
OSGi Working Group
OSGi Compendium

Release 8
October 2021

Copyright © 2000, 2021 Eclipse Foundation

LICENSE

Eclipse Foundation Specification License – v1.0
By using and/or copying this document, or the Eclipse Foundation document from which this statement is
linked, you (the licensee) agree that you have read, understood, and will comply with the following terms and
conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document from
which this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted, pro-
vided that you include the following on ALL copies of the document, or portions thereof, that you use:

• link or URL to the original Eclipse Foundation document.
• All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual represen-

tation is permitted) of the form: "Copyright © [$date-of-document] Eclipse Foundation, Inc. <<url to this li-
cense>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be provided
in any software, documents, or other items or products that you create pursuant to the implementation of the
contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to this li-
cense, except anyone may prepare and distribute derivative works and portions of this document in software
that implements the specification, in supporting materials accompanying such software, and in documentation
of such software, PROVIDED that all such works include the notice below. HOWEVER, the publication of deriva-
tive works of this document for use as a technical specification is expressly prohibited.

The notice is:

"Copyright © [$date-of-document] Eclipse Foundation. This software or document includes material copied from
or derived from [title and URI of the Eclipse Foundation specification document]."

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION
MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT,
OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in advertising
or publicity pertaining to this document or its contents without specific, written prior permission. Title to copy-
right in this document will at all times remain with copyright holders.

Preface

Implementation Requirements
An implementation of a Specification: (i) must fully implement the Specification including all its required inter-
faces and functionality; (ii) must not modify, subset, superset or otherwise extend the OSGi Name Space, or in-
clude any public or protected packages, classes, Java interfaces, fields or methods within the OSGi Name Space
other than those required and authorized by the Specification. An implementation that does not satisfy limi-
tations (i)-(ii) is not considered an implementation of the Specification and must not be described as an imple-
mentation of the Specification. "OSGi Name Space" shall mean the public class or interface declarations whose
names begin with "org.osgi" or any recognized successors or replacements thereof. An implementation of a Spec-
ification must not claim to be a compatible implementation of the Specification unless it passes the Technology
Compatibility Kit ("TCK") for the Specification.

Feedback
This specification can be downloaded from the OSGi Documentation web site:

https://docs.osgi .org/specif icat ion/
Comments about this specification can be raised at:

https://github.com/osgi/osgi/ issues

https://docs.osgi.org/specification/
https://github.com/osgi/osgi/issues

OSGi Compendium Release 8 Page 3

Table of Contents

1 Introduction 19
1.1 Reader Level. 19

1.2 Version Information. 19

1.3 References. 22

1.4 Changes. 22

100 Remote Services 25
100.1 The Fallacies. 25

100.2 Remote Service Properties. 26

100.3 Intents. 30

100.4 General Usage. 32

100.5 Configuration Types. 33

100.6 Security. 36

100.7 References. 37

102 Http Service Specification 39
102.1 Introduction. 39

102.2 Registering Servlets. 40

102.3 Registering Resources. 42

102.4 Mapping HTTP Requests to Servlet and Resource Registrations. 43

102.5 The Default Http Context Object. 44

102.6 Multipurpose Internet Mail Extension (MIME) Types. 45

102.7 Authentication. 46

102.8 Security. 47

102.9 Configuration Properties. 48

102.10 org.osgi.service.http. 48

102.11 References. 53

103 Device Access Specification 55
103.1 Introduction. 55

103.2 Device Services. 57

103.3 Device Category Specifications. 59

103.4 Driver Services. 61

103.5 Driver Locator Service. 67

103.6 The Driver Selector Service. 70

103.7 Device Manager. 70

103.8 Security. 75

103.9 org.osgi.service.device. 76

103.10 References. 80

104 Configuration Admin Service Specification 81

Page 4 OSGi Compendium Release 8

104.1 Introduction. 81

104.2 Configuration Targets. 83

104.3 The Persistent Identity. 84

104.4 The Configuration Object. 87

104.5 Managed Service. 90

104.6 Managed Service Factory. 93

104.7 Configuration Admin Service. 97

104.8 Configuration Events. 102

104.9 Configuration Plugin. 103

104.10 Meta Typing. 105

104.11 Coordinator Support. 106

104.12 Capabilities. 106

104.13 Security. 107

104.14 org.osgi.service.cm. 109

104.15 org.osgi.service.cm.annotations. 129

105 Metatype Service Specification 131
105.1 Introduction. 131

105.2 Attributes Model. 132

105.3 Object Class Definition. 133

105.4 Attribute Definition. 133

105.5 Meta Type Service. 134

105.6 Meta Type Provider Service. 136

105.7 Using the Meta Type Resources. 136

105.8 Meta Type Resource XML Schema. 142

105.9 Meta Type Annotations. 145

105.10 Limitations. 147

105.11 Related Standards. 147

105.12 Capabilities. 147

105.13 Security Considerations. 148

105.14 org.osgi.service.metatype. 148

105.15 org.osgi.service.metatype.annotations. 155

105.16 References. 162

106 PreferencesService Specification 163
106.1 Introduction. 163

106.2 Preferences Interface. 165

106.3 Concurrency. 167

106.4 PreferencesService Interface. 168

106.5 Cleanup. 168

106.6 org.osgi.service.prefs. 168

106.7 References. 178

107 User Admin Service Specification 179

OSGi Compendium Release 8 Page 5

107.1 Introduction. 179

107.2 Authentication. 181

107.3 Authorization. 183

107.4 Repository Maintenance. 185

107.5 User Admin Events. 185

107.6 Security. 186

107.7 Relation to JAAS. 187

107.8 org.osgi.service.useradmin. 187

107.9 References. 198

108 Wire Admin Service Specification 199
108.1 Introduction. 199

108.2 Producer Service. 202

108.3 Consumer Service. 204

108.4 Implementation issues. 206

108.5 Wire Properties. 206

108.6 Composite objects. 208

108.7 Wire Flow Control. 211

108.8 Flavors. 214

108.9 Converters. 214

108.10 Wire Admin Service Implementation. 215

108.11 Wire Admin Listener Service Events. 215

108.12 Connecting External Entities. 217

108.13 Related Standards. 218

108.14 Security. 218

108.15 org.osgi.service.wireadmin. 219

108.16 References. 234

111 Device Service Specification for UPnP™ Technology 235
111.1 Introduction. 235

111.2 UPnP Specifications. 237

111.3 UPnP Device. 238

111.4 Device Category. 239

111.5 UPnPService. 240

111.6 Working With a UPnP Device. 240

111.7 Implementing a UPnP Device. 241

111.8 Event API. 241

111.9 UPnP Events and Event Admin service. 242

111.10 Localization. 243

111.11 Dates and Times. 243

111.12 UPnP Exception. 243

111.13 Configuration. 244

111.14 Networking considerations. 244

111.15 Security. 244

Page 6 OSGi Compendium Release 8

111.16 org.osgi.service.upnp. 244

111.17 References. 259

112 Declarative Services Specification 261
112.1 Introduction. 261

112.2 Components. 264

112.3 References to Services. 267

112.4 Component Description. 280

112.5 Component Life Cycle. 292

112.6 Component Properties. 301

112.7 Deployment. 303

112.8 Annotations. 306

112.9 Service Component Runtime. 314

112.10 Security. 318

112.11 Component Description Schema. 319

112.12 org.osgi.service.component. 322

112.13 org.osgi.service.component.annotations. 329

112.14 org.osgi.service.component.runtime. 343

112.15 org.osgi.service.component.runtime.dto. 345

112.16 org.osgi.service.component.propertytypes. 352

112.17 References. 354

112.18 Changes. 355

113 Event Admin Service Specification 357
113.1 Introduction. 357

113.2 Event Admin Architecture. 358

113.3 The Event. 359

113.4 Event Handler. 360

113.5 Event Publisher. 362

113.6 Specific Events. 363

113.7 Event Admin Service. 365

113.8 Reliability. 367

113.9 Interoperability with Native Applications. 367

113.10 Capabilities. 367

113.11 Security. 368

113.12 org.osgi.service.event. 369

113.13 org.osgi.service.event.annotations. 378

113.14 org.osgi.service.event.propertytypes. 378

117 Dmt Admin Service Specification 381
117.1 Introduction. 381

117.2 The Device Management Model. 384

117.3 The DMT Admin Service. 387

117.4 Manipulating the DMT. 387

OSGi Compendium Release 8 Page 7

117.5 Meta Data. 395

117.6 Plugins. 398

117.7 Sharing the DMT. 404

117.8 Access Control Lists. 411

117.9 Notifications. 415

117.10 Exceptions. 417

117.11 Events. 417

117.12 OSGi Object Modeling. 423

117.13 Security. 431

117.14 org.osgi.service.dmt. 435

117.15 org.osgi.service.dmt.spi. 483

117.16 org.osgi.service.dmt.notification. 497

117.17 org.osgi.service.dmt.notification.spi. 500

117.18 org.osgi.service.dmt.security. 501

117.19 References. 506

122 Remote Service Admin Service Specification 509
122.1 Introduction. 509

122.2 Actors. 512

122.3 Topology Managers. 513

122.4 Endpoint Description. 514

122.5 Remote Service Admin. 518

122.6 Discovery. 523

122.7 Events. 527

122.8 Endpoint Description Extender Format. 529

122.9 Capability Namespaces. 534

122.10 Advice to implementations. 536

122.11 Security. 537

122.12 org.osgi.service.remoteserviceadmin. 538

122.13 org.osgi.service.remoteserviceadmin.namespace. 554

122.14 References. 555

123 JTA Transaction Services Specification 557
123.1 Introduction. 557

123.2 JTA Overview. 559

123.3 Application. 561

123.4 Resource Managers. 564

123.5 The JTA Provider. 564

123.6 Life Cycle. 565

123.7 Security. 566

123.8 References. 566

125 Data Service Specification for JDBC™ Technology 567
125.1 Introduction. 567

Page 8 OSGi Compendium Release 8

125.2 Database Driver. 568

125.3 Applications. 569

125.4 Security. 571

125.5 org.osgi.service.jdbc. 571

125.6 References. 574

126 JNDI Services Specification 575
126.1 Introduction. 575

126.2 JNDI Overview. 578

126.3 JNDI Context Manager Service. 580

126.4 JNDI Provider Admin service. 583

126.5 JNDI Providers. 583

126.6 OSGi URL Scheme. 586

126.7 Traditional Client Model. 588

126.8 Security. 590

126.9 org.osgi.service.jndi. 591

126.10 References. 593

127 JPA Service Specification 595
127.1 Introduction. 595

127.2 JPA Overview. 597

127.3 Bundles with Persistence. 600

127.4 Extending a Persistence Bundle. 603

127.5 JPA Provider. 607

127.6 Static Access. 609

127.7 Capabilities. 610

127.8 Security. 611

127.9 org.osgi.service.jpa. 612

127.10 org.osgi.service.jpa.annotations. 613

127.11 References. 614

128 Web Applications Specification 615
128.1 Introduction. 615

128.2 Web Container. 617

128.3 Web Application Bundle. 618

128.4 Web URL Handler. 622

128.5 Events. 625

128.6 Interacting with the OSGi Environment. 626

128.7 Security. 627

128.8 References. 627

130 Coordinator Service Specification 629
130.1 Introduction. 629

130.2 Usage. 630

OSGi Compendium Release 8 Page 9

130.3 Coordinator Service. 639

130.4 Security. 644

130.5 org.osgi.service.coordinator. 645

131 TR069 Connector Service Specification 657
131.1 Introduction. 657

131.2 TR-069 Protocol Primer. 658

131.3 TR069 Connector. 663

131.4 RPCs. 673

131.5 Error and Fault Codes. 676

131.6 Managing the RMT. 677

131.7 Native TR-069 Object Models. 678

131.8 org.osgi.service.tr069todmt. 679

131.9 References. 686

132 Repository Service Specification 687
132.1 Introduction. 687

132.2 Using a Repository. 688

132.3 Repository. 692

132.4 osgi.content Namespace. 692

132.5 XML Repository Format. 693

132.6 XML Repository Schema. 697

132.7 Capabilities. 700

132.8 Security. 700

132.9 org.osgi.service.repository. 701

132.10 References. 707

133 Service Loader Mediator Specification 709
133.1 Introduction. 709

133.2 Java Service Loader API. 711

133.3 Consumers. 712

133.4 Service Provider Bundles. 714

133.5 Service Loader Mediator. 716

133.6 osgi.serviceloader Namespace. 719

133.7 Use of the osgi.extender Namespace. 719

133.8 Security. 720

133.9 org.osgi.service.serviceloader. 720

133.10 References. 721

135 Common Namespaces Specification 723
135.1 Introduction. 723

135.2 osgi.extender Namespace. 723

135.3 osgi.contract Namespace. 725

135.4 osgi.service Namespace. 727

Page 10 OSGi Compendium Release 8

135.5 osgi.implementation Namespace. 727

135.6 osgi.unresolvable Namespace. 728

135.7 org.osgi.namespace.contract. 728

135.8 org.osgi.namespace.extender. 729

135.9 org.osgi.namespace.service. 730

135.10 org.osgi.namespace.implementation. 730

135.11 org.osgi.namespace.unresolvable. 731

135.12 References. 732

137 REST Management Service Specification 733
137.1 Introduction. 733

137.2 Interacting with the REST Management Service. 734

137.3 Resources. 736

137.4 Representations. 741

137.5 Clients. 746

137.6 Extending the REST Management Service. 747

137.7 XML Schema. 748

137.8 Capabilities. 752

137.9 Security. 752

137.10 org.osgi.service.rest. 752

137.11 org.osgi.service.rest.client. 753

137.12 JavaScript Client API. 759

137.13 References. 762

138 Asynchronous Service Specification 763
138.1 Introduction. 763

138.2 Usage. 764

138.3 Async Service. 767

138.4 The Async Mediator. 768

138.5 Fire and Forget Invocations. 769

138.6 Delegating to Asynchronous Implementations. 770

138.7 Capabilities. 771

138.8 Security. 771

138.9 org.osgi.service.async. 772

138.10 org.osgi.service.async.delegate. 774

139 Device Service Specification for EnOcean™ Technology 777
139.1 Introduction. 777

139.2 Essentials. 777

139.3 Entities. 778

139.4 Operation Summary. 779

139.5 EnOcean Base Driver. 781

139.6 EnOcean Host. 781

139.7 EnOcean Device. 782

OSGi Compendium Release 8 Page 11

139.8 EnOcean Messages. 783

139.9 EnOcean Message Description. 784

139.10 EnOcean Channel. 784

139.11 EnOcean Channel Description. 785

139.12 EnOcean Remote Management. 786

139.13 Working With an EnOcean Device. 787

139.14 Event API. 787

139.15 EnOcean Exceptions. 788

139.16 Security. 788

139.17 org.osgi.service.enocean. 788

139.18 org.osgi.service.enocean.descriptions. 796

139.19 References. 799

140 Http Whiteboard Specification 801
140.1 Introduction. 801

140.2 The Servlet Context. 802

140.3 Common Whiteboard Properties. 808

140.4 Registering Servlets. 808

140.5 Registering Servlet Filters. 813

140.6 Registering Resources. 816

140.7 Registering Listeners. 817

140.8 Life Cycle. 818

140.9 The Http Service Runtime Service. 819

140.10 Integration with Http Service Contexts. 821

140.11 Configuration Properties. 822

140.12 Capabilities. 822

140.13 Security. 823

140.14 org.osgi.service.http.context. 824

140.15 org.osgi.service.http.runtime. 828

140.16 org.osgi.service.http.runtime.dto. 829

140.17 org.osgi.service.http.whiteboard. 841

140.18 org.osgi.service.http.whiteboard.annotations. 848

140.19 org.osgi.service.http.whiteboard.propertytypes. 848

140.20 References. 857

141 Device Abstraction Layer Specification 859
141.1 Introduction. 859

141.2 Device Category. 860

141.3 Device Service. 860

141.4 Function Service. 870

141.5 Security. 874

141.6 org.osgi.service.dal. 875

141.7 References. 900

Page 12 OSGi Compendium Release 8

142 Device Abstraction Layer Functions Specification 901
142.1 Introduction. 901

142.2 Functions. 901

142.3 Functions Data. 906

142.4 org.osgi.service.dal.functions. 908

142.5 org.osgi.service.dal.functions.data. 919

143 Network Interface Information Service Specification 929
143.1 Introduction. 929

143.2 NetworkAdapter Service. 930

143.3 NetworkAddress Service. 932

143.4 A Controller Example. 933

143.5 Security. 934

143.6 org.osgi.service.networkadapter. 934

143.7 References. 940

144 Resource Monitoring Specification 941
144.1 Introduction. 941

144.2 Essentials. 941

144.3 Entities. 941

144.4 Operation Summary. 942

144.5 Resource Context. 943

144.6 System Resource Context. 943

144.7 Framework Resource Context. 943

144.8 Resource Monitor. 944

144.9 Resource Monitor Factory. 944

144.10 CPU Monitor. 945

144.11 Memory Monitor. 945

144.12 Socket Monitor. 945

144.13 Disk Storage Monitor. 946

144.14 Thread Monitor. 946

144.15 Resource Listener. 946

144.16 Resource Event. 949

144.17 Resource Context Listener. 950

144.18 Resource Context Event. 950

144.19 Resource Monitoring Service. 951

144.20 Resource Monitoring Client. 951

144.21 Security. 951

144.22 org.osgi.service.resourcemonitoring. 951

144.23 org.osgi.service.resourcemonitoring.monitor. 963

144.24 References. 965

145 USB Information Device Category Specification 967
145.1 Introduction. 967

OSGi Compendium Release 8 Page 13

145.2 USBInfoDevice Service. 968

145.3 Security. 970

145.4 org.osgi.service.usbinfo. 971

145.5 References. 974

146 Serial Device Service Specification 975
146.1 Introduction. 975

146.2 SerialDevice Service. 976

146.3 SerialEventListener Service. 977

146.4 USB Serial Example. 977

146.5 Security. 977

146.6 org.osgi.service.serial. 977

147 Transaction Control Service Specification 983
147.1 Introduction. 983

147.2 Usage. 984

147.3 Transaction Control Service. 987

147.4 The TransactionContext. 992

147.5 Resource Providers. 996

147.6 Transaction Recovery. 1002

147.7 Capabilities. 1004

147.8 Security. 1004

147.9 org.osgi.service.transaction.control. 1004

147.10 org.osgi.service.transaction.control.jdbc. 1014

147.11 org.osgi.service.transaction.control.jpa. 1016

147.12 org.osgi.service.transaction.control.recovery. 1019

148 Cluster Information Specification 1021
148.1 Introduction. 1021

148.2 OSGi frameworks in a cluster. 1022

148.3 Node Status Service. 1023

148.4 Framework Node Status Service. 1025

148.5 Application-specific Node Status metadata. 1026

148.6 Security. 1026

148.7 org.osgi.service.clusterinfo. 1027

148.8 org.osgi.service.clusterinfo.dto. 1031

149 Device Service Specification for ZigBee™ Technology 1035
149.1 Introduction. 1035

149.2 Essentials. 1035

149.3 Entities. 1035

149.4 Operation Summary. 1037

149.5 ZigBee Base Driver. 1039

149.6 ZigBee Node. 1040

Page 14 OSGi Compendium Release 8

149.7 ZigBee Endpoint. 1042

149.8 ZigBee Device Description. 1043

149.9 ZigBee Device Description Set. 1043

149.10 ZCL Cluster. 1044

149.11 ZCL Cluster Description. 1044

149.12 ZCL Global Cluster Description. 1044

149.13 ZigBee Command Description. 1045

149.14 ZigBee Attribute. 1045

149.15 ZigBee Attribute Description. 1045

149.16 ZCL Data Type Description. 1045

149.17 ZCL Simple Type Description. 1045

149.18 Promise and Response Stream objects. 1046

149.19 ZigBee Data Types. 1046

149.20 Implementing a ZigBee Endpoint. 1048

149.21 Event API. 1049

149.22 Monitoring Events and Sending Commands. 1050

149.23 ZCL Exception. 1052

149.24 ZDP Exception. 1052

149.25 APS Exception. 1052

149.26 ZigBee Exception. 1052

149.27 ZCL Frame. 1052

149.28 ZigBee Group. 1052

149.29 ZigBee Networking. 1053

149.30 Security. 1054

149.31 org.osgi.service.zigbee. 1054

149.32 org.osgi.service.zigbee.descriptions. 1092

149.33 org.osgi.service.zigbee.descriptors. 1097

149.34 org.osgi.service.zigbee.types. 1104

149.35 References. 1162

150 Configurator Specification 1163
150.1 Introduction. 1163

150.2 Entities. 1163

150.3 Configuration Resources. 1164

150.4 Bundle Configuration Resources. 1169

150.5 Initial Configurations. 1170

150.6 Life Cycle. 1170

150.7 Grouping and Coordinations. 1171

150.8 Security. 1171

150.9 Capabilities. 1172

150.10 osgi.configuration Namespace. 1173

150.11 Configuration Resources in a Repository. 1173

150.12 org.osgi.service.configurator. 1173

OSGi Compendium Release 8 Page 15

150.13 org.osgi.service.configurator.annotations. 1175

150.14 org.osgi.service.configurator.namespace. 1176

150.15 References. 1176

151 JAX-RS Whiteboard Specification 1177
151.1 Introduction. 1177

151.2 The JAX-RS Whiteboard. 1178

151.3 Common Whiteboard Properties. 1180

151.4 Registering JAX-RS Resources. 1182

151.5 Registering JAX-RS Extensions. 1186

151.6 Registering JAX-RS Applications. 1190

151.7 Advertising JAX-RS Endpoints. 1192

151.8 Whiteboard Error Handling. 1193

151.9 The JAX-RS Client API. 1194

151.10 Portability and Interoperability. 1196

151.11 Capabilities. 1198

151.12 Security. 1199

151.13 org.osgi.service.jaxrs.client. 1199

151.14 org.osgi.service.jaxrs.runtime. 1201

151.15 org.osgi.service.jaxrs.runtime.dto. 1203

151.16 org.osgi.service.jaxrs.whiteboard. 1208

151.17 org.osgi.service.jaxrs.whiteboard.annotations. 1210

151.18 org.osgi.service.jaxrs.whiteboard.propertytypes. 1211

151.19 References. 1215

152 CDI Integration Specification 1217
152.1 Introduction. 1217

152.2 Components. 1220

152.3 Component Scope. 1221

152.4 Container Component. 1224

152.5 Standard Definitions. 1224

152.6 Single Component. 1225

152.7 Factory Component. 1227

152.8 Component Properties. 1229

152.9 Bean Property Types. 1231

152.10 Providing Services. 1235

152.11 Component Property Injection Points. 1239

152.12 Reference Injection Points. 1240

152.13 Interacting with Service Events. 1247

152.14 CDI Component Runtime. 1248

152.15 Capabilities. 1251

152.16 Relationship to CDI features. 1253

152.17 Security. 1256

152.18 org.osgi.service.cdi. 1256

Page 16 OSGi Compendium Release 8

152.19 org.osgi.service.cdi.annotations. 1260

152.20 org.osgi.service.cdi.propertytypes. 1269

152.21 org.osgi.service.cdi.reference. 1272

152.22 org.osgi.service.cdi.runtime. 1276

152.23 org.osgi.service.cdi.runtime.dto. 1277

152.24 org.osgi.service.cdi.runtime.dto.template. 1281

152.25 References. 1285

153 Service Layer API for oneM2M™ 1287
153.1 Introduction of oneM2M. 1287

153.2 Application Portability Problem of oneM2M. 1287

153.3 Introduction of Service Layer API for oneM2M. 1287

153.4 Essentials. 1288

153.5 Entities. 1288

153.6 oneM2M ServiceLayer. 1289

153.7 NotificationListener. 1291

153.8 DTO. 1292

153.9 Security. 1292

153.10 org.osgi.service.onem2m. 1293

153.11 org.osgi.service.onem2m.dto. 1295

153.12 References. 1320

154 Residential Device Management Tree Specification 1321
154.1 Introduction. 1321

154.2 The Residential Management Tree. 1322

154.3 Managing Bundles. 1322

154.4 Filtering. 1326

154.5 Log Access. 1327

154.6 osgi.wiring.rmt.service Namespace. 1328

154.7 Tree Summary. 1328

154.8 org.osgi.dmt.residential. 1330

154.9 org.osgi.dmt.service.log. 1341

155 TR-157 Amendment 3 Software Module Guidelines 1343
155.1 Management Agent. 1343

155.2 Parameter Mapping. 1344

155.3 References. 1350

157 Typed Event Service Specification 1351
157.1 Introduction. 1351

157.2 Events. 1352

157.3 Publishing Events. 1354

157.4 Receiving Events. 1356

157.5 The Typed Event Bus Service. 1361

OSGi Compendium Release 8 Page 17

157.6 Monitoring Events. 1361

157.7 Capabilities. 1361

157.8 Security. 1362

157.9 org.osgi.service.typedevent. 1363

157.10 org.osgi.service.typedevent.annotations. 1367

157.11 org.osgi.service.typedevent.monitor. 1368

157.12 org.osgi.service.typedevent.propertytypes. 1369

158 Log Stream Provider Service Specification 1371
158.1 Introduction. 1371

158.2 Log Stream Provider. 1372

158.3 Capabilities. 1372

158.4 Security. 1372

158.5 org.osgi.service.log.stream. 1372

158.6 References. 1373

158.7 Changes. 1374

159 Feature Service Specification 1375
159.1 Introduction. 1375

159.2 Feature. 1376

159.3 Comments. 1378

159.4 Bundles. 1378

159.5 Configurations. 1380

159.6 Variables. 1380

159.7 Extensions. 1381

159.8 Framework Launching Properties. 1383

159.9 Resource Versioning. 1384

159.10 Capabilities. 1384

159.11 org.osgi.service.feature. 1384

159.12 org.osgi.service.feature.annotation. 1396

159.13 References. 1396

702 XML Parser Service Specification 1397
702.1 Introduction. 1397

702.2 JAXP. 1398

702.3 XML Parser service. 1399

702.4 Properties. 1399

702.5 Getting a Parser Factory. 1399

702.6 Adapting a JAXP Parser to OSGi. 1400

702.7 Usage of JAXP. 1401

702.8 Security. 1402

702.9 org.osgi.util.xml. 1402

702.10 References. 1405

Page 18 OSGi Compendium Release 8

705 Promises Specification 1407
705.1 Introduction. 1407

705.2 Promise. 1408

705.3 Deferred. 1408

705.4 Callbacks. 1409

705.5 Chaining Promises. 1410

705.6 Monad. 1411

705.7 Timing. 1412

705.8 Functional Interfaces. 1413

705.9 Utility Methods. 1413

705.10 Security. 1413

705.11 org.osgi.util.promise. 1413

705.12 org.osgi.util.function. 1428

705.13 References. 1434

705.14 Changes. 1434

706 Push Stream Specification 1435
706.1 Introduction. 1435

706.2 Asynchronous Event Streams. 1436

706.3 The Push Stream. 1437

706.4 The Push Stream Provider. 1446

706.5 Simple Push Event Sources. 1447

706.6 Security. 1448

706.7 org.osgi.util.pushstream. 1448

706.8 References. 1468

707 Converter Specification 1469
707.1 Introduction. 1469

707.2 Entities. 1469

707.3 Standard Converter. 1470

707.4 Conversions. 1470

707.5 Repeated or Deferred Conversions. 1481

707.6 Customizing converters. 1481

707.7 Conversion failures. 1482

707.8 Security. 1483

707.9 org.osgi.util.converter. 1483

707.10 References. 1490

Introduction Reader Level

OSGi Compendium Release 8 Page 19

1 Introduction
This compendium contains the specifications of all current OSGi services.

1.1 Reader Level
This specification is written for the following audiences:

• Application developers
• Framework and system service developers (system developers)
• Architects

This specification assumes that the reader has at least one year of practical experience in writing Ja-
va programs. Experience with embedded systems and server-environments is a plus. Application de-
velopers must be aware that the OSGi environment is significantly more dynamic than traditional
desktop or server environments.

System developers require a very deep understanding of Java. At least three years of Java coding ex-
perience in a system environment is recommended. A Framework implementation will use areas
of Java that are not normally encountered in traditional applications. Detailed understanding is re-
quired of class loaders, garbage collection, Java 2 security, and Java native library loading.

Architects should focus on the introduction of each subject. This introduction contains a general
overview of the subject, the requirements that influenced its design, and a short description of its
operation as well as the entities that are used. The introductory sections require knowledge of Java
concepts like classes and interfaces, but should not require coding experience.

Most of these specifications are equally applicable to application developers and system developers.

1.2 Version Information
This document is the Compendium Specification for the OSGi Compendium Release 8.

1.2.1 OSGi Core Release 8
This specification is based on OSGi Core Release 8. This specification can be downloaded from:

https://docs.osgi.org/specification/

1.2.2 Component Versions
Components in this specification have their own specification version, independent of this speci-
fication. The following table summarizes the packages and specification versions for the different
subjects.

Table 1.1 Packages and versions

Item Package Version
100 Remote Services - Version 1.1
102 Http Service Specification org.osgi .service.http Version 1.2
103 Device Access Specification org.osgi .service.device Version 1.1

https://docs.osgi.org/specification/

Version Information Introduction

Page 20 OSGi Compendium Release 8

Item Package Version
104 Configuration Admin Service Specification org.osgi .service.cm

org.osgi .service.cm.annotations

Version 1.6

105 Metatype Service Specification org.osgi .service.metatype

org.osgi .service.metatype.annotations

Version 1.4

106 PreferencesService Specification org.osgi .service.prefs Version 1.1
107 User Admin Service Specification org.osgi .service.useradmin Version 1.1
108 Wire Admin Service Specification org.osgi .service.wireadmin Version 1.0
111 Device Service Specification for UPnP™ Tech-
nology

org.osgi .service.upnp Version 1.2

112 Declarative Services Specification org.osgi .service.component

org.osgi .service.component.annotations

org.osgi .service.component.propertytypes

org.osgi .service.component.runtime

org.osgi .service.component.runtime.dto

Version 1.5

113 Event Admin Service Specification org.osgi .service.event

org.osgi .service.event.annotations

org.osgi .service.event.propertytypes

Version 1.4

117 Dmt Admin Service Specification org.osgi .service.dmt

org.osgi .service.dmt.noti f icat ion

org.osgi .service.dmt.noti f icat ion.spi

org.osgi .service.dmt.security

org.osgi .service.dmt.spi

Version 2.0

122 Remote Service Admin Service Specification org.osgi .service.remoteserviceadmin

org.osgi .service.remoteserviceadmin.namespace

Version 1.1

123 JTA Transaction Services Specification - Version 1.0
125 Data Service Specification for JDBC™ Technol-
ogy

org.osgi .service. jdbc Version 1.0

126 JNDI Services Specification org.osgi .service. jndi Version 1.0
127 JPA Service Specification org.osgi .service. jpa

org.osgi .service. jpa.annotations

Version 1.1

128 Web Applications Specification - Version 1.0
130 Coordinator Service Specification org.osgi .service.coordinator Version 1.0
131 TR069 Connector Service Specification org.osgi .service.tr069todmt Version 1.0
132 Repository Service Specification org.osgi .service.repository Version 1.1
133 Service Loader Mediator Specification org.osgi .service.serviceloader Version 1.0
135 Common Namespaces Specification org.osgi .namespace.contract

org.osgi .namespace.extender

org.osgi .namespace. implementation

org.osgi .namespace.service

org.osgi .namespace.unresolvable

Version 1.2

Introduction Version Information

OSGi Compendium Release 8 Page 21

Item Package Version
137 REST Management Service Specification org.osgi .service.rest

org.osgi .service.rest .c l ient

Version 1.0

138 Asynchronous Service Specification org.osgi .service.async

org.osgi .service.async.delegate

Version 1.0

139 Device Service Specification for EnOcean™
Technology

org.osgi .service.enocean

org.osgi .service.enocean.descr ipt ions

Version 1.0

140 Http Whiteboard Specification org.osgi .service.http.whiteboard

org.osgi .service.http.whiteboard.annotations

org.osgi .service.http.whiteboard.propertytypes

org.osgi .service.http.context

org.osgi .service.http.runtime

org.osgi .service.http.runtime.dto

Version 1.1

141 Device Abstraction Layer Specification org.osgi .service.dal Version 1.0
142 Device Abstraction Layer Functions Specifica-
tion

org.osgi .service.dal .functions

org.osgi .service.dal .functions.data

Version 1.0

143 Network Interface Information Service Specifi-
cation

org.osgi .service.networkadapter Version 1.0

144 Resource Monitoring Specification org.osgi .service.resourcemonitor ing

org.osgi .service.resourcemonitor ing.monitor

Version 1.0

145 USB Information Device Category Specification org.osgi .service.usbinfo Version 1.0
146 Serial Device Service Specification org.osgi .service.ser ia l Version 1.0
147 Transaction Control Service Specification org.osgi .service.transact ion.control

org.osgi .service.transact ion.control . jdbc

org.osgi .service.transact ion.control . jpa

org.osgi .service.transact ion.control . recovery

Version 1.0

148 Cluster Information Specification org.osgi .service.c luster info

org.osgi .service.c luster info.dto

Version 1.0

149 Device Service Specification for ZigBee™ Tech-
nology

org.osgi .service.z igbee

org.osgi .service.z igbee.descr ipt ions

org.osgi .service.z igbee.descr iptors

org.osgi .service.z igbee.types

Version 1.0

150 Configurator Specification org.osgi .service.configurator

org.osgi .service.configurator.annotations

org.osgi .service.configurator.namespace

Version 1.0

151 JAX-RS Whiteboard Specification org.osgi .service. jaxrs .runtime

org.osgi .service. jaxrs .runtime.dto

org.osgi .service. jaxrs .whiteboard

org.osgi .service. jaxrs .whiteboard.annotations

org.osgi .service. jaxrs .whiteboard.propertytypes

org.osgi .service. jaxrs .c l ient

Version 1.0

References Introduction

Page 22 OSGi Compendium Release 8

Item Package Version
152 CDI Integration Specification org.osgi .service.cdi

org.osgi .service.cdi .annotat ions

org.osgi .service.cdi .propertytypes

org.osgi .service.cdi . reference

org.osgi .service.cdi . runtime

org.osgi .service.cdi . runtime.dto

org.osgi .service.cdi . runtime.dto.template

Version 1.0

153 Service Layer API for oneM2M™ org.osgi .service.onem2m

org.osgi .service.onem2m.dto

Version 1.0

154 Residential Device Management Tree Specifica-
tion

org.osgi .dmt.residential1 Version 1.0

155 TR-157 Amendment 3 Software Module Guide-
lines

- Version 1.0

157 Typed Event Service Specification org.osgi .service.typedevent

org.osgi .service.typedevent.annotations

org.osgi .service.typedevent.monitor

org.osgi .service.typedevent.propertytypes

Version 1.0

158 Log Stream Provider Service Specification org.osgi .service. log.stream Version 1.0
159 Feature Service Specification org.osgi .service.feature Version 1.0
702 XML Parser Service Specification org.osgi .ut i l .xml Version 1.0
705 Promises Specification org.osgi .ut i l .promise

org.osgi .ut i l .function

Version 1.2

706 Push Stream Specification org.osgi .ut i l .pushstream Version 1.0
707 Converter Specification org.osgi .ut i l .converter Version 1.0

When a component is represented in a bundle, a version attribute is needed in the declaration of the
Import-Package or Export-Package manifest headers.

1.2.3 Notes

1. This is not a Java package but contains DMT Types.

1.3 References

[1] OSGi Specifications
https://docs.osgi.org/specification/

1.4 Changes
• Added CDI Integration Specification from the OSGi Enterprise Specification.
• Added Service Layer API for oneM2M™.
• Added Residential Device Management Tree Specification from the OSGi Residential Specification as

Chapter 154.

https://docs.osgi.org/specification/

Introduction Changes

OSGi Compendium Release 8 Page 23

• Added TR-157 Amendment 3 Software Module Guidelines from the OSGi Residential Specification as
Chapter 155.

• Added TR069 Connector Service Specification from the OSGi Residential Specification.
• Added Device Service Specification for EnOcean™ Technology from the OSGi Residential Specifica-

tion.
• Added Device Abstraction Layer Specification from the OSGi Residential Specification.
• Added Device Abstraction Layer Functions Specification from the OSGi Residential Specification.
• Added Network Interface Information Service Specification from the OSGi Residential Specification.
• Added Resource Monitoring Specification from the OSGi Residential Specification.
• Added USB Information Device Category Specification from the OSGi Residential Specification.
• Added Serial Device Service Specification from the OSGi Residential Specification.
• Added Device Service Specification for ZigBee™ Technology from the OSGi Residential Specification.
• Moved Log Service to the Core specification. Log Stream Provider Service Specification was separat-

ed out of the Log Service specification into a new chapter in this specification.
• Added Feature Service Specification as Chapter 159.

Changes Introduction

Page 24 OSGi Compendium Release 8

Remote Services Version 1.1 The Fallacies

OSGi Compendium Release 8 Page 25

100 Remote Services

Version 1.1
The OSGi framework provides a local service registry for bundles to communicate through service
objects, where a service is an object that one bundle registers and another bundle gets. A distribution
provider can use this loose coupling between bundles to export a registered service by creating an
endpoint. Vice versa, the distribution provider can create a proxy that accesses an endpoint and then
registers this proxy as an imported service. A Framework can contain multiple distribution providers
simultaneously, each independently importing and exporting services.

An endpoint is a communications access mechanisms to a service in another framework, a (web)
service, another process, or a queue or topic destination, etc., requiring some protocol for commu-
nications. The constellation of the mapping between services and endpoints as well as their com-
munication characteristics is called the topology. A common case for distribution providers is to be
present on multiple frameworks importing and exporting services; effectively distributing the ser-
vice registry.

The local architecture for remote services is depicted in Figure 100.1 on page 25.

Figure 100.1 Architecture

Service Consumer
Impl

Service Producer
Impl

service.imported

service.exported.interfaces

=...

=*

Distribution
Provider Impl

imported
service

exported
serviceto an endpoint endpoint

Local services imply in-VM call semantics. Many of these semantics cannot be supported over a
communications connection, or require special configuration of the communications connection. It
is therefore necessary to define a mechanism for bundles to convey their assumptions and require-
ments to the distribution provider. This chapter defines a number of service properties that a distrib-
ution provider can use to establish a topology while adhering to the given constraints.

100.1 The Fallacies
General abstractions for distributed systems have been tried before and often failed. Well known are
the fallacies described in [1] The Fallacies of Distributed Computing Explained:

• The network is reliable

Remote Service Properties Remote Services Version 1.1

Page 26 OSGi Compendium Release 8

• Latency is zero
• Bandwidth is infinite
• The network is secure
• Topology doesn't change
• There is one administrator
• Transport cost is zero
• The network is homogeneous

Most fallacies represent non-functional trade-offs that should be considered by administrators, their
decisions can then be reflected in the topology. For example, in certain cases limited bandwidth is
acceptable and the latency in a datacenter is near zero. However, the reliability fallacy is the hard-
est because it intrudes into the application code. If a communication channel is lost, the application
code needs to take specific actions to recover from this failure.

This reliability aspect is also addressed with OSGi services because services are dynamic. Failures in
the communications layer can be mapped to the unregistration of the imported service. OSGi bun-
dles are already well aware of these dynamics, and a number of programming models have been de-
veloped to minimize the complexity of writing these dynamic applications.

100.2 Remote Service Properties
This section introduces a number of properties that participating bundles can use to convey infor-
mation to the distribution provider according to this Remote Service specification.

The following table lists the properties that must be listed by a distribution provider.

Table 100.1 Remote Service Properties registered by the Distribution Provider

Service Property Name Type Description
remote.configs.supported Str ing+ Registered by the distribution provider on one of

its services to indicate the supported configuration
types. See Configuration Types on page 33 and De-
pendencies on page 36.

remote. intents.supported Str ing+ Registered by the distribution provider on one of its
services to indicate the vocabulary of implemented
intents. See Dependencies on page 36.

service. imported * Must be set by a distribution provider to any value
when it registers the endpoint proxy as an imported
service. A bundle can use this property to filter out
imported services.

service. imported.configs Str ing+ The configuration information used to import this
service, as described in service.exported.configs .
Any associated properties for this configuration
types must be properly mapped to the importing
system. For example, a URL in these properties must
point to a valid resource when used in the importing
framework.

If multiple configuration types are listed in this
property, then they must be synonyms for exactly
the same remote endpoint that is used to export this
service.

Remote Services Version 1.1 Remote Service Properties

OSGi Compendium Release 8 Page 27

Service Property Name Type Description
service. intents Str ing+ A distribution provider must use this property to

convey the combined intents of:

• The exporting service, and
• The intents that the exporting distribution

provider adds.
• The intents that the importing distribution

provider adds.

The properties for bundles providing services to be exported or require services to be imported are
listed alphabetically in the following table. The scenarios that these properties are used in are dis-
cussed in later sections.

Table 100.2 Remote Service Properties registered by Exporting bundles

Service Property Name Type Description
service.exported.configs Str ing+ A list of configuration types that should be used to

export the service. Each configuration type repre-
sents the configuration parameters for one or more
Endpoints. A distribution provider should create
endpoints for each configuration type that it sup-
ports. See Configuration Types on page 33 for
more details. If this property is not set or empty a
distribution provider is free to choose a default con-
figuration type for the service.

service.exported. intents Str ing+ A list of intents that the distribution provider must
implement to distribute the service. Intents listed in
this property are reserved for intents that are critical
for the code to function correctly, for example, order-
ing of messages. These intents should not be config-
urable. For more information about intents, see In-
tents on page 30. This property is optional.

service.exported. intents.extra Str ing+ This property is merged with the
service.exported. intents property before the dis-
tribution provider interprets the listed intents; it
has therefore the same semantics but the proper-
ty should be configurable so the administrator can
choose the intents based on the topology. Bundles
should therefore make this property configurable,
for example through the Configuration Admin ser-
vice. See Intents on page 30. This property is op-
tional. If absent or empty no specific intents are re-
quired.

service.exported. interfaces Str ing+ Setting this property marks this service for export. It
defines the interfaces under which this service can
be exported. This list must be a subset of the types
listed in the objectClass service property. The single
value of an asterisk ('* ' \u002A) indicates all inter-
faces in the registration's objectClass property and
ignore the classes. It is strongly recommended to on-
ly export interfaces and not concrete classes due to
the complexity of creating proxies for some type of
concrete classes. See Registering a Service for Export on
page 28.

Remote Service Properties Remote Services Version 1.1

Page 28 OSGi Compendium Release 8

Service Property Name Type Description
service. intents Str ing+ A list of intents that this service implements. A dis-

tribution provider must use this property to convey
the combined intents of:

• The exporting service, and
• The intents that the exporting distribution

provider adds.
• The intents that the importing distribution

provider adds.

To export a service, a distribution provider must ex-
pand any qualified intents to include those support-
ed by the endpoint. This can be a subset of all known
qualified intents. See Intents on page 30. This
property is optional for registering bundles.

service.pid Str ing+ Services that are exported should have a service.pid
property. The service.pid (PID) is a unique persistent
identity for the service, the PID is defined in Persis-
tent Identifier (PID) of OSGi Core Release 8. This prop-
erty enables a distribution provider to associate per-
sistent proprietary data with a service registration.

The properties and their treatment by the distribution provider is depicted in Figure 100.2.

Figure 100.2 Distribution Service Properties

service.imported=...

<other service properties>

service.exported.interfaces

service.exported.intents.extra

service.exported.intents

service.intents

service.intents

<other service properties>

service.exported.configs

importexport
Framework A Framework B

Distribution Provider

remote.intents.supported

remote.configs.supported

objectClass

service.imported.configs

endpoint

1 *

100.2.1 Registering a Service for Export
A distribution provider should create one or more endpoints for an exported service when the fol-
lowing conditions are met:

• The service has the service property service.exported. interfaces set.
• All intents listed in service.exported. intents , service.exported. intents.extra and service. intents

are part of the distributed provider's vocabulary
• None of the intents are mutually exclusive.
• The distribution provider can use the configuration types in service.exported.configs to create

one or more endpoints.

Remote Services Version 1.1 Remote Service Properties

OSGi Compendium Release 8 Page 29

The endpoint must at least implement all the intents that are listed in the service.exported. intents
and service.exported. intents.extra properties.

The configuration types listed in the service.exported.configs can contain alternatives and/or syn-
onyms. Alternatives describe different endpoints for the same service while a synonym describes a
different configuration type for the same endpoint.

A distribution provider should create endpoints for each of the configuration types it supports;
these configuration types should be alternatives. Synonyms are allowed.

If no configuration types are recognized, the distribution provider should create an endpoint with a
default configuration type except when one of the listed configuration types is <<nodefault>> .

For more information about the configuration types, see further Configuration Types on page 33.

100.2.2 Getting an Imported Service
An imported service must be a normal service, there are therefore no special rules for getting it.
An imported service has a number of additional properties that must be set by the distribution
provider.

If the endpoint for an exported service is imported as an OSGi service in another framework, then
the following properties must be treated as special.

• service. imported - Must be set to some value.
• service. intents - This must be the combination of the following:

• The service. intents property on the exported service
• The service.exported. intents and service.exported. intents.extra properties on the exported

service
• Any additional intents implemented by the distribution providers on both sides.

• service. imported.configs - Contains the configuration types that can be used to import this ser-
vice. The types listed in this property must be synonymous, that is, they must refer to exactly the
same endpoint that is exporting the service. See Configuration Types on page 33.

• service.exported.* - Properties starting with service.exported. must not be set on the imported
service.

• service.exported. interfaces - This property must not be set, its content is reflected in the object-
Class property.

All other public service properties (not starting with a full stop ('.' \u002E)) must be listed on the im-
ported service if they use the basic service property types. If the service property cannot be commu-
nicated because, for example, it uses a type that can not be marshaled by the distribution provider
then the distribution provider must ignore this property.

The service. imported property indicates that a service is an imported service. If this service proper-
ty is set to any value, then the imported service is a proxy for an endpoint. If a bundle wants to filter
out imported services, then it can add the following filter:

(&(!(service.imported=*)) <previousfilter>)

Distribution providers can also use the Service Hook Service Specification of OSGi Core Release 8 to hide
services from specific bundles.

100.2.3 On Demand Import
The Service Hooks Service Specification of OSGi Core Release 8, allows a distribution provider to de-
tect when a bundle is listening for specific services. Bundles can request imported services with spe-
cific intents by building an appropriate filter. The distribution provider can use this information to
import a service on demand.

Intents Remote Services Version 1.1

Page 30 OSGi Compendium Release 8

The following example creates a Service Tracker that is interested in an imported service.

Filter f = context.createFilter(
 "(&(objectClasss=com.acme.Foo)"
 + "(service.intents=confidentiality))"
);
ServiceTracker tracker =
 new ServiceTracker(context, f, null);
tracker.open();

Such a Service Tracker will inform the Listener Hook and will give it the filter expression. If the dis-
tribution provider has registered such a hook, it will be informed about the need for an imported
com.acme.Foo service that has a confidential i ty intent. It can then use some proprietary means to
find a service to import that matches the given object class and intent.

How the distribution provider finds an appropriate endpoint is out of scope for this specification.

100.3 Intents
An intent is a name for an abstract distribution capability. An intent can be implemented by a service;
this can then be reflected in the service. intents property. An intent can also constrain the possible
communication mechanisms that a distribution provider can choose to distribute a service. This is
reflected in the service.exported. intents and service.exported. intents.extra properties.

The purpose of the intents is to have a vocabulary that is shared between distribution aware bundles
and the distribution provider. This vocabulary allows the bundles to express constraints on the ex-
port of their services as well as providing information on what intents are implemented by a service.

Intents have the following syntax

intent ::= token ('.' token)?

Qualified intents use a full stop ('.' \u002E) to separate the intent from the qualifier. A qualifier pro-
vides additional details, however, it implies its prefix. For example:

confidentiality.message

This example, can be expanded into confidential i ty and confidential i ty.message . Qualified in-
tents can be used to provide additional details how an intent is achieved. However, a Distribution
Provider must expand any qualified intents to include those supported by the endpoint. This can be
a subset of all known qualified intents.

The concept of intents is derived from the [3] SCA Policy Framework specification. When designing a
vocabulary for a distribution provider it is recommended to closely follow the vocabulary of intents
defined in the SCA Policy Framework.

100.3.1 Basic Remote Services: osgi.basic
Remote Services implementations have a large amount of freedom. For example, they may use
any mechanism that they choose to transmit data between the caller of the remote service and the
provider of the service. This freedom means that there can be a large variation in the behaviors sup-
ported by different Remote Services implementations.

The purpose of the osgi .basic intent is to provide a common set of rules that can be relied upon
when exporting a simple remote service. This includes rules about the service interface, including
supported parameter and return types, as well as a means of configuring a timeout for remote invo-
cations.

Remote Services Version 1.1 Intents

OSGi Compendium Release 8 Page 31

100.3.1.1 Minimum Supported Service Signature

Remote Services implementations which offer the osgi .basic intent must support remote services
which advertise a single Java interface containing zero or more methods.

The following types must be supported as declared parameters or returns from methods on the re-
mote service:

• Primitive values
• The OSGi scalar types, OSGi Version objects, Java enums, and types which conform to the OS-

Gi DTO rules as described in the OSGi core specification. In the rest of this section these will be
known as the basic types.

• Arrays of primitive values or the basic types
• Lists, Collections or Iterables of the basic types, however the implementation of the collection

may not be preserved in transit. For example a LinkedList may be converted to an ArrayList .
• Sets of the OSGi basic types where equals is used to determine identity. SortedSet is not required

to be supported due to the difficulties associated with serializing comparators. The implementa-
tion of the set may not be preserved in transit. For example a LinkedHashSet may be converted to
a HashSet .

• Maps where the keys and values are the OSGi basic types, and equals is used to determine identi-
ty for the keys. SortedMap is not required to be supported due to the difficulties associated with
serializing comparators. The implementation of the map may not be preserved in transit. For ex-
ample a LinkedHashMap may be converted to a HashMap .

• Methods with no arguments, and methods with a void return

100.3.1.2 Remote Invocation Timeout

The implementation of a Remote Services provider is entirely opaque. In many cases there will be
no feedback mechanism if the remote call hangs, or if the remote node fails. The local client must
therefore decide at what point to fail after a certain amount of time has elapsed.

A single Remote Services implementation must be able to handle a wide variety of different remote
service invocations across many services, therefore it is difficult to identify a sensible timeout for
the remote service invocation. Some calls may be quick, and so a ten second timeout is desirable for
rapid failure detection, other calls may be long-running, and a two minute timeout too short. The re-
mote service must therefore be able to declare its own timeout.

To declare a timeout the remoteable service may provide a service property osgi .basic .t imeout
which provides a timeout value in milliseconds. The value may be declared as a Str ing or as a Num-
ber , which will be converted into a Long. The timeout value is used to limit the maximum time for
which a remote service client will be blocked waiting for a response. The same timeout value ap-
plies to all methods on the service. In the event that the invocation reaches the timeout value the
client must fail the method call with a ServiceException with its type set to REMOTE.

100.3.2 Asynchronous Remote Services: osgi.async
Some service invocations operate asynchronously, returning quickly and continuing to process in
the background. For void methods with no completion notifications this is simple to achieve re-
motely, but more useful scenarios are difficult to support without using higher-level abstractions to
represent the eventual result.

The purpose of the osgi .async intent is to provide a common set of rules that can be relied upon for
remote services which return types representing an asynchronously executing method.

The osgi .async intent makes no guarantees about the service interface(s) or method parameters sup-
ported by the remote services implementation. It is therefore recommended that it be used in con-
junction with another intent, such as the osgi.basic intent.

General Usage Remote Services Version 1.1

Page 32 OSGi Compendium Release 8

100.3.2.1 Supported Return Types

Asynchronous returns are implemented using a holder type. The holder represents the state of the
asynchronous execution, and can be queried for its completion state. When the execution is com-
plete the holder can be queried for the result of the execution, or for its failure.

The following holder types must be supported as return types from methods on the remote service:

• org.osgi .ut i l .promise.Promise
• java.ut i l .concurrent.Future
• java.ut i l .concurrent.CompletionStage
• java.ut i l .concurrent.CompletableFuture

The full set of supported types for the eventual return value encapsulated by the holder object are
not defined by the osgi .async intent. Instead the full set of supported types can be inferred from
the other supported intents supported by the Remote Services implementation. For example the
osgi.basic intent would ensure support for a return value of Promise<List<Str ing>>

100.3.2.2 Asynchronous Failures

If an asynchronous remote execution fails then the holder type must be failed with the same excep-
tion that would have been thrown in a synchronous call.

The reason for the failure may be as a result of a failure in communications, a timeout, or because
the remote invocation resulted in an exception

100.3.3 Confidential Remote Services: osgi.confidential
The osgi .confidential intent can be used to state that the remote service communications must only
be readable by the intended recipient, for example, through the use of TLS-based transport encryp-
tion.

If a Remote Services implementation does not support confidential communications, or is not con-
figured as such, it must not expose the service remotely.

100.3.4 Private Remote Services: osgi.private
In many deployment scenarios, including cloud, embedded or IoT deployments, hosts may be acces-
sible via a public network and via a private network. In such cases hosts will have multiple IP ad-
dresses to separate public network access from private network access. Private IP addresses normal-
ly in one of the following blocks: 10.0.0.0/8 , 172.16.0.0/12 or 192.168.0.0/16 .

In many cases it is desirable to expose remote services only on the private network so that these ser-
vices cannot be accessed from the outside world. This is especially useful if this service is used as a
microservice within a larger application. The osgi .pr ivate intent can be specified for this purpose.

If the osgi .pr ivate intent is required on the remote service, it will only be exposed as a remote ser-
vice on a private network on the host. If the host does not support a private IP address or if the Re-
mote Services implementation does not have the information to decide whether a host IP is private,
the service should not be exposed.

100.4 General Usage

100.4.1 Call by Value
Normal service semantics are call-by-reference. An object passed as an argument in a service call is a
direct reference to that object. Any changes to this object will be shared on both sides of the service
registry.

Remote Services Version 1.1 Configuration Types

OSGi Compendium Release 8 Page 33

Distributed services are different. Arguments are normally passed by value, which means that a
copy is sent to the remote system, changes to this value are not reflected in the originating frame-
work. When using distributed services, call-by-value should always be assumed by all participants
in the distribution chain.

100.4.2 Data Fencing
Services are syntactically defined by their Java interfaces. When exposing a service over a remote
protocol, typically such an interface is mapped to a protocol-specific interface definition. For exam-
ple, in CORBA the Java interfaces would be converted to a corresponding IDL definition. This map-
ping does not always result in a complete solution.

Therefore, for many practical distributed applications it will be necessary to constrain the possible
usage of data types in service interfaces. A distribution provider must at least support interfaces (not
classes) that only use the basic types as defined for the service properties. These are the primitive
types and their wrappers as well as arrays and collections. See Filter Syntax of OSGi Core Release 8 for
a list of service property types.

Distribution providers will in general provide a richer set of types that can be distributed.

100.4.3 Remote Services Life Cycle
A distributed service must closely track any modifications on the corresponding service registra-
tion. If service properties are modified, these modifications should be propagated to the distributed
service and associated service proxies. If the exported service is unregistered, the endpoint must be
withdrawn as soon as possible and any imported service proxies unregistered.

100.4.4 Runtime
An imported service is just like any other service and can be used as such. However, certain non-
functional characteristics of this service can differ significantly from what is normal for an in-VM
object call. Many of these characteristics can be mapped to the normal service operations. That is,
if the connection fails in any way, the service can be unregistered. According to the standard OSGi
contract, this means that the users of that service must perform the appropriate cleanup to prevent
stale references.

100.4.5 Exceptions
It is impossible to guarantee that a service is not used when it is no longer valid. Even with the syn-
chronous callbacks from the Service Listeners, there is always a finite window where a service can
be used while the underlying implementation has failed. In a distributed environment, this window
can actually be quite large for an imported service.

Such failure situations must be exposed to the application code that uses a failing imported service.
In these occasions, the distribution provider must notify the application by throwing a Service Ex-
ception, or subclass thereof, with the reason REMOTE . The Service Exception is a Runtime Excep-
tion, it can be handled higher up in the call chain. The cause of this Service Exception must be the
Exception that caused the problem.

A distribution provider should log any problems with the communications layer to the Log Service,
if available.

100.5 Configuration Types
An exported service can have a service.exported.configs service property. This property lists config-
uration types for endpoints that are provided for this service. Each type provides a specification that
defines how the configuration data for one or more endpoints is provided. For example, a hypotheti-
cal configuration type could use a service property to hold a URL for the RMI naming registry.

Configuration Types Remote Services Version 1.1

Page 34 OSGi Compendium Release 8

Configuration types that are not defined by the OSGi Working Group should use a name that fol-
lows the reverse capabi l i t ies domain name scheme defined in [4] Java Language Specification for Ja-
va packages. For example, com.acme.wsdl would be the proprietary way for the ACME company to
specify a WSDL configuration type.

100.5.1 Configuration Type Properties
The service.exported.configs and service. imported.configs use the configuration types
in very different ways. That is, the service. imported.configs property is not a copy of the
service.exported.configs as the name might seem to imply.

An exporting service can list its desired configuration types in the service.exported.configs prop-
erty. This property is potentially seen and interpreted by multiple distribution providers. Each of
these providers can independently create endpoints from the configuration types. In principle, the
service.exported.configs lists alternatives for a single distribution provider and can list synonyms to
support alternative distribution providers. If only one of the synonyms is useful, there is an implic-
it assumption that when the service is exported, only one of the synonyms should be supported by
the installed distribution providers. If it is detected that this assumption is violated, then an error
should be logged and the conflicting configuration is further ignored.

The interplay of synonyms and alternatives is depicted in Table 100.3. In this table, the first columns
on the left list different combinations of the configuration types in the service.exported.configs
property. The next two columns list two distribution providers that each support an overlapping set
of configuration types. The x 's in this table indicate if a configuration type or distribution provider
is active in a line. The description then outlines the issues, if any. It is assumed in this table that
hypothetical configuration types net.rmi and com.rmix map to an identical endpoint, just like
net.soap and net.soapx .

Table 100.3 Synonyms and Alternatives in Exported Configurations

service.exported.
configs

Distribution
Provider A

Distribution
Provider B

Description

ne
t.

rm
i

co
m

.r
m

ix

ne
t.

so
ap

co
m

.s
oa

px

<<
no

 d
ef

au
lt

>> Supports:

net.rmi

com.rmix

com.soapx

Supports:

net.rmi

net.soap

x x x OK, A will create an endpoint for the RMI and
SOAP alternatives.

x x x Configuration error. There is a clash for net.rmi be-
cause A and B can both create an endpoint for the
same configuration. It is likely that one will fail.

x x x OK, exported on com.soapx by A, the net.soap is ig-
nored.

x x x x Synonym error because A and B export to same
SOAP endpoint, it is likely that one will fail.

x x x x OK, two alternative endpoints over RMI (by A) and
SOAP (by B) are created. This is a typical use case.

x x x OK. Synonyms are used to allow frameworks that
have either A or B installed. In this case A exports
over SOAP.

x x x OK. Synonyms are used to allow frameworks that
have either A or B installed. In this case B exports.

x OK. A creates an endpoint with default configura-
tion type.

Remote Services Version 1.1 Configuration Types

OSGi Compendium Release 8 Page 35

service.exported.
configs

Distribution
Provider A

Distribution
Provider B

Description

x x OK. Both A and B each create an endpoint with
their default configuration type.

x x OK. No endpoint is created.
x x x Provider B does not recognize the configuration

types it should therefore use a default configura-
tion type.

To summarize, the following rules apply for a single distribution provider:

• Only configuration types that are supported by this distribution provider must be used. All other
configuration types must be ignored.

• All of the supported configuration types must be alternatives, that is, they must map to different
endpoints. Synonyms for the same distribution provider should be logged as errors.

• If a configuration type results in an endpoint that is already in use, then an error should be
logged. It is likely then that another distribution provider already had created that endpoint.

An export of a service can therefore result in multiple endpoints being created. For example, a ser-
vice can be exported over RMI as well as SOAP. Creating an endpoint can fail, in that case the distrib-
ution provider must log this information in the Log Service, if available, and not export the service
to that endpoint. Such a failure can, for example, occur when two configuration types are synonym
and multiple distribution providers are installed that supporting this type.

On the importing side, the service. imported.configs property lists configuration types that must re-
fer to the same endpoint. That is, it can list alternative configuration types for this endpoint but all
configuration types must result in the same endpoint.

For example, there are two distribution providers installed at the exporting and importing frame-
works. Distribution provider A supports the hypothetical configuration type net.rmi and net.soap .
Distribution provider B supports the hypothetical configuration type net.smart . A service is regis-
tered that list all three of those configuration types.

Distribution provider A will create two endpoints, one for RMI and one for SOAP. Distribution
provider B will create one endpoint for the smart protocol. The distribution provider A knows how
to create the configuration data for the com.acme.rmi configuration type as well and can therefore
create a synonymous description of the endpoint in that configuration type. It will therefore set the
imported configuration type for the RMI endpoint to:

service.imported.configs = net.rmi, com.acme.rmi
net.rmi.url = rmi://172.25.25.109:1099/service-id/24
com.acme.rmi.address = 172.25.25.109
com.acme.rmi.port = 1099
com.acme.rmi.path = service-id/24

Security Remote Services Version 1.1

Page 36 OSGi Compendium Release 8

Figure 100.3 Relation between imported and exported configuration types

service.exported.configs=[net.rmi,net.soap,net.smart]
net.rmi.url=rmi://172.25.25.109:1099/service-id/24
net.soap.wsdl=/wsdl/remote.xml
net.smart.name=remote

service.imported.configs=smart
net.smart.name=remote

service.imported.configs=[net.rmi,com.acme.rmi]
net.rmi.url=rmi://172.25.25.109:1099/service-id/24

service.imported.configs=net.soap
net.soap.wsdl=http://172.25.25.109/wsdls/24.wsdl

service.imported.configs=[net.rmi,com.acme.rmi]
net.rmi.url=rmi://172.25.25.109:1099/service-id/24
com.acme.rmi.*=...

B A

smart

rmi

soap

A

100.5.2 Dependencies
A bundle that uses a configuration type has an implicit dependency on the distribution provider. To
make this dependency explicit, the distribution provider must register a service with the following
properties:

• remote. intents.supported - (Str ing+) The vocabulary of the given distribution provider.
• remote.configs.supported - (Str ing+) The configuration types that are implemented by the dis-

tribution provider.

A bundle that depends on the availability of specific intents or configuration types can create a ser-
vice dependency on an anonymous service with the given properties. The following filter is an ex-
ample of depending on a hypothetical net.rmi configuration type:

(remote.configs.supported=net.rmi)

100.6 Security
The distribution provider will be required to invoke methods on any exported service. This implies
that it must have the combined set of permissions of all methods it can call. It also implies that the
distribution provider is responsible for ensuring that a bundle that calls an imported service is not
granted additional permissions through the fact that the distribution provider will call the exported
service, not the original invoker.

The actual mechanism to ensure that bundles can get additional permissions through the distrib-
ution is out of scope for this specification. However, distribution providers should provide mecha-
nisms to limit the set of available permissions for a remote invocation, preferably on a small granu-
larity basis.

One possible means is to use the getAccessControlContext method on the Conditional Permission
Admin service to get an Access Control Context that is used in a doPriv i leged block where the invo-
cation takes place. The getAccessControlContext method takes a list of signers which could repre-

Remote Services Version 1.1 References

OSGi Compendium Release 8 Page 37

sent the remote bundles that cause an invocation. How these are authenticated is up to the distribu-
tion provider.

A distribution provider is a potential attack point for intruders. Great care should be taken to prop-
erly setup the permissions or topology in an environment that requires security.

100.6.1 Limiting Exports and Imports
Service registration and getting services is controlled through the ServicePermission class. This per-
mission supports a filter based constructor that can assert service properties. This facility can be
used to limit bundles from being able to register exported services or get imported services if they
are combined with Conditional Permission Admin's ALLOW facility. The following example shows
how all bundles except from www.acme.com are denied the registration and getting of distributed
services.

DENY {
 [...BundleLocationCondition("http://www.acme.com/*" "!")]
 (...ServicePermission "(service.imported=*)" "GET")
 (...ServicePermission "(service.exported.interfaces=*)"
 "REGISTER")
}

100.7 References

[1] The Fallacies of Distributed Computing Explained
http://www.rgoarchitects.com/Files/fallacies.pdf

[2] Service Component Architecture (SCA)
http://www.oasis-opencsa.org/

[3] SCA Policy Framework specification
http://www.oasis-open.org/committees/sca-policy/

[4] Java Language Specification
http://docs.oracle.com/javase/specs/

http://www.rgoarchitects.com/Files/fallacies.pdf
http://www.oasis-opencsa.org/
http://www.oasis-open.org/committees/sca-policy/
http://docs.oracle.com/javase/specs/

References Remote Services Version 1.1

Page 38 OSGi Compendium Release 8

Http Service Specification Version 1.2 Introduction

OSGi Compendium Release 8 Page 39

102 Http Service Specification

Version 1.2

102.1 Introduction
An OSGi framework normally provides users with access to services on the Internet and other net-
works. This access allows users to remotely retrieve information from, and send control to, services
in an OSGi framework using a standard web browser.

Bundle developers typically need to develop communication and user interface solutions for stan-
dard technologies such as HTTP, HTML, XML, and servlets.

The Http Service supports two standard techniques for this purpose:

• Registering servlets - A servlet is a Java object which implements the Java Servlet API. Registering a
servlet in the Framework gives it control over some part of the Http Service URI name-space.

• Registering resources - Registering a resource allows HTML files, image files, and other static re-
sources to be made visible in the Http Service URI name-space by the requesting bundle.

Implementations of the Http Service can be based on:

• [1] HTTP 1.0 Specification RFC-1945
• [2] HTTP 1.1 Specification RFC-2616

Alternatively, implementations of this service can support other protocols if these protocols can
conform to the semantics of the javax.servlet API. This additional support is necessary because the
Http Service is closely related to [3] Java Servlet Technology. Http Service implementations must sup-
port at least version 2.1 of the Java Servlet API.

102.1.1 Entities
This specification defines the following interfaces which a bundle developer can implement collec-
tively as an Http Service or use individually:

• HttpContext - Allows bundles to provide information for a servlet or resource registration.
• HttpService - Allows other bundles in the Framework to dynamically register and unregister re-

sources and servlets into the Http Service URI name-space.
• NamespaceException - Is thrown to indicate an error with the caller's request to register a servlet

or resource into the Http Service URI name-space.

Registering Servlets Http Service Specification Version 1.2

Page 40 OSGi Compendium Release 8

Figure 102.1 Http Service Overview Diagram

<<interface>>
HttpService

javax.servlet.
Servlet

javax.servlet.http.
HttpServlet
Request

javax.servlet.http.
HttpServlet
Response

an Http service
implementation

<<interface>>
HttpContext

servlet
registration

resource
registration

implementation of
Servlet

implementation of
HttpContext

default impl. of
HttpContext

Bundles main
code

1

0..n1

1

1

1

register servlet
or resources

request
resource

service
request

Name-space
alias

Bundle implementing
Http Service

Bundle using
Http Service

Namespace
Exception

102.2 Registering Servlets
javax.servlet .Servlet objects can be registered with the Http Service by using the
HttpService interface. For this purpose, the HttpService interface defines the method
registerServlet(Str ing, javax.servlet .Servlet ,Dict ionary,HttpContext) .

For example, if the Http Service implementation is listening to port 80 on the machine
www.acme.com and the Servlet object is registered with the name "/servlet" , then the Servlet
object's service method is called when the following URL is used from a web browser:

http://www.acme.com/servlet?name=bugs

All Servlet objects and resource registrations share the same name-space. If an attempt is made
to register a resource or Servlet object under the same name as a currently registered resource or
Servlet object, a NamespaceException is thrown. See Mapping HTTP Requests to Servlet and Resource
Registrations on page 43 for more information about the handling of the Http Service name-
space.

Each Servlet registration must be accompanied with an HttpContext object. This object provides
the handling of resources, media typing, and a method to handle authentication of remote requests.
See Authentication on page 46.

For convenience, a default HttpContext object is provided by the Http Service and can be obtained
with createDefaultHttpContext() . Passing a nul l parameter to the registration method achieves the
same effect.

Servlet objects require a ServletContext object. This object provides a number of functions to access
the Http Service Java Servlet environment. It is created by the implementation of the Http Service
for each unique HttpContext object with which a Servlet object is registered. Thus, Servlet objects
registered with the same HttpContext object must also share the same ServletContext object.

Http Service Specification Version 1.2 Registering Servlets

OSGi Compendium Release 8 Page 41

Servlet objects are initialized by the Http Service when they are registered and bound to that specif-
ic Http Service. The initialization is done by calling the Servlet object's Servlet . init(ServletConfig)
method. The ServletConfig parameter provides access to the initialization parameters specified
when the Servlet object was registered.

Therefore, the same Servlet instance must not be reused for registration with another Http Service,
nor can it be registered under multiple names. Unique instances are required for each registration.

The following example code demonstrates the use of the registerServlet method:

Hashtable initparams = new Hashtable();
initparams.put("name", "value");

Servlet myServlet = new HttpServlet() {
 String name = "<not set>";

 public void init(ServletConfig config) {
 this.name = (String)
 config.getInitParameter("name");
 }

 public void doGet(
 HttpServletRequest req,
 HttpServletResponse rsp
) throws IOException {
 rsp.setContentType("text/plain");
 req.getWriter().println(this.name);
 }
};

getHttpService().registerServlet(
 "/servletAlias",
 myServlet,
 initparams,
 null // use default context
);
// myServlet has been registered
// and its init method has been called. Remote
// requests are now handled and forwarded to
// the servlet.
...
getHttpService().unregister("/servletAlias");
// myServlet has been unregistered and its
// destroy method has been called

This example registers the servlet, myServlet , at alias: /servletAl ias . Future requests for http://
www.acme.com/servletAl ias maps to the servlet, myServlet , whose service method is called to
process the request. (The service method is called in the HttpServlet base class and dispatched to a
doGet , doPut , doPost , doOptions , doTrace , or doDelete call depending on the HTTP request method
used.)

Registering Resources Http Service Specification Version 1.2

Page 42 OSGi Compendium Release 8

102.3 Registering Resources
A resource is a file containing images, static HTML pages, sounds, movies, applets, etc. Resources do
not require any handling from the bundle. They are transferred directly from their source - usually
the JAR file that contains the code for the bundle - to the requester using HTTP.

Resources could be handled by Servlet objects as explained in Registering Servlets on page
40. Transferring a resource over HTTP, however, would require very similar Servlet
objects for each bundle. To prevent this redundancy, resources can be registered directly
with the Http Service via the HttpService interface. This HttpService interface defines the
registerResources(Str ing,Str ing,HttpContext) method for registering a resource into the Http Ser-
vice URI name-space.

The first parameter is the external alias under which the resource is registered with the Http Ser-
vice. The second parameter is an internal prefix to map this resource to the bundle's name-space.
When a request is received, the HttpService object must remove the external alias from the URI, re-
place it with the internal prefix, and call the getResource(Str ing) method with this new name on
the associated HttpContext object. The HttpContext object is further used to get the MIME type of
the resource and to authenticate the request.

Resources are returned as a java.net.URL object. The Http Service must read from this URL object and
transfer the content to the initiator of the HTTP request.

This return type was chosen because it matches the return type of the
java. lang.Class.getResource(Str ing resource) method. This method can retrieve resources direct-
ly from the same place as the one from which the class was loaded - often a package directory in the
JAR file of the bundle. This method makes it very convenient to retrieve resources from the bundle
that are contained in the package.

The following example code demonstrates the use of the register Resources method:

package com.acme;
...
HttpContext context = new HttpContext() {
 public boolean handleSecurity(
 HttpServletRequest request,
 HttpServletResponse response
) throws IOException {
 return true;
 }

 public URL getResource(String name) {
 return getClass().getResource(name);
 }

 public String getMimeType(String name) {
 return null;
 }
};

getHttpService().registerResources (
 "/files",
 "www",
 context
);
...

Http Service Specification Version 1.2 Mapping HTTP Requests to Servlet and Resource Registrations

OSGi Compendium Release 8 Page 43

getHttpService().unregister("/files");

This example registers the alias /files on the Http Service. Requests for resources below this name-
space are transferred to the HttpContext object with an internal name of www/<name> . This exam-
ple uses the Class.get Resource(Str ing) method. Because the internal name does not start with a "/",
it must map to a resource in the "com/acme/www" directory of the JAR file. If the internal name did
start with a "/", the package name would not have to be prefixed and the JAR file would be searched
from the root. Consult the java. lang.Class.getResource(Str ing) method for more information.

In the example, a request for http://www.acme.com/fi les/myfi le .html must map to the name "com/
acme/www/myfi le .html" which is in the bundle's JAR file.

More sophisticated implementations of the getResource(Str ing) method could filter the input
name, restricting the resources that may be returned or map the input name onto the file system (if
the security implications of this action are acceptable).

Alternatively, the resource registration could have used a default HttpContext object, as demonstrat-
ed in the following call to registerResources :

getHttpService().registerResources(
 "/files",
 "/com/acme/www",
 null
);

In this case, the Http Service implementation would call the createDefaultHttpContext()
method and use its return value as the HttpContext argument for the registerResources method.
The default implementation must map the resource request to the bundle's resource, using
Bundle.getResource(Str ing) . In the case of the previous example, however, the internal name must
now specify the full path to the directory containing the resource files in the JAR file. No automatic
prefixing of the package name is done.

The getMimeType(Str ing) implementation of the default HttpContext object should
rely on the default mapping provided by the Http Service by returning nul l . Its
handleSecurity(HttpServletRequest,HttpServletResponse) may implement an authentication
mechanism that is implementation-dependent.

102.4 Mapping HTTP Requests to Servlet and Resource
Registrations
When an HTTP request comes in from a client, the Http Service checks to see if the requested URI
matches any registered aliases. A URI matches only if the path part of the URI is exactly the same
string. Matching is case sensitive.

If it does match, a matching registration takes place, which is processed as follows:

1. If the registration corresponds to a servlet, the authorization is verified by calling the handleSe-
curity method of the associated HttpContext object. See Authentication on page 46. If the re-
quest is authorized, the servlet must be called by its service method to complete the HTTP re-
quest.

2. If the registration corresponds to a resource, the authorization is verified by calling the han-
dleSecurity method of the associated HttpContext object. See Authentication on page 46. If
the request is authorized, a target resource name is constructed from the requested URI by sub-
stituting the alias from the registration with the internal name from the registration if the alias
is not "/". If the alias is "/", then the target resource name is constructed by prefixing the request-

The Default Http Context Object Http Service Specification Version 1.2

Page 44 OSGi Compendium Release 8

ed URI with the internal name. An internal name of "/" is considered to have the value of the
empty string ("") during this process.

3. The target resource name must be passed to the getResource method of the associated HttpCon-
text object.

4. If the returned URL object is not nul l , the Http Service must return the contents of the URL to the
client completing the HTTP request. The translated target name, as opposed to the original re-
quested URI, must also be used as the argument to HttpContext.getMimeType .

5. If the returned URL object is nul l , the Http Service continues as if there was no match.
6. If there is no match, the Http Service must attempt to match sub-strings of the requested URI to

registered aliases. The sub-strings of the requested URI are selected by removing the last "/" and
everything to the right of the last "/".

The Http Service must repeat this process until either a match is found or the sub-string is an empty
string. If the sub-string is empty and the alias "/" is registered, the request is considered to match the
alias "/" . Otherwise, the Http Service must return HttpServletResponse.SC_NOT_FOUND(404) to
the client.

For example, an HTTP request comes in with a request URI of "/fudd/bugs/foo.txt" , and the only
registered alias is "/fudd" . A search for "/fudd/bugs/foo.txt" will not match an alias. Therefore, the
Http Service will search for the alias "/fudd/bugs" and the alias "/fudd" . The latter search will result
in a match and the matched alias registration must be used.

Registrations for identical aliases are not allowed. If a bundle registers the alias "/fudd" , and anoth-
er bundle tries to register the exactly the same alias, the second caller must receive a NamespaceEx-
ception and its resource or servlet must not be registered. It could, however, register a similar alias -
for example, "/fudd/bugs" , as long as no other registration for this alias already exists.

The following table shows some examples of the usage of the name-space.

Table 102.1 Examples of Name-space Mapping

Alias Internal Name URI getResource Parameter
/ (empty str ing) /fudd/bugs /fudd/bugs
/ / /fudd/bugs /fudd/bugs
/ /tmp /fudd/bugs /tmp/fudd/bugs
/fudd (empty str ing) /fudd/bugs /bugs
/fudd / /fudd/bugs /bugs
/fudd /tmp /fudd/bugs /tmp/bugs
/fudd tmp /fudd/bugs/x.gi f tmp/bugs/x.gi f
/fudd/bugs/x.gi f tmp/y.gi f /fudd/bugs/x.gi f tmp/y.gi f

102.5 The Default Http Context Object
The HttpContext object in the first example demonstrates simple implementations of the HttpCon-
text interface methods. Alternatively, the example could have used a default HttpContext object, as
demonstrated in the following call to registerServlet :

getHttpService().registerServlet(
 "/servletAlias",
 myServlet,
 initparams,
 null
);

Http Service Specification Version 1.2 Multipurpose Internet Mail Extension (MIME) Types

OSGi Compendium Release 8 Page 45

In this case, the Http Service implementation must call createDefault HttpContext and use the re-
turn value as the HttpContext argument.

If the default HttpContext object, and thus the ServletContext object, is to be shared by multiple
servlet registrations, the previous servlet registration example code needs to be changed to use the
same default HttpContext object. This change is demonstrated in the next example:

HttpContext defaultContext =
 getHttpService().createDefaultHttpContext();

getHttpService().registerServlet(
 "/servletAlias",
 myServlet,
 initparams,
 defaultContext
);

// defaultContext can be reused
// for further servlet registrations

102.6 Multipurpose Internet Mail Extension (MIME) Types
MIME defines an extensive set of headers and procedures to encode binary messages in US-ASCII
mails. For an overview of all the related RFCs, consult [4] MIME Multipurpose Internet Mail Extension.

An important aspect of this extension is the type (file format) mechanism of the binary messages.
The type is defined by a string containing a general category (text, application, image, audio and
video, multipart, and message) followed by a "/" and a specific media type, as in the example, "text/
html" for HTML formatted text files. A MIME type string can be followed by additional specifiers by
separating key=value pairs with a semicolon (' ; ' \u003B). These specifiers can be used, for example,
to define character sets as follows:

text/plain ; charset=iso-8859-1

The Internet Assigned Number Authority (IANA) maintains a set of defined MIME media types.
This list can be found at [5] Assigned MIME Media Types. MIME media types are extendable, and
when any part of the type starts with the prefix "x-" , it is assumed to be vendor-specific and can be
used for testing. New types can be registered as described in [6] Registration Procedures for new MIME
media types.

HTTP bases its media typing on the MIME RFCs. The "Content-Type" header should contain a MIME
media type so that the browser can recognize the type and format the content correctly.

The source of the data must define the MIME media type for each transfer. Most operating systems
do not support types for files, but use conventions based on file names, such as the last part of the
file name after the last ".". This extension is then mapped to a media type.

Implementations of the Http Service should have a reasonable default of mapping common exten-
sions to media types based on file extensions.

Table 102.2 Sample Extension to MIME Media Mapping

Extension MIME media type Description
. jpg . jpeg image/jpeg JPEG Files
.g i f image/gif GIF Files
.css text/css Cascading Style Sheet Files
.txt text/plain Text Files

Authentication Http Service Specification Version 1.2

Page 46 OSGi Compendium Release 8

Extension MIME media type Description
.wml text/vnd.wap.wml Wireless Access Protocol (WAP) Mark Language
.htm .html text/html Hyper Text Markup Language
.wbmp image/vnd.wap.wbmp Bitmaps for WAP

Only the bundle developer, however, knows exactly which files have what media type. The Http-
Context interface can therefore be used to map this knowledge to the media type. The HttpContext
class has the following method for this: getMimeType(Str ing) .

The implementation of this method should inspect the file name and use its internal knowledge to
map this name to a MIME media type.

Simple implementations can extract the extension and look up this extension in a table.

Returning nul l from this method allows the Http Service implementation to use its default mapping
mechanism.

102.7 Authentication
The Http Service has separated the authentication and authorization of a request from the execu-
tion of the request. This separation allows bundles to use available Servlet sub-classes while still
providing bundle specific authentication and authorization of the requests.

Prior to servicing each incoming request, the Http Service calls the
handleSecurity(javax.servlet .http.HttpServletRequest, javax.servlet .http.HttpServletResponse)
method on the HttpContext object that is associated with the request URI. This method controls
whether the request is processed in the normal manner or an authentication error is returned.

If an implementation wants to authenticate the request, it can use the authentication mechanisms
of HTTP. See [7] RFC 2617: HTTP Authentication: Basic and Digest Access Authentication. These mecha-
nisms normally interpret the headers and decide if the user identity is available, and if it is, whether
that user has authenticated itself correctly.

There are many different ways of authenticating users, and the handleSecurity method on the Http-
Context object can use whatever method it requires. If the method returns true , the request must
continue to be processed using the potentially modified HttpServletRequest and HttpServletRe-
sponse objects. If the method returns fa lse , the request must not be processed.

A common standard for HTTP is the basic authentication scheme that is not secure when used with
HTTP. Basic authentication passes the password in base 64 encoded strings that are trivial to decode
into clear text. Secure transport protocols like HTTPS use SSL to hide this information. With these
protocols basic authentication is secure.

Using basic authentication requires the following steps:

1. If no Authorizat ion header is set in the request, the method should set the WWW-Authenticate
header in the response. This header indicates the desired authentication mechanism and the
realm. For example, WWW-Authenticate: Basic realm="ACME" .

The header should be set with the response object that is given as a parameter to
the handleSecurity method. The handleSecurity method should set the status to
HttpServletResponse.SC_UNAUTHORIZED (401) and return fa lse .

2. Secure connections can be verified with the ServletRequest.getScheme() method. This method
returns, for example, "https" for an SSL connection; the handleSecurity method can use this and
other information to decide if the connection's security level is acceptable. If not, the handleSe-
curity method should set the status to HttpServletResponse.SC_FORBIDDEN (403) and return
fa lse .

Http Service Specification Version 1.2 Security

OSGi Compendium Release 8 Page 47

3. Next, the request must be authenticated. When basic authentication is used, the Authorizat ion
header is available in the request and should be parsed to find the user and password. See [7] RFC
2617: HTTP Authentication: Basic and Digest Access Authentication for more information.

If the user cannot be authenticated, the status of the response object should be set to
HttpServletResponse.SC_UNAUTHORIZED (401) and return fa lse .

4. The authentication mechanism that is actually used and the identity of the authenticated user
can be of interest to the Servlet object. Therefore, the implementation of the handleSecurity
method should set this information in the request object using the ServletRequest.setAttr ibute
method. This specification has defined a number of OSGi-specific attribute names for this pur-
pose:
• AUTHENTICATION_TYPE - Specifies the scheme used in authentication. A Servlet may re-

trieve the value of this attribute by calling the HttpServletRequest.getAuthType method.
This attribute name is org.osgi .service.http.authenticat ion.type .

• REMOTE_USER - Specifies the name of the authenticated user. A Servlet may retrieve the
value of this attribute by calling the HttpServletRequest.getRemoteUser method. This at-
tribute name is org.osgi .service.http.authenticat ion.remote.user .

• AUTHORIZATION - If a User Admin service is available in the environment, then the
handleSecurity method should set this attribute with the Authorizat ion object ob-
tained from the User Admin service. Such an object encapsulates the authentica-
tion of its remote user. A Servlet may retrieve the value of this attribute by calling
ServletRequest.getAttr ibute(HttpContext.AUTHORIZATION) . This header name is
org.osgi .service.useradmin.authorizat ion .

5. Once the request is authenticated and any attributes are set, the handleSecurity method should
return true . This return indicates to the Http Service that the request is authorized and pro-
cessing may continue. If the request is for a Servlet, the Http Service must then call the service
method on the Servlet object.

102.8 Security
This section only applies when executing in an OSGi environment which is enforcing Java permis-
sions.

102.8.1 Accessing Resources with the Default Http Context
The Http Service must be granted AdminPermission[*,RESOURCE] so that bundles may use a de-
fault HttpContext object. This is necessary because the implementation of the default HttpContext
object must call Bundle.getResource to access the resources of a bundle and this method requires
the caller to have AdminPermission[bundle,RESOURCE] .

Any bundle may access resources in its own bundle by calling Class.getResource . This operation
is privileged. The resulting URL object may then be passed to the Http Service as the result of a
HttpContext.getResource call. No further permission checks are performed when accessing bundle
resource URL objects, so the Http Service does not need to be granted any additional permissions.

102.8.2 Accessing Other Types of Resources
In order to access resources that were not registered using the default HttpContext object, the Http
Service must be granted sufficient privileges to access these resources. For example, if the getRe-
source method of the registered HttpContext object returns a file URL, the Http Service requires the
corresponding Fi lePermission to read the file. Similarly, if the getResource method of the registered
HttpContext object returns an HTTP URL, the Http Service requires the corresponding SocketPer-
mission to connect to the resource.

Configuration Properties Http Service Specification Version 1.2

Page 48 OSGi Compendium Release 8

Therefore, in most cases, the Http Service should be a privileged service that is granted sufficient
permission to serve any bundle's resources, no matter where these resources are located. Therefore,
the Http Service must capture the AccessControlContext object of the bundle registering resources
or a servlet, and then use the captured AccessControlContext object when accessing resources re-
turned by the registered HttpContext object. This situation prevents a bundle from registering re-
sources that it does not have permission to access.

Therefore, the Http Service should follow a scheme like the following example. When a resource or
servlet is registered, it should capture the context.

AccessControlContext acc =
 AccessController.getContext();

When a URL returned by the getResource method of the associated HttpContext object is called, the
Http Service must call the getResource method in a doPriv i leged construct using the AccessCon-
trolContext object of the registering bundle:

AccessController.doPrivileged(
 new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 ...
 }
 }, acc);

The Http Service must only use the captured AccessControlContext when accessing resource URL
objects.

102.8.3 Servlet and HttpContext objects
This specification does not require that the Http Service is granted All Permission or wraps calls to
the Servlet and Http Context objects in a doPriv i leged block. Therefore, it is the responsibility of the
Servlet and Http Context implementations to use a doPriv i leged block when performing privileged
operations.

102.9 Configuration Properties
If the Http Service does not have its port values configured through some other means, the Http Ser-
vice implementation should use the following properties to determine the port values upon which
to listen.

The following OSGi environment properties are used to specify default HTTP ports:

• org.osgi .service.http.port - This property specifies the port used for servlets and resources acces-
sible via HTTP. The default value for this property is 80.

• org.osgi .service.http.port .secure - This property specifies the port used for servlets and re-
sources accessible via HTTPS. The default value for this property is 443.

102.10 org.osgi.service.http

Http Service Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Http Service Specification Version 1.2 org.osgi.service.http

OSGi Compendium Release 8 Page 49

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.http; vers ion="[1.2,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.http; vers ion="[1.2,1 .3)"

102.10.1 Summary

• HttpContext - Context for HTTP Requests.
• HttpService - The Http Service allows other bundles in the OSGi environment to dynamically

register resources and servlets into the URI namespace of Http Service.
• NamespaceException - A NamespaceException is thrown to indicate an error with the caller's

request to register a servlet or resources into the URI namespace of the Http Service.

102.10.2 public interface HttpContext
Context for HTTP Requests.

This service defines methods that the Http Service may call to get information for a request.

Servlets may be associated with an HttpContext service. Servlets that are associated using the same
HttpContext object will share the same ServletContext object.

If no HttpContext service is associated, a default HttpContext is used. The behavior of the methods
on the default HttpContext is defined as follows:

• getMimeType - Does not define any customized MIME types for the Content-Type header in the
response, and always returns nul l .

• handleSecurity - Performs implementation-defined authentication on the request.
• getResource - Assumes the named resource is in the bundle of the servlet service. This method

calls the servlet bundle's Bundle.getResource method, and returns the appropriate URL to access
the resource. On a Java runtime environment that supports permissions, the Http Service needs
to be granted org.osgi .f ramework.AdminPermission[*,RESOURCE] .

102.10.2.1 public static final String AUTHENTICATION_TYPE = "org.osgi.service.http.authentication.type"

HttpServletRequest attribute specifying the scheme used in authentication. The value of
the attribute can be retrieved by HttpServletRequest.getAuthType . This attribute name is
org.osgi .service.http.authenticat ion.type .

Since 1.1

102.10.2.2 public static final String AUTHORIZATION = "org.osgi.service.useradmin.authorization"

HttpServletRequest attribute specifying the Authorizat ion object obtained from the
org.osgi .service.useradmin.UserAdmin service. The value of the attribute can be retrieved by
HttpServletRequest.getAttr ibute(HttpContext.AUTHORIZATION) . This attribute name is
org.osgi .service.useradmin.authorizat ion .

Since 1.1

102.10.2.3 public static final String REMOTE_USER = "org.osgi.service.http.authentication.remote.user"

HttpServletRequest attribute specifying the name of the authenticated user. The value of
the attribute can be retrieved by HttpServletRequest.getRemoteUser . This attribute name is
org.osgi .service.http.authenticat ion.remote.user .

Since 1.1

102.10.2.4 public String getMimeType(String name)

name The name for which to determine the MIME type.

org.osgi.service.http Http Service Specification Version 1.2

Page 50 OSGi Compendium Release 8

□ Maps a name to a MIME type.

Called by the Http Service to determine the MIME type for the specified name. For servlets, the Http
Service will call this method to support the ServletContext method getMimeType . For resources,
the Http Service will call this method to determine the MIME type for the Content-Type header in
the response.

Returns The MIME type (e.g. text/html) of the specified name or nul l to indicate that the Http Service should
determine the MIME type itself.

102.10.2.5 public URL getResource(String name)

name the name of the requested resource

□ Maps a resource name to a URL.

Called by the Http Service to map a resource name to a URL. For servlet registrations, Http
Service will call this method to support the ServletContext methods getResource and ge-
tResourceAsStream . For resource registrations, Http Service will call this method to lo-
cate the named resource. The context can control from where resources come. For ex-
ample, the resource can be mapped to a file in the bundle's persistent storage area via
bundleContext.getDataFi le(name).toURL() or to a resource in the context's bundle via
getClass() .getResource(name)

Returns URL that Http Service can use to read the resource or nul l if the resource does not exist.

102.10.2.6 public boolean handleSecurity(HttpServletRequest request, HttpServletResponse response) throws
IOException

request The HTTP request.

response The HTTP response.

□ Handles security for the specified request.

The Http Service calls this method prior to servicing the specified request. This method controls
whether the request is processed in the normal manner or an error is returned.

If the request requires authentication and the Authorization header in the request is missing or not
acceptable, then this method should set the WWW-Authenticate header in the response object, set
the status in the response object to Unauthorized(401) and return fa lse . See also RFC 2617: HTTP
Authentication: Basic and Digest Access Authentication (available at http://www.ietf.org/rfc/rfc2617.txt).

If the request requires a secure connection and the getScheme method in the request does not re-
turn 'https' or some other acceptable secure protocol, then this method should set the status in the
response object to Forbidden(403) and return fa lse .

When this method returns fa lse , the Http Service will send the response back to the client, thereby
completing the request. When this method returns true , the Http Service will proceed with servic-
ing the request.

If the specified request has been authenticated, this method must set the AUTHENTICATION_TYPE
request attribute to the type of authentication used, and the REMOTE_USER request attribute to the
remote user (request attributes are set using the setAttr ibute method on the request). If this method
does not perform any authentication, it must not set these attributes.

If the authenticated user is also authorized to access certain resources, this method must
set the AUTHORIZATION request attribute to the Authorizat ion object obtained from the
org.osgi .service.useradmin.UserAdmin service.

The servlet responsible for servicing the specified request determines the authentication type and
remote user by calling the getAuthType and getRemoteUser methods, respectively, on the request.

Returns true if the request should be serviced, fa lse if the request should not be serviced and Http Service
will send the response back to the client.

Http Service Specification Version 1.2 org.osgi.service.http

OSGi Compendium Release 8 Page 51

Throws IOException– may be thrown by this method. If this occurs, the Http Service will terminate the re-
quest and close the socket.

102.10.3 public interface HttpService
The Http Service allows other bundles in the OSGi environment to dynamically register resources
and servlets into the URI namespace of Http Service. A bundle may later unregister its resources or
servlets.

See Also HttpContext

No Implement Consumers of this API must not implement this interface

102.10.3.1 public HttpContext createDefaultHttpContext()

□ Creates a default HttpContext for registering servlets or resources with the HttpService, a new Http-
Context object is created each time this method is called.

The behavior of the methods on the default HttpContext is defined as follows:

• getMimeType - Does not define any customized MIME types for the Content-Type header in the
response, and always returns nul l .

• handleSecurity - Performs implementation-defined authentication on the request.
• getResource - Assumes the named resource is in the context bundle; this method calls the con-

text bundle's Bundle.getResource method, and returns the appropriate URL to access the re-
source. On a Java runtime environment that supports permissions, the Http Service needs to be
granted org.osgi .f ramework.AdminPermission[*,RESOURCE] .

Returns a default HttpContext object.

Since 1.1

102.10.3.2 public void registerResources(String alias, String name, HttpContext context) throws NamespaceException

alias name in the URI namespace at which the resources are registered

name the base name of the resources that will be registered

context the HttpContext object for the registered resources, or nul l if a default HttpContext is to be created
and used.

□ Registers resources into the URI namespace.

The alias is the name in the URI namespace of the Http Service at which the registration will be
mapped. An alias must begin with slash ('/') and must not end with slash ('/'), with the exception
that an alias of the form "/" is used to denote the root alias. The name parameter must also not end
with slash ('/') with the exception that a name of the form "/" is used to denote the root of the bundle.
See the specification text for details on how HTTP requests are mapped to servlet and resource regis-
trations.

For example, suppose the resource name /tmp is registered to the alias /files. A request for /files/
foo.txt will map to the resource name /tmp/foo.txt.

 httpservice.registerResources("/files", "/tmp", context);

The Http Service will call the HttpContext argument to map resource names to URLs and MIME
types and to handle security for requests. If the HttpContext argument is nul l , a default HttpContext
is used (see createDefaultHttpContext()).

Throws NamespaceException– if the registration fails because the alias is already in use.

I l legalArgumentException– if any of the parameters are invalid

org.osgi.service.http Http Service Specification Version 1.2

Page 52 OSGi Compendium Release 8

102.10.3.3 public void registerServlet(String alias, Servlet servlet, Dictionary<?, ?> initparams, HttpContext context)
throws ServletException, NamespaceException

alias name in the URI namespace at which the servlet is registered

servlet the servlet object to register

initparams initialization arguments for the servlet or nul l if there are none. This argument is used by the
servlet's ServletConfig object.

context the HttpContext object for the registered servlet, or nul l if a default HttpContext is to be created and
used.

□ Registers a servlet into the URI namespace.

The alias is the name in the URI namespace of the Http Service at which the registration will be
mapped.

An alias must begin with slash ('/') and must not end with slash ('/'), with the exception that an alias
of the form "/" is used to denote the root alias. See the specification text for details on how HTTP re-
quests are mapped to servlet and resource registrations.

The Http Service will call the servlet's in it method before returning.

 httpService.registerServlet("/myservlet", servlet, initparams, context);

Servlets registered with the same HttpContext object will share the same ServletContext .
The Http Service will call the context argument to support the ServletContext methods
getResource ,getResourceAsStream and getMimeType , and to handle security for requests. If the
context argument is nul l , a default HttpContext object is used (see createDefaultHttpContext()).

Throws NamespaceException– if the registration fails because the alias is already in use.

javax.servlet .ServletException– if the servlet's in it method throws an exception, or the given servlet
object has already been registered at a different alias.

I l legalArgumentException– if any of the arguments are invalid

102.10.3.4 public void unregister(String alias)

alias name in the URI name-space of the registration to unregister

□ Unregisters a previous registration done by registerServlet or registerResources methods.

After this call, the registered alias in the URI name-space will no longer be available. If the registra-
tion was for a servlet, the Http Service must call the destroy method of the servlet before returning.

If the bundle which performed the registration is stopped or otherwise "unget"s the Http Service
without calling unregister(String) then Http Service must automatically unregister the registration.
However, if the registration was for a servlet, the destroy method of the servlet will not be called in
this case since the bundle may be stopped. unregister(String) must be explicitly called to cause the
destroy method of the servlet to be called. This can be done in the BundleActivator.stop method of
the bundle registering the servlet.

Throws I l legalArgumentException– if there is no registration for the alias or the calling bundle was not the
bundle which registered the alias.

102.10.4 public class NamespaceException
extends Exception
A NamespaceException is thrown to indicate an error with the caller's request to register a servlet
or resources into the URI namespace of the Http Service. This exception indicates that the requested
alias already is in use.

Http Service Specification Version 1.2 References

OSGi Compendium Release 8 Page 53

102.10.4.1 public NamespaceException(String message)

message the detail message

□ Construct a NamespaceException object with a detail message.

102.10.4.2 public NamespaceException(String message, Throwable cause)

message The detail message.

cause The nested exception.

□ Construct a NamespaceException object with a detail message and a nested exception.

102.10.4.3 public Throwable getCause()

□ Returns the cause of this exception or nul l if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

Since 1.2

102.10.4.4 public Throwable getException()

□ Returns the nested exception.

This method predates the general purpose exception chaining mechanism. The getCause() method
is now the preferred means of obtaining this information.

Returns The result of calling getCause() .

102.10.4.5 public Throwable initCause(Throwable cause)

cause The cause of this exception.

□ Initializes the cause of this exception to the specified value.

Returns This exception.

Throws I l legalArgumentException– If the specified cause is this exception.

I l legalStateException– If the cause of this exception has already been set.

Since 1.2

102.11 References

[1] HTTP 1.0 Specification RFC-1945
http://www.ietf.org/rfc/rfc1945.txt, May 1996

[2] HTTP 1.1 Specification RFC-2616
http://www.ietf.org/rfc/rfc2616.txt, June 1999

[3] Java Servlet Technology
http://www.oracle.com/technetwork/java/javaee/servlet/index.html

[4] MIME Multipurpose Internet Mail Extension
http://www.mhonarc.org/~ehood/MIME/MIME.html

[5] Assigned MIME Media Types
http://www.iana.org/assignments/media-types

[6] Registration Procedures for new MIME media types
http://www.ietf.org/rfc/rfc2048.txt

[7] RFC 2617: HTTP Authentication: Basic and Digest Access Authentication

http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://www.mhonarc.org/~ehood/MIME/MIME.html
http://www.iana.org/assignments/media-types
http://www.ietf.org/rfc/rfc2048.txt

References Http Service Specification Version 1.2

Page 54 OSGi Compendium Release 8

http://www.ietf.org/rfc/rfc2617.txt

http://www.ietf.org/rfc/rfc2617.txt

Device Access Specification Version 1.1 Introduction

OSGi Compendium Release 8 Page 55

103 Device Access Specification

Version 1.1

103.1 Introduction
A Framework is a meeting point for services and devices from many different vendors: a meeting
point where users add and cancel service subscriptions, newly installed services find their corre-
sponding input and output devices, and device drivers connect to their hardware.

In an OSGi Framework, these activities will dynamically take place while the Framework is run-
ning. Technologies such as USB and IEEE 1394 explicitly support plugging and unplugging devices
at any time, and wireless technologies are even more dynamic.

This flexibility makes it hard to configure all aspects of an OSGi Framework, particularly those re-
lating to devices. When all of the possible services and device requirements are factored in, each OS-
Gi Framework will be unique. Therefore, automated mechanisms are needed that can be extended
and customized, in order to minimize the configuration needs of the OSGi environment.

The Device Access specification supports the coordination of automatic detection and attachment
of existing devices on an OSGi Framework, facilitates hot-plugging and -unplugging of new devices,
and downloads and installs device drivers on demand.

This specification, however, deliberately does not prescribe any particular device or network tech-
nology, and mentioned technologies are used as examples only. Nor does it specify a particular de-
vice discovery method. Rather, this specification focuses on the attachment of devices supplied by
different vendors. It emphasizes the development of standardized device interfaces to be defined in
device categories, although no such device categories are defined in this specification.

103.1.1 Essentials

• Embedded Devices - OSGi bundles will likely run in embedded devices. This environment implies
limited possibility for user interaction, and low-end devices will probably have resource limita-
tions.

• Remote Administration - OSGi environments must support administration by a remote service
provider.

• Vendor Neutrality - OSGi-compliant driver bundles will be supplied by different vendors; each dri-
ver bundle must be well-defined, documented, and replaceable.

• Continuous Operation - OSGi environments will be running for extended periods without being
restarted, possibly continuously, requiring stable operation and stable resource consumption.

• Dynamic Updates - As much as possible, driver bundles must be individually replaceable without
affecting unrelated bundles. In particular, the process of updating a bundle should not require a
restart of the whole OSGi Framework or disrupt operation of connected devices.

A number of requirements must be satisfied by Device Access implementations in order for them to
be OSGi-compliant. Implementations must support the following capabilities:

• Hot-Plugging - Plugging and unplugging of devices at any time if the underlying hardware and
drivers allow it.

• Legacy Systems - Device technologies which do not implement the automatic detection of
plugged and unplugged devices.

Introduction Device Access Specification Version 1.1

Page 56 OSGi Compendium Release 8

• Dynamic Device Driver Loading - Loading new driver bundles on demand with no prior device-spe-
cific knowledge of the Device service.

• Multiple Device Representations - Devices to be accessed from multiple levels of abstraction.
• Deep Trees - Connections of devices in a tree of mixed network technologies of arbitrary depth.
• Topology Independence - Separation of the interfaces of a device from where and how it is attached.
• Complex Devices - Multifunction devices and devices that have multiple configurations.

103.1.2 Operation
This specification defines the behavior of a device manager (which is not a service as might be ex-
pected). This device manager detects registration of Device services and is responsible for associat-
ing these devices with an appropriate Driver service. These tasks are done with the help of Driver
Locator services and the Driver Selector service that allow a device manager to find a Driver bundle
and install it.

103.1.3 Entities
The main entities of the Device Access specification are:

• Device Manager - The bundle that controls the initiation of the attachment process behind the
scenes.

• Device Category - Defines how a Driver service and a Device service can cooperate.
• Driver - Competes for attaching Device services of its recognized device category. See Driver Ser-

vices on page 61.
• Device - A representation of a physical device or other entity that can be attached by a Driver ser-

vice. See Device Services on page 57.
• DriverLocator - Assists in locating bundles that provide a Driver service. See Driver Locator Service

on page 67.
• DriverSelector - Assists in selecting which Driver service is best suited to a Device service. See The

Driver Selector Service on page 70.

Figure 103.1 show the classes and their relationships.

Device Access Specification Version 1.1 Device Services

OSGi Compendium Release 8 Page 57

Figure 103.1 Device Access Class Overview

Device Manager
impl

Device or
Device_
Category set

<<interface>>
Driver
Locator

<<interface>>
Driver
Selector

a Driver impl

<<interface>>
Driver

a Driver
Locator impl

<<interface>>
Match

a Driver
Selector impl

a Device impl
0..n1

1

1

1

0..n

listens to all
device registrations

collects all drivers
and matches
them to devices

0..n

1

attaches device and
possible refines 0..n

0..1

0..n

1 1

0..1

 driver located by

associates
driver with

match value
for device

refines or uses external

best driver
selected by

device driver
bundle

(provided by application or
vendor specific)

Driver Selector
bundle

Driver Locator
bundle

device manager
(provided by vendor)

downloads
a bundle1

1

(provided by operator)

103.2 Device Services
A Device service represents some form of a device. It can represent a hardware device, but that is not
a requirement. Device services differ widely: some represent individual physical devices and others
represent complete networks. Several Device services can even simultaneously represent the same
physical device at different levels of abstraction. For example:

• A USB network.
• A device attached on the USB network.
• The same device recognized as a USB to Ethernet bridge.
• A device discovered on the Ethernet using Salutation.
• The same device recognized as a simple printer.
• The same printer refined to a PostScript printer.

A device can also be represented in different ways. For example, a USB mouse can be considered as:

• A USB device which delivers information over the USB bus.
• A mouse device which delivers x and y coordinates and information about the state of its buttons.

Each representation has specific implications:

Device Services Device Access Specification Version 1.1

Page 58 OSGi Compendium Release 8

• That a particular device is a mouse is irrelevant to an application which provides management of
USB devices.

• That a mouse is attached to a USB bus or a serial port would be inconsequential to applications
that respond to mouse-like input.

Device services must belong to a defined device category, or else they can implement a generic service
which models a particular device, independent of its underlying technology. Examples of this type
of implementation could be Sensor or Actuator services.

A device category specifies the methods for communicating with a Device service, and enables in-
teroperability between bundles that are based on the same underlying technology. Generic Device
services will allow interoperability between bundles that are not coupled to specific device tech-
nologies.

For example, a device category is required for the USB, so that Driver bundles can be written that
communicate to the devices that are attached to the USB. If a printer is attached, it should also be
available as a generic Printer service defined in a Printer service specification, indistinguishable
from a Printer service attached to a parallel port. Generic categories, such as a Printer service, should
also be described in a Device Category.

It is expected that most Device service objects will actually represent a physical device in some
form, but that is not a requirement of this specification. A Device service is represented as a normal
service in the OSGi Framework and all coordination and activities are performed upon Framework
services. This specification does not limit a bundle developer from using Framework mechanisms
for services that are not related to physical devices.

103.2.1 Device Service Registration
A Device service is defined as a normal service registered with the Framework that either:

• Registers a service object under the interface org.osgi .service.Device with the Framework, or
• Sets the DEVICE_CATEGORY property in the registration. The value of DEVICE_CATEGORY is an

array of Str ing objects of all the device categories that the device belongs to. These strings are de-
fined in the associated device category.

If this document mentions a Device service, it is meant to refer to services registered with the name
org.osgi .service.device.Device or services registered with the DEVICE_CATEGORY property set.

When a Device service is registered, additional properties may be set that describe the device to the
device manager and potentially to the end users. The following properties have their semantics de-
fined in this specification:

• DEVICE_CATEGORY - A marker property indicating that this service must be regarded as a Device
service by the device manager. Its value is of type Str ing[] , and its meaning is defined in the asso-
ciated device category specification.

• DEVICE_DESCRIPTION - Describes the device to an end user. Its value is of type Str ing .
• DEVICE_SERIAL - A unique serial number for this device. If the device hardware contains a ser-

ial number, the driver bundle is encouraged to specify it as this property. Different Device ser-
vices representing the same physical hardware at different abstraction levels should set the same
DEVICE_SERIAL , thus simplifying identification. Its value is of type Str ing .

• service.pid - Service Persistent ID (PID), defined in org.osgi .f ramework.Constants . Device ser-
vices should set this property. It must be unique among all registered services. Even different
abstraction levels of the same device must use different PIDs. The service PIDs must be repro-
ducible, so that every time the same hardware is plugged in, the same PIDs are used.

103.2.2 Device Service Attachment
When a Device service is registered with the Framework, the device manager is responsible for find-
ing a suitable Driver service and instructing it to attach to the newly registered Device service. The

Device Access Specification Version 1.1 Device Category Specifications

OSGi Compendium Release 8 Page 59

Device service itself is passive: it only registers a Device service with the Framework and then waits
until it is called.

The actual communication with the underlying physical device is not defined in the Device in-
terface because it differs significantly between different types of devices. The Driver service is re-
sponsible for attaching the device in a device type-specific manner. The rules and interfaces for this
process must be defined in the appropriate device category.

If the device manager is unable to find a suitable Driver service, the Device service remains unat-
tached. In that case, if the service object implements the Device interface, it must receive a call to
the noDriverFound() method. The Device service can wait until a new driver is installed, or it can
unregister and attempt to register again with different properties that describe a more generic de-
vice or try a different configuration.

103.2.2.1 Idle Device Service

The main purpose of the device manager is to try to attach drivers to idle devices. For this purpose,
a Device service is considered idle if no bundle that itself has registered a Driver service is using the
Device service.

103.2.2.2 Device Service Unregistration

When a Device service is unregistered, no immediate action is required by the device manager. The
normal service of unregistering events, provided by the Framework, takes care of propagating the
unregistration information to affected drivers. Drivers must take the appropriate action to release
this Device service and perform any necessary cleanup, as described in their device category specifi-
cation.

The device manager may, however, take a device unregistration as an indication that driver bundles
may have become idle and are thus eligible for removal. It is therefore important for Device services
to unregister their service object when the underlying entity becomes unavailable.

103.3 Device Category Specifications
A device category specifies the rules and interfaces needed for the communication between a Device
service and a Driver service. Only Device services and Driver services of the same device category
can communicate and cooperate.

The Device Access service specification is limited to the attachment of Device services by Driver ser-
vices, and does not enumerate different device categories.

Other specifications must specify a number of device categories before this specification can be
made operational. Without a set of defined device categories, no interoperability can be achieved.

Device categories are related to a specific device technology, such as USB, IEEE 1394, JINI, UPnP, Sa-
lutation, CEBus, Lonworks, and others. The purpose of a device category specification is to make all
Device services of that category conform to an agreed interface, so that, for example, a USB Driver
service of vendor A can control Device services from vendor B attached to a USB bus.

This specification is limited to defining the guidelines for device category definitions only. Device
categories may be defined by the OSGi organization or by external specification bodies - for exam-
ple, when these bodies are associated with a specific device technology.

103.3.1 Device Category Guidelines
A device category definition comprises the following elements:

• An interface that all devices belonging to this category must implement. This interface should
lay out the rules of how to communicate with the underlying device. The specification body may
define its own device interfaces (or classes) or leverage existing ones. For example, a serial port

Device Category Specifications Device Access Specification Version 1.1

Page 60 OSGi Compendium Release 8

device category could use the javax.comm.SerialPort interface which is defined in [1] Java Com-
munications API.

When registering a device belonging to this category with the Framework, the interface or class
name for this category must be included in the registration.

• A set of service registration properties, their data types, and semantics, each of which must be de-
clared as either MANDATORY or OPTIONAL for this device category.

• A range of match values specific to this device category. Matching is explained later in The Device
Attachment Algorithm on page 71.

103.3.2 Sample Device Category Specification
The following is a partial example of a fictitious device category:

public interface /* com.acme.widget.*/ WidgetDevice{
 int MATCH_SERIAL = 10;
 int MATCH_VERSION = 8;
 int MATCH_MODEL = 6;
 int MATCH_MAKE = 4;
 int MATCH_CLASS = 2;
 void sendPacket(byte [] data);
 byte [] receivePacket(long timeout);
}

Devices in this category must implement the interface com.acme.widget.WidgetDevice to receive
attachments from Driver services in this category.

Device properties for this fictitious category are defined in the following table.

Table 103.1 Example Device Category Properties, M=Mandatory, O=Optional

Property name M/O Type Value
DEVICE_CATEGORY M String[] {"Widget"}
com.acme.class M Str ing A class description of this device. For

example "audio", "video", "ser ia l", etc.
An actual device category specification
should contain an exhaustive list and de-
fine a process to add new classes.

com.acme.model M Str ing A definition of the model. This is usually
vendor specific. For example "Mouse".

com.acme.manufacturer M Str ing Manufacturer of this device, for example
"ACME Widget Division".

com.acme.revis ion O Str ing Revision number. For example, "42".
com.acme.ser ia l O Str ing A serial number. For example

"SN6751293-12-2112/A".

103.3.3 Match Example
Driver services and Device services are connected via a matching process that is explained in The
Device Attachment Algorithm on page 71. The Driver service plays a pivotal role in this matching
process. It must inspect the Device service (from its ServiceReference object) that has just been reg-
istered and decide if it potentially could cooperate with this Device service.

It must be able to answer a value indicating the quality of the match. The scale of this match value
must be defined in the device category so as to allow Driver services to match on a fair basis. The
scale must start at least at 1 and go upwards.

Device Access Specification Version 1.1 Driver Services

OSGi Compendium Release 8 Page 61

Driver services for this sample device category must return one of the match codes defined in the
com.acme.widget.WidgetDevice interface or Device.MATCH_NONE if the Device service is not rec-
ognized. The device category must define the exact rules for the match codes in the device category
specification. In this example, a small range from 2 to 10 (MATCH_NONE is 0) is defined for Widget-
Device devices. They are named in the WidgetDevice interface for convenience and have the follow-
ing semantics.

Table 103.2 Sample Device Category Match Scale

Match name Value Description
MATCH_SERIAL 10 An exact match, including the serial number.
MATCH_VERSION 8 Matches the right class, make model, and version.
MATCH_MODEL 6 Matches the right class and make model.
MATCH_MAKE 4 Matches the make.
MATCH_CLASS 2 Only matches the class.

A Driver service should use the constants to return when it decides how closely the Device ser-
vice matches its suitability. For example, if it matches the exact serial number, it should return
MATCH_SERIAL .

103.4 Driver Services
A Driver service is responsible for attaching to suitable Device services under control of the device
manager. Before it can attach a Device service, however, it must compete with other Driver services
for control.

If a Driver service wins the competition, it must attach the device in a device category-specific way.
After that, it can perform its intended functionality. This functionality is not defined here nor in the
device category; this specification only describes the behavior of the Device service, not how the
Driver service uses it to implement its intended functionality. A Driver service may register one or
more new Device services of another device category or a generic service which models a more re-
fined form of the device.

Both refined Device services as well as generic services should be defined in a Device Category. See
Device Category Specifications on page 59.

103.4.1 Driver Bundles
A Driver service is, like all services, implemented in a bundle, and is recognized by the device man-
ager by registering one or more Driver service objects with the Framework.

Such bundles containing one or more Driver services are called driver bundles. The device manager
must be aware of the fact that the cardinality of the relationship between bundles and Driver ser-
vices is 1:1...*.

A driver bundle must register at least one Driver service in its BundleActivator.start implementa-
tion.

103.4.2 Driver Taxonomy
Device Drivers may belong to one of the following categories:

• Base Drivers (Discovery, Pure Discovery and Normal)
• Refining Drivers
• Network Drivers

Driver Services Device Access Specification Version 1.1

Page 62 OSGi Compendium Release 8

• Composite Drivers
• Referring Drivers
• Bridging Drivers
• Multiplexing Drivers
• Pure Consuming Drivers

This list is not definitive, and a Driver service is not required to fit into one of these categories. The
purpose of this taxonomy is to show the different topologies that have been considered for the De-
vice Access service specification.

Figure 103.2 Legend for Device Driver Services Taxonomy

bold

plain

Device service

Hardware

Driver

Association

Key part

Illustrative

Network

103.4.2.1 Base Drivers

The first category of device drivers are called base drivers because they provide the lowest-level rep-
resentation of a physical device. The distinguishing factor is that they are not registered as Driver
services because they do not have to compete for access to their underlying technology.

Figure 103.3 Base Driver Types

Parallel port service

Physical hardware
SLP, UPnP

Base driver

Printer service

JINI, Salutation,
SLP, UPnP

Pure Discovery
Base driver

Printer service

Hardware with
discovery: USB,

IEEE 1394,

 Discovery
Base driver

Base drivers discover physical devices using code not specified here (for example, through notifica-
tions from a device driver in native code) and then register corresponding Device services.

When the hardware supports a discovery mechanism and reports a physical device, a Device service
is then registered. Drivers supporting a discovery mechanism are called discovery base drivers.

An example of a discovery base driver is a USB driver. Discovered USB devices are registered with
the Framework as a generic USB Device service. The USB specification (see [2] USB Specification) de-
fines a tightly integrated discovery method. Further, devices are individually addressed; no provi-
sion exists for broadcasting a message to all devices attached to the USB bus. Therefore, there is no
reason to expose the USB network itself; instead, a discovery base driver can register the individual
devices as they are discovered.

Not all technologies support a discovery mechanism. For example, most serial ports do not support
detection, and it is often not even possible to detect whether a device is attached to a serial port.

Device Access Specification Version 1.1 Driver Services

OSGi Compendium Release 8 Page 63

Although each driver bundle should perform discovery on its own, a driver for a non-discoverable
serial port requires external help - either through a user interface or by allowing the Configuration
Admin service to configure it.

It is possible for the driver bundle to combine automatic discovery of Plug and Play-compliant de-
vices with manual configuration when non-compliant devices are plugged in.

103.4.2.2 Refining Drivers

The second category of device drivers are called refining drivers. Refining drivers provide a refined
view of a physical device that is already represented by another Device service registered with the
Framework. Refining drivers register a Driver service with the Framework. This Driver service is
used by the device manager to attach the refining driver to a less refined Device service that is regis-
tered as a result of events within the Framework itself.

Figure 103.4 Refining Driver Diagram

Mouse service

USB Device

Base driver

Refining driver

An example of a refining driver is a mouse driver, which is attached to the generic USB Device ser-
vice representing a physical mouse. It then registers a new Device service which represents it as a
Mouse service, defined elsewhere.

The majority of drivers fall into the refining driver type.

103.4.2.3 Network Drivers

An Internet Protocol (IP) capable network such as Ethernet supports individually addressable de-
vices and allows broadcasts, but does not define an intrinsic discovery protocol. In this case, the en-
tire network should be exposed as a single Device service.

Figure 103.5 Network Driver diagram

IP Network driver

drivers and other services
that use the network service
to discover devices

network

Associated with
(also for other
devices)

103.4.2.4 Composite Drivers

Complex devices can often be broken down into several parts. Drivers that attach to a single service
and then register multiple Device services are called composite drivers. For example, a USB speaker

Driver Services Device Access Specification Version 1.1

Page 64 OSGi Compendium Release 8

containing software-accessible buttons can be registered by its driver as two separate Device ser-
vices: an Audio Device service and a Button Device service.

Figure 103.6 Composite Driver structure

Audio Device

USB Device

Physical USB bus

Base driver

Composite driver

Button Device

This approach can greatly reduce the number of interfaces needed, as well as enhance reusability.

103.4.2.5 Referring Drivers

A referring driver is actually not a driver in the sense that it controls Device services. Instead, it acts
as an intermediary to help locate the correct driver bundle. This process is explained in detail in The
Device Attachment Algorithm on page 71.

A referring driver implements the call to the attach method to inspect the Device service, and de-
cides which Driver bundle would be able to attach to the device. This process can actually involve
connecting to the physical device and communicating with it. The attach method then returns a
Str ing object that indicates the DRIVER_ID of another driver bundle. This process is called a referral.

For example, a vendor ACME can implement one driver bundle that specializes in recognizing all
of the devices the vendor produces. The referring driver bundle does not contain code to control the
device - it contains only sufficient logic to recognize the assortment of devices. This referring dri-
ver can be small, yet can still identify a large product line. This approach can drastically reduce the
amount of downloading and matching needed to find the correct driver bundle.

103.4.2.6 Bridging Drivers

A bridging driver registers a Device service from one device category but attaches it to a Device ser-
vice from another device category.

Figure 103.7 Bridging Driver Structure

Ethernet Device

USB device

Bridging driver

Ethernet device drivers

For example, USB to Ethernet bridges exist that allow connection to an Ethernet network through a
USB device. In this case, the top level of the USB part of the Device service stack would be an Ether-
net Device service. But the same Ethernet Device service can also be the bottom layer of an Ethernet
layer of the Device service stack. A few layers up, a bridge could connect into yet another network.

Device Access Specification Version 1.1 Driver Services

OSGi Compendium Release 8 Page 65

The stacking depth of Device services has no limit, and the same drivers could in fact appear at dif-
ferent levels in the same Device service stack. The graph of drivers-to-Device services roughly mir-
rors the hardware connections.

103.4.2.7 Multiplexing Drivers

A multiplexing driver attaches a number of Device services and aggregates them in a new Device ser-
vice.

Figure 103.8 Multiplexing Driver Structure

 USB Mouse

Multiplexing Driver

Cursor Position

 Remote
Control

Graphic Tablet

USB Network Serial Port

For example, assume that a system has a mouse on USB, a graphic tablet on a serial port, and a re-
mote control facility. Each of these would be registered as a service with the Framework. A multi-
plexing driver can attach all three, and can merge the different positions in a central Cursor Position
service.

103.4.2.8 Pure Consuming Drivers

A pure consuming driver bundle will attach to devices without registering a refined version.

Figure 103.9 Pure Consuming Driver Structure

Pure Consuming Driver

USB Serial Port

USB Base Driver

USB Network

For example, one driver bundle could decide to handle all serial ports through javax.comm instead
of registering them as services. When a USB serial port is plugged in, one or more Driver services
are attached, resulting in a Device service stack with a Serial Port Device service. A pure consum-
ing driver may then attach to the Serial Port Device service and register a new serial port with the
javax.comm.* registry instead of the Framework service registry. This registration effectively trans-
fers the device from the OSGi environment into another environment.

103.4.2.9 Other Driver Types

It should be noted that any bundle installed in the OSGi environment may get and use a Device ser-
vice without having to register a Driver service.

The following functionality is offered to those bundles that do register a Driver service and conform
to the this specification:

Driver Services Device Access Specification Version 1.1

Page 66 OSGi Compendium Release 8

• The bundles can be installed and uninstalled on demand.
• Attachment to the Device service is only initiated after the winning the competition with other

drivers.

103.4.3 Driver Service Registration
Drivers are recognized by registering a Driver service with the Framework. This event makes the
device manager aware of the existence of the Driver service. A Driver service registration must
have a DRIVER_ID property whose value is a Str ing object, uniquely identifying the driver to the de-
vice manager. The device manager must use the DRIVER_ID to prevent the installation of duplicate
copies of the same driver bundle.

Therefore, this DRIVER_ID must:

• Depend only on the specific behavior of the driver, and thus be independent of unrelated aspects
like its location or mechanism of downloading.

• Start with the reversed form of the domain name of the company that implements it: for exam-
ple, com.acme.widget.1 .1 .

• Differ from the DRIVER_ID of drivers with different behavior. Thus, it must also be different for
each revision of the same driver bundle so they may be distinguished.

When a new Driver service is registered, the Device Attachment Algorithm must be applied to each
idle Device service. This requirement gives the new Driver service a chance to compete with other
Driver services for attaching to idle devices. The techniques outlined in Optimizations on page 74
can provide significant shortcuts for this situation.

As a result, the Driver service object can receive match and attach requests before the method which
registered the service has returned.

This specification does not define any method for new Driver services to steal already attached de-
vices. Once a Device service has been attached by a Driver service, it can only be released by the Dri-
ver service itself.

103.4.4 Driver Service Unregistration
When a Driver service is unregistered, it must release all Device services to which it is attached.
Thus, all its attached Device services become idle. The device manager must gather all of these idle
Device services and try to re-attach them. This condition gives other Driver services a chance to take
over the refinement of devices after the unregistering driver. The techniques outlined in Optimiza-
tions on page 74 can provide significant shortcuts for this situation.

A Driver service that is installed by the device manager must remain registered as long as the dri-
ver bundle is active. Therefore, a Driver service should only be unregistered if the driver bundle is
stopping, an occurrence which may precede its being uninstalled or updated. Driver services should
thus not unregister in an attempt to minimize resource consumption. Such optimizations can easily
introduce race conditions with the device manager.

103.4.5 Driver Service Methods
The Driver interface consists of the following methods:

• match(ServiceReference) - This method is called by the device manager to find out how well this
Driver service matches the Device service as indicated by the ServiceReference argument. The
value returned here is specific for a device category. If this Device service is of another device cat-
egory, the value Device.MATCH_NONE must be returned. Higher values indicate a better match.
For the exact matching algorithm, see The Device Attachment Algorithm on page 71.

Driver match values and referrals must be deterministic, in that repeated calls for the same De-
vice service must return the same results so that results can be cached by the device manager.

Device Access Specification Version 1.1 Driver Locator Service

OSGi Compendium Release 8 Page 67

• attach(ServiceReference) - If the device manager decides that a Driver service should be attached
to a Device service, it must call this method on the Driver service object. Once this method is
called, the Device service is regarded as attached to that Driver service, and no other Driver ser-
vice must be called to attach to the Device service. The Device service must remain owned by the
Driver service until the Driver bundle is stopped. No unattach method exists.

The attach method should return nul l when the Device service is correctly attached. A refer-
ring driver (see Referring Drivers on page 64) can return a Str ing object that specifies the
DRIVER_ID of a driver that can handle this Device service. In this case, the Device service is not at-
tached and the device manager must attempt to install a Driver service with the same DRIVER_ID
via a Driver Locator service. The attach method must be deterministic as described in the previ-
ous method.

103.4.6 Idle Driver Bundles
An idle Driver bundle is a bundle with a registered Driver service, and is not attached to any Device
service. Idle Driver bundles are consuming resources in the OSGi Framework. The device manager
should uninstall bundles that it has installed and which are idle.

103.5 Driver Locator Service
The device manager must automatically install Driver bundles, which are obtained from Driver Lo-
cator services, when new Device services are registered.

A Driver Locator service encapsulates the knowledge of how to fetch the Driver bundles needed for
a specific Device service. This selection is made on the properties that are registered with a device:
for example, DEVICE_CATEGORY and any other properties registered with the Device service regis-
tration.

The purpose of the Driver Locator service is to separate the mechanism from the policy. The deci-
sion to install a new bundle is made by the device manager (the mechanism), but a Driver Locator
service decides which bundle to install and from where the bundle is downloaded (the policy).

Installing bundles has many consequences for the security of the system, and this process is also
sensitive to network setup and other configuration details. Using Driver Locator services allows the
Operator to choose a strategy that best fits its needs.

Driver services are identified by the DRIVER_ID property. Driver Locator services use this particular
ID to identify the bundles that can be installed. Driver ID properties have uniqueness requirements
as specified in Device Service Registration on page 58. This uniqueness allows the device manager
to maintain a list of Driver services and prevent unnecessary installs.

An OSGi Framework can have several different Driver Locator services installed. The device manag-
er must consult all of them and use the combined result set, after pruning duplicates based on the
DRIVER_ID values.

103.5.1 The DriverLocator Interface
The DriverLocator interface allows suitable driver bundles to be located, downloaded, and installed
on demand, even when completely unknown devices are detected.

It has the following methods:

• f indDrivers(Dict ionary) - This method returns an array of driver IDs that potentially match a ser-
vice described by the properties in the Dictionary object. A driver ID is the Str ing object that is
registered by a Driver service under the DRIVER_ID property.

• loadDriver(Str ing) - This method returns an InputStream object that can be used to download
the bundle containing the Driver service as specified by the driver ID argument. If the Driver Lo-

Driver Locator Service Device Access Specification Version 1.1

Page 68 OSGi Compendium Release 8

cator service cannot download such a bundle, it should return nul l . Once this bundle is down-
loaded and installed in the Framework, it must register a Driver service with the DRIVER_ID prop-
erty set to the value of the Str ing argument.

103.5.2 A Driver Example
The following example shows a very minimal Driver service implementation. It consists of two
classes. The first class is SerialWidget . This class tracks a single WidgetDevice from Sample Device
Category Specification on page 60. It registers a javax.comm.SerialPort service, which is a gener-
al serial port specification that could also be implemented from other device categories like USB, a
COM port, etc. It is created when the SerialWidgetDriver object is requested to attach a WidgetDe-
vice by the device manager. It registers a new javax.comm.SerialPort service in its constructor.

The org.osgi .ut i l .t racker.ServiceTracker is extended to handle the Framework events that are need-
ed to simplify tracking this service. The removedService method of this class is overridden to unreg-
ister the SerialPort when the underlying WidgetDevice is unregistered.

package com.acme.widget;
import org.osgi.service.device.*;
import org.osgi.framework.*;
import org.osgi.util.tracker.*;

class SerialWidget extends ServiceTracker
 implements javax.comm.SerialPort,
 org.osgi.service.device.Constants {
 ServiceRegistration registration;

 SerialWidget(BundleContext c, ServiceReference r) {
 super(c, r, null);
 open();
 }

 public Object addingService(ServiceReference ref) {
 WidgetDevice dev = (WidgetDevice)
 context.getService(ref);
 registration = context.registerService(
 javax.comm.SerialPort.class.getName(),
 this,
 null);
 return dev;
 }

 public void removedService(ServiceReference ref,
 Object service) {
 registration.unregister();
 context.ungetService(ref);
 }
 ... methods for javax.comm.SerialPort that are
 ... converted to underlying WidgetDevice
}

A SerialWidgetDriver object is registered with the Framework in the Bundle Activator start method
under the Driver interface. The device manager must call the match method for each idle Device ser-
vice that is registered. If it is chosen by the device manager to control this Device service, a new Se-
r ia lWidget is created that offers serial port functionality to other bundles.

public class SerialWidgetDriver implementsDriver {

Device Access Specification Version 1.1 Driver Locator Service

OSGi Compendium Release 8 Page 69

 BundleContext context;

 String spec =
 "(&"
 +" (objectclass=com.acme.widget.WidgetDevice)"
 +" (DEVICE_CATEGORY=WidgetDevice)"
 +" (com.acme.class=Serial)"
 +")";

 Filter filter;

 SerialWidgetDriver(BundleContext context)
 throws Exception {
 this.context = context;
 filter = context.createFilter(spec);
 }
 public int match(ServiceReference d) {
 if (filter.match(d))
 return WidgetDevice.MATCH_CLASS;
 else
 return Device.MATCH_NONE;
 }
 public synchronized String attach(ServiceReference r){
 new SerialWidget(context, r);
 }
}

The Driver Selector Service Device Access Specification Version 1.1

Page 70 OSGi Compendium Release 8

103.6 The Driver Selector Service
The purpose of the Driver Selector service is to customize the selection of the best Driver service
from a set of suitable Driver bundles. The device manager has a default algorithm as described in
The Device Attachment Algorithm on page 71. When this algorithm is not sufficient and requires
customizing by the operator, a bundle providing a Driver Selector service can be installed in the
Framework. This service must be used by the device manager as the final arbiter when selecting the
best match for a Device service.

The Driver Selector service is a singleton; only one such service is recognized by the device man-
ager. The Framework method BundleContext.getServiceReference must be used to obtain a Dri-
ver Selector service. In the erroneous case that multiple Driver Selector services are registered, the
service.ranking property will thus define which service is actually used.

A device manager implementation must invoke the method select(ServiceReference,Match[]) .
This method receives a Service Reference to the Device service and an array of Match objects. Each
Match object contains a link to the ServiceReference object of a Driver service and the result of the
match value returned from a previous call to Driver.match . The Driver Selector service should in-
spect the array of Match objects and use some means to decide which Driver service is best suited.
The index of the best match should be returned. If none of the Match objects describe a possible Dri-
ver service, the implementation must return DriverSelector.SELECT_NONE (-1) .

103.7 Device Manager
Device Access is controlled by the device manager in the background. The device manager is respon-
sible for initiating all actions in response to the registration, modification, and unregistration of
Device services and Driver services, using Driver Locator services and a Driver Selector service as
helpers.

The device manager detects the registration of Device services and coordinates their attachment
with a suitable Driver service. Potential Driver services do not have to be active in the Framework to
be eligible. The device manager must use Driver Locator services to find bundles that might be suit-
able for the detected Device service and that are not currently installed. This selection is done via a
DRIVER_ID property that is unique for each Driver service.

The device manager must install and start these bundles with the help of a Driver Locator service.
This activity must result in the registration of one or more Driver services. All available Driver ser-
vices, installed by the device manager and also others, then participate in a bidding process. The Dri-
ver service can inspect the Device service through its ServiceReference object to find out how well
this Driver service matches the Device service.

If a Driver Selector service is available in the Framework service registry, it is used to decide which
of the eligible Driver services is the best match.

If no Driver Selector service is available, the highest bidder must win, with tie breaks defined on the
service.ranking and service. id properties. The selected Driver service is then asked to attach the De-
vice service.

If no Driver service is suitable, the Device service remains idle. When new Driver bundles are in-
stalled, these idle Device services must be reattached.

The device manager must reattach a Device service if, at a later time, a Driver service is unregistered
due to an uninstallation or update. At the same time, however, it should prevent superfluous and
non-optimal reattachments. The device manager should also garbage-collect driver bundles it in-
stalled which are no longer used.

Device Access Specification Version 1.1 Device Manager

OSGi Compendium Release 8 Page 71

The device manager is a singleton. Only one device manager may exist, and it must have no public
interface.

103.7.1 Device Manager Startup
To prevent race conditions during Framework startup, the device manager must monitor the state
of Device services and Driver services immediately when it is started. The device manager must not,
however, begin attaching Device services until the Framework has been fully started, to prevent su-
perfluous or non-optimal attachments.

The Framework has completed starting when the FrameworkEvent.STARTED event has been pub-
lished. Publication of that event indicates that Framework has finished all its initialization and
all bundles are started. If the device manager is started after the Framework has been initialized, it
should detect the state of the Framework by examining the state of the system bundle.

103.7.2 The Device Attachment Algorithm
A key responsibility of the device manager is to attach refining drivers to idle devices. The following
diagram illustrates the device attachment algorithm.

Device Manager Device Access Specification Version 1.1

Page 72 OSGi Compendium Release 8

Figure 103.10 Device Attachment Algorithm

Idle Device

For each DriverLocator

findDriversA

For each DRIVER ID

Try to loadBFor each Driver not excluded

C match

Nothing

Selector

Try selector
D

Nothing attachedAttach completed

Default selection

Attach

Cleanup

Try to load

Add the driver to
the exclusion list

Device

noDriverFound

Cleanup

E

F

K

I

K

G

H

Device Access Specification Version 1.1 Device Manager

OSGi Compendium Release 8 Page 73

103.7.3 Legend

Table 103.3 Driver attachment algorithm

Step Description
A DriverLocator.f indDrivers is called for each registered Driver Locator service, passing

the properties of the newly detected Device service. Each method call returns zero or
more DRIVER_ID values (identifiers of particular driver bundles).

If the f indDrivers method throws an exception, it is ignored, and processing contin-
ues with the next Driver Locator service. See Optimizations on page 74 for further
guidance on handling exceptions.

B For each found DRIVER_ID that does not correspond to an already registered Driver
service, the device manager calls DriverLocator. loadDriver to return an InputStream
containing the driver bundle. Each call to loadDriver is directed to one of the Driver
Locator services that mentioned the DRIVER_ID in step A. If the loadDriver method
fails, the other Driver Locator objects are tried. If they all fail, the driver bundle is ig-
nored.

If this method succeeds, the device manager installs and starts the driver bundle. Dri-
ver bundles must register their Driver services synchronously during bundle activa-
tion.

C For each Driver service, except those on the exclusion list, call its Driver.match
method, passing the ServiceReference object to the Device service.

Collect all successful matches - that is, those whose return values are greater than
Device.MATCH_NONE - in a list of active matches. A match call that throws an ex-
ception is considered unsuccessful and is not added to the list.

D If there is a Driver Selector service, the device manager calls the
DriverSelector.select method, passing the array of active Match objects.

If the Driver Selector service returns the index of one of the Match objects from the
array, its associated Driver service is selected for attaching the Device service. If the
Driver Selector service returns DriverSelector.SELECT_NONE , no Driver service
must be considered for attaching the Device service.

If the Driver Selector service throws an exception or returns an invalid result, the de-
fault selection algorithm is used.

Only one Driver Selector service is used, even if there is more than one registered in
the Framework. See The Driver Selector Service on page 70.

E The winner is the one with the highest match value. Tie breakers are respectively:

• Highest service.ranking property.
• Lowest service. id property.

F The selected Driver service's attach method is called. If the attach method returns
nul l , the Device service has been successfully attached. If the attach method returns
a Str ing object, it is interpreted as a referral to another Driver service and processing
continues at G. See Referring Drivers on page 64.

If an exception is thrown, the Driver service has failed, and the algorithm proceeds
to try another Driver service after excluding this one from further consideration at
Step H.

Device Manager Device Access Specification Version 1.1

Page 74 OSGi Compendium Release 8

Step Description
G The device manager attempts to load the referred driver bundle in a manner simi-

lar to Step B, except that it is unknown which Driver Locator service to use. There-
fore, the loadDriver method must be called on each Driver Locator service until one
succeeds (or they all fail). If one succeeds, the device manager installs and starts the
driver bundle. The driver bundle must register a Driver service during its activation
which must be added to the list of Driver services in this algorithm.

H The referring driver bundle is added to the exclusion list. Because each new referral
adds an entry to the exclusion list, which in turn disqualifies another driver from
further matching, the algorithm cannot loop indefinitely. This list is maintained for
the duration of this algorithm. The next time a new Device service is processed, the
exclusion list starts out empty.

I If no Driver service attached the Device service, the Device service is checked to
see whether it implements the Device interface. If so, the noDriverFound method is
called. Note that this action may cause the Device service to unregister and possibly
a new Device service (or services) to be registered in its place. Each new Device ser-
vice registration must restart the algorithm from the beginning.

K Whether an attachment was successful or not, the algorithm may have installed a
number of driver bundles. The device manager should remove any idle driver bun-
dles that it installed.

103.7.4 Optimizations
Optimizations are explicitly allowed and even recommended for an implementation of a device
manager. Implementations may use the following assumptions:

• Driver match values and referrals must be deterministic, in that repeated calls for the same De-
vice service must return the same results.

• The device manager may cache match values and referrals. Therefore, optimizations in the de-
vice attachment algorithm based on this assumption are allowed.

• The device manager may delay loading a driver bundle until it is needed. For example, a delay
could occur when that DRIVER_ID 's match values are cached.

• The results of calls to DriverLocator and DriverSelector methods are not required to be determin-
istic, and must not be cached by the device manager.

• Thrown exceptions must not be cached. Exceptions are considered transient failures, and the de-
vice manager must always retry a method call even if it has thrown an exception on a previous
invocation with the same arguments.

103.7.5 Driver Bundle Reclamation
The device manager may remove driver bundles it has installed at any time, provided that all the
Driver services in that bundle are idle. This recommended practice prevents unused driver bundles
from accumulating over time. Removing driver bundles too soon, however, may cause unnecessary
installs and associated delays when driver bundles are needed again.

If a device manager implements driver bundle reclamation, the specified matching algorithm is not
guaranteed to terminate unless the device manager takes reclamation into account.

For example, assume that a new Device service triggers the attachment algorithm. A driver bundle
recommended by a Driver Locator service is loaded. It does not match, so the Device service remains
idle. The device manager is eager to reclaim space, and unloads the driver bundle. The disappear-
ance of the Driver service causes the device manager to reattach idle devices. Because it has not kept
a record of its previous activities, it tries to reattach the same device, which closes the loop.

On systems where the device manager implements driver bundle reclamation, all refining drivers
should be loaded through Driver Locator services. This recommendation is intended to prevent the

Device Access Specification Version 1.1 Security

OSGi Compendium Release 8 Page 75

device manager from erroneously uninstalling pre-installed driver bundles that cannot later be rein-
stalled when needed.

The device manager can be updated or restarted. It cannot, however, rely on previously stored infor-
mation to determine which driver bundles were pre-installed and which were dynamically installed
and thus are eligible for removal. The device manager may persistently store cachable information
for optimization, but must be able to cold start without any persistent information and still be able
to manage an existing connection state, satisfying all of the requirements in this specification.

103.7.6 Handling Driver Bundle Updates
It is not straightforward to determine whether a driver bundle is being updated when the UN-
REGISTER event for a Driver service is received. In order to facilitate this distinction, the device man-
ager should wait for a period of time after the unregistration for one of the following events to oc-
cur:

• A BundleEvent.UNINSTALLED event for the driver bundle.
• A ServiceEvent.REGISTERED event for another Driver service registered by the driver bundle.

If the driver bundle is uninstalled, or if neither of the above events are received within the allotted
time period, the driver is assumed to be inactive. The appropriate waiting period is implementa-
tion-dependent and will vary for different installations. As a general rule, this period should be long
enough to allow a driver to be stopped, updated, and restarted under normal conditions, and short
enough not to cause unnecessary delays in reattaching devices. The actual time should be config-
urable.

103.7.7 Simultaneous Device Service and Driver Service Registration
The device attachment algorithm may discover new driver bundles that were installed outside its
direct control, which requires executing the device attachment algorithm recursively. However, in
this case, the appearance of the new driver bundles should be queued until completion of the cur-
rent device attachment algorithm.

Only one device attachment algorithm may be in progress at any moment in time.

The following example sequence illustrates this process when a Driver service is registered:

• Collect the set of all idle devices.
• Apply the device attachment algorithm to each device in the set.
• If no Driver services were registered during the execution of the device attachment algorithm,

processing terminates.
• Otherwise, restart this process.

103.8 Security
The device manager is the only privileged bundle in the Device Access specification and requires
the org.osgi .f ramework.AdminPermission with the LIFECYCLE action to install and uninstall driver
bundles.

The device manager itself should be free from any knowledge of policies and should not actively set
bundle permissions. Rather, if permissions must be set, it is up to the Management Agent to listen to
synchronous bundle events and set the appropriate permissions.

Driver Locator services can trigger the download of any bundle, because they deliver the content of
a bundle to the privileged device manager and could potentially insert a Trojan horse into the envi-
ronment. Therefore, Driver Locator bundles need the ServicePermission[DriverLocator, REGISTER]

org.osgi.service.device Device Access Specification Version 1.1

Page 76 OSGi Compendium Release 8

to register Driver Locator services, and the operator should exercise prudence in assigning this Ser-
vicePermission .

Bundles with Driver Selector services only require ServicePermission[DriverSelector, REGISTER]
to register the DriverSelector service. The Driver Selector service can play a crucial role in the selec-
tion of a suitable Driver service, but it has no means to define a specific bundle itself.

103.9 org.osgi.service.device

Device Access Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.device; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.device; vers ion="[1.1 ,1 .2)"

103.9.1 Summary

• Constants - This interface defines standard names for property keys associated with Device and
Driver services.

• Device - Interface for identifying device services.
• Driver - A Driver service object must be registered by each Driver bundle wishing to attach to

Device services provided by other drivers.
• DriverLocator - A Driver Locator service can find and load device driver bundles given a proper-

ty set.
• DriverSelector - When the device manager detects a new Device service, it calls all registered

Driver services to determine if anyone matches the Device service.
• Match - Instances of Match are used in the DriverSelector.select(ServiceReference, Match[])

method to identify Driver services matching a Device service.

103.9.2 public interface Constants
This interface defines standard names for property keys associated with Device and Driver services.

The values associated with these keys are of type java. lang.Str ing , unless otherwise stated.

See Also Device, Driver

Since 1.1

No Implement Consumers of this API must not implement this interface

103.9.2.1 public static final String DEVICE_CATEGORY = "DEVICE_CATEGORY"

Property (named "DEVICE_CATEGORY") containing a human readable description of the device cat-
egories implemented by a device. This property is of type Str ing[]

Services registered with this property will be treated as devices and discovered by the device manag-
er

103.9.2.2 public static final String DEVICE_DESCRIPTION = "DEVICE_DESCRIPTION"

Property (named "DEVICE_DESCRIPTION") containing a human readable string describing the ac-
tual hardware device.

Device Access Specification Version 1.1 org.osgi.service.device

OSGi Compendium Release 8 Page 77

103.9.2.3 public static final String DEVICE_SERIAL = "DEVICE_SERIAL"

Property (named "DEVICE_SERIAL") specifying a device's serial number.

103.9.2.4 public static final String DRIVER_ID = "DRIVER_ID"

Property (named "DRIVER_ID") identifying a driver.

A DRIVER_ID should start with the reversed domain name of the company that implemented the
driver (e.g., com.acme), and must meet the following requirements:

• It must be independent of the location from where it is obtained.
• It must be independent of the DriverLocator service that downloaded it.
• It must be unique.
• It must be different for different revisions of the same driver.

This property is mandatory, i.e., every Driver service must be registered with it.

103.9.3 public interface Device
Interface for identifying device services.

A service must implement this interface or use the Constants.DEVICE_CATEGORY registration
property to indicate that it is a device. Any services implementing this interface or registered with
the DEVICE_CATEGORY property will be discovered by the device manager.

Device services implementing this interface give the device manager the opportunity to indicate to
the device that no drivers were found that could (further) refine it. In this case, the device manager
calls the noDriverFound() method on the Device object.

Specialized device implementations will extend this interface by adding methods appropriate to
their device category to it.

See Also Driver

Concurrency Thread-safe

103.9.3.1 public static final int MATCH_NONE = 0

Return value from Driver.match(ServiceReference) indicating that the driver cannot refine the de-
vice presented to it by the device manager. The value is zero.

103.9.3.2 public void noDriverFound()

□ Indicates to this Device object that the device manager has failed to attach any drivers to it.

If this Device object can be configured differently, the driver that registered this Device object may
unregister it and register a different Device service instead.

103.9.4 public interface Driver
A Driver service object must be registered by each Driver bundle wishing to attach to Device ser-
vices provided by other drivers. For each newly discovered Device object, the device manager enters
a bidding phase. The Driver object whose match(ServiceReference) method bids the highest for a
particular Device object will be instructed by the device manager to attach to the Device object.

See Also Device, DriverLocator

Concurrency Thread-safe

103.9.4.1 public String attach(ServiceReference<?> reference) throws Exception

reference the ServiceReference object of the device to attach to

□ Attaches this Driver service to the Device service represented by the given ServiceReference object.

org.osgi.service.device Device Access Specification Version 1.1

Page 78 OSGi Compendium Release 8

A return value of nul l indicates that this Driver service has successfully attached to the given Device
service. If this Driver service is unable to attach to the given Device service, but knows of a more
suitable Driver service, it must return the DRIVER_ID of that Driver service. This allows for the im-
plementation of referring drivers whose only purpose is to refer to other drivers capable of handling
a given Device service.

After having attached to the Device service, this driver may register the underlying device as a new
service exposing driver-specific functionality.

This method is called by the device manager.

Returns nul l if this Driver service has successfully attached to the given Device service, or the DRIVER_ID of a
more suitable driver

Throws Exception– if the driver cannot attach to the given device and does not know of a more suitable dri-
ver

103.9.4.2 public int match(ServiceReference<?> reference) throws Exception

reference the ServiceReference object of the device to match

□ Checks whether this Driver service can be attached to the Device service. The Device service is rep-
resented by the given ServiceReference and returns a value indicating how well this driver can sup-
port the given Device service, or Device.MATCH_NONE if it cannot support the given Device ser-
vice at all.

The return value must be one of the possible match values defined in the device category definition
for the given Device service, or Device.MATCH_NONE if the category of the Device service is not rec-
ognized.

In order to make its decision, this Driver service may examine the properties associated with the
given Device service, or may get the referenced service object (representing the actual physical de-
vice) to talk to it, as long as it ungets the service and returns the physical device to a normal state be-
fore this method returns.

A Driver service must always return the same match code whenever it is presented with the same
Device service.

The match function is called by the device manager during the matching process.

Returns value indicating how well this driver can support the given Device service, or
Device.MATCH_NONE if it cannot support the Device service at all

Throws Exception– if this Driver service cannot examine the Device service

103.9.5 public interface DriverLocator
A Driver Locator service can find and load device driver bundles given a property set. Each driver is
represented by a unique DRIVER_ID .

Driver Locator services provide the mechanism for dynamically downloading new device driver
bundles into an OSGi environment. They are supplied by providers and encapsulate all provider-
specific details related to the location and acquisition of driver bundles.

See Also Driver

Concurrency Thread-safe

103.9.5.1 public String[] findDrivers(Dictionary<String, ?> props)

props the properties of the device for which a driver is sought

□ Returns an array of DRIVER_ID strings of drivers capable of attaching to a device with the given
properties.

The property keys in the specified Dictionary objects are case-insensitive.

Device Access Specification Version 1.1 org.osgi.service.device

OSGi Compendium Release 8 Page 79

Returns array of driver DRIVER_ID strings of drivers capable of attaching to a Device service with the given
properties, or nul l if this Driver Locator service does not know of any such drivers

103.9.5.2 public InputStream loadDriver(String id) throws IOException

id the DRIVER_ID of the driver that needs to be installed.

□ Get an InputStream from which the driver bundle providing a driver with the giving DRIVER_ID can
be installed.

Returns An InputStream object from which the driver bundle can be installed or nul l if the driver with the
given ID cannot be located

Throws IOException– the input stream for the bundle cannot be created

103.9.6 public interface DriverSelector
When the device manager detects a new Device service, it calls all registered Driver services to de-
termine if anyone matches the Device service. If at least one Driver service matches, the device man-
ager must choose one. If there is a Driver Selector service registered with the Framework, the device
manager will ask it to make the selection. If there is no Driver Selector service, or if it returns an in-
valid result, or throws an Exception , the device manager uses the default selection strategy.

Since 1.1

Concurrency Thread-safe

103.9.6.1 public static final int SELECT_NONE = -1

Return value from DriverSelector.select , if no Driver service should be attached to the Device ser-
vice. The value is -1.

103.9.6.2 public int select(ServiceReference<?> reference, Match[] matches)

reference the ServiceReference object of the Device service.

matches the array of all non-zero matches.

□ Select one of the matching Driver services. The device manager calls this method if there is at
least one driver bidding for a device. Only Driver services that have responded with nonzero (not
Device.MATCH_NONE) match values will be included in the list.

Returns index into the array of Match objects, or SELECT_NONE if no Driver service should be attached

103.9.7 public interface Match
Instances of Match are used in the DriverSelector.select(ServiceReference, Match[]) method to identi-
fy Driver services matching a Device service.

See Also DriverSelector

Since 1.1

Concurrency Thread-safe

No Implement Consumers of this API must not implement this interface

103.9.7.1 public ServiceReference<?> getDriver()

□ Return the reference to a Driver service.

Returns ServiceReference object to a Driver service.

103.9.7.2 public int getMatchValue()

□ Return the match value of this object.

Returns the match value returned by this Driver service.

References Device Access Specification Version 1.1

Page 80 OSGi Compendium Release 8

103.10 References

[1] Java Communications API
http://www.oracle.com/technetwork/java/index-jsp-141752.html

[2] USB Specification
http://www.usb.org

[3] Universal Plug and Play
http://www.upnp.org

[4] Jini, Service Discovery and Usage
http://en.wikipedia.org/wiki/Jini

http://www.oracle.com/technetwork/java/index-jsp-141752.html
http://www.usb.org
http://www.upnp.org
http://en.wikipedia.org/wiki/Jini

Configuration Admin Service Specification Version 1.6 Introduction

OSGi Compendium Release 8 Page 81

104 Configuration Admin Service
Specification

Version 1.6

104.1 Introduction
The Configuration Admin service is an important aspect of the deployment of an OSGi framework.
It allows an Operator to configure deployed bundles. Configuring is the process of defining the con-
figuration data for bundles and assuring that those bundles receive that data when they are active in
the OSGi framework.

Figure 104.1 Configuration Admin Service Overview

port=
secure=

port= 80
secure= true

bundle
developer

writes
a bundle

bundle is
deployed

configuration
data

Configuration
Admin

104.1.1 Essentials
The following requirements and patterns are associated with the Configuration Admin service spec-
ification:

• Local Configuration - The Configuration Admin service must support bundles that have their own
user interface to change their configurations.

• Reflection - The Configuration Admin service must be able to deduce the names and types of the
needed configuration data.

• Legacy - The Configuration Admin service must support configuration data of existing entities
(such as devices).

• Object Oriented - The Configuration Admin service must support the creation and deletion of in-
stances of configuration information so that a bundle can create the appropriate number of ser-
vices under the control of the Configuration Admin service.

• Embedded Devices - The Configuration Admin service must be deployable on a wide range of plat-
forms. This requirement means that the interface should not assume file storage on the platform.
The choice to use file storage should be left to the implementation of the Configuration Admin
service.

Introduction Configuration Admin Service Specification Version 1.6

Page 82 OSGi Compendium Release 8

• Remote versus Local Management - The Configuration Admin service must allow for a remotely
managed OSGi framework, and must not assume that con-figuration information is stored local-
ly. Nor should it assume that the Configuration Admin service is always done remotely. Both im-
plementation approaches should be viable.

• Availability - The OSGi environment is a dynamic environment that must run continuously
(24/7/365). Configuration updates must happen dynamically and should not require restarting of
the system or bundles.

• Immediate Response - Changes in configuration should be reflected immediately.
• Execution Environment - The Configuration Admin service will not require more than an environ-

ment that fulfills the minimal execution requirements.
• Communications - The Configuration Admin service should not assume "always-on" connectivity,

so the API is also applicable for mobile applications in cars, phones, or boats.
• Extendability - The Configuration Admin service should expose the process of configuration to

other bundles. This exposure should at a minimum encompass initiating an update, removing
certain configuration properties, adding properties, and modifying the value of properties poten-
tially based on existing property or service values.

• Complexity Trade-offs - Bundles in need of configuration data should have a simple way of obtain-
ing it. Most bundles have this need and the code to accept this data. Additionally, updates should
be simple from the perspective of the receiver.

Trade-offs in simplicity should be made at the expense of the bundle implementing the Config-
uration Admin service and in favor of bundles that need configuration information. The reason
for this choice is that normal bundles will outnumber Configuration Admin bundles.

• Regions - It should be possible to create groups of bundles and a manager in a single system that
share configuration data that is not accessible outside the region.

• Shared Information - It should be possible to share configuration data between bundles.

104.1.2 Entities

• Configuration information - The information needed by a bundle before it can provide its intended
functionality.

• Configuration dictionary - The configuration information when it is passed to the target service. It
consists of a Dictionary object with a number of properties and identifiers.

• Configuring Bundle - A bundle that modifies the configuration information through the Config-
uration Admin service. This bundle is either a management bundle or the bundle for which the
configuration information is intended.

• Configuration Target - The target service that will receive the configuration information. For ser-
vices, there are two types of targets: ManagedServiceFactory or ManagedService objects.

• Configuration Admin Service - This service is responsible for supplying configuration target bun-
dles with their configuration information. It maintains a database with configuration informa-
tion, keyed on the service.pid of configuration target services. These services receive their con-
figuration dictionary/dictionaries when they are registered with the Framework. Configurations
can be modified or extended using Configuration Plugin services before they reach the target
bundle.

• Managed Service - A Managed Service represents a client of the Configuration Admin service, and
is thus a configuration target. Bundles should register a Managed Service to receive the configu-
ration data from the Configuration Admin service. A Managed Service adds one or more unique
service.pid service properties as a primary key for the configuration information.

• Managed Service Factory - A Managed Service Factory can receive a number of configuration dic-
tionaries from the Configuration Admin service, and is thus also a configuration target service. It
should register with one or more service.pid strings and receives zero or more configuration dic-
tionaries. Each dictionary has its own PID that is distinct from the factory PID.

Configuration Admin Service Specification Version 1.6 Configuration Targets

OSGi Compendium Release 8 Page 83

• Configuration Object - Implements the Configurat ion interface and contains the configuration dic-
tionary for a Managed Service or one of the configuration dictionaries for a Managed Service Fac-
tory. These objects are manipulated by configuring bundles.

• Configuration Plugin Services - Configuration Plugin services are called before the configuration
dictionary is given to the configuration targets. The plug-in can modify the configuration dictio-
nary, which is passed to the Configuration Target.

Figure 104.2 Overall Service Diagram

Configuration
Admin Impl.

Configuration
Admin

Configuration
Listener

Managed
Service

Managed
Service Factory

Configuration
Plugin

104.1.3 Synopsis
This specification is based on the concept of a Configuration Admin service that manages the con-
figuration of an OSGi framework. It maintains a database of Configurat ion objects, locally or re-
motely. This service monitors the service registry and provides configuration information to ser-
vices that are registered with a service.pid property, the Persistent IDentity (PID), and implement
one of the following interfaces:

• Managed Service - A service registered with this interface receives its configuration dictionary from
the database or receives nul l when no such configuration exists.

• Managed Service Factory - Services registered with this interface can receive several configuration
dictionaries when registered. The database contains zero or more configuration dictionaries for
this service. Each configuration dictionary is given sequentially to the service.

The database can be manipulated either by the Management Agent or bundles that configure them-
selves. Other parties can provide Configuration Plugin services. Such services participate in the con-
figuration process. They can inspect the configuration dictionary and modify it before it reaches the
target service.

104.2 Configuration Targets
One of the more complicated aspects of this specification is the subtle distinction between the Man-
agedService and ManagedServiceFactory classes. Both receive configuration information from the
Configuration Admin service and are treated similarly in most respects. Therefore, this specification
refers to configuration targets or simply targets when the distinction is irrelevant.

The difference between these types is related to the cardinality of the configuration dictionary. A
Managed Service is used when an existing entity needs a configuration dictionary. Thus, a one-to-
one relationship always exists between the configuration dictionary and the configurable entity in
the Managed Service. There can be multiple Managed Service targets registered with the same PID
but a Managed Service can only configure a single entity in each given Managed Service.

The Persistent Identity Configuration Admin Service Specification Version 1.6

Page 84 OSGi Compendium Release 8

A Managed Service Factory is used when part of the configuration is to define how many instances are
required for a given Managed Service Factory. A management bundle can create, modify, and delete
any number of instances for a Managed Service Factory through the Configuration Admin service.
Each instance is configured by a single Configurat ion object. Therefore, a Managed Service Factory
can have multiple associated Configurat ion objects.

Figure 104.3 Differentiation of ManagedService and ManagedServiceFactory Classes

Framework Service
Registry ManagedService ManagedServiceFactory

Management layer

Service layer

A Configuration target updates the target when the underlying Configuration object is created, up-
dated, or deleted. However, it is not called back when the Configuration Admin service is shutdown
or the service is ungotten.

To summarize:

• A Managed Service must receive a single configuration dictionary when it is registered or when
its configuration is modified.

• A Managed Service Factory must receive from zero to n configuration dictionaries when it regis-
ters, depending on the current configuration. The Managed Service Factory is informed of config-
uration dictionary changes: modifications, creations, and deletions.

104.3 The Persistent Identity
A crucial concept in the Configuration Admin service specification is the Persistent IDentity (PID)
as defined in the Framework's service layer. Its purpose is to act as a primary key for objects that
need a configuration dictionary. The name of the service property for PID is defined in the Frame-
work in org.osgi .f ramework.Constants.SERVICE_PID .

The Configuration Admin service requires the use of one or more PIDs with Managed Service and
Managed Service Factory registrations because it associates its configuration data with PIDs.

A service can register with multiple PIDs and PIDs can be shared between multiple targets (both
Managed Service and Managed Service Factory targets) to receive the same information. If PIDs are
to be shared between Bundles then the location of the Configuration must be a multi-location, see
Location Binding on page 87.

The Configuration Admin must track the configuration targets on their actual PID. That is, if the
service.pid service property is modified then the Configuration Admin must treat it as if the service
was unregistered and then re-registered with the new PID.

104.3.1 PID Syntax
PIDs are intended for use by other bundles, not by people, but sometimes the user is confronted
with a PID. For example, when installing an alarm system, the user needs to identify the different
components to a wiring application. This type of application exposes the PID to end users.

PIDs should follow the symbolic-name syntax, which uses a very restricted character set. The fol-
lowing sections define some schemes for common cases. These schemes are not required, but bun-
dle developers are urged to use them to achieve consistency.

Configuration Admin Service Specification Version 1.6 The Persistent Identity

OSGi Compendium Release 8 Page 85

104.3.1.1 Local Bundle PIDs

As a convention, descriptions starting with the bundle identity and a full stop ('.' \u002E) are re-
served for a bundle. As an example, a PID of "65.536" would belong to the bundle with a bundle
identity of 65.

104.3.1.2 Software PIDs

Configuration target services that are singletons can use a Java package name they own as the PID
(the reverse domain name scheme) as long as they do not use characters outside the basic ASCII set.
As an example, the PID named com.acme.watchdog would represent a Watchdog service from the
ACME company.

104.3.1.3 Devices

Devices are usually organized on buses or networks. The identity of a device, such as a unique serial
number or an address, is a good component of a PID. The format of the serial number should be the
same as that printed on the housing or box, to aid in recognition.

Table 104.1 Schemes for Device-Oriented PID Names

Bus Example Format Description
USB USB.0123-0002-9909873 idVendor (hex 4)

idProduct (hex 4)

iSerialNumber (decimal)

Universal Serial Bus. Use the standard
device descriptor.

