framework object. The
start method moves the framework into the ACTIVE state. If the framework
was not initialized, it must be initialized first.

In the active state, all installed bundles previously recorded as being started
must be started as described in the Bundle.start method. Any exceptions
that occur during startup must be wrapped in a BundleException and then
published as a Framework ERROR event. Bundles, and their different states,
are discussed in The Bundle Object on page 96. If the Framework implements
the optional Start Level specification, this behavior can be different. See
Start Level Service Specification on page 235. Any bundles that specify an acti-
vation policy must be treated according to their activation policy, see Activa-
tion Policies on page 100.

After the system bundle enters the ACTIVE state, a Framework STARTED
event is broadcast.

Stopping a Framework

Shutdown can be initiated by stopping the system bundle, covered in The
System Bundle on page 113 or calling the stop method on the framework
object. When the framework is shut down, it first enters the STOPPING
state. AIl ACTIVE bundles are stopped as described in the Bundle.stop
method, except that their persistently recorded start state is kept
unchanged. Any exceptions that occur during shutdown must be wrapped
in aBundleException and then published as a Framework event of type
FrameworkEvent.ERROR. If the Framework implements the optional Start
Level specification, this behavior can be different. See Start Level Service Spec-
ification on page 235. During the shutdown, bundles with a lazy policy must
not be activated even when classes are loaded from them and they are not
yet activated.

OSGi Service Platform Release 4 93-332

Frameworks

Life Cycle Layer Version 1.5

4.2.7

The framework then moves to start level 0, stops event handling and
releases any resources (like threads, class loaders, etc.) it held. The frame-
work then enters the RESOLVED state and destroys the Bundle Context. The
last action is to notify any threads that are waiting in the waitForStop
method. The Framework must be re-initialized if it needs to be used again.

After a framework object is stopped and in the resolved state, it can be ini-
tialized and started again. Framework implementations must ensure that
holding on to a framework object does not consume significant resources.

Embedding a Framework

The launcheris not running as an OSGi bundle, it is a plain Java application.
However, often this launcher needs to communicate with the bundles
inside the framework. The launcher can use the Bundle Context of the
framework object to get and register services. However, it must ensure that
there is class compatibility between its objects and objects from the bundle.
A framework will not automatically share packages between the launcher
code and the bundles. Packages must be explicitly exported from the parent
class loader. The org.osgi.framework.system.packages.extra is specifically
designed to hold any application packages that needs to be shared between
the OSGi bundles and the application. Packages in that property are added
to the system packages of the framework, which are packages exported by
the system bundle from its parent loader. Care should be taken to ensure
that all these system packages are visible to the class loader that loaded the
framework.

The OSGi Framework is running in a multi-threaded environment. After the
framework is started, it will start bundles and these bundles will be acti-
vated. Activated bundles normally start background threads or react on
events from other bundles. That is, after the start method returns, the
framework has moved to the ACTIVE state and many bundles can be busy on
different threads. At this point, the framework object can be stopped by the
launcher through the framework object, or by a bundle through the System
Bundle’s stop method.

The waitForStop(long) method on the framework object is included to han-
dle any launcher cleanup that is required after the framework has com-
pletely stopped. It blocks until the framework has been completely
shutdown. It returns one of the following Framework events to indicate the
reason for stopping:

STOPPED — This framework object has been shutdown. It can be
restarted.

STOPPED_UPDATE —This Framework object has been updated. The
framework will begin to restart. The framework will return to its state
before it was updated, either ACTIVE or STARTING.
STOPPED_BOOTCLASSPATH_MODIFIED — This framework object has
been stopped because a boot class path extension bundle has been
installed or updated. The VM must be restarted in order for the changed
boot class path to take affect.

« ERROR —The Framework encountered an error while shutting down or
an error has occurred that forced the framework to shutdown.
WAIT_TIMEDOUT —This method has timed out and returned before this
Framework has stopped.

94-332

OSGi Service Platform Release 4

Life Cycle Layer Version 1.5 Bundles

4.2.8

4.2.9

Daemon Threads

ATJava VM will automatically exit when there are only daemon threads run-
ning. This can create the situation where the VM exits when the Framework
uses only daemon threads and all threads created by bundles are also dae-
mon threads. A Framework must therefore ensure that the VM does not exit
when there are still active bundles. One way to achieve this, is to keep at
least one non-daemon thread alive at all times.

Java Service Provider Configuration Support

The Java Service Provider Configuration model, as described in [52] Java Ser-
vice Provider Configuration, provides a way to obtain the name of the frame-
work factory by reading a resource in the JAR. In this specification, it is
assumed that the framework implementation is on the class path. The name
is obtained by reading the content of the configuration resource with the
path META-INF/services/org.osgi.framework.launch.FrameworkFactory.

For example, if the com.acme.osgi framework has a factory class
com.acme.osgi.Factory, then it should have the following resource:

META-INF/services/org.osgi. framework. launch.FrameworkFactory
And the contents should be:

ACME Impl. for 0SGi framework
com.acme.osgi.Factory

In contrast with the [52] Java Service Provider Configuration, there must only
be one class name listed in the resource. However, launchers should be
aware that the class path could contain multiple resources with the same
name.

Java 6 has introduced the java.util.ServiceLoader class that simplifies creat-
ing objects through these types of factories. The following code assumes
there is a framework implementation JAR on the class path:

ServicelLoader<FrameworkFactory> sl =
ServicelLoader.load(FrameworkFactory.class);

Iterator<FrameworkFactory> it = sl.iterator();
if (it.hasNext()) {
Framework fw = it.next().newFramework (null);

}

Bundles

A bundle represents a JAR file that is executed in an OSGi Framework. The
class loading aspects of this concept were specified in the Module Layer.
However, the Module Layer does not define how a bundle is installed,
updated, and uninstalled. These life cycle operations are defined here.

The installation of a bundle can only be performed by another bundle or
through implementation specific means (for example as a command line
parameter of the Framework implementation).

OSGi Service Platform Release 4 95-332

The Bundle Object Life Cycle Layer Version 1.5

4.4

4.4.1

4.4.2

A Bundle is started through its Bundle Activator. Its Bundle Activator is
identified by the Bundle-Activator manifest header. The given class must
implement the BundleActivator interface. This interface has a start and
stop method that is used by the bundle programmer to register itself as lis-
tener and start any necessary threads. The stop method must clean up and
stop any running threads.

Upon the activation of a bundle, it receives a Bundle Context. The Bundle
Context interface’s methods can roughly be divided in the following catego-
ries:

Information— Access to information about the rest of the Framework.
Life Cycle— The possibility to install other bundles.

Service Registry — The service registry is discussed in Service Layer on page
123.

The Bundle Object

For each bundle installed in the OSGi Service Platform, there is an associ-
ated Bundle object. The Bundle object for a bundle can be used to manage
the bundle’s life cycle. This is usually done with a Management Agent,
which is also a Bundle.

Bundle Identifiers

A bundle is identified by a number of names that vary in their scope:

Bundle identifier — A long that is a Framework assigned unique identifier
for the full lifetime of a bundle, even if it is updated or the Framework is
restarted. Its purpose is to distinguish bundles in a Framework. Bundle
identifiers are assigned in ascending order to bundles when they are
installed. The method getBundleld() returns a bundle’s identifier.
Bundle location— A name assigned by the management agent (Operator)
to a bundle during the installation. This string is normally interpreted as
a URL to the JAR file but this is not mandatory. Within a particular
Framework, a location must be unique. A location string uniquely iden-
tifies a bundle and must not change when a bundle is updated. The get-
Location() method retrieves the location of a bundle.

Bundle Symbolic Name and Bundle Version— A name and version assigned
by the developer. The combination of Bundle Version and Bundle Sym-
bolic Name is a globally unique identifier for a bundle. The getSymbol-
icName() method returns the assigned bundle name. The Bundle
getVersion() method returns the version.

Bundle State
A bundle can be in one of the following states:

« INSTALLED —The bundle has been successfully installed.

« RESOLVED — All Java classes that the bundle needs are available. This
state indicates that the bundle is either ready to be started or has stopped.
STARTING — The bundle is being started, the BundleActivator.start
method will be called, and this method has not yet returned. When the
bundle has a lazy activation policy, the bundle will remain in the

96-332

OSGi Service Platform Release 4

Life Cycle Layer Version 1.5 The Bundle Object

STARTING state until the bundle is activated. See Activation Policies on
page 100 for more information.

« ACTIVE — The bundle has been successfully activated and is running; its
Bundle Activator start method has been called and returned.

- STOPPING —The bundle is being stopped. The BundleActivator.stop
method has been called but the stop method has not yet returned.

« UNINSTALLED —The bundle has been uninstalled. It cannot move into
another state.

Figure 4.28 State diagram Bundle

update
refresh

INSTALLED

STARTING

“ policy

ACTIVE

stop

STOPPING

resolve

refresh
update

uninstall

RESOLVED

uninstall

L UNINSTALLED'

When a bundle is installed, it is stored in the persistent storage of the Frame-
work and remains there until it is explicitly uninstalled. Whether a bundle
has been started or stopped must be recorded in the persistent storage of the
Framework. A bundle that has been persistently recorded as started must be
started whenever the Framework starts until the bundle is explicitly
stopped. The Start Level service influences the actual starting and stopping
of bundles. See Start Level Service Specification on page 235.

The Bundle interface defines a getState() method for returning a bundle’s
state.

If this specification uses the term active to describe a state, then this includes
the STARTING and STOPPING states.

Bundle states are expressed as a bit-mask though a bundle can only be in one
state at any time. The following code sample can be used to determine if a
bundle is in the STARTING, ACTIVE, or STOPPING state:

if ((b.getState() & (STARTING | ACTIVE | STOPPING) != 0)
doActive()

4.4.3 Installing Bundles

The BundleContext interface, which is given to the Bundle Activator of a
bundle, defines the following methods for installing a bundle:

. installBundle(String) —Installs a bundle from the specified location
string (which should be a URL).

OSGi Service Platform Release 4 97-332

The Bundle Object Life Cycle Layer Version 1.5

4.4.4

4.4.5

installBundle(String,InputStream) —Installs a bundle from the specified
InputStream object.

A bundle must be valid before it is installed, otherwise the install must fail.
The validity of a bundle is discussed in Bundle Validity on page 70.

Every bundle is uniquely identified by its location string. If an installed bun-
dle is using the specified location, the installBundle methods must return
the Bundle object for that installed bundle and not install a new bundle.

The Framework must assign a unique bundle identifier that is higher than
any previous bundle identifier.

The installation of a bundle in the Framework must be:

. Persistent— The bundle must remain installed across Framework and Java
VM invocations until it is explicitly uninstalled.
Atomic—The install method must completely install the bundle or, if the
installation fails, the OSGi Service Platform must be left in the same state
as it was in before the method was called.

Once a bundle has been installed, a Bundle object is created and all remain-
ing life cycle operations must be performed upon this object. The returned
Bundle object can be used to start, stop, update, and uninstall the bundle.

Resolving Bundles

Abundle can enter the RESOLVED state when the Framework has success-
fully resolved the bundle's dependencies as described in the manifest. These
dependencies are described in Resolving Process on page 52.

Starting Bundles

Abundle can be started by calling one of the start methods on its Bundle
object or the Framework can automatically start the bundle if the bundle is
ready and the autostart setting of the bundle indicates that it must be started.

A bundle is ready if following conditions are all met:

« The bundle can be resolved
If the optional Start Level service is used, then the bundle’s start level is
met.

Once a bundle is started, a bundle must be activated, see Activation on page
99, to give control to the bundle so that it can initialize. This activation can
take place immediately (eager activation), or upon the first class load from
the bundle (lazy activation). A started bundle may need to be automatically
started again by the framework after a restart or changes in the start level.
The framework therefore maintains a persistent autostart setting for each
bundle. This autostart setting can have the following values:

. Stopped—The bundle should not be started.

« Started with eager activation— The bundle must be started once it is ready
and it must then be eagerly activated.
Started with declared activation— The bundle must be started once it is
ready and it must then be activated according to its declared activation
policy. See Activation Policies on page 100.

98-332

OSGi Service Platform Release 4

Life Cycle Layer Version 1.5 The Bundle Object

4.4.6

The Bundle interface defines the start(int) method for starting a bundle and
controlling the autostart setting. The start(int) method takes an integer
option, the following values have been defined for this option:

.« o —Start the bundle with eager activation and set the autostart setting to
Started with eager activation. If the bundle was already started with the
lazy activation policy and is awaiting activation, then it must be acti-
vated immediately.

. START_TRANSIENT —Identical to 0 in behavior, however, the autostart
setting must not be altered.

If the bundle can not be started, for example, the bundle is not ready,
then a Bundle Exception must be thrown.

« START_ACTIVATION_POLICY —Start the bundle using the activation
policy declared in the manifest’s Bundle-ActivationPolicy header and set
the autostart setting to Started with declared activation.

« START_ACTIVATION_POLICY | START_TRANSIENT — Start the bundle
with the bundle’s declared activation policy but do not alter the
autostart setting.

The Framework must attempt to resolve the bundle, if not already resolved,
when trying to start the bundle. If the bundle fails to resolve, the start
method must throw a BundleException. In this case, the bundle’s autostart
setting must still be set unless START_TRANSIENT is used.

When the start method returns without an exception, the state of the bun-
dle will either be ACTIVE or STARTING, depending on the declared activa-
tion policy and whether it was used. If the start method throws an
exception, then the bundle will not be in either of these states and the stop
method will not be called for this Bundle Activator instance.

The start()method calls start(o).

The optional Start Level service influences the actual order of starting and
stopping of bundles. See Start Level Service Specification on page 235. The Start
Level service can also be used to query the autostart setting:

. isBundlePersistentlyStarted(Bundle) —false if the bundle’s autostart
setting indicates Stopped, otherwise true.

. isBundleActivationPolicyUsed(Bundle) —true if the bundle’s autostart
setting indicates that the activation policy declared in the manifest must
be used. false if the bundle must be eagerly activated.

Fragment bundles can not be started and must cause a Bundle Exception
when there is an attempt to start them.

Activation

Abundle is activated by calling its Bundle Activator object, if one exists. The
BundleActivator interface defines methods that the Framework invokes
when it starts and stops the bundle.

To inform the OSGi environment of the fully qualified class name serving as
its Bundle Activator, a bundle developer must declare a Bundle-Activator
manifest header in the bundle’s manifest file. The Framework must instanti-
ate a new object of this class and cast it to a BundleActivator instance. It
must then call the BundleActivator.start method to start the bundle.

OSGi Service Platform Release 4 99-332

The Bundle Object Life Cycle Layer Version 1.5

4.4.6.1

The following is an example of a Bundle-Activator manifest header:
Bundle-Activator: com.acme.Activator

A class acting as a Bundle Activator must implement the BundleActivator
interface, be declared public, and have a public default constructor so an
instance of it may be created with Class.newlInstance.

Supplying a Bundle Activator is optional. For example, a library bundle that
only exports a number of packages does not need to define a Bundle Activa-
tor. In addition, other mechanism exists to obtain control and get a Bundle
Context, like for example the Service Component Runtime.

The BundleActivator interface defines these methods for starting and stop-
ping a bundle:

start(BundleContext) — This method can allocate resources that a
bundle needs, start threads, register services, and more. If this method
does not register any services, the bundle can register services it needs
later: for example, in a callback or an external event, as long as it is in the
ACTIVE state. If the start(BundleContext) method throws an exception,
the Framework must mark the bundle as stopped and send out
STOPPING and STOPPED events but it must not call the Bundle Activator
stop(BundleContext) method. The start method must therefore be
careful to clean up any resources it creates in the start method when it
throws an exception.

. stop(BundleContext) — This method must undo all the actions of the
BundleActivator.start(BundleContext) method. However, it is unnec-
essary to unregister services or Framework listeners, because they must
be cleaned up by the Framework anyway. This method is only called
when the bundle has reached the ACTIVE state. That is, when the start
method has thrown exception, the stop method is never called for the
same instance.

A Bundle Activator must be created when a Bundle is started, implying the
creation of a class loader. For larger systems, this greedy strategy can signifi-
cantly increase startup times and unnecessarily increase the memory foot-
print. Mechanisms such as the Service Component Runtime and activation
policies can mitigate these problems.

Fragment bundles must not have a Bundle Activator specified.
Activation Policies

The activation of a bundle can also be deferred to a later time from its start
using an activation policy. This policy is specified in the Bundle-
ActivationPolicy header with the following syntax:

Bundle-ActivationPolicy ::= policy (’;’ directive)x*
policy ::= "lazy’
The only policy defined is the lazy activation policy. If no Bundle-Activa-
tionPolicy header is specified, the bundle will use eager activation.

100-332

OSGi Service Platform Release 4

Life Cycle Layer Version 1.5 The Bundle Object

4.4.6.2 Lazy Activation Policy

Alazy activation policy indicates that the bundle, once started, must not be
activated until a class is loaded from it; either during normal class loading or
via the Bundle loadClass method. Resource loading does not trigger the acti-
vation. This change from the default eager activation policy is reflected in
the state of the bundle and its events. When a bundle is started using a lazy
activation policy, the following steps must be taken:

. A Bundle Context is created for the bundle.

. The bundle state is moved to the STARTING state.

. ThelLAZY_ACTIVATION event is fired.

- The system waits for a class load from the bundle to occur.
« Thenormal STARTING event is fired.

. The bundle is activated.

. The bundle state is moved to ACTIVE.

. The STARTED event is fired.

If the activation fails because the Bundle Activator start method has thrown
an exception, the bundle must be stopped without calling the Bundle Acti-
vator stop method. These steps are pictured in a flow chart in Figure 4.29.
This flow chart also shows the difference in activation policy of the normal
eager activation and the lazy activation.

OSGi Service Platform Release 4 101-332

The Bundle Object Life Cycle Layer Version 1.5

Figure 4.29 Starting with eager activation versus lazy activation

é
yes
‘no

state=STARTING

lazy activation?
no
|

event Wait for class
LAZY_ACTIVATION load trigger

event
STARTING
[
activate
the bundle
state=STOPPING state=ACTIVE
event event
STOPPING STARTED
state=RESOLVED
event
STOPPED
[

O

The lazy activation policy allows a Framework implementation to defer the
creation of the bundle class loader and activation of the bundle until the
bundle is first used; potentially saving resources and initialization time dur-
ing startup.

By default, any class load can trigger the lazy activation, however, resource
loads must not trigger the activation. The lazy activation policy can define
which classes cause the activation with the following directives:

- include — A list of package names that must trigger the activation when
aclass is loaded from any of these packages. The default is all package
names present in the bundle.

. exclude — A list of package names that must not trigger the activation of
the bundle when a class isloaded from any of these packages. The default
is no package names.