IP IP.172.16.28.21 IP nr (dotted decimal) Internet Protocol
802 802-00:60:97:00:9A:56 MAC address with : separators IEEE 802 MAC address (Token Ring,

Ethernet,...)
ONE ONE.06-00000021E461 Family (hex 2) and serial number in-

cluding CRC (hex 6)
1-wire bus of Dallas Semiconductor

COM COM.krups-brewer-12323 serial number or type name of device Serial ports

104.3.2 Targeted PIDs
PIDs are defined as primary keys for the configuration object; any target that uses the PID in its ser-
vice registration (and has the proper permissions if security is on) will receive the configuration as-
sociated with it, regardless of the bundle that registered the target service. Though in general the
PID is designed to ignore the bundle, there are a number of cases where the bundle becomes rele-
vant. The most typical case is where a bundle is available in different versions. Each version will re-
quest the same PID and will get therefore configured identically.

Targeted PIDs are specially formatted PIDs that are interpreted by the Configuration Admin service.
Targeted PIDs work both as a normal Managed Service PID and as a Managed Service Factory PID. In
the case of factories, the targeted PID is the Factory PID since the other PID is chosen by CM for each
instance.

The target PID scopes the applicability of the PID to a limited set of target bundles. The syntax of a
target pid is:

target-pid ::= PID
 ('|' symbolic-name ('|' version ('|' location)?)?)?

Targets never register with a target PID, target PIDs should only be used when creating, getting, or
deleting a Configuration through the Configuration Admin service. The target PID is still the prima-
ry key of the Configuration and is thus in itself a PID. The distinction is only made when the Config-
uration Admin must update a target service. Instead of using the non-target PID as the primary key
it must first search if there exists a target PID in the Configuration store that matches the requested
target PID.

The Persistent Identity Configuration Admin Service Specification Version 1.6

Page 86 OSGi Compendium Release 8

When a target registers and needs to be updated the Configuration Admin must first find the Con-
figuration with the best matching PID. It must logically take the requested PID, append it with the
bundle symbolic name, the bundle version, and the bundle location. The version must be formatted
canonically, that is, according to the toStr ing() method of the Version class. The rules for best match-
ing are then as follows:

Look for a Configuration, in the given order, with a key of:

 <pid>|<bsn>|<version>|<location>
 <pid>|<bsn>|<version>
 <pid>|<bsn>
 <pid>

For example:

 com.example.web.WebConf|com.acme.example|3.2.0|http://www.xyz.com/acme.jar
 com.example.web.WebConf|com.acme.example|3.2.0
 com.example.web.WebConf|com.acme.example
 com.example.web.WebConf

If a registered target service has a PID that contains a vertical line (' | ' \u007c) | then the value must
be taken as is and must not be interpreted as a targeted PID.

The service.pid configuration property for a targeted PID configuration must always be set
to the targeted PID. That is, if the PID is com.example.web.WebConf and the targeted PID
com.example.web.WebConf|com.acme.example|3.2.0 then the property in the Configuration dic-
tionary must be the targeted PID.

If a Configuration with a targeted PID is deleted or a Configuration with a new targeted PID is added
then all targets that would be stale must be reevaluated against the new situation and updated ac-
cordingly if they are no longer bound against the best matching target PID.

104.3.3 Extenders and Targeted PIDs
Extenders like Declarative Services use Configurations but bypass the general Managed Service or
Managed Service Factory method. It is the responsibility of these extenders to access the Configura-
tions using the targeted PIDs.

Since getting a Configuration tends to create that Configuration it is necessary for these extenders
to use the l istConfigurat ions(Str ing) method to find out if a more targeted Configuration exists.
There are many ways the extender can find the most targeted PID. For example, the following code
gets the most targeted PID for a given bundle.

String mostTargeted(String key, String pid, Bundle bundle) throws Exception {
 String bsn = bundle.getSymbolicName();
 Version version = bundle.getVersion();
 String location = bundle.getLocation();
 String f = String.format("(|(%1$s=%2$s)(%1$s=%2$s|%3$s)" +
 "(%1$s=%2$s|%3$s|%4$s)(%1$s=%2$s|%3$s|%4$s|%5$s))",
 key, pid, bsn, version, location);

 Configuration[] configurations = cm.listConfigurations(f);
 if (configurations == null)
 return null;

 String largest = null;
 for (Configuration c : configurations) {
 String s = (String) c.getProperties().get(key);

Configuration Admin Service Specification Version 1.6 The Configuration Object

OSGi Compendium Release 8 Page 87

 if ((largest == null) || (largest.length() < s.length()))
 largest = s;
 }
 return largest;
}

104.4 The Configuration Object
A Configurat ion object contains the configuration dictionary, which is a set of properties that con-
figure an aspect of a bundle. A bundle can receive Configurat ion objects by registering a configura-
tion target service with a PID service property. See The Persistent Identity on page 84 for more in-
formation about PIDs.

During registration, the Configuration Admin service must detect these configuration target ser-
vices and hand over their configuration dictionary via a callback. If this configuration dictionary is
subsequently modified, the modified dictionary is handed over to the configuration target with the
same callback.

The Configurat ion object is primarily a set of properties that can be updated by a Management
Agent, user interfaces on the OSGi framework, or other applications. Configuration changes are first
made persistent, and then passed to the target service via a call to the updated method in the Man-
agedServiceFactory or ManagedService class.

A Configuration object must be uniquely bound to a Managed Service or Managed Service Factory.
This implies that a bundle must not register a Managed Service Factory with a PID that is the same
as the PID given to a Managed Service.

104.4.1 Location Binding
When a Configurat ion object is created with either getConfigurat ion(Str ing) ,
getFactoryConfigurat ion(Str ing,Str ing) , or createFactoryConfigurat ion(Str ing) , it becomes
bound to the location of the calling bundle. This location is obtained with the getBundleLocation()
method.

Location binding is a security feature that assures that only management bundles can modify con-
figuration data, and other bundles can only modify their own configuration data. A Security Excep-
tion is thrown if a bundle does not have Configurat ionPermission[location, CONFIGURE] .

The two argument versions of getConfigurat ion(Str ing,Str ing) and
createFactoryConfigurat ion(Str ing,Str ing) as well as the three argument version of
getFactoryConfigurat ion(Str ing,Str ing,Str ing) take a location Str ing as their last argument. These
methods require the correct permission, and they create Configurat ion objects bound to the speci-
fied location.

Locations can be specified for a specific Bundle or use multi-locations. For a specific location the Con-
figuration location must exactly match the location of the target's Bundle. A multi-location is any
location that has the following syntax:

multi-location ::= '?' symbolic-name?

For example

?com.acme

The path after the question mark is the multi-location name, the multi-location name can be empty if
only a question mark is specified. Configurations with a multi-location are dispatched to any target
that has visibility to the Configuration. The visibility for a given Configuration c depends on the fol-
lowing rules:

The Configuration Object Configuration Admin Service Specification Version 1.6

Page 88 OSGi Compendium Release 8

• Single-Location - If c. locat ion is not a multi-location then a Bundle only has visibility if the
Bundle's location exactly matches c. locat ion . In this case there is never a security check.

• Multi-Location - If c. locat ion is a multi-location (that is, starts with a question mark):
• Security Off - The Bundle always has visibility
• Security On - The target's Bundle must have Configurat ionPermission[c . locat ion, TARGET]

as defined by the Bundle's hasPermission method. The resource name of the permission must
include the question mark.

The permission matches on the whole name, including any leading ? . The TARGET action is only ap-
plicable in the multi-location scenario since the security is not checked for a single-location. There
is therefore no point in granting a Bundle a permission with TARGET action for anything but a mul-
ti-location (starting with a ?).

It is therefore possible to register services with the same PID from different bundles. If a multi-loca-
tion is used then each bundle will be evaluated for a corresponding configuration update. If the bun-
dle has visibility then it is updated, otherwise it is not.

If multiple targets must be updated then the order of updating is the ranking order of their services.

If a target loses visibility because the Configuration's location changes then it must immediately
be deleted from the perspective of that target. That is, the target must see a deletion (Managed Ser-
vice Factory) or an update with nul l (Managed Service). If a configuration target gains visibility then
the target must see a new update with the proper configuration dictionary. However, the associated
events must not be sent as the underlying Configuration is not actually deleted nor modified.

Changes in the permissions must not initiate a recalculation of the visibility. If the permissions are
changed this will not become visible until one of the other events happen that cause a recalculation
of the visibility.

If the location is changed then the Configuration Admin must send a CM_LOCATION_CHANGED
event to signal that the location has changed. It is up to the Configuration Listeners to update their
state appropriately.

104.4.2 Dynamic Binding
Dynamic binding is available for backward compatibility with earlier versions. It is recommended
that management agents explicitly set the location to a ? (a multi-location) to allow multiple bun-
dles to share PIDs and not use the dynamic binding facility. If a management agent uses ?, it must
at least have Configurat ionPermission[?, CONFIGURE] when security is on, it is also possible to
use Configurat ionPermission[?*, CONFIGURE] to not limit the management agent. See Regions on
page 100 for some examples of using the locations in isolation scenarios.

A nul l location parameter can be used to create Configurat ion objects that are not yet bound. In
this case, the Configuration becomes bound to a specific location the first time that it is com-
pared to a Bundle's location. If a bundle becomes dynamically bound to a Configuration then a
CM_LOCATION_CHANGED event must be dispatched.

When this dynamically bound Bundle is subsequently uninstalled, configurations that are bound to
this bundle must be released. That means that for such Configurat ion object's the bundle location
must be set to nul l again so it can be bound again to another bundle.

104.4.3 Configuration Properties
A configuration dictionary contains a set of properties in a Dictionary object. The value of the prop-
erty must be the same type as the set of Primary Property Types specified in OSGi Core Release 8 Fil-
ter Syntax.

The name or key of a property must always be a Str ing object, and is not case-sensitive during look
up, but must preserve the original case. The format of a property name should be:

Configuration Admin Service Specification Version 1.6 The Configuration Object

OSGi Compendium Release 8 Page 89

property-name ::= public | private
public ::= symbolic-name // See General Syntax in Core Framework
private ::= '.' symbolic-name

Properties can be used in other subsystems that have restrictions on the character set that can be
used. The symbol ic-name production uses a very minimal character set.

Bundles must not use nested lists or arrays, nor must they use mixed types. Using mixed types or
nesting makes it impossible to use the meta typing specification. See Metatype Service Specification on
page 131.

Property values that are collections may have an ordering that must be preserved when persisting
the configuration so that later access to the property value will see the preserved ordering of the col-
lection.

104.4.4 Property Propagation
A configuration target should copy the public configuration properties (properties whose name
does not start with a '.' or \u002E) of the Dictionary object argument in updated(Dict ionary) into the
service properties on any resulting service registration.

This propagation allows the development of applications that leverage the Framework service reg-
istry more extensively, so compliance with this mechanism is advised.

A configuration target may ignore any configuration properties it does not recognize, or it may
change the values of the configuration properties before these properties are registered as service
properties. Configuration properties in the Framework service registry are not strictly related to the
configuration information.

Bundles that follow this recommendation to propagate public configuration properties can partici-
pate in horizontal applications. For example, an application that maintains physical location infor-
mation in the Framework service registry could find out where a particular device is located in the
house or car. This service could use a property dedicated to the physical location and provide func-
tions that leverage this property, such as a graphic user interface that displays these locations.

Bundles performing service registrations on behalf of other bundles (e.g. OSGi Declarative Services)
should propagate all public configuration properties and not propagate private configuration prop-
erties.

104.4.5 Automatic Properties
The Configuration Admin service must automatically add a number of properties to the config-
uration dictionary. If these properties are also set by a configuring bundle or a plug-in, they must
always be overridden before they are given to the target service, see Configuration Plugin on page
103. Therefore, the receiving bundle or plug-in can assume that the following properties are de-
fined by the Configuration Admin service and not by the configuring bundle:

• service.pid - Set to the PID of the associated Configurat ion object. This is the full the targeted PID
if a targeted PID is used, see Targeted PIDs on page 85.

• service.factoryPid - Only set for a Managed Service Factory. It is then set to the PID of the associ-
ated Managed Service Factory. This is the full the targeted PID if a targeted PID is used.

• service.bundleLocation - Set to the location of the Configurat ion object. This property can only
be used for searching, it may not appear in the configuration dictionary returned from the get-
Propert ies method due to security reasons, nor may it be used when the target is updated.

Constants for some of these properties can be found in org.osgi .f ramework.Constants and the Con-
figurat ionAdmin interface. These service properties are all of type Str ing .

Managed Service Configuration Admin Service Specification Version 1.6

Page 90 OSGi Compendium Release 8

104.4.6 Equality
Two different Configurat ion objects can actually represent the same underlying configuration. This
means that a Configurat ion object must implement the equals and hashCode methods in such a way
that two Configurat ion objects are equal when their PID is equal.

104.5 Managed Service
A Managed Service is used by a bundle that needs one or more configuration dictionaries. It there-
fore registers the Managed Service with one or more PIDs and is thus associated with one Configu-
rat ion object in the Configuration Admin service for each registered PID. A bundle can register any
number of ManagedService objects, but each must be identified with its own PID or PIDs.

A bundle should use a Managed Service when it needs configuration information for the following:

• A Singleton - A single entity in the bundle that needs to be configured.
• Externally Detected Devices - Each device that is detected causes a registration of an associated

ManagedService object. The PID of this object is related to the identity of the device, such as the
address or serial number.

A Managed Service may be registered with more than one PID and therefore be associated with mul-
tiple Configuration objects, one for each PID. Using multiple PIDs for a Managed Service is not rec-
ommended. For example, when a configuration is deleted for a Managed Service there is no way to
identify which PID is associated with the deleted configuration.

104.5.1 Singletons
When an object must be instantiated only once, it is called a singleton. A singleton requires a single
configuration dictionary. Bundles may implement several different types of singletons if necessary.

For example, a Watchdog service could watch the registry for the status and presence of services in
the Framework service registry. Only one instance of a Watchdog service is needed, so only a single
configuration dictionary is required that contains the polling time and the list of services to watch.

104.5.2 Networks
When a device in the external world needs to be represented in the OSGi Environment, it must be
detected in some manner. The Configuration Admin service cannot know the identity and the num-
ber of instances of the device without assistance. When a device is detected, it still needs configura-
tion information in order to play a useful role.

For example, a 1-Wire network can automatically detect devices that are attached and removed.
When it detects a temperature sensor, it could register a Sensor service with the Framework service
registry. This Sensor service needs configuration information specifically for that sensor, such as
which lamps should be turned on, at what temperature the sensor is triggered, what timer should be
started, in what zone it resides, and so on. One bundle could potentially have hundreds of these sen-
sors and actuators, and each needs its own configuration information.

Each of these Sensor services should be registered as a Managed Service with a PID related to the
physical sensor (such as the address) to receive configuration information.

Other examples are services discovered on networks with protocols like Jini, UPnP, and Salutation.
They can usually be represented in the Framework service registry. A network printer, for example,
could be detected via UPnP. Once in the service registry, these services usually require local config-
uration information. A Printer service needs to be configured for its local role: location, access list,
and so on.

Configuration Admin Service Specification Version 1.6 Managed Service

OSGi Compendium Release 8 Page 91

This information needs to be available in the Framework service registry whenever that particular
Printer service is registered. Therefore, the Configuration Admin service must remember the config-
uration information for this Printer service.

This type of service should register with the Framework as a Managed Service in order to receive ap-
propriate configuration information.

104.5.3 Configuring Managed Services
A bundle that needs configuration information should register one or more ManagedService objects
with a PID service property. If it has a default set of properties for its configuration, it may include
them as service properties of the Managed Service. These properties may be used as a configuration
template when a Configurat ion object is created for the first time. A Managed Service optionally im-
plements the MetaTypeProvider interface to provide information about the property types. See Meta
Typing on page 105.

When this registration is detected by the Configuration Admin service, the following steps must oc-
cur:

• The configuration stored for the registered PID must be retrieved. If there is a Configurat ion ob-
ject for this PID and the configuration is visible for the associated bundle then it is sent to the
Managed Service with updated(Dict ionary) .

• If a Managed Service is registered and no configuration information is available or the configu-
ration is not visible then the Configuration Admin service must call updated(Dict ionary) with a
nul l parameter.

• If the Configuration Admin service starts after a Managed Service is registered, it must call
updated(Dict ionary) on this service as soon as possible according to the prior rules. For this rea-
son, a Managed Service must always get a callback when it registers and the Configuration Ad-
min service is started.

Multiple Managed Services can register with the same PID, they are all updated as long as they have
visibility to the configuration as defined by the location, see Location Binding on page 87.

If the Managed Service is registered with more than one PID and more than one PID has no configu-
ration information available, then updated(Dict ionary) will be called multiple times with a nul l pa-
rameter.

The updated(Dict ionary) callback from the Configuration Admin service to the Managed Service
must take place asynchronously. This requirement allows the Managed Service to finish its initial-
ization in a synchronized method without interference from the Configuration Admin service call-
back. Care should be taken not to cause deadlocks by calling the Framework within a synchronized
method.

Figure 104.4 Managed Service Configuration Action Diagram

Client Bundle Framework

new

registerService()
send registered event

updated()

Configuration

get for PID

Implementor of
Managed Service

set the
configuration

get pid from props Must be on another thread

Configuration
Admin

Managed Service Configuration Admin Service Specification Version 1.6

Page 92 OSGi Compendium Release 8

The updated method may throw a Configurat ionException . This object must describe the problem
and what property caused the exception.

104.5.4 Race Conditions
When a Managed Service is registered, the default properties may be visible in the service registry
for a short period before they are replaced by the properties of the actual configuration dictionary.
Care should be taken that this visibility does not cause race conditions for other bundles.

In cases where race conditions could be harmful, the Managed Service must be split into two pieces:
an object performing the actual service and a Managed Service. First, the Managed Service is regis-
tered, the configuration is received, and the actual service object is registered. In such cases, the use
of a Managed Service Factory that performs this function should be considered.

104.5.5 Examples of Managed Service
Figure 104.5 shows a Managed Service configuration example. Two services are registered under the
ManagedService interface, each with a different PID.

Figure 104.5 PIDs and External Associations

Configuration
Admin Impl

16.1

com.
acme

name=Erica
size=8
name=Elmer
size=42

database pid=com.acme

4.102 name=Christer
size=2

Managed Service

PID configuration

pid=4.102

no associated PID registered

The Configuration Admin service has a database containing a configuration record for each PID.
When the Managed Service with service.pid = com.acme is registered, the Configuration Admin
service will retrieve the properties name=Elmer and size=42 from its database. The properties are
stored in a Dictionary object and then given to the Managed Service with the updated(Dict ionary)
method.

104.5.5.1 Configuring A Console Bundle

In this example, a bundle can run a single debugging console over a Telnet connection. It is a single-
ton, so it uses a ManagedService object to get its configuration information: the port and the net-
work name on which it should register.

class SampleManagedService implements ManagedService{
 Dictionary properties;
 ServiceRegistration registration;
 Console console;

 public void start(
 BundleContext context) throws Exception {
 properties = new Hashtable();

Configuration Admin Service Specification Version 1.6 Managed Service Factory

OSGi Compendium Release 8 Page 93

 properties.put(Constants.SERVICE_PID,
 "com.acme.console");

 registration = context.registerService(
 ManagedService.class.getName(),
 this,
 properties
);
 }

 public synchronized void updated(Dictionary np) {
 if (np != null) {
 properties = np;
 properties.put(
 Constants.SERVICE_PID, "com.acme.console");
 }

 if (console == null)
 console = new Console();

 int port = ((Integer)properties.get("port"))
 .intValue();

 String network = (String) properties.get("network");
 console.setPort(port, network);
 registration.setProperties(properties);
 }
 ... further methods
}

104.5.6 Deletion
When a Configurat ion object for a Managed Service is deleted, the Configuration Admin service
must call updated(Dict ionary) with a nul l argument on a thread that is different from that on
which the Configurat ion.delete was executed. This deletion must send out a Configuration Event
CM_DELETED asynchronously to any registered Configuration Listener services after the updated
method is called with a nul l .

104.6 Managed Service Factory
A Managed Service Factory is used when configuration information is needed for a service that can
be instantiated multiple times. When a Managed Service Factory is registered with the Framework,
the Configuration Admin service consults its database and calls updated(Str ing,Dict ionary) for each
associated and visible Configurat ion object that matches the PIDs on the registration. It passes the
identifier of the Configuration instance, which can be used as a PID, as well as a Dictionary object
with the configuration properties.

A Managed Service Factory is useful when the bundle can provide functionality a number of times,
each time with different configuration dictionaries. In this situation, the Managed Service Factory
acts like a class and the Configuration Admin service can use this Managed Service Factory to instan-
tiate instances for that class.

In the next section, the word factory refers to this concept of creating instances of a function defined
by a bundle that registers a Managed Service Factory.

Managed Service Factory Configuration Admin Service Specification Version 1.6

Page 94 OSGi Compendium Release 8

104.6.1 When to Use a Managed Service Factory
A Managed Service Factory should be used when a bundle does not have an internal or external enti-
ty associated with the configuration information but can potentially be instantiated multiple times.

104.6.1.1 Example Email Fetcher

An email fetcher program displays the number of emails that a user has - a function likely to be re-
quired for different users. This function could be viewed as a class that needs to be instantiated for
each user. Each instance requires different parameters, including password, host, protocol, user id,
and so on.

An implementation of the Email Fetcher service should register a ManagedServiceFactory object. In
this way, the Configuration Admin service can define the configuration information for each user
separately. The Email Fetcher service will only receive a configuration dictionary for each required
instance (user).

104.6.1.2 Example Temperature Conversion Service

Assume a bundle has the code to implement a conversion service that receives a temperature and,
depending on settings, can turn an actuator on and off. This service would need to be instantiated
many times depending on where it is needed. Each instance would require its own configuration in-
formation for the following:

• Upper value
• Lower value
• Switch Identification
• ...

Such a conversion service should register a service object under a ManagedServiceFactory interface.
A configuration program can then use this Managed Service Factory to create instances as needed.
For example, this program could use a Graphic User Interface (GUI) to create such a component and
configure it.

104.6.1.3 Serial Ports

Serial ports cannot always be used by the OSGi Device Access specification implementations. Some
environments have no means to identify available serial ports, and a device on a serial port cannot
always provide information about its type.

Therefore, each serial port requires a description of the device that is connected. The bundle manag-
ing the serial ports would need to instantiate a number of serial ports under the control of the Con-
figuration Admin service, with the appropriate DEVICE_CATEGORY property to allow it to partici-
pate in the Device Access implementation.

If the bundle cannot detect the available serial ports automatically, it should register a Managed Ser-
vice Factory. The Configuration Admin service can then, with the help of a configuration program,
define configuration information for each available serial port.

104.6.2 Registration
Similar to the Managed Service configuration dictionary, the configuration dictionary for a Man-
aged Service Factory is identified by a PID. The Managed Service Factory, however, also has a factory
PID, which is the PID of the associated Managed Service Factory. It is used to group all Managed Ser-
vice Factory configuration dictionaries together.

When the Configuration Admin service detects the registration of a Managed Service Factory, it
must find all visible configuration dictionaries for this factory and must then sequentially call
ManagedServiceFactory.updated(Str ing,Dict ionary) for each configuration dictionary. The first ar-
gument is the PID of the Configurat ion object (the one created by the Configuration Admin service)
and the second argument contains the configuration properties.

Configuration Admin Service Specification Version 1.6 Managed Service Factory

OSGi Compendium Release 8 Page 95

The Managed Service Factory should then create any artifacts associated with that factory. Using the
PID given in the Configurat ion object, the bundle may register new services (other than a Managed
Service) with the Framework, but this is not required. This may be necessary when the PID is useful
in contexts other than the Configuration Admin service.

The receiver must not register a Managed Service with this PID because this would force two Config-
uration objects to have the same PID. If a bundle attempts to do this, the Configuration Admin ser-
vice should log an error and must ignore the registration of the Managed Service.

The Configuration Admin service must guarantee that no race conditions exist between initializa-
tion, updates, and deletions.

Figure 104.6 Managed Service Factory Action Diagram

Client bundle Framework

new

registerService()
send registered event

updated()

Configuration

get all for factory

implementer of
ManagedServiceFactory

set the
configuration
for a new
instance

get pid

for each found pid

MUST be on another thread

Configuration
Admin

A Managed Service Factory has only one update method: updated(Str ing,Dict ionary) . This method
can be called any number of times as Configuration objects are created or updated.

The Managed Service Factory must detect whether a PID is being used for the first time, in which
case it should create a new instance, or a subsequent time, in which case it should update an existing
instance.

The Configuration Admin service must call updated(Str ing,Dict ionary) on a thread that is different
from the one that executed the registration. This requirement allows an implementation of a Man-
aged Service Factory to use a synchronized method to assure that the callbacks do not interfere with
the Managed Service Factory registration.

The updated(Str ing,Dict ionary) method may throw a Configurat ionException object. This object
describes the problem and what property caused the problem. These exceptions should be logged by
a Configuration Admin service.

Multiple Managed Service Factory services can be registered with the same PID. Each of those ser-
vices that have visibility to the corresponding configuration will be updated in service ranking or-
der.

104.6.3 Deletion
If a configuring bundle deletes an instance of a Managed Service Factory, the deleted(Str ing)
method is called. The argument is the PID for this instance. The implementation of the Managed
Service Factory must remove all information and stop any behavior associated with that PID. If a
service was registered for this PID, it should be unregistered.

Deletion will asynchronously send out a Configuration Event CM_DELETED to all registered Config-
uration Listener services.

Managed Service Factory Configuration Admin Service Specification Version 1.6

Page 96 OSGi Compendium Release 8

104.6.4 Managed Service Factory Example
Figure 104.7 highlights the differences between a Managed Service and a Managed Service Factory. It
shows how a Managed Service Factory implementation receives configuration information that was
created before it was registered.

• A bundle implements an EMail Fetcher service. It registers a ManagedServiceFactory object with
PID=com.acme.emai l .

• The Configuration Admin service notices the registration and consults its database. It finds
three Configurat ion objects for which the factory PID is equal to com.acme.emai l . It must call
updated(Str ing,Dict ionary) for each of these Configurat ion objects on the newly registered Man-
agedServiceFactory object.

• For each configuration dictionary received, the factory should create a new instance of a EMail-
Fetcher object, one for erica (PID=16.1), one for anna (PID=16.3), and one for elmer (PID=16.2).

• The EMailFetcher objects are registered under the Topic interface so their results can be viewed
by an online display.

If the EMailFetcher object is registered, it may safely use the PID of the Configurat ion object be-
cause the Configuration Admin service must guarantee its suitability for this purpose.

Figure 104.7 Managed Service Factory Example

Configuration
Admin

MailFetchFactory
pid=com.acme.email

pid=16.1
name=erica

OSGi Service
Registry

registration
events

pid=16.1
name=erica
pid=16.2
name=elmer

Associations

pid=16.3
name=anna

pid=16.2
name=peter

pid=16.3
name=anna

creates instances
at the request of
the Config. Admin

Topic

Managed Service
Factory

factory pid
= com.acme
.email

factory pid
= eric.mf

104.6.5 Multiple Consoles Example
This example illustrates how multiple consoles, each of which has its own port and interface can
run simultaneously. This approach is very similar to the example for the Managed Service, but high-
lights the difference by allowing multiple consoles to be created.

class ExampleFactory implements ManagedServiceFactory{
 Hashtable consoles = new Hashtable();
 BundleContext context;
 public void start(BundleContext context)
 throws Exception {
 this.context = context;
 Hashtable local = new Hashtable();
 local.put(Constants.SERVICE_PID,"com.acme.console");
 context.registerService(
 ManagedServiceFactory.class.getName(),

Configuration Admin Service Specification Version 1.6 Configuration Admin Service

OSGi Compendium Release 8 Page 97

 this,
 local);
 }

 public void updated(String pid, Dictionary config){
 Console console = (Console) consoles.get(pid);
 if (console == null) {
 console = new Console(context);
 consoles.put(pid, console);
 }

 int port = getInt(config, "port", 2011);
 String network = getString(
 config,
 "network",
 null /*all*/
);
 console.setPort(port, network);
 }

 public void deleted(String pid) {
 Console console = (Console) consoles.get(pid);
 if (console != null) {
 consoles.remove(pid);
 console.close();
 }
 }
}

104.7 Configuration Admin Service
The Configurat ionAdmin interface provides methods to maintain configuration data in an OSGi
environment. This configuration information is defined by a number of Configurat ion objects as-
sociated with specific configuration targets. Configurat ion objects can be created, listed, modified,
and deleted through this interface. Either a remote management system or the bundles configuring
their own configuration information may perform these operations.

The Configurat ionAdmin interface has methods for creating and accessing Configurat ion objects for
a Managed Service, as well as methods for managing new Configurat ion objects for a Managed Ser-
vice Factory.

104.7.1 Creating a Managed Service Configuration Object
A bundle can create a new Managed Service Configurat ion object with
Configurat ionAdmin.getConfigurat ion . No create method is offered because doing so could intro-
duce race conditions between different bundles trying to create a Configurat ion object for the same
Managed Service. The getConfigurat ion method must atomically create and persistently store an ob-
ject if it does not yet exist.

Two variants of this method are:

• getConfigurat ion(Str ing) - This method is used by a bundle with a given location to configure its
own ManagedService objects. The argument specifies the PID of the targeted service.

• getConfigurat ion(Str ing,Str ing) - This method is used by a management bundle to configure an-
other bundle. Therefore, this management bundle needs the right permission. The first argument

Configuration Admin Service Configuration Admin Service Specification Version 1.6

Page 98 OSGi Compendium Release 8

is the PID and the second argument is the location identifier of the targeted ManagedService ob-
ject.

All Configurat ion objects have a method, getFactoryPid() , which in this case must return nul l be-
cause the Configurat ion object is associated with a Managed Service.

Creating a new Configuration object must not initiate a callback to the Managed Service updated
method until the properties are set in the Configuration with the update method.

104.7.2 Creating a Managed Service Factory Configuration Object
The Configurat ionAdmin class provides two sets of methods to create a new Configuration for a
Managed Service Factory. The first set delegates the creation of the unique PID to the Configuration
Admin service. The second set allows the caller to influence the generation of the PID.

The Configurat ionAdmin class provides the following two methods which generate a unique PID
when creating a new Configuration for a Managed Service Factory. A new, unique PID is created for
the Configuration object by the Configuration Admin service. The scheme used for this PID is de-
fined by the Configuration Admin service and is unrelated to the factory PID, which is chosen by
the registering bundle.

• createFactoryConfigurat ion(Str ing) - This method is used by a bundle with a given location to
configure its own ManagedServiceFactory objects. The argument specifies the PID of the target-
ed ManagedServiceFactory object. This factory PID can be obtained from the returned Configura-
t ion object with the getFactoryPid() method.

• createFactoryConfigurat ion(Str ing,Str ing) - This method is used by a management bundle to
configure another bundle's ManagedServiceFactory object. The first argument is the PID and the
second is the location identifier of the targeted ManagedServiceFactory object. The factory PID
can be obtained from the returned Configurat ion object with getFactoryPid method.

The Configurat ionAdmin class provides the following two methods allowing the caller to influence
the generation of the PID when creating a new Configuration for a Managed Service Factory. The
PID for the Configuration object is generated from the provided factory PID and the provided name
by starting with the factory PID, appending a tilde (' ~ ' \u007e), and then appending the name. The
getFactoryConfigurat ion methods must atomically create and persistently store a Configuration ob-
ject if it does not yet exist.

• getFactoryConfigurat ion(Str ing,Str ing) - This method is used by a bundle with a given location
to configure its own ManagedServiceFactory objects. The first argument specifies the PID of the
targeted ManagedServiceFactory object. This factory PID can be obtained from the returned Con-
figurat ion object with the getFactoryPid() method. The second argument specifies the name of
the factory configuration. The generated PID can be obtained from the returned Configurat ion
object with the getPid() method.

• getFactoryConfigurat ion(Str ing,Str ing,Str ing) - This method is used by a management bun-
dle to configure another bundle's ManagedServiceFactory object. The first argument is the PID,
the second argument is the name, and the third is the location identifier of the targeted Man-
agedServiceFactory object. The factory PID can be obtained from the returned Configurat ion ob-
ject with getFactoryPid method. The generated PID can be obtained from the returned Configu-
rat ion object with the getPid() method.

Creating a new Configuration must not initiate a callback to the Managed Service Factory updated
method until the properties are set in the Configurat ion object with the update method.

104.7.3 Accessing Existing Configurations
The existing set of Configurat ion objects can be listed with l istConfigurat ions(Str ing) . The argu-
ment is a Str ing object with a filter expression. This filter expression has the same syntax as the
Framework Fi l ter class. For example:

Configuration Admin Service Specification Version 1.6 Configuration Admin Service

OSGi Compendium Release 8 Page 99

(&(size=42)(service.factoryPid=*osgi*))

The Configuration Admin service must only return Configurations that are visible to the calling
bundle, see Location Binding on page 87.

A single Configurat ion object is identified with a PID, and can be obtained with
l istConfigurat ions(Str ing) if it is visible. nul l is returned in both cases when there are no visible
Configurat ion objects.

The PIDs that are filtered on can be targeted PIDs, see Targeted PIDs on page 85.

104.7.4 Updating a Configuration
The process of updating a Configurat ion object is the same for Managed Services and
Managed Service Factories. First, l istConfigurat ions(Str ing) , getConfigurat ion(Str ing) or
getFactoryConfigurat ion(Str ing,Str ing) should be used to get a Configurat ion object. The properties
can be obtained with Configurat ion.getPropert ies . When no update has occurred since this object
was created, getPropert ies returns nul l .

New properties can be set by calling Configurat ion.update . The Configuration Admin ser-
vice must first store the configuration information and then call all configuration targets that
have visibility with the updated method: either the ManagedService.updated(Dict ionary) or
ManagedServiceFactory.updated(Str ing,Dict ionary) method. If a target service is not registered, the
fresh configuration information must be given to the target when the configuration target service
registers and it has visibility. Each update of the Configuration properties must update a counter in
the Configuration object after the data has been persisted but before the target(s) have been updated
and any events are sent out. This counter is available from the getChangeCount() method.

The update methods in Configurat ion objects are not executed synchronously with the related tar-
get services updated method. The updated method must be called asynchronously. The Configura-
tion Admin service, however, must have updated the persistent storage before the update method
returns.

The update methods must also asynchronously send out a Configuration Event CM_UPDATED to all
registered Configuration Listeners.

Invoking the update(Dict ionary) method results in Configuration Admin service blindly updating
the Configurat ion object and performing the above outlined actions. This even happens if the updat-
ed set of properties is the same as the already existing properties in the Configurat ion object.

To optimize configuration updates if the caller does not know whether properties of a Configura-
t ion object have changed, the updateIfDifferent(Dict ionary) method can be used. The provided dic-
tionary is compared with the existing properties. If there is no change, no action is taken. If there is
any change detected, updateIfDifferent(Dict ionary) acts exactly as update(Dict ionary) . Properties
are compared as follows:

• Scalars are compared using equals

• Arrays are compared using Arrays.equals

• Collections are compared using equals

The boolean result of updateIfDifferent(Dict ionary) is true if the Configuration object has been up-
dated.

If the Configurat ion object has the READ_ONLY attribute set, calling one of the update methods re-
sults in a ReadOnlyConfigurat ionException and the configuration is not changed.

104.7.5 Using Multi-Locations
Sharing configuration between different bundles can be done using multi-locations, see Location
Binding on page 87. A multi-location for a Configuration enables this Configuration to be deliv-

Configuration Admin Service Configuration Admin Service Specification Version 1.6

Page 100 OSGi Compendium Release 8

ered to any bundle that has visibility to that configuration. It is also possible that Bundles are inter-
ested in multiple PIDs for one target service, for this reason they can register multiple PIDs for one
service.

For example, a number of bundles require access to the URL of a remote host, associated with the
PID com.acme.host . A manager, aware that this PID is used by different bundles, would need to
specify a location for the Configuration that allows delivery to any bundle. A multi-location, any lo-
cation starting with a question mark achieves this. The part after the question mark has only use if
the system runs with security, it allows the implementation of regions, see Regions on page 100. In
this example a single question mark is used because any Bundle can receive this Configuration. The
manager's code could look like:

Configuration c = admin.getConfiguration("com.acme.host", "?");
Hashtable ht = new Hashtable();
ht.put("host", hostURL);
c.update(ht);

A Bundle interested in the host configuration would register a Managed Service with the following
properties:

service.pid = ["com.acme.host", "com.acme.system"]

The Bundle would be called back for both the com.acme.host and com.acme.system PID and must
therefore discriminate between these two cases. This Managed Service therefore would have a call-
back like:

volatile URL url;
public void updated(Dictionary d) {
 if (d.get("service.pid").equals("com.acme.host"))
 this.url = new URL(d.get("host"));
 if (d.get("service.pid").equals("com.acme.system"))

}

104.7.6 Regions
In certain cases it is necessary to isolate bundles from each other. This will require that the configu-
ration can be separated in regions. Each region can then be configured by a separate manager that is
only allowed to manage bundles in its own region. Bundles can then only see configurations from
their own region. Such a region based system can only be achieved with Java security as this is the
only way to place bundles in a sandbox. This section describes how the Configuration's location
binding can be used to implement regions if Java security is active.

Regions are groups of bundles that share location information among each other but are not willing
to share this information with others. Using the multi-locations, see Location Binding on page 87,
and security it is possible to limit access to a Configuration by using a location name. A Bundle can
only receive a Configuration when it has Configurat ionPermission [location name, TARGET] . It is
therefore possible to create region by choosing a region name for the location. A management agent
then requires Configurat ionPermission [?region-name, CONFIGURE] and a Bundle in the region re-
quires Configurat ionPermission [?region-name, TARGET] .

To implement regions, the management agent is required to use multi-locations; without the ques-
tion mark a Configuration is only visible to a Bundle that has the exact location of the Configura-
tion. With a multi-location, the Configuration is delivered to any bundle that has the appropriate
permission. Therefore, if regions are used, no manager should have Configurat ionPermission[*,
CONFIGURE] because it would be able to configure anybody. This permission would enable the
manager to set the location to any region or set the location to nul l . All managers must be restrict-
ed to a permission like Configurat ionPermission[?com.acme.region.*,CONFIGURE] . The resource

Configuration Admin Service Specification Version 1.6 Configuration Admin Service

OSGi Compendium Release 8 Page 101

name for a Configuration Permission uses substring matching as in the OSGi Filter, this facility can
be used to simplify the administrative setup and implement more complex sharing schemes.

For example, a management agent works for the region com.acme . It has the following permission:

Configurat ionPermission[?com.acme.*,CONFIGURE]

The manager requires multi-location updates for com.acme.* (the last full stop is required in this
wildcarding). For the CONFIGURE action the question mark must be specified in the resource name.
The bundles in the region have the permission:

Configurat ionPermission["?com.acme.alpha",TARGET]

The question mark must be specified for the TARGET permission. A management agent that needs to
configure Bundles in a region must then do this as follows:

Configuration c = admin.getConfiguration("com.acme.host", "?com.acme.alpha");
Hashtable ht = new Hashtable();
ht.put("host", hostURL);
c.update(ht);

Another, similar, example with two regions:

• system
• appl icat ion

There is only one manager that manages all bundles. Its permissions look like:

ConfigurationPermission[?system,CONFIGURE]
ConfigurationPermission[?application,CONFIGURE]

A Bundle in the appl icat ion region can have the following permissions:

ConfigurationPermission[?application,TARGET]

This managed bundle therefore has only visibility to configurations in the appl icat ion region.

104.7.7 Deletion
A Configurat ion object that is no longer needed can be deleted with Configurat ion.delete , which
removes the Configurat ion object from the database. The database must be updated before the tar-
get service's updated or deleted method is called. Only services that have received the configuration
dictionary before must be called.

If the target service is a Managed Service Factory, the factory is informed of the deleted Configura-
t ion object by a call to ManagedServiceFactory.deleted(Str ing) method. It should then remove the
associated instance. The ManagedServiceFactory.deleted(Str ing) call must be done asynchronously
with respect to Configurat ion.delete() .

When a Configurat ion object of a Managed Service is deleted, ManagedService.updated is called
with nul l for the propert ies argument. This method may be used for clean-up, to revert to default
values, or to unregister a service. This method is called asynchronously from the delete method.

The delete method must also asynchronously send out a Configuration Event CM_DELETED to all
registered Configuration Listeners.

If the Configurat ion object has the READ_ONLY attribute set, calling the delete method results in a
ReadOnlyConfigurat ionException and the configuration is not deleted.

104.7.8 Updating a Bundle's Own Configuration
The Configuration Admin service specification does not distinguish between updates via a Manage-
ment Agent and a bundle updating its own configuration information (as defined by its location).

Configuration Events Configuration Admin Service Specification Version 1.6

Page 102 OSGi Compendium Release 8

Even if a bundle updates its own configuration information, the Configuration Admin service must
callback the associated target service's updated method.

As a rule, to update its own configuration, a bundle's user interface should only update the config-
uration information and never its internal structures directly. This rule has the advantage that the
events, from the bundle implementation's perspective, appear similar for internal updates, remote
management updates, and initialization.

104.7.9 Configuration Attributes
The Configurat ion object supports attributes, similar to setting attributes on files in a file system.
Currently only the READ_ONLY attribute is supported.

Attributes can be set by calling the addAttr ibutes(Configurat ionAttr ibute. . .) method and
listing the attributes to be added. In the same way attributes can be removed by calling
removeAttr ibutes(Configurat ionAttr ibute. . .) . Each successful change in attributes is persisted.

A Bundle can only change the attributes if it has Configuration Permission with the ATTRIBUTE ac-
tion. Otherwise a Security Exception is thrown.

The currently set attributes can be queried using the getAttr ibutes() method.

104.8 Configuration Events
Configuration Admin can update interested parties of changes in its repository. The model is based
on the white board pattern where Configuration Listener services are registered with the service
registry.

There are two types of Configuration Listener services:

• Configurat ionListener - The default Configuration Listener receives events asynchronously from
the method that initiated the event and on another thread.

• SynchronousConfigurat ionListener - A Synchronous Configuration Listener is guaranteed to be
called on the same thread as the method call that initiated the event.

The Configuration Listener service will receive Configurat ionEvent objects if important changes
take place. The Configuration Admin service must call the configurat ionEvent(Configurat ionEvent)
method with such an event. Configuration Events must be delivered in order for each listener as
they are generated. The way events must be delivered is the same as described in Delivering Events of
OSGi Core Release 8.

The Configurat ionEvent object carries a factory PID (getFactoryPid()) and a PID (getPid()). If the
factory PID is nul l , the event is related to a Managed Service Configurat ion object, else the event is
related to a Managed Service Factory Configurat ion object.

The Configurat ionEvent object can deliver the following events from the getType() method:

• CM_DELETED - The Configurat ion object is deleted.
• CM_UPDATED - The Configurat ion object is updated.
• CM_LOCATION_CHANGED - The location of the Configurat ion object changed.

The Configuration Event also carries the ServiceReference object of the Configuration Admin ser-
vice that generated the event.

104.8.1 Event Admin Service and Configuration Change Events
Configuration events must be delivered asynchronously via the Event Admin service, if present. The
topic of a configuration event must be:

Configuration Admin Service Specification Version 1.6 Configuration Plugin

OSGi Compendium Release 8 Page 103

org/osgi/service/cm/ConfigurationEvent/<eventtype>

The <event type> can be any of the following:

CM_DELETED
CM_UPDATED
CM_LOCATION_CHANGED

The properties of a configuration event are:

• cm.factoryPid - (Str ing) The factory PID of the associated Configurat ion object, if the target is a
Managed Service Factory. Otherwise not set.

• cm.pid - (Str ing) The PID of the associated Configurat ion object.
• service - (ServiceReference) The Service Reference of the Configuration Admin service.
• service. id - (Long) The Configuration Admin service's ID.
• service.objectClass - (Str ing[]) The Configuration Admin service's object class (which must in-

clude org.osgi .service.cm.Configurat ionAdmin)
• service.pid - (Str ing) The Configuration Admin service's persistent identity, if set.

104.9 Configuration Plugin
The Configuration Admin service allows third-party applications to participate in the configuration
process. Bundles that register a service object under a Configurat ionPlugin interface can process the
configuration dictionary just before it reaches the configuration target service.

Plug-ins allow sufficiently privileged bundles to intercept configuration dictionaries just before they
must be passed to the intended Managed Service or Managed Service Factory but after the properties
are stored. The changes the plug-in makes are dynamic and must not be stored. The plug-in must on-
ly be called when an update takes place while it is registered and there is a valid dictionary. The plu-
gin is not called when a configuration is deleted.

The Configurat ionPlugin interface has only one method:
modifyConfigurat ion(ServiceReference,Dict ionary) . This method inspects or modifies configura-
tion data.

All plug-ins in the service registry must be traversed and called before the properties are passed to
the configuration target service. Each Configuration Plugin object gets a chance to inspect the exist-
ing data, look at the target object, which can be a ManagedService object or a ManagedServiceFac-
tory object, and modify the properties of the configuration dictionary. The changes made by a plug-
in must be visible to plugins that are called later.

Configurat ionPlugin objects should not modify properties that belong to the configuration proper-
ties of the target service unless the implications are understood. This functionality is mainly intend-
ed to provide functions that leverage the Framework service registry. The changes made by the plug-
in should normally not be validated. However, the Configuration Admin must ignore changes to the
automatic properties as described in Automatic Properties on page 89.

For example, a Configuration Plugin service may add a physical location property to a service. This
property can be leveraged by applications that want to know where a service is physically located.
This scenario could be carried out without any further support of the service itself, except for the
general requirement that the service should propagate the public properties it receives from the
Configuration Admin service to the service registry.

Configuration Plugin Configuration Admin Service Specification Version 1.6

Page 104 OSGi Compendium Release 8

Figure 104.8 Order of Configuration Plugin Services

a Configuration
Admin

Configuration
Plugin B

Configuration
Plugin A

Configuration
Plugin C

a Managed
Service

modifyConfiguration()update()
1 2 3

updated()

updated-
Factory()

4

Any time when B needs to change a property

a Configuration
object

104.9.1 Limiting The Targets
A Configurat ionPlugin object may optionally specify a cm.target registration property. This value
is the PID of the configuration target whose configuration updates the Configurat ionPlugin object
wants to intercept.

The Configurat ionPlugin object must then only be called with updates for the configuration target
service with the specified PID. For a factory target service, the factory PID is used and the plugin will
see all instances of the factory. Omitting the cm.target registration property means that it is called
for all configuration updates.

104.9.2 Example of Property Expansion
Consider a Managed Service that has a configuration property service.to with the value
(objectclass=com.acme.Alarm). When the Configuration Admin service sets this property on the
target service, a Configurat ionPlugin object may replace the (objectclass=com.acme.Alarm) filter
with an array of existing alarm systems' PIDs as follows:

ID "service.to=[32434,232,12421,1212]"

A new Alarm Service with service.pid=343 is registered, requiring that the list of the target ser-
vice be updated. The bundle which registered the Configuration Plugin service, therefore, wants
to set the service.to registration property on the target service. It does not do this by calling
ManagedService.updated directly for several reasons:

• In a securely configured system, it should not have the permission to make this call or even ob-
tain the target service.

• It could get into race conditions with the Configuration Admin service if it had the permissions
in the previous bullet. Both services would compete for access simultaneously.

Instead, it must get the Configurat ion object from the Configuration Admin service and call the up-
date method on it.

The Configuration Admin service must schedule a new update cycle on another thread, and some-
time in the future must call Configurat ionPlugin.modifyPropert ies . The Configurat ionPlugin object
could then set the service.to property to [32434,232,12421,1212, 343] . After that, the Configura-
tion Admin service must call updated on the target service with the new service.to list.

104.9.3 Configuration Data Modifications
Modifications to the configuration dictionary are still under the control of the Configuration Admin
service, which must determine whether to accept the changes, hide critical variables, or deny the
changes for other reasons.

Configuration Admin Service Specification Version 1.6 Meta Typing

OSGi Compendium Release 8 Page 105

The Configurat ionPlugin interface must also allow plugins to detect configuration updates to the
service via the callback. This ability allows them to synchronize the configuration updates with
transient information.

104.9.4 Forcing a Callback
If a bundle needs to force a Configuration Plugin service to be called again, it must fetch the appro-
priate Configurat ion object from the Configuration Admin service and call the update() method
(the no parameter version) on this object. This call forces an update with the current configuration
dictionary so that all applicable plug-ins get called again.

104.9.5 Calling Order
The order in which the Configurat ionPlugin objects are called must depend on the
service.cmRanking configuration property of the Configurat ionPlugin object. Table 104.2 shows the
usage of the service.cmRanking property for the order of calling the Configuration Plugin services.
In the event of more than one plugin having the same value of service.cmRanking , then the order in
which these are called is undefined.

Table 104.2 service.cmRanking Usage For Ordering

service.cmRanking value Description
< 0 The Configuration Plugin service should not modify properties and must

be called before any modifications are made. Any modification from the
Configuration Plugin service is ignored.

>= 0 && <= 1000 The Configuration Plugin service modifies the configuration data. The
calling order should be based on the value of the service.cmRanking prop-
erty.

> 1000 The Configuration Plugin service should not modify data and is called af-
ter all modifications are made. Any modification from the Configuration
Plugin service is ignored.

104.9.6 Manual Invocation
The Configuration Admin service ensures that Configuration Plugin services are automati-
cally called for a Managed Service or a Managed Service Factory as outlined above. If a bundle
needs to get the configuration properties processed by the Configuration Plugin services, the
getProcessedPropert ies(ServiceReference) method provides this view.

The service reference passed into the method must either point to a Managed Service or Managed
Service Factory registered on behalf of the bundle getting the processed properties. If that service
should not be called by the Configuration Admin service, that service must be registered without a
PID service property.

104.10 Meta Typing
This section discusses how the Metatype specification is used in the context of a Configuration Ad-
min service.

When a Managed Service or Managed Service Factory is registered, the service object may also im-
plement the MetaTypeProvider interface.

If the Managed Service or Managed Service Factory object implements the MetaTypeProvider inter-
face, a management bundle may assume that the associated ObjectClassDefinit ion object can be
used to configure the service.

Coordinator Support Configuration Admin Service Specification Version 1.6

Page 106 OSGi Compendium Release 8

The ObjectClassDefinit ion and Attr ibuteDefinit ion objects contain sufficient information to auto-
matically build simple user interfaces. They can also be used to augment dedicated interfaces with
accurate validations.

When the Metatype specification is used, care should be taken to match the capabilities of the
metatype package to the capabilities of the Configuration Admin service specification. Specifically:

• The metatype specification cannot describe nested arrays and lists or arrays/lists of mixed type.

This specification does not address how the metatype is made available to a management system
due to the many open issues regarding remote management.

104.11 Coordinator Support
The Coordinator Service Specification on page 629 defines a mechanism for multiple parties to col-
laborate on a common task without a priori knowledge of who will collaborate in that task. The
Configuration Admin service must participate in such scenarios to coordinate with provisioning or
configuration tasks.

If configurations are created, updated or deleted and an implicit coordination exists, the Configura-
tion Admin service must delay notifications until the coordination terminates. However the config-
uration changes must be persisted immediately. Updating a Managed Service or Managed Service
Factory and informing asynchronous listeners is delayed until the coordination terminates, regard-
less of whether the coordination fails or terminates regularly. Registered synchronous listeners will
be informed immediately when the change happens regardless of a coordination.

104.12 Capabilities

104.12.1 osgi.implementation Capability
The Configuration Admin implementation bundle must provide the osgi . implementation capabil-
ity with the name osgi .cm . This capability can be used by provisioning tools and during resolution
to ensure that a Configuration Admin implementation is present to manage configurations. The ca-
pability must also declare a uses constraint for the org.osgi .service.cm package and provide the ver-
sion of this specification:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.cm";
 uses:="org.osgi.service.cm";
 version:Version="1.6"

This capability must follow the rules defined for the osgi.implementation Namespace on page 727.

Bundles relying on the Configuration Admin service should require the osgi . implementation capa-
bility from the Configuration Admin Service.

Require-Capability: osgi.implementation;
 filter:="(&(osgi.implementation=osgi.cm)(version>=1.6)(!(version>=2.0)))"

This requirement can be easily generated using the RequireConfigurat ionAdmin annotation.

104.12.2 osgi.service Capability
The bundle providing the Configuration Admin service must provide a capability in the
osgi .service namespace representing this service. This capability must also declare a uses constraint
for the org.osgi .service.cm package:

Configuration Admin Service Specification Version 1.6 Security

OSGi Compendium Release 8 Page 107

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.cm.ConfigurationAdmin";
 uses:="org.osgi.service.cm"

This capability must follow the rules defined for the osgi.service Namespace on page 727.

104.13 Security

104.13.1 Configuration Permission
Every bundle has the implicit right to receive and configure configurations with a location that ex-
actly matches the Bundle's location or that is nul l . For all other situations the Configuration Admin
must verify that the configuring and to be updated bundles have a Configuration Permission that
matches the Configuration's location.

The resource name of this permission maps to the location of the Configuration, the location can
control the visibility of a Configuration for a bundle. The resource name is compared with the actu-
al configuration location using the OSGi Filter sub-string matching. The question mark for multi-lo-
cations is part of the given resource name. The Configure Permission has the following actions:

• CONFIGURE - Can manage matching configurations
• TARGET - Can be updated with a matching configuration
• ATTRIBUTE - Can manage attributes for matching configuration

To be able to set the location to nul l requires a Configurat ionPermission[*, CONFIGURE] .

It is possible to deny bundles the use of multi-locations by using Conditional Permission Admin's
deny model.

104.13.2 Permissions Summary
Configuration Admin service security is implemented using Service Permission and Configuration
Permission. The following table summarizes the permissions needed by the Configuration Admin
bundle itself, as well as the typical permissions needed by the bundles with which it interacts.

Configuration Admin:

ServicePermission[..ConfigurationAdmin, REGISTER]
ServicePermission[..ManagedService, GET]
ServicePermission[..ManagedServiceFactory, GET]
ServicePermission[..ConfigurationPlugin, GET]
ConfigurationPermission[*, CONFIGURE]
AdminPermission[*, METADATA]

Managed Service:

ServicePermission[..ConfigurationAdmin, GET]
ServicePermission[..ManagedService, REGISTER]
ConfigurationPermission[... , TARGET]

Managed Service Factory:

ServicePermission[..ConfigurationAdmin, GET]
ServicePermission[..ManagedServiceFactory, REGISTER]
ConfigurationPermission[... , TARGET]

Security Configuration Admin Service Specification Version 1.6

Page 108 OSGi Compendium Release 8

Configuration Plugin:

ServicePermission[..ConfigurationPlugin,REGISTER]

Configuration Listener:

ServicePermission[..ConfigurationListener,REGISTER]

The Configuration Admin service must have ServicePermission[Configurat ionAdmin, REGISTER] .
It will also be the only bundle that needs the ServicePermission[ManagedService | Man-
agedServiceFactory | Configurat ionPlugin, GET] . No other bundle should be allowed to
have GET permission for these interfaces. The Configuration Admin bundle must also hold
Configurat ionPermission[*,CONFIGURE] .

Bundles that can be configured must have the ServicePermission[ManagedService | Man-
agedServiceFactory, REGISTER] . Bundles registering Configurat ionPlugin objects must have
ServicePermission[Configurat ionPlugin, REGISTER] . The Configuration Admin service must trust
all services registered with the Configurat ionPlugin interface. Only the Configuration Admin service
should have ServicePermission[Configurat ionPlugin, GET] .

If a Managed Service or Managed Service Factory is implemented by an object that is also reg-
istered under another interface, it is possible, although inappropriate, for a bundle other than
the Configuration Admin service implementation to call the updated method. Security-aware
bundles can avoid this problem by having their updated methods check that the caller has
Configurat ionPermission[*,CONFIGURE] .

Bundles that want to change their own configuration need ServicePermission[Configurat ionAdmin,
GET] . A bundle with Configurat ionPermission[*,CONFIGURE] is allowed to access and modify any
Configurat ion object.

Pre-configuration of bundles requires Configurat ionPermission[location,CONFIGURE] (location can
use the sub-string matching rules of the Filter) because the methods that specify a location require
this permission.

104.13.3 Configuration and Permission Administration
Configuration information has a direct influence on the permissions needed by a bundle. For exam-
ple, when the Configuration Admin Bundle orders a bundle to use port 2011 for a console, that bun-
dle also needs permission for listening to incoming connections on that port.

Both a simple and a complex solution exist for this situation.

The simple solution for this situation provides the bundle with a set of permissions that do not de-
fine specific values but allow a range of values. For example, a bundle could listen to ports above
1024 freely. All these ports could then be used for configuration.

The other solution is more complicated. In an environment where there is very strong security, the
bundle would only be allowed access to a specific port. This situation requires an atomic update of
both the configuration data and the permissions. If this update was not atomic, a potential security
hole would exist during the period of time that the set of permissions did not match the configura-
tion.

The following scenario can be used to update a configuration and the security permissions:

1. Stop the bundle.
2. Update the appropriate Configurat ion object via the Configuration Admin service.
3. Update the permissions in the Framework.
4. Start the bundle.

This scenario would achieve atomicity from the point of view of the bundle.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8 Page 109

104.14 org.osgi.service.cm

Configuration Admin Package Version 1.6.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.cm; version="[1.6,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.cm; version="[1.6,1.7)"

104.14.1 Summary

• Configurat ion - The configuration information for a ManagedService or ManagedServiceFacto-
ry object.

• Configurat ion.Configurat ionAttr ibute - Configuration Attributes.
• Configurat ionAdmin - Service for administering configuration data.
• Configurat ionConstants - Defines standard constants for the Configuration Admin service.
• Configurat ionEvent - A Configuration Event.
• Configurat ionException - An Exception class to inform the Configuration Admin service of

problems with configuration data.
• Configurat ionListener - Listener for Configuration Events.
• Configurat ionPermission - Indicates a bundle's authority to configure bundles or be updated by

Configuration Admin.
• Configurat ionPlugin - A service interface for processing configuration dictionary before the up-

date.
• ManagedService - A service that can receive configuration data from a Configuration Admin

service.
• ManagedServiceFactory - Manage multiple service instances.
• ReadOnlyConfigurat ionException - An Exception class to inform the client of a Configurat ion

about the read only state of a configuration object.
• SynchronousConfigurat ionListener - Synchronous Listener for Configuration Events.

104.14.2 Permissions

104.14.2.1 Configuration

• setBundleLocation(Str ing)
• Configurat ionPermission[this . locat ion,CONFIGURE] - if this.location is not nul l
• Configurat ionPermission[location,CONFIGURE] - if location is not nul l
• Configurat ionPermission["*",CONFIGURE] - if this.location is nul l or if location is nul l

• getBundleLocation()
• Configurat ionPermission[this . locat ion,CONFIGURE] - if this.location is not nul l
• Configurat ionPermission["*",CONFIGURE] - if this.location is nul l

• addAttr ibutes(Configurat ionAttr ibute. . .)
• Configurat ionPermission[this . locat ion,ATTRIBUTE] - if this.location is not nul l
• Configurat ionPermission["*",ATTRIBUTE] - if this.location is nul l

• removeAttr ibutes(Configurat ionAttr ibute. . .)

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 110 OSGi Compendium Release 8

• Configurat ionPermission[this . locat ion,ATTRIBUTE] - if this.location is not nul l
• Configurat ionPermission["*",ATTRIBUTE] - if this.location is nul l

104.14.2.2 ConfigurationAdmin

• createFactoryConfigurat ion(Str ing,Str ing)
• Configurat ionPermission[location,CONFIGURE] - if location is not nul l
• Configurat ionPermission["*",CONFIGURE] - if location is nul l

• getConfigurat ion(Str ing,Str ing)
• Configurat ionPermission[*,CONFIGURE] - if location is nul l or if the returned configuration c

already exists and c.location is nul l
• Configurat ionPermission[location,CONFIGURE] - if location is not nul l
• Configurat ionPermission[c. locat ion,CONFIGURE] - if the returned configuration c already ex-

ists and c.location is not nul l
• getConfigurat ion(Str ing)

• Configurat ionPermission[c. locat ion,CONFIGURE] - If the configuration c already exists and
c.location is not nul l

• getFactoryConfigurat ion(Str ing,Str ing,Str ing)
• Configurat ionPermission[*,CONFIGURE] - if location is nul l or if the returned configuration c

already exists and c.location is nul l
• Configurat ionPermission[location,CONFIGURE] - if location is not nul l
• Configurat ionPermission[c. locat ion,CONFIGURE] - if the returned configuration c already ex-

ists and c.location is not nul l
• getFactoryConfigurat ion(Str ing,Str ing)

• Configurat ionPermission[c. locat ion,CONFIGURE] - If the configuration c already exists and
c.location is not nul l

• l istConfigurat ions(Str ing)
• Configurat ionPermission[c. locat ion,CONFIGURE] - Only configurations c are returned for

which the caller has this permission

104.14.2.3 ManagedService

• updated(Dict ionary)
• Configurat ionPermission[c. locat ion,TARGET] - Required by the bundle that registered this

service

104.14.2.4 ManagedServiceFactory

• updated(Str ing,Dict ionary)
• Configurat ionPermission[c. locat ion,TARGET] - Required by the bundle that registered this

service

104.14.3 public interface Configuration
The configuration information for a ManagedService or ManagedServiceFactory object. The Con-
figuration Admin service uses this interface to represent the configuration information for a Man-
agedService or for a service instance of a ManagedServiceFactory .

A Configurat ion object contains a configuration dictionary and allows the properties to be updated
via this object. Bundles wishing to receive configuration dictionaries do not need to use this class -
they register a ManagedService or ManagedServiceFactory . Only administrative bundles, and bun-
dles wishing to update their own configurations need to use this class.

The properties handled in this configuration have case insensitive Str ing objects as keys. However,
case must be preserved from the last set key/value.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8 Page 111

A configuration can be bound to a specific bundle or to a region of bundles using the location. In
its simplest form the location is the location of the target bundle that registered a Managed Ser-
vice or a Managed Service Factory. However, if the location starts with ? then the location indi-
cates multiple delivery. In such a case the configuration must be delivered to all targets. If securi-
ty is on, the Configuration Permission can be used to restrict the targets that receive updates. The
Configuration Admin must only update a target when the configuration location matches the lo-
cation of the target's bundle or the target bundle has a Configuration Permission with the action
ConfigurationPermission.TARGET and a name that matches the configuration location. The name
in the permission may contain wildcards ('* ') to match the location using the same substring
matching rules as Filter. Bundles can always create, manipulate, and be updated from configura-
tions that have a location that matches their bundle location.

If a configuration's location is nul l , it is not yet bound to a location. It will become bound to the loca-
tion of the first bundle that registers a ManagedService or ManagedServiceFactory object with the
corresponding PID.

The same Configurat ion object is used for configuring both a Managed Service Factory and a Man-
aged Service. When it is important to differentiate between these two the term "factory configura-
tion" is used.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

104.14.3.1 public void addAttributes(Configuration.ConfigurationAttribute... attrs) throws IOException

attrs The attributes to add.

□ Add attributes to the configuration.

Throws IOException– If the new state cannot be persisted.

I l legalStateException– If this configuration has been deleted.

SecurityException– when the required permissions are not available

Security Configurat ionPermission[this . locat ion,ATTRIBUTE]] – if this.location is not nul l

Configurat ionPermission["*",ATTRIBUTE]] – if this.location is nul l

Since 1.6

104.14.3.2 public void delete() throws IOException

□ Delete this Configurat ion object.

Removes this configuration object from the persistent store. Notify asynchronously the correspond-
ing Managed Service or Managed Service Factory. A ManagedService object is notified by a call to its
updated method with a nul l properties argument. A ManagedServiceFactory object is notified by a
call to its deleted method.

Also notifies all Configuration Listeners with a ConfigurationEvent.CM_DELETED event.

Throws ReadOnlyConfigurat ionException– If the configuration is read only.

IOException– If delete fails.

I l legalStateException– If this configuration has been deleted.

104.14.3.3 public boolean equals(Object other)

other Configurat ion object to compare against

□ Equality is defined to have equal PIDs Two Configuration objects are equal when their PIDs are
equal.

Returns true if equal, fa lse if not a Configurat ion object or one with a different PID.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 112 OSGi Compendium Release 8

104.14.3.4 public Set<Configuration.ConfigurationAttribute> getAttributes()

□ Get the attributes of this configuration.

Returns The set of attributes.

Throws I l legalStateException– If this configuration has been deleted.

Since 1.6

104.14.3.5 public String getBundleLocation()

□ Get the bundle location. Returns the bundle location or region to which this configuration is bound,
or nul l if it is not yet bound to a bundle location or region. If the location starts with ? then the con-
figuration is delivered to all targets and not restricted to a single bundle.

Returns location to which this configuration is bound, or nul l .

Throws I l legalStateException– If this configuration has been deleted.

SecurityException– when the required permissions are not available

Security Configurat ionPermission[this . locat ion,CONFIGURE]] – if this.location is not nul l

Configurat ionPermission["*",CONFIGURE]] – if this.location is nul l

104.14.3.6 public long getChangeCount()

□ Get the change count. Each Configuration must maintain a change counter that is incremented
with a positive value every time the configuration is updated and its properties are stored. The
counter must be incremented before the targets are updated and events are sent out.

Returns A monotonically increasing value reflecting changes in this Configuration.

Throws I l legalStateException– If this configuration has been deleted.

Since 1.5

104.14.3.7 public String getFactoryPid()

□ For a factory configuration return the PID of the corresponding Managed Service Factory, else return
nul l .

Returns factory PID or nul l

Throws I l legalStateException– If this configuration has been deleted.

104.14.3.8 public String getPid()

□ Get the PID for this Configurat ion object.

Returns the PID for this Configurat ion object.

Throws I l legalStateException– if this configuration has been deleted

104.14.3.9 public Dictionary<String, Object> getProcessedProperties(ServiceReference<?> reference)

reference The reference to the Managed Service or Managed Service Factory to pass to the registered Configu-
rationPlugins handling this configuration. Must not be nul l .

□ Return the processed properties of this Configurat ion object.

The Dictionary object returned is a private copy for the caller and may be changed without influenc-
ing the stored configuration. The keys in the returned dictionary are case insensitive and are always
of type Str ing .

Before the properties are returned they are processed by all the registered ConfigurationPlugins han-
dling this configuration.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8 Page 113

If called just after the configuration is created and before update has been called, this method re-
turns nul l .

Returns A private copy of the processed properties for the caller or nul l . These properties must not contain
the "service.bundleLocation" property. The value of this property may be obtained from the get-
BundleLocation() method.

Throws I l legalStateException– If this configuration has been deleted.

Since 1.6

104.14.3.10 public Dictionary<String, Object> getProperties()

□ Return the properties of this Configurat ion object. The Dictionary object returned is a private copy
for the caller and may be changed without influencing the stored configuration. The keys in the re-
turned dictionary are case insensitive and are always of type Str ing .

If called just after the configuration is created and before update has been called, this method re-
turns nul l .

Returns A private copy of the properties for the caller or nul l . These properties must not contain the
"service.bundleLocation" property. The value of this property may be obtained from the getBundle-
Location() method.

Throws I l legalStateException– If this configuration has been deleted.

104.14.3.11 public int hashCode()

□ Hash code is based on PID. The hash code for two Configuration objects must be the same when the
Configuration PID's are the same.

Returns hash code for this Configuration object

104.14.3.12 public void removeAttributes(Configuration.ConfigurationAttribute... attrs) throws IOException

attrs The attributes to remove.

□ Remove attributes from this configuration.

Throws IOException– If the new state cannot be persisted.

I l legalStateException– If this configuration has been deleted.

SecurityException– when the required permissions are not available

Security Configurat ionPermission[this . locat ion,ATTRIBUTE]] – if this.location is not nul l

Configurat ionPermission["*",ATTRIBUTE]] – if this.location is nul l

Since 1.6

104.14.3.13 public void setBundleLocation(String location)

location a location, region, or nul l

□ Bind this Configurat ion object to the specified location. If the location parameter is nul l then the
Configurat ion object will not be bound to a location/region. It will be set to the bundle's location be-
fore the first time a Managed Service/Managed Service Factory receives this Configurat ion object via
the updated method and before any plugins are called. The bundle location or region will be set per-
sistently.

If the location starts with ? then all targets registered with the given PID must be updated.

If the location is changed then existing targets must be informed. If they can no longer see this con-
figuration, the configuration must be deleted or updated with nul l . If this configuration becomes
visible then they must be updated with this configuration.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 114 OSGi Compendium Release 8

Also notifies all Configuration Listeners with a ConfigurationEvent.CM_LOCATION_CHANGED
event.

Throws I l legalStateException– If this configuration has been deleted.

SecurityException– when the required permissions are not available

Security Configurat ionPermission[this . locat ion,CONFIGURE]] – if this.location is not nul l

Configurat ionPermission[location,CONFIGURE]] – if location is not nul l

Configurat ionPermission["*",CONFIGURE]] – if this.location is nul l or if location is nul l

104.14.3.14 public void update(Dictionary<String, ?> properties) throws IOException

properties the new set of properties for this configuration

□ Update the properties of this Configurat ion object.

Stores the properties in persistent storage after adding or overwriting the following properties:

• "service.pid" : is set to be the PID of this configuration.
• "service.factoryPid" : if this is a factory configuration it is set to the factory PID else it is not set.

These system properties are all of type Str ing .

If the corresponding Managed Service/Managed Service Factory is registered, its updated method
must be called asynchronously. Else, this callback is delayed until aforementioned registration oc-
curs.

Also notifies all Configuration Listeners with a ConfigurationEvent.CM_UPDATED event.

Throws ReadOnlyConfigurat ionException– If the configuration is read only.

IOException– if update cannot be made persistent

I l legalArgumentException– if the Dictionary object contains invalid configuration types or contains
case variants of the same key name.

I l legalStateException– If this configuration has been deleted.

104.14.3.15 public void update() throws IOException

□ Update the Configurat ion object with the current properties. Initiate the updated callback to the
Managed Service or Managed Service Factory with the current properties asynchronously.

This is the only way for a bundle that uses a Configuration Plugin service to initiate a callback. For
example, when that bundle detects a change that requires an update of the Managed Service or Man-
aged Service Factory via its Configurat ionPlugin object.

Throws IOException– if update cannot access the properties in persistent storage

I l legalStateException– If this configuration has been deleted.

See Also ConfigurationPlugin

104.14.3.16 public boolean updateIfDifferent(Dictionary<String, ?> properties) throws IOException

properties The new set of properties for this configuration.

□ Update the properties of this Configurat ion object if the provided properties are different than the
currently stored set. Properties are compared as follows.

• Scalars are compared using equals
• Arrays are compared using Arrays.equals
• Collections are compared using equals

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8 Page 115

If the new properties are not different than the current properties, no operation is performed. Other-
wise, the behavior of this method is identical to the update(Dictionary) method.

Returns If the properties are different and the configuration is updated true is returned. If the properties are
the same, fa lse is returned.

Throws ReadOnlyConfigurat ionException– If the configuration is read only.

IOException– If update cannot be made persistent.

I l legalArgumentException– If the Dictionary object contains invalid configuration types or contains
case variants of the same key name.

I l legalStateException– If this configuration has been deleted.

Since 1.6

104.14.4 enum Configuration.ConfigurationAttribute
Configuration Attributes.

Since 1.6

104.14.4.1 READ_ONLY

The configuration is read only.

104.14.4.2 public static Configuration.ConfigurationAttribute valueOf(String name)

104.14.4.3 public static Configuration.ConfigurationAttribute[] values()

104.14.5 public interface ConfigurationAdmin
Service for administering configuration data.

The main purpose of this interface is to store bundle configuration data persistently. This informa-
tion is represented in Configurat ion objects. The actual configuration data is a Dictionary of proper-
ties inside a Configurat ion object.

There are two principally different ways to manage configurations. First there is the concept of a
Managed Service, where configuration data is uniquely associated with an object registered with the
service registry.

Next, there is the concept of a factory where the Configuration Admin service will maintain 0 or
more Configurat ion objects for a Managed Service Factory that is registered with the Framework.

The first concept is intended for configuration data about "things/services" whose existence is de-
fined externally, e.g. a specific printer. Factories are intended for "things/services" that can be created
any number of times, e.g. a configuration for a DHCP server for different networks.

Bundles that require configuration should register a Managed Service or a Managed Service Factory
in the service registry. A registration property named service.pid (persistent identifier or PID) must
be used to identify this Managed Service or Managed Service Factory to the Configuration Admin
service.

When the ConfigurationAdmin detects the registration of a Managed Service, it checks its persis-
tent storage for a configuration object whose service.pid property matches the PID service property
(service.pid) of the Managed Service. If found, it calls ManagedService.updated(Dictionary) method
with the new properties. The implementation of a Configuration Admin service must run these call-
backs asynchronously to allow proper synchronization.

When the Configuration Admin service detects a Managed Service Factory registration, it checks
its storage for configuration objects whose service.factoryPid property matches the PID ser-
vice property of the Managed Service Factory. For each such Configurat ion objects, it calls the

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 116 OSGi Compendium Release 8

ManagedServiceFactory.updated method asynchronously with the new properties. The calls to
the updated method of a ManagedServiceFactory must be executed sequentially and not overlap in
time.

In general, bundles having permission to use the Configuration Admin service can only access and
modify their own configuration information. Accessing or modifying the configuration of other
bundles requires Configurat ionPermission[location,CONFIGURE] , where location is the configura-
tion location.

Configurat ion objects can be bound to a specified bundle location or to a region (configuration loca-
tion starts with ?). If a location is not set, it will be learned the first time a target is registered. If the
location is learned this way, the Configuration Admin service must detect if the bundle correspond-
ing to the location is uninstalled. If this occurs, the Configurat ion object must be unbound, that is
its location field is set back to nul l .

If target's bundle location matches the configuration location it is always updated.

If the configuration location starts with ? , that is, the location is a region, then the configuration
must be delivered to all targets registered with the given PID. If security is on, the target bundle
must have Configuration Permission[location,TARGET], where location matches given the configu-
ration location with wildcards as in the Filter substring match. The security must be verified using
the org.osgi.framework.Bundle.hasPermission(Object) method on the target bundle.

If a target cannot be updated because the location does not match or it has no permission and securi-
ty is active then the Configuration Admin service must not do the normal callback.

The method descriptions of this class refer to a concept of "the calling bundle". This is a loose way of
referring to the bundle which obtained the Configuration Admin service from the service registry.
Implementations of Configurat ionAdmin must use a org.osgi.framework.ServiceFactory to support
this concept.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

104.14.5.1 public static final String SERVICE_BUNDLELOCATION = "service.bundleLocation"

Configuration property naming the location of the bundle that is associated with a Configurat ion
object. This property can be searched for but must not appear in the configuration dictionary for se-
curity reason. The property's value is of type Str ing .

Since 1.1

104.14.5.2 public static final String SERVICE_FACTORYPID = "service.factoryPid"

Configuration property naming the Factory PID in the configuration dictionary. The property's val-
ue is of type Str ing .

Since 1.1

104.14.5.3 public Configuration createFactoryConfiguration(String factoryPid) throws IOException

factoryPid PID of factory (not nul l).

□ Create a new factory Configurat ion object with a new PID. The properties of the new Configurat ion
object are nul l until the first time that its Configuration.update(Dictionary) method is called.

It is not required that the factoryPid maps to a registered Managed Service Factory.

The Configurat ion object is bound to the location of the calling bundle. It is possible that the same
factoryPid has associated configurations that are bound to different bundles. Bundles should only
see the factory configurations that they are bound to or have the proper permission.

Returns A new Configurat ion object.

Throws IOException– if access to persistent storage fails.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8 Page 117

104.14.5.4 public Configuration createFactoryConfiguration(String factoryPid, String location) throws IOException

factoryPid PID of factory (not nul l).

location A bundle location string, or nul l .

□ Create a new factory Configurat ion object with a new PID. The properties of the new Configurat ion
object are nul l until the first time that its Configuration.update(Dictionary) method is called.

It is not required that the factoryPid maps to a registered Managed Service Factory.

The Configurat ion is bound to the location specified. If this location is nul l it will be bound to the
location of the first bundle that registers a Managed Service Factory with a corresponding PID. It is
possible that the same factoryPid has associated configurations that are bound to different bundles.
Bundles should only see the factory configurations that they are bound to or have the proper per-
mission.

If the location starts with ? then the configuration must be delivered to all targets with the corre-
sponding PID.

Returns a new Configurat ion object.

Throws IOException– if access to persistent storage fails.

SecurityException– when the require permissions are not available

Security Configurat ionPermission[location,CONFIGURE]] – if location is not nul l

Configurat ionPermission["*",CONFIGURE]] – if location is nul l

104.14.5.5 public Configuration getConfiguration(String pid, String location) throws IOException

pid Persistent identifier.

location The bundle location string, or nul l .

□ Get an existing Configurat ion object from the persistent store, or create a new Configurat ion object.

If a Configurat ion with this PID already exists in Configuration Admin service return it. The loca-
tion parameter is ignored in this case though it is still used for a security check.

Else, return a new Configurat ion object. This new object is bound to the location and the properties
are set to nul l . If the location parameter is nul l , it will be set when a Managed Service with the cor-
responding PID is registered for the first time. If the location starts with ? then the configuration is
bound to all targets that are registered with the corresponding PID.

Returns An existing or new Configurat ion object.

Throws IOException– if access to persistent storage fails.

SecurityException– when the require permissions are not available

Security Configurat ionPermission[*,CONFIGURE]] – if location is nul l or if the returned configuration c al-
ready exists and c.location is nul l

Configurat ionPermission[location,CONFIGURE]] – if location is not nul l

Configurat ionPermission[c. locat ion,CONFIGURE]] – if the returned configuration c already exists
and c.location is not nul l

104.14.5.6 public Configuration getConfiguration(String pid) throws IOException

pid persistent identifier.

□ Get an existing or new Configurat ion object from the persistent store. If the Configurat ion object
for this PID does not exist, create a new Configurat ion object for that PID, where properties are nul l .
Bind its location to the calling bundle's location.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 118 OSGi Compendium Release 8

Otherwise, if the location of the existing Configurat ion object is nul l , set it to the calling bundle's lo-
cation.

Returns an existing or new Configurat ion matching the PID.

Throws IOException– if access to persistent storage fails.

SecurityException– when the required permission is not available

Security Configurat ionPermission[c. locat ion,CONFIGURE]] – If the configuration c already exists and
c.location is not nul l

104.14.5.7 public Configuration getFactoryConfiguration(String factoryPid, String name, String location) throws
IOException

factoryPid PID of factory (not nul l).

name A name for Configurat ion (not nul l).

location The bundle location string, or nul l .

□ Get an existing or new Configurat ion object from the persistent store. The PID for this Configurat ion
object is generated from the provided factory PID and the name by starting with the factory PID ap-
pending a tilde (' ~ ' \u007E), and then appending the name.

If a Configurat ion with this PID already exists in Configuration Admin service return it. The loca-
tion parameter is ignored in this case though it is still used for a security check.

Else, return a new Configurat ion object. This new object is bound to the location and the properties
are set to nul l . If the location parameter is nul l , it will be set when a Managed Service with the cor-
responding PID is registered for the first time. If the location starts with ? then the configuration is
bound to all targets that are registered with the corresponding PID.

Returns An existing or new Configurat ion object.

Throws IOException– if access to persistent storage fails.

SecurityException– when the require permissions are not available

Security Configurat ionPermission[*,CONFIGURE]] – if location is nul l or if the returned configuration c al-
ready exists and c.location is nul l

Configurat ionPermission[location,CONFIGURE]] – if location is not nul l

Configurat ionPermission[c. locat ion,CONFIGURE]] – if the returned configuration c already exists
and c.location is not nul l

Since 1.6

104.14.5.8 public Configuration getFactoryConfiguration(String factoryPid, String name) throws IOException

factoryPid PID of factory (not nul l).

name A name for Configurat ion (not nul l).

□ Get an existing or new Configurat ion object from the persistent store. The PID for this Configurat ion
object is generated from the provided factory PID and the name by starting with the factory PID ap-
pending a tilde (' ~ ' \u007E), and then appending the name.

If a Configurat ion object for this PID does not exist, create a new Configurat ion object for that PID,
where properties are nul l . Bind its location to the calling bundle's location.

Otherwise, if the location of the existing Configurat ion object is nul l , set it to the calling bundle's lo-
cation.

Returns an existing or new Configurat ion matching the PID.

Throws IOException– if access to persistent storage fails.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8 Page 119

SecurityException– when the required permission is not available

Security Configurat ionPermission[c. locat ion,CONFIGURE]] – If the configuration c already exists and
c.location is not nul l

Since 1.6

104.14.5.9 public Configuration[] listConfigurations(String filter) throws IOException, InvalidSyntaxException

filter A filter string, or nul l to retrieve all Configurat ion objects.

□ List the current Configurat ion objects which match the filter.

Only Configurat ion objects with non- nul l properties are considered current. That is,
Configurat ion.getPropert ies() is guaranteed not to return nul l for each of the returned Configura-
t ion objects.

When there is no security on then all configurations can be returned. If security is on, the caller
must have ConfigurationPermission[location,CONFIGURE].

The syntax of the filter string is as defined in the Filter class. The filter can test any configuration
properties including the following:

• service.pid - the persistent identity
• service.factoryPid - the factory PID, if applicable
• service.bundleLocation - the bundle location

The filter can also be nul l , meaning that all Configurat ion objects should be returned.

Returns All matching Configurat ion objects, or nul l if there aren't any.

Throws IOException– if access to persistent storage fails

Inval idSyntaxException– if the filter string is invalid

Security Configurat ionPermission[c. locat ion,CONFIGURE]] – Only configurations c are returned for which
the caller has this permission

104.14.6 public final class ConfigurationConstants
Defines standard constants for the Configuration Admin service.

104.14.6.1 public static final String CONFIGURATION_ADMIN_IMPLEMENTATION = "osgi.cm"

The name of the implementation capability for the Configuration Admin specification

Since 1.6

104.14.6.2 public static final String CONFIGURATION_ADMIN_SPECIFICATION_VERSION = "1.6"

The version of the implementation capability for the Configuration Admin specification

Since 1.6

104.14.7 public class ConfigurationEvent
A Configuration Event.

Configurat ionEvent objects are delivered to all registered Configurat ionListener service objects.
ConfigurationEvents must be delivered in chronological order with respect to each listener.

A type code is used to identify the type of event. The following event types are defined:

• CM_UPDATED
• CM_DELETED
• CM_LOCATION_CHANGED

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 120 OSGi Compendium Release 8

Additional event types may be defined in the future.

Security Considerations. Configurat ionEvent objects do not provide Configurat ion objects, so no
sensitive configuration information is available from the event. If the listener wants to locate the
Configurat ion object for the specified pid, it must use Configurat ionAdmin .

See Also ConfigurationListener

Since 1.2

Concurrency Immutable

104.14.7.1 public static final int CM_DELETED = 2

A Configurat ion has been deleted.

This Configurat ionEvent type that indicates that a Configurat ion object has been deleted. An event
is fired when a call to Configuration.delete() successfully deletes a configuration.

104.14.7.2 public static final int CM_LOCATION_CHANGED = 3

The location of a Configurat ion has been changed.

This Configurat ionEvent type that indicates that the location of a Configurat ion object has been
changed. An event is fired when a call to Configuration.setBundleLocation(String) successfully
changes the location.

Since 1.4

104.14.7.3 public static final int CM_UPDATED = 1

A Configurat ion has been updated.

This Configurat ionEvent type that indicates that a Configurat ion object has been updated with new
properties. An event is fired when a call to Configuration.update(Dictionary) successfully changes a
configuration.

104.14.7.4 public ConfigurationEvent(ServiceReference<ConfigurationAdmin> reference, int type, String factoryPid,
String pid)

reference The ServiceReference object of the Configuration Admin service that created this event.

type The event type. See getType().

factoryPid The factory pid of the associated configuration if the target of the configuration is a ManagedSer-
viceFactory. Otherwise nul l if the target of the configuration is a ManagedService.

pid The pid of the associated configuration.

□ Constructs a Configurat ionEvent object from the given ServiceReference object, event type, and
pids.

104.14.7.5 public String getFactoryPid()

□ Returns the factory pid of the associated configuration.

Returns Returns the factory pid of the associated configuration if the target of the configuration is a Man-
agedServiceFactory. Otherwise nul l if the target of the configuration is a ManagedService.

104.14.7.6 public String getPid()

□ Returns the pid of the associated configuration.

Returns Returns the pid of the associated configuration.

104.14.7.7 public ServiceReference<ConfigurationAdmin> getReference()

□ Return the ServiceReference object of the Configuration Admin service that created this event.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8 Page 121

Returns The ServiceReference object for the Configuration Admin service that created this event.

104.14.7.8 public int getType()

□ Return the type of this event.

The type values are:

• CM_UPDATED
• CM_DELETED
• CM_LOCATION_CHANGED

Returns The type of this event.

104.14.8 public class ConfigurationException
extends Exception
An Exception class to inform the Configuration Admin service of problems with configuration data.

104.14.8.1 public ConfigurationException(String property, String reason)

property name of the property that caused the problem, nul l if no specific property was the cause

reason reason for failure

□ Create a Configurat ionException object.

104.14.8.2 public ConfigurationException(String property, String reason, Throwable cause)

property name of the property that caused the problem, nul l if no specific property was the cause

reason reason for failure

cause The cause of this exception.

□ Create a Configurat ionException object.

Since 1.2

104.14.8.3 public Throwable getCause()

□ Returns the cause of this exception or nul l if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

Since 1.2

104.14.8.4 public String getProperty()

□ Return the property name that caused the failure or null.

Returns name of property or null if no specific property caused the problem

104.14.8.5 public String getReason()

□ Return the reason for this exception.

Returns reason of the failure

104.14.8.6 public Throwable initCause(Throwable cause)

cause The cause of this exception.

□ Initializes the cause of this exception to the specified value.

Returns This exception.

Throws I l legalArgumentException– If the specified cause is this exception.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 122 OSGi Compendium Release 8

I l legalStateException– If the cause of this exception has already been set.

Since 1.2

104.14.9 public interface ConfigurationListener
Listener for Configuration Events. When a Configurat ionEvent is fired, it is asynchronously deliv-
ered to all Configurat ionListeners.

Configurat ionListener objects are registered with the Framework service registry and are notified
with a Configurat ionEvent object when an event is fired.

Configurat ionListener objects can inspect the received Configurat ionEvent object to determine its
type, the pid of the Configurat ion object with which it is associated, and the Configuration Admin
service that fired the event.

Security Considerations. Bundles wishing to monitor configuration events will require
ServicePermission[Configurat ionListener,REGISTER] to register a Configurat ionListener service.

Since 1.2

Concurrency Thread-safe

104.14.9.1 public void configurationEvent(ConfigurationEvent event)

event The Configurat ionEvent .

□ Receives notification of a Configuration that has changed.

104.14.10 public final class ConfigurationPermission
extends BasicPermission
Indicates a bundle's authority to configure bundles or be updated by Configuration Admin.

Since 1.2

Concurrency Thread-safe

104.14.10.1 public static final String ATTRIBUTE = "attribute"

Provides permission to set or remove an attribute on the configuration. The action string "attribute".

Since 1.6

104.14.10.2 public static final String CONFIGURE = "configure"

Provides permission to create new configurations for other bundles as well as manipulate them. The
action string "configure".

104.14.10.3 public static final String TARGET = "target"

The permission to be updated, that is, act as a Managed Service or Managed Service Factory. The ac-
tion string "target".

Since 1.4

104.14.10.4 public ConfigurationPermission(String name, String actions)

name Name of the permission. Wildcards ('* ') are allowed in the name. During implies(Permission), the
name is matched to the requested permission using the substring matching rules used by Filters.

actions Comma separated list of CONFIGURE, TARGET, ATTRIBUTE (case insensitive).

□ Create a new ConfigurationPermission.

104.14.10.5 public boolean equals(Object obj)

obj The object being compared for equality with this object.

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8 Page 123

□ Determines the equality of two Configurat ionPermission objects.

Two Configurat ionPermission objects are equal.

Returns true if obj is equivalent to this Configurat ionPermission ; fa lse otherwise.

104.14.10.6 public String getActions()

□ Returns the canonical string representation of the Configurat ionPermission actions.

Always returns present Configurat ionPermission actions in the following order: "configure", "tar-
get", "attribute".

Returns Canonical string representation of the Configurat ionPermission actions.

104.14.10.7 public int hashCode()

□ Returns the hash code value for this object.

Returns Hash code value for this object.

104.14.10.8 public boolean implies(Permission p)

p The target permission to check.

□ Determines if a Configurat ionPermission object "implies" the specified permission.

Returns true if the specified permission is implied by this object; fa lse otherwise.

104.14.10.9 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object suitable for storing Configurat ionPermissions.

Returns A new PermissionCol lect ion object.

104.14.11 public interface ConfigurationPlugin
A service interface for processing configuration dictionary before the update.

A bundle registers a Configurat ionPlugin object in order to process configuration updates before
they reach the Managed Service or Managed Service Factory. The Configuration Admin service will
detect registrations of Configuration Plugin services and must call these services every time before
it calls the ManagedService or ManagedServiceFactory updated method. The Configuration Plug-
in service thus has the opportunity to view and modify the properties before they are passed to the
Managed Service or Managed Service Factory.

Configuration Plugin (plugin) services have full read/write access to all configuration information
that passes through them.

The Integer service.cmRanking registration property may be specified. Not specifying this registra-
tion property, or setting it to something other than an Integer , is the same as setting it to the Inte-
ger zero. The service.cmRanking property determines the order in which plugins are invoked. Low-
er ranked plugins are called before higher ranked ones. In the event of more than one plugin having
the same value of service.cmRanking , then the Configuration Admin service arbitrarily chooses the
order in which they are called.

By convention, plugins with service.cmRanking < 0 or service.cmRanking > 1000 should not make
modifications to the properties. Any modifications made by such plugins must be ignored.

The Configuration Admin service has the right to hide properties from plugins, or to ignore some or
all the changes that they make. This might be done for security reasons. Any such behavior is entire-
ly implementation defined.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 124 OSGi Compendium Release 8

A plugin may optionally specify a cm.target registration property whose value is the PID of the
Managed Service or Managed Service Factory whose configuration updates the plugin is intended
to intercept. The plugin will then only be called with configuration updates that are targeted at the
Managed Service or Managed Service Factory with the specified PID. Omitting the cm.target regis-
tration property means that the plugin is called for all configuration updates.

Concurrency Thread-safe

104.14.11.1 public static final String CM_RANKING = "service.cmRanking"

A service property to specify the order in which plugins are invoked. This property contains an In-
teger ranking of the plugin. Not specifying this registration property, or setting it to something oth-
er than an Integer , is the same as setting it to the Integer zero. This property determines the order in
which plugins are invoked. Lower ranked plugins are called before higher ranked ones.

Since 1.2

104.14.11.2 public static final String CM_TARGET = "cm.target"

A service property to limit the Managed Service or Managed Service Factory configuration dictio-
naries a Configuration Plugin service receives. This property contains a Str ing[] of PIDs. A Configu-
ration Admin service must call a Configuration Plugin service only when this property is not set, or
the target service's PID is listed in this property.

104.14.11.3 public void modifyConfiguration(ServiceReference<?> reference, Dictionary<String, Object> properties)

reference reference to the Managed Service or Managed Service Factory

properties The configuration properties. This argument must not contain the "service.bundleLocation" proper-
ty. The value of this property may be obtained from the Configurat ion.getBundleLocation method.

□ View and possibly modify the a set of configuration properties before they are sent to the Managed
Service or the Managed Service Factory. The Configuration Plugin services are called in increasing
order of their service.cmRanking property. If this property is undefined or is a non- Integer type, 0 is
used.

This method should not modify the properties unless the service.cmRanking of this plugin is in the
range 0 <= service.cmRanking <= 1000 . Any modification from this plugin is ignored.

If this method throws any Exception , the Configuration Admin service must catch it and should log
it. Any modifications made by the plugin before the exception is thrown are applied.

A Configuration Plugin will only be called for properties from configurations that have a location
for which the Configuration Plugin has permission when security is active. When security is not ac-
tive, no filtering is done.

104.14.12 public interface ManagedService
A service that can receive configuration data from a Configuration Admin service.

A Managed Service is a service that needs configuration data. Such an object should be registered
with the Framework registry with the service.pid property set to some unique identifier called a
PID.

If the Configuration Admin service has a Configurat ion object corresponding to this PID, it will call-
back the updated() method of the ManagedService object, passing the properties of that Configura-
t ion object.

If it has no such Configurat ion object, then it calls back with a nul l properties argument. Registering
a Managed Service will always result in a callback to the updated() method provided the Configura-
tion Admin service is, or becomes active. This callback must always be done asynchronously.

Else, every time that either of the updated() methods is called on that Configurat ion object, the
ManagedService.updated() method with the new properties is called. If the delete() method is

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8 Page 125

called on that Configurat ion object, ManagedService.updated() is called with a nul l for the proper-
ties parameter. All these callbacks must be done asynchronously.

The following example shows the code of a serial port that will create a port depending on configu-
ration information.

 class SerialPort implements ManagedService {

 ServiceRegistration registration;
 Hashtable configuration;
 CommPortIdentifier id;

 synchronized void open(CommPortIdentifier id,
 BundleContext context) {
 this.id = id;
 registration = context.registerService(
 ManagedService.class.getName(),
 this,
 getDefaults()
);
 }

 Hashtable getDefaults() {
 Hashtable defaults = new Hashtable();
 defaults.put("port", id.getName());
 defaults.put("product", "unknown");
 defaults.put("baud", "9600");
 defaults.put(Constants.SERVICE_PID,
 "com.acme.serialport." + id.getName());
 return defaults;
 }

 public synchronized void updated(
 Dictionary configuration) {
 if (configuration == null)
 registration.setProperties(getDefaults());
 else {
 setSpeed(configuration.get("baud"));
 registration.setProperties(configuration);
 }
 }
 ...
 }

As a convention, it is recommended that when a Managed Service is updated, it should copy all the
properties it does not recognize into the service registration properties. This will allow the Configu-
ration Admin service to set properties on services which can then be used by other applications.

Normally, a single Managed Service for a given PID is given the configuration dictionary, this is the
configuration that is bound to the location of the registering bundle. However, when security is on,
a Managed Service can have Configuration Permission to also be updated for other locations.

If a Managed Service is registered without the service.pid property, it will be ignored.

Concurrency Thread-safe

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 126 OSGi Compendium Release 8

104.14.12.1 public void updated(Dictionary<String, ?> properties) throws ConfigurationException

properties A copy of the Configuration properties, or nul l . This argument must not contain the
"service.bundleLocation" property. The value of this property may be obtained from the
Configurat ion.getBundleLocation method.

□ Update the configuration for a Managed Service.

When the implementation of updated(Dict ionary) detects any kind of error in the configuration
properties, it should create a new Configurat ionException which describes the problem. This can al-
low a management system to provide useful information to a human administrator.

If this method throws any other Exception , the Configuration Admin service must catch it and
should log it.

The Configuration Admin service must call this method asynchronously with the method that ini-
tiated the callback. This implies that implementors of Managed Service can be assured that the call-
back will not take place during registration when they execute the registration in a synchronized
method.

If the location allows multiple managed services to be called back for a single configuration then
the callbacks must occur in service ranking order. Changes in the location must be reflected by
deleting the configuration if the configuration is no longer visible and updating when it becomes
visible.

If no configuration exists for the corresponding PID, or the bundle has no access to the configura-
tion, then the bundle must be called back with a nul l to signal that CM is active but there is no data.

Throws Configurat ionException– when the update fails

Security Configurat ionPermission[c. locat ion,TARGET]] – Required by the bundle that registered this service

104.14.13 public interface ManagedServiceFactory
Manage multiple service instances. Bundles registering this interface are giving the Configuration
Admin service the ability to create and configure a number of instances of a service that the imple-
menting bundle can provide. For example, a bundle implementing a DHCP server could be instanti-
ated multiple times for different interfaces using a factory.

Each of these service instances is represented, in the persistent storage of the Configuration Admin
service, by a factory Configurat ion object that has a PID. When such a Configurat ion is updated, the
Configuration Admin service calls the ManagedServiceFactory updated method with the new prop-
erties. When updated is called with a new PID, the Managed Service Factory should create a new fac-
tory instance based on these configuration properties. When called with a PID that it has seen be-
fore, it should update that existing service instance with the new configuration information.

In general it is expected that the implementation of this interface will maintain a data structure that
maps PIDs to the factory instances that it has created. The semantics of a factory instance are de-
fined by the Managed Service Factory. However, if the factory instance is registered as a service ob-
ject with the service registry, its PID should match the PID of the corresponding Configurat ion ob-
ject (but it should not be registered as a Managed Service!).

An example that demonstrates the use of a factory. It will create serial ports under command of the
Configuration Admin service.

 class SerialPortFactory
 implements ManagedServiceFactory {
 ServiceRegistration registration;
 Hashtable ports;
 void start(BundleContext context) {
 Hashtable properties = new Hashtable();
 properties.put(Constants.SERVICE_PID,

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

OSGi Compendium Release 8 Page 127

 "com.acme.serialportfactory");
 registration = context.registerService(
 ManagedServiceFactory.class.getName(),
 this,
 properties
);
 }
 public void updated(String pid,
 Dictionary properties) {
 String portName = (String) properties.get("port");
 SerialPortService port =
 (SerialPort) ports.get(pid);
 if (port == null) {
 port = new SerialPortService();
 ports.put(pid, port);
 port.open();
 }
 if (port.getPortName().equals(portName))
 return;
 port.setPortName(portName);
 }
 public void deleted(String pid) {
 SerialPortService port =
 (SerialPort) ports.get(pid);
 port.close();
 ports.remove(pid);
 }
 ...
 }

If a ManagedServiceFactory is registered without the service.pid property, it will be ignored.

Concurrency Thread-safe

104.14.13.1 public void deleted(String pid)

pid the PID of the service to be removed

□ Remove a factory instance. Remove the factory instance associated with the PID. If the instance was
registered with the service registry, it should be unregistered. The Configuration Admin must call
deleted for each instance it received in updated(String, Dictionary).

If this method throws any Exception , the Configuration Admin service must catch it and should log
it.

The Configuration Admin service must call this method asynchronously.

104.14.13.2 public String getName()

□ Return a descriptive name of this factory.

Returns the name for the factory, which might be localized

104.14.13.3 public void updated(String pid, Dictionary<String, ?> properties) throws ConfigurationException

pid The PID for this configuration.

properties A copy of the configuration properties. This argument must not contain the service.bundleLocation"
property. The value of this property may be obtained from the Configurat ion.getBundleLocation
method.

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Page 128 OSGi Compendium Release 8

□ Create a new instance, or update the configuration of an existing instance. If the PID of the Config-
urat ion object is new for the Managed Service Factory, then create a new factory instance, using the
configuration propert ies provided. Else, update the service instance with the provided propert ies .

If the factory instance is registered with the Framework, then the configuration propert ies should
be copied to its registry properties. This is not mandatory and security sensitive properties should
obviously not be copied.

If this method throws any Exception , the Configuration Admin service must catch it and should log
it.

When the implementation of updated detects any kind of error in the configuration properties, it
should create a new ConfigurationException which describes the problem.

The Configuration Admin service must call this method asynchronously. This implies that imple-
mentors of the ManagedServiceFactory class can be assured that the callback will not take place
during registration when they execute the registration in a synchronized method.

If the security allows multiple managed service factories to be called back for a single configuration
then the callbacks must occur in service ranking order.

It is valid to create multiple factory instances that are bound to different locations. Managed Service
Factory services must only be updated with configurations that are bound to their location or that
start with the ? prefix and for which they have permission. Changes in the location must be reflect-
ed by deleting the corresponding configuration if the configuration is no longer visible or updating
when it becomes visible.

Throws Configurat ionException– when the configuration properties are invalid.

Security Configurat ionPermission[c. locat ion,TARGET]] – Required by the bundle that registered this service

104.14.14 public class ReadOnlyConfigurationException
extends RuntimeException
An Exception class to inform the client of a Configurat ion about the read only state of a configura-
tion object.

Since 1.6

104.14.14.1 public ReadOnlyConfigurationException(String reason)

reason reason for failure

□ Create a ReadOnlyConfigurat ionException object.

104.14.15 public interface SynchronousConfigurationListener
extends ConfigurationListener
Synchronous Listener for Configuration Events. When a Configurat ionEvent is fired, it is synchro-
nously delivered to all SynchronousConfigurat ionListeners.

SynchronousConfigurat ionListener objects are registered with the Framework service registry and
are synchronously notified with a Configurat ionEvent object when an event is fired.

SynchronousConfigurat ionListener objects can inspect the received Configurat ionEvent object to
determine its type, the PID of the Configurat ion object with which it is associated, and the Configu-
ration Admin service that fired the event.

Security Considerations. Bundles wishing to synchronously monitor configuration events will re-
quire ServicePermission[SynchronousConfigurat ionListener,REGISTER] to register a Synchronous-
Configurat ionListener service.

Since 1.5

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm.annotations

OSGi Compendium Release 8 Page 129

Concurrency Thread-safe

104.15 org.osgi.service.cm.annotations

Configuration Admin Annotations Package Version 1.6.

This package contains annotations that can be used to require the Configuration Admin implemen-
tations

Bundles should not normally need to import this package as the annotations are only used at build-
time.

104.15.1 Summary

• RequireConfigurat ionAdmin - This annotation can be used to require the Configuration Admin
implementation.

104.15.2 @RequireConfigurationAdmin
This annotation can be used to require the Configuration Admin implementation. It can be used di-
rectly, or as a meta-annotation.

Since 1.6

Retention CLASS

Target TYPE , PACKAGE

org.osgi.service.cm.annotations Configuration Admin Service Specification Version 1.6

Page 130 OSGi Compendium Release 8

Metatype Service Specification Version 1.4 Introduction

OSGi Compendium Release 8 Page 131

105 Metatype Service Specification

Version 1.4

105.1 Introduction
The Metatype specification defines interfaces that allow bundle developers to describe attribute
types in a computer readable form using so-called metadata.

The purpose of this specification is to allow services to specify the type information of data that
they can use as arguments. The data is based on attributes, which are key/value pairs like properties.

A designer in a type-safe language like Java is often confronted with the choice of using the lan-
guage constructs to exchange data or using a technique based on attributes/properties that are based
on key/value pairs. Attributes provide an escape from the rigid type-safety requirements of modern
programming languages.

Type-safety works very well for software development environments in which multiple program-
mers work together on large applications or systems, but often lacks the flexibility needed to receive
structured data from the outside world.

The attribute paradigm has several characteristics that make this approach suitable when data
needs to be communicated between different entities which "speak" different languages. Attribut-
es are uncomplicated, resilient to change, and allow the receiver to dynamically adapt to different
types of data.

As an example, the OSGi framework Specifications define several attribute types which are used in
a Framework implementation, but which are also used and referenced by other OSGi specifications
such as the Configuration Admin Service Specification on page 81. A Configuration Admin service im-
plementation deploys attributes (key/value pairs) as configuration properties.

The Meta Type Service provides a unified access point to the Meta Type information that is associat-
ed with bundles. This Meta Type information can be defined by an XML resource in a bundle (OSGI-
INF/metatype directories must be scanned for any XML resources), it can come from the Meta Type
Provider service, or it can be obtained from Managed Service or Managed Service Factory services.

105.1.1 Essentials

• Conceptual model - The specification must have a conceptual model for how classes and attributes
are organized.

• Standards - The specification should be aligned with appropriate standards, and explained in situ-
ations where the specification is not aligned with, or cannot be mapped to, standards.

• Remote Management - Remote management should be taken into account.
• Size - Minimal overhead in size for a bundle using this specification is required.
• Localization - It must be possible to use this specification with different languages at the same

time. This ability allows servlets to serve information in the language selected in the browser.
• Type information - The definition of an attribute should contain the name (if it is required), the

cardinality, a label, a description, labels for enumerated values, and the Java class that should be
used for the values.

• Validation - It should be possible to validate the values of the attributes.

Attributes Model Metatype Service Specification Version 1.4

Page 132 OSGi Compendium Release 8

105.1.2 Entities

• Meta Type Service - A service that provides a unified access point for meta type information.
• Attribute - A key/value pair.
• PID - A unique persistent ID, defined in configuration management.
• Attribute Definition - Defines a description, name, help text, and type information of an attribute.
• Object Class Definition - Defines the type of a datum. It contains a description and name of the type

plus a set of Attr ibuteDefinit ion objects.
• Meta Type Provider - Provides access to the object classes that are available for this object. Access

uses the PID and a locale to find the best ObjectClassDefinit ion object.
• Meta Type Information - Provides meta type information for a bundle.

Figure 105.1 Class Diagram Meta Type Service, org.osgi.service.metatype

Any bundleMeta Type Client

Meta Type
Service Impl

Metatype
xml resources

Any bundle

Meta Type
Service

Meta Type
Provider

Any bundle

Managed
Service
(Factory)

metatype.pid=...
metatype.factory.pid=...

105.1.3 Operation
The Meta Type service defines a rich dynamic typing system for properties. The purpose of the type
system is to allow reasonable User Interfaces to be constructed dynamically.

The type information is normally carried by the bundles themselves. Either by implementing the
MetaTypeProvider interface on the Managed Service or Managed Service Factory, by carrying one
or more XML resources that define a number of Meta Types in the OSGI-INF/metatype directories,
or registering a Meta Type Provider as a service. Additionally, a Meta Type service could have other
sources that are not defined in this specification.

The Meta Type Service provides unified access to Meta Types that are carried by the resident bun-
dles. The Meta Type Service collects this information from the bundles and provides uniform ac-
cess to it. A client can requests the Meta Type Information associated with a particular bundle. The
MetaTypeInformation object provides a list of ObjectClassDefinit ion objects for a bundle. These ob-
jects define all the information for a specific object class. An object class is a some descriptive infor-
mation and a set of named attributes (which are key/value pairs).

Access to Object Class Definitions is qualified by a locale and a Persistent IDentity (PID). This speci-
fication does not specify what the PID means. One application is OSGi Configuration Management
where a PID is used by the Managed Service and Managed Service Factory services. In general, a PID
should be regarded as the name of a variable where an Object Class Definition defines its type.

105.2 Attributes Model
The Framework uses the LDAP filter syntax for searching the Framework registry. The usage of the
attributes in this specification and the Framework specification closely resemble the LDAP attribute

Metatype Service Specification Version 1.4 Object Class Definition

OSGi Compendium Release 8 Page 133

model. Therefore, the names used in this specification have been aligned with LDAP. Consequently,
the interfaces which are defined by this Specification are:

• Attr ibuteDefinit ion
• ObjectClassDefinit ion
• MetaTypeProvider

These names correspond to the LDAP attribute model. For further information on ASN.1-defined at-
tributes and X.500 object classes and attributes, see [2] Understanding and Deploying LDAP Directory
services.

The LDAP attribute model assumes a global name-space for attributes, and object classes consist of
a number of attributes. So, if an object class inherits the same attribute from different parents, only
one copy of the attribute must become part of the object class definition. This name-space implies
that a given attribute, for example cn , should always be the common name and the type must al-
ways be a Str ing . An attribute cn cannot be an Integer in another object class definition. In this re-
spect, the OSGi approach towards attribute definitions is comparable with the LDAP attribute mod-
el.

105.3 Object Class Definition
The ObjectClassDefinit ion interface is used to group the attributes which are defined in Attr ibut-
eDefinit ion objects.

An ObjectClassDefinit ion object contains the information about the overall set of attributes and
has the following elements:

• A name which can be returned in different locales.
• A global name-space in the registry, which is the same condition as LDAP/X.500 object classes.

In these standards the OSI Object Identifier (OID) is used to uniquely identify object classes. If
such an OID exists, (which can be requested at several standard organizations, and many compa-
nies already have a node in the tree) it can be returned here. Otherwise, a unique id should be re-
turned. This id can be a Java class name (reverse domain name) or can be generated with a GUID
algorithm. All LDAP-defined object classes already have an associated OID. It is strongly advised
to define the object classes from existing LDAP schemes which provide many preexisting OIDs.
Many such schemes exist ranging from postal addresses to DHCP parameters.

• A human-readable description of the class.
• A list of attribute definitions which can be filtered as required, or optional. Note that in X.500 the

mandatory or required status of an attribute is part of the object class definition and not of the at-
tribute definition.

• An icon, in different sizes.

105.4 Attribute Definition
The Attr ibuteDefinit ion interface provides the means to describe the data type of attributes.

The Attr ibuteDefinit ion interface defines the following elements:

• Defined names (final ints) for the data types as restricted in the Framework for the attributes,
called the syntax in OSI terms, which can be obtained with the getType() method.

• Attr ibuteDefinit ion objects should use an ID that is similar to the OID as described in the ID field
for ObjectClassDefinit ion .

• A localized name intended to be used in user interfaces.

Meta Type Service Metatype Service Specification Version 1.4

Page 134 OSGi Compendium Release 8

• A localized description that defines the semantics of the attribute and possible constraints,
which should be usable for tooltips.

• An indication if this attribute should be stored as a unique value, a List , or an array of values, as
well as the maximum cardinality of the type.

• The data type, as limited by the Framework service registry attribute types.
• A validation function to verify if a possible value is correct.
• A list of values and a list of localized labels. Intended for popup menus in GUIs, allowing the user

to choose from a set.
• A default value (String[]). The return depends on the following cases:

• not specified - Return nul l if this attribute is not specified.
• cardinality = 0 - Return an array with one element.
• otherwise - Return an array with less or equal than the absolute value of cardinality, possibly

empty if the value is an empty string.

105.5 Meta Type Service
The Meta Type Service provides unified access to Meta Type information that is associated with a
Bundle. It can get this information through the following means:

• Meta Type Resource - A bundle can provide one or more XML resources that are contained in its
JAR file. These resources contain an XML definition of meta types as well as to what PIDs these
Meta Types apply. These XML resources must reside in the OSGI-INF/metatype directories of the
bundle (including any fragments).

• Managed Service [Factory] objects - As defined in the configuration management specification,
ManagedService and ManagedServiceFactory service objects can optionally implement the
MetaTypeProvider interface. The Meta Type Service will only search for ManagedService and
ManagedServiceFactory service objects that implement MetaTypeProvider if no meta type re-
sources are found in the bundle.

• Meta Type Provider service - Bundles can register Meta Type Provider services to dynamically pro-
vide meta types for PIDs and factory PIDs.

Figure 105.2 Sources for Meta Types

<<service>>
Meta Type
Service

<<service>>
Meta Type
Provider

<<service>>
Managed Service
(Factory)

OSGI-INF/metatype
xml resource

... alternative
meta type
sources

This model is depicted in Figure 105.2.

The Meta Type Service can therefore be used to retrieve meta type information for bundles which
contain Meta Type resources or which provide MetaTypeProvider objects and/or services. If multi-
ple sources define the same Object Class Definition, the Meta Type service must select which source
to use. Meta Type Provider services must take precedence over Managed Service [Factory] objects im-
plementing MetaTypeProvider or Meta Type Resources.

The MetaTypeService interface has a single method:

Metatype Service Specification Version 1.4 Meta Type Service

OSGi Compendium Release 8 Page 135

• getMetaTypeInformation(Bundle) - Given a bundle, it must return the Meta Type Information
for that bundle, even if there is no meta type information available at the moment of the call.

The returned MetaTypeInformation object maintains a map of PID to ObjectClassDefinit ion
objects. The map is keyed by locale and PID. The list of maintained PIDs is available from the
MetaTypeInformation object with the following methods:

• getPids() - PIDs for which Meta Types are available.
• getFactoryPids() - PIDs associated with Managed Service Factory services.

These methods and their interaction with the Meta Type resource are described in Designate Element
on page 140.

The MetaTypeInformation interface extends the MetaTypeProvider interface. The MetaType-
Provider interface is used to access meta type information. It supports locale dependent information
so that the text used in Attr ibuteDefinit ion and ObjectClassDefinit ion objects can be adapted to dif-
ferent locales.

Which locales are supported by the MetaTypeProvider object are defined by the implementer or the
meta type resources. The list of available locales can be obtained from the MetaTypeProvider object.

The MetaTypeProvider interface provides the following methods:

• getObjectClassDefinit ion(Str ing,Str ing) - Get access to an ObjectClassDefinition object for the
given PID. The second parameter defines the locale.

• getLocales() - List the locales that are available.

Locale objects are represented in Str ing objects because not all profiles support Locale. The Str ing
holds the standard Locale presentation of:

locale = language ('_' country ('_' variation))
language ::= < defined by ISO 3166 >
country ::= < defined by ISO 639 >

For example, en , nl_BE , en_CA_posix are valid locales. The use of nul l for locale indicates that
java.ut i l .Locale.getDefault() must be used.

The Meta Type Service implementation class is the main class. It registers the
org.osgi .service.metatype.MetaTypeService service and has a method to get a MetaTypeInforma-
tion object for a bundle.

Following is some sample code demonstrating how to print out all the Object Class Definitions and
Attribute Definitions contained in a bundle:

void printMetaTypes(MetaTypeService mts,Bundle b) {
 MetaTypeInformation mti =
 mts.getMetaTypeInformation(b);
 String [] pids = mti.getPids();
 String [] locales = mti.getLocales();

 for (int locale = 0; locale<locales.length; locale++) {
 System.out.println("Locale " + locales[locale]);
 for (int i=0; i< pids.length; i++) {
 ObjectClassDefinition ocd =
 mti.getObjectClassDefinition(pids[i], null);
 AttributeDefinition[] ads =
 ocd.getAttributeDefinitions(
 ObjectClassDefinition.ALL);

Meta Type Provider Service Metatype Service Specification Version 1.4

Page 136 OSGi Compendium Release 8

 for (int j=0; j< ads.length; j++) {
 System.out.println("OCD="+ocd.getName()
 + "AD="+ads[j].getName());
 }
 }
 }
}

105.6 Meta Type Provider Service
A Meta Type Provider service allows third party contributions to the internal Object Class Defini-
tion repository. A Meta Type Provider can contribute multiple PIDs, both factory and singleton PIDs.
A Meta Type Provider service must register with both or one of the following service properties:

• METATYPE_PID - (Str ing+) Provides a list of PIDs that this Meta Type Provider can provide Object
Class Definitions for. The listed PIDs are intended to be used as normal singleton PIDs used by
Managed Services.

• METATYPE_FACTORY_PID - (Str ing+) Provides a list of factory PIDs that this Meta Type Provider
can provide Object Class Definitions for. The listed PIDs are intended to be used as factory PIDs
used by Managed Service Factories.

The Object Class Definitions must originate from the bundle that registered the Meta Type Provider
service. Third party extenders should therefore use the bundle of their extendee. A Meta Type Ser-
vice must report these Object Class Definitions on the Meta Type Information of the registering
bundle, merged with any other information from that bundle.

The Meta Type Service must track these Meta Type Provider services and make their Meta Types
available as if they were provided on the Managed Service (Factory) services. The Meta Types must
become unavailable when the Meta Type Provider service is unregistered.

105.7 Using the Meta Type Resources
A bundle that wants to provide meta type resources must place these resources in the OSGI-INF/
metatype directory. The name of the resource must be a valid bundle entry path. All resources in
that directory must be meta type documents. Resources in that directory that are not valid meta
type documents must be ignored and an error should be logged with the Log Service, if present.
Fragments can contain additional meta type resources in the same directory and they must be taken
into account when the meta type resources are searched. A meta type resource must be encoded in
UTF-8.

The MetaType Service must support localization of the

• name
• icon
• description
• label attributes

The localization mechanism must be identical using the same mechanism as described in the Core
module layer, see Localization, using the same property resource. However, it is possible to override
the property resource in the meta type definition resources with the local izat ion attribute of the
MetaData element.

The Meta Type Service must examine the bundle and its fragments to locate all localization
resources for the localization base name. From that list, the Meta Type Service derives the list

Metatype Service Specification Version 1.4 Using the Meta Type Resources

OSGi Compendium Release 8 Page 137

of locales which are available for the meta type information. This list can then be returned by
MetaTypeInformation.getLocales method. This list can change at any time because the bundle
could be refreshed. Clients should be prepared that this list changes after they received it.

105.7.1 XML Schema of a Meta Type Resource
This section describes the schema of the meta type resource. This schema is not intended to be used
during runtime for validating meta type resources. The schema is intended to be used by tools and
external management systems.

The XML namespace for meta type documents must be:

http://www.osgi.org/xmlns/metatype/v1.4.0

The namespace abbreviation should be metatype . That is, the following header should be:

<metatype:MetaData
 xmlns:metatype="http://www.osgi.org/xmlns/metatype/v1.4.0">

Figure 105.3 XML Schema Instance Structure (Type name = Element name)

MetaData

OCD

AD

Designate

Option

Icon

1

Object

Attribute

1

1 *

1 *

1

1

1

0..n

1

0..n

1

0..n

1

Value

1

0..n

0..n

0..n

0..n

The element structure of the XML file is:

MetaData ::= OCD* Designate*

OCD ::= AD* Icon*
AD ::= Option*

Designate ::= Object
Object ::= Attribute*

Attribute ::= Value*

The different elements are described in Table 105.1.

Using the Meta Type Resources Metatype Service Specification Version 1.4

Page 138 OSGi Compendium Release 8

Table 105.1 XML Schema for Meta Type resources

Attribute Deflt Type Method Description
MetaData Top Element
 local izat ion str ing Points to the Properties file that can lo-

calize this XML. See Localization in OSGi
Core Release 8.

OCD Object Class Definition
 name <> str ing getName() A human readable name that can be lo-

calized.
 descr ipt ion getDescr ipt ion() A human readable description of the

Object Class Definition that can be lo-
calized.

 id <> getID() A unique id, cannot be localized.
Designate An association between one PID and an

Object Class Definition. This element
designates a PID to be of a certain type.

 pid <> str ing The PID that is associated with an OCD .
This can be a reference to a factory or
singleton configuration object. The PID
can be a Targeted PID, if factoryPid is
not set or empty. Either pid or facto-
ryPid must be specified. See Designate El-
ement on page 140.

 factoryPid str ing If the factoryPid attribute is set, this
Designate element defines a factory
configuration for the given factory. If it
is not set or empty, it designates a sin-
gleton configuration. The PID can be a
Targeted PID. Either pid or factoryPid
must be specified. See Designate Element
on page 140.

 bundle str ing The value is used to set the location of
any configuration created using this
Meta Type resource. This may contain a
bundle location or a multi-location. In a
Meta Type resource, using the wildcard
value ('* ' \u002A) indicates the bundle
location of the bundle containing the
resource must be used as the location.
See Location Binding on page 87

This is an optional attribute but can be
mandatory in certain usage schemes,
for example the Autoconf Resource
Processor.

 optional false boolean If true , then this Designate element is
optional, errors during processing must
be ignored.

 merge false boolean If the PID refers to an existing configu-
ration, then merge the properties with
the existing properties if this attribute
is true . Otherwise, replace the proper-
ties.

Metatype Service Specification Version 1.4 Using the Meta Type Resources

OSGi Compendium Release 8 Page 139

Attribute Deflt Type Method Description
AD Attribute Definition
 name str ing getName() A localizable name for the Attribute De-

finition. descr ipt ion
 descr ipt ion str ing getDescr ipt ion() A localizable description for the At-

tribute Definition.
 id getID() The unique ID of the Attribute Defini-

tion.
 type str ing getType() The type of an attribute is an enumer-

ation of the different scalar types. The
string is mapped to one of the constants
on the AttributeDefinition interface.
Valid values, which are defined in the
Scalar type, are:

String ↔ STRING
Long ↔ LONG
Double ↔ DOUBLE
Float ↔ FLOAT
Integer ↔ INTEGER
Byte ↔ BYTE
Char ↔ CHARACTER
Boolean ↔ BOOLEAN
Short ↔ SHORT
Password ↔ PASSWORD

 cardinal ity 0 getCardinal ity() The number of elements an instance
can take. Positive numbers describe
an array ([]) and negative numbers de-
scribe a List object.

 min str ing val idate(Str ing) A validation value. This value is not
directly available from the Attr ibut-
eDefinit ion interface. However, the
val idate(Str ing) method must verify
this. The semantics of this field depend
on the type of this Attribute Definition.

 max str ing val idate(Str ing) A validation value. Similar to the min
field. When min or max are numbers,
attribute values with a numeric da-
ta type are valid if min <= value <=
max . Attribute values with a string (or
equivalent) data type are valid if min <=
value. length() <= max .

Using the Meta Type Resources Metatype Service Specification Version 1.4

Page 140 OSGi Compendium Release 8

Attribute Deflt Type Method Description
 default str ing getDefaultValue() The default value. A default is an ar-

ray of Str ing objects. The XML attribute
must contain a comma delimited list.
The default value is trimmed and es-
caped in the same way as described in
the val idate(Str ing) method. The empty
string is significant and must be seen as
an empty List or array if specified as the
default for an attribute with a cardinal-
ity that is not equal to zero. Default val-
ues must be valid or otherwise ignored.

 required true boolean Required attribute. The required at-
tribute indicates whether or not the at-
tribute key must appear within the con-
figuration dictionary to be valid.

Option One option label/value for the options
in an AD . Options are exclusive. The
val idate(Str ing) method must verify
that an attribute value matches one of
the option values when present.

 label <> str ing getOptionLabels() The label
 value <> str ing getOptionValues() The value
Icon An icon definition.
 resource <> str ing getIcon(int) The resource is a URL. The base URL is

assumed to be the root of the bundle
containing the XML file. That is, this
URL can reference another resource in
the bundle using a relative URL.

 size <> str ing getIcon(int) The number of pixels of the icon, maps
to the size parameter of the getIcon(int)
method.

Object A definition of an instance.
 ocdref <> str ing A reference to the id attribute of an

OCD element. That is, this attribute de-
fines the OCD type of this object.

Attr ibute A value for an attribute of an object.
 adref <> str ing A reference to the id of the AD in the

OCD as referenced by the parent Object .
 content str ing The content of the attributes. If this is

an array, the content must be separated
by commas (',' \u002C). Commas must
be escaped as described at the default at-
tribute of the AD element.

Value Holds a single value. This element can
be repeated multiple times under an At-
tribute

105.7.2 Designate Element
For the MetaType Service, the Designate definition is used to declare the available PIDs and factory
PIDs; the Attribute elements are never used by the MetaType service.

Metatype Service Specification Version 1.4 Using the Meta Type Resources

OSGi Compendium Release 8 Page 141

The getPids() method returns an array of PIDs that were specified in the pid attribute of the Object
elements. The getFactoryPids() method returns an array of the factoryPid attributes. For factories,
the related pid attribute is ignored because all instances of a factory must share the same meta type.

The following example shows a metatype reference to a singleton configuration and a factory con-
figuration.

 <Designate pid="com.acme.designate.1">
 <Object ocdref="com.acme.designate"/>
 </Designate>
 <Designate factoryPid="com.acme.designate.factory"
 bundle="*">
 <Object ocdref="com.acme.designate"/>
 </Designate>

Other schemes can embed the Object element in the Designate element to define actual instances
for the Configuration Admin service. In that case the pid attribute must be used together with the
factoryPid attribute. However, in that case an aliasing model is required because the Configuration
Admin service does not allow the creator to choose the Configurat ion object's PID.

105.7.3 Example Metadata File
This example defines a meta type file for a Person record, based on ISO attribute types. The ids that
are used are derived from ISO attributes.

<?xml version="1.0" encoding="UTF-8"?>
<MetaData
 xmlns="http://www.osgi.org/xmlns/metatype/v1.4.0"
 localization="person">
 <OCD name="%person" id="2.5.6.6"
 description="%person record">
 <AD name="%sex" id="2.5.4.12" type="Integer">
 <Option label="%male" value="1"/>
 <Option label="%female" value="0"/>
 </AD>
 <AD name="%sn" id="2.5.4.4" type="String"/>
 <AD name="%cn" id="2.5.4.3" type="String"/>
 <AD name="%seeAlso" id="2.5.4.34" type="String"
 cardinality="8"
 default="http://www.google.com,http://www.yahoo.com"/>
 <AD name="%telNumber" id="2.5.4.20" type="String"/>
 </OCD>

 <Designate pid="com.acme.addressbook">
 <Object ocdref="2.5.6.6"/>
 </Designate>
</MetaData>

Translations for this file, as indicated by the localization attribute must be stored in the root direc-
tory (e.g. person_du_NL.propert ies). The default localization base name for the properties is OSGI-
INF/l10n/bundle , but can be overridden by the manifest Bundle-Localization header and the local-
izat ion attribute of the Meta Data element. The property files have the base name of person . The
Dutch, French and English translations could look like:

person_du_NL.propert ies :

person=Persoon
person\ record=Persoons beschrijving

Meta Type Resource XML Schema Metatype Service Specification Version 1.4

Page 142 OSGi Compendium Release 8

cn=Naam
sn=Voornaam
seeAlso=Zie ook
telNumber=Tel. Nummer
sex=Geslacht
male=Mannelijk
female=Vrouwelijk

person_fr.propert ies :

person=Personne
person\ record=Description de la personne
cn=Nom
sn=Surnom
seeAlso=Reference
telNumber=Tel.
sex=Sexe
male=Homme
female=Femme

person_en_US.propert ies :

person=Person
person\ record=Person Record
cn=Name
sn=Sur Name
seeAlso=See Also
telNumber=Tel.
sex=Sex
male=Male
female=Female

105.7.4 Object Element
The OCD element can be used to describe the possible contents of a Dictionary object. In this case,
the attribute name is the key. The Object element can be used to assign a value to a Dictionary ob-
ject.

For example:

<Designate pid="com.acme.b">
 <Object ocdref="b">
 <Attribute adref="foo" content="Zaphod Beeblebrox"/>
 <Attribute adref="bar">
 <Value>1</Value>
 <Value>2</Value>
 <Value>3</Value>
 <Value>4</Value>
 <Value>5</Value>
 </Attribute>
 </Object>
</Designate>

105.8 Meta Type Resource XML Schema
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:metatype="http://www.osgi.org/xmlns/metatype/v1.4.0"

Metatype Service Specification Version 1.4 Meta Type Resource XML Schema

OSGi Compendium Release 8 Page 143

 targetNamespace="http://www.osgi.org/xmlns/metatype/v1.4.0"
 version="1.4.0">

 <element name="MetaData" type="metatype:Tmetadata" />

 <complexType name="Tmetadata">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="OCD" type="metatype:Tocd" />
 <element name="Designate" type="metatype:Tdesignate" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use namespace="##any" below. -->
 <any namespace="##other" processContents="lax" />
 </choice>
 <attribute name="localization" type="string" use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tocd">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="AD" type="metatype:Tad" />
 <element name="Icon" type="metatype:Ticon" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use namespace="##any" below. -->
 <any namespace="##other" processContents="lax" />
 </choice>
 <attribute name="name" type="string" use="required" />
 <attribute name="description" type="string" use="optional" />
 <attribute name="id" type="string" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tad">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="Option" type="metatype:Toption" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use namespace="##any" below. -->
 <any namespace="##other" processContents="lax" />
 </choice>
 <attribute name="name" type="string" use="optional" />
 <attribute name="description" type="string" use="optional" />
 <attribute name="id" type="string" use="required" />
 <attribute name="type" type="metatype:Tscalar" use="required" />
 <attribute name="cardinality" type="int" use="optional"
 default="0" />
 <attribute name="min" type="string" use="optional" />
 <attribute name="max" type="string" use="optional" />
 <attribute name="default" type="string" use="optional" />
 <attribute name="required" type="boolean" use="optional"
 default="true" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tobject">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="Attribute" type="metatype:Tattribute" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use namespace="##any" below. -->
 <any namespace="##other" processContents="lax" />
 </choice>
 <attribute name="ocdref" type="string" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tattribute">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="Value" type="string" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use namespace="##any" below. -->
 <any namespace="##other" processContents="lax" />
 </choice>
 <attribute name="adref" type="string" use="required" />
 <attribute name="content" type="string" use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>

Meta Type Resource XML Schema Metatype Service Specification Version 1.4

Page 144 OSGi Compendium Release 8

 <complexType name="Tdesignate">
 <sequence>
 <element name="Object" type="metatype:Tobject" minOccurs="1"
 maxOccurs="1" />
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="pid" type="string" use="optional" />
 <attribute name="factoryPid" type="string" use="optional" />
 <attribute name="bundle" type="string" use="optional" />
 <attribute name="optional" type="boolean" default="false"
 use="optional" />
 <attribute name="merge" type="boolean" default="false"
 use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>

 <simpleType name="Tscalar">
 <restriction base="string">
 <enumeration value="String" />
 <enumeration value="Long" />
 <enumeration value="Double" />
 <enumeration value="Float" />
 <enumeration value="Integer" />
 <enumeration value="Byte" />
 <enumeration value="Character" />
 <enumeration value="Boolean" />
 <enumeration value="Short" />
 <enumeration value="Password" />
 </restriction>
 </simpleType>

 <complexType name="Toption">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="label" type="string" use="required" />
 <attribute name="value" type="string" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Ticon">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="resource" type="string" use="required" />
 <attribute name="size" type="positiveInteger" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>

 <attribute name="must-understand" type="boolean">
 <annotation>
 <documentation xml:lang="en">
 This attribute should be used by extensions to documents
 to require that the document consumer understand the
 extension.
 </documentation>
 </annotation>
 </attribute>
</schema>

Metatype Service Specification Version 1.4 Meta Type Annotations

OSGi Compendium Release 8 Page 145

105.9 Meta Type Annotations
A developer can use Meta Type Annotations on a Component Property Type, see Component Proper-
ty Types on page 308, or an interface to define an Object Class Definition in a type safe manner.
The Meta Type Annotations are CLASS retention annotations intended to be used during build time
to generate Meta Type Resources from the Java class files providing a convenient way to create the
Meta Type Resource XML documents.

Tools processing these annotations must always generate valid Meta Type Resource XML docu-
ments. If the Meta Type Annotations are used in a way that is not supported or in error, then the tool
must report the error to enable the developer to take corrective action.

105.9.1 ObjectClassDefinition Annotation
The ObjectClassDefinit ion annotation can be applied to a Component Property Type or an inter-
face. From that type, tooling can generate an OCD element. When applied to an interface, all the
methods inherited from supertypes are include as Attribute Definitions. The tool processing the an-
notations must be able to examine all the types in the hierarchy of the annotated type to generate
the Meta Type Resource. It is an error if the tool cannot examine a type in the hierarchy.

It is an error to apply the ObjectClassDefinit ion annotation to concrete and abstract class types. It is
also an error to apply it to an interface if any of the methods of the interface take arguments.

The ObjectClassDefinit ion annotation can be applied without defining any element values as de-
fault values for the ObjectClassDefinit ion annotation elements can be generated from the annotat-
ed type. For example:

@ObjectClassDefinition
@interface Config {
 boolean enabled();
 String[] names();
 String topic();
}

In the following larger example, the ObjectClassDefinit ion annotation defines the description and
name of the OCD which are to be localized using the specified resource as well as an icon resource.
Also, Attr ibuteDefinit ion annotations are applied to the methods to supply some non-default values
for the generated AD elements.

@ObjectClassDefinition(localization = "OSGI-INF/l10n/member",
 description = "%member.description",
 name = "%member.name"
 icon = @Icon(resource = "icon/member-32.png", size = 32))
@interface Member {
 @AttributeDefinition(type = AttributeType.PASSWORD,
 description = "%member.password.description",
 name = "%member.password.name")
 public String _password();

 @AttributeDefinition(options = {
 @Option(label = "%strategic", value = "strategic"),
 @Option(label = "%principal", value = "principal"),
 @Option(label = "%contributing", value = "contributing")
 },
 defaultValue = "contributing",
 description = "%member.membertype.description",
 name = "%member.membertype.name")

Meta Type Annotations Metatype Service Specification Version 1.4

Page 146 OSGi Compendium Release 8

 public String type();
}

105.9.2 AttributeDefinition Annotation
The Attr ibuteDefinit ion annotation is an optional annotation which can applied to the methods in
a type annotated by ObjectClassDefinit ion . Each method of the type annotated by ObjectClassDe-
finit ion is mapped to an AD child element of the OCD element in the generated Meta Type Resource
XML document. The Attr ibuteDefinit ion annotation only needs to be applied to a method if values
other than the defaults are desired.

The id of the Attribute Definition is generated from the method name as follows:

• A single dollar sign ('$ ' \u0024) is removed unless it is followed by:
• A low line ('_ ' \u005F) and a dollar sign in which case the three consecutive characters ("$_

$") are converted to a single hyphen-minus (' - ' \u002D).
• Another dollar sign in which case the two consecutive dollar signs ("$$") are converted to a

single dollar sign.
• A single low line ('_ ' \u005F) is converted into a full stop ('.' \u002E) unless is it followed by an-

other low line in which case the two consecutive low lines ("__") are converted to a single low
line.

• All other characters are unchanged.
• If the type declaring the method also declares a PREFIX_ field whose value is a compile-time con-

stant String, then the id is prefixed with the value of the PREFIX_ field.

However, if the type annotated by ObjectClassDefinit ion is a single-element annotation, see 9.7.3 in [3]
The Java Language Specification, Java SE 8 Edition, then the id for the value method is derived from the
name of the annotation type rather than the name of the method. In this case, the simple name of
the annotation type, that is, the name of the class without any package name or outer class name, if
the annotation type is an inner class, must be converted to the value method's id as follows:

• When a lower case character is followed by an upper case character, a full stop ('.' \u002E) is in-
serted between them.

• Each upper case character is converted to lower case.
• All other characters are unchanged.
• If the annotation type declares a PREFIX_ field whose value is a compile-time constant String,

then the id is prefixed with the value of the PREFIX_ field.

The generated id becomes the value of the id attribute of the AD element in the generated Meta Type
Resource XML document.

105.9.3 Designate Annotation
The Designate annotation can be applied to a Declarative Services component class to make the
connection between the pid of the component and an Object Class Definition. This annotation must
be used on a type that is also annotated with the Declarative Services Component annotation. The
component must only have a single PID which is used for the generated Designate element.

In the following example, the Designate annotation is applied to a Declarative Services component
and references the Object Class Definition type.

@ObjectClassDefinition(id="my.config.ocd")
@interface Config {
 boolean enabled() default true;
 String[] names() default {"a", "b"};
 String topic() default "default/topic";
}

Metatype Service Specification Version 1.4 Limitations

OSGi Compendium Release 8 Page 147

@Component(configurationPid="my.component.pid")
@Designate(ocd = Config.class)
public class MyComponent {
 static final String DEFAULT_TOPIC_PREFIX = "topic.prefix";
 protected void activate(Config configuration) {
 String t = configuration.topic();
 }
}

Tools processing these annotations will generate a Designate element in the generated Meta Type
Resource XML document using the PID of the component and the id of the Object Class Definition.
For example:

<Designate pid="my.component.pid">
 <Object ocdref="my.config.ocd"/>
</Designate>

105.10 Limitations
The OSGi MetaType specification is intended to be used for simple applications. It does not, there-
fore, support recursive data types, mixed types in arrays/lists, or nested arrays/lists.

105.11 Related Standards
One of the primary goals of this specification is to make metatype information available at run-
time with minimal overhead. Many related standards are applicable to metatypes; except for Java
beans, however, all other metatype standards are based on document formats (e.g. XML). In the OSGi
framework, document format standards are deemed unsuitable due to the overhead required in the
execution environment (they require a parser during run-time).

Another consideration is the applicability of these standards. Most of these standards were devel-
oped for management systems on platforms where resources are not necessarily a concern. In this
case, a metatype standard is normally used to describe the data structures needed to control some
other computer via a network. This other computer, however, does not require the metatype infor-
mation as it is implementing this information.

In some traditional cases, a management system uses the metatype information to control objects
in an OSGi framework. Therefore, the concepts and the syntax of the metatype information must be
mappable to these popular standards. Clearly, then, these standards must be able to describe objects
in an OSGi framework. This ability is usually not a problem, because the metatype languages used
by current management systems are very powerful.

105.12 Capabilities
Implementations of the Metatype Service specification must provide the following capabilities.

• A capability in the osgi . implementation namespace declaring a specification implementation
with the name METATYPE_CAPABILITY_NAME . This capability must also declare a uses constraint
for the org.osgi .service.metatype package. For example:

Provide-Capability: osgi.implementation;

Security Considerations Metatype Service Specification Version 1.4

Page 148 OSGi Compendium Release 8

 osgi.implementation="osgi.metatype";
 version:Version="1.4";
 uses:="org.osgi.service.metatype"

The RequireMetaTypeImplementation annotation can be used to require this capability.

This capability must follow the rules defined for the osgi.implementation Namespace on page
727.

• A capability in the osgi .extender namespace declaring an extender with the name
METATYPE_CAPABILITY_NAME . This capability must also declare a uses constraint for the
org.osgi .service.metatype package. For example:

Provide-Capability: osgi.extender;
 osgi.extender="osgi.metatype";
 version:Version="1.4";
 uses:="org.osgi.service.metatype"

The RequireMetaTypeExtender annotation can be used to require this capability.

This capability must follow the rules defined for the osgi.extender Namespace on page 723.
• A capability in the osgi .service namespace representing the MetaTypeService service. This capa-

bility must also declare a uses constraint for the org.osgi .service.metatype package. For exam-
ple:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.metatype.MetaTypeService";
 uses:="org.osgi.service.metatype"

This capability must follow the rules defined for the osgi.service Namespace on page 727.

105.13 Security Considerations
Special security issues are not applicable for this specification.

105.14 org.osgi.service.metatype

Metatype Package Version 1.4.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.metatype; vers ion="[1.4,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.metatype; vers ion="[1.4,1.5)"

105.14.1 Summary

• Attr ibuteDefinit ion - An interface to describe an attribute.
• MetaTypeInformation - A MetaType Information object is created by the MetaTypeService to re-

turn meta type information for a specific bundle.
• MetaTypeProvider - Provides access to metatypes.

Metatype Service Specification Version 1.4 org.osgi.service.metatype

OSGi Compendium Release 8 Page 149

• MetaTypeService - The MetaType Service can be used to obtain meta type information for a
bundle.

• ObjectClassDefinit ion - Description for the data type information of an objectclass.

105.14.2 public interface AttributeDefinition
An interface to describe an attribute.

An Attr ibuteDefinit ion object defines a description of the data type of a property/attribute.

Concurrency Thread-safe

105.14.2.1 public static final int BIGDECIMAL = 10

The BIGDECIMAL type. Attributes of this type should be stored as BigDecimal , List<BigDecimal> or
BigDecimal[] objects depending on getCardinality().

Deprecated As of 1.1.

105.14.2.2 public static final int BIGINTEGER = 9

The BIGINTEGER type. Attributes of this type should be stored as BigInteger , List<BigInteger> or
BigInteger[] objects, depending on the getCardinality() value.

Deprecated As of 1.1.

105.14.2.3 public static final int BOOLEAN = 11

The BOOLEAN type. Attributes of this type should be stored as Boolean , List<Boolean> or boolean[]
objects depending on getCardinality().

105.14.2.4 public static final int BYTE = 6

The BYTE type. Attributes of this type should be stored as Byte , List<Byte> or byte[] objects, depend-
ing on the getCardinality() value.

105.14.2.5 public static final int CHARACTER = 5

The CHARACTER type. Attributes of this type should be stored as Character , List<Character> or
char[] objects, depending on the getCardinality() value.

105.14.2.6 public static final int DOUBLE = 7

The DOUBLE type. Attributes of this type should be stored as Double , List<Double> or double[] ob-
jects, depending on the getCardinality() value.

105.14.2.7 public static final int FLOAT = 8

The FLOAT type. Attributes of this type should be stored as Float , List<Float> or f loat[] objects, de-
pending on the getCardinality() value.

105.14.2.8 public static final int INTEGER = 3

The INTEGER type. Attributes of this type should be stored as Integer , List< Integer> or int[] objects,
depending on the getCardinality() value.

105.14.2.9 public static final int LONG = 2

The LONG type. Attributes of this type should be stored as Long , List<Long> or long[] objects, de-
pending on the getCardinality() value.

105.14.2.10 public static final int PASSWORD = 12

The PASSWORD type. Attributes of this type must be stored as Str ing , List<Str ing> or Str ing[] objects
depending on getCardinality(). A PASSWORD must be treated as a string but the type can be used to
disguise the information when displayed to a user to prevent others from seeing it.

org.osgi.service.metatype Metatype Service Specification Version 1.4

Page 150 OSGi Compendium Release 8

Since 1.2

105.14.2.11 public static final int SHORT = 4

The SHORT type. Attributes of this type should be stored as Short , List<Short> or short[] objects, de-
pending on the getCardinality() value.

105.14.2.12 public static final int STRING = 1

The STRING type.

Attributes of this type should be stored as Str ing , List<Str ing> or Str ing[] objects, depending on the
getCardinality() value.

105.14.2.13 public int getCardinality()

□ Return the cardinality of this attribute. The OSGi environment handles multi valued attributes in
arrays ([]) or in List objects. The return value is defined as follows:

 x = Integer.MIN_VALUE no limit, but use List
 x < 0 -x = max occurrences, store in List
 x > 0 x = max occurrences, store in array []
 x = Integer.MAX_VALUE no limit, but use array []
 x = 0 1 occurrence required

Returns The cardinality of this attribute.

105.14.2.14 public String[] getDefaultValue()

□ Return a default for this attribute. The object must be of the appropriate type as defined by the cardi-
nality and getType() . The return type is a list of Str ing objects that can be converted to the appropri-
ate type. The cardinality of the return array must follow the absolute cardinality of this type. For ex-
ample, if the cardinality = 0, the array must contain 1 element. If the cardinality is 1, it must contain
0 or 1 elements. If it is -5, it must contain from 0 to max 5 elements. Note that the special case of a 0
cardinality, meaning a single value, does not allow arrays or lists of 0 elements.

Returns Return a default value or nul l if no default exists.

105.14.2.15 public String getDescription()

□ Return a description of this attribute. The description may be localized and must describe the se-
mantics of this type and any constraints.

Returns The localized description of the definition.

105.14.2.16 public String getID()

□ Unique identity for this attribute. Attributes share a global namespace in the registry. For example,
an attribute cn or commonName must always be a Str ing and the semantics are always a name of
some object. They share this aspect with LDAP/X.500 attributes. In these standards the OSI Object
Identifier (OID) is used to uniquely identify an attribute. If such an OID exists, (which can be re-
quested at several standard organizations and many companies already have a node in the tree) it
can be returned here. Otherwise, a unique id should be returned which can be a Java class name (re-
verse domain name) or generated with a GUID algorithm. Note that all LDAP defined attributes al-
ready have an OID. It is strongly advised to define the attributes from existing LDAP schemes which
will give the OID. Many such schemes exist ranging from postal addresses to DHCP parameters.

Returns The id or oid

105.14.2.17 public String getName()

□ Get the name of the attribute. This name may be localized.

Metatype Service Specification Version 1.4 org.osgi.service.metatype

OSGi Compendium Release 8 Page 151

Returns The localized name of the definition.

105.14.2.18 public String[] getOptionLabels()

□ Return a list of labels of option values.

The purpose of this method is to allow menus with localized labels. It is associated with getOption-
Values . The labels returned here are ordered in the same way as the values in that method.

If the function returns nul l , there are no option labels available.

This list must be in the same sequence as the getOptionValues() method. That is, for each index i in
getOptionLabels , i in getOptionValues() should be the associated value.

For example, if an attribute can have the value male, female, unknown, this list can return (for
dutch) new Str ing[] { "Man", "Vrouw", "Onbekend" } .

Returns A list values

105.14.2.19 public String[] getOptionValues()

□ Return a list of option values that this attribute can take.

If the function returns nul l , there are no option values available.

Each value must be acceptable to validate() (return "") and must be a Str ing object that can be con-
verted to the data type defined by getType() for this attribute.

This list must be in the same sequence as getOptionLabels() . That is, for each index i in getOption-
Values , i in getOptionLabels() should be the label.

For example, if an attribute can have the value male, female, unknown, this list can return new
Str ing[] { "male", " female", "unknown" } .

Returns A list values

105.14.2.20 public int getType()

□ Return the type for this attribute.

Defined in the following constants which map to the appropriate Java type.
STRING,LONG,INTEGER, SHORT, CHARACTER, BYTE,DOUBLE,FLOAT, BOOLEAN, PASSWORD.

Returns The type for this attribute.

105.14.2.21 public String validate(String value)

value The value before turning it into the basic data type. If the cardinality indicates a multi-valued at-
tribute then the given string must be escaped.

□ Validate an attribute in Str ing form. An attribute might be further constrained in value. This
method will attempt to validate the attribute according to these constraints. It can return three dif-
ferent values:

 null No validation present
 "" No problems detected
 "..." A localized description of why the value is wrong

If the cardinality of this attribute is multi-valued then this string must be interpreted as a comma
delimited string. The complete value must be trimmed from white space as well as spaces around
commas. Commas (',' \u002C) and spaces (' ' \u0020) and backslashes (' \ ' \u005C) can be escaped
with another backslash. Escaped spaces must not be trimmed. For example:

 value=" a\,b,b\,c,\ c\\,d " => ["a,b", "b,c", " c\", "d"]

Returns nul l , "", or another string

org.osgi.service.metatype Metatype Service Specification Version 1.4

Page 152 OSGi Compendium Release 8

105.14.3 public interface MetaTypeInformation
extends MetaTypeProvider
A MetaType Information object is created by the MetaTypeService to return meta type information
for a specific bundle.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

105.14.3.1 public Bundle getBundle()

□ Return the bundle for which this object provides meta type information.

Returns Bundle for which this object provides meta type information.

105.14.3.2 public String[] getFactoryPids()

□ Return the Factory PIDs (for ManagedServiceFactories) for which ObjectClassDefinition informa-
tion is available.

Returns Array of Factory PIDs.

105.14.3.3 public String[] getPids()

□ Return the PIDs (for ManagedServices) for which ObjectClassDefinition information is available.

Returns Array of PIDs.

105.14.4 public interface MetaTypeProvider
Provides access to metatypes. This interface can be implemented on a Managed Service or Managed
Service Factory as well as registered as a service. When registered as a service, it must be registered
with a METATYPE_FACTORY_PID or METATYPE_PID service property (or both). Any PID men-
tioned in either of these factories must be a valid argument to the getObjectClassDefinition(String,
String) method.

Concurrency Thread-safe

105.14.4.1 public static final String METATYPE_FACTORY_PID = "metatype.factory.pid"

Service property to signal that this service has ObjectClassDefinition objects for the given factory
PIDs. The type of this service property is Str ing+ .

Since 1.2

105.14.4.2 public static final String METATYPE_PID = "metatype.pid"

Service property to signal that this service has ObjectClassDefinition objects for the given PIDs. The
type of this service property is Str ing+ .

Since 1.2

105.14.4.3 public String[] getLocales()

□ Return a list of available locales. The results must be names that consists of language [_ country [_
variation]] as is customary in the Locale class.

Returns An array of locale strings or nul l if there is no locale specific localization can be found.

105.14.4.4 public ObjectClassDefinition getObjectClassDefinition(String id, String locale)

id The ID of the requested object class. This can be a pid or factory pid returned by getPids or getFacto-
ryPids.

Metatype Service Specification Version 1.4 org.osgi.service.metatype

OSGi Compendium Release 8 Page 153

locale The locale of the definition or nul l for default locale.

□ Returns an object class definition for the specified id localized to the specified locale.

The locale parameter must be a name that consists of language ["_" country ["_" var iat ion]] as is cus-
tomary in the Locale class. This Locale class is not used because certain profiles do not contain it.

Returns A ObjectClassDefinit ion object.

Throws I l legalArgumentException– If the id or locale arguments are not valid

105.14.5 public interface MetaTypeService
The MetaType Service can be used to obtain meta type information for a bundle. The MetaType Ser-
vice will examine the specified bundle for meta type documents to create the returned MetaTypeIn-
formation object.

If the specified bundle does not contain any meta type documents, then a MetaTypeInformation ob-
ject will be returned that wrappers any ManagedService or ManagedServiceFactory services regis-
tered by the specified bundle that implement MetaTypeProvider . Thus the MetaType Service can be
used to retrieve meta type information for bundles which contain a meta type documents or which
provide their own MetaTypeProvider objects.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

105.14.5.1 public static final String METATYPE_CAPABILITY_NAME = "osgi.metatype"

Capability name for meta type document processors.

Used in Provide-Capabi l i ty and Require-Capabi l i ty manifest headers with the osgi .extender name-
space. For example:

 Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.metatype)(version>=1.4)(!(version>=2.0)))"

Since 1.3

105.14.5.2 public static final String METATYPE_DOCUMENTS_LOCATION = "OSGI-INF/metatype"

Location of meta type documents. The MetaType Service will process each entry in the meta type
documents directory.

105.14.5.3 public static final String METATYPE_SPECIFICATION_VERSION = "1.4"

Compile time constant for the Specification Version of MetaType Service.

Used in Version and Requirement annotations. The value of this compile time constant will change
when the specification version of MetaType Service is updated.

Since 1.4

105.14.5.4 public MetaTypeInformation getMetaTypeInformation(Bundle bundle)

bundle The bundle for which meta type information is requested.

□ Return the MetaType information for the specified bundle.

Returns A MetaTypeInformation object for the specified bundle.

105.14.6 public interface ObjectClassDefinition
Description for the data type information of an objectclass.

Concurrency Thread-safe

org.osgi.service.metatype Metatype Service Specification Version 1.4

Page 154 OSGi Compendium Release 8

105.14.6.1 public static final int ALL = -1

Argument for getAttr ibuteDefinit ions(int) .

ALL indicates that all the definitions are returned. The value is -1.

105.14.6.2 public static final int OPTIONAL = 2

Argument for getAttr ibuteDefinit ions(int) .

OPTIONAL indicates that only the optional definitions are returned. The value is 2.

105.14.6.3 public static final int REQUIRED = 1

Argument for getAttr ibuteDefinit ions(int) .

REQUIRED indicates that only the required definitions are returned. The value is 1.

105.14.6.4 public AttributeDefinition[] getAttributeDefinitions(int filter)

filter ALL ,REQUIRED ,OPTIONAL

□ Return the attribute definitions for this object class.

Return a set of attributes. The filter parameter can distinguish between ALL ,REQUIRED or the OP-
TIONAL attributes.

Returns An array of attribute definitions or nul l if no attributes are selected

105.14.6.5 public String getDescription()

□ Return a description of this object class. The description may be localized.

Returns The description of this object class.

105.14.6.6 public InputStream getIcon(int size) throws IOException

size Requested size of an icon. For example, a 16x16 pixel icon has a size of 16

□ Return an InputStream object that can be used to create an icon from.

Indicate the size and return an InputStream object containing an icon. The returned icon maybe
larger or smaller than the indicated size.

The icon may depend on the localization.

Returns An InputStream representing an icon or nul l

Throws IOException– If the InputStream cannot be returned.

105.14.6.7 public String getID()

□ Return the id of this object class.

ObjectDefint ion objects share a global namespace in the registry. They share this aspect with LDAP/
X.500 attributes. In these standards the OSI Object Identifier (OID) is used to uniquely identify ob-
ject classes. If such an OID exists, (which can be requested at several standard organizations and
many companies already have a node in the tree) it can be returned here. Otherwise, a unique id
should be returned which can be a Java class name (reverse domain name) or generated with a GUID
algorithm. Note that all LDAP defined object classes already have an OID associated. It is strongly
advised to define the object classes from existing LDAP schemes which will give the OID for free.
Many such schemes exist ranging from postal addresses to DHCP parameters.

Returns The id of this object class.

105.14.6.8 public String getName()

□ Return the name of this object class. The name may be localized.

Metatype Service Specification Version 1.4 org.osgi.service.metatype.annotations

OSGi Compendium Release 8 Page 155

Returns The name of this object class.

105.15 org.osgi.service.metatype.annotations

Metatype Annotations Package Version 1.4.

This package is not used at runtime. Annotated classes are processed by tools to generate Meta Type
Resources which are used at runtime.

105.15.1 Summary

• Attr ibuteDefinit ion - Attr ibuteDefinit ion information for the annotated method.
• Attr ibuteType - Attribute types for the AttributeDefinition annotation.
• Designate - Generate a Designate element in the Meta Type Resource for an ObjectClassDefini-

tion using the annotated Declarative Services component.
• Icon - Icon information for an ObjectClassDefinition.
• ObjectClassDefinit ion - Generate a Meta Type Resource using the annotated type.
• Option - Option information for an AttributeDefinition.
• RequireMetaTypeExtender - This annotation can be used to require the Meta Type extender to

process metatype resources.
• RequireMetaTypeImplementation - This annotation can be used to require the Meta Type im-

plementation.

105.15.2 @AttributeDefinition
Attr ibuteDefinit ion information for the annotated method.

Each method of a type annotated by ObjectClassDefinition has an implied AttributeDefinition an-
notation. This annotation is only used to specify non-default AttributeDefinition information.

The id of this AttributeDefinition is generated from the name of the annotated method as follows:

• A single dollar sign ('$ ' \u0024) is removed unless it is followed by:
• A low line ('_ ' \u005F) and a dollar sign in which case the three consecutive characters ("$_

$") are changed to a single hyphen-minus (' - ' \u002D).
• Another dollar sign in which case the two consecutive dollar signs ("$$") are changed to a

single dollar sign.
• A low line ('_ ' \u005F) is changed to a full stop ('.' \u002E) unless is it followed by another low

line in which case the two consecutive low lines ("__") are changed to a single low line.
• All other characters are unchanged.
• If the type declaring the method also declares a PREFIX_ field whose value is a compile-time con-

stant String, then the id is prefixed with the value of the PREFIX_ field.

However, if the type annotated by ObjectClassDefinition is a single-element annotation, then the id
for the value method is derived from the name of the annotation type rather than the name of the
method. In this case, the simple name of the annotation type, that is, the name of the class without
any package name or outer class name, if the annotation type is an inner class, must be converted to
the value method's id as follows:

• When a lower case character is followed by an upper case character, a full stop ('.' \u002E) is in-
serted between them.

• Each upper case character is converted to lower case.
• All other characters are unchanged.

org.osgi.service.metatype.annotations Metatype Service Specification Version 1.4

Page 156 OSGi Compendium Release 8

• If the annotation type declares a PREFIX_ field whose value is a compile-time constant String,
then the id is prefixed with the value of the PREFIX_ field.

This id is the value of the id attribute of the generate AD element and is used as the name of the cor-
responding configuration property.

This annotation is not processed at runtime. It must be processed by tools and used to contribute to
a Meta Type Resource document for the bundle.

See Also The AD element of a Meta Type Resource.

Retention CLASS

Target METHOD

105.15.2.1 String name default ""

□ The human readable name of this AttributeDefinition.

If not specified, the name of this AttributeDefinition is derived from the name of the annotated
method. For example, low line ('_ ' \u005F), dollar sign ('$ ' \u0024), and hyphen-minus (' - ' \u002D)
are replaced with space (' ' \u0020) and space is inserted between camel case words.

If the name begins with the percent sign ('%' \u0025), the name can be localized.

See Also The name attr ibute of the AD element of a Meta Type Resource.

105.15.2.2 String description default ""

□ The human readable description of this AttributeDefinition.

If not specified, the description of this AttributeDefinition is the empty string.

If the description begins with the percent sign ('%' \u0025), the description can be localized.

See Also The descr ipt ion attr ibute of the AD element of a Meta Type Resource.

105.15.2.3 AttributeType type default STRING

□ The type of this AttributeDefinition.

This must be one of the defined attributes types.

If not specified, the type is derived from the return type of the annotated method. Return types of
Class and Enum are mapped to STRING. If the return type is List , Set , Collect ion , I terable or some
type which can be determined at annotation processing time to

1. be a subtype of Collect ion and
2. have a public no argument constructor,

then the type is derived from the generic type. For example, a return type of List<Str ing> will be
mapped to STRING. A return type of a single dimensional array is supported and the type is the
component type of the array. Multi dimensional arrays are not supported. Annotation return types
are not supported. Any unrecognized type is mapped to STRING. A tool processing the annotation
should declare an error for unsupported return types.

See Also The type attr ibute of the AD element of a Meta Type Resource.

105.15.2.4 int cardinality default 0

□ The cardinality of this AttributeDefinition.

If not specified, the cardinality is derived from the return type of the annotated method. For an array
return type, the cardinality is a large positive value. If the return type is List , Set , Collect ion , I terable
or some type which can be determined at annotation processing time to

1. be a subtype of Collect ion and

Metatype Service Specification Version 1.4 org.osgi.service.metatype.annotations

OSGi Compendium Release 8 Page 157

2. have a public no argument constructor,

the cardinality is a large negative value. Otherwise, the cardinality is 0.

See Also The cardinal ity attr ibute of the AD element of a Meta Type Resource.

105.15.2.5 String min default ""

□ The minimum value for this AttributeDefinition.

If not specified, there is no minimum value.

See Also The min attr ibute of the AD element of a Meta Type Resource.

105.15.2.6 String max default ""

□ The maximum value for this AttributeDefinition.

If not specified, there is no maximum value.

See Also The max attr ibute of the AD element of a Meta Type Resource.

105.15.2.7 String[] defaultValue default {}

□ The default value for this AttributeDefinition.

The specified values are concatenated into a comma delimited list to become the value of the de-
fault attribute of the generated AD element.

If not specified and the annotated method is an annotation element that has a default value, then
the value of this element is the default value of the annotated element. Otherwise, there is no de-
fault value.

See Also The default attr ibute of the AD element of a Meta Type Resource.

105.15.2.8 boolean required default true

□ The required value for this AttributeDefinition.

If not specified, the value is true .

See Also The required attr ibute of the AD element of a Meta Type Resource.

105.15.2.9 Option[] options default {}

□ The option information for this AttributeDefinition.

For each specified Option, an Option element is generated for this AttributeDefinition.

If not specified, the option information is derived from the return type of the annotated method. If
the return type is an enum , a single dimensional array of an enum , or a List , Set , Collect ion , I terable
or some type which can be determined at annotation processing time to

1. be a subtype of Collect ion and
2. have a public no argument constructor,

with a generic type of an enum , then the value of this element has an Option for each value of the
enum . The label and value of each Option are set to the name of the corresponding enum value. Oth-
erwise, no Option elements will be generated.

See Also The Option element of a Meta Type Resource.

105.15.3 enum AttributeType
Attribute types for the AttributeDefinition annotation.

See Also AttributeDefinition.type()

org.osgi.service.metatype.annotations Metatype Service Specification Version 1.4

Page 158 OSGi Compendium Release 8

105.15.3.1 STRING

The Str ing type.

Attributes of this type should be stored as Str ing , List<Str ing> or Str ing[] objects, depending on the
cardinality value.

105.15.3.2 LONG

The Long type.

Attributes of this type should be stored as Long , List<Long> or long[] objects, depending on the
Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.3 INTEGER

The Integer type.

Attributes of this type should be stored as Integer , List< Integer> or int[] objects, depending on the
Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.4 SHORT

The Short type.

Attributes of this type should be stored as Short , List<Short> or short[] objects, depending on the
Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.5 CHARACTER

The Character type.

Attributes of this type should be stored as Character , List<Character> or char[] objects, depending
on the Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.6 BYTE

The Byte type.

Attributes of this type should be stored as Byte , List<Byte> or byte[] objects, depending on the
Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.7 DOUBLE

The Double type.

Attributes of this type should be stored as Double , List<Double> or double[] objects, depending on
the Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.8 FLOAT

The Float type.

Attributes of this type should be stored as Float , List<Float> or f loat[] objects, depending on the
Attr ibuteDefinit ion#cardinal ity() cardinal ity value.

105.15.3.9 BOOLEAN

The Boolean type.

Attributes of this type should be stored as Boolean , List<Boolean> or boolean[] objects depending on
Attr ibuteDefinit ion#cardinal ity() cardinal ity .

105.15.3.10 PASSWORD

The Password type.

Metatype Service Specification Version 1.4 org.osgi.service.metatype.annotations

OSGi Compendium Release 8 Page 159

Attributes of this type must be stored as Str ing , List<Str ing> or Str ing[] objects depending on cardi-
nality.

A Password must be treated as a Str ing but the type can be used to disguise the information when
displayed to a user to prevent it from being seen.

105.15.3.11 public String toString()

105.15.3.12 public static AttributeType valueOf(String name)

105.15.3.13 public static AttributeType[] values()

105.15.4 @Designate
Generate a Designate element in the Meta Type Resource for an ObjectClassDefinition using the an-
notated Declarative Services component.

This annotation must be used on a type that is also annotated with the Declarative Services Compo-
nent annotation. The component must only have a single PID which is used for the generated Des-
ignate element.