For example:

Bundle-ActivationPolicy: lazy;
include:="com. acme.service.base, com.acme. service.help"

102-332 OSGi Service Platform Release 4

Life Cycle Layer Version 1.5 The Bundle Object

4.4.6.3

4.4.7

4.4.8

When a class load triggers the lazy activation, the Framework must first
define the triggering class. This definition can trigger additional lazy activa-
tions. These activations must be deferred until all transitive class loads and
defines have finished. Thereafter, the activations must be executed in the
reverse order of detection. That is, the last detected activation must be exe-
cuted first. Only after all deferred activations are finished must the class
load that triggered the activation return with the loaded class. If an error
occurs during this process, it should be reported as a Framework ERROR
event. However, the classload must succeed normally. A bundle that fails its
lazy activation should not be activated again until the framework is
restarted or the bundle is explicitly started by calling the Bundle start
method.

Restoring State After Refresh or Update

The operations Package Admin refreshPackage and the update methods
can cause other bundles to be stopped. Started bundles can be in the ACTIVE
state or waiting to be activated, depending on their activation policy. The
following rules must be applied when restoring the state after an update or
refresh:

« AnACTIVE or STARTING bundle must be started transiently after an
update or refresh operation to not change its persistent autostart state.

. Ifthe bundle was in the STARTING state due to lazy activation, the
bundle's activation policy should be used when starting the bundle.

Stopping Bundles

The Bundle interface defines the stop(int) method for stopping a bundle.
This calls the stop method when the bundle is in the ACTIVE state and sets
the bundle’s state to RESOLVED. The stop(int) takes an integer option. The
following value has been defined for this option:

. o —Ifthe bundle was activated, then deactivate the bundle and sets the
autostart setting for this bundle to Stopped.

. STOP_TRANSIENT —If the bundle was activated, then deactivate the
bundle. Does not alter the autostart setting for this bundle.

The stop() method calls stop(o).

The optional Start Level service influences the actual order of starting and
stopping of bundles. See Start Level Service Specification on page 235.

Attempting to stop a Fragment bundle must result in a Bundle Exception.

Deactivation

The BundleActivator interface defines a stop(BundleContext) method,
which is invoked by the Framework to stop a bundle. This method must
release any resources allocated since activation. All threads associated with
the stopping bundle should be stopped immediately. The threaded code
may no longer use Framework-related objects (such as services and
BundleContext objects) once the stop method returns.

OSGi Service Platform Release 4 103-332

The Bundle Object Life Cycle Layer Version 1.5

4.4.9

4.4.10

If the stopping bundle had registered any services or Framework listeners
during its lifetime, then the Framework must automatically unregister all
registered services and Framework listeners when the bundle is stopped. It
is therefore unnecessary from the Framework’s point of view to unregister
any services or Framework listeners in the stop method.

The Framework must guarantee that if a BundleActivator.start method has
executed successfully, that same BundleActivator object must be called with
itsBundleActivator.stop method when the bundle is deactivated. After call-
ing the stop method, that particular BundleActivator object must never be
used again.

Packages exported by a stopped bundle continue to be available to other
bundles. This continued export implies that other bundles can execute code
from a stopped bundle, and the designer of a bundle should assure that this
is not harmful. Exporting interfaces only is one way to prevent such
unwanted execution when the bundle is not started. Generally, to ensure
they cannot be executed, interfaces should not contain executable code.

Updating Bundles
The Bundle interface defines two methods for updating a bundle:

update() — This method updates a bundle.
update(InputStream) — This method updates a bundle from the spec-
ified InputStream object.

The update process supports migration from one version of a bundle to a
newer version of the same bundle. The exports of an updated bundle must
be immediately available to the Framework. If none of the old exports are
used, then the old exports must be removed. Otherwise, all old exports must
remain available for existing bundles and future resolves until the
refreshPackages method is called or the Framework is restarted.

After the update operation is complete, the framework must attempt to
move the bundle to the same state as it was before the operation taking the
activation policy into account, without changing the autostart setting. This
is described in more detail in Restoring State After Refresh or Update on page
103.

An updater of a bundle must have AdminPermission[<bundle>,LIFECYCLE]
for both the installed bundle as well as the new bundle. The parameters of
AdminPermission are explained in Admin Permission on page 117.

Uninstalling Bundles

The Bundle interface defines the uninstall() method for uninstalling a bun-
dle from the Framework. This method causes the Framework to notify other
bundles that the bundle is being uninstalled, and sets the bundle’s state to
UNINSTALLED. To whatever extent possible, the Framework must remove
any resources related to the bundle. This method must always uninstall the
bundle from the persistent storage of the Framework.

Once this method returns, the state of the OSGi Service Platform must be
the same as if the bundle had never been installed, unless:

104-332

OSGi Service Platform Release 4

Life Cycle Layer Version 1.5 The Bundle Object

4.4.11

4.4.12

- The uninstalled bundle has exported any packages (via its Export-
Package manifest header)

. Theuninstalled bundle was selected by the Framework as the exporter of
these packages.

If none of the old exports are used, then the old exports must be removed.
Otherwise, all old exports must remain available for existing bundles and
future resolves until the refreshPackages method is called or the Frame-
work is restarted.

Detecting Bundle Changes

The Bundle object provides a convenient way to detect changes in a bundle.
The Framework must keep the time that a bundle is changed by any of the
life cycle operations. The getLastModified() method will return the last
time the bundle was installed, updated, or uninstalled. This last modified
time must be stored persistently.

The method must return the number of milliseconds since midnight Jan. 1,
1970 UTC with the condition that a change must always result in a higher
value than the previous last modified time of any bundle.

The getLastModified() is very useful when a bundle is caching resources
from another bundle and needs to refresh the cache when the bundle
changes. This life cycle change of the target bundle can happen while the
caching bundle is not active. The last modified time is therefore a conve-
nient way to track these target bundles.

Retrieving Manifest Headers

The Bundle interface defines two methods to return manifest header infor-
mation: getHeaders() and getHeaders(String).

. getHeaders() —Returns a Dictionary object that contains the bundle's
manifest headers and values as key/value pairs. The values returned are
localized according to the default locale returned by
java.util.Locale.getDefault.

. getHeaders(String) —Returns a Dictionary object that contains the
bundle's manifest headers and values as key/value pairs. The returned
values are localized using the specified locale. The locale may take the
following values:

« null — The default locale returned by java.util.Locale.getDefault is
used. This makes this method identical to the getHeaders() method.

« Empty string— The dictionary will contain the raw (unlocalized) man-
ifest headers including any leading '%".

A Specific Locale— The given locale is used to localize the manifest
headers.

Localization is performed according to the description in Localization on
page 68.If no translation is found for a specific key, the Dictionary returned
by Bundle.getHeaders will return the raw values as specified in the mani-
fest header values without the leading '%’ character.

OSGi Service Platform Release 4 105-332

The Bundle Object Life Cycle Layer Version 1.5

4.4.13

4.4.14

These methods require AdminPermission[<bundle>, METADATA] because
some of the manifest header information may be sensitive, such as the pack-
ages listed in the Export-Package header. Bundles always have permission to
read their own headers.

The getHeaders methods must continue to provide the manifest header
information after the bundle enters the UNINSTALLED state. After the bun-
dle has been uninstalled, this method will only return manifest headers that
are raw or localized for the default locale at the time the bundle was unin-
stalled.

A framework implementation must use only the raw (unlocalized) manifest
headers when processing manifest headers. Localizations must not influ-
ence the operations of the Framework.

Loading Classes

In certain cases, it is necessary to load classes as if they were loaded from
inside the bundle. The loadClass(String) method gives access to the bundle
class loader. This method can be used to:

+ Load plugins from another bundle
Start an application model activator
Interact with legacy code

For example, an application model could use this feature to load the initial
class from the bundle and start it according to the rules of the application
model.

void appStart() {
Class initializer = bundle.loadClass(activator);
if (initializer != null) {
App app = (App) initializer.newInstance();
app.activate();

}

Loading a class from a bundle can cause it to be activated if the bundle uses a
lazy activation policy.

Access to Resources

The resources from a bundle can come from different sources. They can
come from the raw JAR file, Fragment bundles, imported packages, or the
bundle class path. Different use cases require a different resource search
strategy. The Bundle interface provides a number of methods that access
resources but use different strategies. The following search strategies are
supported:

Class Space—The getResource(String) and getResources(String)
provide access to resources that is consistent with the class space as
described in Overall Search Order on page 58. Following the search order
can make certain parts of the JAR files inaccessible. These methods
require that the bundle is resolved. If the bundle is not resolved, the
Framework must attempt to resolve it.

The search order can hide certain directories of the JAR file. Split pack-
ages are taken into account; therefore, resources with the same package

106-332

OSGi Service Platform Release 4

Life Cycle Layer Version 1.5 The Bundle Object

Figure 4.30

Table 4.1

Resource

names can come from different JARs. If the bundle is unresolved (or can-
not be resolved), the getResource and getResources methods must only
load resources from the bundle class path. This search strategy should be
used by code that wants to access its own resources. Calling either
method can cause the creation of a class loader and force the bundle to
become resolved.

JAR File—The getEntry(String) and getEntryPaths(String) methods
provide access to the resources in the bundle’s JAR file. No searching is
involved, only the raw JAR file is taken into account. The purpose of
these methods is to provide low-level access without requiring that the
bundle is resolved.

Bundle Space—The findEntries(String,String,boolean) is an intermediate
form. Useful when configuration or setup information is needed from
another bundle. It considers Fragment bundles but it must never create a
class loader. The method provides access to all directories in the asso-
ciated JAR files.

For example, consider the following setup:

A: Require-Bundle: D
Import-Package: q,t
Export-Package: t

B: Export-Package: g,t

C: Fragment-Host: A

D: Export-Package: s

This setup is depicted in Figure 4.30.

Setup for showing the difference between getResource and getEntry

q E

t
t
—

}

The following table shows the effect of getting a resource from this setup
when bundle A is resolved.

Differences between getResource, getEntry, and findEntries for resolved

bundle A

getResource getEntry findEntries
B.q null null
A.p > Cp A.p A.p > Cp
C.r null C.r
D.s null null
B.t At At

OSGi Service Platform Release 4 107-332

The Bundle Context Life Cycle Layer Version 1.5

Table 4.2

Resource

q

p
r

s
t

4.4.15

4.4.16

4.5

Table 4.2 shows the same cases as the previous table but now for an unre-
solved bundle A.

Differences between getResource, getEntry, and findEntries for an unre-
solved bundle A

getResource getEntry findEntries
null null null
A.p A.p A.p
null null null
null null null
At At At

Permissions of a Bundle

The Bundle interface defines a method for returning information pertaining
to a bundle’s permissions: hasPermission(Object). This method returns
true if the bundle’s Protection Domain has the specified permission, and
false if it does not, or if the object specified by the argument is not an
instance of java.security.Permission.

The parameter type is Object so that the Framework can be implemented
on Java platforms that do not support Java 2 based security.

Access to a Bundle’s Bundle Context

Bundles that have been started have a Bundle Context. This object is a capa-
bility; it is intended to be used only by the bundle. However, there are a num-
ber of cases where bundles must act on behalf of other bundles. For
example, the Service Component Runtime registers services on behalf of
other bundles. The framework therefore provides access to another bundle’s
context via the getBundleContext() method. If there is no Bundle Context
for that Bundle because the bundle is a fragment bundle or the bundle state
isnotin{ STARTING, ACTIVE, STOPPING }, then null must be returned.

This method is potentially harmful because it allows any bundle to act as
any other bundle. In a secure system, the method is protected by requiring
AdminPermission[*,CONTEXT].

The Bundle Context

The relationship between the Framework and its installed bundles is real-
ized by the use of BundleContext objects. A BundleContext object repre-
sents the execution context of a single bundle within the OSGi Service
Platform, and acts as a proxy to the underlying Framework.

A BundleContext object is created by the Framework when a bundle is
started. The bundle can use this private BundleContext object for the fol-
lowing purposes:

Installing new bundles into the OSGi environment. See Installing Bundles
on page 97.
Interrogating other bundles installed in the OSGi environment. See
Getting Bundle Information on page 109.

- Obtaining a persistent storage area. See Persistent Storage on page 109.

108-332

OSGi Service Platform Release 4

Life Cycle Layer Version 1.5 The Bundle Context

4.5.1

4.5.2

. Retrieving service objects of registered services. See Service References on
page 125.

+ Registering services in the Framework service. See Registering Services on
page 126.

« Subscribing or unsubscribing to events broadcast by the Framework. See
Listeners on page 114.

When a bundle is started, the Framework creates a BundleContext object
and provides this object as an argument to the start(BundleContext)
method of the bundle’s Bundle Activator. Each bundle is provided with its
own BundleContext object; these objects should not be passed between bun-
dles, since the BundleContext object is related to the security and resource
allocation aspects of a bundle.

After the stop(BundleContext) method has returned, the BundleContext
object must no longer be used. Framework implementations must throw an
exception if the BundleContext object is used after a bundle is stopped.

Getting Bundle Information

The BundleContext interface defines methods to retrieve information about
bundles installed in the OSGi Service Platform:

. getBundle() —Returns the single Bundle object associated with the
BundleContext object.

. getBundles() —Returns an array of the bundles currently installed in the
Framework.

. getBundle(long) —Returns the Bundle object specified by the unique
identifier, or null if no matching bundle is found.

Bundle access is not restricted; any bundle can enumerate the set of installed
bundles. Information that can identify a bundle, however (such as its loca-
tion, or its header information), is only provided to callers that have
AdminPermission[<bundle>,METADATA].

Persistent Storage

The Framework should provide a private persistent storage area for each
installed bundle on platforms with some form of file system support.

The BundleContext interface defines access to this storage in terms of the
File class, which supports platform-independent definitions of file and
directory names.

The BundleContext interface defines a method to access the private persis-
tent storage area: getDataFile(String). This method takes a relative file
name as an argument. It translates this file name into an absolute file name
in the bundle’s persistent storage area. It then returns a File object. This
method returns null if there is no support for persistent storage.

The Framework must automatically provide the bundle with
FilePermission[<storage area>, READ | WRITE | DELETE] to allow the bun-
dle to read, write, and delete files in that storage area.

OSGi Service Platform Release 4 109-332

The Bundle Context Life Cycle Layer Version 1.5

4.5.3

Table 4.3
Property name

If EXECUTE permissions is required, then a relative path name can be used
in the File Permission definition. For example, FilePermission[bin/x,
EXECUTE] specifies that the sub-directory in the bundle’s private data area
may contain executables. This only provides execute permission within the
Java environment and does not handle the potential underlying operating
system issues related to executables.

This special treatment applies only to FilePermission objects assigned to a
bundle. Default permissions must not receive this special treatment. A
FilePermission for a relative path name assigned via the
setDefaultPermission method must be ignored.

Environment Properties

The BundleContext interface defines a method for returning information
pertaining to Framework properties: getProperty(String). This method can
be used to return the following Framework properties. The alias column
contains is names that have been reported to be returned by certain versions
of the related operating systems. Frameworks should try to convert these
aliases to the canonical OS or processor name. The bundle developer should
use the canonical name in the Bundle-NativeCode manifest header.:

Property Names
Description

org.osgi.framework.version The specification version of the Framework, must be Version

1.5.

org.osgi.framework.vendor The vendor of the Framework implementation.
org.osgi.framework.language The language being used. See ISO 639, International Standards

Organization See [45] Codes for the Representation of Names of Lan-

guages for valid values.
org.osgi.framework. « A comma-separated list of provided execution environments
executionenvironment (EE). All methods of each listed EE must be present on the Ser-

vice Platform. For example, this property could contain:

CDC-1.1/Foundation-1.1,0SGi/Minimum-1.2

A Service Platform implementation must provide all the signa-
tures that are defined in the mentioned EEs. Thus, the execu-
tion environment for a specific Service Platform Server must
be the combined set of all signatures of all EEs in the
org.osgi.framework.executionenvironment property.

org.osgi.framework.processor Processor name. The following table defines a list of processor

names. New processors are made available on the OSGi web
site, see [50] OSGi Reference Names. Names should be matched
case insensitive.

Name Aliases Description
68k Motorola 68000
ARM Intel Strong ARM. Deprecated

because it does not specify the
endianness. See the following
two rows.

110-332

OSGi Service Platform Release 4

Life Cycle Layer Version 1.5 The Bundle Context

Table 4.3 Property Names
Property name Description

arm_le Intel Strong ARM Little
Endian mode

arm_be Intel String ARM Big
Endian mode

Alpha Compaq (ex DEC)

ia64n Hewlett Packard 64 bit

iab4w Hewlett Packard 32 bit
mode

Ignite psczk PTSC

Mips Sal

PArisc Hewlett Packard

PowerPC power ppc Motorola/IBM Power PC

Shs Hitachi

Sparc SUN

S390 IBM Mainframe 31 bit

S390x IBM Mainframe 64-bit

V8s50E NEC V8s50E

x86 pentium i386 Intel& AMD 32 bit

1486 i586 1686
x86-64 amd64 em64t AMD/Intel 64 bit x86
x86_64 architecture

org.osgi.framework.os.version The version of the operating system. If the version does not fit
the standard x.y.z format (e.g. 2.4.32-kwt), then the Operator
should define a System property with this name.

org.osgi.framework.os.name The name of the operating system (OS) of the host computer.
The following table defines a list of OS names. New OS names
are made available on the OSGi web site, see [50] OSGi Reference
Names. Names should be matched case insensitive.

Name Aliases Description

AlX IBM

DigitalUnix Compaq

Embos Segger Embedded Soft-
ware Solutions

Epoc32 SymbianOS Symbian OS

FreeBSD Free BSD

HPUX hp-ux Hewlett Packard

IRIX Silicon Graphics

Linux Open source

MacOS "Mac OS" Apple

MacOSX "Mac OS X" Apple

NetBSD Open source

Netware Novell

OpenBSD Open source

0S2 0S/2 IBM

OSGi Service Platform Release 4 111-332

The Bundle Context

Life Cycle Layer Version 1.5

Table 4.3
Property name

org.osgi.supports.«

framework.extension
org.osgi.supports.«

bootclasspath.extension
org.osgi.supports.«

framework.fragment
org.osgi.supports.«

framework.requirebundle

org.osgi.framework.«

bootdelegation
org.osgi.framework.«

system.packages

Property Names

Description
QNX
Solaris

SunOS
VxWorks
Windowsgs

Windowsg$8

WindowsNT

WindowsCE

Windows2000

Windows2003

WindowsXP

WindowsVista

procnto

Wingsg
"Windows 95"
Win32

Wing8
"Windows 98"
Win32

WinNT
"Windows NT"
Winz2

WinCE
"Windows CE"
Win2000

"Windows 2000"

Win32

Win2003
"Windows 2003"
Win32

"Windows Server

2003"

WinXP
"Windows XP"
Win32

WinVista
"Windows Vista"
Winz2

QNX
Sun (almost an alias of
SunOS)

Sun Microsystems
WindRiver Systems
Microsoft Windows 95

Microsoft Windows 98

Microsoft Windows NT

Microsoft Windows CE

Microsoft Windows 2000

Microsoft Windows 2003

Microsoft Windows XP

Microsoft Windows Vista

Support for framework extensions is mandatory, must there-
fore be set to true, see Extension Bundles on page 77.