This annotation is not processed at runtime. It must be processed by tools and used to contribute to
a Meta Type Resource document for the bundle.

See Also The Designate element of a Meta Type Resource.

Retention CLASS

Target TYPE

105.15.4.1 Class<?> ocd

□ The type of the ObjectClassDefinition for this Designate.

The specified type must be annotated with ObjectClassDefinition.

See Also The ocdref attr ibute of the Designate element of a Meta Type Resource.

105.15.4.2 boolean factory default false

□ Specifies whether this Designate is for a factory PID.

If fa lse , then the PID value from the annotated component will be used in the pid attribute of the
generated Designate element. If true , then the PID value from the annotated component will be
used in the factoryPid attribute of the generated Designate element.

See Also The pid and factoryPid attr ibutes of the Designate element of a Meta Type Resource.

105.15.5 @Icon
Icon information for an ObjectClassDefinition.

See Also ObjectClassDefinition.icon()

Retention CLASS

Target

105.15.5.1 String resource

□ The resource name for this Icon.

The resource is a URL. The resource URL can be relative to the root of the bundle containing the
Meta Type Resource.

org.osgi.service.metatype.annotations Metatype Service Specification Version 1.4

Page 160 OSGi Compendium Release 8

If the resource begins with the percent sign ('%' \u0025), the resource can be localized.

See Also The resource attr ibute of the Icon element of a Meta Type Resource.

105.15.5.2 int size

□ The pixel size of this Icon.

For example, 32 represents a 32x32 icon.

See Also The s ize attr ibute of the Icon element of a Meta Type Resource.

105.15.6 @ObjectClassDefinition
Generate a Meta Type Resource using the annotated type.

This annotation can be used without defining any element values since defaults can be generated
from the annotated type. Each method of the annotated type has an implied AttributeDefinition an-
notation if not explicitly annotated.

This annotation may only be used on annotation types and interface types. Use on concrete or ab-
stract class types is unsupported. If applied to an interface then all methods inherited from super
types are included as attributes.

This annotation is not processed at runtime. It must be processed by tools and used to generate a
Meta Type Resource document for the bundle.

See Also The OCD element of a Meta Type Resource.

Retention CLASS

Target TYPE

105.15.6.1 String id default ""

□ The id of this ObjectClassDefinition.

If not specified, the id of this ObjectClassDefinition is the fully qualified name of the annotated type
using the dollar sign ('$ ' \u0024) to separate nested class names from the name of their enclosing
class. The id is not to be confused with a PID which can be specified by the pid() or factoryPid() ele-
ment.

See Also The id attr ibute of the OCD element of a Meta Type Resource.

105.15.6.2 String name default ""

□ The human readable name of this ObjectClassDefinition.

If not specified, the name of this ObjectClassDefinition is derived from the id(). For example, low
line ('_ ' \u005F) and dollar sign ('$ ' \u0024) are replaced with space (' ' \u0020) and space is inserted
between camel case words.

If the name begins with the percent sign ('%' \u0025), the name can be localized.

See Also The name attr ibute of the OCD element of a Meta Type Resource.

105.15.6.3 String description default ""

□ The human readable description of this ObjectClassDefinition.

If not specified, the description of this ObjectClassDefinition is the empty string.

If the description begins with the percent sign ('%' \u0025), the description can be localized.

See Also The descr ipt ion attr ibute of the OCD element of a Meta Type Resource.

105.15.6.4 String localization default ""

□ The localization resource of this ObjectClassDefinition.

Metatype Service Specification Version 1.4 org.osgi.service.metatype.annotations

OSGi Compendium Release 8 Page 161

This refers to a resource property entry in the bundle that can be augmented with locale informa-
tion. If not specified, the localization resource for this ObjectClassDefinition is the string "OSGI-INF/
l10n/" followed by the id().

See Also The local izat ion attr ibute of the MetaData element of a Meta Type Resource.

105.15.6.5 String[] pid default {}

□ The PIDs associated with this ObjectClassDefinition.

For each specified PID, a Designate element with a pid attribute is generated that references this Ob-
jectClassDefinition.

The Designate annotation can also be used to associate a Declarative Services component with an
ObjectClassDefinition and generate a Designate element.

A special string ("$") can be used to specify the fully qualified name of the annotated type as a PID.
For example:

 @ObjectClassDefinition(pid="$")

Tools creating a Meta Type Resource from this annotation must replace the special string with the
fully qualified name of the annotated type.

See Also The pid attr ibute of the Designate element of a Meta Type Resource. , Designate

105.15.6.6 String[] factoryPid default {}

□ The factory PIDs associated with this ObjectClassDefinition.

For each specified factory PID, a Designate element with a factoryPid attribute is generated that ref-
erences this ObjectClassDefinition.

The Designate annotation can also be used to associate a Declarative Services component with an
ObjectClassDefinition and generate a Designate element.

A special string ("$") can be used to specify the fully qualified name of the annotated type as a facto-
ry PID. For example:

 @ObjectClassDefinition(factoryPid="$")

Tools creating a Meta Type Resource from this annotation must replace the special string with the
fully qualified name of the annotated type.

See Also The factoryPid attr ibute of the Designate element of a Meta Type Resource. , Designate

105.15.6.7 Icon[] icon default {}

□ The icon resources associated with this ObjectClassDefinition.

For each specified Icon, an Icon element is generated for this ObjectClassDefinition. If not specified,
no Icon elements will be generated.

See Also The Icon element of a Meta Type Resource.

105.15.7 @Option
Option information for an AttributeDefinition.

See Also AttributeDefinition.options()

Retention CLASS

Target

105.15.7.1 String label default ""

□ The human readable label of this Option.

References Metatype Service Specification Version 1.4

Page 162 OSGi Compendium Release 8

If not specified, the label of this Option is the empty string.

If the label begins with the percent sign ('%' \u0025), the label can be localized.

See Also The label attr ibute of the Option element of a Meta Type Resource.

105.15.7.2 String value

□ The value of this Option.

See Also The value attr ibute of the Option element of a Meta Type Resource.

105.15.8 @RequireMetaTypeExtender
This annotation can be used to require the Meta Type extender to process metatype resources. It can
be used directly, or as a meta-annotation.

Since 1.4

Retention CLASS

Target TYPE , PACKAGE

105.15.9 @RequireMetaTypeImplementation
This annotation can be used to require the Meta Type implementation. It can be used directly, or as a
meta-annotation.

Since 1.4

Retention CLASS

Target TYPE , PACKAGE

105.16 References

[1] LDAP.
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol

[2] Understanding and Deploying LDAP Directory services
Timothy Howes, et al. ISBN 1-57870-070-1, MacMillan Technical publishing.

[3] The Java Language Specification, Java SE 8 Edition
https://docs.oracle.com/javase/specs/jls/se8/html/index.html

http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://docs.oracle.com/javase/specs/jls/se8/html/index.html

PreferencesService Specification Version 1.1 Introduction

OSGi Compendium Release 8 Page 163

106 PreferencesService Specification

Version 1.1

106.1 Introduction
Many bundles need to save some data persistently - in other words, the data is required to survive
the stopping and restarting of the bundle and OSGi Framework. In some cases, the data is specific
to a particular user. For example, imagine a bundle that implements some kind of game. User specif-
ic persistent data could include things like the user's preferred difficulty level for playing the game.
Some data is not specific to a user, which we call system data. An example would be a table of high
scores for the game.

Bundles which need to persist data in an OSGi environment can use the file system via
org.osgi .f ramework.BundleContext.getDataFi le . A file system, however, can store only bytes and
characters, and provides no direct support for named values and different data types.

A popular class used to address this problem for Java applications is the java.ut i l .Propert ies class.
This class allows data to be stored as key/value pairs, called properties. For example, a property could
have a name com.acme.fudd and a value of elmer . The Propert ies class has rudimentary support for
storage and retrieving with its load and store methods. The Propert ies class, however, has the fol-
lowing limitations:

• Does not support a naming hierarchy.
• Only supports Str ing property values.
• Does not allow its content to be easily stored in a back-end system.
• Has no user name-space management.

Since the Propert ies class was introduced in Java 1.0, efforts have been undertaken to replace it with
a more sophisticated mechanism. One of these efforts is this Preferences Service specification.

106.1.1 Essentials
The focus of this specification is simplicity, not reliable access to stored data. This specification does
not define a general database service with transactions and atomicity guarantees. Instead, it is opti-
mized to deliver the stored information when needed, but it will return defaults, instead of throw-
ing an exception, when the back-end store is not available. This approach may reduce the reliabili-
ty of the data, but it makes the service easier to use, and allows for a variety of compact and efficient
implementations.

This API is made easier to use by the fact that many bundles can be written to ignore any problems
that the Preferences Service may have in accessing the back-end store, if there is one. These bundles
will mostly or exclusively use the methods of the Preferences interface which are not declared to
throw a BackingStoreException .

This service only supports the storage of scalar values and byte arrays. It is not intended for storing large
data objects like documents or images. No standard limits are placed on the size of data objects
which can be stored, but implementations are expected to be optimized for the handling of small
objects.

A hierarchical naming model is supported, in contrast to the flat model of the Propert ies class. A hi-
erarchical model maps naturally to many computing problems. For example, maintaining informa-

Introduction PreferencesService Specification Version 1.1

Page 164 OSGi Compendium Release 8

tion about the positions of adjustable seats in a car requires information for each seat. In a hierarchy,
this information can be modeled as a node per seat.

A potential benefit of the Preferences Service is that it allows user specific preferences data to be
kept in a well defined place, so that a user management system could locate it. This benefit could be
useful for such operations as cleaning up files when a user is removed from the system, or to allow a
user's preferences to be cloned for a new user.

The Preferences Service does not provide a mechanism to allow one bundle to access the preferences
data of another. If a bundle wishes to allow another bundle to access its preferences data, it can pass
a Preferences or PreferencesService object to that bundle.

The Preferences Service is not intended to provide configuration management functionality. For in-
formation regarding Configuration Management, refer to the Configuration Admin Service Specifica-
tion on page 81.

106.1.2 Entities
The PreferencesService is a relatively simple service. It provides access to the different roots of Pref-
erences trees. A single system root node and any number of user root nodes are supported. Each node
of such a tree is an object that implements the Preferences interface.

This Preferences interface provides methods for traversing the tree, as well as methods for access-
ing the properties of the node. This interface also contains the methods to flush data into persistent
storage, and to synchronize the in-memory data cache with the persistent storage.

All nodes except root nodes have a parent. Nodes can have multiple children.

Figure 106.1 Preferences Class Diagram

Preferences Node
implementation

<<interface>>
Preferences
Service

<<interface>>
Preferences

Preferences
Service
implementation

a bundle

root system node

root user nodes

1

1

1

0..n

0..n 1nodes

user name

node name

Bundle
Preferences

Backing Store
Exception

parent

0..n

1

1:n bundle - service

bundle id

106.1.3 Operation
The purpose of the Preferences Service specification is to allow bundles to store and retrieve prop-
erties stored in a tree of nodes, where each node implements the Preferences interface. The Prefer-
encesService interface allows a bundle to create or obtain a Preferences tree for system properties,
as well as a Preferences tree for each user of the bundle.

PreferencesService Specification Version 1.1 Preferences Interface

OSGi Compendium Release 8 Page 165

This specification allows for implementations where the data is stored locally on the Framework or
remotely on a back-end system.

106.2 Preferences Interface
Preferences is an interface that defines the methods to manipulate a node and the tree to which it
belongs. A Preferences object contains:

• A set of properties in the form of key/value pairs.
• A parent node.
• A number of child nodes.

106.2.1 Hierarchies
A valid Preferences object always belongs to a tree. A tree is identified by its root node. In such a tree,
a Preferences object always has a single parent, except for a root node which has a nul l parent.

The root node of a tree can be found by recursively calling the parent() method of a node until nul l is
returned. The nodes that are traversed this way are called the ancestors of a node.

Each Preferences object has a private name-space for child nodes. Each child node has a name
that must be unique among its siblings. Child nodes are created by getting a child node with the
node(Str ing) method. The Str ing argument of this call contains a path name. Path names are ex-
plained in the next section.

Child nodes can have child nodes recursively. These objects are called the descendants of a node.

Descendants are automatically created when they are obtained from a Preferences object, includ-
ing any intermediate nodes that are necessary for the given path. If this automatic creation is not de-
sired, the nodeExists(Str ing) method can be used to determine if a node already exists.

Figure 106.2 Categorization of nodes in a tree

root

parent

current

children

ancestors

descendants

tree

106.2.2 Naming
Each node has a name relative to its parent. A name may consist of Unicode characters except for
the solidus (' / ' \u002F). There are no special names, like ". ." or "." .

Empty names are reserved for root nodes. Node names that are directly created by a bundle must al-
ways contain at least one character.

Preferences node names and property keys are case sensitive: for example, "org.osgi" and "oRg.oSgI"
are two distinct names.

The Preferences Service supports different roots, so there is no absolute root for the Preferences Ser-
vice. This concept is similar to the Windows Registry that also supports a number of roots.

A path consists of one or more node names, separated by a solidus (' / ' \u002F). Paths beginning with
a solidus (' / ' \u002F) are called absolute paths while other paths are called relative paths. Paths cannot

Preferences Interface PreferencesService Specification Version 1.1

Page 166 OSGi Compendium Release 8

end with a solidus (' / ' \u002F) except for the special case of the root node which has absolute path
"/" .

Path names are always associated with a specific node; this node is called the current node in the fol-
lowing descriptions. Paths identify nodes as follows.

• Absolute path - The first "/" is removed from the path, and the remainder of the path is interpreted
as a relative path from the tree's root node.

• Relative path -
• If the path is the empty string, it identifies the current node.
• If the path is a name (does not contain a "/"), then it identifies the child node with that name.
• Otherwise, the first name from the path identifies a child of the current node. The name and

solidus (' / ' \u002F) are then removed from the path, and the remainder of the path is inter-
preted as a relative path from the child node.

106.2.3 Tree Traversal Methods
A tree can be traversed and modified with the following methods:

• chi ldrenNames() - Returns the names of the child nodes.
• parent() - Returns the parent node.
• removeNode() - Removes this node and all its descendants.
• node(Str ing) - Returns a Preferences object, which is created if it does not already exist. The para-

meter is an absolute or relative path.
• nodeExists(Str ing) - Returns true if the Preferences object identified by the path parameter exists.

106.2.4 Properties
Each Preferences node has a set of key/value pairs called properties. These properties consist of:

• Key - A key is a Str ing object and case sensitive.
• The name-space of these keys is separate from that of the child nodes. A Preferences node could

have both a child node named fudd and a property named fudd .
• Value - A value can always be stored and retrieved as a Str ing object. Therefore, it must be possi-

ble to encode/decode all values into/from Str ing objects (though it is not required to store them
as such, an implementation is free to store and retrieve the value in any possible way as long as
the Str ing semantics are maintained). A number of methods are available to store and retrieve
values as primitive types. These methods are provided both for the convenience of the user of the
Preferences interface, and to allow an implementation the option of storing the values in a more
compact form.

All the keys that are defined in a Preferences object can be obtained with the keys() method. The
clear() method can be used to clear all properties from a Preferences object. A single property can be
removed with the remove(Str ing) method.

106.2.5 Storing and Retrieving Properties
The Preferences interface has a number of methods for storing and retrieving property values based
on their key. All the put* methods take as parameters a key and a value. All the get* methods take
as parameters a key and a default value.

• put(Str ing,Str ing) , get(Str ing,Str ing)
• putBoolean(Str ing,boolean) , getBoolean(Str ing,boolean)
• putInt(Str ing, int) , getInt(Str ing, int)
• putLong(Str ing, long) , getLong(Str ing, long)
• putFloat(Str ing,f loat) , getFloat(Str ing,f loat)

PreferencesService Specification Version 1.1 Concurrency

OSGi Compendium Release 8 Page 167

• putDouble(Str ing,double) , getDouble(Str ing,double)
• putByteArray(Str ing,byte[]) , getByteArray(Str ing,byte[])

The methods act as if all the values are stored as Str ing objects, even though implementations may
use different representations for the different types. For example, a property can be written as a
Str ing object and read back as a f loat , providing that the string can be parsed as a valid Java f loat
object. In the event of a parsing error, the get* methods do not raise exceptions, but instead return
their default parameters.

106.2.6 Defaults
All get* methods take a default value as a parameter. The reasons for having such a default are:

• When a property for a Preferences object has not been set, the default is returned instead. In
most cases, the bundle developer does not have to distinguish whether or not a property exists.

• A best effort strategy has been a specific design choice for this specification. The bundle developer
should not have to react when the back-end store is not available. In those cases, the default val-
ue is returned without further notice.

Bundle developers who want to assure that the back-end store is available should call the f lush or
sync method. Either of these methods will throw a BackingStoreException if the back-end store
is not available.

106.3 Concurrency
This specification specifically allows an implementation to modify Preferences objects in a back-
end store. If the back-end store is shared by multiple processes, concurrent updates may cause differ-
ences between the back-end store and the in-memory Preferences objects.

Bundle developers can partly control this concurrency with the f lush() and sync() method. Both
methods operate on a Preferences object.

The f lush method performs the following actions:

• Stores (makes persistent) any ancestors (including the current node) that do not exist in the per-
sistent store.

• Stores any properties which have been modified in this node since the last time it was flushed.
• Removes from the persistent store any child nodes that were removed from this object since the

last time it was flushed.
• Flushes all existing child nodes.

The sync method will first flush, and then ensure that any changes that have been made to the cur-
rent node and its descendants in the back-end store (by some other process) take effect. For exam-
ple, it could fetch all the descendants into a local cache, or it could clear all the descendants from the
cache so that they will be read from the back-end store as required.

If either method fails, a BackingStoreException is thrown.

The f lush or sync methods provide no atomicity guarantee. When updates to the same back-end
store are done concurrently by two different processes, the result may be that changes made by dif-
ferent processes are intermingled. To avoid this problem, implementations may simply provide a
dedicated section (or name-space) in the back-end store for each OSGi environment, so that clashes
do not arise, in which case there is no reason for bundle programmers to ever call sync .

In cases where sync is used, the bundle programmer needs to take into account that changes from
different processes may become intermingled, and the level of granularity that can be assumed is
the individual property level. Hence, for example, if two properties need to be kept in lockstep, so

PreferencesService Interface PreferencesService Specification Version 1.1

Page 168 OSGi Compendium Release 8

that one should not be changed without a corresponding change to the other, consider combining
them into a single property, which would then need to be parsed into its two constituent parts.

106.4 PreferencesService Interface
The PreferencesService is obtained from the Framework's service registry in the normal way. Its
purpose is to provide access to Preferences root nodes.

A Preferences Service maintains a system root and a number of user roots. User roots are automati-
cally created, if necessary, when they are requested. Roots are maintained on a per bundle basis. For
example, a user root called elmer in one bundle is distinct from a user root with the same name in
another bundle. Also, each bundle has its own system root. Implementations should use a Service-
Factory service object to create a separate PreferencesService object for each bundle.

The precise description of user and system will vary from one bundle to another. The Preference Ser-
vice only provides a mechanism, the bundle may use this mechanism in any desired way.

The PreferencesService interface has the following methods to access the system root and user
roots:

• getSystemPreferences() - Return a Preferences object that is the root of the system preferences
tree.

• getUserPreferences(Str ing) - Return a Preferences object associated with the user name that is
given as argument. If the user does not exist, a new root is created atomically.

• getUsers() - Return an array of the names of all the users for whom a Preferences tree exists.

106.5 Cleanup
The Preferences Service must listen for bundle uninstall events, and remove all the preferences data
for the bundle that is being uninstalled. The Preferences Service must use the bundle id for the asso-
ciation and not the location.

It also must handle the possibility of a bundle getting uninstalled while the Preferences Service is
stopped. Therefore, it must check on startup whether preferences data exists for any bundle which
is not currently installed. If it does, that data must be removed.

106.6 org.osgi.service.prefs

Preferences Service Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.prefs ; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.prefs ; vers ion="[1.1 ,1 .2)"

PreferencesService Specification Version 1.1 org.osgi.service.prefs

OSGi Compendium Release 8 Page 169

106.6.1 Summary

• BackingStoreException - Thrown to indicate that a preferences operation could not complete
because of a failure in the backing store, or a failure to contact the backing store.

• Preferences - A node in a hierarchical collection of preference data.
• PreferencesService - The Preferences Service.

106.6.2 public class BackingStoreException
extends Exception
Thrown to indicate that a preferences operation could not complete because of a failure in the back-
ing store, or a failure to contact the backing store.

106.6.2.1 public BackingStoreException(String message)

message The detail message.

□ Constructs a BackingStoreException with the specified detail message.

106.6.2.2 public BackingStoreException(String message, Throwable cause)

message The detail message.

cause The cause of the exception. May be nul l .

□ Constructs a BackingStoreException with the specified detail message.

Since 1.1

106.6.2.3 public Throwable getCause()

□ Returns the cause of this exception or nul l if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

Since 1.1

106.6.2.4 public Throwable initCause(Throwable cause)

cause The cause of this exception.

□ Initializes the cause of this exception to the specified value.

Returns This exception.

Throws I l legalArgumentException– If the specified cause is this exception.

I l legalStateException– If the cause of this exception has already been set.

Since 1.1

106.6.3 public interface Preferences
A node in a hierarchical collection of preference data.

This interface allows applications to store and retrieve user and system preference data. This data
is stored persistently in an implementation-dependent backing store. Typical implementations in-
clude flat files, OS-specific registries, directory servers and SQL databases.

For each bundle, there is a separate tree of nodes for each user, and one for system preferences. The
precise description of "user" and "system" will vary from one bundle to another. Typical information
stored in the user preference tree might include font choice, and color choice for a bundle which in-
teracts with the user via a servlet. Typical information stored in the system preference tree might in-
clude installation data, or things like high score information for a game program.

org.osgi.service.prefs PreferencesService Specification Version 1.1

Page 170 OSGi Compendium Release 8

Nodes in a preference tree are named in a similar fashion to directories in a hierarchical file system.
Every node in a preference tree has a node name (which is not necessarily unique), a unique absolute
path name , and a path name relative to each ancestor including itself.

The root node has a node name of the empty Str ing object (""). Every other node has an arbitrary
node name, specified at the time it is created. The only restrictions on this name are that it cannot
be the empty string, and it cannot contain the slash character ('/').

The root node has an absolute path name of "/" . Children of the root node have absolute path names
of "/" + <node name> . All other nodes have absolute path names of <parent's absolute path name> + "/"
+ <node name> . Note that all absolute path names begin with the slash character.

A node n 's path name relative to its ancestor a is simply the string that must be appended to a 's
absolute path name in order to form n 's absolute path name, with the initial slash character (if
present) removed. Note that:

• No relative path names begin with the slash character.
• Every node's path name relative to itself is the empty string.
• Every node's path name relative to its parent is its node name (except for the root node, which

does not have a parent).
• Every node's path name relative to the root is its absolute path name with the initial slash char-

acter removed.

Note finally that:

• No path name contains multiple consecutive slash characters.
• No path name with the exception of the root's absolute path name end in the slash character.
• Any string that conforms to these two rules is a valid path name.

Each Preference node has zero or more properties associated with it, where a property consists of a
name and a value. The bundle writer is free to choose any appropriate names for properties. Their
values can be of type Str ing ,long ,int ,boolean , byte[] , f loat , or double but they can always be ac-
cessed as if they were Str ing objects.

All node name and property name comparisons are case-sensitive.

All of the methods that modify preference data are permitted to operate asynchronously; they may
return immediately, and changes will eventually propagate to the persistent backing store, with an
implementation-dependent delay. The f lush method may be used to synchronously force updates to
the backing store.

Implementations must automatically attempt to flush to the backing store any pending updates for
a bundle's preferences when the bundle is stopped or otherwise ungets the Preferences Service.

The methods in this class may be invoked concurrently by multiple threads in a single Java Virtu-
al Machine (JVM) without the need for external synchronization, and the results will be equivalent
to some serial execution. If this class is used concurrently by multiple JVMs that store their prefer-
ence data in the same backing store, the data store will not be corrupted, but no other guarantees are
made concerning the consistency of the preference data.

No Implement Consumers of this API must not implement this interface

106.6.3.1 public String absolutePath()

□ Returns this node's absolute path name. Note that:

• Root node - The path name of the root node is "/" .
• Slash at end - Path names other than that of the root node may not end in slash (' / ').
• Unusual names -"." and ". ." have no special significance in path names.

PreferencesService Specification Version 1.1 org.osgi.service.prefs

OSGi Compendium Release 8 Page 171

• Illegal names - The only illegal path names are those that contain multiple consecutive slashes,
or that end in slash and are not the root.

Returns this node's absolute path name.

106.6.3.2 public String[] childrenNames() throws BackingStoreException

□ Returns the names of the children of this node. (The returned array will be of size zero if this node
has no children and not nul l !)

Returns the names of the children of this node.

Throws BackingStoreException– if this operation cannot be completed due to a failure in the backing store,
or inability to communicate with it.

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

106.6.3.3 public void clear() throws BackingStoreException

□ Removes all of the properties (key-value associations) in this node. This call has no effect on any de-
scendants of this node.

Throws BackingStoreException– if this operation cannot be completed due to a failure in the backing store,
or inability to communicate with it.

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also remove(String)

106.6.3.4 public void flush() throws BackingStoreException

□ Forces any changes in the contents of this node and its descendants to the persistent store.

Once this method returns successfully, it is safe to assume that all changes made in the subtree root-
ed at this node prior to the method invocation have become permanent.

Implementations are free to flush changes into the persistent store at any time. They do not need to
wait for this method to be called.

When a flush occurs on a newly created node, it is made persistent, as are any ancestors (and descen-
dants) that have yet to be made persistent. Note however that any properties value changes in ances-
tors are not guaranteed to be made persistent.

Throws BackingStoreException– if this operation cannot be completed due to a failure in the backing store,
or inability to communicate with it.

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also sync()

106.6.3.5 public String get(String key, String def)

key key whose associated value is to be returned.

def the value to be returned in the event that this node has no value associated with key or the backing
store is inaccessible.

□ Returns the value associated with the specified key in this node. Returns the specified default if there
is no value associated with the key , or the backing store is inaccessible.

Returns the value associated with key , or def if no value is associated with key .

Throws I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

org.osgi.service.prefs PreferencesService Specification Version 1.1

Page 172 OSGi Compendium Release 8

NullPointerException– if key is nul l . (A nul l default is permitted.)

106.6.3.6 public boolean getBoolean(String key, boolean def)

key key whose associated value is to be returned as a boolean .

def the value to be returned in the event that this node has no value associated with key or the associat-
ed value cannot be interpreted as a boolean or the backing store is inaccessible.

□ Returns the boolean value represented by the Str ing object associated with the specified key in this
node. Valid strings are "true", which represents true , and "false", which represents fa lse . Case is ig-
nored, so, for example, "TRUE" and "False" are also valid. This method is intended for use in conjunc-
tion with the putBoolean(String, boolean) method.

Returns the specified default if there is no value associated with the key , the backing store is inacces-
sible, or if the associated value is something other than "true" or "false", ignoring case.

Returns the boolean value represented by the Str ing object associated with key in this node, or nul l if the as-
sociated value does not exist or cannot be interpreted as a boolean .

Throws NullPointerException– if key is nul l .

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also get(String,String), putBoolean(String,boolean)

106.6.3.7 public byte[] getByteArray(String key, byte[] def)

key key whose associated value is to be returned as a byte[] object.

def the value to be returned in the event that this node has no value associated with key or the associat-
ed value cannot be interpreted as a byte[] type, or the backing store is inaccessible.

□ Returns the byte[] value represented by the Str ing object associated with the specified key in
this node. Valid Str ing objects are Base64 encoded binary data, as defined in RFC 2045 [http://
www.ietf.org/rfc/rfc2045.txt], Section 6.8, with one minor change: the string must consist solely of
characters from the Base64 Alphabet ; no newline characters or extraneous characters are permitted.
This method is intended for use in conjunction with the putByteArray(String, byte[]) method.

Returns the specified default if there is no value associated with the key , the backing store is inacces-
sible, or if the associated value is not a valid Base64 encoded byte array (as defined above).

Returns the byte[] value represented by the Str ing object associated with key in this node, or def if the associ-
ated value does not exist or cannot be interpreted as a byte[] .

Throws NullPointerException– if key is nul l . (A nul l value for def is permitted.)

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also get(String,String), putByteArray(String,byte[])

106.6.3.8 public double getDouble(String key, double def)

key key whose associated value is to be returned as a double value.

def the value to be returned in the event that this node has no value associated with key or the associat-
ed value cannot be interpreted as a double type or the backing store is inaccessible.

□ Returns the double value represented by the Str ing object associated with the specified key in this
node. The Str ing object is converted to a double value as by Double.parseDouble(Str ing) . Returns
the specified default if there is no value associated with the key , the backing store is inaccessible, or
if Double.parseDouble(Str ing) would throw a NumberFormatException if the associated value were
passed. This method is intended for use in conjunction with the putDouble method.

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt

PreferencesService Specification Version 1.1 org.osgi.service.prefs

OSGi Compendium Release 8 Page 173

Returns the double value represented by the Str ing object associated with key in this node, or def if the asso-
ciated value does not exist or cannot be interpreted as a double type.

Throws I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

NullPointerException– if key is nul l .

See Also putDouble(String,double), get(String,String)

106.6.3.9 public float getFloat(String key, float def)

key key whose associated value is to be returned as a f loat value.

def the value to be returned in the event that this node has no value associated with key or the associat-
ed value cannot be interpreted as a f loat type or the backing store is inaccessible.

□ Returns the float value represented by the Str ing object associated with the specified key in this
node. The Str ing object is converted to a f loat value as by Float.parseFloat(Str ing) . Returns the
specified default if there is no value associated with the key , the backing store is inaccessible, or
if Float.parseFloat(Str ing) would throw a NumberFormatException if the associated value were
passed. This method is intended for use in conjunction with the putFloat(String, float) method.

Returns the f loat value represented by the string associated with key in this node, or def if the associated val-
ue does not exist or cannot be interpreted as a f loat type.

Throws I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

NullPointerException– if key is nul l .

See Also putFloat(String,float), get(String,String)

106.6.3.10 public int getInt(String key, int def)

key key whose associated value is to be returned as an int .

def the value to be returned in the event that this node has no value associated with key or the associat-
ed value cannot be interpreted as an int or the backing store is inaccessible.

□ Returns the int value represented by the Str ing object associated with the specified key in this
node. The Str ing object is converted to an int as by Integer.parseInt(Str ing) . Returns the spec-
ified default if there is no value associated with the key , the backing store is inaccessible, or if
Integer.parseInt(Str ing) would throw a NumberFormatException if the associated value were
passed. This method is intended for use in conjunction with the putInt(String, int) method.

Returns the int value represented by the Str ing object associated with key in this node, or def if the associated
value does not exist or cannot be interpreted as an int type.

Throws NullPointerException– if key is nul l .

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also putInt(String,int), get(String,String)

106.6.3.11 public long getLong(String key, long def)

key key whose associated value is to be returned as a long value.

def the value to be returned in the event that this node has no value associated with key or the associat-
ed value cannot be interpreted as a long type or the backing store is inaccessible.

□ Returns the long value represented by the Str ing object associated with the specified key in this
node. The Str ing object is converted to a long as by Long.parseLong(Str ing) . Returns the spec-
ified default if there is no value associated with the key , the backing store is inaccessible, or if

org.osgi.service.prefs PreferencesService Specification Version 1.1

Page 174 OSGi Compendium Release 8

Long.parseLong(Str ing) would throw a NumberFormatException if the associated value were
passed. This method is intended for use in conjunction with the putLong(String, long) method.

Returns the long value represented by the Str ing object associated with key in this node, or def if the associat-
ed value does not exist or cannot be interpreted as a long type.

Throws NullPointerException– if key is nul l .

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also putLong(String,long), get(String,String)

106.6.3.12 public String[] keys() throws BackingStoreException

□ Returns all of the keys that have an associated value in this node. (The returned array will be of size
zero if this node has no preferences and not nul l !)

Returns an array of the keys that have an associated value in this node.

Throws BackingStoreException– if this operation cannot be completed due to a failure in the backing store,
or inability to communicate with it.

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

106.6.3.13 public String name()

□ Returns this node's name, relative to its parent.

Returns this node's name, relative to its parent.

106.6.3.14 public Preferences node(String pathName)

pathName the path name of the Preferences object to return.

□ Returns a named Preferences object (node), creating it and any of its ancestors if they do not already
exist. Accepts a relative or absolute pathname. Absolute pathnames (which begin with ' / ') are inter-
preted relative to the root of this node. Relative pathnames (which begin with any character other
than ' / ') are interpreted relative to this node itself. The empty string ("") is a valid relative pathname,
referring to this node itself.

If the returned node did not exist prior to this call, this node and any ancestors that were created by
this call are not guaranteed to become persistent until the f lush method is called on the returned
node (or one of its descendants).

Returns the specified Preferences object.

Throws I l legalArgumentException– if the path name is invalid.

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

NullPointerException– if path name is nul l .

See Also flush()

106.6.3.15 public boolean nodeExists(String pathName) throws BackingStoreException

pathName the path name of the node whose existence is to be checked.

□ Returns true if the named node exists. Accepts a relative or absolute pathname. Absolute pathnames
(which begin with ' / ') are interpreted relative to the root of this node. Relative pathnames (which
begin with any character other than ' / ') are interpreted relative to this node itself. The pathname ""
is valid, and refers to this node itself.

PreferencesService Specification Version 1.1 org.osgi.service.prefs

OSGi Compendium Release 8 Page 175

If this node (or an ancestor) has already been removed with the removeNode() method, it is legal to
invoke this method, but only with the pathname "" ; the invocation will return fa lse . Thus, the id-
iom p.nodeExists("") may be used to test whether p has been removed.

Returns true if the specified node exists.

Throws BackingStoreException– if this operation cannot be completed due to a failure in the backing store,
or inability to communicate with it.

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method and pathname is not the empty string ("").

I l legalArgumentException– if the path name is invalid (i.e., it contains multiple consecutive slash
characters, or ends with a slash character and is more than one character long).

106.6.3.16 public Preferences parent()

□ Returns the parent of this node, or nul l if this is the root.

Returns the parent of this node.

Throws I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

106.6.3.17 public void put(String key, String value)

key key with which the specified value is to be associated.

value value to be associated with the specified key.

□ Associates the specified value with the specified key in this node.

Throws NullPointerException– if key or value is nul l .

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

106.6.3.18 public void putBoolean(String key, boolean value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key .

□ Associates a Str ing object representing the specified boolean value with the specified key in this
node. The associated string is "true" if the value is true , and "false" if it is fa lse . This method is in-
tended for use in conjunction with the getBoolean(String, boolean) method.

Implementor's note: it is not necessary that the value be represented by a string in the backing store.
If the backing store supports boolean values, it is not unreasonable to use them. This implementa-
tion detail is not visible through the Preferences API, which allows the value to be read as a boolean
(with getBoolean) or a Str ing (with get) type.

Throws NullPointerException– if key is nul l .

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also getBoolean(String,boolean), get(String,String)

106.6.3.19 public void putByteArray(String key, byte[] value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key .

□ Associates a Str ing object representing the specified byte[] with the specified key in this node.
The associated Str ing object the Base64 encoding of the byte[] , as defined in RFC 2045 [http://
www.ietf.org/rfc/rfc2045.txt], Section 6.8, with one minor change: the string will consist solely of

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt

org.osgi.service.prefs PreferencesService Specification Version 1.1

Page 176 OSGi Compendium Release 8

characters from the Base64 Alphabet ; it will not contain any newline characters. This method is in-
tended for use in conjunction with the getByteArray(String, byte[]) method.

Implementor's note: it is not necessary that the value be represented by a Str ing type in the back-
ing store. If the backing store supports byte[] values, it is not unreasonable to use them. This imple-
mentation detail is not visible through the Preferences API, which allows the value to be read as an
a byte[] object (with getByteArray) or a Str ing object (with get).

Throws NullPointerException– if key or value is nul l .

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also getByteArray(String,byte[]), get(String,String)

106.6.3.20 public void putDouble(String key, double value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key .

□ Associates a Str ing object representing the specified double value with the specified key in this
node. The associated Str ing object is the one that would be returned if the double value were
passed to Double.toStr ing(double) . This method is intended for use in conjunction with the
getDouble(String, double) method

Implementor's note: it is not necessary that the value be represented by a string in the backing store.
If the backing store supports double values, it is not unreasonable to use them. This implementa-
tion detail is not visible through the Preferences API, which allows the value to be read as a double
(with getDouble) or a Str ing (with get) type.

Throws NullPointerException– if key is nul l .

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also getDouble(String,double)

106.6.3.21 public void putFloat(String key, float value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key .

□ Associates a Str ing object representing the specified f loat value with the specified key in this node.
The associated Str ing object is the one that would be returned if the f loat value were passed to
Float.toStr ing(float) . This method is intended for use in conjunction with the getFloat(String, float)
method.

Implementor's note: it is not necessary that the value be represented by a string in the backing store.
If the backing store supports f loat values, it is not unreasonable to use them. This implementation
detail is not visible through the Preferences API, which allows the value to be read as a f loat (with
getFloat) or a Str ing (with get) type.

Throws NullPointerException– if key is nul l .

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also getFloat(String,float)

106.6.3.22 public void putInt(String key, int value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key .

PreferencesService Specification Version 1.1 org.osgi.service.prefs

OSGi Compendium Release 8 Page 177

□ Associates a Str ing object representing the specified int value with the specified key in this
node. The associated string is the one that would be returned if the int value were passed to
Integer.toStr ing(int) . This method is intended for use in conjunction with getInt(String, int)
method.

Implementor's note: it is not necessary that the property value be represented by a Str ing object in
the backing store. If the backing store supports integer values, it is not unreasonable to use them.
This implementation detail is not visible through the Preferences API, which allows the value to be
read as an int (with getInt or a Str ing (with get) type.

Throws NullPointerException– if key is nul l .

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also getInt(String,int)

106.6.3.23 public void putLong(String key, long value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key .

□ Associates a Str ing object representing the specified long value with the specified key in this node.
The associated Str ing object is the one that would be returned if the long value were passed to
Long.toStr ing(long) . This method is intended for use in conjunction with the getLong(String, long)
method.

Implementor's note: it is not necessary that the value be represented by a Str ing type in the backing
store. If the backing store supports long values, it is not unreasonable to use them. This implemen-
tation detail is not visible through the Preferences API, which allows the value to be read as a long
(with getLong or a Str ing (with get) type.

Throws NullPointerException– if key is nul l .

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also getLong(String,long)

106.6.3.24 public void remove(String key)

key key whose mapping is to be removed from this node.

□ Removes the value associated with the specified key in this node, if any.

Throws I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also get(String,String)

106.6.3.25 public void removeNode() throws BackingStoreException

□ Removes this node and all of its descendants, invalidating any properties contained in the removed
nodes. Once a node has been removed, attempting any method other than name() ,absolutePath()
or nodeExists("") on the corresponding Preferences instance will fail with an I l legalStateException .
(The methods defined on Object can still be invoked on a node after it has been removed; they will
not throw I l legalStateException .)

The removal is not guaranteed to be persistent until the f lush method is called on the parent of this
node.

Throws I l legalStateException– if this node (or an ancestor) has already been removed with the removeN-
ode() method.

References PreferencesService Specification Version 1.1

Page 178 OSGi Compendium Release 8

BackingStoreException– if this operation cannot be completed due to a failure in the backing store,
or inability to communicate with it.

See Also flush()

106.6.3.26 public void sync() throws BackingStoreException

□ Ensures that future reads from this node and its descendants reflect any changes that were com-
mitted to the persistent store (from any VM) prior to the sync invocation. As a side-effect, forces
any changes in the contents of this node and its descendants to the persistent store, as if the f lush
method had been invoked on this node.

Throws BackingStoreException– if this operation cannot be completed due to a failure in the backing store,
or inability to communicate with it.

I l legalStateException– if this node (or an ancestor) has been removed with the removeNode()
method.

See Also flush()

106.6.4 public interface PreferencesService
The Preferences Service.

Each bundle using this service has its own set of preference trees: one for system preferences, and
one for each user.

A PreferencesService object is specific to the bundle which obtained it from the service registry. If
a bundle wishes to allow another bundle to access its preferences, it should pass its PreferencesSer-
vice object to that bundle.

No Implement Consumers of this API must not implement this interface

106.6.4.1 public Preferences getSystemPreferences()

□ Returns the root system node for the calling bundle.

Returns The root system node for the calling bundle.

106.6.4.2 public Preferences getUserPreferences(String name)

name The user for which to return the preference root node.

□ Returns the root node for the specified user and the calling bundle.

Returns The root node for the specified user and the calling bundle.

106.6.4.3 public String[] getUsers()

□ Returns the names of users for which node trees exist.

Returns The names of users for which node trees exist.

106.7 References

[1] JSR 10 Preferences API
http://www.jcp.org/jsr/detail/10.jsp

[2] RFC 2045 Base 64 encoding
http://www.ietf.org/rfc/rfc2045.txt

http://www.jcp.org/jsr/detail/10.jsp
http://www.ietf.org/rfc/rfc2045.txt

User Admin Service Specification Version 1.1 Introduction

OSGi Compendium Release 8 Page 179

107 User Admin Service Specification

Version 1.1

107.1 Introduction
OSGi frameworks are often used in places where end users or devices initiate actions. These kinds
of actions inevitably create a need for authenticating the initiator. Authenticating can be done in
many different ways, including with passwords, one-time token cards, biometrics, and certificates.

Once the initiator is authenticated, it is necessary to verify that this principal is authorized to per-
form the requested action. This authorization can only be decided by the operator of the OSGi envi-
ronment, and thus requires administration.

The User Admin service provides this type of functionality. Bundles can use the User Admin service
to authenticate an initiator and represent this authentication as an Authorizat ion object. Bundles
that execute actions on behalf of this user can use the Authorizat ion object to verify if that user is
authorized.

The User Admin service provides authorization based on who runs the code, instead of using the Ja-
va code-based permission model. See [1] The Java Security Architecture for JDK 1.2. It performs a role
similar to [2] Java Authentication and Authorization Service.

107.1.1 Essentials

• Authentication - A large number of authentication schemes already exist, and more will be devel-
oped. The User Admin service must be flexible enough to adapt to the many different authentica-
tion schemes that can be run on a computer system.

• Authorization - All bundles should use the User Admin service to authenticate users and to find
out if those users are authorized. It is therefore paramount that a bundle can find out authoriza-
tion information with little effort.

• Security - Detailed security, based on the Framework security model, is needed to provide safe ac-
cess to the User Admin service. It should allow limited access to the credentials and other proper-
ties.

• Extensibility - Other bundles should be able to build on the User Admin service. It should be possi-
ble to examine the information from this service and get real-time notifications of changes.

• Properties - The User Admin service must maintain a persistent database of users. It must be possi-
ble to use this database to hold more information about this user.

• Administration - Administering authorizations for each possible action and initiator is time-con-
suming and error-prone. It is therefore necessary to have mechanisms to group end users and
make it simple to assign authorizations to all members of a group at one time.

107.1.2 Entities
This Specification defines the following User Admin service entities:

• User Admin - This interface manages a database of named roles which can be used for authoriza-
tion and authentication purposes.

• Role - This interface exposes the characteristics shared by all roles: a name, a type, and a set of
properties.

Introduction User Admin Service Specification Version 1.1

Page 180 OSGi Compendium Release 8

• User - This interface (which extends Role) is used to represent any entity which may have creden-
tials associated with it. These credentials can be used to authenticate an initiator.

• Group - This interface (which extends User) is used to contain an aggregation of named Role ob-
jects (Group or User objects).

• Authorization - This interface encapsulates an authorization context on which bundles can base
authorization decisions.

• User Admin Event - This class is used to represent a role change event.
• User Admin Listener - This interface provides a listener for events of type UserAdminEvent that

can be registered as a service.
• User Admin Permission - This permission is needed to configure and access the roles managed by a

User Admin service.
• Role.USER_ANYONE - This is a special User object that represents any user, it implies all

other User objects. It is also used when a Group is used with only basic members. The
Role.USER_ANYONE is then the only required member.

Figure 107.1 User Admin Service, org.osgi.service.useradmin

<<interface>>
User Admin

<<interface>>
Role

<<interface>>
Group

User Admin
Event

<<interface>>
Authorization

<<interface>>
User Admin
Listener

<<interface>>
User

User Admin
Permission

User Admin
Implementation

Group
ImplementationsUser

ImplementationsRole
Implementation

User Admin
Listener Impl.

Request
Authenticator

Action
implementation perform action

consult for
authorization

has roles

authenticate

receive
events

send event

has
permission

role name

user database1..n 1

0..n

0..n

0..n

0..n

1..n

0..n

ba
sic

 m
em

be
r

re
qu

ire
d

m
em

be
r

107.1.3 Operation
An Operator uses the User Admin service to define OSGi framework users and configure them with
properties, credentials, and roles.

A Role object represents the initiator of a request (human or otherwise). This specification defines
two types of roles:

User Admin Service Specification Version 1.1 Authentication

OSGi Compendium Release 8 Page 181

• User - A User object can be configured with credentials, such as a password, and properties, such
as address, telephone number, and so on.

• Group - A Group object is an aggregation of basic and required roles. Basic and required roles are
used in the authorization phase.

An OSGi framework can have several entry points, each of which will be responsible for authen-
ticating incoming requests. An example of an entry point is the Http Service, which delegates au-
thentication of incoming requests to the handleSecurity method of the HttpContext object that was
specified when the target servlet or resource of the request was registered.

The OSGi framework entry points should use the information in the User Admin service to authen-
ticate incoming requests, such as a password stored in the private credentials or the use of a certifi-
cate.

A bundle can determine if a request for an action is authorized by looking for a Role object that has
the name of the requested action.

The bundle may execute the action if the Role object representing the initiator implies the Role ob-
ject representing the requested action.

For example, an initiator Role object X implies an action Group object A if:

• X implies at least one of A's basic members, and
• X implies all of A's required members.

An initiator Role object X implies an action User object A if:

• A and X are equal.

The Authorizat ion class handles this non-trivial logic. The User Admin service can capture the priv-
ileges of an authenticated User object into an Authorizat ion object. The Authorizat ion.hasRole
method checks if the authenticate User object has (or implies) a specified action Role object.

For example, in the case of the Http Service, the HttpContext object can authenticate the initiator
and place an Authorizat ion object in the request header. The servlet calls the hasRole method on this
Authorizat ion object to verify that the initiator has the authority to perform a certain action. See Au-
thentication on page 46.

107.2 Authentication
The authentication phase determines if the initiator is actually the one it says it is. Mechanisms to
authenticate always need some information related to the user or the OSGi framework to authenti-
cate an external user. This information can consist of the following:

• A secret known only to the initiator.
• Knowledge about cards that can generate a unique token.
• Public information like certificates of trusted signers.
• Information about the user that can be measured in a trusted way.
• Other specific information.

107.2.1 Repository
The User Admin service offers a repository of Role objects. Each Role object has a unique name and a
set of properties that are readable by anyone, and are changeable when the changer has the UserAd-
minPermission . Additionally, User objects, a sub-interface of Role , also have a set of private protected
properties called credentials. Credentials are an extra set of properties that are used to authenticate
users and that are protected by UserAdminPermission .

Authentication User Admin Service Specification Version 1.1

Page 182 OSGi Compendium Release 8

Properties are accessed with the Role.getPropert ies() method and credentials with the
User.getCredentials() method. Both methods return a Dictionary object containing key/value pairs.
The keys are Str ing objects and the values of the Dictionary object are limited to Str ing or byte[] ob-
jects.

This specification does not define any standard keys for the properties or credentials. The keys de-
pend on the implementation of the authentication mechanism and are not formally defined by OS-
Gi specifications.

The repository can be searched for objects that have a unique property (key/value pair) with the
method UserAdmin.getUser(Str ing,Str ing) . This makes it easy to find a specific user related to a
specific authentication mechanism. For example, a secure card mechanism that generates unique
tokens could have a serial number identifying the user. The owner of the card could be found with
the method

User owner = useradmin.getUser(
 "secure-card-serial", "132456712-1212");

If multiple User objects have the same property (key and value), a nul l is returned.

There is a convenience method to verify that a user has a credential without actually getting the cre-
dential. This is the User.hasCredential(Str ing,Object) method.

Access to credentials is protected on a name basis by UserAdminPermission . Because properties can
be read by anyone with access to a User object, UserAdminPermission only protects change access to
properties.

107.2.2 Basic Authentication
The following example shows a very simple authentication algorithm based on passwords.

The vendor of the authentication bundle uses the property "com.acme.basic- id" to contain the
name of a user as it logs in. This property is used to locate the User object in the repository. Next, the
credential "com.acme.password" contains the password and is compared to the entered password. If
the password is correct, the User object is returned. In all other cases a SecurityException is thrown.

public User authenticate(
 UserAdmin ua, String name, String pwd)
 throws SecurityException {
 User user = ua.getUser("com.acme.basicid",
 username);
 if (user == null)
 throw new SecurityException("No such user");

 if (!user.hasCredential("com.acme.password", pwd))
 throw new SecurityException(
 "Invalid password");
 return user;
}

107.2.3 Certificates
Authentication based on certificates does not require a shared secret. Instead, a certificate contains a
name, a public key, and the signature of one or more signers.

The name in the certificate can be used to locate a User object in the repository. Locating a User ob-
ject, however, only identifies the initiator and does not authenticate it.

1. The first step to authenticate the initiator is to verify that it has the private key of the certificate.

User Admin Service Specification Version 1.1 Authorization

OSGi Compendium Release 8 Page 183

2. Next, the User Admin service must verify that it has a User object with the right property, for ex-
ample "com.acme.cert i f icate"="Fudd" .

3. The next step is to see if the certificate is signed by a trusted source. The bundle could use a cen-
tral list of trusted signers and only accept certificates signed by those sources. Alternatively, it
could require that the certificate itself is already stored in the repository under a unique key as a
byte[] in the credentials.

4. In any case, once the certificate is verified, the associated User object is authenticated.

107.3 Authorization
The User Admin service authorization architecture is a role-based model. In this model, every ac-
tion that can be performed by a bundle is associated with a role. Such a role is a Group object (called
group from now on) from the User Admin service repository. For example, if a servlet could be used
to activate the alarm system, there should be a group named AlarmSystemActivat ion .

The operator can administrate authorizations by populating the group with User objects (users) and
other groups. Groups are used to minimize the amount of administration required. For example, it is
easier to create one Administrators group and add administrative roles to it rather than individually
administer all users for each role. Such a group requires only one action to remove or add a user as
an administrator.

The authorization decision can now be made in two fundamentally different ways:

An initiator could be allowed to carry out an action (represented by a Group object) if it implied any
of the Group object's members. For example, the AlarmSystemActivat ion Group object contains an
Administrators and a Family Group object:

 Administrators = { Elmer, Pepe,Bugs }
 Family = { Elmer, Pepe, Daffy }

 AlarmSystemActivation = { Administrators, Family}

Any of the four members Elmer , Pepe , Daffy , or Bugs can activate the alarm system.

Alternatively, an initiator could be allowed to perform an action (represented by a Group object) if it
implied all the Group object's members. In this case, using the same AlarmSystemActivat ion group,
only Elmer and Pepe would be authorized to activate the alarm system, since Daffy and Bugs are not
members of both the Administrators and Family Group objects.

The User Admin service supports a combination of both strategies by defining both a set of basic
members (any) and a set of required members (all).

Administrators = { Elmer, Pepe, Bugs}
Family = { Elmer, Pepe, Daffy }

AlarmSystemActivation
 required = { Administrators }
 basic = { Family }

The difference is made when Role objects are added to the Group object. To add a basic
member, use the Group.addMember(Role) method. To add a required member, use the
Group.addRequiredMember(Role) method.

Basic members define the set of members that can get access and required members reduce this set
by requiring the initiator to imply each required member.

A User object implies a Group object if it implies the following:

Authorization User Admin Service Specification Version 1.1

Page 184 OSGi Compendium Release 8

• All of the Group's required members, and
• At least one of the Group's basic members

A User object always implies itself.

If only required members are used to qualify the implication, then the standard user
Role.USER_ANYONE can be obtained from the User Admin service and added to the Group object.
This Role object is implied by anybody and therefore does not affect the required members.

107.3.1 The Authorization Object
The complexity of authorization is hidden in an Authorizat ion class. Normally, the authenticator
should retrieve an Authorizat ion object from the User Admin service by passing the authenticated
User object as an argument. This Authorizat ion object is then passed to the bundle that performs
the action. This bundle checks the authorization with the Authorizat ion.hasRole(Str ing) method.
The performing bundle must pass the name of the action as an argument. The Authorizat ion object
checks whether the authenticated user implies the Role object, specifically a Group object, with the
given name. This is shown in the following example.

public void activateAlarm(Authorization auth) {
 if (auth.hasRole("AlarmSystemActivation")) {
 // activate the alarm
 ...
 }
 else throw new SecurityException(
 "Not authorized to activate alarm");
}

107.3.2 Authorization Example
This section demonstrates a possible use of the User Admin service. The service has a flexible model
and many other schemes are possible.

Assume an Operator installs an OSGi framework. Bundles in this environment have defined the fol-
lowing action groups:

AlarmSystemControl
InternetAccess
TemperatureControl
PhotoAlbumEdit
PhotoAlbumView
PortForwarding

Installing and uninstalling bundles could potentially extend this set. Therefore, the Operator also
defines a number of groups that can be used to contain the different types of system users.

Administrators
Buddies
Children
Adults
Residents

In a particular instance, the Operator installs it in a household with the following residents and
buddies:

Residents: Elmer, Fudd, Marvin, Pepe
Buddies: Daffy, Foghorn

First, the residents and buddies are assigned to the system user groups. Second, the user groups need
to be assigned to the action groups.

User Admin Service Specification Version 1.1 Repository Maintenance

OSGi Compendium Release 8 Page 185

The following tables show how the groups could be assigned.

Table 107.1 Example Groups with Basic and Required Members

Groups Elmer Fudd Marvin Pepe Daffy Foghorn
Residents Basic Basic Basic Basic - -
Buddies - - - - Basic Basic
Chi ldren - - Basic Basic - -
Adults Basic Basic - - - -
Administrators Basic - - - - -

Table 107.2 Example Action Groups with their Basic and Required Members

Groups Residents Buddies Children Adults Admin
AlarmSystemControl Basic - - - Required
InternetAccess Basic - - Required -
TemperatureControl Basic - - Required -
PhotoAlbumEdit Basic - Basic Basic -
PhotoAlbumView Basic Basic - - -
PortForwarding Basic - - - Required

107.4 Repository Maintenance
The UserAdmin interface is a straightforward API to maintain a repository of User and Group objects.
It contains methods to create new Group and User objects with the createRole(Str ing, int) method.
The method is prepared so that the same signature can be used to create new types of roles in the fu-
ture. The interface also contains a method to remove a Role object.

The existing configuration can be obtained with methods that list all Role objects using a filter argu-
ment. This filter, which has the same syntax as the Framework filter, must only return the Role ob-
jects for which the filter matches the properties.

Several utility methods simplify getting User objects depending on their properties.

107.5 User Admin Events
Changes in the User Admin service can be determined in real time. Each User Admin service imple-
mentation must send a UserAdminEvent object to any service in the Framework service registry that
is registered under the UserAdminListener interface. This event must be send asynchronously from
the cause of the event. The way events must be delivered is the same as described in Delivering Events
of OSGi Core Release 8.

This procedure is demonstrated in the following code sample.

class Listener implements UserAdminListener{
 public void roleChanged(UserAdminEvent event) {
 ...
 }
}
public class MyActivator
 implements BundleActivator {
 public void start(BundleContext context) {
 context.registerService(
 UserAdminListener.class.getName(),

Security User Admin Service Specification Version 1.1

Page 186 OSGi Compendium Release 8

 new Listener(), null);
 }
 public void stop(BundleContext context) {}
}

It is not necessary to unregister the listener object when the bundle is stopped because the Frame-
work automatically unregisters it. Once registered, the UserAdminListener object must be notified
of all changes to the role repository.

107.5.1 Event Admin and User Admin Change Events
User Admin events must be delivered asynchronously to the Event Admin service by the implemen-
tation, if present. The topic of a User Admin Event is:

org/osgi/service/useradmin/UserAdmin/<eventtype>

The following event types are supported:

ROLE_CREATED
ROLE_CHANGED
ROLE_REMOVED

All User Admin Events must have the following properties:

• event - (UserAdminEvent) The event that was broadcast by the User Admin service.
• role - (Role) The Role object that was created, modified or removed.
• role.name - (Str ing) The name of the role.
• role.type - (Integer) One of ROLE, USER or GROUP .
• service - (ServiceReference) The Service Reference of the User Admin service.
• service. id - (Long) The User Admin service's ID.
• service.objectClass - (Str ing[]) The User Admin service's object class (which must include

org.osgi .service.useradmin.UserAdmin)
• service.pid - (Str ing) The User Admin service's persistent identity

107.6 Security
The User Admin service is related to the security model of the OSGi framework, but is complemen-
tary to the [1] The Java Security Architecture for JDK 1.2. The final permission of most code should be
the intersection of the Java 2 Permissions, which are based on the code that is executing, and the
User Admin service authorization, which is based on the user for whom the code runs.

107.6.1 User Admin Permission
The User Admin service defines the UserAdminPermission class that can be used to restrict bundles
in accessing credentials. This permission class has the following actions:

• changeProperty - This permission is required to modify properties. The name of the permission
is the prefix of the property name.

• changeCredential - This action permits changing credentials. The name of the permission is the
prefix of the name of the credential.

• getCredential - This action permits getting credentials. The name of the permission is the prefix
of the credential.

If the name of the permission is "admin" , it allows the owner to administer the repository. No action
is associated with the permission in that case.

User Admin Service Specification Version 1.1 Relation to JAAS

OSGi Compendium Release 8 Page 187

Otherwise, the permission name is used to match the property name. This name may end with a
".*" string to indicate a wildcard. For example, com.acme.* matches com.acme.fudd.elmer and
com.acme.bugs .

107.7 Relation to JAAS
At a glance, the Java Authorization and Authentication Service (JAAS) seems to be a very suitable
model for user administration. The OSGi organization, however, decided to develop an independent
User Admin service because JAAS was not deemed applicable. The reasons for this include depen-
dency on Java SE version 1.3 ("JDK 1.3") and existing mechanisms in the previous OSGi Service Gate-
way 1.0 specification.

107.7.1 JDK 1.3 Dependencies
The authorization component of JAAS relies on the java.security.DomainCombiner interface, which
provides a means to dynamically update the Protect ionDomain objects affiliated with an Access-
ControlContext object.

This interface was added in JDK 1.3. In the context of JAAS, the SubjectDomainCombiner object,
which implements the DomainCombiner interface, is used to update Protect ionDomain objects. The
permissions of Protect ionDomain objects depend on where code came from and who signed it, with
permissions based on who is running the code.

Leveraging JAAS would have resulted in user-based access control on the OSGi framework being
available only with JDK 1.3, which was not deemed acceptable.

107.7.2 Existing OSGi Mechanism
JAAS provides a plugable authentication architecture, which enables applications and their under-
lying authentication services to remain independent from each other.

The Http Service already provides a similar feature by allowing servlet and resource registrations to
be supported by an HttpContext object, which uses a callback mechanism to perform any required
authentication checks before granting access to the servlet or resource. This way, the registering
bundle has complete control on a per-servlet and per-resource basis over which authentication pro-
tocol to use, how the credentials presented by the remote requester are to be validated, and who
should be granted access to the servlet or resource.

107.7.3 Future Road Map
In the future, the main barrier of 1.3 compatibility will be removed. JAAS could then be implement-
ed in an OSGi environment. At that time, the User Admin service will still be needed and will pro-
vide complementary services in the following ways:

• The authorization component relies on group membership information to be stored and man-
aged outside JAAS. JAAS does not manage persistent information, so the User Admin service can
be a provider of group information when principals are assigned to a Subject object.

• The authorization component allows for credentials to be collected and verified, but a repository
is needed to actually validate the credentials.

In the future, the User Admin service can act as the back-end database to JAAS. The only aspect JAAS
will remove from the User Admin service is the need for the Authorizat ion interface.

107.8 org.osgi.service.useradmin

org.osgi.service.useradmin User Admin Service Specification Version 1.1

Page 188 OSGi Compendium Release 8

User Admin Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.useradmin; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.useradmin; vers ion="[1.1 ,1 .2)"

107.8.1 Summary

• Authorizat ion - The Authorizat ion interface encapsulates an authorization context on which
bundles can base authorization decisions, where appropriate.

• Group - A named grouping of roles (Role objects).
• Role - The base interface for Role objects managed by the User Admin service.
• User - A User role managed by a User Admin service.
• UserAdmin - This interface is used to manage a database of named Role objects, which can be

used for authentication and authorization purposes.
• UserAdminEvent - Role change event.
• UserAdminListener - Listener for UserAdminEvents.
• UserAdminPermission - Permission to configure and access the Role objects managed by a User

Admin service.

107.8.2 public interface Authorization
The Authorizat ion interface encapsulates an authorization context on which bundles can base au-
thorization decisions, where appropriate.

Bundles associate the privilege to access restricted resources or operations with roles. Before granti-
ng access to a restricted resource or operation, a bundle will check if the Authorizat ion object passed
to it possess the required role, by calling its hasRole method.

Authorization contexts are instantiated by calling the UserAdmin.getAuthorization(User) method.

Trusting Authorization objects

There are no restrictions regarding the creation of Authorizat ion objects. Hence, a service must on-
ly accept Authorizat ion objects from bundles that has been authorized to use the service using code
based (or Java 2) permissions.

In some cases it is useful to use ServicePermission to do the code based access control. A service bas-
ing user access control on Authorizat ion objects passed to it, will then require that a calling bundle
has the ServicePermission to get the service in question. This is the most convenient way. The OSGi
environment will do the code based permission check when the calling bundle attempts to get the
service from the service registry.

Example: A servlet using a service on a user's behalf. The bundle with the servlet must be given the
ServicePermission to get the Http Service.

However, in some cases the code based permission checks need to be more fine-grained. A service
might allow all bundles to get it, but require certain code based permissions for some of its methods.

Example: A servlet using a service on a user's behalf, where some service functionality is open to
anyone, and some is restricted by code based permissions. When a restricted method is called (e.g.,
one handing over an Authorizat ion object), the service explicitly checks that the calling bundle has
permission to make the call.

User Admin Service Specification Version 1.1 org.osgi.service.useradmin

OSGi Compendium Release 8 Page 189

No Implement Consumers of this API must not implement this interface

107.8.2.1 public String getName()

□ Gets the name of the User that this Authorizat ion context was created for.

Returns The name of the User object that this Authorizat ion context was created for, or nul l if no user was
specified when this Authorizat ion context was created.

107.8.2.2 public String[] getRoles()

□ Gets the names of all roles implied by this Authorizat ion context.

Returns The names of all roles implied by this Authorizat ion context, or nul l if no roles are in the context.
The predefined role user.anyone will not be included in this list.

107.8.2.3 public boolean hasRole(String name)

name The name of the role to check for.

□ Checks if the role with the specified name is implied by this Authorizat ion context.

Bundles must define globally unique role names that are associated with the privilege of accessing
restricted resources or operations. Operators will grant users access to these resources, by creating a
Group object for each role and adding User objects to it.

Returns true if this Authorizat ion context implies the specified role, otherwise fa lse .

107.8.3 public interface Group
extends User
A named grouping of roles (Role objects).

Whether or not a given Authorizat ion context implies a Group object depends on the members of
that Group object.

A Group object can have two kinds of members: basic and required . A Group object is implied by an
Authorizat ion context if all of its required members are implied and at least one of its basic members
is implied.

A Group object must contain at least one basic member in order to be implied. In other words, a
Group object without any basic member roles is never implied by any Authorizat ion context.

A User object always implies itself.

No loop detection is performed when adding members to Group objects, which means that it is pos-
sible to create circular implications. Loop detection is instead done when roles are checked. The se-
mantics is that if a role depends on itself (i.e., there is an implication loop), the role is not implied.

The rule that a Group object must have at least one basic member to be implied is motivated by the
following example:

 group foo
 required members: marketing
 basic members: alice, bob

Privileged operations that require membership in "foo" can be performed only by "alice" and "bob",
who are in marketing.

If "alice" and "bob" ever transfer to a different department, anybody in marketing will be able to as-
sume the "foo" role, which certainly must be prevented. Requiring that "foo" (or any Group object for
that matter) must have at least one basic member accomplishes that.

org.osgi.service.useradmin User Admin Service Specification Version 1.1

Page 190 OSGi Compendium Release 8

However, this would make it impossible for a Group object to be implied by just its required mem-
bers. An example where this implication might be useful is the following declaration: "Any citizen
who is an adult is allowed to vote." An intuitive configuration of "voter" would be:

 group voter
 required members: citizen, adult
 basic members:

However, according to the above rule, the "voter" role could never be assumed by anybody, since
it lacks any basic members. In order to address this issue a predefined role named "user.anyone"
can be specified, which is always implied. The desired implication of the "voter" group can then be
achieved by specifying "user.anyone" as its basic member, as follows:

 group voter
 required members: citizen, adult
 basic members: user.anyone

No Implement Consumers of this API must not implement this interface

107.8.3.1 public boolean addMember(Role role)

role The role to add as a basic member.

□ Adds the specified Role object as a basic member to this Group object.

Returns true if the given role could be added as a basic member, and fa lse if this Group object already con-
tains a Role object whose name matches that of the specified role.

Throws SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion with name admin .

107.8.3.2 public boolean addRequiredMember(Role role)

role The Role object to add as a required member.

□ Adds the specified Role object as a required member to this Group object.

Returns true if the given Role object could be added as a required member, and fa lse if this Group object al-
ready contains a Role object whose name matches that of the specified role.

Throws SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion with name admin .

107.8.3.3 public Role[] getMembers()

□ Gets the basic members of this Group object.

Returns The basic members of this Group object, or nul l if this Group object does not contain any basic mem-
bers.

107.8.3.4 public Role[] getRequiredMembers()

□ Gets the required members of this Group object.

Returns The required members of this Group object, or nul l if this Group object does not contain any required
members.

107.8.3.5 public boolean removeMember(Role role)

role The Role object to remove from this Group object.

□ Removes the specified Role object from this Group object.

User Admin Service Specification Version 1.1 org.osgi.service.useradmin

OSGi Compendium Release 8 Page 191

Returns true if the Role object could be removed, otherwise fa lse .

Throws SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion with name admin .

107.8.4 public interface Role
The base interface for Role objects managed by the User Admin service.

This interface exposes the characteristics shared by all Role classes: a name, a type, and a set of prop-
erties.

Properties represent public information about the Role object that can be read by anyone. Specific
UserAdminPermission objects are required to change a Role object's properties.

Role object properties are Dictionary objects. Changes to these objects are propagated to the User Ad-
min service and made persistent.

Every User Admin service contains a set of predefined Role objects that are always present
and cannot be removed. All predefined Role objects are of type ROLE . This version of the
org.osgi .service.useradmin package defines a single predefined role named "user.anyone", which is
inherited by any other role. Other predefined roles may be added in the future. Since "user.anyone"
is a Role object that has properties associated with it that can be read and modified. Access to these
properties and their use is application specific and is controlled using UserAdminPermission in the
same way that properties for other Role objects are.

No Implement Consumers of this API must not implement this interface

107.8.4.1 public static final int GROUP = 2

The type of a Group role.

The value of GROUP is 2.

107.8.4.2 public static final int ROLE = 0

The type of a predefined role.

The value of ROLE is 0.

107.8.4.3 public static final int USER = 1

The type of a User role.

The value of USER is 1.

107.8.4.4 public static final String USER_ANYONE = "user.anyone"

The name of the predefined role, user.anyone, that all users and groups belong to.

Since 1.1

107.8.4.5 public String getName()

□ Returns the name of this role.

Returns The role's name.

107.8.4.6 public Dictionary<String, Object> getProperties()

□ Returns a Dictionary of the (public) properties of this Role object. Any changes to the returned Dic-
t ionary will change the properties of this Role object. This will cause a UserAdminEvent object of
type UserAdminEvent.ROLE_CHANGED to be broadcast to any UserAdminListener objects.

Only objects of type Str ing may be used as property keys, and only objects of type Str ing or byte[]
may be used as property values. Any other types will cause an exception of type I l legalArgumentEx-
ception to be raised.

org.osgi.service.useradmin User Admin Service Specification Version 1.1

Page 192 OSGi Compendium Release 8

In order to add, change, or remove a property in the returned Dictionary , a UserAdminPermission
named after the property name (or a prefix of it) with action changeProperty is required.

Returns Dictionary containing the properties of this Role object.

107.8.4.7 public int getType()

□ Returns the type of this role.

Returns The role's type.

107.8.5 public interface User
extends Role
A User role managed by a User Admin service.

In this context, the term "user" is not limited to just human beings. Instead, it refers to any entity
that may have any number of credentials associated with it that it may use to authenticate itself.

In general, User objects are associated with a specific User Admin service (namely the one that creat-
ed them), and cannot be used with other User Admin services.

A User object may have credentials (and properties, inherited from the Role class) associated with it.
Specific UserAdminPermission objects are required to read or change a User object's credentials.

Credentials are Dictionary objects and have semantics that are similar to the properties in the Role
class.

No Implement Consumers of this API must not implement this interface

107.8.5.1 public Dictionary<String, Object> getCredentials()

□ Returns a Dictionary of the credentials of this User object. Any changes to the returned Dictionary
object will change the credentials of this User object. This will cause a UserAdminEvent object of
type UserAdminEvent.ROLE_CHANGED to be broadcast to any UserAdminListeners objects.

Only objects of type Str ing may be used as credential keys, and only objects of type Str ing or of type
byte[] may be used as credential values. Any other types will cause an exception of type I l legalArgu-
mentException to be raised.

In order to retrieve a credential from the returned Dictionary object, a UserAdminPermission named
after the credential name (or a prefix of it) with action getCredential is required.

In order to add or remove a credential from the returned Dictionary object, a UserAdminPermission
named after the credential name (or a prefix of it) with action changeCredential is required.

Returns Dictionary object containing the credentials of this User object.

107.8.5.2 public boolean hasCredential(String key, Object value)

key The credential key .

value The credential value .

□ Checks to see if this User object has a credential with the specified key set to the specified value .

If the specified credential value is not of type Str ing or byte[] , it is ignored, that is, fa lse is returned
(as opposed to an I l legalArgumentException being raised).

Returns true if this user has the specified credential; fa lse otherwise.

Throws SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion named after the credential key (or a prefix of it) with action getCredential .

User Admin Service Specification Version 1.1 org.osgi.service.useradmin

OSGi Compendium Release 8 Page 193

107.8.6 public interface UserAdmin
This interface is used to manage a database of named Role objects, which can be used for authentica-
tion and authorization purposes.

This version of the User Admin service defines two types of Role objects: "User" and "Group". Each
type of role is represented by an int constant and an interface. The range of positive integers is re-
served for new types of roles that may be added in the future. When defining proprietary role types,
negative constant values must be used.

Every role has a name and a type.

A User object can be configured with credentials (e.g., a password) and properties (e.g., a street ad-
dress, phone number, etc.).

A Group object represents an aggregation of User and Group objects. In other words, the members of
a Group object are roles themselves.

Every User Admin service manages and maintains its own namespace of Role objects, in which each
Role object has a unique name.

No Implement Consumers of this API must not implement this interface

107.8.6.1 public Role createRole(String name, int type)

name The name of the Role object to create.

type The type of the Role object to create. Must be either a Role.USER type or Role.GROUP type.

□ Creates a Role object with the given name and of the given type.

If a Role object was created, a UserAdminEvent object of type UserAdminEvent.ROLE_CREATED is
broadcast to any UserAdminListener object.

Returns The newly created Role object, or nul l if a role with the given name already exists.

Throws I l legalArgumentException– if type is invalid.

SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion with name admin .

107.8.6.2 public Authorization getAuthorization(User user)

user The User object to create an Authorizat ion object for, or nul l for the anonymous user.

□ Creates an Authorizat ion object that encapsulates the specified User object and the Role objects it
possesses. The nul l user is interpreted as the anonymous user. The anonymous user represents a user
that has not been authenticated. An Authorizat ion object for an anonymous user will be unnamed,
and will only imply groups that user.anyone implies.

Returns the Authorizat ion object for the specified User object.

107.8.6.3 public Role getRole(String name)

name The name of the Role object to get.

□ Gets the Role object with the given name from this User Admin service.

Returns The requested Role object, or nul l if this User Admin service does not have a Role object with the giv-
en name .

107.8.6.4 public Role[] getRoles(String filter) throws InvalidSyntaxException

filter The filter criteria to match.

□ Gets the Role objects managed by this User Admin service that have properties matching the speci-
fied LDAP filter criteria. See org.osgi .f ramework.Fi l ter for a description of the filter syntax. If a nul l
filter is specified, all Role objects managed by this User Admin service are returned.

org.osgi.service.useradmin User Admin Service Specification Version 1.1

Page 194 OSGi Compendium Release 8

Returns The Role objects managed by this User Admin service whose properties match the specified filter
criteria, or all Role objects if a nul l filter is specified. If no roles match the filter, nul l will be returned.

Throws Inval idSyntaxException– If the filter is not well formed.

107.8.6.5 public User getUser(String key, String value)

key The property key to look for.

value The property value to compare with.

□ Gets the user with the given property key -value pair from the User Admin service database. This is a
convenience method for retrieving a User object based on a property for which every User object is
supposed to have a unique value (within the scope of this User Admin service), such as for example
a X.500 distinguished name.

Returns A matching user, if exactly one is found. If zero or more than one matching users are found, nul l is re-
turned.

107.8.6.6 public boolean removeRole(String name)

name The name of the Role object to remove.

□ Removes the Role object with the given name from this User Admin service and all groups it is a
member of.

If the Role object was removed, a UserAdminEvent object of type UserAdminEvent.ROLE_REMOVED
is broadcast to any UserAdminListener object.

Returns true If a Role object with the given name is present in this User Admin service and could be re-
moved, otherwise fa lse .

Throws SecurityException– If a security manager exists and the caller does not have the UserAdminPermis-
sion with name admin .

107.8.7 public class UserAdminEvent
Role change event.

UserAdminEvent objects are delivered asynchronously to any UserAdminListener objects when a
change occurs in any of the Role objects managed by a User Admin service.

A type code is used to identify the event. The following event types are defined: ROLE_CREATED
type, ROLE_CHANGED type, and ROLE_REMOVED type. Additional event types may be defined in
the future.

See Also UserAdmin, UserAdminListener

107.8.7.1 public static final int ROLE_CHANGED = 2

A Role object has been modified.

The value of ROLE_CHANGED is 0x00000002.

107.8.7.2 public static final int ROLE_CREATED = 1

A Role object has been created.

The value of ROLE_CREATED is 0x00000001.

107.8.7.3 public static final int ROLE_REMOVED = 4

A Role object has been removed.

The value of ROLE_REMOVED is 0x00000004.

User Admin Service Specification Version 1.1 org.osgi.service.useradmin

OSGi Compendium Release 8 Page 195

107.8.7.4 public UserAdminEvent(ServiceReference<UserAdmin> ref, int type, Role role)

ref The ServiceReference object of the User Admin service that generated this event.

type The event type.

role The Role object on which this event occurred.

□ Constructs a UserAdminEvent object from the given ServiceReference object, event type, and Role
object.

107.8.7.5 public Role getRole()

□ Gets the Role object this event was generated for.

Returns The Role object this event was generated for.

107.8.7.6 public ServiceReference<UserAdmin> getServiceReference()

□ Gets the ServiceReference object of the User Admin service that generated this event.

Returns The User Admin service's ServiceReference object.

107.8.7.7 public int getType()

□ Returns the type of this event.

The type values are ROLE_CREATED type, ROLE_CHANGED type, and ROLE_REMOVED type.

Returns The event type.

107.8.8 public interface UserAdminListener
Listener for UserAdminEvents.

UserAdminListener objects are registered with the Framework service registry and notified with a
UserAdminEvent object when a Role object has been created, removed, or modified.

UserAdminListener objects can further inspect the received UserAdminEvent object to determine its
type, the Role object it occurred on, and the User Admin service that generated it.

See Also UserAdmin, UserAdminEvent

107.8.8.1 public void roleChanged(UserAdminEvent event)

event The UserAdminEvent object.

□ Receives notification that a Role object has been created, removed, or modified.

107.8.9 public final class UserAdminPermission
extends BasicPermission
Permission to configure and access the Role objects managed by a User Admin service.

This class represents access to the Role objects managed by a User Admin service and their proper-
ties and credentials (in the case of User objects).

The permission name is the name (or name prefix) of a property or credential. The naming con-
vention follows the hierarchical property naming convention. Also, an asterisk may appear
at the end of the name, following a ".", or by itself, to signify a wildcard match. For example:
"org.osgi.security.protocol.*" or "*" is valid, but "*protocol" or "a*b" are not valid.

The UserAdminPermission with the reserved name "admin" represents the permission required for
creating and removing Role objects in the User Admin service, as well as adding and removing mem-
bers in a Group object. This UserAdminPermission does not have any actions associated with it.

org.osgi.service.useradmin User Admin Service Specification Version 1.1

Page 196 OSGi Compendium Release 8

The actions to be granted are passed to the constructor in a string containing a list of one or more
comma-separated keywords. The possible keywords are: changeProperty ,changeCredential , and
getCredential . Their meaning is defined as follows:

 action
 changeProperty Permission to change (i.e., add and remove)
 Role object properties whose names start with
 the name argument specified in the constructor.
 changeCredential Permission to change (i.e., add and remove)
 User object credentials whose names start
 with the name argument specified in the constructor.
 getCredential Permission to retrieve and check for the
 existence of User object credentials whose names
 start with the name argument specified in the
 constructor.

The action string is converted to lowercase before processing.

Following is a PermissionInfo style policy entry which grants a user administration bundle a num-
ber of UserAdminPermission object:

 (org.osgi.service.useradmin.UserAdminPermission "admin")
 (org.osgi.service.useradmin.UserAdminPermission "com.foo.*"
 "changeProperty,getCredential,changeCredential")
 (org.osgi.service.useradmin.UserAdminPermission "user.*"
 "changeProperty,changeCredential")

The first permission statement grants the bundle the permission to perform any User Admin service
operations of type "admin", that is, create and remove roles and configure Group objects.

The second permission statement grants the bundle the permission to change any properties as well
as get and change any credentials whose names start with com.foo. .

The third permission statement grants the bundle the permission to change any properties and cre-
dentials whose names start with user. . This means that the bundle is allowed to change, but not re-
trieve any credentials with the given prefix.

The following policy entry empowers the Http Service bundle to perform user authentication:

 grant codeBase "${jars}http.jar" {
 permission org.osgi.service.useradmin.UserAdminPermission
 "user.password", "getCredential";
 };

The permission statement grants the Http Service bundle the permission to validate any password
credentials (for authentication purposes), but the bundle is not allowed to change any properties or
credentials.

Concurrency Thread-safe

107.8.9.1 public static final String ADMIN = "admin"

The permission name "admin".

107.8.9.2 public static final String CHANGE_CREDENTIAL = "changeCredential"

The action string "changeCredential".

107.8.9.3 public static final String CHANGE_PROPERTY = "changeProperty"

The action string "changeProperty".

User Admin Service Specification Version 1.1 org.osgi.service.useradmin

OSGi Compendium Release 8 Page 197

107.8.9.4 public static final String GET_CREDENTIAL = "getCredential"

The action string "getCredential".

107.8.9.5 public UserAdminPermission(String name, String actions)

name the name of this UserAdminPermission

actions the action string.

□ Creates a new UserAdminPermission with the specified name and actions. name is either
the reserved string "admin" or the name of a credential or property, and actions contains
a comma-separated list of the actions granted on the specified name. Valid actions are
changeProperty ,changeCredential , and getCredential.

Throws I l legalArgumentException– If name equals "admin" and actions are specified.

107.8.9.6 public boolean equals(Object obj)

obj the object to be compared for equality with this object.

□ Checks two UserAdminPermission objects for equality. Checks that obj is a UserAdminPermission ,
and has the same name and actions as this object.

Returns true if obj is a UserAdminPermission object, and has the same name and actions as this UserAdmin-
Permission object.

107.8.9.7 public String getActions()

□ Returns the canonical string representation of the actions, separated by comma.

Returns the canonical string representation of the actions.

107.8.9.8 public int hashCode()

□ Returns the hash code value for this object.

Returns A hash code value for this object.

107.8.9.9 public boolean implies(Permission p)

p the permission to check against.

□ Checks if this UserAdminPermission object "implies" the specified permission.

More specifically, this method returns true if:

• p is an instanceof UserAdminPermission ,
• p's actions are a proper subset of this object's actions, and
• p's name is implied by this object's name. For example, "java.*" implies "java.home".

Returns true if the specified permission is implied by this object; fa lse otherwise.

107.8.9.10 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object for storing UserAdminPermission objects.

Returns a new PermissionCol lect ion object suitable for storing UserAdminPermission objects.

107.8.9.11 public String toString()

□ Returns a string describing this UserAdminPermission object. This string must be in PermissionInfo
encoded format.

References User Admin Service Specification Version 1.1

Page 198 OSGi Compendium Release 8

Returns The PermissionInfo encoded string for this UserAdminPermission object.

See Also org.osgi .service.permissionadmin.PermissionInfo.getEncoded()

107.9 References

[1] The Java Security Architecture for JDK 1.2
Version 1.0, Sun Microsystems, October 1998

[2] Java Authentication and Authorization Service
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

Wire Admin Service Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 199

108 Wire Admin Service Specification

Version 1.0

108.1 Introduction
The Wire Admin service is an administrative service that is used to control a wiring topology in the
OSGi Framework. It is intended to be used by user interfaces or management programs that control
the wiring of services in an OSGi Framework.

The Wire Admin service plays a crucial role in minimizing the amount of context-specific knowl-
edge required by bundles when used in a large array of configurations. The Wire Admin service ful-
fills this role by dynamically wiring services together. Bundles participate in this wiring process by
registering services that produce or consume data. The Wire Admin service wires the services that
produce data to services which consume data.

The purpose of wiring services together is to allow configurable cooperation of bundles in an OSGi
Framework. For example, a temperature sensor can be connected to a heating module to provide a
controlled system.

The Wire Admin service is a very important OSGi configuration service and is designed to cooperate
closely with the Configuration Admin service, as defined in Configuration Admin Service Specification
on page 81.

108.1.1 Wire Admin Service Essentials

• Topology Management - Provide a comprehensive mechanism to link data-producing components
with data-consuming components in an OSGi environment.

• Configuration Management - Contains configuration data in order to allow either party to adapt to
the special needs of the wire.

• Data Type Handling - Facilitate the negotiation of the data type to be used for data transfer be-
tween producers of data and consumers of data. Consumers and producers must be able to han-
dle multiple data types for data exchanges using a preferred order.

• Composites - Support producers and consumers that can handle a large number of data items.
• Security - Separate connected parties from each other. Each party must not be required to hold the

service object of the other party.
• Simplicity - The interfaces should be designed so that both parties, the Producer and the Con-

sumer services, should be easy to implement.

108.1.2 Wire Admin Service Entities

• Producer - A service object that generates information to be used by a Consumer service.
• Consumer - A service object that receives information generated by a Producer service.
• Wire - An object created by the Wire Admin service that defines an association between a Produc-

er service and a Consumer service. Multiple Wire objects can exist between the same Producer
and Consumer pair.

• WireAdmin - The service that provides methods to create, update, remove, and list Wire objects.
• WireAdminListener - A service that receives events from the Wire Admin service when the Wire

object is manipulated or used.

Introduction Wire Admin Service Specification Version 1.0

Page 200 OSGi Compendium Release 8

• WireAdminEvent - The event that is sent to a WireAdminListener object, describing the details of
what happened.

• Configuration Properties - Properties that are associated with a Wire object and that contain identi-
ty and configuration information set by the administrator of the Wire Admin service.

• PID - The Persistent IDentity as defined in the Configuration Admin specification.
• Flavors - The different data types that can be used to exchange information between Producer

and Consumer services.
• Composite Producer/Consumer - A Producer/Consumer service that can generate/accept different

kinds of values.
• Envelope - An interface for objects that can identify a value that is transferred over the wire. Enve-

lope objects contain also a scope name that is used to verify access permissions.
• Scope - A set of names that categorizes the kind of values contained in Envelope objects for securi-

ty and selection purposes.
• Basic Envelope - A concrete implementation of the Envelope interface.
• WirePermission - A Permission sub-class that is used to verify if a Consumer service or Producer

service has permission for specific scope names.
• Composite Identity - A name that is agreed between a composite Consumer and Producer service to

identify the kind of objects that they can exchange.

Wire Admin Service Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 201

Figure 108.1 Class Diagram, org.osgi.service.wireadmin

0,1

0..*

poll

<<interface>>
Wire

<<interface>>
Wire Admin

<<interface>>
Consumer

1 maintains

<<interface>>
Producer

Wire Admin
Event

<<interface>>
Wire Admin
Listener

Wire Admin impl.

Producer impl. Consumer impl.Wire Admin
Listener impl.

Wire impl
(persistent)

0..*

listens to

sends out events

Administrating UI

adm
inisters

0..*

0,10..*

1

<<interface>>
Envelope

Basic
Envelope

polled

scope
security check

Wire
Permission

verify scope

java.security.
BasicPermission

up
da

te

up
da

te
d

108.1.3 Operation Summary
The Wire Admin service maintains a set of persistent Wire objects. A Wire object contains a Persis-
tent IDentity (PID) for a Consumer service and a PID for a Producer service. (Wire objects can there-
fore be created when the Producer or Consumer service is not registered.)

If both those Producer and Consumer services are registered with the Framework, they are connect-
ed by the Wire Admin service. The Wire Admin service calls a method on each service object and
provides the list of Wire objects to which they are connected.

When a Producer service has new information, it should send this information to each of the con-
nected Wire objects. Each Wire object then must check the filtering and security. If both filtering
and security allow the transfer, the Producer service should inform the associated Consumer service
with the new information. The Consumer services can also poll a Wire object for an new value at
any time.

When a Consumer or Producer service is unregistered from the OSGi Framework, the other object
in the association is informed that the Wire object is no longer valid.

Producer Service Wire Admin Service Specification Version 1.0

Page 202 OSGi Compendium Release 8

Administrative applications can use the Wire Admin service to create and delete wires. These
changes are immediately reflected in the current topology and are broadcast to Wire Admin Listen-
er services.

Figure 108.2 An Example Wiring Scheme in an OSGi Environment

Producer

Consumer

Bundle

Wire object

Actuator

Sensor

External conn.

External source

converter

108.2 Producer Service
A Producer is a service that can produce a sequence of data objects. For example, a Producer service
can produce, among others, the following type of objects:

• Measurement objects that represent a sensor measurement such as temperature, movement, or
humidity.

• A Str ing object containing information for user consumption, such as headlines.
• A Date object indicating the occurrence of a periodic event.
• Position information.
• Envelope objects containing status items which can be any type.

108.2.1 Producer Properties
A Producer service must be registered with the OSGi Framework under the interface name
org.osgi .service.wireadmin.Producer . The following service properties must be set:

• service.pid - The value of this property, also known as the PID, defines the Persistent IDentity of
a service. A Producer service must always use the same PID value whenever it is registered. The
PID value allows the Wire Admin service to consistently identify the Producer service and create
a persistent Wire object that links a Producer service to a Consumer service. See [1] Design Patterns
specification for the rules regarding PIDs.

• wireadmin.producer.f lavors - The value of this property is an array of Class objects (Class[]) that
are the classes of the objects the service can produce. See Flavors on page 214 for more infor-
mation about the data type negotiation between Producer and Consumer services.

• wireadmin.producer.f i l ters - This property indicates to the Wire Admin service that this Produc-
er service performs its own update filtering, meaning that the consumer can limit the number of
update calls with a filter expression. This does not modify the data; it only determines whether
an update via the wire occurs. If this property is not set, the Wire object must filter according to

Wire Admin Service Specification Version 1.0 Producer Service

OSGi Compendium Release 8 Page 203

the description in Composite objects on page 208. This service registration property does not
need to have a specific value.

• wireadmin.producer.scope - Only for a composite Producer service, a list of scope names that de-
fine the scope of this Producer service, as explained in Scope on page 209.

• wireadmin.producer.composite - List the composite identities of Consumer services with which
this Producer service can interoperate. This property is of type Str ing[] . A composite Consumer
service can inter-operate with a composite Producer service when there is at least one name that
occurs in both the Consumer service's array and the Producer service's array for this property.

108.2.2 Connections
The Wire Admin service connects a Producer service and a Consumer service by creating a Wire
object. If the Consumer and Producer services that are bound to a Wire object are registered with
the Framework, the Wire Admin service must call the consumersConnected(Wire[]) method on
the Producer service object. Every change in the Wire Admin service that affects the Wire object
to which a Producer service is connected must result in a call to this method. This requirement
ensures that the Producer object is informed of its role in the wiring topology. If the Producer ser-
vice has no Wire objects attached when it is registered, the Wire Admin service must always call
consumersConnected(nul l) . This situation implies that a Producer service can assume it always gets
called back from the Wire Admin service when it registers.

108.2.3 Producer Example
The following example shows a clock producer service that sends out a Date object every second.

public class Clock extends Thread implementsProducer {
 Wire wires[];
 BundleContext context;
 boolean quit;

 Clock(BundleContext context) {
 this.context = context;
 start();
 }
 public synchronized void run() {
 Hashtable p = new Hashtable();
 p.put(org.osgi.service.wireadmin.WireConstants.
 WIREADMIN_PRODUCER_FLAVORS,
 new Class[] { Date.class });
 p.put(org.osgi.framework.Constants.SERVICE_PID,
 "com.acme.clock");
 context.registerService(
 Producer.class.getName(),this,p);

 while(! quit)
 try {
 Date now = new Date();
 for(int i=0; wires!=null && i<wires.length;i++)
 wires[i].update(now);
 wait(1000);
 }
 catch(InterruptedException ie) {
 /* will recheck quit */
 }
 }
 public void synchronized consumersConnected(Wire wires[])

Consumer Service Wire Admin Service Specification Version 1.0

Page 204 OSGi Compendium Release 8

 {
 this.wires = wires;
 }
 public Object polled(Wire wire) { return new Date(); }
 ...
}

108.2.4 Push and Pull
Communication between Consumer and Producer services can be initiated in one of the following
ways.

• The Producer service calls the update(Object) method on the Wire object. The Wire object imple-
mentation must then call the updated(Wire,Object) method on the Consumer service, if the fil-
tering allows this.

• The Consumer service can call pol l() on the Wire object. The Wire object must then call
pol led(Wire) on the Producer object. Update filtering must not apply to polling.

108.2.5 Producers and Flavors
Consumer services can only understand specific data types, and are therefore restricted in what da-
ta they can process. The acceptable object classes, the flavors, are communicated by the Consumer
service to the Wire Admin service using the Consumer service's service registration properties. The
method getFlavors() on the Wire object returns this list of classes. This list is an ordered list in which
the first class is the data type that is the most preferred data type supported by the Consumer ser-
vice. The last class is the least preferred data type. The Producer service must attempt to convert
its data into one of the data types according to the preferred order, or will return nul l from the pol l
method to the Consumer service if none of the types are recognized.

Classes cannot be easily compared for equivalence. Sub-classes and interfaces allow classes to mas-
querade as other classes. The Class. isAssignableFrom(Class) method verifies whether a class is type
compatible, as in the following example:

Object polled(Wire wire) {
 Class clazzes[] = wire.getFlavors();
 for (int i=0; i<clazzes.length; i++) {
 Class clazz = clazzes[i];
 if (clazz.isAssignableFrom(Date.class))
 return new Date();
 if (clazz.isAssignableFrom(String.class))
 return new Date().toString();
 }
 return null;
}

The order of the i f statements defines the preferences of the Producer object. Preferred data types
are checked first. This order normally works as expected but in rare cases, sub-classes can change it.
Normally, however, that is not a problem.

108.3 Consumer Service
A Consumer service is a service that receives information from one or more Producer services and is
wired to Producer services by the Wire Admin service. Typical Consumer services are as follows:

• The control of an actuator, such as a heating element, oven, or electric shades
• A display

Wire Admin Service Specification Version 1.0 Consumer Service

OSGi Compendium Release 8 Page 205

• A log
• A state controller such as an alarm system

108.3.1 Consumer Properties
A Consumer service must be registered with the OSGi Framework under the interface name
org.osgi .service.wireadmin.Consumer . The following service properties must be set:

• service.pid - The value of this property, also known as the PID, defines the Persistent IDentity of
a service. A Consumer service must always use the same PID value whenever it is registered. The
PID value allows the Wire Admin service to consistently identify the Consumer service and cre-
ate a persistent Wire object that links a Producer service to a Consumer service. See the Configu-
ration Admin specification for the rules regarding PIDs.

• wireadmin.consumer.f lavors - The value of this property is an array of Class objects (Class[]) that
are the acceptable classes of the objects the service can process. See Flavors on page 214 for
more information about the data type negotiation between Producer and Consumer services.

• wireadmin.consumer.scope - Only for a composite Consumer service, a list of scope names that
define the scope of this Consumer service, as explained in Scope on page 209.

• wireadmin.consumer.composite - List the composite identities of Producer services that this
Consumer service can interoperate with. This property is of type Str ing[] . A composite Con-
sumer service can interoperate with a composite Producer service when at least one name occurs
in both the Consumer service's array and the Producer service's array for this property.

108.3.2 Connections
When a Consumer service is registered and a Wire object exists that associates it to a registered Pro-
ducer service, the producersConnected(Wire[]) method is called on the Consumer service.

Every change in the Wire Admin service that affects a Wire object to which a Consumer service is
connected must result in a call to the producersConnected(Wire[]) method. This rule ensures that
the Consumer object is informed of its role in the wiring topology. If the Consumer service has no
Wire objects attached, the argument to the producersConnected(Wire[]) method must be nul l . This
method must also be called when a Producer service registers for the first time and no Wire objects
are available.

108.3.3 Consumer Example
For example, a service can implement a Consumer service that logs all objects that are sent to it in
order to allow debugging of a wiring topology.

public class LogConsumer implements Consumer{
 public LogConsumer(BundleContext context) {
 Hashtable ht = new Hashtable();
 ht.put(
 Constants.SERVICE_PID, "com.acme.logconsumer");
 ht.put(WireConstants.WIREADMIN_CONSUMER_FLAVORS,
 new Class[] { Object.class });
 context.registerService(Consumer.class.getName(),
 this, ht);
 }
 public void updated(Wire wire, Object o) {
 getLog().log(LogService.LOG_INFO, o.toString());
 }
 public void producersConnected(Wire [] wires) {}
 LogService getLog() { ... }
}

Implementation issues Wire Admin Service Specification Version 1.0

Page 206 OSGi Compendium Release 8

108.3.4 Polling or Receiving a Value
When the Producer service produces a new value, it calls the update(Object) method on the Wire
object, which in turn calls the updated(Wire,Object) method on the Consumer service object. When
the Consumer service needs a value immediately, it can call the pol l() method on the Wire object
which in turn calls the pol led(Wire) method on the Producer service.

If the pol l() method on the Wire object is called and the Producer is unregistered, it must return a
nul l value.

108.3.5 Consumers and Flavors
Producer objects send objects of different data types through Wire objects. A Consumer service ob-
ject should offer a list of preferred data types (classes) in its service registration properties. The Pro-
ducer service, however, can still send a nul l object or an object that is not of the preferred types.
Therefore, the Consumer service must check the data type and take the appropriate action. If an ob-
ject type is incompatible, then a log message should be logged to allow the operator to correct the
situation.

The following example illustrates how a Consumer service can handle objects of type Date , Mea-
surement , and Str ing .

void process(Object in) {
 if (in instanceof Date)
 processDate((Date) in);
 else if (in instanceof Measurement)
 processMeasurement((Measurement) in);
 else if (in instanceof String)
 processString((String) in);
 else
 processError(in);
}

108.4 Implementation issues
The Wire Admin service can call the consumersConnected or producersConnected methods during
the registration of the Consumer or Producer service. Care should be taken in this method call so
that no variables are used that are not yet set, such as the ServiceRegistrat ion object that is returned
from the registration. The same is true for the updated or pol led callback because setting the Wire
objects on the Producer service causes such a callback from the consumersConnected or producer-
sConnected method.

A Wire Admin service must call the producersConnected and consumersConnected method asyn-
chronously from the registrations, meaning that the Consumer or Producer service can use synchro-
nized to restrict access to critical variables.

When the Wire Admin service is stopped, it must disconnect all connected consumers and produc-
ers by calling producersConnected and consumersConnected with a nul l for the wires parameter.

108.5 Wire Properties
A Wire object has a set of properties (a Dictionary object) that configure the association between
a Consumer service and a Producer service. The type and usage of the keys, as well as the allowed
types for the values are defined in Configuration Properties on page 88.

The Wire properties are explained in the following table.

Wire Admin Service Specification Version 1.0 Wire Properties

OSGi Compendium Release 8 Page 207

Table 108.1 Standard Wire Properties

Constant Description
WIREADMIN_PID The value of this property is a unique Persistent IDentity

as defined in chapter Configuration Admin Service Specifica-
tion on page 81. This PID must be automatically created by
the Wire Admin service for each new Wire object.

WIREADMIN_PRODUCER_PID The value of the property is the PID of the Producer ser-
vice.

WIREADMIN_CONSUMER_PID The value of this property is the PID of the Consumer ser-
vice.

WIREADMIN_FILTER The value of this property is an OSGi filter string that is
used to control the update of produced values.

This filter can contain a number of attributes as explained
in Wire Flow Control on page 211.

The properties associated with a Wire object are not limited to the ones defined in Table 108.1. The
Dictionary object can also be used for configuring both Consumer services and Producer services.
Both services receive the Wire object and can inspect the properties and adapt their behavior accord-
ingly.

108.5.1 Display Service Example
In the following example, the properties of a Wire object, which are set by the Operator or User, are
used to configure a Producer service that monitors a user's email account regularly and sends a mes-
sage when the user has received email. This WireMai l service is illustrated as follows:

public class WireMail extends Thread
 implements Producer {
 Wire wires[];
 BundleContext context;
 boolean quit;

 public void start(BundleContext context) {
 Hashtable ht = new Hashtable();
 ht.put(Constants.SERVICE_PID, "com.acme.wiremail");
 ht.put(WireConstants.WIREADMIN_PRODUCER_FLAVORS,
 new Class[] { Integer.class });
 context.registerService(this,
 Producer.class.getName(),
 ht);
 }
 public synchronized void consumersConnected(
 Wire wires[]) {
 this.wires = wires;
 }
 public Object polled(Wire wire) {
 Dictionary p = wire.getProperties();
 // The password should be
 // obtained from User Admin Service
 int n = getNrMails(
 p.get("userid"),
 p.get("mailhost"));
 return new Integer(n);

Composite objects Wire Admin Service Specification Version 1.0

Page 208 OSGi Compendium Release 8

 }
 public synchronized void run() {
 while (!quit)
 try {
 for (int i=0; wires != null && i<wires.length;i++)
 wires[i].update(polled(wires[i]));

 wait(150000);
 }
 catch(InterruptedException e) { break; }
 }
 ...
}

108.6 Composite objects
A Producer and/or Consumer service for each information item is usually the best solution. This so-
lution is not feasible, however, when there are hundreds or thousands of information items. Each
registered Consumer or Producer service carries the overhead of the registration, which may over-
whelm a Framework implementation on smaller platforms.

When the size of the platform is an issue, a Producer and a Consumer service should abstract a larg-
er number of information items. These Consumer and Producer services are called composite.

Figure 108.3 Composite Producer Example

wire
multiplexed

Composite Producer and Consumer services should register respectively the
WIREADMIN_PRODUCER_COMPOSITE and WIREADMIN_CONSUMER_COMPOSITE composite identity
property with their service registration. These properties should contain a list of composite identi-
ties. These identities are not defined here, but are up to a mutual agreement between the Consumer
and Producer service. For example, a composite identity could be MOST-1.5 or GSM-Phase2-Termi-
nal . The name may follow any scheme but will usually have some version information embedded.
The composite identity properties are used to match Consumer and Producer services with each
other during configuration of the Wire Admin service. A Consumer and Producer service should in-
ter-operate when at least one equal composite identity is listed in both the Producer and Consumer
composite identity service property.

Composite producers/consumers must identify the kind of objects that are transferred over the Wire
object, where kind refers to the intent of the object, not the data type. For example, a Producer service
can represent the status of a door-lock and the status of a window as a boolean . If the status of the
window is transferred as a boolean to the Consumer service, how would it know that this boolean
represents the window and not the door-lock

To avoid this confusion, the Wire Admin service includes an Envelope interface. The purpose of the
Envelope interface is to associate a value object with:

• An identification object
• A scope name

Wire Admin Service Specification Version 1.0 Composite objects

OSGi Compendium Release 8 Page 209

Figure 108.4 Envelope

<<interface>>
Envelope

Basic
Envelope

Object Stringscope
name

identification

Impl.
identification
object

108.6.1 Identification
The Envelope object's identification object is used to identify the value carried in the Envelope ob-
ject. Each unique kind of value must have its own unique identification object. For example, a left-
front-window should have a different identification object than a rear-window.

The identification is of type Object . Using the Object class allows Str ing objects to be used, but al-
so makes it possible to use more complex objects. These objects can convey information in a way
that is mutually agreed between the Producer and Consumer service. For example, its type may dif-
fer depending on each kind of value so that the Visitor pattern, see [1] Design Patterns, can be used. Or
it may contain specific information that makes the Envelope object easier to dispatch for the Con-
sumer service.

108.6.2 Scope
The scope name is a Str ing object that categorizes the Envelope object. The scope name is used to lim-
it the kind of objects that can be exchanged between composite Producer and Consumer services,
depending on security settings.

The name-space for this scope should be mutually agreed between the Consumer and Producer ser-
vices a priori. For the Wire Admin service, the scope name is an opaque string. Its syntax is specified
in Scope name syntax on page 211.

Both composite Producer and Consumer services must add a list of their supported scope names to
the service registration properties. This list is called the scope of that service. A Consumer service
must add this scope property with the name of WIREADMIN_CONSUMER_SCOPE , a Producer ser-
vice must add this scope property with the name WIREADMIN_PRODUCER_SCOPE . The type of this
property must be a Str ing[] object.

Not registering this property by the Consumer or the Producer service indicates to the Wire Ad-
min service that any Wire object connected to that service must return nul l for the Wire.getScope()
method. This case must be interpreted by the Consumer or Producer service that no scope verifica-
tion is taking place. Secure Producer services should not produce values for this Wire object and se-
cure Consumer services should not accept values.

It is also allowed to register with a wildcard, indicating that all scope names are supported. In that
case, the WIREADMIN_SCOPE_ALL (which is Str ing[] { "*" }) should be registered as the scope of the
service. The Wire object's scope is then fully defined by the other service connected to the Wire ob-
ject.

The following example shows how a scope is registered.

static String [] scope = { "DoorLock", "DoorOpen","VIN" };

public void start(BundleContext context) {
 Dictionary properties = new Hashtable();
 properties.put(
 WireConstants.WIREADMIN_CONSUMER_SCOPE,

Composite objects Wire Admin Service Specification Version 1.0

Page 210 OSGi Compendium Release 8

 scope);
 properties.put(WireConstants.WIREADMIN_CONSUMER_PID,
 "com.acme.composite.consumer");
 properties.put(
 WireConstants.WIREADMIN_CONSUMER_COMPOSITE,
 new String[] { "OSGiSP-R3" });
 context.registerService(Consumer.class.getName(),
 new AcmeConsumer(),
 properties);
}

Both a composite Consumer and Producer service must register a scope to receive scope support
from the Wire object. These two scopes must be converted into a single Wire object's scope and scope
names in this list must be checked for the appropriate permissions. This resulting scope is available
from the Wire.getScope() method.

If no scope is set by either the Producer or the Consumer service the result must be nul l . In that case,
the Producer or Consumer service must assume that no security checking is in place. A secure Con-
sumer or Producer service should then refuse to operate with that Wire object.

Otherwise, the resulting scope is the intersection of the Consumer and Producer service scope
where each name in the scope, called m , must be implied by a WirePermission[m,CONSUME] of the
Consumer service, and WirePermission[m,PRODUCE] of the Producer service.

If either the Producer or Consumer service has registered a wildcard scope then it must not restrict
the list of the other service, except for the permission check. If both the Producer and Consumer ser-
vice registered a wild-card, the resulting list must be WIREADMIN_SCOPE_ALL (Str ing[]{"*"}).

For example, the Consumer service has registered a scope of {A,B,C} and has
WirePermission[*,CONSUME] . The Producer service has registered a scope of {B,C,E} and has
WirePermission[C|E, PRODUCE,] . The resulting scope is then {C} . The following table shows this
and more examples.

Table 108.2 Examples of scope calculation. C=Consumer, P=Producer, p=WirePermission, s=scope

Cs Cp Ps Pp Wire Scope
nul l nul l nul l
{A,B,C} * nul l nul l
nul l {C,D,E} nul l
{A,B,C} B|C {A,B,C} A|B {B}
* * {A,B,C} A|B|C {A,B,C}
* * * * {*}
{A,B,C} A|B|C {A,B,C} X {}
{A,B,C} * {B,C,E} C|E {C}

The Wire object's scope must be calculated only once, when both the Producer and Consumer ser-
vice become connected. When a Producer or Consumer service subsequently modifies its scope,
the Wire object must not modify the original scope. A Consumer and a Produce service can thus as-
sume that the scope does not change after the producersConnected method or consumersConnect-
ed method has been called.

108.6.3 Access Control
When an Envelope object is used as argument in Wire.update(Object) then the Wire object must
verify that the Envelope object's scope name is included in the Wire object's scope. If this is not the
case, the update must be ignored (the updated method on the Consumer service must not be called).

Wire Admin Service Specification Version 1.0 Wire Flow Control

OSGi Compendium Release 8 Page 211

A composite Producer represents a number of values, which is different from a normal Producer
that can always return a single object from the pol l method. A composite Producer must therefore
return an array of Envelope objects (Envelope[]). This array must contain Envelope objects for all
the values that are in the Wire object's scope. It is permitted to return all possible values for the Pro-
ducer because the Wire object must remove all Envelope objects that have a scope name not listed in
the Wire object's scope.

108.6.4 Composites and Flavors
Composite Producer and Consumer services must always use a flavor of the Envelope class. The da-
ta types of the values must be associated with the scope name or identification and mutually agreed
between the Consumer and Producer services.

Flavors and Envelope objects both represent categories of different values. Flavors, however, are dif-
ferent Java classes that represent the same kind of value. For example, the tire pressure of the left
front wheel could be passed as a Float , an Integer , or a Measurement object. Whatever data type is
chosen, it is still the tire pressure of the left front wheel. The Envelope object represents the kind of
object, for example the right front wheel tire pressure, or the left rear wheel.

108.6.5 Scope name syntax
Scope names are normal Str ing objects and can, in principle, contain any Unicode character. In use,
scope names can be a full wildcard ('*') but they cannot be partially wildcarded for matching scopes.

Scope names are used with the WirePermission class that extends java.security.BasicPermission .
The BasicPermission class implements the impl ies method and performs the name matching. The
wildcard matching of this class is based on the concept of names where the constituents of the
name are separated with a period ('.'): for example, org.osgi .service.http.port .

Scope names must therefore follow the rules for fully qualified Java class names. For example,
door. lock is a correct scope name while door-lock is not.

108.7 Wire Flow Control
The WIREADMIN_FILTER property contains a filter expression (as defined in the OSGi Framework
Fi l ter class) that is used to limit the number of updates to the Consumer service. This is necessary
because information can arrive at a much greater rate than can be processed by a Consumer ser-
vice. For example, a single CAN bus (the electronic control bus used in current cars) in a car can eas-
ily deliver hundreds of measurements per second to an OSGi based controller. Most of these mea-
surements are not relevant to the OSGi bundles, at least not all the time. For example, a bundle that
maintains an indicator for the presence of frost is only interested in measurements when the out-
side temperature passes the 4 degrees Celsius mark.

Limiting the number of updates from a Producer service can make a significant difference in perfor-
mance (meaning that less hardware is needed). For example, a vendor can implement the filter in
native code and remove unnecessary updates prior to processing in the Java Virtual Machine (JVM).
This is depicted in Figure 108.5 on page 212.

Wire Flow Control Wire Admin Service Specification Version 1.0

Page 212 OSGi Compendium Release 8

Figure 108.5 Filtering of Updates

ControllerCAN bus

Filter

Actuator

Sensor

Filter from wire properties

Producer Consumer Bundle

Wire object

External connection

Native code

The filter can use any combination of the following attributes in a filter to implement many com-
mon filtering schemes:

Table 108.3 Filter Attribute Names

Constant Description
WIREVALUE_CURRENT Current value of the data from the Producer service.
WIREVALUE_PREVIOUS Previous data value that was reported to the Consumer ser-

vice.
WIREVALUE_DELTA_ABSOLUTE The actual positive difference between the previous data

value and the current data value. For example, if the previ-
ous data value was 3 and the current data value is -0.5, then
the absolute delta is 3.5. This filter attribute is not set when
the current or previous value is not a number.

WIREVALUE_DELTA_RELATIVE The absolute (meaning always positive) relative change be-
tween the current and the previous data values, calculated
with the following formula: |previous-current|/ |current| .
For example, if the previous value was 3 and the new value
is 5, then the relative delta is |3-5|/ |5 | = 0.4 . This filter at-
tribute is not set when the current or previous value is not
a number.

WIREVALUE_ELAPSED The time in milliseconds between the last time the Con-
sumer . updated(Wire,Object) returned and the time the
filter is evaluated.

Filter attributes can be used to implement many common filtering schemes that limit the num-
ber of updates that are sent to a Consumer service. The Wire Admin service specification requires
that updates to a Consumer service are always filtered if the WIREADMIN_FILTER Wire property is
present. Producer services that wish to perform the filtering themselves should register with a ser-
vice property WIREADMIN_PRODUCER_FILTERS . Filtering must be performed by the Wire object for
all other Producer services.

Filtering for composite Producer services is not supported. When a filter is set on a Wire object, the
Wire must still perform the filtering (which is limited to time filtering because an Envelope object
is not a magnitude), but this approach may lose relevant information because the objects are of a dif-
ferent kind. For example, an update of every 500 ms could miss all speed updates because there is a
wheel pressure update that resets the elapsed time. Producer services should, however, still imple-
ment a filtering scheme that could use proprietary attributes to filter on different kind of objects.

Wire Admin Service Specification Version 1.0 Wire Flow Control

OSGi Compendium Release 8 Page 213

108.7.1 Filtering by Time
The simplest filter mechanism is based on time. The wirevalue.elapsed attribute contains the
amount of milliseconds that have passed since the last update to the associated Consumer service.
The following example filter expression illustrates how the updates can be limited to approximate-
ly 40 times per minute (once every 1500 ms).

(wirevalue.elapsed>=1500)

Figure 108.6 depicts this example graphically.

Figure 108.6 Elapsed Time Change

temperature

t

elapsed

n n + 1

update

108.7.2 Filtering by Change
A Consumer service is often not interested in an update if the data value has not changed. The fol-
lowing filter expression shows how a Consumer service can limit the updates from a temperature
sensor to be sent only when the temperature has changed at least 1 °K.

(wirevalue.delta.absolute>=1)

Figure 108.7 depicts a band that is created by the absolute delta between the previous data value and
the current data value. The Consumer is only notified with the updated(Wire,Object) method when
a data value is outside of this band.

Figure 108.7 Absolute Delta

temperature

t

n + 1n

absolute delta band

update

n + 2

The delta may also be relative. For example, if a car is moving slowly, then updates for the speed of
the car are interesting even for small variations. When a car is moving at a high rate of speed, up-
dates are only interesting for larger variations in speed. The following example shows how the up-
dates can be limited to data value changes of at least 10%.

(wirevalue.delta.relative>=0.1)

Figure 108.8 on page 214 depicts a relative band. Notice that the size of the band is directly pro-
portional to the size of the sample value.

Flavors Wire Admin Service Specification Version 1.0

Page 214 OSGi Compendium Release 8

Figure 108.8 Relative Delta (not to scale)

temperature

t

n + 1n

relative delta band

update

108.7.3 Hysteresis
A thermostat is a control device that usually has a hysteresis, which means that a heater should be
switched on below a certain specified low temperature and should be switched off at a specified
high temperature, where high > low. This is graphically depicted in Figure 108.9 on page 214. The
specified acceptable temperatures reduce the amount of start/stops of the heater.

Figure 108.9 Hysteresis

high

low

off

on

temperature
high

temperature
low

A Consumer service that controls the heater is only interested in events at the top and bottom of the
hysteresis. If the specified high value is 250 °K and the specified low value is 249 °K, the following
filter illustrates this concept:

(|(&(wirevalue.previous<=250)(wirevalue.current>250))
 (&(wirevalue.previous>=249)(wirevalue.current<249))
)

108.8 Flavors
Both Consumer and Producer services should register with a property describing the classes of the
data types they can consume or produce respectively. The classes are the flavors that the service sup-
ports. The purpose of flavors is to allow an administrative user interface bundle to connect Con-
sumer and Producer services. Bundles should only create a connection when there is at least one
class shared between the flavors from a Consumer service and a Producer service. Producer services
are responsible for selecting the preferred object type from the list of the object types preferred by
the Consumer service. If the Producer service cannot convert its data to any of the flavors listed by
the Consumer service, nul l should be used instead.

108.9 Converters
A converter is a bundle that registers a Consumer and a Producer service that are related and per-
forms data conversions. Data values delivered to the Consumer service are processed and transferred

Wire Admin Service Specification Version 1.0 Wire Admin Service Implementation

OSGi Compendium Release 8 Page 215

via the related Producer service. The Producer service sends the converted data to other Consumer
services. This is shown in Figure 108.10.

Figure 108.10 Converter (for legend see Figure 108.2)

converter

108.10 Wire Admin Service Implementation
The Wire Admin service is the administrative service that is used to control the wiring topology in
the OSGi Framework. It contains methods to create or update wires, delete wires, and list existing
wires. It is intended to be used by user interfaces or management programs that control the wiring
topology of the OSGi Framework.

The createWire(Str ing,Str ing,Dict ionary) method is used to associate a Producer service with a Con-
sumer service. The method always creates and returns a new object. It is therefore possible to create
multiple, distinct wires between a Producer and a Consumer service. The properties can be used to
create multiple associations between Producer and Consumer services in that act in different ways.

The properties of a Wire object can be updated with the update(Object) method. This method must
update the properties in the Wire object and must notify the associated Consumer and Produc-
er services if they are registered. Wire objects that are no longer needed can be removed with the
deleteWire(Wire) method. All these methods are in the WireAdmin class and not in the Wire class for
security reasons. See Security on page 218.

The getWires(Str ing) method returns an array of Wire objects (or nul l). All objects are returned
when the filter argument is nul l . Specifying a filter argument limits the returned objects. The filter
uses the same syntax as the Framework Filter specification. This filter is applied to the properties of
the Wire object and only Wire objects that match this filter are returned.

The following example shows how the getWires method can be used to print the PIDs of Producer
services that are wired to a specific Consumer service.

String f = "(wireadmin.consumer.pid=com.acme.x)";
Wire [] wires = getWireAdmin().getWires(f);
for (int i=0; wires != null && i < wires.length;i++)
 System.out.println(
 wires[i].getProperties().get(
 "wireadmin.producer.pid")
);

108.11 Wire Admin Listener Service Events
The Wire Admin service has an extensive list of events that it can deliver. The events allow other
bundles to track changes in the topology as they happen. For example, a graphic user interface pro-
gram can use the events to show when Wire objects become connected, when these objects are delet-
ed, and when data flows over a Wire object.

A bundle that is interested in such events must register a WireAdminListener service object with a
special Integer property WIREADMIN_EVENTS (" wireadmin.events"). This Integer object contains a

Wire Admin Listener Service Events Wire Admin Service Specification Version 1.0

Page 216 OSGi Compendium Release 8

bitmap of all the events in which this Wire Admin Listener service is interested (events have asso-
ciated constants that can be ORed together). A Wire Admin service must not deliver events to the
Wire Admin Listener service when that event type is not in the bitmap. If no such property is regis-
tered, no events are delivered to the Wire Admin Listener service.

The WireAdminListener interface has only one method: wireAdminEvent(WireAdminEvent) . The ar-
gument is a WireAdminEvent object that contains the event type and associated data.

A WireAdminEvent object can be sent asynchronously but must be ordered for each Wire Admin Lis-
tener service. The way events must be delivered is the same as described in Delivering Events of OSGi
Core Release 8. Wire Admin Listener services must not assume that the state reflected by the event is
still true when they receive the event.

The following types are defined for a WireEvent object:

Table 108.4 Events

Event type Description
WIRE_CREATED A new Wire object has been created.
WIRE_CONNECTED Both the Producer service and the Consumer service are

registered but may not have executed their respective con-
nectedProducers/connectedConsumers methods.

WIRE_UPDATED The Wire object's properties have been updated.
WIRE_TRACE The Consumer has seen a new value, either after the Pro-

ducer service has called the Wire . update(Object) method
and the value was not filtered, or the Producer service has
returned from the pol led(Wire) method.

WIRE_DISCONNECTED The Producer service or Consumer service have become
unregistered and the Wire object is no longer connected.

WIRE_DELETED The Wire object is deleted from the repository and is no
longer available from the getWires method.

CONSUMER_EXCEPTION The Consumer service generated an exception and the ex-
ception is included in the event.

PRODUCER_EXCEPTION The Producer service generated an exception in a callback
and the exception is included in the event.

108.11.1 Event Admin Service Events
Wire admin events must be sent asynchronously to the Event Admin service by the Wire Admin im-
plementation, if present. The topic of a Wire Admin Event is one of the following:

org/osgi/service/wireadmin/WireAdminEvent/<eventtype>

The following event types are supported:

WIRE_CREATED
WIRE_CONNECTED
WIRE_UPDATED
WIRE_TRACE
WIRE_DISCONNECTED
WIRE_DELETED
PRODUCER_EXCEPTION
CONSUMER_EXCEPTION

The properties of a wire admin event are the following.

• event - (WireAdminEvent) The WireAdminEvent object broadcast by the Wire Admin service.

Wire Admin Service Specification Version 1.0 Connecting External Entities

OSGi Compendium Release 8 Page 217

If the getWire method returns a non nul l value:

• wire - (Wire) The Wire object returned by the getWire method.
• wire.f lavors - (Str ing[]) The names of the classes returned by the Wire getFlavors method.
• wire.scope - (Str ing[]) The scope of the Wire object, as returned by its getScope method.
• wire.connected - (Boolean) The result of the Wire isConnected method.
• wire.val id - (Boolean) The result of the Wire isVal id method.

If the getThrowable method does not return nul l :

• exception - (Throwable) The Exception returned by the getThrowable method.
• exception.class - (Str ing) The fully-qualified class name of the related Exception.
• exception.message - (Str ing) The message of the related Exception
• service - (ServiceReference) The Service Reference of the Wire Admin service.
• service. id - (Long) The service id of the WireAdmin service.
• service.objectClass - (Str ing[]) The Wire Admin service's object class (which must include

org.osgi .service.wireadmin.WireAdmin)
• service.pid - (Str ing) The Wire Admin service's PID.

108.12 Connecting External Entities
The Wire Admin service can be used to control the topology of consumers and producers that are
services, as well as external entities. For example, a video camera controlled over an IEEE 1394B bus
can be registered as a Producer service in the Framework's service registry and a TV, also connected
to this bus, can be registered as a Consumer service. It would be very inefficient to stream the video
data through the OSGi environment. Therefore, the Wire Admin service can be used to supply the
external addressing information to the camera and the monitor to make a direct connection outside
the OSGi environment. The Wire Admin service provides a uniform mechanism to connect both ex-
ternal entities and internal entities.

Figure 108.11 Connecting External Entities

camera

monitor

OSGi Framework

Wire defining
the connection

IEEE 1394B

A Consumer service and a Producer service associated with a Wire object receive enough informa-
tion to establish a direct link because the PIDs of both services are in the Wire object's properties.
This situation, however, does not guarantee compatibility between Producer and the Consumer ser-
vice. It is therefore recommended that flavors are used to ensure this compatibility. Producer ser-
vices that participate in an external addressing scheme, like IEEE 1394B, should have a flavor that

Related Standards Wire Admin Service Specification Version 1.0

Page 218 OSGi Compendium Release 8

reflects this address. In this case, there should then for example be a IEEE 1394B address class. Con-
sumer services that participate in this external addressing scheme should only accept data of this
flavor.

The OSGi Device Access Specification on page 55, defines the concept of a device category. This is a de-
scription of what classes and properties are used in a specific device category: for example, a UPnP
device category that defines the interface that must be used to register for a UPnP device, among
other things.

Device category descriptions should include a section that addresses the external wiring issue. This
section should include what objects are send over the wire to exchange addressing information.

108.13 Related Standards

108.13.1 Java Beans
The Wire Admin service leverages the component architecture that the Framework service registry
offers. Java Beans attempt to achieve similar goals. Java Beans are classes that follow a number of rec-
ommendations that allow them to be configured at run time. The techniques that are used by Java
Beans during configuration are serialization and the construction of adapter classes.

Creating adapter classes in a resource constrained OSGi Framework was considered too heavy
weight. Also, the dynamic nature of the OSGi environment, where services are registered and unreg-
istered continuously, creates a mismatch between the intended target area of Java Beans and the OS-
Gi Framework.

Also, Java Beans can freely communicate once they have a reference to each other. This freedom
makes it impossible to control the communication between Java Beans.

This Wire Admin service specification was developed because it is lightweight and leverages the
unique characteristics of the OSGi Framework. The concept of a Wire object that acts as an interme-
diate between the Producer and Consumer service allows the implementation of a security policy
because both parties cannot communicate directly.

108.14 Security

108.14.1 Separation of Consumer and Producer Services
The Consumer and Producer service never directly communicate with each other. All com-
munication takes place through a Wire object. This allows a Wire Admin service implementa-
tion to control the security aspects of creating a connection, and implies that the Wire Admin
service must be a trusted service in a secure environment. Only one bundle should have the
ServicePermission[WireAdmin, REGISTER] .

ServicePermission[Producer|Consumer, REGISTER] should not be restricted.
ServicePermission[Producer|Consumer,GET] must be limited to trusted bundles (the Wire Admin
service implementation) because a bundle with this permission can call such services and access in-
formation that it should not be able to access.

108.14.2 Using Wire Admin Service
This specification assumes that only a few applications require access to the Wire Admin service.
The WireAdmin interface contains all the security sensitive methods that create, update, and remove
Wire objects. (This is the reason that the update and delete methods are on the WireAdmin interface
and not on the Wire interface). ServicePermission[WireAdmin,GET] should therefore only be given
to trusted bundles that can manage the topology.

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin

OSGi Compendium Release 8 Page 219

108.14.3 Wire Permission
Composite Producer and Consumer services can be restricted in their use of scope names. This re-
striction is managed with the WirePermission class. A WirePermission consists of a scope name and
the action CONSUME or PRODUCE . The name used with the WirePermission may contain wild-cards
as specified in the java.security.BasicPermission class.

108.15 org.osgi.service.wireadmin

Wire Admin Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.wireadmin; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.wireadmin; vers ion="[1.0,1.1)"

108.15.1 Summary

• BasicEnvelope - BasicEnvelope is an implementation of the Envelope interface
• Consumer - Data Consumer, a service that can receive updated values from Producer services.
• Envelope - Identifies a contained value.
• Producer - Data Producer, a service that can generate values to be used by Consumer services.
• Wire - A connection between a Producer service and a Consumer service.
• WireAdmin - Wire Administration service.
• WireAdminEvent - A Wire Admin Event.
• WireAdminListener - Listener for Wire Admin Events.
• WireConstants - Defines standard names for Wire properties, wire filter attributes, Consumer

and Producer service properties.
• WirePermission - Permission for the scope of a Wire object.

108.15.2 public class BasicEnvelope
implements Envelope
BasicEnvelope is an implementation of the Envelope interface

Concurrency Immutable

108.15.2.1 public BasicEnvelope(Object value, Object identification, String scope)

value Content of this envelope, may be nul l .

identification Identifying object for this Envelope object, must not be nul l

scope Scope name for this object, must not be nul l

□ Constructor.

See Also Envelope

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0

Page 220 OSGi Compendium Release 8

108.15.2.2 public Object getIdentification()

□ Return the identification of this Envelope object. An identification may be of any Java type. The type
must be mutually agreed between the Consumer and Producer services.

Returns an object which identifies the status item in the address space of the composite producer, must not
be null.

See Also org.osgi.service.wireadmin.Envelope.getIdentification()

108.15.2.3 public String getScope()

□ Return the scope name of this Envelope object. Scope names are used to restrict the communication
between the Producer and Consumer services. Only Envelopes objects with a scope name that is per-
mitted for the Producer and the Consumer services must be passed through a Wire object.

Returns the security scope for the status item, must not be null.

See Also org.osgi.service.wireadmin.Envelope.getScope()

108.15.2.4 public Object getValue()

□ Return the value associated with this Envelope object.

Returns the value of the status item, or nul l when no item is associated with this object.

See Also org.osgi.service.wireadmin.Envelope.getValue()

108.15.3 public interface Consumer
Data Consumer, a service that can receive updated values from Producer services.

Service objects registered under the Consumer interface are expected to consume values from a Pro-
ducer service via a Wire object. A Consumer service may poll the Producer service by calling the
Wire.poll() method. The Consumer service will also receive an updated value when called at it's
updated(Wire, Object) method. The Producer service should have coerced the value to be an in-
stance of one of the types specified by the Wire.getFlavors() method, or one of their subclasses.

Consumer service objects must register with a service.pid and a
WireConstants.WIREADMIN_CONSUMER_FLAVORS property. It is recommended that Consumer
service objects also register with a service.descr ipt ion property.

If an Exception is thrown by any of the Consumer methods, a WireAdminEvent of type
WireAdminEvent.CONSUMER_EXCEPTION is broadcast by the Wire Admin service.

Security Considerations - Data consuming bundles will require
ServicePermission[Consumer,REGISTER] . In general, only the Wire Admin service bundle should
have this permission. Thus only the Wire Admin service may directly call a Consumer service. Care
must be taken in the sharing of Wire objects with other bundles.

Consumer services must be registered with their scope when they can receive different types of ob-
jects from the Producer service. The Consumer service should have WirePermission for each of these
scope names.

108.15.3.1 public void producersConnected(Wire[] wires)

wires An array of the current and complete list of Wire objects to which this Consumer service is connect-
ed. May be nul l if the Consumer service is not currently connected to any Wire objects.

□ Update the list of Wire objects to which this Consumer service is connected.

This method is called when the Consumer service is first registered and subsequently whenever a
Wire associated with this Consumer service becomes connected, is modified or becomes disconnect-
ed.

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin

OSGi Compendium Release 8 Page 221

The Wire Admin service must call this method asynchronously. This implies that implementors of
Consumer can be assured that the callback will not take place during registration when they exe-
cute the registration in a synchronized method.

108.15.3.2 public void updated(Wire wire, Object value)

wire The Wire object which is delivering the updated value.

value The updated value. The value should be an instance of one of the types specified by the
Wire.getFlavors() method.

□ Update the value. This Consumer service is called by the Wire object with an updated value from the
Producer service.

Note: This method may be called by a Wire object prior to this object being notified that it is con-
nected to that Wire object (via the producersConnected(Wire[]) method).

When the Consumer service can receive Envelope objects, it must have registered all scope names
together with the service object, and each of those names must be permitted by the bundle's
WirePermission . If an Envelope object is delivered with the updated method, then the Consumer ser-
vice should assume that the security check has been performed.

108.15.4 public interface Envelope
Identifies a contained value. An Envelope object combines a status value, an identification object
and a scope name. The Envelope object allows the use of standard Java types when a Producer ser-
vice can produce more than one kind of object. The Envelope object allows the Consumer service
to recognize the kind of object that is received. For example, a door lock could be represented by a
Boolean object. If the Producer service would send such a Boolean object, then the Consumer service
would not know what door the Boolean object represented. The Envelope object contains an iden-
tification object so the Consumer service can discriminate between different kinds of values. The
identification object may be a simple Str ing object, but it can also be a domain specific object that is
mutually agreed by the Producer and the Consumer service. This object can then contain relevant
information that makes the identification easier.

The scope name of the envelope is used for security. The Wire object must verify that any Enve-
lope object send through the update method or coming from the pol l method has a scope name
that matches the permissions of both the Producer service and the Consumer service involved. The
wireadmin package also contains a class BasicEnvelope that implements the methods of this inter-
face.

See Also WirePermission, BasicEnvelope

108.15.4.1 public Object getIdentification()

□ Return the identification of this Envelope object. An identification may be of any Java type. The type
must be mutually agreed between the Consumer and Producer services.

Returns an object which identifies the status item in the address space of the composite producer, must not
be null.

108.15.4.2 public String getScope()

□ Return the scope name of this Envelope object. Scope names are used to restrict the communication
between the Producer and Consumer services. Only Envelopes objects with a scope name that is per-
mitted for the Producer and the Consumer services must be passed through a Wire object.

Returns the security scope for the status item, must not be null.

108.15.4.3 public Object getValue()

□ Return the value associated with this Envelope object.

Returns the value of the status item, or nul l when no item is associated with this object.

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0

Page 222 OSGi Compendium Release 8

108.15.5 public interface Producer
Data Producer, a service that can generate values to be used by Consumer services.

Service objects registered under the Producer interface are expected to produce values (internally
generated or from external sensors). The value can be of different types. When delivering a value to
a Wire object, the Producer service should coerce the value to be an instance of one of the types spec-
ified by Wire.getFlavors(). The classes are specified in order of preference.

When the data represented by the Producer object changes, this object should send the updated
value by calling the update method on each of Wire objects passed in the most recent call to this
object's consumersConnected(Wire[]) method. These Wire objects will pass the value on to the asso-
ciated Consumer service object.

The Producer service may use the information in the Wire object's properties to schedule the deliv-
ery of values to the Wire object.

Producer service objects must register with a service.pid and a
WireConstants.WIREADMIN_PRODUCER_FLAVORS property. It is recommended that a Producer
service object also registers with a service.descr ipt ion property. Producer service objects must regis-
ter with a WireConstants.WIREADMIN_PRODUCER_FILTERS property if the Producer service will
be performing filtering instead of the Wire object.

If an exception is thrown by a Producer object method, a WireAdminEvent of type
WireAdminEvent.PRODUCER_EXCEPTION is broadcast by the Wire Admin service.

Security Considerations. Data producing bundles will require
ServicePermission[Producer,REGISTER] to register a Producer service. In general, only the Wire Ad-
min service should have ServicePermission[Producer,GET] . Thus only the Wire Admin service may
directly call a Producer service. Care must be taken in the sharing of Wire objects with other bun-
dles.

Producer services must be registered with scope names when they can send different types of ob-
jects (composite) to the Consumer service. The Producer service should have WirePermission for
each of these scope names.

108.15.5.1 public void consumersConnected(Wire[] wires)

wires An array of the current and complete list of Wire objects to which this Producer service is connected.
May be nul l if the Producer is not currently connected to any Wire objects.

□ Update the list of Wire objects to which this Producer object is connected.

This method is called when the Producer service is first registered and subsequently whenever a
Wire associated with this Producer becomes connected, is modified or becomes disconnected.

The Wire Admin service must call this method asynchronously. This implies that implementors of
a Producer service can be assured that the callback will not take place during registration when they
execute the registration in a synchronized method.

108.15.5.2 public Object polled(Wire wire)

wire The Wire object which is polling this service.

□ Return the current value of this Producer object.

This method is called by a Wire object in response to the Consumer service calling the Wire object's
pol l method. The Producer should coerce the value to be an instance of one of the types specified by
Wire.getFlavors(). The types are specified in order of preference. The returned value should be as
new or newer than the last value furnished by this object.

Note: This method may be called by a Wire object prior to this object being notified that it is con-
nected to that Wire object (via the consumersConnected(Wire[]) method).

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin

OSGi Compendium Release 8 Page 223

If the Producer service returns an Envelope object that has an impermissible scope name, then the
Wire object must ignore (or remove) the transfer.

If the Wire object has a scope set, the return value must be an array of Envelope objects (Envelope[]).
The Wire object must have removed any Envelope objects that have a scope name that is not in the
Wire object's scope.

Returns The current value of the Producer service or nul l if the value cannot be coerced into a compatible
type. Or an array of Envelope objects.

108.15.6 public interface Wire
A connection between a Producer service and a Consumer service.

A Wire object connects a Producer service to a Consumer service. Both the Producer and Consumer
services are identified by their unique service.pid values. The Producer and Consumer services may
communicate with each other via Wire objects that connect them. The Producer service may send
updated values to the Consumer service by calling the update(Object) method. The Consumer ser-
vice may request an updated value from the Producer service by calling the poll() method.

A Producer service and a Consumer service may be connected through multiple Wire objects.

Security Considerations. Wire objects are available to Producer and Consumer services connect-
ed to a given Wire object and to bundles which can access the WireAdmin service. A bundle must
have ServicePermission[WireAdmin,GET] to get the WireAdmin service to access all Wire ob-
jects. A bundle registering a Producer service or a Consumer service must have the appropriate
ServicePermission[Consumer|Producer,REGISTER] to register the service and will be passed Wire ob-
jects when the service object's consumersConnected or producersConnected method is called.

Scope. Each Wire object can have a scope set with the setScope method. This method should be
called by a Consumer service when it assumes a Producer service that is composite (supports multi-
ple information items). The names in the scope must be verified by the Wire object before it is used
in communication. The semantics of the names depend on the Producer service and must not be in-
terpreted by the Wire Admin service.

No Implement Consumers of this API must not implement this interface

108.15.6.1 public Class<?>[] getFlavors()

□ Return the list of data types understood by the Consumer service connected to this Wire object. Note
that subclasses of the classes in this list are acceptable data types as well.

The list is the value of the WireConstants.WIREADMIN_CONSUMER_FLAVORS service property of
the Consumer service object connected to this object. If no such property was registered or the type
of the property value is not Class[] , this method must return nul l .

Returns An array containing the list of classes understood by the Consumer service or nul l if the Wire is not
connected, or the consumer did not register a WireConstants.WIREADMIN_CONSUMER_FLAVORS
property or the value of the property is not of type Class[] .

108.15.6.2 public Object getLastValue()

□ Return the last value sent through this Wire object.

The returned value is the most recent, valid value passed to the update(Object) method or returned
by the poll() method of this object. If filtering is performed by this Wire object, this methods returns
the last value provided by the Producer service. This value may be an Envelope[] when the Producer
service uses scoping. If the return value is an Envelope object (or array), it must be verified that the
Consumer service has the proper WirePermission to see it.

Returns The last value passed though this Wire object or nul l if no valid values have been passed or the Con-
sumer service has no permission.

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0

Page 224 OSGi Compendium Release 8

108.15.6.3 public Dictionary<String, Object> getProperties()

□ Return the wire properties for this Wire object.

Returns The properties for this Wire object. The returned Dictionary must be read only.

108.15.6.4 public String[] getScope()

□ Return the calculated scope of this Wire object. The purpose of the Wire object's scope is to allow
a Producer and/or Consumer service to produce/consume different types over a single Wire ob-
ject (this was deemed necessary for efficiency reasons). Both the Consumer service and the Pro-
ducer service must set an array of scope names (their scope) with the service registration property
WIREADMIN_PRODUCER_SCOPE , or WIREADMIN_CONSUMER_SCOPE when they can produce mul-
tiple types. If a Producer service can produce different types, it should set this property to the array
of scope names it can produce, the Consumer service must set the array of scope names it can con-
sume. The scope of a Wire object is defined as the intersection of permitted scope names of the Pro-
ducer service and Consumer service.

If neither the Consumer, or the Producer service registers scope names with its service registration,
then the Wire object's scope must be nul l .

The Wire object's scope must not change when a Producer or Consumer services modifies its scope.

A scope name is permitted for a Producer service when the registering bundle has
WirePermission[name,PRODUCE] , and for a Consumer service when the registering bundle has
WirePermission[name,CONSUME] .

If either Consumer service or Producer service has not set a WIREADMIN_*_SCOPE property, then
the returned value must be nul l .

If the scope is set, the Wire object must enforce the scope names when Envelope objects are used as a
parameter to update or returned from the pol l method. The Wire object must then remove all Enve-
lope objects with a scope name that is not permitted.

Returns A list of permitted scope names or null if the Produce or Consumer service has set no scope names.

108.15.6.5 public boolean hasScope(String name)

name The scope name

□ Return true if the given name is in this Wire object's scope.

Returns true if the name is listed in the permitted scope names

108.15.6.6 public boolean isConnected()

□ Return the connection state of this Wire object.

A Wire is connected after the Wire Admin service receives notification that the Producer service and
the Consumer service for this Wire object are both registered. This method will return true prior to
notifying the Producer and Consumer services via calls to their respective consumersConnected
and producersConnected methods.

A WireAdminEvent of type WireAdminEvent.WIRE_CONNECTED must be broadcast by the Wire
Admin service when the Wire becomes connected.

A Wire object is disconnected when either the Consumer or Producer service is unregistered or the
Wire object is deleted.

A WireAdminEvent of type WireAdminEvent.WIRE_DISCONNECTED must be broadcast by the
Wire Admin service when the Wire becomes disconnected.

Returns true if both the Producer and Consumer for this Wire object are connected to the Wire object; fa lse
otherwise.

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin

OSGi Compendium Release 8 Page 225

108.15.6.7 public boolean isValid()

□ Return the state of this Wire object.

A connected Wire must always be disconnected before becoming invalid.

Returns fa lse if this Wire object is invalid because it has been deleted via WireAdmin.deleteWire(Wire); true
otherwise.

108.15.6.8 public Object poll()

□ Poll for an updated value.

This methods is normally called by the Consumer service to request an updated value from the Pro-
ducer service connected to this Wire object. This Wire object will call the Producer.polled(Wire)
method to obtain an updated value. If this Wire object is not connected, then the Producer service
must not be called.

If this Wire object has a scope, then this method must return an array of Envelope objects. The ob-
jects returned must match the scope of this object. The Wire object must remove all Envelope objects
with a scope name that is not in the Wire object's scope. Thus, the list of objects returned must only
contain Envelope objects with a permitted scope name. If the array becomes empty, nul l must be re-
turned.

A WireAdminEvent of type WireAdminEvent.WIRE_TRACE must be broadcast by the Wire Admin
service after the Producer service has been successfully called.

Returns A value whose type should be one of the types returned by getFlavors(),Envelope[] , or nul l if the
Wire object is not connected, the Producer service threw an exception, or the Producer service re-
turned a value which is not an instance of one of the types returned by getFlavors().

108.15.6.9 public void update(Object value)

value The updated value. The value should be an instance of one of the types returned by getFlavors().

□ Update the value.

This methods is called by the Producer service to notify the Consumer service connected to this Wire
object of an updated value.

If the properties of this Wire object contain a WireConstants.WIREADMIN_FILTER property, then
filtering is performed. If the Producer service connected to this Wire object was registered with the
service property WireConstants.WIREADMIN_PRODUCER_FILTERS, the Producer service will per-
form the filtering according to the rules specified for the filter. Otherwise, this Wire object will per-
form the filtering of the value.

If no filtering is done, or the filter indicates the updated value should be delivered to the Consumer
service, then this Wire object must call the Consumer.updated(Wire, Object) method with the updat-
ed value. If this Wire object is not connected, then the Consumer service must not be called and the
value is ignored.

If the value is an Envelope object, and the scope name is not permitted, then the Wire object must ig-
nore this call and not transfer the object to the Consumer service.

A WireAdminEvent of type WireAdminEvent.WIRE_TRACE must be broadcast by the Wire Admin
service after the Consumer service has been successfully called.

See Also WireConstants.WIREADMIN_FILTER

108.15.7 public interface WireAdmin
Wire Administration service.

This service can be used to create Wire objects connecting a Producer service and a Consumer ser-
vice. Wire objects also have wire properties that may be specified when a Wire object is created. The

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0

Page 226 OSGi Compendium Release 8

Producer and Consumer services may use the Wire object's properties to manage or control their in-
teraction. The use of Wire object's properties by a Producer or Consumer services is optional.

Security Considerations. A bundle must have ServicePermission[WireAdmin,GET] to get the Wire
Admin service to create, modify, find, and delete Wire objects.

No Implement Consumers of this API must not implement this interface

108.15.7.1 public Wire createWire(String producerPID, String consumerPID, Dictionary<String, ?> properties)

producerPID The service.pid of the Producer service to be connected to the Wire object.

consumerPID The service.pid of the Consumer service to be connected to the Wire object.

properties The Wire object's properties. This argument may be nul l if the caller does not wish to define any Wire
object's properties.

□ Create a new Wire object that connects a Producer service to a Consumer service. The Producer ser-
vice and Consumer service do not have to be registered when the Wire object is created.

The Wire configuration data must be persistently stored. All Wire connections are reestablished
when the WireAdmin service is registered. A Wire can be permanently removed by using the
deleteWire(Wire) method.

The Wire object's properties must have case insensitive Str ing objects as keys (like the Framework).
However, the case of the key must be preserved.

The WireAdmin service must automatically add the following Wire properties:

• WireConstants.WIREADMIN_PID set to the value of the Wire object's persistent identity (PID).
This value is generated by the Wire Admin service when a Wire object is created.

• WireConstants.WIREADMIN_PRODUCER_PID set to the value of Producer service's PID.
• WireConstants.WIREADMIN_CONSUMER_PID set to the value of Consumer service's PID.

If the propert ies argument already contains any of these keys, then the supplied values are replaced
with the values assigned by the Wire Admin service.

The Wire Admin service must broadcast a WireAdminEvent of type
WireAdminEvent.WIRE_CREATED after the new Wire object becomes available from
getWires(String).

Returns The Wire object for this connection.

Throws I l legalArgumentException– If propert ies contains invalid wire types or case variants of the same
key name.

108.15.7.2 public void deleteWire(Wire wire)

wire The Wire object which is to be deleted.

□ Delete a Wire object.

The Wire object representing a connection between a Producer service and a Consumer service must
be removed. The persistently stored configuration data for the Wire object must destroyed. The Wire
object's method Wire.isValid() will return fa lse after it is deleted.

The Wire Admin service must broadcast a WireAdminEvent of type
WireAdminEvent.WIRE_DELETED after the Wire object becomes invalid.

108.15.7.3 public Wire[] getWires(String filter) throws InvalidSyntaxException

filter Filter string to select Wire objects or nul l to select all Wire objects.

□ Return the Wire objects that match the given f i l ter .

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin

OSGi Compendium Release 8 Page 227

The list of available Wire objects is matched against the specified f i l ter .Wire objects which match
the f i l ter must be returned. These Wire objects are not necessarily connected. The Wire Admin ser-
vice should not return invalid Wire objects, but it is possible that a Wire object is deleted after it was
placed in the list.

The filter matches against the Wire object's properties including
WireConstants.WIREADMIN_PRODUCER_PID, WireConstants.WIREADMIN_CONSUMER_PID
and WireConstants.WIREADMIN_PID.

Returns An array of Wire objects which match the f i l ter or nul l if no Wire objects match the f i l ter .

Throws Inval idSyntaxException– If the specified f i l ter has an invalid syntax.

See Also org.osgi.framework.Filter

108.15.7.4 public void updateWire(Wire wire, Dictionary<String, ?> properties)

wire The Wire object which is to be updated.

properties The new Wire object's properties or nul l if no properties are required.

□ Update the properties of a Wire object. The persistently stored configuration data for the Wire object
is updated with the new properties and then the Consumer and Producer services will be called at
the respective Consumer.producersConnected(Wire[]) and Producer.consumersConnected(Wire[])
methods.

The Wire Admin service must broadcast a WireAdminEvent of type
WireAdminEvent.WIRE_UPDATED after the updated properties are available from the Wire object.

Throws I l legalArgumentException– If propert ies contains invalid wire types or case variants of the same
key name.

108.15.8 public class WireAdminEvent
A Wire Admin Event.

WireAdminEvent objects are delivered to all registered WireAdminListener service objects which
specify an interest in the WireAdminEvent type. Events must be delivered in chronological order
with respect to each listener. For example, a WireAdminEvent of type WIRE_CONNECTED must be
delivered before a WireAdminEvent of type WIRE_DISCONNECTED for a particular Wire object.

A type code is used to identify the type of event. The following event types are defined:

• WIRE_CREATED
• WIRE_CONNECTED
• WIRE_UPDATED
• WIRE_TRACE
• WIRE_DISCONNECTED
• WIRE_DELETED
• PRODUCER_EXCEPTION
• CONSUMER_EXCEPTION

Additional event types may be defined in the future.

Event type values must be unique and disjoint bit values. Event types must be defined as a bit in a 32
bit integer and can thus be bitwise ORed together.

Security Considerations. WireAdminEvent objects contain Wire objects. Care must be taken in the
sharing of Wire objects with other bundles.

See Also WireAdminListener

Concurrency Immutable

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0

Page 228 OSGi Compendium Release 8

108.15.8.1 public static final int CONSUMER_EXCEPTION = 2

A Consumer service method has thrown an exception.

This WireAdminEvent type indicates that a Consumer service method has thrown an exception.
The WireAdminEvent.getThrowable() method will return the exception that the Consumer service
method raised.

The value of CONSUMER_EXCEPTION is 0x00000002.

108.15.8.2 public static final int PRODUCER_EXCEPTION = 1

A Producer service method has thrown an exception.

This WireAdminEvent type indicates that a Producer service method has thrown an exception.
The WireAdminEvent.getThrowable() method will return the exception that the Producer service
method raised.

The value of PRODUCER_EXCEPTION is 0x00000001.

108.15.8.3 public static final int WIRE_CONNECTED = 32

The WireAdminEvent type that indicates that an existing Wire object has become connected. The
Consumer object and the Producer object that are associated with the Wire object have both been
registered and the Wire object is connected. See Wire.isConnected() for a description of the connect-
ed state. This event may come before the producersConnected and consumersConnected method
have returned or called to allow synchronous delivery of the events. Both methods can cause oth-
er WireAdminEvent s to take place and requiring this event to be send before these methods are re-
turned would mandate asynchronous delivery.

The value of WIRE_CONNECTED is 0x00000020.

108.15.8.4 public static final int WIRE_CREATED = 4

A Wire has been created.

This WireAdminEvent type that indicates that a new Wire object has been created. An event
is broadcast when WireAdmin.createWire(String, String, java.util.Dictionary) is called. The
WireAdminEvent.getWire() method will return the Wire object that has just been created.

The value of WIRE_CREATED is 0x00000004.

108.15.8.5 public static final int WIRE_DELETED = 16

A Wire has been deleted.

This WireAdminEvent type that indicates that an existing wire has been deleted. An event is broad-
cast when WireAdmin.deleteWire(Wire) is called with a valid wire. WireAdminEvent.getWire() will
return the Wire object that has just been deleted.

The value of WIRE_DELETED is 0x00000010.

108.15.8.6 public static final int WIRE_DISCONNECTED = 64

The WireAdminEvent type that indicates that an existing Wire object has become disconnected. The
Consumer object or/and Producer object is/are unregistered breaking the connection between the
two. See Wire.isConnected for a description of the connected state.

The value of WIRE_DISCONNECTED is 0x00000040.

108.15.8.7 public static final int WIRE_TRACE = 128

The WireAdminEvent type that indicates that a new value is transferred over the Wire object. This
event is sent after the Consumer service has been notified by calling the Consumer.updated(Wire,
Object) method or the Consumer service requested a new value with the Wire.poll() method. This

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin

OSGi Compendium Release 8 Page 229

is an advisory event meaning that when this event is received, another update may already have oc-
curred and this the Wire.getLastValue() method returns a newer value then the value that was com-
municated for this event.

The value of WIRE_TRACE is 0x00000080.

108.15.8.8 public static final int WIRE_UPDATED = 8

A Wire has been updated.

This WireAdminEvent type that indicates that an existing Wire object has been updated with new
properties. An event is broadcast when WireAdmin.updateWire(Wire, java.util.Dictionary) is called
with a valid wire. The WireAdminEvent.getWire() method will return the Wire object that has just
been updated.

The value of WIRE_UPDATED is 0x00000008.

108.15.8.9 public WireAdminEvent(ServiceReference<WireAdmin> reference, int type, Wire wire, Throwable
exception)

reference The ServiceReference object of the Wire Admin service that created this event.

type The event type. See getType().

wire The Wire object associated with this event.

exception An exception associated with this event. This may be nul l if no exception is associated with this
event.

□ Constructs a WireAdminEvent object from the given ServiceReference object, event type, Wire object
and exception.

108.15.8.10 public ServiceReference<WireAdmin> getServiceReference()

□ Return the ServiceReference object of the Wire Admin service that created this event.

Returns The ServiceReference object for the Wire Admin service that created this event.

108.15.8.11 public Throwable getThrowable()

□ Returns the exception associated with the event, if any.

Returns An exception or nul l if no exception is associated with this event.

108.15.8.12 public int getType()

□ Return the type of this event.

The type values are:

• WIRE_CREATED
• WIRE_CONNECTED
• WIRE_UPDATED
• WIRE_TRACE
• WIRE_DISCONNECTED
• WIRE_DELETED
• PRODUCER_EXCEPTION
• CONSUMER_EXCEPTION

Returns The type of this event.

108.15.8.13 public Wire getWire()

□ Return the Wire object associated with this event.

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0

Page 230 OSGi Compendium Release 8

Returns The Wire object associated with this event or nul l when no Wire object is associated with the event.

108.15.9 public interface WireAdminListener
Listener for Wire Admin Events.

WireAdminListener objects are registered with the Framework service registry and are notified with
a WireAdminEvent object when an event is broadcast.

WireAdminListener objects can inspect the received WireAdminEvent object to determine its type,
the Wire object with which it is associated, and the Wire Admin service that broadcasts the event.

WireAdminListener objects must be registered with a service property
WireConstants.WIREADMIN_EVENTS whose value is a bitwise OR of all the event types the listen-
er is interested in receiving.

For example:

 Integer mask = Integer.valueOf(WIRE_TRACE | WIRE_CONNECTED | WIRE_DISCONNECTED);
 Hashtable ht = new Hashtable();
 ht.put(WIREADMIN_EVENTS, mask);
 context.registerService(WireAdminListener.class.getName(), this, ht);

If a WireAdminListener object is registered without a service property
WireConstants.WIREADMIN_EVENTS, then the WireAdminListener will receive no events.

Security Considerations. Bundles wishing to monitor WireAdminEvent objects will require
ServicePermission[WireAdminListener,REGISTER] to register a WireAdminListener service. Since
WireAdminEvent objects contain Wire objects, care must be taken in assigning permission to register
a WireAdminListener service.

See Also WireAdminEvent

108.15.9.1 public void wireAdminEvent(WireAdminEvent event)

event The WireAdminEvent object.

□ Receives notification of a broadcast WireAdminEvent object. The event object will be of an event
type specified in this WireAdminListener service's WireConstants.WIREADMIN_EVENTS service
property.

108.15.10 public interface WireConstants
Defines standard names for Wire properties, wire filter attributes, Consumer and Producer service
properties.

No Implement Consumers of this API must not implement this interface

108.15.10.1 public static final String WIREADMIN_CONSUMER_COMPOSITE = "wireadmin.consumer.composite"

A service registration property for a Consumer service that is composite. It contains the names of
the composite Producer services it can cooperate with. Interoperability exists when any name in
this array matches any name in the array set by the Producer service. The type of this property must
be Str ing[] .

108.15.10.2 public static final String WIREADMIN_CONSUMER_FLAVORS = "wireadmin.consumer.flavors"

Service Registration property (named wireadmin.consumer.f lavors) specifying the list of data types
understood by this Consumer service.

The Consumer service object must be registered with this service property. The list must be in the
order of preference with the first type being the most preferred. The value of the property must be of
type Class[] .

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin

OSGi Compendium Release 8 Page 231

108.15.10.3 public static final String WIREADMIN_CONSUMER_PID = "wireadmin.consumer.pid"

Wire property key (named wireadmin.consumer.pid) specifying the service.pid of the associated
Consumer service.

This wire property is automatically set by the Wire Admin service. The value of the property must
be of type Str ing .

108.15.10.4 public static final String WIREADMIN_CONSUMER_SCOPE = "wireadmin.consumer.scope"

Service registration property key (named wireadmin.consumer.scope) specifying a list of names
that may be used to define the scope of this Wire object. A Consumer service should set this service
property when it can produce more than one kind of value. This property is only used during reg-
istration, modifying the property must not have any effect of the Wire object's scope. Each name in
the given list mist have WirePermission[name,CONSUME] or else is ignored. The type of this service
registration property must be Str ing[] .

See Also Wire.getScope(), WIREADMIN_PRODUCER_SCOPE

108.15.10.5 public static final String WIREADMIN_EVENTS = "wireadmin.events"

Service Registration property (named wireadmin.events) specifying the WireAdminEvent type of in-
terest to a Wire Admin Listener service. The value of the property is a bitwise OR of all the WireAd-
minEvent types the Wire Admin Listener service wishes to receive and must be of type Integer .

See Also WireAdminEvent

108.15.10.6 public static final String WIREADMIN_FILTER = "wireadmin.filter"

Wire property key (named wireadmin.f i l ter) specifying a filter used to control the delivery rate of da-
ta between the Producer and the Consumer service.

This property should contain a filter as described in the Fi l ter class. The filter can be used to specify
when an updated value from the Producer service should be delivered to the Consumer service. In
many cases the Consumer service does not need to receive the data with the same rate that the Pro-
ducer service can generate data. This property can be used to control the delivery rate.

The filter can use a number of predefined attributes that can be used to control the delivery of new
data values. If the filter produces a match upon the wire filter attributes, the Consumer service
should be notified of the updated data value.

If the Producer service was registered with the WIREADMIN_PRODUCER_FILTERS service property
indicating that the Producer service will perform the data filtering then the Wire object will not per-
form data filtering. Otherwise, the Wire object must perform basic filtering. Basic filtering includes
supporting the following standard wire filter attributes:

• WIREVALUE_CURRENT - Current value
• WIREVALUE_PREVIOUS - Previous value
• WIREVALUE_DELTA_ABSOLUTE - Absolute delta
• WIREVALUE_DELTA_RELATIVE - Relative delta
• WIREVALUE_ELAPSED - Elapsed time

See Also org.osgi.framework.Filter

108.15.10.7 public static final String WIREADMIN_PID = "wireadmin.pid"

Wire property key (named wireadmin.pid) specifying the persistent identity (PID) of this Wire object.

Each Wire object has a PID to allow unique and persistent identification of a specific Wire object. The
PID must be generated by the WireAdmin service when the Wire object is created.

This wire property is automatically set by the Wire Admin service. The value of the property must
be of type Str ing .

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0

Page 232 OSGi Compendium Release 8

108.15.10.8 public static final String WIREADMIN_PRODUCER_COMPOSITE = "wireadmin.producer.composite"

A service registration property for a Producer service that is composite. It contains the names of
the composite Consumer services it can interoperate with. Interoperability exists when any name
in this array matches any name in the array set by the Consumer service. The type of this property
must be Str ing[] .

108.15.10.9 public static final String WIREADMIN_PRODUCER_FILTERS = "wireadmin.producer.filters"

Service Registration property (named wireadmin.producer.f i l ters). A Producer service registered
with this property indicates to the Wire Admin service that the Producer service implements at
least the filtering as described for the WIREADMIN_FILTER property. If the Producer service is
not registered with this property, the Wire object must perform the basic filtering as described in
WIREADMIN_FILTER.

The type of the property value is not relevant. Only its presence is relevant.

108.15.10.10 public static final String WIREADMIN_PRODUCER_FLAVORS = "wireadmin.producer.flavors"

Service Registration property (named wireadmin.producer.f lavors) specifying the list of data types
available from this Producer service.

The Producer service object should be registered with this service property.

The value of the property must be of type Class[] .

108.15.10.11 public static final String WIREADMIN_PRODUCER_PID = "wireadmin.producer.pid"

Wire property key (named wireadmin.producer.pid) specifying the service.pid of the associated Pro-
ducer service.

This wire property is automatically set by the WireAdmin service. The value of the property must
be of type Str ing .

108.15.10.12 public static final String WIREADMIN_PRODUCER_SCOPE = "wireadmin.producer.scope"

Service registration property key (named wireadmin.producer.scope) specifying a list of names that
may be used to define the scope of this Wire object. A Producer service should set this service proper-
ty when it can produce more than one kind of value. This property is only used during registration,
modifying the property must not have any effect of the Wire object's scope. Each name in the given
list mist have WirePermission[name,PRODUCE] or else is ignored. The type of this service registra-
tion property must be Str ing[] .

See Also Wire.getScope(), WIREADMIN_CONSUMER_SCOPE

108.15.10.13 public static final String[] WIREADMIN_SCOPE_ALL

Matches all scope names.

108.15.10.14 public static final String WIREVALUE_CURRENT = "wirevalue.current"

Wire object's filter attribute (named wirevalue.current) representing the current value.

108.15.10.15 public static final String WIREVALUE_DELTA_ABSOLUTE = "wirevalue.delta.absolute"

Wire object's filter attribute (named wirevalue.delta.absolute) representing the absolute delta. The
absolute (always positive) difference between the last update and the current value (only when nu-
meric). This attribute must not be used when the values are not numeric.

108.15.10.16 public static final String WIREVALUE_DELTA_RELATIVE = "wirevalue.delta.relative"

Wire object's filter attribute (named wirevalue.delta.relat ive) representing the relative delta. The
relative difference is |previous -current |/| current | (only when numeric). This attribute must not be
used when the values are not numeric.

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin

OSGi Compendium Release 8 Page 233

108.15.10.17 public static final String WIREVALUE_ELAPSED = "wirevalue.elapsed"

Wire object's filter attribute (named wirevalue.elapsed) representing the elapsed time, in ms, be-
tween this filter evaluation and the last update of the Consumer service.

108.15.10.18 public static final String WIREVALUE_PREVIOUS = "wirevalue.previous"

Wire object's filter attribute (named wirevalue.previous) representing the previous value.

108.15.11 public final class WirePermission
extends BasicPermission
Permission for the scope of a Wire object. When a Envelope object is used for communica-
tion with the pol l or update method, and the scope is set, then the Wire object must verify that
the Consumer service has WirePermission[name,CONSUME] and the Producer service has
WirePermission[name,PRODUCE] for all names in the scope.

The names are compared with the normal rules for permission names. This means that they may
end with a "*" to indicate wildcards. E.g. Door.* indicates all scope names starting with the string
"Door". The last period is required due to the implementations of the BasicPermission class.

Concurrency Thread-safe

108.15.11.1 public static final String CONSUME = "consume"

The action string for the consume action.

108.15.11.2 public static final String PRODUCE = "produce"

The action string for the produce action.

108.15.11.3 public WirePermission(String name, String actions)

name Wire name.

actions produce , consume (canonical order).

□ Create a new WirePermission with the given name (may be wildcard) and actions.

108.15.11.4 public boolean equals(Object obj)

obj The object to test for equality.

□ Determines the equality of two WirePermission objects. Checks that specified object has the same
name and actions as this WirePermission object.

Returns true if obj is a WirePermission , and has the same name and actions as this WirePermission object;
fa lse otherwise.

108.15.11.5 public String getActions()

□ Returns the canonical string representation of the actions. Always returns present actions in the fol-
lowing order: produce , consume .

Returns The canonical string representation of the actions.

108.15.11.6 public int hashCode()

□ Returns the hash code value for this object.

Returns Hash code value for this object.

108.15.11.7 public boolean implies(Permission p)

p The permission to check against.

References Wire Admin Service Specification Version 1.0

Page 234 OSGi Compendium Release 8

□ Checks if this WirePermission object impl ies the specified permission.

More specifically, this method returns true if:

• p is an instanceof the WirePermission class,
• p's actions are a proper subset of this object's actions, and
• p's name is implied by this object's name. For example, java.* implies java.home .

Returns true if the specified permission is implied by this object; fa lse otherwise.

108.15.11.8 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object for storing WirePermission objects.

Returns A new PermissionCol lect ion object suitable for storing WirePermission objects.

108.15.11.9 public String toString()

□ Returns a string describing this WirePermission . The convention is to specify
the class name, the permission name, and the actions in the following format:
'(org.osgi.service.wireadmin.WirePermission "name" "actions")'.

Returns information about this Permission object.

108.16 References

[1] Design Patterns
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Addison Wesley, ISBN 0-201-63361

Device Service Specification for UPnP™ Technology Version 1.2 Introduction

OSGi Compendium Release 8 Page 235

111 Device Service Specification for
UPnP™ Technology

Version 1.2

111.1 Introduction
The UPnP Device Architecture specification provides the protocols for a peer-to-peer network. It
specifies how to join a network and how devices can be controlled using XML messages sent over
HTTP. The OSGi specifications address how code can be download and managed in a remote system.
Both standards are therefore fully complimentary. Using an OSGi Framework to work with UPnP
enabled devices is therefore a very successful combination.

This specification specifies how OSGi bundles can be developed that interoperate with UPnP™
(Universal Plug and Play) devices and UPnP control points. The specification is based on the UPnP
Device Architecture and does not further explain the UPnP specifications. The UPnP specifications
are maintained by [1] UPnP Forum.

UPnP™ is a trademark of the UPnP Implementers Corporation.

111.1.1 Essentials

• Scope - This specification is limited to device control aspects of the UPnP specifications. Aspects
concerning the TCP/IP layer, like DHCP and limited TTL, are not addressed.

• Transparency - OSGi services should be made available to networks with UPnP enabled devices in
a transparent way.

• Network Selection - It must be possible to restrict the use of the UPnP protocols to a selection of the
connected networks. For example, in certain cases OSGi services that are UPnP enabled should
not be published to the Wide Area Network side of a gateway, nor should UPnP devices be detect-
ed on this WAN.

• Event handling - Bundles must be able to listen to UPnP events.
• Export OSGi services as UPnP devices - Enable bundles that make a service available to UPnP con-

trol points.
• Implement UPnP Control Points - Enable bundles that control UPnP devices.

111.1.2 Entities

• UPnP Base Driver - The bundle that implements the bridge between OSGi and UPnP networks.
This entity is not represented as a service.

• UPnP Root Device -A physical device can contain one or more root devices. Root devices contain
one ore more devices. A root device is modeled with a UPnPDevice object, there is no separate in-
terface defined for root devices.

• UPnP Device - The representation of a UPnP device. A UPnP device may contain other UPnP de-
vices and UPnP services. This entity is represented by a UPnPDevice object. A device can be local
(implemented in the Framework) or external (implemented by another device on the net).

Introduction Device Service Specification for UPnP™ Technology Version 1.2

Page 236 OSGi Compendium Release 8

• UPnP Service -A UPnP device consists of a number of services. A UPnP service has a number of UP-
nP state variables that can be queried and modified with actions. This concept is represented by a
UPnPService object.

• UPnP Action - A UPnP service is associated with a number of actions that can be performed on
that service and that may modify the UPnP state variables. This entity is represented by a UPn-
PAction object.

• UPnP State Variable - A variable associated with a UPnP service, represented by a UPnPStateVari-
able object.

• UPnP Local State Variable - Extends the UPnPStateVariable interface when the state variable is im-
plemented locally. This interface provides access to the actual value.

• UPnP Event Listener Service - A listener to events coming from UPnP devices.
• UPnP Host - The machine that hosts the code to run a UPnP device or control point.
• UPnP Control Point - A UPnP device that is intended to control UPnP devices over a network. For

example, a UPnP remote controller.
• UPnP Icon - A representation class for an icon associated with a UPnP device.
• UPnP Exception - An exception that delivers errors that were discovered in the UPnP layer.
• UDN - Unique Device Name, a name that uniquely identifies the a specific device.

Figure 111.1 UPnP Service Specification class Diagram org.osgi.service.upnp package

<<interface>>
UPnP Service

a listener

<<interface>>
UPnP Action

<<interface>>
UPnP State
Variable

<<interface>>
UPnP Event
Listener

<<interface>>
UPnPIcon

A UPnP device
implementer

A UPnP control
point

A UPnP device
implementation

in parameter

out parm

has

1

1..n 0..n

1

10..n

11..n

UPnP Base Driver
Implementation

associated w
ith

has

has

registers getsregisters

receives events from

0..n

0..n

has

1..n

1

0..n

1

10..n

<<interface>>
UPnP Device

child

0..n

0,1

<<interface>>
UPnP Local
State Variable

receives events from

0..n

0..n

1 1

111.1.3 Operation Summary
To make a UPnP service available to UPnP control points on a network, an OSGi service object must
be registered under the UPnPDevice interface with the Framework. The UPnP driver bundle must de-

Device Service Specification for UPnP™ Technology Version 1.2 UPnP Specifications

OSGi Compendium Release 8 Page 237

tect these UPnP Device services and must make them available to the network as UPnP devices us-
ing the UPnP protocol.

UPnP devices detected on the local network must be detected and automatically registered under
the UPnPDevice interface with the Framework by the UPnP driver implementation bundle.

A bundle that wants to control UPnP devices, for example to implement a UPnP control point,
should track UPnP Device services in the OSGi service registry and control them appropriately. Such
bundles should not distinguish between resident or remote UPnP Device services.

111.2 UPnP Specifications
The UPnP DA is intended to be used in a broad range of device from the computing (PCs printers),
consumer electronics (DVD, TV, radio), communication (phones) to home automation (lighting
control, security) and home appliances (refrigerators, coffee makers) domains.

For example, a UPnP TV might announce its existence on a network by broadcasting a message. A
UPnP control point on that network can then discover this TV by listening to those announce mes-
sages. The UPnP specifications allow the control point to retrieve information about the user inter-
face of the TV. This information can then be used to allow the end user to control the remote TV
from the control point, for example turn it on or change the channels.

The UPnP specification supports the following features:

• Detect and control a UPnP standardized device. In this case the control point and the remote device
share a priori knowledge about how the device should be controlled. The UPnP Forum intends to
define a large number of these standardized devices.

• Use a user interface description. A UPnP control point receives enough information about a device
and its services to automatically build a user interface for it.

• Programmatic Control. A program can directly control a UPnP device without a user interface.
This control can be based on detected information about the device or through a priori knowl-
edge of the device type.

• Allows the user to browse a web page supplied by the device. This web page contains a user interface
for the device that be directly manipulated by the user. However, this option is not well defined
in the UPnP Device Architecture specification and is not tested for compliance.

The UPnP Device Architecture specification and the OSGi Framework provide complementary func-
tionality. The UPnP Device Architecture specification is a data communication protocol that does
not specify where and how programs execute. That choice is made by the implementations. In con-
trast, the OSGi Framework specifies a (managed) execution point and does not define what proto-
cols or media are supported. The UPnP specification and the OSGi specifications are fully comple-
mentary and do not overlap.

From the OSGi perspective, the UPnP specification is a communication protocol that can be imple-
mented by one or more bundles. This specification therefore defines the following:

• How an OSGi bundle can implement a service that is exported to the network via the UPnP pro-
tocols.

• How to find and control services that are available on the local network.

The UPnP specifications related to the assignment of IP addresses to new devices on the network or
auto-IP self configuration should be handled at the operating system level. Such functions are out-
side the scope of this specification.

UPnP Device Device Service Specification for UPnP™ Technology Version 1.2

Page 238 OSGi Compendium Release 8

111.2.1 UPnP Base Driver
The functionality of the UPnP service is implemented in a UPnP base driver. This is a bundle that im-
plements the UPnP protocols and handles the interaction with bundles that use the UPnP devices. A
UPnP base driver bundle must provide the following functions:

• Discover UPnP devices on the network and map each discovered device into an OSGi registered
UPnP Device service.

• Present UPnP marked services that are registered with the OSGi Framework on one or more net-
works to be used by other computers.

111.3 UPnP Device
The principle entity of the UPnP specification is the UPnP device. There is a UPnP root device that
represents a physical appliance, such as a complete TV. The root device contains a number of sub-de-
vices. These might be the tuner, the monitor, and the sound system. Each sub-device is further com-
posed of a number of UPnP services. A UPnP service represents some functional unit in a device. For
example, in a TV tuner it can represent the TV channel selector. Figure 111.2 on page 238 illus-
trates this hierarchy.

Figure 111.2 UPnP device hierarchy

Network

UPnP root device

UPnP device

UPnP service

UPnP Action

Each UPnP service can be manipulated with a number of UPnP actions. UPnP actions can modify
the state of a UPnP state variable that is associated with a service. For example, in a TV there might
be a state variable volume. There are then actions to set the volume, to increase the volume, and to
decrease the volume.

111.3.1 Root Device
The UPnP root device is registered as a UPnP Device service with the Framework, as well as all its
sub-devices. Most applications will work with sub-devices, and, as a result, the children of the root
device are registered under the UPnPDevice interface.

UPnP device properties are defined per sub-device in the UPnP specification. These properties must
be registered with the OSGi Framework service registry so they are searchable.

Bundles that want to handle the UPnP device hierarchy can use the registered service properties to
find the parent of a device (which is another registered UPnPDevice).

The following service registration properties can be used to discover this hierarchy:

Device Service Specification for UPnP™ Technology Version 1.2 Device Category

OSGi Compendium Release 8 Page 239

• PARENT_UDN - (Str ing) The Universal Device Name (UDN) of the parent device. A root device
most not have this property registered. Type is a Str ing object.

• CHILDREN_UDN - (Str ing[]) An array of UDNs of this device's children.

111.3.2 Exported Versus Imported Devices
Both imported (from the network to the OSGi service registry) and exported (from the service reg-
istry to the network) UPnPDevice services must have the same representation in the OSGi Frame-
work for identical devices. For example, if an OSGi UPnP Device service is exported as a UPnP device
from an OSGi Framework to the network, and it is imported into another OSGi Framework, the ob-
ject representation should be equal. Application bundles should therefore be able to interact with
imported and exported forms of the UPnP device in the same manner.

Imported and exported UPnP devices differ only by two marker properties that can be added to the
service registration. One marker, DEVICE_CATEGORY , should typically be set only on imported de-
vices. By not setting DEVICE_CATEGORY on internal UPnP devices, the Device Manager does not
try to refine these devices (See the Device Access Specification on page 55 for more information about
the Device Manager). If the device service does not implement the Device interface and does not
have the DEVICE_CATEGORY property set, it is not considered a device according to the Device Ac-
cess Specification.

The other marker, UPNP_EXPORT , should only be set on internally created devices that the bundle
developer wants to export. By not setting UPNP_EXPORT on registered UPnP Device services, the UP-
nP Device service can be used by internally created devices that should not be exported to the net-
work. This allows UPnP devices to be simulated within an OSGi Framework without announcing all
of these devices to any networks.

The UPNP_EXPORT service property has no defined type, any value is correct.

111.3.3 Icons
A UPnP device can optionally support an icon. The purpose of this icon is to identify the device on
a UPnP control point. UPnP control points can be implemented in large computers like PC's or sim-
ple devices like a remote control. However, the graphic requirements for these UPnP devices differ
tremendously. The device can, therefore, export a number of icons of different size and depth.

In the UPnP specifications, an icon is represented by a URL that typically refers to the device itself.
In this specification, a list of icons is available from the UPnP Device service.

In order to obtain localized icons, the method getIcons(Str ing) can be used to obtain different ver-
sions. If the locale specified is a nul l argument, then the call returns the icons of the default locale of
the called device (not the default locale of the UPnP control point).When a bundle wants to access
the icon of an imported UPnP device, the UPnP driver gets the data and presents it to the application
through an input stream.

A bundle that needs to export a UPnP Device service with one or more icons must provide an imple-
mentation of the UPnPIcon interface. This implementation must provide an InputStream object to
the actual icon data. The UPnP driver bundle must then register this icon with an HTTP server and
include the URL to the icon with the UPnP device data at the appropriate place.

111.4 Device Category
UPnP Device services are devices in the context of the Device Manager. This means that these ser-
vices need to register with a number of properties to participate in driver refinement. The value for
UPnP devices is defined in the UPnPDevice constant DEVICE_CATEGORY . The value is UPnP . The UP-
nPDevice interface contains a number of constants for matching values. Refer to MATCH_GENERIC
for further information.

UPnPService Device Service Specification for UPnP™ Technology Version 1.2

Page 240 OSGi Compendium Release 8

111.5 UPnPService
A UPnP Device contains a number of UPnPService objects. UPnPService objects combine zero or
more actions and one or more state variables.

111.5.1 State Variables
The UPnPStateVariable interface encapsulates the properties of a UPnP state variable. In addition
to the properties defined by the UPnP specification, a state variable is also mapped to a Java data
type. The Java data type is used when an event is generated for this state variable and when an ac-
tion is performed containing arguments related to this state variable. There must be a strict corre-
spondence between the UPnP data type and the Java data type so that bundles using a particular UP-
nP device profile can predict the precise Java data type.

The function QueryStateVariable defined in the UPnP specification has been deprecated and is
therefore not implemented. It is recommended to use the UPnP event mechanism to track UPnP
state variables.

Additionally, a UPnPStateVariable object can also implement the UPnPLocalStateVariable interface
if the device is implemented locally. That is, the device is not imported from the network. The UP-
nPLocalStateVariable interface provides a getCurrentValue() method that provides direct access to
the actual value of the state variable.

111.6 Working With a UPnP Device
The UPnP driver must register all discovered UPnP devices in the local networks. These devices are
registered under a UPnPDevice interface with the OSGi Framework.

Using a remote UPnP device thus involves tracking UPnP Device services in the OSGi service reg-
istry. The following code illustrates how this can be done. The sample Control ler class extends the
ServiceTracker class so that it can track all UPnP Device services and add them to a user interface,
such as a remote controller application.

class Controller extends ServiceTracker {
 UI ui;

 Controller(BundleContext context) {
 super(context, UPnPDevice.class.getName(), null);
 }
 public Object addingService(ServiceReference ref) {
 UPnPDevice dev = (UPnPDevice)super.addingService(ref);
 ui.addDevice(dev);
 return dev;
 }
 public void removedService(ServiceReference ref,
 Object dev) {
 ui.removeDevice((UPnPDevice) dev);
 }
 ...
}

Device Service Specification for UPnP™ Technology Version 1.2 Implementing a UPnP Device

OSGi Compendium Release 8 Page 241

111.7 Implementing a UPnP Device
OSGi services can also be exported as UPnP devices to the local networks, in a way that is transpar-
ent to typical UPnP devices. This allows developers to bridge legacy devices to UPnP networks. A
bundle should perform the following to export an OSGi service as a UPnP device:

• Register an UPnP Device service with the registration property UPNP_EXPORT .
• Use the registration property PRESENTATION_URL to provide the presentation page. The service

implementer must register its own servlet with the Http Service to serve out this interface. This
URL must point to that servlet.

There can be multiple UPnP root devices hosted by one OSGi platform. The relationship between
the UPnP devices and the OSGi platform is defined by the PARENT_UDN and CHILDREN_UDN service
properties. The bundle registering those device services must make sure these properties are set ac-
cordingly.

Devices that are implemented on the OSGi Framework (in contrast with devices that are imported
from the network) should use the UPnPLocalStateVariable interface for their state variables instead
of the UPnPStateVariable interface. This interface provides programmatic access to the actual value
of the state variable as maintained by the device specific code.

111.8 Event API
There are two distinct event directions for the UPnP Service specification.

• External events from the network must be dispatched to listeners inside the OSGi Frameworks.
The UPnP Base driver is responsible for mapping the network events to internal listener events.

• Implementations of UPnP devices must send out events to local listeners as well as cause the
transmission of the UPnP network events.

UPnP events are sent using the whiteboard model, in which a bundle interested in receiving the UP-
nP events registers an object implementing the UPnPEventListener interface. A filter can be set to
limit the events for which a bundle is notified. The UPnP Base driver must register a UPnP Event Lis-
ter without filter that receives all events.

Figure 111.3 Event Dispatching for Local and External Devices

<<service>>
UPnP Event
Listener

Local Device

UPnP Base Driver

send events to

get events from

multicast
network

receive

send

0,10..n

0..n

1

If a service is registered with a property named upnp.fi l ter with the value of an instance of an Fi l-
ter object, the listener is only notified for matching events (This is a Fi l ter object and not a Str ing ob-
ject because it allows the Inval idSyntaxException to be thrown in the client and not the UPnP driver
bundle).

UPnP Events and Event Admin service Device Service Specification for UPnP™ Technology Version 1.2

Page 242 OSGi Compendium Release 8

The filter might refer to any valid combination of the following pseudo properties for event filter-
ing:

• UPnPDevice.UDN - (UPnP.device.UDN/Str ing) Only events generated by services contained
in the specific device are delivered. For example: (UPnP.device.UDN=uuid:Upnp-TVEmula-
tor-1_0-1234567890001)

• UPnPDevice.TYPE - (UPnP.device.type/Str ing or Str ing[]) Only events generated by services con-
tained in a device of the given type are delivered. For example: (UPnP.device.type=urn:schemas-
upnp-org:device:tvdevice:1)

• UPnPService. ID - (UPnP.service. id/Str ing) Service identity. Only events generated by services
matching the given service ID are delivered.

• UPnPService.TYPE - (UPnP.service.type/Str ing or Str ing[]) Only events generated by services of
the given type are delivered.

If an event is generated by either a local device or via the base driver for an external device, the
notifyUPnPEvent(Str ing,Str ing,Dict ionary) method is called on all registered UPnPEventListener
services for which the optional filter matches for that event. If no filter is specified, all events must
be delivered. If the filter does not match, the UPnP Driver must not call the UPnP Event Listener ser-
vice. The way events must be delivered is the same as described in Delivering Events of OSGi Core Re-
lease 8.

One or multiple events are passed as parameters to the notifyUPnPEvent(Str ing,Str ing,Dict ionary)
method. The Dictionary object holds a pair of UpnPStateVariable objects that triggered the event
and an Object for the new value of the state variable.

111.8.1 Initial Event Delivery
Special care must be taken with the initial subscription to events. According to the UPnP specifi-
cation, when a client subscribes for notification of events for the first time, the device sends out a
number of events for each state variable, indicating the current value of each state variable. This be-
havior simplifies the synchronization of a device and an event-driven client.

The UPnP Base Driver must mimic this event distribution on behalf of external devices. It must
therefore remember the values of the state variables of external devices. A UPnP Device implemen-
tation must send out these initial events for each state variable they have a value for.

The UPnP Base Driver must have stored the last event from the device and retransmit the value over
the multicast network. The UPnP Driver must register an event listener without any filter for this
purpose.

The call to the listener's notification method must be done asynchronously.

111.9 UPnP Events and Event Admin service
UPnP events must be delivered asynchronously to the Event Admin service by the UPnP implemen-
tation, if present. UPnP events have the following topic:

org/osgi/service/upnp/UPnPEvent

The properties of a UPnP event are the following:

• upnp.deviceId - (Str ing) The identity as defined by UPnPDevice.UDN of the device sending the
event.

• upnp.serviceId - (Str ing) The identity of the service sending the events.
• upnp.events - (Dict ionary) A Dictionary object containing the new values for the state variables

that have changed.

Device Service Specification for UPnP™ Technology Version 1.2 Localization

OSGi Compendium Release 8 Page 243

111.10 Localization
All values of the UPnP properties are obtained from the device using the device's default lo-
cale. If an application wants to query a set of localized property values, it has to use the method
getDescr ipt ions(Str ing) . For localized versions of the icons, the method getIcons(Str ing) is to be
used.

111.11 Dates and Times
The UPnP specification uses different types for date and time concepts. An overview of these types is
given in the following table.

Table 111.1 Mapping UPnP Date/Time types to Java

UPnP Type Class Example Value (TZ=CEST=UTC+0200)
date Date 1985-04-12 Sun Apri l 12 00:00:00 CEST 1985
dateTime Date 1985-04-12T10:15:30 Sun Apri l 12 10:15:30 CEST 1985
dateTime.tz Date 1985-04-12T10:15:30+0400 Sun Apri l 12 08:15:30 CEST 1985
time Long 23:20:50 84.050.000 (ms)
t ime.tz Long 23:20:50+0100 1.250.000 (ms)

The UPnP specification points to [2] XML Schema. In this standard, [3] ISO 8601 Date And Time
formats are referenced. The mapping is not completely defined which means that this OSGi UP-
nP specification defines a complete mapping to Java classes. The UPnP types date , dateTime and
dateTime.tz are represented as a Date object. For the date type, the hours, minutes and seconds must
all be zero.

The UPnP types t ime and t ime.tz are represented as a Long object that represents the number of ms
since midnight. If the time wraps to the next day due to a time zone value, then the final value must
be truncated modulo 86.400.000.

See also TYPE_DATE .

111.12 UPnP Exception
The UPnP Exception can be thrown when a UPnPAction is invoked. This exception contains infor-
mation about the different UPnP layers. The following errors are defined:

INVALID_ACTION - (401) No such action could be found.

INVALID_ARGS - (402) Invalid argument.

INVALID_SEQUENCE_NUMBER - (403) Out of synchronization.

INVALID_VARIABLE - (404) State variable not found.

DEVICE_INTERNAL_ERROR - (501) Internal error.

Further errors are categorized as follows:

• Common Action Errors - In the range of 600-69 , defined by the UPnP Forum Technical Committee.
• Action Specific Errors - In the range of 700-799, defined by the UPnP Forum Working Committee.
• Non-Standard Action Specific Errors - In the range of 800-899. Defined by vendors.

Configuration Device Service Specification for UPnP™ Technology Version 1.2

Page 244 OSGi Compendium Release 8

111.13 Configuration
In order to provide a standardized way to configure a UPnP driver bundle, the Configuration Admin
property upnp.ssdp.address is defined.

The value is a Str ing[] with a list of IP addresses, optionally followed with a colon (' : ' \u003A) and a
port number. For example:

239.255.255.250:1900

Those addresses define the interfaces which the UPnP driver is operating on. If no SSDP address is
specified, the default assumed will be 239.255.255.250:1900. If no port is specified, port 1900 is as-
sumed as default.

111.14 Networking considerations

111.14.1 The UPnP Multicasts
The operating system must support multicasting on the selected network device. In certain cases, a
multicasting route has to be set in the operating system routing table.

These configurations are highly dependent on the underlying operating system and beyond the
scope of this specification.

111.15 Security
The UPnP specification is based on HTTP and uses plain text SOAP (XML) messages to control de-
vices. For this reason, it does not provide any inherent security mechanisms. However, the UPnP
specification is based on the exchange of XML files and not code. This means that at least worms
and viruses cannot be implemented using the UPnP protocols.

However, a bundle registering a UPnP Device service is represented on the outside network and has
the ability to communicate. The same is true for getting a UPnP Device service. It is therefore recom-
mended that ServicePermission[UPnPDevice|UPnPEventListener, REGISTER|GET] be used sparingly
and only for bundles that are trusted.

111.16 org.osgi.service.upnp

UPnP Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.upnp; vers ion="[1.2,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.upnp; vers ion="[1.2,1 .3)"

Device Service Specification for UPnP™ Technology Version 1.2 org.osgi.service.upnp

OSGi Compendium Release 8 Page 245

111.16.1 Summary

• UPnPAction - A UPnP action.
• UPnPDevice - Represents a UPnP device.
• UPnPEventListener - UPnP Events are mapped and delivered to applications according to the OS-

Gi whiteboard model.
• UPnPException - There are several defined error situations describing UPnP problems while a

control point invokes actions to UPnPDevices.
• UPnPIcon - A UPnP icon representation.
• UPnPLocalStateVariable - A local UPnP state variable which allows the value of the state vari-

able to be queried.
• UPnPService - A representation of a UPnP Service.
• UPnPStateVariable - The meta-information of a UPnP state variable as declared in the device's

service state table (SST).

111.16.2 public interface UPnPAction
A UPnP action. Each UPnP service contains zero or more actions. Each action may have zero or more
UPnP state variables as arguments.

111.16.2.1 public String[] getInputArgumentNames()

□ Lists all input arguments for this action.

Each action may have zero or more input arguments.

This method must continue to return the action input argument names after the UPnP action has
been removed from the network.

Returns Array of input argument names or nul l if no input arguments.

See Also UPnPStateVariable

111.16.2.2 public String getName()

□ Returns the action name. The action name corresponds to the name field in the actionList of the ser-
vice description.

• For standard actions defined by a UPnP Forum working committee, action names must not begin
with X_ nor A_ .

• For non-standard actions specified by a UPnP vendor and added to a standard service, action
names must begin with X_ .

This method must continue to return the action name after the UPnP action has been removed from
the network.

Returns Name of action, must not contain a hyphen character or a hash character

111.16.2.3 public String[] getOutputArgumentNames()

□ List all output arguments for this action.

This method must continue to return the action output argument names after the UPnP action has
been removed from the network.

Returns Array of output argument names or nul l if there are no output arguments.

See Also UPnPStateVariable

111.16.2.4 public String getReturnArgumentName()

□ Returns the name of the designated return argument.

org.osgi.service.upnp Device Service Specification for UPnP™ Technology Version 1.2

Page 246 OSGi Compendium Release 8

One of the output arguments can be flagged as a designated return argument.

This method must continue to return the action return argument name after the UPnP action has
been removed from the network.

Returns The name of the designated return argument or nul l if none is marked.

111.16.2.5 public UPnPStateVariable getStateVariable(String argumentName)

argumentName The name of the UPnP action argument.

□ Finds the state variable associated with an argument name. Helps to resolve the association of state
variables with argument names in UPnP actions.

Returns State variable associated with the named argument or nul l if there is no such argument.

Throws I l legalStateException– if the UPnP action has been removed from the network.

See Also UPnPStateVariable

111.16.2.6 public Dictionary<String, Object> invoke(Dictionary<String, Object> args) throws Exception

args A Dictionary of arguments. Must contain the correct set and type of arguments for this action. May
be nul l if no input arguments exist.

□ Invokes the action. The input and output arguments are both passed as Dictionary objects. Each en-
try in the Dictionary object has a Str ing object as key representing the argument name and the val-
ue is the argument itself. The class of an argument value must be assignable from the class of the as-
sociated UPnP state variable. The input argument Dictionary object must contain exactly those ar-
guments listed by getInputArguments method. The output argument Dictionary object will contain
exactly those arguments listed by getOutputArguments method.

Returns A Dictionary with the output arguments. nul l if the action has no output arguments.

Throws UPnPException– A UPnP error has occurred.

I l legalStateException– if the UPnP action has been removed from the network.

Exception– The execution fails for some reason.

See Also UPnPStateVariable

111.16.3 public interface UPnPDevice
Represents a UPnP device. For each UPnP root and embedded device, an object is registered with the
framework under the UPnPDevice interface.

The relationship between a root device and its embedded devices can be deduced using the
UPnPDevice.CHILDREN_UDN and UPnPDevice.PARENT_UDN service registration properties.

The values of the UPnP property names are defined by the UPnP Forum.

All values of the UPnP properties are obtained from the device using the device's default locale.

If an application wants to query for a set of localized property values, it has to use the method
UPnPDevice.getDescr ipt ions(Str ing locale) .

111.16.3.1 public static final String CHILDREN_UDN = "UPnP.device.childrenUDN"

The property key that must be set for all devices containing other embedded devices.

The value is an array of UDNs for each of the device's children (Str ing[]). The array contains UDNs
for the immediate descendants only.

If an embedded device in turn contains embedded devices, the latter are not included in the array.

The UPnP Specification does not encourage more than two levels of nesting.

The property is not set if the device does not contain embedded devices.

Device Service Specification for UPnP™ Technology Version 1.2 org.osgi.service.upnp

OSGi Compendium Release 8 Page 247

The property is of type Str ing[] . Value is "UPnP.device.childrenUDN"

111.16.3.2 public static final String DEVICE_CATEGORY = "UPnP"

Constant for the value of the service property DEVICE_CATEGORY used for all UPnP devices. Value is
"UPnP".

See Also org.osgi .service.device.Constants.DEVICE_CATEGORY

111.16.3.3 public static final String FRIENDLY_NAME = "UPnP.device.friendlyName"

Mandatory property key for a short user friendly version of the device name. The property value
holds a Str ing object with the user friendly name of the device. Value is "UPnP.device.friendlyName".

111.16.3.4 public static final String ID = "UPnP.device.UDN"

Property key for the Unique Device ID property. This property is an alias to UPnPDevice.UDN . It is
merely provided for reasons of symmetry with the UPnPService. ID property. The value of the prop-
erty is a Str ing object of the Device UDN. The value of the key is "UPnP.device.UDN".

111.16.3.5 public static final String MANUFACTURER = "UPnP.device.manufacturer"

Mandatory property key for the device manufacturer's property. The property value holds a String
representation of the device manufacturer's name. Value is "UPnP.device.manufacturer".

111.16.3.6 public static final String MANUFACTURER_URL = "UPnP.device.manufacturerURL"

Optional property key for a URL to the device manufacturers Web site. The value of the property is a
Str ing object representing the URL. Value is "UPnP.device.manufacturerURL".

111.16.3.7 public static final int MATCH_GENERIC = 1

Constant for the UPnP device match scale, indicating a generic match for the device. Value is 1.

111.16.3.8 public static final int MATCH_MANUFACTURER_MODEL = 7

Constant for the UPnP device match scale, indicating a match with the device model. Value is 7.

111.16.3.9 public static final int MATCH_MANUFACTURER_MODEL_REVISION = 15

Constant for the UPnP device match scale, indicating a match with the device revision. Value is 15.

111.16.3.10 public static final int MATCH_MANUFACTURER_MODEL_REVISION_SERIAL = 31

Constant for the UPnP device match scale, indicating a match with the device revision and the serial
number. Value is 31.

111.16.3.11 public static final int MATCH_TYPE = 3

Constant for the UPnP device match scale, indicating a match with the device type. Value is 3.

111.16.3.12 public static final String MODEL_DESCRIPTION = "UPnP.device.modelDescription"

Optional (but recommended) property key for a Str ing object with a long description of the device
for the end user. The value is "UPnP.device.modelDescription".

111.16.3.13 public static final String MODEL_NAME = "UPnP.device.modelName"

Mandatory property key for the device model name. The property value holds a Str ing object giving
more information about the device model. Value is "UPnP.device.modelName".

111.16.3.14 public static final String MODEL_NUMBER = "UPnP.device.modelNumber"

Optional (but recommended) property key for a Str ing class typed property holding the model num-
ber of the device. Value is "UPnP.device.modelNumber".

org.osgi.service.upnp Device Service Specification for UPnP™ Technology Version 1.2

Page 248 OSGi Compendium Release 8

111.16.3.15 public static final String MODEL_URL = "UPnP.device.modelURL"

Optional property key for a Str ing typed property holding a string representing the URL to the Web
site for this model. Value is "UPnP.device.modelURL".

111.16.3.16 public static final String PARENT_UDN = "UPnP.device.parentUDN"

The property key that must be set for all embedded devices. It contains the UDN of the parent de-
vice. The property is not set for root devices. The value is "UPnP.device.parentUDN".

111.16.3.17 public static final String PRESENTATION_URL = "UPnP.presentationURL"

Optional (but recommended) property key for a Str ing typed property holding a string representing
the URL to a device representation Web page. Value is "UPnP.presentationURL".

111.16.3.18 public static final String SERIAL_NUMBER = "UPnP.device.serialNumber"

Optional (but recommended) property key for a Str ing typed property holding the serial number of
the device. Value is "UPnP.device.serialNumber".

111.16.3.19 public static final String TYPE = "UPnP.device.type"

Property key for the UPnP Device Type property. Some standard property values are defined by the
Universal Plug and Play Forum. The type string also includes a version number as defined in the UP-
nP specification. This property must be set.

For standard devices defined by a UPnP Forum working committee, this must consist of the follow-
ing components in the given order separated by colons:

• urn
• schemas-upnp-org
• device
• a device type suffix
• an integer device version

For non-standard devices specified by UPnP vendors following components must be specified in the
given order separated by colons:

• urn
• an ICANN domain name owned by the vendor
• device
• a device type suffix
• an integer device version

To allow for backward compatibility the UPnP driver must automatically generate additional De-
vice Type property entries for smaller versions than the current one. If for example a device an-
nounces its type as version 3, then properties for versions 2 and 1 must be automatically generated.

In the case of exporting a UPnPDevice, the highest available version must be announced on the net-
work.

Syntax Example: urn:schemas-upnp-org:device:deviceType:v

The value is "UPnP.device.type".

111.16.3.20 public static final String UDN = "UPnP.device.UDN"

Property key for the Unique Device Name (UDN) property. It is the unique identifier of an instance
of a UPnPDevice . The value of the property is a Str ing object of the Device UDN. Value of the key is
"UPnP.device.UDN". This property must be set.

Device Service Specification for UPnP™ Technology Version 1.2 org.osgi.service.upnp

OSGi Compendium Release 8 Page 249

111.16.3.21 public static final String UPC = "UPnP.device.UPC"

Optional property key for a Str ing typed property holding the Universal Product Code (UPC) of the
device. Value is "UPnP.device.UPC".

111.16.3.22 public static final String UPNP_EXPORT = "UPnP.export"

The UPnP.export service property is a hint that marks a device to be picked up and exported by the
UPnP Service. Imported devices do not have this property set. The registered property requires no
value.

The UPNP_EXPORT string is "UPnP.export".

111.16.3.23 public Dictionary<String, Object> getDescriptions(String locale)

locale A language tag as defined by RFC 1766 and maintained by ISO 639. Examples include "de", "en" or "
en-US". The default locale of the device is specified by passing a nul l argument.

□ Get a set of localized UPnP properties. The UPnP specification allows a device to present different
device properties based on the client's locale. The properties used to register the UPnPDevice service
in the OSGi registry are based on the device's default locale. To obtain a localized set of the proper-
ties, an application can use this method.

Not all properties might be available in all locales. This method does not substitute missing proper-
ties with their default locale versions.

This method must continue to return the properties after the UPnP device has been removed from
the network.

Returns Dictionary mapping property name Strings to property value Strings

111.16.3.24 public UPnPIcon[] getIcons(String locale)

locale A language tag as defined by RFC 1766 and maintained by ISO 639. Examples include "de", "en" or "
en-US". The default locale of the device is specified by passing a nul l argument.

□ Lists all icons for this device in a given locale. The UPnP specification allows a device to present dif-
ferent icons based on the client's locale.

Returns Array of icons or null if no icons are available.

Throws I l legalStateException– if the UPnP device has been removed from the network.

111.16.3.25 public UPnPService getService(String serviceId)

serviceId The service id

□ Locates a specific service by its service id.

Returns The requested service or null if not found.

Throws I l legalStateException– if the UPnP device has been removed from the network.

111.16.3.26 public UPnPService[] getServices()

□ Lists all services provided by this device.

Returns Array of services or nul l if no services are available.

Throws I l legalStateException– if the UPnP device has been removed from the network.

111.16.4 public interface UPnPEventListener
UPnP Events are mapped and delivered to applications according to the OSGi whiteboard model.
An application that wishes to be notified of events generated by a particular UPnP Device registers a
service extending this interface.

org.osgi.service.upnp Device Service Specification for UPnP™ Technology Version 1.2

Page 250 OSGi Compendium Release 8

The notification call from the UPnP Service to any UPnPEventListener object must be done asyn-
chronous with respect to the originator (in a separate thread).

Upon registration of the UPnP Event Listener service with the Framework, the service is notified for
each variable which it listens for with an initial event containing the current value of the variable.
Subsequent notifications only happen on changes of the value of the variable.

A UPnP Event Listener service filter the events it receives. This event set is limited using a standard
framework filter expression which is specified when the listener service is registered.

The filter is specified in a property named "upnp.filter" and has as a value an object of type
org.osgi .f ramework.Fi l ter .

When the Filter is evaluated, the following keywords are recognized as defined as literal constants
in the UPnPDevice class.

The valid subset of properties for the registration of UPnP Event Listener services are:

• UPnPDevice.TYPE -- Which type of device to listen for events.
• UPnPDevice. ID -- The ID of a specific device to listen for events.
• UPnPService.TYPE -- The type of a specific service to listen for events.
• UPnPService. ID -- The ID of a specific service to listen for events.

111.16.4.1 public static final String UPNP_FILTER = "upnp.filter"

Key for a service property having a value that is an object of type org.osgi .f ramework.Fi l ter and that
is used to limit received events.

111.16.4.2 public void notifyUPnPEvent(String deviceId, String serviceId, Dictionary<String, Object> events)

deviceId ID of the device sending the events

serviceId ID of the service sending the events

events Dictionary object containing the new values for the state variables that have changed.

□ Callback method that is invoked for received events. The events are collected in a Dictionary object.
Each entry has a Str ing key representing the event name (= state variable name) and the new value
of the state variable. The class of the value object must match the class specified by the UPnP State
Variable associated with the event. This method must be called asynchronously

111.16.5 public class UPnPException
extends Exception
There are several defined error situations describing UPnP problems while a control point invokes
actions to UPnPDevices.

Since 1.1

111.16.5.1 public static final int DEVICE_INTERNAL_ERROR = 501

The invoked action failed during execution.

111.16.5.2 public static final int INVALID_ACTION = 401

No Action found by that name at this service.

111.16.5.3 public static final int INVALID_ARGS = 402

Not enough arguments, too many arguments with a specific name, or one of more of the arguments
are of the wrong type.

111.16.5.4 public static final int INVALID_SEQUENCE_NUMBER = 403

The different end-points are no longer in synchronization.

Device Service Specification for UPnP™ Technology Version 1.2 org.osgi.service.upnp

OSGi Compendium Release 8 Page 251

111.16.5.5 public static final int INVALID_VARIABLE = 404

Refers to a non existing variable.

111.16.5.6 public UPnPException(int errorCode, String errorDescription)

errorCode error code which defined by UPnP Device Architecture V1.0.

errorDescription error description which explain the type of problem.

□ This constructor creates a UPnPException on the specified error code and error description.

111.16.5.7 public UPnPException(int errorCode, String errorDescription, Throwable errorCause)

errorCode error code which defined by UPnP Device Architecture V1.0.

errorDescription error description which explain the type of the problem.

errorCause cause of that UPnPException .

□ This constructor creates a UPnPException on the specified error code, error description and error
cause.

Since 1.2

111.16.5.8 public int getUPnPError_Code()

□ Returns the UPnPError Code occurred by UPnPDevices during invocation.

Returns The UPnPErrorCode defined by a UPnP Forum working committee or specified by a UPnP vendor.

Deprecated As of 1.2. Replaced by getUPnPErrorCode().

111.16.5.9 public int getUPnPErrorCode()

□ Returns the UPnP Error Code occurred by UPnPDevices during invocation.

Returns The UPnPErrorCode defined by a UPnP Forum working committee or specified by a UPnP vendor.

Since 1.2

111.16.6 public interface UPnPIcon
A UPnP icon representation. Each UPnP device can contain zero or more icons.

111.16.6.1 public int getDepth()

□ Returns the color depth of the icon in bits.

This method must continue to return the icon depth after the UPnP device has been removed from
the network.

Returns The color depth in bits. If the actual color depth of the icon is unknown, -1 is returned.

111.16.6.2 public int getHeight()

□ Returns the height of the icon in pixels. If the actual height of the icon is unknown, -1 is returned.

This method must continue to return the icon height after the UPnP device has been removed from
the network.

Returns The height in pixels, or -1 if unknown.

111.16.6.3 public InputStream getInputStream() throws IOException

□ Returns an InputStream object for the icon data. The InputStream object provides a way for a client
to read the actual icon graphics data. The number of bytes available from this InputStream object
can be determined via the getSize() method. The format of the data encoded can be determined by
the MIME type available via the getMimeType() method.

org.osgi.service.upnp Device Service Specification for UPnP™ Technology Version 1.2

Page 252 OSGi Compendium Release 8

Returns An InputStream to read the icon graphics data from.

Throws IOException– If the InputStream cannot be returned.

I l legalStateException– if the UPnP device has been removed from the network.

See Also UPnPIcon.getMimeType()

111.16.6.4 public String getMimeType()

□ Returns the MIME type of the icon. This method returns the format in which the icon graphics, read
from the InputStream object obtained by the getInputStream() method, is encoded.

The format of the returned string is in accordance to RFC2046. A list of valid MIME types is main-
tained by the IANA [http://www.iana.org/assignments/media-types/].

Typical values returned include: "image/jpeg" or "image/gif"

This method must continue to return the icon MIME type after the UPnP device has been removed
from the network.

Returns The MIME type of the encoded icon.

111.16.6.5 public int getSize()

□ Returns the size of the icon in bytes. This method returns the number of bytes of the icon available
to read from the InputStream object obtained by the getInputStream() method. If the actual size can
not be determined, -1 is returned.

Returns The icon size in bytes, or -1 if the size is unknown.

Throws I l legalStateException– if the UPnP device has been removed from the network.

111.16.6.6 public int getWidth()

□ Returns the width of the icon in pixels. If the actual width of the icon is unknown, -1 is returned.

This method must continue to return the icon width after the UPnP device has been removed from
the network.

Returns The width in pixels, or -1 if unknown.

111.16.7 public interface UPnPLocalStateVariable
extends UPnPStateVariable
A local UPnP state variable which allows the value of the state variable to be queried.

Since 1.1

111.16.7.1 public Object getCurrentValue()

□ This method will keep the current values of UPnPStateVariables of a UPnPDevice whenever
UPnPStateVariable's value is changed , this method must be called.

Returns Object current value of UPnPStateVariable. If the current value is initialized with the default value
defined UPnP service description.

Throws I l legalStateException– If the UPnP state variable has been removed.

111.16.8 public interface UPnPService
A representation of a UPnP Service. Each UPnP device contains zero or more services. The UPnP de-
scription for a service defines actions, their arguments, and event characteristics.

111.16.8.1 public static final String ID = "UPnP.service.id"

Property key for the optional service id. The service id property is used when registering UPnP De-
vice services or UPnP Event Listener services. The value of the property contains a Str ing array

http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/

Device Service Specification for UPnP™ Technology Version 1.2 org.osgi.service.upnp

OSGi Compendium Release 8 Page 253

(Str ing[]) of service ids. A UPnP Device service can thus announce what service ids it contains. A
UPnP Event Listener service can announce for what UPnP service ids it wants notifications. A ser-
vice id does not have to be universally unique. It must be unique only within a device. A nul l value
is a wildcard, matching all services. The value is "UPnP.service.id".

111.16.8.2 public static final String TYPE = "UPnP.service.type"

Property key for the optional service type uri. The service type property is used when registering UP-
nP Device services and UPnP Event Listener services. The property contains a Str ing array (Str ing[])
of service types. A UPnP Device service can thus announce what types of services it contains. A UP-
nP Event Listener service can announce for what type of UPnP services it wants notifications. The
service version is encoded in the type string as specified in the UPnP specification. A nul l value is a
wildcard, matching all service types. Value is "UPnP.service.type".

See Also UPnPService.getType()

111.16.8.3 public UPnPAction getAction(String name)

name Name of action. Must not contain hyphen or hash characters. Should be < 32 characters.

□ Locates a specific action by name. Looks up an action by its name.

Returns The requested action or nul l if no action is found.

Throws I l legalStateException– if the UPnP service has been removed from the network.

111.16.8.4 public UPnPAction[] getActions()

□ Lists all actions provided by this service.

Returns Array of actions (UPnPAction[])or nul l if no actions are defined for this service.

Throws I l legalStateException– if the UPnP service has been removed from the network.

111.16.8.5 public String getId()

□ Returns the serviceId field in the UPnP service description.

For standard services defined by a UPnP Forum working committee, the serviceId must contain the
following components in the indicated order:

• urn:upnp-org:serviceId:
• service ID suffix

Example: urn:upnp-org:serviceId:serviceID .

Note that upnp-org is used instead of schemas-upnp-org in this example because an XML schema is
not defined for each serviceId.

For non-standard services specified by UPnP vendors, the serviceId must contain the following com-
ponents in the indicated order:

• urn:
• ICANN domain name owned by the vendor
• :serviceId:
• service ID suffix

Example: urn:domain-name:serviceId:serviceID .

This method must continue to return the service id after the UPnP service has been removed from
the network.

Returns The service ID suffix defined by a UPnP Forum working committee or specified by a UPnP vendor.
Must be <= 64 characters. Single URI.

org.osgi.service.upnp Device Service Specification for UPnP™ Technology Version 1.2

Page 254 OSGi Compendium Release 8

111.16.8.6 public UPnPStateVariable getStateVariable(String name)

name Name of the State Variable

□ Gets a UPnPStateVariable objects provided by this service by name

Returns State variable or nul l if no such state variable exists for this service.

Throws I l legalStateException– if the UPnP service has been removed from the network.

111.16.8.7 public UPnPStateVariable[] getStateVariables()

□ Lists all UPnPStateVariable objects provided by this service.

Returns Array of state variables or nul l if none are defined for this service.

Throws I l legalStateException– if the UPnP service has been removed from the network.

111.16.8.8 public String getType()

□ Returns the serviceType field in the UPnP service description.

For standard services defined by a UPnP Forum working committee, the serviceType must contain
the following components in the indicated order:

• urn:schemas-upnp-org:service:
• service type suffix:
• integer service version

Example: urn:schemas-upnp-org:service:serviceType:v .

For non-standard services specified by UPnP vendors, the serviceType must contain the following
components in the indicated order:

• urn:
• ICANN domain name owned by the vendor
• :service:
• service type suffix:
• integer service version

Example: urn:domain-name:service:serviceType:v .

This method must continue to return the service type after the UPnP service has been removed from
the network.

Returns The service type suffix defined by a UPnP Forum working committee or specified by a UPnP vendor.
Must be <= 64 characters, not including the version suffix and separating colon. Single URI.

111.16.8.9 public String getVersion()

□ Returns the version suffix encoded in the serviceType field in the UPnP service description.

This method must continue to return the service version after the UPnP service has been removed
from the network.

Returns The integer service version defined by a UPnP Forum working committee or specified by a UPnP
vendor.

111.16.9 public interface UPnPStateVariable
The meta-information of a UPnP state variable as declared in the device's service state table (SST).

Method calls to interact with a device (e.g. UPnPAction. invoke(. . .) ;) use this class to encapsulate
meta information about the input and output arguments.

Device Service Specification for UPnP™ Technology Version 1.2 org.osgi.service.upnp

OSGi Compendium Release 8 Page 255

The actual values of the arguments are passed as Java objects. The mapping of types from UPnP data
types to Java data types is described with the field definitions.

111.16.9.1 public static final String TYPE_BIN_BASE64 = "bin.base64"

MIME-style Base64 encoded binary BLOB.

Takes 3 Bytes, splits them into 4 parts, and maps each 6 bit piece to an octet. (3 octets are encoded as
4.) No limit on size.

Mapped to byte[] object. The Java byte array will hold the decoded content of the BLOB.

111.16.9.2 public static final String TYPE_BIN_HEX = "bin.hex"

Hexadecimal digits representing octets.

Treats each nibble as a hex digit and encodes as a separate Byte. (1 octet is encoded as 2.) No limit on
size.

Mapped to byte[] object. The Java byte array will hold the decoded content of the BLOB.

111.16.9.3 public static final String TYPE_BOOLEAN = "boolean"

True or false.

Mapped to Boolean object.

111.16.9.4 public static final String TYPE_CHAR = "char"

Unicode string.

One character long.

Mapped to Character object.

111.16.9.5 public static final String TYPE_DATE = "date"

A calendar date.

Date in a subset of ISO 8601 format without time data.

See http://www.w3.org/TR/ xmlschema-2/#date [http://www.w3.org/TR/xmlschema-2/#date].

Mapped to java.ut i l .Date object. Always 00:00 hours.

111.16.9.6 public static final String TYPE_DATETIME = "dateTime"

A specific instant of time.

Date in ISO 8601 format with optional time but no time zone.

See http://www.w3.org /TR/xmlschema-2/#dateTime [http://www.w3.org/TR/xmlschema-2/#date-
Time].

Mapped to java.ut i l .Date object using default time zone.

111.16.9.7 public static final String TYPE_DATETIME_TZ = "dateTime.tz"

A specific instant of time.

Date in ISO 8601 format with optional time and optional time zone.

See http://www.w3.org /TR/xmlschema-2/#dateTime [http://www.w3.org/TR/xmlschema-2/#date-
Time].

Mapped to java.ut i l .Date object adjusted to default time zone.

http://www.w3.org/TR/xmlschema-2/#date
http://www.w3.org/TR/xmlschema-2/#date
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime

org.osgi.service.upnp Device Service Specification for UPnP™ Technology Version 1.2

Page 256 OSGi Compendium Release 8

111.16.9.8 public static final String TYPE_FIXED_14_4 = "fixed.14.4"

Same as r8 but no more than 14 digits to the left of the decimal point and no more than 4 to the
right.

Mapped to Double object.

111.16.9.9 public static final String TYPE_FLOAT = "float"

Floating-point number.

Mantissa (left of the decimal) and/or exponent may have a leading sign. Mantissa and/or exponent
may have leading zeros. Decimal character in mantissa is a period, i.e., whole digits in mantissa sep-
arated from fractional digits by period. Mantissa separated from exponent by E. (No currency sym-
bol.) (No grouping of digits in the mantissa, e.g., no commas.)

Mapped to Float object.

111.16.9.10 public static final String TYPE_I1 = "i1"

1 Byte int.

Mapped to Integer object.

111.16.9.11 public static final String TYPE_I2 = "i2"

2 Byte int.

Mapped to Integer object.

111.16.9.12 public static final String TYPE_I4 = "i4"

4 Byte int.

Must be between -2147483648 and 2147483647

Mapped to Integer object.

111.16.9.13 public static final String TYPE_INT = "int"

Integer number.

Mapped to Integer object.

111.16.9.14 public static final String TYPE_NUMBER = "number"

Same as r8.

Mapped to Double object.

111.16.9.15 public static final String TYPE_R4 = "r4"

4 Byte float.

Same format as float. Must be between 3.40282347E+38 to 1.17549435E-38.

Mapped to Float object.

111.16.9.16 public static final String TYPE_R8 = "r8"

8 Byte float.

Same format as float. Must be between -1.79769313486232E308 and -4.94065645841247E-324 for
negative values, and between 4.94065645841247E-324 and 1.79769313486232E308 for positive val-
ues, i.e., IEEE 64-bit (8-Byte) double.

Mapped to Double object.

Device Service Specification for UPnP™ Technology Version 1.2 org.osgi.service.upnp

OSGi Compendium Release 8 Page 257

111.16.9.17 public static final String TYPE_STRING = "string"

Unicode string.

No limit on length.

Mapped to Str ing object.

111.16.9.18 public static final String TYPE_TIME = "time"

An instant of time that recurs every day.

Time in a subset of ISO 8601 format with no date and no time zone.

See http://www.w3.org /TR/xmlschema-2/#time [http://www.w3.org/TR/xmlschema-2/#dateTime].

Mapped to Long . Converted to milliseconds since midnight.

111.16.9.19 public static final String TYPE_TIME_TZ = "time.tz"

An instant of time that recurs every day.

Time in a subset of ISO 8601 format with optional time zone but no date.

See http://www.w3.org /TR/xmlschema-2/#time [http://www.w3.org/TR/xmlschema-2/#dateTime].

Mapped to Long object. Converted to milliseconds since midnight and adjusted to default time zone,
wrapping at 0 and 24*60*60*1000.

111.16.9.20 public static final String TYPE_UI1 = "ui1"

Unsigned 1 Byte int.

Mapped to an Integer object.

111.16.9.21 public static final String TYPE_UI2 = "ui2"

Unsigned 2 Byte int.

Mapped to Integer object.

111.16.9.22 public static final String TYPE_UI4 = "ui4"

Unsigned 4 Byte int.

Mapped to Long object.

111.16.9.23 public static final String TYPE_URI = "uri"

Universal Resource Identifier.

Mapped to Str ing object.

111.16.9.24 public static final String TYPE_UUID = "uuid"

Universally Unique ID.

Hexadecimal digits representing octets. Optional embedded hyphens are ignored.

Mapped to Str ing object.

111.16.9.25 public String[] getAllowedValues()

□ Returns the allowed values, if defined. Allowed values can be defined only for String types.

This method must continue to return the state variable allowed values after the UPnP state variable
has been removed from the network.

Returns The allowed values or nul l if not defined. Should be less than 32 characters.

http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime

org.osgi.service.upnp Device Service Specification for UPnP™ Technology Version 1.2

Page 258 OSGi Compendium Release 8

111.16.9.26 public Object getDefaultValue()

□ Returns the default value, if defined.

This method must continue to return the state variable default value after the UPnP state variable
has been removed from the network.

Returns The default value or nul l if not defined. The type of the returned object can be determined by get-
JavaDataType .

111.16.9.27 public Class<?> getJavaDataType()

□ Returns the Java class associated with the UPnP data type of this state variable.

Mapping between the UPnP data types and Java classes is performed according to the schema men-
tioned above.

 Integer ui1, ui2, i1, i2, i4, int
 Long ui4, time, time.tz
 Float r4, float
 Double r8, number, fixed.14.4
 Character char
 String string, uri, uuid
 Date date, dateTime, dateTime.tz
 Boolean boolean
 byte[] bin.base64, bin.hex

This method must continue to return the state variable java type after the UPnP state variable has
been removed from the network.

Returns A class object corresponding to the Java type of this argument.

111.16.9.28 public Number getMaximum()

□ Returns the maximum value, if defined. Maximum values can only be defined for numeric types.

This method must continue to return the state variable maximum value after the UPnP state vari-
able has been removed from the network.

Returns The maximum value or nul l if not defined.

111.16.9.29 public Number getMinimum()

□ Returns the minimum value, if defined. Minimum values can only be defined for numeric types.

This method must continue to return the state variable minimum value after the UPnP state vari-
able has been removed from the network.

Returns The minimum value or nul l if not defined.

111.16.9.30 public String getName()

□ Returns the variable name.

• All standard variables defined by a UPnP Forum working committee must not begin with X_ nor
A_ .

• All non-standard variables specified by a UPnP vendor and added to a standard service must be-
gin with X_ .

This method must continue to return the state variable name after the UPnP state variable has been
removed from the network.

Returns Name of state variable. Must not contain a hyphen character nor a hash character. Should be < 32
characters.

Device Service Specification for UPnP™ Technology Version 1.2 References

OSGi Compendium Release 8 Page 259

111.16.9.31 public Number getStep()

□ Returns the size of an increment operation, if defined. Step sizes can be defined only for numeric
types.

This method must continue to return the step size after the UPnP state variable has been removed
from the network.

Returns The increment size or null if not defined.

111.16.9.32 public String getUPnPDataType()

□ Returns the UPnP type of this state variable. Valid types are defined as constants.

This method must continue to return the state variable UPnP data type after the UPnP state variable
has been removed from the network.

Returns The UPnP data type of this state variable, as defined in above constants.

111.16.9.33 public boolean sendsEvents()

□ Tells if this StateVariable can be used as an event source. If the StateVariable is eventable, an event
listener service can be registered to be notified when changes to the variable appear.

This method must continue to return the correct value after the UPnP state variable has been re-
moved from the network.

Returns true if the StateVariable generates events, fa lse otherwise.

111.17 References

[1] UPnP Forum
http://www.upnp.org

[2] XML Schema
http://www.w3.org/TR/xmlschema-2

[3] ISO 8601 Date And Time formats
http://www.iso.ch

http://www.upnp.org
http://www.w3.org/TR/xmlschema-2
http://www.iso.ch

References Device Service Specification for UPnP™ Technology Version 1.2

Page 260 OSGi Compendium Release 8

Declarative Services Specification Version 1.5 Introduction

OSGi Compendium Release 8 Page 261

112 Declarative Services Specification

Version 1.5

112.1 Introduction
The OSGi Framework contains a procedural service model which provides a publish/find/bind mod-
el for using services. This model is elegant and powerful, it enables the building of applications out
of bundles that communicate and collaborate using these services.

This specification addresses some of the complications that arise when the OSGi service model is
used for larger systems and wider deployments, such as:

• Startup Time - The procedural service model requires a bundle to actively register and acquire
its services. This is normally done at startup time, requiring all present bundles to be initial-
ized with a Bundle Activator. In larger systems, this quickly results in unacceptably long startup
times.

• Memory Footprint - A service registered with the Framework implies that the implementation,
and related classes and objects, are loaded in memory. If the service is never used, this memory is
unnecessarily occupied. The creation of a class loader may therefore cause significant overhead.

• Complexity - Service can come and go at any time. This dynamic behavior makes the service pro-
gramming model more complex than more traditional models. This complexity negatively influ-
ences the adoption of the OSGi service model as well as the robustness and reliability of applica-
tions because these applications do not always handle the dynamicity correctly.

The service component model uses a declarative model for publishing, finding and binding to OSGi
services. This model simplifies the task of authoring OSGi services by performing the work of reg-
istering the service and handling service dependencies. This minimizes the amount of code a pro-
grammer has to write; it also allows service components to be loaded only when they are needed.
As a result, bundles need not provide a BundleActivator class to collaborate with others through the
service registry.

From a system perspective, the service component model means reduced startup time and potential-
ly a reduction of the memory footprint. From a programmer's point of view the service component
model provides a simplified programming model.

The Service Component model makes use of concepts described in [1] Automating Service Dependency
Management in a Service-Oriented Component Model.

112.1.1 Essentials

• Backward Compatibility - The service component model must operate seamlessly with the exist-
ing service model.

• Size Constraints - The service component model must not require memory and performance in-
tensive subsystems. The model must also be applicable on resource constrained devices.

• Delayed Activation - The service component model must allow delayed activation of a service
component. Delayed activation allows for delayed class loading and object creation until needed,
thereby reducing the overall memory footprint.

• Simplicity - The programming model for using declarative services must be very simple and not
require the programmer to learn a complicated API or XML sub-language.

Introduction Declarative Services Specification Version 1.5

Page 262 OSGi Compendium Release 8

• Dependency Injection - The programming model for using declarative services supports three types
of dependency injection: method injection, field injection, and constructor injection.

• Reactive - It must be possible to react to changes in the external dependencies with different poli-
cies.

• Annotations - Annotations must be provided that can leverage the type information to create the
XML descriptor.

• Introspection - It must be possible to introspect the service components.

112.1.2 Entities

• Service Component - A service component contains a description that is interpreted at run time to
create and dispose objects depending on the availability of other services, the need for such an
object, and available configuration data. Such objects can optionally provide a service. This speci-
fication also uses the generic term component to refer to a service component.

• Service Component Runtime (SCR) - The actor that manages the components and their life cycle
and allows introspection of the components.

• Component Description - The declaration of a service component. It is contained within an XML
document in a bundle.

• Component Properties - A set of properties which can be specified by the component description,
Configuration Admin service and from the component factory.

• Component Property Type - A user defined annotation type which defines component properties
and is implemented by SCR to provide type safe access to the defined component properties.

• Component Configuration - A component configuration represents a component description para-
meterized by component properties. It is the entity that tracks the component dependencies and
manages a component instance. An activated component configuration has a component con-
text.

• Component Instance - An instance of the component implementation class. A component instance
is created when a component configuration is activated and discarded when the component con-
figuration is deactivated. A component instance is associated with exactly one component con-
figuration.

• Delayed Component - A component whose component configurations are activated when their
service is requested.

• Immediate Component - A component whose component configurations are activated immediate-
ly upon becoming satisfied.

• Factory Component - A component whose component configurations are created and activated
through the component's component factory.

• Reference - A specified dependency of a component on a set of target services.
• Target Services - The set of services that is defined by the reference interface and target property

filter.
• Bound Services - The set of target services that are bound to a component configuration.
• Event methods - The bind, updated, and unbind methods associated with a Reference.

Declarative Services Specification Version 1.5 Introduction

OSGi Compendium Release 8 Page 263

Figure 112.1 Service Component Runtime, org.osgi.service.component package

a Component
Impl

a Service Impl

Service
Component
Runtime Impl

a Servicea Component
Instance

Component
Description

a Component
Confguration

registered service

tracks
dependencies

declares com
ponent

created by

controls 0..n

0..n

0..n

references

1..n
1

Configuration
Admin

0..n

1

0..n

1

1

<<service>>
Service Component
Runtime

112.1.3 Synopsis
The Service Component Runtime reads component descriptions from started bundles. These de-
scriptions are in the form of XML documents which define a set of components for a bundle. A com-
ponent can refer to a number of services that must be available before a component configuration
becomes satisfied. These dependencies are defined in the descriptions and the specific target ser-
vices can be influenced by configuration information in the Configuration Admin service. After a
component configuration becomes satisfied, a number of different scenarios can take place depend-
ing on the component type:

• Immediate Component - The component configuration of an immediate component must be acti-
vated immediately after becoming satisfied. Immediate components may provide a service.

• Delayed Component - When a component configuration of a delayed component becomes satis-
fied, SCR will register the service specified by the service element without activating the com-
ponent configuration. If this service is requested, SCR must activate the component configura-
tion creating an instance of the component implementation class that will be returned as the ser-
vice object. If the scope attribute of the service element is bundle , then, for each distinct bundle
that requests the service object, a different component configuration is created and activated and
a new instance of the component implementation class is returned as the service object. If the
scope attribute of the service element is prototype , then, for each distinct request for the service
object, such as via ServiceObjects , a different component configuration is created and activated
and a new instance of the component implementation class is returned as the service object.

• Factory Component - If a component's description specifies the factory attribute of the component
element, SCR will register a Component Factory service. This service allows client bundles to
create and activate multiple component configurations and dispose of them. If the component's
description also specifies a service element, then as each component configuration is activated,
SCR will register it as a service.

112.1.4 Readers

• Architects - The chapter, Components on page 264, gives a comprehensive introduction to the
capabilities of the component model. It explains the model with a number of examples. The sec-
tion about Component Life Cycle on page 292 provides some deeper insight in the life cycle of
components.

Components Declarative Services Specification Version 1.5

Page 264 OSGi Compendium Release 8

• Service Programmers - Service programmers should read Components on page 264. This chapter
should suffice for the most common cases. For the more advanced possibilities, they should con-
sult Component Description on page 280 for the details of the XML grammar for component de-
scriptions.

• Deployers - Deployers should consult Deployment on page 303.

112.2 Components
A component is a normal Java class contained within a bundle. The distinguishing aspect of a com-
ponent is that it is declared in an XML document. Component configurations are activated and deac-
tivated under the full control of SCR. SCR bases its decisions on the information in the component's
description. This information consists of basic component information like the name and type, op-
tional services that are implemented by the component, and references. References are dependencies
that the component has on other services.

SCR must activate a component configuration when the component is enabled and the component
configuration is satisfied and a component configuration is needed. During the life time of a compo-
nent configuration, SCR can notify the component of changes in its bound references.

SCR will deactivate a previously activated component configuration when the component becomes
disabled, the component configuration becomes unsatisfied, or the component configuration is no
longer needed.

If an activated component configuration's configuration properties change, SCR must either notify
the component configuration of the change, if the component description specifies a method to be
notified of such changes, or deactivate the component configuration and then attempt to reactivate
the component configuration using the new configuration information.

112.2.1 Declaring a Component
A component requires the following artifacts in the bundle:

• An XML document that contains the component description.
• The Service-Component manifest header which names the XML documents that contain the

component descriptions.
• An implementation class that is specified in the component description.

The elements in the component's description are defined in Component Description on page 280.
The XML grammar for the component declaration is defined by the XML Schema, see Component De-
scription Schema on page 319.

112.2.2 Immediate Component
An immediate component is activated as soon as its dependencies are satisfied. If an immediate compo-
nent has no dependencies, it is activated immediately. A component is an immediate component if
it is not a factory component and either does not specify a service or specifies a service and the im-
mediate attribute of the component element set to true . If an immediate component configuration
is satisfied and specifies a service, SCR must register the component configuration as a service in the
service registry and then activate the component configuration.

For example, the bundle entry /OSGI-INF/act ivator.xml contains:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.activator"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.5.0">
 <implementation class="com.acme.impl.Activator"/>

Declarative Services Specification Version 1.5 Components

OSGi Compendium Release 8 Page 265

</scr:component>

The manifest header Service-Component must also be specified in the bundle manifest. For exam-
ple:

Service-Component: OSGI-INF/activator.xml

An example class for this component could look like:

public class Activator {
 public Activator() {...}
 private void activate(BundleContext context) {...}
 private void deactivate() {...}
}

This example component is virtually identical to a Bundle Activator. It has no references to other
services so it will be satisfied immediately. It publishes no service so SCR will activate a component
configuration immediately.

The activate method is called when SCR activates the component configuration and the deactivate
method is called when SCR deactivates the component configuration. If the activate method throws
an Exception, then the component configuration is not activated and will be discarded.

112.2.3 Delayed Component
A delayed component specifies a service, is not specified to be a factory component and does not have
the immediate attribute of the component element set to true . If a delayed component configura-
tion is satisfied, SCR must register the component configuration as a service in the service registry
but the activation of the component configuration is delayed until the registered service is request-
ed. The registered service of a delayed component looks like a normal registered service but does not
incur the overhead of an ordinarily registered service that require a service's bundle to be initialized
to register the service.

For example, a bundle needs to see events of a specific topic. The Event Admin uses the white board
pattern, receiving the events is therefore as simple as registering a Event Handler service. The exam-
ple XML for the delayed component looks like:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.handler"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.5.0">
 <implementation class="com.acme.impl.HandlerImpl"/>
 <property name="event.topics">some/topic</property>
 <service>
 <provide interface="org.osgi.service.event.EventHandler"/>
 </service>
</scr:component>

The associated component class looks like:

public class HandlerImpl implements EventHandler{
 public void handleEvent(Event evt) {
 ...
 }
}

The component configuration will only be activated once the Event Admin service requires the ser-
vice because it has an event to deliver on the topic to which the component subscribed.

Components Declarative Services Specification Version 1.5

Page 266 OSGi Compendium Release 8

112.2.4 Factory Component
Certain software patterns require the creation of component configurations on demand. For exam-
ple, a component could represent an application that can be launched multiple times and each ap-
plication instance can then quit independently. Such a pattern requires a factory that creates the in-
stances. This pattern is supported with a factory component. A factory component is used if the fac-
tory attribute of the component element is set to a factory identifier. This identifier can be used by a
bundle to associate the factory with externally defined information.

SCR must register a Component Factory service on behalf of the component as soon as the compo-
nent factory is satisfied. The service properties for the Component Factory service are the factory
properties as specified by the factory-property and factory-propert ies elements of the component
description. See Factory Property and Factory Properties Elements on page 290. The service properties
of the Component Factory service must not include the component properties. SCR always adds the
following factory properties, which cannot be overridden:

• component.name - The name of the component.
• component.factory - The factory identifier.

New configurations of the component can be created and activated by calling the newInstance
method on this Component Factory service. The newInstance(Dict ionary) method has a Dictionary
object as a parameter. This Dictionary object is merged with the component properties as described
in Component Properties on page 301. If the component specifies a service, then the service is reg-
istered after the created component configuration is satisfied with the component properties. Then
the component configuration is activated.

For example, a component can provide a connection to a USB device. Such a connection should nor-
mally not be shared and should be created each time such a service is needed. The component de-
scription to implement this pattern looks like:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.factory"
 factory="usb.connection"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.5.0">
 <implementation class="com.acme.impl.USBConnectionImpl"/>
</scr:component>

The component class looks like:

public class USBConnectionImpl {
 private void activate(Map<String, ?> properties) {
 ...
 }
}

A factory component can be associated with a service. In that case, such a service is registered for
each component configuration. For example, the previous example could provide a USB Connection
service.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.factory"
 factory="usb.connection"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.5.0">
 <implementation class="com.acme.impl.USBConnectionImpl"/>
 <service>
 <provide interface="com.acme.usb.USBConnection"/>
 </service>

Declarative Services Specification Version 1.5 References to Services

OSGi Compendium Release 8 Page 267

</scr:component>

The associated component class looks like:

public class USBConnectionImpl implements USBConnection {
 private void activate(Map<String, ?> properties) {...}
 public void connect() { ... }
 ...
 public void close() { ... }
}

A new service will be registered each time a new component configuration is created and activat-
ed with the newInstance method. This allows a bundle other than the one creating the component
configuration to utilize the service. If the component configuration is deactivated, the service must
be unregistered.

112.3 References to Services
Most bundles will require access to other services from the service registry. The dynamics of the
service registry require care and attention of the programmer because referenced services, once ac-
quired, could be unregistered at any moment. The component model simplifies the handling of
these service dependencies significantly.

The services that are selected by a reference are called the target services. These are the services select-
ed by the BundleContext.getServiceReferences method where the first argument is the reference's
interface and the second argument is the reference's target property, which must be a valid filter.

A component configuration becomes satisfied when each specified reference is satisfied. A refer-
ence is satisfied if it specifies optional cardinality or when the number of target services is equal to or
more than the minimum cardinality of the reference. An activated component configuration that
becomes unsatisfied must be deactivated.

During the activation of a component configuration, SCR must bind some or all of the target ser-
vices of a reference to the component configuration. Any target service that is bound to the compo-
nent configuration is called a bound service. See Bound Services on page 296.

112.3.1 Accessing Services
A component instance must be able to use the services that are referenced by the component con-
figuration, that is, the bound services of the references. The following techniques are available for a
component instance to acquire these bound services:

• Method injection - SCR calls a method on the component instance when a service becomes bound,
when a service becomes unbound, or when its properties are updated. These methods are the
bind, updated, and unbind methods specified by the reference. Method injection is useful if the
component needs to be notified of changes to the bound services for a dynamic reference.

• Field injection - SCR modifies a field in the component instance when a service becomes bound,
when a service becomes unbound, or when its properties are updated.

• Constructor injection - When SCR activates a component instance, the component instance must
be constructed and constructor injection occurs. Bound services and activation objects can be pa-
rameters to the constructor.

• Lookup strategy - A component instance can use one of the locateService methods of its Compo-
nentContext to locate a bound service. These methods take the name of the reference as a para-
meter. If the reference has a dynamic policy, it is important to not store returned service objects
but look them up every time they are needed.

A component may use multiple strategies to access the bound services of a reference.

References to Services Declarative Services Specification Version 1.5

Page 268 OSGi Compendium Release 8

112.3.2 Method Injection
When using method injection, SCR must call the component instance at the appropriate time. SCR
must call on the following events:

• bind - The bind method, if specified, is called to bind a new service to the component that match-
es the selection criteria. If the pol icy is dynamic then the bind method of a replacement service
can be called before its corresponding unbind method.

• updated - The updated method, if specified, is called when the service properties of a bound ser-
vices are modified and the resulting properties do not cause the service to become unbound be-
cause it is no longer selected by the target property.

• unbind - The unbind method, if specified, is called when SCR needs to unbind the service.

Each event is associated with an event method.

An event method can take one or more parameters. Each parameter must be of one of the following
types:

• <service-type> - The bound service object.
• ServiceReference - A Service Reference for the bound service. This Service Reference may later

be passed to the locateService(Str ing,ServiceReference) method to obtain the actual service ob-
ject. This approach is useful when the service properties need to be examined before accessing
the service object. It also allows for the delayed activation of bound services when using method
injection.

• ComponentServiceObjects - A Component Service Objects for the bound service. This Compo-
nent Service Objects can be used to obtain the actual service object or objects. This approach
is useful when the referenced service has prototype service scope and the component instance
needs multiple service objects for the service.

• Map - An unmodifiable Map containing the service properties of the bound service. This Map
must additionally implement Comparable with the compareTo method comparing service prop-
erty maps using the same ordering as ServiceReference.compareTo based upon service ranking
and service id.

A suitable method is selected using the following priority. If the type specified by the reference's
interface attribute is org.osgi .service.component.AnyService , then the parameter type must be
java. lang.Object to match.

1. The method takes a single parameter and the type of the parameter is
org.osgi .f ramework.ServiceReference . This method will receive a Service Reference for the
bound service.

2. The method takes a single parameter and the type of the parameter is ComponentServiceOb-
jects . This method will receive a Component Service Objects for the bound service.

3. The method takes a single parameter and the type of the parameter is the type specified by the
reference's interface attribute. This method will receive the bound service object.

4. The method takes a single parameter and the type of the parameter is assignable from the type
specified by the reference's interface attribute. If multiple methods match this rule, this implies
the method name is overloaded and SCR may choose any of the methods to call. This method
will receive the bound service object.

5. The method takes a single parameter and the type of the parameter is java.ut i l .Map . This
method will receive an unmodifiable Map containing the service properties of the bound ser-
vice.

6. The method takes two or more parameters and the types of the parameters must be one of: the
type specified by the reference's interface attribute, a type assignable from the type specified
by the reference's interface attribute, org.osgi .f ramework.ServiceReference , ComponentSer-
viceObjects , or java.ut i l .Map . If multiple methods match this rule, this implies the method

Declarative Services Specification Version 1.5 References to Services

OSGi Compendium Release 8 Page 269

name is overloaded and SCR may choose any of the methods to call. In the case where the type
specified by the reference's interface attribute is org.osgi .f ramework.ServiceReference , Compo-
nentServiceObjects , or java.ut i l .Map , the first parameter of that type will receive the bound ser-
vice object. If selected event method has more than one parameter of that type, the remaining
parameters of that type will receive a Service Reference for the bound service, a Service Objects
for the bound service, or an unmodifiable Map containing the service properties of the bound
service.

When searching for an event method to call, SCR must locate a suitable method as specified in Lo-
cating Component Methods and Fields on page 314. If no suitable method is located, SCR must log an
error message with the Log Service, if present, and there will be no bind, updated, or unbind notifi-
cation.

The bind and unbind methods must be called once for each bound service. This implies that if the
reference has multiple cardinality, then the methods may be called multiple times. The updated
method can be called multiple times per service.

In the following examples, a component requires the Logger Factory service. The first example uses
the lookup strategy. The reference is declared without any bind, updated, and unbind methods:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.5.0">
 <implementation class="com.acme.impl.LogLookupImpl"/>
 <reference name="LOG"
 interface="org.osgi.service.log.LoggerFactory"/>
</scr:component>

The component implementation class must now lookup the service. This looks like:

public class LogLookupImpl {
 private void activate(ComponentContext ctxt) {
 LoggerFactory lf = ctxt.locateService("LOG");
 lf.getLogger(LogLookupImpl.class).info("Hello Components!");
 }
}

Alternatively, the component could use method injection and ask to be notified with the Logger Fac-
tory service by declaring bind, updated, and unbind methods.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.5.0">
 <implementation class="com.acme.impl.LogEventImpl"/>
 <reference name="LOG"
 interface="org.osgi.service.log.LoggerFactory"
 bind="setLog"
 updated="updatedLog"
 unbind="unsetLog"
 />
</scr:component>

The component implementation class looks like:

public class LogEventImpl {
 LoggerFactory lf;
 Integer level;
 void setLog(LoggerFactory l, Map<String,?> ref) {

References to Services Declarative Services Specification Version 1.5

Page 270 OSGi Compendium Release 8

 lf = l;
 updatedLog(l, ref);
 }
 void updatedLog(LoggerFactory l, Map<String,?> ref) {
 level = (Integer) ref.get("level");
 }
 void unsetLog(LoggerFactory l) { lf = null; }
 private void activate() {
 lf.getLogger(LogEventImpl.class).info("Hello Components!");
 }
}

Event methods can be declared private in the component class but are only looked up in the inheri-
tance chain when they are protected, public, or have default access. See Locating Component Methods
and Fields on page 314.

112.3.3 Field Injection
When using field injection, SCR must modify fields in the component instance at the appropriate
time. SCR must modify the fields on the following events:

• bind - The field is modified to bind a new service to the component that matches the selection
criteria.

• updated - For certain field types, the field is modified when the service properties of a bound ser-
vices are modified and the resulting properties do not cause the service to become unbound be-
cause it is no longer selected by the target property.

• unbind - The field is modified when SCR needs to unbind the service.

For a reference with unary cardinality, a field must be of one of the following types:

• <service-type> - The bound service object. The type of the field can be the actual service type
or it can be a type that is assignable from the actual service type. If the type specified by the
reference's interface attribute is org.osgi .service.component.AnyService , then the actual service
type is considered to be java. lang.Object .

• ServiceReference - A Service Reference for the bound service. This Service Reference may later
be passed to the locateService(Str ing,ServiceReference) method to obtain the actual service ob-
ject. This approach is useful when the service properties need to be examined before accessing
the service object. It also allows for the delayed activation of bound services when using field in-
jection.

• ComponentServiceObjects - A Component Service Objects for the bound service. This Compo-
nent Service Objects can be used to obtain the actual service object or objects. This approach
is useful when the referenced service has prototype service scope and the component instance
needs multiple service objects for the service.

• Map - An unmodifiable Map containing the service properties of the bound service. This Map
must additionally implement Comparable with the compareTo method comparing service prop-
erty maps using the same ordering as ServiceReference.compareTo based upon service ranking
and service id.

• Map.Entry - An unmodifiable Map.Entry whose key is an unmodifiable Map containing the ser-
vice properties of the bound service, as above, and whose value is the bound service object. This
Map.Entry must additionally implement Comparable with the compareTo method comparing
the service property map key using the same ordering as ServiceReference.compareTo based up-
on service ranking and service id.

• Optional - An Optional holding one of the above types. The type of object held in the Optional
is specified by the f ie ld-col lect ion-type attribute in the component description. The Optional
must be empty for an optional reference with no bound service.

Declarative Services Specification Version 1.5 References to Services

OSGi Compendium Release 8 Page 271

If the actual service type is one of ServiceReference , ComponentServiceObjects , Map , Map.Entry ,
or Optional the field will be set to the service object rather than the object about the service.

For a reference with multiple cardinality, a field must be a collection of one of the following types:

• Collect ion
• List
• A subtype of Collect ion - This type can only be used for dynamic references using the update ref-

erence field option. The component instance must initialize the field to a collection object in its
constructor.

The type of objects set in the collection or the type of object held in the Optional is specified by the
f ie ld-col lect ion-type attribute in the component description:

• service - The bound service object. This is the default field collection type.
• reference - A Service Reference for the bound service.
• serviceobjects - A Component Service Objects for the bound service.
• propert ies - An unmodifiable Map containing the service properties of the bound service. This

Map must implement Comparable , as above.
• tuple - An unmodifiable Map.Entry whose key is an unmodifiable Map containing the service

properties of the bound service, as above, and whose value is the bound service object. This
Map.Entry must implement Comparable , as above.

Only instance fields of the field types above are supported. If a referenced field is declared with the
stat ic modifier or has a type other than one of the above, SCR must log an error message with the
Log Service, if present, and the field must not be modified. SCR must locate a suitable field as speci-
fied in Locating Component Methods and Fields on page 314. If no suitable field is located, SCR must
log an error message with the Log Service, if present, and no field will not be modified for the refer-
ence. If the bound service cannot be assigned to the field because the type is unassignable, SCR must
log an error message containing the exception with the Log Service, if present, and no field will not
be modified for the reference.

Care must be taken by the component implementation regarding the field. SCR has no way to know
if the component implementation itself may alter the field value. The component implementation
should not alter the field value and allow SCR to manage it. SCR must treat the field as if the compo-
nent implementation does not alter the field value so SCR may retain its own copy of the value set
in the field.

In the following examples, a component requires the Logger Factory service.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.5.0">
 <implementation class="com.acme.impl.LogEventImpl"/>
 <reference name="LOG"
 interface="org.osgi.service.log.LoggerFactory"
 field="lf"
 />
</scr:component>

The component implementation class looks like:

public class LogEventImpl {
 LoggerFactory lf;
 private void activate() {
 lf.getLogger(LogEventImpl.class).info("Hello Components!");
 }

References to Services Declarative Services Specification Version 1.5

Page 272 OSGi Compendium Release 8

}

Fields can be declared private in the component class but are only looked up in the inheritance
chain when they are protected, public, or have default access. See Locating Component Methods and
Fields on page 314.

112.3.4 Constructor Injection
When using constructor injection, SCR must construct the component instance using the appropri-
ate constructor passing activation objects and bound services as parameters. Since a component in-
stance is only constructed once, constructor parameters for references must be for static references.

A suitable constructor is selected using the following steps:

1. If the constructor is not public, then the constructor must not be considered.
2. If the constructor has a parameter count that does not match the value of the in it attribute in

the component element, then the constructor must not be considered. If the value of the in it at-
tribute is 0, the default value, then the public no-parameter constructor must be used.

3. For the constructor parameters associated with a reference, that is, there is a reference with a pa-
rameter attribute whose value matches the zero-based parameter number of the constructor pa-
rameter, if the parameter type is not one of the types supported for field injection for a static ref-
erence, then the constructor must not be considered. See Field Injection on page 270 for infor-
mation on types supported for field injection.

4. For the constructor parameters not associated with a reference, if the parameter type is not as-
signable from one of the activation object types, then the constructor must not be considered.
See Activation Objects on page 296 for information on activation object types.

5. If only a single constructor remains, this constructor must be used to construct the component
instance.

6. If more than one constructor remains, this implies the constructor is overloaded and SCR may
choose any of the remaining constructors to construct the component instance.

When searching for the constructor to call, SCR must use reflection on the implementation class.
If no suitable constructor is located, SCR must log an error message with the Log Service, if present,
and the component configuration is not activated.

If the constructor throws an exception, SCR must log an error message containing the exception
with the Log Service, if present, and the component configuration is not activated. If the bound ser-
vice cannot be assigned to the constructor parameter because the type is unassignable, SCR must log
an error message containing the exception with the Log Service, if present, and the component con-
figuration is not activated.

If the constructor parameter is associated with a reference having cardinality of 0..1 and there is no
bound service for the reference, then the value nul l will be supplied as the constructor parameter.

In the following examples, a component requires the Logger Factory service.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen" init="1"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.5.0">
 <implementation class="com.acme.impl.LogEventImpl"/>
 <reference name="LOG"
 interface="org.osgi.service.log.LoggerFactory"
 parameter="0"
 />
</scr:component>

The component implementation class looks like:

Declarative Services Specification Version 1.5 References to Services

OSGi Compendium Release 8 Page 273

public class LogEventImpl {
 public LogEventImpl(LoggerFactory lf) {
 lf.getLogger(LogEventImpl.class).info("Hello Components!");
 }
}

112.3.5 Reference Cardinality
A component implementation is always written with a certain cardinality for each reference in
mind. The cardinality represents two important concepts:

• Multiplicity - Does the component implementation assume a single service or does it explicitly
handle multiple services? For example, when a component uses the Logger Factory service, it on-
ly needs to bind to one Logger Factory service to function correctly. Alternatively, when the Con-
figuration Admin uses the Configuration Listener services it needs to bind to all target services
present in the service registry to dispatch its events correctly.

• Optionality - Can the component function without any bound service present? Some components
can still perform useful tasks even when no service is available; other components must bind to
at least one service before they can be useful. For example, the Configuration Admin in the pre-
vious example must still provide its functionality even if there are no Configuration Listener ser-
vices present. Alternatively, an application that registers a Servlet with the Http Service has little
to do when the Http Service is not present, it should therefore use a reference with a mandatory
cardinality.

The cardinality is expressed with the following syntax:

cardinality ::= optionality '..' multiplicity
optionality ::= '0' | '1'
multiplicity ::= '1' | 'n'

The cardinality for a reference can be specified as one of four choices:

• 0..1 - Optional and unary.
• 1. .1 - Mandatory and unary (Default) .
• 0..n - Optional and multiple.
• 1. .n - Mandatory and multiple.

The minimum cardinality is specified by the optionality part of the cardinality. This is either 0 or 1 .
A minimum cardinality property can be used to raise the minimum cardinality of a reference from
this initial value. For example, a 0..n cardinality in the component description can be raised into a
3. .n cardinality at runtime by setting the minimum cardinality property for the reference to 3 . This
would typically be done by a deployer setting the minimum cardinality property in a configuration
for the component. The minimum cardinality for a unary cardinality cannot exceed 1 . See Minimum
Cardinality Property on page 303 for more information.

A reference is satisfied if the number of target services is equal to or more than the minimum cardi-
nality. The mult ipl ic ity is irrelevant for the satisfaction of the reference. The mult ipl ic ity only spec-
ifies if the component implementation is written to handle being bound to multiple services (n) or
requires SCR to select and bind to a single service (1).

When a satisfied component configuration is activated, there must be at most one bound service for
each reference with a unary cardinality and at least as many bound services as the minimum cardi-
nality for each reference. If the cardinality constraints cannot be maintained after a component con-
figuration is activated, that is the reference becomes unsatisfied, the component configuration must
be deactivated. If the reference has a unary cardinality and there is more than one target service for
the reference, then the bound service must be the target service with the highest service ranking as
specified by the service.ranking property. If there are multiple target services with the same service

References to Services Declarative Services Specification Version 1.5

Page 274 OSGi Compendium Release 8

ranking, then the bound service must be the target service with the highest service ranking and the
lowest service id as specified by the service. id property.

In the following example, a component wants to register a resource with all Http Services that are
available. Such a scenario has the cardinality of 0..n . The code must be prepared to handle multiple
calls to the bind method for each Http Service in such a case. In this example, the code uses the reg-
isterResources method to register a directory for external access.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.5.0">
 <implementation class="com.acme.impl.HttpResourceImpl"/>
 <reference name="HTTP"
 interface="org.osgi.service.http.HttpService"
 cardinality="0..n"
 bind="setPage"
 unbind="unsetPage"
 />
</scr:component>

public class HttpResourceImpl {
 private void setPage(HttpService http) {
 http.registerResources("/scr", "scr", null);
 }
 private void unsetPage(HttpService http) {
 http.unregister("/scr");
 }
}

112.3.6 Reference Scope
A component implementation must be written to understand the service scope of referenced ser-
vices. The reference scope defines whether the component expects the bundle to be exposed to a sin-
gle service object for a bound service or to potentially multiple services objects. The following refer-
ence scopes are available:

• bundle - For all references to a given bound service, all activated component instances within a
bundle must use the same service object. That is, for a given bound service, all component in-
stances within a bundle will be using the same service object. This is the default reference scope.

• prototype - For all references to a given bound service, each activated component instance may
use a single, distinct service object. That is, for a given bound service, each component instance
may use a distinct service object but within a component instance all references to the bound
service will use the same service object.

• prototype_required - For all references to a given bound service, each activated component in-
stance must use a single, distinct service object. That is, for a given bound service, each compo-
nent instance will use a distinct service object but within a component instance all references to
the bound service will use the same service object.

For a bound service of a reference with bundle reference scope, SCR must get the service object from
the OSGi Framework's service registry using the getService method on the component's Bundle
Context. If the service object for a bound service has been obtained and the service becomes un-
bound, SCR must unget the service object using the ungetService method on the component's Bun-
dle Context and discard all references to the service object. This ensures that the bundle will only be
exposed to a single instance of the service object at any given time.

For a bound service of a reference with prototype or prototype_required reference scope, SCR
must use a Service Objects object obtained from the OSGi Framework's service registry using the

Declarative Services Specification Version 1.5 References to Services

OSGi Compendium Release 8 Page 275

component's Bundle Context to get any service objects. If service objects for a bound service have
been obtained and the service becomes unbound, SCR must unget any unreleased service objects
using the Service Objects object obtained from the OSGi Framework's service registry using the
component's Bundle Context. This means that if a component instance used a Component Service
Objects object to obtain service objects, SCR must track those service objects so that when the ser-
vice becomes unbound, SCR can unget any unreleased service objects.

Additionally, for a reference with prototype_required reference scope, only services registered with
prototype service scope can be considered as target services. This ensures that each component in-
stance can be exposed to a single, distinct instance of the service object. Using prototype_required
reference scope effectively adds service.scope=prototype to the target property for the reference. A
service that does not use prototype service scope cannot be used as a bound service for a reference
with prototype_required reference scope since the service cannot provide a distinct service object
for each component instance.

112.3.7 Reference Policy
Once all the references of a component are satisfied, a component configuration can be activat-
ed and therefore bound to target services. However, the dynamic nature of the OSGi service reg-
istry makes it likely that services are registered, modified and unregistered after target services are
bound. These changes in the service registry could make one or more bound services no longer a tar-
get service thereby making obsolete any object references that the component has to these service
objects. Components therefore must specify a policy how to handle these changes in the set of bound
services. A policy-option can further refine how changes affect bound services.

112.3.7.1 Static Reference Policy

The static policy is the most simple policy and is the default policy. A reference with a static policy is
called a static reference. A component instance never sees any of the dynamics of the static reference.
The bind method is called and/or the field is set before the component instance is activated. Static
references can also be used for parameters for constructor injection. Component configurations are
deactivated before any bound service for the static reference becomes unavailable. If a target service
is available to replace the bound service which became unavailable, the component configuration
must be reactivated and the replacement service is bound to the new component instance.

If the pol icy-option is reluctant then the registration of an additional target service for a reference
must not result in deactivating and reactivating a component configuration. If the pol icy-option
is greedy then the component configuration must be reactivated when new applicable services be-
come available. See Table 112.1 on page 276.

If a static reference specifies an updated method and the bound service's properties change, SCR
must call the updated method.

The static policy can be very expensive if it depends on services that frequently unregister and re-
register or if the cost of activating and deactivating a component configuration is high. Static policy
is usually also not applicable if the cardinality specifies multiple bound services.

112.3.7.2 Dynamic Reference Policy

The dynamic policy is slightly more complex since the component implementation must properly
handle changes in the set of bound services that can occur on any thread at any time after the com-
ponent instance is created. A reference with a dynamic policy is called a dynamic reference. With a
dynamic reference, SCR can change the set of bound services without deactivating a component
configuration. If the component uses method injection to access services, then the component in-
stance will be notified of changes in the set of bound services by calls to the bind, updated, and un-
bind methods.

If the pol icy-option is reluctant then a bound reference is not rebound even if a more suitable ser-
vice becomes available for a 1..1 or 0..1 reference. If the pol icy-option is greedy then the component
must be unbound and rebound for that reference. See Table 112.1 on page 276.

References to Services Declarative Services Specification Version 1.5

Page 276 OSGi Compendium Release 8

The previous example with the registering of a resource directory used a static policy. This implied
that the component configurations are deactivated when there is a change in the bound set of Http
Services. The code in the example can be seen to easily handle the dynamics of Http Services that
come and go. The component description can therefore be updated to:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.5.0">
 <implementation class="com.acme.impl.HttpResourceImpl"/>
 <reference name="HTTP"
 interface="org.osgi.service.http.HttpService"
 cardinality="0..n"
 policy="dynamic"
 bind="setPage"
 unbind="unsetPage"
 />
</scr:component>

The code is identical to the previous example.

112.3.8 Reference Policy Option
The reference policy option defines how eager the reference is to rebind when a new, potentially a
higher ranking, target service becomes available. The reference policy option can have the follow-
ing values:

• reluctant - Minimize rebinding and reactivating. This is the default reference policy option.
• greedy - Maximize the use of the best service by deactivating static references or rebinding dy-

namic references.

Table 112.1 defines the actions that are taken when a better target service becomes available. In this
context, better is when the reference is not bound or when the new target service has a higher rank-
ing than the bound service.

Table 112.1 Action taken for policy-option when a new or higher ranking service becomes available

Cardinality static reluctant static greedy dynamic reluctant dynamic greedy
0..1 Ignore Reactivate to bind the

better target service.
If no service is bound,
bind to new target ser-
vice. Otherwise, ignore
new target service.

If no service is bound,
bind to better target ser-
vice. Otherwise, unbind
the bound service and
bind the better target ser-
vice.

1. .1 Ignore Reactivate to bind the
better target service.

Ignore Unbind the bound ser-
vice, then bind the new
service.

0..n Ignore Reactivate Bind new target service Bind new target service
1. .n Ignore Reactivate Bind new target service Bind new target service

112.3.9 Reference Field Option
For a reference using field injection, the reference field option defines how SCR must manage the
field value. The reference field option can have the following values:

• replace - SCR must set the field value. Any field value set by the constructor of the component in-
stance is overwritten. This is the default reference field option.

Declarative Services Specification Version 1.5 References to Services

OSGi Compendium Release 8 Page 277

• update - SCR must update the collection set in the field. This collection can be set by the con-
structor of the component instance. This reference field option can only be used for a dynamic
reference with multiple cardinality.

For a static reference, the replace option must be used.

For a dynamic reference, the choice of reference field option is influenced by the cardinality of the
reference. For unary cardinality, the replace option must be used. For multiple cardinality, either the
replace or update option can be used.

If the update option is used when not permitted, SCR must log an error message with the Log Ser-
vice, if present, and the field must not be modified.

112.3.9.1 Replace Field Option

If the field is declared with the f inal modifier, SCR must log an error message with the Log Service, if
present, and the field must not be modified.

For a static reference, SCR must set the field value before the component instance is activated and
must not change the field while the component is active. This means there is a happens-before rela-
tionship between setting the field and activating the component instance, so the active component
can safely read the field.

For a dynamic reference, the field must be declared with the volat i le modifier so that field value
changes made by SCR are visible to other threads. If the field is not declared with the volat i le modi-
fier, SCR must log an error message with the Log Service, if present, and the field must not be modi-
fied.

For a reference with unary cardinality, SCR must set the field value with initial bound service, if any,
before the component instance is activated. If the reference has optional cardinality and there is no
bound service, SCR must set the field value to nul l . If the reference is dynamic, when there is a new
bound service or the service properties of the bound service are modified and the field holds service
properties, SCR must replace the field value. If the reference has optional cardinality and there is no
bound service, SCR must set the field value to nul l .

For a reference with multiple cardinality, the type of the field must be Collect ion or List . If the field
has a different type, SCR must log an error message with the Log Service, if present, and the field
must not be modified. Before the component instance is activated, SCR must set the field value with
a new mutable collection that must contain the initial set of bound services sorted using the same
ordering as ServiceReference.compareTo based upon service ranking and service id. The collection
may be empty if the reference has optional cardinality and there are no bound services. If the ref-
erence is dynamic, when there is a change in the set of bound services or the service properties of a
bound service are modified and the collection holds service properties, SCR must replace the field
value with a new mutable collection that must contain the updated set of bound services sorted us-
ing the same ordering as ServiceReference.compareTo based upon service ranking and service id.
The new collection may be empty if the reference has optional cardinality and there are no bound
services.

112.3.9.2 Update Field Option

The update option can only be used for a dynamic reference with multiple cardinality. The
component's constructor can set the field with its choice of collection implementation. In this case,
the field can be declared with the f inal modifier. The collection implementation used by the compo-
nent should use identity rather than equals or hashCode to manage the elements of the collection.
The collection implementation should also be thread-safe since SCR may update the collection from
threads different than those used by the component instance.

After constructing the component instance, if the field value is nul l :

References to Services Declarative Services Specification Version 1.5

Page 278 OSGi Compendium Release 8

• If the type of the field is Collect ion or List , SCR will set the field value to a new mutable empty
collection or list object, respectively. If the field is declared with the f inal modifier, SCR must log
an error message with the Log Service, if present, and the field must not be modified.

• Otherwise, SCR must log an error message with the Log Service, if present, and the field must not
be modified.

SCR must not change the field value while the component is active and only update the contents of
the collection. SCR must update the collection before the component instance is activated by calling
Collect ion.add for each bound service. When there is a change to the set of bound services:

• SCR must call Collect ion.add for a newly bound service.
• SCR must call Collect ion.remove for an unbound service.
• If the service properties of a bound service are modified and the collection holds service proper-

ties, SCR must call Collect ion.add for the replacement element followed by Collect ion.remove
for the old element.

The collection may be empty if the reference has optional cardinality and there are no bound ser-
vices.

112.3.10 Selecting Target Services
The target services for a reference are constrained by the reference's interface name and target prop-
erty. By specifying a filter in the target property, the programmer and deployer can constrain the set
of services that should be part of the target services.

For example, a component wants to track all Component Factory services that have a factory identi-
fication of acme.appl icat ion . The following component description shows how this can be done.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.listen"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.5.0">
 <implementation class="com.acme.impl.FactoryTracker"/>
 <reference name="FACTORY"
 interface=
 "org.osgi.service.component.ComponentFactory"
 target="(component.factory=acme.application)"
 />
</scr:component>

The filter is manifested as a component property called the target property. The target property can
also be set by property and propert ies elements, see Property and Properties Elements on page 284.
The deployer can also set the target property by establishing a configuration for the component
which sets the value of the target property. This allows the deployer to override the target property
in the component description. See Target Property on page 303 for more information.

112.3.10.1 Any Service Type

A special exception to the selecting of target services is the use of the special interface name
org.osgi .service.component.AnyService . This means that a service type is not used to select the tar-
get services and just the target property is used to select the target services. When the special inter-
face name of org.osgi .service.component.AnyService is used, a target property must be present to
constrain the target services to some subset of all available services. If no target property is present,
SCR must log an error message with the Log Service, if present, and the reference cannot be satisfied.
Note that there may be performance impacts resulting from a target property matching too broad a
set of target services. A target property of (service. id=*) is valid but will match all services in the ser-
vice registry which will likely be neither very useful nor performant.

Declarative Services Specification Version 1.5 References to Services

OSGi Compendium Release 8 Page 279

The reference member or parameter must have a service type of java. lang.Object to allow SCR to
provide any service object.

For example, a component wants to track all JAX-RS Extension services. JAX-RS Extension services
can be registered under many different service types but must be registered with the service proper-
ty osgi . jaxrs .extension=true . The following component description shows how this can be done.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="jaxrs.extension.listener"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.5.0">
 <implementation class="com.acme.impl.ExtensionListener"/>
 <reference name="EXTENSIONS"
 interface=
 "org.osgi.service.component.AnyService"
 target="(osgi.jaxrs.extension=true)"
 cardinality="0..n"
 />
</scr:component>

112.3.11 Circular References
It is possible for a set of component descriptions to create a circular dependency. For example, if
component A references a service provided by component B and component B references a service
provided by component A then a component configuration of one component cannot be satisfied
without accessing a partially activated component instance of the other component. SCR must en-
sure that a component instance is never accessible to another component instance or as a service
until it has been fully activated, that is it has returned from its activate method if it has one.

Circular references must be detected by SCR when it attempts to satisfy component configurations
and SCR must fail to satisfy the references involved in the cycle and log an error message with the
Log Service, if present. However, if one of the references in the cycle has optional cardinality SCR
must break the cycle. The reference with the optional cardinality can be satisfied and bound to zero
target services. Therefore the cycle is broken and the other references may be satisfied.

112.3.12 Logger Support
SCR provides special support for components having references to the Logger Factory from the Log
Service specification. If the reference uses method, field or constructor injection, the referenced ser-
vice is of type org.osgi .service. log.LoggerFactory , and the type of the parameter or field to receive
the service object is of type org.osgi .service. log.Logger or org.osgi .service. log.FormatterLogger ,
then SCR must obtain the proper type of Logger from the bound Logger Factory service and use the
obtained Logger as the service object rather than the service object for the bound Logger Factory ser-
vice.

To obtain the Logger object to use as the service object, SCR must call the
LoggerFactory.getLogger(Bundle bundle, Str ing name, Class loggerType) method passing
the bundle declaring the component as the first argument, the fully qualified name of the com-
ponent implementation class as the second argument, and the type of the parameter or field,
org.osgi .service. log.Logger or org.osgi .service. log.FormatterLogger , as the third argument.

For example, the following code will have the logger field set to a Logger object created by SCR from
the bound Logger Factory service.

@Component
public class MyComponent {
 @Reference(service=LoggerFactory.class)
 private Logger logger;
 @Activate

Component Description Declarative Services Specification Version 1.5

Page 280 OSGi Compendium Release 8

 void activate(ComponentContext context) {
 logger.trace(“activating component id {}”,
 context.getProperties().get(“component.id”));
 }
}

112.3.13 Satisfying Condition
The Condition Service Specification in OSGi Core Release 8 defines Condition services representing a par-
ticular state at runtime and requires the OSGi Framework to always register the True Condition ser-
vice.

Every component description is defined to have a reference to a satisfying condition. The name of this
reference must be osgi .ds.sat isfy ing.condit ion . If a component description does not explicitly de-
clare a reference with the name osgi .ds.sat isfy ing.condit ion , SCR must augment the component de-
scription to add the following implicit reference as the last reference:

<reference name="osgi.ds.satisfying.condition"
 interface="org.osgi.service.condition.Condition"
 target="(osgi.condition.id=true)"
 policy="dynamic"
/>

The implicit reference is handled in the same manner as any explicit reference in the component
description, including handling reference properties. See Reference Properties on page 302. In or-
der for a component configuration to be satisfied, the reference for the satisfying condition, like
all other references, must be satisfied. The target property for the reference to the satisfying condi-
tion, osgi .ds.sat isfy ing.condit ion.target , can be used to select the satisfying condition. This allows
a component configuration to be configured to select which Condition service is the satisfying con-
dition. The implicit reference defaults to the target property value of (osgi .condit ion. id=true) which
targets the True Condition, that is always registered by the OSGi Framework, and thus the implicit
reference, using the default target property value, can always be satisfied.

For example, you can use the Satisfy ingCondit ionTarget component property type to set the target
property for the reference to the satisfying condition to select a condition indicating that some sub-
system needed by the component is ready.

@Component
@SatisfyingConditionTarget("(osgi.condition.id=my.subsystem.ready)")
public class MyComponent {
 ...
}

A component's satisfying condition can be used as a way to control, via the configuration of compo-
nent properties, whether a component configuration can be satisfied. That is, it can be a way to "en-
able" or "disable" a component configuration through its configuration. See Condition Service Specifi-
cation of OSGi Core Release 8 for additional information on Conditions.

SCR must support the satisfying condition for all components even those with component descrip-
tions in older namespaces.

112.4 Component Description
Component descriptions are defined in XML documents contained in a bundle and any attached
fragments.

Declarative Services Specification Version 1.5 Component Description

OSGi Compendium Release 8 Page 281

If SCR detects an error when processing a component description, it must log an error message with
the Log Service, if present, and ignore the component description. Errors can include XML parsing
errors and ill-formed component descriptions.

112.4.1 Annotations
A number of CLASS retention annotations have been provided to allow tools to construct the com-
ponent description XML from the Java class files. These annotations will be discussed with the ap-
propriate elements and attributes. Since the naming rules between XML and Java differ, some name
changes are necessary.

Multi-word element and attribute names that use a minus sign (' - ' \u002D) are changed to camel
case. For example, the configurat ion-pid attribute in the component element is the configurat ionPid
member in the @Component annotation. The annotation class that corresponds to an element
starts with an upper case letter. For example the component element is represented by the @Com-
ponent annotation.

Some elements do not have a corresponding annotation since the annotations can be parameterized
by the type information in the Java class. For example, the @Component annotation synthesizes
the implement element's class attribute from the type it is applied to.

See Component Annotations on page 306 for more information.

112.4.2 Service Component Header
XML documents containing component descriptions must be specified by the Service-Component
header in the manifest. The value of the header is a comma separated list of paths to XML entries
within the bundle.

Service-Component ::= header // See Common Header Syntax in Core

The Service-Component header has no architected directives or properties. The header can be left
empty.

The last component of each path in the Service-Component header may use wildcards so that
Bundle.f indEntr ies can be used to locate the XML document within the bundle and its fragments.
For example:

Service-Component: OSGI-INF/*.xml

A Service-Component manifest header specified in a fragment is ignored by SCR. However, XML
documents referenced by a bundle's Service-Component manifest header may be contained in at-
tached fragments.

SCR must process each XML document specified in this header. If an XML document specified by
the header cannot be located in the bundle and its attached fragments, SCR must log an error mes-
sage with the Log Service, if present, and continue.

112.4.3 XML Document
A component description must be in a well-formed XML document, [4] Extensible Markup Language
(XML) 1.0, stored in a UTF-8 encoded bundle entry. The namespace for component descriptions is:

http://www.osgi.org/xmlns/scr/v1.5.0

The recommended prefix for this namespace is scr . This prefix is used by examples in this specifica-
tion. XML documents containing component descriptions may contain a single, root component el-
ement or one or more component elements embedded in a larger document. Use of the namespace
for component descriptions is mandatory. The attributes and sub-elements of a component element
are always unqualified.

Component Description Declarative Services Specification Version 1.5

Page 282 OSGi Compendium Release 8

If an XML document contains a single, root component element which does not specify a name-
space, then the http://www.osgi .org/xmlns/scr/v1.0.0 namespace is assumed. Component descrip-
tions using the http://www.osgi .org/xmlns/scr/v1.0.0 namespace must be treated according to ver-
sion 1.0 of this specification.

SCR must parse all component elements in the namespace. Elements not in this namespace must
be ignored. Ignoring elements that are not recognized allows component descriptions to be embed-
ded in any XML document. For example, an entry can provide additional information about compo-
nents. These additional elements are parsed by another sub-system.

See Component Description Schema on page 319 for component description schema.

112.4.4 Component Element
The component element specifies the component description. The following text defines the struc-
ture of the XML grammar using a form that is similar to the normal grammar used in OSGi specifi-
cations. In this case the grammar should be mapped to XML elements:

<component> ::= (<property> | <properties>)*
 <service>?
 <reference>*
 <implementation>

SCR must not require component descriptions to specify the elements in the order listed above and
as required by the XML schema. SCR must allow other orderings since arbitrary orderings of these
elements do not affect the meaning of the component description. Only the relative ordering of
property and propert ies elements and of reference elements have meaning.

The component element has the attributes and @Component annotations defined in the following
table.

Table 112.2 Component Element and Annotations

Attribute Annotation Description
name name The name of a component must be unique within a bundle. The component

name is used as a PID to retrieve component properties from the OSGi Con-
figuration Admin service if present, unless a configurat ion-pid attribute has
been defined. See Deployment on page 303 for more information. If the com-
ponent name is used as a PID then it should be unique within the framework.
The XML schema allows the use of component names which are not valid
PIDs. Care must be taken to use a valid PID for a component name if the com-
ponent should be configured by the Configuration Admin service. This at-
tribute is optional. The default value of this attribute is the value of the class
attribute of the nested implementation element. If multiple component ele-
ments in a bundle use the same value for the class attribute of their nested im-
plementation element, then using the default value for this attribute will re-
sult in duplicate component names. In this case, this attribute must be speci-
fied with a unique value.

enabled enabled Controls whether the component is enabled when the bundle is started. The
default value is true . If enabled is set to fa lse , the component is disabled un-
til the method enableComponent is called on the ComponentContext object.
This allows some initialization to be performed by some other component in
the bundle before this component can become satisfied. See Enabled on page
292.

factory factory If set to a non-empty string, it indicates that this component is a factory compo-
nent. SCR must register a Component Factory service for each factory compo-
nent. See Factory Component on page 266.

Declarative Services Specification Version 1.5 Component Description

OSGi Compendium Release 8 Page 283

Attribute Annotation Description
immediate immediate Controls whether component configurations must be immediately activated

after becoming satisfied or whether activation should be delayed. The default
value is fa lse if the factory attribute or if the service element is specified and
true otherwise. If this attribute is specified, its value must be fa lse if the facto-
ry attribute is also specified or must be true unless the service element is also
specified.

configura-
t ion-pol icy

configurat ionPol-
icy

OPTIONAL

REQUIRE

IGNORE

Controls whether component configurations must be satisfied depending on
the presence of a corresponding Configurat ion object in the OSGi Configura-
tion Admin service. A corresponding configuration is a Configurat ion object
where the PID is the name of the component.

• optional - (default) Use the corresponding Configurat ion object if present
but allow the component to be satisfied even if the corresponding Configu-
rat ion object is not present.

• require - There must be a corresponding Configurat ion object for the com-
ponent configuration to become satisfied.

• ignore - Always allow the component configuration to be satisfied and do
not use the corresponding Configurat ion object even if it is present.

configurat ion-pid configurat ionPid The configuration PIDs to be used for the component in conjunction with
Configuration Admin. Multiple configuration PIDs can be specified by using a
whitespace separated list in the attribute. The default value for this attribute is
the name of the component.

The annotation uses a Str ing[] to specify multiple configuration PIDs. The or-
der in which configuration PIDs are specified must be preserved in the gen-
erated component description. The annotation can also use the special con-
figuration PID name "$" to specify the name of the component. This special
name must be replaced with the actual name of the component in the generat-
ed component description.

activate Activate Specifies the name of the method to call when a component configuration is
activated. The default value of this attribute is activate . See Activate Method on
page 297 for more information.

The Activate annotation must be applied to at most one method which is to be
used as the activate method.

activat ion-fields Activate Specifies the whitespace separated list of the names of the fields to hold acti-
vation objects. The fields are set once after the constructor has been called and
before calling any other method on the fully constructed component instance
such as the activate method. See Activation Objects on page 296 for more in-
formation.

The Activate annotation will use the name of the field to which it is applied as
the activation field name.

in it Act ivate Specifies the number of arguments of the public constructor to use. The de-
fault is 0 which represents the public no-parameter constructor. See Construc-
tor Injection on page 272 for more information.

The Activate annotation must be applied to at most one constructor which is
to be used as the constructor for component instances.

deactivate Deactivate Specifies the name of the method to call when a component configuration is
deactivated. The default value of this attribute is deactivate . See Deactivate
Method on page 299 for more information.

The Deactivate annotation must be applied to at most one method which is to
be used as the deactivate method.

Component Description Declarative Services Specification Version 1.5

Page 284 OSGi Compendium Release 8

Attribute Annotation Description
modified Modified Specifies the name of the method to call when the configuration properties

for a component configuration is using a Configurat ion object from the Con-
figuration Admin service and that Configurat ion object is modified without
causing the component configuration to become unsatisfied. If this attribute
is not specified, then the component configuration will become unsatisfied if
its configuration properties use a Configurat ion object that is modified in any
way. See Modified Method on page 298 for more information.

The Modified annotation must be applied to at most one method which is to
be used as the modified method.

112.4.5 Implementation Element
The implementation element is required and defines the name of the component implementation
class. The single attribute is defined in the following table.

Table 112.3 Implementation Element and Annotations

Attribute Annotation Description
class Component The Java fully qualified name of the implementation class.

The component Component annotation will define the implementation ele-
ment automatically from the type it is applied to.

The class is retrieved with the loadClass method of the component's bundle. The class must have a
public constructor with the correct parameter count and types which will be used to construct the
component instance.

If the component description specifies a service, the class must implement all interfaces that are
provided by the service.

112.4.6 Property and Properties Elements
A component description can define a number of properties. These can be defined inline or from a
resource in the bundle. The property and propert ies elements can occur multiple times and they
can be interleaved. This interleaving is relevant because the properties are processed from top to
bottom. Later properties override earlier properties that have the same name.

Properties can also be overridden by a Configuration Admin service's Configurat ion object before
they are exposed to the component or used as service properties. This is described in Component
Properties on page 301 and Deployment on page 303.

The property element has the attributes and annotations defined in the following table.

Table 112.4 Property Element and Annotations

Attribute Annotation Description
name Component prop-

erty
The name of the property.

value The value of the property. This value is parsed according to the property type.
If the value attribute is specified, the body of the element is ignored. If the
type of the property is not Str ing , parsing of the value is done by the static
valueOf(Str ing) method in the given type. For Character types, the conversion
must be handled by Integer.valueOf method, a Character is always represented
by its Unicode value.

Declarative Services Specification Version 1.5 Component Description

OSGi Compendium Release 8 Page 285

Attribute Annotation Description
type The type of the property. Defines how to interpret the value. The type must be

one of the following Java types:

• Str ing (default)
• Long
• Double
• Float
• Integer
• Byte
• Character
• Boolean
• Short

<body> If the value attribute is not specified, the body of the property element must
contain one or more values. The value of the property is then an array of the
specified type. The result will be translated to an array of primitives or Str ings.
For example, if the type attribute specifies Integer , then the resulting array
must be int[] .

Values must be placed one per line and blank lines are ignored. Parsing of each
value is done by the parse methods in the class identified by the type, after
trimming the line of any beginning and ending white space. Each Str ing value
is also trimmed of beginning and ending white space.

For example, a component that needs an array of hosts can use the following property definition:

<property name="hosts">
 www.acme.com
 backup.acme.com
</property>

This property declaration results in the property hosts, with a value of Str ing[] { "www.acme.com",
"backup.acme.com" } .

A property can also be set with the property annotation element of Component . This element is an
array of strings that must follow the following syntax:

property ::= name (':' type)? '=' value

In this case name , type , and value parts map to the attributes of the property element. If multiple
values must be specified then the same name can be repeated multiple times. For example:

@Component(property={"foo:Integer=1","foo:Integer=2","foo:Integer=3"})
public class FooImpl {
 ...
}

The propert ies element references an entry in the bundle whose contents conform to a standard [3]
Java Properties File.

At runtime, SCR reads the entry to obtain the properties and their values. The properties element at-
tributes are defined in the following table.

Table 112.5 Properties Element and Annotations

Attribute Annotation Description
entry Component prop-

ert ies
The entry path relative to the root of the bundle

Component Description Declarative Services Specification Version 1.5

Page 286 OSGi Compendium Release 8

For example, to include vendor identification properties that are stored in the OSGI-INF directory,
the following definition could be used:

<properties entry="OSGI-INF/vendor.properties"/>

The propert ies annotation element of Component can be used to provide the same information.
This element consists of an array of strings where each string defines an entry. The order within the
array is the order that must be used for the XML. However, the annotations do not support interleav-
ing of the generated property and propert ies elements.

For example:

@Component(properties="OSGI-INF/vendor.properties")

See Ordering of Generated Component Properties on page 313 for more information on the ordering
of generated properties when using annotations.

112.4.7 Service Element
The service element is optional. It describes the service information to be used when a component
configuration is to be registered as a service.

A service element has the following attribute defined in the following table.

Table 112.6 Service Element and Annotations

Attribute Annotation Description
scope Component scope

SINGLETON

BUNDLE

PROTOTYPE

Controls the scope of the provided service. If set to singleton , when the com-
ponent is registered as a service, it must be registered as a bundle scope ser-
vice but only a single component configuration must be created and activat-
ed and a new instance of the component implementation class of the compo-
nent must be used for all bundles using the service. If set to bundle , when the
component is registered as a service, it must be registered as a bundle scope
service and a different component configuration is created and activated and
a new instance of the component implementation class must be created for
each bundle using the service. If set to prototype , when the component is reg-
istered as a service, it must be registered as a prototype scope service and a dif-
ferent component configuration is created and activated and a new instance of
the component implementation class must be created for each distinct request
for the service, such as via ServiceObjects .

The scope attribute must be singleton if the component is a factory component or an immediate
component. This is because SCR is not free to create component configurations as necessary to sup-
port non-singleton scoped services. A component description is ill-formed if it specifies that the
component is a factory component or an immediate component and scope is not singleton .

The service element must have one or more provide elements that define the service interfaces. The
provide element has the attribute defined in the following table.

Declarative Services Specification Version 1.5 Component Description

OSGi Compendium Release 8 Page 287

Table 112.7 Provide Element and Annotations

Attribute Annotation Description
interface Component ser-

vice
The name of the interface that this service is registered under. This
name must be the fully qualified name of a Java class. For example,
org.osgi .service.eventadmin.EventHandler . The specified Java class should be
an interface rather than a class, however specifying a class is supported. The
component implementation class must implement all the specified service in-
terfaces.

The Component annotation can specify the provided services, if this element
is not specified all directly implemented interfaces on the component's type
are defined as service interfaces. Specifying an empty array indicates that no
service should be registered.

For example, a component implements an Event Handler service.

<service>
 <provide interface=
 "org.osgi.service.eventadmin.EventHandler"/>
</service>

This previous example can be generated with the following annotation:

@Component
public class Foo implements EventHandler { ... }

112.4.8 Reference Element
A reference declares a dependency that a component has on a set of target services. A component con-
figuration is not satisfied, unless all its references are satisfied. A reference specifies target services
by specifying their interface and an optional target property.

A reference element has the attributes defined in the following table.

Table 112.8 Reference Element and Annotations

Attribute Annotation Description
name name The name of the reference. This name is local to the component and can be

used to locate a bound service of this reference with one of the locateService
methods of ComponentContext . Each reference element within the compo-
nent must have a unique name. This name attribute is optional. The default
value of this attribute is the value of the interface attribute of this element. If
multiple reference elements in the component use the same interface name,
then using the default value for this attribute will result in duplicate reference
names. In this case, this attribute must be specified with a unique name for the
reference to avoid an error.

The Reference annotation will use the name of the annotated method, field,
or parameter as the default reference name. If the method name begins with
bind , set or add , that prefix is removed.

Component Description Declarative Services Specification Version 1.5

Page 288 OSGi Compendium Release 8

Attribute Annotation Description
interface service Fully qualified name of the class that is used by the component to access the

service. The service provided to the component must be type compatible with
this class. That is, the component must be able to cast the service object to this
class. A service must be registered under this name to be considered for the set
of target services.

The Reference annotation will use the type of the first parameter of the anno-
tated method or the type of the annotated parameter or field to determine the
service value.

The special org.osgi .service.component.AnyService service name can be
used to indicate that the service type name is not used to select target ser-
vices. Only the target property is used to select target services. When using
this special service name, the reference field or parameter must be of type
java. lang.Object so that any service object can be provided. See Any Service
Type on page 278.

cardinal ity cardinal ity

MANDATORY

OPTIONAL

MULTIPLE

AT_LEAST_ONE

Specifies if the reference is optional and if the component implementation
support a single bound service or multiple bound services. See Reference Cardi-
nality on page 273.

pol icy pol icy

STATIC

DYNAMIC

The policy declares the assumption of the component about dynamicity. See
Reference Policy on page 275.

pol icy-option pol icyOption

RELUCTANT

GREEDY

Defines the policy when a better service becomes available. See Reference Policy
on page 275.

target target An optional OSGi Framework filter expression that further constrains the set
of target services. The default is no filter, limiting the set of matched services
to all service registered under the given reference interface. The value of this
attribute is used for the value of the target property of the reference. See Target
Property on page 303.

scope scope

BUNDLE

PROTOTYPE

PROTOTYPE_

 REQUIRED

The reference scope for this reference. See Reference Scope on page 274.

bind Reference

bind

The name of a method in the component implementation class that is used to
notify that a service is bound to the component configuration. For static refer-
ences, this method is only called before the activate method. For dynamic ref-
erences, this method can also be called while the component configuration is
active. See Accessing Services on page 267.

The Reference annotation will use the name of the method it is applied to as
the bind method name.

updated updated The name of a method in the component implementation class that is used to
notify that a bound service has modified its properties.

Declarative Services Specification Version 1.5 Component Description

OSGi Compendium Release 8 Page 289

Attribute Annotation Description
unbind unbind Same as bind, but is used to notify the component configuration that the ser-

vice is unbound. For static references, the method is only called after the deac-
t ivate method. For dynamic references, this method can also be called while
the component configuration is active. See Accessing Services on page 267.

f ie ld Reference

field

The name of a field in the component implementation class that is used to
hold service(s) that are bound to the component configuration. For static refer-
ences, this field is set once after the constructor has been called and before call-
ing the activate method. For dynamic references, this field can modified while
the component configuration is active. See Accessing Services on page 267.

The Reference annotation will use the name of the field it is applied to as the
field name.

f ie ld-option fieldOption

REPLACE

UPDATE

Defines how the field value must be managed. This is ignored if the f ie ld at-
tribute is not set. See Reference Field Option on page 276.

f ie ld-col lec-
t ion-type

col lect ionType

SERVICE

REFERENCE

SERVICEOBJECTS

PROPERTIES

TUPLE

Defines the types of elements in the collection or Optional referenced by the
field value or constructor parameter. This is ignored if the f ie ld attribute or pa-
rameter attribute is not set. It is also ignored when the f ie ld attribute or para-
meter attribute is set, the cardinality is unary, and the field or constructor pa-
rameter type is not Optional. See Field Injection on page 270 for more infor-
mation.

The Reference annotation can generally infer the value of the collection ele-
ments from the generic type information of the annotated field or constructor
parameter but it can be explicitly defined if needed.

parameter Reference

parameter

The zero-based parameter number of a parameter in the constructor of the
component that is used to receive service(s) that are bound to the component
configuration. If this attribute is set and the pol icy attribute is set to DYNAMIC ,
this attribute must be ignored and SCR must log an error message with the
Log Service, if present. See Accessing Services on page 267.

The Reference annotation will use the zero-based parameter number of the pa-
rameter it is applied to as the parameter number.

In the generated component description, the reference elements must be ordered in ascending lexi-
cographical order, using Str ing.compareTo , of the names of the references.

The following code demonstrates the use of the Reference annotation for method injection.

@Component
public class FooImpl implements Foo {
 @Reference(
 policy = DYNAMIC,
 policyOption = GREEDY,
 cardinality = MANDATORY)
 void setLog(LoggerFactory lf) { ... }
 void unsetLog(LoggerFactory lf) { ... }
 void updatedLog(Map<String,?> ref) { ... }

 @Activate
 void open() { ... }
 @Deactivate
 void close() { ... }
}

Component Description Declarative Services Specification Version 1.5

Page 290 OSGi Compendium Release 8

The following code demonstrates the use of the Reference annotation for field injection.

@Component
public class FooImpl implements Foo {
 @Reference
 volatile LoggerFactory lf;

 @Activate
 void open() { lf.getLogger(FooImpl.class).info("activated"); }
 @Deactivate
 void close() { lf.getLogger(FooImpl.class).info("deactivated"); }
}

The following code demonstrates the use of the Reference annotation for constructor injection.

@Component
public class FooImpl implements Foo {
 private final Logger logger;

 @Activate
 public FooImpl(@Reference LoggerFactory lf) {
 logger = lf.getLogger(FooImpl.class);
 }

 @Activate
 void open() { logger.info("activated"); }
 @Deactivate
 void close() { logger.info("deactivated"); }
}

For a reference to be used with the lookup strategy, there are no bind methods or fields to annotate
with the Reference annotation. Instead Reference annotations can be specified in the reference el-
ement of the Component annotation. When used in this way, the name and service elements must
be specified since there is no annotated member from which the name or service can be determined.
The following code demonstrates the use of the Reference annotation for the lookup strategy.

@Component(reference =
 @Reference(name = "log", service = LoggerFactory.class)
)
public class FooImpl implements Foo {
 @Activate
 void open(ComponentContext context) {
 LoggerFactory lf = context.locateService("log");
 ...
 }
 @Deactivate
 void close() { ... }
}

112.4.9 Factory Property and Factory Properties Elements
If the component is a factory component, see Factory Component on page 266, the component de-
scription can define a number of factory properties. These can be defined inline or from a resource
in the bundle. The factory-property and factory-propert ies elements can occur multiple times and
they can be interleaved. This interleaving is relevant because the factory properties are processed
from top to bottom. Later factory properties override earlier factory properties that have the same
name.

Declarative Services Specification Version 1.5 Component Description

OSGi Compendium Release 8 Page 291

The factory-property element has the attributes and annotations defined in the following table.

Table 112.9 Factory Property Element and Annotations

Attribute Annotation Description
name Component fac-

toryProperty
The name of the factory property.

value The value of the factory property. This value is parsed according to the prop-
erty type. If the value attribute is specified, the body of the element is ignored.
If the type of the factory property is not Str ing , parsing of the value is done by
the static valueOf(Str ing) method in the given type. For Character types, the
conversion must be handled by Integer.valueOf method, a Character is always
represented by its Unicode value.

type The type of the factory property. Defines how to interpret the value. The type
must be one of the following Java types:

• Str ing (default)
• Long
• Double
• Float
• Integer
• Byte
• Character
• Boolean
• Short

<body> If the value attribute is not specified, the body of the factory-property element
must contain one or more values. The value of the factory property is then an
array of the specified type. The result will be translated to an array of primi-
tives or Str ings. For example, if the type attribute specifies Integer , then the re-
sulting array must be int[] .

Values must be placed one per line and blank lines are ignored. Parsing of each
value is done by the parse methods in the class identified by the type, after
trimming the line of any beginning and ending white space. Each Str ing value
is also trimmed of beginning and ending white space.

A factory property can also be set with the factoryProperty annotation element of Component . This
element is an array of strings that must follow the following syntax:

factory-property ::= name (':' type)? '=' value

In this case name , type , and value parts map to the attributes of the factory-property element. If
multiple values must be specified then the same name can be repeated multiple times.

The factory-propert ies element references an entry in the bundle whose contents conform to a
standard [3] Java Properties File.

At runtime, SCR reads the entry to obtain the factory properties and their values. The factory-prop-
ert ies element attributes are defined in the following table.

Table 112.10 Factory Properties Element and Annotations

Attribute Annotation Description
entry Component facto-

ryPropert ies
The entry path relative to the root of the bundle

Component Life Cycle Declarative Services Specification Version 1.5

Page 292 OSGi Compendium Release 8

For example, to include properties that are stored in the OSGI-INF directory, the following definition
could be used:

<factory-propert ies entry="OSGI-INF/factory.properties"/>

The factoryPropert ies annotation element of Component can be used to provide the same informa-
tion. This element consists of an array of strings where each string defines an entry. The order with-
in the array is the order that must be used for the XML. However, the annotations do not support in-
terleaving of the generated factory-property and factory-propert ies elements.

For example:

@Component(factoryProperties="OSGI-INF/factory.properties")

When using annotation elements to specify factory properties, a tool processing the Component an-
notations must write the defined factory properties into the generated component description in
the following order.

1. factoryProperty element of the Component annotation.
2. factoryPropert ies element of the Component annotation.

112.5 Component Life Cycle

112.5.1 Enabled
A component must first be enabled before it can be used. A component cannot be enabled unless the
component's bundle is started. See Starting Bundles in OSGi Core Release 8. All components in a bun-
dle become disabled when the bundle is stopped. So the life cycle of a component is contained with-
in the life cycle of its bundle.

Every component can be enabled or disabled. The initial enabled state of a component is specified in
the component description via the enabled attribute of the component element. See Component El-
ement on page 282. Component configurations can be created, satisfied and activated only when
the component is enabled.

The enabled state of a component can be controlled with the Component Context
enableComponent(Str ing) and disableComponent(Str ing) methods. The purpose of later enabling
a component is to be able to decide programmatically when a component can become enabled. For
example, an immediate component can perform some initialization work before other components
in the bundle are enabled. The component descriptions of all other components in the bundle can
be disabled by having enabled set to fa lse in their component descriptions. After any necessary ini-
tialization work is complete, the immediate component can call enableComponent to enable the re-
maining components.

The enableComponent and disableComponent methods must return after changing the enabled
state of the named component. Any actions that result from this, such as activating or deactivating
a component configuration, must occur asynchronously to the method call. Therefore a component
can disable itself.

All components in a bundle can be enabled by passing a nul l as the argument to enableComponent .

112.5.2 Satisfied
Component configurations can only be activated when the component configuration is satisfied. A
component configuration becomes satisfied when the following conditions are all satisfied:

• The component is enabled.

Declarative Services Specification Version 1.5 Component Life Cycle

OSGi Compendium Release 8 Page 293

• If the component description specifies configurat ion-pol icy=required , then a Configurat ion ob-
ject for the component is present in the Configuration Admin service.

• Using the component properties of the component configuration, all the component's references
are satisfied. A reference is satisfied when the reference specifies optional cardinality or the num-
ber of target services is equal to or more than the minimum cardinality of the reference.

Once any of the listed conditions are no longer true, the component configuration becomes unsatis-
fied. An activated component configuration that becomes unsatisfied must be deactivated.

112.5.3 Immediate Component
A component is an immediate component when it must be activated as soon as its dependencies are
satisfied. Once the component configuration becomes unsatisfied, the component configuration
must be deactivated. If an immediate component configuration is satisfied and specifies a service,
SCR must register the component configuration as a service in the service registry and then activate
the component configuration. The service properties for this registration consist of the component
properties as defined in Service Properties on page 302.

The state diagram is shown in Figure 112.2.

Figure 112.2 Immediate Component Configuration

UNSATISFIED

becomes
satisfied

activate

deactivate

ACTIVE

becomes
unsatisfied

if dynamic:
rebinding

112.5.4 Delayed Component
A key attribute of a delayed component is the delaying of class loading and object creation. There-
fore, the activation of a delayed component configuration does not occur until there is an actual re-
quest for a service object. A component is a delayed component when it specifies a service but it is
not a factory component and does not have the immediate attribute of the component element set
to true .

SCR must register a service after the component configuration becomes satisfied. The registration of
this service must look to observers of the service registry as if the component's bundle actually reg-
istered this service. This makes it possible to register services without creating a class loader for the
bundle and loading classes, thereby allowing reduction in initialization time and a delay in memory
footprint.

When SCR registers the service on behalf of a component configuration, it must avoid causing a
class load to occur from the component's bundle. SCR can ensure this by registering a ServiceFacto-
ry object with the Framework for that service. By registering a ServiceFactory object, the actual ser-
vice object is not needed until the ServiceFactory is called to provide the service object. The service
properties for this registration consist of the component properties as defined in Service Properties on
page 302.

The activation of a component configuration must be delayed until its service is requested. When
the service is requested, if the service has the scope attribute set to bundle , SCR must create and ac-
tivate a unique component configuration for each bundle requesting the service. If the service has
the scope attribute set to prototype , SCR must create and activate a unique component configura-
tion for each distinct request for the service. Otherwise, if the service has the scope attribute set to

Component Life Cycle Declarative Services Specification Version 1.5

Page 294 OSGi Compendium Release 8

singleton , SCR must activate a single component configuration which is used by all requests for the
service. A component instance can determine the bundle it was activated for by calling the getUs-
ingBundle() method on the Component Context.

The activation of delayed components is depicted in a state diagram in Figure 112.3. Notice that
multiple component configurations can be created from the REGISTERED state if a delayed compo-
nent specifies a service scope set to a value other than singleton .

If the service has the scope attribute set to prototype , SCR must deactivate a component configu-
ration when it stops being used as a service object since the component configuration must not be
reused as a service object. If the service has the scope attribute set to singleton or bundle , SCR must
deactivate a component configuration when it stops being used as a service object after a delay since
the component configuration may be reused as a service object in the near future. This allows SCR
implementations to reclaim component configurations not in use while attempting to avoid deacti-
vating a component configuration only to have to quickly activate a new component configuration
for a new service request. The delay amount is implementation specific and may be zero.

Figure 112.3 Delayed Component Configuration

UNSATISFIED

becomes
satisfied

becomes
unsatisfied

activate

deactivate

ACTIVE

REGISTERED becomes
unsatisfied

get
service

unget
service1

if dynamic:
rebinding

servicefactory: 0..n
otherwise: 1

112.5.5 Factory Component
SCR must register a Component Factory service as soon as the component factory becomes satisfied.
The component factory is satisfied when the following conditions are all satisfied:

• The component is enabled.
• Using the component properties specified by the component description, all the component's

references are satisfied. A reference is satisfied when the reference specifies optional cardinality
or there is at least one target service for the reference.

The component factory, however, does not use any of the target services and does not bind to them.

Once any of the listed conditions are no longer true, the component factory becomes unsatisfied
and the Component Factory service must be unregistered. Any component configurations activated
via the component factory are unaffected by the unregistration of the Component Factory service,
but may themselves become unsatisfied for the same reason.

The Component Factory service must be registered under the name
org.osgi .service.component.ComponentFactory with the following service properties:

• component.name - The name of the component.
• component.factory - The value of the factory attribute.

The service properties of the Component Factory service must not include the component proper-
ties.

Declarative Services Specification Version 1.5 Component Life Cycle

OSGi Compendium Release 8 Page 295

New component configurations are created and activated when the newInstance method of the
Component Factory service is called. If the component description specifies a service, the compo-
nent configuration is registered as a service under the provided interfaces. The service properties for
this registration consist of the component properties as defined in Service Properties on page 302.
The service registration must take place before the component configuration is activated. Service
unregistration must take place before the component configuration is deactivated.

Figure 112.4 Factory Component

activate

deactivate

ACTIVE

FACTORY

becomes
unsatisfied

newInstance

dispose

0..n

1

rebinding
if dynamic

register

unregister

UNSATISFIED

becomes
satisfied

becomes
unsatisfied

A Component Factory service has a single method: newInstance(Dict ionary) . This method must cre-
ate, satisfy and activate a new component configuration and register its component instance as a
service if the component description specifies a service. It must then return a ComponentInstance
object. This ComponentInstance object can be used to get the component instance with the getIn-
stance() method.

SCR must attempt to satisfy the component configuration created by newInstance before activating
it. If SCR is unable to satisfy the component configuration given the component properties and the
Dictionary argument to newInstance , the newInstance method must throw a ComponentException .

The client of the Component Factory service can also deactivate a component configuration with
the dispose() method on the ComponentInstance object. If the component configuration is already
deactivated, or is being deactivated, then this method is ignored. Also, if the component configura-
tion becomes unsatisfied for any reason, it must be deactivated by SCR.

Once a component configuration created by the Component Factory has been deactivated, that com-
ponent configuration will not be reactivated or used again.

112.5.6 Activation
Activating a component configuration consists of the following steps:

1. Load the component implementation class.
2. Compute the bound services. See Bound Services on page 296.
3. Create the component context. See Component Context on page 296.
4. Construct the component instance. See Constructor Injection on page 272.
5. Set the activation fields, if any. See Activation Objects on page 296.
6. Bind the bound services. See Binding Services on page 296.

Component Life Cycle Declarative Services Specification Version 1.5

Page 296 OSGi Compendium Release 8

7. Call the activate method, if any. See Activate Method on page 297. Calling the activate method
signals the completion of activating the component instance.

Component instances must never be reused. Each time a component configuration is activated, SCR
must create a new component instance to use with the activated component configuration. A com-
ponent instance must complete activation before it can be deactivated. Once the component config-
uration is deactivated or fails to activate due to an exception, SCR must unbind all the component's
bound services and discard all references to the component instance associated with the activation.

112.5.7 Bound Services
When a component configuration's reference is satisfied, there is a set of zero or more target services
for that reference. When the component configuration is activated, a subset of the target services for
each reference are bound to the component configuration. The subset is chosen by the cardinality of
the reference. See Reference Cardinality on page 273.

Obtaining the service object for a bound service may result in activating a component configuration
of the bound service which could result in an exception. If the loss of the bound service due to the
exception causes the reference's cardinality constraint to be violated, then activation of this compo-
nent configuration will fail. Otherwise the bound service which failed to activate will be considered
unbound.

112.5.8 Component Context
The Component Context can be made available to a component instance during activation, modifi-
cation, and deactivation. It provides the interface to the execution context of the component, much
like the Bundle Context provides a bundle the interface to the Framework. A Component Context
should therefore be regarded as a capability and not shared with other components or bundles.

Each distinct component instance receives a unique Component Context. Component Contexts are
not reused and must be discarded when the component configuration is deactivated.

112.5.9 Activation Objects
A component can have an activate method, activation fields, and also receive activation objects via
its constructor.

The following activation object types are supported:

• ComponentContext - The Component Context for the component configuration.
• BundleContext - The Bundle Context of the component's bundle.
• Map - An unmodifiable Map containing the component properties.
• A component property type - An instance of the component property type which allows type

safe access to component properties defined by the component property type. See Component
Property Types on page 308.

For activation fields, only instance fields of the activation object types above are supported. If an
activation field is declared with the stat ic modifier or has a type other than one of the above, SCR
must log an error message with the Log Service, if present, and the field must not be modified. SCR
must locate a suitable field as specified in Locating Component Methods and Fields on page 314. If
no suitable field is located for an activation field name, SCR must log an error message with the Log
Service, if present.

112.5.10 Binding Services
When binding services, the references are processed in the order in which they are specified in the
component description. That is, target services from the first specified reference are bound before
services from the next specified reference.

Declarative Services Specification Version 1.5 Component Life Cycle

OSGi Compendium Release 8 Page 297

If the reference uses field injection, the field must be set. Then, if the reference uses method injec-
tion, the bind method must be called for each bound service of that reference. If a bind method
throws an exception, SCR must log an error message containing the exception with the Log Service,
if present, but the activation of the component configuration does not fail.

112.5.11 Activate Method
A component can have an activate method. The name of the activate method can be specified by
the activate attribute. If the activate attribute is not specified, the default method name of activate
is used. See Component Element on page 282.

The activate method can take zero or more parameters. Each parameter must be assignable from
one of the activation object types. A suitable method is selected using the following priority:

1. The method takes a single parameter and the type of the parameter is
org.osgi .service.component.ComponentContext .

2. The method takes a single parameter and the type of the parameter is
org.osgi .f ramework.BundleContext .

3. The method takes a single parameter and the type of the parameter is a component property
type.

4. The method takes a single parameter and the type of the parameter is java.ut i l .Map .
5. The method takes two or more parameters and the type of each parameter must be one of the ac-

tivation object types. If multiple methods match this rule, this implies the method name is over-
loaded and SCR may choose any of the methods to call.

6. The method takes zero parameters.

When searching for the activate method to call, SCR must locate a suitable method as specified in
Locating Component Methods and Fields on page 314. If the activate attribute is specified and no
suitable method is located, SCR must log an error message with the Log Service, if present, and the
component configuration is not activated.

If an activate method is located, SCR must call this method to complete the activation of the compo-
nent configuration. If the activate method throws an exception, SCR must log an error message con-
taining the exception with the Log Service, if present, and the component configuration is not acti-
vated.

112.5.12 Bound Service Replacement
If an active component configuration has a dynamic reference with unary cardinality and the
bound service is modified or unregistered and ceases to be a target service, or the pol icy-option is
greedy and a better target service becomes available then SCR must attempt to replace the bound
service with a new bound service.

If the reference uses field injection, the field must be set for the replacement bound service. Then,
if the reference uses method injection, SCR must first bind the new bound service and then unbind
the outgoing service. This reversed order allows the component to not have to handle the inevitable
gap between the unbind and bind methods. However, this means that in the unbind method care
must be taken to not overwrite the newly bound service. For example, the following code handles
the associated concurrency issues and simplify handling the reverse order.

final AtomicReference<LogService> log = new AtomicReference<LogService>();

void setLogService(LogService log) {
 this.log.set(log);
}
void unsetLogService(LogService log) {
 this.log.compareAndSet(log, null);

Component Life Cycle Declarative Services Specification Version 1.5

Page 298 OSGi Compendium Release 8

}

If the dynamic reference falls below the minimum cardinality, the component configuration must
be deactivated because the cardinality constraints will be violated.

If a component configuration has a static reference and a bound service is modified or unregistered
and ceases to be a target service, or the pol icy-option is greedy and a better target service becomes
available then SCR must deactivate the component configuration. Afterwards, SCR must attempt to
activate the component configuration again if another target service can be used as a replacement
for the outgoing service.

112.5.13 Updated
If an active component is bound to a service that modifies its service properties then the compo-
nent can be updated. If the reference uses field injection and the field holds the service properties,
the field must be set for the updated bound service. Then, if the reference uses method injection and
specifies an updated method, the updated method must be called.

112.5.14 Modification
Modifying a component configuration can occur if the component description specifies the mod-
if ied attribute and the component properties of the component configuration use a Configurat ion
object from the Configuration Admin service and that Configurat ion object is modified without
causing the component configuration to become unsatisfied. If this occurs, the component instance
will be notified of the change in the component properties.

If the modified attribute is not specified, then the component configuration will become unsatisfied
if its component properties use a Configurat ion object and that Configuration object is modified in
any way.

Modifying a component configuration consists of the following steps:

1. Update the component context for the component configuration with the modified configura-
tion properties.

2. Call the modified method. See Modified Method on page 298.
3. Modify the bound services for the dynamic references if the set of target services changed due to

changes in the target properties. See Bound Service Replacement on page 297.
4. If the component configuration is registered as a service, modify the service properties.

A component instance must complete activation, or a previous modification, before it can be modi-
fied.

See Configuration Changes on page 304 for more information.

112.5.15 Modified Method
The name of the modified method is specified by the modified attribute. See Component Element on
page 282.

The modified method can take zero or more parameters. Each parameter must be assignable from
one of the activation object types. A suitable method is selected using the following priority:

1. The method takes a single parameter and the type of the parameter is
org.osgi .service.component.ComponentContext .

2. The method takes a single parameter and the type of the parameter is
org.osgi .f ramework.BundleContext .

3. The method takes a single parameter and the type of the parameter is a component property
type.

4. The method takes a single parameter and the type of the parameter is java.ut i l .Map .

Declarative Services Specification Version 1.5 Component Life Cycle

OSGi Compendium Release 8 Page 299

5. The method takes two or more parameters and the type of each parameter must be one of the ac-
tivation object types. If multiple methods match this rule, this implies the method name is over-
loaded and SCR may choose any of the methods to call.

6. The method takes zero parameters.

SCR must locate a suitable method as specified in Locating Component Methods and Fields on page
314. If the modified attribute is specified and no suitable method is located, SCR must log an error
message with the Log Service, if present, and the component configuration becomes unsatisfied and
is deactivated as if the modified attribute was not specified.

If a modified method is located, SCR must call this method to notify the component configuration
of changes to the component properties. If the modified method throws an exception, SCR must log
an error message containing the exception with the Log Service, if present and continue processing
the modification.

112.5.16 Deactivation
Deactivating a component configuration consists of the following steps:

1. Call the deactivate method, if present. See Deactivate Method on page 299.
2. Unbind any bound services. See Unbinding on page 300.
3. Release all references to the component instance and component context.

A component instance must complete activation or modification before it can be deactivated. A
component configuration can be deactivated for a variety of reasons. The deactivation reason can be
received by the deactivate method. The following reason values are defined:

• DEACTIVATION_REASON_UNSPECIFIED - Unspecified.
• DEACTIVATION_REASON_DISABLED - The component was disabled.
• DEACTIVATION_REASON_REFERENCE - A reference became unsatisfied.
• DEACTIVATION_REASON_CONFIGURATION_MODIFIED - A configuration was changed.
• DEACTIVATION_REASON_CONFIGURATION_DELETED - A configuration was deleted.
• DEACTIVATION_REASON_DISPOSED - The component was disposed.
• DEACTIVATION_REASON_BUNDLE_STOPPED - The bundle was stopped.

Once the component configuration is deactivated, SCR must discard all references to the compo-
nent instance and component context associated with the activation.

112.5.17 Deactivate Method
A component instance can have a deactivate method. The name of the deactivate method can be
specified by the deactivate attribute. See Component Element on page 282. If the deactivate at-
tribute is not specified, the default method name of deactivate is used. Activation fields must not be
modified during deactivation.

The deactivate method can take zero or more parameters. Each parameter must be assignable from
one of the following types:

• One of the activation object types.
• int or Integer - The reason the component configuration is being deactivated. See Deactivation on

page 299.

A suitable method is selected using the following priority:

1. The method takes a single parameter and the type of the parameter is
org.osgi .service.component.ComponentContext .

2. The method takes a single parameter and the type of the parameter is
org.osgi .f ramework.BundleContext .

Component Life Cycle Declarative Services Specification Version 1.5

Page 300 OSGi Compendium Release 8

3. The method takes a single parameter and the type of the parameter is a component property
type.

4. The method takes a single parameter and the type of the parameter is java.ut i l .Map .
5. The method takes a single parameter and the type of the parameter is int .
6. The method takes a single parameter and the type of the parameter is java. lang. Integer .
7. The method takes two or more parameters and the type of each parameter must be one of the ac-

tivation object types, int or java. lang. Integer . If multiple methods match this rule, this implies
the method name is overloaded and SCR may choose any of the methods to call.

8. The method takes zero parameters.

When searching for the deactivate method to call, SCR must locate a suitable method as specified in
Locating Component Methods and Fields on page 314. If the deactivate attribute is specified and no
suitable method is located, SCR must log an error message with the Log Service, if present, and the
deactivation of the component configuration will continue.

If a deactivate method is located, SCR must call this method to commence the deactivation of the
component configuration. If the deactivate method throws an exception, SCR must log an error
message containing the exception with the Log Service, if present, and the deactivation of the com-
ponent configuration will continue.

112.5.18 Unbinding
When a component configuration is deactivated, the bound services are unbound from the compo-
nent configuration.

When unbinding services, the references are processed in the reverse order in which they are spec-
ified in the component description. That is, target services from the last specified reference are un-
bound before services from the previous specified reference.

If the reference uses method injection, the unbind method must be called for each bound service of
that reference. If an unbind method throws an exception, SCR must log an error message containing
the exception with the Log Service, if present, and the deactivation of the component configuration
will continue. Then, if the reference uses field injection, the field must be set to nul l .

112.5.19 Life Cycle Example
A component could declare a dependency on the Http Service to register some resources.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component name="example.binding"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.5.0">
 <implementation class="com.acme.impl.Binding"/>
 <reference name="LOG"
 interface="org.osgi.service.log.LogService"
 cardinality="1..1"
 policy="static"
 />
 <reference name="HTTP"
 interface="org.osgi.service.http.HttpService"
 cardinality="0..1"
 policy="dynamic"
 bind="setHttp"
 unbind="unsetHttp"
 />
</scr:component>

The component implementation code looks like:

Declarative Services Specification Version 1.5 Component Properties

OSGi Compendium Release 8 Page 301

public class Binding {
 LogService log;
 HttpService http;

 private void setHttp(HttpService h) {
 http = h;
 // register servlet
 }
 private void unsetHttp(HttpService h){
 if (http == h)
 http = null;
 // unregister servlet
 }
 private void activate(ComponentContext context) {
 log = (LogService) context.locateService("LOG");
 }
 private void deactivate(ComponentContext context) {...}
}

This example is depicted in a sequence diagram in Figure 112.5 with the following scenario:

1. A bundle with the example.Binding component is started. At that time there is a Log Service l1
and a Http Service h1 registered.

2. The Http Service h1 is unregistered
3. A new Http Service h2 is registered
4. The Log Service h1 is unregistered.

Figure 112.5 Sequence Diagram for binding

a Component
Configuration

Log Service Ref.
static, 1..1

Http Service Ref.
dynamic, 0..1

SCR

bundle started
resolve
resolve
satisfied
satisfied
setHttp(h1)

activate(context)

unregistered
unsetHttp(h1)

locateService("LOG")

available
setHttp(h2)

unregistered
deactivate(context)
unsetHttp(h2)

1.

2.

3.

4.

create

112.6 Component Properties
Each component configuration is associated with a set of component properties. The component
properties are specified in the following configuration sources (in order of precedence):

Component Properties Declarative Services Specification Version 1.5

Page 302 OSGi Compendium Release 8

1. Properties specified in the argument of the ComponentFactory.newInstance method. This is on-
ly applicable for factory components.

2. Properties retrieved from the OSGi Configuration Admin service in Configuration objects whose
PID matches a configuration PID. The configuration PIDs are specified by the configurat ion-pid
attribute of the component element. See Component Element on page 282. If no configura-
t ion-pid attribute is specified, the component name is used as the default configuration PID. If
multiple configuration PIDs are specified, the order of precedence follows the order the configu-
ration PIDs are specified in the component description. That is, the precedence for the configu-
ration for an earlier specified configuration PID is lower than the precedence for the configura-
tions for a later specified configuration PID.

3. Properties specified in the component description via property and propert ies elements. Prop-
erties specified later in the component description override properties that have the same name
specified earlier. See Property and Properties Elements on page 284.

4. Target properties specified in the component description via the target attribute of reference el-
ements. See Target Property on page 303. The value of the target attribute is used for the value
of a target property.

The precedence behavior allows certain default values to be specified in the component description
while allowing properties to be replaced and extended by:

• A configuration in Configuration Admin
• The argument to the ComponentFactory.newInstance method

Normally, a property value from a higher precedence configuration source replace a property value
from a lower precedence configuration source. However, the service.pid property values receive dif-
ferent treatment. For the service.pid property, if the property appears multiple times in the config-
uration sources, SCR must aggregate all the values found into a Collect ion<Str ing> having an itera-
tion order such that the first item in the iteration is the property value from the lowest precedence
configuration source and the last item in the iteration is the property value from the highest prece-
dence configuration source. If the component description specifies multiple configuration PIDs,
then the order of the service.pid property values from the corresponding configurations match-
es the order the configuration PIDs are specified in the component description. The values of the
service.pid component property are the values as they come from the configuration sources which,
for Configuration objects, may be more detailed than the configuration PIDs specified in the compo-
nent description.

SCR always adds the following component properties, which cannot be overridden:

• component.name - The component name.
• component. id - A unique value (Long) that is larger than all previously assigned values. These

values are not persistent across restarts of SCR.

112.6.1 Service Properties
When SCR registers a service on behalf of a component configuration, SCR must follow the recom-
mendations in Property Propagation on page 89 and must not propagate private configuration prop-
erties. That is, the service properties of the registered service must be all the component properties
of the component configuration whose property names do not start with full stop ('.' \u002E).

Component properties whose names start with full stop are available to the component instance
but are not available as service properties of the registered service.

112.6.2 Reference Properties
This specification defines some component properties which are associated with specific compo-
nent references. These are called reference properties. The name of a reference property for a reference

Declarative Services Specification Version 1.5 Deployment

OSGi Compendium Release 8 Page 303

is the name of the reference appended with a full stop ('.' \u002E) and a suffix unique to the refer-
ence property. Reference properties can be set wherever component properties can be set.

All component property names starting with a reference name followed by a full stop ('.' \u002E)
are reserved for use by this specification.

Following are the reference properties defined by this specification.

112.6.2.1 Target Property

The target property is a reference property which aids in the selection of target services for the refer-
ence. See Selecting Target Services on page 278. The name of a target property is the name of a ref-
erence appended with .target . For example, the target property for a reference with the name http
would have the name http.target . The value of a target property is a filter string used to select tar-
gets services for the reference.

The target property for a reference can also be set by the target attribute of the reference element.
See Reference Element on page 287.

112.6.2.2 Minimum Cardinality Property

The initial minimum cardinality of a reference is specified by the optionality: the first part of the
cardinality. It is either 0 or 1 . The minimum cardinality of a reference cannot exceed the multiplici-
ty: the second part of the cardinality. See Reference Cardinality on page 273 for more information
on the cardinality of a reference.

The minimum cardinality property is a reference property which can be used to raise the minimum
cardinality of a reference from its initial value. That is, a 0..1 cardinality can be raised to a 1. .1 cardi-
nality by setting the reference's minimum cardinality property to 1 , and a 0..n or 1. .n cardinality can
be raised to a m..n cardinality by setting the reference's minimum cardinality property to m such
that m is a positive integer. The minimum cardinality of a reference cannot be lowered. That is, a 1. .1
or 1. .n cardinality cannot be lowered to a 0..1 or 0..n cardinality because the component was coded
to expect at least one bound service.

The name of a minimum cardinality property is the name of a reference appended with
.cardinal ity.minimum . For example, the minimum cardinality property for a reference with the
name http would have the name http.cardinal ity.minimum . The value of a minimum cardinality
property must be a positive integer or a value that can be coerced into a positive integer. See Coerc-
ing Component Property Values on page 311 for information on coercing property values. If the nu-
merical value of the minimum cardinality property is not valid for the reference's cardinality or the
minimum cardinality property value cannot be coerced into a numerical value, then the minimum
cardinality property must be ignored.

SCR must support the minimum cardinality property for all components even those with compo-
nent descriptions in older namespaces.

112.7 Deployment
A component description contains default information to select target services for each reference.
However, when a component is deployed, it is often necessary to influence the target service selec-
tion in a way that suits the needs of the deployer. Therefore, SCR uses Configurat ion objects from
Configuration Admin to replace and extend the component properties for a component configura-
tion. That is, through Configuration Admin, a deployer can configure component properties.

A component's configuration PIDs are used as keys for obtaining additional component properties
from Configuration Admin. When matching a configuration PID to a Configurat ion object, SCR must
use the Configurat ion object with the best matching PID for the component's bundle. See Targeted
PIDs on page 85 for more information on targeted PIDs and Extenders and Targeted PIDs on page 86
for more information on selecting the Configurat ion object with the best matching PID.

Deployment Declarative Services Specification Version 1.5

Page 304 OSGi Compendium Release 8

The following situations can arise when looking for Configurat ion objects:

• No Configuration - If the component's configurat ion-pol icy is set to ignore or there are no Config-
urations with a PID or factory PID matching any of the configuration PIDs, then component con-
figurations will not obtain component properties from Configuration Admin. Only component
properties specified in the component description or via the ComponentFactory.newInstance
method will be used.

• Not Satisfied - If the component's configurat ion-pol icy is set to require and, for each configuration
PID, there is no Configuration with a matching PID or factory PID, then the component configu-
ration is not satisfied and will not be activated.

• Single Configuration - If none of the configuration PIDs matches a factory PID, then component
configurations will obtain additional component properties from Configuration Admin.

• Factory Configuration - If one of the configuration PIDs matches a factory PID, with zero or more
Configurations, then for each Configuration of the factory PID, a component configuration must
be created that will obtain additional component properties from Configuration Admin.

It is a configuration error if more than one of the configuration PIDs match a factory PID and
SCR must log an error message with the Log Service, if present. If the configurat ion-pol icy is set
to optional , the component configuration must be satisfied without the configurations PIDs
which match a factory PID. If the configurat ion-pol icy is set to require , the component configu-
ration is not satisfied and will not be activated.

A factory configuration must not be used if the component is a factory component. This is be-
cause SCR is not free to create component configurations as necessary to support multiple Con-
figurations. When SCR detects this condition, it must log an error message with the Log Service,
if present, and ignore the component description.

SCR must obtain the Configurat ion objects from the Configuration Admin service using the Bun-
dle Context of the bundle containing the component. SCR must only use Configurat ion objects for
which the bundle containing the component has visibility. See Location Binding on page 87.

To ensure Configuration Plugins can participate in the configuration process, SCR must use the
Configurat ion.getProcessedPropert ies method when obtaining the configuration data from a Con-
figurat ion object. To use the getProcessedPropert ies method, SCR must supply a Service Reference
for a ManagedService or ManagedServiceFactory service. The ManagedService or ManageService-
Factory service must be registered using the Bundle Context of the bundle containing the compo-
nent. If SCR registers one of these services for the purpose of using the service's Service Reference
for the call to getProcessedPropert ies , SCR should register the service without a service.pid service
property so that the service itself is not called by Configuration Admin.

For example, there is a component named com.acme.cl ient with a reference named HTTP that re-
quires an Http Service which must be bound to a component com.acme.httpserver which provides
an Http Service. A deployer can establish the following configuration:

[PID=com.acme.client, factoryPID=null]
HTTP.target = (component.name=com.acme.httpserver)

112.7.1 Configuration Changes
SCR must track changes in the Configurat ion objects matching the configuration PIDs of a com-
ponent description. Changes include the creating, updating and deleting of Configurat ion objects
matching the configuration PIDs. The actions SCR must take when a configuration change for a
component configuration occurs are based upon how the configurat ion-pol icy and modified attrib-
utes are specified in the component description, whether a component configuration becomes satis-
fied, remains satisfied or becomes unsatisfied and the type and number of matching Configurat ion
objects.

Declarative Services Specification Version 1.5 Deployment

OSGi Compendium Release 8 Page 305

With targeted PIDs, multiple Configurat ion objects can exist which can match a configuration PID.
Creation of a Configurat ion object with a better matching PID than a Configurat ion object current-
ly being used by a component configuration results in a configuration change for the component
configuration with the new Configurat ion object replacing the currently used Configurat ion ob-
ject. Deletion of a Configurat ion object currently being used by a component configuration when
there is another Configurat ion object matching the configuration PID also results in a configuration
change for the component configuration with the Configurat ion object having the best matching
PID replacing the currently used, and now deleted, Configurat ion object.

112.7.1.1 Ignore Configuration Policy

For configurat ion-pol icy of ignore , component configurations are unaffected by configuration
changes since the component properties do not include properties from Configurat ion objects.

112.7.1.2 Require Configuration Policy

For configurat ion-pol icy of require , component configurations require a Configurat ion object for
each specified configuration PID. With a factory configuration, there can be zero or more matching
Configurat ion objects which will result in a component configuration for each Configurat ion object
of the factory configuration. With a factory component, multiple component configurations can be
created all using the matching Configurat ion objects.

A configuration change can cause a component configuration to become unsatisfied if any of the
following occur:

• Each configuration PID of the component description does not have a matching Configurat ion
object.

• A target property change results in a bound service of a static reference ceasing to be a target ser-
vice.

• A target property change results in unbound target services for a static reference with the greedy
policy option.

• A target property change or minimum cardinality property change results in a reference falling
below the minimum cardinality.

• The component description does not specify the modified attribute.

112.7.1.3 Optional Configuration Policy

For configurat ion-pol icy of optional , component configurations do not require Configurat ion ob-
jects. Since matching Configurat ion objects are optional, component configurations can be satis-
fied with zero or more matched configuration PIDs. If a Configurat ion object is then created which
matches a configuration PID, this is a configuration change for the component configurations that
are not using the created Configurat ion object. If a Configurat ion object is deleted which matches a
configuration PID, this is a configuration change for the component configurations using the delet-
ed Configurat ion object.

Furthermore, with a factory configuration matching a configuration PID, the factory configuration
can provide zero or more Configurat ion objects which will result in a component configuration for
each Configurat ion object or a single component configuration when zero matching Configurat ion
objects are provided. With a factory component, multiple component configurations can be created
all using the Configurat ion objects matching the configuration PIDs.

A configuration change can cause a component configuration to become unsatisfied if any of the
following occur:

• A target property change results in a bound service of a static reference ceasing to be a target ser-
vice.

• A target property change results in unbound target services for a static reference with the greedy
policy option.

Annotations Declarative Services Specification Version 1.5

Page 306 OSGi Compendium Release 8

• A target property change or minimum cardinality property change results in a reference falling
below the minimum cardinality.

• The component description does not specify the modified attribute.

112.7.1.4 Configuration Change Actions

If a component configuration becomes unsatisfied:

• SCR must deactivate the component configuration.
• If the component configuration was not created from a factory component, SCR must attempt to

satisfy the component configuration with the current configuration state.

If a component configuration remains satisfied:

• If the component configuration has been activated, the modified method is called to provide the
updated component properties. See Modification on page 298 for more information.

• If the component configuration is registered as a service, SCR must modify the service properties.

112.7.1.5 Coordinator Support

The Coordinator Service Specification on page 629 defines a mechanism for multiple parties to col-
laborate on a common task without a priori knowledge of who will collaborate in that task. Like
Configuration Admin Service Specification on page 81, SCR must participate in such scenarios to coordi-
nate with provisioning or configuration tasks.

If configurations changes occur and an implicit coordination exists, SCR must delay taking action
on the configuration changes until the coordination terminates, regardless of whether the coordina-
tion fails or terminates regularly.

112.8 Annotations
A number of CLASS retention annotations have been provided to allow tools to construct the com-
ponent description XML from the Java class files. The Component Annotations are intended to be
used during build time to generate the component description XML.

Component Property Types, which are user defined annotations, can be used to describe component
properties in the component description XML and to access those component properties at runtime
in a type safe manner.

112.8.1 Component Annotations
The Component Annotations provide a convenient way to create the component description XML
during build time. Since annotations are placed in the source file and can use types, fields, and
methods, they can significantly simplify the use of Declarative Services.

The Component Annotations are build time annotations because one of the key aspects of Declar-
ative Services is its laziness. SCR can easily read the component description XML from the bundle,
preprocess it, and cache the results between framework invocations. This way it is unnecessary
to load a class from the bundle when the bundle is started and/or scan the classes for annotations.
Component Annotations are not recognized by SCR at runtime.

The Component Annotations are not inherited, they can only be used on a given class, annotations
on its super class hierarchy or interfaces are not taken into account.

The primary annotation is the Component annotation. It indicates that a class is a component. Its
defaults create the easiest to use component:

• Its name is the class name
• It registers all of the class's directly implemented interfaces as services

Declarative Services Specification Version 1.5 Annotations

OSGi Compendium Release 8 Page 307

• The instance will be shared by all bundles
• It is enabled
• It is immediate if it has no services, otherwise it is delayed
• It has an optional configuration policy
• The configuration PID is the class name

For example, the following class registers a Speech service that can run on a Macintosh:

public interface Speech {
 void say(String what) throws Exception;
}

@Component
public class MacSpeech implements Speech {
 ScriptEngine engine =
 new ScriptEngineManager().getEngineByName("AppleScript");

 public void say(String message) throws Exception {
 engine.eval("say \"" + message.replace('"','\'' + "\"");
 }
}

The previous example would be processed at build time into a component description similar to the
following XML:

<scr:component name="com.example.MacSpeech"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.5.0">
 <implementation class="com.acme.impl.MacSpeech"/>
 <service>
 <provide interface="com.acme.service.speech.Speech"/>
 </service>
</scr:component>

It is possible to add activate and deactivate methods on the component with the Activate and Deac-
t ivate annotations. If the component wants to be updated for changes in the configuration proper-
ties then it can also indicate the modified method with the Modified annotation. For example:

@Activate
void open(Map<String,?> properties) { ... }

@Deactivate
void close() { ... }

@Modified
void modified(Map<String,?> properties) { ... }

The Activate annotation can also be used on a field or a constructor. When used on a field, the field
will be set during activation of the component. When used on a constructor, the constructor will be
used to construct the component instances.