See Requiring Bundles on page 70.

Support for fragment bundles is mandatory, must therefore be
set to true, see Fragment Bundles on page 74.

Support for Require Bundle is mandatory, must therefore be set
to true, see Requiring Bundles on page 70.

See Parent Delegation on page 57

See Parent Class Loader on page 60

112-332

OSGi Service Platform Release 4

Life Cycle Layer Version 1.5 The System Bundle

4.6.1

All Framework properties may be defined by the Operator as System proper-
ties, or given as properties in the framework launching, see Launching Prop-
erties on page 89. If these properties are not defined as System properties or
launching properties, then the Framework must construct required proper-
ties from relevant standard Java System properties.

Therefore, the search order for a property is:

. Framework constants (vendor, implementation, options, etc.).
- Launching properties

+ System properties

. Framework default

The System Bundle

In addition to normal bundles, the Framework itself is represented as a bun-
dle. The bundle representing the Framework is referred to as the system bun-
dle. Through the system bundle, the Framework may register services that
can be used by other bundles. Examples of such services are the Package
Admin and Permission Admin services.

The system bundle resembles the framework object when a framework is
launched, but implementations are not required to use the same object for
the framework object and the system bundle. However, both objects must
have bundle id 0, same location, and bundle symbolic name.

The system bundle is listed in the set of installed bundles returned by
BundleContext.getBundles(), although it differs from other bundles in the
following ways:

« The system bundle is always assigned a bundle identifier of zero (0).

« The system bundle getLocation method returns the string: "System
Bundle", as defined in the Constants interface.

. The system bundle has a bundle symbolic name that is unique for a spe-
cific version. However, the name system.bundle must be recognized as
an alias to this implementation-defined name.

« The system bundle’s life cycle cannot be managed like normal bundles.
Its life cycle methods must behave as follows:

. start—Does nothing because the system bundle is already started.

. stop—Returns immediately and shuts down the Framework on
another thread.

. update— Returns immediately, then stops and restarts the Framework
on another thread.

- uninstall- The Framework must throw a BundleException indicating
that the system bundle cannot be uninstalled.

- See Frameworks on page 86 for more information about the starting
and stopping of the Framework.

System Bundle Headers

The system bundle’s Bundle.getHeaders method returns a Dictionary
object with implementation-specific manifest headers. The following head-
ers of this OSGi specification can be returned in this dictionary. Headers not
mentioned in this table should not be used.

OSGi Service Platform Release 4 113-332

Events Life Cycle Layer Version 1.5

Table 5 Supported headers in the system bundle getHeaders method

Header Type Description

Bundle-ContactAddress optional Recommended to provide the framework vendor’s
contact address.

Bundle-Copyright optional Recommended to provide the framework’s copyright
information.

Bundle-Description optional Recommended description of the framework.

Bundle-DocURL optional Recommended documentation URL pointing to fur-
ther information about the framework.

Bundle-Icon optional Recommended pointer to a preferably PNG icon repre-
senting this framework.

Bundle-Localization optional Recommended localization information.

Bundle-License optional License information about this framework implemen-
tation.

Bundle-ManifestVersion mandatory The maximum version of the manifest version under-
stood by this framework.

Bundle-Name optional Recommended human readable name of this frame-
work.

Bundle-Required« mandatory Mandatory: the list of execution environments sup-
ExecutionEnvironment ported by this framework

Bundle-SymbolicName mandatory The implementation name for this framework.

Bundle-Vendor optional Recommended vendor information

Bundle-Version mandatory The version of this framework implementation.

Export-Package mandatory Contains packages that are exported by the Frame-

work like org.osgi.framework but also the packages
listed in the framework property
org.osgi.framework.system.packages or
org.osgi.framework.system.packages.extra

4.7 Events

The OSGi Framework Life Cycle layer supports the following types of
events:

BundleEvent —Reports changes in the life cycle of bundles.
FrameworkEvent — Reports that the Framework is started, start level has
changed, packages have been refreshed, or that an error has been
encountered.

The actual event that is reported is available with the getType method. The
integer that is returned from this method can be one of the constant names
that are described in the class. However, events can, and will be, extended in
the future. Unrecognized event types should be ignored.

4.7.1 Listeners

A listener interface is associated with each type of event. The following list
describes these listeners.

114-332 OSGi Service Platform Release 4

Life Cycle Layer Version 1.5 Events

. BundleListener and SynchronousBundleListener — Called with an event
of type BundleEvent when a bundle’s life cycle information has been
changed.

SynchronousBundleListener objects are called synchronously during the
processing of the event and must be called before any BundleListener
object is called. The following events are sent by the Framework after it
has moved to a different state:

INSTALLED — Sent after a bundle is installed. The state is now Bundle
INSTALLED state.

RESOLVED- Sent when the Framework has resolved a bundle. The
state is now the Bundle RESOLVED state.

LAZY_ACTIVATION — The bundle has specified an activation policy;
its activation is deferred to a later point in time. The state is set to the
Bundle STARTING state. This is only sent to
SynchronousBundleListener objects.

STARTING — Sent when the Framework is about to activate a bundle.
This is only sent to SynchronousBundleListener objects. The state is
now the Bundle STARTING state.

STARTED - Sent when the Framework has started a bundle. The state
is now the Bundle ACTIVE state.

STOPPING —Sent when the Framework is about to stop a bundle or
the start method of the Bundle Activator has thrown an exception
and the bundle is stopped. This event indicates that the Bundle Con-
text will be destroyed. This event is only sent to
SynchronousBundleListener objects.

STOPPED- Sent when the Framework has stopped a bundle.
UNINSTALLED — Sent when the Framework has uninstalled a bundle
UNRESOLVED — Sent when the Framework detects that a bundle
becomes unresolved; this could happen when the bundle is refreshed
or updated. When a set of bundles are refreshed using the Package
Admin API then each bundle in the set must have an UNRESOLVED
BundleEvent published. The UNRESOLVED BundleEvent must be
published after all the bundles in the set have been stopped and, in
the case of a synchronous bundle listener, before any of the bundles in
the set are re-started. RESOLVED and UNRESOLVED do not have to
paired.

UPDATED - Sent after a bundle is updated.

- FrameworkListener — Called with an event of type FrameworkEvent.
Framework events are of type:

ERROR —Important error that requires the immediate attention of an
operator.

INFO — General information that is of interest in special situations.
PACKAGES_REFRESHED — The Framework has refreshed the pack-
ages.

STARTED —The Framework has performed all initialization and is
running in normal mode.

STARTLEVEL_CHANGED —Is sent by the Framework after a new start
level has been set and processed.

STOPPED —Sent by the Framework because of a stop operation on the
system bundle.

OSGi Service Platform Release 4 115-332

Events

Life Cycle Layer Version 1.5

4.7.2

STOPPED_BOOTCLASSPATH_MODIFIED —Sent by the Framework
because of a stop operation on the system bundle and a boot class
path extension bundle has been installed or updated.

. STOPPED_UPDATE — Sent by the Framework because of an update
operation on the system bundle. The Framework will be restarted
after this event is fired.

WARNING — A warning to the operator that is not crucial but may
indicate a potential error situation.

« WAIT_TIMEDOUT —Returned from the waitForStop method when
the Framework did not stop before the given wait time-out expired.

BundleContext interface methods are defined which can be used to add and
remove each type of listener.

Events can be asynchronously delivered, unless otherwise stated, meaning
that they are not necessarily delivered by the same thread that generated the
event. The thread used to call an event listener is not defined.

The Framework must publish a FrameworkEvent.ERROR if a callback to an

event listener generates an unchecked exception - except when the callback
happens while delivering a FrameworkEvent.ERROR (to prevent an infinite
loop).

Synchronous events have the unfortunate effect that, in rare cases, events
can be delivered out of order to a listener. For example, a Service Event
UNREGISTERING can be delivered before its corresponding Service Event
REGISTERED. One pathological case is when a service listener (for example a
Service Tracker) unregisters a service that it receives in the REGISTERED
event for. If there are listeners queued behind the pathological listener then
they see the unregistering before they see the registration.

Delivering Events
If the Framework delivers an event asynchronously, it must:

Collect a snapshot of the listener list at the time the event is published
(rather than doing so in the future just prior to event delivery), but
before the event is delivered, so that listeners do not enter the list after
the event happened.

. Ensure, at the time the snapshot is taken, that listeners on the list still
belong to active bundles at the time the event is delivered.
It is possible to use more than one thread to deliver events. If this is the
case then each handler must receive the events in the same order as the
events were posted. This ensures that handlers see eventsin the expected
order.

If the Framework did not capture the current listener list when the event
was published, but instead waited until just prior to event delivery, then the
following error could occur: a bundle could have started and registered a
listener, and then the bundle could see its own BundleEvent.INSTALLED
event.

The following three scenarios illustrate this concept.

1. Scenario one event sequence:
Event A is published.
Listener 1 is registered.

116-332

OSGi Service Platform Release 4

Life Cycle Layer Version 1.5 Security

4.7.3

4.8

4.8.1

- Asynchronous delivery of Event A is attempted.
Expected Behavior: Listener 1 must not receive Event A, because it was
not registered at the time the event was published.

2. Scenario two event sequence:
. Listener 2 is registered.
. Event Bis published.
. Listener 2 is unregistered.
. Asynchronous delivery of Event B is attempted.
Expected Behavior: Listener 2 receives Event B, because Listener 2 was
registered at the time Event B was published.

3. Scenario three event sequence:
. Listener 3 is registered.
. Event Cis published.
« The bundle that registered Listener 3 is stopped.
« Asynchronous delivery of Event C is attempted.
Expected Behavior: Listener 3 must not receive Event C, because its Bun-
dle Context object is invalid.

Synchronization Pitfalls

Generally, a bundle that calls a listener should not hold any Java monitors.
This means that neither the Framework nor the originator of a synchronous
event should be in a monitor when a callback is initiated.

The purpose of a Java monitor is to protect the update of data structures.
This should be a small region of code that does not call any code the effect of
which cannot be overseen. Calling the OSGi Framework from synchronized
code can cause unexpected side effects. One of these side effects might be
deadlock. A deadlock is the situation where two threads are blocked because
they are waiting for each other.

Time-outs can be used to break deadlocks, but Java monitors do not have
time-outs. Therefore, the code will hang forever until the system is reset
(Java has deprecated all methods that can stop a thread). This type of dead-
lock is prevented by not calling the Framework (or other code that might
cause callbacks) in a synchronized block.

If locks are necessary when calling other code, use the Java monitor to create
semaphores that can time-out and thus provide an opportunity to escape a
deadlocked situation.

Security

Admin Permission

The Admin Permission is a permission used to grant the right to manage the
Framework with the option to restrict this right to a subset of bundles,
called targets. For example, an Operator can give a bundle the right to only
manage bundles of a signer that has a subject name of ACME:

org.osgi. framework.AdminPermission(
"(signer=\x%, 0=ACME, c=us)", ...)

OSGi Service Platform Release 4 117-332

Security

Life Cycle Layer Version 1.5

4.8.1.1

Table 4.1
Action
METADATA

RESOURCE

CLASS
LIFECYCLE

EXECUTE

The actions of the Admin Permission are fine-grained. They allow the
deployer to assign only the permissions that are necessary for a bundle. For
example, an HTTP implementation could be granted access to all resources
of all bundles.

org.osgi. framework.AdminPermission("x",
"resource”)

Code that needs to check Admin Permission must always use the construc-
tor that takes a bundle as parameter: AdminPermission(Bundle,String) with
a single action.

For example, the implementation of the loadClass method must check that
the caller has access to the class space:

public class BundleImpl implements Bundle {

Class loadClass(String name) {
securityManager. checkPermission(
new AdminPermission(this, "class"));

}
}

The Admin Permission takes a filter as its name. Filter based permissions are
described in Filter Based Permissions on page 23.

Actions

The action parameter of Admin Permission will specify the subset of privi-
leged administrative operations that are allowed by the Framework. The
actions that are architected are listed in table Table 4.1. Future versions of
the specification, as well as additional system services, can add additional
actions. The given set should therefore not be assumed to be a closed set.

Admin Permission actions
Used in

Bundle. getHeaders
Bundle.getlLocation
Bundle. getResource
Bundle. getResources
Bundle.getEntry
Bundle.getEntryPaths
Bundle. findEntries
Bundle resource/entry URL creation
Bundle. loadClass
BundleContext.installBundle
Bundle.update
Bundle.uninstall
Bundle.start
Bundle. stop
StartLevel.setBundleStartLevel

118-332

OSGi Service Platform Release 4

Life Cycle Layer Version 1.5 Security

Table 4.1 Admin Permission actions
Action Used in
LISTENER BundleContext.addBundleListener for
SynchronousBundlelListener
BundleContext. removeBundlelistener for
SynchronousBundlelListener
EXTENSIONLIFECYLE BundleContext.installBundle for extension bundles
Bundle.update for extension bundles
Bundle.uninstall for extension bundles
RESOLVE PackageAdmin. refreshPackages
PackageAdmin. resolveBundles
STARTLEVEL StartlLevel.setStartlLevel
StartLevel.setInitialBundleStartLevel
CONTEXT Bundle. getBundleContext
The special action "x" will represent all actions.
Each bundle must be given AdminPermission(<bundle identifier>,
“resource,metadata,class,context") so that it can access its own resources
and context. This is an implicit permission that must be automatically
given to all bundles by the Framework.
4.8.2 Privileged Callbacks

The following interfaces define bundle callbacks that are invoked by the
Framework:

. BundleActivator
. ServiceFactory
. Bundle-, Service-, and FrameworkListener.

When any of these callbacks are invoked by the Framework, the bundle that
caused the callback may still be on the stack. For example, when one bundle
installs and then starts another bundle, the installer bundle may be on the
stack when the BundleActivator.start method of the installed bundle is
called. Likewise, when a bundle registers a service object, it may be on the
stack when the Framework calls back the serviceChanged method of all
qualifying Servicelistener objects.

Whenever any of these bundle callbacks try to access a protected resource or
operation, the access control mechanism should consider not only the per-
missions of the bundle receiving the callback, but also those of the Frame-
work and any other bundles on the stack. This means that in these callbacks,
bundle programmers normally would use doPrivileged calls around any
methods protected by a permission check (such as getting or registering ser-
vice objects).

In order to reduce the number of doPrivileged calls by bundle programmers,
the Framework must perform a doPrivileged call around any bundle call-
backs. The Framework should have java.security.AllPermission. Therefore,
a bundle programmer can assume that the bundle is not further restricted
except for its own permissions.

Bundle programmers do not need to use doPrivileged calls in their imple-
mentations of any callbacks registered with and invoked by the Framework.

OSGi Service Platform Release 4 119-332

Changes

Life Cycle Layer Version 1.5

4.8.3

4.9

4.10

(38]

(39]

For any other callbacks that are registered with a service object and there-
fore get invoked by the service-providing bundle directly, doPrivileged calls
must be used in the callback implementation if the bundle’s own privileges
are to be exercised. Otherwise, the callback must fail if the bundle that initi-
ated the callback lacks the required permissions.

A framework must never load classes in a doPrivileged region, but must
instead use the current stack. This means that static initializers and con-
structors must not assume that they are privileged. Any privileged code in a
static initializer must be guarded with a doPrivileged region in the static ini-
tializer. Likewise, a framework must not instantiate a BundleActivator
objectin a doPrivileged region, but must instead use the current stack. This
means that the BundleActivator constructor must not assume that it is priv-
ileged.

Lazy Activation

The activation policy, see Activation Policies on page 100, can indirectly cause
the activation of a bundle. AdminPermission[*,CLASS] therefore implies
the EXECUTE action during a loadClass method call.

Normal class loading caused by executing Java class code must not require
AdminPermission[*,EXECUTE].

Changes

- Added demon thread section, see Daemon Threads on page 95.
Made it more clear that when the BundleActivator.start() method
throws an exception, the BundleActivator.stop() method is never called
for that instance.
Highlighted that an update operation must restore the same state based
on the same option. See Updating Bundles on page 104.

- Bundle Exception has now an integer error type.
Made the Export-Package header mandatory for the System Bundle.
Added additional environment properties, see 4.5.3 Environment Prop-
erties
Clarified what the system bundle should return for the getHeaders
method, see 4.6.1 System Bundle Headers.

- Introduced framework launchers.
Moved description of Admin Permission filter name to Filter Based Per-
missions on page 23.
Removed advice to re-implement some of the OSGi classes and the sug-
gested extension mechanism.

References

The Standard for the Format of ARPA Internet Text Messages
STD 11, RFC 822, UDEL, August 1982
http://www.ietf.org/rfc/rfc822.txt

The Hypertext Transfer Protocol - HTTP/1.1
RFC 2068 DEC, MIT/LCS, UC Irvine, January 1997
http://www.ietf.org/rfc/rfc2068.txt

120-332

OSGi Service Platform Release 4

Life Cycle Layer Version 1.5 References

40]

(41]

The Java 2 Platform API Specification

Standard Edition, Sun Microsystems

http://java.sun.com/j2se

The Java Language Specification

Second Edition, Sun Microsystems, 2000
http://java.sun.com/docs/books/jls/index.html

A String Representation of LDAP Search Filters

RFC 1960, UMich, 1996

http://www.ietf.org/rfc/rfc1960.txt

The Java Security Architecture for JDK 1.2

Version 1.0, Sun Microsystems, October 1998

The Java 2 Package Versioning Specification
http://java.sun.com/j2se/1.4/docs/guide/versioning/index.html
Codes for the Representation of Names of Languages

ISO 639, International Standards Organization
http://lcweb.loc.gov/standards/iso639-2/langhome.html
Manifest Format
http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html#]AR%20Manifest
W3C EBNF

http://www.w3c.org/TR/REC-xml#sec-notation

Lexical Structure Java Language
http://java.sun.com/docs/books/jls/second _edition/html/lexical.doc.html
Interval Notation
http://www.math.ohio-state.edu/courses/math104/interval. pdf
OSGi Reference Names
http://www.osgi.org/Specifications/Reference

JKS Keystore Format (reverse engineered)
http://metastatic.org/source/JKS.html

Java Service Provider Configuration
http://java.sun.com/javase/6/docs/technotes/guides/jar/
jar.html#Service®%20Provider

OSGi Service Platform Release 4 121-332

References Life Cycle Layer Version 1.5

122-332 OSGi Service Platform Release 4

Service Layer Version 1.5 Introduction

5

5.1.1

5.1.2

Service Layer

Version 1.5

Introduction

The OSGi Service Layer defines a dynamic collaborative model that is
highly integrated with the Life Cycle Layer. The service model is a publish,
find and bind model. A service is a normal Java object that is registered
under one or more Java interfaces with the service registry. Bundles can reg-
ister services, search for them, or receive notifications when their registra-
tion state changes.

Essentials

« Collaborative— The service layer must provide a mechanism for bundles
to publish, find, and bind to each other’s services without having a priori
knowledge of those bundles.

« Dynamic—The service mechanism must be able to handle changes in the
outside world and underlying structures directly.

« Secure— It must be possible to restrict access to services.

+ Reflective— Provide full access to the Service Layer’s internal state.

- Versioning— Provide mechanisms that make it possible to handle the fact
that bundles and their services evolve over time.

- Persistent Identifier — Provide a means for bundles to track services across
Framework restarts.

Entities

« Service— An object registered with the service registry under one or more
interfaces together with properties. This object can be discovered and
used by bundles.

- Service Registry — Holds the service registrations.

. Service Reference— A reference to a service. Provides access to the service’s
properties but not the actual service object. The service object must be
acquired through a bundle’s Bundle Context.

. Service Registration — The receipt provided when a service is registered.
The service registration allows the update of the service properties and
the unregistration of the service.

- Service Permission— The permission to use an interface name when regis-
tering or using a service.

« Service Factory — A facility to let the registering bundle customize the
service object for each using bundle.

. Service Listener — A listener to Service Events.

. Service Event— An event holding information about the registration,
modification, or unregistration of a service object.

. Filter— An object that implements a simple but powerful filter language.
It can select on properties.

OSGi Service Platform Release 4 123-332

Services Service Layer Version 1.5

« Invalid Syntax Exception— The exception thrown when a filter expression
contains an error.

Figure 5.31 Class Diagram org.osgi.framework Service Layer
Service Factory Bundle Impl Service Impl
Impl

registers
service
«interface>> «interface>> Object
Service BundleContext
Factory
o1 1 0,1
1]o.n| 1
«interface>> Service Registry
Service 0-N___ O imp]
Listener
| T
|
|
| 1
«interface>> «interface>> . «interface>>
All Service | Service Service
Listener | Registration Reference
|
|
«class>> | «interface>> «class>>
Service Event § — Filter Invalid Syntax
Exception
L
5.2 Services

In the OSGi Service Platform, bundles are built around a set of cooperating
services available from a shared service registry. Such an OSGi service is
defined semantically by its service interface and implemented as a service
object.

The service interface should be specified with as few implementation
details as possible. OSGi has specified many service interfaces for common
needs and will specify more in the future.

The service object is owned by, and runs within, a bundle. This bundle must
register the service object with the Framework service registry so that the
service’s functionality is available to other bundles under control of the
Framework.

124-332 OSGi Service Platform Release 4

Service Layer Version 1.5 Services

5.2.1

5.2.2

Dependencies between the bundle owning the service and the bundles
using it are managed by the Framework. For example, when a bundle is
stopped, all the services registered with the Framework by that bundle must
be automatically unregistered.

The Framework maps services to their underlying service objects, and pro-
vides a simple but powerful query mechanism that enables a bundle to
request the services it needs. The Framework also provides an event mecha-
nism so that bundles can receive events of services that are registered, modi-
fied, or unregistered.

Service References

In general, registered services are referenced through ServiceReference
objects. This avoids creating unnecessary dynamic service dependencies
between bundles when a bundle needs to know about a service but does not
require the service object itself.

A ServiceReference object can be stored and passed on to other bundles
without the implications of dependencies. When a bundle wishes to use the
service, it can be obtained by passing the ServiceReference object to
BundleContext.getService(ServiceReference). See Locating Services on
page 129.

A ServiceReference object encapsulates the properties and other meta-
information about the service object it represents. This meta-information
can be queried by a bundle to assist in the selection of a service that best
suits its needs.

When a bundle queries the Framework service registry for services, the
Framework must provide the requesting bundle with the ServiceReference
objects of the requested services, rather than with the services themselves.

AServiceReference object may also be obtained from a ServiceRegistration
object.

A ServiceReference object is valid only as long as the service object is regis-
tered. However, its properties must remain available as long as the
ServiceReference object exists.

Service Interfaces
A service interface is the specification of the service’s public methods.

In practice, a bundle developer creates a service object by implementing its
service interface and registers the service with the Framework service regis-
try. Once a bundle has registered a service object under an interface name,
the associated service can be acquired by bundles under that interface name,
and its methods can be accessed by way of its service interface. The Frame-
work also supports registering service objects under a class name, so refer-
ences to service interface in this specification can be interpreted to be an
interface or class.

When requesting a service object from the Framework, a bundle can specify
the name of the service interface that the requested service object must
implement. In the request, the bundle may also specify a filter string to nar-
row the search.

OSGi Service Platform Release 4 125-332

Services

Service Layer Version 1.5

5.2.3

Many service interfaces are defined and specified by organizations such as
the OSGi Alliance. A service interface that has been accepted as a standard
can be implemented and used by any number of bundle developers.

Registering Services

A bundle publishes a service by registering a service object with the Frame-
work service registry. A service object registered with the Framework is
exposed to other bundles installed in the OSGi environment.

Every registered service object has a unique ServiceRegistration object, and
has one or more ServiceReference objects that refer to it. These
ServiceReference objects expose the registration properties of the service
object, including the set of service interfaces they implement. The
ServiceReference object can then be used to acquire a service object that
implements the desired service interface.

The Framework permits bundles to register and unregister service objects
dynamically. Therefore, a bundle is permitted to register service objects at
any time during the STARTING, ACTIVE or STOPPING states.

A bundle registers a service object with the Framework by calling one of the
BundleContext.registerService methods on its BundleContext object:

registerService(String,Object,Dictionary) — For a service object regis-
tered under a single service interface.
registerService(String[],0Object,Dictionary) — For a service object regis-
tered under multiple service interfaces.

The names of the service interfaces under which a bundle wants to register
its service are provided as arguments to the registerService methods. The
Framework must ensure that the service object actually is an instance of
each specified service interfaces, unless the object is a Service Factory. See
Service Factory on page 134.

To perform this check, the Framework must load the Class object for each
specified service interface from either the bundle or a shared package. For
each Class object, Class.isInstance must be called and return true on the
Class object with the service object as the argument.

The service object being registered may be further described by a Dictionary
object, which contains the properties of the service as a collection of key/
value pairs.

The service interface names under which a service object has been success-
fully registered are automatically added to the service object’s properties
under the key objectClass. This value must be set automatically by the
Framework and any value provided by the bundle must be overridden.

If the service object is successfully registered, the Framework must return a
ServiceRegistration object to the caller. A service object can be unregistered
only by the holder of its ServiceRegistration object (see the unregister()
method). Every successful service object registration must yield a unique
ServiceRegistration object even if the same service object is registered mul-
tiple times.

126-332

OSGi Service Platform Release 4

Service Layer Version 1.5 Services

5.2.4

Figure 5.32

5.2.5

Using the ServiceRegistration object is the only way to reliably change the
service object’s properties after it has been registered (see setProper-
ties(Dictionary)). Modifying a service object’s Dictionary object after the
service object is registered may not have any effect on the service’s proper-
ties.

The process of registering a service object is subject to a permission check.
The registering bundle must have ServicePermission[<name>,REGISTER] to
register the service object under all the service interfaces specified. Other-
wise, the service object must not be registered, and a SecurityException
must be thrown.

Early Need for ServiceRegistration Object

The registration of a service object will cause all registered ServiceListener
objects to be notified. This is a synchronous notification. This means that
such a listener can get access to the service and call its methods before the
registerService method has returned the ServiceRegistration object. In cer-
tain cases, access to the ServiceRegistration object is necessary in such a
callback. However, the registering bundle has not yet received the
ServiceRegistration object. Figure 5.32 on page 127 shows such a sequence.

Service Registration and registration

T1 Framework (not a thread) T2
I In method

registerService

deliver event

The registerService
method has not get service
returned yet, so there

is no ServiceRegistration

object “etum

callback

—

—
—_— -
return

In a case as described previously, access to the registration object can be
obtained via a ServiceFactory object. If a ServiceFactory object is registered,
the Framework must call-back the registering bundle with the
ServiceFactory method getService(Bundle,ServiceRegistration). The
required ServiceRegistration object is passed as a parameter to this method.

Service Properties

Properties hold information as key/value pairs. The key must be a String
object and the value should be a type recognized by Filter objects (see Filters
on page 133 for a list). Multiple values for the same key are supported with
arrays ([]) and Collection objects.

The values of properties should be limited to primitive or standard Java
types to prevent unwanted inter bundle dependencies. The Framework can-
not detect dependencies that are created by the exchange of objects between
bundles via the service properties.

OSGi Service Platform Release 4 127-332

Services

Service Layer Version 1.5

Table 5.2
Property Key
objectClass

The key of a property is not case sensitive. ObjectClass, OBJECTCLASS and
objectclass all are the same property key. A Framework must return the key
in ServiceReference.getPropertyKeys in exactly the same case as it was last
set. When a Dictionary object that contains keys that only differ in case is
passed, the Framework must raise an exception.

The service properties are intended to provide information about the service
object. The properties should not be used to participate in the actual func-
tion of the service. Modifying the properties for the service registration is a
potentially expensive operation. For example, a Framework may pre-pro-
cess the properties into an index during registration to speed up later look-
ups.

The Filter interface supports complex filtering; it can be used to find match-
ing service objects. Therefore, all properties share a single name space in the
Framework service registry. As a result, it is important to use descriptive
names or formal definitions of shorter names to prevent conflicts. Several
OSGi specifications reserve parts of this name space. All properties starting
with the prefix service. and the property objectClass are reserved for use by
OSGi specifications.

Table 5.2 Standard Service Properties (+ indicates scalar, array of, or collection of)
contains a list of pre-defined properties.

Standard Service Properties (+ indicates scalar, array of, or collection of)

Type Constants Property Description

String[] OBJECTCLASS The objectClass property contains
the set of interface names under
which a service object is registered
with the Framework. The Frame-
work must set this property auto-
matically. The Framework must
guarantee that when a service
object is retrieved with
BundleContext.getService(Service
Reference), it can be cast to any of
the interface names.

service.description String SERVICE_DESCRIPTION Theservice.description property is

service.id

intended to be used as documenta-
tion and is optional. Frameworks
and bundles can use this property to
provide a short description of a reg-
istered service object. The purpose
is mainly for debugging because
there is no support for localization.

Long SERVICE_ID Every registered service object is
assigned a unique service.id by the
Framework. This number is added
to the service object’s properties.
The Framework assigns a unique
value to every registered service
object that is larger than values pro-
vided to all previously registered
service objects.

128-332

OSGi Service Platform Release 4

Service Layer Version 1.5

Services

Table 5.2
Property Key
service.pid

service.ranking

service.vendor

5.2.6

5.2.7

Standard Service Properties (+ indicates scalar, array of, or collection of)

Type Constants

String+ SERVICE_PID
Integer SERVICE_RANKING
String SERVICE_VENDOR

Persistent Identifier (PID)

Property Description

The service.pid property option-
ally identifies a persistent, unique
identifier for the service object. See
Persistent Identifier (PID) on page
129.

When registering a service object, a
bundle may optionally specify a
service.ranking number as one of
the service object’s properties. If
multiple qualifying service inter-
faces exist, a service with the high-
est SERVICE_RANKING number, or
when equal to the lowest
SERVICE_ID, determines which ser-
vice object is returned by the Frame-
work.

This optional property can be used
by the bundle registering the ser-
vice object to indicate the vendor.

The purpose of a Persistent Identifier (PID) is to identify a service across
Framework restarts. Services that can reference the same underlying entity
every time they are registered should therefore use a service property that
contains a PID. The name of the service property for PID is defined as
service.pid. The PID is a unique identifier for a service that persists over
multiple invocations of the Framework. For a given service, the same PID
should always be used. If the bundle is stopped and later started, the same

PID must always be used.
The format of the PID should be:

pid ::= symbolic-name

Locating Services

/] See 1.3.2

In order to use a service object and call its methods, a bundle must first
obtain a ServiceReference object. The BundleContext interface defines two
methods a bundle can call to obtain ServiceReference objects from the

Framework:

. getServiceReference(String) — This method returns a ServiceReference
object to a service object that implements, and was registered under, the
name of the service interface specified as String. If multiple such service
objects exist, the service object with the highest SERVICE_RANKING is
returned. If there is a tie in ranking, the service object with the lowest
SERVICE_ID (the service object that was registered first) is returned.

. getServiceReferences(String,String) — This method returns an array of

ServiceReference objects that:

- Implement and were registered under the given service interface.

OSGi Service Platform Release 4

129-332

Services

Service Layer Version 1.5

5.2.8

5.2.9

Satisfy the search filter specified. The filter syntax is further
explained in Filters on page 133.

Both methods must return null if no matching service objects are returned.
Otherwise, the caller receives one or more ServiceReference objects. These
objects can be used to retrieve properties of the underlying service object, or
they can be used to obtain the actual service object via the BundleContext
object.

Both methods require that the caller has the required
ServicePermission[ServiceReference, GET] to get the service object for the
returned Service Reference. If the caller lacks the required permission, these
methods must not include that Service Reference in the return.

Getting Service Properties

To allow for interrogation of service objects, the ServiceReference interface
defines these two methods:

getPropertyKeys() — Returns an array of the property keys that are
available.
. getProperty(String) —Returns the value of a property.

Both of these methods must continue to provide information about the ref-
erenced service object, even after it has been unregistered from the Frame-
work. This requirement can be useful when a ServiceReference object is
stored with the Log Service.

Getting Service Objects

The BundleContext object is used to obtain the actual service object so that
the Framework can manage dependencies. If a bundle retrieves a service
object, that bundle becomes dependent upon the life cycle of that registered
service object. This dependency is tracked by the BundleContext object used
to obtain the service object, and is one reason that it is important to be care-
ful when sharing BundleContext objects with other bundles.

The method BundleContext.getService(ServiceReference) returns an
object that implements the interfaces as defined by the objectClass prop-
erty.

This method has the following characteristics:

Returns null if the underlying service object has been unregistered.
Determines if the caller has ServicePermission[ServiceReference,GET],
to get the service object associated with the Service Reference. This per-
mission check is necessary so that ServiceReference objects can be
passed around freely without compromising security.

Increments the usage count of the service object by one for this
BundleContext object.

If the service object does not implement the ServiceFactory interface, it
is returned. Otherwise, if the bundle context’s usage count of the service
object is one, the object is cast to a ServiceFactory object and the
getService method is called to create a customized service object for the
calling bundle which is then returned. Otherwise, a cached copy of this
customized object is returned. See Service Factory on page 134 for more
information about ServiceFactory objects.

130-332

OSGi Service Platform Release 4

Service Layer Version 1.5 Service Events

5.2.10

5.2.11

5.2.12

53

5.3.1

Information About Services

The Bundle interface defines these two methods for returning information
pertaining to service usage of the bundles:

. getRegisteredServices() —Returns the ServiceReference objects that the
bundle has registered with the Framework.

. getServicesInUse() — Returns the ServiceReference objects that the
bundle is currently using.

Service Exceptions

The Service Exception is a Run Time exception that can be used by the
Framework to report errors or user code that needs to signal a problem with
a service. An exception type available from this exception provides the
detailed information about the problem that caused the exception to be
thrown.

Implementations of the framework or user code are allowed to throw sub
classes of the ServiceException class. If a sub class is thrown for another rea-
son than specified by one of the types, then the type should be set to
SUBCLASS. Sub classes that provide additional information on existing
types should keep the original type code.

Services and Concurrency

Services published on one thread and gotten on another thread must be safe
to use. That is, the Framework must guarantee that there is a happens-before
relationship between the time a service is registered and the time a service
or Service Reference is gotten. That is both the registering and getting
threads must be properly synchronized with each other.

Service Events

. ServiceEvent —Reports registration, unregistration, and property
changes for service objects. All events of this kind must be delivered syn-
chronously. The type of the event is given by the getType() method,
which returns an int. Event types can be extended in the future;
unknown event types should be ignored.

. Servicelistener — Called with a ServiceEvent when a service object has
been registered or modified, or is in the process of unregistering. A
security check must be performed for each registered listener when a
ServiceEvent occurs. The listener must not be called unless the bundle
which registered the listener has the required
ServicePermission[ServiceReference,GET] for the corresponding
Service Reference.

A bundle that uses a service object should register a Servicelistener object
to track the availability of the service object, and take appropriate action
when the service object is unregistering.

Service Event Types

The following service events are defined:

OSGi Service Platform Release 4 131-332

Stale References

Service Layer Version 1.5

5.4

REGISTERED — A service has been registered. This event is synchronously
delivered after the service has been registered with the Framework.

- MODIFIED—- The properties of a service have been modified. This event is
synchronously delivered after the service properties have been modified.

MODIFIED_ENDMATCH — Listeners registered with a filter can not see
the MODIFIED event when a modification makes this filter no longer
match. The lack of this notification complicates tracking a service with a
filter. The MODIFIED_ENDMATCH event is therefore delivered if the old
service properties matched the given filter but the modified properties
do not. This event is synchronously delivered after the service properties
have been modified.

UNREGISTERING — A service is in the process of being unregistered. This
event is synchronously delivered before the service has completed
unregistering. That is, the service object is still valid. The bundle
receiving this event must release all references to this service before this
method returns.

New service event types can be added in future specifications

Stale References

The Framework must manage the dependencies between bundles. This
management is, however, restricted to Framework structures. Bundles must
listen to events generated by the Framework to clean up and remove stale
references.

A stale reference is a reference to a Java object that belongs to the class
loader of a bundle that is stopped or is associated with a service object that is
unregistered. Standard Java does not provide any generic means to clean up
stale references, and bundle developers must analyze their code carefully to
ensure that stale references are deleted.

Stale references are potentially harmful because they hinder the Java gar-
bage collector from harvesting the classes, and possibly the instances, of
stopped bundles. This may result in significantly increased memory usage
and can cause updating native code libraries to fail. Bundles using services
are strongly recommended to use either the Service Tracker or Declarative
Services.

Service developers can minimize the consequences of (but not completely
prevent) stale references by using the following mechanisms:

Implement service objects using the ServiceFactory interface. The
methods in the ServiceFactory interface simplify tracking bundles that
use their service objects. See Service Factory on page 134.

Use indirection in the service object implementations. Service objects
handed out to other bundles should use a pointer to the actual service
object implementation. When the service object becomes invalid, the
pointer is set to null, effectively removing the reference to the actual
service object.

The behavior of a service that becomes unregistered is undefined. Such ser-
vices may continue to work properly or throw an exception at their discre-
tion. This type of error should be logged.

132-332

OSGi Service Platform Release 4

Service Layer Version 1.5 Filters

55

Filters

The Framework provides a Filter interface, and uses a filter syntax in the
getServiceReferences method that is defined in Filter Syntax on page 33. Fil-
ter objects can be created by calling BundleContext.createFilter(String) or
FrameworkUtil.createFilter(String) with the chosen filter string. The filter
supports the following match methods:

. match(ServiceReference) — Match the properties of the Service Ref-
erence performing key lookup in a case insensitive way.