@Activate
ComponentContext context;

@Activate
public MacSpeech(Map<String,?> properties) { ... }

Annotations Declarative Services Specification Version 1.5

Page 308 OSGi Compendium Release 8

If a component has dependencies on other services then they can be referenced with the Refer-
ence annotation that can be applied to a bind method, a field, or a constructor parameter. For a bind
method, the defaults for the Reference annotation are:

• The name of the method is used for the name of the reference.
• 1:1 cardinality.
• Static reluctant policy.
• The requested service is the type of the first parameter of the bind method.
• It will infer a default unset method and updated method based on the name of the bind method.

For example:

@Reference(cardinality=MULTIPLE, policy=DYNAMIC)
void setLogService(LogService log, Map<String,?> props) { ... }
void unsetLogService(LogService log) { ... }
void updatedLogService(Map<String,?> map) { ...}

For a field, the defaults for the Reference annotation are:

• The name of the field is used for the name of the reference.
• 0..n cardinality if the field is a collection. 0..1 cardinality if the field is of type Optional. 1:1 cardi-

nality otherwise.
• Static reluctant policy if the field is not declared volatile. Dynamic reluctant policy if the field is

declared volatile.
• The requested service is the type of the field.

For example:

@Reference
volatile Collection<LogService> log;

For a constructor parameter, the defaults for the Reference annotation are:

• The name of the parameter is used for the name of the reference if method parameter names are
included in the class file. Otherwise, a name for the reference must be generated.

• 0..n cardinality if the parameter is a collection. 0..1 cardinality if the parameter is of type Option-
al. 1:1 cardinality otherwise.

• Static reluctant policy.
• The requested service is the type of the parameter.

For example:

@Activate
public MacSpeech(@Reference Collection<LogService> log) { ... }

112.8.2 Component Property Types
Component properties can be defined and accessed through a user defined annotation type, called a
component property type, containing the property names, property types and default values. A compo-
nent property type allows properties to be defined and accessed in a type safe manner. Component
property types can themselves be annotated with the ComponentPropertyType meta-annotation.

The following example shows the definition of a component property type called Config which de-
fines three properties where the name of the property is the name of the method, the type of the
property is the return type of the method and the default value for the property is the default value
of the method.

Declarative Services Specification Version 1.5 Annotations

OSGi Compendium Release 8 Page 309

@ComponentPropertyType
public @interface Config {
 boolean enabled() default true;
 String[] names() default {"a", "b"};
 String topic() default "default/topic";
}

Component property types can be used in two ways:

• Component property types can be used to annotate the component implementation class, along
side the Component annotation. The annotation usage can specify property values which can be
different than the default values declared in the component property type.

To be used in this way, the component property type must be annotated with the Component-
PropertyType meta-annotation so that, at build time, the annotation is recognized as a compo-
nent property type.

• Component property types can be used as parameter types in the component's constructor and
life cycle methods, or as field types for activation fields. The component implementation can use
objects of a component property type at runtime to access component property values in a type
safe manner.

To be used in this way, it is recommended the component property type be annotated with the
ComponentPropertyType meta-annotation but it is not required.

Both ways define property names, types and values for the component.

The following example shows the component implementation annotated with the example Con-
fig component property type which specifies a property value for the component which is differ-
ent than the default value. The example also shows the activate method taking the example Config
component property type as a parameter type and the method implementation accesses component
property values by invoking methods on the component property type object.

@Component
@Config(names="myapp")
public class MyComponent {
 @Activate
 void activate(Config config) {
 if (config.enabled()) {
 // do something
 }
 for (String name:config.names()) {
 // do something with each name
 }
 }
}

If a component implementation needs to access component properties which are not represented
by a component property type, it can use a type of Map to receive the properties map in addition to
component property types. For example:

@Component
public class MyComponent {
 @Activate
 void activate(Config config, Map<String, ?> allProperties) {
 if (config.enabled()) {
 // do something
 }
 if (allProperties.get("other.prop") != null) {

Annotations Declarative Services Specification Version 1.5

Page 310 OSGi Compendium Release 8

 // do something
 }
 }
}

Component property types must be defined as annotation types. This is done for several reasons.
First, the limitations on annotation type definitions make them well suited for component prop-
erty types. The methods must have no parameters and the return types supported are limited to a
set which is well suited for component properties. Second, annotation types support default values
which is useful for defining the default value of a component property. Finally, as annotations, they
can be used to annotate component implementation classes.

At build time, the component property types must be processed to potentially generate property ele-
ments in the component description. See Ordering of Generated Component Properties on page 313.

At runtime, when SCR needs to provide a component instance an activation object whose type is a
component property type, SCR must construct an instance of the component property type whose
methods are backed by the values of the component properties for the component instance. This ob-
ject can then be used to obtain the property values in a type safe manner.

112.8.2.1 Component Property Mapping

Each method of a configuration property type is mapped to a component property. The property
name is derived from the method name. Certain common property name characters, such as full
stop ('.' \u002E) and hyphen-minus (' - ' \u002D) are not valid in Java identifiers. So the name of a
method must be converted to its corresponding property name as follows:

• A single dollar sign ('$ ' \u0024) is removed unless it is followed by:
• A low line ('_ ' \u005F) and a dollar sign in which case the three consecutive characters ("$_

$") are converted to a single hyphen-minus (' - ' \u002D).
• Another dollar sign in which case the two consecutive dollar signs ("$$") are converted to a

single dollar sign.
• A single low line ('_ ' \u005F) is converted into a full stop ('.' \u002E) unless is it followed by an-

other low line in which case the two consecutive low lines ("__") are converted to a single low
line.

• All other characters are unchanged.
• If the component property type declares a PREFIX_ field whose value is a compile-time constant

String, then the property name is prefixed with the value of the PREFIX_ field.

Table 112.11 contains some name mapping examples.

Table 112.11 Component Property Name Mapping Examples

Component Property Type Method Name Component Property Name
myProperty143 myProperty143
$new new
my$$prop my$prop
dot_prop dot.prop
_secret .secret
another__prop another_prop
three___prop three_.prop
four_$__prop four._prop
five_$_prop five. .prop
six$_$prop six-prop
seven$$_$prop seven$.prop

Declarative Services Specification Version 1.5 Annotations

OSGi Compendium Release 8 Page 311

However, if the component property type is a single-element annotation, see 9.7.3 in [7] The Java Lan-
guage Specification, Java SE 8 Edition, then the property name for the value method is derived from the
name of the component property type rather than the name of the method.

In this case, the simple name of the component property type, that is, the name of the class without
any package name or outer class name, if the component property type is an inner class, must be
converted to the property name as follows:

• When a lower case character is followed by an upper case character, a full stop ('.' \u002E) is in-
serted between them.

• Each upper case character is converted to lower case.
• All other characters are unchanged.
• If the component property type declares a PREFIX_ field whose value is a compile-time constant

String, then the property name is prefixed with the value of the PREFIX_ field.

Table 112.12 contains some mapping examples for the value method.

Table 112.12 Single-Element Annotation Mapping Examples for value Method

Component Property Type Name value Method Component Property Name
ServiceRanking service.ranking
Some_Name some_name
OSGiProperty osgi .property

If the component property type is a marker annotation, see 9.7.2 in [7] The Java Language Specification,
Java SE 8 Edition, then the property name is derived from the name of the component property type,
as is described above for single-element annotations, and the value of the property is Boolean.TRUE .
Marker annotations can be used to annotate component implementation classes to set a component
property to the value Boolean.TRUE . However, since marker annotations have no methods, they are
of no use as parameter types in the component's constructor and life cycle methods, or as field types
for activation fields.

The property type can be directly derived from the type of the method. All types supported for an-
notation elements can be used except for annotation types. Method types of an annotation type or
array thereof are not supported. A tool processing the component property types must ignore such
methods.

If the method type is Class or Class[] , then the property type must be Str ing or Str ing[] , respectively,
whose values are fully qualified class names in the form returned by the Class.getName() method.

If the method type is an enumeration type or an array thereof, then the property type must be Str ing
or Str ing[] , respectively, whose values are the names of the enum constants in the form returned by
the Enum.name() method.

112.8.2.2 Coercing Component Property Values

When a component property type is used as an activation object type, SCR must create an object
that implements the component property type and maps the methods of the component proper-
ty type to component properties. The name of the method is converted to the property name as de-
scribed in Component Property Mapping on page 310. The property value may need to be coerced
to the type of the method. In Table 112.13, the columns are source types, that is, the type of the com-
ponent property value, and the rows are target types, that is, the method types. The property value
is v; number is a primitive numerical type and Number is a wrapper numerical type. An invalid co-
ercion is represented by throw . Such a coercion attempt must result in throwing a Component Ex-
ception when the component property type method is called. Any other coercion error, such as pars-
ing a non-numerical string to a number or the inability to coerce a string into a Class or enum ob-
ject, must be wrapped in a Component Exception and thrown when the component property type
method is called.

Annotations Declarative Services Specification Version 1.5

Page 312 OSGi Compendium Release 8

Table 112.13 Coercion From Property Value to Method Type

target \ source String Boolean Character Number Collection/array
String v v. toString() v. toString() v. toString() If v has no elements, nul l ; other-

wise the first element of v is co-
erced.

boolean Boolean. parse-
Boolean(v)

v. booleanVal-
ue()

v. charValue() !
= 0

v. doubleVal-
ue() != 0

If v has no elements, fa lse ; other-
wise the first element of v is co-
erced.

char v. length() > 0 ?
v. charAt(0) : 0

v. booleanVal-
ue() ? 1 : 0

v. charValue() (char) v. intVal-
ue()

If v has no elements, 0; otherwise
the first element of v is coerced.

number Number.
parseNumber(
v)

v. booleanVal-
ue() ? 1 : 0

(number) v.
charValue()

v. numberVal-
ue()

If v has no elements, 0; otherwise
the first element of v is coerced.

Class Bundle. load-
Class(v)

throw throw throw If v has no elements, nul l ; other-
wise the first element of v is co-
erced.

EnumType EnumType. val-
ueOf(v)

throw throw throw If v has no elements, nul l ; other-
wise the first element of v is co-
erced.

annotation type throw throw throw throw throw
array A single element array is created and v is coerced into the single el-

ement of the new array.
An array the size of v is created
and each element of v is coerced
into the corresponding element
of the new array.

Component properties whose names do not map to component property type methods are ignored.
If there is no corresponding component property for a component property type method, the com-
ponent property type method must:

• Return 0 for numerical and char method types.
• Return fa lse for boolean method type.
• Return nul l for String, Class, and enum.
• Return an empty array for array method types.
• Throw a ComponentException for annotation method types.

112.8.2.3 Standard Component Property Types

Component property types for standard component properties are specified in the
org.osgi .service.component.propertytypes package.

The ServiceDescr ipt ion component property type can be used to add the service.descr ipt ion ser-
vice property to a component. The ServiceRanking component property type can be used to add the
service.ranking service property to a component. The ServiceVendor component property type can
be used to add the service.vendor service property to a component. For example, using these compo-
nent property types as annotations:

@Component
@ServiceDescription(”My Acme Service implementation”)
@ServiceRanking(100)
@ServiceVendor("My Corp")
public class MyComponent implements AcmeService {}

will result in the following component properties:

<property name=”service.description” value=”My Acme Service implementation”/>

Declarative Services Specification Version 1.5 Annotations

OSGi Compendium Release 8 Page 313

<property name=”service.ranking” type=”Integer” value=”100”/>
<property name=”service.vendor” value=”My Corp”/>

The ExportedService component property type can be used to specify service properties for remote
services.

The Satisfy ingCondit ionTarget component property type can be used to specify the target property
for a reference to the satisfying condition of a component configuration. See Satisfying Condition on
page 280.

112.8.3 Ordering of Generated Component Properties
The Component annotation contains two ways to define component properties via the property and
propert ies elements. See Property and Properties Elements on page 284. If Component Annotations
are used to describe the component, then any component property types used as the type of an acti-
vation object or used to annotate the component implementation class must also be processed since
component property types can be used to define component property values as well. See Component
Property Types on page 308. A tool processing the Component Annotations and the component
property types must write the defined component properties into the generated component descrip-
tion in the following order.

1. Properties defined through component property types used as the type of an activation object.

If any of the referenced component property types have methods with defaults, then the gener-
ated component description must include a property element for each such method with the
property name mapped from the method name, the property type mapped from the method
type, and the property value set to the method's default value. See Component Property Mapping
on page 310. The generated property elements must be added to the component description
by processing the component property types used as the type of an activation object in the fol-
lowing order:
a. The component property types used as parameters to the constructor.
b. The component property types used as activation fields. The fields are processed in lexico-

graphical order, using Str ing.compareTo , of the field names.
c. The component property types used as parameters to the activate method.
d. The component property types used as parameters to the modified method.
e. The component property types used as parameters to the deactivate method.

If a method has more than one component property type parameter, the component property
types are processed in the order of the method parameters.

For component property type methods without a default value or with a default value of an
empty array, a property element must not be generated.

2. Properties defined through component property types annotating the component implementa-
tion class.

The generated component description must include a property element for each such method
with the property name mapped from the method name, the property type mapped from the
method type, and the property value set to the method's value. See Component Property Mapping
on page 310. The generated property elements must be added to the component description
by processing the component property types annotating the component implementation class
in the order that the annotations appear in the component implementation's class file. However,
the order of the RuntimeVisibleAnnotations and RuntimeInvis ibleAnnotations attributes in the
class file is unspecified by [6] The Java Virtual Machine Specification, Java SE 8 Edition so care must
be taken when using component property types of different RetentionPol icy that have method
names in common.

For component property type methods with a value of an empty array, a property element must
not be generated.

Service Component Runtime Declarative Services Specification Version 1.5

Page 314 OSGi Compendium Release 8

3. property element of the Component annotation.
4. propert ies element of the Component annotation.

This means that the properties defined through component property types are declared first in the
generated component description, followed by all properties defined through the property element
of the Component annotation and finally the properties entries defined through the propert ies ele-
ment of the Component annotation.

Since property values defined later in the component description override property values defined
earlier in the component description, this means that property values defined in propert ies element
of the Component annotation can override property values defined in property element of the Com-
ponent annotation which can override values defined by values in the component property types.

112.9 Service Component Runtime
Service Component Runtime (SCR) is the actor that manages the components and their life cycle
and allows introspection of the components.

112.9.1 Relationship to OSGi Framework
SCR must have access to the Bundle Context of any bundle that contains a component. SCR needs
access to the Bundle Context for the following reasons:

• To be able to register and get services on behalf of a bundle with components.
• To interact with the Configuration Admin on behalf of a bundle with components.
• To provide a component its Bundle Context when the Component Context getBundleContext

method is called.

SCR should use the Bundle.getBundleContext() method to obtain the Bundle Context reference.

112.9.2 Starting and Stopping SCR
When SCR is implemented as a bundle, any component configurations activated by SCR must be
deactivated when the SCR bundle is stopped. When the SCR bundle is started, it must process any
components that are declared in bundles that are started. This includes bundles which are started
and are awaiting lazy activation.

112.9.3 Logging Messages
When SCR must log a message to the Log Service, it must use a Logger named for the component
implementation class and associated with the bundle declaring the component. To obtain the Log-
ger object, SCR must call the LoggerFactory.getLogger(Bundle bundle, Str ing name, Class logger-
Type) method passing the bundle declaring the component as the first argument and the fully quali-
fied name of the component implementation class as the second argument. If SCR cannot know the
component implementation class name, because the error is not associated with a component or
the error occurred before the component description is processed, then SCR must use the bundle's
Root Logger, that is, the Logger named ROOT .

112.9.4 Locating Component Methods and Fields
SCR will need to locate activate, deactivate, modified, bind, updated, and unbind methods as well
as fields in a component instance. These members will be located, and called or modified, using re-
flection. The declared members of each class in the component implementation class's hierarchy are
examined for a suitable member. If a suitable member is found in a class, and it is accessible to the
component implementation class, then that member must be used. If suitable members are found
in a class but none of the suitable members are accessible by the component implementation class,

Declarative Services Specification Version 1.5 Service Component Runtime

OSGi Compendium Release 8 Page 315

then the search for suitable members terminates with no suitable member having been located. If
no suitable members are found in a class, the search continues in the superclass.

Only members that are accessible to the component implementation class will be used. If the mem-
ber has the publ ic or protected access modifier, then access is permitted. Otherwise, if the member
has the private access modifier, then access is permitted only if the member is declared in the com-
ponent implementation class. Otherwise, if the member has default access, also known as pack-
age private access, then access is permitted only if the member is declared in the component imple-
mentation class or if the member is declared in a superclass and all classes in the hierarchy from the
component implementation class to the superclass, inclusive, are in the same package and loaded
by the same class loader.

It is recommended that these members should not be declared with the publ ic access modifier so
that they do not appear as public members on the component instance when it is used as a service
object. Having these members declared publ ic allows any code to call or access the members with
reflection, even if a Security Manager is installed. These members are generally intended to only be
called or modified by SCR.

112.9.5 Bundle Activator Interaction
A bundle containing components may also declare a Bundle Activator. Such a bundle may also be
marked for lazy activation. Since components are activated by SCR and Bundle Activators are called
by the OSGi Framework, a bundle using both components and a Bundle Activator must take care.
The Bundle Activator's start method must not rely upon SCR having activated any of the bundle's
components. However, the components can rely upon the Bundle Activator's start method hav-
ing been called. That is, there is a happens-before relationship between the Bundle Activator's start
method being run and the components being activated.

112.9.6 Introspection
SCR provides an introspection API for examining the runtime state of the components in bundles
processed by SCR. SCR must register a ServiceComponentRuntime service upon startup. The Service
Component Runtime service provides methods to inspect the component descriptions and compo-
nent configurations as well as inspect and modify the enabled state of components. The service uses
Data Transfer Objects (DTO) as parameters and return values. The rules for Data Transfer Objects are
specified in OSGi Core Release 8.

The Service Component Runtime service provides the following methods.

• getComponentDescr ipt ionDTOs(Bundle. . .) - For each specified bundle, if the bundle is active
and processed by SCR, the returned collection will contain a ComponentDescr ipt ionDTO for
each valid component description in the bundle.

• getComponentDescr ipt ionDTO(Bundle,Str ing) - If the specified bundle is active and processed
by SCR, and the specified bundle contains a valid component description with the specified
name, the method will return a ComponentDescr ipt ionDTO for the component description.

• getComponentConfigurat ionDTOs(ComponentDescr ipt ionDTO) - If the specified Component-
Descr ipt ionDTO represents a valid component description from an active bundle processed by
SCR, the returned collection will contain a ComponentConfigurat ionDTO for each component
configuration of the component.

• isComponentEnabled(ComponentDescr ipt ionDTO) - Returns true if the specified Component
Description DTO represents a valid component description from an active bundle processed by
SCR, and the component is enabled. Otherwise, the method returns fa lse .

• enableComponent(ComponentDescr ipt ionDTO) - If the specified Component Description DTO
represents a valid component description from an active bundle processed by SCR, the compo-
nent is enabled. This method must return after changing the enabled state of the specified com-
ponent. Any actions that result from this, such as activating or deactivating a component config-
uration, must occur asynchronously to this method call. The method returns a Promise that will

Service Component Runtime Declarative Services Specification Version 1.5

Page 316 OSGi Compendium Release 8

be resolved when the actions that result from changing the enabled state of the specified compo-
nent have completed.

• disableComponent(ComponentDescr ipt ionDTO) - If the specified Component Description DTO
represents a valid component description from an active bundle processed by SCR, the compo-
nent is disabled. This method must return after changing the enabled state of the specified com-
ponent. Any actions that result from this, such as activating or deactivating a component config-
uration, must occur asynchronously to this method call. The method returns a Promise that will
be resolved when the actions that result from changing the enabled state of the specified compo-
nent have completed.

The runtime state of the components can change at any time. So any information returned by these
methods only provides a snapshot of the state at the time of the method call.

There are a number of DTOs available via the Service Component Runtime service.

Figure 112.6 Service Component Runtime DTOs

<<service>>
Service Component
Runtime

Component
Description DTO

Component
Configuration DTO

Reference DTO
Satisfied
Reference DTO

Service Reference
DTO

0..* 0..*

0..*
0..*

0..*

1

1

Unsatisfied
Reference DTO

0..*

1 0..*

The two main DTOs are ComponentDescr ipt ionDTO , which represents a component description,
and ComponentConfigurat ionDTO , which represents a component configuration. The Component
Description DTO contains an array of ReferenceDTO objects which represent each declared refer-
ence in the component description. The Component Configuration DTO contains an array of Satis-
fiedReferenceDTO objects and an array of UnsatisfiedReferenceDTO objects. A Satisfied Reference
DTO represents a satisfied reference of the component configuration and an Unsatisfied Reference
DTO represents an unsatisfied reference of the component configuration. The Component Config-
uration DTO for a satisfied component configuration must contain no Unsatisfied Reference DTOs.
The Component Configuration DTO for an unsatisfied component configuration may contain some
Satisfied Reference DTOs and some Unsatisfied Reference DTOs. This information can be used to di-
agnose why the component configuration is not satisfied.

SCR must register the ServiceComponentRuntime service with the service.changecount service
property. See org.osgi .f ramework.Constants.SERVICE_CHANGECOUNT in OSGi Core Release 8.
Whenever the Service Component Runtime DTOs available from the ServiceComponentRuntime
service change, SCR modify the service.changecount service property with an updated change

Declarative Services Specification Version 1.5 Service Component Runtime

OSGi Compendium Release 8 Page 317

count value. This allows interested parties to be notified of changes to the DTOs by observing Ser-
vice Events of type MODIFIED for the ServiceComponentRuntime service.

112.9.7 Capabilities
SCR must provide the following capabilities.

• A capability in the osgi .extender namespace declaring an extender with the name
COMPONENT_CAPABILITY_NAME . This capability must also declare a uses constraint for the
org.osgi .service.component package. For example:

Provide-Capability: osgi.extender;
 osgi.extender="osgi.component";
 version:Version="1.5";
 uses:="org.osgi.service.component"

This capability must follow the rules defined for the osgi.extender Namespace on page 723.

A bundle that contains service components should require the osgi .extender capability from
SCR. This requirement will wire the bundle to the SCR implementation and ensure that SCR is
using the same org.osgi .service.component package as the bundle if the bundle uses that pack-
age.

Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.component)(version>=1.5)(!(version>=2.0)))"

The RequireServiceComponentRuntime annotation can be used to require this capability. The
Component annotation is meta-annotated with this annotation.

SCR must only process a bundle's service components if one of the following is true:
• The bundle's wiring has a required wire for at least one osgi .extender capability with the

name osgi .component and the first of these required wires is wired to SCR.
• The bundle's wiring has no required wire for an osgi .extender capability with the name

osgi .component .

Otherwise, SCR must not process the bundle's service components.
• A capability in the osgi .service namespace representing the ServiceComponentRuntime service.

This capability must also declare a uses constraint for the org.osgi .service.component.runtime
package. For example:

Provide-Capability: osgi.service;
 objectClass:List<String>=
 "org.osgi.service.component.runtime.ServiceComponentRuntime";
 uses:="org.osgi.service.component.runtime"

This capability must follow the rules defined for the osgi.service Namespace on page 727.

112.9.8 Locating the True Condition Service
SCR must locate the True Condition service. This can be done using the Bundle Context of SCR it-
self. However, if SCR is unable to locate the True Condition service using the Bundle Context of SCR
itself, it may retry using the Bundle Context of the system bundle. This retry to locate the True Con-
dition service can succeed when a service hook implementation is in use that has not been updated
to support the Condition Service Specification by providing visibility of the True Condition service
to all bundles.

If SCR is unable to locate the True Condition service, which can occur if SCR is running on an older
OSGi Framework which does not support the Condition Service Specification and register the True

Security Declarative Services Specification Version 1.5

Page 318 OSGi Compendium Release 8

Condition service, then SCR must not augment component descriptions to add the implicit refer-
ence for a satisfying condition. See Satisfying Condition on page 280.

SCR may use the already located True Condition service to satisfy any component configuration's
reference to the True Condition service.

112.10 Security
When Java permissions are enabled, SCR must perform the following security procedures.

112.10.1 Service Permissions
Declarative services are built upon the existing OSGi service infrastructure. This means that Service
Permission applies regarding the ability to publish, find or bind services.

If a component specifies a service, then component configurations for the component cannot be sat-
isfied unless the component's bundle has ServicePermission[<provides>, REGISTER] for each pro-
vided interface specified for the service.

If a component's reference does not specify optional cardinality, the reference cannot be satisfied
unless the component's bundle has ServicePermission[<interface>, GET] for the specified interface
in the reference. If the reference specifies optional cardinality but the component's bundle does not
have ServicePermission[<interface>, GET] for the specified interface in the reference, no service
must be bound for this reference.

If a component is a factory component, then the above Service Permission checks still apply. But the
component's bundle is not required to have ServicePermission[ComponentFactory, REGISTER] as
the Component Factory service is registered by SCR.

SCR must have ServicePermission[ServiceComponentRuntime, REGISTER] permission to register
the ServiceComponentRuntime service. Administrative bundles wishing to use the ServiceCompo-
nentRuntime service must have ServicePermission[ServiceComponentRuntime, GET] permission.
In general, this permission should only be granted to administrative bundles to limit access to the
potentially intrusive methods provided by this service.

112.10.2 Required Admin Permission
SCR requires AdminPermission[*,CONTEXT] because it needs access to the bundle's Bundle Context
object with the Bundle.getBundleContext() method.

112.10.3 Using hasPermission
SCR does all publishing, finding and binding of services on behalf of the component using the Bun-
dle Context of the component's bundle. This means that normal stack-based permission checks
will check SCR and not the component's bundle. Since SCR is registering and getting services on be-
half of a component's bundle, SCR must call the Bundle.hasPermission method to validate that a
component's bundle has the necessary permission to register or get a service.

112.10.4 Configuration Multi-Locations and Regions
SCR must ensure a bundle has the proper Configurat ionPermission for a Configuration used by its
components when the Configuration has a multi-location. See Using Multi-Locations on page 99 for
more information on multi-locations and Regions on page 100 for more information on regions. If a
bundle does not have the necessary permission for a multi-location Configuration, then SCR must
act as if the Configuration does not exist for the bundle.

Declarative Services Specification Version 1.5 Component Description Schema

OSGi Compendium Release 8 Page 319

112.11 Component Description Schema
This XML Schema defines the component description grammar.

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:scr="http://www.osgi.org/xmlns/scr/v1.5.0"
 targetNamespace="http://www.osgi.org/xmlns/scr/v1.5.0"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified"
 version="1.5.0">

 <annotation>
 <documentation xml:lang="en">
 This is the XML Schema for component descriptions used by
 the Service Component Runtime (SCR). Component description
 documents may be embedded in other XML documents. SCR will
 process all XML documents listed in the Service-Component
 manifest header of a bundle. XML documents containing
 component descriptions may contain a single, root component
 element or one or more component elements embedded in a
 larger document. Use of the namespace for component
 descriptions is mandatory. The attributes and subelements
 of a component element are always unqualified.
 </documentation>
 </annotation>
 <element name="component" type="scr:Tcomponent" />
 <complexType name="Tcomponent">
 <sequence>
 <annotation>
 <documentation xml:lang="en">
 Implementations of SCR must not require component
 descriptions to specify the subelements of the component
 element in the order as required by the schema. SCR
 implementations must allow other orderings since
 arbitrary orderings do not affect the meaning of the
 component description. Only the relative ordering of
 property and properties element have meaning.
 </documentation>
 </annotation>
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="property" type="scr:Tproperty" />
 <element name="properties" type="scr:Tproperties" />
 </choice>
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="factory-property" type="scr:Tproperty" />
 <element name="factory-properties" type="scr:Tproperties" />
 </choice>
 <element name="service" type="scr:Tservice" minOccurs="0"
 maxOccurs="1" />
 <element name="reference" type="scr:Treference"
 minOccurs="0" maxOccurs="unbounded" />
 <element name="implementation" type="scr:Timplementation" />
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="enabled" type="boolean" default="true"
 use="optional" />
 <attribute name="name" type="token" use="optional">
 <annotation>
 <documentation xml:lang="en">
 The default value of this attribute is the value of
 the class attribute of the nested implementation
 element. If multiple component elements use the same
 value for the class attribute of their nested
 implementation element, then using the default value
 for this attribute will result in duplicate names.
 In this case, this attribute must be specified with
 a unique value.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="factory" type="string" use="optional" />
 <attribute name="immediate" type="boolean" use="optional" />

Component Description Schema Declarative Services Specification Version 1.5

Page 320 OSGi Compendium Release 8

 <attribute name="configuration-policy"
 type="scr:Tconfiguration-policy" default="optional" use="optional" />
 <attribute name="activate" type="token" use="optional"
 default="activate" />
 <attribute name="deactivate" type="token" use="optional"
 default="deactivate" />
 <attribute name="modified" type="token" use="optional" />
 <attribute name="configuration-pid" use="optional">
 <annotation>
 <documentation xml:lang="en">
 The default value of this attribute is the value of
 the name attribute of this element.
 </documentation>
 </annotation>
 <simpleType>
 <restriction>
 <simpleType>
 <list itemType="token" />
 </simpleType>
 <minLength value="1" />
 </restriction>
 </simpleType>
 </attribute>
 <attribute name="activation-fields" use="optional">
 <simpleType>
 <restriction>
 <simpleType>
 <list itemType="token" />
 </simpleType>
 <minLength value="1" />
 </restriction>
 </simpleType>
 </attribute>
 <attribute name="init" type="unsignedByte" default="0"
 use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>
 <complexType name="Timplementation">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="class" type="token" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>
 <complexType name="Tproperty">
 <simpleContent>
 <extension base="string">
 <attribute name="name" type="string" use="required" />
 <attribute name="value" type="string" use="optional" />
 <attribute name="type" type="scr:Tproperty_type"
 default="String" use="optional" />
 <anyAttribute processContents="lax" />
 </extension>
 </simpleContent>
 </complexType>
 <complexType name="Tproperties">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="entry" type="string" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>
 <complexType name="Tservice">
 <sequence>
 <element name="provide" type="scr:Tprovide" minOccurs="1"
 maxOccurs="unbounded" />
 <!-- It is non-deterministic, per W3C XML Schema 1.0:
 http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use name space="##any" below. -->
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="scope" type="scr:Tservice_scope" default="singleton"

Declarative Services Specification Version 1.5 Component Description Schema

OSGi Compendium Release 8 Page 321

 use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>
 <complexType name="Tprovide">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="interface" type="token" use="required" />
 <anyAttribute processContents="lax" />
 </complexType>
 <complexType name="Treference">
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="name" type="token" use="optional">
 <annotation>
 <documentation xml:lang="en">
 The default value of this attribute is the value of
 the interface attribute of this element. If multiple
 instances of this element within a component element
 use the same value for the interface attribute, then
 using the default value for this attribute will result
 in duplicate names. In this case, this attribute
 must be specified with a unique value.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="interface" type="token" use="required" />
 <attribute name="cardinality" type="scr:Tcardinality"
 default="1..1" use="optional" />
 <attribute name="policy" type="scr:Tpolicy" default="static"
 use="optional" />
 <attribute name="policy-option" type="scr:Tpolicy-option"
 default="reluctant" use="optional" />
 <attribute name="target" type="string" use="optional" />
 <attribute name="bind" type="token" use="optional" />
 <attribute name="unbind" type="token" use="optional" />
 <attribute name="updated" type="token" use="optional" />
 <attribute name="scope" type="scr:Treference_scope" default="bundle"
 use="optional" />
 <attribute name="field" type="token" use="optional" />
 <attribute name="field-option" type="scr:Tfield-option" default="replace"
 use="optional" />
 <attribute name="field-collection-type" type="scr:Tfield-collection-type"
 default="service" use="optional" />
 <attribute name="parameter" type="unsignedByte" use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>
 <simpleType name="Tproperty_type">
 <restriction base="string">
 <enumeration value="String" />
 <enumeration value="Long" />
 <enumeration value="Double" />
 <enumeration value="Float" />
 <enumeration value="Integer" />
 <enumeration value="Byte" />
 <enumeration value="Character" />
 <enumeration value="Boolean" />
 <enumeration value="Short" />
 </restriction>
 </simpleType>
 <simpleType name="Tcardinality">
 <restriction base="string">
 <enumeration value="0..1" />
 <enumeration value="0..n" />
 <enumeration value="1..1" />
 <enumeration value="1..n" />
 </restriction>
 </simpleType>
 <simpleType name="Tpolicy">
 <restriction base="string">
 <enumeration value="static" />
 <enumeration value="dynamic" />

org.osgi.service.component Declarative Services Specification Version 1.5

Page 322 OSGi Compendium Release 8

 </restriction>
 </simpleType>
 <simpleType name="Tpolicy-option">
 <restriction base="string">
 <enumeration value="reluctant" />
 <enumeration value="greedy" />
 </restriction>
 </simpleType>
 <simpleType name="Tconfiguration-policy">
 <restriction base="string">
 <enumeration value="optional" />
 <enumeration value="require" />
 <enumeration value="ignore" />
 </restriction>
 </simpleType>
 <simpleType name="Tservice_scope">
 <restriction base="string">
 <enumeration value="singleton" />
 <enumeration value="bundle" />
 <enumeration value="prototype" />
 </restriction>
 </simpleType>
 <simpleType name="Treference_scope">
 <restriction base="string">
 <enumeration value="bundle" />
 <enumeration value="prototype" />
 <enumeration value="prototype_required" />
 </restriction>
 </simpleType>
 <simpleType name="Tfield-option">
 <restriction base="string">
 <enumeration value="replace" />
 <enumeration value="update" />
 </restriction>
 </simpleType>
 <simpleType name="Tfield-collection-type">
 <restriction base="string">
 <enumeration value="service" />
 <enumeration value="properties" />
 <enumeration value="reference" />
 <enumeration value="serviceobjects" />
 <enumeration value="tuple" />
 </restriction>
 </simpleType>
 <attribute name="must-understand" type="boolean">
 <annotation>
 <documentation xml:lang="en">
 This attribute should be used by extensions to documents
 to require that the document consumer understand the
 extension. This attribute must be qualified when used.
 </documentation>
 </annotation>
 </attribute>
</schema>

SCR must not require component descriptions to specify the elements in the order required by the
schema. SCR must allow other orderings since arbitrary orderings of these elements do not affect
the meaning of the component description. Only the relative ordering of property , propert ies and
reference elements have meaning for overriding previously set property values.

The schema is also available in digital form from [5] OSGi XML Schemas.

112.12 org.osgi.service.component

Service Component Package Version 1.5.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Declarative Services Specification Version 1.5 org.osgi.service.component

OSGi Compendium Release 8 Page 323

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.component; vers ion="[1.5,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.component; vers ion="[1.5,1 .6)"

112.12.1 Summary

• AnyService - A marker type whose name is used in the interface attribute of a reference element
in a component description to indicate that the type of the service for a reference is not specified
and can thus be any service type.

• ComponentConstants - Defines standard names for Service Component constants.
• ComponentContext - A Component Context object is used by a component instance to interact

with its execution context including locating services by reference name.
• ComponentException - Unchecked exception which may be thrown by Service Component

Runtime.
• ComponentFactory - When a component is declared with the factory attribute on its compo-

nent element, Service Component Runtime will register a Component Factory service to allow
new component configurations to be created and activated rather than automatically creating
and activating component configuration as necessary.

• ComponentInstance - A ComponentInstance encapsulates a component instance of an activat-
ed component configuration.

• ComponentServiceObjects - Allows multiple service objects for a service to be obtained.

112.12.2 public final class AnyService
A marker type whose name is used in the interface attribute of a reference element in a component
description to indicate that the type of the service for a reference is not specified and can thus be any
service type.

When specifying this marker type in the interface attribute of a reference element in a component
description:

• The service type of the reference member or parameter must be java. lang.Object so that any ser-
vice object can be provided.

• The target attribute of the reference element must be specified to constrain the target services.

For example:

 @Reference(service = AnyService.class, target = "(osgi.jaxrs.extension=true)")
 List<Object> extensions;

Since 1.5

112.12.3 public interface ComponentConstants
Defines standard names for Service Component constants.

Provider Type Consumers of this API must not implement this type

112.12.3.1 public static final String COMPONENT_CAPABILITY_NAME = "osgi.component"

Capability name for Service Component Runtime.

Used in Provide-Capabi l i ty and Require-Capabi l i ty manifest headers with the osgi .extender name-
space. For example:

 Require-Capability: osgi.extender;

org.osgi.service.component Declarative Services Specification Version 1.5

Page 324 OSGi Compendium Release 8

 filter:="(&(osgi.extender=osgi.component)(version>=1.5)(!(version>=2.0)))"

Since 1.3

112.12.3.2 public static final String COMPONENT_FACTORY = "component.factory"

A service registration property for a Component Factory that contains the value of the factory at-
tribute. The value of this property must be of type Str ing .

112.12.3.3 public static final String COMPONENT_ID = "component.id"

A component property that contains the generated id for a component configuration. The value of
this property must be of type Long .

The value of this property is assigned by Service Component Runtime when a component config-
uration is created. Service Component Runtime assigns a unique value that is larger than all previ-
ously assigned values since Service Component Runtime was started. These values are NOT persis-
tent across restarts of Service Component Runtime.

112.12.3.4 public static final String COMPONENT_NAME = "component.name"

A component property for a component configuration that contains the name of the component
as specified in the name attribute of the component element. The value of this property must be of
type Str ing .

112.12.3.5 public static final String COMPONENT_SPECIFICATION_VERSION = "1.5"

Compile time constant for the Specification Version of Declarative Services.

Used in Version and Requirement annotations. The value of this compile time constant will change
when the specification version of Declarative Services is updated.

Since 1.4

112.12.3.6 public static final int DEACTIVATION_REASON_BUNDLE_STOPPED = 6

The component configuration was deactivated because the bundle was stopped.

Since 1.1

112.12.3.7 public static final int DEACTIVATION_REASON_CONFIGURATION_DELETED = 4

The component configuration was deactivated because its configuration was deleted.

Since 1.1

112.12.3.8 public static final int DEACTIVATION_REASON_CONFIGURATION_MODIFIED = 3

The component configuration was deactivated because its configuration was changed.

Since 1.1

112.12.3.9 public static final int DEACTIVATION_REASON_DISABLED = 1

The component configuration was deactivated because the component was disabled.

Since 1.1

112.12.3.10 public static final int DEACTIVATION_REASON_DISPOSED = 5

The component configuration was deactivated because the component was disposed.

Since 1.1

112.12.3.11 public static final int DEACTIVATION_REASON_REFERENCE = 2

The component configuration was deactivated because a reference became unsatisfied.

Declarative Services Specification Version 1.5 org.osgi.service.component

OSGi Compendium Release 8 Page 325

Since 1.1

112.12.3.12 public static final int DEACTIVATION_REASON_UNSPECIFIED = 0

The reason the component configuration was deactivated is unspecified.

Since 1.1

112.12.3.13 public static final String REFERENCE_NAME_SATISFYING_CONDITION = "osgi.ds.satisfying.condition"

Reference name for a component's satisfying condition.

Since 1.5

112.12.3.14 public static final String REFERENCE_TARGET_SUFFIX = ".target"

The suffix for the target property of a reference. These properties contain the filter to select the tar-
get services for a reference. The value of a target property must be of type Str ing .

112.12.3.15 public static final String SERVICE_COMPONENT = "Service-Component"

Manifest header specifying the XML documents within a bundle that contain the bundle's Service
Component descriptions.

The attribute value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.

112.12.4 public interface ComponentContext
A Component Context object is used by a component instance to interact with its execution context
including locating services by reference name. Each component instance has a unique Component
Context.

A component instance may obtain its Component Context object through its activate, modified, and
deactivate methods.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

112.12.4.1 public void disableComponent(String name)

name The name of a component.

□ Disables the specified component name. The specified component name must be in the same bun-
dle as this component.

This method must return after changing the enabled state of the specified component name. Any ac-
tions that result from this, such as activating or deactivating a component configuration, must oc-
cur asynchronously to this method call.

112.12.4.2 public void enableComponent(String name)

name The name of a component or nul l to indicate all components in the bundle.

□ Enables the specified component name. The specified component name must be in the same bundle
as this component.

This method must return after changing the enabled state of the specified component name. Any ac-
tions that result from this, such as activating or deactivating a component configuration, must oc-
cur asynchronously to this method call.

112.12.4.3 public BundleContext getBundleContext()

□ Returns the BundleContext of the bundle which declares this component.

Returns The BundleContext of the bundle declares this component.

org.osgi.service.component Declarative Services Specification Version 1.5

Page 326 OSGi Compendium Release 8

112.12.4.4 public ComponentInstance<S> getComponentInstance()

Type Parameters <S>

□ Returns the Component Instance object for the component instance associated with this Compo-
nent Context.

Returns The Component Instance object for the component instance.

112.12.4.5 public Dictionary<String, Object> getProperties()

□ Returns the component properties for this Component Context.

Returns The properties for this Component Context. The Dictionary is read only and cannot be modified.

112.12.4.6 public ServiceReference<?> getServiceReference()

□ If the component instance is registered as a service using the service element, then this method re-
turns the service reference of the service provided by this component instance.

This method will return nul l if the component instance is not registered as a service.

Returns The ServiceReference object for the component instance or nul l if the component instance is not
registered as a service.

112.12.4.7 public Bundle getUsingBundle()

□ If the component instance is registered as a service using the servicescope="bundle" or
servicescope="prototype" attribute, then this method returns the bundle using the service provided
by the component instance.

This method will return nul l if:

• The component instance is not a service, then no bundle can be using it as a service.
• The component instance is a service but did not specify the servicescope="bundle" or

servicescope="prototype" attribute, then all bundles using the service provided by the compo-
nent instance will share the same component instance.

• The service provided by the component instance is not currently being used by any bundle.

Returns The bundle using the component instance as a service or nul l .

112.12.4.8 public S locateService(String name)

Type Parameters <S>

name The name of a reference as specified in a reference element in this component's description.

□ Returns the service object for the specified reference name.

If the cardinality of the reference is 0..n or 1. .n and multiple services are bound to the reference,
the service with the highest ranking (as specified in its Constants.SERVICE_RANKING property)
is returned. If there is a tie in ranking, the service with the lowest service id (as specified in its
Constants.SERVICE_ID property); that is, the service that was registered first is returned.

Returns A service object for the referenced service or nul l if the reference cardinality is 0..1 or 0..n and no
bound service is available.

Throws ComponentException– If Service Component Runtime catches an exception while activating the
bound service.

112.12.4.9 public S locateService(String name, ServiceReference<S> reference)

Type Parameters <S>

<S> Type of Service.

Declarative Services Specification Version 1.5 org.osgi.service.component

OSGi Compendium Release 8 Page 327

name The name of a reference as specified in a reference element in this component's description.

reference The ServiceReference to a bound service. This must be a ServiceReference provided to the compo-
nent via the bind or unbind method for the specified reference name.

□ Returns the service object for the specified reference name and ServiceReference .

Returns A service object for the referenced service or nul l if the specified ServiceReference is not a bound ser-
vice for the specified reference name.

Throws ComponentException– If Service Component Runtime catches an exception while activating the
bound service.

112.12.4.10 public Object[] locateServices(String name)

name The name of a reference as specified in a reference element in this component's description.

□ Returns the service objects for the specified reference name.

Returns An array of service objects for the referenced service or nul l if the reference cardinality is 0..1 or 0..n
and no bound service is available. If the reference cardinality is 0..1 or 1. .1 and a bound service is
available, the array will have exactly one element.

Throws ComponentException– If Service Component Runtime catches an exception while activating a
bound service.

112.12.5 public class ComponentException
extends RuntimeException
Unchecked exception which may be thrown by Service Component Runtime.

112.12.5.1 public ComponentException(String message, Throwable cause)

message The message for the exception.

cause The cause of the exception. May be nul l .

□ Construct a new ComponentException with the specified message and cause.

112.12.5.2 public ComponentException(String message)

message The message for the exception.

□ Construct a new ComponentException with the specified message.

112.12.5.3 public ComponentException(Throwable cause)

cause The cause of the exception. May be nul l .

□ Construct a new ComponentException with the specified cause.

112.12.5.4 public Throwable getCause()

□ Returns the cause of this exception or nul l if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

112.12.5.5 public Throwable initCause(Throwable cause)

cause The cause of this exception.

□ Initializes the cause of this exception to the specified value.

Returns This exception.

Throws I l legalArgumentException– If the specified cause is this exception.

I l legalStateException– If the cause of this exception has already been set.

org.osgi.service.component Declarative Services Specification Version 1.5

Page 328 OSGi Compendium Release 8

112.12.6 public interface ComponentFactory<S>
<S> Type of Service

When a component is declared with the factory attribute on its component element, Service Com-
ponent Runtime will register a Component Factory service to allow new component configurations
to be created and activated rather than automatically creating and activating component configura-
tion as necessary.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

112.12.6.1 public ComponentInstance<S> newInstance(Dictionary<String, ?> properties)

properties Additional properties for the component configuration or nul l if there are no additional properties.

□ Create and activate a new component configuration. Additional properties may be provided for the
component configuration.

Returns A ComponentInstance object encapsulating the component instance of the component configura-
tion. The component configuration has been activated and, if the component specifies a service ele-
ment, the component instance has been registered as a service.

Throws ComponentException– If Service Component Runtime is unable to activate the component configu-
ration.

112.12.7 public interface ComponentInstance<S>
<S> Type of Service

A ComponentInstance encapsulates a component instance of an activated component configura-
tion. ComponentInstances are created whenever a component configuration is activated.

ComponentInstances are never reused. A new ComponentInstance object will be created when the
component configuration is activated again.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

112.12.7.1 public void dispose()

□ Dispose of the component configuration for this component instance. The component configura-
tion will be deactivated. If the component configuration has already been deactivated, this method
does nothing.

112.12.7.2 public S getInstance()

□ Returns the component instance of the activated component configuration.

Returns The component instance or nul l if the component configuration has been deactivated.

112.12.8 public interface ComponentServiceObjects<S>
<S> Type of Service

Allows multiple service objects for a service to be obtained.

A component instance can receive a ComponentServiceObjects object via a reference that is typed
ComponentServiceObjects .

For services with prototype scope, multiple service objects for the service can be obtained. For ser-
vices with singleton or bundle scope, only one, use-counted service object is available.

Any unreleased service objects obtained from this ComponentServiceObjects object are automati-
cally released by Service Component Runtime when the service becomes unbound.

Declarative Services Specification Version 1.5 org.osgi.service.component.annotations

OSGi Compendium Release 8 Page 329

See Also ServiceObjects

Since 1.3

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

112.12.8.1 public S getService()

□ Returns a service object for the associated service.

This method will always return nul l when the associated service has been become unbound.

Returns A service object for the associated service or nul l if the service is unbound, the customized service
object returned by a ServiceFactory does not implement the classes under which it was registered or
the ServiceFactory threw an exception.

Throws I l legalStateException– If the component instance that received this ComponentServiceObjects ob-
ject has been deactivated.

See Also ungetService(Object)

112.12.8.2 public ServiceReference<S> getServiceReference()

□ Returns the ServiceReference for the service associated with this ComponentServiceObjects object.

Returns The ServiceReference for the service associated with this ComponentServiceObjects object.

112.12.8.3 public void ungetService(S service)

service A service object previously provided by this ComponentServiceObjects object.

□ Releases a service object for the associated service.

The specified service object must no longer be used and all references to it should be destroyed after
calling this method.

Throws I l legalStateException– If the component instance that received this ComponentServiceObjects ob-
ject has been deactivated.

I l legalArgumentException– If the specified service object was not provided by this ComponentSer-
viceObjects object.

See Also getService()

112.13 org.osgi.service.component.annotations

Service Component Annotations Package Version 1.5.

This package is not used at runtime. Annotated classes are processed by tools to generate Compo-
nent Descriptions which are used at runtime.

112.13.1 Summary

• Activate - Identify the annotated member as part of the activation of a Service Component.
• Collect ionType - Collection types for the Reference annotation.
• Component - Identify the annotated class as a Service Component.
• ComponentPropertyType - Identify the annotated annotation as a Component Property Type.
• Configurat ionPol icy - Configuration Policy for the Component annotation.
• Deactivate - Identify the annotated method as the deactivate method of a Service Component.
• FieldOption - Field options for the Reference annotation.

org.osgi.service.component.annotations Declarative Services Specification Version 1.5

Page 330 OSGi Compendium Release 8

• Modified - Identify the annotated method as the modified method of a Service Component.
• Reference - Identify the annotated member or parameter as a reference of a Service Component.
• ReferenceCardinal ity - Cardinality for the Reference annotation.
• ReferencePol icy - Policy for the Reference annotation.
• ReferencePol icyOption - Policy option for the Reference annotation.
• ReferenceScope - Reference scope for the Reference annotation.
• RequireServiceComponentRuntime - This annotation can be used to require the Service Compo-

nent Runtime to process Declarative Services components.
• ServiceScope - Service scope for the Component annotation.

112.13.2 @Activate
Identify the annotated member as part of the activation of a Service Component.

When this annotation is applied to a:

• Method - The method is the activate method of the Component.
• Constructor - The constructor will be used to construct the Component and can be called with

activation objects and bound services as parameters.
• Field - The field will contain an activation object of the Component. The field must be set after

the constructor is called and before calling any other method on the fully constructed compo-
nent instance. That is, there is a happens-before relationship between the field being set and call-
ing any method on the fully constructed component instance such as the activate method.

This annotation is not processed at runtime by Service Component Runtime. It must be processed
by tools and used to add a Component Description to the bundle.

See Also The init , act ivate, and act ivat ion-fields attr ibutes of the component element of a Component
Descr ipt ion.

Since 1.1

Retention CLASS

Target METHOD , FIELD , CONSTRUCTOR

112.13.3 enum CollectionType
Collection types for the Reference annotation.

Since 1.4

112.13.3.1 SERVICE

The service collection type is used to indicate the collection holds the bound service objects.

This is the default collection type.

112.13.3.2 REFERENCE

The reference collection type is used to indicate the collection holds Service References for the
bound services.

112.13.3.3 SERVICEOBJECTS

The serviceobjects collection type is used to indicate the collection holds Component Service Ob-
jects for the bound services.

112.13.3.4 PROPERTIES

The properties collection type is used to indicate the collection holds unmodifiable Maps contain-
ing the service properties of the bound services.

Declarative Services Specification Version 1.5 org.osgi.service.component.annotations

OSGi Compendium Release 8 Page 331

The Maps must implement Comparable with the compareTo method comparing service property
maps using the same ordering as ServiceReference.compareTo based upon service ranking and ser-
vice id.

112.13.3.5 TUPLE

The tuple collection type is used to indicate the collection holds unmodifiable Map.Entries whose
key is an unmodifiable Map containing the service properties of the bound service, as specified in
PROPERTIES, and whose value is the bound service object.

The Map.Entries must implement Comparable with the compareTo method comparing service
property maps using the same ordering as ServiceReference.compareTo based upon service ranking
and service id.

112.13.3.6 public String toString()

112.13.3.7 public static CollectionType valueOf(String name)

112.13.3.8 public static CollectionType[] values()

112.13.4 @Component
Identify the annotated class as a Service Component.

The annotated class is the implementation class of the Component.

This annotation is not processed at runtime by Service Component Runtime. It must be processed
by tools and used to add a Component Description to the bundle.

See Also The component element of a Component Descr ipt ion.

Retention CLASS

Target TYPE

112.13.4.1 String name default ""

□ The name of this Component.

If not specified, the name of this Component is the fully qualified type name of the class being anno-
tated.

See Also The name attr ibute of the component element of a Component Descr ipt ion.

112.13.4.2 Class<?>[] service default {}

□ The types under which to register this Component as a service.

If no service should be registered, the empty value {} must be specified.

If not specified, the service types for this Component are all the directly implemented interfaces of
the class being annotated.

See Also The service element of a Component Descr ipt ion.

112.13.4.3 String factory default ""

□ The factory identifier of this Component. Specifying a factory identifier makes this Component a
Factory Component.

If not specified, the default is that this Component is not a Factory Component.

See Also The factory attr ibute of the component element of a Component Descr ipt ion.

org.osgi.service.component.annotations Declarative Services Specification Version 1.5

Page 332 OSGi Compendium Release 8

112.13.4.4 boolean servicefactory default false

□ Declares whether this Component uses the OSGi ServiceFactory concept and each bundle using this
Component's service will receive a different component instance.

This element is ignored when the scope() element does not have the default value. If true , this Com-
ponent uses bundle service scope. If fa lse or not specified, this Component uses singleton service
scope. If the factory() element is specified or the immediate() element is specified with true , this ele-
ment can only be specified with fa lse .

See Also The scope attr ibute of the service element of a Component Descr ipt ion.

Deprecated Since 1.3. Replaced by scope().

112.13.4.5 boolean enabled default true

□ Declares whether this Component is enabled when the bundle declaring it is started.

If true or not specified, this Component is enabled. If fa lse , this Component is disabled.

See Also The enabled attr ibute of the component element of a Component Descr ipt ion.

112.13.4.6 boolean immediate default false

□ Declares whether this Component must be immediately activated upon becoming satisfied or
whether activation should be delayed.

If true , this Component must be immediately activated upon becoming satisfied. If fa lse , activa-
tion of this Component is delayed. If this property is specified, its value must be fa lse if the factory()
property is also specified or must be true if the service() property is specified with an empty value.

If not specified, the default is fa lse if the factory() property is specified or the service() property is
not specified or specified with a non-empty value and true otherwise.

See Also The immediate attr ibute of the component element of a Component Descr ipt ion.

112.13.4.7 String[] property default {}

□ Properties for this Component.

Each property string is specified as "name=value" . The type of the property value can be specified in
the name as name:type=value . The type must be one of the property types supported by the type at-
tribute of the property element of a Component Description.

To specify a property with multiple values, use multiple name, value pairs. For example, {"foo=bar",
" foo=baz"} .

See Also The property element of a Component Descr ipt ion.

112.13.4.8 String[] properties default {}

□ Property entries for this Component.

Specifies the name of an entry in the bundle whose contents conform to a standard Java Properties
File. The entry is read and processed to obtain the properties and their values.

See Also The propert ies element of a Component Descr ipt ion.

112.13.4.9 String xmlns default ""

□ The XML name space of the Component Description for this Component.

If not specified, the XML name space of the Component Description for this Component should be
the lowest Declarative Services XML name space which supports all the specification features used
by this Component.

See Also The XML name space specif ied for a Component Descr ipt ion.

Declarative Services Specification Version 1.5 org.osgi.service.component.annotations

OSGi Compendium Release 8 Page 333

112.13.4.10 ConfigurationPolicy configurationPolicy default OPTIONAL

□ The configuration policy of this Component.

Controls whether component configurations must be satisfied depending on the presence of a corre-
sponding Configuration object in the OSGi Configuration Admin service. A corresponding configu-
ration is a Configuration object where the PID equals the name of the component.

If not specified, the configuration policy is based upon whether the component is also annotated
with the Meta Type Designate annotation.

• Not annotated with Designate - The configuration policy is OPTIONAL.
• Annotated with Designate(factory=false) - The configuration policy is OPTIONAL.
• Annotated with Designate(factory=true) - The configuration policy is REQUIRE.

See Also The configurat ion-pol icy attr ibute of the component element of a Component Descr ipt ion.

Since 1.1

112.13.4.11 String[] configurationPid default "$"

□ The configuration PIDs for the configuration of this Component.

Each value specifies a configuration PID for this Component.

If no value is specified, the name of this Component is used as the configuration PID of this Compo-
nent.

A special string ("$") can be used to specify the name of the component as a configuration PID. The
NAME constant holds this special string. For example:

 @Component(configurationPid={"com.acme.system", Component.NAME})

Tools creating a Component Description from this annotation must replace the special string with
the actual name of this Component.

See Also The configurat ion-pid attr ibute of the component element of a Component Descr ipt ion.

Since 1.2

112.13.4.12 ServiceScope scope default DEFAULT

□ The service scope for the service of this Component.

If not specified (and the deprecated servicefactory() element is not specified), the singleton service
scope is used. If the factory() element is specified or the immediate() element is specified with true ,
this element can only be specified with the singleton service scope.

See Also The scope attr ibute of the service element of a Component Descr ipt ion.

Since 1.3

112.13.4.13 Reference[] reference default {}

□ The lookup strategy references of this Component.

To access references using the lookup strategy, Reference annotations are specified naming the refer-
ence and declaring the type of the referenced service. The referenced service can be accessed using
one of the locateService methods of ComponentContext .

To access references using method injection, bind methods are annotated with Reference. To access
references using field injection, fields are annotated with Reference. To access references using con-
structor injection, constructor parameters are annotated with Reference.

See Also The reference element of a Component Descr ipt ion.

Since 1.3

org.osgi.service.component.annotations Declarative Services Specification Version 1.5

Page 334 OSGi Compendium Release 8

112.13.4.14 String[] factoryProperty default {}

□ Factory properties for this Factory Component.

Each factory property string is specified as "name=value" . The type of the factory property value can
be specified in the name as name:type=value . The type must be one of the factory property types
supported by the type attribute of the factory-property element of a Component Description.

To specify a factory property with multiple values, use multiple name, value pairs. For example,
{"foo=bar", " foo=baz"} .

If specified, the factory() element must also be specified to indicate the component is a Factory Com-
ponent.

See Also The factory-property element of a Component Descr ipt ion.

Since 1.4

112.13.4.15 String[] factoryProperties default {}

□ Factory property entries for this Factory Component.

Specifies the name of an entry in the bundle whose contents conform to a standard Java Properties
File. The entry is read and processed to obtain the factory properties and their values.

If specified, the factory() element must also be specified to indicate the component is a Factory Com-
ponent.

See Also The factory-propert ies element of a Component Descr ipt ion.

Since 1.4

112.13.4.16 String NAME = "$"

Special string representing the name of this Component.

This string can be used in configurationPid() to specify the name of the component as a configura-
tion PID. For example:

 @Component(configurationPid={"com.acme.system", Component.NAME})

Tools creating a Component Description from this annotation must replace the special string with
the actual name of this Component.

Since 1.3

112.13.5 @ComponentPropertyType
Identify the annotated annotation as a Component Property Type.

Component Property Types can be applied as annotations to the implementation class of the Com-
ponent. They can also be used as activation objects which means they can be used as parameter
types for the component's constructor and life cycle methods Activate, Deactivate, and Modified as
well as activation fields.

Component Property Types do not have to be annotated with this annotation to be used as parame-
ter types but they must be annotated with this annotation to be used as annotations on the imple-
mentation class of the Component.

This annotation is not processed at runtime by Service Component Runtime. It must be processed
by tools and used to add a Component Description to the bundle.

See Also Component Property Types.

Since 1.4

Retention CLASS

Declarative Services Specification Version 1.5 org.osgi.service.component.annotations

OSGi Compendium Release 8 Page 335

Target ANNOTATION_TYPE

112.13.6 enum ConfigurationPolicy
Configuration Policy for the Component annotation.

Controls whether component configurations must be satisfied depending on the presence of a corre-
sponding Configuration object in the OSGi Configuration Admin service. A corresponding configu-
ration is a Configuration object where the PID is the name of the component.

Since 1.1

112.13.6.1 OPTIONAL

Use the corresponding Configuration object if present but allow the component to be satisfied even
if the corresponding Configuration object is not present.

112.13.6.2 REQUIRE

There must be a corresponding Configuration object for the component configuration to become
satisfied.

112.13.6.3 IGNORE

Always allow the component configuration to be satisfied and do not use the corresponding Config-
uration object even if it is present.

112.13.6.4 public String toString()

112.13.6.5 public static ConfigurationPolicy valueOf(String name)

112.13.6.6 public static ConfigurationPolicy[] values()

112.13.7 @Deactivate
Identify the annotated method as the deactivate method of a Service Component.

The annotated method is the deactivate method of the Component.

This annotation is not processed at runtime by Service Component Runtime. It must be processed
by tools and used to add a Component Description to the bundle.

See Also The deactivate attr ibute of the component element of a Component Descr ipt ion.

Since 1.1

Retention CLASS

Target METHOD

112.13.8 enum FieldOption
Field options for the Reference annotation.

Since 1.3

112.13.8.1 UPDATE

The update field option is used to update the collection referenced by the field when there are
changes to the bound services.

This field option can only be used when the field reference has dynamic policy and multiple cardi-
nality.

org.osgi.service.component.annotations Declarative Services Specification Version 1.5

Page 336 OSGi Compendium Release 8

112.13.8.2 REPLACE

The replace field option is used to replace the field value with a new value when there are changes
to the bound services.

112.13.8.3 public String toString()

112.13.8.4 public static FieldOption valueOf(String name)

112.13.8.5 public static FieldOption[] values()

112.13.9 @Modified
Identify the annotated method as the modified method of a Service Component.

The annotated method is the modified method of the Component.

This annotation is not processed at runtime by Service Component Runtime. It must be processed
by tools and used to add a Component Description to the bundle.

See Also The modified attr ibute of the component element of a Component Descr ipt ion.

Since 1.1

Retention CLASS

Target METHOD

112.13.10 @Reference
Identify the annotated member or parameter as a reference of a Service Component.

When the annotation is applied to a method, the method is the bind method of the reference.

When the annotation is applied to a field, the field will contain the bound service(s) of the refer-
ence.

When the annotation is applied to a parameter of a constructor, the parameter will contain the
bound service(s) of the reference.

This annotation is not processed at runtime by Service Component Runtime. It must be processed
by tools and used to add a Component Description to the bundle.

In the generated Component Description for a component, the references must be ordered in as-
cending lexicographical order (using Str ing.compareTo) of the reference names.

See Also The reference element of a Component Descr ipt ion.

Retention CLASS

Target METHOD , FIELD , PARAMETER

112.13.10.1 String name default ""

□ The name of this reference.

The name of this reference must be specified when using this annotation in the
Component.reference() element since there is no annotated member from which the name can be
determined. If not specified, the name of this reference is based upon how this annotation is used:

• Annotated method - If the method name begins with bind , set or add , that prefix is removed to
create the name of the reference. Otherwise, the name of the reference is the method name.

• Annotated field - The name of the reference is the field name.
• Annotated constructor parameter - The name of the reference is the parameter name.

Declarative Services Specification Version 1.5 org.osgi.service.component.annotations

OSGi Compendium Release 8 Page 337

See Also The name attr ibute of the reference element of a Component Descr ipt ion.

112.13.10.2 Class<?> service default Object.class

□ The type of the service for this reference.

The type of the service for this reference must be specified when using this annotation in the
Component.reference() element since there is no annotated member from which the type of the ser-
vice can be determined.

If not specified, the type of the service for this reference is based upon how this annotation is used:

• Annotated method - The type of the service is the type of the first parameter of the method.
• Annotated field - The type of the service is based upon the cardinality of the reference and the

type of the field being annotated. If the cardinality is either 0..n, or 1..n, the type of the field must
be one of java.ut i l .Col lect ion , java.ut i l .L ist , or a subtype of java.ut i l .Col lect ion , so the type of the
service is the generic type of the collection. If the cardinality is either 0..1 or 1..1, and the type of
the field is java.ut i l .Optional , the type of the service is the generic type of the java.ut i l .Optional .
Otherwise, the type of the service is the type of the field.

• Annotated constructor parameter - The type of the service is based upon the cardinality of the
reference and the type of the parameter being annotated. If the cardinality is either 0..n, or 1..n,
the type of the parameter must be one of java.ut i l .Col lect ion or java.ut i l .L ist , so the type of
the service is the generic type of the collection. If the cardinality is either 0..1 or 1..1, and the
type of the parameter is java.ut i l .Optional , the type of the service is the generic type of the
java.ut i l .Optional . Otherwise, the type of the service is the type of the parameter.

See Also The interface attr ibute of the reference element of a Component Descr ipt ion. , AnyService

112.13.10.3 ReferenceCardinality cardinality default MANDATORY

□ The cardinality of this reference.

If not specified, the cardinality of this reference is based upon how this annotation is used:

• Annotated method - The cardinality is 1..1.
• Annotated field - The cardinality is based on the type of the field. If the type is either

java.ut i l .Col lect ion , java.ut i l .L ist , or a subtype of java.ut i l .Col lect ion , the cardinality is 0..n. If
the type is java.ut i l .Optional , the cardinality is 0..1. Otherwise the cardinality is 1..1.

• Annotated constructor parameter - The cardinality is based on the type of the parameter.
If the type is either java.ut i l .Col lect ion or java.ut i l .L ist , the cardinality is 0..n. If the type is
java.ut i l .Optional , the cardinality is 0..1. Otherwise the cardinality is 1..1.

• Component.reference() element - The cardinality is 1..1.

See Also The cardinal ity attr ibute of the reference element of a Component Descr ipt ion.

112.13.10.4 ReferencePolicy policy default STATIC

□ The policy for this reference.

If not specified, the policy of this reference is based upon how this annotation is used:

• Annotated method - The policy is STATIC.
• Annotated field - The policy is based on the modifiers of the field. If the field is declared volat i le ,

the policy is ReferencePolicy.DYNAMIC. Otherwise the policy is STATIC.
• Annotated constructor parameter - The policy is STATIC. STATIC policy must be used for con-

structor parameters.
• Component.reference() element - The policy is STATIC.

See Also The pol icy attr ibute of the reference element of a Component Descr ipt ion.

org.osgi.service.component.annotations Declarative Services Specification Version 1.5

Page 338 OSGi Compendium Release 8

112.13.10.5 String target default ""

□ The target property for this reference.

If not specified, no target property is set. A target property must be specified if the service() element
refers to AnyService.

See Also The target attr ibute of the reference element of a Component Descr ipt ion.

112.13.10.6 ReferencePolicyOption policyOption default RELUCTANT

□ The policy option for this reference.

If not specified, the RELUCTANT reference policy option is used.

See Also The pol icy-option attr ibute of the reference element of a Component Descr ipt ion.

Since 1.2

112.13.10.7 ReferenceScope scope default BUNDLE

□ The reference scope for this reference.

If not specified, the bundle reference scope is used.

See Also The scope attr ibute of the reference element of a Component Descr ipt ion.

Since 1.3

112.13.10.8 String bind default ""

□ The name of the bind method for this reference.

If specified and this reference annotates a method, the specified name must match the name of the
annotated method.

If not specified, the name of the bind method is based upon how this annotation is used:

• Annotated method - The name of the annotated method is the name of the bind method.
• Annotated field - There is no bind method name.
• Annotated constructor parameter - There is no bind method name.
• Component.reference() element - There is no bind method name.

If there is a bind method name, the component must contain a method with that name.

See Also The bind attr ibute of the reference element of a Component Descr ipt ion.

Since 1.3

112.13.10.9 String updated default ""

□ The name of the updated method for this reference.

If not specified, the name of the updated method is based upon how this annotation is used:

• Annotated method - The name of the updated method is created from the name of the annotated
method. If the name of the annotated method begins with bind , set or add , that prefix is replaced
with updated to create the name candidate for the updated method. Otherwise, updated is pre-
fixed to the name of the annotated method to create the name candidate for the updated method.
If the component type contains a method with the candidate name, the candidate name is used
as the name of the updated method. To declare no updated method when the component type
contains a method with the candidate name, the value "-" must be used.

• Annotated field - There is no updated method name.
• Annotated constructor parameter - There is no updated method name.
• Component.reference() element - There is no updated method name.

Declarative Services Specification Version 1.5 org.osgi.service.component.annotations

OSGi Compendium Release 8 Page 339

If there is an updated method name, the component must contain a method with that name.

See Also The updated attr ibute of the reference element of a Component Descr ipt ion.

Since 1.2

112.13.10.10 String unbind default ""

□ The name of the unbind method for this reference.

If not specified, the name of the unbind method is based upon how this annotation is used:

• Annotated method - The name of the unbind method is created from the name of the annotated
method. If the name of the annotated method begins with bind , set or add , that prefix is replaced
with unbind , unset or remove , respectively, to create the name candidate for the unbind method.
Otherwise, un is prefixed to the name of the annotated method to create the name candidate for
the unbind method. If the component type contains a method with the candidate name, the can-
didate name is used as the name of the unbind method. To declare no unbind method when the
component type contains a method with the candidate name, the value "-" must be used.

• Annotated field - There is no unbind method name.
• Annotated constructor parameter - There is no unbind method name.
• Component.reference() element - There is no unbind method name.

If there is an unbind method name, the component must contain a method with that name.

See Also The unbind attr ibute of the reference element of a Component Descr ipt ion.

112.13.10.11 String field default ""

□ The name of the field for this reference.

If specified and this reference annotates a field, the specified name must match the name of the an-
notated field.

If not specified, the name of the field is based upon how this annotation is used:

• Annotated method - There is no field name.
• Annotated field - The name of the annotated field is the name of the field.
• Annotated constructor parameter - There is no field name.
• Component.reference() element - There is no field name.

If there is a field name, the component must contain a field with that name.

See Also The fie ld attr ibute of the reference element of a Component Descr ipt ion.

Since 1.3

112.13.10.12 FieldOption fieldOption default REPLACE

□ The field option for this reference.

If not specified, the field option is based upon how this annotation is used:

• Annotated method - There is no field option.
• Annotated field - The field option is based upon the policy and cardinality of the reference and

the modifiers of the field. If the policy is ReferencePolicy.DYNAMIC, the cardinality is 0..n or 1..n,
and the field is declared f inal , the field option is FieldOption.UPDATE. Otherwise, the field op-
tion is FieldOption.REPLACE.

• Annotated constructor parameter - There is no field option.
• Component.reference() element - There is no field option.

See Also The fie ld-option attr ibute of the reference element of a Component Descr ipt ion.

org.osgi.service.component.annotations Declarative Services Specification Version 1.5

Page 340 OSGi Compendium Release 8

Since 1.3

112.13.10.13 int parameter default 0

□ The zero-based parameter number of the constructor parameter for this reference.

If specified and this reference annotates an constructor parameter, the specified value must match
the zero-based parameter number of the annotated constructor parameter.

If not specified, the parameter number is based upon how this annotation is used:

• Annotated method - There is no parameter number.
• Annotated field - There is no parameter number.
• Annotated constructor parameter - The zero-based parameter number of the parameter.
• Component.reference() element - There is no parameter number.

If there is a parameter number, the component must declare a constructor that has a parameter hav-
ing the zero-based parameter number.

See Also The parameter attr ibute of the reference element of a Component Descr ipt ion. , The init at-
tr ibute of the component element of a Component Descr ipt ion.

Since 1.4

112.13.10.14 CollectionType collectionType default SERVICE

□ The collection type for this reference.

If not specified, the collection type is based upon how this annotation is used:

• Annotated method - There is no collection type.
• Annotated field - The collection type is based upon the cardinality of the reference and the type

of the field. If the cardinality is either 0..n or 1..n, the collection type is inferred from the generic
type of the java.ut i l .Col lect ion . If the cardinality is either 0..1 or 1..1, and the type of the field is
java.ut i l .Optional , the collection type is inferred from the generic type of the java.ut i l .Optional .
Otherwise, there is no collection type

• Annotated constructor method parameter - The collection type is based upon the cardinality of
the reference and the type of the parameter. If the cardinality is either 0..n or 1..n, the collection
type is inferred from the generic type of the java.ut i l .Col lect ion . If the cardinality is either 0..1 or
1..1, and the type of the parameter is java.ut i l .Optional , the collection type is inferred from the
generic type of the java.ut i l .Optional . Otherwise, there is no collection type

• Component.reference() element - There is no collection type.

See Also The fie ld-col lect ion-type attr ibute of the reference element of a Component Descr ipt ion.

Since 1.4

112.13.11 enum ReferenceCardinality
Cardinality for the Reference annotation.

Specifies if the reference is optional and if the component implementation support a single bound
service or multiple bound services.

112.13.11.1 OPTIONAL

The reference is optional and unary. That is, the reference has a cardinality of 0..1 .

112.13.11.2 MANDATORY

The reference is mandatory and unary. That is, the reference has a cardinality of 1. .1 .

Declarative Services Specification Version 1.5 org.osgi.service.component.annotations

OSGi Compendium Release 8 Page 341

112.13.11.3 MULTIPLE

The reference is optional and multiple. That is, the reference has a cardinality of 0..n .

112.13.11.4 AT_LEAST_ONE

The reference is mandatory and multiple. That is, the reference has a cardinality of 1. .n .

112.13.11.5 public String toString()

112.13.11.6 public static ReferenceCardinality valueOf(String name)

112.13.11.7 public static ReferenceCardinality[] values()

112.13.12 enum ReferencePolicy
Policy for the Reference annotation.

112.13.12.1 STATIC

The static policy is the most simple policy and is the default policy. A component instance never
sees any of the dynamics. Component configurations are deactivated before any bound service for
a reference having a static policy becomes unavailable. If a target service is available to replace the
bound service which became unavailable, the component configuration must be reactivated and
bound to the replacement service.

112.13.12.2 DYNAMIC

The dynamic policy is slightly more complex since the component implementation must proper-
ly handle changes in the set of bound services. With the dynamic policy, SCR can change the set of
bound services without deactivating a component configuration. If the component uses method
injection to access services, then the component instance will be notified of changes in the set of
bound services by calls to the bind and unbind methods.

112.13.12.3 public String toString()

112.13.12.4 public static ReferencePolicy valueOf(String name)

112.13.12.5 public static ReferencePolicy[] values()

112.13.13 enum ReferencePolicyOption
Policy option for the Reference annotation.

Since 1.2

112.13.13.1 RELUCTANT

The reluctant policy option is the default policy option for both static and dynamic reference poli-
cies. When a new target service for a reference becomes available, references having the reluctant
policy option for the static policy or the dynamic policy with a unary cardinality will ignore the
new target service. References having the dynamic policy with a multiple cardinality will bind the
new target service.

112.13.13.2 GREEDY

The greedy policy option is a valid policy option for both static and dynamic reference policies.
When a new target service for a reference becomes available, references having the greedy policy
option will bind the new target service.

org.osgi.service.component.annotations Declarative Services Specification Version 1.5

Page 342 OSGi Compendium Release 8

112.13.13.3 public String toString()

112.13.13.4 public static ReferencePolicyOption valueOf(String name)

112.13.13.5 public static ReferencePolicyOption[] values()

112.13.14 enum ReferenceScope
Reference scope for the Reference annotation.

Since 1.3

112.13.14.1 BUNDLE

A single service object is used for all references to the service in this bundle.

112.13.14.2 PROTOTYPE

If the bound service has prototype service scope, then each instance of the component with this ref-
erence can receive a unique instance of the service. If the bound service does not have prototype ser-
vice scope, then this reference scope behaves the same as BUNDLE.

112.13.14.3 PROTOTYPE_REQUIRED

Bound services must have prototype service scope. Each instance of the component with this refer-
ence can receive a unique instance of the service.

112.13.14.4 public String toString()

112.13.14.5 public static ReferenceScope valueOf(String name)

112.13.14.6 public static ReferenceScope[] values()

112.13.15 @RequireServiceComponentRuntime
This annotation can be used to require the Service Component Runtime to process Declarative Ser-
vices components. It can be used directly, or as a meta-annotation.

Since 1.4

Retention CLASS

Target TYPE , PACKAGE

112.13.16 enum ServiceScope
Service scope for the Component annotation.

Since 1.3

112.13.16.1 SINGLETON

When the component is registered as a service, it must be registered as a bundle scope service but
only a single instance of the component must be used for all bundles using the service.

112.13.16.2 BUNDLE

When the component is registered as a service, it must be registered as a bundle scope service and
an instance of the component must be created for each bundle using the service.

Declarative Services Specification Version 1.5 org.osgi.service.component.runtime

OSGi Compendium Release 8 Page 343

112.13.16.3 PROTOTYPE

When the component is registered as a service, it must be registered as a prototype scope service and
an instance of the component must be created for each distinct request for the service.

112.13.16.4 DEFAULT

Default element value for annotation. This is used to distinguish the default value for an element
and should not otherwise be used.

112.13.16.5 public String toString()

112.13.16.6 public static ServiceScope valueOf(String name)

112.13.16.7 public static ServiceScope[] values()

112.14 org.osgi.service.component.runtime

Service Component Runtime Package Version 1.5.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.component.runtime; vers ion="[1.5,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.component.runtime; vers ion="[1.5,1 .6)"

112.14.1 Summary

• ServiceComponentRuntime - The ServiceComponentRuntime service represents the Declara-
tive Services actor, known as Service Component Runtime (SCR), that manages the service com-
ponents and their life cycle.

112.14.2 public interface ServiceComponentRuntime
The ServiceComponentRuntime service represents the Declarative Services actor, known as Service
Component Runtime (SCR), that manages the service components and their life cycle. The Service-
ComponentRuntime service allows introspection of the components managed by Service Compo-
nent Runtime.

This service differentiates between a ComponentDescriptionDTO and a ComponentConfigura-
tionDTO. A ComponentDescriptionDTO is a representation of a declared component description. A
ComponentConfigurationDTO is a representation of an actual instance of a declared component de-
scription parameterized by component properties.

This service must be registered with a Constants.SERVICE_CHANGECOUNT service property that
must be updated each time the SCR DTOs available from this service change.

Access to this service requires the ServicePermission[ServiceComponentRuntime, GET] permis-
sion. It is intended that only administrative bundles should be granted this permission to limit ac-
cess to the potentially intrusive methods provided by this service.

Since 1.3

Concurrency Thread-safe

org.osgi.service.component.runtime Declarative Services Specification Version 1.5

Page 344 OSGi Compendium Release 8

Provider Type Consumers of this API must not implement this type

112.14.2.1 public Promise<Void> disableComponent(ComponentDescriptionDTO description)

description The component description to disable. Must not be nul l .

□ Disables the specified component description.

If the specified component description is currently disabled, this method has no effect.

This method must return after changing the enabled state of the specified component description.
Any actions that result from this, such as activating or deactivating a component configuration,
must occur asynchronously to this method call.

Returns A promise that will be resolved when the actions that result from changing the enabled state of the
specified component have completed. If the provided description does not belong to an active bun-
dle, a failed promise is returned.

See Also isComponentEnabled(ComponentDescriptionDTO)

112.14.2.2 public Promise<Void> enableComponent(ComponentDescriptionDTO description)

description The component description to enable. Must not be nul l .

□ Enables the specified component description.

If the specified component description is currently enabled, this method has no effect.

This method must return after changing the enabled state of the specified component description.
Any actions that result from this, such as activating or deactivating a component configuration,
must occur asynchronously to this method call.

Returns A promise that will be resolved when the actions that result from changing the enabled state of the
specified component have completed. If the provided description does not belong to an active bun-
dle, a failed promise is returned.

See Also isComponentEnabled(ComponentDescriptionDTO)

112.14.2.3 public Collection<ComponentConfigurationDTO>
getComponentConfigurationDTOs(ComponentDescriptionDTO description)

description The component description. Must not be nul l .

□ Returns the component configurations for the specified component description.

Returns A collection containing a snapshot of the current component configurations for the specified com-
ponent description. An empty collection is returned if there are none or if the provided component
description does not belong to an active bundle.

112.14.2.4 public ComponentDescriptionDTO getComponentDescriptionDTO(Bundle bundle, String name)

bundle The bundle declaring the component description. Must not be nul l .

name The name of the component description. Must not be nul l .

□ Returns the ComponentDescriptionDTO declared with the specified name by the specified bundle.

Only component descriptions from active bundles are returned. nul l if no such component is de-
clared by the given bundle or the bundle is not active.

Returns The declared component description or nul l if the specified bundle is not active or does not declare a
component description with the specified name.

112.14.2.5 public Collection<ComponentDescriptionDTO> getComponentDescriptionDTOs(Bundle... bundles)

bundles The bundles whose declared component descriptions are to be returned. Specifying no bundles, or
the equivalent of an empty Bundle array, will return the declared component descriptions from all
active bundles.

Declarative Services Specification Version 1.5 org.osgi.service.component.runtime.dto

OSGi Compendium Release 8 Page 345

□ Returns the component descriptions declared by the specified active bundles.

Only component descriptions from active bundles are returned. If the specified bundles have no de-
clared components or are not active, an empty collection is returned.

Returns The declared component descriptions of the specified active bundles . An empty collection is re-
turned if there are no component descriptions for the specified active bundles.

112.14.2.6 public boolean isComponentEnabled(ComponentDescriptionDTO description)

description The component description. Must not be nul l .

□ Returns whether the specified component description is currently enabled.

The enabled state of a component description is initially set by the enabled attribute of the compo-
nent description.

Returns true if the specified component description is currently enabled. Otherwise, fa lse .

See Also enableComponent(ComponentDescriptionDTO), disableComponent(ComponentDescriptionDTO),
ComponentContext.disableComponent(String), ComponentContext.enableComponent(String)

112.15 org.osgi.service.component.runtime.dto

Service Component Runtime Data Transfer Objects Package Version 1.5.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.component.runtime.dto; vers ion="[1.5,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.component.runtime.dto; vers ion="[1.5,1 .6)"

112.15.1 Summary

• ComponentConfigurat ionDTO - A representation of an actual instance of a declared component
description parameterized by component properties.

• ComponentDescr ipt ionDTO - A representation of a declared component description.
• ReferenceDTO - A representation of a declared reference to a service.
• SatisfiedReferenceDTO - A representation of a satisfied reference.
• UnsatisfiedReferenceDTO - A representation of an unsatisfied reference.

112.15.2 public class ComponentConfigurationDTO
extends DTO
A representation of an actual instance of a declared component description parameterized by com-
ponent properties.

Since 1.3

Concurrency Not Thread-safe

112.15.2.1 public static final int ACTIVE = 8

The component configuration is active.

This is the normal operational state of a component configuration.

org.osgi.service.component.runtime.dto Declarative Services Specification Version 1.5

Page 346 OSGi Compendium Release 8

112.15.2.2 public ComponentDescriptionDTO description

The representation of the component configuration's component description.

112.15.2.3 public static final int FAILED_ACTIVATION = 16

The component configuration failed to activate.

This means the component configuration is satisfied but that either:

• an exception occurred loading the implementation class,
• the static initializer threw an exception,
• the constructor threw an exception, or
• the activate method threw an exception.

The failure information from the exception is available from failure.

Since 1.4

112.15.2.4 public String failure

The failure information if the component configuration state is FAILED_ACTIVATION.

This is the failure exception converted to a String using:

 StringWriter sw = new StringWriter();
 exception.printStackTrace(new PrintWriter(sw));
 sw.toString();

This must be nul l if the component configuration state is not FAILED_ACTIVATION.

Since 1.4

112.15.2.5 public long id

The id of the component configuration.

The id is a non-persistent, unique value assigned at runtime. The id is also available as the
component. id component property. The value of this field is unspecified if the state of this compo-
nent configuration is unsatisfied.

112.15.2.6 public Map<String, Object> properties

The component properties for the component configuration.

See Also ComponentContext.getProperties()

112.15.2.7 public static final int SATISFIED = 4

The component configuration is satisfied.

Any services declared by the component description are registered.

112.15.2.8 public SatisfiedReferenceDTO[] satisfiedReferences

The satisfied references.

Each SatisfiedReferenceDTO in the array represents a satisfied reference of the component configu-
ration. The array must be empty if the component configuration has no satisfied references.

112.15.2.9 public ServiceReferenceDTO service

The registered service of the component configuration.

This must be non-nul l if the component configuration is registered as a service. Otherwise it must be
nul l .

Since 1.4

Declarative Services Specification Version 1.5 org.osgi.service.component.runtime.dto

OSGi Compendium Release 8 Page 347

112.15.2.10 public int state

The current state of the component configuration.

This is one of UNSATISFIED_CONFIGURATION, UNSATISFIED_REFERENCE, SATISFIED, ACTIVE,
or FAILED_ACTIVATION.

112.15.2.11 public static final int UNSATISFIED_CONFIGURATION = 1

The component configuration is unsatisfied due to a missing required configuration.

112.15.2.12 public static final int UNSATISFIED_REFERENCE = 2

The component configuration is unsatisfied due to an unsatisfied reference.

112.15.2.13 public UnsatisfiedReferenceDTO[] unsatisfiedReferences

The unsatisfied references.

Each UnsatisfiedReferenceDTO in the array represents an unsatisfied reference of the component
configuration. The array must be empty if the component configuration has no unsatisfied refer-
ences.

112.15.2.14 public ComponentConfigurationDTO()

112.15.3 public class ComponentDescriptionDTO
extends DTO
A representation of a declared component description.

Since 1.3

Concurrency Not Thread-safe

112.15.3.1 public String activate

The name of the activate method.

This is declared in the activate attribute of the component element. This must be nul l if the compo-
nent description does not declare an activate method name.

112.15.3.2 public String[] activationFields

The activation fields.

These are declared in the activat ion-fields attribute of the component element. The array must be
empty if the component description does not declare any activation fields.

Since 1.4

112.15.3.3 public BundleDTO bundle

The bundle declaring the component description.

112.15.3.4 public String[] configurationPid

The configuration pids.

These are declared in the configurat ion-pid attribute of the component element. This must contain
the default configuration pid if the component description does not declare a configuration pid.

112.15.3.5 public String configurationPolicy

The configuration policy.

This is declared in the configurat ion-pol icy attribute of the component element. This must be the
default configuration policy if the component description does not declare a configuration policy.

org.osgi.service.component.runtime.dto Declarative Services Specification Version 1.5

Page 348 OSGi Compendium Release 8

112.15.3.6 public String deactivate

The name of the deactivate method.

This is declared in the deactivate attribute of the component element. This must be nul l if the com-
ponent description does not declare a deactivate method name.

112.15.3.7 public boolean defaultEnabled

The initial enabled state.

This is declared in the enabled attribute of the component element.

112.15.3.8 public String factory

The component factory name.

This is declared in the factory attribute of the component element. This must be nul l if the compo-
nent description is not declared as a factory component.

112.15.3.9 public Map<String, Object> factoryProperties

The factory properties.

These are declared in the component description by the factory-property and factory-propert ies el-
ements. This must be nul l if the component description is not declared as a factory component.

Since 1.4

112.15.3.10 public boolean immediate

The immediate state.

This is declared in the immediate attribute of the component element.

112.15.3.11 public String implementationClass

The fully qualified name of the implementation class.

This is declared in the class attribute of the implementation element.

112.15.3.12 public int init

The constructor parameter count.

This is declared in the in it attribute of the component element. This must be 0 if the component de-
scription does not declare an in it attribute.

Since 1.4

112.15.3.13 public String modified

The name of the modified method.

This is declared in the modified attribute of the component element. This must be nul l if the compo-
nent description does not declare a modified method name.

112.15.3.14 public String name

The name of the component.

This is declared in the name attribute of the component element. This must be the default name if
the component description does not declare a name.

112.15.3.15 public Map<String, Object> properties

The component properties.

These are declared in the component description by the property and propert ies elements as well as
the target attribute of the reference elements.

Declarative Services Specification Version 1.5 org.osgi.service.component.runtime.dto

OSGi Compendium Release 8 Page 349

112.15.3.16 public ReferenceDTO[] references

The referenced services.

These are declared in the reference elements. The array must be empty if the component descrip-
tion does not declare references to any services.

112.15.3.17 public String scope

The service scope.

This is declared in the scope attribute of the service element. This must be nul l if the component de-
scription does not declare any service interfaces.

112.15.3.18 public String[] serviceInterfaces

The fully qualified names of the service interfaces.

These are declared in the interface attribute of the provide elements. The array must be empty if the
component description does not declare any service interfaces.

112.15.3.19 public ComponentDescriptionDTO()

112.15.4 public class ReferenceDTO
extends DTO
A representation of a declared reference to a service.

Since 1.3

Concurrency Not Thread-safe

112.15.4.1 public String bind

The name of the bind method of the reference.

This is declared in the bind attribute of the reference element. This must be nul l if the component
description does not declare a bind method for the reference.

112.15.4.2 public String cardinality

The cardinality of the reference.

This is declared in the cardinal ity attribute of the reference element. This must be the default cardi-
nality if the component description does not declare a cardinality for the reference.

112.15.4.3 public String collectionType

The collection type for the reference.

This is declared in the f ie ld-col lect ion-type attribute of the reference element. This must be nul l if
the component description does not declare a collection type for the reference.

Since 1.4

112.15.4.4 public String field

The name of the field of the reference.

This is declared in the f ie ld attribute of the reference element. This must be nul l if the component
description does not declare a field for the reference.

112.15.4.5 public String fieldOption

The field option of the reference.

org.osgi.service.component.runtime.dto Declarative Services Specification Version 1.5

Page 350 OSGi Compendium Release 8

This is declared in the f ie ld-option attribute of the reference element. This must be nul l if the com-
ponent description does not declare a field for the reference.

112.15.4.6 public String interfaceName

The service interface of the reference.

This is declared in the interface attribute of the reference element.

112.15.4.7 public String name

The name of the reference.

This is declared in the name attribute of the reference element. This must be the default name if the
component description does not declare a name for the reference.

112.15.4.8 public Integer parameter

The zero-based parameter number of the constructor parameter for the reference.

This is declared in the parameter attribute of the reference element. This must be nul l if the compo-
nent description does not declare a parameter number for the reference.

Since 1.4

112.15.4.9 public String policy

The policy of the reference.

This is declared in the pol icy attribute of the reference element. This must be the default policy if
the component description does not declare a policy for the reference.

112.15.4.10 public String policyOption

The policy option of the reference.

This is declared in the pol icy-option attribute of the reference element. This must be the default
policy option if the component description does not declare a policy option for the reference.

112.15.4.11 public String scope

The scope of the reference.

This is declared in the scope attribute of the reference element. This must be the default scope if the
component description does not declare a scope for the reference.

112.15.4.12 public String target

The target of the reference.

This is declared in the target attribute of the reference element. This must be nul l if the component
description does not declare a target for the reference.

112.15.4.13 public String unbind

The name of the unbind method of the reference.

This is declared in the unbind attribute of the reference element. This must be nul l if the component
description does not declare an unbind method for the reference.

112.15.4.14 public String updated

The name of the updated method of the reference.

This is declared in the updated attribute of the reference element. This must be nul l if the compo-
nent description does not declare an updated method for the reference.

Declarative Services Specification Version 1.5 org.osgi.service.component.runtime.dto

OSGi Compendium Release 8 Page 351

112.15.4.15 public ReferenceDTO()

112.15.5 public class SatisfiedReferenceDTO
extends DTO
A representation of a satisfied reference.

Since 1.3

Concurrency Not Thread-safe

112.15.5.1 public ServiceReferenceDTO[] boundServices

The bound services.

Each ServiceReferenceDTO in the array represents a service bound to the satisfied reference. The ar-
ray must be empty if there are no bound services.

112.15.5.2 public String name

The name of the declared reference.

This is declared in the name attribute of the reference element of the component description.

See Also ReferenceDTO.name

112.15.5.3 public String target

The target property of the satisfied reference.

This is the value of the component property whose name is the concatenation of the declared refer-
ence name and ".target". This must be nul l if no target property is set for the reference.

112.15.5.4 public SatisfiedReferenceDTO()

112.15.6 public class UnsatisfiedReferenceDTO
extends DTO
A representation of an unsatisfied reference.

Since 1.3

Concurrency Not Thread-safe

112.15.6.1 public String name

The name of the declared reference.

This is declared in the name attribute of the reference element of the component description.

See Also ReferenceDTO.name

112.15.6.2 public String target

The target property of the unsatisfied reference.

This is the value of the component property whose name is the concatenation of the declared refer-
ence name and ".target". This must be nul l if no target property is set for the reference.

112.15.6.3 public ServiceReferenceDTO[] targetServices

The target services.

Each ServiceReferenceDTO in the array represents a target service for the reference. The array must
be empty if there are no target services. The upper bound on the number of target services in the ar-
ray is the upper bound on the cardinality of the reference.

org.osgi.service.component.propertytypes Declarative Services Specification Version 1.5

Page 352 OSGi Compendium Release 8

112.15.6.4 public UnsatisfiedReferenceDTO()

112.16 org.osgi.service.component.propertytypes

Component Property Types Package Version 1.5.

When used as annotations, component property types are processed by tools to generate Compo-
nent Descriptions which are used at runtime.

Bundles wishing to use this package at runtime must list the package in the Import-Package header
of the bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.component.propertytypes; vers ion="[1.5,2.0)"

112.16.1 Summary

• ExportedService - Component Property Type for the remote service properties for an exported
service.

• Satisfy ingCondit ionTarget - Component Property Type for the
osgi .ds.sat isfy ing.condit ion.target reference property.

• ServiceDescr ipt ion - Component Property Type for the service.descr ipt ion service property.
• ServiceRanking - Component Property Type for the service.ranking service property.
• ServiceVendor - Component Property Type for the service.vendor service property.

112.16.2 @ExportedService
Component Property Type for the remote service properties for an exported service.

This annotation can be used on a Component to declare the values of the remote service properties
for an exported service.

See Also Component Property Types , Remote Services Specif icat ion

Since 1.4

Retention CLASS

Target TYPE

112.16.2.1 Class<?>[] service_exported_interfaces

□ Service property marking the service for export. It defines the interfaces under which the service
can be exported.

If an empty array is specified, the property is not added to the component description.

Returns The exported service interfaces.

See Also Constants.SERVICE_EXPORTED_INTERFACES

112.16.2.2 String[] service_exported_configs default {}

□ Service property identifying the configuration types that should be used to export the service.

If an empty array is specified, the default value, the property is not added to the component descrip-
tion.

Returns The configuration types.

See Also Constants.SERVICE_EXPORTED_CONFIGS

Declarative Services Specification Version 1.5 org.osgi.service.component.propertytypes

OSGi Compendium Release 8 Page 353

112.16.2.3 String[] service_exported_intents default {}

□ Service property identifying the intents that the distribution provider must implement to distribute
the service.

If an empty array is specified, the default value, the property is not added to the component descrip-
tion.

Returns The intents that the distribution provider must implement to distribute the service.

See Also Constants.SERVICE_EXPORTED_INTENTS

112.16.2.4 String[] service_exported_intents_extra default {}

□ Service property identifying the extra intents that the distribution provider must implement to dis-
tribute the service.

If an empty array is specified, the default value, the property is not added to the component descrip-
tion.

Returns The extra intents that the distribution provider must implement to distribute the service.

See Also Constants.SERVICE_EXPORTED_INTENTS_EXTRA

112.16.2.5 String[] service_intents default {}

□ Service property identifying the intents that this service implements.

If an empty array is specified, the default value, the property is not added to the component descrip-
tion.

Returns The intents that the service implements.

See Also Constants.SERVICE_INTENTS

112.16.3 @SatisfyingConditionTarget
Component Property Type for the osgi .ds.sat isfy ing.condit ion.target reference property.

This annotation can be used on a Component to declare the value of the target property for the
component's satisfying condition reference if a value other than the default value is desired.

See Also Component Property Types

Since 1.5

Retention CLASS

Target TYPE

112.16.3.1 String value default "(osgi.condition.id=true)"

□ Filter expression to select the component's satisfying condition.

Returns The filter expression to select the component's satisfying condition.

112.16.3.2 String PREFIX_ = "osgi.ds."

Prefix for the property name. This value is prepended to each property name.

112.16.4 @ServiceDescription
Component Property Type for the service.descr ipt ion service property.

This annotation can be used on a Component to declare the value of the
Constants.SERVICE_DESCRIPTION service property.

See Also Component Property Types

Since 1.4

References Declarative Services Specification Version 1.5

Page 354 OSGi Compendium Release 8

Retention CLASS

Target TYPE

112.16.4.1 String value

□ Service property identifying a service's description.

Returns The service description.

See Also Constants.SERVICE_DESCRIPTION

112.16.5 @ServiceRanking
Component Property Type for the service.ranking service property.

This annotation can be used on a Component to declare the value of the
Constants.SERVICE_RANKING service property.

See Also Component Property Types

Since 1.4

Retention CLASS

Target TYPE

112.16.5.1 int value

□ Service property identifying a service's ranking.

Returns The service ranking.

See Also Constants.SERVICE_RANKING

112.16.6 @ServiceVendor
Component Property Type for the service.vendor service property.

This annotation can be used on a Component to declare the value of the
Constants.SERVICE_VENDOR service property.

See Also Component Property Types

Since 1.4

Retention CLASS

Target TYPE

112.16.6.1 String value

□ Service property identifying a service's vendor.

Returns The service vendor.

See Also Constants.SERVICE_VENDOR

112.17 References

[1] Automating Service Dependency Management in a Service-Oriented Component Model
Humberto Cervantes, Richard S. Hall, Proceedings of the Sixth Component-Based Software Engi-
neering Workshop, May 2003, pp. 91-96
http://www-adele.imag.fr/Les.Publications/intConferences/CBSE2003Cer.pdf

[2] Service Binder

http://www-adele.imag.fr/Les.Publications/intConferences/CBSE2003Cer.pdf

Declarative Services Specification Version 1.5 Changes

OSGi Compendium Release 8 Page 355

Humberto Cervantes, Richard S. Hall
http://gravity.sourceforge.net/servicebinder

[3] Java Properties File
http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html

[4] Extensible Markup Language (XML) 1.0
http://www.w3.org/TR/REC-xml/

[5] OSGi XML Schemas
https://docs.osgi.org/xmlns/

[6] The Java Virtual Machine Specification, Java SE 8 Edition
https://docs.oracle.com/javase/specs/jvms/se8/html/index.html

[7] The Java Language Specification, Java SE 8 Edition
https://docs.oracle.com/javase/specs/jls/se8/html/index.html

112.18 Changes
• Added support for AnyService . See Any Service Type on page 278.
• Added support for satisfying conditions using the Condition Service Specification. See Satisfying

Condition on page 280 and Locating the True Condition Service on page 317.
• Added support for use of Optional to hold unary references for field and constructor injection.

This is primarily for optional (0..1) cardinality but can also be used with mandatory (1..1) cardi-
nality.

• Component properties from property and propert ies elements take precedence over the target
attributes of reference elements. See Component Properties on page 301.

http://gravity.sourceforge.net/servicebinder
http://docs.oracle.com/javase/7/docs/api/java/util/Properties.html
http://www.w3.org/TR/REC-xml/
https://docs.osgi.org/xmlns/
https://docs.oracle.com/javase/specs/jvms/se8/html/index.html
https://docs.oracle.com/javase/specs/jls/se8/html/index.html

Changes Declarative Services Specification Version 1.5

Page 356 OSGi Compendium Release 8

Event Admin Service Specification Version 1.4 Introduction

OSGi Compendium Release 8 Page 357

113 Event Admin Service Specification

Version 1.4

113.1 Introduction
Nearly all the bundles in an OSGi framework must deal with events, either as an event publisher or
as an event handler. So far, the preferred mechanism to disperse those events have been the service
interface mechanism.

Dispatching events for a design related to X, usually involves a service of type XListener . Howev-
er, this model does not scale well for fine grained events that must be dispatched to many different
handlers. Additionally, the dynamic nature of the OSGi environment introduces several complexi-
ties because both event publishers and event handlers can appear and disappear at any time.

The Event Admin service provides an inter-bundle communication mechanism. It is based on a
event publish and subscribe model, popular in many message based systems.

This specification defines the details for the participants in this event model.

113.1.1 Essentials

• Simplifications - The model must significantly simplify the process of programming an event
source and an event handler.

• Dependencies - Handle the myriad of dependencies between event sources and event handlers for
proper cleanup.

• Synchronicity - It must be possible to deliver events asynchronously or synchronously with the
caller.

• Event Window - Only event handlers that are active when an event is published must receive this
event, handlers that register later must not see the event.

• Performance - The event mechanism must impose minimal overhead in delivering events.
• Selectivity - Event listeners must only receive notifications for the event types for which they are

interested
• Reliability - The Event Admin must ensure that events continue to be delivered regardless the

quality of the event handlers.
• Security - Publishing and receiving events are sensitive operations that must be protected per

event type.
• Extensibility - It must be possible to define new event types with their own data types.
• Native Code - Events must be able to be passed to native code or come from native code.
• OSGi Events - The OSGi Framework, as well as a number of OSGi services, already have number of

its own events defined. For uniformity of processing, these have to be mapped into generic event
types.

113.1.2 Entities

• Event - An Event object has a topic and a Dictionary object that contains the event properties. It is
an immutable object.

• Event Admin - The service that provides the publish and subscribe model to Event Handlers and
Event Publishers.

Event Admin Architecture Event Admin Service Specification Version 1.4

Page 358 OSGi Compendium Release 8

• Event Handler - A service that receives and handles Event objects.
• Event Publisher - A bundle that sends event through the Event Admin service.
• Event Subscriber - Another name for an Event Handler.
• Topic - The name of an Event type.
• Event Properties - The set of properties that is associated with an Event.

Figure 113.1 The Event Admin service org.osgi.service.event package

Event Publisher
Impl

an Event
Consumer Impl

receive
event

send
event

<<service>>
Event Admin

Event Admin Impl

<<service>>
Event Handler1 0..n

<<class>>
Event

113.1.3 Synopsis
The Event Admin service provides a place for bundles to publish events, regardless of their destina-
tion. It is also used by Event Handlers to subscribe to specific types of events.

Events are published under a topic, together with a number of event properties. Event Handlers can
specify a filter to control the Events they receive on a very fine grained basis.

113.1.4 What To Read

• Architects - The Event Admin Architecture on page 358 provides an overview of the Event Admin
service.

• Event Publishers - The Event Publisher on page 362 provides an introduction of how to write an
Event Publisher. The Event Admin Architecture on page 358 provides a good overview of the de-
sign.

• Event Subscribers/Handlers - The Event Handler on page 360 provides the rules on how to sub-
scribe and handle events.

113.2 Event Admin Architecture
The Event Admin is based on the Publish-Subscribe pattern. This pattern decouples sources from their
handlers by interposing an event channel between them. The publisher posts events to the channel,
which identifies which handlers need to be notified and then takes care of the notification process.
This model is depicted in Figure 113.2.

Event Admin Service Specification Version 1.4 The Event

OSGi Compendium Release 8 Page 359

Figure 113.2 Channel Pattern

Publisher <<service>>
Event Handler

1
0..n

<<service>>
Event Admin

1
0..n

handleEventsendEvent
postEvent

In this model, the event source and event handler are completely decoupled because neither has any
direct knowledge of the other. The complicated logic of monitoring changes in the event publishers
and event handlers is completely contained within the event channel. This is highly advantageous
in an OSGi environment because it simplifies the process of both sending and receiving events.

113.3 The Event
Events have the following attributes:

• Topic - A topic that defines what happened. For example, when a bundle is started an event is
published that has a topic of org/osgi/framework/BundleEvent/STARTED .

• Properties - Zero or more properties that contain additional information about the event. For
example, the previous example event has a property of bundle. id which is set to a Long object,
among other properties.

113.3.1 Topics
The topic of an event defines the type of the event. It is fairly granular in order to give handlers the
opportunity to register for just the events they are interested in. When a topic is designed, its name
should not include any other information, such as the publisher of the event or the data associated
with the event, those parts are intended to be stored in the event properties.

The topic is intended to serve as a first-level filter for determining which handlers should receive
the event. Event Admin service implementations use the structure of the topic to optimize the dis-
patching of the events to the handlers.

Topics are arranged in a hierarchical namespace. Each level is defined by a token and levels are sepa-
rated by solidi (' / ' \u002F). More precisely, the topic must conform to the following grammar:

 topic ::= token ('/' token) * // See General Syntax Definitions in Core

Topics should be designed to become more specific when going from left to right. Handlers can pro-
vide a prefix that matches a topic, using the preferred order allows a handler to minimize the num-
ber of prefixes it needs to register.

Topics are case-sensitive. As a convention, topics should follow the reverse domain name scheme
used by Java packages to guarantee uniqueness. The separator must be a solidus (' / ' \u002F) instead
of the full stop ('.' \u002E).

This specification uses the convention ful ly/qual i f ied/package/ClassName/ACTION . If necessary, a
pseudo-class-name is used.

113.3.2 Properties
Information about the actual event is provided as properties. The property name is a case-sensitive
string and the value can be any object. Although any Java object can be used as a property value, on-
ly Str ing objects and the eight primitive types (plus their wrappers) should be used. Other types can-
not be passed to handlers that reside external from the Java VM.

Event Handler Event Admin Service Specification Version 1.4

Page 360 OSGi Compendium Release 8

Another reason that arbitrary classes should not be used is the mutability of objects. If the values are
not immutable, then any handler that receives the event could change the value. Any handlers that
received the event subsequently would see the altered value and not the value as it was when the
event was sent.

The topic of the event is available as a property with the key EVENT_TOPIC . This allows filters to in-
clude the topic as a condition if necessary.

113.3.3 High Performance
An event processing system can become a bottleneck in large systems. One expensive aspect of the
Event object is its properties and its immutability. This combination requires the Event object to cre-
ate a copy of the properties for each object. There are many situations where the same properties are
dispatched through Event Admin, the topic is then used to signal the information. Creating the copy
of the properties can therefore take unnecessary CPU time and memory. However, the immutability
of the Event object requires the properties to be immutable.

For this reason, this specification also provides an immutable Map with the Event Properties class.
This class implements an immutable map that is recognized and trusted by the Event object to not
mutate. Using an Event Properties object allows a client to create many different Event objects with
different topics but sharing the same properties object.

The following example shows how an event poster can limit the copying of the properties.

void foo(EventAdmin eventAdmin) {
 Map<String,Object> props = new HashMap<String,Object>();
 props.put("foo", 1);
 EventProperties eventProps = new EventProperties(props);

 for (int i=0; i<1000; i++)
 eventAdmin.postEvent(new Event("my/topic/" + i, eventProps));
}

113.4 Event Handler
Event handlers must be registered as services with the OSGi framework under the object class
org.osgi .service.event.EventHandler .

Event handlers should be registered with a property (constant from the EventConstants class)
EVENT_TOPIC . The value being a Str ing , Str ing[] or Collect ion<Str ing> object that describes which
topics the handler is interested in. A wildcard asterisk ('* ' \u002A) may be used as the last token of a
topic name, for example com/action/* . This matches any topic that shares the same first tokens. For
example, com/action/* matches com/action/l isten .

Event Handlers which have not specified the EVENT_TOPIC service property must not receive
events.

The value of each entry in the EVENT_TOPIC service registration property must conform to the fol-
lowing grammar:

topic-scope ::= '*' | (topic '/*'?)

The EventTopics component property type can be used for this property on Declarative Services
components.

Event handlers can also be registered with a service property named EVENT_FILTER . The value of
this property must be a string containing a Framework filter specification. Any of the event's prop-
erties can be used in the filter expression.

Event Admin Service Specification Version 1.4 Event Handler

OSGi Compendium Release 8 Page 361

event-filter ::= filter // See Filter Syntax in Core

Each Event Handler is notified for any event which belongs to the topics the handler has expressed
an interest in. If the handler has defined a EVENT_FILTER service property then the event properties
must also match the filter expression. If the filter is an error, then the Event Admin service should
log a warning and further ignore the Event Handler. The EventFi l ter component property type can
be used for this property on Declarative Services components.

For example, a bundle wants to see all Log Service events with a level of WARNING or ERROR , but it
must ignore the INFO and DEBUG events. Additionally, the only events of interest are when the bun-
dle symbolic name starts with com.acme .

public AcmeWatchDog implements BundleActivator,
 EventHandler {
 final static String [] topics = new String[] {
 "org/osgi/service/log/LogEntry/LOG_WARNING",
 "org/osgi/service/log/LogEntry/LOG_ERROR" };

 public void start(BundleContext context) {
 Dictionary d = new Hashtable();
 d.put(EventConstants.EVENT_TOPIC, topics);
 d.put(EventConstants.EVENT_FILTER,
 "(bundle.symbolicName=com.acme.*)");
 context.registerService(EventHandler.class.getName(),
 this, d);
 }
 public void stop(BundleContext context) {}

 public void handleEvent(Event event) {
 //...
 }
}

If there are multiple Event Admin services registered with the Framework then all Event Admin ser-
vices must send their published events to all registered Event Handlers.

113.4.1 Ordering
In the default case, an Event Handler will receive posted (asynchronous) events from a single thread
in the same order as they were posted. Maintaining this ordering guarantee requires the Event Ad-
min to serialize the delivery of events instead of, for example, delivering the events on different
worker threads. There are many scenarios where this ordering is not really required. For this reason,
an Event Handler can signal to the Event Admin that events can be delivered out of order. This is no-
tified with the EVENT_DELIVERY service property. This service property can be used in the following
way:

• Not set or set to both - The Event Admin must deliver the events in the proper order.
• DELIVERY_ASYNC_ORDERED - Events must be delivered in order.
• DELIVERY_ASYNC_UNORDERED - Allow the events to be delivered in any order.

The EventDel ivery component property type can be used for this property on Declarative Services
components.

Event Publisher Event Admin Service Specification Version 1.4

Page 362 OSGi Compendium Release 8

113.5 Event Publisher
To fire an event, the event source must retrieve the Event Admin service from the OSGi service reg-
istry. Then it creates the event object and calls one of the Event Admin service's methods to fire the
event either synchronously or asynchronously.

The following example is a class that publishes a time event every 60 seconds.

public class TimerEvent extends Thread
 implements BundleActivator {
 Hashtable time = new Hashtable();
 ServiceTracker tracker;

 public TimerEvent() { super("TimerEvent"); }

 public void start(BundleContext context) {
 tracker = new ServiceTracker(context,
 EventAdmin.class.getName(), null);
 tracker.open();
 start();
 }

 public void stop(BundleContext context) {
 interrupt();
 tracker.close();
 }

 public void run() {
 while (! Thread.interrupted()) try {
 Calendar c = Calendar.getInstance();
 set(c,Calendar.MINUTE,"minutes");
 set(c,Calendar.HOUR,"hours");
 set(c,Calendar.DAY_OF_MONTH,"day");
 set(c,Calendar.MONTH,"month");
 set(c,Calendar.YEAR,"year");

 EventAdmin ea =
 (EventAdmin) tracker.getService();
 if (ea != null)
 ea.sendEvent(new Event("com/acme/timer",
 time));
 Thread.sleep(60000-c.get(Calendar.SECOND)*1000);
 } catch(InterruptedException e) {
 return;
 }
 }

 void set(Calendar c, int field, String key) {
 time.put(key, new Integer(c.get(field)));
 }
}

Event Admin Service Specification Version 1.4 Specific Events

OSGi Compendium Release 8 Page 363

113.6 Specific Events

113.6.1 General Conventions
Some handlers are more interested in the contents of an event rather than what actually happened.
For example, a handler wants to be notified whenever an Exception is thrown anywhere in the sys-
tem. Both Framework Events and Log Entry events may contain an exception that would be of inter-
est to this hypothetical handler. If both Framework Events and Log Entries use the same property
names then the handler can access the Exception in exactly the same way. If some future event type
follows the same conventions then the handler can receive and process the new event type even
though it had no knowledge of it when it was compiled.

The following properties are suggested as conventions. When new event types are defined they
should use these names with the corresponding types and values where appropriate. These values
should be set only if they are not nul l

A list of these property names can be found in the following table.

Table 113.1 General property names for events

Name Type Notes
BUNDLE_SIGNER Str ing |

Col lect ion
<Str ing>

A bundle's signers DN

BUNDLE_VERSION Version A bundle's version
BUNDLE_SYMBOLICNAME Str ing A bundle's symbolic name
EVENT Object The actual event object. Used when rebroadcasting an

event that was sent via some other event mechanism
EXCEPTION Throwable An exception or error
EXCEPTION_MESSAGE Str ing Must be equal to exception.getMessage() .
EXCEPTION_CLASS Str ing Must be equal to the name of the Exception class.
MESSAGE Str ing A human-readable message that is usually not localized.
SERVICE Service Ref-

erence
A Service Reference

SERVICE_ID Long A service's id
SERVICE_OBJECTCLASS Str ing[] A service's objectClass
SERVICE_PID Str ing |

Col lect ion
<Str ing>

A service's persistent identity. A PID that is spec-
ified with a Str ing[] must be coerced into a
Collect ion<Str ing> .

TIMESTAMP Long The time when the event occurred, as reported by
System.currentTimeMil l is()

The topic of an OSGi event is constructed by taking the fully qualified name of the event class, sub-
stituting a solidus (' / ' \u002F)for every full stop, and appending a solidus followed by the name of
the constant that defines the event type. For example, the topic of

BundleEvent.STARTED

Event becomes

org/osgi/framework/BundleEvent/STARTED

If a type code for the event is unknown then the event must be ignored.

Specific Events Event Admin Service Specification Version 1.4

Page 364 OSGi Compendium Release 8

113.6.2 OSGi Events
In order to present a consistent view of all the events occurring in the system, the existing Frame-
work-level events are mapped to the Event Admin's publish-subscribe model. This allows event sub-
scribers to treat framework events exactly the same as other events.

It is the responsibility of the Event Admin service implementation to map these Framework events
to its queue.

The properties associated with the event depends on its class as outlined in the following sections.

113.6.3 Framework Event
Framework Events must be delivered asynchronously with a topic of:

org/osgi/framework/FrameworkEvent/<eventtype>

The following event types are supported:

STARTED
ERROR
PACKAGES_REFRESHED
STARTLEVEL_CHANGED
WARNING
INFO

Other events are ignored, no event will be send by the Event Admin. The following event properties
must be set for a Framework Event.

• event - (FrameworkEvent) The original event object.

If the FrameworkEvent getBundle method returns a non-nul l value, the following fields must be set:

• bundle. id - (Long) The source's bundle id.
• bundle.symbol icName - (Str ing) The source bundle's symbolic name. Only set if the bundle's

symbolic name is not nul l .
• bundle.version - (Version) The version of the bundle, if set.
• bundle.s igner - (Str ing|Col lect ion<Str ing>) The DNs of the signers.
• bundle - (Bundle) The source bundle.

If the FrameworkEvent getThrowable method returns a non-nul l value:

• exception.class - (Str ing) The fully-qualified class name of the attached Exception.
• exception.message -(Str ing) The message of the attached exception. Only set if the Exception

message is not nul l .
• exception - (Throwable) The Exception returned by the getThrowable method.

113.6.4 Bundle Event
Framework Events must be delivered asynchronously with a topic of:

org/osgi/framework/BundleEvent/<event type>

The following event types are supported:

INSTALLED
STARTED
STOPPED

Event Admin Service Specification Version 1.4 Event Admin Service

OSGi Compendium Release 8 Page 365

UPDATED
UNINSTALLED
RESOLVED
UNRESOLVED

Unknown events must be ignored.

The following event properties must be set for a Bundle Event. If listeners require synchronous de-
livery then they should register a Synchronous Bundle Listener with the Framework.

• event - (BundleEvent) The original event object.
• bundle. id - (Long) The source's bundle id.
• bundle.symbol icName - (Str ing) The source bundle's symbolic name. Only set if the bundle's

symbolic name is not nul l .
• bundle.version - (Version) The version of the bundle, if set.
• bundle.s igner - (Str ing|Col lect ion<Str ing>) The DNs of the signers.
• bundle - (Bundle) The source bundle.

113.6.5 Service Event
Service Events must be delivered asynchronously with the topic:

org/osgi/framework/ServiceEvent/<eventtype>

The following event types are supported:

REGISTERED
MODIFIED
UNREGISTERING

Unknown events must be ignored.

• event - (ServiceEvent) The original Service Event object.
• service - (ServiceReference) The result of the getServiceReference method
• service. id - (Long) The service's ID.
• service.pid - (Str ing or Col lect ion<Str ing>) The service's persistent identity. Only set if not nul l .

If the PID is specified as a Str ing[] then it must be coerced into a Collect ion<Str ing> .
• service.objectClass - (Str ing[]) The service's object class.

113.6.6 Other Event Sources
Several OSGi service specifications define their own event model. It is the responsibility of these ser-
vices to map their events to Event Admin events. Event Admin is seen as a core service that will be
present in most devices. However, if there is no Event Admin service present, applications are not
mandated to buffer events.

113.7 Event Admin Service
The Event Admin service must be registered as a service with the object class
org.osgi .service.event.EventAdmin . Multiple Event Admin services can be registered. Pub-
lishers should publish their event on the Event Admin service with the highest value for the
SERVICE_RANKING service property. This is the service selected by the getServiceReference method.

The Event Admin service is responsible for tracking the registered handlers, handling event notifica-
tions and providing at least one thread for asynchronous event delivery.

Event Admin Service Event Admin Service Specification Version 1.4

Page 366 OSGi Compendium Release 8

113.7.1 Synchronous Event Delivery
Synchronous event delivery is initiated by the sendEvent method. When this method is invoked,
the Event Admin service determines which handlers must be notified of the event and then notifies
each one in turn. The handlers can be notified in the caller's thread or in an event-delivery thread,
depending on the implementation. In either case, all notifications must be completely handled be-
fore the sendEvent method returns to the caller.

Synchronous event delivery is significantly more expensive than asynchronous delivery. All things
considered equal, the asynchronous delivery should be preferred over the synchronous delivery.

Callers of this method will need to be coded defensively and assume that synchronous event notifi-
cations could be handled in a separate thread. That entails that they must not be holding any moni-
tors when they invoke the sendEvent method. Otherwise they significantly increase the likelihood
of deadlocks because Java monitors are not reentrant from another thread by definition. Not hold-
ing monitors is good practice even when the event is dispatched in the same thread.

113.7.2 Asynchronous Event Delivery
Asynchronous event delivery is initiated by the postEvent method. When this method is invoked,
the Event Admin service must determine which handlers are interested in the event. By collecting
this list of handlers during the method invocation, the Event Admin service ensures that only han-
dlers that were registered at the time the event was posted will receive the event notification. This is
the same as described in Delivering Events of OSGi Core Release 8.

The Event Admin service can use more than one thread to deliver events. If it does then it must guar-
antee that each handler receives the events in the same order as the events were posted, unless this
handler allows unordered deliver, see Ordering on page 361. This ensures that handlers see events
in their expected order. For example, for some handlers it would be an error to see a destroyed event
before the corresponding created event.

Before notifying each handler, the event delivery thread must ensure that the handler is still regis-
tered in the service registry. If it has been unregistered then the handler must not be notified.

113.7.3 Order of Event Delivery
Asynchronous events are delivered in the order in which they arrive in the event queue. Thus if two
events are posted by the same thread then they will be delivered in the same order (though other
events may come between them). However, if two or more events are posted by different threads
then the order in which they arrive in the queue (and therefore the order in which they are deliv-
ered) will depend very much on subtle timing issues. The event delivery system cannot make any
guarantees in this case. An Event Handler can indicate that the ordering is not relevant, allowing the
Event Admin to more aggressively parallelize the event deliver, see Ordering on page 361.

Synchronous events are delivered as soon as they are sent. If two events are sent by the same thread,
one after the other, then they must be guaranteed to be processed serially and in the same order.
However, if two events are sent by different threads then no guarantees can be made. The events can
be processed in parallel or serially, depending on whether or not the Event Admin service dispatches
synchronous events in the caller's thread or in a separate thread.

Note that if the actions of a handler trigger a synchronous event, then the delivery of the first event
will be paused and delivery of the second event will begin. Once delivery of the second event has
completed, delivery of the first event will resume. Thus some handlers may observe the second
event before they observe the first one.

Event Admin Service Specification Version 1.4 Reliability

OSGi Compendium Release 8 Page 367

113.8 Reliability

113.8.1 Exceptions in callbacks
If a handler throws an Exception during delivery of an event, it must be caught by the Event Admin
service and handled in some implementation specific way. If a Log Service is available the exception
should be logged. Once the exception has been caught and dealt with, the event delivery must con-
tinue with the next handlers to be notified, if any.

As the Log Service can also forward events through the Event Admin service there is a potential for a
loop when an event is reported to the Log Service.

113.8.2 Dealing with Stalled Handlers
Event handlers should not spend too long in the handleEvent method. Doing so will prevent other
handlers in the system from being notified. If a handler needs to do something that can take a while,
it should do it in a different thread.

An event admin implementation can attempt to detect stalled or deadlocked handlers and deal with
them appropriately. Exactly how it deals with this situation is left as implementation specific. One
allowed implementation is to mark the current event delivery thread as invalid and spawn a new
event delivery thread. Event delivery must resume with the next handler to be notified.

Implementations can choose to deny list any handlers that they determine are misbehaving. Deny
listed handlers must not be notified of any events. If a handler is deny listed, the event admin should
log a message that explains the reason for it.

113.9 Interoperability with Native Applications
Implementations of the Event Admin service can support passing events to, and/or receiving events
from native applications.

If the implementation supports native interoperability, it must be able to pass the topic of the event
and its properties to/from native code. Implementations must be able to support property values of
the following types:

• Str ing objects, including full Unicode support
• Integer, Long, Byte, Short , F loat, Double, Boolean, Character objects
• Single-dimension arrays of the above types (including Str ing)
• Single-dimension arrays of Java's eight primitive types (int , long, byte, short , f loat , double,

boolean, char)

Implementations can support additional types. Property values of unsupported types must be silent-
ly discarded.

113.10 Capabilities

113.10.1 osgi.implementation Capability
The Event Admin implementation bundle must provide the osgi . implementation capability with
the name EVENT_ADMIN_IMPLEMENTATION . This capability can be used by provisioning tools and
during resolution to ensure that an Event Admin implementation is present. The capability must
also declare a uses constraint for the org.osgi .service.event package and provide the version of this
specification:

Security Event Admin Service Specification Version 1.4

Page 368 OSGi Compendium Release 8

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.event";
 uses:="org.osgi.service.event";
 version:Version="1.4"

The RequireEventAdmin annotation can be used to require this capability.

This capability must follow the rules defined for the osgi.implementation Namespace on page 727.

113.10.2 osgi.service Capability
The bundle providing the Event Admin service must provide a capability in the osgi .service
namespace representing this service. This capability must also declare a uses constraint for the
org.osgi .service.event package:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.event.EventAdmin";
 uses:="org.osgi.service.event"

This capability must follow the rules defined for the osgi.service Namespace on page 727.

113.11 Security

113.11.1 Topic Permission
The TopicPermission class allows fine-grained control over which bundles may post events to a giv-
en topic and which bundles may receive those events.

The target parameter for the permission is the topic name. TopicPermission classes uses a wildcard
matching algorithm similar to the BasicPermission class, except that solidi (' / ' \u002F) are used as
separators instead of full stop characters. For example, a name of a/b/* implies a/b/c but not x/y/z or
a/b .

There are two available actions: PUBLISH and SUBSCRIBE . These control a bundle's ability to either
publish or receive events, respectively. Neither one implies the other.

113.11.2 Required Permissions
Bundles that need to register an event handler must be granted
ServicePermission [org.osgi .service.event.EventHandler , REGISTER]. In addition, handlers require
TopicPermission[<topic>, SUBSCRIBE] for each topic they want to be notified about.

Bundles that need to publish an event must be granted
ServicePermission[org.osgi .service.event.EventAdmin, GET] so that they may retrieve the Event
Admin service and use it. In addition, event sources require TopicPermission[<topic>, PUBLISH] for
each topic they want to send events to.

Bundles that need to iterate the handlers registered with the system must be granted
ServicePermission[org.osgi .service.event.EventHandler, GET] to retrieve the event handlers from
the service registry.

Only a bundle that contains an Event Admin service implementation should be granted
ServicePermission[org.osgi .service.event.EventAdmin, REGISTER] to register the event channel
admin service.

113.11.3 Security Context During Event Callbacks
During an event notification, the Event Admin service's Protection Domain will be on the stack
above the handler's Protection Domain. In the case of a synchronous event, the event publisher's
protection domain can also be on the stack.

Event Admin Service Specification Version 1.4 org.osgi.service.event

OSGi Compendium Release 8 Page 369

Therefore, if a handler needs to perform a secure operation using its own privileges, it must invoke
the doPriv i leged method to isolate its security context from that of its caller.

The event delivery mechanism must not wrap event notifications in a doPriv i leged call.

113.12 org.osgi.service.event

Event Admin Package Version 1.4.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.event; vers ion="[1.4,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.event; vers ion="[1.4,1.5)"

113.12.1 Summary

• Event - An event.
• EventAdmin - The Event Admin service.
• EventConstants - Defines standard names for EventHandler properties.
• EventHandler - Listener for Events.
• EventPropert ies - The properties for an Event.
• TopicPermission - A bundle's authority to publish or subscribe to event on a topic.

113.12.2 public class Event
An event. Event objects are delivered to EventHandler services which subscribe to the topic of the
event.

Concurrency Immutable

113.12.2.1 public Event(String topic, Map<String, ?> properties)

topic The topic of the event.

properties The event's properties (may be nul l). A property whose key is not of type Str ing will be ignored. If
the specified properties is an EventProperties object, then it will be directly used. Otherwise, a copy
of the specified properties is made.

□ Constructs an event.

Throws I l legalArgumentException– If topic is not a valid topic name.

Since 1.2

113.12.2.2 public Event(String topic, Dictionary<String, ?> properties)

topic The topic of the event.

properties The event's properties (may be nul l). A property whose key is not of type Str ing will be ignored. A
copy of the specified properties is made.

□ Constructs an event.

Throws I l legalArgumentException– If topic is not a valid topic name.

org.osgi.service.event Event Admin Service Specification Version 1.4

Page 370 OSGi Compendium Release 8

113.12.2.3 public final boolean containsProperty(String name)

name The name of the property.

□ Indicate the presence of an event property. The event topic is present using the property name
"event.topics".

Returns true if a property with the specified name is in the event. This property may have a nul l value. fa lse
otherwise.

Since 1.3

113.12.2.4 public boolean equals(Object object)

object The Event object to be compared.

□ Compares this Event object to another object.

An event is considered to be equal to another event if the topic is equal and the properties are equal.
The properties are compared using the java.ut i l .Map.equals() rules which includes identity compar-
ison for array values.

Returns true if object is a Event and is equal to this object; fa lse otherwise.

113.12.2.5 public final Object getProperty(String name)

name The name of the property to retrieve.

□ Retrieve the value of an event property. The event topic may be retrieved with the property name
"event.topics".

Returns The value of the property, or nul l if not found.

113.12.2.6 public final String[] getPropertyNames()

□ Returns a list of this event's property names. The list will include the event topic property name
"event.topics".

Returns A non-empty array with one element per property.

113.12.2.7 public final String getTopic()

□ Returns the topic of this event.

Returns The topic of this event.

113.12.2.8 public int hashCode()

□ Returns a hash code value for this object.

Returns An integer which is a hash code value for this object.

113.12.2.9 public final boolean matches(Filter filter)

filter The filter to test.

□ Tests this event's properties against the given filter using a case sensitive match.

Returns true If this event's properties match the filter, false otherwise.

113.12.2.10 public String toString()

□ Returns the string representation of this event.

Returns The string representation of this event.

Event Admin Service Specification Version 1.4 org.osgi.service.event

OSGi Compendium Release 8 Page 371

113.12.3 public interface EventAdmin
The Event Admin service. Bundles wishing to publish events must obtain the Event Admin service
and call one of the event delivery methods.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

113.12.3.1 public void postEvent(Event event)

event The event to send to all listeners which subscribe to the topic of the event.

□ Initiate asynchronous, ordered delivery of an event. This method returns to the caller before de-
livery of the event is completed. Events are delivered in the order that they are received by this
method.

Throws SecurityException– If the caller does not have TopicPermission[topic,PUBLISH] for the topic speci-
fied in the event.

113.12.3.2 public void sendEvent(Event event)

event The event to send to all listeners which subscribe to the topic of the event.

□ Initiate synchronous delivery of an event. This method does not return to the caller until delivery of
the event is completed.

Throws SecurityException– If the caller does not have TopicPermission[topic,PUBLISH] for the topic speci-
fied in the event.

113.12.4 public interface EventConstants
Defines standard names for EventHandler properties.

Provider Type Consumers of this API must not implement this type

113.12.4.1 public static final String BUNDLE = "bundle"

The Bundle object of the bundle relevant to the event. The type of the value for this event property
is Bundle.

Since 1.1

113.12.4.2 public static final String BUNDLE_ID = "bundle.id"

The Bundle id of the bundle relevant to the event. The type of the value for this event property is
Long .

Since 1.1

113.12.4.3 public static final String BUNDLE_SIGNER = "bundle.signer"

The Distinguished Names of the signers of the bundle relevant to the event. The type of the value
for this event property is Str ing or Collect ion of Str ing .

113.12.4.4 public static final String BUNDLE_SYMBOLICNAME = "bundle.symbolicName"

The Bundle Symbolic Name of the bundle relevant to the event. The type of the value for this event
property is Str ing .

113.12.4.5 public static final String BUNDLE_VERSION = "bundle.version"

The version of the bundle relevant to the event. The type of the value for this event property is Ver-
sion.

Since 1.2

org.osgi.service.event Event Admin Service Specification Version 1.4

Page 372 OSGi Compendium Release 8

113.12.4.6 public static final String DELIVERY_ASYNC_ORDERED = "async.ordered"

Event Handler delivery quality value specifying the Event Handler requires asynchronously de-
livered events be delivered in order. Ordered delivery is the default for asynchronously delivered
events.

This delivery quality value is mutually exclusive with DELIVERY_ASYNC_UNORDERED. However,
if both this value and DELIVERY_ASYNC_UNORDERED are specified for an event handler, this val-
ue takes precedence.

See Also EVENT_DELIVERY

Since 1.3

113.12.4.7 public static final String DELIVERY_ASYNC_UNORDERED = "async.unordered"

Event Handler delivery quality value specifying the Event Handler does not require asynchronously
delivered events be delivered in order. This may allow an Event Admin implementation to optimize
asynchronous event delivery by relaxing ordering requirements.

This delivery quality value is mutually exclusive with DELIVERY_ASYNC_ORDERED. How-
ever, if both this value and DELIVERY_ASYNC_ORDERED are specified for an event handler,
DELIVERY_ASYNC_ORDERED takes precedence.

See Also EVENT_DELIVERY

Since 1.3

113.12.4.8 public static final String EVENT = "event"

The forwarded event object. Used when rebroadcasting an event that was sent via some other event
mechanism. The type of the value for this event property is Object .

113.12.4.9 public static final String EVENT_ADMIN_IMPLEMENTATION = "osgi.event"

The name of the implementation capability for the Event Admin specification

Since 1.4

113.12.4.10 public static final String EVENT_ADMIN_SPECIFICATION_VERSION = "1.4"

The version of the implementation capability for the Event Admin specification

Since 1.4

113.12.4.11 public static final String EVENT_DELIVERY = "event.delivery"

Service Registration property specifying the delivery qualities requested by an Event Handler ser-
vice.

Event handlers MAY be registered with this property. Each value of this property is a string specify-
ing a delivery quality for the Event handler.

The value of this property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

See Also DELIVERY_ASYNC_ORDERED, DELIVERY_ASYNC_UNORDERED

Since 1.3

113.12.4.12 public static final String EVENT_FILTER = "event.filter"

Service Registration property specifying a filter to further select Event s of interest to an Event Han-
dler service.

Event handlers MAY be registered with this property. The value of this property is a string contain-
ing an LDAP-style filter specification. Any of the event's properties may be used in the filter expres-
sion. Each event handler is notified for any event which belongs to the topics in which the handler

Event Admin Service Specification Version 1.4 org.osgi.service.event

OSGi Compendium Release 8 Page 373

has expressed an interest. If the event handler is also registered with this service property, then the
properties of the event must also match the filter for the event to be delivered to the event handler.

If the filter syntax is invalid, then the Event Handler must be ignored and a warning should be
logged.

The value of this property must be of type Str ing .

See Also Event, Filter

113.12.4.13 public static final String EVENT_TOPIC = "event.topics"

Service registration property specifying the Event topics of interest to an Event Handler service.

Event handlers SHOULD be registered with this property. Each value of this property is a string that
describe the topics in which the handler is interested. An asterisk ('*') may be used as a trailing wild-
card. Event Handlers which do not have a value for this property must not receive events. More pre-
cisely, the value of each string must conform to the following grammar:

 topic-description := '*' | topic ('/*')?
 topic := token ('/' token)*

The value of this property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

See Also Event

113.12.4.14 public static final String EXCEPTION = "exception"

An exception or error. The type of the value for this event property is Throwable .

113.12.4.15 public static final String EXCEPTION_CLASS = "exception.class"

The name of the exception type. Must be equal to the name of the class of the exception in the event
property EXCEPTION. The type of the value for this event property is Str ing .

Since 1.1

113.12.4.16 public static final String EXCEPTION_MESSAGE = "exception.message"

The exception message. Must be equal to the result of calling getMessage() on the exception in the
event property EXCEPTION. The type of the value for this event property is Str ing .

113.12.4.17 public static final String EXECPTION_CLASS = "exception.class"

This constant was released with an incorrectly spelled name. It has been replaced by
EXCEPTION_CLASS

Deprecated As of 1.1. Replaced by EXCEPTION_CLASS.

113.12.4.18 public static final String MESSAGE = "message"

A human-readable message that is usually not localized. The type of the value for this event proper-
ty is Str ing .

113.12.4.19 public static final String SERVICE = "service"

A service reference. The type of the value for this event property is ServiceReference.

113.12.4.20 public static final String SERVICE_ID = "service.id"

A service's id. The type of the value for this event property is Long .

113.12.4.21 public static final String SERVICE_OBJECTCLASS = "service.objectClass"

A service's objectClass. The type of the value for this event property is Str ing[] .

org.osgi.service.event Event Admin Service Specification Version 1.4

Page 374 OSGi Compendium Release 8

113.12.4.22 public static final String SERVICE_PID = "service.pid"

A service's persistent identity. The type of the value for this event property is Str ing or Collect ion of
Str ing .

113.12.4.23 public static final String TIMESTAMP = "timestamp"

The time when the event occurred, as reported by System.currentTimeMil l is() . The type of the val-
ue for this event property is Long .

113.12.5 public interface EventHandler
Listener for Events.

EventHandler objects are registered with the Framework service registry and are notified with an
Event object when an event is sent or posted.

EventHandler objects can inspect the received Event object to determine its topic and properties.

EventHandler objects must be registered with a service property EventConstants.EVENT_TOPIC
whose value is the list of topics in which the event handler is interested.

For example:

 String[] topics = new String[] {"com/isv/*"};
 Hashtable ht = new Hashtable();
 ht.put(EventConstants.EVENT_TOPIC, topics);
 context.registerService(EventHandler.class.getName(), this, ht);

Event Handler services can also be registered with an EventConstants.EVENT_FILTER service prop-
erty to further filter the events. If the syntax of this filter is invalid, then the Event Handler must be
ignored by the Event Admin service. The Event Admin service should log a warning.

Security Considerations. Bundles wishing to monitor Event objects will require
ServicePermission[EventHandler,REGISTER] to register an EventHandler service. The bundle must
also have TopicPermission[topic,SUBSCRIBE] for the topic specified in the event in order to receive
the event.

See Also Event

Concurrency Thread-safe

113.12.5.1 public void handleEvent(Event event)

event The event that occurred.

□ Called by the EventAdmin service to notify the listener of an event.

113.12.6 public class EventProperties
implements Map<String, Object>
The properties for an Event. An event source can create an EventProperties object if it needs to reuse
the same event properties for multiple events.

The keys are all of type Str ing . The values are of type Object . The key "event.topics" is ignored as
event topics can only be set when an Event is constructed.

Once constructed, an EventProperties object is unmodifiable. However, the values of the map used
to construct an EventProperties object are still subject to modification as they are not deeply copied.

Since 1.3

Concurrency Immutable

Event Admin Service Specification Version 1.4 org.osgi.service.event

OSGi Compendium Release 8 Page 375

113.12.6.1 public EventProperties(Map<String, ?> properties)

properties The properties to use for this EventProperties object (may be nul l).

□ Create an EventProperties from the specified properties.

The specified properties will be copied into this EventProperties. Properties whose key is not of type
Str ing will be ignored. A property with the key "event.topics" will be ignored.

113.12.6.2 public void clear()

□ This method throws UnsupportedOperationException.

Throws UnsupportedOperationException– if called.

113.12.6.3 public boolean containsKey(Object name)

name The property name.

□ Indicates if the specified property is present.

Returns true If the property is present, fa lse otherwise.

113.12.6.4 public boolean containsValue(Object value)

value The property value.

□ Indicates if the specified value is present.

Returns true If the value is present, fa lse otherwise.

113.12.6.5 public Set<Map.Entry<String, Object>> entrySet()

□ Return the property entries.

Returns A set containing the property name/value pairs.

113.12.6.6 public boolean equals(Object object)

object The EventPropert ies object to be compared.

□ Compares this EventPropert ies object to another object.

The properties are compared using the java.ut i l .Map.equals() rules which includes identity compar-
ison for array values.

Returns true if object is a EventPropert ies and is equal to this object; fa lse otherwise.

113.12.6.7 public Object get(Object name)

name The name of the specified property.

□ Return the value of the specified property.

Returns The value of the specified property.

113.12.6.8 public int hashCode()

□ Returns a hash code value for this object.

Returns An integer which is a hash code value for this object.

113.12.6.9 public boolean isEmpty()

□ Indicate if this properties is empty.

Returns true If this properties is empty, fa lse otherwise.

org.osgi.service.event Event Admin Service Specification Version 1.4

Page 376 OSGi Compendium Release 8

113.12.6.10 public Set<String> keySet()

□ Return the names of the properties.

Returns The names of the properties.

113.12.6.11 public Object put(String key, Object value)

□ This method throws UnsupportedOperationException.

Throws UnsupportedOperationException– if called.

113.12.6.12 public void putAll(Map<? extends String, ? extends Object> map)

□ This method throws UnsupportedOperationException.

Throws UnsupportedOperationException– if called.

113.12.6.13 public Object remove(Object key)

□ This method throws UnsupportedOperationException.

Throws UnsupportedOperationException– if called.

113.12.6.14 public int size()

□ Return the number of properties.

Returns The number of properties.

113.12.6.15 public String toString()

□ Returns the string representation of this object.

Returns The string representation of this object.

113.12.6.16 public Collection<Object> values()

□ Return the properties values.

Returns The values of the properties.

113.12.7 public final class TopicPermission
extends Permission
A bundle's authority to publish or subscribe to event on a topic.

A topic is a slash-separated string that defines a topic.

For example:

 org/osgi/service/foo/FooEvent/ACTION

TopicPermission has two actions: publ ish and subscr ibe .

Concurrency Thread-safe

113.12.7.1 public static final String PUBLISH = "publish"

The action string publ ish .

113.12.7.2 public static final String SUBSCRIBE = "subscribe"

The action string subscr ibe .

Event Admin Service Specification Version 1.4 org.osgi.service.event

OSGi Compendium Release 8 Page 377

113.12.7.3 public TopicPermission(String name, String actions)

name Topic name.

actions publ ish ,subscr ibe (canonical order).

□ Defines the authority to publish and/or subscribe to a topic within the EventAdmin service.

The name is specified as a slash-separated string. Wildcards may be used. For example:

 org/osgi/service/fooFooEvent/ACTION
 com/isv/*
 *

A bundle that needs to publish events on a topic must have the appropriate TopicPermission for that
topic; similarly, a bundle that needs to subscribe to events on a topic must have the appropriate Top-
icPermssion for that topic.

113.12.7.4 public boolean equals(Object obj)

obj The object to test for equality with this TopicPermission object.

□ Determines the equality of two TopicPermission objects. This method checks that specified Top-
icPermission has the same topic name and actions as this TopicPermission object.

Returns true if obj is a TopicPermission , and has the same topic name and actions as this TopicPermission ob-
ject; fa lse otherwise.

113.12.7.5 public String getActions()

□ Returns the canonical string representation of the TopicPermission actions.

Always returns present TopicPermission actions in the following order: publ ish ,subscr ibe .

Returns Canonical string representation of the TopicPermission actions.

113.12.7.6 public int hashCode()

□ Returns the hash code value for this object.

Returns A hash code value for this object.

113.12.7.7 public boolean implies(Permission p)

p The target permission to interrogate.

□ Determines if the specified permission is implied by this object.

This method checks that the topic name of the target is implied by the topic name of this object. The
list of TopicPermission actions must either match or allow for the list of the target object to imply
the target TopicPermission action.

 x/y/*,"publish" -> x/y/z,"publish" is true
 *,"subscribe" -> x/y,"subscribe" is true
 *,"publish" -> x/y,"subscribe" is false
 x/y,"publish" -> x/y/z,"publish" is false

Returns true if the specified TopicPermission action is implied by this object; fa lse otherwise.

113.12.7.8 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object suitable for storing TopicPermission objects.

Returns A new PermissionCol lect ion object.

org.osgi.service.event.annotations Event Admin Service Specification Version 1.4

Page 378 OSGi Compendium Release 8

113.13 org.osgi.service.event.annotations

Event Admin Annotations Package Version 1.4.

This package contains annotations that can be used to require the Event Admin implementation.

Bundles should not normally need to import this package as the annotations are only used at build-
time.

113.13.1 Summary

• RequireEventAdmin - This annotation can be used to require the Event Admin implementation.

113.13.2 @RequireEventAdmin
This annotation can be used to require the Event Admin implementation. It can be used directly, or
as a meta-annotation.

This annotation is applied to several of the Event Admin component property type annotations
meaning that it does not normally need to be applied to Declarative Services components which use
the Event Admin.

Since 1.4

Retention CLASS

Target TYPE , PACKAGE

113.14 org.osgi.service.event.propertytypes

Event Admin Component Property Types Package Version 1.4.

When used as annotations, component property types are processed by tools to generate Compo-
nent Descriptions which are used at runtime.

Bundles wishing to use this package at runtime must list the package in the Import-Package header
of the bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.event.propertytypes; vers ion="[1.4,2.0)"

113.14.1 Summary

• EventDel ivery - Component Property Type for the EventConstants.EVENT_DELIVERY service
property of an EventHandler service.

• EventFi l ter - Component Property Type for the EventConstants.EVENT_FILTER service property
of an EventHandler service.

• EventTopics - Component Property Type for the EventConstants.EVENT_TOPIC service proper-
ty of an EventHandler service.

113.14.2 @EventDelivery
Component Property Type for the EventConstants.EVENT_DELIVERY service property of an Even-
tHandler service.

This annotation can be used on an EventHandler component to declare the value of the
EventConstants.EVENT_DELIVERY service property.

Event Admin Service Specification Version 1.4 org.osgi.service.event.propertytypes

OSGi Compendium Release 8 Page 379

See Also Component Property Types

Since 1.4

Retention CLASS

Target TYPE

113.14.2.1 String[] value

□ Service property specifying the Event delivery qualities requested by an EventHandler service.

The supported delivery qualities are:

• EventConstants.DELIVERY_ASYNC_ORDERED
• EventConstants.DELIVERY_ASYNC_UNORDERED}

Returns The requested event delivery qualities.

See Also EventConstants.EVENT_DELIVERY

113.14.3 @EventFilter
Component Property Type for the EventConstants.EVENT_FILTER service property of an Even-
tHandler service.

This annotation can be used on an EventHandler component to declare the value of the
EventConstants.EVENT_FILTER service property.

See Also Component Property Types

Since 1.4

Retention CLASS

Target TYPE

113.14.3.1 String value

□ Service property specifying the Event filter to an EventHandler service.

Returns The event filter.

See Also EventConstants.EVENT_FILTER

113.14.4 @EventTopics
Component Property Type for the EventConstants.EVENT_TOPIC service property of an Even-
tHandler service.

This annotation can be used on an EventHandler component to declare the values of the
EventConstants.EVENT_TOPIC service property.

See Also Component Property Types

Since 1.4

Retention CLASS

Target TYPE

113.14.4.1 String[] value

□ Service property specifying the Event topics of interest to an EventHandler service.

Returns The event topics.

See Also EventConstants.EVENT_TOPIC

org.osgi.service.event.propertytypes Event Admin Service Specification Version 1.4

Page 380 OSGi Compendium Release 8

Dmt Admin Service Specification Version 2.0 Introduction

OSGi Compendium Release 8 Page 381

117 Dmt Admin Service Specification

Version 2.0

117.1 Introduction
There are a large number of Device Management standards available today. Starting with the ITU
X.700 series in the seventies, SNMP in the eighties and then an explosion of different protocols
when the use of the Internet expanded in the nineties. Many device management standards have
flourished, and some subsequently withered, over the last decades. Some examples:

• X.700 CMIP
• IETF SNMP
• IETF LDAP
• OMA DM
• Broadband Forum TR-069
• UPnP Forum's Device Management
• IETF NETCONF
• OASIS WS Distributed Management

This heterogeneity of the remote management for OSGi Framework based devices is a problem for
device manufacturers. Since there is often no dominant protocol these manufacturers have to devel-
op multiple solutions for different remote management protocols. It is also problematic for device
operators since they have to choose a specific protocol but by that choice could exclude a class of de-
vices that do not support that protocol. There is therefore a need to allow the use of multiple proto-
cols at minimal costs.

Almost all management standards are based on hierarchical object models and provide primitives
like:

• Get and replace values
• Add/Remove instances
• Discovery of value names and instance ids
• Provide notifications

A Device Management standard consists of a protocol stack and a number of object models. The pro-
tocol stack is generic and shared for all object types; the object model describes a specific device's
properties and methods. For example, the protocol stack can consist of a set of SOAP message for-
mats and an object model is a Deployment Unit . An object model consists of a data model and some-
times a set of functions.

The core problem is that the generic Device Management Tree must be mapped to device specific
functions. This specification therefore defines an API for managing a device using general device
management concepts but providing an effective plugin model to link the generic tree to the specif-
ic device functions.

The API is decomposed in the following packages/functionality:

• org.osgi .service.dmt - Main package that provides access to the local Device Management Tree.
Access is session based.

Introduction Dmt Admin Service Specification Version 2.0

Page 382 OSGi Compendium Release 8

• org.osgi .service.dmt.noti f icat ion - The notification package provides the capability to send
alerts to a management server.

• org.osgi .service.dmt.spi - Provides the capability to register subtree handlers in the Device Man-
agement Tree.

• org.osgi .service.dmt.noti f icat ion.spi - The API to provide the possibility to extend the notifica-
tion system.

• org.osgi .service.dmt.security - Permission classes.

117.1.1 Entities

• Device Management Tree - The Device Management Tree (DMT) is the logical view of manageable
aspects of an OSGi Environment, implemented by plugins and structured in a tree with named
nodes.

• Dmt Admin - A service through which the DMT can be manipulated. It is used by Local Managers
or by Protocol Adapters that initiate DMT operations. The Dmt Admin service forwards selected
DMT operations to Data Plugins and execute operations to Exec Plugins; in certain cases the Dmt
Admin service handles the operations itself. The Dmt Admin service is a singleton.

• Dmt Session - A session groups a set of operations on a sub-tree with optional transactionality
and locking. Dmt Session objects are created by the Dmt Admin service and are given to a plugin
when they first join the session.

• Local Manager - A bundle which uses the Dmt Admin service directly to read or manipulate the
DMT. Local Managers usually do not have a principal associated with the session.

• Protocol Adapter - A bundle that communicates with a management server external to the device
and uses the Dmt Admin service to operate on the DMT. Protocol Adapters usually have a princi-
pal associated with their sessions.

• Meta Node - Information provided by the node implementer about a node for the purpose of per-
forming validation and providing assistance to users when these values are edited.

• Multi nodes - Interior nodes that have a homogeneous set of children. All these children share the
same meta node.

• Plugin - Services which take the responsibility over a given sub-tree of the DMT: Data Plugin ser-
vices and Exec Plugin services.

• Data Plugin - A Plugin that can create a Readable Data Session, Read Write Data Session, or Trans-
actional Data Session for data operations on a sub-tree for a Dmt Session.

• Exec Plugin - A Plugin that can handle execute operations.
• Readable Data Session - A plugin session that can only read.
• Read Write Data Session - A plugin session that can read and write.
• Transactional Data Session - A plugin session that is transactional.
• Principal - Represents the optional identity of an initiator of a Dmt Session. When a session has a

principal, the Dmt Admin must enforce ACLs and must ignore Dmt Permissions.
• ACL - An Access Control List is a set of principals that is associated with permitted operations.
• Dmt Event - Information about a modification of the DMT.
• Dmt Event Listener - Listeners to Dmt Events. These listeners are services according to the white

board pattern.
• Mount Point - A point in the DMT where a Plugin or the Dmt Admin service allows other Plugins

to have their root.

The overall service interaction diagram is depicted in Figure 117.1.

Dmt Admin Service Specification Version 2.0 Introduction

OSGi Compendium Release 8 Page 383

Figure 117.1 Overall Service Diagram

Dmt Admin Impl
Dmt Admin

Notification
Service

Data
Plugin

Exec
Plugin

Remote Alert
Sender

Event Handler
(Event Admin)

Dmt Event
Listener

The entities used in the Dmt Admin operations and notifications are depicted in Figure 117.2.

Figure 117.2 Using Dmt Admin service, org.osgi.service.dmt and org.osgi.service.dmt.notification.* packages

<<service>>
Dmt Admin

administers

DMT Admin Impl

<<service>>
Notification
Service

Local Manager or
Protocol Adapter

sends alerts

<<class>>
Alert Item

<<class>>
Acl

<<interface>>
Meta Node

<<class>>
Dmt Data

<<interface>>
Dmt Session

Session Impl Alert Sender Impl

0..*

1

0..*

1

<<service>>
Remote Alert
Sender

Remote Alert
Sender Impl

0..*

1

<<service>>
Dmt Event
Listener

<<class>>
Dmt Event

0..*

1

Listener Impl

Extending the Dmt Admin service with Plugins is depicted in Figure 117.3.

The Device Management Model Dmt Admin Service Specification Version 2.0

Page 384 OSGi Compendium Release 8

Figure 117.3 Extending the Dmt Admin service, org.osgi.service.dmt.spi package

Dmt Admin ImplSession Impl

<<service>>
Data Plugin

<<service>>
Exec Plugin

<<interface>>
Readable Data
Session

Data Plugin Impl Exec Plugin Impl

<<interface>>
Read Write
Data Session

<<interface>>
Transactional
Data Session

Session Impl

<<interface>>
Mount Plugin

Mount Point Impl

<<interface>>
Mount Point

117.2 The Device Management Model
The standard-based features of the DMT model are:

• The Device Management Tree consists of interior nodes and leaf nodes. Interior nodes can have
children and leaf nodes have primitive values.

• All nodes have a set of properties: Name, Title, Format, ACL, Version, Size, Type, Value, and
TimeStamp.

• The storage of the nodes is undefined. Nodes typically map to peripheral registers, settings, con-
figuration, databases, etc.

• A node's name must be unique among its siblings.
• Nodes can have Access Control Lists (ACLs), associating operations allowed on those nodes with

a particular principal.
• Nodes can have Meta Nodes that describe actual nodes and their siblings.
• Base value types (called formats in the standard) are

• integer
• long
• string
• boolean
• binary data (multiple types)
• datetime
• time

Dmt Admin Service Specification Version 2.0 The Device Management Model

OSGi Compendium Release 8 Page 385

• float
• XML fragments

• Leaf nodes in the tree can have default values specified in the meta node.
• Meta Nodes define allowed access operations (Get , Add , Replace , Delete and Exec)

Figure 117.4 Device Management Tree example

root node.

Vendor Operator

ScreenSavers

OSGiOMA DM

RingSignals

Bach Popcorn Sinatra

interior node

leaf node

leaf node

interior node

117.2.1 Tree Terminology
In the following sections, the DMT is discussed frequently. Thus, well-defined terms for all the con-
cepts that the DMT introduces are needed. The different terms are shown in Figure 117.5.

Figure 117.5 DMT naming, relative to node F

.

E

G

F

f1 f2

A

DC

IH J

parent

self
siblings

ancestors

descendants
children sub-tree

K

All terms are defined relative to node F . For this node, the terminology is as follows:

• URI - The path consisting of node names that uniquely defines a node, see The DMT Addressing
URI on page 387.

• ancestors - All nodes that are above the given node ordered in proximity. The closest node must be
first in the list. In the example, this list is [./E , .]

• parent - The first ancestor, in this example this is . /E .
• children - A list of nodes that are directly beneath the given node without any preferred ordering.

For node F this list is { ./E/F/f1, . /E/F/f2, . /E/F/G } .
• siblings - An unordered list of nodes that have the same parent. All siblings must have different

names. For F , this is { ./E/K}
• descendants - A list of all nodes below the given node. For F this is { ./E/F/f1, . /E/F/G, . /E/F/f2, . /E/

F/G/H, . /E/F/G/I , . /E/F/G/J }
• sub-tree - The given node plus the list of all descendants. For node F this is { ./E/F, . /E/F/f1, . /E/F/

G, . /E/F/f2, . /E/F/G/H, . /E/F/G/I , . /E/F/G/J }

The Device Management Model Dmt Admin Service Specification Version 2.0

Page 386 OSGi Compendium Release 8

• overlap - Two given URIs overlap if they share any node in their sub-trees. In the example, the
sub-tree . /E/F and . /E/F/G overlap.

• data root URI - A URI which represents the root of a Data Plugin.
• exec root URI - A URI which represents the root of an Exec Plugin.
• Parent Plugin - A Plugin A is a Parent Plugin of Plugin B if B 's root is a in A 's sub-tree, this requires a

Parent Plugin to at least have one mount point.
• Child Plugin - A Plugin A is a Child Plugin of Plugin B if A 's root is in B 's sub-tree.
• Scaffold Node - An ancestor node of a Plugin that is managed by the Dmt Admin service to ensure

that all nodes are discoverable by traversing from the root.

117.2.2 Actors
There are two typical users of the Dmt Admin service:

• Remote manager - The typical client of the Dmt Admin service is a Protocol Adapter. A manage-
ment server external to the device can issue DMT operations over some management protocol.
The protocol to be used is not specified by this specification. For example, OMA DM, TR-069,
or others could be used. The protocol operations reach the Framework through the Protocol
Adapter, which forwards the calls to the Dmt Admin service in a session. Protocol Adapters
should authenticate the remote manager and set the principal in the session. This association
will make the Dmt Admin service enforce the ACLs. This requires that the principal is equal to
the server name.

The Dmt Admin service provides a facility to send notifications to the remote manager with the
Notification Service.

• Local Manager - A bundle which uses the Dmt Admin service to operate on the DMT: for example,
a GUI application that allows the end user to change settings through the DMT.

Although it is possible to manage some aspects of the system through the DMT, it can be easi-
er for such applications to directly use the services that underlie the DMT; many of the manage-
ment features available through the DMT are also available as services. These services shield the
callers from the underlying details of the abstract, and sometimes hard to use DMT structure. As
an example, it is more straightforward to use the Monitor Admin service than to operate upon
the monitoring sub-tree. The local management application might listen to Dmt Events if it is in-
terested in updates in the tree made by other entities, however, these events do not necessarily
reflect the accurate state of the underlying services.

Figure 117.6 Actors

<<service>>
Dmt Admin

Protocol Adapter
Impl

remote management
protocol

<<interface>>
Dmt Session

Local Manager
Impl

Remote Server

principal

Dmt Admin Service Specification Version 2.0 The DMT Admin Service

OSGi Compendium Release 8 Page 387

117.3 The DMT Admin Service
The Dmt Admin service operates on the Device Management Tree of an OSGi-based device. The Dmt
Admin API is loosely modeled after the OMA DM protocol: the operations for Get , Replace , Add ,
Delete and Exec are directly available. The Dmt Admin is a singleton service.

Access to the DMT is session-based to allow for locking and transactionality. The sessions are, in
principle, concurrent, but implementations that queue sessions can be compliant. The client indi-
cates to the Dmt Admin service what kind of session is needed:

• Exclusive Update Session - Two or more updating sessions cannot access the same part of the tree
simultaneously. An updating session must acquire an exclusive lock on the sub-tree which
blocks the creation of other sessions that want to operate on an overlapping sub-tree.

• Multiple Readers Session - Any number of read-only sessions can run concurrently, but ongoing
read-only sessions must block the creation of an updating session on an overlapping sub-tree.

• Atomic Session - An atomic session is the same as an exclusive update session, except that the ses-
sion can be rolled back at any moment, undoing all changes made so far in the session. The par-
ticipants must accept the outcome: rollback or commit. There is no prepare phase. The lack of
full two phase commit can lead to error situations which are described later in this document;
see Plugins and Transactions on page 400.

Although the DMT represents a persistent data store with transactional access and without size lim-
itations, the notion of the DMT should not be confused with a general purpose database. The in-
tended purpose of the DMT is to provide a dynamic view of the management state of the device; the
DMT model and the Dmt Admin service are designed for this purpose.

117.4 Manipulating the DMT

117.4.1 The DMT Addressing URI
The OMA DM limits URIs to the definition of a URI in [8] RFC 2396 Uniform Resource Identifiers (URI):
Generic Syntax. The Uri utility classes handles nearly all escaping issues with a number of static
methods. All URIs in any of the API methods can use the full Unicode character set. For example, the
following URIs as used in Java code are valid URIs for the Dmt Admin service.

"./ACME © 2000/A/x"
"./ACME/Address/Street/9C, Avenue St. Drézéry"

This strategy has a number of consequences.

• A solidus (' / ' \u002F) collides with the use of the solidus as separator of the node names. Soli-
di must therefore be escaped using a reverse solidus (' \ ' \u005C). The reverse solidus must be
escaped with a double reverse solidus sequence. The Dmt Admin service must ignore a reverse
solidus when it is not followed by a solidus or reverse solidus. The solidus and reverse solidus
must not be escaped using the %00 like escaping defined for URIs. For example, a node that has
the name of a MIME type could look like:

./OSGi/mime/application\/png

In Java, a reverse solidus must be escaped as well, therefore requiring double reverse solidi:

String a = "./OSGi/mime/application\\/png";

A literal reverse solidus would therefore require 4 reverse solidi in a Java string.

Manipulating the DMT Dmt Admin Service Specification Version 2.0

Page 388 OSGi Compendium Release 8

• The length of a node name is defined to be the length of the byte array that results from UTF-8
encoding a string.

The Uri class provides an encode(Str ing) method to escape a string and a decode(Str ing) method to
unescape a string. Though in general the Dmt Admin service implementations should not impose
unnecessary constraints on the node name length, it is possible that an implementation runs out of
space. In that case it must throw a DmtException URI_TOO_LONG .

Nodes are addressed by presenting a relative or absolute URI for the requested node. The URI is de-
fined with the following grammar:

uri ::= relative-uri | absolute-uri
absolute-uri ::= './' relative-uri
relative-uri ::= segment ('/' segment)*
segment ::= (~['/'])*

The Uri isAbsoluteUri(Str ing) method makes it simple to find out if a URI is relative or absolute. Rel-
ative URIs require a base URI that is for example provided by the session, see Locking and Sessions on
page 388.

Each node name is appended to the previous ones using a solidus (' / ' \u002F) as the separating char-
acter. The first node of an absolute URI must be the full stop ('.' \u002E). For example, to access the
Bach leaf node in the RingTones interior node from Figure 117.4 on page 385, the URI must be:

./Vendor/RingSignals/Bach

The URI must be given with the root of the management tree as the starting point. URIs used in the
DMT must be treated and interpreted as case-sensitive. I.e.. /Vendor and . /vendor designate two differ-
ent nodes. The following mandatory restrictions on URI syntax are intended to simplify the parsing
of URIs.

The full stop has no special meaning in a node name. That is, sequences like . . do not imply parent
node. The isVal idUri(Str ing) method verifies that a URI fulfills all its obligations and is valid.

117.4.2 Locking and Sessions
The Dmt Admin service is the main entry point into the DMT, its usage is to create sessions. A
simple example is getting a session on a specific sub-tree. Such a session can be created with the
getSession(Str ing) method. This method creates an updating session with an exclusive lock on the
given sub-tree. The given sub-tree can be a single leaf node, if so desired.

Each session has an ID associated with it which is unique to the machine and is never reused. This
id is always greater than 0. The value -1 is reserved as place holder to indicate a situation has no ses-
sion associated with it, for example an event generated from an underlying service. The URI argu-
ment addresses the sub-tree root. If nul l , it addresses the root of the DMT. All nodes can be reached
from the root, so specifying a session root node is not strictly necessary but it permits certain opti-
mizations in the implementations.

If the default exclusive locking mode of a session is not adequate, it is possible to specify the locking
mode with the getSession(Str ing, int) and getSession(Str ing,Str ing, int) method. These methods
supports the following locking modes:

• LOCK_TYPE_SHARED - Creates a shared session. It is limited to read-only access to the given sub-
tree, which means that multiple sessions are allowed to read the given sub-tree at the same time.

• LOCK_TYPE_EXCLUSIVE - Creates an exclusive session. The lock guarantees full read-write access to
the tree. Such sessions, however, cannot share their sub-tree with any other session. This type of
lock requires that the underlying implementation supports Read Write Data Sessions.