- match(Dictionary) — Match the entries in the given Dictionary object
performing key lookup in a case insensitive way.

. matchCase(Dictionary) — Match the entries in the given Dictionary
object performing key lookup in a case sensitive way.

A Filter object can be used numerous times to determine if the match argu-
ment, a ServiceReference object or a Dictionary object, matches the filter
string that was used to create the Filter object.

This matching requires comparing the value string in the filter to a target
object from the service properties or dictionary. This comparison can be exe-
cuted with the Comparable interface if the target object’s class implements
a constructor taking a single String object and the class implements the
Comparable interface. That is, if the target object is of class Target, the class
Target must implement:

. A constructor Target(String)
. Implement the java.lang.Comparable interface

If the target object does not implement java.lang.Comparable, the =, ~=, <=
»>= operators must return only true when the objects are equal (using the
equals(Object) method). The Target class does not need to be a public class.

The following example shows how a class can verify the ordering of an enu-
meration with a filter.

public class B implements Comparable {
String keys[] = {"bugs", "daffy", "elmer", "pepe"};
int index;

public B(String s) {
for (index=0; index<keys.length; index++)
if (keys[index].equals(s))
return;

}

public int compareTo(Object other) {
B vother = (B) other;
return index - vother.index;

}
}

The class could be used with the following filter:

(! (enum>=elmer)) -> matches bugs and daffy

OSGi Service Platform Release 4 133-332

Service Factory

Service Layer Version 1.5

5.6

The Filter.toString method must always return the filter string with unnec-
essary white space removed.

Service Factory

A Service Factory allows customization of the service object that is returned
when a bundle calls BundleContext.getService(ServiceReference).

Often, the service object that is registered by a bundle is returned directly. If,
however, the service object that is registered implements the ServiceFac-
tory interface, the Framework must call methods on this object to create a
unique service object for each distinct bundle that gets the service.

When the service object is no longer used by a bundle — for example, when
that bundle is stopped — then the Framework must notify the
ServiceFactory object.

ServiceFactory objects help manage bundle dependencies that are not
explicitly managed by the Framework. By binding a returned service object
to the requesting bundle, the service can be notified when that bundle
ceases to use the service, such as when it is stopped, and release resources
associated with providing the service to that bundle.

The ServiceFactory interface defines the following methods:

getService(Bundle,ServiceRegistration) — This method is called by the

Framework if a call is made to BundleContext.getService and the fol-

lowing are true:

The ServiceReference argument to BundleContext.getService refers
to a service object that implements the ServiceFactory interface.

- The bundle’s usage count of that service object is zero; that is, the
bundle currently does not have any dependencies on the service
object.

The call to BundleContext.getService must be routed by the Framework

to this method, passing to it the Bundle object of the caller. The Frame-

work must cache the mapping of the requesting bundle-to-service, and
return the cached service object to the bundle on future calls to

BundleContext.getService, as long as the requesting bundle's usage

count of the service object is greater than zero.

The Framework must check the service object returned by this method.

If itis not an instance of all the classes named when the service factory

was registered, null is returned to the caller that called getService. This

check must be done as specified in Registering Services on page 126.

ungetService(Bundle,ServiceRegistration,Object) — This method is

called by the Framework if a call is made to

BundleContext.ungetService and the following are true:

The ServiceReference argument to BundleContext.ungetService
refers to a service object that implements the ServiceFactory inter-
face.

- The bundle’s usage count for that service object must drop to zero
after this call returns; that is, the bundle is about to release its last
dependency on the service object.

134-332

OSGi Service Platform Release 4

Service Layer Version 1.5 Releasing Services

5.7

The call to BundleContext.ungetService must be routed by the Frame-
work to this method so the ServiceFactory object can release the service
object previously created.

Additionally, the cached copy of the previously created service object
must be unreferenced by the Framework so it may be garbage collected.

Releasing Services

In order for a bundle to release a service object, it must remove the dynamic
dependency on the bundle that registered the service object. The Bundle
Context interface defines a method to release service objects: ungetSer-
vice(ServiceReference). A ServiceReference object is passed as the argu-
ment of this method.

This method returns a boolean value:

. false if the bundle’s usage count of the service object is already zero
when the method was called, or the service object has already been
unregistered.

« true if the bundle’s usage count of the service object was more than zero
before this method was called.

Unregistering Services

The ServiceRegistration interface defines the unregister() method to
unregister the service object. This must remove the service object from the
Framework service registry. The ServiceReference object for this
ServiceRegistration object can no longer be used to access the service
object.

The fact that this method is on the ServiceRegistration object ensures that
only the bundle holding this object can unregister the associated service
object. The bundle that unregisters a service object, however, might not be
the same bundle that registered it. As an example, the registering bundle
could have passed the ServiceRegistration object to another bundle, endow-
ing that bundle with the responsibility of unregistering the service object.
Passing ServiceRegistration objects should be done with caution.

After ServiceRegistration.unregister successfully completes, the service
object must be:

.« Completely removed from the Framework service registry. Therefore,
ServiceReference objects obtained for that service object can no longer
be used to access the service object. Calling BundleContext.getService
method with the ServiceReference object must return null.

. Unregistered, even if other bundles had dependencies upon it. Bundles
must be notified of the unregistration through the publishing of a
ServiceEvent object of type ServiceEvent.UNREGISTERING. This event is
sent synchronously in order to give bundles the opportunity to release
the service object.

After receiving an event of type ServiceEvent.UNREGISTERING, a bundle
should release the service object and release any references it has to this
object, so that the service object can be garbage collected by the Java VM.

OSGi Service Platform Release 4 135-332

Multiple Version Export Considerations Service Layer Version 1.5

5.9.1

5.9.2

Released by all using bundles. For each bundle whose usage count for the
service object remains greater than zero after all invoked ServiceListener
objects have returned, the Framework must set the usage count to zero
and release the service object.

Multiple Version Export
Considerations

Allowing multiple bundles to export a package with a given name causes
some complications for Framework implementers and bundle program-
mers: The class name no longer uniquely identifies the exported class. This
affects the service registry and permission checking.

Service Registry

Bundles must not be exposed to services for which there are conflicting class
loaders. A bundle that gets a service should be able to expect that it can
safely cast the service object to any of the associated interfaces or classes
under which the service was registered and that it can access. No
ClassCastExceptions should occur because those interfaces do not come
from the same class loader. The service registry must therefore ensure that
bundles can only see services that are not incompatible with them. A service is
not incompatible with the bundle getting the service when that bundle is
not wired to another source class loader for this interface package than the
bundle registering the service. That is, it is either wired to the same source
class loader or it has no wire for that package at all.

It is paramount that bundles are not accidentally confronted with incom-
patible services. Therefore, the following methods need to filter
ServiceReference objects depending on the incompatibility of the inter-
faces with the calling bundle. The bundle is identified by the used Bundle
Context:

. getServiceReference(String) — Only return a Service Reference that is
not incompatible with the calling bundle for the specified interface.
getServiceReferences(String,String) — Only return Service References
that are not incompatible with the calling bundle for the specified
interface.

The getAllServiceReferences(String,String) provides access to the service
registry without any compatibility restrictions. Services acquired through
this method can cause Class Cast Exceptions for the correct class names.

The ServiceReference isAssignableTo(Bundle,String) method is also avail-
able to test if the bundle that registered the service referenced by this Ser-
viceReference and the specified bundle are both wired to same source for
the specified interface.

Service Events

Service events must only be delivered to event listeners that are not incom-
patible with the Service Reference.

136-332

OSGi Service Platform Release 4

Service Layer Version 1.5 Security

5.10

5.10.1

5.11

Some bundles need to listen to all service events regardless the compatibil-
ity issues. A new type of ServiceListener is therefore added: AllServicelLis-
tener. This is a marker interface; it extends Servicelistener. Listeners that
use this marker interface indicate to the Framework that they want to see all
services, including services that are incompatible with them.

Security

Service Permission
A ServicePermission has the following parameters.

« Target—Either the interface name or a filter expression for the GET
action. The interface name may end with a wildcard to match multiple
interface names. See java.security.BasicPermission for a discussion of
wildcards. Filters are explained in Filter Based Permissions on page 23. The
filter expression can additionally test for the service interface name with
the objectClass key. Additionally, a service permission can also test for
service properties that are part of the service registration. In general, all
the service properties are usable in the filter expression. However, when
there is a name conflict with the bundle identification properties, then
the key can be prefixed with the commercial at sign ('@’ 0u0040). For
example, @id will refer to a service property with the name id.

« Action—Supported actions are:

« REGISTER —Indicates that the permission holder may register the ser-
vice object
+ GET —Indicates that the holder may get the service.

When an object is being registered as a service object using Bundle
Context.registerService, the registering bundle must have the
ServicePermission to register all the named classes. See Registering Services
on page 126.

When a ServiceReference object is obtained from the service registry using
BundleContext.getServiceReference or
BundleContext.getServiceReferences, the calling bundle must have the
required ServicePermission[ServiceReference, GET] to get the service
object for each returned Service Reference. See Service References on page 125.

When a service object is obtained from a ServiceReference object using
BundleContext.getService(ServiceReference), the calling code must have
the required ServicePermission[ServiceReference, GET] to get the service
object associated with the Service Reference.

ServicePermission must be used as a filter for the service events received by
the Service Listener, as well as for the methods to enumerate services,
including Bundle.getRegisteredServices and Bundle.getServicesinUse.
The Framework must assure that a bundle must not be able to detect the
presence of a service that it does not have permission to access.

Changes

- Added a section for concurrency and services.

OSGi Service Platform Release 4 137-332

Changes Service Layer Version 1.5

Added service event description, see Service Event Types on page 131.
Introduced Service Exceptions, see Service Exceptions on page 131.

« Introduced new service properties and made SERVICE_PID potentially
multi value. See Service Properties on page 127.
Added filters to the Service Permission

138-332 OSGi Service Platform Release 4

Framework API Version 1.5 org.osgi.framework

6 Framework API

Version 1.5

6.1 org.osgi.framework

Framework Package Version 1.5.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.framework;version="[1.5,2.0)

”

6.1.1 Summary

.

AdminPermission - A bundle’s authority to perform specific privileged
administrative operations on or to get sensitive information about a
bundle.

AllServiceListener - A ServiceEvent listener that does not filter based
upon package wiring.

Bundle - Aninstalled bundle in the Framework.

BundleActivator - Customizes the starting and stopping of a bundle.
BundleContext - A bundle’s execution context within the Framework.
BundleEvent - An event from the Framework describing a bundle life-
cycle change.

BundleException - A Framework exception used to indicate that a
bundle lifecycle problem occurred.

BundleListener - A BundleEvent listener.

BundlePermission - A bundle’s authority to require or provide a bundle
or to receive or attach fragments.

BundleReference - A reference to a Bundle.

Configurable - Supports a configuration object.

Constants - Defines standard names for the OSGi environment system
properties, service properties, and Manifest header attribute keys.
Filter - An RFC 1960-based Filter.

FrameworkEvent - A general event from the Framework.
FrameworkListener - A FrameworkEvent listener.

FrameworkUtil - Framework Utility class.

InvalidSyntaxException - A Framework exception used to indicate thata
filter string has an invalid syntax.

PackagePermission - A bundle’s authority to import or export a package.
ServiceEvent - An event from the Framework describing a service life-
cycle change.

ServiceException - A service exception used to indicate that a service
problem occurred.

ServiceFactory - Allows services to provide customized service objects in
the OSGi environment.

ServiceListener - A ServiceEvent listener.

ServicePermission - A bundle’s authority to register or get a service.

OSGi Service Platform Release 4 139-332

org.osgi.framework Framework API Version 1.5

ServiceReference - A reference to a service.

ServiceRegistration - A registered service.
- SynchronousBundleListener - A synchronous BundleEvent listener.
- Version - Version identifier for bundles and packages.

6.1.2 public final class AdminPermission

extends BasicPermission

A bundle’s authority to perform specific privileged administrative opera-

tions on or to get sensitive information about a bundle. The actions for this

permission are:
Action Methods
class Bundle.loadClass
execute Bundle.start
Bundle. stop
StartlLevel. setBundleStartLevel
extensionLifecycle BundleContext.installBundle for
extension bundles
Bundle.update for extension bundles
Bundle.uninstall for extension bundles
lifecycle BundleContext.installBundle
Bundle. update
Bundle.uninstall
listener BundleContext.addBundleListener for
SynchronousBundleListener
BundleContext. removeBundleListener for
SynchronousBundleListener
metadata Bundle. getHeaders
Bundle. getlocation
resolve PackageAdmin. refreshPackages
PackageAdmin. resolveBundles
resource Bundle. getResource
Bundle. getResources
Bundle. getEntry
Bundle. getEntryPaths
Bundle. findEntries
Bundle resource/entry URL creation
startlevel StartlLevel.setStartlLevel
StartlLevel.setInitialBundleStartLevel
context Bundle. getBundleContext

The special action “«” will represent all actions. The resolve action is

implied by the class, execute and resource actions.

The name of this permission is a filter expression. The filter gives access to

the following attributes:

. signer- A Distinguished Name chain used to sign a bundle. Wildcards in
a DN are not matched according to the filter string rules, but according to
the rules defined for a DN chain.
location - The location of a bundle.

id - The bundle ID of the designated bundle.
name - The symbolic name of a bundle.
140-332 OSGi Service Platform Release 4

Framework API Version 1.5 org.osgi.framework

Filter attribute names are processed in a case sensitive manner.
Concurrency Thread-safe
6.1.2.1 public static final String CLASS = “class”
The action string class. The class action implies the resolve action.
Since 1.3
6.1.2.2 public static final String CONTEXT = “context”
The action string context.
Since 1.4
6.1.2.3 public static final String EXECUTE = “execute”
The action string execute. The execute action implies the resolve action.
Since 1.3
6.1.2.4 public static final String EXTENSIONLIFECYCLE = “extensionLifecycle”
The action string extensionLifecycle.
Since 1.3
6.1.2.5 public static final String LIFECYCLE = “lifecycle”
The action string lifecycle.
Since 1.3
6.1.2.6 public static final String LISTENER = “listener”
The action string listener.
Since 1.3
6.1.2.7 public static final String METADATA = “metadata”
The action string metadata.
Since 1.3
6.1.2.8 public static final String RESOLVE = “resolve”

The action string resolve. The resolve action is implied by the class, execute
and resource actions.

Since 1.3
6.1.2.9 public static final String RESOURCE = “resource”
The action string resource. The resource action implies the resolve action.
Since 1.3
6.1.2.10 public static final String STARTLEVEL = “startlevel”
The action string startlevel.
Since 1.3
6.1.2.11 public AdminPermission()

O Creates a new AdminPermission object that matches all bundles and has all
actions. Equivalent to AdminPermission("”,”*”);

OSGi Service Platform Release 4 141-332

org.osgi.framework

Framework APl Version 1.5

6.1.2.12

filter

actions

Throws
6.1.2.13
bundle

actions

Since
6.1.2.14
obj
m}
Returns

6.1.2.15

Returns
6.1.2.16
m]

Returns

public AdminPermission(String filter, String actions)

A filter expression that can use signer, location, id, and name keys. A value of
“x” or null matches all bundle. Filter attribute names are processed in a case
sensitive manner.

class, execute, extensionLifecycle, lifecycle, listener, metadata, resolve , re-
source, startlevel or context. A value of “«” or null indicates all actions.

Create a new AdminPermission. This constructor must only be used to cre-
ate a permission that is going to be checked.

Examples:

(signer=\x*, 0=ACME, c=US)

(&(signer=*, 0=ACME, c=US) (name=com. acme.) (location=http://
www. acme. com/bundles/x*))

(id>=1)

When a signer key is used within the filter expression the signer value must
escape the special filter chars (', ‘(, ©)).

Null arguments are equivalent to “x”.

I1legalArgumentException— If the filter has an invalid syntax.

public AdminPermission(Bundle bundle, String actions)

Abundle.

class, execute, extensionLifecycle, lifecycle, listener, metadata, resolve , re-
source, startlevel, context. A value of “x” or null indicates all actions.

Creates anew requested AdminPermission object to be used by the code that
must perform checkPermission. AdminPermission objects created with this
constructor cannot be added to an AdminPermission permission collection.

1.3

public boolean equals(Object obj)

The object being compared for equality with this object.
Determines the equality of two AdminPermission objects.

true if obj is equivalent to this AdminPermission; false otherwise.
public String getActions()

Returns the canonical string representation of the AdminPermission
actions.

Always returns present AdminPermission actions in the following order:
class, execute, extensionLifecycle, lifecycle, listener, metadata, resolve,
resource, startlevel, context.

Canonical string representation of the AdminPermission actions.
public int hashCode()
Returns the hash code value for this object.

Hash code value for this object.

142-332

OSGi Service Platform Release 4

Framework API Version 1.5 org.osgi.framework

6.1.2.17

6.1.2.18

6.1.3

Returns

Returns

public boolean implies(Permission p)
The requested permission.

Determines if the specified permission is implied by this object. This
method throws an exception if the specified permission was not con-
structed with a bundle.

This method returns true if the specified permission is an AdminPermission
AND

. this object’s filter matches the specified permission’s bundle ID, bundle
symbolic name, bundle location and bundle signer distinguished name
chain OR

- this object’s filter is “x”

AND this object’s actions include all of the specified permission’s actions.

Special case: if the specified permission was constructed with “x” filter, then
this method returns true if this object’s filter is “+” and this object’s actions
include all of the specified permission’s actions

true if the specified permission is implied by this object; false otherwise.
public PermissionCollection newPermissionCollection()

Returns a new PermissionCollection object suitable for storing AdminPer-
missions.

A new PermissionCollection object.

public interface AllServiceListener
extends Servicelistener

A ServiceEvent listener that does not filter based upon package wiring.
AllServiceListener is a listener interface that may be implemented by a bun-
dle developer. When a ServiceEvent is fired, it is synchronously delivered to
an AllServiceListener. The Framework may deliver ServiceEvent objects to
an AllServiceListener out of order and may concurrently call and/or reenter
an AllServiceListener.

An AllServiceListener object is registered with the Framework using the
BundleContext.addServiceListener method. AllServiceListener objects are
called with a ServiceEvent object when a service is registered, modified, or is
in the process of unregistering.

ServiceEvent object delivery to AllServiceListener objects is filtered by the
filter specified when the listener was registered. If the Java Runtime Envi-
ronment supports permissions, then additional filtering is done. Service-
Event objects are only delivered to the listener if the bundle which defines
the listener object’s class has the appropriate ServicePermission to get the
service using at least one of the named classes under which the service was
registered.

OSGi Service Platform Release 4 143-332

org.osgi.framework Framework API Version 1.5

See Also
Since

Concurrency

6.1.4

Concurrency

6.1.4.1

6.1.4.2

Unlike normal ServiceListener objects, AllServiceListener objects receive all
ServiceEvent objects regardless of whether the package source of the listen-
ing bundle is equal to the package source of the bundle that registered the
service. This means that the listener may not be able to cast the service
object to any of its corresponding service interfaces if the service object is
retrieved.

ServiceEvent, ServicePermission
1.3
Thread-safe

public interface Bundle
An installed bundle in the Framework.

A Bundle object is the access point to define the lifecycle of an installed bun-
dle. Each bundle installed in the OSGi environment must have an associated
Bundle object.

A bundle must have a unique identity, a long, chosen by the Framework.
This identity must not change during the lifecycle of a bundle, even when
the bundle is updated. Uninstalling and then reinstalling the bundle must
create a new unique identity.

A bundle can be in one of six states:

UNINSTALLED
INSTALLED
RESOLVED
STARTING

. STOPPING

. ACTIVE

Values assigned to these states have no specified ordering; they represent bit
values that may be ORed together to determine if a bundle is in one of the
valid states.

A bundle should only execute code when its state is one of STARTING,
ACTIVE, or STOPPING. An UNINSTALLED bundle can not be set to another
state; it is a zombie and can only be reached because references are kept
somewhere.

The Framework is the only entity that is allowed to create Bundle objects,
and these objects are only valid within the Framework that created them.

Thread-safe
public static final int ACTIVE = 32
The bundle is now running.

A bundle is in the ACTIVE state when it has been successfully started and
activated.

The value of ACTIVE is 0x00000020.

public static final int INSTALLED = 2
The bundle is installed but not yet resolved.

144-332

OSGi Service Platform Release 4

Framework API Version 1.5 org.osgi.framework

6.1.4.3

6.1.4.4

6.1.4.5

6.1.4.6

See Also

Since

See Also

Since

See Also

Since

A bundle is in the INSTALLED state when it has been installed in the Frame-
work but is not or cannot be resolved.

This state is visible if the bundle’s code dependencies are not resolved. The
Framework may attempt to resolve an INSTALLED bundle’s code dependen-
cies and move the bundle to the RESOLVED state.

The value of INSTALLED is 0x00000002.

public static final int RESOLVED = 4
The bundle is resolved and is able to be started.

A bundle is in the RESOLVED state when the Framework has successfully
resolved the bundle’s code dependencies. These dependencies include:

. The bundle’s class path from its Constants.BUNDLE_CLASSPATH Man-
ifest header.

- The bundle’s package dependencies from its Con-
stants.EXPORT_PACKAGE and Constants.IMPORT_PACKAGE Manifest
headers.

+ The bundle’s required bundle dependencies from its Con-
stants.REQUIRE_BUNDLE Manifest header.

- Afragment bundle’s host dependency from its Con-
stants.FRAGMENT_HOST Manifest header.

Note that the bundle is not active yet. A bundle must be put in the
RESOLVED state before it can be started. The Framework may attempt to
resolve a bundle at any time.

The value of RESOLVED is 0x00000004.

public static final int SIGNERS_ALL =1

Request that all certificates used to sign the bundle be returned.
getSignerCertificates(int)

1.5

public static final int SIGNERS_TRUSTED = 2

Request that only certificates used to sign the bundle that are trusted by the
framework be returned.

getSignerCertificates(int)
1.5
public static final int START_ACTIVATION_POLICY =2

The bundle start operation must activate the bundle according to the bun-
dle’s declared activation policy.

This bit may be set when calling start(int) to notify the framework that the
bundle must be activated using the bundle’s declared activation policy.

Constants.BUNDLE_ACTIVATIONPOLICY,start(int)
1.4

OSGi Service Platform Release 4 145-332

org.osgi.framework Framework API Version 1.5

6.1.4.7

6.1.4.8

6.1.4.9

6.1.4.10

6.1.4.11

6.1.4.12

See Also

Since

See Also

Since

public static final int START_TRANSIENT =1

The bundle start operation is transient and the persistent autostart setting
of the bundle is not modified.

This bit may be set when calling start(int) to notify the framework that the
autostart setting of the bundle must not be modified. If this bit is not set,
then the autostart setting of the bundle is modified.

start(int)

14

public static final int STARTING = 8
The bundle is in the process of starting.

Abundleisinthe STARTING state when its start method is active. A bundle
must be in this state when the bundle’s BundleActivator.start is called. If
the BundleActivator.start method completes without exception, then the
bundle has successfully started and must move to the ACTIVE state.

If the bundle has alazy activation policy, then the bundle may remain in
this state for some time until the activation is triggered.

The value of STARTING is 0x00000008.

public static final int STOP_TRANSIENT =1

The bundle stop is transient and the persistent autostart setting of the bun-
dle is not modified.

This bit may be set when calling stop(int) to notify the framework that the
autostart setting of the bundle must not be modified. If this bit is not set,
then the autostart setting of the bundle is modified.

stop(int)

14

public static final int STOPPING = 16
The bundle is in the process of stopping.

A bundle is in the STOPPING state when its stop method is active. A bundle
must be in this state when the bundle’s BundleActivator.stop method is
called. When the BundleActivator.stop method completes the bundle is
stopped and must move to the RESOLVED state.

The value of STOPPING is 0x00000010.

public static final int UNINSTALLED =1
The bundle is uninstalled and may not be used.

The UNINSTALLED state is only visible after a bundle is uninstalled; the
bundle is in an unusable state but references to the Bundle object may still
be available and used for introspection.

The value of UNINSTALLED is 0x00000001.

public Enumeration findEntries(String path, String filePattern, boolean

146-332

OSGi Service Platform Release 4

Framework API Version 1.5 org.osgi.framework

path

filePattern

recurse

Returns

recurse)

The path name in which tolook. The path is alwaysrelative to the root of this
bundle and may begin with “/”. A path value of “/” indicates the root of this
bundle.

The file name pattern for selecting entries in the specified path. The pattern
is only matched against the last element of the entry path. If the entry is a di-
rectory then the trailing “/” is not used for pattern matching. Substring

matching is supported, as specified in the Filter specification, using the wild-

card character ("+”). If null is specified, this is equivalent to “x” and matches
all files.

If true, recurse into subdirectories. Otherwise only return entries from the
specified path.

Returns entries in this bundle and its attached fragments. This bundle’s
class loader is not used to search for entries. Only the contents of this bundle
and its attached fragments are searched for the specified entries. If this bun-
dle’s state is INSTALLED, this method must attempt to resolve this bundle
before attempting to find entries.

This method is intended to be used to obtain configuration, setup, localiza-
tion and other information from this bundle. This method takes into
account that the “contents” of this bundle can be extended with fragments.
This “bundle space” is not a namespace with unique members; the same
entry name can be present multiple times. This method therefore returns an
enumeration of URL objects. These URLs can come from different JARs but
have the same path name. This method can either return only entries in the
specified path or recurse into subdirectories returning entries in the direc-
tory tree beginning at the specified path. Fragments can be attached after
this bundle is resolved, possibly changing the set of URLs returned by this
method. If this bundle is not resolved, only the entries in the JAR file of this
bundle are returned.

Examples:

/1 List all XML files in the OSGI-INF directory and below
Enumeration e = b.findEntries(”0SGI-INF”, “x.xml”, true);

/1 Find a specific localization file

Enumeration e = b

.findEntries(”"0SGI-INF/110n”, “bundle_nl DU.properties”
false);

if (e.hasMoreElements())

return (URL) e.nextElement();

Note: Jar and zip files are not required to include directory entries. URLs to
directory entries will not be returned if the bundle contents do not contain
directory entries.

An enumeration of URL objects for each matching entry, or null if an entry
could not be found or if the caller does not have the appropriate AdminPer-
mission[this, RESOURCE], and the Java Runtime Environment supports per-
missions. The URLs are sorted such that entries from this bundle are

returned first followed by the entries from attached fragments in ascending

OSGi Service Platform Release 4 147-332

org.osgi.framework Framework API Version 1.5

6.1.4.13

6.1.4.14

6.1.4.15

Throws

Since

Returns

Throws

Since

Returns

path
O

Returns

bundle id order. If this bundle is a fragment, then only matching entries in
this fragment are returned.

IllegalStateException— If this bundle has been uninstalled.
1.3
public BundleContext getBundleContext()

Returns this bundle’s BundleContext. The returned BundleContext can be
used by the caller to act on behalf of this bundle.

If this bundle is not in the STARTING, ACTIVE, or STOPPING states or this
bundle is a fragment bundle, then this bundle has no valid BundleContext.
This method will return null if this bundle has no valid BundleContext.

A BundleContext for this bundle or null if this bundle has no valid Bundle-
Context.

SecurityException— If the caller does not have the appropriate AdminPer-
mission[this, CONTEXT], and the Java Runtime Environment supports per-
missions.

1.4
public long getBundleld()

Returns this bundle’s unique identifier. This bundle is assigned a unique
identifier by the Framework when it was installed in the OSGi environ-
ment.

A bundle’s unique identifier has the following attributes:

. Isunique and persistent.
Isalong.
Its value is not reused for another bundle, even after a bundle is unin-
stalled.
Does not change while a bundle remains installed.
- Does not change when a bundle is updated.

This method must continue to return this bundle’s unique identifier while
this bundle is in the UNINSTALLED state.

The unique identifier of this bundle.
public URL getEntry(String path)
The path name of the entry.

Returns a URL to the entry at the specified path in this bundle. This bundle’s
class loader is not used to search for the entry. Only the contents of this bun-
dle are searched for the entry.

The specified path is always relative to the root of this bundle and may
begin with “/”. A path value of “/” indicates the root of this bundle.

Note: Jar and zip files are not required to include directory entries. URLs to
directory entries will not be returned if the bundle contents do not contain
directory entries.

A URL to the entry, or null if no entry could be found or if the caller does not
have the appropriate AdminPermission[this, RESOURCE] and the Java Runt-
ime Environment supports permissions.

148-332

OSGi Service Platform Release 4

Framework API Version 1.5 org.osgi.framework

Throws IllegalStateException— If this bundle hasbeen uninstalled.
Since 1.3
6.1.4.16 public Enumeration getEntryPaths(String path)
path The path name for which to return entry paths.

O Returns an Enumeration of all the paths (String objects) to entries within
this bundle whose longest sub-path matches the specified path. This bun-
dle’s class loader is not used to search for entries. Only the contents of this
bundle are searched.

The specified path is always relative to the root of this bundle and may
begin with a “/”. A path value of “/” indicates the root of this bundle.

Returned paths indicating subdirectory paths end with a “/”. The returned
paths are all relative to the root of this bundle and must not begin with “/”.

Note: Jar and zip files are not required to include directory entries. Paths to
directory entries will not be returned if the bundle contents do not contain
directory entries.

Returns An Enumeration of the entry paths (String objects) or null if no entry could
be found or if the caller does not have the appropriate AdminPermis-
sion[this,RESOURCE] and the Java Runtime Environment supports permis-
sions.

Throws IllegalStateException— If this bundle has been uninstalled.
Since 1.3
6.1.4.17 public Dictionary getHeaders()

O Returns this bundle’s Manifest headers and values. This method returns all
the Manifest headers and values from the main section of this bundle’s Man-
ifest file; that is, all lines prior to the first blank line.

Manifest header names are case-insensitive. The methods of the returned
Dictionary object must operate on header names in a case-insensitive man-
ner. If a Manifest header value starts with “%?”, it must be localized accord-
ing to the default locale. If no localization is found for a header value, the
header value without the leading “%” is returned.

For example, the following Manifest headers and values are included if they
are present in the Manifest file:

Bundle-Name
Bundle-Vendor
Bundle-Version
Bundle-Description
Bundle-DocURL
Bundle-ContactAddress

This method must continue to return Manifest header information while
this bundle is in the UNINSTALLED state.

Returns A Dictionary object containing this bundle’s Manifest headers and values.

Throws SecurityException— Ifthe caller does not have the appropriate AdminPer-
mission[this, METADATA], and the Java Runtime Environment supports per-
missions.

OSGi Service Platform Release 4 149-332

org.osgi.framework Framework API Version 1.5

6.1.4.18

6.1.4.19

See Also

locale

Returns

Throws

See Also

Since

Returns

Constants.BUNDLE_LOCALIZATION
public Dictionary getHeaders(String locale)

The locale name into which the header values are to be localized. If the spec-
ified locale is null then the locale returned by java.util.Locale.getDefault is
used. If the specified locale is the empty string, this method will return the
raw (unlocalized) manifest headers including any leading “%”.

Returns this bundle’s Manifest headers and values localized to the specified
locale.

This method performs the same function as Bundle.getHeaders() except the
manifest header values are localized to the specified locale.

If a Manifest header value starts with “%”, it must be localized according to
the specified locale. If a locale is specified and cannot be found, then the
header values must be returned using the default locale. Localizations are
searched for in the following order:

bn+ “ "+ Ls+ " +Cs+ “” + Vs
bn + “ " +Ls + “7 + Cs

bn + “_" + Ls

bn+ “ "+ Ld+ 7"+ 0+ “ " +Vd
bn+ “ " +Ld+ “ "+

bn + “ " + Ld

bn

Where bn is this bundle’s localization basename, Ls, Cs and Vs are the speci-
fied locale (language, country, variant) and Ld, Cd and Vd are the default
locale (language, country, variant). If null is specified as the locale string,
the header values must be localized using the default locale. If the empty
string (") is specified as the locale string, the header values must not be
localized and the raw (unlocalized) header values, including any leading
“%”, must be returned. If no localization is found for a header value, the
header value without the leading “%” is returned.

This method must continue to return Manifest header information while
this bundle is in the UNINSTALLED state, however the header values must
only be available in the raw and default locale values.

A Dictionary object containing this bundle’s Manifest headers and values.

SecurityException— If the caller does not have the appropriate AdminPer-
mission[this METADATA], and the Java Runtime Environment supports per-
missions.

getHeaders (), Constants. BUNDLE_LOCALIZATION
1.3
public long getLastModified()

Returns the time when this bundle was last modified. A bundle is consid-
ered to be modified when it is installed, updated or uninstalled.

The time value is the number of milliseconds since January 1, 1970, 00:00:00
GMT.

The time when this bundle was last modified.

150-332

OSGi Service Platform Release 4

Framework API Version 1.5 org.osgi.framework

6.1.4.20

6.1.4.21

6.1.4.22

Since

Returns

Throws

Returns
Throws

See Also

name

Returns

Throws

1.3
public String getLocation()
Returns this bundle’s location identifier.

The location identifier is the location passed to BundleContext.installBun-
dle when a bundle isinstalled. The location identifier does not change while
this bundle remains installed, even if this bundle is updated.

This method must continue to return this bundle’s location identifier while
this bundle is in the UNINSTALLED state.

The string representation of this bundle’s location identifier.

SecurityException— If the caller does not have the appropriate AdminPer-
mission[this METADATA], and the Java Runtime Environment supports per-
missions.

public ServiceReference[] getRegisteredServices()

Returns this bundle’s ServiceReference list for all services it has registered or
null if this bundle has no registered services.

If the Java runtime supports permissions, a ServiceReference object to a ser-
vice is included in the returned list only if the caller has the ServicePermis-
sion to get the service using at least one of the named classes the service was
registered under.

The list is valid at the time of the call to this method, however, as the Frame-
work is a very dynamic environment, services can be modified or unregis-
tered at anytime.

An array of ServiceReference objects or null.
I1legalStateException— If this bundle has been uninstalled.
ServiceRegistration, ServiceReference, ServicePermission
public URL getResource(String name)

The name of the resource. See ClassLoader.getResource for a description of
the format of a resource name.

Find the specified resource from this bundle’s class loader. This bundle’s
class loader is called to search for the specified resource. If this bundle’s
state is INSTALLED, this method must attempt to resolve this bundle before
attempting to get the specified resource. If this bundle cannot be resolved,
then only this bundle must be searched for the specified resource. Imported
packages cannot be searched when this bundle has not been resolved. If this
bundle is a fragment bundle then null is returned.

Note: Jar and zip files are not required to include directory entries. URLs to
directory entries will not be returned if the bundle contents do not contain
directory entries.

A URL to the named resource, or null if the resource could not be found or if
thisbundle isafragment bundle orif the caller does not have the appropriate
AdminPermission[this, RESOURCE], and the Java Runtime Environment
supports permissions.

IllegalStateException— If this bundle has been uninstalled.

OSGi Service Platform Release 4 151-332

org.osgi.framework Framework API Version 1.5

See Also
Since
6.1.4.23

name

Returns

Throws

Since

6.1.4.24

Returns
Throws
See Also
6.1.4.25
signersType

getEntry, findEntries
1.1
public Enumeration getResources(String name) throws IOException

The name of the resource. See ClassLoader.getResources for a description of
the format of a resource name.

Find the specified resources from this bundle’s class loader. This bundle’s
class loader is called to search for the specified resources. If this bundle’s
state is INSTALLED, this method must attempt to resolve this bundle before
attempting to get the specified resources. If this bundle cannot be resolved,
then only this bundle must be searched for the specified resources.
Imported packages cannot be searched when a bundle has not been
resolved. If this bundle is a fragment bundle then null is returned.

Note: Jar and zip files are not required to include directory entries. URLs to
directory entries will not be returned if the bundle contents do not contain
directory entries.

Anenumeration of URLs to the named resources, or null if the resource could
not be found or if this bundle is a fragment bundle or if the caller does not
have the appropriate AdminPermission[this, RESOURCE], and the Java Runt-
ime Environment supports permissions.

IllegalStateException— If this bundle has been uninstalled.
IOException — If there is an I/O error.

1.3

public ServiceReference[] getServicesinUse()

Returns this bundle’s ServiceReference list for all services it is using or
returns null if this bundle is not using any services. A bundle is considered
to be using a service if its use count for that service is greater than zero.

If the Java Runtime Environment supports permissions, a ServiceReference
object to a service is included in the returned list only if the caller has the
ServicePermission to get the service using at least one of the named classes
the service was registered under.

The list is valid at the time of the call to this method, however, as the Frame-
work is a very dynamic environment, services can be modified or unregis-
tered at anytime.

An array of ServiceReference objects or null.
IllegalStateException— If this bundle has been uninstalled.
ServiceReference, ServicePermission

public Map getSignerCertificates(int signersType)

If SIGNERS_ALL is specified, then information on all signers of this bundle is
returned. If SIGNERS_TRUSTED is specified, then only information on the
signers of this bundle trusted by the framework is returned.

Return the certificates for the signers of this bundle and the certificate
chains for those signers.

152-332

OSGi Service Platform Release 4

Framework API Version 1.5 org.osgi.framework

Returns

Throws

Since

6.1.4.26

Returns

6.1.4.27

Returns

Since

6.1.4.28

Returns
Since

6.1.4.29
permission

[m]

The X509Certificates for the signers of this bundle and the X509Certificate
chains for those signers. The keys of the Map are the X509Certificates of the
signers of this bundle. The value for a key is a List containing the
X509Certificate chain for the signer. The first item in the List is the signer’s
X509Certificate which is then followed by the rest of the X509Certificate
chain. The returned Map will be empty if there are no signers. The returned
Map is the property of the caller who is free to modify it.