• LOCK_TYPE_ATOMIC - Creates an atomic session with an exclusive lock on the sub-tree, but with
added transactionality. Operations on such a session must either succeed together or fail togeth-

Dmt Admin Service Specification Version 2.0 Manipulating the DMT

OSGi Compendium Release 8 Page 389

er. This type of lock requires that the underlying implementation supports Transactional Data
Sessions. If the Dmt Admin service does not support transactions, then it must throw a Dmt Ex-
ception with the FEATURE_NOT_SUPPORTED code. If the session accesses data plugins that are
not transactional in write mode, then the Dmt Admin service must throw a Dmt Exception with
the TRANSACTION_ERROR code. That is, data plugins can participate in a atomic sessions as long
as they only perform read operations.

The Dmt Admin service must lock the sub-tree in the requested mode before any opera-
tions are performed. If the requested sub-tree is not accessible, the getSession(Str ing, int) ,
getSession(Str ing,Str ing, int) , or getSession(Str ing) method must block until the sub-tree becomes
available. The implementation can decide after an implementation-dependent period to throw a
Dmt Exception with the SESSION_CREATION_TIMEOUT code.

As a simplification, the Dmt Admin service is allowed to lock the entire tree irrespective of the giv-
en sub-tree. For performance reasons, implementations should provide more fine-grained locking
when possible.

Persisting the changes of a session works differently for exclusive and atomic sessions. Changes
to the sub-tree in an atomic session are not persisted until the commit() or close() method of the
session is called. Changes since the last transaction point can be rolled back with the rol lback()
method.

The commit() and rol lback() methods can be called multiple times in a session; they do not close the
session. The open , commit() , and rol lback() methods all establish a transaction point. The rollback op-
eration cannot roll back further than the last transaction point.

Once a fatal error is encountered (as defined by the DmtException isFatal() method), all successful
changes must be rolled back automatically to the last transaction point. Non-fatal errors do not roll-
back the session. Any error/exception in the commit or rol lback methods invalidates and closes the
session. This can happen if, for example, the mapping state of a plugin changes that has its plugin
root inside the session's sub-tree.

Changes in an exclusive session are persisted immediately after each separate operation. Errors do
not roll back any changes made in such a session.

Due to locking and transactional behavior, a session of any type must be closed once it is no longer
used. Locks must always be released, even if the close() method throws an exception.

Once a session is closed no further operations are allowed and manipulation methods must throw a
Dmt Illegal State Exception when called. Certain information methods like for example getState()
and getRootUri() can still be called for logging or diagnostic purposes. This is documented with the
Dmt Session methods.

The close() or commit() method can be expected to fail even if all or some of the individual opera-
tions were successful. This failure can occur due to multi-node constraints defined by a specific im-
plementation. The details of how an implementation specifies such constraints is outside the scope
of this specification.

Events in an atomic session must only be sent at commit time.

117.4.3 Associating a Principal
Protocol Adapters must use the getSession(Str ing,Str ing, int) method which features the principal
as the first parameter. The principal identifies the external entity on whose behalf the session is cre-
ated. This server identification string is determined during the authentication process in a way spe-
cific to the management protocol.

For example, the identity of the OMA DM server can be established during the handshake between
the OMA DM agent and the server. In the simpler case of OMA CP protocol, which is a one-way pro-
tocol based on WAP Push, the identity of the principal can be a fixed value.

Manipulating the DMT Dmt Admin Service Specification Version 2.0

Page 390 OSGi Compendium Release 8

117.4.4 Relative Addressing
All DMT operation methods are found on the session object. Most of these methods accept a relative
or absolute URI as their first parameter: for example, the method isLeafNode(Str ing) . This URI is ab-
solute or relative to the sub-tree with which the session is associated. For example, if the session is
opened on:

./Vendor

then the following URIs address the Bach ring tone:

RingTones/Bach
./Vendor/RingTones/Bach

Opening the session with a nul l URI is identical to opening the session at the root. But the absolute
URI can be used to address the Bach ring tone as well as a relative URI.

./Vendor/RingTones/Bach
Vendor/RingTones/Bach

If the URI specified does not correspond to a legitimate node in the tree, a Dmt Exception must be
thrown. The only exception to this rule is the isNodeUri(Str ing) method that can verify if a node is
actually valid. The getMetaNode(Str ing) method must accept URIs to non-existing nodes if an ap-
plicable meta node is available; otherwise it must also throw a Dmt Exception.

117.4.5 Creating Nodes
The methods that create interior nodes are:

• createInter iorNode(Str ing) - Create a new interior node using the default meta data. If the prin-
cipal does not have Replace access rights on the parent of the new node then the session must au-
tomatically set the ACL of the new node so that the creating server has Add , Delete and Replace
rights on the new node.

• createInter iorNode(Str ing,Str ing) - Create a new interior node. The meta data for this new node
is identified by the second argument, which is a URI identifying an OMA DM Device Description
Framework (DDF) file, this does not have to be a valid location. It uses a format like org.osgi/1.0/
LogManagementObject . This meta node must be consistent with any meta information from the
parent node.

• createLeafNode(Str ing) - Create a new leaf node with a default value.
• createLeafNode(Str ing,DmtData) - Create a leaf node and assign a value to the leaf-node.
• createLeafNode(Str ing,DmtData,Str ing) - Create a leaf node and assign a value for the node. The

last argument is the MIME type, which can be nul l .

For a node to be created, the following conditions must be fulfilled:

• The URI of the new node has to be a valid URI.
• The principal of the Dmt Session, if present, must have ACL Add permission to add the node to

the parent. Otherwise, the caller must have the necessary permission.
• All constraints of the meta node must be verified, including value constraints, name constraints,

type constraints, and MIME type constraints. If any of the constraints fail, a Dmt Exception must
be thrown with an appropriate code.

117.4.6 Node Properties
A DMT node has a number of runtime properties that can be set through the session object. These
properties are:

• Title - (Str ing) A human readable title for the object. The title is distinct from the node name. The
title can be set with setNodeTit le(Str ing,Str ing) and read with getNodeTit le(Str ing) . This spec-

Dmt Admin Service Specification Version 2.0 Manipulating the DMT

OSGi Compendium Release 8 Page 391

ification does not define how this information is localized. This property is optional depending
on the implementation that handles the node.

• Type -(Str ing) The MIME type, as defined in [9] MIME Media Types, of the node's value when it is
a leaf node. The type of an interior node is a string identifying a DDF type. These types can be set
with setNodeType(Str ing,Str ing) and read with getNodeType(Str ing) .

• Version - (int) Version number, which must start at 0, incremented after every modification (for
both a leaf and an interior node) modulo 0x10000. Changes to the value or any of the properties
(including ACLs), or adding/deleting nodes, are considered changes. The getNodeVersion(Str ing)
method returns this version; the value is read-only. In certain cases, the underlying data structure
does not support change notifications or makes it difficult to support versions. This property is
optional depending on the node's implementation.

• Size - (int) The size measured in bytes is read-only and can be read with getNodeSize(Str ing) . Not
all nodes can accurately provide this information.

• Time Stamp -(Date) Time of the last change in version. The getNodeTimestamp(Str ing) returns
the time stamp. The value is read only. This property is optional depending on the node's imple-
mentation.

• ACL - The Access Control List for this and descendant nodes. The property can be set with
setNodeAcl(Str ing,Acl) and obtained with getNodeAcl(Str ing) .

If a plugin that does not implement an optional property is accessed, a Dmt Exception with the code
FEATURE_NOT_SUPPORTED must be thrown.

117.4.7 Setting and Getting Data
Values are represented as DmtData objects, which are immutable. The are acquired with the
getNodeValue(Str ing) method and set with the setNodeValue(Str ing,DmtData) method.

DmtData objects are dynamically typed by an integer enumeration. In OMA DM, this integer is
called the format of the data value. The format of the DmtData class is similar to the type of a vari-
able in a programming language, but the word format is used here. The available data formats are
listed in the following table.

Table 117.1 Data Formats

Format Type Java
Type

Format
Name

Constructor Get Description

FORMAT_BASE64 byte[] base64 DmtData(byte[] ,boolean) getBase64() Binary type that must be
encoded with base 64, see
[10] RFC 3548 The Base16,
Base32, and Base64 Data
Encodings.

FORMAT_BINARY byte[] binary DmtData(byte[])
DmtData(byte[] ,boolean)

getBinary() A byte array. The DmtData
object is created with the
constructor. The byte ar-
ray can only be acquired
with the method.

FORMAT_BOOLEAN boolean boolean DmtData(boolean) getBoolean() Boolean. There are two
constants for this type:

• FALSE_VALUE
• TRUE_VALUE

FORMAT_DATE Str ing date DmtData(Str ing, int) getStr ing()

getDate()

A Date (no time). Syn-
tax defined in [13] XML
Schema Part 2: Datatypes
Second Edition as the date
type.

Manipulating the DMT Dmt Admin Service Specification Version 2.0

Page 392 OSGi Compendium Release 8

Format Type Java
Type

Format
Name

Constructor Get Description

FORMAT_DATE_TIME Str ing date-
Time

DmtData(Date) getDateTime() A Date object representing
a point in time.

FORMAT_FLOAT float float DmtData(float) getFloat() Float
FORMAT_INTEGER int integer DmtData(int) getInt() Integer
FORMAT_LONG long long DmtData(long) getLong() Long
FORMAT_NODE Object NODE DmtData(Object) getNode() A DmtData object

can have a format of
FORMAT_NODE . This
value is returned from a
MetaNode getFormat()
method if the node is an
interior node or for a da-
ta value when the Plugin
supports complex values.

FORMAT_NULL No valid data is avail-
able. DmtData objects
with this format cannot
be constructed; the only
instance is the DmtData
NULL_VALUE constant.

FORMAT_RAW_BINARY byte[] <cus-
tom>

DmtData(Str ing,byte[]) getRawBinary() A raw binary format is al-
ways created with a for-
mat name. This format
name allows the creator
to define a proprietary for-
mat. The format name is
available from the get-
FormatName() method,
which has predefined val-
ues for the standard for-
mats.

FORMAT_RAW_STRING Str ing <cus-
tom>

DmtData(Str ing,Str ing) getRawStr ing() A raw string format is al-
ways created with a for-
mat name. This format
name allows the creator
to define a proprietary for-
mat. The format name is
available from the get-
FormatName() method,
which has predefined val-
ues for the standard for-
mats.

FORMAT_STRING Str ing str ing DmtData(Str ing) getStr ing() String
FORMAT_TIME Str ing time DmtData(Str ing, int) getStr ing() Time of Day. Syntax de-

fined in [13] XML Schema
Part 2: Datatypes Second
Edition as the t ime type.

Dmt Admin Service Specification Version 2.0 Manipulating the DMT

OSGi Compendium Release 8 Page 393

Format Type Java
Type

Format
Name

Constructor Get Description

FORMAT_XML Str ing xml DmtData(Str ing, int) getXml() A string containing an
XML fragment. It can be
obtained with. The valid-
ity of the XML must not
be verified by the Dmt Ad-
min service.

117.4.8 Complex Values
The OMA DM model prescribes that only leaf nodes have primitive values. This model maps very
well to remote managers. However, when a manager is written in Java and uses the Dmt Admin API
to access the tree, there are often unnecessary conversions from a complex object, to leaf nodes, and
back to a complex object. For example, an interior node could hold the current GPS position as an
OSGi Posit ion object, which consists of a longitude, latitude, altitude, speed, and direction. All these
objects are Measurement objects which consist of value, error, and unit. Reading such a Posit ion ob-
ject through its leaf nodes only to make a new Posit ion object is wasting resources. It is therefore
that the Dmt Admin service also supports complex values as a supplementary facility.

If a complex value is used then the leaves must also be accessible and represent the same semantics
as the complex value. A manager unaware of complex values must work correctly by only using the
leaf nodes. Setting or getting the complex value of an interior node must be identical to setting or
getting the leaf nodes.

Accessing a complex value requires Get access to the node and all its descendants. Setting a complex
value requires Replace access to the interior node. Replacing a complex value must only generate a
single Replace event.

Trying to set or get a complex value on an interior node that does not support complex values must
throw a Dmt Exception with the code FEATURE_NOT_SUPPORTED .

117.4.9 Nodes and Types
The node's type can be set with the setNodeType(Str ing,Str ing) method and acquired with
getNodeType(Str ing) . The namespaces for the types differ for interior and leaf nodes. A leaf node is
typed with a MIME type and an interior node is typed with a DDF Document URI. However, in both
cases the Dmt Admin service must not verify the syntax of the type name.

The createLeafNode(Str ing,DmtData,Str ing) method takes a MIME type as last argument that will
type the leaf node. The MIME type reflects how the data of the node should be interpreted. For exam-
ple, it is possible to store a GIF and a JPEG image in a DmtData object with a FORMAT_BINARY for-
mat. Both the GIF and the JPEG object share the same format, but will have MIME types of image/jpg
and image/gif respectively. The Meta Node provides a list of possible MIME types.

The createInter iorNode(Str ing,Str ing) method takes a DDF Document URI as the last argument
that will type the interior node. This specification defines the DDF Document URIs listed in the fol-
lowing table for interior nodes that have a particular meaning in this specification.

Table 117.2 Standard Interior Node Types

Interior Node Type Description
DDF_SCAFFOLD Scaffold nodes are automatically generated nodes by the

Dmt Admin service to provide the children node names so
that Plugins are reachable from the root. See Scaffold Nodes
on page 401.

DDF_MAP MAP nodes define a key -> value mapping construct using
the node name (key) and the node value (value). See MAP
Nodes on page 429.

Manipulating the DMT Dmt Admin Service Specification Version 2.0

Page 394 OSGi Compendium Release 8

Interior Node Type Description
DDF_LIST LIST nodes use the node name to maintain an index in a

list. See LIST Nodes on page 427.

117.4.10 Deleting Nodes
The deleteNode(Str ing) method on the session represents the Delete operation. It deletes the sub-
tree of that node. This method is applicable to both leaf and interior nodes. Nodes can be deleted by
the Dmt Admin service in any order. The root node of the session cannot be deleted.

For example, given Figure 117.7, deleting node P must delete the nodes . /P , . /P/ M , . /P/M/X , . /P/M/n2
and . /P/M/n3 in any order.

Figure 117.7 DMT node and deletion

.

P

X

M

n2 n3

117.4.11 Copying Nodes
The copy(Str ing,Str ing,boolean) method on the DmtSession object represents the Copy operation.
A node is completely copied to a new URI. It can be specified with a boolean if the whole sub-tree
(true) or just the indicated node is copied.

The ACLs must not be copied; the new access rights must be the same as if the caller had created the
new nodes individually. This restriction means that the copied nodes inherit the access rights from
the parent of the destination node, unless the calling principal does not have Replace rights for the
parent. See Creating Nodes on page 390 for details.

117.4.12 Renaming Nodes
The renameNode(Str ing,Str ing) method on the DmtSession object represents the Rename opera-
tion, which replaces the node name. It requires permission for the Replace operation. The root node
for the current session can not be renamed.

117.4.13 Execute
The execute(Str ing,Str ing) and execute(Str ing,Str ing,Str ing) methods can execute a node. Execut-
ing a node is intended to be used when a problem is hard to model as a set of leaf nodes. This can be
related to synchronization issues or data manipulation. The execute methods can provide a correla-
tor for a notification and an opaque string that is forwarded to the implementer of the node.

Execute operations can not take place in a read only session because simultaneous execution could
make conflicting changes to the tree.

117.4.14 Closing
When all the changes have been made, the session must be closed by calling the close() method on
the session. The Dmt Admin service must then finalize, clean up, and release any locks. For atomic
sessions, the Dmt Admin service must automatically commit any changes that were made since the
last transaction point.

Dmt Admin Service Specification Version 2.0 Meta Data

OSGi Compendium Release 8 Page 395

A session times out and is invalidated after an extended period of inactivity. The exact length of this
period is not specified, but is recommended to be at least 1 minute and at most 24 hours. All meth-
ods of an invalidated session must throw an Dmt Illegal State Exception after the session is invali-
dated.

A session's state is one of the following: STATE_CLOSED , STATE_INVALID or STATE_OPEN , as can be
queried by the getState() call. The invalid state is reached either after a fatal error case is encoun-
tered or after the session is timed out. When an atomic session is invalidated, it is automatically
rolled back to the last transaction point of the session.

117.5 Meta Data
The getMetaNode(Str ing) method returns a MetaNode object for a given URI. This node is called
the meta node. A meta node provides information about nodes.

Any node can optionally have a meta node associated with it. The one or more nodes that are de-
scribed by the meta nodes are called the meta node's related instances. A meta node can describe a sin-
gleton-related instance, or it can describe all the children of a given parent if it is a multi-node. That is
to say, meta nodes can exist without an actual instance being present. In order to retrieve the meta
node of a multi-node any name can be used.

For example, if a new ring tone, Grieg , was created in Figure 117.8 it would be possible to get the
Meta Node for . /Vendor/RingSignals/Grieg before the node was created. This is usually the case for
multi nodes. The model is depicted in Figure 117.8.

Figure 117.8 Nodes and meta nodes

meta node

Vendor

RingSignals

Bach Popcorn ...

./Vendor/RingSingals

<>

related instance

A URI is generally associated with the same Meta Node. The getMetaNode(Str ing) should return
the same meta node for the same URI except in the case of Scaffold Nodes on page 401. As the own-
ership of scaffold nodes can change from the Dmt Admin service to the Parent Plugin service, or
from a Parent Plugin to a Child Plugin, the Meta Node can change as well.

The last segment of the URI to get a Meta Node can be any valid node name, for example, instead of
Grieg it would have been possible to retrieve the same Meta Node with the name . /Vendor/RingSig-
nals/0 , . /Vendor/RingSignals/anyName , . /Vendor/RingSignals/<> , etc.

The actual meta data can come from two sources:

• Dmt Admin - Each Dmt Admin service likely has a private meta data repository. This meta data is
placed in the device in a proprietary way.

• Plugins - Plugins can carry meta nodes and provide these to the Dmt Admin service by imple-
menting the getMetaNode(Str ing[]) method. If a plugin returns a non-null value, the Dmt Ad-
min service must use that value, possibly complemented by its own metadata for elements not
provided by the plugin.

Meta Data Dmt Admin Service Specification Version 2.0

Page 396 OSGi Compendium Release 8

The MetaNode interface supports methods to retrieve read-only meta data. The following sections
describes this meta-data in more detail.

117.5.1 Operations
The can(int) method provide information as to whether the associated node can perform the given
operation. This information is only about the capability; it can still be restricted in runtime by ACLs
and permissions.

For example, if the can(MetaNode.CMD_EXECUTE) method returns true , the target object supports
the Execute operation. That is, calling the execute(Str ing,Str ing) method with the target URI is pos-
sible.

The can(int) method can take the following constants as parameters:

• CMD_ADD
• CMD_DELETE
• CMD_EXECUTE
• CMD_GET
• CMD_REPLACE

For example:

void foo(DmtSession session, String nodeUri) {
 MetaNode meta = session.getMetaNode(nodeUri);
 if (meta !=null && meta.can(MetaNode.CMD_EXECUTE))
 session.execute(nodeUri,"foo");
}

117.5.2 Scope
The scope is part of the meta information of a node. It provides information about what the life cy-
cle role is of the node. The getScope() method on the Meta Node provides this information. The val-
ue of the scope can be one of the following:

• DYNAMIC - Dynamic nodes are intended to be created and deleted by a management system or
an other controlling source. This does not imply that it actually is possible to add new nodes
and delete nodes, the actions can still allow or deny this. However, in principle nodes that can be
added or deleted have the DYNAMIC scope. The LIST and MAP nodes, see OSGi Object Modeling on
page 423, always have DYNAMIC scope.

• PERMANENT - Permanent nodes represent an entity in the system. This can be a network inter-
face, a device description, etc. Permanent nodes in general map to an object in an object orient-
ed language. Despite their name, PERMANENT nodes can appear and disappear, for example the
plugging in of a USB device might create a new PERMANENT node. Generally, the Plugin roots
map to PERMANENT nodes.

• AUTOMATIC - Automatic nodes map in general to nodes that are closely tied to the parent. They
are similar to fields of an object in an object oriented language. They cannot be deleted or added.

For example, a node representing the Battery can never be deleted because it is an intrinsic part of
the device; it will therefore be PERMANENT . The Level and number of ChargeCycle nodes will be AU-
TOMATIC . A new ring tone is dynamically created by a manager and is therefore DYNAMIC .

117.5.3 Description and Default

• getDescr ipt ion() - (Str ing) A description of the node. Descriptions can be used in dialogs with
end users: for example, a GUI application that allows the user to set the value of a node. Localiza-
tion of these values is not defined.

Dmt Admin Service Specification Version 2.0 Meta Data

OSGi Compendium Release 8 Page 397

• getDefault() - (DmtData) A default data value.

117.5.4 Validation
The validation information allows the runtime system to verify constraints on the values; it also al-
lows user interfaces to provide guidance.

A node does not have to exist in the DMT in order to have meta data associated with it. Nodes may
exist that have only partial meta data, or no metadata, associated with them. For each type of meta-
data, the default value to assume when it is omitted is described in MetaNode .

117.5.5 Data Types
A leaf node can be constrained to a certain format and one of a set of MIME types.

• getFormat() - (int) The required type. This type is a logical OR of the supported formats.
• getRawFormatNames() - Return an array of possible raw format names. This is only applicable

when the getFormat() returns the FORMAT_RAW_BINARY or FORMAT_RAW_STRING formats. The
method must return nul l otherwise.

• getMimeTypes() - (Str ing[]) A list of MIME types for leaf nodes or DDF types for interior nodes.
The Dmt Admin service must verify that the actual type of the node is part of this set.

117.5.6 Cardinality
A meta node can constrain the number of siblings (i.e., not the number of children) of an interior
or leaf node. This constraint can be used to verify that a node must not be deleted, because there
should be at least one node left on that level (isZeroOccurrenceAl lowed()), or to verify that a node
cannot be created, because there are already too many siblings (getMaxOccurrence()).

If the cardinality of a meta node is more than one, all siblings must share the same meta node to
prevent an invalid situation. For example, if a node has two children that are described by different
meta nodes, and any of the meta nodes has a cardinality >1, that situation is invalid.

For example, the . /Vendor/RingSignals/<> meta node (where <> stands for any name) could specify
that there should be between 0 and 12 ring signals.

• getMaxOccurrence() - (int) A value greater than 0 that specifies the maximum number of in-
stances for this node.

• isZeroOccurrenceAl lowed() - (boolean) Returns true if zero instances are allowed. If not, the last
instance must not be deleted.

117.5.7 Matching
The following methods provide validation capabilities for leaf nodes.

• isVal idValue(DmtData) - (DmtData) Verify that the given value is valid for this meta node.
• getVal idValues() - (DmtData[]) A set of possible values for a node, or nul l otherwise. This can for

example be used to give a user a set of options to choose from.

117.5.8 Numeric Ranges
Numeric leaf nodes (format must be FORMAT_INTEGER , FORMAT_LONG , or FORMAT_FLOAT) can be
checked for a minimum and maximum value.

Minimum and maximum values are inclusive. That is, the range is [getMin() ,getMax()] . For exam-
ple, if the maximum value is 5 and the minimum value is -5, then the range is [-5,5]. This means that
valid values are -5,-4,-3,-2... 4, 5.

• getMax() - (double) The value of the node must be less than or equal to this maximum value.

Plugins Dmt Admin Service Specification Version 2.0

Page 398 OSGi Compendium Release 8

• getMin() - (double) The value of the node must be greater than or equal to this minimum value.

If no meta data is provided for the minimum and maximum values, the meta node must return the
Double.MIN_VALUE , and Double.MAX_VALUE respectively.

117.5.9 Name Validation
The meta node provides the following name validation facilities for both leaf and interior nodes:

• isVal idName(Str ing) - (Str ing) Verifies that the given name matches the rules for this meta node.
• getVal idNames() - (Str ing[]) An array of possible names. A valid name for this node must appear

in this list.

117.5.10 User Extensions
The Meta Node provides an extension mechanism; each meta node can be associated with a number
of properties. These properties are then interpreted in a proprietary way. The following methods are
used for user extensions:

• getExtensionPropertyKeys() - Returns an array of key names that can be provided by this meta
node.

• getExtensionProperty(Str ing) - Returns the value of an extension property.

For example, a manufacturer could use a regular expression to validate the node names with the
isVal idName(Str ing) method. In a web based user interface it is interesting to provide validity
checking in the browser, however, in such a case the regular expression string is required. This
string could then be provided as a user extension under the key x-acme-regex-javascr ipt .

117.6 Plugins
The Plugins take the responsibility of handling DMT operations within certain sub-trees of the
DMT. It is the responsibility of the Dmt Admin service to forward the operation requests to the ap-
propriate plugin. The only exceptions are the ACL manipulation commands. ACLs must be enforced
by the Dmt Admin service and never by the plugin. The model is depicted in Figure 117.9.

Figure 117.9 Device Management Tree example

Device Operator

ScreenSavers

OSGiOMA DM

Battery

Level Temp Cycles

<<service>>
Data Pluginhandled by

Battery Handler
Impl

.
Plugin root node

Plugins are OSGi services. The Dmt Admin service must dynamically map and unmap the plugins,
acting as node handler, as they are registered and unregistered. Service properties are used to speci-
fy the sub-tree that the plugin can manage as well as mount points that it provides to Child Plugins;
plugins that manage part of the Plugin's sub-tree.

Dmt Admin Service Specification Version 2.0 Plugins

OSGi Compendium Release 8 Page 399

For example, a plugin related to Configuration Admin handles the sub-tree which stores configu-
ration data. This sub-tree could start at . /OSGi/Configurat ion . When the client wants to add a new
configuration object to the DMT, it must issue an Add operation to the . /OSGi/Configurat ion node.
The Dmt Admin service then forwards this operation to the configuration plugin. The plugin maps
the request to one or more method calls on the Configuration Admin service. Such a plugin can be a
simple proxy to the Configuration Admin service, so it can provide a DMT view of the configuration
data store.

There are two types of Dmt plugins: data plugins and exec plugins. A data plugin is responsible for
handling the sub-tree retrieval, addition and deletion operations, and handling of meta data, while
an exec plugin handles a node execution operation.

117.6.1 Data Sessions
Data Plugins must participate in the Dmt Admin service sessions. A Data Plugin provider must
therefore register a Data Plugin service. Such a service can create a session for the Dmt Admin ser-
vice when the given sub-tree is accessed by a Dmt Session. If the associated Dmt Session is later
closed, the Data Session will also be closed. Three types of sessions provide different capabilities.
Data Plugins do not have to implement all session types; if they choose not to implement a session
type they can return nul l .

• Readable Data Session - Must always be supported. It provides the basic read-only access to the
nodes and the close() method. The Dmt Admin service uses this session type when the lock
mode is LOCK_TYPE_SHARED for the Dmt Session. Such a session is created with the plugin's
openReadOnlySession(Str ing[] ,DmtSession) , method which returns a ReadableDataSession
object.

• Read Write Data Session - Extends the Readable Data Session with capabilities to modify the DMT.
This is used for Dmt Sessions that are opened with LOCK_TYPE_EXCLUSIVE . Such a session is cre-
ated with the plugin's openReadWriteSession(Str ing[] ,DmtSession) method, which returns a
ReadWriteDataSession object.

• Transactional Data Session - Extends the Read Write Data Session with commit and rollback
methods so that this session can be used with transactions. It is used when the Dmt Session
is opened with lock mode LOCK_TYPE_ATOMIC . Such a session is created with the plugin's
openAtomicSession(Str ing[] ,DmtSession) method, which returns a TransactionalDataSession
object.

117.6.2 URIs and Plugins
The plugin Data Sessions do not use a simple string to identify a node as the Dmt Session does. In-
stead the URI parameter is a Str ing[] . The members of this Str ing[] are the different segments. The
first node after the root is the second segment and the node name is the last segment. The different
segments require escaping of the solidus (' / ' \u002F) and reverse solidus (' \ ' \u005C).

The reason to use Str ing[] objects instead of the original string is to reduce the number times that
the URI is parsed. The entry String objects, however, are still escaped. For example, the URI . /A/B/ im-
age\/ jpg gives the following Str ing[] :

{ ".", "A", "B", "image\/jpg" }

A plugin can assume that the path is validated and can be used directly.

117.6.3 Associating a sub-tree
Each plugin is associated with one or more DMT sub-trees. The top node of a sub-tree is called the
plugin root. The plugin root is defined by a service registration property. This property is different for
exec plugins and data plugins:

• DATA_ROOT_URIS - (Str ing+) A sequence of data URI, defining a plugin root for data plugins.

Plugins Dmt Admin Service Specification Version 2.0

Page 400 OSGi Compendium Release 8

• EXEC_ROOT_URIS - (Str ing+) A sequence of exec URI, defining a plugin root for exec plugins.

If the Plugin modifies these service properties then the Dmt Admin service must reflect these
changes as soon as possible. The reason for the different properties is to allow a single service to reg-
ister both as a Data Plugin service as well as an Exec Plugin service.

Data and Exec Plugins live in independent trees and can fully overlap. However, an Exec Plugin can
only execute a node when the there exists a valid node at the corresponding node in the Data tree.
That is, to be able to execute a node it is necessary that isNodeUri(Str ing) would return true .

For example, a data plugin can register itself in its activator to handle the sub-tree . /Dev/Battery :

public void start(BundleContext context) {
 Hashtable ht = new Hashtable();
 ht.put(Constants.SERVICE_PID, "com.acme.data.plugin");
 ht.put(DataPlugin.DATA_ROOT_URIS, "./Dev/Battery");
 context.registerService(
 DataPlugin.class.getName(),
 new BatteryHandler(context);
 ht);
}

If this activator was executed, an access to . /Dev/Battery must be forwarded by the Dmt Admin ser-
vice to this plugin via one of the data session.

117.6.4 Synchronization with Dmt Admin Service
The Dmt Admin service can, in certain cases, detect that a node was changed without the plugin
knowing about this change. For example, if the ACL is changed, the version and timestamp must be
updated; these properties are maintained by the plugin. In these cases, the Dmt Admin service must
open a ReadableDataSession and call nodeChanged(Str ing[]) method with the changed URI.

117.6.5 Plugin Meta Data
Plugins can provide meta data; meta data from the Plugin must take precedence over the meta data
of the Dmt Admin service. If a plugin provides meta information, the Dmt Admin service must veri-
fy that an operation is compatible with the meta data of the given node.

For example if the plugin reports in its meta data that the . /A leaf node can only have the text/plain
MIME type, the createLeafNode(Str ing) calls must not be forwarded to the Plugin if the third argu-
ment specifies any other MIME type. If this contract between the Dmt Admin service and the plugin
is violated, the plugin should throw a Dmt Exception METADATA_MISMATCH .

117.6.6 Plugins and Transactions
For the Dmt Admin service to be transactional, transactions must be supported by the data plug-
ins. This support is not mandatory in this specification, and therefore the Dmt Admin service has
no transactional guarantees for atomicity, consistency, isolation or durability. The DmtAdmin inter-
face and the DataPlugin (or more specifically the data session) interfaces, however, are designed to
support Data Plugin services that are transactional. Exec plugins need not be transaction-aware be-
cause the execute method does not provide transactional semantics, although it can be executed in
an atomic transaction.

Data Plugins do not have to support atomic sessions. When the Dmt Admin service creates a Trans-
actional Data Session by calling openAtomicSession(Str ing[] ,DmtSession) the Data Plugin is al-
lowed to return nul l . In that case, the plugin does not support atomic sessions. The caller receives a
Dmt Exception.

Plugins must persist any changes immediately for Read Write Data Sessions. Transactional Data Ses-
sions must delay changes until the commit() method is called, which can happen multiple times

Dmt Admin Service Specification Version 2.0 Plugins

OSGi Compendium Release 8 Page 401

during a session. The opening of an atomic session and the commit() and rol lback() methods all es-
tablish a transaction point. Rollback can never go further back than the last transaction point.

• commit() - Commit any changes that were made to the DMT but not yet persisted. This method
should not throw an Exception because other Plugins already could have persisted their data and
can no longer roll it back. The commit method can be called multiple times in an open session,
and if so, the commit must make persistent the changes since the last transaction point.

• rol lback() - Undo any changes made to the sub-tree since the last transaction point.
• close() - Clean up and release any locks. The Dmt Admin service must call the commit methods

before the close method is called. A Plugin must not perform any persistency operations in the
close method.

The commit() , rol lback() , and close() plugin data session methods must all be called in reverse order
of that in which Plugins joined the session.

If a Plugin throws a fatal exception during an operation, the Dmt Session must be rolled back imme-
diately, automatically rolling back all data plugins, as well as the plugins that threw the fatal Dmt
Exception. The fatality of an Exception can be checked with the Dmt Exception isFatal() method.

If a plugin throws a non-fatal exception in any method accessing the DMT, the current operation
fails, but the session remains open for further commands. All errors due to invalid parameters (e.g.
non-existing nodes, unrecognized values), all temporary errors, etc. should fall into this category.

A rollback of the transaction can take place due to any irregularity during the session. For example:

• A necessary Plugin is unregistered or unmapped
• A fatal exception is thrown while calling a plugin
• Critical data is not available
• An attempt is made to breach the security

Any Exception thrown during the course of a commit() or rol lback() method call is considered fa-
tal, because the session can be in a half-committed state and is not safe for further use. The opera-
tion in progress should be continued with the remaining Plugins to achieve a best-effort solution in
this limited transactional model. Once all plugins have been committed or rolled back, the Dmt Ad-
min service must throw an exception, specifying the cause exception(s) thrown by the plugin(s),
and should log an error.

117.6.7 Side Effects
Changing a node's value will have a side effect of changing the system. A plugin can also, however,
cause state changes with a get operation. Sometimes the pattern to use a get operation to perform
a state changing action can be quite convenient. The get operation, however, is defined to have no
side effects. This definition is reflected in the session model, which allows the DMT to be shared
among readers. Therefore, plugins should refrain from causing side effects for read-only operations.

117.6.8 Copying
Plugins do not have to support the copy operation. They can throw a Dmt Exception with a code
FEATURE_NOT_SUPPORTED . In this case, the Dmt Admin service must do the copying node by
node. For the clients of the Dmt Admin service, it therefore appears that the copy method is always
supported.

117.6.9 Scaffold Nodes
As Plugins can be mapped anywhere into the DMT it is possible that a part of the URI has no corre-
sponding Plugin, such a plugin would not be reachable unless the intermediate nodes were provid-
ed. A program that would try to discover the DMT would not be able to find the registered Plugins as
the intermediate nodes would not be discoverable.

Plugins Dmt Admin Service Specification Version 2.0

Page 402 OSGi Compendium Release 8

These intermediate nodes that will make all plugins reachable must therefore be provided by the
Dmt Admin service, they are called the scaffold nodes. The only purpose of the scaffold nodes is to al-
low every node to be discovered when the DMT is traversed from the root down. Scaffold nodes are
provided both for Data Plugins as well as Exec Plugins as well as for Child Plugins that are mounted
inside a Parent Plugin, see Sharing the DMT on page 404. In Figure 117.10 the Device node is a scaf-
fold node because there is no plugin associated with it. The Dmt Admin service must, however, pro-
vide the Battery node as child node of the Device node.

Figure 117.10 Scaffold Nodes

Device

Battery

Level Temp Cycles

.

Scaffold node

Plugin Root Node for
plugin with root ./Device/Battery

Scaffold node

A scaffold node is always an interior node and has limited functionality, it must have a type of
DDF_SCAFFOLD . It has no value, it is impossible to add or delete nodes to it, and the methods that
are allowed for a scaffold node are specified in the following table.

Table 117.3 Supported Scaffold Node Methods

Method Description
getNodeAcl(Str ing) Must inherit from the root node.
getChi ldNodeNames(Str ing) Answer the child node names such that plugin's in the sub-tree

are reachable.
getMetaNode(Str ing) Provides the Meta Node defined in Table 117.4
getNodeSize(Str ing) Must throw a DmtException COMMAND_NOT_ALLOWED
getNodeTit le(Str ing) nul l
getNodeTimestamp(Str ing) Time first created
getNodeType(Str ing) DDF_SCAFFOLD
isNodeUri(Str ing) true
isLeafNode(Str ing) false
getNodeVersion(Str ing) Away returns 0
copy(Str ing,Str ing,boolean) Not allowed for a single scaffold node as nodeUri ,

if the recurse parameter is fa lse the DmtException
COMMAND_NOT_ALLOWED

Any other operations must throw a DmtException with error code COMMAND_NOT_ALLOWED .
The scope of a scaffold node is always PERMANENT . Scaffold nodes must have a Meta Node provided
by the Dmt Admin service. This Meta Node must act as defined in the following table.

Table 117.4 Scaffold Meta Node Supported Methods

Method Description
can(int) CMD_GET
getDefault() nul l

Dmt Admin Service Specification Version 2.0 Plugins

OSGi Compendium Release 8 Page 403

Method Description
getDescr ipt ion() nul l
getFormat() FORMAT_NODE
getMax() Double.MAX_VALUE
getMaxOccurrence() 1
getMimeTypes() DDF_SCAFFOLD
getMin() Double.MIN_VALUE
getRawFormatNames() nul l
getScope() PERMANENT
getVal idNames() nul l
getVal idValues() nul l
isLeaf() false
isVal idName(Str ing) true
isVal idValue(DmtData) false
isZeroOccurrenceAl lowed() true

If a Plugin is registered then it is possible that a scaffold node becomes a Data Plugin root node. In
that case the node and the Meta Node must subsequently be provided by the Data Plugin and can
thus become different. Scaffold nodes are virtual, there are therefore no events associated with the
life cycle of a scaffold node.

For example, there are three plugins registered:

URI Plugin Children
./A/B P1 ba
./A/C P2 ca
./A/X/Y P3 ya,yb

In this example, node B , C , and Y are the plugin roots of the different plugins. As there is no plugin
the manage node A and X these must be provided by the Dmt Admin service. In this example, the
child names returned from each node are summarized as follows:

Node Children Provided by
. { A } Dmt Admin (scaffold node)
A { X, C, B } Dmt Admin (scaffold node)
B { ba } P1
C { ca } P2
X { Y } Dmt Admin (scaffold node)
Y { ya, yb } P3

Figure 117.11 Example Scaffold Nodes

.
.

BC

Y

.

P1

A

X P2

P3

ya yb

ca ba

Sharing the DMT Dmt Admin Service Specification Version 2.0

Page 404 OSGi Compendium Release 8

117.7 Sharing the DMT
The Dmt Admin service provides a model to integrate the management of the myriad of compo-
nents that make up an OSGi device. This integration is achieved by sharing a single namespace: the
DMT. Sharing a single namespace requires rules to prevent conflicts and to resolve any conflicts
when Plugins register with plugin roots that overlap. It also requires rules for the Dmt Admin ser-
vice when nodes are accessed for which there is no Plugin available.

This section defines the management of overlapping plugins through the mount points, places where
a Parent Plugin can allow a Child Plugin to take over.

117.7.1 Mount Points
With multiple plugins the DMT is a shared namespace. Sharing requires rules to ensure that conflicts
are avoided and when they occur, can be resolved in a consistent way. The most powerful and flexi-
ble model is to allow general overlapping. However, in practice this flexibility comes at the cost of
ordering issues and therefore timing dependent results. A best practice is therefore to strictly con-
trol the points where the DMT can be extended for both Data and Exec Plugins.

A mount point is such a place. A Dmt Admin service at start up provides virtual mount points any-
where in the DMT and provides scaffold nodes for any intermediate nodes between the root of the
DMT and the Plugin's root URI. Once a Plugin is mounted it is free to use its sub-tree (the plugin root
and any ancestors) as it sees fit. However, this implies that the Plugin must implement the full sub-
tree. In reality, many object models use a pattern where the different levels in the object model map
to different domains.

For example, an Internet Gateway could have an object model where the general information, like
the name, vendor, etc. is stored in the first level but any attached interfaces are stored in the sub-tree.
However, It is highly unlikely that the code that handles the first level with the general information
is actually capable of handling the details of, for example, the different network interfaces. It is actu-
ally likely that these network interfaces are dynamic. A Virtual Private Network (VPN) can add vir-
tual network interfaces on demand. Such a could have the object model depicted in Figure 117.12.

Figure 117.12 Data Modeling

.
..

Gateway

Name Interface

WANLAN

VPN

Forcing these different levels to be implemented by the same plugin violates one of the primary
rules of modularity: cohesion. Plugins forced to handle all aspects become complex and hard to main-
tain. A Plugin like the one managing the Gateway node could provide its own Plugin mechanism
but that would force a lot of replication and is error prone. For this reason, the Dmt Admin service
allows a Plugin to provide mount points inside its sub-tree. A Plugin can specify that it has mount
points by registering a MOUNT_POINTS service property (the constant is defined both in DataPlug-
in and ExecPlugin but have the same constant value). The type of this property must be Str ing+ , each
string specifies a mount point. Each mount point is specified as a URI that is relative from the plug-

Dmt Admin Service Specification Version 2.0 Sharing the DMT

OSGi Compendium Release 8 Page 405

in root. That is, when the plugin root is . /A/B and the mount point is specified as C then the absolute
URI of the mount point is . /A/B/C .

A Plugin that has mount points acts as a Parent Plugin to a number of Child Plugins. In the previ-
ous example, the LAN, VPN, and WAN nodes, can then be provided by separate Child Plugins even
though the Gateway/Name node is provided by the Parent Plugin. In this case, the mount points are
children of the Interface node.

A mount point can be used by a number of child plugins. In the previous example, there was a Child
Plugin for the LAN node, the VPN node, and the WAN node. This model has the implicit problem
that it requires coordination to ensure that their names are unique. Such a coordination between in-
dependent parties is complicated and error prone. Its is therefore possible to force the Dmt Admin
service to provide unique names for these nodes, see Shared Mount Points on page 406.

A Parent Plugin is not responsible for any scaffolding nodes to make its Child Plugins reachable.
However, Dmt Admin may assume that a Plugin Root node always exists and may not provide a scaf-
fold node on the Plugin Root. A Plugin is recommended to always provide the Plugin Root node to
make its Child Plugins reachable. When a Parent Plugin provides the nodes to its mount points, the
nodes should be the correct interior nodes to make its Child Plugins reachable.

For example, the following setup of plugins:

Plugin Plugin Root Mount Points
P1 ./A X/B
P2 ./A/X/B

This setup is depicted in Figure 117.13.

Figure 117.13 Example Scaffold Nodes For Child Plugin

..

A

B

.

P1

X

P2

g

g

mount
point

f

If the child node names are requested for the . /A node then the plugin P1 is asked for the child node
names and must return the names [f,g] . However, if plugin P2 is mapped then the Dmt Admin ser-
vice must add the scaffold node name that makes this plugin reachable from that level, the returned
set must therefore be [f, g, X] .

117.7.2 Parent Plugin
If a Plugin is registered with mount points then it is a Parent Plugin. A Parent Plugin must register
with a single plugin root URI, that is the DATA_ROOT_URIS or EXEC_ROOT_URIS service properties
must contain only one element. A Parent Plugin is allowed to be a Data and Exec Plugin at the same
time. If a Parent Plugin is registered with multiple plugin root URIs then the Dmt Admin service
must log an error and ignore the registration of such a Parent Plugin. A Parent Plugin can in itself al-
so be a Child Plugin.

For example, a Plugin P1 that has a plugin root of . /A/B and provides a mount point at . /A/B/C and . /
A/B/E/F. as depicted in Figure 117.14.

Sharing the DMT Dmt Admin Service Specification Version 2.0

Page 406 OSGi Compendium Release 8

Figure 117.14 Example Mount Points

.
.

B

.

A

P1

C

Mount point

E

F

Registering such a Plugin would have to register the following service properties to allow the exam-
ple configuration of the DMT:

dataRootUris ./A/B
mountPoints [C, E/F]

117.7.3 Shared Mount Points
Mount points can be shared between different Plugins. In the earlier example about the Gateway
the Interface node contained a sub-tree of network interfaces. It is very likely in such an example
that the Plugins for the VPN interface will be provided by a different organization than the WAN
and LAN network interfaces. However, all these network interface plugins must share a single par-
ent node, the Interface node, under which they would have to mount. Sharing therefore requires a
prior agreement and a naming scheme.

The naming scheme is defined by using the number sign ('# ' \u0023) to specify a shared mount point.
A plugin root that ends with the number sign, for example . /A/B/# , indicates that it is willing to
get any node under node B , leaving the naming of that node up to the Dmt Admin service. Shared
mount points cannot overlap with normal mount points, the first one will become mapped and
subsequent ones are in error, they are incompatible with each other. A Parent Plugin must specify a
mount point explicitly as a shared mount point by using the number sign at the end of the mount
point's relative URI.

A plugin is compatible with other plugins if all other plugins specify a shared mount point to the
same URI. It is compatible with its Parent Plugin if the child's plugin root and the mount point are
either shared or not.

The Dmt Admin service must provide a name for a plugin root that identifies a shared mount
point such that every Plugin on that mount point has a unique integer name for that node lev-
el. The integer name must be >= 1. The name must be convertible to an int with the static Integer
parseInt(Str ing) method.

A management system in general requires permanent links to nodes. It is therefore necessary to
choose the same integer every time a plugin is mapped to a shared mount point. A Child Plugin on
a shared mount point must therefore get a permanent integer node name when it registers with a
Persistent ID (PID). That is, it registers with the service property service.pid . The permanent link is
then coupled to the PID and the bundle id since different bundles must be able to use the same PID.
If a Plugin is registered with multiple PIDs then the first one must be used. Since permanent links
can stay around for a long time implementations must strive to not reuse these integer names.

If no PID is provided then the Dmt Admin service must choose a new number that has not been used
yet nor matches any persistently stored names that are currently not registered.

The Gateway example would require the following Plugin registrations:

Dmt Admin Service Specification Version 2.0 Sharing the DMT

OSGi Compendium Release 8 Page 407

Root URI Mount Points Plugin Role
./Gateway [Interface/#] Gateway Parent
./Gateway/Interface/# [] WAN If. Child
./Gateway/Interface/# [] LAN If. Child
./Gateway/Interface/# [] VPN.1 Child

This setup is depicted in Figure 117.15.

Figure 117.15 Mount Point Sharing

.
..

Gateway

Name Interface

WAN
If.

LAN
If.

VPN
.1

12 33 42 Assigned by Dmt Admin

The Meta Node for a Node on the level of the Mount Point can specify either an existing Plugin or it
can refer to a non-existing node. If the node exists, the corresponding Plugin must provide the Meta
Node. If the node does not exist, the Dmt Admin service must provide the Meta Node. Such a Meta
Node must provide the responses as specified in Table 117.4.

Table 117.5 Shared Mount Point Meta Node Supported Methods

Method Description
can(int) CMD_GET
getDefault() nul l
getDescr ipt ion() nul l
getFormat() FORMAT_NODE
getMax() Double.MAX_VALUE
getMaxOccurrence() Integer.MAX_VALUE
getMimeTypes() nul l
getMin() Double.MIN_VALUE
getRawFormatNames() nul l
getScope() The scope will depend on the Parent
getVal idNames() nul l
getVal idValues() nul l
isLeaf() false
isVal idName(Str ing) name >=1 && name < Integer.MAX_VALUE
isVal idValue(DmtData) false
isZeroOccurrenceAl lowed() true

A URI can cross multiple mount points, shared and unshared. For example, if a network interface
could be associated with a number of firewall rules then it is possible to register a URI on the desig-
nated network interface that refers to the Firewall rules. For the previous example, a Plugin could
register a Firewall if the following registrations were done:

Root URI Mount Points Plugin Parent Name

Sharing the DMT Dmt Admin Service Specification Version 2.0

Page 408 OSGi Compendium Release 8

./Gateway [Interface/#] Gw

./Gateway/Interface/# [Fw/#] WAN If. Gw 11

./Gateway/Interface/# [] LAN If. Gw 33

./Gateway/Interface/# [] VPN.1 Gw 42

./Gateway/Interface/11/Fw/# [] Fw.1 WAN If. 97

This example DMT is depicted in Figure 117.16.

Figure 117.16 Mount Point Multiple Sharing

.
..

Name Interface

WAN
LAN

VPN

11 33 42 Assigned by Dmt Admin

Fw

97Fw#1

Gateway

117.7.4 Mount Points are Excluded
Mount nodes are logically not included in the sub-tree of a Plugin. The Dmt Admin service must
never ask any information from/about a Mount Point node to its Parent Plugin. A Parent Plugin
must also not return the name of a mount point in the list of child node names, the Mount Point
and its subtree is logically excluded from the sub-tree. For the Dmt Admin service an unoccupied
mount point is a node that does not exist. Its name, must only be discoverable if a Plugin has actual-
ly mounted the node. The Dmt Admin service must ensure that the names of the mounted Plugins
are included for that level.

In the case of shared mount points the Dmt Admin service must provide the children names of all
registered Child Plugins that share that node level.

For example, a Plugin P1 registered with the plugin root of . /A/B , having two leaf nodes E , and a
mount point C must not return the name C when the child node names for node B are requested.
This is depicted in Figure 117.17. The Dmt Admin service must ensure that C is returned in the list of
names when a Plugin is mounted on that node.

Figure 117.17 Example Exclusion

.
.

B

.

A

P1

CE
not returned in getChildNodeNames
method of the Plugin

Dmt Admin Service Specification Version 2.0 Sharing the DMT

OSGi Compendium Release 8 Page 409

117.7.5 Mapping a Plugin
A Plugin is not stand alone, its validity can depend on other Plugins. Invalid states make it possible
that a Plugin is either mapped or unmapped. When a Plugin is mapped it is available in the DMT and
when it is unmapped it is not available. Any registration, unregistration, or modification of its ser-
vices properties of a Plugin can potentially alter the mapped state of any related Plugin. A plugin be-
comes eligible for mapping when it is registered.

A plugin can have multiple roots. However, the mapping is described as if there is a single plugin
root. Plugins with multiple roots must be treated as multiple plugins that can each independently
be mapped or unmapped depending on the context.

If no Parent Plugin is available, the Dmt Admin service must act as a virtual Parent Plugin that al-
lows mount points anywhere in the tree where there is no mapped plugin yet.

When a Plugin becomes eligible then the following assertions must be valid for that Plugin to be-
come mapped:

• If it has one or more mount points then
• It must have at most one Data and/or Exec Root URI.
• None of its mount points must overlap.
• Any already mapped Child Plugins must be compatible with its mount points.

• If no mount points are specified then there must be no Child Plugins already registered.
• The plugin root must be compatible with the corresponding parent's mount point. When a Par-

ent Plugin is available, the plugin root must match exactly to the absolute URI of the parent's
mount point.

• The plugin root must be compatible with any other plugins on that mount point.

If either of these assertions fail then the Dmt Admin service must log an error and ignore the
registered Plugin, it must not become mapped. If, through the unregistration or modification of
the service properties, the assertions can become valid then the Dmt Admin service must retry
mapping the Plugin so that it can become available in the DMT. Any mappings and unmap-
pings that affect nodes that are in the sub-tree of an active session must abort that session with a
CONCURRENT_ACCESS exception.

When there are errors in the configuration then the ordering will define which plugins are mapped
or not. Since this is an error situation no ordering is defined between conflicting plugins.

For example, a number of Plugins are registered in the given order:

Plugin Root Children Mount Points Plugin
./A/B E C P1
./A/B/C P2
./A/B/D P3

The first Plugin P1 will be registered immediately without problems. It has only a single plugin root
as required by the fact that it is a Parent Plugin (it has a mount point). There are no Child Plugins yet
so it is impossible to have a violation of the mount points. As there is no Parent Plugin registered,
the Dmt Admin service will map plugin P1 and automatically provide the scaffold node A .

When Plugin P2 is registered its plugin root maps to a mount point in Plugin P1 . As P2 is not a Parent
Plugin it is only necessary that it has no Child Plugins. As it has no Child Plugins, the mapping will
succeed.

Plugin P3 cannot be mapped because the Parent Plugin is P1 but P1 does not provide a mount point
for P3 's plugin root . /A/B/D .

If, at a later time P1 is unregistered then the Dmt Admin service must map plugin P3 and leave plug-
in P2 mapped. This sequence of action is depicted in Figure 117.18.

Sharing the DMT Dmt Admin Service Specification Version 2.0

Page 410 OSGi Compendium Release 8

If plugin P1 becomes registered again at a later time it can then in its turn not be mapped as there
would be a child plugin (P3) that would not map to its mount point.

Figure 117.18 Plugin Activation

.

B

.

A

P1

CE

.

B

.

A

P1

CE

.

B

.

A

P1

CEP2

D

P2

P3

P1 Registered
and mapped

P2 registered
and mapped

P3 is registered
but cannot be mapped

??

..

A

CDP3 C P2

B

P1 is unregistered
mapping P3

117.7.6 Mount Plugins
In Mapping a Plugin on page 409 it is specified that a Plugin can be mapped or not. The mapped
state of a Plugin can change depending on other plugins that are registered and unregistered. Plug-
ins require in certain cases to know:

• What is the name of their root node if they mount on a shared mount point.
• What is the mapping state of the Plugin.

To find out these details a Plugin can implement the MountPlugin interface; this is a mixin inter-
face, it is not necessary to register it as MountPlugin service. The Dmt Admin service must do an in-
stanceof operation on Data Plugin services and Exec Plugin services to detect if they are interested
in the mount point information.

The Mount Point interface is used by the Dmt Admin service to notify the Plugin when it becomes
mapped and when it becomes unmapped. The Plugin will be informed about each plugin root sepa-
rately.

The Mount Plugin specifies the following methods that are called synchronously:

• mountPointAdded(MountPoint) - The Dmt Admin service must call this method after it has
mapped a plugin root. From this point on the given mount point provides the actual path until
the mountPointRemoved(MountPoint) is called with an equal object. The given Mount Point can
be used to post events.

• mountPointRemoved(MountPoint) - The Dmt Admin service must call this method after it has
unmapped the given mount point. This method must always be called when a plugin root is un-
mapped, even if this is caused by the unregistration of the plugin.

As the mapping and unmapping of a plugin root can happen any moment in time a Plugin that im-
plements the Mount Plugin interface must be prepared to handle these events at any time on any
thread.

The MountPoint interface has two separate responsibilities:

• Path - The path that this Mount Point is associated with. This path is a plugin root of the plugin.
This path is identical to the Plugin's root except when it is mounted on a shared mount point;
in that case the URI ends in the name chosen by the Dmt Admin service. The getMountPath()
method provides the path.

Dmt Admin Service Specification Version 2.0 Access Control Lists

OSGi Compendium Release 8 Page 411

• Events - Post events about the given sub-tree that signal internal changes that occur outside
a Dmt Session. The Dmt Admin service must treat these events as they were originated from
modifications to the DMT. That is, they need to be forwarded to the Event Admin as well as
the Dmt Listeners. For this purpose there are the postEvent(Str ing,Str ing[] ,Dict ionary) and
postEvent(Str ing,Str ing[] ,Str ing[] ,Dict ionary) methods.

For example, a Data Plugin monitoring one of the batteries registers with the following service prop-
erties:

dataRootURIs "./Device/Battery/#"

The Device node is from a Parent Plugin that provided the shared mount point. The Battery Plugin
implements the MountPlugin interface so it gets called back when it is mapped. This will cause the
Dmt Admin service to call the mountPointAdded(MountPoint) method on the plugin. In this case, it
will get just one mount point, the mount point for its plugin root. If the Dmt Admin service would
have assigned the Battery Plugin number 101 then the getMountPath() would return:

[".", "Device", "Battery", "101"]

As the Plugin monitors the charge state of the battery it can detect a significant change. In that case
it must send an event to notify any observers. The following code shows how this could be done:

@Component(properties="dataRootURIs=./Device/Battery/#",
 provide=DataPlugin.class)
public class Battery implements DataPlugin, MountPlugin {
 Timer timer;
 volatile float charge;
 TimerTask task;

 public void mountPointsAdded(final MountPoint[] mountPoints){
 task = new TimerTask() {
 public void run() {
 float next = measure();
 if (Math.abs(charge - next) > 0.2) {
 charge = next;
 mountPoints[0].postEvent(DmtConstants.EVENT_TOPIC_REPLACED,
 new String[] { "Charge" }, null);
 }
 }
 };
 timer.schedule(task, 1000);
 }

 public void mountPointsRemoved(MountPoint[] mountPoints){
 task.cancel();
 task = null;
 }
 ... // Other methods
}

117.8 Access Control Lists
Each node in the DMT can be protected with an access control list, or ACL. An ACL is a list of associa-
tions between Principal and Operation:

Access Control Lists Dmt Admin Service Specification Version 2.0

Page 412 OSGi Compendium Release 8

• Principal - The identity that is authorized to use the associated operations. Special principal is the
wildcard ('* ' \u002A); the operations granted to this principal are called the global permissions.
The global permissions are available to all principals.

• Operation - A list of operations: ADD, DELETE, GET, REPLACE, EXECUTE .

DMT ACLs are defined as strings with an internal syntax in [1] OMA DM-TND v1.2 draft. Instances of
the ACL class can be created by supplying a valid OMA DM ACL string as its parameter. The syntax
of the ACL is presented here in shortened form for convenience:

acl ::= (acl-entry ('&' acl-entry)*)
acl-entry ::= command '=' (principals | '*')
principals ::= principal ('+' principal)*
principal ::= ~['=' '&' '*' '+' '\t' '\n' '\r']+

The principal name should only use printable characters according to the OMA DM specification.

command ::= 'Add' | 'Delete' | 'Exec'| 'Get' | 'Replace'

White space between tokens is not allowed.

Examples:

Add=*&Replace=*&Get=*

Add=www.sonera.fi-8765&Delete=www.sonera.fi-8765& «
Replace=www.sonera.fi-8765+321_ibm.com&Get=*

The Acl(Str ing) constructor can be used to construct an ACL from an ACL string. The toStr ing()
method returns a Str ing object that is formatted in the specified form, also called the canonical
form. In this form, the principals must be sorted alphabetically and the order of the commands is:

 ADD, DELETE, EXEC, GET, REPLACE

The Acl class is immutable, meaning that a Acl object can be treated like a string, and that the object
cannot be changed after it has been created.

ACLs must only be verified by the Dmt Admin service when the session has an associated principal.

ACLs are properties of nodes. If an ACL is not set (i.e. contains no commands nor principals), the ef-
fective ACL of that node must be the ACL of its first ancestor that has a non-empty ACL. This effec-
tive ACL can be acquired with the getEffect iveNodeAcl(Str ing) method. The root node of DMT
must always have an ACL associated with it. If this ACL is not explicitly set, it should be set to
Add=*&Get=*&Replace=* .

This effect is shown in Figure 117.19. This diagram shows the ACLs set on a node and their effect
(which is shown by the shaded rectangles). Any principal can get the value of p , q and r , but they
cannot replace, add or delete the node. Node t can only be read and replaced by principal S1 .

Node X is fully accessible to any authenticated principal because the root node specifies that all prin-
cipals have Get , Add and Replace access (*->G,A,R).

Dmt Admin Service Specification Version 2.0 Access Control Lists

OSGi Compendium Release 8 Page 413

Figure 117.19 ACL inheritance

.

X

B

p q r

A

* -> Get,Add,Replace

S1 -> Get,Replace

* -> Get
t

The definition and example demonstrate the access rights to the properties of a node, which in-
cludes the value.

Changing the ACL property itself has different rules. If a principal has Replace access to an interi-
or node, the principal is permitted to change its own ACL property and the ACL properties of all its
child nodes. Replace access on a leaf node does not allow changing the ACL property itself.

In the previous example, only principal S1 is authorized to change the ACL of node B because it has
Replace permission on node B 's parent node A .

Figure 117.20 ACLs for the ACL property

.

B

t

A

* -> Get,Add,Replace

S1 -> Get,Replace

S1 -> Get

S1 -> Get,Replace

Figure 117.20 demonstrates the effect of this rule with an example. Server S1 can change the ACL
properties of all interior nodes. A more detailed analysis:

• Root - The root allows all authenticated principals to access it. The root is an interior node so the
Replace permission permits the change of the ACL property.

• Node A - Server S1 has Replace permission and node A is an interior node so principal S1 can
modify the ACL.

• Node B - Server S1 has no Replace permission for node B, but the parent node A of node B grants
principal S1 Replace permission, and S1 is therefore permitted to change the ACL.

• Node t - Server S1 must not be allowed to change the ACL of node t , despite the fact that it has Re-
place permission on node t . For leaf nodes, permission to change an ACL is defined by the Re-
place permission in the parent node's ACL. This parent, node B, has no such permission set and
thus, access is denied.

Access Control Lists Dmt Admin Service Specification Version 2.0

Page 414 OSGi Compendium Release 8

The following methods provide access to the ACL property of the node.

• getNodeAcl(Str ing) - Return the ACL for the given node, this method must not take any ACL in-
heritance into account. The ACL may be nul l if no ACL is set.

• getEffect iveNodeAcl(Str ing) - Return the effective ACL for the given node, taking any inheri-
tance into account.

• setNodeAcl(Str ing,Acl) - Set the node's ACL. The ACL can be nul l , in which case the ef-
fective permission must be derived from an ancestor. The Dmt Admin service must call
nodeChanged(Str ing[]) on the data session with the given plugin to let the plugin update any
timestamps and versions.

The Acl class maintains the permissions for a given principal in a bit mask. The following permis-
sion masks are defined as constants in the Acl class:

• ADD
• DELETE
• EXEC
• GET
• REPLACE

The class features methods for getting permissions for given principals. A number of methods allow
an existing ACL to be modified while creating a new ACL.

• addPermission(Str ing, int) - Return a new Acl object where the given permissions have been
added to permissions of the given principal.

• deletePermission(Str ing, int) - Return a new Acl object where the given permissions have been re-
moved from the permissions of the given principal.

• setPermission(Str ing, int) - Return a new Acl object where the permissions of the given principal
are overwritten with the given permissions.

Information from a given ACL can be retrieved with:

• getPermissions(Str ing) - (int) Return the combined permission mask for this principal.
• getPr incipals() - (Str ing[]) Return a list of principals (Str ing objects) that have been granted per-

missions for this node.

Additionally, the isPermitted(Str ing, int) method verifies if the given ACL authorizes the given per-
mission mask. The method returns true if all commands in the mask are allowed by the ACL.

For example:

 Acl acl = new Acl("Get=S1&Replace=S1");

 if (acl.isPermitted("S1", Acl.GET+Acl.REPLACE))
 ... // will execute

 if (acl.isPermitted(
 "S1", Acl.GET+Acl.REPLACE+Acl.ADD))
 ... // will NOT execute

117.8.1 Global Permissions
Global permissions are indicated with the '* ' and the given permissions apply to all principals. Pro-
cessing the global permissions, however, has a number of non-obvious side effects:

• Global permissions can be retrieved and manipulated using the special '*' principal: all methods
of the Acl class that have a principal parameter also accept this principal.

Dmt Admin Service Specification Version 2.0 Notifications

OSGi Compendium Release 8 Page 415

• Global permissions are automatically granted to all specific principals. That is, the result of the
getPermissions or isPermitted methods will be based on the OR of the global permissions and
the principal-specific permissions.

• If a global permission is revoked, it is revoked from all specific principals, even if the specific
principals already had that permission before it was made global.

• None of the global permissions can be revoked from a specific principal. The OMA DM ACL for-
mat does not handle exceptions, which must be enforced by the deletePermission and setPer-
mission methods.

117.8.2 Ghost ACLs
The ACLs are fully maintained by the Dmt Admin service and enforced when the session has an
associated principal. A plugin must be completely unaware of any ACLs. The Dmt Admin service
must synchronize the ACLs with any change in the DMT that is made through its service interface.
For example, if a node is deleted through the Dmt Admin service, it must also delete an associated
ACL.

The DMT nodes, however, are mapped to plugins, and plugins can delete nodes outside the scope of
the Dmt Admin service.

As an example, consider a configuration record which is mapped to a DMT node that has an ACL. If
the configuration record is deleted using the Configuration Admin service, the data disappears, but
the ACL entry in the Dmt Admin service remains. If the configuration dictionary is recreated with
the same PID, it will get the old ACL, which is likely not the intended behavior.

This specification does not specify a solution to solve this problem. Suggestions to solve this prob-
lem are:

• Use a proprietary callback mechanism from the underlying representation to notify the Dmt Ad-
min service to clean up the related ACLs.

• Implement the services on top of the DMT. For example, the Configuration Admin service could
use a plugin that provides general data storage service.

117.9 Notifications
In certain cases it is necessary for some code on the device to alert a remote management server or to
initiate a session; this process is called sending a notification or an alert. Some examples:

• A Plugin that must send the result of an asynchronous EXEC operation.
• Sending a request to the server to start a management session.
• Notifying the server of completion of a software update operation.

Notifications can be sent to a management server using the
sendNotif icat ion(Str ing, int ,Str ing,Alert Item[]) method on the Notification Service. This method is
on the Notification Service and not on the session, because the session can already be closed when
the need for an alert arises. If an alert is related to a session, the session can provide the required
principal, even after it is closed.

The remote server is alerted with one or more Alert Item objects. The Alert Item class describes de-
tails of the alert. An alert code is an alert type identifier, usually requiring specifically formatted
Alert Item objects.

The data syntax and semantics vary widely between various alerts, and so does the optionality of
particular parameters of an alert item. If an item, such as source or type, is not defined, the corre-
sponding getter method must return nul l .

Notifications Dmt Admin Service Specification Version 2.0

Page 416 OSGi Compendium Release 8

The Alert Item class contains the following items. The value of these items must be defined in an
alert definition:

• source - (Str ing) The URI of a node that is related to this request. This parameter can be nul l .
• type - (Str ing) The type of the item. For example, x-oma-appl icat ion:syncml.samplealert in the

Generic Alert example.
• mark - (Str ing) Mark field of an alert. Contents depend on the alert type.
• data - (DmtData) The payload of the alert with its type.

An Alert Item object can be constructed with two different constructors:

• Alert Item(Str ing,Str ing,Str ing,DmtData) - This method takes all the previously defined fields.
• Alert Item(Str ing[] ,Str ing,Str ing,DmtData) - Same as previous but with a convenience parame-

ter for a segmented URI.

The Notification Service provides the following method to send Alert Item objects to the manage-
ment server:

• sendNotif icat ion(Str ing, int ,Str ing,Alert Item[]) - Send the alert to the server that is associated
with the session. The first argument is the name of the principal (identifying the remote man-
agement system) or nul l for implementation defined routing. The int argument is the alert type.
The alert types are defined by managed object types. The third argument (Str ing) can be used for
the correlation id of a previous execute operation that triggered the alert. The Alert Item objects
contain the data of the alert. The method will run asynchronously from the caller. The Notifica-
tion Service must provide a reliable delivery method for these alerts. Alerts must therefore not be
re-transmitted.

When this method is called with nul l correlator, nul l or empty Alert Item array, and a 0 code as
values, it should send a protocol specific notification that must initiate a new management ses-
sion.

Implementers should base the routing on the session or server information provided as a parame-
ter in the sendNotif icat ion(Str ing, int ,Str ing,Alert Item[]) method. Routing might even be possible
without any routing information if there is a well known remote server for the device.

If the request cannot be routed, the Alert Sender service must immediately throw a Dmt Exception
with a code of ALERT_NOT_ROUTED . The caller should not attempt to retry the sending of the noti-
fication. It is the responsibility of the Notification Service to deliver the notification to the remote
management system.

117.9.1 Routing Alerts
The Notification Service allows external parties to route alerts to their destination. This mechanism
enables Protocol Adapters to receive any alerts for systems with which they can communicate.

Such a Protocol Adapter should register a Remote Alert Sender service. It should provide the follow-
ing service property:

• principals - (Str ing+) The array of principals to which this Remote Alert Sender service can route
alerts. If this property is not registered, the Remote Alert Sender service will be treated as the de-
fault sender. The default alert sender is only used when a more specific alert sender cannot be
found.

If multiple Remote Alert Sender services register for the same principals highest ranking service is
taken as defined in the OSGi Core.

Dmt Admin Service Specification Version 2.0 Exceptions

OSGi Compendium Release 8 Page 417

117.10 Exceptions
Most of the methods of this Dmt Admin service API throw Dmt Exceptions whenever an operation
fails. The DmtException class contains numeric error codes which describe the cause of the error.
Some of the error codes correspond to the codes described by the OMA DM spec, while some are in-
troduced by the OSGi Working Group. The documentation of each method describes what codes
could potentially be used for that method.

The fatality of the exception decides if a thrown Exception rolls back an atomic session or not. If the
isFatal() method returns true , the Exception is fatal and the session must be rolled back.

All possible error codes are constants in the DmtException class.

117.11 Events
There are the following mechanisms to work with events when using the Dmt Admin service.

• Event Admin service - Standard asynchronous notifications
• Dmt Event Listener service - A white board model for listener. A registered DmtEventListener ser-

vice can use service properties to filter the received events

In both cases events are delivered asynchronously and ordered per listener unless otherwise speci-
fied. Events to the DMT can occur because of modifications made in a session or they can occur be-
cause a Plugin changes its internal state and notifies the Dmt Admin service through the Mount-
Point interface.

Changes made through a session always start with a SESSION_OPENED event directly after the ses-
sion is opened. This event must contain the properties defined in Life Cycle Event Properties on page
420.

If events originate from an atomic session then these events must be queued until the sessions is
successfully committed, which can happen multiple times over the life time of a session. If the ses-
sion is rolled back or runs into an error then none of the queued events must be sent.

When a session is closed, which can happen automatically when the session fails, then the
SESSION_CLOSED event must be sent. This event must happen after any queued events. This closed
event must contain the properties defined in Life Cycle Event Properties on page 420.

An event must only be sent when that type of event actually occurred.

117.11.1 Event Admin
Event Admin, when present, must be used to deliver the Dmt Admin events asynchronously. The
event types are specified in Table 117.7 on page 418, the Topic column defines the Event Admin
topic. The Table 117.10 on page 420 and Table 117.9 on page 420 define the Life Cycle and Ses-
sion properties that must be passed as the event properties of Event Admin.

117.11.2 Dmt Event Listeners
To receive the Dmt Admin events it is necessary to register a Dmt Event Listener service. It is possi-
ble to filter the events by registering a combination of the service properties defined in the follow-
ing table.

Events Dmt Admin Service Specification Version 2.0

Page 418 OSGi Compendium Release 8

Table 117.6 Service Properties for the Dmt Event Listener

Service Property Data Type Default Description
FILTER_EVENT Integer All Events A bitmap of DmtEvent types: SESSION_OPENED ,

ADDED , COPIED , DELETED , RENAMED , REPLACED , and
SESSION_CLOSED . A Dmt Event's type must occur in the
bitmap to be delivered.

FILTER_PRINCIPAL Str ing+ Any node Only deliver Dmt Events for which at least one of the giv-
en principals has the right to Get that node.

FILTER_SUBTREE Str ing+ Any node This property defines a number of sub-trees by specifying
the URI of the top nodes of these sub-trees. Only events
that occur in one of the sub-trees must be delivered.

A Dmt Event must only be delivered to a Dmt Event Listener if the Bundle that registers the Dmt
Event Listener service has the GET Dmt Permission for each of the nodes used in the nodes and
newNodes properties as tested with the Bundle hasPermission method.

The Dmt Admin service must track Dmt Event Listener services and deliver matching events as long
as a Dmt Event Listener service is registered. Any changes in the service properties must be expedi-
ently handled.

A Dmt Event Listener must implement the changeOccurred(DmtEvent) method. This method is
called asynchronously from the actual event occurrence but each listener must receive the events in
order.

Events are delivered with a DmtEvent object. This object provides access to the properties of
the event. Some properties are available as methods others must be retrieved through the
getProperty(Str ing) method. The methods that provide property information are listed in the prop-
erty tables, see Table 117.10 on page 420.

117.11.3 Atomic Sessions and Events
The intent of the events is that a listener can follow the modifications to the DMT from the events
alone. However, from an efficiency point of view certain events should be coalesced to minimize the
number of events that a listener need to handle. For this reason, the Dmt Admin service must coa-
lesce events if possible.

Two consecutive events can be coalesced when they are of the same type. In that case the nodes and,
if present, the newNodes of the second event can be concatenated with the first event and the t ime-
stamp must be derived from the first event. It is not necessary to remove duplicates from the nodes
and newNodes . This guarantees that the order of the nodes is in the order of the events.

117.11.4 Event Types
This section describes the events that can be generated by the Dmt Admin service. Table 117.7 enu-
merates all the events and provides the name of the topic of Event Admin and the Dmt Event type
for the listener model.

There are two kinds of events:

• Life Cycle Events - The events for session open and closed are the session events.
• Session Events - ADDED , DELETED , REPLACED , RENAMED , and COPIED .

Session and life cycle events have different properties.

Table 117.7 Event Types

Event Topic Dmt Event Type Description
SESSION OPENED org/osgi/service/dmt/DmtEvent/

SESSION_OPENED
SESSION_OPENED A new session was opened. The event

must the properties defined in Table
117.9 on page 420.

Dmt Admin Service Specification Version 2.0 Events

OSGi Compendium Release 8 Page 419

Event Topic Dmt Event Type Description
ADDED org/osgi/service/dmt/DmtEvent/

ADDED
ADDED One or more nodes were added.

DELETED org/osgi/service/dmt/DmtEvent/
DELETED

DELETED One or more existing nodes were
deleted.

REPLACED org/osgi/service/dmt/DmtEvent/RE-
PLACED

REPLACED Values of nodes were replaced.

RENAMED org/osgi/service/dmt/DmtEvent/RE-
NAMED

RENAMED Existing nodes were renamed.

COPIED org/osgi/service/dmt/DmtEvent/
COPIED

COPIED Existing nodes were copied. A copy
operation does not trigger an ADDED
event (in addition to the COPIED
event), even though new node(s) are
created. For efficiency reasons, recur-
sive copy and delete operations must
only generate a single COPIED and
DELETED event for the root of the af-
fected sub-tree.

SESSION CLOSED org/osgi/service/dmt/DmtEvent/
SESSION_CLOSED

SESSION_CLOSED A session was closed either because it
was closed explicitly or because there
was an error detected. The event must
the properties defined in Table 117.9
on page 420.

117.11.5 General Event Properties
The following properties must be available as the event properties in Event Admin service and the
properties in the Dmt Event for Dmt Event Listener services.

Table 117.8 General Event

Property Name Type Dmt Event Description
event.topics Str ing Event topic, required by Event Admin but must al-

so be present in the Dmt Events.
session. id Integer getSessionId() A unique identifier for the session that triggered

the event. This property has the same value as
getSessionId() of the associated DMT session. If
this event is generated outside a session then the
session id must be -1, otherwise it must be >=1.

timestamp Long The time the event was started as defined by
System.currentTimeMil l is()

bundle Bundle The initiating Bundle, this is the bundle that
caused the event. This is either the Bundle that
opened the associated session or the Plugin's bun-
dle when there is no session (i.e. the session id is
-1).

bundle.signer String+ The signer of the initiating Bundle
bundle.symbolicName String The Bundle Symbolic name of the initiating Bun-

dle
bundle.version Version The Bundle version of the initiating Bundle.
bundle.id Long The Bundle Id of the initiating Bundle.

Events Dmt Admin Service Specification Version 2.0

Page 420 OSGi Compendium Release 8

117.11.6 Session Event Properties
All session events must have the properties defined in the following table.

Table 117.9 Event Properties For Session Events

Property Name Type Dmt Session Description
session.rooturi Str ing getRootUri() The root URI of the session that triggered the

event.
session.pr incipal Str ing getPr incipal() The principal of the session, or absent if no prin-

cipal is associated with this session. In the latter
case the method returns nul l .

session. locktype Integer getLockType() The lock type of the session. The number is
mapped as follows:

• LOCK_TYPE_SHARED - 0
• LOCK_TYPE_EXCLUSIVE - 1
• LOCK_TYPE_ATOMIC - 2

session.t imeout Boolean If the session timed out then this property must
be set to true . If it did not time out this property
must be fa lse .

exception Throwable The name of the actual exception class if the ses-
sion had a fatal exception.

exception.message String Must describe the exception if the session had a
fatal exception.

exception.class String The name of the actual exception class if the ses-
sion had a fatal exception.

117.11.7 Life Cycle Event Properties
All Life Cycle events must have the properties defined in the following table.

Table 117.10 Event Properties for Life Cycle Events

Property Name Type Dmt Event Description
nodes Str ing[] getNodes() The absolute URIs of each affected node. This is

the nodeUri parameter of the Dmt API methods.
The order of the URIs in the array corresponds to
the chronological order of the operations. In case
of a recursive delete or copy, only the session root
URI is present in the array.

newnodes Str ing[] getNewNodes() The absolute URIs of new renamed or copied
nodes. Only the RENAMED and COPIED events
have this property.

The newnodes array runs parallel to the nodes ar-
ray. In case of a rename, newnodes[i] must con-
tains the new name of nodes[i] , and in case of a
copy, newnodes[i] is the URI to which nodes[i]
was copied.

117.11.8 Example Event Delivery
The example in this section shows the change of a non-trivial tree and the events that these changes
will cause.

Dmt Admin Service Specification Version 2.0 Events

OSGi Compendium Release 8 Page 421

Figure 117.21 Example DMT before

.

Q

z

P X

YB

A M

n1

R

s1 s2

value=1

For example, in a given session, when the DMT in Figure 117.21 is modified with the following oper-
ations:

• Open atomic session 42 on the root URI
• Add node . /A/B/C
• Add node . /A/B/C/D
• Rename . /M/n1 to./M/n2
• Copy . /M/n2 to . /M/n3
• Delete node . /P/Q
• Add node . /P/Q
• Delete node . /P/Q
• Replace . /X/Y/z with 3
• Commit
• Close

Figure 117.22 Example DMT after

.

P X

YB

A M

n2

C

D

n3

z value=3

When the Dmt Session is opened, the following event is published:

SESSION_OPENED {
 session.id = 42
 session.rooturi=.
 session.principal=null
 session.locktype=2

Events Dmt Admin Service Specification Version 2.0

Page 422 OSGi Compendium Release 8

 timestamp=1313411544752
 bundle =<Bundle>
 bundle.signer=[]
 bundle.symbolicname"com.acme.bundle"
 bundle.version=1.2.4711
 bundle.id=442
 ...
}

When the Dmt Session is closed (assuming it is atomic), the following events are published:

ADDED {
 nodes = [./A/B/C, ./A/B/C/D] # note the coalescing
 session.id = 42
 ...
}
RENAMED {
 nodes = [./M/n1]
 newnodes = [./M/n2]
 session.id = 42
 ...
}
COPIED {
 nodes = [./M/n2]
 newnodes = [./M/n3]
 session.id = 42
 ...
}
DELETED {
 nodes = [./P/Q]
 session.id = 42
 ...
}
ADDED {
 nodes = [./P/Q]
 session.id = 42
 ...
}
DELETED {
 nodes = [./P/Q]
 session.id = 42
 ...
}
REPLACED {
 nodes = [./X/Y/z]
 session.id = 42
 ...
}
SESSION_CLOSED {
 session.id = 42
 session.rooturi=.
 session.principal=null
 session.locktype=2
 ...
}

Dmt Admin Service Specification Version 2.0 OSGi Object Modeling

OSGi Compendium Release 8 Page 423

117.12 OSGi Object Modeling

117.12.1 Object Models
Management protocols define only half the picture; the object models associated with a particular
protocol are the other half. Object models are always closely associated with a remote management
protocol since they are based on the data types and actions that are defined in the protocol. Even
small differences between the data types of a protocol and its differences make accurate mapping
between protocols virtually impossible. It is therefore necessary to make the distinction between na-
tive and foreign protocols for an object model.

A native protocol for an object model originates from the same specification organization. For ex-
ample, OMA DM consists of a protocol based on SyncML and a number of object models that define
the structure and behavior of the nodes of the DMT. The FOMA specification defines an OMA DM
native object model, it defines how firmware management is done. This is depicted in Figure 117.23.

Figure 117.23 Device Management Architecture

Remote
Manager

Protocol
Adapter

Dmt Admin

Plugin

protocol
object models

Dmt Admin object models

Dmt Admin object model

If an object implements a standardized data model it must be visible through its native Protocol
Adapter, that is the Protocol Adapter that belongs to the object model's standard. For example, an Ex-
ecutionUnit node defined in UPnP Device Management could be implemented as a bundle, exposed
through a Data Plugin for the Dmt Admin service, and then translated by its native UPnP Protocol
Adapter.

If an object is present in the Dmt Admin service it is also available to foreign Protocol Adapters. A for-
eign Protocol Adapter is any Protocol Adapter except its native Protocol Adapter. For example, the
Broadband Forum's ExecutionUnit could be browsed on the foreign OMA DM protocol.

In a foreign Protocol Adapter the object model should be browsable but it would not map to one of
its native object models. Browsable means that the information is available to the Protocol Adapter's
remote manager but not recognized as a standard model for the manager. Browse can include, po-
tentially limited, manipulation.

In a native Protocol Adapter it is paramount that the mapping from the DMT to the native object is
fully correct. It is the purpose of this part of the Dmt Admin service specification to allow the native
Protocol Adapter to map the intentions of the Plugin without requiring knowledge of the specific
native object model. That is, a TR-069 Plugin implementing a WAN interface must be available over

OSGi Object Modeling Dmt Admin Service Specification Version 2.0

Page 424 OSGi Compendium Release 8

the TR-069 protocol without the Protocol Adapter having explicit knowledge about the WAN inter-
faces object models from Broadband Forum.

Therefore, the following use cases are recognized:

• Foreign Mapping - Foreign mapping can is best-effort as there is no object model to follow. Each
Protocol Adapter must define how the Dmt Admin model is mapped for this browse mode.

• Native Mapping - Native mapping must be 100% correct. As it is impossible automatically map
DMTs to arbitrary protocols this specification provides the concept of a mapping model that al-
lows a Plugin to instruct its native Protocol Adapter using Meta Nodes.

117.12.2 Protocol Mapping
The OSGi Working Group specifies an Execution Environment that can be used as a basis for res-
idential gateways, mobiles, or other devices. This raises the issue how to expose the manageabili-
ty of an OSGi device and the objects, the units of manageability, that are implemented through Plu-
gins. Ideally, an object should be able to expose its management interface once and then Protocol
Adapters convert the management interface to specific device management stacks. For example, an
object can be exposed through the Dmt Admin service where then a TR-069 Protocol Adapter maps
the DMT to the TR-069 Remote Procedure Calls (RPC).

Figure 117.24 shows an example of a TR-069 Protocol Adapter and an OMA DM Protocol Adapter.
The TR-069 Protocol Adapter should be able to map native TR-069 objects in the DMT (the Software
Modules Impl in the figure) to Broadband Forum's object models. It should also be able to browse the
foreign DMT and other objects that are not defined in Broadband forum but can be accessed with
the TR-069 RPCs.

Figure 117.24 Implementing & Browsing

TR-157a3
Software
Module Impl

OSGi RMT Impl

Dmt Admin

TR-069
Protocol Adapter

OMA DM
Protocol Adapter

ACS OMA DM
ManagerOMA DM

Manager

nativenative

foreign

A Protocol Mapping is a document that describes the default mapping and the native mechanism for
exact mapping.

The following sections specify how Plugins must implement an object model that is exposed
through the Dmt Admin service. This model is limited from the full Dmt Admin service capabilities
so that for each protocol it is possible to specify a default mapping for browsing as well as a mecha-
nism to ensure that special conversion requirements can be communicated from a Plugin to its na-
tive Protocol Adapter.

117.12.3 Hierarchy
The Dmt Admin model provides an hierarchy of nodes. Each node has a type that is reflected by its
Meta Node. A node is addressed with a URI. The flexibility of the Dmt Admin service allows a large

Dmt Admin Service Specification Version 2.0 OSGi Object Modeling

OSGi Compendium Release 8 Page 425

number of constructs, for example, the name of the node can be used as a value, a feature that some
management standards support. To simplify mapping to foreign Protocol Adapters, some of the fun-
damental constructs have been defined in the following sections.

117.12.4 General Restriction Guidelines
The Dmt Admin service provides a very rich tool to model complex object structures. Many choic-
es can be made that would make it very hard to browse DMTs on non-OMA DM protocols or make
the DMT hard to use through the Dmt Admin service. As Plugins can always signal special case han-
dling to their native Protocol Adapter, any object model design should strive to be easy to use for the
developers and managers. Therefore, this section provides a number of guidelines for the design of
such object models that will improve the browsing experience for many Protocol Adapters.

• Reading of a node must not change the state of a device - Management systems must be able to browse
a tree without causing any side effects. If reading modified the DMT, a management system
would have no way to warn the user that the system is modified. There are a number of technical
reasons as well (race conditions, security holes, and eventing) but the most important reason is
the browsability of the device.

• No use of recursive structures - The Dmt Admin service provides a very rich tree model that has no
problem with recursion. However, this does not have to be true for other models. To increase the
changes that a model is browsable on another device it is strongly recommended to prevent re-
cursive models. For example, TR-069 cannot handle recursive models.

• Only a single format per meta node - Handling different types in different nodes simplifies the da-
ta conversion for both foreign and native protocols. Having a single choice from the Meta Node
makes the conversion straightforward and does not require guessing.

• All nodes must provide a Meta Node - Conversion without a Meta Node makes the conversion very
hard since object model schemas are often not available in the Protocol Adapter.

• Naming - Structured node members must have names only consisting of [a-zA-Z0-9] and must
always start with a character [a-zA-z] . Member names must be different regardless of the case,
that is Abc and ABC must not both be members of the same structured node. The reason for this
restriction is that it makes it more likely that the chosen names are compatible with the support-
ed protocols and do not require escaping.

• Typing - Restrict the used formats to formats that maximize both the interoperability as the ease
of use for Java developers. The following type are widely supported and are easy to use from Java:
• FORMAT_STRING
• FORMAT_BOOLEAN
• FORMAT_INTEGER
• FORMAT_LONG
• FORMAT_FLOAT
• FORMAT_DATE_TIME
• FORMAT_BINARY

117.12.5 DDF
The Data Description Format is part of OMA DM; it provides a description language for the object
model. The following table provides an example of the Data Description Format as used in the OSGi
specifications.

Name Actions Type Card. S Description
FaultType Get integer 1 P ...

The columns have the following meanings:

• Name - The name of the node

OSGi Object Modeling Dmt Admin Service Specification Version 2.0

Page 426 OSGi Compendium Release 8

• Actions - The set of actions that can be executed on the node, see Operations on page 396.
• Type - The type of the node. All lower case are primitives, a name starting with an upper case is

an interior node type. MAP, LIST, and SCAFFOLD are the special types. The NODE type is like
an ANY type. Other type names are then further specified in the document. See Types on page
426.

• Cardinality - The number of occurrences of the node, see Cardinality on page 397.
• Scope - The scope of the node, see Scope on page 396.
• Description - A description of the node.

117.12.6 Types
Each node is considered to have a type. The Dmt Admin service has a number of constructs that have
typing like behavior. There are therefore the following kind of types:

• Primitives - Primitives are data types like integers and strings; they include all the Dmt Admin da-
ta formats. See Primitives on page 427. Primitive type names are always lower case to distin-
guish them from the interior node type names.

• Structured Types - A structured type types a structured node. See Structured Nodes on page 427.
A structured type has a type name that starts with an uppercase. Object models generally consist
of defining these types.

• NODE - A general unqualified Dmt Admin node.
• LIST - A node that represents a homogeneous collection of child nodes; the name of the child

nodes is the index in the collection. See LIST Nodes on page 427.
• MAP - A node that represents a mapping from a key, the name of the child node, and a value, the

value of the child node. All values have the same type. See MAP Nodes on page 429.
• SCAFFOLD - A node provided by the Dmt Admin service or a Parent Plugin to make it possible to

discover a DMT, see Scaffold Nodes on page 401.

Nodes are treated as if there is a single type system. However, the Dmt Admin type system has the
following mechanisms to type a node:

• Format - The Dmt Admin primitive types used for leaf nodes, as defined on Dmt Data.
• MIME - A MIME type on a leaf node which is available through getNodeType(Str ing) .
• DDF Document URI - A Data Description Format URI that provides a type name for an interior

node. The URI provides a similar role as the MIME type for the leaf node and is also available
through getNodeType(Str ing) .

The Dmt Admin service provides the MIME type for leaf nodes and the DDF Document URI for inte-
rior nodes through the getNodeType(Str ing) method. As both are strings they can both be used as
type identifiers. The different types are depicted in Figure 117.25.

Figure 117.25 Type inheritance and structure

Type

Structured
Type

PrimitiveLIST MAP NODE

value type

1

index type

1

n

members

SCAFFOLD

Dmt Admin Service Specification Version 2.0 OSGi Object Modeling

OSGi Compendium Release 8 Page 427

117.12.7 Primitives
A primitive is a value stored in a leaf node. In the Dmt Admin service, the type of the primitive is
called the format. The Dmt Admin service supports a large number of types that have semantic over-
lap. A Protocol Mapping must provide a unique mapping from each Dmt Admin format to the corre-
sponding protocol type and provide conversion from a protocol type to the corresponding Dmt Ad-
min types defined in a Meta Node.

Primitives are documented in OSGi object models with a lower case name that is the last part of
their format definition. For example, for FORMAT_STRING the DDF type name is str ing . A primitive
DDF for an integer leaf node therefore looks like:

Name Act Type Card. S Description
FaultType Get integer 1 P ...

117.12.8 Structured Nodes
A structured node is like a struct in C or a class in an object oriented languages. A structured node is
an interior node with a set of members (child nodes) with fixed names, it is never possible to add
or remove such members dynamically. The meaning of each named node and its type is usually de-
fined in a management specification. For example, a node representing the OSGi Bundle could have
a BundleId child-node that maps to the getBundleId() method on the Bundle interface.

It is an error to add or delete members to a Structured node, this must be reflected in the correspond-
ing Meta Node, that is, Structured nodes must never have the Add or Delete action.

A structured node is defined in a structured type to allow the reuse of the same information in differ-
ent places in an object model. A structured type defines the members and their behaviors. A struc-
tured type can be referred by its name. The name of the type is often, but not required, the name of
the member.

For example, a Unit structured type could look like:

Name Act Type Card. S Description
Id Get long 1 P ...
URL Get Set str ing 1 P ...
Name Get str ing 1 P ...
Cert i f icate Get LIST 1 P
 [index] Get Cert i f icate 1 D Note the use of a structured

type.

117.12.9 LIST Nodes
A LIST node is an interior node representing a collection of elements. The elements are stored in the
child nodes of the LIST node, they are called the index nodes. All index nodes must have the same
type. The names of the index nodes are synthesized and represent the index of the index node. The
first node is always named 0 and the sibling is 1, 2, etc. The sequence must be continuous and must
have no missing indexes. A node name is always a string, it is therefore the responsibility of the plu-
gin to provide the proper names. The index is assumed to be a signed positive integer limiting the
LIST nodes size to Integer.MAX_VALUE elements.

OSGi Object Modeling Dmt Admin Service Specification Version 2.0

Page 428 OSGi Compendium Release 8

Figure 117.26 LIST Nodes

1

LIST node
(org.osgi/1.0/.LIST)

1

0..n 0..n
index nodes

(name is int >= 0 and cont.)

structured LIST primitive LIST

Index nodes should only be used for types where the value of the index node is the identity. For ex-
ample, a network interface has an identity; a manager will expect that a node representing such as
a network interface node will always have the same URI even if other interfaces are added and delet-
ed. Since LIST nodes renumber the index node names when an element is deleted or added, the URI
would fail if a network interface was added or removed. If such a case, a MAP node should be used,
see MAP Nodes on page 429, as they allow the key to be managed by the remote manager.

LIST nodes can be mutable if the Meta Node of its index nodes support the Add or Delete action. A
LIST node is modeled after a java.ut i l .L ist that can automatically accommodate new elements. Get
and Replace operations use the node name to index in this list.

To rearrange the list the local manager can Add and Delete nodes or rename them as it sees fit.
At any moment in time the underlying implementation must maintain a list that runs from 0 to
max(index) (inclusive), where index is the name of the LIST child nodes. Inserting a node requires re-
naming all subsequent nodes. Any missing indexes must automatically be provided by the plugin
when the child node names are retrieved.

For example, a LIST node named L contains the following nodes:

L/0 A
L/1 B
L/2 C

To insert a node after B , L/2 must be renamed to L/3 . This will automatically extend the LIST node to
4 elements. That is, even though L/2 is renamed, the implementation must automatically provide a
new L/2 node. The value of this node depends on the underlying implementation. The value of the
list will therefore then be: [A,B,?,C] . If node 1 is deleted, then the list will be [A,?,C] . If a node L/5 is
added then the list will be [A,?,C,?,?,?] . It is usually easiest to use the LIST node as a complex value,
this is discussed in the next section.

117.12.9.1 Complex Collections

An implementation of a LIST node must support a complex node value if its members are primi-
tive; the interior node must then have a value of a Java object implementing the Collect ion interface
from java.ut i l . The elements in this map must be converted according to the following table.

Table 117.11 Conversion for Collections

Format Associated Java Type
FORMAT_STRING Str ing
FORMAT_BOOLEAN Boolean
FORMAT_INTEGER Integer
FORMAT_LONG Long
FORMAT_FLOAT Float
FORMAT_DATE_TIME Date
FORMAT_BINARY byte[]

Dmt Admin Service Specification Version 2.0 OSGi Object Modeling

OSGi Compendium Release 8 Page 429

Alternatively, the Collection may contain Dmt Data objects but the collection must be homoge-
neous. The collection must always be a copy and changes made to the collection must not affect the
DMT.

For example, a LIST type for a list of URIs could look like:

Name Act Type Card. S Description
URIs Get LIST 1 P A List of URIs
 [index] Get Set

Add Del
str ing 0. .n D A primitive index node

Replacing a complex value will generate a single EVENT_TOPIC_REPLACED event for the LIST node.

117.12.10 MAP Nodes
A MAP node represents a mapping from a key to a value. The key is the name of the node and the val-
ue is the node's value. A MAP node performs the same functions as a Java Map. See Figure 117.27.

Figure 117.27 MAP Nodes

1

MAP node
(org.osgi/1.0/MAP)

1

0..n 0..n
key nodes

(name is anything)

structured MAP primitive MAP

A MAP node has key nodes as children. A key node is an association between the name of the key
node (which is the key) and the value of the key node. Key nodes are depicted with [<type>] , where
the <type> indicates the type used for the string name. For example, a long type will have node
names that can be converted to a long . A key type must always be one of the primitive types. For ex-
ample, a list of Bundle locations can be handled with a MAP with [str ing] key nodes that have a val-
ue type of string. Since the key is used in URIs it must always be escaped, see The DMT Addressing
URI on page 387.

For example:

Name Act Type Card. S Description
Location Get MAP 1 P A MAP of location where

the index node is the Bun-
dle Id.

 [long] Get Set
Add Del

str ing 0. .n D Name is the Bundle Id and
the value is the location.

117.12.10.1 Complex Value

An implementation of a MAP node must support an interior node value if its child nodes are prim-
itive; the interior node must then be associated with a Java object implementing the Map inter-
face from java.ut i l . The values in this Map must homogeneous and be converted according to Table
117.11 or the given values must of type DmtData . The Map object must a copy and does not track
changes in the DMT or vice-versa.

Replacing a complex value will generate a single EVENT_TOPIC_REPLACED event for that node.

OSGi Object Modeling Dmt Admin Service Specification Version 2.0

Page 430 OSGi Compendium Release 8

117.12.11 Instance Id
Some protocols cannot handle arbitrary names in the access URI, they need a well defined instance
id to index in a table or put severe restrictions on the node name's character set, length, or other as-
pects. For example, TR-069 can access an object with the following URI:

Device.VOIP.12.Name

The more natural model for the DMT is to use:

Device.VOIP.<Name>...

To provide assistance to these protocols this section defines a mechanism that can be used by Proto-
col Adapters to simplify access.

An Object Model can define a child node InstanceId . The InstanceId node, if present, holds a long
value that has the following qualities:

• Its value must be between 1 and Long.MAX_VALUE .
• No other index/key node on the same level must have the same value for the InstanceId node
• The value must be persistent between sessions and restarts of the plugin
• A value must not be reused when a node is deleted until the number space is exhausted

Protocol Adapters can use this information to provide alternative access paths for the DMT.

117.12.12 Conversions
Each Protocol Mapping document should define a default conversion from the Dmt Admin data for-
mats to the protocol types and vice versa, including the LIST and MAP nodes. However, this default
mapping is likely to be too constraining in real world models since different protocols support dif-
ferent data types and a 1:1 mapping is likely to be impossible.

For this reason, the Protocol Mapping document should define a number of protocol specific MIME
types for each unique data type that they support. A Data Plugin can associate such a MIME type
with a node. The Protocol Adapter can then look for this MIME type. If none of the Protocol Adapter
specific MIME types are available in a node the default conversion is used.

For example, in the TR-069 Protocol Adapter specification there is a MIME type for each TR-069 da-
ta type. If for a given leaf node the Meta Node's type specifies TR069_MIME_UNSIGNED_INT and the
node specifies the format FORMAT_INTEGER then the Protocol Adapter must convert the integer to
an unsigned integer and encode the value as such in the response message. The Protocol Adapter
there does not have to have specific knowledge of the object model, the Plugin drives the Protocol
Adapter by providing the protocol specific MIME types on the leaf node Meta Nodes. This model is
depicted in Figure 117.28.

Figure 117.28 Conversions

Dmt Admin
FORMAT_INTEGER

TR-069
unsignedInteger

Meta Node
MIME type
UNSIGNED_INT

Since a Meta Node can contain multiple MIME types, there is no restrictions on the number of Pro-
tocol Adapters; a Plugin can specify the MIME types of multiple Protocol Adapters.

Dmt Admin Service Specification Version 2.0 Security

OSGi Compendium Release 8 Page 431

117.12.13 Extensions
All interior nodes in this specification can have a node named Ext . These nodes are the extension
nodes. If an implementation needs to expose additional details about an interior node then they
should expose these extensions under the corresponding Ext node. To reduce name conflicts, it is
recommended to group together implementation specific extensions under a unique name, rec-
ommended is to use the reverse domain name. For example, the following DDF defines an Ext node
with extensions for the ACME provider.

Name Act Type Card. S Description
Framework Get Framework 1 P ...
 Ext Get 1 P Extension node
 com.acme Get AcmeFrameworkExt 1 P The node for the ACME ex-

tensions
 Transact ional Get boolean 1 P ...

117.13 Security
A key aspect of the Dmt Admin service model is the separation from DMT clients and plugins. The
Dmt Admin service receives all the operation requests and, after verification of authority, forwards
the requests to the plugins.

Figure 117.29 Separation of clients and plugins

<<service>>
Dmt Admin

<<service>>
Data Plugin

<<service>>
Exec Plugin

Client

Data Plugin Impl

Exec Plugin Impl

forward

request
<<service>>
Dmt Session

This architecture makes it straightforward to use the OSGi security architecture to protect the dif-
ferent actors.

117.13.1 Principals
The caller of the getSession(Str ing,Str ing, int) method must have the Dmt Principal Permission
with a target that matches the given principal. This Dmt Principal Permission is used to enforce that
only trusted entities can act on behalf of remote managers.

The Dmt Admin service must verify that all operations from a session with a principal can be exe-
cuted on the given nodes using the available ACLs.

The other two forms of the getSession method are meant for local management applications where
no principal is available. No special permission is defined to restrict the usage of these methods. The
callers that want to execute device management commands, however, need to have the appropriate
Dmt Permissions.

Security Dmt Admin Service Specification Version 2.0

Page 432 OSGi Compendium Release 8

117.13.2 Operational Permissions
The operational security of a Local Manager and a remote manager is distinctly different. The dis-
tinction is made on the principal. Protocol Adapters should use the getSession method that takes an
authenticated principal. Local Managers should not specify a principal.

Figure 117.30 Access control context, for Local Manager and Protocol Adapter operation

Local Manager

Protocol Adapter

Dmt Admin
Dmt Admin

Plugin

Proxied Service

Plugin

Proxied Service

Principal

Some caller

security
check

doPrivileged

security
check

Protocol AdapterLocal Manager

117.13.3 Protocol Adapters
A Protocol Adapter must provide a principal to the Dmt Admin service when it gets a session. It
must use the getSession(Str ing,Str ing, int) method. The Protocol Adapter must have Dmt Princi-
pal Permission for the given principal. The Dmt Admin service must then use this principal to deter-
mine the security scope of the given principal. This security scope is a set of permissions. How these
permissions are found is not defined in this specification; they are usually in the management tree
of a device. For example, the Mobile Specification stores these under the $/Pol icy/ Java/DmtPrinci-
palPermission sub-tree.

Additionally, a Dmt Session with a principal implies that the Dmt Admin service must verify the
ACLs on the node for all operations.

Any operation that is requested by a Protocol Adapter must be executed in a doPriv i leged block that
takes the principal's security scope. The doPriv i leged block effectively hides the permissions of the
Protocol Adapter; all operations must be performed under the security scope of the principal.

The security check for a Protocol Adapter is therefore as follows:

• The operation method calls doPriv i leged with the security scope of the principal.
• The operation is forwarded to the appropriate plugin. The underlying service must perform its

normal security checks. For example, the Configuration Admin service must check for the appro-
priate Configuration Permission.

The Access Control context is shown in Figure 117.30 within the Protocol Adapter column.

This principal-based security model allows for minimal permissions on the Protocol Adapter, be-
cause the Dmt Admin service performs a doPriv i leged on behalf of the principal, inserting the per-
missions for the principal on the call stack. This model does not guard against malicious Protocol
Adapters, though the Protocol Adapter must have the appropriate Dmt Principal Permission.

The Protocol Adapter is responsible for the authentication of the principal. The Dmt Admin service
must trust that the Protocol Adapter has correctly verified the identity of the other party. This spec-
ification does not address the type of authentication mechanisms that can be used. Once it has per-
mission to use that principal, it can use any DMT command that is permitted for that principal at
any time.

117.13.4 Local Manager
A Local Manager does not specify a principal. Security checks are therefore performed against the
security scope of the Local Manager bundle, as shown in Figure 117.30 with the Local Manager
stack. An operation is checked only with a Dmt Permission for the given node URI and operation. A

Dmt Admin Service Specification Version 2.0 Security

OSGi Compendium Release 8 Page 433

thrown Security Exception must be passed unmodified to the caller of the operation method. The
Dmt Admin service must not check the ACLs when no principal is set.

A Local Manager, and all its callers, must therefore have sufficient permission to handle the DMT
operations as well as the permissions required by the plugins when they proxy other services
(which is likely an extensive set of Permissions).

117.13.5 Plugin Security
Plugins are required to hold the maximum security scope for any services they proxy. For exam-
ple, the plugin that manages the Configuration Admin service must have Configurat ionPermis-
sion("*","*") to be effective.

Plugins should not make doPriv i leged calls, but should use the caller's context on the stack for per-
mission checks.

117.13.6 Events and Permissions
Dmt Event Listener services must have the appropriate Dmt Permission to receive the event since
this must be verified with the hasPermission() method on Bundle.

The Dmt Event Listener services registered with a FILTER_PRINCIPAL service property requires Dmt
Principal Permission for the given principal. In this case, the principal must have Get access to see
the nodes for the event. Any nodes that the listener does not have access to must be removed from
the event.

Plugins are not required to have access to the Event Admin service. If they send an event through
the MountPoint interface then the Dmt Admin service must use a doPriv i leged block to send the
event to the Event Admin service.

117.13.7 Dmt Principal Permission
Execution of the getSession methods of the Dmt Admin service featuring an explicit principal
name is guarded by the Dmt Principal Permission. This permission must be granted only to Protocol
Adapters that open Dmt Sessions on behalf of remote management servers.

The DmtPrincipalPermission class does not have defined actions; it must always be created with a *
to allow future extensions. The target is the principal name. A wildcard character is allowed at the
end of the string to match a prefix.

Example:

new DmtPrincipalPermission("com.acme.dep*","*")

117.13.8 Dmt Permission
The Dmt Permission controls access to management objects in the DMT. It is intended to control on-
ly the local access to the DMT. The Dmt Permission target string identifies the target node's URI (ab-
solute path is required, starting with the '. / ' prefix) and the action field lists the management com-
mands that are permitted on the node.

The URI can end in a wildcard character * to indicate it is a prefix that must be matched. This com-
parison is string based so that node boundaries can be ignored.

The following actions are defined:

• ADD
• DELETE
• EXEC
• GET
• REPLACE

Security Dmt Admin Service Specification Version 2.0

Page 434 OSGi Compendium Release 8

For example, the following code creates a Dmt Permission for a bundle to add and replace nodes in
any URI that starts with . /D .

new DmtPermission("./D*", "Add,Replace")

This permission must imply the following permission:

new DmtPermission("./Dev/Operator/Name", "Replace")

117.13.9 Alert Permission
The Alert Permission permits the holder of this permission to send a notification to a specific target
principal. The target is identical to Dmt Principal Permission on page 433. No actions are defined for
Alert Permission.

117.13.10 Security Summary

117.13.10.1 Dmt Admin Service and Notification Service

The Dmt Admin service is likely to require All Permission. This requirement is caused by the plug-
in model. Any permission required by any of the plugins must be granted to the Dmt Admin service.
This set of permissions is large and hard to define. The following list shows the minimum permis-
sions required if the plugin permissions are left out.

ServicePermission ..DmtAdmin REGISTER
ServicePermission ..NotificationService REGISTER
ServicePermission ..DataPlugin GET
ServicePermission ..ExecPlugin GET
ServicePermission ..EventAdmin GET
ServicePermission ..RemoteAlertSender GET
ServicePermission ..DmtEventListener GET
DmtPermission * *
DmtPrincipalPermission * *
PackagePermission org.osgi.service.dmt EXPORTONLY
PackagePermission org.osgi.service.dmt.spi EXPORTONLY
PackagePermission org.osgi.service.dmt.notification EXPORTONLY
PackagePermission org.osgi.service.dmt.notification.spi EXPORTONLY
PackagePermission org.osgi.service.dmt.registry EXPORTONLY
PackagePermission org.osgi.service.dmt.security EXPORTONLY

117.13.10.2 Dmt Event Listener Service

ServicePermission ..DmtEventListener REGISTER
PackagePermission org.osgi.service.dmt IMPORT

Dmt Event Listeners must have the appropriate DmtPermission to see the nodes in the events. If
they are registered with a principal then they also need DmtPrincipalPermission for the given prin-
cipals.

117.13.10.3 Data and Exec Plugin

ServicePermission ..NotificationService GET
ServicePermission ..DataPlugin REGISTER
ServicePermission ..ExecPlugin REGISTER
PackagePermission org.osgi.service.dmt IMPORT
PackagePermission org.osgi.service.dmt.notification IMPORT
PackagePermission org.osgi.service.dmt.spi IMPORT
PackagePermission org.osgi.service.dmt.security IMPORT

The plugin is also required to have any permissions to call its underlying services.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 435

117.13.10.4 Local Manager

ServicePermission ..DmtAdmin GET
PackagePermission org.osgi.service.dmt IMPORT
PackagePermission org.osgi.service.dmt.security IMPORT
DmtPermission <scope> ...

Additionally, the Local Manager requires all permissions that are needed by the plugins it addresses.

117.13.10.5 Protocol Adapter

The Protocol Adapter only requires Dmt Principal Permission for the instances that it is permitted to
manage. The other permissions are taken from the security scope of the principal.

ServicePermission ..DmtAdmin GET
ServicePermission ..RemoteAlertSender REGISTER
PackagePermission org.osgi.service.dmt IMPORT
PackagePermission org.osgi.service.dmt.notification.spi IMPORT
PackagePermission org.osgi.service.dmt.notification IMPORT
DmtPrincipalPermission <scope>

117.14 org.osgi.service.dmt

Device Management Tree Package Version 2.0.

This package contains the public API for the Device Management Tree manipulations. Permission
classes are provided by the org.osgi .service.dmt.security package, and DMT plugin interfaces can
be found in the org.osgi .service.dmt.spi package. Asynchronous notifications to remote manage-
ment servers can be sent using the interfaces in the org.osgi .service.dmt.noti f icat ion package.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dmt; vers ion="[2.0,3.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dmt; vers ion="[2.0,2.1)"

117.14.1 Summary

• Acl - Acl is an immutable class representing structured access to DMT ACLs.
• DmtAdmin - An interface providing methods to open sessions and register listeners.
• DmtConstants - Defines standard names for DmtAdmin .
• DmtData - An immutable data structure representing the contents of a leaf or interior node.
• DmtEvent - Event class storing the details of a change in the tree.
• DmtEventListener - Registered implementations of this class are notified via DmtEvent objects

about important changes in the tree.
• DmtException - Checked exception received when a DMT operation fails.
• DmtI l legalStateException - Unchecked illegal state exception.
• DmtSession - DmtSession provides concurrent access to the DMT.
• MetaNode - The MetaNode contains meta data as standardized by OMA DM but extends it

(without breaking the compatibility) to provide for better DMT data quality in an environment
where many software components manipulate this data.

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 436 OSGi Compendium Release 8

• Uri - This class contains static utility methods to manipulate DMT URIs.

117.14.2 public final class Acl
Acl is an immutable class representing structured access to DMT ACLs. Under OMA DM the ACLs
are defined as strings with an internal syntax.

The methods of this class taking a principal as parameter accept remote server IDs (as passed to
DmtAdmin.getSession), as well as " * " indicating any principal.

The syntax for valid remote server IDs:

<server-identifier> ::= All printable characters except '= ' , '& ' , '* ' , '+ ' or white-space characters.

117.14.2.1 public static final int ADD = 2

Principals holding this permission can issue ADD commands on the node having this ACL.

117.14.2.2 public static final int ALL_PERMISSION = 31

Principals holding this permission can issue any command on the node having this ACL. This per-
mission is the logical OR of ADD, DELETE, EXEC, GET and REPLACE permissions.

117.14.2.3 public static final int DELETE = 8

Principals holding this permission can issue DELETE commands on the node having this ACL.

117.14.2.4 public static final int EXEC = 16

Principals holding this permission can issue EXEC commands on the node having this ACL.

117.14.2.5 public static final int GET = 1

Principals holding this permission can issue GET command on the node having this ACL.

117.14.2.6 public static final int REPLACE = 4

Principals holding this permission can issue REPLACE commands on the node having this ACL.

117.14.2.7 public Acl(String acl)

acl The string representation of the ACL as defined in OMA DM. If nul l or empty then it represents an
empty list of principals with no permissions.

□ Create an instance of the ACL from its canonical string representation.

Throws I l legalArgumentException– if acl is not a valid OMA DM ACL string

117.14.2.8 public Acl(String[] principals, int[] permissions)

principals The array of principals

permissions The array of permissions

□ Creates an instance with a specified list of principals and the permissions they hold. The two arrays
run in parallel, that is principals[i] will hold permissions[i] in the ACL.

A principal name may not appear multiple times in the 'principals' argument. If the "*" principal
appears in the array, the corresponding permissions will be granted to all principals (regardless of
whether they appear in the array or not).

Throws I l legalArgumentException– if the length of the two arrays are not the same, if any array element is
invalid, or if a principal appears multiple times in the principals array

117.14.2.9 public synchronized Acl addPermission(String principal, int permissions)

principal The entity to which permissions should be granted, or "*" to grant permissions to all principals.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 437

permissions The permissions to be given. The parameter can be a logical or of more permission constants defined
in this class.

□ Create a new Acl instance from this Acl with the given permission added for the given principal. The
already existing permissions of the principal are not affected.

Returns a new Acl instance

Throws I l legalArgumentException– if principal is not a valid principal name or if permissions is not a valid
combination of the permission constants defined in this class

117.14.2.10 public synchronized Acl deletePermission(String principal, int permissions)

principal The entity from which permissions should be revoked, or "*" to revoke permissions from all princi-
pals.

permissions The permissions to be revoked. The parameter can be a logical or of more permission constants de-
fined in this class.

□ Create a new Acl instance from this Acl with the given permission revoked from the given principal.
Other permissions of the principal are not affected.

Note, that it is not valid to revoke a permission from a specific principal if that permission is granted
globally to all principals.

Returns a new Acl instance

Throws I l legalArgumentException– if principal is not a valid principal name, if permissions is not a valid
combination of the permission constants defined in this class, or if a globally granted permission
would have been revoked from a specific principal

117.14.2.11 public boolean equals(Object obj)

obj the object to compare with this Acl instance

□ Checks whether the given object is equal to this Acl instance. Two Acl instances are equal if they al-
low the same set of permissions for the same set of principals.

Returns true if the parameter represents the same ACL as this instance

117.14.2.12 public synchronized int getPermissions(String principal)

principal The entity whose permissions to query, or "*" to query the permissions that are granted globally, to
all principals

□ Get the permissions associated to a given principal.

Returns The permissions of the given principal. The returned int is a bitmask of the permission constants de-
fined in this class

Throws I l legalArgumentException– if principal is not a valid principal name

117.14.2.13 public String[] getPrincipals()

□ Get the list of principals who have any kind of permissions on this node. The list only includes
those principals that have been explicitly assigned permissions (so "*" is never returned), globally
set permissions naturally apply to all other principals as well.

Returns The array of principals having permissions on this node.

117.14.2.14 public int hashCode()

□ Returns the hash code for this ACL instance. If two Acl instances are equal according to the
equals(Object) method, then calling this method on each of them must produce the same integer re-
sult.

Returns hash code for this ACL

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 438 OSGi Compendium Release 8

117.14.2.15 public synchronized boolean isPermitted(String principal, int permissions)

principal The entity to check, or "*" to check whether the given permissions are granted to all principals glob-
ally

permissions The permissions to check

□ Check whether the given permissions are granted to a certain principal. The requested permissions
are specified as a bitfield, for example (Acl .ADD | Acl .DELETE | Acl .GET) .

Returns true if the principal holds all the given permissions

Throws I l legalArgumentException– if principal is not a valid principal name or if permissions is not a valid
combination of the permission constants defined in this class

117.14.2.16 public synchronized Acl setPermission(String principal, int permissions)

principal The entity to which permissions should be granted, or "*" to globally grant permissions to all princi-
pals.

permissions The set of permissions to be given. The parameter is a bitmask of the permission constants defined
in this class.

□ Create a new Acl instance from this Acl where all permissions for the given principal are overwritten
with the given permissions.

Note, that when changing the permissions of a specific principal, it is not allowed to specify a set of
permissions stricter than the global set of permissions (that apply to all principals).

Returns a new Acl instance

Throws I l legalArgumentException– if principal is not a valid principal name, if permissions is not a valid
combination of the permission constants defined in this class, or if a globally granted permission
would have been revoked from a specific principal

117.14.2.17 public synchronized String toString()

□ Give the canonical string representation of this ACL. The operations are in the following order:
{Add, Delete, Exec, Get, Replace}, principal names are sorted alphabetically.

Returns The string representation as defined in OMA DM.

117.14.3 public interface DmtAdmin
An interface providing methods to open sessions and register listeners. The implementation of Dm-
tAdmin should register itself in the OSGi service registry as a service. DmtAdmin is the entry point
for applications to use the DMT API.

The getSession methods are used to open a session on a specified subtree of the DMT. A typical way
of usage:

 serviceRef = context.getServiceReference(DmtAdmin.class.getName());
 DmtAdmin admin = (DmtAdmin) context.getService(serviceRef);
 DmtSession session = admin.getSession("./OSGi/Configuration");
 session.createInteriorNode("./OSGi/Configuration/my.table");

The methods for opening a session take a node URI (the session root) as a parameter. All segments of
the given URI must be within the segment length limit of the implementation, and the special char-
acters '/' and '\' must be escaped (preceded by a '\').

See the Uri.encode(String) method for support on escaping invalid characters in a URI.

It is possible to specify a lock mode when opening the session (see lock type constants in DmtSes-
sion). This determines whether the session can run in parallel with other sessions, and the kinds of

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 439

operations that can be performed in the session. All Management Objects constituting the device
management tree must support read operations on their nodes, while support for write operations
depends on the Management Object. Management Objects supporting write access may support
transactional write, non-transactional write or both. Users of DmtAdmin should consult the Manage-
ment Object specification and implementation for the supported update modes. If Management Ob-
ject definition permits, implementations are encouraged to support both update modes.

117.14.3.1 public DmtSession getSession(String subtreeUri) throws DmtException

subtreeUri the subtree on which DMT manipulations can be performed within the returned session

□ Opens a DmtSession for local usage on a given subtree of the DMT with non transac-
tional write lock. This call is equivalent to the following: getSession(nul l , subtreeUri ,
DmtSession.LOCK_TYPE_EXCLUSIVE)

The subtreeUri parameter must contain an absolute URI. It can also be nul l , in this case the session
is opened with the default session root, ".", that gives access to the whole tree.

To perform this operation the caller must have DmtPermission for the subtreeUri node with the Get
action present.

Returns a DmtSession object for the requested subtree

Throws DmtException– with the following possible error codes:

• INVALID_URI if subtreeUri is syntactically invalid
• URI_TOO_LONG if subtreeUri is longer than accepted by the DmtAdmin implementation (espe-

cially on systems with limited resources)
• NODE_NOT_FOUND if subtreeUri specifies a non-existing node
• SESSION_CREATION_TIMEOUT if the operation timed out because of another ongoing session
• COMMAND_FAILED if subtreeUri specifies a relative URI, or some unspecified error is encoun-

tered while attempting to complete the command

SecurityException– if the caller does not have DmtPermission for the given root node with the Get
action present

117.14.3.2 public DmtSession getSession(String subtreeUri, int lockMode) throws DmtException

subtreeUri the subtree on which DMT manipulations can be performed within the returned session

lockMode one of the lock modes specified in DmtSession

□ Opens a DmtSession for local usage on a specific DMT subtree with a given lock mode. This call is
equivalent to the following: getSession(nul l , subtreeUri , lockMode)

The subtreeUri parameter must contain an absolute URI. It can also be nul l , in this case the session
is opened with the default session root, ".", that gives access to the whole tree.

To perform this operation the caller must have DmtPermission for the subtreeUri node with the Get
action present.

Returns a DmtSession object for the requested subtree

Throws DmtException– with the following possible error codes:

• INVALID_URI if subtreeUri is syntactically invalid
• URI_TOO_LONG if subtreeUri is longer than accepted by the DmtAdmin implementation (espe-

cially on systems with limited resources)
• NODE_NOT_FOUND if subtreeUri specifies a non-existing node
• FEATURE_NOT_SUPPORTED if atomic sessions are not supported by the implementation and

lockMode requests an atomic session
• SESSION_CREATION_TIMEOUT if the operation timed out because of another ongoing session

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 440 OSGi Compendium Release 8

• COMMAND_FAILED if subtreeUri specifies a relative URI, if lockMode is unknown, or some un-
specified error is encountered while attempting to complete the command

SecurityException– if the caller does not have DmtPermission for the given root node with the Get
action present

117.14.3.3 public DmtSession getSession(String principal, String subtreeUri, int lockMode) throws DmtException

principal the identifier of the remote server on whose behalf the data manipulation is performed, or nul l for
local sessions

subtreeUri the subtree on which DMT manipulations can be performed within the returned session

lockMode one of the lock modes specified in DmtSession

□ Opens a DmtSession on a specific DMT subtree using a specific lock mode on behalf of a remote
principal. If local management applications are using this method then they should provide nul l as
the first parameter. Alternatively they can use other forms of this method without providing a prin-
cipal string.

The subtreeUri parameter must contain an absolute URI. It can also be nul l , in this case the session
is opened with the default session root, ".", that gives access to the whole tree.

This method is guarded by DmtPrincipalPermission in case of remote sessions. In addition, the caller
must have Get access rights (ACL in case of remote sessions, DmtPermission in case of local sessions)
on the subtreeUri node to perform this operation.

Returns a DmtSession object for the requested subtree

Throws DmtException– with the following possible error codes:

• INVALID_URI if subtreeUri is syntactically invalid
• URI_TOO_LONG if subtreeUri is longer than accepted by the DmtAdmin implementation (espe-

cially on systems with limited resources)
• NODE_NOT_FOUND if subtreeUri specifies a non-existing node
• PERMISSION_DENIED if principal is not nul l and the ACL of the node does not allow the Get oper-

ation for the principal on the given root node
• FEATURE_NOT_SUPPORTED if atomic sessions are not supported by the implementation and

lockMode requests an atomic session
• SESSION_CREATION_TIMEOUT if the operation timed out because of another ongoing session
• COMMAND_FAILED if subtreeUri specifies a relative URI, if lockMode is unknown, or some un-

specified error is encountered while attempting to complete the command

SecurityException– in case of remote sessions, if the caller does not have the required DmtPrin-
cipalPermission with a target matching the principal parameter, or in case of local sessions, if the
caller does not have DmtPermission for the given root node with the Get action present

117.14.4 public class DmtConstants
Defines standard names for DmtAdmin .

Since 2.0

117.14.4.1 public static final String DDF_LIST = "org.osgi/1.0/LIST"

A string defining a DDF URI, indicating that the node is a LIST node.

117.14.4.2 public static final String DDF_MAP = "org.osgi/1.0/MAP"

A string defining a DDF URI, indicating that the node is a MAP node.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 441

117.14.4.3 public static final String DDF_SCAFFOLD = "org.osgi/1.0/SCAFFOLD"

A string defining a DDF URI, indicating that the node is a SCAFFOLD node.

117.14.4.4 public static final String EVENT_PROPERTY_NEW_NODES = "newnodes"

A string defining the property key for the newnodes property in node related events.

117.14.4.5 public static final String EVENT_PROPERTY_NODES = "nodes"

A string defining the property key for the @{code nodes} property in node related events.

117.14.4.6 public static final String EVENT_PROPERTY_SESSION_ID = "session.id"

A string defining the property key for the session. id property in node related events.

117.14.4.7 public static final String EVENT_TOPIC_ADDED = "org/osgi/service/dmt/DmtEvent/ADDED"

A string defining the topic for the event that is sent for added nodes.

117.14.4.8 public static final String EVENT_TOPIC_COPIED = "org/osgi/service/dmt/DmtEvent/COPIED"

A string defining the topic for the event that is sent for copied nodes.

117.14.4.9 public static final String EVENT_TOPIC_DELETED = "org/osgi/service/dmt/DmtEvent/DELETED"

A string defining the topic for the event that is sent for deleted nodes.

117.14.4.10 public static final String EVENT_TOPIC_RENAMED = "org/osgi/service/dmt/DmtEvent/RENAMED"

A string defining the topic for the event that is sent for renamed nodes.

117.14.4.11 public static final String EVENT_TOPIC_REPLACED = "org/osgi/service/dmt/DmtEvent/REPLACED"

A string defining the topic for the event that is sent for replaced nodes.

117.14.4.12 public static final String EVENT_TOPIC_SESSION_CLOSED = "org/osgi/service/dmt/DmtEvent/
SESSION_CLOSED"

A string defining the topic for the event that is sent for a closed session.

117.14.4.13 public static final String EVENT_TOPIC_SESSION_OPENED = "org/osgi/service/dmt/DmtEvent/
SESSION_OPENED"

A string defining the topic for the event that is sent for a newly opened session.

117.14.5 public final class DmtData
An immutable data structure representing the contents of a leaf or interior node. This structure rep-
resents only the value and the format property of the node, all other properties (like MIME type) can
be set and read using the DmtSession interface.

Different constructors are available to create nodes with different formats. Nodes of nul l format can
be created using the static NULL_VALUE constant instance of this class.

FORMAT_RAW_BINARY and FORMAT_RAW_STRING enable the support of future data formats.
When using these formats, the actual format name is specified as a Str ing . The application is re-
sponsible for the proper encoding of the data according to the specified format.

Concurrency Immutable

117.14.5.1 public static final DmtData FALSE_VALUE

Constant instance representing a boolean fa lse value.

Since 2.0

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 442 OSGi Compendium Release 8

117.14.5.2 public static final int FORMAT_BASE64 = 128

The node holds an OMA DM b64 value. Like FORMAT_BINARY, this format is also represented by
the Java byte[] type, the difference is only in the corresponding OMA DM format. This format does
not affect the internal storage format of the data as byte[] . It is intended as a hint for the external
representation of this data. Protocol Adapters can use this hint for their further processing.

117.14.5.3 public static final int FORMAT_BINARY = 64

The node holds an OMA DM bin value. The value of the node corresponds to the Java byte[] type.

117.14.5.4 public static final int FORMAT_BOOLEAN = 8

The node holds an OMA DM bool value.

117.14.5.5 public static final int FORMAT_DATE = 16

The node holds an OMA DM date value.

117.14.5.6 public static final int FORMAT_DATE_TIME = 16384

The node holds a Date object. If the getTime() equals zero then the date time is not known. If the get-
Time() is negative it must be interpreted as a relative number of milliseconds.

Since 2.0

117.14.5.7 public static final int FORMAT_FLOAT = 2

The node holds an OMA DM f loat value.

117.14.5.8 public static final int FORMAT_INTEGER = 1

The node holds an OMA DM int value.

117.14.5.9 public static final int FORMAT_LONG = 8192

The node holds a long value. The getFormatName() method can be used to get the actual format
name.

Since 2.0

117.14.5.10 public static final int FORMAT_NODE = 1024

Format specifier of an internal node. An interior node can hold a Java object as value (see
DmtData.DmtData(Object) and DmtData.getNode()). This value can be used by Java programs that
know a specific URI understands the associated Java type. This type is further used as a return value
of the MetaNode.getFormat() method for interior nodes.

117.14.5.11 public static final int FORMAT_NULL = 512

The node holds an OMA DM nul l value. This corresponds to the Java nul l type.

117.14.5.12 public static final int FORMAT_RAW_BINARY = 4096

The node holds raw protocol data encoded in binary format. The getFormatName() method can be
used to get the actual format name.

117.14.5.13 public static final int FORMAT_RAW_STRING = 2048

The node holds raw protocol data encoded as Str ing . The getFormatName() method can be used to
get the actual format name.

117.14.5.14 public static final int FORMAT_STRING = 4

The node holds an OMA DM chr value.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 443

117.14.5.15 public static final int FORMAT_TIME = 32

The node holds an OMA DM t ime value.

117.14.5.16 public static final int FORMAT_XML = 256

The node holds an OMA DM xml value.

117.14.5.17 public static final DmtData NULL_VALUE

Constant instance representing a leaf node of nul l format.

117.14.5.18 public static final DmtData TRUE_VALUE

Constant instance representing a boolean true value.

Since 2.0

117.14.5.19 public DmtData(String string)

string the string value to set

□ Create a DmtData instance of chr format with the given string value. The nul l string argument is
valid.

117.14.5.20 public DmtData(Date date)

date the Date object to set

□ Create a DmtData instance of dateTime format with the given Date value. The given Date value
must be a non-null Date object.

117.14.5.21 public DmtData(Object complex)

complex the complex data object to set

□ Create a DmtData instance of node format with the given object value. The value represents com-
plex data associated with an interior node.

Certain interior nodes can support access to their subtrees through such complex values, making it
simpler to retrieve or update all leaf nodes in a subtree.

The given value must be a non-nul l immutable object.

117.14.5.22 public DmtData(String value, int format)

value the string, XML, date, or time value to set

format the format of the DmtData instance to be created, must be one of the formats specified above

□ Create a DmtData instance of the specified format and set its value based on the given string. Only
the following string-based formats can be created using this constructor:

• FORMAT_STRING - value can be any string
• FORMAT_XML - value must contain an XML fragment (the validity is not checked by this con-

structor)
• FORMAT_DATE - value must be parsable to an ISO 8601 calendar date in complete representa-

tion, basic format (pattern CCYYMMDD)
• FORMAT_TIME - value must be parsable to an ISO 8601 time of day in either local time, com-

plete representation, basic format (pattern hhmmss) or Coordinated Universal Time, basic for-
mat (pattern hhmmssZ)

* The nul l string argument is only valid if the format is string or XML.

Throws I l legalArgumentException– if format is not one of the allowed formats, or value is not a valid string
for the given format

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 444 OSGi Compendium Release 8

NullPointerException– if a string, XML, date, or time is constructed and value is nul l

117.14.5.23 public DmtData(int integer)

integer the integer value to set

□ Create a DmtData instance of int format and set its value.

117.14.5.24 public DmtData(float flt)

flt the float value to set

□ Create a DmtData instance of f loat format and set its value.

117.14.5.25 public DmtData(long lng)

lng the long value to set

□ Create a DmtData instance of long format and set its value.

Since 2.0

117.14.5.26 public DmtData(boolean bool)

bool the boolean value to set

□ Create a DmtData instance of bool format and set its value.

117.14.5.27 public DmtData(byte[] bytes)

bytes the byte array to set, must not be nul l

□ Create a DmtData instance of bin format and set its value.

Throws NullPointerException– if bytes is nul l

117.14.5.28 public DmtData(byte[] bytes, boolean base64)

bytes the byte array to set, must not be nul l

base64 if true , the new instance will have b64 format, if fa lse , it will have bin format

□ Create a DmtData instance of bin or b64 format and set its value. The chosen format is specified by
the base64 parameter.

Throws NullPointerException– if bytes is nul l

117.14.5.29 public DmtData(byte[] bytes, int format)

bytes the byte array to set, must not be nul l

format the format of the DmtData instance to be created, must be one of the formats specified above

□ Create a DmtData instance of the specified format and set its value based on the given byte[] . Only
the following byte[] based formats can be created using this constructor:

• FORMAT_BINARY
• FORMAT_BASE64

Throws I l legalArgumentException– if format is not one of the allowed formats

NullPointerException– if bytes is nul l

117.14.5.30 public DmtData(String formatName, String data)

formatName the name of the format, must not be nul l

data the data encoded according to the specified format, must not be nul l

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 445

□ Create a DmtData instance in FORMAT_RAW_STRING format. The data is provided encoded as a
Str ing . The actual data format is specified in formatName . The encoding used in data must conform
to this format.

Throws NullPointerException– if formatName or data is nul l

117.14.5.31 public DmtData(String formatName, byte[] data)

formatName the name of the format, must not be nul l

data the data encoded according to the specified format, must not be nul l

□ Create a DmtData instance in FORMAT_RAW_BINARY format. The data is provided encoded as bi-
nary. The actual data format is specified in formatName . The encoding used in data must conform
to this format.

Throws NullPointerException– if formatName or data is nul l

117.14.5.32 public boolean equals(Object obj)

obj the object to compare with this DmtData

□ Compares the specified object with this DmtData instance. Two DmtData objects are considered
equal if their format is the same, and their data (selected by the format) is equal.

In case of FORMAT_RAW_BINARY and FORMAT_RAW_STRING the textual name of the data for-
mat - as returned by getFormatName() - must be equal as well.

Returns true if the argument represents the same DmtData as this object

117.14.5.33 public byte[] getBase64()

□ Gets the value of a node with base 64 (b64) format.

Returns the binary value

Throws DmtI l legalStateException– if the format of the node is not base 64.

117.14.5.34 public byte[] getBinary()

□ Gets the value of a node with binary (bin) format.

Returns the binary value

Throws DmtI l legalStateException– if the format of the node is not binary

117.14.5.35 public boolean getBoolean()

□ Gets the value of a node with boolean (bool) format.

Returns the boolean value

Throws DmtI l legalStateException– if the format of the node is not boolean

117.14.5.36 public String getDate()

□ Gets the value of a node with date format. The returned date string is formatted according to the ISO
8601 definition of a calendar date in complete representation, basic format (pattern CCYYMMDD).

Returns the date value

Throws DmtI l legalStateException– if the format of the node is not date

117.14.5.37 public Date getDateTime()

□ Gets the value of a node with dateTime format.

Returns the Date value

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 446 OSGi Compendium Release 8

Throws DmtI l legalStateException– if the format of the node is not time

Since 2.0

117.14.5.38 public float getFloat()

□ Gets the value of a node with f loat format.

Returns the float value

Throws DmtI l legalStateException– if the format of the node is not f loat

117.14.5.39 public int getFormat()

□ Get the node's format, expressed in terms of type constants defined in this class. Note that the 'for-
mat' term is a legacy from OMA DM, it is more customary to think of this as 'type'.

Returns the format of the node

117.14.5.40 public String getFormatName()

□ Returns the format of this DmtData as Str ing . For the predefined data formats this is the OMA DM
defined name of the format. For FORMAT_RAW_STRING and FORMAT_RAW_BINARY this is the
format specified when the object was created.

Returns the format name as Str ing

117.14.5.41 public int getInt()

□ Gets the value of a node with integer (int) format.

Returns the integer value

Throws DmtI l legalStateException– if the format of the node is not integer

117.14.5.42 public long getLong()

□ Gets the value of a node with long format.

Returns the long value

Throws DmtI l legalStateException– if the format of the node is not long

Since 2.0

117.14.5.43 public Object getNode()

□ Gets the complex data associated with an interior node (node format).

Certain interior nodes can support access to their subtrees through complex values, making it sim-
pler to retrieve or update all leaf nodes in the subtree.

Returns the data object associated with an interior node

Throws DmtI l legalStateException– if the format of the data is not node

117.14.5.44 public byte[] getRawBinary()

□ Gets the value of a node in raw binary (FORMAT_RAW_BINARY) format.

Returns the data value in raw binary format

Throws DmtI l legalStateException– if the format of the node is not raw binary

117.14.5.45 public String getRawString()

□ Gets the value of a node in raw Str ing (FORMAT_RAW_STRING) format.

Returns the data value in raw Str ing format

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 447

Throws DmtI l legalStateException– if the format of the node is not raw Str ing

117.14.5.46 public int getSize()

□ Get the size of the data. The returned value depends on the format of data in the node:

• FORMAT_STRING, FORMAT_XML, FORMAT_BINARY, FORMAT_BASE64,
FORMAT_RAW_STRING, and FORMAT_RAW_BINARY: the length of the stored data, or 0 if the
data is nul l

• FORMAT_INTEGER and FORMAT_FLOAT: 4
• FORMAT_LONG and FORMAT_DATE_TIME: 8
• FORMAT_DATE and FORMAT_TIME: the length of the date or time in its string representation
• FORMAT_BOOLEAN: 1
• FORMAT_NODE: -1 (unknown)
• FORMAT_NULL: 0

Returns the size of the data stored by this object

117.14.5.47 public String getString()

□ Gets the value of a node with string (chr) format.

Returns the string value

Throws DmtI l legalStateException– if the format of the node is not string

117.14.5.48 public String getTime()

□ Gets the value of a node with time format. The returned time string is formatted according to the
ISO 8601 definition of the time of day. The exact format depends on the value the object was initial-
ized with: either local time, complete representation, basic format (pattern hhmmss) or Coordinated
Universal Time, basic format (pattern hhmmssZ).

Returns the time value

Throws DmtI l legalStateException– if the format of the node is not time

117.14.5.49 public String getXml()

□ Gets the value of a node with xml format.

Returns the XML value

Throws DmtI l legalStateException– if the format of the node is not xml

117.14.5.50 public int hashCode()

□ Returns the hash code value for this DmtData instance. The hash code is calculated based on the da-
ta (selected by the format) of this object.

Returns the hash code value for this object

117.14.5.51 public String toString()

□ Gets the string representation of the DmtData . This method works for all formats.

For string format data - including FORMAT_RAW_STRING - the string value itself is returned, while
for XML, date, time, integer, float, boolean, long and node formats the string form of the value is re-
turned. Binary - including FORMAT_RAW_BINARY - base64 data is represented by two-digit hexa-
decimal numbers for each byte separated by spaces. The NULL_VALUE data has the string form of "
nul l". Data of string or XML format containing the Java nul l value is represented by an empty string.
DateTime data is formatted as yyyy-MM-dd'T'HH:mm:SS'Z').

Returns the string representation of this DmtData instance

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 448 OSGi Compendium Release 8

117.14.6 public interface DmtEvent
Event class storing the details of a change in the tree. DmtEvent is used by DmtAdmin to notify reg-
istered EventListeners services about important changes. Events are generated after every success-
ful DMT change, and also when sessions are opened or closed. If a DmtSession is opened in atomic
mode, DMT events are only sent when the session is committed, when the changes are actually per-
formed.

The type of the event describes the change that triggered the event delivery. Each event carries the
unique identifier of the session in which the described change happened or -1 when the change
originated outside a session. The events describing changes in the DMT carry the list of affected
nodes. In case of COPIED or RENAMED events, the event carries the list of new nodes as well.

117.14.6.1 public static final int ADDED = 1

Event type indicating nodes that were added.

117.14.6.2 public static final int COPIED = 2

Event type indicating nodes that were copied.

117.14.6.3 public static final int DELETED = 4

Event type indicating nodes that were deleted.

117.14.6.4 public static final int RENAMED = 8

Event type indicating nodes that were renamed.

117.14.6.5 public static final int REPLACED = 16

Event type indicating nodes that were replaced.

117.14.6.6 public static final int SESSION_CLOSED = 64

Event type indicating that a session was closed. This type of event is sent when the session is closed
by the client or becomes inactive for any other reason (session timeout, fatal errors in business
methods, etc.).

117.14.6.7 public static final int SESSION_OPENED = 32

Event type indicating that a new session was opened.

117.14.6.8 public String[] getNewNodes()

□ This method can be used to query the new nodes, when the type of the event is COPIED or RE-
NAMED. For all other event types this method returns nul l .

The array returned by this method runs parallel to the array returned by getNodes(), the elements in
the two arrays contain the source and destination URIs for the renamed or copied nodes in the same
order. All returned URIs are absolute.

This method returns only those nodes where the caller has the GET permission for the source or
destination node of the operation. Therefore, it is possible that the method returns an empty array.

Returns the array of newly created nodes

117.14.6.9 public String[] getNodes()

□ This method can be used to query the subject nodes of this event. The method returns nul l for
SESSION_OPENED and SESSION_CLOSED.

The method returns only those affected nodes that the caller has the GET permission for (or in case
of COPIED or RENAMED events, where the caller has GET permissions for either the source or the

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 449

destination nodes). Therefore, it is possible that the method returns an empty array. All returned
URIs are absolute.

Returns the array of affected nodes

See Also getNewNodes()

117.14.6.10 public Object getProperty(String key)

key the name of the requested property

□ This method can be used to get the value of a single event property.

Returns the requested property value or null, if the key is not contained in the properties

See Also getPropertyNames()

Since 2.0

117.14.6.11 public String[] getPropertyNames()

□ This method can be used to query the names of all properties of this event.

The returned names can be used as key value in subsequent calls to getProperty(String).

Returns the array of property names

See Also getProperty(String)

Since 2.0

117.14.6.12 public int getSessionId()

□ This method returns the identifier of the session in which this event took place. The ID is guaran-
teed to be unique on a machine.

For events that do not result from a session, the session id is -1.

The availability of a session.id can also be check by using getProperty() with "session.id" as key.

Returns the unique identifier of the session that triggered the event or -1 if there is no session associated

117.14.6.13 public int getType()

□ This method returns the type of this event.

Returns the type of this event.

117.14.7 public interface DmtEventListener
Registered implementations of this class are notified via DmtEvent objects about important changes
in the tree. Events are generated after every successful DMT change, and also when sessions are
opened or closed. If a DmtSession is opened in atomic mode, DMT events are only sent when the
session is committed, when the changes are actually performed.

Dmt Event Listener services must have permission DmtPermission.GET for the nodes in the nodes
and newNodes property in the Dmt Event.

117.14.7.1 public static final String FILTER_EVENT = "osgi.filter.event"

A number of event types packed in a bitmap. If this service property is provided with a Dmt Event
Listener service registration than that listener must only receive events where one of the Dmt Event
types occur in the bitmap. The type of this service property must be Integer .

117.14.7.2 public static final String FILTER_PRINCIPAL = "osgi.filter.principal"

A number of names of principals. If this service property is provided with a Dmt Event Listener ser-
vice registration than that listener must only receive events for which at least one of the given prin-
cipals has Get rights. The type of this service property is Str ing+ .

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 450 OSGi Compendium Release 8

117.14.7.3 public static final String FILTER_SUBTREE = "osgi.filter.subtree"

A number of sub-tree top nodes that define the scope of the Dmt Event Listener. If this service prop-
erty is registered then the service must only receive events for nodes that are part of one of the sub-
trees. The type of this service property is Str ing+ .

117.14.7.4 public void changeOccurred(DmtEvent event)

event the DmtEvent describing the change in detail

□ DmtAdmin uses this method to notify the registered listeners about the change. This method is
called asynchronously from the actual event occurrence.

117.14.8 public class DmtException
extends Exception
Checked exception received when a DMT operation fails. Beside the exception message, a DmtEx-
ception always contains an error code (one of the constants specified in this class), and may option-
ally contain the URI of the related node, and information about the cause of the exception.

Some of the error codes defined in this class have a corresponding error code defined in OMA DM, in
these cases the name and numerical value from OMA DM is used. Error codes without counterparts
in OMA DM were given numbers from a different range, starting from 1.

The cause of the exception (if specified) can either be a single Throwable instance, or a list of such
instances if several problems occurred during the execution of a method. An example for the latter
is the close method of DmtSession that tries to close multiple plugins, and has to report the excep-
tions of all failures.

Each constructor has two variants, one accepts a Str ing node URI, the other accepts a Str ing[] node
path. The former is used by the DmtAdmin implementation, the latter by the plugins, who receive
the node URI as an array of segment names. The constructors are otherwise identical.

Getter methods are provided to retrieve the values of the additional parameters, and the
printStackTrace(Pr intWriter) method is extended to print the stack trace of all causing throwables
as well.

117.14.8.1 public static final int ALERT_NOT_ROUTED = 5

An alert can not be sent from the device to the given principal. This can happen if there is no Re-
mote Alert Sender willing to forward the alert to the given principal, or if no principal was given
and the DmtAdmin did not find an appropriate default destination.

This error code does not correspond to any OMA DM response status code. It should be translated to
the code 500 "Command Failed" when transferring over OMA DM.

117.14.8.2 public static final int COMMAND_FAILED = 500

The recipient encountered an error which prevented it from fulfilling the request.

This error code is only used in situations not covered by any of the other error codes that a method
may use. Some methods specify more specific error situations for this code, but it can generally be
used for any unexpected condition that causes the command to fail.

This error code corresponds to the OMA DM response status code 500 "Command Failed".

117.14.8.3 public static final int COMMAND_NOT_ALLOWED = 405

The requested command is not allowed on the target node. This includes the following situations:

• an interior node operation is requested for a leaf node, or vice versa (e.g. trying to retrieve the
children of a leaf node)

• an attempt is made to create a node where the parent is a leaf node

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 451

• an attempt is made to rename or delete the root node of the tree
• an attempt is made to rename or delete the root node of the session
• a write operation (other than setting the ACL) is performed in a non-atomic write session on a

node provided by a plugin that is read-only or does not support non-atomic writing
• a node is copied to its descendant
• the ACL of the root node is changed not to include Add rights for all principals

This error code corresponds to the OMA DM response status code 405 "Command not allowed".

117.14.8.4 public static final int CONCURRENT_ACCESS = 4

An error occurred related to concurrent access of nodes. This can happen for example if a configu-
ration node was deleted directly through the Configuration Admin service, while the node was ma-
nipulated via the tree.

This error code does not correspond to any OMA DM response status code. It should be translated to
the code 500 "Command Failed" when transferring over OMA DM.

117.14.8.5 public static final int DATA_STORE_FAILURE = 510

An error related to the recipient data store occurred while processing the request. This error code
may be thrown by any of the methods accessing the tree, but whether it is really used depends on
the implementation, and the data store it uses.

This error code corresponds to the OMA DM response status code 510 "Data store failure".

117.14.8.6 public static final int FEATURE_NOT_SUPPORTED = 406

The requested command failed because an optional feature required by the command is not sup-
ported. For example, opening an atomic session might return this error code if the DmtAdmin im-
plementation does not support transactions. Similarly, accessing the optional node properties (Title,
Timestamp, Version, Size) might not succeed if either the DmtAdmin implementation or the under-
lying plugin does not support the property.

When getting or setting values for interior nodes (an optional optimization feature), a plugin can
use this error code to indicate that the given interior node does not support values.

This error code corresponds to the OMA DM response status code 406 "Optional feature not support-
ed".

117.14.8.7 public static final int INVALID_URI = 3

The requested command failed because the target URI or node name is nul l or syntactically invalid.
This covers the following cases:

• the URI or node name ends with the '\' or '/' character
• the URI is an empty string (only invalid if the method does not accept relative URIs)
• the URI contains the segment "." at a position other than the beginning of the URI
• the node name is ". ." or the URI contains such a segment
• the node name contains an unescaped '/' character

See the Uri.encode(String) method for support on escaping invalid characters in a URI.

This code is only used if the URI or node name does not match any of the criteria for
URI_TOO_LONG. This error code does not correspond to any OMA DM response status code. It
should be translated to the code 404 "Not Found" when transferring over OMA DM.

117.14.8.8 public static final int LIMIT_EXCEEDED = 413

The requested operation failed because a specific limit was exceeded, e.g. if a requested resource ex-
ceeds a size limit.

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 452 OSGi Compendium Release 8

This error code corresponds to the OMA DM response status code 413 "Request entity too large".

Since 2.0

117.14.8.9 public static final int METADATA_MISMATCH = 2

Operation failed because of meta data restrictions. This covers any attempted deviation from the pa-
rameters defined by the MetaNode objects of the affected nodes, for example in the following situa-
tions:

• creating, deleting or renaming a permanent node, or modifying its type
• creating an interior node where the meta-node defines it as a leaf, or vice versa
• any operation on a node which does not have the required access type (e.g. executing a node that

lacks the MetaNode.CMD_EXECUTE access type)
• any node creation or deletion that would violate the cardinality constraints
• any leaf node value setting that would violate the allowed formats, values, mime types, etc.
• any node creation that would violate the allowed node names

This error code can also be used to indicate any other meta data violation, even if it cannot be de-
scribed by the MetaNode class. For example, detecting a multi-node constraint violation while com-
mitting an atomic session should result in this error.

This error code does not correspond to any OMA DM response status code. It should be translated to
the code 405 "Command not allowed" when transferring over OMA DM.

117.14.8.10 public static final int NODE_ALREADY_EXISTS = 418

The requested node creation operation failed because the target already exists. This can occur if the
node is created directly (with one of the create. . . methods), or indirectly (during a copy operation).

This error code corresponds to the OMA DM response status code 418 "Already exists".

117.14.8.11 public static final int NODE_NOT_FOUND = 404

The requested target node was not found. No indication is given as to whether this is a temporary or
permanent condition, unless otherwise noted.

This is only used when the requested node name is valid, otherwise the more specific error codes
URI_TOO_LONG or INVALID_URI are used. This error code corresponds to the OMA DM response
status code 404 "Not Found".

117.14.8.12 public static final int PERMISSION_DENIED = 425

The requested command failed because the principal associated with the session does not have ad-
equate access control permissions (ACL) on the target. This can only appear in case of remote ses-
sions, i.e. if the session is associated with an authenticated principal.

This error code corresponds to the OMA DM response status code 425 "Permission denied".

117.14.8.13 public static final int REMOTE_ERROR = 1

A device initiated remote operation failed. This is used when the protocol adapter fails to send an
alert for any reason.

Alert routing errors (that occur while looking for the proper protocol adapter to use) are indicated
by ALERT_NOT_ROUTED, this code is only for errors encountered while sending the routed alert.
This error code does not correspond to any OMA DM response status code. It should be translated to
the code 500 "Command Failed" when transferring over OMA DM.

117.14.8.14 public static final int ROLLBACK_FAILED = 516

The rollback command was not completed successfully. The tree might be in an inconsistent state
after this error.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 453

This error code corresponds to the OMA DM response status code 516 "Atomic roll back failed".

117.14.8.15 public static final int SESSION_CREATION_TIMEOUT = 7

Creation of a session timed out because of another ongoing session. The length of time while the
DmtAdmin waits for the blocking session(s) to finish is implementation dependent.

This error code does not correspond to any OMA DM response status code. OMA has several status
codes related to timeout, but these are meant to be used when a request times out, not if a session
can not be established. This error code should be translated to the code 500 "Command Failed" when
transferring over OMA DM.

117.14.8.16 public static final int TRANSACTION_ERROR = 6

A transaction-related error occurred in an atomic session. This error is caused by one of the follow-
ing situations:

• an updating method within an atomic session can not be executed because the underlying plug-
in is read-only or does not support atomic writing

• a commit operation at the end of an atomic session failed because one of the underlying plugins
failed to close

The latter case may leave the tree in an inconsistent state due to the lack of a two-phase commit sys-
tem, see DmtSession.commit() for details.

This error code does not correspond to any OMA DM response status code. It should be translated to
the code 500 "Command Failed" when transferring over OMA DM.

117.14.8.17 public static final int UNAUTHORIZED = 401

The originator's authentication credentials specify a principal with insufficient rights to complete
the command.

This status code is used as response to device originated sessions if the remote management server
cannot authorize the device to perform the requested operation.

This error code corresponds to the OMA DM response status code 401 "Unauthorized".

117.14.8.18 public static final int URI_TOO_LONG = 414

The requested command failed because the target URI is too long for what the recipient is able or
willing to process.

This error code corresponds to the OMA DM response status code 414 "URI too long".

See Also OSGi Service Platform, Mobi le Specif icat ion Release 4

117.14.8.19 public DmtException(String uri, int code, String message)

uri the node on which the failed DMT operation was issued, or nul l if the operation is not associated
with a node

code the error code of the failure

message the message associated with the exception, or nul l if there is no error message

□ Create an instance of the exception. The uri and message parameters are optional. No originating ex-
ception is specified.

117.14.8.20 public DmtException(String uri, int code, String message, Throwable cause)

uri the node on which the failed DMT operation was issued, or nul l if the operation is not associated
with a node

code the error code of the failure

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 454 OSGi Compendium Release 8

message the message associated with the exception, or nul l if there is no error message

cause the originating exception, or nul l if there is no originating exception

□ Create an instance of the exception, specifying the cause exception. The uri , message and cause pa-
rameters are optional.

117.14.8.21 public DmtException(String uri, int code, String message, Vector<? extends Throwable> causes, boolean
fatal)

uri the node on which the failed DMT operation was issued, or nul l if the operation is not associated
with a node

code the error code of the failure

message the message associated with the exception, or nul l if there is no error message

causes the list of originating exceptions, or empty list or nul l if there are no originating exceptions

fatal whether the exception is fatal

□ Create an instance of the exception, specifying the list of cause exceptions and whether the excep-
tion is a fatal one. This constructor is meant to be used by plugins wishing to indicate that a serious
error occurred which should invalidate the ongoing atomic session. The uri , message and causes pa-
rameters are optional.

If a fatal exception is thrown, no further business methods will be called on the originator plugin. In
case of atomic sessions, all other open plugins will be rolled back automatically, except if the fatal
exception was thrown during commit.

117.14.8.22 public DmtException(String[] path, int code, String message)

path the path of the node on which the failed DMT operation was issued, or nul l if the operation is not as-
sociated with a node

code the error code of the failure

message the message associated with the exception, or nul l if there is no error message

□ Create an instance of the exception, specifying the target node as an array of path segments. This
method behaves in exactly the same way as if the path was given as a URI string.

See Also DmtException(String, int, String)

117.14.8.23 public DmtException(String[] path, int code, String message, Throwable cause)

path the path of the node on which the failed DMT operation was issued, or nul l if the operation is not as-
sociated with a node

code the error code of the failure

message the message associated with the exception, or nul l if there is no error message

cause the originating exception, or nul l if there is no originating exception

□ Create an instance of the exception, specifying the target node as an array of path segments, and
specifying the cause exception. This method behaves in exactly the same way as if the path was giv-
en as a URI string.

See Also DmtException(String, int, String, Throwable)

117.14.8.24 public DmtException(String[] path, int code, String message, Vector<? extends Throwable> causes, boolean
fatal)

path the path of the node on which the failed DMT operation was issued, or nul l if the operation is not as-
sociated with a node

code the error code of the failure

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 455

message the message associated with the exception, or nul l if there is no error message

causes the list of originating exceptions, or empty list or nul l if there are no originating exceptions

fatal whether the exception is fatal

□ Create an instance of the exception, specifying the target node as an array of path segments, the list
of cause exceptions, and whether the exception is a fatal one. This method behaves in exactly the
same way as if the path was given as a URI string.

See Also DmtException(String, int, String, Vector, boolean)

117.14.8.25 public Throwable getCause()

□ Get the cause of this exception. Returns non-nul l , if this exception is caused by one or more other ex-
ceptions (like a NullPointerException in a DmtPlugin). If there are more than one cause exceptions,
the first one is returned.

Returns the cause of this exception, or nul l if no cause was given

117.14.8.26 public Throwable[] getCauses()

□ Get all causes of this exception. Returns the causing exceptions in an array. If no cause was specified,
an empty array is returned.

Returns the list of causes of this exception

117.14.8.27 public int getCode()

□ Get the error code associated with this exception. Most of the error codes within this exception cor-
respond to OMA DM error codes.

Returns the error code

117.14.8.28 public String getMessage()

□ Get the message associated with this exception. The returned string also contains the associated
URI (if any) and the exception code. The resulting message has the following format (parts in square
brackets are only included if the field inside them is not nul l):

 <exception_code>[: '<uri>'][: <error_message>]

Returns the error message in the format described above

117.14.8.29 public String getURI()

□ Get the node on which the failed DMT operation was issued. Some operations like
DmtSession.close() don't require an URI, in this case this method returns nul l .

Returns the URI of the node, or nul l

117.14.8.30 public boolean isFatal()

□ Check whether this exception is marked as fatal in the session. Fatal exceptions trigger an automat-
ic rollback of atomic sessions.

Returns whether the exception is marked as fatal

117.14.8.31 public void printStackTrace(PrintStream s)

s PrintStream to use for output

□ Prints the exception and its stacktrace to the specified print stream. Any causes that were specified
for this exception are also printed, together with their stacktraces.

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 456 OSGi Compendium Release 8

117.14.9 public class DmtIllegalStateException
extends RuntimeException
Unchecked illegal state exception. This class is used in DMT because java.lang.IllegalStateException
does not exist in CLDC.

117.14.9.1 public DmtIllegalStateException()

□ Create an instance of the exception with no message.

117.14.9.2 public DmtIllegalStateException(String message)

message the reason for the exception

□ Create an instance of the exception with the specified message.

117.14.9.3 public DmtIllegalStateException(Throwable cause)

cause the cause of the exception

□ Create an instance of the exception with the specified cause exception and no message.

117.14.9.4 public DmtIllegalStateException(String message, Throwable cause)

message the reason for the exception

cause the cause of the exception

□ Create an instance of the exception with the specified message and cause exception.

117.14.10 public interface DmtSession
DmtSession provides concurrent access to the DMT. All DMT manipulation commands for manage-
ment applications are available on the DmtSession interface. The session is associated with a root
node which limits the subtree in which the operations can be executed within this session.

Most of the operations take a node URI as parameter, which can be either an absolute URI (starting
with "./") or a URI relative to the root node of the session. The empty string as relative URI means
the root URI the session was opened with. All segments of a URI must be within the segment length
limit of the implementation, and the special characters '/' and '\' must be escaped (preceded by a '\').

See the Uri.encode(String) method for support on escaping invalid characters in a URI.

If the URI specified does not correspond to a legitimate node in the tree an exception is thrown. The
only exception is the isNodeUri(String) method which returns fa lse in case of an invalid URI.

Each method of DmtSession that accesses the tree in any way can throw DmtI l legalStateException
if the session has been closed or invalidated (due to timeout, fatal exceptions, or unexpectedly un-
registered plugins).

117.14.10.1 public static final int LOCK_TYPE_ATOMIC = 2

LOCK_TYPE_ATOMIC is an exclusive lock with transactional functionality. Commands of an atomic
session will either fail or succeed together, if a single command fails then the whole session will be
rolled back.

117.14.10.2 public static final int LOCK_TYPE_EXCLUSIVE = 1

LOCK_TYPE_EXCLUSIVE lock guarantees full access to the tree, but can not be shared with any other
locks.

117.14.10.3 public static final int LOCK_TYPE_SHARED = 0

Sessions created with LOCK_TYPE_SHARED lock allows read-only access to the tree, but can be
shared between multiple readers.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 457

117.14.10.4 public static final int STATE_CLOSED = 1

The session is closed, DMT manipulation operations are not available, they throw DmtI l legalState-
Exception if tried.

117.14.10.5 public static final int STATE_INVALID = 2

The session is invalid because a fatal error happened. Fatal errors include the timeout of the session,
any DmtException with the 'fatal' flag set, or the case when a plugin service is unregistered while in
use by the session. DMT manipulation operations are not available, they throw DmtI l legalStateEx-
ception if tried.

117.14.10.6 public static final int STATE_OPEN = 0

The session is open, all session operations are available.

117.14.10.7 public void close() throws DmtException

□ Closes a session. If the session was opened with atomic lock mode, the DmtSession must first persist
the changes made to the DMT by calling commit() on all (transactional) plugins participating in the
session. See the documentation of the commit() method for details and possible errors during this
operation.

The state of the session changes to DmtSession.STATE_CLOSED if the close operation completed
successfully, otherwise it becomes DmtSession.STATE_INVALID .

Throws DmtException– with the following possible error codes:

• METADATA_MISMATCH in case of atomic sessions, if the commit operation failed because of
meta-data restrictions

• CONCURRENT_ACCESS in case of atomic sessions, if the commit operation failed because of
some modification outside the scope of the DMT to the nodes affected in the session

• TRANSACTION_ERROR in case of atomic sessions, if an underlying plugin failed to commit
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if an underlying plugin failed to close, or if some unspecified error is en-

countered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.14.10.8 public void commit() throws DmtException

□ Commits a series of DMT operations issued in the current atomic session since the last transaction
boundary. Transaction boundaries are the creation of this object that starts the session, and all sub-
sequent commit() and rollback() calls.

This method can fail even if all operations were successful. This can happen due to some multi-node
semantic constraints defined by a specific implementation. For example, node A can be required to
always have children A/B, A/C and A/D. If this condition is broken when commit() is executed, the
method will fail, and throw a METADATA_MISMATCH exception.

An error situation can arise due to the lack of a two phase commit mechanism in the underlying
plugins. As an example, if plugin A has committed successfully but plugin B failed, the whole ses-
sion must fail, but there is no way to undo the commit performed by A. To provide predictable be-
havior, the commit operation should continue with the remaining plugins even after detecting a
failure. All exceptions received from failed commits are aggregated into one TRANSACTION_ERROR
exception thrown by this method.

In many cases the tree is not the only way to manage a given part of the system. It may happen
that while modifying some nodes in an atomic session, the underlying settings are modified in par-

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 458 OSGi Compendium Release 8

allel outside the scope of the DMT. If this is detected during commit, an exception with the code
CONCURRENT_ACCESS is thrown.

Throws DmtException– with the following possible error codes:

• METADATA_MISMATCH if the operation failed because of meta-data restrictions
• CONCURRENT_ACCESS if it is detected that some modification has been made outside the scope

of the DMT to the nodes affected in the session's operations
• TRANSACTION_ERROR if an error occurred during the commit of any of the underlying plugins
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

DmtI l legalStateException– if the session was not opened using the LOCK_TYPE_ATOMIC lock type,
or if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.14.10.9 public void copy(String nodeUri, String newNodeUri, boolean recursive) throws DmtException

nodeUri the node or root of a subtree to be copied

newNodeUri the URI of the new node or root of a subtree

recursive fa lse if only a single node is copied, true if the whole subtree is copied

□ Create a copy of a node or a whole subtree. Beside the structure and values of the nodes, most prop-
erties are also copied, with the exception of the ACL (Access Control List), Timestamp and Version
properties.

The copy method is essentially a convenience method that could be substituted with a sequence of
retrieval and update operations. This determines the permissions required for copying. However,
some optimization can be possible if the source and target nodes are all handled by DmtAdmin or
by the same plugin. In this case, the handler might be able to perform the underlying management
operation more efficiently: for example, a configuration table can be copied at once instead of read-
ing each node for each entry and creating it in the new tree.

This method may result in any of the errors possible for the contributing operations. Most of
these are collected in the exception descriptions below, but for the full list also consult the
documentation of getChildNodeNames(String), isLeafNode(String), getNodeValue(String),
getNodeType(String), getNodeTitle(String), setNodeTitle(String, String), createLeafNode(String,
DmtData, String) and createInteriorNode(String, String).