IllegalArgumentException— If the specified signersType is not
SIGNERS_ALL or SIGNERS_TRUSTED.

1.5

public int getState()

Returns this bundle’s current state.

A bundle can be in only one state at any time.

An element of UNINSTALLED,INSTALLED, RESOLVED,STARTING, STOP-
PING,ACTIVE.

public String getSymbolicName()

Returns the symbolic name of this bundle as specified by its Bundle-Symbol-
icName manifest header. The bundle symbolic name together with a ver-
sion must identify a unique bundle. The bundle symbolic name should be
based on the reverse domain name naming convention like that used for
java packages.

This method must continue to return this bundle’s symbolic name while
this bundle is in the UNINSTALLED state.

The symbolic name of this bundle or null if this bundle does not have a sym-
bolic name.

13
public Version getVersion()

Returns the version of this bundle as specified by its Bundle-Version mani-
fest header. If this bundle does not have a specified version then Ver-
sion.emptyVersion is returned.

This method must continue to return this bundle’s version while this bun-
dle isin the UNINSTALLED state.

The version of this bundle.

1.5

public boolean hasPermission(Object permission)
The permission to verify.

Determines if this bundle has the specified permissions.

If the Java Runtime Environment does not support permissions, this
method always returns true.

permission is of type Object to avoid referencing the java.security.Permis-
sion class directly. This is to allow the Framework to be implemented in
Java environments which do not support permissions.

OSGi Service Platform Release 4 153-332

org.osgi.framework Framework API Version 1.5

6.1.4.30

6.1.4.31

Returns

Throws

name

Returns

Throws

Since

options

If the Java Runtime Environment does support permissions, this bundle and
all its resources including embedded JAR files, belong to the same java.secu-
rity.ProtectionDomain; that is, they must share the same set of permissions.

true if this bundle has the specified permission or the permissions possessed
by this bundle imply the specified permission; false if this bundle does not
have the specified permission or permission is not an instanceofjava.securi-
ty.Permission.

IllegalStateException— If this bundle has been uninstalled.

public Class loadClass(String name) throws ClassNotFoundException
The name of the class to load.

Loads the specified class using this bundle’s class loader.

If this bundle is a fragment bundle then this method must throw a ClassNot-
FoundException.

If this bundle’s state is INSTALLED, this method must attempt to resolve
this bundle before attempting to load the class.

If this bundle cannot be resolved, a Framework event of type Frame-
workEvent.ERROR is fired containing a BundleException with details of the
reason this bundle could not be resolved. This method must then throw a
ClassNotFoundException.

If this bundle’s state is UNINSTALLED, then an IllegalStateException is
thrown.

The Class object for the requested class.

ClassNotFoundException— Ifnosuch class can be found or if this bundle is
a fragment bundle or if the caller does not have the appropriate AdminPer-
mission[this,CLASS], and the Java Runtime Environment supports permis-
sions.

IllegalStateException— If this bundle has been uninstalled.
1.3
public void start(int options) throws BundleException

The options for starting this bundle. See START_TRANSIENT and
START_ACTIVATION_POLICY. The Framework must ignore unrecognized
options.

Starts this bundle.

If this bundle’s state is UNINSTALLED then an IllegalStateException is
thrown.

If the Framework implements the optional Start Level service and the cur-
rent start level is less than this bundle’s start level:

If the START_TRANSIENT option is set, then a BundleException is
thrown indicating this bundle cannot be started due to the Framework’s
current start level.

Otherwise, the Framework must set this bundle’s persistent autostart
setting to Started with declared activation if the

154-332

OSGi Service Platform Release 4

Framework API Version 1.5 org.osgi.framework

START_ACTIVATION_POLICY option is set or Started with eager acti-
vation if not set.

When the Framework’s current start level becomes equal to or more than
this bundle’s start level, this bundle will be started.

Otherwise, the following steps are required to start this bundle:

1 Ifthisbundle isin the process of being activated or deactivated then this
method must wait for activation or deactivation to complete before con-
tinuing. If this does not occur in a reasonable time, a BundleException is
thrown to indicate this bundle was unable to be started.

2 Ifthis bundle’s state is ACTIVE then this method returns immediately.

3 Ifthe START_TRANSIENT option is not set then set this bundle’s
autostart setting to Started with declared activation if the
START_ACTIVATION_POLICY option is set or Started with eager acti-
vation if not set. When the Framework is restarted and this bundle’s
autostart setting is not Stopped, this bundle must be automatically
started.

4 Ifthisbundle’s state isnot RESOLVED, an attempt is made to resolve this
bundle. If the Framework cannot resolve this bundle, a BundleException
is thrown.

5 Ifthe START_ACTIVATION_POLICY option is set and this bundle’s

declared activation policy is lazy then:

If this bundle’s state is STARTING then this method returns immedi-

ately.

This bundle’s state is set to STARTING.

A bundle event of type BundleEvent.LAZY ACTIVATION is fired.

This method returns immediately and the remaining steps will be fol-

lowed when this bundle’s activation is later triggered.

This bundle’s state is set to STARTING.

A bundle event of type BundleEvent.STARTING is fired.

8 TheBundleActivator.start method of this bundle’s BundleActivator, if
one is specified, is called. If the BundleActivator is invalid or throws an
exception then:

This bundle’s state is set to STOPPING.

A bundle event of type BundleEvent.STOPPING is fired.
Any services registered by this bundle must be unregistered.
Any services used by this bundle must be released.

Any listeners registered by this bundle must be removed.
This bundle’s state is set to RESOLVED.

A bundle event of type BundleEvent.STOPPED is fired.

A BundleException is then thrown.

9 Ifthis bundle’s state is UNINSTALLED, because this bundle was unin-
stalled while the BundleActivator.start method was running, a Bundle-
Exception is thrown.

10 This bundle’s state is set to ACTIVE.

11 A bundle event of type BundleEvent.STARTED is fired.

N o

Preconditions

. getState() in { INSTALLED, RESOLVED } or { INSTALLED, RESOLVED,
STARTING }if this bundle has a lazy activation policy.

Postconditions, no exceptions thrown

OSGi Service Platform Release 4 155-332

org.osgi.framework Framework API Version 1.5

6.1.4.32

6.1.4.33

Throws

Since

Throws

See Also

options

[m}

Bundle autostart setting is modified unless the START_TRANSIENT
option was set.

. getState() in { ACTIVE } unless the lazy activation policy was used.

. BundleActivator.start() has been called and did not throw an exception
unless the lazy activation policy was used.

Postconditions, when an exception is thrown

- Depending on when the exception occurred, bundle autostart setting is
modified unless the START_TRANSIENT option was set.
getState() not in { STARTING, ACTIVE }.

BundleException — If this bundle could not be started. This could be be-
cause a code dependency could not be resolved or the specified BundleActi-
vator could not be loaded or threw an exception or this bundle is a fragment.

IllegalStateException— If this bundle has been uninstalled or this bun-
dle tries to change its own state.

SecurityException— If the caller does not have the appropriate AdminPer-
mission[this,EXECUTE], and the Java Runtime Environment supports per-
missions.

1.4

public void start() throws BundleException

Starts this bundle with no options.

This method performs the same function as calling start(0).

BundleException— If this bundle could not be started. This could be be-
cause a code dependency could not be resolved or the specified BundleActi-
vator could not be loaded or threw an exception or this bundle is a fragment.

I1legalStateException— If this bundle has been uninstalled or this bun-
dle tries to change its own state.

SecurityException— If the caller does not have the appropriate AdminPer-
mission[this,EXECUTE], and the Java Runtime Environment supports per-
missions.

start(int)
public void stop(int options) throws BundleException

The options for stoping this bundle. See STOP_TRANSIENT. The Framework
must ignore unrecognized options.

Stops this bundle.
The following steps are required to stop a bundle:

1 Ifthis bundle’s state is UNINSTALLED then an IllegalStateException is
thrown.

2 Ifthisbundleisin the process of being activated or deactivated then this
method must wait for activation or deactivation to complete before con-
tinuing. If this does not occur in a reasonable time, a BundleException is
thrown to indicate this bundle was unable to be stopped.

3 Ifthe STOP_TRANSIENT option is not set then then set this bundle’s per-
sistent autostart setting to to Stopped. When the Framework is restarted

156-332

OSGi Service Platform Release 4

Framework API Version 1.5 org.osgi.framework

6.1.4.34

Throws

Since

Throws

and this bundle’s autostart setting is Stopped, this bundle must not be
automatically started.

4 If this bundle’s state is not STARTING or ACTIVE then this method
returns immediately.

5 Thisbundle’s state is set to STOPPING.

6 Abundle event of type BundleEvent.STOPPING is fired.

7 Ifthis bundle’s state was ACTIVE prior to setting the state to STOPPING,
the BundleActivator.stop method of this bundle’s BundleActivator, if
one is specified, is called. If that method throws an exception, this
method must continue to stop this bundle and a BundleException must
be thrown after completion of the remaining steps.

8 Any services registered by this bundle must be unregistered.

9 Any services used by this bundle must be released.

10 Any listeners registered by this bundle must be removed.

11 If this bundle’s state is UNINSTALLED, because this bundle was unin-
stalled while the BundleActivator.stop method was running, a BundleEx-
ception must be thrown.

12 This bundle’s state is set to RESOLVED.

13 A bundle event of type BundleEvent.STOPPED is fired.

Preconditions
. getState()in { ACTIVE }.
Postconditions, no exceptions thrown

- Bundle autostart setting is modified unless the STOP_TRANSIENT option

was set.
. getState() not in { ACTIVE, STOPPING }.
. BundleActivator.stop has been called and did not throw an exception.

Postconditions, when an exception is thrown

- Bundle autostart setting is modified unless the STOP_TRANSIENT option
was set.

BundleException — If this bundle’s BundleActivator threw an exception or
this bundle is a fragment.

IllegalStateException— If this bundle has been uninstalled or this bun-
dle tries to change its own state.

SecurityException— If the caller does not have the appropriate AdminPer-
mission[this,EXECUTE], and the Java Runtime Environment supports per-
missions.

1.4

public void stop() throws BundleException

Stops this bundle with no options.

This method performs the same function as calling stop(0).

BundleException — If this bundle’s BundleActivator threw an exception or
this bundle is a fragment.

IllegalStateException— If this bundle has been uninstalled or this bun-
dle tries to change its own state.

OSGi Service Platform Release 4 157-332

org.osgi.framework Framework API Version 1.5

6.1.4.35

See Also

Throws

See Also

SecurityException— If the caller does not have the appropriate AdminPer-
mission[this,EXECUTE], and the Java Runtime Environment supports per-
missions.

start(int)
public void uninstall() throws BundleException
Uninstalls this bundle.

This method causes the Framework to notify other bundles that this bundle
is being uninstalled, and then puts this bundle into the UNINSTALLED
state. The Framework must remove any resources related to this bundle that
itis able to remove.

If this bundle has exported any packages, the Framework must continue to
make these packages available to their importing bundles until the Package-
Admin.refreshPackages method has been called or the Framework is
relaunched.

The following steps are required to uninstall a bundle:

1 Ifthisbundle’s state is UNINSTALLED then an IllegalStateException is
thrown.

2 If this bundle’s state is ACTIVE, STARTING or STOPPING, this bundle is
stopped as described in the Bundle.stop method. If Bundle.stop throws
an exception, a Framework event of type FrameworkEvent.ERROR is
fired containing the exception.

3 This bundle’s state is set to UNINSTALLED.

Abundle event of type BundleEvent.UNINSTALLED is fired.

5 This bundle and any persistent storage area provided for this bundle by

the Framework are removed.

Preconditions
getState() not in { UNINSTALLED }.
Postconditions, no exceptions thrown

. getState() in { UNINSTALLED }.
This bundle has been uninstalled.

Postconditions, when an exception is thrown

. getState() not in { UNINSTALLED }.
« This Bundle has not been uninstalled.

BundleException — If the uninstall failed. This can occur if another thread
isattempting to change this bundle’s state and does not complete in a timely
manner.

IllegalStateException— If this bundle has been uninstalled or this bun-
dle tries to change its own state.

SecurityException— If the caller does not have the appropriate AdminPer-
mission[this,LIFECYCLE], and the Java Runtime Environment supports per-
missions.

stop()

158-332

OSGi Service Platform Release 4

Framework API Version 1.5 org.osgi.framework

6.1.4.36

input

public void update(InputStream input) throws BundleException

The InputStream from which to read the new bundle or null to indicate the
Framework must create the input stream from this bundle’sBundle-Update-
Location Manifest header, if present, or this bundle’s original location. The
input stream must always be closed when this method completes, even if an
exception is thrown.

Updates this bundle from an InputStream.

If the specified InputStream is null, the Framework must create the Input-
Stream from which to read the updated bundle by interpreting, in an imple-
mentation dependent manner, this bundle’s Bundle-UpdateLocation
Manifest header, if present, or this bundle’s original location.

If this bundle’s state is ACTIVE, it must be stopped before the update and
started after the update successfully completes.

If this bundle has exported any packages that are imported by another bun-
dle, these packages must not be updated. Instead, the previous package ver-
sion must remain exported until the PackageAdmin.refreshPackages
method has been has been called or the Framework is relaunched.

The following steps are required to update a bundle:

1 Ifthis bundle’s state is UNINSTALLED then an IllegalStateException is
thrown.

2 Ifthis bundle’s state is ACTIVE, STARTING or STOPPING, this bundle is
stopped as described in the Bundle.stop method. If Bundle.stop throws
an exception, the exception is rethrown terminating the update.

3 The updated version of this bundle is read from the input stream and
installed. If the Framework is unable to install the updated version of
this bundle, the original version of this bundle must be restored and a
BundleException must be thrown after completion of the remaining
steps.

4 This bundle’s state is set to INSTALLED.

5 If the updated version of this bundle was successfully installed, a bundle
event of type BundleEvent.UPDATED is fired.

6 Ifthis bundle’s state was originally ACTIVE, the updated bundle is
started as described in the Bundle.start method. If Bundle.start throws an
exception, a Framework event of type FrameworkEvent.ERROR is fired
containing the exception.

Preconditions
. getState() notin { UNINSTALLED }.
Postconditions, no exceptions thrown

. getState() in { INSTALLED, RESOLVED, ACTIVE }.
. This bundle has been updated.

Postconditions, when an exception is thrown

. getState() in { INSTALLED, RESOLVED, ACTIVE }.
- Original bundle is still used; no update occurred.

Throws BundleException— If the input stream cannot be read or the update fails.

OSGi Service Platform Release 4 159-332

org.osgi.framework Framework API Version 1.5

6.1.4.37

6.1.5

See Also

Throws

See Also

Concurrency

6.1.5.1

context

[m}

I1legalStateException— If this bundle has been uninstalled or this bun-
dle tries to change its own state.

SecurityException— If the caller does not have the appropriate AdminPer-
mission[this,LIFECYCLE] for both the current bundle and the updated bun-
dle, and the Java Runtime Environment supports permissions.

stop(),start()
public void update() throws BundleException
Updates this bundle.

This method performs the same function as calling update(InputStream)
with a null InputStream.

BundleException— If the update fails.

I1legalStateException— If this bundle has been uninstalled or this bun-
dle tries to change its own state.

SecurityException— If the caller does not have the appropriate AdminPer-
mission[this,LIFECYCLE] for both the current bundle and the updated bun-
dle, and the Java Runtime Environment supports permissions.

update (InputStream)

public interface BundleActivator
Customizes the starting and stopping of a bundle.

BundleActivator is an interface that may be implemented when a bundle is
started or stopped. The Framework can create instances of a bundle’s
BundleActivator as required. If an instance’s BundleActivator.start method
executes successfully, it is guaranteed that the same instance’s BundleActi-
vator.stop method will be called when the bundle is to be stopped. The
Framework must not concurrently call a BundleActivator object.

BundleActivator is specified through the Bundle-Activator Manifest header.
A bundle can only specify a single BundleActivator in the Manifest file.
Fragment bundles must not have a BundleActivator. The form of the Mani-
fest header is:

Bundle-Activator: class-name
where class-name
is a fully qualified Java classname.

The specified BundleActivator class must have a public constructor that
takes no parameters so that a BundleActivator object can be created by
Class.newInstance().

Not Thread-safe
public void start(BundleContext context) throws Exception
The execution context of the bundle being started.

Called when this bundle is started so the Framework can perform the bun-
dle-specific activities necessary to start this bundle. This method can be
used to register services or to allocate any resources that this bundle needs.

160-332

OSGi Service Platform Release 4

Framework API Version 1.5 org.osgi.framework

6.1.5.2

6.1.6

Throws

context

m]

Throws

This method must complete and return to its caller in a timely manner.

Exception— If this method throws an exception, this bundle is marked as
stopped and the Framework will remove this bundle’s listeners, unregister
all services registered by this bundle, and release all services used by this bun-
dle.

public void stop(BundleContext context) throws Exception
The execution context of the bundle being stopped.

Called when this bundle is stopped so the Framework can perform the bun-
dle-specific activities necessary to stop the bundle. In general, this method
should undo the work that the BundleActivator.start method started. There
should be no active threads that were started by this bundle when this bun-
dle returns. A stopped bundle must not call any Framework objects.

This method must complete and return to its caller in a timely manner.

Exception— If this method throws an exception, the bundle is still marked
asstopped, and the Framework will remove the bundle’s listeners, unregister
all services registered by the bundle, and release all services used by the bun-
dle.

public interface BundleContext

A bundle’s execution context within the Framework. The context is used to
grant access to other methods so that this bundle can interact with the
Framework.

BundleContext methods allow a bundle to:

- Subscribe to events published by the Framework.

- Register service objects with the Framework service registry.

- Retrieve ServiceReferences from the Framework service registry.

- Getand release service objects for a referenced service.

. Install new bundles in the Framework.

. Get the list of bundles installed in the Framework.

. Getthe Bundle object for a bundle.

. Create File objects for files in a persistent storage area provided for the
bundle by the Framework.

A BundleContext object will be created and provided to the bundle associ-
ated with this context when it is started using the BundleActivator.start
method. The same BundleContext object will be passed to the bundle associ-
ated with this context when it is stopped using the BundleActivator.stop
method. A BundleContext object is generally for the private use of its associ-
ated bundle and is not meant to be shared with other bundles in the OSGi
environment.

The Bundle object associated with a BundleContext object is called the con-
text bundle.

The BundleContext object is only valid during the execution of its context
bundle; that is, during the period from when the context bundle is in the
STARTING, STOPPING, and ACTIVE bundle states. If the BundleContext
object is used subsequently, an IllegalStateException must be thrown. The
BundleContext object must never be reused after its context bundle is
stopped.