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri or newNodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node, or if newNodeUri points to a node

that cannot exist in the tree according to the meta-data (see getMetaNode(String))
• NODE_ALREADY_EXISTS if newNodeUri points to a node that already exists
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the copied

node(s) does not allow the Get operation, or the ACL of the parent of the target node does not al-
low the Add operation for the associated principal

• COMMAND_NOT_ALLOWED if nodeUri is an ancestor of newNodeUri , or if any of the implied re-
trieval or update operations are not allowed

• METADATA_MISMATCH if any of the meta-data constraints of the implied retrieval or update op-
erations are violated

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 459

• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-
port atomic writing

• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if either URI is not within the current session's subtree, or if some unspeci-

fied error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the copied node(s) with the Get action present, or for the parent of the target node with the Add ac-
tion

117.14.10.10 public void createInteriorNode(String nodeUri) throws DmtException

nodeUri the URI of the node to create

□ Create an interior node. If the parent node does not exist, it is created automatically, as if this
method were called for the parent URI. This way all missing ancestor nodes leading to the specified
node are created. Any exceptions encountered while creating the ancestors are propagated to the
caller of this method, these are not explicitly listed in the error descriptions below.

If meta-data is available for the node, several checks are made before creating it. The node must have
MetaNode.CMD_ADD access type, it must be defined as a non-permanent interior node, the node
name must conform to the valid names, and the creation of the new node must not cause the maxi-
mum occurrence number to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly exist in the tree
(it is not defined in the specification), the NODE_NOT_FOUND error code is returned (see
getMetaNode(String)).

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree (see above)
• NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the parent node

does not allow the Add operation for the associated principal
• COMMAND_NOT_ALLOWED if the parent node is not an interior node, or in non-atomic sessions

if the underlying plugin is read-only or does not support non-atomic writing
• METADATA_MISMATCH if the node could not be created because of meta-data restrictions (see

above)
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the parent node with the Add action present

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 460 OSGi Compendium Release 8

117.14.10.11 public void createInteriorNode(String nodeUri, String type) throws DmtException

nodeUri the URI of the node to create

type the type URI of the interior node, can be nul l if no node type is defined

□ Create an interior node with a given type. The type of interior node, if specified, is a URI iden-
tifying a DDF document. If the parent node does not exist, it is created automatically, as if
createInteriorNode(String) were called for the parent URI. This way all missing ancestor nodes lead-
ing to the specified node are created. Any exceptions encountered while creating the ancestors are
propagated to the caller of this method, these are not explicitly listed in the error descriptions be-
low.

If meta-data is available for the node, several checks are made before creating it. The node must have
MetaNode.CMD_ADD access type, it must be defined as a non-permanent interior node, the node
name must conform to the valid names, and the creation of the new node must not cause the maxi-
mum occurrence number to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly exist in the tree
(it is not defined in the specification), the NODE_NOT_FOUND error code is returned (see
getMetaNode(String)).

Interior node type identifiers must follow the format defined in section 7.7.7.2 of the OMA Device
Management Tree and Description document. Checking the validity of the type string does not have
to be done by the DmtAdmin, this can be left to the plugin handling the node (if any), to avoid un-
necessary double-checks.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree (see above)
• NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the parent node

does not allow the Add operation for the associated principal
• COMMAND_NOT_ALLOWED if the parent node is not an interior node, or in non-atomic sessions

if the underlying plugin is read-only or does not support non-atomic writing
• METADATA_MISMATCH if the node could not be created because of meta-data restrictions (see

above)
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, if the type string is in-

valid (see above), or if some unspecified error is encountered while attempting to complete the
command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the parent node with the Add action present

See Also createInteriorNode(String), OMA Device Management Tree and Description v1.2 draft [http://
member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-
TND-V1_2-20050615-C.zip]

http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 461

117.14.10.12 public void createLeafNode(String nodeUri) throws DmtException

nodeUri the URI of the node to create

□ Create a leaf node with default value and MIME type. If a node does not have a default value or
MIME type, this method will throw a DmtException with error code METADATA_MISMATCH . Note
that a node might have a default value or MIME type even if there is no meta-data for the node or its
meta-data does not specify the default.

If the parent node does not exist, it is created automatically, as if createInteriorNode(String) were
called for the parent URI. This way all missing ancestor nodes leading to the specified node are cre-
ated. Any exceptions encountered while creating the ancestors are propagated to the caller of this
method, these are not explicitly listed in the error descriptions below.

If meta-data is available for a node, several checks are made before creating it. The node must have
MetaNode.CMD_ADD access type, it must be defined as a non-permanent leaf node, the node name
must conform to the valid names, and the creation of the new node must not cause the maximum
occurrence number to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly exist in the tree
(it is not defined in the specification), the NODE_NOT_FOUND error code is returned (see
getMetaNode(String)).

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree (see above)
• NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the parent node

does not allow the Add operation for the associated principal
• COMMAND_NOT_ALLOWED if the parent node is not an interior node, or in non-atomic sessions

if the underlying plugin is read-only or does not support non-atomic writing
• METADATA_MISMATCH if the node could not be created because of meta-data restrictions (see

above)
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the parent node with the Add action present

See Also createLeafNode(String, DmtData)

117.14.10.13 public void createLeafNode(String nodeUri, DmtData value) throws DmtException

nodeUri the URI of the node to create

value the value to be given to the new node, can be nul l

□ Create a leaf node with a given value and the default MIME type. If the specified value is nul l , the de-
fault value is taken. If the node does not have a default MIME type or value (if needed), this method
will throw a DmtException with error code METADATA_MISMATCH . Note that a node might have a

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 462 OSGi Compendium Release 8

default value or MIME type even if there is no meta-data for the node or its meta-data does not speci-
fy the default.

If the parent node does not exist, it is created automatically, as if createInteriorNode(String) were
called for the parent URI. This way all missing ancestor nodes leading to the specified node are cre-
ated. Any exceptions encountered while creating the ancestors are propagated to the caller of this
method, these are not explicitly listed in the error descriptions below.

If meta-data is available for a node, several checks are made before creating it. The node must have
MetaNode.CMD_ADD access type, it must be defined as a non-permanent leaf node, the node name
must conform to the valid names, the node value must conform to the value constraints, and the
creation of the new node must not cause the maximum occurrence number to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly exist in the tree
(it is not defined in the specification), the NODE_NOT_FOUND error code is returned (see
getMetaNode(String)).

Nodes of nul l format can be created by using DmtData.NULL_VALUE as second argument.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree (see above)
• NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the parent node

does not allow the Add operation for the associated principal
• COMMAND_NOT_ALLOWED if the parent node is not an interior node, or in non-atomic sessions

if the underlying plugin is read-only or does not support non-atomic writing
• METADATA_MISMATCH if the node could not be created because of meta-data restrictions (see

above)
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the parent node with the Add action present

117.14.10.14 public void createLeafNode(String nodeUri, DmtData value, String mimeType) throws DmtException

nodeUri the URI of the node to create

value the value to be given to the new node, can be nul l

mimeType the MIME type to be given to the new node, can be nul l

□ Create a leaf node with a given value and MIME type. If the specified value or MIME type is nul l ,
their default values are taken. If the node does not have the necessary defaults, this method will
throw a DmtException with error code METADATA_MISMATCH . Note that a node might have a de-
fault value or MIME type even if there is no meta-data for the node or its meta-data does not specify
the default.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 463

If the parent node does not exist, it is created automatically, as if createInteriorNode(String) were
called for the parent URI. This way all missing ancestor nodes leading to the specified node are cre-
ated. Any exceptions encountered while creating the ancestors are propagated to the caller of this
method, these are not explicitly listed in the error descriptions below.

If meta-data is available for a node, several checks are made before creating it. The node must have
MetaNode.CMD_ADD access type, it must be defined as a non-permanent leaf node, the node name
must conform to the valid names, the node value must conform to the value constraints, the MIME
type must be among the listed types, and the creation of the new node must not cause the maxi-
mum occurrence number to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly exist in the tree
(it is not defined in the specification), the NODE_NOT_FOUND error code is returned (see
getMetaNode(String)).

Nodes of nul l format can be created by using DmtData.NULL_VALUE as second argument.

The MIME type string must conform to the definition in RFC 2045. Checking its validity does not
have to be done by the DmtAdmin, this can be left to the plugin handling the node (if any), to avoid
unnecessary double-checks.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree (see above)
• NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the parent node

does not allow the Add operation for the associated principal
• COMMAND_NOT_ALLOWED if the parent node is not an interior node, or in non-atomic sessions

if the underlying plugin is read-only or does not support non-atomic writing
• METADATA_MISMATCH if the node could not be created because of meta-data restrictions (see

above)
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, if mimeType is not a

proper MIME type string (see above), or if some unspecified error is encountered while attempt-
ing to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the parent node with the Add action present

See Also createLeafNode(String, DmtData), RFC 2045 [http://www.ietf.org/rfc/rfc2045.txt]

117.14.10.15 public void deleteNode(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Delete the given node. Deleting interior nodes is recursive, the whole subtree under the given node
is deleted. It is not allowed to delete the root node of the session.

If meta-data is available for a node, several checks are made before deleting it. The node must be
non-permanent, it must have the MetaNode.CMD_DELETE access type, and if zero occurrences of
the node are not allowed, it must not be the last one.

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 464 OSGi Compendium Release 8

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Delete operation for the associated principal
• COMMAND_NOT_ALLOWED if the target node is the root of the session, or in non-atomic ses-

sions if the underlying plugin is read-only or does not support non-atomic writing
• METADATA_MISMATCH if the node could not be deleted because of meta-data restrictions (see

above)
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Delete action present

117.14.10.16 public void execute(String nodeUri, String data) throws DmtException

nodeUri the node on which the execute operation is issued

data the parameter of the execute operation, can be nul l

□ Executes a node. This corresponds to the EXEC operation in OMA DM. This method cannot be
called in a read-only session.

The semantics of an execute operation and the data parameter it takes depends on the definition of
the managed object on which the command is issued.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if the node does not exist
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Execute operation for the associated principal
• COMMAND_NOT_ALLOWED if the specified node is a scaffold node
• METADATA_MISMATCH if the node cannot be executed according to the meta-data (does not have

MetaNode.CMD_EXECUTE access type)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, if no DmtExecPlugin is

associated with the node and the DmtAdmin can not execute the node, or if some unspecified er-
ror is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 465

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Exec action present

See Also execute(String, String, String)

117.14.10.17 public void execute(String nodeUri, String correlator, String data) throws DmtException

nodeUri the node on which the execute operation is issued

correlator an identifier to associate this operation with any notifications sent in response to it, can be nul l if
not needed

data the parameter of the execute operation, can be nul l

□ Executes a node, also specifying a correlation ID for use in response notifications. This operation
corresponds to the EXEC command in OMA DM. This method cannot be called in a read-only ses-
sion.

The semantics of an execute operation and the data parameter it takes depends on the definition
of the managed object on which the command is issued. If a correlation ID is specified, it should be
used as the correlator parameter for notifications sent in response to this execute operation.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if the node does not exist
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Execute operation for the associated principal
• COMMAND_NOT_ALLOWED if the specified node is a scaffold node
• METADATA_MISMATCH if the node cannot be executed according to the meta-data (does not have

MetaNode.CMD_EXECUTE access type)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, if no DmtExecPlugin is

associated with the node, or if some unspecified error is encountered while attempting to com-
plete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Exec action present

See Also execute(String, String)

117.14.10.18 public String[] getChildNodeNames(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Get the list of children names of a node. The returned array contains the names - not the URIs - of
the immediate children nodes of the given node. The elements are in no particular order. The re-
turned array must not contain nul l entries.

Returns the list of child node names as a string array or an empty string array if the node has no children

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 466 OSGi Compendium Release 8

• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-
ly on systems with limited resources)

• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• COMMAND_NOT_ALLOWED if the specified node is not an interior node
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it

does not have MetaNode.CMD_GET access type)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

117.14.10.19 public Acl getEffectiveNodeAcl(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Gives the Access Control List in effect for a given node. The returned Acl takes inheritance into ac-
count, that is if there is no ACL defined for the node, it will be derived from the closest ancestor hav-
ing an ACL defined.

Returns the Access Control List belonging to the node

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (the

node does not have MetaNode.CMD_GET access type)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– in case of local sessions, if the caller does not have DmtPermission for the node
with the Get action present

See Also getNodeAcl(String)

117.14.10.20 public int getLockType()

□ Gives the type of lock the session has.

Returns the lock type of the session, one of LOCK_TYPE_SHARED, LOCK_TYPE_EXCLUSIVE and
LOCK_TYPE_ATOMIC

117.14.10.21 public MetaNode getMetaNode(String nodeUri) throws DmtException

nodeUri the URI of the node

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 467

□ Get the meta data which describes a given node. Meta data can only be inspected, it can not be
changed.

The MetaNode object returned to the client is the combination of the meta data returned by the data
plugin (if any) plus the meta data returned by the DmtAdmin. If there are differences in the meta da-
ta elements known by the plugin and the DmtAdmin then the plugin specific elements take prece-
dence.

Note, that a node does not have to exist for having meta-data associated with it. This method
may provide meta-data for any node that can possibly exist in the tree (any node defined in the
specification). For nodes that are not defined, it may throw DmtException with the error code
NODE_NOT_FOUND . To allow easier implementation of plugins that do not provide meta-data, it is
allowed to return nul l for any node, regardless of whether it is defined or not.

Returns a MetaNode which describes meta data information, can be nul l if there is no meta data available for
the given node

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a node that is not defined in the tree (see above)
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

117.14.10.22 public Acl getNodeAcl(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Get the Access Control List associated with a given node. The returned Acl object does not take in-
heritance into account, it gives the ACL specifically given to the node.

Returns the Access Control List belonging to the node or nul l if none defined

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (the

node does not have MetaNode.CMD_GET access type)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 468 OSGi Compendium Release 8

SecurityException– in case of local sessions, if the caller does not have DmtPermission for the node
with the Get action present

See Also getEffectiveNodeAcl(String)

117.14.10.23 public int getNodeSize(String nodeUri) throws DmtException

nodeUri the URI of the leaf node

□ Get the size of the data in a leaf node. The returned value depends on the format of the data in the
node, see the description of the DmtData.getSize() method for the definition of node size for each
format.

Returns the size of the data in the node

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• COMMAND_NOT_ALLOWED if the specified node is not a leaf node
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it

does not have MetaNode.CMD_GET access type)
• FEATURE_NOT_SUPPORTED if the Size property is not supported by the DmtAdmin implementa-

tion or the underlying plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

See Also DmtData.getSize()

117.14.10.24 public Date getNodeTimestamp(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Get the timestamp when the node was created or last modified.

Returns the timestamp of the last modification

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it

does not have MetaNode.CMD_GET access type)
• FEATURE_NOT_SUPPORTED if the Timestamp property is not supported by the DmtAdmin im-

plementation or the underlying plugin

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 469

• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

117.14.10.25 public String getNodeTitle(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Get the title of a node. There might be no title property set for a node.

Returns the title of the node, or nul l if the node has no title

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it

does not have MetaNode.CMD_GET access type)
• FEATURE_NOT_SUPPORTED if the Title property is not supported by the DmtAdmin implemen-

tation or the underlying plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

117.14.10.26 public String getNodeType(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Get the type of a node. The type of leaf node is the MIME type of the data it contains. The type of
an interior node is a URI identifying a DDF document; a nul l type means that there is no DDF docu-
ment overriding the tree structure defined by the ancestors.

Returns the type of the node, can be nul l

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it

does not have MetaNode.CMD_GET access type)

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 470 OSGi Compendium Release 8

• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

117.14.10.27 public DmtData getNodeValue(String nodeUri) throws DmtException

nodeUri the URI of the node to retrieve

□ Get the data contained in a leaf or interior node. When retrieving the value associated with an inte-
rior node, the caller must have rights to read all nodes in the subtree under the given node.

Returns the data of the node, can not be nul l

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node (and

the ACLs of all its descendants in case of interior nodes) do not allow the Get operation for the as-
sociated principal

• METADATA_MISMATCH if the node value cannot be retrieved according to the meta-data (it does
not have MetaNode.CMD_GET access type)

• FEATURE_NOT_SUPPORTED if the specified node is an interior node and does not support Java
object values

• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node (and all its descendants in case of interior nodes) with the Get action present

117.14.10.28 public int getNodeVersion(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Get the version of a node. The version can not be set, it is calculated automatically by the device. It is
incremented modulo 0x10000 at every modification of the value or any other property of the node,
for both leaf and interior nodes. When a node is created the initial value is 0.

Returns the version of the node

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 471

• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it
does not have MetaNode.CMD_GET access type)

• FEATURE_NOT_SUPPORTED if the Version property is not supported by the DmtAdmin imple-
mentation or the underlying plugin

• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

117.14.10.29 public String getPrincipal()

□ Gives the name of the principal on whose behalf the session was created. Local sessions do not have
an associated principal, in this case nul l is returned.

Returns the identifier of the remote server that initiated the session, or nul l for local sessions

117.14.10.30 public String getRootUri()

□ Get the root URI associated with this session. Gives "." if the session was created without specifying
a root, which means that the target of this session is the whole DMT.

Returns the root URI

117.14.10.31 public int getSessionId()

□ The unique identifier of the session. The ID is generated automatically, and it is guaranteed to be
unique on a machine for a specific Dmt Admin. A session id must be larger than 0.

Returns the session identification number

117.14.10.32 public int getState()

□ Get the current state of this session.

Returns the state of the session, one of STATE_OPEN, STATE_CLOSED and STATE_INVALID

117.14.10.33 public boolean isLeafNode(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Tells whether a node is a leaf or an interior node of the DMT.

Returns true if the given node is a leaf node

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Get operation for the associated principal
• METADATA_MISMATCH if node information cannot be retrieved according to the meta-data (it

does not have MetaNode.CMD_GET access type)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 472 OSGi Compendium Release 8

DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

117.14.10.34 public boolean isNodeUri(String nodeUri)

nodeUri the URI to check

□ Check whether the specified URI corresponds to a valid node in the DMT.

Returns true if the given node exists in the DMT

Throws DmtI l legalStateException– if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Get action present

117.14.10.35 public void renameNode(String nodeUri, String newName) throws DmtException

nodeUri the URI of the node to rename

newName the new name property of the node

□ Rename a node. This operation only changes the name of the node (updating the timestamp and
version properties if they are supported), the value and the other properties are not changed. The
new name of the node must be provided, the new URI is constructed from the base of the old URI
and the given name. It is not allowed to rename the root node of the session.

If available, the meta-data of the original and the new nodes are checked before performing the re-
name operation. Neither node can be permanent, their leaf/interior property must match, and the
name change must not violate any of the cardinality constraints. The original node must have the
MetaNode.CMD_REPLACE access type, and the name of the new node must conform to the valid
names.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri or newName is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node, or if the new node is not defined in

the tree according to the meta-data (see getMetaNode(String))
• NODE_ALREADY_EXISTS if there already exists a sibling of nodeUri with the name newName
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Replace operation for the associated principal
• COMMAND_NOT_ALLOWED if the target node is the root of the session, or in non-atomic ses-

sions if the underlying plugin is read-only or does not support non-atomic writing
• METADATA_MISMATCH if the node could not be renamed because of meta-data restrictions (see

above)
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 473

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Replace action present

117.14.10.36 public void rollback() throws DmtException

□ Rolls back a series of DMT operations issued in the current atomic session since the last transaction
boundary. Transaction boundaries are the creation of this object that starts the session, and all sub-
sequent commit() and rollback() calls.

Throws DmtException– with the error code ROLLBACK_FAILED in case the rollback did not succeed

DmtI l legalStateException– if the session was not opened using the LOCK_TYPE_ATOMIC lock type,
or if the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.14.10.37 public void setDefaultNodeValue(String nodeUri) throws DmtException

nodeUri the URI of the node

□ Set the value of a leaf or interior node to its default. The default can be defined by the node's MetaN-
ode . The method throws a METADATA_MISMATCH exception if the node does not have a default val-
ue.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Replace operation for the associated principal
• COMMAND_NOT_ALLOWED in non-atomic sessions if the underlying plugin is read-only or does

not support non-atomic writing
• METADATA_MISMATCH if the node is permanent or cannot be modified according to the meta-

data (does not have the MetaNode.CMD_REPLACE access type), or if there is no default value de-
fined for this node

• FEATURE_NOT_SUPPORTED if the specified node is an interior node and does not support Java
object values

• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-
port atomic writing

• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Replace action present

See Also setNodeValue(String, DmtData)

117.14.10.38 public void setNodeAcl(String nodeUri, Acl acl) throws DmtException

nodeUri the URI of the node

acl the Access Control List to be set on the node, can be nul l

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 474 OSGi Compendium Release 8

□ Set the Access Control List associated with a given node. To perform this operation, the caller needs
to have replace rights (Acl .REPLACE or the corresponding Java permission depending on the session
type) as described below:

• if nodeUri specifies a leaf node, replace rights are needed on the parent of the node
• if nodeUri specifies an interior node, replace rights on either the node or its parent are sufficient

If the given acl is nul l or an empty ACL (not specifying any permissions for any principals), then the
ACL of the node is deleted, and the node will inherit the ACL from its parent node.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node or its

parent (see above) does not allow the Replace operation for the associated principal
• COMMAND_NOT_ALLOWED if the command attempts to set the ACL of the root node not to in-

clude Add rights for all principals
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– in case of local sessions, if the caller does not have DmtPermission for the node
or its parent (see above) with the Replace action present

117.14.10.39 public void setNodeTitle(String nodeUri, String title) throws DmtException

nodeUri the URI of the node

title the title text of the node, can be nul l

□ Set the title property of a node. The length of the title string in UTF-8 encoding must not exceed 255
bytes.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Replace operation for the associated principal
• COMMAND_NOT_ALLOWED in non-atomic sessions if the underlying plugin is read-only or does

not support non-atomic writing
• METADATA_MISMATCH if the node cannot be modified according to the meta-data (does not have

the MetaNode.CMD_REPLACE access type)
• FEATURE_NOT_SUPPORTED if the Title property is not supported by the DmtAdmin implemen-

tation or the underlying plugin
• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-

port atomic writing
• DATA_STORE_FAILURE if an error occurred while accessing the data store

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 475

• COMMAND_FAILED if the title string is too long, if the URI is not within the current session's sub-
tree, or if some unspecified error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Replace action present

117.14.10.40 public void setNodeType(String nodeUri, String type) throws DmtException

nodeUri the URI of the node

type the type of the node, can be nul l

□ Set the type of a node. The type of leaf node is the MIME type of the data it contains. The type of an
interior node is a URI identifying a DDF document.

For interior nodes, a nul l type string means that there is no DDF document overriding the tree struc-
ture defined by the ancestors. For leaf nodes, it requests that the default MIME type is used for the
given node. If the node does not have a default MIME type this method will throw a DmtException
with error code METADATA_MISMATCH . Note that a node might have a default MIME type even if
there is no meta-data for the node or its meta-data does not specify the default.

MIME types must conform to the definition in RFC 2045. Interior node type identifiers must follow
the format defined in section 7.7.7.2 of the OMA Device Management Tree and Description docu-
ment. Checking the validity of the type string does not have to be done by the DmtAdmin, this can
be left to the plugin handling the node (if any), to avoid unnecessary double-checks.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Replace operation for the associated principal
• COMMAND_NOT_ALLOWED in non-atomic sessions if the underlying plugin is read-only or does

not support non-atomic writing
• METADATA_MISMATCH if the node is permanent or cannot be modified according to the meta-

data (does not have the MetaNode.CMD_REPLACE access type), and in case of leaf nodes, if nul l is
given and there is no default MIME type, or the given MIME type is not allowed

• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-
port atomic writing

• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, if the type string is in-

valid (see above), or if some unspecified error is encountered while attempting to complete the
command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Replace action present

See Also RFC 2045 [http://www.ietf.org/rfc/rfc2045.txt], OMA Device Management Tree and Description v1.2
draft [http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/
OMA-TS-DM-TND-V1_2-20050615-C.zip]

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 476 OSGi Compendium Release 8

117.14.10.41 public void setNodeValue(String nodeUri, DmtData data) throws DmtException

nodeUri the URI of the node

data the data to be set, can be nul l

□ Set the value of a leaf or interior node. The format of the node is contained in the DmtData object.
For interior nodes, the format must be FORMAT_NODE , while for leaf nodes this format must not be
used.

If the specified value is nul l , the default value is taken. In this case, if the node does not have a de-
fault value, this method will throw a DmtException with error code METADATA_MISMATCH . Nodes
of nul l format can be set by using DmtData.NULL_VALUE as second argument.

An Event of type REPLACE is sent out for a leaf node. A replaced interior node sends out events for
each of its children in depth first order and node names sorted with Arrays.sort(String[]). When set-
ting a value on an interior node, the values of the leaf nodes under it can change, but the structure of
the subtree is not modified by the operation.

Throws DmtException– with the following possible error codes:

• INVALID_URI if nodeUri is nul l or syntactically invalid
• URI_TOO_LONG if nodeUri is longer than accepted by the DmtAdmin implementation (especial-

ly on systems with limited resources)
• NODE_NOT_FOUND if nodeUri points to a non-existing node
• PERMISSION_DENIED if the session is associated with a principal and the ACL of the node does

not allow the Replace operation for the associated principal
• COMMAND_NOT_ALLOWED if the given data has FORMAT_NODE format but the node is a leaf

node (or vice versa), or in non-atomic sessions if the underlying plugin is read-only or does not
support non-atomic writing

• METADATA_MISMATCH if the node is permanent or cannot be modified according to the meta-
data (does not have the MetaNode.CMD_REPLACE access type), or if the given value does not con-
form to the meta-data value constraints

• FEATURE_NOT_SUPPORTED if the specified node is an interior node and does not support Java
object values

• TRANSACTION_ERROR in an atomic session if the underlying plugin is read-only or does not sup-
port atomic writing

• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if the URI is not within the current session's subtree, or if some unspecified

error is encountered while attempting to complete the command

DmtI l legalStateException– if the session was opened using the LOCK_TYPE_SHARED lock type, or if
the session is already closed or invalidated

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation, or, in case of local sessions, if the caller does not have DmtPermission for
the node with the Replace action present

117.14.11 public interface MetaNode
The MetaNode contains meta data as standardized by OMA DM but extends it (without breaking the
compatibility) to provide for better DMT data quality in an environment where many software com-
ponents manipulate this data.

The interface has several types of functions to describe the nodes in the DMT. Some methods can be
used to retrieve standard OMA DM metadata such as access type, cardinality, default, etc., others are
for data extensions such as valid names and values. In some cases the standard behavior has been ex-
tended, for example it is possible to provide several valid MIME types, or to differentiate between
normal and automatic dynamic nodes.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 477

Most methods in this interface receive no input, just return information about some aspect of
the node. However, there are two methods that behave differently, isValidName(String) and
isValidValue(DmtData). These validation methods are given a potential node name or value (respec-
tively), and can decide whether it is valid for the given node. Passing the validation methods is a nec-
essary condition for a name or value to be used, but it is not necessarily sufficient: the plugin may
carry out more thorough (more expensive) checks when the node is actually created or set.

If a MetaNode is available for a node, the DmtAdmin must use the information provided by it to fil-
ter out invalid requests on that node. However, not all methods on this interface are actually used
for this purpose, as many of them (e.g. getFormat() or getValidNames()) can be substituted with the
validating methods. For example, isValidValue(DmtData) can be expected to check the format, mini-
mum, maximum, etc. of a given value, making it unnecessary for the DmtAdmin to call getFormat(),
getMin(), getMax() etc. separately. It is indicated in the description of each method if the DmtAdmin
does not enforce the constraints defined by it - such methods are only for external use, for example
in user interfaces.

Most of the methods of this class return nul l if a certain piece of meta information is not defined for
the node or providing this information is not supported. Methods of this class do not throw excep-
tions.

117.14.11.1 public static final int AUTOMATIC = 2

Constant for representing an automatic node in the tree. This must be returned by getScope(). AU-
TOMATIC nodes are part of the life cycle of their parent node, they usually describe attributes/prop-
erties of the parent.

117.14.11.2 public static final int CMD_ADD = 0

Constant for the ADD access type. If can(int) returns true for this operation, this node can potential-
ly be added to its parent. Nodes with PERMANENT or AUTOMATIC scope typically do not have this
access type.

117.14.11.3 public static final int CMD_DELETE = 1

Constant for the DELETE access type. If can(int) returns true for this operation, the node can poten-
tially be deleted.

117.14.11.4 public static final int CMD_EXECUTE = 2

Constant for the EXECUTE access type. If can(int) returns true for this operation, the node can po-
tentially be executed.

117.14.11.5 public static final int CMD_GET = 4

Constant for the GET access type. If can(int) returns true for this operation, the value, the list of
child nodes (in case of interior nodes) and the properties of the node can potentially be retrieved.

117.14.11.6 public static final int CMD_REPLACE = 3

Constant for the REPLACE access type. If can(int) returns true for this operation, the value and other
properties of the node can potentially be modified.

117.14.11.7 public static final int DYNAMIC = 1

Constant for representing a dynamic node in the tree. This must be returned by getScope(). Dynam-
ic nodes can be added and deleted.

117.14.11.8 public static final int PERMANENT = 0

Constant for representing a PERMANENT node in the tree. This must be returned by getScope() if the
node cannot be added, deleted or modified in any way through tree operations. PERMANENT nodes
in general map to the roots of Plugins.

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 478 OSGi Compendium Release 8

117.14.11.9 public boolean can(int operation)

operation One of the MetaNode.CMD_.. . constants.

□ Check whether the given operation is valid for this node. If no meta-data is provided for a node, all
operations are valid.

Returns fa lse if the operation is not valid for this node or the operation code is not one of the allowed con-
stants

117.14.11.10 public DmtData getDefault()

□ Get the default value of this node if any.

Returns The default value or nul l if not defined

117.14.11.11 public String getDescription()

□ Get the explanation string associated with this node. Can be nul l if no description is provided for
this node.

Returns node description string or nul l for no description

117.14.11.12 public Object getExtensionProperty(String key)

key the key for the extension property

□ Returns the value for the specified extension property key. This method only works if the provider
of this MetaNode provides proprietary extensions to node meta data.

Returns the value of the requested property, cannot be nul l

Throws I l legalArgumentException– if the specified key is not supported by this MetaNode

117.14.11.13 public String[] getExtensionPropertyKeys()

□ Returns the list of extension property keys, if the provider of this MetaNode provides proprietary ex-
tensions to node meta data. The method returns nul l if the node doesn't provide such extensions.

Returns the array of supported extension property keys

117.14.11.14 public int getFormat()

□ Get the node's format, expressed in terms of type constants defined in DmtData. If there are mul-
tiple formats allowed for the node then the format constants are OR-ed. Interior nodes must have
DmtData.FORMAT_NODE format, and this code must not be returned for leaf nodes. If no meta-data
is provided for a node, all applicable formats are considered valid (with the above constraints regard-
ing interior and leaf nodes).

Note that the 'format' term is a legacy from OMA DM, it is more customary to think of this as 'type'.

The formats returned by this method are not checked by DmtAdmin, they are only for external use,
for example in user interfaces. DmtAdmin only calls isValidValue(DmtData) for checking the value,
its behavior should be consistent with this method.

Returns the allowed format(s) of the node

117.14.11.15 public double getMax()

□ Get the maximum allowed value associated with a node of numeric format. If no meta-data is pro-
vided for a node, there is no upper limit to its value. This method is only meaningful if the node has
one of the numeric formats: integer, float, or long format. The returned limit has double type, as this
can be used to denote all numeric limits with full precision. The actual maximum should be the
largest integer, float or long number that does not exceed the returned value.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 479

The information returned by this method is not checked by DmtAdmin, it is only for external use,
for example in user interfaces. DmtAdmin only calls isValidValue(DmtData) for checking the value,
its behavior should be consistent with this method.

Returns the allowed maximum, or Double.MAX_VALUE if there is no upper limit defined or the node's for-
mat is not one of the numeric formats integer, float, or long

117.14.11.16 public int getMaxOccurrence()

□ Get the number of maximum occurrences of this type of nodes on the same level in the DMT. Re-
turns Integer.MAX_VALUE if there is no upper limit. Note that if the occurrence is greater than 1
then this node can not have siblings with different metadata. In other words, if different types of
nodes coexist on the same level, their occurrence can not be greater than 1. If no meta-data is provid-
ed for a node, there is no upper limit on the number of occurrences.

Returns The maximum allowed occurrence of this node type

117.14.11.17 public String[] getMimeTypes()

□ Get the list of MIME types this node can hold. The first element of the returned list must be the de-
fault MIME type.

All MIME types are considered valid if no meta-data is provided for a node or if nul l is returned by
this method. In this case the default MIME type cannot be retrieved from the meta-data, but the
node may still have a default. This hidden default (if it exists) can be utilized by passing nul l as the
type parameter of DmtSession.setNodeType(String, String) or DmtSession.createLeafNode(String,
DmtData, String).

Returns the list of allowed MIME types for this node, starting with the default MIME type, or nul l if all types
are allowed

117.14.11.18 public double getMin()

□ Get the minimum allowed value associated with a node of numeric format. If no meta-data is pro-
vided for a node, there is no lower limit to its value. This method is only meaningful if the node has
one of the numeric formats: integer, float, or long format. The returned limit has double type, as this
can be used to denote both integer and float limits with full precision. The actual minimum should
be the smallest integer, float or long value that is equal or larger than the returned value.

The information returned by this method is not checked by DmtAdmin, it is only for external use,
for example in user interfaces. DmtAdmin only calls isValidValue(DmtData) for checking the value,
its behavior should be consistent with this method.

Returns the allowed minimum, or Double.MIN_VALUE if there is no lower limit defined or the node's format
is not one of the numeric formats integer, float, or long

117.14.11.19 public String[] getRawFormatNames()

□ Get the format names for any raw formats supported by the node. This method is only meaningful
if the list of supported formats returned by getFormat() contains DmtData.FORMAT_RAW_STRING
or DmtData.FORMAT_RAW_BINARY: it specifies precisely which raw format(s) are actually sup-
ported. If the node cannot contain data in one of the raw types, this method must return nul l .

The format names returned by this method are not checked by DmtAdmin, they are only for exter-
nal use, for example in user interfaces. DmtAdmin only calls isValidValue(DmtData) for checking
the value, its behavior should be consistent with this method.

Returns the allowed format name(s) of raw data stored by the node, or nul l if raw formats are not supported

117.14.11.20 public int getScope()

□ Return the scope of the node. Valid values are MetaNode.PERMANENT, MetaNode.DYNAMIC and
MetaNode.AUTOMATIC. Note that a permanent node is not the same as a node where the DELETE

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 480 OSGi Compendium Release 8

operation is not allowed. Permanent nodes never can be deleted, whereas a non-deletable node can
disappear in a recursive DELETE operation issued on one of its parents. If no meta-data is provided
for a node, it can be assumed to be a dynamic node.

Returns PERMANENT for permanent nodes, AUTOMATIC for nodes that are automatically created, and DY-
NAMIC otherwise

117.14.11.21 public String[] getValidNames()

□ Return an array of Strings if valid names are defined for the node, or nul l if no valid name list is de-
fined or if this piece of meta info is not supported. If no meta-data is provided for a node, all names
are considered valid.

The information returned by this method is not checked by DmtAdmin, it is only for external use,
for example in user interfaces. DmtAdmin only calls isValidName(String) for checking the name, its
behavior should be consistent with this method.

Returns the valid values for this node name, or nul l if not defined

117.14.11.22 public DmtData[] getValidValues()

□ Return an array of DmtData objects if valid values are defined for the node, or nul l otherwise. If no
meta-data is provided for a node, all values are considered valid.

The information returned by this method is not checked by DmtAdmin, it is only for external use,
for example in user interfaces. DmtAdmin only calls isValidValue(DmtData) for checking the value,
its behavior should be consistent with this method.

Returns the valid values for this node, or nul l if not defined

117.14.11.23 public boolean isLeaf()

□ Check whether the node is a leaf node or an internal one.

Returns true if the node is a leaf node

117.14.11.24 public boolean isValidName(String name)

name the node name to check for validity

□ Checks whether the given name is a valid name for this node. This method can be used for example
to ensure that the node name is always one of a predefined set of valid names, or that it matches a
specific pattern. This method should be consistent with the values returned by getValidNames() (if
any), the DmtAdmin only calls this method for name validation.

This method may return true even if not all aspects of the name have been checked, expensive op-
erations (for example those that require external resources) need not be performed here. The actual
node creation may still indicate that the node name is invalid.

Returns fa lse if the specified name is found to be invalid for the node described by this meta-node, true oth-
erwise

117.14.11.25 public boolean isValidValue(DmtData value)

value the value to check for validity

□ Checks whether the given value is valid for this node. This method can be used to ensure that the
value has the correct format and range, that it is well formed, etc. This method should be consistent
with the constraints defined by the getFormat(), getValidValues(), getMin() and getMax() methods (if
applicable), as the Dmt Admin only calls this method for value validation.

This method may return true even if not all aspects of the value have been checked, expensive op-
erations (for example those that require external resources) need not be performed here. The actual
value setting method may still indicate that the value is invalid.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt

OSGi Compendium Release 8 Page 481

Returns fa lse if the specified value is found to be invalid for the node described by this meta-node, true other-
wise

117.14.11.26 public boolean isZeroOccurrenceAllowed()

□ Check whether zero occurrence of this node is valid. If no meta-data is returned for a node, zero oc-
currences are allowed.

Returns true if zero occurrence of this node is valid

117.14.12 public final class Uri
This class contains static utility methods to manipulate DMT URIs.

Syntax of valid DMT URIs:

• A slash (' / ' \u002F) is the separator of the node names. Slashes used in node name must therefore
be escaped using a backslash slash ("\/"). The backslash must be escaped with a double backslash
sequence. A backslash found must be ignored when it is not followed by a slash or backslash.

• The node name can be constructed using full Unicode character set (except the Supplementary
code, not being supported by CLDC/CDC). However, using the full Unicode character set for node
names is discouraged because the encoding in the underlying storage as well as the encoding
needed in communications can create significant performance and memory usage overhead.
Names that are restricted to the URI set [-a-zA-Z0-9_. !~*'()] are most efficient.

• URIs used in the DMT must be treated and interpreted as case sensitive.
• No End Slash: URI must not end with the delimiter slash (' / ' \u002F). This implies that the root

node must be denoted as "." and not ". /" .
• No parent denotation: URI must not be constructed using the character sequence ". . / " to traverse

the tree upwards.
• Single Root: The character sequence ". /" must not be used anywhere else but in the beginning of a

URI.

117.14.12.1 public static final String PATH_SEPARATOR = "/"

This constant stands for a string identifying the path separator in the DmTree ("/").

Since 2.0

117.14.12.2 public static final char PATH_SEPARATOR_CHAR = 47

This constant stands for a char identifying the path separator in the DmTree ('/').

Since 2.0

117.14.12.3 public static final String ROOT_NODE = "."

This constant stands for a string identifying the root of the DmTree (".").

Since 2.0

117.14.12.4 public static final char ROOT_NODE_CHAR = 46

This constant stands for a char identifying the root of the DmTree ('.').

Since 2.0

117.14.12.5 public static String decode(String nodeName)

nodeName the node name to be decoded

□ Decode the node name so that back slash and forward slash are unescaped from a back slash.

Returns the decoded node name

Since 2.0

org.osgi.service.dmt Dmt Admin Service Specification Version 2.0

Page 482 OSGi Compendium Release 8

117.14.12.6 public static String encode(String nodeName)

nodeName the node name to be encoded

□ Encode the node name so that back slash and forward slash are escaped with a back slash. This
method is the reverse of decode(String).

Returns the encoded node name

Since 2.0

117.14.12.7 public static boolean isAbsoluteUri(String uri)

uri the URI to be checked, must not be nul l and must contain a valid URI

□ Checks whether the specified URI is an absolute URI. An absolute URI contains the complete path
to a node in the DMT starting from the DMT root (".").

Returns whether the specified URI is absolute

Throws NullPointerException– if the specified URI is nul l

I l legalArgumentException– if the specified URI is malformed

117.14.12.8 public static boolean isValidUri(String uri)

uri the URI to be validated

□ Checks whether the specified URI is valid. A URI is considered valid if it meets the following con-
straints:

• the URI is not nul l ;
• the URI follows the syntax defined for valid DMT URIs;

The exact definition of the length of a URI and its segments is given in the descriptions of the get-
MaxUriLength() and getMaxSegmentNameLength() methods.

Returns whether the specified URI is valid

117.14.12.9 public static String mangle(String nodeName)

nodeName the node name to be mangled (if necessary), must not be nul l or empty

□ Returns a node name that is valid for the tree operation methods, based on the given node name.
This transformation is not idempotent, so it must not be called with a parameter that is the result of
a previous mangle method call.

Node name mangling is needed in the following cases:

• if the name contains '/' or '\' characters

A node name that does not suffer from either of these problems is guaranteed to remain unchanged
by this method. Therefore the client may skip the mangling if the node name is known to be valid
(though it is always safe to call this method).

The method returns the normalized nodeName as described below. Invalid node names are normal-
ized in different ways, depending on the cause. If the name contains '/' or '\' characters, then these
are simply escaped by inserting an additional '\' before each occurrence. If the length of the name
does exceed the limit, the following mechanism is used to normalize it:

• the SHA-1 digest of the name is calculated
• the digest is encoded with the base 64 algorithm
• all '/' characters in the encoded digest are replaced with '_'
• trailing '=' signs are removed

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi

OSGi Compendium Release 8 Page 483

Returns the normalized node name that is valid for tree operations

Throws NullPointerException– if nodeName is nul l

I l legalArgumentException– if nodeName is empty

117.14.12.10 public static String[] toPath(String uri)

uri the URI to be split, must not be nul l

□ Split the specified URI along the path separator '/' characters and return an array of URI segments.
Special characters in the returned segments are escaped. The returned array may be empty if the
specified URI was empty.

Returns an array of URI segments created by splitting the specified URI

Throws NullPointerException– if the specified URI is nul l

I l legalArgumentException– if the specified URI is malformed

117.14.12.11 public static String toUri(String[] path)

path a possibly empty array of URI segments, must not be nul l

□ Construct a URI from the specified URI segments. The segments must already be mangled.

If the specified path is an empty array then an empty URI ("") is returned.

Returns the URI created from the specified segments

Throws NullPointerException– if the specified path or any of its segments are nul l

I l legalArgumentException– if the specified path contains too many or malformed segments or the
resulting URI is too long

117.15 org.osgi.service.dmt.spi

Device Management Tree SPI Package Version 2.0.

This package contains the interface classes that compose the Device Management SPI (Service
Provider Interface). These interfaces are implemented by DMT plugins; users of the DmtAdmin inter-
face do not interact directly with these.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dmt.spi ; vers ion="[2.0,3.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dmt.spi ; vers ion="[2.0,2.1)"

117.15.1 Summary

• DataPlugin - An implementation of this interface takes the responsibility of handling data re-
quests in a subtree of the DMT.

• ExecPlugin - An implementation of this interface takes the responsibility of handling node exe-
cute requests in a subtree of the DMT.

• MountPlugin - This interface can be optionally implemented by a DataPlugin or ExecPlugin in or-
der to get information about its absolute mount points in the overall DMT.

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0

Page 484 OSGi Compendium Release 8

• MountPoint - This interface can be implemented to represent a single mount point.
• ReadableDataSession - Provides read-only access to the part of the tree handled by the plugin

that created this session.
• ReadWriteDataSession - Provides non-atomic read-write access to the part of the tree handled

by the plugin that created this session.
• TransactionalDataSession - Provides atomic read-write access to the part of the tree handled by

the plugin that created this session.

117.15.2 public interface DataPlugin
An implementation of this interface takes the responsibility of handling data requests in a subtree
of the DMT.

In an OSGi environment such implementations should be registered at the OSGi service registry
specifying the list of root node URIs in a Str ing array or in case of a single value as Str ing in the data-
RootURIs registration parameter.

When the first reference in a session is made to a node handled by this plugin, the DmtAdmin calls
one of the open. . . methods to retrieve a plugin session object for processing the request. The called
method depends on the lock type of the current session. In case of openReadWriteSession(String[],
DmtSession) and openAtomicSession(String[], DmtSession), the plugin may return nul l to
indicate that the specified lock type is not supported. In this case the DmtAdmin may call
openReadOnlySession(String[], DmtSession) to start a read-only plugin session, which can be used as
long as there are no write operations on the nodes handled by this plugin.

The sessionRoot parameter of each method is a String array containing the segments of the URI
pointing to the root of the session. This is an absolute path, so the first segment is always ".". Special
characters appear escaped in the segments.

117.15.2.1 public static final String DATA_ROOT_URIS = "dataRootURIs"

The string to be used as key for the "dataRootURIs" property when an DataPlugin is registered.

Since 2.0

117.15.2.2 public static final String MOUNT_POINTS = "mountPoints"

The string to be used as key for the mount points property when a DataPlugin is registered with
mount points.

117.15.2.3 public TransactionalDataSession openAtomicSession(String[] sessionRoot, DmtSession session) throws
DmtException

sessionRoot the path to the subtree which is locked in the current session, must not be nul l

session the session from which this plugin instance is accessed, must not be nul l

□ This method is called to signal the start of an atomic read-write session when the first reference is
made within a DmtSession to a node which is handled by this plugin. Session information is given
as it is needed for sending alerts back from the plugin.

The plugin can assume that there are no other sessions open on any subtree that has any overlap
with the subtree of this session.

Returns a plugin session capable of executing read-write operations in an atomic block, or nul l if the plugin
does not support atomic read-write sessions

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if sessionRoot points to a non-existing node
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi

OSGi Compendium Release 8 Page 485

SecurityException– if some underlying operation failed because of lack of permissions

117.15.2.4 public ReadableDataSession openReadOnlySession(String[] sessionRoot, DmtSession session) throws
DmtException

sessionRoot the path to the subtree which is accessed in the current session, must not be nul l

session the session from which this plugin instance is accessed, must not be nul l

□ This method is called to signal the start of a read-only session when the first reference is made with-
in a DmtSession to a node which is handled by this plugin. Session information is given as it is
needed for sending alerts back from the plugin.

The plugin can assume that there are no writing sessions open on any subtree that has any overlap
with the subtree of this session.

Returns a plugin session capable of executing read operations

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if sessionRoot points to a non-existing node
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if some underlying operation failed because of lack of permissions

117.15.2.5 public ReadWriteDataSession openReadWriteSession(String[] sessionRoot, DmtSession session) throws
DmtException

sessionRoot the path to the subtree which is locked in the current session, must not be nul l

session the session from which this plugin instance is accessed, must not be nul l

□ This method is called to signal the start of a non-atomic read-write session when the first reference
is made within a DmtSession to a node which is handled by this plugin. Session information is giv-
en as it is needed for sending alerts back from the plugin.

The plugin can assume that there are no other sessions open on any subtree that has any overlap
with the subtree of this session.

Returns a plugin session capable of executing read-write operations, or nul l if the plugin does not support
non-atomic read-write sessions

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if sessionRoot points to a non-existing node
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if some underlying operation failed because of lack of permissions

117.15.3 public interface ExecPlugin
An implementation of this interface takes the responsibility of handling node execute requests in a
subtree of the DMT.

In an OSGi environment such implementations should be registered at the OSGi service registry
specifying the list of root node URIs in a Str ing array or in case of a single value as Str ing in the exec-
RootURIs registration parameter.

117.15.3.1 public static final String EXEC_ROOT_URIS = "execRootURIs"

The string to be used as key for the "execRootURIs" property when an ExecPlugin is registered.

Since 2.0

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0

Page 486 OSGi Compendium Release 8

117.15.3.2 public static final String MOUNT_POINTS = "mountPoints"

The string to be used as key for the mount points property when an Exec Plugin is registered with
mount points.

117.15.3.3 public void execute(DmtSession session, String[] nodePath, String correlator, String data) throws
DmtException

session a reference to the session in which the operation was issued, must not be nul l

nodePath the absolute path of the node to be executed, must not be nul l

correlator an identifier to associate this operation with any alerts sent in response to it, can be nul l

data the parameter of the execute operation, can be nul l

□ Execute the given node with the given data. This operation corresponds to the EXEC command in
OMA DM.

The semantics of an execute operation and the data parameter it takes depends on the definition of
the managed object on which the command is issued. Session information is given as it is needed for
sending alerts back from the plugin. If a correlation ID is specified, it should be used as the correla-
tor parameter for alerts sent in response to this execute operation.

The nodePath parameter contains an array of path segments identifying the node to be executed in
the subtree of this plugin. This is an absolute path, so the first segment is always ".". Special charac-
ters appear escaped in the segments.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if the node does not exist
• METADATA_MISMATCH if the command failed because of meta-data restrictions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

See Also DmtSession.execute(String, String), DmtSession.execute(String, String, String)

117.15.4 public interface MountPlugin
This interface can be optionally implemented by a DataPlugin or ExecPlugin in order to get informa-
tion about its absolute mount points in the overall DMT.

This is especially interesting, if the plugin is mapped to the tree as part of a list. In such a case the id
for this particular data plugin is determined by the DmtAdmin after the registration of the plugin
and therefore unknown to the plugin in advance.

This is not a service interface, the Data or Exec Plugin does not also have to register this interface as
a service, the Dmt Admin should use an instanceof to detect that a Plugin is also a Mount Plugin.

Since 2.0

117.15.4.1 public void mountPointAdded(MountPoint mountPoint)

mountPoint the newly mapped mount point

□ Provides the MountPoint describing the path where the plugin is mapped in the overall DMT. The
given mountPoint is withdrawn with the mountPointRemoved(MountPoint) method. Correspond-
ing mount points must compare equal and have an appropriate hash code.

117.15.4.2 public void mountPointRemoved(MountPoint mountPoint)

mountPoint The unmapped mount point array of MountPoint objects that have been removed from the mapping

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi

OSGi Compendium Release 8 Page 487

□ Informs the plugin that the provided MountPoint objects have been removed from the mapping.
The given mountPoint is withdrawn method. Mount points must compare equal and have an appro-
priate hash code with the given Mount Point in mountPointAdded(MountPoint).

NOTE: attempts to invoke the postEvent method on the provided MountPoint must be ignored.

117.15.5 public interface MountPoint
This interface can be implemented to represent a single mount point.

It provides function to get the absolute mounted uri and a shortcut method to post events via the
DmtAdmin.

Since 2.0

117.15.5.1 public boolean equals(Object other)

□ This object must provide a suitable hash function such that a Mount Point given in
MountPlugin.mountPointAdded(MountPoint) is equal to the corresponding Mount Point in
MountPlugin.mountPointRemoved(MountPoint). Object.equals(Object)

117.15.5.2 public String[] getMountPath()

□ Provides the absolute mount path of this MountPoint

Returns the absolute mount path of this MountPoint

117.15.5.3 public int hashCode()

□ This object must provide a suitable hash function such that a Mount Point given in
MountPlugin.mountPointAdded(MountPoint) has the same hashCode as the corresponding Mount
Point in MountPlugin.mountPointRemoved(MountPoint). Object.hashCode()

117.15.5.4 public void postEvent(String topic, String[] relativeURIs, Dictionary<String, ?> properties)

topic the topic of the event to send. Valid values are:

• org/osgi/service/dmt/DmtEvent/ADDED if the change was caused by an add action
• org/osgi/service/dmt/DmtEvent/DELETED if the change was caused by a delete action
• org/osgi/service/dmt/DmtEvent/REPLACED if the change was caused by a replace action

Must not be nul l .

relativeURIs an array of affected node URI 's. All URI 's specified here are relative to the current MountPoint 's
mountPath. The value of this parameter determines the value of the event property
EVENT_PROPERTY_NODES . An empty array or nul l is permitted. In both cases the value of the
events EVENT_PROPERTY_NODES property will be set to an empty array.

properties an optional parameter that can be provided to add properties to the Event that is going to be send
by the DMTAdmin. If the properties contain a key EVENT_PROPERTY_NODES , then the value of this
property is ignored and will be overwritten by relat iveURIs .

□ Posts an event via the DmtAdmin about changes in the current plugins subtree.

This method distributes Events asynchronously to the EventAdmin as well as to matching local
DmtEventListeners.

Throws I l legalArgumentException– if the topic has not one of the defined values

117.15.5.5 public void postEvent(String topic, String[] relativeURIs, String[] newRelativeURIs, Dictionary<String, ?>
properties)

topic the topic of the event to send. Valid values are:

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0

Page 488 OSGi Compendium Release 8

• org/osgi/service/dmt/DmtEvent/RENAMED if the change was caused by a rename action
• org/osgi/service/dmt/DmtEvent/COPIED if the change was caused by a copy action

Must not be nul l .

relativeURIs an array of affected node URI 's.

All URI 's specified here are relative to the current MountPoint 's mountPath. The value of this para-
meter determines the value of the event property EVENT_PROPERTY_NODES . An empty array or
nul l is permitted. In both cases the value of the events EVENT_PROPERTY_NODES property will be
set to an empty array.

newRelativeURIs an array of affected node URI 's. The value of this parameter determines the value of the event prop-
erty EVENT_PROPERTY_NEW_NODES . An empty array or nul l is permitted. In both cases the value of
the events EVENT_PROPERTY_NEW_NODES property will be set to an empty array.

properties an optional parameter that can be provided to add properties to the Event that is going to
be send by the DMTAdmin. If the properties contain the keys EVENT_PROPERTY_NODES or
EVENT_PROPERTY_NEW_NODES , then the values of these properties are ignored and will be over-
written by relat iveURIs and newRelat iveURIs .

□ Posts an event via the DmtAdmin about changes in the current plugins subtree.

This method distributes Events asynchronously to the EventAdmin as well as to matching local
DmtEventListeners.

Throws I l legalArgumentException– if the topic has not one of the defined values

117.15.6 public interface ReadableDataSession
Provides read-only access to the part of the tree handled by the plugin that created this session.

Since the ReadWriteDataSession and TransactionalDataSession interfaces inherit from this inter-
face, some of the method descriptions do not apply for an instance that is only a ReadableDataSes-
sion . For example, the close() method description also contains information about its behavior
when invoked as part of a transactional session.

The nodePath parameters appearing in this interface always contain an array of path segments iden-
tifying a node in the subtree of this plugin. This parameter contains an absolute path, so the first
segment is always ".". Special characters appear escaped in the segments.

Error handling

When a tree access command is called on the DmtAdmin service, it must perform an exten-
sive set of checks on the parameters and the authority of the caller before delegating the call
to a plugin. Therefore plugins can take certain circumstances for granted: that the path is
valid and is within the subtree of the plugin and the session, the command can be applied to
the given node (e.g. the target of getChi ldNodeNames is an interior node), etc. All errors de-
scribed by the error codes DmtException.INVALID_URI, DmtException.URI_TOO_LONG,
DmtException.PERMISSION_DENIED, DmtException.COMMAND_NOT_ALLOWED and
DmtException.TRANSACTION_ERROR are fully filtered out before control reaches the plugin.

If the plugin provides meta-data for a node, the DmtAdmin service must also check the constraints
specified by it, as described in MetaNode. If the plugin does not provide meta-data, it must perform
the necessary checks for itself and use the DmtException.METADATA_MISMATCH error code to in-
dicate such discrepancies.

The DmtAdmin does not check that the targeted node exists before calling the plugin. It is the re-
sponsibility of the plugin to perform this check and to throw a DmtException.NODE_NOT_FOUND
if needed. In this case the DmtAdmin must pass through this exception to the caller of the corre-
sponding DmtSession method.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi

OSGi Compendium Release 8 Page 489

The plugin can use the remaining error codes as needed. If an error does not fit into any other cate-
gory, the DmtException.COMMAND_FAILED code should be used.

117.15.6.1 public void close() throws DmtException

□ Closes a session. This method is always called when the session ends for any reason: if the session is
closed, if a fatal error occurs in any method, or if any error occurs during commit or rollback. In case
the session was invalidated due to an exception during commit or rollback, it is guaranteed that no
methods are called on the plugin until it is closed. In case the session was invalidated due to a fatal
exception in one of the tree manipulation methods, only the rollback method is called before this
(and only in atomic sessions).

This method should not perform any data manipulation, only cleanup operations. In non-atom-
ic read-write sessions the data manipulation should be done instantly during each tree operation,
while in atomic sessions the DmtAdmin always calls TransactionalDataSession.commit() automati-
cally before the session is actually closed.

Throws DmtException– with the error code COMMAND_FAILED if the plugin failed to close for any reason

117.15.6.2 public String[] getChildNodeNames(String[] nodePath) throws DmtException

nodePath the absolute path of the node

□ Get the list of children names of a node. The returned array contains the names - not the URIs - of
the immediate children nodes of the given node. The returned array may contain nul l entries, but
these are removed by the DmtAdmin before returning it to the client.

Returns the list of child node names as a string array or an empty string array if the node has no children

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.3 public MetaNode getMetaNode(String[] nodePath) throws DmtException

nodePath the absolute path of the node

□ Get the meta data which describes a given node. Meta data can be only inspected, it can not be
changed.

Meta data support by plugins is an optional feature. It can be used, for example, when a data plugin
is implemented on top of a data store or another API that has their own metadata, such as a relation-
al database, in order to avoid metadata duplication and inconsistency. The meta data specific to the
plugin returned by this method is complemented by meta data from the DmtAdmin before return-
ing it to the client. If there are differences in the meta data elements known by the plugin and the
DmtAdmin then the plugin specific elements take precedence.

Note, that a node does not have to exist for having meta-data associated with it. This method may
provide meta-data for any node that can possibly exist in the tree (any node defined by the Manage-
ment Object provided by the plugin). For nodes that are not defined, a DmtException may be thrown
with the NODE_NOT_FOUND error code. To allow easier implementation of plugins that do not pro-
vide meta-data, it is allowed to return nul l for any node, regardless of whether it is defined or not.

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0

Page 490 OSGi Compendium Release 8

Returns a MetaNode which describes meta data information, can be nul l if there is no meta data available for
the given node

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodeUri points to a node that is not defined in the tree (see above)
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.4 public int getNodeSize(String[] nodePath) throws DmtException

nodePath the absolute path of the leaf node

□ Get the size of the data in a leaf node. The value to return depends on the format of the data in the
node, see the description of the DmtData.getSize() method for the definition of node size for each
format.

Returns the size of the data in the node

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• FEATURE_NOT_SUPPORTED if the Size property is not supported by the plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtData.getSize()

117.15.6.5 public Date getNodeTimestamp(String[] nodePath) throws DmtException

nodePath the absolute path of the node

□ Get the timestamp when the node was last modified.

Returns the timestamp of the last modification

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• FEATURE_NOT_SUPPORTED if the Timestamp property is not supported by the plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.6 public String getNodeTitle(String[] nodePath) throws DmtException

nodePath the absolute path of the node

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi

OSGi Compendium Release 8 Page 491

□ Get the title of a node. There might be no title property set for a node.

Returns the title of the node, or nul l if the node has no title

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• FEATURE_NOT_SUPPORTED if the Title property is not supported by the plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.7 public String getNodeType(String[] nodePath) throws DmtException

nodePath the absolute path of the node

□ Get the type of a node. The type of leaf node is the MIME type of the data it contains. The type of
an interior node is a URI identifying a DDF document; a nul l type means that there is no DDF docu-
ment overriding the tree structure defined by the ancestors.

Returns the type of the node, can be nul l

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.8 public DmtData getNodeValue(String[] nodePath) throws DmtException

nodePath the absolute path of the node to retrieve

□ Get the data contained in a leaf or interior node.

Returns the data of the leaf node, must not be nul l

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• FEATURE_NOT_SUPPORTED if the specified node is an interior node and does not support Java

object values
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0

Page 492 OSGi Compendium Release 8

117.15.6.9 public int getNodeVersion(String[] nodePath) throws DmtException

nodePath the absolute path of the node

□ Get the version of a node. The version can not be set, it is calculated automatically by the device. It is
incremented modulo 0x10000 at every modification of the value or any other property of the node,
for both leaf and interior nodes. When a node is created the initial value is 0.

Returns the version of the node

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• FEATURE_NOT_SUPPORTED if the Version property is not supported by the plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.10 public boolean isLeafNode(String[] nodePath) throws DmtException

nodePath the absolute path of the node

□ Tells whether a node is a leaf or an interior node of the DMT.

Returns true if the given node is a leaf node

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the information could not be retrieved because of meta-data restric-

tions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.6.11 public boolean isNodeUri(String[] nodePath)

nodePath the absolute path to check

□ Check whether the specified path corresponds to a valid node in the DMT.

Returns true if the given node exists in the DMT

117.15.6.12 public void nodeChanged(String[] nodePath) throws DmtException

nodePath the absolute path of the node that has changed

□ Notifies the plugin that the given node has changed outside the scope of the plugin, therefore the
Version and Timestamp properties must be updated (if supported). This method is needed because
the ACL property of a node is managed by the DmtAdmin instead of the plugin. The DmtAdmin
must call this method whenever the ACL property of a node changes.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• DATA_STORE_FAILURE if an error occurred while accessing the data store

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi

OSGi Compendium Release 8 Page 493

• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the
command

117.15.7 public interface ReadWriteDataSession
extends ReadableDataSession
Provides non-atomic read-write access to the part of the tree handled by the plugin that created this
session.

The nodePath parameters appearing in this interface always contain an array of path segments iden-
tifying a node in the subtree of this plugin. This parameter contains an absolute path, so the first
segment is always ".". Special characters appear escaped in the segments.

Error handling

When a tree manipulation command is called on the DmtAdmin service, it must perform
an extensive set of checks on the parameters and the authority of the caller before delegat-
ing the call to a plugin. Therefore plugins can take certain circumstances for granted: that
the path is valid and is within the subtree of the plugin and the session, the command can
be applied to the given node (e.g. the target of setNodeValue is a leaf node), etc. All errors de-
scribed by the error codes DmtException.INVALID_URI, DmtException.URI_TOO_LONG,
DmtException.PERMISSION_DENIED, DmtException.COMMAND_NOT_ALLOWED and
DmtException.TRANSACTION_ERROR are fully filtered out before control reaches the plugin.

If the plugin provides meta-data for a node, the DmtAdmin service must also check the constraints
specified by it, as described in MetaNode. If the plugin does not provide meta-data, it must perform
the necessary checks for itself and use the DmtException.METADATA_MISMATCH error code to in-
dicate such discrepancies.

The DmtAdmin does not check that the targeted node exists (or that it does not exist, in case of a
node creation) before calling the plugin. It is the responsibility of the plugin to perform this check
and to throw a DmtException.NODE_NOT_FOUND or DmtException.NODE_ALREADY_EXISTS if
needed. In this case the DmtAdmin must pass through this exception to the caller of the correspond-
ing DmtSession method.

The plugin can use the remaining error codes as needed. If an error does not fit into any other cate-
gory, the DmtException.COMMAND_FAILED code should be used.

117.15.7.1 public void copy(String[] nodePath, String[] newNodePath, boolean recursive) throws DmtException

nodePath an absolute path specifying the node or the root of a subtree to be copied

newNodePath the absolute path of the new node or root of a subtree

recursive fa lse if only a single node is copied, true if the whole subtree is copied

□ Create a copy of a node or a whole subtree. Beside the structure and values of the nodes, most prop-
erties managed by the plugin must also be copied, with the exception of the Timestamp and Version
properties.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node, or if newNodePath points to a
node that cannot exist in the tree

• NODE_ALREADY_EXISTS if newNodePath points to a node that already exists
• METADATA_MISMATCH if the node could not be copied because of meta-data restrictions
• FEATURE_NOT_SUPPORTED if the copy operation is not supported by the plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0

Page 494 OSGi Compendium Release 8

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.copy(String, String, boolean)

117.15.7.2 public void createInteriorNode(String[] nodePath, String type) throws DmtException

nodePath the absolute path of the node to create

type the type URI of the interior node, can be nul l if no node type is defined

□ Create an interior node with a given type. The type of interior node, if specified, is a URI identifying
a DDF document.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a node that cannot exist in the tree
• NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
• METADATA_MISMATCH if the node could not be created because of meta-data restrictions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.createInteriorNode(String), DmtSession.createInteriorNode(String, String)

117.15.7.3 public void createLeafNode(String[] nodePath, DmtData value, String mimeType) throws DmtException

nodePath the absolute path of the node to create

value the value to be given to the new node, can be nul l

mimeType the MIME type to be given to the new node, can be nul l

□ Create a leaf node with a given value and MIME type. If the specified value or MIME type is nul l ,
their default values must be taken.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a node that cannot exist in the tree
• NODE_ALREADY_EXISTS if nodePath points to a node that already exists
• METADATA_MISMATCH if the node could not be created because of meta-data restrictions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.createLeafNode(String), DmtSession.createLeafNode(String, DmtData),
DmtSession.createLeafNode(String, DmtData, String)

117.15.7.4 public void deleteNode(String[] nodePath) throws DmtException

nodePath the absolute path of the node to delete

□ Delete the given node. Deleting interior nodes is recursive, the whole subtree under the given node
is deleted.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.spi

OSGi Compendium Release 8 Page 495

• METADATA_MISMATCH if the node could not be deleted because of meta-data restrictions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.deleteNode(String)

117.15.7.5 public void renameNode(String[] nodePath, String newName) throws DmtException

nodePath the absolute path of the node to rename

newName the new name property of the node

□ Rename a node. This operation only changes the name of the node (updating the timestamp and
version properties if they are supported), the value and the other properties are not changed. The
new name of the node must be provided, the new path is constructed from the base of the old path
and the given name.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node, or if the new node is not defined
in the tree

• NODE_ALREADY_EXISTS if there already exists a sibling of nodePath with the name newName
• METADATA_MISMATCH if the node could not be renamed because of meta-data restrictions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.renameNode(String, String)

117.15.7.6 public void setNodeTitle(String[] nodePath, String title) throws DmtException

nodePath the absolute path of the node

title the title text of the node, can be nul l

□ Set the title property of a node. The length of the title is guaranteed not to exceed the limit of 255
bytes in UTF-8 encoding.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the title could not be set because of meta-data restrictions
• FEATURE_NOT_SUPPORTED if the Title property is not supported by the plugin
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.setNodeTitle(String, String)

117.15.7.7 public void setNodeType(String[] nodePath, String type) throws DmtException

nodePath the absolute path of the node

org.osgi.service.dmt.spi Dmt Admin Service Specification Version 2.0

Page 496 OSGi Compendium Release 8

type the type of the node, can be nul l

□ Set the type of a node. The type of leaf node is the MIME type of the data it contains. The type of an
interior node is a URI identifying a DDF document.

For interior nodes, the nul l type should remove the reference (if any) to a DDF document overriding
the tree structure defined by the ancestors. For leaf nodes, it requests that the default MIME type is
used for the given node.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the type could not be set because of meta-data restrictions
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.setNodeType(String, String)

117.15.7.8 public void setNodeValue(String[] nodePath, DmtData data) throws DmtException

nodePath the absolute path of the node

data the data to be set, can be nul l

□ Set the value of a leaf or interior node. The format of the node is contained in the DmtData object.
For interior nodes, the format is FORMAT_NODE , while for leaf nodes this format is never used.

If the specified value is nul l , the default value must be taken; if there is no default value, a DmtEx-
ception with error code METADATA_MISMATCH must be thrown.

Throws DmtException– with the following possible error codes:

• NODE_NOT_FOUND if nodePath points to a non-existing node
• METADATA_MISMATCH if the value could not be set because of meta-data restrictions
• FEATURE_NOT_SUPPORTED if the specified node is an interior node and does not support Java

object values
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

See Also DmtSession.setNodeValue(String, DmtData)

117.15.8 public interface TransactionalDataSession
extends ReadWriteDataSession
Provides atomic read-write access to the part of the tree handled by the plugin that created this ses-
sion.

117.15.8.1 public void commit() throws DmtException

□ Commits a series of DMT operations issued in the current atomic session since the last transaction
boundary. Transaction boundaries are the creation of this object that starts the session, and all sub-
sequent commit() and rollback() calls.

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.notification

OSGi Compendium Release 8 Page 497

This method can fail even if all operations were successful. This can happen due to some multi-node
semantic constraints defined by a specific implementation. For example, node A can be required to
always have children A/B, A/C and A/D. If this condition is broken when commit() is executed, the
method will fail, and throw a METADATA_MISMATCH exception.

In many cases the tree is not the only way to manage a given part of the system. It may happen
that while modifying some nodes in an atomic session, the underlying settings are modified in par-
allel outside the scope of the DMT. If this is detected during commit, an exception with the code
CONCURRENT_ACCESS is thrown.

Throws DmtException– with the following possible error codes

• METADATA_MISMATCH if the operation failed because of meta-data restrictions
• CONCURRENT_ACCESS if it is detected that some modification has been made outside the scope

of the DMT to the nodes affected in the session's operations
• DATA_STORE_FAILURE if an error occurred while accessing the data store
• COMMAND_FAILED if some unspecified error is encountered while attempting to complete the

command

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.15.8.2 public void rollback() throws DmtException

□ Rolls back a series of DMT operations issued in the current atomic session since the last transaction
boundary. Transaction boundaries are the creation of this object that starts the session, and all sub-
sequent commit and rollback calls.

Throws DmtException– with the error code ROLLBACK_FAILED in case the rollback did not succeed

SecurityException– if the caller does not have the necessary permissions to execute the underlying
management operation

117.16 org.osgi.service.dmt.notification

Device Management Tree Notification Package Version 2.0.

This package contains the public API of the Notification service. This service enables the send-
ing of asynchronous notifications to management servers. Permission classes are provided by the
org.osgi .service.dmt.security package.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dmt.noti f icat ion; vers ion="[2.0,3.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dmt.noti f icat ion; vers ion="[2.0,2.1)"

117.16.1 Summary

• Alert Item - Immutable data structure carried in an alert (client initiated notification).
• Notif icat ionService - NotificationService enables sending asynchronous notifications to a man-

agement server.

org.osgi.service.dmt.notification Dmt Admin Service Specification Version 2.0

Page 498 OSGi Compendium Release 8

117.16.2 public class AlertItem
Immutable data structure carried in an alert (client initiated notification). The Alert Item describes
details of various notifications that can be sent by the client, for example as alerts in the OMA DM
protocol. The use cases include the client sending a session request to the server (alert 1201), the
client notifying the server of completion of a software update operation (alert 1226) or sending back
results in response to an asynchronous EXEC command.

The data syntax and semantics varies widely between various alerts, so does the optionality of par-
ticular parameters of an alert item. If an item, such as source or type, is not defined, the correspond-
ing getter method returns nul l . For example, for alert 1201 (client-initiated session) all elements will
be nul l .

The syntax used in Alert Item class corresponds to the OMA DM alert format. NotificationService
implementations on other management protocols should map these constructs to the underlying
protocol.

117.16.2.1 public AlertItem(String source, String type, String mark, DmtData data)

source the URI of the node which is the source of the alert item

type a MIME type or a URN that identifies the type of the data in the alert item

data a DmtData object that contains the format and value of the data in the alert item

mark the mark parameter of the alert item

□ Create an instance of the alert item. The constructor takes all possible data entries as parameters.
Any of these parameters can be nul l . The semantics of the parameters may be refined by the defini-
tion of a specific alert, identified by its alert code (see NotificationService.sendNotification(String,
int, String, AlertItem[])). In case of Generic Alerts for example (code 1226), the mark parameter con-
tains a severity string.

117.16.2.2 public AlertItem(String[] source, String type, String mark, DmtData data)

source the path of the node which is the source of the alert item

type a MIME type or a URN that identifies the type of the data in the alert item

data a DmtData object that contains the format and value of the data in the alert item

mark the mark parameter of the alert item

□ Create an instance of the alert item, specifying the source node URI as an array of path segments.
The constructor takes all possible data entries as parameters. Any of these parameters can be nul l .
The semantics of the parameters may be refined by the definition of a specific alert, identified by
its alert code (see NotificationService.sendNotification(String, int, String, AlertItem[])). In case of
Generic Alerts for example (code 1226), the mark parameter contains a severity string.

117.16.2.3 public DmtData getData()

□ Get the data associated with the alert item. The returned DmtData object contains the format and
the value of the data in the alert item. There might be no data associated with the alert item.

Returns the data associated with the alert item, or nul l if there is no data

117.16.2.4 public String getMark()

□ Get the mark parameter associated with the alert item. The interpretation of the
mark parameter depends on the alert being sent, as identified by the alert code in
NotificationService.sendNotification(String, int, String, AlertItem[]) . There might be no mark asso-
ciated with the alert item.

Returns the mark associated with the alert item, or nul l if there is no mark

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.notification

OSGi Compendium Release 8 Page 499

117.16.2.5 public String getSource()

□ Get the node which is the source of the alert. There might be no source associated with the alert
item.

Returns the URI of the node which is the source of this alert, or nul l if there is no source

117.16.2.6 public String getType()

□ Get the type associated with the alert item. The type string is a MIME type or a URN that identifies
the type of the data in the alert item (returned by getData()). There might be no type associated with
the alert item.

Returns the type associated with the alert item, or nul l if there is no type

117.16.2.7 public String toString()

□ Returns the string representation of this alert item. The returned string includes all parameters of
the alert item, and has the following format:

 AlertItem(<source>, <type>, <mark>, <data>)

The last parameter is the string representation of the data value. The format of the data is not explic-
itly included.

Returns the string representation of this alert item

117.16.3 public interface NotificationService
NotificationService enables sending asynchronous notifications to a management server. The im-
plementation of Notif icat ionService should register itself in the OSGi service registry as a service.

117.16.3.1 public void sendNotification(String principal, int code, String correlator, AlertItem[] items) throws
DmtException

principal the principal name which is the recipient of this notification, can be nul l

code the alert code, can be 0 if not needed

correlator optional field that contains the correlation identifier of an associated exec command, can be nul l if
not needed

items the data of the alert items carried in this alert, can be nul l or empty if not needed

□ Sends a notification to a named principal. It is the responsibility of the Notif ica-
t ionService to route the notification to the given principal using the registered
org.osgi.service.dmt.notification.spi.RemoteAlertSender services.

In remotely initiated sessions the principal name identifies the remote server that created the ses-
sion, this can be obtained using the session's getPrincipal call.

The principal name may be omitted if the client does not know the principal name. Even in this
case the routing might be possible if the Notification Service finds an appropriate default destina-
tion (for example if it is only connected to one protocol adapter, which is only connected to one
management server).

Since sending the notification and receiving acknowledgment for it is potentially a very time-con-
suming operation, notifications are sent asynchronously. This method should attempt to ensure
that the notification can be sent successfully, and should throw an exception if it detects any prob-
lems. If the method returns without error, the notification is accepted for sending and the imple-
mentation must make a best-effort attempt to deliver it.

In case the notification is an asynchronous response to a previous execute command, a correlation
identifier can be specified to provide the association between the execute and the notification.

org.osgi.service.dmt.notification.spi Dmt Admin Service Specification Version 2.0

Page 500 OSGi Compendium Release 8

In order to send a notification using this method, the caller must have an AlertPermission with a
target string matching the specified principal name. If the principal parameter is nul l (the principal
name is not known), the target of the AlertPermission must be "*".

When this method is called with null correlator, null or empty AlertItem array, and a 0 code as val-
ues, it should send a protocol specific default notification to initiate a management session. For ex-
ample, in case of OMA DM this is alert 1201 "Client Initiated Session". The principal parameter can
be used to determine the recipient of the session initiation request.

Throws DmtException– with the following possible error codes:

• UNAUTHORIZED when the remote server rejected the request due to insufficient authorization
• ALERT_NOT_ROUTED when the alert can not be routed to the given principal
• REMOTE_ERROR in case of communication problems between the device and the destination
• COMMAND_FAILED for unspecified errors encountered while attempting to complete the com-

mand
• FEATURE_NOT_SUPPORTED if the underlying management protocol doesn't support asynchro-

nous notifications

SecurityException– if the caller does not have the required AlertPermission with a target matching
the principal parameter, as described above

117.17 org.osgi.service.dmt.notification.spi

Device Management Tree Notification SPI Package Version 2.0.

This package contains the SPI (Service Provider Interface) of the Notification service. These inter-
faces are implemented by Protocol Adapters capable of delivering notifications to management
servers on a specific protocol. Users of the Notif icat ionService interface do not interact directly with
this package.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dmt.noti f icat ion.spi ; vers ion="[2.0,3.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dmt.noti f icat ion.spi ; vers ion="[2.0,2.1)"

117.17.1 Summary

• RemoteAlertSender - The RemoteAlertSender can be used to send notifications to (remote) enti-
ties identified by principal names.

117.17.2 public interface RemoteAlertSender
The RemoteAlertSender can be used to send notifications to (remote) entities identi-
fied by principal names. This service is provided by Protocol Adapters, and is used by the
org.osgi.service.dmt.notification.NotificationService when sending alerts. Implementations of this
interface have to be able to connect and send alerts to one or more management servers in a proto-
col specific way.

The properties of the service registration should specify a list of destinations (principals) where the
service is capable of sending alerts. This can be done by providing a Str ing array of principal names
in the principals registration property. If this property is not registered, the service will be treated as

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.security

OSGi Compendium Release 8 Page 501

the default sender. The default alert sender is only used when a more specific alert sender cannot be
found.

The principals registration property is used when the
org.osgi.service.dmt.notification.NotificationService.sendNotification(String, int, String,
AlertItem[]) method is called, to find the proper RemoteAlertSender for the given destination. If
the caller does not specify a principal, the alert is only sent if the Notification Sender finds a default
alert sender, or if the choice is unambiguous for some other reason (for example if only one alert
sender is registered).

117.17.2.1 public void sendAlert(String principal, int code, String correlator, AlertItem[] items) throws Exception

principal the name identifying the server where the alert should be sent, can be nul l

code the alert code, can be 0 if not needed

correlator the correlation identifier of an associated EXEC command, or nul l if there is no associated EXEC

items the data of the alert items carried in this alert, can be empty or nul l if no alert items are needed

□ Sends an alert to a server identified by its principal name. In case the alert is sent in response to a
previous execute command, a correlation identifier can be specified to provide the association be-
tween the execute and the alert.

The principal parameter specifies which server the alert should be sent to. This parameter can be
nul l if the client does not know the name of the destination. The alert should still be delivered if pos-
sible; for example if the alert sender is only connected to one destination.

Any exception thrown on this method will be propagated to the original sender of the event,
wrapped in a DmtException with the code REMOTE_ERROR .

Since sending the alert and receiving acknowledgment for it is potentially a very time-consuming
operation, alerts are sent asynchronously. This method should attempt to ensure that the alert can
be sent successfully, and should throw an exception if it detects any problems. If the method returns
without error, the alert is accepted for sending and the implementation must make a best-effort at-
tempt to deliver it.

Throws Exception– if the alert can not be sent to the server

117.18 org.osgi.service.dmt.security

Device Management Tree Security Package Version 2.0.

This package contains the permission classes used by the Device Management API in environments
that support the Java 2 security model.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dmt.security; vers ion="[2.0,3.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dmt.security; vers ion="[2.0,2.1)"

117.18.1 Summary

• AlertPermission - Indicates the callers authority to send alerts to management servers, identified
by their principal names.

org.osgi.service.dmt.security Dmt Admin Service Specification Version 2.0

Page 502 OSGi Compendium Release 8

• DmtPermission - Controls access to management objects in the Device Management Tree
(DMT).

• DmtPrincipalPermission - Indicates the callers authority to create DMT sessions on behalf of a
remote management server.

117.18.2 public class AlertPermission
extends Permission
Indicates the callers authority to send alerts to management servers, identified by their principal
names.

AlertPermission has a target string which controls the principal names where alerts can be sent. A
wildcard is allowed at the end of the target string, to allow sending alerts to any principal with a
name matching the given prefix. The "*" target means that alerts can be sent to any destination.

117.18.2.1 public AlertPermission(String target)

target the name of a principal, can end with * to match any principal identifier with the given prefix

□ Creates a new AlertPermission object with its name set to the target string. Name must be non-null
and non-empty.

Throws NullPointerException– if name is nul l

I l legalArgumentException– if name is empty

117.18.2.2 public AlertPermission(String target, String actions)

target the name of the server, can end with * to match any server identifier with the given prefix

actions no actions defined, must be "*" for forward compatibility

□ Creates a new AlertPermission object using the 'canonical' two argument constructor. In this ver-
sion this class does not define any actions, the second argument of this constructor must be "*" so
that this class can later be extended in a backward compatible way.

Throws NullPointerException– if name or actions is nul l

I l legalArgumentException– if name is empty or actions is not "*"

117.18.2.3 public boolean equals(Object obj)

obj the object to compare to this AlertPermission instance

□ Checks whether the given object is equal to this AlertPermission instance. Two AlertPermission in-
stances are equal if they have the same target string.

Returns true if the parameter represents the same permissions as this instance

117.18.2.4 public String getActions()

□ Returns the action list (always * in the current version).

Returns the action string "*"

117.18.2.5 public int hashCode()

□ Returns the hash code for this permission object. If two AlertPermission objects are equal according
to the equals(Object) method, then calling this method on each of the two AlertPermission objects
must produce the same integer result.

Returns hash code for this permission object

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.security

OSGi Compendium Release 8 Page 503

117.18.2.6 public boolean implies(Permission p)

p the permission to check for implication

□ Checks if this AlertPermission object implies the specified permission. Another AlertPermission in-
stance is implied by this permission either if the target strings are identical, or if this target can be
made identical to the other target by replacing a trailing "*" with any string.

Returns true if this AlertPermission instance implies the specified permission

117.18.2.7 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCollection object for storing AlertPermission objects.

Returns the new PermissionCollection

117.18.3 public class DmtPermission
extends Permission
Controls access to management objects in the Device Management Tree (DMT). It is intended to
control local access to the DMT. DmtPermission target string identifies the management object URI
and the action field lists the OMA DM commands that are permitted on the management object. Ex-
ample:

 DmtPermission("./OSGi/bundles", "Add,Replace,Get");

This means that owner of this permission can execute Add, Replace and Get commands on the ./
OSGi/bundles management object. It is possible to use wildcards in both the target and the actions
field. Wildcard in the target field means that the owner of the permission can access children nodes
of the target node. Example:

 DmtPermission("./OSGi/bundles/*", "Get");

This means that owner of this permission has Get access on every child node of ./OSGi/bundles. The
asterisk does not necessarily have to follow a '/' character. For example the ". /OSGi/a*" target match-
es the . /OSGi/appl icat ions subtree.

If wildcard is present in the actions field, all legal OMA DM commands are allowed on the designat-
ed nodes(s) by the owner of the permission. Action names are interpreted case-insensitively, but the
canonical action string returned by getActions() uses the forms defined by the action constants.

117.18.3.1 public static final String ADD = "Add"

Holders of DmtPermission with the Add action present can create new nodes in the DMT, that
is they are authorized to execute the createInteriorNode() and createLeafNode() methods of the
DmtSession. This action is also required for the copy() command, which needs to perform node cre-
ation operations (among others).

117.18.3.2 public static final String DELETE = "Delete"

Holders of DmtPermission with the Delete action present can delete nodes from the DMT, that is
they are authorized to execute the deleteNode() method of the DmtSession.

117.18.3.3 public static final String EXEC = "Exec"

Holders of DmtPermission with the Exec action present can execute nodes in the DMT, that is they
are authorized to call the execute() method of the DmtSession.

117.18.3.4 public static final String GET = "Get"

Holders of DmtPermission with the Get action present can query DMT node value or properties,
that is they are authorized to execute the isLeafNode(), getNodeAcl(), getEffectiveNodeAcl(), get-

org.osgi.service.dmt.security Dmt Admin Service Specification Version 2.0

Page 504 OSGi Compendium Release 8

MetaNode(), getNodeValue(), getChildNodeNames(), getNodeTitle(), getNodeVersion(), getNode-
TimeStamp(), getNodeSize() and getNodeType() methods of the DmtSession. This action is also re-
quired for the copy() command, which needs to perform node query operations (among others).

117.18.3.5 public static final String REPLACE = "Replace"

Holders of DmtPermission with the Replace action present can update DMT node value or proper-
ties, that is they are authorized to execute the setNodeAcl(), setNodeTitle(), setNodeValue(), setNode-
Type() and renameNode() methods of the DmtSession. This action is also be required for the copy()
command if the original node had a title property (which must be set in the new node).

117.18.3.6 public DmtPermission(String dmtUri, String actions)

dmtUri URI of the management object (or subtree)

actions OMA DM actions allowed

□ Creates a new DmtPermission object for the specified DMT URI with the specified actions. The giv-
en URI can be:

• "*" , which matches all valid (see Uri.isValidUri(String)) absolute URIs;
• the prefix of an absolute URI followed by the * character (for example ". /OSGi/L*"), which

matches all valid absolute URIs beginning with the given prefix;
• a valid absolute URI, which matches itself.

Since the * character is itself a valid URI character, it can appear as the last character of a valid ab-
solute URI. To distinguish this case from using * as a wildcard, the * character at the end of the URI
must be escaped with the \ character. For example the URI ". /a*" matches ". /a" , ". /aa" , ". /a/b" etc.
while ". /a*" matches ". /a*" only.

The actions string must either be "*" to allow all actions, or it must contain a non-empty subset of
the valid actions, defined as constants in this class.

Throws NullPointerException– if any of the parameters are nul l

I l legalArgumentException– if any of the parameters are invalid

117.18.3.7 public boolean equals(Object obj)

obj the object to compare to this DmtPermission instance

□ Checks whether the given object is equal to this DmtPermission instance. Two DmtPermission in-
stances are equal if they have the same target string and the same action mask. The "*" action mask
is considered equal to a mask containing all actions.

Returns true if the parameter represents the same permissions as this instance

117.18.3.8 public String getActions()

□ Returns the String representation of the action list. The allowed actions are listed in the following
order: Add, Delete, Exec, Get, Replace. The wildcard character is not used in the returned string, even
if the class was created using the "*" wildcard.

Returns canonical action list for this permission object

117.18.3.9 public int hashCode()

□ Returns the hash code for this permission object. If two DmtPermission objects are equal according
to the equals(Object) method, then calling this method on each of the two DmtPermission objects
must produce the same integer result.

Returns hash code for this permission object

Dmt Admin Service Specification Version 2.0 org.osgi.service.dmt.security

OSGi Compendium Release 8 Page 505

117.18.3.10 public boolean implies(Permission p)

p the permission to check for implication

□ Checks if this DmtPermission object "implies" the specified permission. This method returns fa lse if
and only if at least one of the following conditions are fulfilled for the specified permission:

• it is not a DmtPermission
• its set of actions contains an action not allowed by this permission
• the set of nodes defined by its path contains a node not defined by the path of this permission

Returns true if this DmtPermission instance implies the specified permission

117.18.3.11 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCollection object for storing DmtPermission objects.

Returns the new PermissionCollection

117.18.4 public class DmtPrincipalPermission
extends Permission
Indicates the callers authority to create DMT sessions on behalf of a remote management server. On-
ly protocol adapters communicating with management servers should be granted this permission.

DmtPrincipalPermission has a target string which controls the name of the principal on whose be-
half the protocol adapter can act. A wildcard is allowed at the end of the target string, to allow using
any principal name with the given prefix. The "*" target means the adapter can create a session in
the name of any principal.

117.18.4.1 public DmtPrincipalPermission(String target)

target the name of the principal, can end with * to match any principal with the given prefix

□ Creates a new DmtPrincipalPermission object with its name set to the target string. Name must be
non-null and non-empty.

Throws NullPointerException– if name is nul l

I l legalArgumentException– if name is empty

117.18.4.2 public DmtPrincipalPermission(String target, String actions)

target the name of the principal, can end with * to match any principal with the given prefix

actions no actions defined, must be "*" for forward compatibility

□ Creates a new DmtPrincipalPermission object using the 'canonical' two argument constructor. In
this version this class does not define any actions, the second argument of this constructor must be
"*" so that this class can later be extended in a backward compatible way.

Throws NullPointerException– if name or actions is nul l

I l legalArgumentException– if name is empty or actions is not "*"

117.18.4.3 public boolean equals(Object obj)

obj the object to compare to this DmtPrincipalPermission instance

□ Checks whether the given object is equal to this DmtPrincipalPermission instance. Two DmtPrinci-
palPermission instances are equal if they have the same target string.

Returns true if the parameter represents the same permissions as this instance

References Dmt Admin Service Specification Version 2.0

Page 506 OSGi Compendium Release 8

117.18.4.4 public String getActions()

□ Returns the action list (always * in the current version).

Returns the action string "*"

117.18.4.5 public int hashCode()

□ Returns the hash code for this permission object. If two DmtPrincipalPermission objects are equal
according to the equals(Object) method, then calling this method on each of the two DmtPrinci-
palPermission objects must produce the same integer result.

Returns hash code for this permission object

117.18.4.6 public boolean implies(Permission p)

p the permission to check for implication

□ Checks if this DmtPrincipalPermission object implies the specified permission. Another DmtPrin-
cipalPermission instance is implied by this permission either if the target strings are identical, or if
this target can be made identical to the other target by replacing a trailing "*" with any string.

Returns true if this DmtPrincipalPermission instance implies the specified permission

117.18.4.7 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCollection object for storing DmtPrincipalPermission objects.

Returns the new PermissionCollection

117.19 References

[1] OMA DM-TND v1.2 draft
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-
TS-DM-TND-V1_2-20050615-C.zip

[2] OMA DM-RepPro v1.2 draft:
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-
DM-RepPro-V1_2_0-20050131-D.zip

[3] IETF RFC2578. Structure of Management Information
Version 2 (SMIv2)
http://www.ietf.org/rfc/rfc2578.txt

[4] Java™ Management Extensions Instrumentation and Agent Specification v1.2, October 2002,
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

[5] JSR 9 - Federated Management Architecture (FMA) Specification
Version 1.0, January 2000
http://www.jcp.org/en/jsr/detailid=9

[6] WBEM Profile Template, DSP1000
Status: Draft, Version 1.0 Preliminary, March 11, 2004
http://www.dmtf.org/standards/wbem

[7] SNMP
http://www.wtcs.org/snmp4tpc/snmp_rfc.htm#rfc

[8] RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax
http://www.ietf.org/rfc/rfc2396.txt

http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-DM-RepPro-V1_2_0-20050131-D.zip
http://member.openmobilealliance.org/ftp/public_documents/dm/Permanent_documents/OMA-DM-RepPro-V1_2_0-20050131-D.zip
http://www.ietf.org/rfc/rfc2578.txt
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.jcp.org/en/jsr/detailid=9
http://www.dmtf.org/standards/wbem
http://www.wtcs.org/snmp4tpc/snmp_rfc.htm#rfc
http://www.ietf.org/rfc/rfc2396.txt

Dmt Admin Service Specification Version 2.0 References

OSGi Compendium Release 8 Page 507

[9] MIME Media Types
http://www.iana.org/assignments/media-types/

[10] RFC 3548 The Base16, Base32, and Base64 Data Encodings
http://www.ietf.org/rfc/rfc3548.txt

[11] Secure Hash Algorithm 1
http://www.itl.nist.gov/fipspubs/fip180-1.htm

[12] TR-069 CPE WAN Management Protocol (CWMP)
Customer Premises Equipment Wide Area Network Management Protocol (CWMP)
http://en.wikipedia.org/wiki/TR-069

[13] XML Schema Part 2: Datatypes Second Edition
http://www.w3.org/TR/2004/PER-xmlschema-2-20040318/

http://www.iana.org/assignments/media-types/
http://www.ietf.org/rfc/rfc3548.txt
http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://en.wikipedia.org/wiki/TR-069
http://www.w3.org/TR/2004/PER-xmlschema-2-20040318/

References Dmt Admin Service Specification Version 2.0

Page 508 OSGi Compendium Release 8

Remote Service Admin Service Specification Version 1.1 Introduction

OSGi Compendium Release 8 Page 509

122 Remote Service Admin Service
Specification

Version 1.1

122.1 Introduction
The OSGi Core Release 8 framework specifies a model where bundles can use distributed services.
The basic model for OSGi remote services is that a bundle can register services that are exported to a
communication Endpoint and use services that are imported from a communication Endpoint. How-
ever, chapter Remote Services on page 25 does not explain what services are exported and/or import-
ed; it leaves such decisions to the distribution provider. The distribution provider therefore per-
forms multiple roles and cannot be leveraged by other bundles in scenarios that the distribution
provider had not foreseen.

The primary role of the distribution provider is purely mechanical; it creates Endpoints and regis-
ters service proxies and enables their communication. The second role is about the policies around
the desired topology. The third role is discovery. To establish a specific topology it is necessary to
find out about exported services in other frameworks.

This specification therefore defines an API for the distribution provider and discovery of services in
a network. A management agent can use this API to provide an actual distribution policy. This man-
agement agent, called the Topology Manager, can control the export and import of services delegat-
ing the intrinsic knowledge of the low level details of communication protocols, proxying of ser-
vices, and discovering services in the network to services defined in this specification.

This specification is an extension of the Remote Service chapter. Though some aspects are repeated
in this specification, a full understanding of the Remote Services chapter is required for full under-
standing of this document.

122.1.1 Essentials

• Simple - Make it as simple as possible for a Topology Manager to implement distribution policies.
• Dynamic - Discover available Endpoints dynamically, for example through a discovery protocol

like [3] Service Location Protocol (SLP) or [4] JGroups.
• Inform - Provide a mechanism to inform other parties about created and removed Endpoints.
• Configuration - Allow bundles to describe Endpoints as a bundle resource that are provided to the

Distribution Provider.
• Selective - Not all parties are interested in all services. Endpoint registries must be able to express

the scope of services they are interested in.
• Multiple - Allow the collaboration of multiple Topology Managers, Remote Service Admin ser-

vices, and Discovery Providers.
• Dynamic - Allow the dynamic discovery of Endpoints.
• Federated - Enable a global view of all available services in a distributed environment.

Introduction Remote Service Admin Service Specification Version 1.1

Page 510 OSGi Compendium Release 8

122.1.2 Entities

• Remote Service Admin - An implementation of this specification provides the mechanisms to im-
port and export services through a set of configuration types. The Remote Service Admin service
is a passive Distribution Provider, not taking any action to export or import itself.

• Topology Manager - The Topology Manager provides the policy for importing and exporting ser-
vices through the Remote Service Admin service.

• Endpoint - An Endpoint is a communications access mechanism to a service in another frame-
work, a (web) service, another process, or a queue or topic destination, etc., requiring some proto-
col for communications.

• Endpoint Description - A properties based description of an Endpoint. Endpoint Descriptions can
be exchanged between different frameworks to create connections to each other's services. End-
point Descriptions can also be created to Endpoints not originating in an OSGi Framework.

• Endpoint Description Provider - A party that can inform others about the existence of Endpoints.
• Endpoint Event Listener – A listener service that receives events relating to Endpoints that match

its scope. This Endpoint Event Listener is used symmetrically to implement a federated registry.
The Topology Manager can use it to notify interested parties about created and removed End-
points, as well as to receive notifications from other parties, potentially remote, about their avail-
able Endpoints.

• Endpoint Listener – An older version of the Endpoint Event Listener defined by version 1.0 of this
specification. The Endpoint Event Listener supersedes the Endpoint Listener, and should be used
in preference where possible.

• Remote Service Admin Listener - A listener service that is informed of all the primitive actions that
the Remote Service Admin performs like importing and exporting as well as errors.

• Endpoint Configuration Extender - A bundle that can detect configuration data describing an End-
point Description in a bundle resource, using the extender pattern.

• Discovery – An Endpoint Event Listener that detects the Endpoint Descriptions through some dis-
covery protocol.

• Cluster - A group of computing systems that closely work together, usually in a fast network.

Figure 122.1 Remote Service Admin Entities

Topology
Manager Impl

configured
Endpoint

XML

Remote Service
Admin Impl

Client impl Discovery Impl

Endpoint
Event Listener

 Endpoint
Event
Listener

Remote
Service
Admin

Remote
Service
Admin
Listener

Imported &
Exported
Services

to an
Endpoint

1

0..n

0..n

discovered by

network/
cluster

discovers/
announces

discovers

announces

1

122.1.3 Synopsis
Topology Managers are responsible for the distribution policies of a OSGi framework. To implement
a policy, a Topology Manager must be aware of the environment, for this reason, it can register:

Remote Service Admin Service Specification Version 1.1 Introduction

OSGi Compendium Release 8 Page 511

• Service listeners to detect services that can be exported according to the Remote Services chapter.
• Listener and Find Hook services to detect bundles that have an interest in specific services that

potentially could be imported.
• A Remote Service Admin Listener service to detect the activity of other Topology Managers.
• Endpoint Event Listener and Endpoint Listener services to detect Endpoints that are made avail-

able through discovery protocols, configuration data, or other means.

Using this information, the manager implements a topology using the Remote Service Admin ser-
vice. A Topology Manager that wants to export a service can create an Export Registration by provid-
ing one or more Remote Service Admin services a Service Reference plus a Map with the required
properties. A Remote Service Admin service then creates a number of Endpoints based on the avail-
able configuration types and returns a collection of ExportRegistrat ion objects. A collection is re-
turned because a single service can be exported to multiple Endpoints depending on the available
configuration type properties.

Each Export Registration is specific for the caller and represents an existing or newly created End-
point. The Export Registration associates the exported Service Reference with an Endpoint Descrip-
tion. If there are problems with the export operation, the Remote Service Admin service reports
these on the Export Registration objects. That is, not all the returned Export Registrations have to be
valid.

An Endpoint Description is a property based description of an Endpoint. Some of these properties
are defined in this specification, other properties are defined by configuration types. These config-
uration types must follow the same rules as the configuration types defined in the Remote Services
chapter. Remote Service Admin services that support the configuration types in the Endpoint De-
scription can import a service from that Endpoint solely based on that Endpoint Description.

In similar vein, the Topology Manager can import a service from a remote system by creating an Im-
port Registration out of an Endpoint Description. The Remote Service Admin service then registers a
service that is a proxy for the remote Endpoint and returns an ImportRegistrat ion object. If there are
problems with the import, the Remote Service Admin service that cannot be detected early, then the
Remote Service Admin service reports these on the returned ImportRegistrat ion object.

For introspection, the Remote Service Admin can list its current set of Import and Export References
so that a Topology Manager can get the current state. The Remote Service Admin service also in-
forms all Topology Managers and observers of the creation, deletion, and errors of Import and Ex-
port Registrations through the Remote Service Admin Listener service. Interested parties like the
Topology Manager can register such a service and will be called back with the initial state as well as
any subsequent changes.

An important aspect of the Topology Manager is the distributed nature of the scenarios it plays an
orchestrating role in. A Topology Manager needs to be aware of Endpoints in the network, not just
the ones provided by Remote Service Admin services in its local framework. The Endpoint Event Lis-
tener service is specified for this purpose. This service is provided for both directions, symmetrically.
That is, it is used by the Topology Manager to inform any observers about the existence of Endpoints
that are locally available, as well as for parties that represent a discovery mechanism. For example
Endpoints available on other systems, Endpoint Descriptions embedded in resources in bundles, or
Endpoint Descriptions that are available in some other form.

Endpoint Event Listener services are not always interested in the complete set of available End-
points because this set can potentially be very large. For example, if a remote registry like [5] UDDI
is used then the number of Endpoints can run into the thousands or more. An Endpoint Event Lis-
tener service can therefore scope the set of Endpoints with an OSGi LDAP style filter. Parties that can
provide information about Endpoints must only notify Endpoint Event Listener services when the
Endpoint Description falls within the scope of the Endpoint Listener service. Parties that use some
discovery mechanism can use the scope to trigger directed searches across the network.

Actors Remote Service Admin Service Specification Version 1.1

Page 512 OSGi Compendium Release 8

122.1.3.1 Endpoint Listener Services

The 1.0 version of this specification defined an Endpoint Listener service, which has an identical
purpose and similar behaviors to an Endpoint Event Listener service. Unfortunately the design of
the Endpoint Listener limited its extensibility, meaning that it had to be replaced in version 1.1 of
this specification.

In order to maintain backward compatible interoperability with Remote Service Admin 1.0 actors,
Remote Service Admin 1.1 actors must continue to register Endpoint Listener services as well as
Endpoint Event Listener services. They must also continue to call Endpoint Listener services as well
as EndpointEventListener services.

122.2 Actors
The OSGi Remote Services specification is about the distribution of services. This specification does
not outline the details of how the distribution provider knows the desired topology, this policy as-
pect is left up to implementations. In many situations, this is a desirable architecture because it pro-
vides freedom of implementation to the distribution provider. However, such an architecture does
not enable a separation of the mechanisms and policy. Therefore, this Remote Service Admin specifi-
cation provides an architecture that enables a separate bundle from the distribution provider to de-
fine the topology. It splits the responsibility of the Remote Service specification in a number of roles.
These roles can all have different implementations but they can collaborate through the services de-
fined in this specification. These roles are:

• Topology Managers - Topology Managers are the (anonymous) players that implement the poli-
cies for distributing services; they are closely aligned with the concept of an OSGi management
agent. It is expected that Topology Managers will be developed for scenarios like import/export
all applicable services, configuration based imports- and exports, and scenarios like fail-over,
load-balancing, as well as standards like domain managers for the [6] Service Component Architec-
ture (SCA).

• Remote Service Admin - The Remote Service Admin service provides the basic mechanism to im-
port and export services. This service is policy free; it will not distribute services without explic-
itly being told so. A OSGi framework can host multiple Remote Service Admin services that, for
example, support different configuration types.

• Discovery - To implement a distribution policy, a Topology Manager must be aware of what End-
points are available. This specification provides an abstraction of a federated Endpoint registry.
This registry can be used to both publish as well as consume Endpoints from many different
sources. The federated registry is defined for local services but is intended to be used with stan-
dard and proprietary service discovery protocols. The federated registry is implemented with the
Endpoint Event Listener service.

These roles are depicted in Figure 122.2 on page 512.

Figure 122.2 Roles

Topology
Manager

Remote Service
Admin

Discovery

instructs

informs
and learns from

Remote Service Admin Service Specification Version 1.1 Topology Managers

OSGi Compendium Release 8 Page 513

122.3 Topology Managers
Distributed processing has become mainstream because of the massive scale required for Internet
applications. Only with distributed architectures is it possible to scale systems to Internet size with
hundreds of millions of users. To allow a system to scale, servers are grouped in clusters where they
can work in unison or geographically dispersed in even larger configurations. The distribution of
the work-load is crucial for the amount of scalability provided by an architecture and often has do-
main specific dispatching techniques. For example, the hash of a user id can be used to select the
correct profile database server. In this fast moving world it is very unlikely that a single architecture
or distribution policy would be sufficient to satisfy many users. It is therefore that this specification
separates the how from the what. The complex mechanics of importing and exporting services are
managed by a Remote Service Admin service (the how) while the different policies are implemented
by Topology Managers (the what). This separation of concerns enables the development of Topology
Managers that can run on many different systems, providing high user functionality. For example,
a Topology Manager could implement a fail-over policy where some strategic services are redirect-
ed when their connections fail. Other Topology Managers could use a discovery protocol like SLP to
find out about other systems in a cluster and automatically configure the cluster.

The key value of this architecture is demonstrated by the example of an SCA domain controller. An
SCA domain controller receives a description of a domain (a set of systems and modules) and must
ensure that the proper connections are made between the participating SCA modules. By splitting
the roles, an SCA domain manager can be developed that can run on any compatible Remote Service
Admin service implementation.

122.3.1 Multiple Topology Managers
There is no restriction on the number of Topology Managers, nor is there a restriction on the num-
ber of Remote Service Admin service implementations. It is up to the deployer of the OSGi frame-
work to select the appropriate set of these service implementations. It is the responsibility of the
Topology Managers to listen to the Remote Service Admin Listener and track Endpoints created and
deleted by other Topology Managers and act appropriately.

122.3.2 Example Use Cases

122.3.2.1 Promiscuous Policy

A cluster is a set of machines that are connected in a network. The simplest policy for a Topology
Manager is to share exported services in such a cluster. Such a policy is very easy to implement with
the Remote Services Admin service. In the most basic form, this Topology Manager would use some
multicast protocol to communicate with its peers. These peers would exchange EndpointDescr ip-
t ion objects of exported services. Each Topology Manager would then import any exported service.

This scenario can be improved by separating the promiscuous policy from the discovery. Instead of
embedding the multicast protocol, a Topology manager could use the Endpoint Event Listener ser-
vice. This service allows the discovery of remote services. At the same time, the Topology Manager
could tell all other Endpoint Event Listener services about the services it has created, allowing them
to be used by others in the network.

Splitting the Topology Manager and discovery in two bundles allows different implementations of
the discovery bundle, for example, to use different protocols. See PROMISCUOUS_POLICY .

122.3.2.2 Fail Over

A more elaborate scheme is a fail-over policy. In such a policy a service can be replaced by a service
from another machine. There are many ways to implement such a policy, an simple example strate-
gy is provided here for illustration.

Endpoint Description Remote Service Admin Service Specification Version 1.1

Page 514 OSGi Compendium Release 8

A Fail-Over Topology Manager is given a list of stateless services that require fail-over, for example
through the Configuration Admin Service Specification on page 81. The Fail-Over Manager tracks the
systems in the its cluster that provide such services. This tracking can use an embedded protocol or
it can be based on the Endpoint Event Listener service model.

In the Fail-Over policy, the fail-over manager only imports a single service and then tracks the error
status of the imported service through the Remote Service Admin Listener service. If it detects the
service is becoming unavailable, it closes the corresponding Import Registration and imports a ser-
vice from an alternative system instead. In Figure 122.3, there are 4 systems in a cluster. The topolo-
gy/fail-over manager ensures that there is always one of the services in system A , B , or C available in
D .

Figure 122.3 Fail Over Scenario in a cluster

System

A

Topology
Manager

CB

D

There are many possible variations on this scenario. The managers could exchange load informa-
tion, allowing the service switch to be influenced by the load of the target systems. The important
aspect is that the Topology Manager can ignore the complex details of discovery protocols, commu-
nication protocols, and service proxying and instead focus on the topology. See FAIL_OVER_POLICY .

122.4 Endpoint Description
An Endpoint is a point of rendezvous of distribution providers. It is created by an exporting distrib-
ution provider or some other party, and is used by importing distribution providers to create a con-
nection. An Endpoint Description describes an Endpoint in such a way that an importing Remote Ser-
vice Admin service can create this connection if it recognizes the configuration type that is used for
that Endpoint. The configuration type consists of a name and a set of properties associated with that
name.

The core concept of the Endpoint Description is a Map of properties. The structure of this map is the
same as service properties, and the defined properties are closely aligned with the properties of an
imported service. An EndpointDescr ipt ion object must only consist of the data types that are sup-
ported for service properties. This makes the property map serializable with many different mecha-
nisms. The EndpointDescr ipt ion class provides a convenient way to access the properties in a type
safe way.

An Endpoint Description has case insensitive keys, just like the Service Reference's properties.

The properties map must contain all the prescribed service properties of the exported service af-
ter intents have been processed, as if the service was registered as an imported service. That is, the
map must not contain any properties that start with service.exported.* but it must contain the
service. imported .* variation of these properties. The Endpoint Description must reflect the import-
ed service properties because this simplifies the use of filters from the service hooks. Filters applied
to the Endpoint Description can then be the same filters as applied by a bundle to select an import-
ed service from the service registry.

Remote Service Admin Service Specification Version 1.1 Endpoint Description

OSGi Compendium Release 8 Page 515

The properties that can be used in an Endpoint Description are listed in Table 122.1. The Remote-
Constants class contains the constants for all of these property names.

Table 122.1 Endpoint Properties

Endpoint Property Name Type Description
service.exported.* Must not be set
service. imported * Must always be set to some value. See

SERVICE_IMPORTED .
objectClass Str ing[] Must be set to the value of

service.exported. interfaces , of the exported service
after expanding any wildcards. Though this proper-
ty will be overridden by the framework for the cor-
responding service registration, it must be set in the
Endpoint Description to simplify the filter matching.
These interface names are available with the getInter-
faces() method.

service. intents Str ing+ Intents implemented by the exporting distribution
provider and, if applicable, the exported service itself.
Any qualified intents must have their expanded form
present. These expanded intents are available with the
getIntents() method. See SERVICE_INTENTS .

endpoint.service. id Long The service id of the exported service. Can be absent
or 0 if the corresponding Endpoint is not for an OSGi
service. The remote service id is available as getSer-
viceId() . See also ENDPOINT_SERVICE_ID .

endpoint.framework.uuid Str ing A universally unique id identifying the instance of the
exporting framework. Can be absent if the correspond-
ing Endpoint is not for an OSGi service. See Framework
UUID on page 517. The remote framework UUID is
available with the getFrameworkUUID() method. See
also ENDPOINT_FRAMEWORK_UUID .

endpoint. id Str ing The Id for this Endpoint, can never be nul l . This infor-
mation is available with the getId() . See Endpoint Id on
page 517 and also ENDPOINT_ID .

endpoint.package.

 vers ion.<package-name>

Str ing The Java package version for the embed-
ded <package>. For example, the property
endpoint.package.version.com.acme=1.3 de-
scribes the version for the com.acme package. The
version for a package can be obtained with the
getPackageVersion(Str ing) .

The version does not have to be set, if not set, the value
must be assumed to be 0.

service. imported.configs Str ing+ The configuration types that can be used to implement
the corresponding Endpoint. This property maps to the
corresponding property in the Remote Services chap-
ter. This property can be obtained with the getConfig-
urat ionTypes() method.

The Export Registration has all the possible con-
figuration types, where the Import Registration
reports the configuration type actually used.
SERVICE_IMPORTED_CONFIGS .

Endpoint Description Remote Service Admin Service Specification Version 1.1

Page 516 OSGi Compendium Release 8

Endpoint Property Name Type Description
<config>.* * Where <config> is one of the configuration type names

listed in service. imported.configs . The content of
these properties must be valid for creating a connec-
tion to the Endpoint in another framework. That is,
any locally readable URLs from bundles must be con-
verted in such a form that they can be read by the im-
porting framework. How this is done is configuration
type specific.

* * All remaining public service properties must be
present (that is, not starting with full stop ('.' \u002E)).
If the values can not be marshaled by the Distribution
Provider then they must be ignored.

The EndpointDescr ipt ion class has a number of constructors that make it convenient to instantiate
it for different purposes:

• EndpointDescr ipt ion(Map) - Instantiate the Endpoint Description from a Map object.
• EndpointDescr ipt ion(ServiceReference,Map) - Instantiate an Endpoint Description based on a

Service Reference and a Map. The base properties of this Endpoint Description are the Service
Reference properties but the properties in the given Map must override any of their case variants
in the Service Reference. This allows the construction of an Endpoint Description from an ex-
portable service while still allowing overrides of specific properties by the Topology Manager.

The Endpoint Description must use the allowed properties as given in Table 122.1 on page 515.
The Endpoint Description must automatically skip any service.exported.* properties.

The Endpoint Description provides the following methods to access the properties in a more conve-
nient way:

• getInterfaces() - Answers a list of Java interface names. These are the interfaces under which the
services must be registered. These interface names can also be found at the objectClass property.
A service can only be imported when there is at least one Java interface name available.

• getConfigurat ionTypes() - Answer the configuration types that are used for exporting this End-
point. The configuration types are associated with a number of properties.

• getId() - Returns an Id uniquely identifying an Endpoint. The syntax of this Id should be defined
in the specification for the associated configuration type. Two Endpoint Descriptions with the
same Id describe the same Endpoint.

• getFrameworkUUID() - Get a Universally Unique Identifier (UUID) for the framework instance
that has created the Endpoint, Framework UUID on page 517.

• getServiceId() - Get the service id for the framework instance that has created the Endpoint. If
there is no service on the remote side the value must be 0.

• getPackageVersion(Str ing) - Get the version for the given package.
• getIntents() - Get the list of specified intents.
• getPropert ies() - Get all the properties.

Two Endpoint Descriptions are deemed equal when their Endpoint Id is equal. The Endpoint Id is a
mandatory property of an Endpoint Description, it is further described at Endpoint Id on page 517.
The hash code is therefore also based on the Endpoint Id.

122.4.1 Validity
A valid Endpoint Description must at least satisfy the following assertions:

• It must have a non-nul l Id that uniquely identifies the Endpoint

Remote Service Admin Service Specification Version 1.1 Endpoint Description

OSGi Compendium Release 8 Page 517

• It must at least have one Java interface name
• It must at least have one configuration type set
• Any version for the packages must have a valid version syntax.

122.4.2 Mutability
An EndpointDescr ipt ion object is immutable and with all final fields. It can be freely used between
different threads.

122.4.3 Endpoint Id
An Endpoint Id is an opaque unique identifier for an Endpoint. This uniqueness must at least hold
for the entire network in which the Endpoint is used. There is no syntax defined for this string ex-
cept that white space at the beginning and ending must be ignored. The actual syntax for this End-
point Id must be defined by the actual configuration type.

Two Endpoint Descriptions are deemed identical when their Endpoint Id is equal. The Endpoint Ids
must be compared as string compares with leading and trailing spaces removed. The Endpoint De-
scription class must use the Str ing class' hash Code from the Endpoint Id as its own hashCode .

The simplest way to ensure that a growth in the number of EndpointDescriptions and/or the size
of the connected group does not violate the required uniqueness of Endpoint Ids is for implementa-
tions to make their Endpoint Ids globally unique. This protects against clashes regardless of changes
to the connected group.

Whilst globally unique identifiers (GUIDs) are a simple solution to the Endpoint Id uniqueness
problem, they are not easy to implement in all environments. In some systems they can be prohib-
itively expensive to create, or of insufficient entropy to be genuinely unique. Some distribution
providers may therefore choose not to use random GUIDs.

In the case where no globally unique value is used the following actions are recommended (al-
though not required).

• Distribution Providers protect against intra-framework clashes using some known value unique
to the service, for example the service id.

• Distribution Providers protect against inter-provider collisions within a single framework by us-
ing some unique value, such as the distribution provider's bundle id. The distribution provider
bundle's symbolic name is insufficient, as there may be multiple versions of the same distribu-
tion provider installed within a single framework.

• Distribution Providers protect against inter-framework collisions using some value unique to
the framework, such as the framework UUID.

122.4.4 Framework UUID
Each framework registers its services with a service id that is only unique for that specific frame-
work. The OSGi framework is not a singleton, making it possible that a single VM process holds
multiple OSGi frameworks. Therefore, to identify an OSGi service uniquely it is necessary to identi-
fy the framework that has registered it. This identifier is a Universally Unique IDentifier (UUID) that is
set for each framework. This UUID is contained in the following framework property:

org.osgi.framework.uuid

If an Endpoint Description has no associated OSGi service then the UUID of that Endpoint Descrip-
tion must not be set and its service id must be 0.

A local Endpoint Description will have its framework UUID set to the local framework. This makes
it straightforward to filter for Endpoint Descriptions that are describing local Endpoints or that de-
scribe remote Endpoints. For example, a manager can take the filter from a listener and ensure that
it is only getting remote Endpoint Descriptions:

Remote Service Admin Remote Service Admin Service Specification Version 1.1

Page 518 OSGi Compendium Release 8

(&
 (!
 (service.remote.framework.uuid
 =72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72)
)
 (objectClass=org.osgi.service.log.LogService)
)

Where 72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72 is the UUID of the local framework. A discovery
bundle can register the following filter in its scope to receive all locally generated Endpoints:

(service.remote.framework.uuid
 =72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72)

122.4.5 Resource Containment
Configuration types can use URLs to point to local resources describing in detail the Endpoint pa-
rameters for specific protocols. However, the purpose of an Endpoint Description is to describe an
Endpoint to a remote system. This implies that there is some marshaling process that will transfer
the Endpoint Description to another process. This other process is unlikely to be able to access re-
source URLs. Local bundle resource URLs are only usable in the framework that originates them but
even HTTP based URLs can easily run into problems due to firewalls or lack of routing.

Therefore, the properties for a configuration type should be stored in such a way that the receiving
process can access them. One way to achieve this is to contain the configuration properties com-
pletely in the Endpoint Description and ensure they only use the basic data types that the remote
services chapter in the core requires every Distribution Provider to support.

The Endpoint Description XML format provides an xml element that is specifically added to make it
easy to embed XML based configuration documents. The XML Schema is defined in Endpoint Descrip-
tion Extender Format on page 529.

122.5 Remote Service Admin
The Remote Service Admin service abstracts the core functionality of a distribution provider: ex-
porting a service to an Endpoint and importing services from an Endpoint. However, in contrast
with the distribution provider of the Remote Services specification, the Remote Service Admin ser-
vice must be told explicitly what services to import and export.

122.5.1 Exporting
An exportable service can be exported with the exportService(ServiceReference,Map) method. This
method creates a number of Endpoints by inspecting the merged properties from the Service Refer-
ence and the given Map. Any property in the Map overrides the Service Reference properties, regard-
less of case. That is, if the map contains a key then it will override any case variant of this key in the
Service Reference. However, if the Map contains the objectClass or service. id property key in any
case variant, then these properties must not override the Service Reference's value.

The Remote Service Admin service must interpret the merged properties according to the Remote
Services chapter. This means that it must look at the following properties (as defined in chapter Re-
mote Services on page 25):

• service.exported.configs - (Str ing+) A list of configuration types that should be used to export
this service. Each configuration type represents the configuration parameters for an Endpoint.
A Remote Service Admin service should create an Endpoint for each configuration type that it
supports and ignore the types it does not recognize. If this property is not set, then the Remote

Remote Service Admin Service Specification Version 1.1 Remote Service Admin

OSGi Compendium Release 8 Page 519

Service Admin implementation must choose a convenient configuration type that then must be
reported on the Endpoint Description with the service. imported.configs associated with the re-
turned Export Registration.

• service.exported. intents - (Str ing+) A list of intents that the Remote Service Admin service must
implement to distribute the given service.

• service.exported. intents.extra - (Str ing+) This property is merged with the
service.exported. intents property.

• service.exported. interfaces - (Str ing+) This property must be set; it marks this service for ex-
port and defines the interfaces. The list members must all be contained in the types listed in
the objectClass service property from the Service Reference. The single value of an asterisk ('* '
\u002A) indicates all interfaces in the registration's objectClass property and ignore the classes.
Being able to set this property outside the Service Reference implies that the Topology Manager
can export any registered service, also services not specifically marked to be exported.

• service. intents - (Str ing+) A list of intents that this service has implemented.

A Topology Manager cannot remove properties, nul l is invalid as a property value.

The Remote Service Admin returns a collection of ExportRegistrat ion objects. This collection must
contain an entry for each configuration type the Remote Service Admin has recognized. Unrecog-
nized configuration types must be ignored. Recognized configuration types which require intents
that are not supported by the Remote Service Admin must also be ignored. However, it is possible
that this list contains invalid registrations, see Invalid Registrations on page 522.

If a Service was already exported then the Remote Service Admin must still return a new ExportReg-
istrat ion object that is linked with the earlier registrations. That is, an Endpoint can be shared be-
tween multiple Export Registrations. The Remote Service Admin service must ensure that the cor-
responding Endpoint remains available as long as there is at least one open Export Registration for
that Endpoint.

For each successful creation of an export registration, the Remote Service Admin service must pub-
lish an EXPORT_REGISTRATION event, see Events on page 527. This event must be emitted, even if
the Endpoint already existed and is thus shared with another Export Registration. If the creation of
an Endpoint runs into an error, an EXPORT_ERROR event must be emitted.

Each valid Export Registration corresponds to an Endpoint for the given service. This Endpoint
must remain active until all of the Export Registrations are closed that share this Endpoint.

The Endpoint can now be published so that other processes or systems can import this Endpoint. To
aid with this import, the Export Registration has a getExportReference() method that returns an Ex-
portReference object. This reference provides the following information:

• getExportedEndpoint() - This is the associated Endpoint Description. This Endpoint Description
is a properties based description of an Endpoint. The property keys and their semantics are out-
lined in Endpoint Description on page 514. It can be used to inform other systems of the avail-
ability of an Endpoint.

• getExportedService() - The Service Reference to the exported service.

Both methods must return nul l when the associated Export Registration is closed.

A Distribution Provider that recognizes the configuration type in an Endpoint can create a connec-
tion to an Endpoint on other systems as long as firewalls and networks permit. The Endpoint De-
scription can therefore be communicated to other systems to announce the availability of an End-
point. The Topology Manager can optionally announce the availability of an Endpoint to the End-
point Event Listener services, see Discovery on page 523. The decision to announce the availability
of an Endpoint is one of the policies that is provided by a specific Topology Manager.

The Export Registrations remain open until:

• Explicitly closed by the Topology Manager, or

Remote Service Admin Remote Service Admin Service Specification Version 1.1

Page 520 OSGi Compendium Release 8

• The Remote Service Admin service is no longer used by the Topology Manager that created the
Export Registration.

If the Remote Service Admin service can no longer maintain the corresponding Endpoint due to fail-
ures than these should be reported through the events. However, the registrations should remain
open until explicitly closed by the Topology Manager.

See Registration Life Cycle on page 522 for more information.

The Export Registrations are not permanent; persistence is in the realm of the Topology Manager.

122.5.2 Importing
To import a service, a Topology Manager must have an Endpoint Description that describes the End-
point the imported service should connect to. With this Endpoint Description, a Remote Service
Admin service can then import the corresponding Endpoint. A Topology Manager can obtain these
Endpoint Descriptions through internal configuration; it can use the discovery model enabled by
the Endpoint Event Listener service, see Discovery on page 523, or some alternate means.

A service can be imported with the Remote Service Admin importService(EndpointDescr ipt ion)
method. This method takes an Endpoint Description and picks one of the embedded configuration
types to establish a connection with the corresponding Endpoint to create a local service proxy. This
proxy can then be mapped to either a remote OSGi service or an alternative, for example a web ser-
vice. In certain cases the service proxy can be lazy, only verifying the reachability of the Endpoint
when it is actually invoked for the first time. This implies that a service proxy can block when in-
voked until the proper communication setup has taken place.

If the Remote Service Admin service does not recognize any of the configuration types then it must
return nul l . If there are multiple configuration types recognized then the Remote Service Admin is
free to select any one of the recognized types.

The Remote Service Admin service must ensure that service properties are according to the Remote
Services chapter for an imported service. This means that it must register the following properties:

• service. imported - (*) Must be set to any value.
• service. imported.configs - (Str ing+) The configuration information used to import this service.

Any associated properties for this configuration types must be properly mapped to the import-
ing system. For example, a URL in these properties must point to a valid resource when used in
the importing framework, see Resource Containment on page 518. Multiple configuration types
can be listed if they are synonyms for exactly the same Endpoint that is used to export this ser-
vice.

• service. intents - (Str ing+) The Remote Service Admin must set this property to convey the com-
bined intents of:
• The exporting service, and
• The intents that the exporting distribution provider adds, and
• The intents that the importing distribution provider adds.

• Any additional properties listed in the Endpoint Description that should not be excluded. See
Endpoint Description on page 514 for more details about the properties in the Endpoint Descrip-
tion.

A Remote Service Admin service must strictly follow the rules for importing a service as outlined in
the Remote Services chapter.

The Remote Service Admin must return an ImportRegistrat ion object or nul l . Even if an Import Reg-
istration is returned, it can still be an invalid registration, see Invalid Registrations on page 522 if the
setup of the connection failed asynchronously. The Import Registration must always be a new ob-
ject. Each valid Import Registration corresponds to a proxy service, potentially shared, that was cre-
ated for the given Endpoint. The issues around proxying are described in Proxying on page 522.

Remote Service Admin Service Specification Version 1.1 Remote Service Admin

OSGi Compendium Release 8 Page 521

For each successful creation of an import registration, the Remote Service Admin service must pub-
lish an IMPORT_REGISTRATION event, if there is an error it must publish an IMPORT_ERROR , see
Events on page 527.

For more information see Registration Life Cycle on page 522.

The Import Registration provides access to an ImportReference object with the getImportRefer-
ence() . This object has the following methods:

• getImportedEndpoint() - Provides the Endpoint Description for this imported service.
• getImportedService() - Provides the Service Reference for the service proxy.

The Import Registration will remain open as long as:

• The corresponding remote Endpoint remains available, and
• The Remote Service Admin service is still in use by the Topology Manager that created the Im-

port Registration.

That is, the Import Registrations are not permanent, any persistence is in the realm of the Topology
Manager. See Registration Life Cycle on page 522 for more details.

122.5.3 Updates
Services Registrations are dynamic and service properties may change during the lifetime of a ser-
vice. Remote services must mirror these dynamics without making it appear as though the service
has become unavailable. This requires that the exporting distribution provider and the importing
distribution provider support the changing of service properties.

There are two types of service properties:

• Properties that are intended to be consumed by the distribution provider, such as: the export-
ed interfaces and configuration types, exported intents and configuration type specific proper-
ties. These properties are typically prefixed with 'service.' or 'endpoint.' see Table 122.1 on page
515.

• Service properties not intended for the distribution provider. These are typically used to commu-
nicate information to the consumer of the service and are often specific to the domain of the ser-
vice.

The following methods to support the updating of service properties on Export Registrations and
the propagation of these updates to the remote proxies via Import Registrations.

• ExportRegistration.update(Map) - Allows the Topology Manager to update an existing export
registration it created after receiving a notification of changed properties on the remoted service.

• ImportRegistration.update(EndpointDescr ipt ion) - Allows the Topology Manager to update the
import registration representing a remote service after the remote service properties have been
updated. Typically the topology manager is notified of such change via the Discovery mecha-
nism.

The distribution provider must support the updates of service properties not intended for the dis-
tribution provider, where supported property values are as defined in the Filter Syntax of OSGi Core
Release 8. Distribution providers may support updates to a wider set of properties or data types, but
these may fail with other implementations.

122.5.4 Reflection
The Remote Service Admin service provides the following methods to get the list of the current ex-
ported and imported services:

Remote Service Admin Remote Service Admin Service Specification Version 1.1

Page 522 OSGi Compendium Release 8

• getExportedServices() - List the Export References for services that are exported by this Remote
Service Admin service as directed by any of the Topology Managers.

• getImportedEndpoints() - List the Import References for services that have been imported by this
Remote Service Admin service as directed by any of the Topology Managers.

122.5.5 Registration Life Cycle
All registrations obtained through a Remote Service Admin service are life cycle bound to the Topol-
ogy Manager that created it. That is, if a Topology Manager ungets its Remote Service Admin service,
all registrations obtained through this service must automatically be closed. This model ensures
that all registrations are properly closed if either the Remote Service Admin or the Topology Manag-
er stops because in both cases the framework performs the unget automatically. Such behavior can
be achieved by implementing the Remote Service Admin service as a Service Factory.

122.5.6 Invalid Registrations
The Remote Service Admin service is explicitly allowed to return invalid Import and Export Registra-
tions. First, in a communications stack it can take time to discover that there are issues, allowing the
registration to return before it has completed can potentially save time. Second, it allows the Topol-
ogy Manager to discover problems with the configuration information. Without the invalid Export
Registrations, the Topology Manager would have to scan the log or associate the Remote Service Ad-
min Events with a specific import/export method call, something that can be difficult to do.

If the registration is invalid, the getException() method must return a Throwable object. If the regis-
tration has initialized correctly, this method will return nul l . The getExportReference() and getIm-
portReference() methods must throw an Illegal State Exception when the registration is invalid.
A Remote Service Admin service is allowed to block for a reasonable amount of time when any of
these methods is called, including the getException method, to finish initialization.

An invalid registration can be considered as never having been opened, it is therefore not necessary
to close it; however, closing an invalid or closed registration must be a dummy operation and never
throw an Exception. However, a failed registration must generate a corresponding error event.

122.5.7 Proxying
It is the responsibility of the Remote Service Admin service to properly proxy an imported service.
This specification does not mandate the technique used to proxy an Endpoint as a service in the OS-
Gi framework. The OSGi Remote Services specification allows a distribution provider to limit what
it can proxy.

One of the primary aspects of a proxy is to ensure class space consistency between the exporting
bundle and importing bundles. This can require the generation of a proxy-per-bundle to match the
proper class spaces. It is the responsibility of the Remote Service Admin to ensure that no Class Cast
Exceptions occur.

A common technique to achieve maximum class space compatibility is to use a Service Factory. A
Service Factory provides the calling bundle when it first gets the service, making it straightforward
to verify the package version of the interface that the calling bundle uses. Knowing the bundle that
requests the service allows the creation of specialized proxies for each bundle. The interface class(es)
for the proxy can then be loaded directly from the bundle, ensuring class compatibility. Interfaces
should be loadable by the bundle otherwise that bundle can not use the interface in its code. If an in-
terface cannot be loaded then it can be skipped. A dedicated class loader can then be created that has
visibility to all these interfaces and is used to define the proxy class. This design ensures proper vis-
ibility and consistency. Implementations can optimize this model by sharing compatible class load-
ers between bundles.

The proxy will have to call arbitrary methods on arbitrary services. This has a large number of secu-
rity implications, see Security on page 537.

Remote Service Admin Service Specification Version 1.1 Discovery

OSGi Compendium Release 8 Page 523

122.6 Discovery
The topology of the distributed system is decided by the Topology Manager. However, in a distrib-
uted environment, the Topology Manager needs to discover Endpoints in other frameworks. There
is a very large number of ways how a Topology Manager could learn about other Endpoints, rang-
ing from static configuration, a centralized administration, all the way to fully dynamic discovery
protocols like the Service Location Protocol (SLP) or JGroups. To support the required flexibility, this
specification defines an Endpoint Event Listener service that allows the dissemination of Endpoint in-
formation. This service provides a symmetric solution because the problem is symmetric: it is used
by a Topology Manager to announce changes in its local topology as well as find out about other
Endpoint Descriptions. Where those other Endpoint Descriptions come from can vary widely. This
design is depicted in Figure 122.4 on page 523.

Figure 122.4 Examples

Topology
Manager

Static
Configuration

 Endpoint
Event
Listener

discovers/
announces

discovers

announces Network
Discovery

Configuration
Extender

Managed
Service Factory

Topology
Map

networks

displays
display

extends

 Endpoint
Event
Listener

The design of the Endpoint Event Listener allows a federated registry of Endpoint Descriptions. Any
party that is interested in Endpoint Descriptions should register an Endpoint Event Listener service.
This will signal that it is interested in topology information to any Endpoint Description Providers.
Each Endpoint Event Listener service must be registered with a service property that holds a set of
filter strings to indicate the scope of its interest. These filters must match an Endpoint Description
before the corresponding Endpoint Event Listener service is notified of the availability of an End-
point Description. Scoping is intended to limit the delivery of unnecessary Endpoint Descriptions as
well as signal the need for specific Endpoints.

In addition to providing an Endpoint Event Listener actors must provide an Endpoint Listener. This
may, or may not, be the same service object as the Endpoint Event Listener. Registering an Endpoint
Listener in addition to an Endpoint Event Listener ensures that Endpoint announcements from ver-
sion 1.0 actors will continue to be visible. If a service object is advertised as both an Endpoint Listen-
er and an Endpoint Event Listener then version 1.1 actors must use the Endpoint Event Listener in-
terface of the service in preference, and not call it as an Endpoint Listener. For this reason the End-
point Listener interface is marked as Deprecated . The reason that the Endpoint Event Listener inter-
face should be preferred is that it supports more advanced notification types, such as modification
events.

A Topology Manager has knowledge of its local Endpoints and is likely to be only interested in re-
mote Endpoints. It can therefore set the scope to only match remote Endpoint Descriptions. See
Framework UUID on page 517 for how to limit the scope to local or remote Endpoints. At the

Discovery Remote Service Admin Service Specification Version 1.1

Page 524 OSGi Compendium Release 8

same time, a Topology manager should inform any locally registered Endpoint Event Listener and
Endpoint Listener services about Endpoints that it has created or deleted.

This architecture allows many different use cases. For example, a bundle could display a map of the
topology by registering an Endpoint Event Listener with a scope for local Endpoints. Another ex-
ample is the use of SLP to announce local Endpoints to a network and to discover remote Endpoints
from other parties on this network.

An instance of this design is shown in Figure 122.5 on page 524. In this figure, there are 3 frame-
works that collaborate through some discovery bundle. The Top framework has created an Endpoint
and decides to notify all Endpoint Event Listeners and Endpoint Listeners registered in this frame-
work that are scoped to this new Endpoint. Local bundle D has set its scope to all Endpoint Descrip-
tions that originate from its local framework, it therefore receives the Endpoint Description from T .
Bundle D then sends the Endpoint Description to all its peers on the network.

In the Quark framework, the manager bundle T has expressed an interest by setting its scope to
a filter that matches the Endpoint Description from the Top framework. When the bundle D on
the Quark framework receives the Endpoint Description from bundle D on the Top framework, it
matches it against all local Endpoint Event Listener's scope. In this case, the local manager bundle T
matches and is given the Endpoint Description. The manager then uses the Remote Service Admin
service to import the exported service described by the given Endpoint Description.

Figure 122.5 Endpoint Discovery Architecture. T=Topology Manager, D=Discovery

D

DD T

T

T

Framework

Bundle

EndpointEventListener Service

Endpoint

Endpoint connection

Service connection

Framework Quark Framework Charm

Imported/Exported-Service

Top
Framework

Network

The previous description is just one of the possible usages of the Endpoint Event Listener. For ex-
ample, the discovery bundles could communicate the scopes to their peers. These peers could then
register an Endpoint Event Listener per peer, minimizing the network traffic because Endpoint De-
scriptions do not have to be broadcast to all peers.

Another alternative usage is described in Endpoint Description Extender Format on page 529. In this
chapter the extender pattern is used to retrieve Endpoint Descriptions from resources in locally ac-
tive bundles.

122.6.1 Scope and Filters
An Endpoint Event Listener or Endpoint Listener service is registered with the
ENDPOINT_LISTENER_SCOPE service property. This property, which is Str ing+ , must be set and
must contain at least one filter. If there is not at least one filter, then that Endpoint Event Listener or
Endpoint Listener must not receive any Endpoint Descriptions.

Remote Service Admin Service Specification Version 1.1 Discovery

OSGi Compendium Release 8 Page 525

Each filter in the scope is applied against the properties of the Endpoint Description until one suc-
ceeds. Only if one succeeds is the Endpoint informed about the existence of an Endpoint.

The Endpoint Description is designed to reflect the properties of the imported service, there is there-
fore a correspondence with the filters that are used by bundles that are listening for service registra-
tions. The purpose of this design is to match the filter available through Listener Hook services, see
On Demand on page 527.

However, the purpose of the filters is more generic than just this use case. It can also be used to spec-
ify the interest in local Endpoints or remote Endpoints. For example, Topology Managers are only
interested in remote Endpoints while discoverers are only interested in local Endpoints. It is easy to
discriminate between local and remote by filtering on the endpoint.framework.uuid property. End-
point Descriptions contain the Universally Unique ID (UUID) of the originating framework. This
UUID must be available from the local framework as well. See Framework UUID on page 517.

122.6.2 Endpoint Event Listener Interface
The EndpointEventListener interface has the following method:

• endpointChanged(EndpointEvent,Str ing) – Notify the Endpoint Event Listener of changes to an
Endpoint. The change could entail the addition or removal of an Endpoint or the modification
of the properties of an existing Endpoint. Multiple identical events should be counted as a single
such event.

These methods must only be called if the Endpoint Event Listener service has a filter in its scope
that matches the Endpoint Description properties.

The Endpoint Event Listener interface is idempotent. Endpoint Description Providers must inform an
Endpoint Event Listener service (and its deprecated predecessor Endpoint Listener service) that is
registered of all their matching Endpoints. The only way to find out about all available Endpoints is
to register an Endpoint Event Listener (or Endpoint Listener) that is then informed by all available
Endpoint Description Providers of their known Endpoint Descriptions that match their scope.

122.6.3 Endpoint Listener Interface
The EndpointListener interface is marked as Deprecated because the EndpointEventListener inter-
face must be used in preference when both are implemented by the same object. The EndpointEvent
interface has the following methods:

• endpointAdded(EndpointDescr ipt ion,Str ing) – Notify the Endpoint Listener of a new Endpoint
Description. The second parameter is the filter that matched the Endpoint Description. Register-
ing the same Endpoint multiple times counts as a single registration.

• endpointRemoved(EndpointDescr ipt ion,Str ing) – Notify the Endpoint Listener that the provid-
ed Endpoint Description is no longer available.

These methods must only be called if the Endpoint Listener service has a filter in its scope that
matches the Endpoint Description properties. The reason for the filter string in the methods is to
simplify and speed up matching an Endpoint Description to the cause of interest. For example, if the
Listener Hook is used to do on demand import of services, then the filter can be associated with the
Listener Info of the hook, see On Demand on page 527. If multiple filters in the scope match the
Endpoint Description than the first filter in the scope must be passed.

The Endpoint Listener interface is idempotent. Endpoint Description Providers must inform an End-
point Listener service that is registered of all their matching Endpoints.

122.6.4 Endpoint Event Listener and Endpoint Listener Implementations
An Endpoint Event Listener service tracks the known Endpoints in its given scope. There are poten-
tially a large number of bundles involved in creating this federated registry of Endpoints. To ensure

Discovery Remote Service Admin Service Specification Version 1.1

Page 526 OSGi Compendium Release 8

that no Endpoint Descriptions are orphaned or unnecessarily missed, an Endpoint Event Listener
implementation must follow the following rules:

• Registration – The Endpoint Event Listener service is called with an event of type ADDED for all
known Endpoint Descriptions that the bundles in the local framework are aware of. Similar-
ly, Endpoint Listener services are called with an endpointAdded(EndpointDescr ipt ion,Str ing)
method for all these.

• Tracking providers – An Endpoint Event Listener or Endpoint Listener must track the bundles
that provide it with Endpoint Descriptions. If a bundle that provided Endpoint Descriptions is
stopped, all Endpoint Descriptions that were provided by that bundle must be removed. This can
be implemented straightforwardly with a Service Factory.

• Scope modification – An Endpoint Event Listener or Endpoint Listener is allowed to modify the set
of filters in its scope through a service property modification. This modification must result in
new and/or existing Endpoint Descriptions to be added, however, existing Endpoints that are no
longer in scope are not required to be explicitly removed by the their sources. It is the responsi-
bility for the Endpoint Listener to remove these orphaned Endpoint Description from its view.

• Endpoint mutability – An Endpoint Description can change its Properties. The way this is
handled is different for Endpoint Event Listeners and Endpoint Listeners. An Endpoint
Event Listener receives a change event of type MODIFIED when the Properties of an exist-
ing Endpoint are modified. If the modification means that the Endpoint no longer match-
es the listener scope an event of type MODIFIED_ENDMATCH is sent instead. Endpoint Lis-
tener services receive a sequence of endpointRemoved(EndpointDescr ipt ion,Str ing) and
endpointAdded(EndpointDescr ipt ion,Str ing) callbacks when the Properties of an Endpoint are
modified.

Endpoint Descriptions can be added from different sources and providers of Endpoint Descriptions
often use asynchronous and potentially unreliable communications. An implementation must
therefore handle the addition of multiple equal Endpoint Descriptions from different sources as
well as from the same source. Implementations must not count the number of registrations, a re-
move operation of an Endpoint Description is final for each source. That is, if source A added End-
point Description e , then it can only be removed by source A . However, if source A added e multiple
times, then it only needs to be removed once. Removals of Endpoint Descriptions that have not been
added (or were removed before) should be ignored.

The discovery of Endpoints is a fundamentally indeterministic process and implementations of
Endpoint Event Listener services should realize that there are no guarantees that an added Endpoint
Description is always describing a valid Endpoint.

122.6.5 Endpoint Description Providers
The Endpoint Event Listener and Endpoint Listener services are based on an asynchronous, unre-
liable, best effort model because there are few guarantees in a distributed world. It is the task of an
Endpoint Description Provider, for example a discovery bundle, to keep the Endpoint Event Listener
services up to date of any Endpoint Descriptions the provider is aware of and that match the tracked
service's scope.

If an Endpoint Event Listener or Endpoint Listener service is registered, a provider must add all
matching Endpoint Descriptions that it is aware of and match the tracked listener's scope. This can
be done during registration or asynchronously later. For example, it is possible to use the filters in
the scope to request remote systems for any Endpoint Descriptions that match those filters. For ex-
pediency reasons, the service registration event should not be delayed until those results return; it is
therefore applicable to add these Endpoint Descriptions later when the returns from the remote sys-
tems finally arrive.

If a tracked listener service object is advertised as both an Endpoint Event Listener and an Endpoint
Listener then the EndpointDescription Provider must ignore the EndpointListener interface, and
treat the listener only as an Endpoint Event Listener. Remote Service Admin 1.0 actors will be un-

Remote Service Admin Service Specification Version 1.1 Events

OSGi Compendium Release 8 Page 527

aware of the EndpointEventListener interface, and will treat the service object purely as an Endpoint
Listener. This restriction ensures that all actors will treat the service either as an Endpoint Event
Listener, or an Endpoint Listener, but never as both. As a result the listener service will not have to
disambiguate duplicate events from a single source. If an Endpoint Description Provider uses both
the Endpoint Listener and Endpoint Event Listener interfaces of a single service object then the re-
sulting behavior is undefined. The implementation may detect the misuse and throw an Exception,
process or ignore the events from one of the interfaces, or it may simply corrupt the internal registry
of Endpoints within the listener.

A tracked Endpoint Event Listener or Endpoint Listener is allowed to modify its scope by setting
new properties on its Service Registration. An Endpoint Description provider must process the new
scope and add any newly matching Endpoint Descriptions. It is not necessary to remove any End-
point Descriptions that were added before but no longer match the new scope. Removing those or-
phaned descriptions is the responsibility of the listener implementation.

It is not necessary to remove any registered Endpoint Descriptions when the Endpoint Event Lis-
tener or Endpoint Listener is unregistered; also here it is the responsibility of the listener to do the
proper cleanup.

122.6.6 On Demand
A common distribution policy is to import services that are being listened for by local bundles. For
example, when a bundle opens a Service Tracker on the Log Service, a Topology Manager could be
notified and attempt to find a Log Service in the local cluster and then import this service in the lo-
cal Service Registry.

The OSGi framework provides service hooks for exactly this purpose. A Topology Manager can reg-
ister a Listener Hook service and receive the information about bundles that have specified an inter-
ests in specific services.

For example, a bundle creates the following Service Tracker:

ServiceTracker st = new ServiceTracker(context,
 LogService.class.getName());
st.open();

This Service Tracker will register a Service Listener with the OSGi framework. This will cause the
framework to add a ListenerInfo to any Listener Hook services. The getFi l ter method on a Listen-
erInfo object provides a filter that is directly applicable for the Endpoint Event Listener's scope. In
the previous example, this would be the filter:

(objectClass=org.osgi.service.log.LogService)

A Topology Manager could verify if this listener is satisfied. That is, if it has at least one service. If no
such service could be found, it could then add this filter to its Endpoint Event Listener's scope to de-
tect remote implementations of this service. If such an Endpoint is detected, it could then request
the import of this service through the Remote Service Admin service.

122.7 Events
The Remote Service Admin service must synchronously inform any Remote Service Admin Listen-
er services of events as they happen. Client of the events should return quickly and not perform any
but trivial processing in the same thread.

The following event types are defined:

Events Remote Service Admin Service Specification Version 1.1

Page 528 OSGi Compendium Release 8

• EXPORT_ERROR - An exported service has run into an unrecoverable error, although the Export
Registration has not been closed yet. The event carries the Export Registration as well as the Ex-
ception that caused the problem, if present.

• EXPORT_REGISTRATION - The Remote Service Admin has registered a new Export Registration.
• EXPORT_UNREGISTRATION - An Export Registration has been closed, the service is no longer

exported and the Endpoint is no longer active when this was the last registration for that ser-
vice/Endpoint combination.

• EXPORT_UPDATE - An exported service is updated. The service properties have changed.
• EXPORT_WARNING - An exported service is experiencing problems but the Endpoint is still avail-

able.
• IMPORT_ERROR - An imported service has run into a fatal error and has been shut down. The Im-

port Registration should be closed by the Topology Manager that created them.
• IMPORT_REGISTRATION - A new Import Registration was created for a potentially existing ser-

vice/Endpoint combination.
• IMPORT_UNREGISTRATION - An Import Registration was closed, removing the proxy if this was

the last registration.
• IMPORT_UPDATE - An imported service is updated. The service properties have changed.
• IMPORT_WARNING - An imported service is experiencing problems but can continue to function.

The following properties are available on the event:

• getType() - The type of the event.
• getException() - Any exception, if present.
• getExportReference() - An export reference, if applicable.
• getImportReference() - An import reference, if applicable.
• getSource() - The source of the event, the Remote Service Admin service.

122.7.1 Event Admin Mapping
All Remote Service Admin events must be posted, which is asynchronously, to the Event Admin ser-
vice, if present, under the following topic:

org/osgi/service/remoteserviceadmin/<type>

Where <type> represents the type of the event, for example IMPORT_ERROR .

The Event Admin event must have the following properties:

• bundle - (Bundle) The Remote Service Admin bundle
• bundle. id - (Long) The id of the Remote Service Admin bundle.
• bundle.symbol icname - (Str ing) The Bundle Symbolic Name of the Remote Service Admin

bundle.version - (Version) The version of the Remote Service Admin bundle.
• bundle.s igner - (Str ing[]) Signer of the Remote Service Admin bundle
• exception - (Throwable) The Exception, if present. Also reported on the cause property for back-

ward compatibility.
• exception.class - (Str ing) The fully-qualified class name of the attached Exception.
• exception.message -(Str ing) The message of the attached exception. Only set if the Exception

message is not nul l .
• endpoint.service. id - (Long) Remote service id, if present
• endpoint.framework.uuid - (Str ing) Remote service's Framework UUID, if present
• endpoint. id - (Str ing) The id of the Endpoint, if present
• objectClass - (Str ing[]) The interface names, if present

Remote Service Admin Service Specification Version 1.1 Endpoint Description Extender Format

OSGi Compendium Release 8 Page 529

• service. imported.configs - (Str ing+) The configuration types of the imported services, if present
• t imestamp - (Long) The time when the event occurred
• event - (RemoteServiceAdminEvent) The RemoteServiceAdminEvent object that caused this

event.

122.8 Endpoint Description Extender Format
The Endpoint Description Extender format is a possibility to deliver Endpoint Descriptions in bun-
dles. This section defines an XML schema and how to locate XML definition resources that use this
schema to define Endpoint Descriptions. The definition resource is a simple property based model
that can define the same information as the properties on an imported service. If a bundle with the
description is ready (ACTIVE or lazy activation and in the STARTING state), then this static descrip-
tion can be disseminated through the Endpoint Event Listeners that have specified an interest in
this description. If the bundle is stopped, the corresponding Endpoints must be removed.

XML documents containing remote service descriptions must be specified by the Remote-Service
header in the manifest. The structure of the Remote Service header is:

Remote-Service ::= header // See Common Header Syntax in Core

The value of the header is a comma separated list of paths. A path is:

• A directory if it ends with a solidus (' / ' \u002F). A directory is scanned for *.xml files.
• A path with wildcards. Such a path can use the wildcards in its last component, as defined in the

f indEntr ies method.
• A complete path, not having wildcards not ending in a solidus (' / ' \u002F).

The Remote-Service header has no architected directives or attributes, unrecognized attributes and
directives must be ignored.

A Remote-Service manifest header specified in a fragment must be ignored. However, XML docu-
ments referenced by a bundle's Remote-Service manifest header can be contained in attached frag-
ments. The required behavior for this is implemented in the f indEntr ies method.

The extender must process each XML document specified in this header. If an XML document speci-
fied by the header cannot be located in the bundle and its attached fragments, the extender must log
an error message with the Log Service, if present, and continue.

For example:

Remote-Service: lib/, remote/osgi/*.dsc, cnf/google.xml

This matches all resources in the lib directory matching *.xml , all resources in the /remote/osgi di-
rectory that end with .dsc , as well as the google.xml resource in the cnf directory.

The namespace of these XML resources must be:

 http://www.osgi .org/xmlns/rsa/v1.0.0

This namespace describes a set of Endpoint Descriptions, where each Endpoint Description can pro-
vide a set of properties. The structure of this schema is:

endpoint-descriptions ::= <endpoint-description>*
endpoint-description ::= <property>*
property ::= (<array> | <list> | <set>| <xml>)?
array ::= <value> *

Endpoint Description Extender Format Remote Service Admin Service Specification Version 1.1

Page 530 OSGi Compendium Release 8

list ::= <value> *
set ::= <value> *
xml ::= <*> *

This structure is depicted in Figure 122.6 on page 530.

Figure 122.6 Endpoint Description XML Structure

endpoint-
descriptions

endpoint-
description

property

0..n

0..n

list setarray xml

0,1

<any>value

1

1

1

0..n

111 1

0..n

The property element has the attributes listed in table Table 122.2.

Table 122.2 Property Attributes

Attribute Type Description
name Str ing The required name of the property. The type maps to the

XML Schema xsd:str ing type.

Remote Service Admin Service Specification Version 1.1 Endpoint Description Extender Format

OSGi Compendium Release 8 Page 531

Attribute Type Description
value-type Str ing

| long

| Long

| double

| Double

| f loat

| F loat

| int

| Integer

| byte

| Byte

| char

| Character

| boolean

| Boolean

| short

| Short

The optional type name of the property, the default is
Str ing . Any value in the value attribute or the value ele-
ment when collections are used must be converted to the
corresponding Java types. If the primitive form, for exam-
ple byte , is specified for non-array types, then the value
must be silently converted to the corresponding wrapper
type.

value Str ing The value. Must be converted to the specified type if this
is not the Str ing type. The value attribute must not be used
when the property element has a child element.

A property can have an array , l ist , set , or xml child element. If a child element is present then it is an
error if the value attribute is defined. It is also an error of there is no child element and no value at-
tribute.

The array , l ist , or set are multi-valued. That is, they contain 0 or more value elements. A value el-
ement contains text (a string) that must be converted to the given value-type or if not specified,
left as is. Conversion must trim the leading and trailing white space characters as defined in the
Character. isWhitespace method. No trimming must be done for strings. An array of primitive inte-
gers like int[] {1,42,97} can be encoded as follows:

<property name="integers" value-type="int">
 <array>
 <value> 1</value>
 <value>42</value>
 <value>97</value>
 </array>
</property>

The xml element is used to convey XML from other namespaces, it is allowed to contain one foreign
XML root element, with any number of children, that will act as the root element of an XML doc-
ument. This root element will be included in the corresponding property as a string. The XML ele-
ment must be a valid XML document but not contain the XML processing instructions, the part be-
tween the <? and ?> . The value-type of the property must be Str ing or not set when an xml element
is used, using another type is invalid.

The xml element can be used to embed configuration information, making the Endpoint Descrip-
tion self contained.

Endpoint Description Extender Format Remote Service Admin Service Specification Version 1.1

Page 532 OSGi Compendium Release 8

The following is an example of an endpoint-descr ipt ions resource.

<?xml version="1.0" encoding="UTF-8"?>
<endpoint-descriptions xmlns="http://www.osgi.org/xmlns/rsa/v1.0.0">
 <endpoint-description>
 <property name="service.intents">
 <list>
 <value>SOAP</value>
 <value>HTTP</value>
 </list>
 </property>
 <property name="endpoint.id" value="http://ws.acme.com:9000/hello"/>
 <property name="endpoint.package.version.com.acme" value="4.2"/>
 <property name="objectClass">
 <array>
 <value>com.acme.Foo</value>
 </array>
 </property>
 <property name="service.imported.configs" value="com.acme"/>
 <property name="com.acme.ws.xml">
 <xml>
 <config xmlns="http://acme.com/defs">
 <port>1029</port>
 <host>www.acme.com</host>
 </config>
 </xml>
 </property>
 </endpoint-description>
</endpoint-descriptions>

Besides being in a separate resource, the static configuration as described here could also be part of
a larger XML file. In that case the parser must ignore elements not part of the http://www.osgi .org/
xmlns/rsa/v1.0.0 namespace schema.

122.8.1 XML Schema
This namespace of the schema is:

http://www.osgi.org/xmlns/rsa/v1.0.0

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:rsa="http://www.osgi.org/xmlns/rsa/v1.0.0"
 targetNamespace="http://www.osgi.org/xmlns/rsa/v1.0.0"
 elementFormDefault="qualified" version="1.0.1">

 <annotation>
 <documentation xml:lang="en">
 This is the XML Schema for endpoint descriptions used by
 the Remote Service Admin Specification. Endpoint descriptions
 are used to describe remote services to a client in cases
 where a real live Discovery system isn't used. An extender,
 such as a local Discovery Service can look for service
 descriptions in installed bundles and inform the Topology
 Manager of these remote services. The Topology Manager can then
 instruct the Remote Service Admin to create client proxies for
 these services.
 </documentation>
 </annotation>

 <element name="endpoint-descriptions" type="rsa:Tendpoint-descriptions" />

 <complexType name="Tendpoint-descriptions">
 <sequence>

Remote Service Admin Service Specification Version 1.1 Endpoint Description Extender Format

OSGi Compendium Release 8 Page 533

 <element name="endpoint-description" type="rsa:Tendpoint-description"
 minOccurs="1" maxOccurs="unbounded" />
 <!--
 It is non-deterministic, per W3C XML Schema 1.0:
 http://www.w3.org/TR/xmlschema-1/#cos-nonambig to use
 namespace="##any" below.
 -->
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"
 processContents="lax" />
 </sequence>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tendpoint-description">
 <annotation>
 <documentation xml:lang="en">
 A Distribution Provider can register a proxy with the properties
 provided. Whether or not it is instructed to do so, is up to the
 Topology Manager. If any 'intents' properties are specified then the
 Distribution Provider should only register a proxy if it can support
 those intents.
 </documentation>
 </annotation>
 <sequence>
 <element name="property" type="rsa:Tproperty" minOccurs="1"
 maxOccurs="unbounded" />
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"
 processContents="lax" />
 </sequence>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tproperty" mixed="true">
 <sequence>
 <choice minOccurs="0" maxOccurs="1">
 <element name="array" type="rsa:Tmulti-value"/>
 <element name="list" type="rsa:Tmulti-value"/>
 <element name="set" type="rsa:Tmulti-value"/>
 <element name="xml" type="rsa:Txml"/>
 </choice>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"
 processContents="lax" />
 </sequence>
 <attribute name="name" type="string" use="required" />
 <attribute name="value" type="string" use="optional" />
 <attribute name="value-type" type="rsa:Tvalue-types" default="String" use="optional" />
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tmulti-value">
 <sequence>
 <element name="value" minOccurs="0" maxOccurs="unbounded" type="rsa:Tvalue"/>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"
 processContents="lax" />
 </sequence>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tvalue" mixed="true">
 <sequence>
 <element name="xml" minOccurs="0" maxOccurs="1" type="rsa:Txml"/>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded"
 processContents="lax" />
 </sequence>
 <anyAttribute processContents="lax" />
 </complexType>

 <!-- Specifies the data type of a property or of the elements in a multi-value
 property. Numerical and boolean values are trimmed before they are processed.
 Simple types are automatically boxed if needed. Only the array data type
 allows for simple type values. When specifying a simple type on any other
 type of property it will automatically be boxed. -->
 <simpleType name="Tvalue-types">
 <restriction base="string">
 <enumeration value="String" />

Capability Namespaces Remote Service Admin Service Specification Version 1.1

Page 534 OSGi Compendium Release 8

 <enumeration value="long" />
 <enumeration value="Long" />
 <enumeration value="double" />
 <enumeration value="Double" />
 <enumeration value="float" />
 <enumeration value="Float" />
 <enumeration value="int" />
 <enumeration value="Integer" />
 <enumeration value="byte" />
 <enumeration value="Byte" />
 <enumeration value="char" />
 <enumeration value="Character" />
 <enumeration value="boolean" />
 <enumeration value="Boolean" />
 <enumeration value="short" />
 <enumeration value="Short" />
 </restriction>
 </simpleType>

 <!-- This complex type allows literal XML to be specified in an <xml/> tag (which
 is more convenient than putting it in a CDATA section).
 The embedded XML must be well-formed and not be in the rsa namespace. It will
 be put in a String value of a property or in an element of a multi-value
 property of base type String. The XML will be prefixed with the standard
 <?XML ?> header which is copied from the enclosing document. Hence it will
 carry the same version and encoding as the document in the rsa namespace. -->
 <complexType name="Txml">
 <sequence>
 <any namespace="##other" minOccurs="1" maxOccurs="1"
 processContents="lax" />
 </sequence>
 <anyAttribute processContents="lax" />
 </complexType>

 <attribute name="must-understand" type="boolean" default="false">
 <annotation>
 <documentation xml:lang="en">
 This attribute should be used by extensions to documents
 to require that the document consumer understand the
 extension.
 </documentation>
 </annotation>
 </attribute>
</schema>

122.9 Capability Namespaces

122.9.1 Local Discovery Extender
A bundle containing Endpoint Description Extender resources can indicate its dependency on the
Remote Service Admin extender by declaring a requirement on the osgi .extender namespace.

Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.remoteserviceadmin.localdiscovery)
 (version>=1.0)(!(version>=2.0)))"

With this constraint declared a bundle that depends on the extender will fail to resolve if no exten-
der is present in the framework.

Implementations of this specification must provide this extender capability at version 1.0 as fol-
lows:

Provide-Capability: osgi.extender;
 osgi.extender="osgi.remoteserviceadmin.localdiscovery";
 version:Version="1.0";
 uses:="org.osgi.service.remoteserviceadmin"

Remote Service Admin Service Specification Version 1.1 Capability Namespaces

OSGi Compendium Release 8 Page 535

The reason that the extender capability is declared at version 1.0 is because the extender is un-
changed from version 1.0 of this specification.

122.9.2 Discovery Provider Capability
Discovery Providers use the osgi . remoteserviceadmin.discovery namespace to declare themselves
as such. The version defined for this namespace indicates the version of this specification that the
discovery provider supports.

This namespace has a defined attribute, protocols of type List<Str ing> , which contains a list of the
discovery protocols supported by the discovery provider. Local discovery providers (using the End-
point Description Extender Format on page 529), should use the value local to indicate that they sup-
port this. Additionally, it defines a version attribute. Other values for the protocols attribute are im-
plementation specific.

Table 122.3 osgi.remoteserviceadmin.discovery Namespace

Name Kind M/O Type Syntax Description
protocols CA M List<Str ing> symbol ic-name The discovery protocols supported. A value of lo-

cal indicates support for the Endpoint Description
Extender Format on page 529.

version CA M Version version This version must correspond to the version of
the Remote Service Admin specification.

Example: A discovery provider that provides local and SLP discovery:

Provide-Capability: osgi.remoteserviceadmin.discovery;
 protocols:List<String>="SLP,local"; version:Version=1.1

122.9.3 Distribution Provider Capability
Distribution providers advertise their supported distribution mechanisms using configuration
types. These are selected at runtime using the service.exported.configs service property. Distribu-
tion providers can use the osgi . remoteserviceadmin.distr ibution namespace with attribute configs ,
of type List<Str ing> , to advertise the supported config types.

Table 122.4 osgi.remoteserviceadmin.distribution Namespace

Name Kind M/O Type Syntax Description
configs CA M List<Str ing> symbol ic-name Supported configuration types. See Endpoint De-

scription on page 514 .
version CA M Version version This version must correspond to the version of

the Remote Service Admin specification.

Example: A Distribution provider that supports the org.acme.jaxws and org.acme.jaxrs configura-
tion types:

Provide-Capability: osgi.remoteserviceadmin.distribution;
 configs:List<String>="org.acme.jaxws,org.acme.jaxrs"; version:Version=1.1

122.9.4 Topology Manager Capability
Remote Service Admin topology managers may use different policies when determin-
ing which services to export and/or import. Topology managers use the namespace
osgi . remoteserviceadmin.topology to declare this behavior. This namespace defines the pol icy at-

Advice to implementations Remote Service Admin Service Specification Version 1.1

Page 536 OSGi Compendium Release 8

tribute of type List<Str ing> . Values are implementation specific, but example definitions can be
found at Example Use Cases on page 513.

Table 122.5 osgi.remoteserviceadmin.topology Namespace

Name Kind M/O Type Syntax Description
pol icy CA M List<Str ing> symbol ic-name The policy used for importing and exporting ser-

vices. In general the policy is implementation
specific.

version CA M Version version This version must correspond to the version of
the Remote Service Admin specification.

Example: A Topology manager that supports a promiscuous policy:

Provide-Capability: osgi.remoteserviceadmin.topology;
 policy:List<String>=promiscuous; version:Version=1.1

122.9.5 Service Capability
The Distribution Provider provides the Remote Service Admin service. To inform tools about this ser-
vice it must provide the osgi .service namespace representing the RemoteServiceAdmin service. This
capability must also declare a uses constraint for the org.osgi .service.remoteserviceadmin package:

Provide-Capability: osgi.service;
 objectClass:List<String>=
 "org.osgi.service.remoteserviceadmin.RemoteServiceAdmin";
 uses:="org.osgi.service.remoteserviceadmin"

This capability must follow the rules defined for the osgi.service Namespace on page 727.