OSGi Service Platform Release 4 161-332

org.osgi.framework Framework API Version 1.5

Concurrency

6.1.6.1

6.1.6.2

6.1.6.3

listener

[m}

Throws

See Also

listener

[m}

Throws

See Also

listener
filter
O

The Framework is the only entity that can create BundleContext objects and
they are only valid within the Framework that created them.

Thread-safe
public void addBundleListener(BundleListener listener)
The BundleListener to be added.

Adds the specified BundleListener object to the context bundle’s list of lis-
teners if not already present. BundleListener objects are notified when a
bundle has a lifecycle state change.

If the context bundle’s list of listeners already contains a listener 1 such that
(I==listener), this method does nothing.

I1legalStateException— If this BundleContext is no longer valid.

SecurityException— Iflistener is a SynchronousBundleListener and the
caller does not have the appropriate AdminPermission[context bundle,LIS-
TENER], and the Java Runtime Environment supports permissions.

BundleEvent, BundleListener
public void addFrameworkListener(FrameworkListener listener)
The FrameworkListener object to be added.

Adds the specified FrameworkListener object to the context bundle’s list of
listeners if not already present. FrameworkListeners are notified of general
Framework events.

If the context bundle’s list of listeners already contains a listener 1 such that
(I==listener), this method does nothing.

I1legalStateException— If this BundleContext is no longer valid.
FrameworkEvent, FrameworkListener

public void addServiceListener(ServiceListener listener, String filter)
throws InvalidSyntaxException

The ServiceListener object to be added.
The filter criteria.

Adds the specified ServiceListener object with the specified filter to the con-
text bundle’s list of listeners. See Filter for a description of the filter syntax.
ServiceListener objects are notified when a service has a lifecycle state
change.

If the context bundle’s list of listeners already contains a listener 1 such that
(I==listener), then this method replaces that listener’s filter (which may be
null) with the specified one (which may be null).

The listener is called if the filter criteria is met. To filter based upon the class
of the service, the filter should reference the Constants.OBJECTCLASS prop-
erty. If filter is null, all services are considered to match the filter.

When using a filter, it is possible that the ServiceEvents for the complete

lifecycle of a service will not be delivered to the listener. For example, if the
filter only matches when the property x has the value 1, the listener will not
be called if the service is registered with the property x not set to the value 1.

162-332

OSGi Service Platform Release 4

Framework API Version 1.5 org.osgi.framework

Throws

See Also
6.1.6.4
listener

m]

Throws
See Also

6.1.6.5
filter

Returns

Throws

See Also

Since

6.1.6.6

clazz

filter

Subsequently, when the service is modified setting property x to the value 1,
the filter will match and the listener will be called with a ServiceEvent of
type MODIFIED. Thus, the listener will not be called with a ServiceEvent of
type REGISTERED.

If the Java Runtime Environment supports permissions, the ServiceListener
object will be notified of a service event only if the bundle that is registering
it has the ServicePermission to get the service using at least one of the
named classes the service was registered under.

InvalidSyntaxException— Iffilter containsan invalid filter string that can-
not be parsed.

IllegalStateException— If this BundleContext is no longer valid.
ServiceEvent, ServicelListener, ServicePermission

public void addServiceListener(ServiceListener listener)

The ServiceListener object to be added.

Adds the specified ServiceListener object to the context bundle’s list of lis-
teners.

This method is the same as calling BundleContext.addServiceListener(Ser-
viceListener listener, String filter) with filter set to null.

IllegalStateException— If this BundleContext is no longer valid.
addServicelistener (Servicelistener, String)

public Filter createFilter(String filter) throws InvalidSyntaxException
The filter string.

Creates a Filter object. This Filter object may be used to match a ServiceRef-
erence object or a Dictionary object.

If the filter cannot be parsed, an InvalidSyntaxException will be thrown
with a human readable message where the filter became unparsable.

A Filter object encapsulating the filter string.

InvalidSyntaxException— Iffilter containsan invalid filter string that can-
not be parsed.

NullPointerException— If filteris null.
I1legalStateException— If this BundleContext is no longer valid.

Framework specification for a description of the filter string
syntax.,FrameworkUtil. createFilter (String)

1.1

public ServiceReference[] getAllServiceReferences(String clazz, String
filter) throws InvalidSyntaxException

The class name with which the service was registered or null for all services.
The filter expression or null for all services.

Returns an array of ServiceReference objects. The returned array of Service-
Reference objects contains services that were registered under the specified
class and match the specified filter expression.

OSGi Service Platform Release 4 163-332

org.osgi.framework Framework API Version 1.5

6.1.6.7

6.1.6.8

6.1.6.9

Returns

Throws

Since

Returns

Throws

id

[m}

Returns

Returns

The list is valid at the time of the call to this method. However since the
Framework is a very dynamic environment, services can be modified or
unregistered at any time.

The specified filter expression is used to select the registered services whose
service properties contain keys and values which satisfy the filter expres-
sion. See Filter for a description of the filter syntax. If the specified filter is
null, all registered services are considered to match the filter. If the specified
filter expression cannot be parsed, an InvalidSyntaxException will be
thrown with a human readable message where the filter became unpars-
able.

The result is an array of ServiceReference objects for all services that meet
all of the following conditions:

. If the specified class name, clazz, is not null, the service must have been
registered with the specified class name. The complete list of class names
with which a service was registered is available from the service’s
objectClass property.

If the specified filter is not null, the filter expression must match the
service.

. If the Java Runtime Environment supports permissions, the caller must
have ServicePermission with the GET action for at least one of the class
names under which the service was registered.

An array of ServiceReference objects or null if no services are registered
which satisfy the search.

InvalidSyntaxException— If the specified filter contains an invalid filter
expression that cannot be parsed.

I1legalStateException— If this BundleContext is no longer valid.
13
public Bundle getBundle()

Returns the Bundle object associated with this BundleContext. This bundle
is called the context bundle.

The Bundle object associated with this BundleContext.
I1legalStateException— If this BundleContext is no longer valid.

public Bundle getBundle(long id)

The identifier of the bundle to retrieve.

Returns the bundle with the specified identifier.

A Bundle object or null if the identifier does not match any installed bundle.
public Bundle[] getBundles()

Returns a list of all installed bundles.

This method returns a list of all bundles installed in the OSGi environment
at the time of the call to this method. However, since the Framework is a
very dynamic environment, bundles can be installed or uninstalled at any-
time.

An array of Bundle objects, one object per installed bundle.

164-332

OSGi Service Platform Release 4

Framework API Version 1.5 org.osgi.framework

6.1.6.10

6.1.6.11

6.1.6.12

filename

m]

Returns

Throws

key
m]

Returns

Throws

reference

[m]

public File getDataFile(String filename)
A relative name to the file to be accessed.

Creates a File object for a file in the persistent storage area provided for the
bundle by the Framework. This method will return null if the platform does
not have file system support.

AFile object for the base directory of the persistent storage area provided for
the context bundle by the Framework can be obtained by calling this
method with an empty string as filename.

If the Java Runtime Environment supports permissions, the Framework will
ensure that the bundle has the java.io.FilePermission with actions read,
write,delete for all files (recursively) in the persistent storage area provided
for the context bundle.

AFile object that represents the requested file or null if the platform does not
have file system support.

IllegalStateException— If this BundleContext is no longer valid.
public String getProperty(String key)
The name of the requested property.

Returns the value of the specified property. If the key is not found in the
Framework properties, the system properties are then searched. The method
returns null if the property is not found.

All bundles must have permission to read properties whose names start
with “org.osgi.”.

The value of the requested property, or null if the property is undefined.
SecurityException— If the caller does not have the appropriate PropertyP-

ermission to read the property, and the Java Runtime Environment supports
permissions.

public Object getService(ServiceReference reference)
A reference to the service.

Returns the service object referenced by the specified ServiceReference
object.

A bundle’s use of a service is tracked by the bundle’s use count of that ser-
vice. Each time a service’s service object is returned by getService(Service-
Reference) the context bundle’s use count for that service is incremented by
one. Each time the service is released by ungetService(ServiceReference)
the context bundle’s use count for that service is decremented by one.

When a bundle’s use count for a service drops to zero, the bundle should no
longer use that service.

This method will always return null when the service associated with this
reference has been unregistered.

The following steps are required to get the service object:

1 Ifthe service has been unregistered, null is returned.
2 The context bundle’s use count for this service is incremented by one.

OSGi Service Platform Release 4 165-332

org.osgi.framework Framework API Version 1.5

6.1.6.13

Returns

Throws

See Also

clazz

[m}

Returns

Throws

See Also

3 If the context bundle’s use count for the service is currently one and the

service was registered with an object implementing the ServiceFactory
interface, the ServiceFactory.getService(Bundle, ServiceRegistration)
method is called to create a service object for the context bundle. This
service object is cached by the Framework. While the context bundle’s
use count for the service is greater than zero, subsequent calls to get the
services’s service object for the context bundle will return the cached
service object.
If the service object returned by the ServiceFactory object is not an
instanceof all the classes named when the service was registered or the
ServiceFactory object throws an exception, null is returned and a
Framework event of type FrameworkEvent.ERROR containing a Service-
Exception describing the error is fired.

4 The service object for the service is returned.

A service object for the service associated with reference or null if the service
isnot registered, the service object returned by a ServiceFactory does not im-
plement the classes under which it was registered or the ServiceFactory
threw an exception.

SecurityException— If the caller does not have the ServicePermission to
get the service using at least one of the named classes the service was regis-
tered under and the Java Runtime Environment supports permissions.

I1legalStateException— If this BundleContext is no longer valid.

I1legalArgumentException— If the specified ServiceReference was not cre-
ated by the same framework instance as this BundleContext.

ungetService (ServiceReference), ServiceFactory
public ServiceReference getServiceReference(String clazz)
The class name with which the service was registered.

Returns a ServiceReference object for a service that implements and was reg-
istered under the specified class.

The returned ServiceReference object is valid at the time of the call to this
method. However as the Framework is a very dynamic environment, ser-
vices can be modified or unregistered at any time.

This method is the same as calling BundleContext.getServiceRefer-
ences(String, String) with a null filter expression. It is provided as a conve-
nience for when the caller is interested in any service that implements the
specified class.

If multiple such services exist, the service with the highest ranking (as spec-
ified in its Constants.SERVICE_RANKING property) is returned.

If there is a tie in ranking, the service with the lowest service ID (as specified
inits Constants.SERVICE_ID property); that is, the service that was regis-
tered first is returned.

A ServiceReference object, or null if no services are registered which imple-
ment the named class.

I1legalStateException— If this BundleContext is no longer valid.

getServiceReferences(String, String)

166-332

OSGi Service Platform Release 4

Framework API Version 1.5 org.osgi.framework

6.1.6.14

6.1.6.15

clazz

filter

Returns

Throws

location

input

public ServiceReference[] getServiceReferences(String clazz, String
filter) throws InvalidSyntaxException

The class name with which the service was registered or null for all services.
The filter expression or null for all services.

Returns an array of ServiceReference objects. The returned array of Service-
Reference objects contains services that were registered under the specified
class, match the specified filter expression, and the packages for the class
names under which the services were registered match the context bundle’s
packages as defined in ServiceReference.isAssignableTo(Bundle, String).

The list is valid at the time of the call to this method. However since the
Framework is a very dynamic environment, services can be modified or
unregistered at any time.

The specified filter expression is used to select the registered services whose
service properties contain keys and values which satisfy the filter expres-
sion. See Filter for a description of the filter syntax. If the specified filter is
null, all registered services are considered to match the filter. If the specified
filter expression cannot be parsed, an InvalidSyntaxException will be
thrown with a human readable message where the filter became unpars-
able.

The result is an array of ServiceReference objects for all services that meet
all of the following conditions:

. Ifthe specified class name, clazz, is not null, the service must have been
registered with the specified class name. The complete list of class names
with which a service was registered is available from the service’s
objectClass property.

. Ifthe specified filter is not null, the filter expression must match the
service.

. Ifthe Java Runtime Environment supports permissions, the caller must
have ServicePermission with the GET action for at least one of the class
names under which the service was registered.

- For each class name with which the service was registered, calling Ser-
viceReference.isAssignableTo(Bundle, String) with the context bundle
and the class name on the service’s ServiceReference object must return
true

An array of ServiceReference objects or null if no services are registered
which satisfy the search.

InvalidSyntaxException— If the specified filter contains an invalid filter
expression that cannot be parsed.

I1legalStateException— If this BundleContext is no longer valid.

public Bundle installBundle(String location, InputStream input) throws
BundleException

The location identifier of the bundle to install.

The InputStream object from which this bundle will be read or null to indi-
cate the Framework must create the input stream from the specified location
identifier. The input stream must always be closed when this method com-
pletes, even if an exception is thrown.

OSGi Service Platform Release 4 167-332

org.osgi.framework Framework API Version 1.5

6.1.6.16

[m}

Returns

Throws

location

[m}

Returns

Throws

Installs a bundle from the specified InputStream object.

If the specified InputStream is null, the Framework must create the Input-
Stream from which to read the bundle by interpreting, in an implementa-
tion dependent manner, the specified location.

The specified location identifier will be used as the identity of the bundle.
Every installed bundle is uniquely identified by its location identifier which
is typically in the form of a URL.

The following steps are required to install a bundle:

1 Ifabundle containing the same location identifier is already installed,
the Bundle object for that bundle is returned.

2 Thebundle’s content is read from the input stream. If this fails, a Bundle-
Exception is thrown.

3 The bundle’s associated resources are allocated. The associated resources

minimally consist of a unique identifier and a persistent storage area if

the platform has file system support. If this step fails, a BundleException

is thrown.

The bundle’s state is set to INSTALLED.

Abundle event of type BundleEvent.INSTALLED is fired.

6 The Bundle object for the newly or previously installed bundle is
returned.

Ul o

Postconditions, no exceptions thrown

. getState() in { INSTALLED, RESOLVED }.
Bundle has a unique ID.

Postconditions, when an exception is thrown
. Bundle is not installed and no trace of the bundle exists.
The Bundle object of the installed bundle.

BundleException— If the input stream cannot be read or the installation
failed.

SecurityException— If the caller does not have the appropriate AdminPer-
mission[installed bundle, LIFECYCLE], and the Java Runtime Environment
supports permissions.

I1legalStateException— If this BundleContext is no longer valid.
public Bundle installBundle(String location) throws BundleException
The location identifier of the bundle to install.

Installs a bundle from the specified location identifier.

This method performs the same function as calling installBundle(String,
InputStream) with the specified location identifier and a null InputStream.

The Bundle object of the installed bundle.
BundleException— If the installation failed.

SecurityException— Ifthe caller does not have the appropriate AdminPer-
mission[installed bundle, LIFECYCLE], and the Java Runtime Environment
supports permissions.

I1legalStateException— If this BundleContext is no longer valid.

168-332

OSGi Service Platform Release 4

Framework API Version 1.5 org.osgi.framework

6.1.6.17

See Also

clazzes

service

properties

Returns

Throws

installBundle(String, InputStream)

public ServiceRegistration registerService(String[] clazzes, Object
service, Dictionary properties)

The class names under which the service can be located. The class names in
this array will be stored in the service’s properties under the key Con-
stants.OBJECTCLASS.

The service object or a ServiceFactory object.

The properties for this service. The keys in the properties object must all be
String objects. See Constants for a list of standard service property keys.
Changes should not be made to this object after calling this method. To up-
date the service’s properties the ServiceRegistration.setProperties method
must be called. The set of properties may be null if the service has no proper-
ties.

Registers the specified service object with the specified properties under the
specified class names into the Framework. A ServiceRegistration object is
returned. The ServiceRegistration object is for the private use of the bundle
registering the service and should not be shared with other bundles. The
registering bundle is defined to be the context bundle. Other bundles can
locate the service by using either the getServiceReferences or getService-
Reference method.

A bundle can register a service object that implements the ServiceFactory
interface to have more flexibility in providing service objects to other bun-
dles.

The following steps are required to register a service:

1 Ifserviceisnota ServiceFactory,anIllegalArgumentException is thrown
if service is not an instanceof all the specified class names.

2 The Framework adds the following service properties to the service prop-
erties from the specified Dictionary (which may be null):
A property named Constants.SERVICE_ID identifying the registration
number of the service
A property named Constants.OBJECTCLASS containing all the specified
classes.
Properties with these names in the specified Dictionary will be ignored.

3 The service is added to the Framework service registry and may now be
used by other bundles.

4 Aservice event of type ServiceEvent.REGISTERED is fired.

5 A ServiceRegistration object for this registration is returned.

A ServiceRegistration object for use by the bundle registering the service to
update the service’s properties or to unregister the service.

IllegalArgumentException — If one of the following is true:

service is null.

service is not a ServiceFactory object and is not an instance of all the named
classes in clazzes.

properties contains case variants of the same key name.

SecurityException — If the caller does not have the ServicePermission to
register the service for all the named classes and the Java Runtime Environ-
ment supports permissions.

OSGi Service Platform Release 4 169-332

org.osgi.framework Framework API Version 1.5

6.1.6.18

6.1.6.19

6.1.6.20

6.1.6.21

See Also

clazz
service
properties

[m}

Returns

Throws

See Also

listener

[m}

Throws

listener

[m}

Throws

listener

[m}

I1legalStateException— If this BundleContext is no longer valid.
ServiceRegistration, ServiceFactory

public ServiceRegistration registerService(String clazz, Object service,
Dictionary properties)

The class name under which the service can be located.
The service object or a ServiceFactory object.
The properties for this service.

Registers the specified service object with the specified properties under the
specified class name with the Framework.

This method is otherwise identical to registerService(String[], Object,
Dictionary) and is provided as a convenience when service will only be reg-
istered under a single class name. Note that even in this case the value of the
service’s Constants.OBJECTCLASS property will be an array of string, rather
than just a single string.

A ServiceRegistration object for use by the bundle registering the service to
update the service’s properties or to unregister the service.

I1legalStateException— If this BundleContext is no longer valid.
registerService(String[], Object, Dictionary)

public void removeBundleListener(BundleListener listener)

The BundleListener object to be removed.

Removes the specified BundleListener object from the context bundle’s list
of listeners.

If listener is not contained in the context bundle’s list of listeners, this
method does nothing.

I1legalStateException— If this BundleContext is no longer valid.

SecurityException — Iflistener is a SynchronousBundleListener and the
caller does not have the appropriate AdminPermission[context bundle,LIS-
TENER], and the Java Runtime Environment supports permissions.

public void removeFrameworkListener(FrameworkListener listener)
The FrameworkListener object to be removed.

Removes the specified FrameworkListener object from the context bundle’s
list of listeners.

If listener is not contained in the context bundle’s list of listeners, this
method does nothing.

I1legalStateException— If this BundleContext is no longer valid.
public void removeServiceListener(ServiceListener listener)
The ServiceListener to be removed.

Removes the specified ServiceListener object from the context bundle’s list
of listeners.

If listener is not contained in