122.10 Advice to implementations
This section is not intended to be normative, but offers advice to implementations as to how the
complexity of supporting both the new Endpoint Event Listener and Endpoint Listener services can
be managed and minimized. This advice applies to both Discovery Providers and Topology Man-
agers implementing Remote Service Admin 1.1 .

122.10.1 Notifying listeners
Endpoint Event Listeners and Endpoint Listeners have a very similar behavior and lifecycle. They
also use the same property names to define their scope filter. It is therefore relatively simple for an
Endpoint Description Provider to notify both Endpoint Listener and Endpoint Event Listeners using
a single code path.

One possible mechanism is to track both the listener types using the same Service Tracker. If the
tracked Service Reference advertises the EndpointEventListener interface then it must be treated as
an Endpoint Event Listener. If not then the Endpoint Listener service can be wrapped in an adapter
that converts Endpoint Event Listener events into the appropriate Endpoint Listener calls. The main
notification code path can then treat every listener as an Endpoint Event Listener.

122.10.2 Receiving Endpoint lifecycle notifications
The Remote Service Admin 1.1 specification is backward compatible with version 1.0 , meaning that
version 1.1 actors must register an Endpoint Listener service. There is no restriction requiring this
listener to be the same service as the Endpoint Event Listener, however there is a significant advan-
tage to combining the listeners into a single service registration.

Remote Service Admin Service Specification Version 1.1 Security

OSGi Compendium Release 8 Page 537

By making the two listeners a single service object a bundle can guarantee that it will not receive
multiple notifications for the same event. If the service registrations are separate then Endpoint De-
scription Providers will see two separate listeners, and notify them both. As a single service registra-
tion only one event will occur, and using the highest mutually supported version of the Remote Ser-
vice Admin Specification.

122.11 Security
From a security point of view distribution is a significant threat. A Distribution Provider requires
very significant capabilities to be able to proxy services. In many situations it will be required to
grant the distribution provider All Permission. It is therefore highly recommended that Distribution
Providers use trusted links and ensure that it is not possible to attack a system through the Remote
Services Admin service and used discovery protocols.

122.11.1 Import and Export Registrations
Import and Export Registrations are capabilities. That is, they can only be obtained when the caller
has the proper permissions but once obtained they are no longer checked. The caller should there-
fore be careful to share those objects with other bundles. Export and Import References are free to
share.

122.11.2 Endpoint Permission
The Remote Service Admin implementation requires a large set of permissions because it must be
able to distribute potentially any service. Giving these extensive capabilities to all Topology Man-
agers would make it harder to developer general Topology Managers that implements specific sce-
narios. For this reason, this specification provides an Endpoint Permission.

When an Endpoint Permission must be verified, it must be created with an Endpoint Description as
argument, like:

sm.checkPermission(new EndpointPermission(anEndpoint,localUUID,READ));

The standard name and action constructor is used to define a permission. The name argument is a
filter expression. The filter for an Endpoint Permission is applied to the properties of an Endpoint
Description. The localUUID must map to the UUID of the framework of the caller of this construc-
tor, see Framework UUID on page 517. This localUUID is used to allow a the permissions to use the
<<LOCAL>> magic name in the permission filter to refer to the local framework.

The filter expression can use the following magic value:

• <<LOCAL>> - This value represents the framework UUID of the framework that this bundle be-
longs to. The following example restricts the visibility to descriptions of local Endpoints:

 ALLOW {
 ...EndpointPermission
 "(endpoint.framework.uuid=<<LOCAL>>)"
 "READ" }

An Endpoint Permission that has the actions listed in the following table.

Table 122.6 Endpoint Permission Actions

Action Methods Description
IMPORT importService(EndpointDescr ipt ion) Import an Endpoint
EXPORT exportService(ServiceReference,Map) Export a service

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 538 OSGi Compendium Release 8

Action Methods Description
READ getExportedServices()

getImportedEndpoints()

remoteAdminEvent(RemoteServiceAdminEvent)

See the presence of distributed ser-
vices. The IMPORT and EXPORT action
imply READ . Distribution of events to
the Remote Service Admin Listener.
The Remote Service Admin must ver-
ify that the listener's bundle has the
proper permission. No events should
be delivered that are not implied.

122.12 org.osgi.service.remoteserviceadmin

Remote Service Admin Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.remoteserviceadmin; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.remoteserviceadmin; vers ion="[1.1 ,1 .2)"

122.12.1 Summary

• EndpointDescr ipt ion - A description of an endpoint that provides sufficient information for a
compatible distribution provider to create a connection to this endpoint An Endpoint Descrip-
tion is easy to transfer between different systems because it is property based where the property
keys are strings and the values are simple types.

• EndpointEvent - An Endpoint Event.
• EndpointEventListener - A white board service that represents a listener for endpoints.
• EndpointListener - Deprecated white board service that represents a listener for endpoints.
• EndpointPermission - A bundle's authority to export, import or read an Endpoint.
• ExportReference - An Export Reference associates a service with a local endpoint.
• ExportRegistrat ion - An Export Registration associates a service to a local endpoint.
• ImportReference - An Import Reference associates an active proxy service to a remote endpoint.
• ImportRegistrat ion - An Import Registration associates an active proxy service to a remote end-

point.
• RemoteConstants - Provide the definition of the constants used in the Remote Service Admin

specification.
• RemoteServiceAdmin - A Remote Service Admin manages the import and export of services.
• RemoteServiceAdminEvent - Provides the event information for a Remote Service Admin event.
• RemoteServiceAdminListener - A RemoteServiceAdminEvent listener is notified synchronously

of any export or import registrations and unregistrations.

122.12.2 public class EndpointDescription
A description of an endpoint that provides sufficient information for a compatible distribution
provider to create a connection to this endpoint An Endpoint Description is easy to transfer be-
tween different systems because it is property based where the property keys are strings and the val-
ues are simple types. This allows it to be used as a communications device to convey available end-

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Compendium Release 8 Page 539

point information to nodes in a network. An Endpoint Description reflects the perspective of an im-
porter. That is, the property keys have been chosen to match filters that are created by client bundles
that need a service. Therefore the map must not contain any service.exported.* property and must
contain the corresponding service. imported.* ones. The service. intents property must contain the
intents provided by the service itself combined with the intents added by the exporting distribution
provider. Qualified intents appear fully expanded on this property.

Concurrency Immutable

122.12.2.1 public EndpointDescription(Map<String, ?> properties)

properties The map from which to create the Endpoint Description. The keys in the map must be type Str ing
and, since the keys are case insensitive, there must be no duplicates with case variation.

□ Create an Endpoint Description from a Map.

The endpoint.id, service.imported.configs and objectClass properties must be set.

Throws I l legalArgumentException– When the properties are not proper for an Endpoint Description.

122.12.2.2 public EndpointDescription(ServiceReference<?> reference, Map<String, ?> properties)

reference A service reference that can be exported.

properties Map of properties. This argument can be nul l . The keys in the map must be type Str ing and, since
the keys are case insensitive, there must be no duplicates with case variation.

□ Create an Endpoint Description based on a Service Reference and a Map of properties. The proper-
ties in the map take precedence over the properties in the Service Reference.

This method will automatically set the endpoint.framework.uuid and endpoint.service.id properties
based on the specified Service Reference as well as the service.imported property if they are not spec-
ified as properties.

The endpoint.id, service.imported.configs and objectClass properties must be set.

Throws I l legalArgumentException– When the properties are not proper for an Endpoint Description

122.12.2.3 public boolean equals(Object other)

other The EndpointDescr ipt ion object to be compared.

□ Compares this EndpointDescr ipt ion object to another object.

An Endpoint Description is considered to be equal to another Endpoint Description if their ids are
equal.

Returns true if object is a EndpointDescr ipt ion and is equal to this object; fa lse otherwise.

122.12.2.4 public List<String> getConfigurationTypes()

□ Returns the configuration types. A distribution provider exports a service with an endpoint. This
endpoint uses some kind of communications protocol with a set of configuration parameters. There
are many different types but each endpoint is configured by only one configuration type. However,
a distribution provider can be aware of different configuration types and provide synonyms to in-
crease the change a receiving distribution provider can create a connection to this endpoint. This
value of the configuration types is stored in the RemoteConstants.SERVICE_IMPORTED_CONFIGS
service property.

Returns An unmodifiable list of the configuration types used for the associated endpoint and optionally syn-
onyms.

122.12.2.5 public String getFrameworkUUID()

□ Return the framework UUID for the remote service, if present. The value of the remote framework
UUID is stored in the RemoteConstants.ENDPOINT_FRAMEWORK_UUID endpoint property.

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 540 OSGi Compendium Release 8

Returns Remote Framework UUID, or nul l if this endpoint is not associated with an OSGi framework having
a framework UUID.

122.12.2.6 public String getId()

□ Returns the endpoint's id. The id is an opaque id for an endpoint. No two different endpoints must
have the same id. Two Endpoint Descriptions with the same id must represent the same endpoint.
The value of the id is stored in the RemoteConstants.ENDPOINT_ID property.

Returns The id of the endpoint, never nul l . The returned value has leading and trailing whitespace removed.

122.12.2.7 public List<String> getIntents()

□ Return the list of intents implemented by this endpoint. The intents are based on the service.intents
on an imported service, except for any intents that are additionally provided by the importing distri-
bution provider. All qualified intents must have been expanded. This value of the intents is stored in
the RemoteConstants.SERVICE_INTENTS service property.

Returns An unmodifiable list of expanded intents that are provided by this endpoint.

122.12.2.8 public List<String> getInterfaces()

□ Provide the list of interfaces implemented by the exported service. The value of the interfaces is de-
rived from the objectClass property.

Returns An unmodifiable list of Java interface names implemented by this endpoint.

122.12.2.9 public Version getPackageVersion(String packageName)

packageName The name of the package for which a version is requested.

□ Provide the version of the given package name. The version is encoded by prefixing the given pack-
age name with endpoint.package.version., and then using this as an endpoint property key. For ex-
ample:

 endpoint.package.version.com.acme

The value of this property is in String format and will be converted to a Version object by this
method.

Returns The version of the specified package or Version.emptyVersion if the package has no version in this
Endpoint Description.

Throws I l legalArgumentException– If the version property value is not String.

122.12.2.10 public Map<String, Object> getProperties()

□ Returns all endpoint properties.

Returns An unmodifiable map referring to the properties of this Endpoint Description.

122.12.2.11 public long getServiceId()

□ Returns the service id for the service exported through this endpoint. This is the service id un-
der which the framework has registered the service. This field together with the Framework
UUID is a globally unique id for a service. The value of the remote service id is stored in the
RemoteConstants.ENDPOINT_SERVICE_ID endpoint property.

Returns Service id of a service or 0 if this Endpoint Description does not relate to an OSGi service.

122.12.2.12 public int hashCode()

□ Returns a hash code value for the object.

Returns An integer which is a hash code value for this object.

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Compendium Release 8 Page 541

122.12.2.13 public boolean isSameService(EndpointDescription other)

other The Endpoint Description to look at

□ Answers if this Endpoint Description refers to the same service instance as the given Endpoint De-
scription. Two Endpoint Descriptions point to the same service if they have the same id or their
framework UUIDs and remote service ids are equal.

Returns True if this endpoint description points to the same service as the other

122.12.2.14 public boolean matches(String filter)

filter The filter to test.

□ Tests the properties of this EndpointDescr ipt ion against the given filter using a case insensitive
match.

Returns true If the properties of this EndpointDescr ipt ion match the filter, fa lse otherwise.

Throws I l legalArgumentException– If f i l ter contains an invalid filter string that cannot be parsed.

122.12.2.15 public String toString()

□ Returns the string representation of this EndpointDescription.

Returns String form of this EndpointDescription.

122.12.3 public class EndpointEvent
An Endpoint Event.

EndpointEvent objects are delivered to all registered EndpointEventListener services
where the EndpointDescription properties match one of the filters specified in the
EndpointEventListener.ENDPOINT_LISTENER_SCOPE registration properties of the Endpoint
Event Listener.

A type code is used to identify the type of event. The following event types are defined:

• ADDED
• REMOVED
• MODIFIED
• MODIFIED_ENDMATCH

Additional event types may be defined in the future.

See Also EndpointEventListener

Since 1.1

Concurrency Immutable

122.12.3.1 public static final int ADDED = 1

An endpoint has been added.

This EndpointEvent type indicates that a new endpoint has been added. The endpoint is represented
by the associated EndpointDescription object.

122.12.3.2 public static final int MODIFIED = 4

The properties of an endpoint have been modified.

This EndpointEvent type indicates that the properties of an existing endpoint have been modified.
The endpoint is represented by the associated EndpointDescription object and its properties can be

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 542 OSGi Compendium Release 8

obtained via EndpointDescription.getProperties(). The endpoint properties still match the filters as
specified in the EndpointEventListener.ENDPOINT_LISTENER_SCOPE filter.

122.12.3.3 public static final int MODIFIED_ENDMATCH = 8

The properties of an endpoint have been modified and the new properties no longer match the
listener's filter.

This EndpointEvent type indicates that the properties of an existing endpoint
have been modified and no longer match the filter. The endpoint is represented by
the associated EndpointDescription object and its properties can be obtained via
EndpointDescription.getProperties(). As a consequence of the modification the filters as specified in
the EndpointEventListener.ENDPOINT_LISTENER_SCOPE do not match any more.

122.12.3.4 public static final int REMOVED = 2

An endpoint has been removed.

This EndpointEvent type indicates that an endpoint has been removed. The endpoint is represented
by the associated EndpointDescription object.

122.12.3.5 public EndpointEvent(int type, EndpointDescription endpoint)

type The event type. See getType().

endpoint The endpoint associated with the event.

□ Constructs a EndpointEvent object from the given arguments.

122.12.3.6 public EndpointDescription getEndpoint()

□ Return the endpoint associated with this event.

Returns The endpoint associated with the event.

122.12.3.7 public int getType()

□ Return the type of this event.

The type values are:

• ADDED
• REMOVED
• MODIFIED
• MODIFIED_ENDMATCH

Returns The type of this event.

122.12.4 public interface EndpointEventListener
A white board service that represents a listener for endpoints. An Endpoint Event Listener repre-
sents a participant in the distributed model that is interested in Endpoint Descriptions. This white
board service can be used in many different scenarios. However, the primary use case is to allow a
remote manager to be informed of Endpoint Descriptions available in the network and inform the
network about available Endpoint Descriptions. Both the network bundle and the manager bundle
register an Endpoint Event Listener service. The manager informs the network bundle about End-
points that it creates. The network bundles then uses a protocol like SLP to announce these local
end-points to the network. If the network bundle discovers a new Endpoint through its discovery
protocol, then it sends an Endpoint Description to all the Endpoint Listener services that are regis-
tered (except its own) that have specified an interest in that endpoint. Endpoint Event Listener ser-
vices can express their scope with the service property ENDPOINT_LISTENER_SCOPE. This service
property is a list of filters. An Endpoint Description should only be given to a Endpoint Event Listen-

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Compendium Release 8 Page 543

er when there is at least one filter that matches the Endpoint Description properties. This filter mod-
el is quite flexible. For example, a discovery bundle is only interested in locally originating Endpoint
Descriptions. The following filter ensures that it only sees local endpoints.

 (org.osgi.framework.uuid=72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72)

In the same vein, a manager that is only interested in remote Endpoint Descriptions can use a filter
like:

 (!(org.osgi.framework.uuid=72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72))

Where in both cases, the given UUID is the UUID of the local framework that can be found in the
Framework properties. The Endpoint Event Listener's scope maps very well to the service hooks. A
manager can just register all filters found from the Listener Hook as its scope. This will automatical-
ly provide it with all known endpoints that match the given scope, without having to inspect the fil-
ter string. In general, when an Endpoint Description is discovered, it should be dispatched to all reg-
istered Endpoint Event Listener services. If a new Endpoint Event Listener is registered, it should be
informed about all currently known Endpoints that match its scope. If a getter of the Endpoint Lis-
tener service is unregistered, then all its registered Endpoint Description objects must be removed.
The Endpoint Event Listener models a best effort approach. Participating bundles should do their ut-
most to keep the listeners up to date, but implementers should realize that many endpoints come
through unreliable discovery processes. The Endpoint Event Listener supersedes the EndpointLis-
tener interface as it also supports notifications around modifications of endpoints.

Since 1.1

Concurrency Thread-safe

122.12.4.1 public static final String ENDPOINT_LISTENER_SCOPE = "endpoint.listener.scope"

Specifies the interest of this listener with filters. This listener is only interested in Endpoint Descrip-
tions where its properties match the given filter. The type of this property must be Str ing+ .

122.12.4.2 public void endpointChanged(EndpointEvent event, String filter)

event The event containing the details about the change.

filter The filter from the ENDPOINT_LISTENER_SCOPE that matches (or for
EndpointEvent.MODIFIED_ENDMATCH and EndpointEvent.REMOVED used to match) the end-
point, must not be nul l .

□ Notification that an endpoint has changed. Details of the change is captured in the Endpoint Event
provided. This could be that an endpoint was added, removed or modified.

122.12.5 public interface EndpointListener
Deprecated white board service that represents a listener for endpoints. An Endpoint Listener rep-
resents a participant in the distributed model that is interested in Endpoint Descriptions. The End-
point Listener is called back when matching endpoints are added or removed. Consumers interest-
ed in the modification of endpoints, when associated service properties are changed, should use
an EndpointEventListener instead. This white board service can be used in many different scenar-
ios. However, the primary use case is to allow a remote manager to be informed of Endpoint De-
scriptions available in the network and inform the network about available Endpoint Descriptions.
Both the network bundle and the manager bundle register an Endpoint Listener service. The man-
ager informs the network bundle about Endpoints that it creates. The network bundles then uses
a protocol like SLP to announce these local end-points to the network. If the network bundle dis-
covers a new Endpoint through its discovery protocol, then it sends an Endpoint Description to
all the Endpoint Listener services that are registered (except its own) that have specified an inter-
est in that endpoint. Endpoint Listener services can express their scope with the service property
ENDPOINT_LISTENER_SCOPE. This service property is a list of filters. An Endpoint Description
should only be given to a Endpoint Listener when there is at least one filter that matches the End-

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 544 OSGi Compendium Release 8

point Description properties. This filter model is quite flexible. For example, a discovery bundle is
only interested in locally originating Endpoint Descriptions. The following filter ensure that it only
sees local endpoints.

 (org.osgi.framework.uuid=72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72)

In the same vein, a manager that is only interested in remote Endpoint Descriptions can use a filter
like:

 (!(org.osgi.framework.uuid=72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72))

Where in both cases, the given UUID is the UUID of the local framework that can be found in the
Framework properties. The Endpoint Listener's scope maps very well to the service hooks. A man-
ager can just register all filters found from the Listener Hook as its scope. This will automatically
provide it with all known endpoints that match the given scope, without having to inspect the fil-
ter string. In general, when an Endpoint Description is discovered, it should be dispatched to all reg-
istered Endpoint Listener services. If a new Endpoint Listener is registered, it should be informed
about all currently known Endpoints that match its scope. If a getter of the Endpoint Listener ser-
vice is unregistered, then all its registered Endpoint Description objects must be removed. The End-
point Listener models a best effort approach. Participating bundles should do their utmost to keep
the listeners up to date, but implementers should realize that many endpoints come through unreli-
able discovery processes.

Deprecated As of 1.1. Replaced by EndpointEventListener.

Concurrency Thread-safe

122.12.5.1 public static final String ENDPOINT_LISTENER_SCOPE = "endpoint.listener.scope"

Specifies the interest of this listener with filters. This listener is only interested in Endpoint Descrip-
tions where its properties match the given filter. The type of this property must be Str ing+ .

122.12.5.2 public void endpointAdded(EndpointDescription endpoint, String matchedFilter)

endpoint The Endpoint Description to be published

matchedFilter The filter from the ENDPOINT_LISTENER_SCOPE that matched the endpoint, must not be nul l .

□ Register an endpoint with this listener. If the endpoint matches one of the filters registered with the
ENDPOINT_LISTENER_SCOPE service property then this filter should be given as the matchedFi l-
ter parameter. When this service is first registered or it is modified, it should receive all known end-
points matching the filter.

122.12.5.3 public void endpointRemoved(EndpointDescription endpoint, String matchedFilter)

endpoint The Endpoint Description that is no longer valid.

matchedFilter The filter from the ENDPOINT_LISTENER_SCOPE that matched the endpoint, must not be nul l .

□ Remove the registration of an endpoint. If an endpoint that was registered with the
endpointAdded(EndpointDescription, String) method is no longer available then this method
should be called. This will remove the endpoint from the listener. It is not necessary to remove end-
points when the service is unregistered or modified in such a way that not all endpoints match the
interest filter anymore.

122.12.6 public final class EndpointPermission
extends Permission
A bundle's authority to export, import or read an Endpoint.

• The export action allows a bundle to export a service as an Endpoint.
• The import action allows a bundle to import a service from an Endpoint.

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Compendium Release 8 Page 545

• The read action allows a bundle to read references to an Endpoint.

Permission to read an Endpoint is required in order to detect events regarding an Endpoint. Untrust-
ed bundles should not be able to detect the presence of certain Endpoints unless they have the ap-
propriate EndpointPermission to read the specific service.

Concurrency Thread-safe

122.12.6.1 public static final String EXPORT = "export"

The action string export . The export action implies the read action.

122.12.6.2 public static final String IMPORT = "import"

The action string import . The import action implies the read action.

122.12.6.3 public static final String READ = "read"

The action string read .

122.12.6.4 public EndpointPermission(String filterString, String actions)

filterString The filter string or "*" to match all endpoints.

actions The actions read , import , or export .

□ Create a new EndpointPermission with the specified filter.

The filter will be evaluated against the endpoint properties of a requested EndpointPermission.

There are three possible actions: read , import and export . The read action allows the owner of this
permission to see the presence of distributed services. The import action allows the owner of this
permission to import an endpoint. The export action allows the owner of this permission to export
a service.

Throws I l legalArgumentException– If the filter has an invalid syntax or the actions are not valid.

122.12.6.5 public EndpointPermission(EndpointDescription endpoint, String localFrameworkUUID, String actions)

endpoint The requested endpoint.

localFrameworkU-
UID

The UUID of the local framework. This is used to support matching the endpoint.framework.uuid
endpoint property to the <<LOCAL>> value in the filter expression.

actions The actions read , import , or export .

□ Creates a new requested EndpointPermission object to be used by code that must perform checkPer-
mission . EndpointPermission objects created with this constructor cannot be added to an Endpoint-
Permission permission collection.

Throws I l legalArgumentException– If the endpoint is nul l or the actions are not valid.

122.12.6.6 public boolean equals(Object obj)

obj The object to test for equality.

□ Determines the equality of two EndpointPermission objects. Checks that specified object has the
same name, actions and endpoint as this EndpointPermission .

Returns true If obj is a EndpointPermission , and has the same name, actions and endpoint as this Endpoint-
Permission object; fa lse otherwise.

122.12.6.7 public String getActions()

□ Returns the canonical string representation of the actions. Always returns present actions in the fol-
lowing canonical order: read , import , export .

Returns The canonical string representation of the actions.

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 546 OSGi Compendium Release 8

122.12.6.8 public int hashCode()

□ Returns the hash code value for this object.

Returns Hash code value for this object.

122.12.6.9 public boolean implies(Permission p)

p The target permission to check.

□ Determines if a EndpointPermission object "implies" the specified permission.

Returns true if the specified permission is implied by this object; fa lse otherwise.

122.12.6.10 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object for storing EndpointPermission objects.

Returns A new PermissionCol lect ion object suitable for storing EndpointPermission objects.

122.12.7 public interface ExportReference
An Export Reference associates a service with a local endpoint. The Export Reference can be used to
reference an exported service. When the service is no longer exported, all methods must return nul l .

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

122.12.7.1 public EndpointDescription getExportedEndpoint()

□ Return the Endpoint Description for the local endpoint.

Returns The Endpoint Description for the local endpoint. Must be nul l when the service is no longer export-
ed.

122.12.7.2 public ServiceReference<?> getExportedService()

□ Return the service being exported.

Returns The service being exported. Must be nul l when the service is no longer exported.

122.12.8 public interface ExportRegistration
An Export Registration associates a service to a local endpoint. The Export Registration can
be used to delete the endpoint associated with an this registration. It is created with the
RemoteServiceAdmin.exportService(ServiceReference,Map) method. When this Export Registration
has been closed, all methods must return nul l .

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

122.12.8.1 public void close()

□ Delete the local endpoint and disconnect any remote distribution providers. After this method re-
turns, all methods must return nul l . This method has no effect when this registration has already
been closed or is being closed.

122.12.8.2 public Throwable getException()

□ Return the exception for any error during the export process. If the Remote Service Admin for some
reasons is unable to properly initialize this registration, then it must return an exception from this
method. If no error occurred, this method must return nul l . The error must be set before this Export
Registration is returned. Asynchronously occurring errors must be reported to the log.

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Compendium Release 8 Page 547

Returns The exception that occurred during the initialization of this registration or nul l if no exception oc-
curred.

122.12.8.3 public ExportReference getExportReference()

□ Return the Export Reference for the exported service.

Returns The Export Reference for this registration, or nul l if this Import Registration is closed.

Throws I l legalStateException– When this registration was not properly initialized. See getException().

122.12.8.4 public EndpointDescription update(Map<String, ?> properties)

properties properties to be merged with the current service properties for the ServiceReference rep-
resented by this ExportRegistration. If null is passed then the original properties passed to
RemoteServiceAdmin.exportService(ServiceReference, Map) will be used.

□ Update the endpoint represented by this ExportRegistration and return an updated EndpointDe-
scription. If this method returns an updated EndpointDescription, then the object returned via get-
ExportReference() must also have been updated to return this new object. If this method does not re-
turn an updated EndpointDescription then the object returned via getExportReference() should re-
main unchanged. When creating the updated EndpointDescription the ServiceReference original-
ly passed to RemoteServiceAdmin.exportService(ServiceReference, Map) must be queried to pick
up any changes to its service properties. If this argument is null then the original properties passed
when creating this ExportRegistration should be used when constructing the updated EndpointDe-
scription. Otherwise the new properties should be used, and replace the original properties for sub-
sequent calls to the update method.

Returns The updated EndpointDescription for this registration or null if there was a failure updating the
endpoint. If a failure occurs then it can be accessed using getException().

Throws I l legalStateException– If this registration is closed, or when this registration was not properly ini-
tialized. See getException().

Since 1.1

122.12.9 public interface ImportReference
An Import Reference associates an active proxy service to a remote endpoint. The Import Reference
can be used to reference an imported service. When the service is no longer imported, all methods
must return nul l .

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

122.12.9.1 public EndpointDescription getImportedEndpoint()

□ Return the Endpoint Description for the remote endpoint.

Returns The Endpoint Description for the remote endpoint. Must be nul l when the service is no longer im-
ported.

122.12.9.2 public ServiceReference<?> getImportedService()

□ Return the Service Reference for the proxy for the endpoint.

Returns The Service Reference to the proxy for the endpoint. Must be nul l when the service is no longer im-
ported.

122.12.10 public interface ImportRegistration
An Import Registration associates an active proxy service to a remote endpoint. The Import
Registration can be used to delete the proxy associated with an endpoint. It is created with the

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 548 OSGi Compendium Release 8

RemoteServiceAdmin.importService(EndpointDescription) method. When this Import Registration
has been closed, all methods must return nul l .

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

122.12.10.1 public void close()

□ Close this Import Registration. This must close the connection to the endpoint and unregister the
proxy. After this method returns, all other methods must return nul l . This method has no effect
when this registration has already been closed or is being closed.

122.12.10.2 public Throwable getException()

□ Return the exception for any error during the import process. If the Remote Service Admin for some
reasons is unable to properly initialize this registration, then it must return an exception from this
method. If no error occurred, this method must return nul l . The error must be set before this Import
Registration is returned. Asynchronously occurring errors must be reported to the log.

Returns The exception that occurred during the initialization of this registration or nul l if no exception oc-
curred.

122.12.10.3 public ImportReference getImportReference()

□ Return the Import Reference for the imported service.

Returns The Import Reference for this registration, or nul l if this Import Registration is closed.

Throws I l legalStateException– When this registration was not properly initialized. See getException().

122.12.10.4 public boolean update(EndpointDescription endpoint)

endpoint The updated endpoint

□ Update the local service represented by this ImportRegistration. After this method returns the End-
pointDescription returned via getImportReference() must have been updated.

Returns true if the endpoint was successfully updated, fa lse otherwise. If the update fails then the failure can
be retrieved from getException().

Throws I l legalStateException– When this registration is closed, or if it was not properly initialized. See ge-
tException().

I l legalArgumentException– When the supplied EndpointDescription does not represent the same
endpoint as this ImportRegistration.

Since 1.1

122.12.11 public class RemoteConstants
Provide the definition of the constants used in the Remote Service Admin specification.

Concurrency Immutable

122.12.11.1 public static final String ENDPOINT_FRAMEWORK_UUID = "endpoint.framework.uuid"

Endpoint property identifying the universally unique id of the exporting framework. Can be absent
if the corresponding endpoint is not for an OSGi service.

The value of this property must be of type Str ing .

122.12.11.2 public static final String ENDPOINT_ID = "endpoint.id"

Endpoint property identifying the id for this endpoint. This service property must always be set.

The value of this property must be of type Str ing .

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Compendium Release 8 Page 549

122.12.11.3 public static final String ENDPOINT_PACKAGE_VERSION_ = "endpoint.package.version."

Prefix for an endpoint property identifying the interface Java package version for an interface. For
example, the property endpoint.package.version.com.acme=1.3 describes the version of the pack-
age for the com.acme.Foo interface. This endpoint property for an interface package does not have
to be set. If not set, the value must be assumed to be 0.

Since endpoint properties are stored in a case insensitive map, case variants of a package name are
folded together.

The value of properties having this prefix must be of type Str ing .

122.12.11.4 public static final String ENDPOINT_SERVICE_ID = "endpoint.service.id"

Endpoint property identifying the service id of the exported service. Can be absent or 0 if the corre-
sponding endpoint is not for an OSGi service.

The value of this property must be of type Long .

122.12.11.5 public static final String REMOTE_CONFIGS_SUPPORTED = "remote.configs.supported"

Service property identifying the configuration types supported by a distribution provider. Regis-
tered by the distribution provider on one of its services to indicate the supported configuration
types.

The value of this property must be of type Str ing , Str ing[] , or Collect ion of Str ing .

See Also Remote Services Specif icat ion

122.12.11.6 public static final String REMOTE_INTENTS_SUPPORTED = "remote.intents.supported"

Service property identifying the intents supported by a distribution provider. Registered by the dis-
tribution provider on one of its services to indicate the vocabulary of implemented intents.

The value of this property must be of type Str ing , Str ing[] , or Collect ion of Str ing .

See Also Remote Services Specif icat ion

122.12.11.7 public static final String SERVICE_EXPORTED_CONFIGS = "service.exported.configs"

Service property identifying the configuration types that should be used to export the service. Each
configuration type represents the configuration parameters for an endpoint. A distribution provider
should create an endpoint for each configuration type that it supports.

This property may be supplied in the propert ies Dictionary object passed to the
BundleContext.registerService method. The value of this property must be of type Str ing , Str ing[] ,
or Collect ion of Str ing .

See Also Remote Services Specif icat ion

122.12.11.8 public static final String SERVICE_EXPORTED_INTENTS = "service.exported.intents"

Service property identifying the intents that the distribution provider must implement to distrib-
ute the service. Intents listed in this property are reserved for intents that are critical for the code to
function correctly, for example, ordering of messages. These intents should not be configurable.

This property may be supplied in the propert ies Dictionary object passed to the
BundleContext.registerService method. The value of this property must be of type Str ing , Str ing[] ,
or Collect ion of Str ing .

See Also Remote Services Specif icat ion

122.12.11.9 public static final String SERVICE_EXPORTED_INTENTS_EXTRA = "service.exported.intents.extra"

Service property identifying the extra intents that the distribution provider must implement to dis-
tribute the service. This property is merged with the service.exported. intents property before the

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 550 OSGi Compendium Release 8

distribution provider interprets the listed intents; it has therefore the same semantics but the prop-
erty should be configurable so the administrator can choose the intents based on the topology. Bun-
dles should therefore make this property configurable, for example through the Configuration Ad-
min service.

This property may be supplied in the propert ies Dictionary object passed to the
BundleContext.registerService method. The value of this property must be of type Str ing , Str ing[] ,
or Collect ion of Str ing .

See Also Remote Services Specif icat ion

122.12.11.10 public static final String SERVICE_EXPORTED_INTERFACES = "service.exported.interfaces"

Service property marking the service for export. It defines the interfaces under which this service
can be exported. This list must be a subset of the types under which the service was registered. The
single value of an asterisk ('* ' \u002A) indicates all the interface types under which the service was
registered excluding the non-interface types. It is strongly recommended to only export interface
types and not concrete classes due to the complexity of creating proxies for some type of concrete
classes.

This property may be supplied in the propert ies Dictionary object passed to the
BundleContext.registerService method. The value of this property must be of type Str ing , Str ing[] ,
or Collect ion of Str ing .

See Also Remote Services Specif icat ion

122.12.11.11 public static final String SERVICE_IMPORTED = "service.imported"

Service property identifying the service as imported. This service property must be set by a distribu-
tion provider to any value when it registers the endpoint proxy as an imported service. A bundle can
use this property to filter out imported services.

The value of this property may be of any type.

See Also Remote Services Specif icat ion

122.12.11.12 public static final String SERVICE_IMPORTED_CONFIGS = "service.imported.configs"

Service property identifying the configuration types used to import the service. Any associated
properties for this configuration types must be properly mapped to the importing system. For ex-
ample, a URL in these properties must point to a valid resource when used in the importing frame-
work. If multiple configuration types are listed in this property, then they must be synonyms for ex-
actly the same remote endpoint that is used to export this service.

The value of this property must be of type Str ing , Str ing[] , or Collect ion of Str ing .

See Also Remote Services Specif icat ion , SERVICE_EXPORTED_CONFIGS

122.12.11.13 public static final String SERVICE_INTENTS = "service.intents"

Service property identifying the intents that this service implement. This property has a dual pur-
pose:

• A bundle can use this service property to notify the distribution provider that these intents are
already implemented by the exported service object.

• A distribution provider must use this property to convey the combined intents of: The exporting
service, and the intents that the exporting distribution provider adds, and the intents that the im-
porting distribution provider adds.

To export a service, a distribution provider must expand any qualified intents. Both the exporting
and importing distribution providers must recognize all intents before a service can be distributed.
The value of this property must be of type Str ing , Str ing[] , or Collect ion of Str ing .

See Also Remote Services Specif icat ion

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Compendium Release 8 Page 551

122.12.12 public interface RemoteServiceAdmin
A Remote Service Admin manages the import and export of services. A Distribution Provider can ex-
pose a control interface. This interface allows a Topology Manager to control the export and import
of services. The API allows a Topology Manager to export a service, to import a service, and find out
about the current imports and exports.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

122.12.12.1 public Collection<ExportRegistration> exportService(ServiceReference<?> reference, Map<String, ?>
properties)

reference The Service Reference to export.

properties The properties to create a local Endpoint that can be implemented by this Remote Service Admin.
If this is nul l , the Endpoint will be determined by the properties on the service. The properties are
the same as given for an exported service. They override any properties in the specified Service Ref-
erence (case insensitive). The properties objectClass and service. id , in any case variant, are ignored.
Those properties in the Service Reference cannot be overridden. This parameter can be nul l , this
should be treated as an empty map.

□ Export a service to a given Endpoint. The Remote Service Admin must create an Endpoint from the
given description that can be used by other Distribution Providers to connect to this Remote Ser-
vice Admin and use the exported service. The property keys of a Service Reference are case insensi-
tive while the property keys of the specified propert ies map are case sensitive. A property key in the
specified propert ies map must therefore override any case variant property key in the properties of
the specified Service Reference.

If the caller does not have the appropriate EndpointPermission[endpoint,EXPORT] for an Endpoint,
and the Java Runtime Environment supports permissions, then the getException method on the cor-
responding returned ExportRegistration will return a SecurityException .

Returns A Collect ion of ExportRegistrations for the specified Service Reference and properties. Multiple Ex-
port Registrations may be returned because a single service can be exported to multiple Endpoints
depending on the available configuration type properties and the intents that they support. The re-
sult is never nul l but may be empty if this Remove Service Admin does not recognize any of the con-
figuration types, or if the Remote Service Admin cannot support the relevant intents.

Throws I l legalArgumentException– If any of the properties for this configuration type has a value that is
not syntactically correct, or if the service properties and the overlaid properties do not contain a
RemoteConstants.SERVICE_EXPORTED_INTERFACES entry. This means that implementations
must not ignore invalid values for property names that they recognize.

122.12.12.2 public Collection<ExportReference> getExportedServices()

□ Return the currently active Export References.

If the caller does not have the appropriate EndpointPermission[endpoint,READ] for an Endpoint,
and the Java Runtime Environment supports permissions, then returned collection will not contain
a reference to the exported Endpoint.

Returns A Collect ion of ExportReferences that are currently active.

122.12.12.3 public Collection<ImportReference> getImportedEndpoints()

□ Return the currently active Import References.

If the caller does not have the appropriate EndpointPermission[endpoint,READ] for an Endpoint,
and the Java Runtime Environment supports permissions, then returned collection will not contain
a reference to the imported Endpoint.

Returns A Collect ion of ImportReferences that are currently active.

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.1

Page 552 OSGi Compendium Release 8

122.12.12.4 public ImportRegistration importService(EndpointDescription endpoint)

endpoint The Endpoint Description to be used for import.

□ Import a service from an Endpoint. The Remote Service Admin must use the given Endpoint to cre-
ate a proxy. This method can return nul l if the service could not be imported.

Returns An Import Registration that combines the Endpoint Description and the Service Reference or nul l if
the Endpoint could not be imported.

Throws SecurityException– If the caller does not have the appropriate
EndpointPermission[endpoint, IMPORT] for the Endpoint, and the Java Runtime Environment sup-
ports permissions.

122.12.13 public class RemoteServiceAdminEvent
Provides the event information for a Remote Service Admin event.

Concurrency Immutable

122.12.13.1 public static final int EXPORT_ERROR = 6

A fatal exporting error occurred. The Export Registration has been closed.

122.12.13.2 public static final int EXPORT_REGISTRATION = 2

Add an export registration. The Remote Service Admin will send this event when it exports a ser-
vice. When the RemoteServiceAdminListener service is registered, the Remote Service Admin must
notify the listener of all existing Export Registrations.

122.12.13.3 public static final int EXPORT_UNREGISTRATION = 3

Remove an export registration. The Remote Service Admin will send this event when it removes the
export of a service.

122.12.13.4 public static final int EXPORT_UPDATE = 10

Update an export registration. The Remote Service Admin will send this event when it exports a ser-
vice.

Since 1.1

122.12.13.5 public static final int EXPORT_WARNING = 7

A problematic situation occurred, the export is still active.

122.12.13.6 public static final int IMPORT_ERROR = 5

A fatal importing error occurred. The Import Registration has been closed.

122.12.13.7 public static final int IMPORT_REGISTRATION = 1

Add an import registration. The Remote Service Admin will send this event when it imports a ser-
vice. When the RemoteServiceAdminListener service is registered, the Remote Service Admin must
notify the listener of all existing Import Registrations.

122.12.13.8 public static final int IMPORT_UNREGISTRATION = 4

Remove an import registration. The Remote Service Admin will send this event when it removes the
import of a service.

122.12.13.9 public static final int IMPORT_UPDATE = 9

Update an import registration. The Remote Service Admin will send this event when it updates a
service.

Since 1.1

Remote Service Admin Service Specification Version 1.1 org.osgi.service.remoteserviceadmin

OSGi Compendium Release 8 Page 553

122.12.13.10 public static final int IMPORT_WARNING = 8

A problematic situation occurred, the import is still active.

122.12.13.11 public RemoteServiceAdminEvent(int type, Bundle source, ExportReference exportReference, Throwable
exception)

type The event type.

source The source bundle, must not be nul l .

exportReference The exportReference, can not be nul l .

exception Any exceptions encountered, can be nul l .

□ Create a Remote Service Admin Event for an export notification.

122.12.13.12 public RemoteServiceAdminEvent(int type, Bundle source, ImportReference importReference, Throwable
exception)

type The event type.

source The source bundle, must not be nul l .

importReference The importReference, can not be nul l .

exception Any exceptions encountered, can be nul l .

□ Create a Remote Service Admin Event for an import notification.

122.12.13.13 public Throwable getException()

□ Return the exception for this event.

Returns The exception or nul l .

122.12.13.14 public ExportReference getExportReference()

□ Return the Export Reference for this event.

Returns The Export Reference or nul l .

122.12.13.15 public ImportReference getImportReference()

□ Return the Import Reference for this event.

Returns The Import Reference or nul l .

122.12.13.16 public Bundle getSource()

□ Return the bundle source of this event.

Returns The bundle source of this event.

122.12.13.17 public int getType()

□ Return the type of this event.

Returns The type of this event.

122.12.14 public interface RemoteServiceAdminListener
A RemoteServiceAdminEvent listener is notified synchronously of any export or import registra-
tions and unregistrations.

If the Java Runtime Environment supports permissions, then filtering is done. RemoteServiceAd-
minEvent objects are only delivered to the listener if the bundle which defines the listener object's
class has the appropriate EndpointPermission[endpoint,READ] for the endpoint referenced by the
event.

org.osgi.service.remoteserviceadmin.namespace Remote Service Admin Service Specification Version 1.1

Page 554 OSGi Compendium Release 8

See Also RemoteServiceAdminEvent

Concurrency Thread-safe

122.12.14.1 public void remoteAdminEvent(RemoteServiceAdminEvent event)

event The RemoteServiceAdminEvent object.

□ Receive notification of any export or import registrations and unregistrations as well as errors and
warnings.

122.13 org.osgi.service.remoteserviceadmin.namespace

Remote Service Admin Namespaces Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Working
Group.

122.13.1 Summary

• DiscoveryNamespace - Remote Services Discovery Provider Capability and Requirement Name-
space.

• Distr ibutionNamespace - Remote Services Distribution Provider Capability and Requirement
Namespace.

• TopologyNamespace - Remote Services Topology Manager Capability and Requirement Name-
space.

122.13.2 public final class DiscoveryNamespace
extends Namespace
Remote Services Discovery Provider Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

Concurrency Immutable

122.13.2.1 public static final String CAPABILITY_PROTOCOLS_ATTRIBUTE = "protocols"

The capability attribute used to specify the discovery protocols supported by this discovery
provider. The value of this attribute must be of type Str ing or List<Str ing> .

122.13.2.2 public static final String DISCOVERY_NAMESPACE = "osgi.remoteserviceadmin.discovery"

Namespace name for Remote Services discovery provider capabilities and requirements.

122.13.3 public final class DistributionNamespace
extends Namespace
Remote Services Distribution Provider Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

Concurrency Immutable

122.13.3.1 public static final String CAPABILITY_CONFIGS_ATTRIBUTE = "configs"

The capability attribute used to specify the config types supported by this distribution provider. The
value of this attribute must be of type Str ing or List<Str ing> .

Remote Service Admin Service Specification Version 1.1 References

OSGi Compendium Release 8 Page 555

122.13.3.2 public static final String DISTRIBUTION_NAMESPACE = "osgi.remoteserviceadmin.distribution"

Namespace name for Remote Services distribution provider capabilities and requirements.

122.13.4 public final class TopologyNamespace
extends Namespace
Remote Services Topology Manager Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

Concurrency Immutable

122.13.4.1 public static final String CAPABILITY_POLICY_ATTRIBUTE = "policy"

The capability attribute used to specify the policy or policies supported by this topology manager.
The value of this attribute must be of type Str ing or List<Str ing> . Policy names are typically imple-
mentation specific, however the Remote Services Specification defines the promiscuous and fail-over
policies for common use cases.

122.13.4.2 public static final String FAIL_OVER_POLICY = "fail-over"

The attribute value for Topology managers with a fail-over policy

See Also TopologyNamespace.CAPABILITY_POLICY_ATTRIBUTE

122.13.4.3 public static final String PROMISCUOUS_POLICY = "promiscuous"

The attribute value for Topology managers with a promiscuous policy

See Also TopologyNamespace.CAPABILITY_POLICY_ATTRIBUTE

122.13.4.4 public static final String TOPOLOGY_NAMESPACE = "osgi.remoteserviceadmin.topology"

Namespace name for Remote Services topology manager capabilities and requirements.

122.14 References

[1] OSGi Service Property Namespace
https://docs.osgi.org/reference/service-property-namespace.html

[2] UUIDs
http://en.wikipedia.org/wiki/Universally_Unique_Identifier

[3] Service Location Protocol (SLP)
http://en.wikipedia.org/wiki/Service_Location_Protocol

[4] JGroups
http://www.jgroups.org/

[5] UDDI
http://en.wikipedia.org/wiki/Universal_Description_Discovery_and_Integration

[6] Service Component Architecture (SCA)
http://www.osoa.org/display/Main/Home

https://docs.osgi.org/reference/service-property-namespace.html
http://en.wikipedia.org/wiki/Universally_Unique_Identifier
http://en.wikipedia.org/wiki/Service_Location_Protocol
http://www.jgroups.org/
http://en.wikipedia.org/wiki/Universal_Description_Discovery_and_Integration
http://www.osoa.org/display/Main/Home

References Remote Service Admin Service Specification Version 1.1

Page 556 OSGi Compendium Release 8

JTA Transaction Services Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 557

123 JTA Transaction Services
Specification

Version 1.0

123.1 Introduction
Transactions are the key abstraction to provide reliability with large scale distributed systems and
are a primary component of enterprise systems. This specification provides an OSGi service based
design for the Java Transaction Architecture (JTA) Specification, which describes the standard trans-
action model for Java applications. Providing the JTA specification as a service based model enables
the use of independent implementations. This JTA Transaction Services Specification provides a
managed model, where an Application Container (such as the Java EE EJB container) manages the
transaction and the enlistment of resources, and an unmanaged model, where each application is re-
sponsible for these tasks itself.

This specification provides a brief overview of JTA and then the use of it through 3 transaction ser-
vices: User Transaction, Transaction Manager, and Transaction Synchronization.

This specification is based on [1] Java Transaction API Specification 1.1.

123.1.1 Essentials

• Portability - It is important that applications are easy to port from other environments that sup-
port JTA.

• Plugability - Allow different vendors to provide implementations of this specification.
• JTA Compatible - Support full JTA 1.1 Specification

123.1.2 Entities

• JTA Provider - Implementation of this specification. It is responsible, on request from a Transac-
tion Originator, for starting and ending transactions and coordinating the work of Resource Man-
agers that become involved in each Transaction. This entity provides the User Transaction ser-
vice, Transaction Manager service, and the Transaction Synchronization Registry service.

• Transaction - An atomic unit of work that is associated with a thread of execution.
• Transaction Originator - An Application or its Container, that directs the JTA Provider to begin and

end Transactions.
• User Transaction - A service used by a Transaction Originator for beginning and ending transac-

tions.
• Transaction Manager - A service used by a Transaction Originator for managing both transaction

demarcation and enlistment of Durable Resources or Volatile Resources.
• Transaction Synchronization Registry - A service for enlistment of Volatile Resources for getting no-

tifications before and after ending Transactions.
• Application Bundle - An entity that initiates work that executes under a Transaction.
• Container - An entity that is distinct from the Application and which provides a managed envi-

ronment for Applications. Unmanaged environments do not distinguish between the Applica-
tion and Container entities.

Introduction JTA Transaction Services Specification Version 1.0

Page 558 OSGi Compendium Release 8

• Resource Manager - Provides the transactional resources whose work is externally coordinat-
ed by a JTA Provider. Examples of Resource Managers include databases, Java Message Service
providers and enterprise information systems.

• Durable Resource - A resource whose work is made durable when the Transaction is successful-
ly committed. Durable Resources can be enlisted with a Transaction to ensure that work is per-
formed within the scope of the Transaction and to participate in the outcome of a Transaction.
Durable Resource enlistment is the responsibility of the Application Bundle or its Container.
Durable Resources implement the javax.transact ion.xa.XAResource interface

• Volatile Resource - Resources that are associated with a Transaction but are no longer needed after
the Transaction, for example transaction-scoped caches. Volatile Resources are registered with
the JTA Provider to receive notifications before and after the outcome of the Transaction. Volatile
Resources implement the javax.transact ion.Synchronizat ion interface

• Transaction Services - The triplet of the User Transaction, Transaction Manager, and Transaction
Synchronization Registry services registered by the JTA Provider.

Figure 123.1 Transaction Service Specification Entities

JTA Provider

Managed
Application Impl

Application
Container Impl

Resource
Manager Impl

User
Transaction

Transaction
Manager

XA Protocol

Transaction
Synchronization
Registry

* a resource specific service

<<interface>>
XAResource

XA Resource Impl

123.1.3 Dependencies
This specification is based on the following packages:

javax.transaction
javax.transaction.xa

These packages must be exported as version 1.1.

123.1.4 Synopsis
The JTA Provider register the Transaction Services:

• User Transaction - Offers transaction demarcation capabilities to an Application bundle.
• Transaction Manager - Offers transaction demarcation and further transaction management capa-

bilities to an Application Bundle or an Application Container.
• Transaction Synchronization Registry - Offers a callback registration service for volatile transaction-

al participants wishing to be notified of the completion of the transaction.

A JTA Provider must register these services when it is started. A JTA Provider may put restrictions
on which bundles can use these services. For example, in a Java EE environment, the JTA Provider
does not expose the TransactionManager interface to applications. An OSGi environment which

JTA Transaction Services Specification Version 1.0 JTA Overview

OSGi Compendium Release 8 Page 559

supports the Java EE specifications will typically provide access to the Transaction Manager service
only to Java EE Containers.

A typical example of the use of a transaction is for transferring money from one bank account to
another. Two Durable Resources are involved, one provided by the database from which the mon-
ey is to be withdrawn and another provided by the database to which the money will be deposited.
An Application Bundle acting as the Transaction Originator gets the User Transaction service and
uses it to begin a transaction. This transaction is associated with the current thread (implicitly) by
the JTA Provider. On the same thread of execution, the Application Bundle connects to the database
from which the money is to be withdrawn and updates the balance in the source account by the
amount to be debited.

The database is a resource manager whose connections have associated XA Resources; the first time
a connection is used within the scope of a new transaction the Application Bundle, or a Container,
obtains the XA Resource associated with the connection and enlists it with the JTA Provider through
the Transaction Manager service. On the same thread of execution, the Application Bundle connects
to the second database and updates the balance in the target account by the amount to be credited.
An XA Resource for the second connection is enlisted with the Transaction Manager service as well
by the Application Bundle or a Container.

Now that the money has been transferred the Transaction Originator requests a commit of the
Transaction (on the same thread of execution) via the User Transaction Service, causing the JTA
Provider to initiate the two-phase commit process with the two Resource Managers through the en-
listed XA Resources. The transaction is then atomically committed or rolled back.

123.2 JTA Overview
A transaction is a unit of work in which interactions with multiple participants can be coordinat-
ed by a third party such that the final outcome of these interactions has well-defined transactional
semantics. A variety of well-known transaction models exist with specific characteristics; the trans-
actions described in this specification provide Atomic Consistent Isolated and Durable (ACID) seman-
tics as defined in [2] XA+ Specification whereby all the participants in a transaction are coordinated to
an atomic outcome in which the work of all the participants is either completely committed or com-
pletely rolled back.

The [2] XA+ Specification defines a Distributed Transaction Processing (DTP) software architecture for
transactional work that is distributed across multiple Resource Managers and coordinated exter-
nally by a Transaction Manager using the two-phase commit XA protocol. The DTP architecture de-
fines the roles of the Transaction Manager and Resource Manager; this specification uses the term JTA
Provider rather than Transaction Manager to distinguish it from the Transaction Manager service. Note
that Distributed Transaction Processing does not imply distribution of transactions across multiple
frameworks or JVMs.

The [1] Java Transaction API Specification 1.1 defines the Java interfaces required for the management
of transactions on the enterprise Java platform.

123.2.1 Global and Local Transactions
A transaction may be a local transaction or a global transaction. A local transaction is a unit of work
that is local to a single Resource Manager and may succeed or fail independently of the work of oth-
er Resource Managers. A global transaction, sometimes referred to as a distributed transaction, is a
unit of work that may encompass multiple Resource Managers and is coordinated by a JTA Provider
external to the Resource Manager(s) as described in the DTP architecture. The term transaction in
this specification always refers to a global transaction.

The JTA Provider is responsible for servicing requests from a Transaction Originator to create and
complete transactions, it manages the state of each transaction it creates, the association of each

JTA Overview JTA Transaction Services Specification Version 1.0

Page 560 OSGi Compendium Release 8

transaction with the thread of execution, and the coordination of any Resource Managers that be-
come involved in the global transaction. The JTA Provider ensures that each transaction is associat-
ed with, at most, one application thread at a time and provides the means to move that association
from one thread to another as needed.

The model for resource commit coordination is the two phase commit XA protocol, with Resource
Managers being directed by the JTA Provider. The first time an Application accesses a Resource Man-
ager within the scope of a new global transaction, the Application, or its Container, obtains an XA
Resource from the Resource Manager and enlists this XA Resource with the JTA Provider.

At the end of a transaction, the Transaction Originator must decide whether to initiate a commit or
rollback request for all the changes made within the scope of the Transaction. The Transaction Orig-
inator requests that the JTA Provider completes the transaction. The JTA Provider then negotiates
with each enlisted Resource Manager to reach a coordinated outcome. A failure in the transaction at
any point before the second phase of two-phase commit results in the transaction being rolled back.

XA is a presumed abort protocol and implementations of XA-compliant JTA Providers and Resource
Managers can be highly optimized to perform no logging of transactional state until a commit de-
cision is required. A Resource Manager durably records its prepare decision, and a JTA Provider
durably records any commit decision it makes. Failures between a decision on the outcome of a
transaction and the enactment of that outcome are handled during transaction recovery to ensure the
atomic outcome of the transaction.

123.2.2 Durable Resource
Durable Resources are provided by Resource Managers and must implement the XAResource inter-
face described in the [1] Java Transaction API Specification 1.1. An XAResource object is enlisted with
a transaction to ensure that the work of the Resource Manager is associated with the correct transac-
tion and to participate in the two-phase commit process. The XAResource interface is driven by the
JTA Provider during the completion of the transaction and is used to direct the Resource Manager to
commit or rollback any changes made under the corresponding transaction.

123.2.3 Volatile Resource
Volatile resources are components that do not participate in the two phase commit but are called
immediately prior to and after the two phase commit. They implement the [1] Java Transaction API
Specification 1.1 Synchronizat ion interface. If a request is made to commit a transaction then the
volatile participants have the opportunity to perform some before completion processing such as
flushing cached updates to persistent storage. Failures during the before completion processing must
cause the transaction to rollback. In both the commit and rollback cases the volatile resources are
called after two phase commit to perform after completion processing. After completion procession can-
not affect the outcome of the transaction.

123.2.4 Threading
As noted above in Global and Local Transactions on page 559, a global transaction must not be asso-
ciated with more than one application thread at a time but can be moved over time from one appli-
cation thread to another. In some environments Applications run in containers which restrict the
ability of the Application component to explicitly manage the transaction-thread association by re-
stricting access to the Transaction Manager. For example, Java EE application servers provide web
and EJB Containers for application components and, while the Containers themselves can explicitly
manage transaction-thread associations, these containers do not allow the Applications to do so. Ap-
plications running in these containers are required to complete any transactions they start on that
same application thread. In general, Applications that run inside a Container must follow the rules
defined by that Container. For further details of the considerations specific to Java EE containers, see
the section Transactions and Threads in [4] Java Platform, Enterprise Edition (Java EE) Specification, v5.

JTA Transaction Services Specification Version 1.0 Application

OSGi Compendium Release 8 Page 561

123.3 Application
An Application is a bundle that may use transactions, either as a Transaction Originator or as a bun-
dle that is called as part of an existing transaction. A Transaction Originator Application bundle
starts a transaction and end it with a commit or rollback using the User Transaction or Transaction
Manager service.

A Transaction Originator Application bundle may not make use of Resource Managers itself but
may simply provide transaction demarcation and then call other bundles which do use Resource
Managers. In such a case the Transaction Originator Application bundle requires only the use of the
User Transaction service for transaction demarcation. The called bundles may use the Transaction
Manager service if they use Resource Managers.

Application Bundles that use Resource Managers have to know the enlistment strategy for the Re-
source Managers they use. There are two possibilities:

• Application Bundle Enlistment - The Application Bundle must enlist the Resource Managers itself.
For each Resource Manager it uses it must enlist that Resource Manager with the Transaction
Manager.

• Container-Managed Enlistment - An Application runs in a container, such as a Java EE Container,
which manages the Resource Manager enlistment on behalf of the Application.

These scenarios are explained in the following sections.

123.3.1 No Enlistment
A Transaction Originator Application bundle that uses no Resource Managers itself but starts a
Transaction before calling another bundle may use the User Transaction service to control the Trans-
action demarcation.

For example, an Application can use the User Transaction service to begin a global transaction:

UserTransaction ut = getUserTransaction();
ut.begin();

The User Transaction service associates a transaction with the current thread until that transaction
is completed via:

UserTransaction ut = getUserTransaction();
ut.commit();

Or the equivalent rol lback method. The getUserTransaction method implementation (not shown)
can get the User Transaction service directly from the service registry or from an injected field.

123.3.2 Application Bundle Enlistment
An Application Bundle is responsible for enlisting Resource Managers itself. That is, it must enlist
Resource Manager it uses with the Transaction Manager service. The Transaction Manager service is
an implementation of the JTA TransactionManager interface, registered by the JTA Provider.

For example, an Application Bundle can get an XADataSource object from a Data Source Factory ser-
vice. Such a Data Source object can provide an XAConnection object that then can provide an XARe-
source object. XAResource objects can then be enlisted with the Transaction Manager service.

For example:

TransactionManager tm;
XADataSource left;

Application JTA Transaction Services Specification Version 1.0

Page 562 OSGi Compendium Release 8

XADataSource right;

void acid() throws Exception {
 tm.begin();
 Transaction transaction = tm.getTransaction() ;
 try {
 XAConnection left = this.left.getXAConnection();
 XAConnection right = this.right.getXAConnection();
 transaction.enlistResource(left.getXAResource());
 transaction.enlistResource(r ight.getXAResource());
 doWork(left.getConnection(), right.getConnection());
 tm.commit();
 } catch(Throwable t) {
 tm.rollback();
 throw t; } }
// ...
void setTransactionManager(TransactionManager tm) { this.tm= tm; }
void setDataSourceFactory(DataSourceFactory dsf) {
 left = dsf.createXADataSource(getLeftProperties());
 right = dsf.createXADataSource(getRightProperties());
}

In the previous example, the Transaction Manager service could have been injected with a compo-
nent model like Declarative Services:

<reference interface="javax.transaction.TransactionManager"
 bind="setTransactionManager"/>
<reference name="dsf" interface="org.osgi.service.jdbc.DataSourceFactory"
 bind="setDataSourceFactory"/>

For example, it is possible to provide a Data Source service that provides automatic enlistment of
the Connection as an XA Resource when one of its getConnection methods is called inside a transac-
tion. The following code contains a Declarative Service component that implement this design. The
component references a Transaction Manager service and a Data Source Factory service and pro-
vides a Data Source service that proxies an XA Data Source. Applications depend on the Data Source
service, assuming that the Data Source service automatically enlists the connections it uses inside a
transaction. See for an overview Figure 123.2 on page 562.

Figure 123.2 Data Source Proxy

Data Source Proxy
Component

Data Source

Transaction
Manager

Data Source
Factory

Application Code

User Transaction

This general purpose Data Source Proxy component can be fully configured by the Configuration
Admin service to instantiate this component for each needed database connection. The Declarative
Services service properties can be used to select a Data Source Factory for the required database dri-
ver (using the target), as well as provide the configuration properties for the creation of an XA Data
Source. That is, such a component could be part of a support library.

The code for such an Application component could start like:

JTA Transaction Services Specification Version 1.0 Application

OSGi Compendium Release 8 Page 563

public class DataSourceProxy implements DataSource{
 Properties properties = new Properties();
 TransactionManager tm;
 XADataSource xads;

The activate method is called when the component's dependencies are met, that is, there is a Trans-
action Manager service as well as a matching Data Source Factory service. In this method, the prop-
erties of the component are copied to a Propert ies object to be compatible with the Data Source Fac-
tory factory methods.

void activate(ComponentContext c) {
 // copy the properties set by the Config Admin into properties
 ...
}

The relevant methods in the Data Source Proxy component are the getConnection methods. The
contract for this proxy component is that it enlists the XA Data Connection's XA Resource when it is
called inside a transaction. This enlistment is done in the private enl ist method.

public Connection getConnection() throws SQLException{
 XAConnection connection = xads.getXAConnection();
 return enlist(connection); }

public Connection getConnection(String username, String password)
 throws SQLException {
 XAConnection connection = xads.getXAConnection(username,password);
 return enlist(connection); }

The enl ist method checks if there currently is a transaction active. If not, it ignores the enlistment,
the connection will then not be connection to the transaction. If there is a current transaction, it en-
lists the corresponding XA Resource.

private Connection enlist(XAConnection connection)throws SQLException {
 try {
 Transaction transaction = tm.getTransaction();
 if (transaction != null)
 transaction.enlistResource(connection.getXAResource());
 } catch (Exception e) {
 SQLException sqle=
 new SQLException("Failed to enlist");
 sqle.initCause(e);
 throw sqle;
 }
 return connection.getConnection();
}

What remains are a number of boilerplate methods that forward to the XA Data Source or set the de-
pendencies.

void setTransactionManager(TransactionManagertm) { this.tm = tm;}
void setDataSourceFactory(DataSourceFactory dsf) throws Exception{
 xads = dsf.createXADataSource(properties);}
public PrintWriter getLogWriter()
 throws SQLException { return xads.getLogWriter(); }

public int getLoginTimeout()

Resource Managers JTA Transaction Services Specification Version 1.0

Page 564 OSGi Compendium Release 8

 throws SQLException { return xads.getLoginTimeout();}

public void setLogWriter(PrintWriter out)
 throws SQLException { xads.setLogWriter(out); }

public void setLoginTimeout(int seconds)
 throws SQLException { xads.setLoginTimeout(seconds);}

This is a fully coded example, it only lacks the configuration definitions for the Configuration Ad-
min service.

This example Data Source proxy component makes it possible for an Application to depend on a
Data Source service. The connections the Application uses from this Data Source are automatical-
ly transactional as long as there is a current transaction when the service is called. However, this ap-
proach only works when all bundles in the OSGi framework follow the same enlistment strategy be-
cause this specification does not provide a common enlistment strategy.

123.3.3 Container Managed Enlistment
The Application Container is responsible for enlisting Resource Managers used by the Application.
For example, the Java EE Web and EJB Containers have a well defined model for managing resources
within a transaction. If an Application runs inside a Java EE Container then it is the responsibility of
the Java EE Container to handle the resource enlistment, the actual rules are beyond this specifica-
tion.

A Transaction Originator Application bundle running inside a Container which manages any Re-
source Managers enlistment may use the User Transaction service for transaction demarcation, as-
suming this service is made available by the Container.

When a Java EE Container runs inside an OSGi framework then it must ensure that any services
seen by its contained Applications are the same Transaction services as other bundles on that OSGi
framework.

123.4 Resource Managers
Resource Managers perform work that needs to be committed or rolled back in a transaction. To par-
ticipate in a transaction, a Resource Manager must have an XA Resource enlisted with the current
transaction. This specification does not define how OSGi service implementations should be enlist-
ed. This can be done by a Java EE Container, the Applications themselves, or through some other un-
specified means.

123.5 The JTA Provider
The JTA Provider is the entity that provides the transaction services:

• User Transaction - A service that implements the JTA UserTransaction interface.
• Transaction Manager - A service that implements the JTA TransactionManager interface.
• Transaction Synchronization Registry - A service that implements the JTA TransactionSynchroniza-

t ionRegistry interface.

There can be at most one JTA Provider in an OSGi framework and this JTA Provider must ensure
that at most one transaction is associated with an application thread at any moment in time. All JTA
Provider's transaction services must map to the same underlying JTA implementation. All JTA ser-
vices should only be registered once.

JTA Transaction Services Specification Version 1.0 Life Cycle

OSGi Compendium Release 8 Page 565

123.5.1 User Transaction
The User Transaction service may be used by an Application bundle, acting as the Transaction Origi-
nator, to demarcate transaction boundaries when the bundle has no need to perform resource enlist-
ment.

123.5.2 Transaction Manager
The Transaction Manager service offers transaction demarcation and further transaction manage-
ment capabilities, such as Durable and Volatile resource enlistment, to an Application bundle or Ap-
plication Container.

123.5.3 Transaction Synchronization Service
The Transaction Synchronization Registry service may be used by an Application bundle or a Con-
tainer. The service provides for the registration of Volatile Resources that implement the JTA Syn-
chronizat ion interface.

For example:

private class MyVolatile implements Synchronization{...}
TransactionSynchronizationRegistry tsr = ...; // may be injected
tsr.registerInterposedSynchronization(new MyVolatile());

123.6 Life Cycle

123.6.1 JTA Provider
The life cycle of the transaction services and bundles that make up the JTA Provider must be dealt
with appropriately such that implementations always ensure the atomic nature of transactions.
When the JTA Provider is stopped and its services are unregistered, the JTA Provider must make
sure that all active transactions are dealt with appropriately. A JTA Provider can decide to rollback
all active transactions or it can decide to keep track of existing active transactions and allow them
to continue to their normal conclusion but not allow any new transactions to be created. Any fail-
ures caused by executing code outside their life cycle can be dealt with as general failures. From a
transactional consistency point of view, stopping the bundle(s) that implement the JTA Provider
while transactional work is in-flight, is no different from a failure of the framework hosting the JTA
Provider. In either case transaction recovery is initiated by the JTA Provider after it has re-started.

There are well-defined XA semantics between a JTA Provider and Resource Managers in the event
of a failure of either at any point in a transaction. If a Resource Manager bundle is stopped while
it is involved in-flight transactions then the JTA Provider should exhibit the same external behav-
ior it does in the event of a communication failure with the Resource Manager. For example a JTA
Provider will respond to an XAER_RMFAIL response resulting from calling the XAResource commit
method by retrying the commit . The mechanism used by the JTA Provider to determine when to
retry the commit is a detail of the implementation.

123.6.2 Application Bundles
Applications can act in the role of the Transaction Originator. There is no guarantee that an Appli-
cation that starts a transaction will always be available to complete the transaction since the client
can fail independently of the JTA Provider. A failure of the Application Bundle to complete, in a
timely fashion, a transaction it originated must finally result in the JTA Provider rolling back the
transaction.

Security JTA Transaction Services Specification Version 1.0

Page 566 OSGi Compendium Release 8

123.6.3 Error Handling
This specification does not define a specific error handling strategy. Exceptions and errors that occur
during transaction processing can result in the transaction being marked rollback-only by the con-
tainer or framework in which an Application runs or may be left for the Application to handle. An
Application which receives an error or an exception while running under a transaction can choose
to mark the transaction rollback-only.

123.7 Security
This specification relies on the security model of JTA.

123.8 References

[1] Java Transaction API Specification 1.1
http://www.oracle.com/technetwork/java/javaee/jta/index.html

[2] XA+ Specification
Version 2, The Open Group, ISBN: 1-85912-046-6

[3] Transaction Processing
J. Gray and A. Reuter. Morgan Kaufmann Publishers, ISBN 1.55860-190-2

[4] Java Platform, Enterprise Edition (Java EE) Specification, v5
http://jcp.org/en/jsr/detail?id=244

http://www.oracle.com/technetwork/java/javaee/jta/index.html
http://jcp.org/en/jsr/detail?id=244

Data Service Specification for JDBC™ Technology Version 1.0 Introduction

OSGi Compendium Release 8 Page 567

125 Data Service Specification for
JDBC™ Technology

Version 1.0

125.1 Introduction
The Java Database Connectivity (JDBC) standard provides an API for applications to interact with
relational database systems from different vendors. To abstract over concrete database systems and
vendor specific characteristics, the JDBC specification provides various classes and Service Provider
Interfaces (SPI) that can be used for database interaction. Implementations are database specific and
provided by the corresponding driver. This specification defines how OSGi-aware JDBC drivers can
provide access to their implementations. Applications can rely on this mechanism to transparent-
ly access drivers and to stay independent from driver specific classes. Additionally, this mechanism
helps to use common OSGi practices and to avoid class loading problems.

This specification uses a number of packages that are defined in Java SE 1.4 or later.

125.1.1 Essentials

• Registration - Provide a mechanism for JDBC driver announcements.
• Lookup - Inspect available database drivers and provide means for driver access.
• Services - Uses a service model for getting the driver objects.
• Compatible - Minimize the amount of work needed to support this specification for existing dri-

vers.

125.1.2 Entities

• Relational Database Management Systems - (RDBMS) An external database system.
• Database Driver - JDBC-compliant database driver that is delivered in a bundle.
• Data Source Factory - Provides one of the different Data Sources that gives access to a database dri-

ver.
• Application - The application that wants to access a relational database system.

Database Driver Data Service Specification for JDBC™ Technology Version 1.0

Page 568 OSGi Compendium Release 8

Figure 125.1 JDBC Class/Service Overview

Driver Impl

Application Impl

Data Source
Factory

database

125.1.3 Dependencies
The classes and interfaces used in this specification come from the following packages:

javax.sql
java.sql

These packages have no associated version. It is assumed they come from the runtime environment.
This specification is based on Java SE 1.4 or later.

125.1.4 Synopsis
A JDBC Database Driver is the software that maps the JDBC specification to a specific implementa-
tion of a relational database. For OSGi, JDBC drivers are delivered as driver bundles. A driver bun-
dle registers a Data Source Factory service when it is ACTIVE . Service properties are used to specify
the database driver name, version, etc. The Data Source Factory service provides methods to create
DataSource , ConnectionPoolDataSource , XADataSource , or Driver objects. These objects are then
used by an application to interact with the relational database system in the standard way.

The application can query the service registry for available Data Source Factory services. It can se-
lect particular drivers by filtering on the service properties. This service based model is easy to use
with dependency injection frameworks like Blueprint or Declarative Services.

125.2 Database Driver
A Database Driver provides the connection between an Application and a particular database. A sin-
gle OSGi Framework can contain several Database Drivers simultaneously. To make itself available
to Applications, a Database Driver must register a Data Source Factory service. Applications must be
able to find the appropriate Database Driver. The Database Driver must therefore register the Data
Source Factory service with the following service properties:

• OSGI_JDBC_DRIVER_CLASS - (Str ing) The required name of the driver implementation class.
This property is the primary key to find a driver's Data Source Factory. It is not required that
there is an actual class with this name.

• OSGI_JDBC_DRIVER_NAME - (Str ing) The optional driver name. This property is informational.
• OSGI_JDBC_DRIVER_VERSION - (Str ing) The driver version. The version is not required to be an

OSGi version, it should be treated as an opaque string. This version is likely not related to the
package of the implementation class or its bundle.

Data Service Specification for JDBC™ Technology Version 1.0 Applications

OSGi Compendium Release 8 Page 569

The previous properties are vendor-specific and are meant to further describe the Database Driver to
the Application.

Each Data Source Factory service must relate to a single Database Driver. The Database Driver im-
plementation bundle does not necessarily need to be the registrar of the Data Source Factory service.
Any bundle can provide the Data Source Factory service and delegate to the appropriate driver spe-
cific implementation classes. However, as JDBC driver implementations evolve to include built-in
support for OSGi they can provide the Data Source Factory service themselves. This implies that the
same driver can be registered multiple times.

125.2.1 Life Cycle
A Data Source Factory service should be registered while its Driver Bundle is in the ACTIVE state or
when it has a lazy activation policy and is in the STARTING state.

What happens to the objects created by the Data Source Factory service, and the objects they creat-
ed, is undefined in this specification. Database Drivers are not mandated to track the proper life cy-
cle of these objects.

125.2.2 Package Dependencies
A Database Driver must import the javax.sql package. The java.sql package that contains the Driver
and SQLException interface is automatically visible because it starts with java. . Both packages are
contained in the JRE since Java SE 1.4. These packages are not normally versioned with OSGi version
numbers. Bundles using the Data Source Factory must therefore ensure they get the proper imports,
which is usually from the JRE. Due to the lack of specified metadata, the deployer is responsible for
ensuring this.

125.3 Applications

125.3.1 Selecting the Data Source Factory Service
Applications can query the OSGi service registry for available Database Drivers by getting a list of
Data Source Factory services. Normally, the application needs access to specific drivers that match
their needed relational database type. The service properties can be used to find the desired Data-
base Driver. This model is well supported by dependency injection frameworks like Blueprint or De-
clarative Services. However, it can of course also be used with the basic service methods. The follow-
ing code shows how a Service Tracker can be used to get a Database Driver called ACME DB.

Filter filter = context.createFilter(
 "(&(objectClass=" +
 DataSourceFactory.class.getName() +
 ")(" +
 DataSourceFactory.OSGI_JDBC_DRIVER_CLASS + "=com.acme.db.Driver))");

ServiceTracker tracker = new ServiceTracker(context, filter, null);
tracker.open();

DataSourceFactory dsf = (DataSourceFactory) tracker.getService();

125.3.2 Using Database Drivers
The Data Source Factory service can be used to obtain instances for the following JDBC related
types:

• javax.sql .DataSource
• javax.sql .ConnectionPoolDataSource

Applications Data Service Specification for JDBC™ Technology Version 1.0

Page 570 OSGi Compendium Release 8

• javax.sql .XADataSource
• java.sql .Driver

Which type of Connection provider that is actually required depends on the Application and the
use case. For each type, the Data Source Factory service provides a method that returns the corre-
sponding instance. Each method takes a Propert ies object as a parameter to pass a configuration to
the Database Driver implementation. The configuration is driver-specific and can be used to speci-
fy the URL for the database and user credentials. Common property names for these configuration
properties are also defined in the DataSourceFactory interface.

A Data Source Factory is not required to implement all of the factory methods. If an implementation
does not support a particular type then it must throw a SQL Exception. This specification does not
provide a mechanism to depend on a Data Source Factory service that implements a particular facto-
ry method.

The following code shows how a DataSource object could be created.

Properties props = new Properties();
props.put(DataSourceFactory.JDBC_URL, "jdbc:acme:ACMEDB");
props.put(DataSourceFactory.JDBC_USER, "foo");
props.put(DataSourceFactory.JDBC_PASSWORD, "secret");
DataSource dataSource = dsf.createDataSource(props);

The DataSourceFactory interface has several static fields that represent common property keys for
the Propert ies instance. General properties are:

• JDBC_DATABASE_NAME
• JDBC_DATASOURCE_NAME
• JDBC_DESCRIPTION
• JDBC_NETWORK_PROTOCOL
• JDBC_PASSWORD
• JDBC_PORT_NUMBER
• JDBC_ROLE_NAME
• JDBC_SERVER_NAME
• JDBC_USER
• JDBC_URL

The following additional property keys are provided for applications that want to create a Connec-
t ionPoolDataSource object or a XAPoolDataSource object:

• JDBC_INITIAL_POOL_SIZE
• JDBC_MAX_IDLE_TIME
• JDBC_MAX_POOL_SIZE
• JDBC_MAX_STATEMENTS
• JDBC_MIN_POOL_SIZE
• JDBC_PROPERTY_CYCLE

Which property keys and values are supported depends on the driver implementation. Drivers can
support additional custom configuration properties.

125.3.3 Using JDBC in OSGi and Containers
The JDBC service provides JDBC driver services, not container services. A typical client would on-
ly use the DataSourceFactory.createDataSource() method to procure a regular Data Source from
which they can obtain (usually non-pooled) connections.

Data Service Specification for JDBC™ Technology Version 1.0 Security

OSGi Compendium Release 8 Page 571

Containers generally offer connection pools and support XA transactions. The container manages
the pools and does this by using Pooled Connection or XA Connection objects from a driver-imple-
mented respective Connection Pool Data Source or XA Data Source. To support containers, frame-
works, or any client that wants to manage a pool, these Data Source types are included in the Data
Source Factory service. Drivers are permitted to implement their own Data Source using an underly-
ing connection pooling scheme. This is driver-dependent and not related to the OSGi specifications.

The usual set of JDBC properties are defined in the services for use with the Data Source types. They
are the same as what is defined for JDBC and the caller should know which properties make sense
when passed to a given Data Source type. The same result should occur in OSGi as occurs outside
of OSGi. If the driver does not support a given property with a given Data Source type then it can ig-
nore it or it can throw an Exception.

125.4 Security
This specification depends on the JDBC specification for security.

125.5 org.osgi.service.jdbc

JDBC Service Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. jdbc; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. jdbc; vers ion="[1.0,1.1)"

125.5.1 Summary

• DataSourceFactory - A factory for JDBC connection factories.

125.5.2 public interface DataSourceFactory
A factory for JDBC connection factories. There are 3 preferred connection factories for get-
ting JDBC connections: javax.sql .DataSource , javax.sql .ConnectionPoolDataSource , and
javax.sql .XADataSource . DataSource providers should implement this interface and register it as an
OSGi service with the JDBC driver class name in the OSGI_JDBC_DRIVER_CLASS property.

Concurrency Thread-safe

125.5.2.1 public static final String JDBC_DATABASE_NAME = "databaseName"

The "databaseName" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.2 public static final String JDBC_DATASOURCE_NAME = "dataSourceName"

The "dataSourceName" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

org.osgi.service.jdbc Data Service Specification for JDBC™ Technology Version 1.0

Page 572 OSGi Compendium Release 8

125.5.2.3 public static final String JDBC_DESCRIPTION = "description"

The "description" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.4 public static final String JDBC_INITIAL_POOL_SIZE = "initialPoolSize"

The "initialPoolSize" property that ConnectionPoolDataSource and XADataSource clients
may supply a value for when calling createConnectionPoolDataSource(Properties) or
createXADataSource(Properties) on drivers that support this property.

125.5.2.5 public static final String JDBC_MAX_IDLE_TIME = "maxIdleTime"

The "maxIdleTime" property that ConnectionPoolDataSource and XADataSource clients
may supply a value for when calling createConnectionPoolDataSource(Properties) or
createXADataSource(Properties) on drivers that support this property.

125.5.2.6 public static final String JDBC_MAX_POOL_SIZE = "maxPoolSize"

The "maxPoolSize" property that ConnectionPoolDataSource and XADataSource clients
may supply a value for when calling createConnectionPoolDataSource(Properties) or
createXADataSource(Properties) on drivers that support this property.

125.5.2.7 public static final String JDBC_MAX_STATEMENTS = "maxStatements"

The "maxStatements" property that ConnectionPoolDataSource and XADataSource clients
may supply a value for when calling createConnectionPoolDataSource(Properties) or
createXADataSource(Properties) on drivers that support this property.

125.5.2.8 public static final String JDBC_MIN_POOL_SIZE = "minPoolSize"

The "minPoolSize" property that ConnectionPoolDataSource and XADataSource clients
may supply a value for when calling createConnectionPoolDataSource(Properties) or
createXADataSource(Properties) on drivers that support this property.

125.5.2.9 public static final String JDBC_NETWORK_PROTOCOL = "networkProtocol"

The "networkProtocol" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.10 public static final String JDBC_PASSWORD = "password"

The "password" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.11 public static final String JDBC_PORT_NUMBER = "portNumber"

The "portNumber" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.12 public static final String JDBC_PROPERTY_CYCLE = "propertyCycle"

The "propertyCycle" property that ConnectionPoolDataSource and XADataSource clients
may supply a value for when calling createConnectionPoolDataSource(Properties) or
createXADataSource(Properties) on drivers that support this property.

125.5.2.13 public static final String JDBC_ROLE_NAME = "roleName"

The "roleName" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.14 public static final String JDBC_SERVER_NAME = "serverName"

The "serverName" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

Data Service Specification for JDBC™ Technology Version 1.0 org.osgi.service.jdbc

OSGi Compendium Release 8 Page 573

125.5.2.15 public static final String JDBC_URL = "url"

The "url" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.16 public static final String JDBC_USER = "user"

The "user" property that DataSource clients should supply a value for when calling
createDataSource(Properties).

125.5.2.17 public static final String OSGI_JDBC_DRIVER_CLASS = "osgi.jdbc.driver.class"

Service property used by a JDBC driver to declare the driver class when registering a JDBC
DataSourceFactory service. Clients may filter or test this property to determine if the driver is suit-
able, or the desired one.

125.5.2.18 public static final String OSGI_JDBC_DRIVER_NAME = "osgi.jdbc.driver.name"

Service property used by a JDBC driver to declare the driver name when registering a JDBC
DataSourceFactory service. Clients may filter or test this property to determine if the driver is suit-
able, or the desired one.

125.5.2.19 public static final String OSGI_JDBC_DRIVER_VERSION = "osgi.jdbc.driver.version"

Service property used by a JDBC driver to declare the driver version when registering a JDBC
DataSourceFactory service. Clients may filter or test this property to determine if the driver is suit-
able, or the desired one.

125.5.2.20 public ConnectionPoolDataSource createConnectionPoolDataSource(Properties props) throws
SQLException

props The properties used to configure the ConnectionPoolDataSource . nul l indicates no properties. If the
property cannot be set on the ConnectionPoolDataSource being created then a SQLException must
be thrown.

□ Create a new ConnectionPoolDataSource using the given properties.

Returns A configured ConnectionPoolDataSource .

Throws SQLException– If the ConnectionPoolDataSource cannot be created.

125.5.2.21 public DataSource createDataSource(Properties props) throws SQLException

props The properties used to configure the DataSource . nul l indicates no properties. If the property can-
not be set on the DataSource being created then a SQLException must be thrown.

□ Create a new DataSource using the given properties.

Returns A configured DataSource .

Throws SQLException– If the DataSource cannot be created.

125.5.2.22 public Driver createDriver(Properties props) throws SQLException

props The properties used to configure the Driver . nul l indicates no properties. If the property cannot be
set on the Driver being created then a SQLException must be thrown.

□ Create a new Driver using the given properties.

Returns A configured Driver .

Throws SQLException– If the Driver cannot be created.

125.5.2.23 public XADataSource createXADataSource(Properties props) throws SQLException

props The properties used to configure the XADataSource . nul l indicates no properties. If the property can-
not be set on the XADataSource being created then a SQLException must be thrown.

References Data Service Specification for JDBC™ Technology Version 1.0

Page 574 OSGi Compendium Release 8

□ Create a new XADataSource using the given properties.

Returns A configured XADataSource .

Throws SQLException– If the XADataSource cannot be created.

125.6 References

[1] Java SE 1.4
http://www.oracle.com/technetwork/java/archive-139210.html

http://www.oracle.com/technetwork/java/archive-139210.html

JNDI Services Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 575

126 JNDI Services Specification

Version 1.0

126.1 Introduction
Naming and directory services have long been useful tools in the building of software systems. The
ability to use a programming interface to publish and consume objects can provide many benefits
to any system. The Java Naming and Directory Interface (JNDI) is a registry technology in Java appli-
cations, both in the Java SE and Java EE space. JNDI provides a vendor-neutral set of APIs that allow
clients to interact with a naming service from different vendors.

The JNDI as used in the Java SE environment relies on the class loading model provided by the JDK
to find providers. By default, it attempts to load the JNDI provider class using the Thread Context
Class Loader. In an OSGi environment, this type of Context creation is not desirable since it relies
on the JNDI provider classes being visible to the JNDI client, or require it to set the Context Class
Loader; in both cases breaking modularity. For modularity reasons, it is important that clients are
not required to express a dependency on the implementation of services they use.

This specification will define how JNDI can be utilized from within an OSGi framework. The speci-
fication consists of three key parts:

• OSGi Service Model - How clients interact with JNDI when running inside an OSGi Framework.
• JNDI Provider Model - How JNDI providers can advertise their existence so they are available to

OSGi and traditional clients.
• Traditional Model - How traditional JNDI applications and providers can continue to work in an

OSGi Framework without needing to be rewritten when certain precautions are taken.

126.1.1 Essentials

• Naming Service - Provide an integration model for JNDI API clients and providers.
• Flexible - Provide a standard mechanism for publishing and locating JNDI providers.
• Compatibility - Support the traditional JNDI programming model used by Java SE and Java EE

clients.
• Service Based - Provide a service model that clients and providers can use to leverage JNDI facili-

ties.
• Migration - Provide a mechanism to access OSGi services from a JNDI context.

126.1.2 Entities

• JNDI Implementation - The Implementer of the JNDI Context Manager, JNDI Provider Admin, and
setter of the JNDI static singletons.

• JNDI Client - Any code running within an OSGi bundle that needs to use JNDI.
• JNDI Context Manager - A service that allows clients to obtain Contexts via a service.
• JNDI Provider Admin - A service that allows the conversion of objects for providers.
• JNDI Provider - Provides a Context implementation.
• Context - A Context abstracts a namespace. Implementations are provided by JNDI providers and

the Contexts are used by JNDI clients. The corresponding interface is javax.naming.Context .

Introduction JNDI Services Specification Version 1.0

Page 576 OSGi Compendium Release 8

• Dir Context - A sub-type of Context that provides mechanisms for examining and updating the at-
tributes of an object in a directory structure, and for performing searches in an hierarchical nam-
ing systems like LDAP. The corresponding interface is javax.naming.directory.DirContext .

• Initial Context Factory - A factory for creating instances of Context objects. This factory
is used to integrate new JNDI Providers. In general, a single Initial Context Factory con-
structs Context objects for a single provider implementation. The corresponding interface is
javax.naming.spi . In it ia lContextFactory .

• Initial Context Factory Builder - A factory for In it ia lContextFactory objects. A single Initial Context
Factory Builder can construct In it ia lContextFactory objects for different types of Contexts. The
interface is javax.naming.spi . In it ia lContextFactoryBui lder .

• Object Factory - Used in conversion of objects. The corresponding interface is
javax.naming.spi .ObjectFactory .

• Dir Object Factory - An Object Factory that takes attribute information for object conversion. The
corresponding interface is javax.naming.spi .DirObjectFactory .

• Object Factory Builder - A factory for ObjectFactory objects. A single Object Factory Builder can
construct ObjectFactory instances for different types of conversions. The corresponding inter-
face is javax.naming.spi .ObjectFactoryBui lder .

• Reference - A description of an object that can be turned into an object through an Object Factory.
The associated Referenceable interface implemented on an object indicates that it can provide a
Reference object.

Figure 126.1 JNDI Service Specification Service Entities

JNDI
Implementation

JNDI Context
Manager

JNDI ClientJNDI Client not
OSGi aware

Initial
Context

Static connection

Initial Context
Factory Provider
Impl

Object Factory
Provider Impl

Object
Factory

Object Factory
Builder Provider
Impl

Object
Factory
Builder

Initial Context
Builder Provider
Impl

Initial
Context
Factory

Initial
Context
Factory
Builder

JNDI
Provider
Admin

JNDI Provider not
OSGi aware

Naming
Manager

126.1.3 Dependencies
The classes and interfaces used in this specification come from the following packages:

javax.naming
javax.naming.spi
javax.naming.directory

JNDI Services Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 577

These packages have no associated version. It is assumed they come from the runtime environment.
This specification is based on Java SE 1.4 or later.

126.1.4 Synopsis
A client bundle wishing to make use of JNDI in order to access JNDI Providers such as LDAP or DNS
in OSGi should not use the Naming Manager but instead use the JNDI Context Manager service.
This service can be asked for a Context based on environment properties. The environment proper-
ties are based on an optional argument in the newInit ia lContext method, the Java System properties,
and an optional resource in the caller's bundle.

These environment properties can specify an implementation class name for a factory that can cre-
ate a Context object. If such a class name is specified, then it is searched for in the service registry. If
such a service is found, then that service is used to create a new Context, which is subsequently re-
turned. If no class name is specified, the service registry is searched for Initial Context Factory ser-
vices. These services are tried in ranking order to see if they can create an appropriate Context, the
first one that can create a Context is then used.

If no class name is specified, all Initial Context Factory Builder services are tried to see if they can
create a Context, the first non-nul l result is used. If no Context can be found, a No Initial Context Ex-
ception is thrown. Otherwise, the JNDI Context Manager service returns an initial Context that us-
es the just created Context from a provider as the backing service. This initial Context delegates all
operations to this backing Context, except operations that use a name that can be interpreted as a
URL, that is, the name contains a colon. URL operations are delegated a URL Context that is associ-
ated with the used scheme. URL Contexts are found through the general object conversion facility
provided by the JNDI Provider Admin service.

The JNDI Provider Admin service provides a general object conversion facility that can be extended
with Object Factory and Object Factory Builder services that are traditionally provided through the
Naming Manager getObject Instance method. A specific case for this conversion is the use of Ref-
erence objects. Reference objects can be used to store objects persistently in a Context implementa-
tion. Reference objects must be converted to their corresponding object when retrieved from a Con-
text.

During the client's use of a Context it is possible that its provider's service is unregistered. In this
case the JNDI Context Manager must release the backing Context. If the initial Context is used and
no backing Context is available, the JNDI Context Manager must re-create a new Context, if possi-
ble. Otherwise a Naming Exception is thrown. If subsequently a proper new backing Context can be
created, the initial Context must start operating again.

The JNDI Context Manager service must track the life cycle of a calling bundle and ensure that any
returned Context objects are closed and returned objects are properly cleaned up when the bundle is
closed or the JNDI Context Manager service is unget.

When the client bundle is stopped, any returned initial Context objects are closed and discarded. If
the Initial Context Factory, or Initial Context Factory Builder, service that created the initial Context
goes away then the JNDI Context Manager service releases the Context backing the initial Context
and attempts to create a replacement Context.

Clients and JNDI Context providers that are unaware of OSGi use static methods to connect to the
JRE JNDI implementation. The In it ia lContext class provides access to a Context from a provider
and providers use the static NamingManager methods to do object conversion and find URL Con-
texts. This traditional model is not aware of OSGi and can therefore only be used reliably if the con-
sequences of this lack of OSGi awareness are managed.

JNDI Overview JNDI Services Specification Version 1.0

Page 578 OSGi Compendium Release 8

126.2 JNDI Overview
The Java Naming and Directory Interface (JNDI) provides an abstraction for namespaces that is in-
cluded in Java SE. This section describes the basic concepts of JNDI as provided in Java SE. These
concepts are later used in the service model provided by this specification.

126.2.1 Context and Dir Context
The [1] Java Naming and Directory Interface (JNDI) defines an API for namespaces. These namespaces
are abstracted with the Context interface. Namespaces that support attributes, such as a namespace
as the Lightweight Directory Access Protocol (LDAP), are represented by the DirContext class, which
extends the Context class. If applicable, a Context object can be cast to a DirContext object. The dis-
tinction is not relevant for this specification, except in places where it is especially mentioned.

The Context interface models a set of name-to-object bindings within a namespace. These bindings
can be looked-up, created, and updated through the Context interface. The Context interface can be
used for federated, flat, or hierarchical namespaces.

126.2.2 Initial Context
Obtaining a Context for a specific namespace, for example DNS, is handled through the In it ia lCon-
text class. Creating an instance of this class will cause the JRE to find a backing Context. The Initial
Context is only a facade for the backing Context. The facade context provides URL based lookups.

The backing Context is created by a JNDI Provider. How this backing Context is created is an elab-
orate process using class loading techniques or a provisioning mechanism involving builders, see
Naming Manager Singletons on page 579 for more information about the builder provisioning
mechanism.

If there is no Initial Context Factory Builder set, the class name of a class implementing the In i-
t ia lContextFactory interface is specified as a property in the environment. The environment is a
Hashtable object that is constructed from different sources and then merged with System proper-
ties and a resource in the calling bundle, see Environment on page 579. In a standard Java SE JNDI,
the given class name is then used to construct an In it ia lContextFactory object and this object is then
used to create the backing Context. This process is depicted in Figure 126.2 on page 578.

Figure 126.2 Backing Context

Client Initial Context Context

Some Context
Impl

optionally specifies name of implementation in environment

new backing

126.2.3 URL Context Factory
The In it ia lContext class implements the Context interface. It can therefore delegate all the Context
interface methods to the backing Context object. However, it provides a special URL lookup behav-
ior for names that are formed like URLs, that is, names that contain a colon (' : ' \u003A) character.
This behavior is called a URL lookup.

URL lookups are not delegated to the backing Context but are instead first tried via a URL Context
based lookup on the given scheme, like:

JNDI Services Specification Version 1.0 JNDI Overview

OSGi Compendium Release 8 Page 579

myscheme:foo

For example a lookup using acme:foo/javax.sql .DataSource results in a URL Context being used,
rather than the backing Context.

JNDI uses class loading techniques to search for an ObjectFactory class that can be used to create
this URL Context. The Naming Manager provides a static method getURLContext for this purpose.
If such a URL Context is found, it is used with the requested operation and uses the full URL. If no
such URL Context can be found, the backing Context is asked to perform the operation with the giv-
en name.

The URL lookup behavior is only done when the backing Context was created by the JNDI imple-
mentation in the JRE. If the backing Context had been created through the singleton provisioning
mechanism, then no URL lookup is done for names that have a colon. The URL lookup responsibili-
ty is then left to the backing Context implementation.

126.2.4 Object and Reference Conversion
The NamingManager class provides a way to create objects from a description with the getObject In-
stance method. In general, it will iterate over a number of ObjectFactory objects and ask each one of
them to provide the requested object. The first non-nul l result indicates success. These ObjectFacto-
ry objects are created from an environment property.

A special case for the description argument in the getObject Instance method is the Reference. A Ref-
erence is a description of an object that can be stored persistently. It can be re-created into an actual
object through the static getObject Instance method of the NamingManager class. The Reference ob-
ject describes the actual ObjectFactory implementing class that must be used to create the object.

This default behavior is completely replaced with the Object Factory Builder singleton by getting
the to be used ObjectFactory object directly from the set singleton Object Factory Builder.

126.2.5 Environment
JNDI clients need a way to set the configuration properties to select the proper JNDI Provider. For
example, a JNDI Provider might require an identity and a password in order to access the service.
This type of configuration is referred to as the environment of a Context. The environment is a set of
properties. Common property names can be found in [3] JNDI Standard Property Names. The set of
properties is build from the following sources (in priority order, that is later entries are shadowed by
earlier entries):

1. Properties set in the environment Hashtable object given in the constructor argument (if any) of
the In it ia lContext class.

2. Properties from the Java System Properties
3. Properties found in $JAVA_HOME/l ib/ jndi .propert ies

There are some special rules around the handling of specific properties.

126.2.6 Naming Manager Singletons
The default behavior of the JRE implementation of JNDI can be extended in a standardized way. The
NamingManager class has two static singletons that allow JNDI Providers outside the JRE to provide
In it ia lContextFactory and ObjectFactory objects. These singletons are set with the following static
methods on the NamingManager class:

• setObjectFactoryBui lder(ObjectFactoryBui lder) - A hook to provide ObjectFactory objects.
• setInit ia lContextFactoryBui lder(Init ia lContextFactoryBui lder) - A hook to provide In it ia lCon-

textFactory objects. This hook is consulted to create a Context object that will be associated with
an In it ia lContext object the client creates.

JNDI Context Manager Service JNDI Services Specification Version 1.0

Page 580 OSGi Compendium Release 8

These JNDI Provider hooks are singletons and must be set before any application code creates an In i-
t ia lContext object or any objects are converted. If these singletons are not set, the JNDI implementa-
tion in the JRE will provide a default behavior that is based on searching through classes defined in
an environment property.

Both singletons can only be set once. A second attempt to set these singletons results in an Illegal
State Exception being thrown.

126.2.7 Built-In JNDI Providers
The Java Runtime Environment (JRE) defines the following default providers:

• LDAP - Lightweight Directory Access Protocol (LDAP) service provider
• COS - CORBA Object Service (COS) naming service provider
• RMI - Remote Method Invocation (RMI) Registry service provider
• DNS - Domain Name System (DNS) service provider

Although these are the default JNDI Service Providers, the JNDI architecture provides a number of
mechanisms to plug-in new types of providers.

126.3 JNDI Context Manager Service
The JNDI Context Manager service allows clients to obtain a Context using the OSGi service model.
By obtaining a JNDI Context Manager service, a client can get a Context object so that it can interact
with the available JNDI Providers. This service replaces the approach where the creation of a new
In it ia lContext object provided the client with access to an In it ia lContext object that was backed by a
JNDI Provider's Context.

The JNDIContextManager interface defines the following methods for obtaining Context objects:

• newInit ia lContext() - Obtain a Context object using the default environment properties.
• newInit ia lContext(Map) - Get a Context object using the default environment properties merged

with the given properties.
• newInit ia lDirContext() - Get a DirContext object using a default environment properties.
• newInit ia lDirContext(Map) -Get a DirContext object using the default environment properties

merged with the given properties.

The JNDI Context Manager service returns Context objects that implement the same behavior as the
In it ia lContext class; the returned Context object does not actually extend the In it ia lContext class, its
only guarantee is that it implements the Context interface.

This Context object is a facade for the context that is created by the JNDI Provider. This JNDI
Provider's Context is called the backing Context. This is similar to the behavior of the In it ia lContext
class. However, in this specification, the facade can change or loose the backing Context due to the
dynamics of the OSGi framework.

The returned facade must also provides URL lookups, just like an Initial Context. However, the URL
Context lookup must be based on Object Factory services with a service property that defines the
scheme.

The environment properties used to create the backing Context are constructed in a similar way as
the environment properties of the Java SE JNDI, see Environment and Bundles on page 581.

The following sections define in detail how a JNDI Provider Context must be created and managed.

JNDI Services Specification Version 1.0 JNDI Context Manager Service

OSGi Compendium Release 8 Page 581

126.3.1 Environment and Bundles
The Java SE JNDI looks for a file in $JAVAHOME/l ib/ jndi .propert ies , see Environment on page 579.
A JNDI Implementation must not use this information but it must use a resource in the bundle that
uses the JNDI Context Manager service. The order is therefore:

1. Properties set in the environment Hashtable object given in the constructor argument (if any) of
the In it ia lContext class.

2. Properties from the Java System Properties
3. A properties resource from the bundle that uses the service called / jndi .propert ies .

The following four properties do not overwrite other properties but are merged:

• java.naming.factory.object
• java.naming.factory.state
• java.naming.factory.control
• java.naming.factory.ur l .pkgs

These property values are considered lists and the ultimate value used by the JNDI Providers is tak-
en by merging the values found in each stage into a single colon separated list. For more informa-
tion see [3] JNDI Standard Property Names.

The environment consists of the merged properties. This environment is then passed to the Initial
Context Factory Builder for the creation of an Initial Context Factory.

126.3.2 Context Creation
When a client calls one of the newInit ia lContext (or newInit ia lDirContext) methods, the JNDI Con-
text Manager service must construct an object that implements the Context interface based on the
environment properties. All factory methods in the In it ia lContextFactory and In it ia lContextFacto-
ryBui lder classes take a Hashtable object with the environment as an argument, see Environment and
Bundles on page 581.

The caller normally provides a specific property in the environment that specifies the class name of
a provider class. This property is named:

java.naming.factory.initial

The algorithm to find the provider of the requested Context can differ depending on the presence or
absence of the java.naming.factory. init ia l property in the environment.

In the following sections the cases for presence or absence of the java.naming.factory. init ia l prop-
erty are described. Several steps in these algorithm iterate over a set of available services. This iter-
ation must always take place in service ranking order. Service ranking order follows the ordering of
the service.ranking service property, which is the highest service.ranking value, or when equal, the
lowest service. id value.

Exception handling in the following steps is as follows:

• If an Exception is thrown by an Initial Context Factory Builder service, then this Exception must
be logged but further ignored.

• Exceptions thrown by the In it ia lContextFactory objects when creating a Context must be
thrown to the caller.

126.3.2.1 Implementation Class Present in Environment

If the implementation class is specified, a JNDI Provider is searched in the service registry with the
following steps, which stop when a backing Context can be created:

JNDI Context Manager Service JNDI Services Specification Version 1.0

Page 582 OSGi Compendium Release 8

1. Find a service in ranking order that has a name matching the given implementation class name
as well as the In it ia lContextFactory class name. The searching must take place through the Bun-
dle Context of the requesting bundle but must not require that the requesting bundle imports
the package of the implementation class. If such a matching Initial Context Factory service is
found, it must be used to construct the Context object that will act as the backing Context.

2. Get all the Initial Context Factory Builder services. For each such service, in ranking order:
• Ask the Initial Context Factory Builder service to create a new In it ia lContextFactory object. If

this is nul l then continue with the next service.
• Create the Context with the found Initial Context Factory and return it.

3. If no backing Context could be found using these steps, then the JNDI Context Manager service
must throw a No Initial Context Exception.

126.3.2.2 No Implementation Class Specified

If the environment does not contain a value for the java.naming.factory. init ia l property then the fol-
lowing steps must be used to find a backing Context object.

1. Get all the Initial Context Factory Builder services. For each such service, in ranking order, do:
• Ask the Initial Context Factory Builder service to create a new In it ia lContextFactory object. If

this is nul l , then continue with the next service.
• Create the backing Context object with the found Initial Context Factory service and return

it.
2. Get all the Initial Context Factory services. For each such service, in ranking order, do:

• Ask the Initial Context Factory service to create a new Context object. If this is nul l then con-
tinue with the next service otherwise create a new Context with the created Context as the
backing Context.

3. If no Context has been found, an initial Context is returned without any backing. This returned
initial Context can then only be used to perform URL based lookups.

126.3.3 Rebinding
A JNDI Provider can be added or removed to the service registry at any time because it is an OSGi
service; OSGi services are by their nature dynamic. When a JNDI Provider unregisters an Initial Con-
text Factory that was used to create a backing service then the JNDI Context Manager service must
remove the association between any returned Contexts and their now invalid backing Contexts.

The JNDI Context Manager service must try to find a replacement whenever it is accessed and no
backing Context is available. However, if no such replacement can be found the called function
must result in throwing a No Initial Context Exception.

126.3.4 Life Cycle and Dynamism
When a client has finished with a Context object, then the client must close this Context object
by calling the close method. When a Context object is closed, the resources held by the JNDI Im-
plementation on the client's behalf for that Context must all be released. Releasing these resources
must not affect other, independent, Context objects returned to the same client.

If a client ungets the JNDI Context Manager service, all the Context objects returned through that
service instance must automatically be closed by the JNDI Context Manager. When the JNDI Con-
text Manager service is unregistered, the JNDI Context Manager must automatically close all Con-
texts held.

For more information about life cycle issues, see also Life Cycle Mismatch on page 589.

JNDI Services Specification Version 1.0 JNDI Provider Admin service

OSGi Compendium Release 8 Page 583

126.4 JNDI Provider Admin service
JNDI provides a general object conversion service, see Object and Reference Conversion on page 579.
For this specification, the responsibility of the static method on the NamingManager getObject In-
stance is replaced with the JNDI Provider Admin service. The JNDIProviderAdmin interface provides
the following methods that can be used to convert a description object to an object:

• getObject Instance(Object,Name,Context,Map) - Used by Context implementations to convert a
description object to another object.

• getObject Instance(Object,Name,Context,Map,Attr ibutes) - Used by a Dir Context implementa-
tions to convert a description object to another object.

In either case, the first argument is an object, called the description. JNDI allows a number of dif-
ferent Java types here. When either method is called, the following algorithm is followed to find
a matching Object Factory to find/create the requested object. This algorithm is identical for both
methods, except that the call that takes the Attr ibutes argument consults Dir Object Factory services
first and then Object Factory services while the method without the Attributes parameter only con-
sults Object Factory services.

1. If the description object is an instance of Referenceable , then get the corresponding Reference
object and use this as the description object.

2. If the description object is not a Reference object then goto step 5.
3. If a factory class name is specified, the JNDI Provider Admin service uses its own Bundle Context

to search for a service registered under the Reference's factory class name. If a matching Object
Factory is found then it is used to create the object from the Reference object and the algorithm
stops here.

4. If no factory class name is specified, iterate over all the Reference object's Str ingRefAddrs objects
with the address type of URL . For each matching address type, use the value to find a matching
URL Context, see URL Context Provider on page 585, and use it to recreate the object. See the
Naming Manager for details. If an object is created then it is returned and the algorithm stops
here.

5. Iterate over the Object Factory Builder services in ranking order. Attempt to use each such ser-
vice to create an ObjectFactory or DirObjectFactory instance. If this succeeds (non nul l) then use
this ObjectFactory or DirObjectFactory instance to recreate the object. If successful, the algo-
rithm stops here.

6. If the description was a Reference and without a factory class name specified, or if the descrip-
tion was not of type Reference, then attempt to convert the object with each Object Factory ser-
vice (or Dir Object Factory service for directories) service in ranking order until a non-nul l value
is returned.

7. If no ObjectFactory implementations can be located to resolve the given description object, the
description object is returned.

If an Exception occurs during the use of an Object Factory Builder service then this exception
should be logged but must be ignored. If, however, an Exception occurs during the calling of a found
ObjectFactory or DirObjecFactory object then this Exception must be re-thrown to the caller of the
JNDI Provider Admin service.

126.5 JNDI Providers
JNDI Providers can be registered by registering an appropriate service. These services are consulted
by the JNDI Implementation for creating a Context as well as creating/finding/converting general
objects.

JNDI Providers JNDI Services Specification Version 1.0

Page 584 OSGi Compendium Release 8

126.5.1 Initial Context Factory Builder Provider
An Initial Context Factory Builder provider is asked to provide an Initial Context Factory when no
implementation class is specified or no such implementation can be found. An Initial Context Fac-
tory Builder service can be used by containers for other bundles to control the initial Context their
applications receive.

An Initial Context Factory Builder provider must register an Initial Context Factory Builder ser-
vice. The service.ranking property defines the iteration ordering of multiple Initial Context Factory
Builder services. Implementations must be careful to correctly provide defaults.

For example, a container could use a thread local variable to mark the stack for a specific applica-
tion. The implementation of the Initial Context Factory Builder can then detect specific calls from
this application. To make the next code example work, an instance must be registered as an Initial
Context Factory Builder service.

public class Container implements InitialContextFactoryBuilder {
 ThreadLocal<Application> apps;

 void startApp(final Application app) {
 Thread appThread = new Thread(app.getName()) {
 public void run() {
 apps.set(app);
 app.run();
 }}}

 public InitialContextFactory
 createInitialContextFactory(Hashtable<?,?> ht) {
 final Application app = apps.get();
 if (app == null)
 return null;

 return new InitialContextFactory() {
 public Context getInitialContext(Hashtable<?,?>env) {
 return app.getContext(env);
 }
 };
 } }

126.5.2 Initial Context Factory Provider
An Initial Context Factory provides Contexts of a specific type. For example, those contexts allow
communications with an LDAP server. An Initial Context Factory Provider must register the its Ini-
tial Context Factory service under the following names:

• Implementation Class - An Initial Context Factory provider must register a service under the name
of the implementation class. This allows the JNDI Context Manager to find implementations
specified in the environment properties.

• Initial Context Factory - As a general Initial Context Factory. If registered as such, it can be consult-
ed for a default Initial Context. Implementations must be careful to only return a Context when
the environment properties are appropriate. See No Implementation Class Specified on page 582

An Initial Context Factory service can create both DirContext as well as Context objects.

For example, SUN JREs for Java SE provide an implementation of a Context that can answer DNS
questions. The name of the implementation class is a well known constant. The following class can
be used with Declarative Services to provide a lazy implementation of a DNS Context:

JNDI Services Specification Version 1.0 JNDI Providers

OSGi Compendium Release 8 Page 585

public class DNSProvider implements InitialContextFactory{
 public Context createInitialContextFactory(Hashtable<?,?>env) throws
 NamingException {
 try {
 Class<InitialContextFactory> cf = (Class<InitialContextFactory>)
 l.loadClass("com.sun.jndi.dns.DnsContextFactory");
 InitialContextFactory icf = cf.newInstance();
 return icf.createInitialContextFactory(env);
 } catch(Throwable t) {
 return null;
 }
 }
}

126.5.3 Object Factory Builder Provider
An Object Factory Builder provider must register an Object Factory Builder service. Such a service
can be used to provide ObjectFactory and/or DirObjectFactory objects. An Object Factory Builder
service is requested for such an object when no specific converter can be found. This service can be
leveraged by bundles that act as a container for other bundles to control the object conversion for
their subjects.

126.5.4 Object Factory Provider
An Object Factory provider can participate in the conversion of objects. It must register a service un-
der the following names:

• Implementation Class - A service registered under its implementation class can be leveraged by a
description that is a Reference object. Such an object can contain the name of the factory class.
The implementation class can implement the DirObjectFactory interface or the ObjectFactory
interface.

• Object Factory - The ObjectFactory interface is necessary to ensure class space consistency.
• Dir Object Factory - If the Object Factory provider can accept the additional Attributes argument

in the getObject Instance method of the JNDI Provider Admin service than it must also register
as a Dir Object Factory service.

126.5.5 URL Context Provider
A URL Context Factory is a special type of an Object Factory service. A URL Context Factory must be
registered as an Object Factory service with the following service property:

• osgi . jndi .ur l .scheme - The URL scheme associated with this URL Context, for example acme . The
scheme must not contain the colon (' : ' \u003A).

A URL Context is used for URL based operations on an initial Context. For example, a lookup to
acme:foo/javax.sql .DataSource must not use the provider based lookup mechanism of the backing
Context but instead causes a lookup for the requested URL Context. A URL Context also provides a
secondary mechanism for restoring Reference objects.

When an initial Context returned by the JNDI Context Manager service is given a URL based opera-
tion, it searches in the service registry for an Object Factory service that is published with the URL
scheme property that matches the scheme used from the lookup request.

It then calls the getInstance method on the Object Factory service with the following parameters:

• Object - Should be either a Str ing , Str ing[] , or nul l .
• Name - must be nul l
• Context - must be nul l

OSGi URL Scheme JNDI Services Specification Version 1.0

Page 586 OSGi Compendium Release 8

• Hashtable - The environment properties.

Calling the getInstance method must return a Context object. This context is then used to perform
the lookup.

The life cycle of the Object Factory used to create the URL Context is tied to the JNDI context that
was used to perform the URL based JNDI operation. By the time JNDI context is closed any Object-
Factory objects held to process the URL lookups must be released (unget).

126.5.6 JRE Context Providers
The Java Runtime Environment (JRE) defines a number of default naming providers., see Built-In
JNDI Providers on page 580. These naming providers are not OSGi aware, but are commonly used
and are provided by the JRE. These naming providers rely on the NamingManager class for object
conversion and finding URL Contexts.

The JRE default providers are made available by the JNDI Implementation. This JNDI Implementa-
tion must register a built-in Initial Context Factory Builder service that is capable of loading any In i-
t ia lContextFactory classes of the JRE providers.

When this built-in Initial Context Factory Builder is called to create an In it ia lContextFactory ob-
ject it must look in the environment properties that were given as an argument and extract the
java.naming.factory. init ia l property; this property contains the name of the class of a provider. The
built-in Initial Context Factory Builder then must use the bootstrap class loader to load the given
In it ia lContextFactory class and creates a new instance with the no arguments constructor and re-
turn it. If this fails, it must return nul l . This mechanism will allow loading of any built-in providers.

This built-in Initial Context Factory Builder service must be registered with no service.ranking prop-
erty. This will give it the default ranking and allows other providers to override the default.

126.6 OSGi URL Scheme
A URL scheme is available that allows JNDI based applications to access services in the service reg-
istry, see Services and State on page 588 about restrictions on these services. The URL scheme is
specified as follows:

service ::= 'osgi:service/' query
query ::= jndi-name | qname ('/' filter)?
jndi-name ::= <any string>

No spaces are allowed between the terms.

This OSGi URL scheme can be used to perform a lookup of a single matching service using the in-
terface name and filter. The URL Context must use the owning bundle to perform the service queries.
The owning bundle is the bundle that requested the initial Context from the JNDI Context Manager
service or received its Context through the In it ia lContext class. The returned objects must not be in-
compatible with the class space of the owning bundle.

The lookup for a URL with the osgi : scheme and service path returns the service with highest
service.ranking and the lowest service. id . This scheme only allows a single service to be found. Mul-
tiple services can be obtained with the osgi : scheme and servicel ist path:

servicelist ::= 'osgi:servicelist/' query?

If this osgi :servicel ist scheme is used from a lookup method then a Context object is returned in-
stead of a service object. Calling the l istBindings method will produce a NamingEnumeration object
that provides Binding objects. A Binding object contains the name, class of the service, and the ser-
vice object. The bound object is the service object contained in the given Context.

JNDI Services Specification Version 1.0 OSGi URL Scheme

OSGi Compendium Release 8 Page 587

When the Context class l ist method is called, the Naming Enumeration object provides a NameClas-
sPair object. This NameClassPair object will include the name and class of each service in the Con-
text. The l ist method can be useful in cases where a client wishes to iterate over the available ser-
vices without actually getting them. If the service itself is required, then l istBindings method should
be used.

If multiple services matched the criteria listed in the URL, there would be more than one service
available in the Context, and the corresponding Naming Enumeration would contain the same
number of services.

If multiple services match, a call to l istBindings on this Context would return a list of bindings
whose name are a string with the service. id number, for example:

1283

Thus the following lookup is valid:

osgi:servicelist/javax.sql.DataSource/(&(db=mydb)(version=3.1))

A service can provide a JNDI service name if it provides the following service property:

• osgi . jndi .service.name - An alternative name that the service can be looked up by when the osgi :
URL scheme is used.

If a service is published with a JNDI service name then the service matches any URL that has this
service name in the place of interface . For example, if the JNDI service name is foo , then the follow-
ing URL selects this service:

osgi:service/foo

Using a JNDI service name that can be interpreted as an interface name must be avoided, if this hap-
pens the result is undefined.

A JNDI client can also obtain the Bundle Context of the owning bundle by using the osgi : scheme
namespace with the f ramework/bundleContext name. The following URL must return the Bundle
Context of the owning bundle:

osgi:framework/bundleContext

After the NamingEnumeration object has been used it must be closed by the client. Implementations
must then unget any gotten services or perform other cleanup.

126.6.1 Service Proxies
The OSGi URL Context handles the complexities by hiding the dynamic nature of OSGi. The OS-
Gi URL Context must handle the dynamics by proxying the service objects. This proxy must imple-
ment the interface given in the URL. If the JNDI service name instead of a class name is used, then
all interfaces under which the service is registered must be implemented. If an interface is not com-
patible with the owning bundle's class space then it must not be implemented on the proxy, it must
then be ignored. If this results in no implemented interfaces then an Illegal Argument Exception
must be thrown.

Interfaces can always be proxied but classes are much harder. For this reason, an implementation is
free to throw an Illegal Argument Exception when a class is used in the URL or in one of the regis-
tration names.

Getting the actual service object can be delayed until the proxy is actually used to call a method. If
a method is called and the actual service has been unregistered, then the OSGi URL Context must
attempt to rebind it to another service that matches the criteria given in the URL the next time it is

Traditional Client Model JNDI Services Specification Version 1.0

Page 588 OSGi Compendium Release 8

called. When no alternative service is available, a Service Exception with the UNREGISTERED type
code must be thrown. Services obtained with the osgi : URL scheme must therefore be stateless be-
cause the rebinding to alternative services is not visible to the caller; there are no listeners defined
for this rebinding, see Services and State on page 588.

If the reference was looked up using osgi :servicel ist then proxies must still be used, however, these
proxies must not rebind when their underlying service is unregistered. Instead, they must throw a
Service Exception with the UNREGISTERED type whenever the proxy is used and the proxied service
is no longer available.

126.6.2 Services and State
A service obtained through a URL Context lookup is proxied. During the usage of this service, the
JNDI Implementation can be forced to transparently rebind this service to another instance. The
JNDI specification is largely intended for portability. For this reason, it has no mechanism architect-
ed to receive notifications about this rebinding. The client code is therefore unable to handle the dy-
namics.

The consequence of this model is that stateful services require extra care because applications can-
not rely on the fact that they always communicate with the same service. Virtually all OSGi speci-
fied services have state.

126.7 Traditional Client Model
A JNDI Implementation must at startup register the In it ia lContextFactoryBui lder object and the
ObjectFactoryBui lder object with the NamingManager class. As described in JNDI Overview on page
578, the JNDI code in the JRE will then delegate all Context related requests to the JNDI Imple-
mentation. Setting these singletons allows code that is not aware of the OSGi framework to use
Context implementations from JNDI Providers registered with the OSGi service registry and that are
managed as bundles. The JNDI Implementation therefore acts as a broker to the service registry for
OSGi unaware code.

This brokering role can only be played when the JNDI Implementation can set the singletons as
specified in Naming Manager Singletons on page 579. If the JNDI Implementation cannot set these
singletons then it should log an error with the Log Service, if available. It can then not perform the
following sections.

126.7.1 New Initial Context
The client typically requests a Context using the following code:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
InitialContext ctx = new InitialContext(env);

The created In it ia lContext object is a facade for the real Context that is requested by the caller. It pro-
vides the bootstrapping mechanism for JNDI Provider plugability. In order to obtain the provider's
Context, the In it ia lContext class makes a call to the static getContext method on the NamingMan-
ager class. The JNDI code in the JRE then delegates any request for an initial Context object to the
JNDI Implementation through the registered In it ia lContextFactoryBui lder singleton. The JNDI
Implementation then determines the Bundle Context of the caller as described in Caller's Bundle
Context on page 589. If no such Bundle Context can be found, a No Initial Context Exception is
thrown to the caller. This Bundle Context must be from an ACTIVE bundle.

This Bundle Context is then used to get the JNDI Context Manager service. This service is then used
as described in Context Creation on page 581 to get an initial Context. This initial Context is then
used in the In it ia lContext object as the default initial context. In this specification this is normally

JNDI Services Specification Version 1.0 Traditional Client Model

OSGi Compendium Release 8 Page 589

called the backing context. An In it ia lContext object constructed through an Initial Context Factory
Builder will not use the URL lookup mechanism, it must delegate all operations to the its backing
context. A Context obtained through the JNDI Context Manager provides the URL lookup behavior
instead.

126.7.2 Static Conversion
JNDI provides a general object conversion facility that is used by the URL Context and the process
of restoring an object from a Reference object, see Object and Reference Conversion on page 579. A
JNDI Implementation must take over this conversion by setting the static Object Factory Builder
singleton, see Naming Manager Singletons on page 579. Non-OSGi aware Context implementa-
tions will use the NamingManager static getObject Instance method for object conversion. This
method then delegates to the set singleton Object Factory Builder to obtain an ObjectFactory ob-
ject that understands how to convert the given description to an object. The JNDI Implementation
must return an Object Factory that understands the OSGi service registry. If the getObject Instance
method is called on this object it must use the same rules as defined for the JNDI Provider Admin
service getObject Instance(Object, javax.naming.Name,javax.naming.Context,Map) method, see
JNDI Provider Admin service on page 583. The Bundle Context that must be used with respect to
this service is the caller's Bundle Context, see Caller's Bundle Context on page 589. If the Bundle
Context is not found, the description object must be returned. The calling bundle must not be re-
quired to import the org.osgi .service. jndi package.

126.7.3 Caller's Bundle Context
The following mechanisms are used to determine the callers Bundle Context:

1. Look in the JNDI environment properties for a property called

osgi.service.jndi.bundleContext

If a value for this property exists then use it as the Bundle Context. If the Bundle Context has
been found stop.

2. Obtain the Thread Context Class Loader; if it, or an ancestor class loader, implements the
BundleReference interface, call its getBundle method to get the client's Bundle; then call get-
BundleContext on the Bundle object to get the client's Bundle Context. If the Bundle Context has
been found stop.

3. Walk the call stack until the invoker is found. The invoker can be the caller of the In it ia lContext
class constructor or the NamingManager or DirectoryManager getObject Instance methods.
• Get the class loader of the caller and see if it, or an ancestor, implements the BundleReference

interface.
• If a Class Loader implementing the BundleReference interface is found call the getBundle

method to get the clients Bundle; then call the getBundleContext method on the Bundle to
get the clients Bundle Context.

• If the Bundle Context has been found stop, else continue with the next stack frame.

126.7.4 Life Cycle Mismatch
The use of static access to the JNDI mechanisms, NamingManager and In it ia lContext class methods,
in the traditional client programming model produces several problems with regard to the OSGi life
cycle. The primary problem being that there is no dependency management in place when static
methods are used. These problems do not exist for the JNDI Context Manager service. Therefore, OS-
Gi applications are strongly encouraged to use the JNDI Context Manager service.

The traditional programming model approach relies on two JVM singletons in the Naming Manag-
er, see Naming Manager Singletons on page 579. The JNDI Implementation bundle must set both
singletons before it registers its JNDI Context Manager service and JNDI Provider Admin service.
However, in OSGi there is no defined start ordering, primarily because bundles can be updated at

Security JNDI Services Specification Version 1.0

Page 590 OSGi Compendium Release 8

any moment in time and will at such time not be available to provide their function anyway. For
this reason, OSGi bundles express their dependencies with services.

The lack of start ordering means that a bundle could create an In it ia lContext object before the JNDI
Implementation has had the chance to set the static Initial Context Factory Builder singleton. This
means that the JNDI implementation inside the JRE will provide its default behavior and likely have
to throw an exception. A similar exception is thrown for the Object Factory Builder singleton.

There is a also a (small) possibility that a client will call new Init ia lContext() after the singletons
have been set, but before the JNDI Context Manager and JNDI Provider Admin services have been
registered. This specification requires that these services are set after the singletons are set. In this
race condition the JNDI Implementation should throw a No Initial Context Exception, explaining
that the JNDI services are not available yet.

126.8 Security

126.8.1 JNDI Implementation
A JNDI Implementation may wish to assert that the user of the provider has some relevant Java 2 se-
curity permission. Since the JNDI implementation is an intermediary between the JNDI client and
provider this means that the JNDI implementation needs to have any permissions required to access
any JNDI Provider. As a result the JNDI implementation needs All Permission. This will result in the
JNDI clients permissions being checked to see if it has the relevant permission to access the JNDI
Provider.

The JNDI Implementation must make any invocation to access these services in a doPriv i ledged
check. A JNDI client must therefore not be required to have the following permissions, which are
needed by a JNDI Implementation:

ServicePermission ..ObjectFactory REGISTER,GET
ServicePermission ..DirObjectFactory REGISTER,GET
ServicePermission ..ObjectFactoryBuilder REGISTER,GET
ServicePermission ..InitialContextFactory REGISTER,GET
ServicePermission ..InitialContextFactoryBuilder REGISTER,GET
ServicePermission ..JNDIProviderAdmin REGISTER,GET

The JNDI Implementation bundle must have the appropriate permissions to install the In it ia lCon-
textFactoryBui lder and ObjectFactoryBui lder instances using the appropriate methods on the Nam-
ingManager class. This requires the following permission:

RuntimePermission "setFactory"

126.8.2 JNDI Clients
A JNDI client using the JNDI Context Manager service must have the following permissions:

ServicePermission ..JNDIContextManager GET

Obtaining a reference to a JNDI Context Manager service should be considered a privileged opera-
tion and should be guarded by permissions.

126.8.3 OSGi URL namespace
A JNDI client must not be able to obtain services or a Bundle Context that the client bundle would
not be able to get via the core OSGi API. To allow a client to use the osgi namespace to get a service
the bundle must have the corresponding Service Permission. When using the osgi namespace to
obtain the Bundle Context the client bundle must have Admin Permission for the Bundle Context.

JNDI Services Specification Version 1.0 org.osgi.service.jndi

OSGi Compendium Release 8 Page 591

These permissions must be enforced by the osgi URL namespace handler. If there is no proper per-
mission, the implementation must throw a Name Not Found Exception to prevent exposing the ex-
istence of such services.

126.9 org.osgi.service.jndi

JNDI Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. jndi ; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. jndi ; vers ion="[1.0,1.1)"

126.9.1 Summary

• JNDIConstants - Constants for the JNDI implementation.
• JNDIContextManager - This interface defines the OSGi service interface for the JNDICon-

textManager.
• JNDIProviderAdmin - This interface defines the OSGi service interface for the JNDIProviderAd-

min service.

126.9.2 public class JNDIConstants
Constants for the JNDI implementation.

Concurrency Immutable

126.9.2.1 public static final String BUNDLE_CONTEXT = "osgi.service.jndi.bundleContext"

This JNDI environment property can be used by a JNDI client to indicate the caller's BundleContext.
This property can be set and passed to an InitialContext constructor. This property is only useful in
the "traditional" mode of JNDI.

126.9.2.2 public static final String JNDI_SERVICENAME = "osgi.jndi.service.name"

This service property is set on an OSGi service to provide a name that can be used to locate the ser-
vice other than the service interface name.

126.9.2.3 public static final String JNDI_URLSCHEME = "osgi.jndi.url.scheme"

This service property is set by JNDI Providers that publish URL Context Factories as OSGi Services.
The value of this property should be the URL scheme that is supported by the published service.

126.9.3 public interface JNDIContextManager
This interface defines the OSGi service interface for the JNDIContextManager. This service provides
the ability to create new JNDI Context instances without relying on the InitialContext constructor.

Concurrency Thread-safe

126.9.3.1 public Context newInitialContext() throws NamingException

□ Creates a new JNDI initial context with the default JNDI environment properties.

org.osgi.service.jndi JNDI Services Specification Version 1.0

Page 592 OSGi Compendium Release 8

Returns an instance of javax.naming.Context

Throws NamingException– upon any error that occurs during context creation

126.9.3.2 public Context newInitialContext(Map<String, ?> environment) throws NamingException

environment JNDI environment properties specified by caller

□ Creates a new JNDI initial context with the specified JNDI environment properties.

Returns an instance of javax.naming.Context

Throws NamingException– upon any error that occurs during context creation

126.9.3.3 public DirContext newInitialDirContext() throws NamingException

□ Creates a new initial DirContext with the default JNDI environment properties.

Returns an instance of javax.naming.directory.DirContext

Throws NamingException– upon any error that occurs during context creation

126.9.3.4 public DirContext newInitialDirContext(Map<String, ?> environment) throws NamingException

environment JNDI environment properties specified by the caller

□ Creates a new initial DirContext with the specified JNDI environment properties.

Returns an instance of javax.naming.directory.DirContext

Throws NamingException– upon any error that occurs during context creation

126.9.4 public interface JNDIProviderAdmin
This interface defines the OSGi service interface for the JNDIProviderAdmin service. This service
provides the ability to resolve JNDI References in a dynamic fashion that does not require calls to
NamingManager.getObject Instance() . The methods of this service provide similar reference resolu-
tion, but rely on the OSGi Service Registry in order to find ObjectFactory instances that can convert
a Reference to an Object. This service will typically be used by OSGi-aware JNDI Service Providers.

Concurrency Thread-safe

126.9.4.1 public Object getObjectInstance(Object refInfo, Name name, Context context, Map<String, ?>
environment) throws Exception

refInfo Reference info

name the JNDI name associated with this reference

context the JNDI context associated with this reference

environment the JNDI environment associated with this JNDI context

□ Resolve the object from the given reference.

Returns an Object based on the reference passed in, or the original reference object if the reference could not
be resolved.

Throws Exception– in the event that an error occurs while attempting to resolve the JNDI reference.

126.9.4.2 public Object getObjectInstance(Object refInfo, Name name, Context context, Map<String, ?> environment,
Attributes attributes) throws Exception

refInfo Reference info

name the JNDI name associated with this reference

context the JNDI context associated with this reference

environment the JNDI environment associated with this JNDI context

JNDI Services Specification Version 1.0 References

OSGi Compendium Release 8 Page 593

attributes the naming attributes to use when resolving this object

□ Resolve the object from the given reference.

Returns an Object based on the reference passed in, or the original reference object if the reference could not
be resolved.

Throws Exception– in the event that an error occurs while attempting to resolve the JNDI reference.

126.10 References

[1] Java Naming and Directory Interface
http://docs.oracle.com/javase/6/docs/technotes/guides/jndi/index.html

[2] Java Naming and Directory Interface Tutorial from Sun Microsystems
http://download.oracle.com/javase/6/docs/technotes/guides/jndi/index.html

[3] JNDI Standard Property Names
http://download.oracle.com/javase/1.5.0/docs/api/javax/naming/Context.html

http://docs.oracle.com/javase/6/docs/technotes/guides/jndi/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/jndi/index.html
http://download.oracle.com/javase/1.5.0/docs/api/javax/naming/Context.html

References JNDI Services Specification Version 1.0

Page 594 OSGi Compendium Release 8

JPA Service Specification Version 1.1 Introduction

OSGi Compendium Release 8 Page 595

127 JPA Service Specification

Version 1.1

127.1 Introduction
The Java Persistence API (JPA) is a specification that sets a standard for persistently storing objects in
enterprise and non-enterprise Java based environments. JPA provides an Object Relational Mapping
(ORM) model that is configured through persistence descriptors. This Java Persistence Service speci-
fication defines how persistence units can be published in an OSGi framework, how client bundles
can find these persistence units, how database drivers are found with the Data Service Specification for
JDBC™ Technology on page 567, as well as how JPA providers can be made available within an OSGi
framework.

Applications can be managed or they can be unmanaged. Managed applications run inside a Java EE
Container and unmanaged applications run in a Java SE environment. The managed case requires a
provider interface that can be used by the container, while in the unmanaged case the JPA provider
is responsible for supporting the client directly. This specification is about the unmanaged model
of JPA except in the areas where the managed model is explicitly mentioned. Additionally, multiple
concurrent providers for the unmanaged case are not supported.

127.1.1 Essentials

• Dependencies - There must be a way for persistence clients, if they so require, to manage their de-
pendencies on a compatible persistence unit.

• Compatibility - The Persistence Unit service must be able to function in non-managed mode ac-
cording to existing standards and interfaces outlined in the JPA specification.

• Modularity - Persistent classes and their accompanying configuration can exist in a separate bun-
dle from the client that is operating on them using the Persistence Unit service.

• JDBC - Leverage the Data Service Specification for JDBC™ Technology on page 567 for access to the
database.

127.1.2 Entities

• JPA - The Java Persistence API, [3] JPA 2.1.
• JPA Provider - An implementation of JPA, providing the Persistence Provider and JPA Services to

Java EE Containers and Client Bundles.
• Interface Bundle - A bundle containing the interfaces and classes in the javax.persistence name-

space (and its sub-namespaces) that are defined by the JPA specification.
• Persistence Bundle - A bundle that includes, a Meta-Persistence header, one or more Persistence De-

scriptor resources, and the entity classes specified by the Persistence Units in those resources.
• Client Bundle - The bundle that uses the Persistence Bundle to retrieve and store objects.
• Persistence Descriptor - A resource describing one or more Persistence Units.
• Persistence Unit - A named configuration for the object-relational mappings and database access as

defined in a Persistence Descriptor.
• Entity Manager - The interface that provides the control point of retrieving and persisting objects

in a relational database based on a single Persistence Unit for a single session.

Introduction JPA Service Specification Version 1.1

Page 596 OSGi Compendium Release 8

• Entity Manager Factory - A service that can create Entity Managers based on a Persistence Unit for
different sessions.

• Entity Manager Factory Builder - A service that can build an Entity Manager Factory for a specific
Persistence Unit with extra configuration parameters.

• Managed Client - A Client Bundle that is managed by a Container
• Static Client - A Client that uses the static factory methods in the Persistence class instead of ser-

vices.
• Static Persistence - The actor that enables the use of the Persistence class static factory methods to

obtain an Entity Manager Factory.
• JDBC Provider - The bundle providing a Data Source Factory service.

Figure 127.1 JPA Service overview

JPA Provider Impl

Client Impl

Container Impl

Entity Classes
Impl

Persistence
Provider

Entity
Manager
Factory

Persistence
Descriptor

ManagedClient
Impl

unit
name

*

*

Static Persistence
Impl

Persistence

Static Client Impl

Data Source Factory

Entity
Manager
Factory
Builder

osgi.unit.name=...
osgi.unit.version=...
osgi.unit.provider=...

in
je

ct
s

127.1.3 Dependencies
This specification requires a minimum JPA version of 2.1. Implementations may choose to support
newer versions of JPA, for example version 2.2, but must offer the JavaJPA contract at version 2.1 as
well as any future versions that they support.

127.1.4 Synopsis
A JPA Provider tracks Persistence Bundles; a Persistence Bundle contains a Meta-Persistence mani-
fest header. This manifest header enumerates the Persistence Descriptor resources in the Persistence
Bundle. Each resource's XML schema is defined by the JPA specification. The JPA Provider reads the
resource accordingly and extracts the information for one or more Persistence Units. For each found
Persistence Unit, the JPA Provider registers an Entity Manager Factory Builder service. If the database

JPA Service Specification Version 1.1 JPA Overview

OSGi Compendium Release 8 Page 597

is defined in the Persistence Unit, then the JPA Provider registers an Entity Manager Factory service
during the availability of the corresponding Data Source Factory.

The identification of these services is handled through a number of service properties. The Entity
Manager Factory service is named by the standard JPA interface, the Builder version is OSGi specific;
it is used when the Client Bundle needs to create an Entity Manager Factory based on configuration
properties.

A Client Bundle that wants to persist or retrieve its entity classes depends on an Entity Manager Fac-
tory (Builder) service that corresponds to a Persistence Unit that lists the entity classes. If such a ser-
vice is available, the client can use this service to get an Entity Manager, allowing the client to re-
trieve and persist objects as long as the originating Entity Manager Factory (Builder) service is regis-
tered.

In a non-OSGi environment, it is customary to get an Entity Manager Factory through the Persis-
tence class. This Persistence class provides a number of static methods that give access to any local-
ly available JPA providers. This approach is not recommended in an OSGi environment due to class
loading and start ordering issues. However, OSGi environments can support access through this sta-
tic factory with a Static Persistence bundle.

127.2 JPA Overview
Java Persistence API (JPA) is a specification that is part of [4] Java EE 5. This OSGi Specification is
based on [1] JPA 1.0, [2] JPA 2.0 and [3] JPA 2.1. This section provides an overview of JPA as specified in
the JCP. The purpose of this section is to introduce the concepts behind JPA and define the terminol-
ogy that will be used in the remainder of the chapter.

The purpose of JPA is to simplify access to relational databases for applications on the object-orient-
ed Java platform. JPA provides support for storing and retrieving objects in a relational database. The
JPA specification defines in detail how objects are mapped to tables and columns under the full con-
trol of the application. The core classes involved are depicted in Figure 127.2.

Figure 127.2 JPA Client View

Client CodeEntity Class
Entity Class

Entity Manager
Factory

Entity Manager Connection

Data SourcePersistence
Descriptor

persists
with

created by

mapped by

db

db

mappings for
Mapping
Descriptor

db

from

The JPA specifications define a number of concepts that are defined in this section for the purpose of
this OSGi specification. However, the full syntax and semantics are defined in the JPA specifications.

127.2.1 Persistence
Classes that are stored and retrieved through JPA are called the entity classes. In this specification, the
concept of entity classes includes the embeddable classes, which are classes that do not have any per-
sistent identity, and mapped super classes that allow mappings, but are not themselves persistent.
Entity classes are not required to implement any interface or extend a specific superclass, they are
Plain Old Java Objects (POJOs). It is the responsibility of the JPA Provider to connect to a database
and map the store and retrieve operations of the entity classes to their tables and columns. For per-

JPA Overview JPA Service Specification Version 1.1

Page 598 OSGi Compendium Release 8

formance reasons, the entity classes are sometimes enhanced. This enhancement can take place dur-
ing build time, deploy time, or during class loading time. Some enhancements use byte code weav-
ing, some enhancements are based on sub-classing.

The JPA Provider cannot automatically perform its persistence tasks; it requires configuration infor-
mation. This configuration information is stored in the Persistence Descriptor. A Persistence Descrip-
tor is an XML file according of one of the two following namespaces:

http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd

The JPA standard Persistence Descriptor must be stored in META-INF/persistence.xml . It is usually
in the same class path entry (like a JAR or directory) as the entity classes.

The JPA Provider parses the Persistence Descriptor and extracts one or more Persistence Units. A Per-
sistence Unit includes the following aspects:

• Name - Every Persistence Unit must have a name to identify it to clients. For example: Account-
ing .

• Provider Selection - Restriction to a specific JPA Provider, usually because there are dependencies in
the application code on provider specific functionality.

• JDBC Driver Selection - Selects the JDBC driver, the principal and the credentials for selecting and
accessing a relational database. See JDBC Access in JPA on page 600.

• Properties - Standard and JPA Provider specific properties.

The object-relational mappings are stored in special mapping resources or are specified in annota-
tions.

A Persistence Unit can be complete or incomplete. A complete Persistence Unit identifies the database
driver that is needed for the Persistence Unit, though it does not have to contain the credentials. An
incomplete Persistence Unit lacks this information.

The relations between the class path, its entries, the entity classes, the Persistence Descriptor and
the Persistence Unit is depicted in Figure 127.3 on page 598.

Figure 127.3 JPA Configuration

Class path entry
(JAR/directory)

Entity Classes

Persistence
Descriptor
persistence.xml

Persistence Unit

JDBC Driver

lists
1 * 1 0,1 1 *

contains contains

depends on
*

0,1

Class Path

persisted by
* *

*

JPA recognizes the concept of a persistence root. The persistence root is the root of the JAR (or directo-
ry) on the class path that contains the META-INF/persistence.xml resource.

127.2.2 JPA Provider
The JPA specifications provide support for multiple JPA Providers in the same application. An Ap-
plication selects a JPA Provider through the Persistence class, using static factory methods. One of
these methods accepts a map with configuration properties. Configuration properties can override in-
formation specified in a Persistence Unit or these properties add new information to the Persistence
Unit.

JPA Service Specification Version 1.1 JPA Overview

OSGi Compendium Release 8 Page 599

The default implementation of the Persistence class discovers providers through the Java EE ser-
vices model, this model requires a text resource in the class path entry called:

 META-INF/services/ javax.persistence.PersistenceProvider

This text resource contains the name of the JPA Provider implementation class.

The Persistence class createEntityManagerFactory method provides the JPA Provider with the
name of a Persistence Unit. The JPA Provider must then scan the class path for any META-INF/
persistence.xml entries, these are the available Persistence Descriptors. It then extracts the Persis-
tence Units to find the requested Persistence Unit. If no such Persistence Unit can be found, or the
JPA Provider is restricted from servicing this Persistence Unit, then nul l is returned. The Persistence
class will then continue to try the next found or registered JPA Provider.

A Persistence Unit can restrict JPA Providers by specifying a JPA Provider class, this introduces a
provider dependency. The specified JPA Provider class must implement the PersistenceProvider inter-
face. This implementation class name must be available from the JPA Provider's documentation. JPA
Providers that do not own the specified JPA Provider class must ignore such a Persistence Unit.

Otherwise, if the Persistence Unit is not restricted, the JPA Provider is assigned to this Persistence
Unit; it must be ready to provide an EntityManagerFactory object when the application requests
one.

The JPA Provider uses the Persistence Unit, together with any additional configuration properties,
to construct an Entity Manager Factory. The application then uses this Entity Manager Factory to con-
struct an Entity Manager, optionally providing additional configuration properties. The Entity Man-
ager then provides the operations for the application to store and retrieve entity classes from the
database.

The additional configuration properties provided with the creation of the Entity Manager Factory or
the Entity Manager are often used to specify the database driver and the credentials. This allows the
Persistence Unit to be specified without committing to a specific database, leaving the choice to the
application at runtime.

The relations between the application, Entity Manager, Entity Manager Factory and the JPA Provider
are depicted in Figure 127.4 on page 599.

Figure 127.4 JPA Dynamic Model

Entity Manager Entity Manager
Factory

JPA Provider

Persistence Unit

uses
1 * * 1 * 1

implemented
by

Application

Data Source
Factory

created
by

provides db
connections

*

1 1

1

discovers

Persistence
Descriptor

1

*

0,1 *
specified

by

1

*

127.2.3 Managed and Unmanaged
The JPA specifications make a distinction between a managed and an unmanaged mode. In the man-
aged mode the presence of a Java EE Container is assumed. Such a container provides many services
for its contained applications like transaction handling, dependency injection, etc. One of these as-

Bundles with Persistence JPA Service Specification Version 1.1

Page 600 OSGi Compendium Release 8

pects can be the interface to the relational database. The JPA specifications therefore have defined a
special method for Java EE Containers to manage the persistence aspects of their Managed Clients.
This method is the createContainerEntityManagerFactory method on the PersistenceProvider in-
terface. This method is purely intended for Java EE Containers and should not be used in other envi-
ronments.

The other method on the PersistenceProvider interface is intended to be used by the Persistence
class static factory methods. The Persistence class searches for an appropriate JPA Provider by asking
all available JPA Providers to create an Entity Manager Factory based on configuration properties.
The first JPA Provider that is capable of providing an Entity Manager Factory wins. The use of these
static factory methods is called the unmanaged mode. It requires a JPA Provider to scan the class path
to find the assigned Persistence Units.

127.2.4 JDBC Access in JPA
A Persistence Unit is configured to work with a relational database. JPA Providers communicate
with a relational database through compliant JDBC database drivers. The database and driver para-
meters are specified in the Persistence Unit or configured during Entity Manager Factory or Entity
Manager creation with the configuration properties. The configuration properties for selecting a
database in non-managed mode were proprietary in JPA 1.0 but have been standardized in version
2.0 of JPA:

• javax.persistence. jdbc.dr iver - Fully-qualified name of the driver class
• javax.persistence. jdbc.ur l - Driver-specific URL to indicate database information
• javax.persistence. jdbc.user - User name to use when obtaining connections
• javax.persistence. jdbc.password - Password to use when obtaining connections

127.3 Bundles with Persistence
The primary goal of this specification is to simplify the programming model for bundles that need
persistence. In this specification there are two application roles:

• Persistence Bundle - A Persistence Bundle contains the entity classes and one or more Persistence
Descriptors, each providing one or more Persistence Units.

• Client Bundle -A Client Bundle contains the code that manipulates the entity classes and uses an
Entity Manager to store and retrieve these entity classes with a relational database. The Client
Bundle obtains the required Entity Manager(s) via a service based model.

These roles can be combined in a single bundle.

127.3.1 Services
A JPA Provider uses Persistence Units to provide Client Bundles with a configured Entity Manager
Factory service and/or an Entity Manager Factory Builder service for each assigned Persistence Unit:

• Entity Manager Factory service - Provides an EntityManagerFactory object that depends on a com-
plete Persistence Unit. That is, it is associated with a registered Data Source Factory service.

• Entity Manager Factory Builder service - The Entity Manager Factory Builder service provides the
capability of creating an EntityManagerFactory object with additional configuration properties.
The Entity Manager Factory Builder service also provides information about the JPA Provider
that will be used to create the EntityManagerFactory object.

These services are collectively called the JPA Services. Entity Managers obtained from such JPA Ser-
vices can only be used to operate on entity classes associated with their corresponding Persistence
Unit.

JPA Service Specification Version 1.1 Bundles with Persistence

OSGi Compendium Release 8 Page 601

127.3.2 Persistence Bundle
A Persistence Bundle is a bundle that specifies the Meta-Persistence header, see Meta Persistence Header
on page 603. This header refers to one or more Persistence Descriptors in the Persistence Bundle.
Commonly, this is the META-INF/persistence.xml resource. This location is the standard for non-
OSGi environments, however an OSGi bundle can also use other locations as well as multiple re-
sources.

For example, the contents of a simple Persistence Bundle with a single Person entity class could look
like:

META-INF/
META-INF/MANIFEST.MF
OSGI-INF/address.xml
com/acme/Person.class

The corresponding manifest would then look like:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Meta-Persistence: OSGI-INF/address.xml
Bundle-SymbolicName: com.acme.simple.persistence
Bundle-Version: 3.2.4.200912231004

A Persistence Bundle is a normal bundle; it must follow all the rules of OSGi and can use all OSGi
constructs like Bundle-ClassPath, fragment bundles, import packages, export packages, etc. Howev-
er, there is one limitation: any entity classes must originate in the bundle's JAR, it cannot come from
a fragment. This requirement is necessary to simplify enhancing entity classes.

127.3.3 Client Bundles
A Client Bundle uses the entity classes from a Persistence Bundle to provide its required functional-
ity. To store and retrieve these entity classes a Client Bundle requires an Entity Manager that is con-
figured for the corresponding Persistence Unit.

An Entity Manager is intended to be used by a single session, it is not thread safe. Therefore, a client
needs an Entity Manager Factory to create an Entity Manager. In an OSGi environment, there are
multiple routes to obtain an Entity Manager Factory.

A JPA Provider must register an Entity Manager Factory service for each assigned Persistence Unit
that is complete. Complete means that it is a configured Persistence Unit, including the reference to
the relational database. The Entity Manager Factory service is therefore bound to a Data Source Fac-
tory service and Client Bundles should not attempt to rebind the Data Source Factory with the con-
figuration properties of the createEntityManager(Map) method. See Rebinding on page 608 for the
consequences. If the Data Source Factory must be bound by the Client Bundle then the Client Bun-
dle should use the Custom Configured Entity Manager on page 602.

The Entity Manager Factory service must be registered with the service properties as defined in Ser-
vice Registrations on page 605. These are:

• osgi .unit .name - (Str ing) The name of the Persistence Unit
• osgi .unit .vers ion - (Str ing) The version of the associated Persistence Bundle
• osgi .unit .provider - (Str ing) The implementation class name of the JPA Provider

The life cycle of the Entity Manager Factory service is bound to the Persistence Bundle, the JPA
Provider, and the selected Data Source Factory service.

A Client Bundle that wants to use an Entity Manager Factory service should therefore use an appro-
priate filter to select the Entity Manager Factory service that corresponds to its required Persistence

Bundles with Persistence JPA Service Specification Version 1.1

Page 602 OSGi Compendium Release 8

Unit. For example, the following snippet uses Declarative Services, see Declarative Services Specifica-
tion on page 261, to statically depend on such a service:

<reference name="accounting"
 target="(&(osgi.unit.name=Accounting)(osgi.unit.version=3.2.*))"
 interface="javax.persistence.EntityManagerFactory"/>

127.3.4 Custom Configured Entity Manager
If a Client Bundle needs to provide configuration properties for the creation of an Entity Manager
Factory it should use the Entity Manager Factory Builder service. This can for example be used to pro-
vide the database selection properties when the Persistence Unit is incomplete or if the database se-
lection needs to be overridden. The Entity Manager Factory Builder service also provides informa-
tion about the JPA Provider that will be used to create the Entity Manager Factory. This information
can be used by the Client Bundle when determining what (if any) JPA Provider implementation spe-
cific configuration that the Client Bundle will provide.

The Entity Manager Factory Builder service's life cycle must not depend on the availability of any
Data Source Factory, even if a JDBC driver class name is specified in the Persistence Descriptor. The
Entity Manager Factory Builder service is registered with the same service properties as the corre-
sponding Entity Factory service, see Service Registrations on page 605.

The following methods are defined on the EntityManagerFactoryBui lder interface:

• createEntityManagerFactory(Map) - Returns a custom configured EntityManagerFactory in-
stance for the Persistence Unit associated with the service. Accepts a map with the configura-
tion properties to be applied during Entity Manager Factory creation. The method must return a
proper Entity Manager Factory or throw an Exception.

• getPersistenceProviderName() - Returns the name of the PersistenceProvider implementation
class used in Entity Manager Factory creation. This name will be the same as the value of the
JPA_UNIT_PROVIDER service property.

• getPersistenceProviderBundle() - Returns the bundle JPA Provider implementation bundle
which provides the PersistenceProvider . If the Persistence Provider was provided as an OSGi
service then this method must return the bundle which registered the service. Otherwise this
method must return the bundle which loaded the PersistenceProvider implementation class.

The createEntityManagerFactory method allows standard and vendor-specific properties to be
passed in and applied to the Entity Manager Factory being created. However, some properties cannot
be honored by the aforementioned method. For example, the javax.persistence.provider JPA prop-
erty, as a means to specify a specific JPA Provider at runtime, cannot be supported because the JPA
Provider has already been decided; it is the JPA Provider that registered the Entity Manager Factory
Builder service. A JPA Provider should throw an Exception if it recognizes the property but it cannot
use the property when specified through the builder. Unrecognized properties must be ignored.

Once an Entity Manager Factory is created the specified Data Source becomes associated with the
Entity Manager Factory. It is therefore not possible to re-associate an Entity Manager Factory with
another Data Source by providing different properties. A JPA Provider must throw an Exception
when an attempt is made to re-specify the database properties. See Rebinding on page 608 for fur-
ther information.

As an example, a sample snippet of a client that wants to operate on a persistence unit named Ac-
counting and pass in the JDBC user name and password properties is:

ServiceReference[] refs = context.getServiceReferences(
 EntityManagerFactoryBuilder.class.getName(),
 "(osgi.unit.name=Accounting)");
if (refs != null) {
 EntityManagerFactoryBuilder emfBuilder =

JPA Service Specification Version 1.1 Extending a Persistence Bundle

OSGi Compendium Release 8 Page 603

 (EntityManagerFactoryBuilder) context.getService(refs[0]);
 if (emfBuilder != null) {
 Map<String,Object> props = new HashMap<String,Object>();
 props.put("javax.persistence.jdbc.user", userString);
 props.put("javax.persistence.jdbc.password",passwordString);
 EntityManagerFactory emf = emfBuilder.createEntityManagerFactory(props);
 EntityManager em = emf.createEntityManager();
 ...
}

The example does not handle the dynamic dependencies on the associated Data Source Factory ser-
vice.

127.3.4.1 Supported configuration properties

The [3] JPA 2.1 specification adds a significant number of standard property names. These properties
are used both for runtime control, and also for configuring JPA persistence units as they are created.

The EntityManagerFactoryBuilder service must support the defined property names as per the JPA
specification. In most cases this will be accomplished by passing the values directly to the Persis-
tence Provider, but in some cases it may require further action from the JPA Service implementa-
tion.

127.4 Extending a Persistence Bundle
A Persistence Bundle is identified by its Meta-Persistence manifest header that references a number
of Persistence Descriptor resources. Persistence bundles must be detected by a JPA Provider. The JPA
Provider must parse any Persistence Descriptors in these bundles and detect the assigned Persistence
Units. For each assigned Persistence Unit, the JPA Provider must register an Entity Manager Factory
Builder service when the Persistence Bundle is ready, see Ready Phase on page 605.

For complete and assigned Persistence Units, the JPA Provider must find the required Data Source
Factory service based on the driver name. When the Persistence Bundle is ready and the selected Da-
ta Source Factory is available, the JPA Provider must have an Entity Manager Factory service regis-
tered that is linked to that Data Source Factory.

When the Persistence Bundle is stopped (or the JPA Provider stops), the JPA Provider must close all
connections and cleanup any resources associated with the Persistence Bundle.

This process is outlined in detail in the following sections.

127.4.1 Class Space Consistency
A JPA Provider must ignore Persistence Bundles that are in another class space for the
javax.persistence.* packages. Such a JPA Provider cannot create JPA Services that would be visible
and usable by the Client Bundles.

127.4.2 Meta Persistence Header
A Persistence Bundle is a bundle that contains the Meta-Persistence header. If this header is not
present, then this specification does not apply and a JPA Provider should ignore the corresponding
bundle.

The persistence root of a Persistence Unit is the root of the Persistence Bundle's JAR

The Meta-Persistence header has a syntax of:

Meta-Persistence ::= (jar-path (',' jar-path)*)?
jar-path ::= path ('!/' spath)?

Extending a Persistence Bundle JPA Service Specification Version 1.1

Page 604 OSGi Compendium Release 8

spath ::= path // must not start with solidus ('/' \u002F)

The header may include zero or more comma-separated jar-paths , each a path to a Persistence De-
scriptor resource in the bundle. Paths may optionally be prefixed with the solidus (' / ' \u002F) char-
acter. The JPA Provider must always include the META-INF/persistence.xml first if it is not one of the
listed paths. Wildcards in directories are not supported. The META-INF/persistence.xml is therefore
the default location for an empty header.

For example:

Meta-Persistence: META-INF/jpa.xml, persistence/jpa.xml

The previous example will instruct the JPA Provider to process the META-INF/persistence.xml re-
source first, even though it is not explicitly listed. The JPA Provider must then subsequently process
META-INF/jpa.xml and the persistence/jpa.xml resources.

The paths in the Meta-Persistence header must be used with the Bundle.getEntry() method, or a
mechanism with similar semantics, to obtain the corresponding resource. The getEntry method
does not force the bundle to resolve when still unresolved; resolving might interfere with the effi-
ciency of any required entity class enhancements. However, the use of the getEntry method implies
that fragment bundles cannot be used to contain Persistence Descriptors nor entity classes.

Paths in the Meta-Persistence header can reference JAR files that are nested in the bundle by using
the ! / jar : URL syntax to separate the JAR file from the path within the JAR, for example:

Meta-Persistence: embedded.jar!/META-INF/persistence.xml

This example refers to a resource in the embedded. jar resource, located in the META-INF directory of
embedded. jar .

The ! / splits the jar-path in a prefix and a suffix:

• Prefix - The prefix is a path to a JAR resource in the bundle.
• Suffix - The suffix is a path to a resource in the JAR identified by the prefix.

For example:

embedded.jar!/META-INF/persistence.xml
prefix: embedded.jar
suffix: META-INF/persistence.xml

It is not required that all listed or implied resources are present in the bundle's JAR. For example,
it is valid that the default META-INF/persistence.xml resource is absent. However, if no Persistence
Units are found at all then the absence of any Persistence Unit is regarded as an error that should be
logged. In this case, the Persistence Bundle is further ignored.

127.4.3 Processing
A JPA Provider can detect a Persistence Bundle as early as its installation time. This early detection
allows the JPA Provider to validate the Persistence Bundle as well as prepare any mechanisms to en-
hance the classes for better performance. However, this process can also be delayed until the bundle
is started.

The JPA Provider must validate the Persistence Bundle. A valid Persistence Bundle must:

• Have no parsing errors of the Persistence Descriptors
• Validate all Persistence Descriptors against their schemas
• Have at least one assigned Persistence Unit
• Have all entity classes mentioned in the assigned Persistence Units on the Persistence Bundle's

JAR.

JPA Service Specification Version 1.1 Extending a Persistence Bundle

OSGi Compendium Release 8 Page 605

A Persistence Bundle that uses multiple providers for its Persistence Units could become incompati-
ble with future versions of this specification.

If any validation fails, then this is an error and should be logged. Such a bundle is ignored complete-
ly even if it also contains valid assigned Persistence Units. Only a bundle update can recover from
this state.

Persistence Units can restrict JPA Providers by specifying a provider dependency. JPA Providers that
do not own this JPA Provider implementation class must ignore such a Persistence Unit completely.
Otherwise, if the JPA Provider can service a Persistence Unit, it assigns itself to this Persistence Unit.

If after the processing of all Persistence Descriptors, the JPA Provider has no assigned Persistence
Units, then the JPA Provider must further ignore the Persistence Bundle.

127.4.4 Ready Phase
A Persistence Bundle is ready when its state is ACTIVE or, when a lazy activation policy is used,
STARTING . A JPA Provider must track the ready state of Persistence Bundles that contain assigned
Persistence Units.

While a Persistence Bundle is ready, the JPA Provider must have, for each assigned Persistence Unit,
an Entity Manager Factory Builder service registered to allow Client Bundles to create new Entity-
ManagerFactory objects. The JPA Provider must also register an Entity Manager Factory for each as-
signed and complete Persistence Unit that has its corresponding Data Source available in the service
registry.

The service registration process is asynchronous with the Persistence Bundle start because a JPA
Provider could start after a Persistence Bundle became ready.

127.4.5 Service Registrations
The JPA Services must be registered through the Bundle Context of the corresponding Persistence
Bundle to ensure proper class space consistency checks by the OSGi Framework.

JPA Services are always related to an assigned Persistence Unit. To identify this Persistence Unit and
the assigned JPA Provider, each JPA Service must have the following service properties:

• osgi .unit .name - (Str ing) The name of the Persistence Unit. This property corresponds to the
name attribute of the persistence-unit element in the Persistence Descriptor. It is used by Client
Bundles as the primary filter criterion to obtain a JPA Service for a required Persistence Unit.
There can be multiple JPA Services registered under the same osgi .unit .name , each representing
a different version of the Persistence Unit.

• osgi .unit .vers ion - (Str ing) The version of the Persistence Bundle, as specified in Bundle-Version
header, that provides the corresponding Persistence Unit. Client Bundles can filter their required
JPA Services based on a particular Persistence Unit version.

• osgi .unit .provider - (Str ing) The JPA Provider implementation class name that registered the
service. The osgi .unit .provider property allows Client Bundles to know the JPA Provider that is
servicing the Persistence Unit. Client Bundles should be careful when filtering on this proper-
ty, however, since the JPA Provider that is assigned a Persistence Unit may not be known by the
Client Bundle ahead of time. If there is a JPA Provider dependency, it is better to specify this de-
pendency in the Persistence Unit because other JPA Providers are then not allowed to assign such
a Persistence Unit and will therefore not register a service.

127.4.6 Registering the Entity Manager Factory Builder Service
Once the Persistence Bundle is ready, a JPA Provider must register an Entity Manager Factory Builder
service for each assigned Persistence Unit from that Persistence Bundle.

The Entity Manager Factory Builder service must be registered with the service properties listed in
Service Registrations on page 605. The Entity Manager Factory Builder service is registered under

Extending a Persistence Bundle JPA Service Specification Version 1.1

Page 606 OSGi Compendium Release 8

the org.osgi .service. jpa.EntityManagerFactoryBui lder name. This interface is using the JPA pack-
ages and is therefore bound to one of the two supported versions, see Dependencies on page 596.

The Entity Manager Factory Builder service enables the creation of a parameterized version of an
Entity Factory Manager by allowing the caller to specify configuration properties. This approach is
necessary if, for example, the Persistence Unit is not complete.

127.4.7 Registering the Entity Manager Factory
A complete Persistence Unit is configured with a specific relational database driver, see JDBC Ac-
cess in JPA on page 600. A JPA Provider must have an Entity Manager Factory service registered for
each assigned and complete Persistence Unit when:

• The originating Persistence Bundle is ready, and
• A matching Data Source Factory service is available. Matching a Data Source Factory service to a

Persistence Unit is discussed in Database Access on page 607.

A JPA Provider must track the life cycle of the matching Data Source Factory service; while this ser-
vice is unavailable the Entity Manager Factory service must also be unavailable. Any active Entity
Managers created by the Entity Manager Factory service become invalid to use at that time.

The Entity Manager Factory service must be registered with the same service properties as described
for the Entity Manager Factory Builder service, see Service Registrations on page 605. It should be
registered under the following name:

 javax.persistence.EntityManagerFactory

The EntityManagerFactory interface is from the JPA packages and is therefore bound to one of the
two supported versions, see Dependencies on page 596.

An Entity Manager Factory is bound to a Data Source Factory service because its assigned Persis-
tence Unit was complete. However, a Client Bundle could still provide JDBC configuration prop-
erties for the createEntityManager(Map) method. This not always possible, see Rebinding on page
608.

In the case of an incomplete Persistence Unit no Entity Manager Factory can be initially registered,
however once configured using an Entity Manager Factory Builder service the JPA Service must reg-
ister the created Entity Manager Factory as a service. The registered service must include any sup-
plied configuration properties that match the recommended OSGi service property types as service
properties. The javax.persistence. jdbc.password property must be omitted from these service prop-
erties.

If the Entity Manager Factory Builder service is later used to change the configuration being used by
the Entity Manager Factory Service then the registered Entity Manager Factory service must be un-
registered and closed. The newly created Entity Manager Factory object must then be registered as a
service.

127.4.8 Stopping
If a Persistence Bundle is being stopped, then the JPA Provider must ensure that any resources allo-
cated on behalf of the Persistence Bundle are cleaned up and all open connections are closed. This
cleanup must happen synchronously with the STOPPING event. Any Exceptions being thrown
while cleaning up should be logged but must not stop any further clean up.

If the JPA Provider is being stopped, the JPA Provider must unregister all JPA Services that it regis-
tered through the Persistence Bundles and clean up as if those bundles were stopped.

127.4.9 Entity Manager Factory Life Cycle
The Entity Manager Factory object has a close method. This method closes the EntityManagerFac-
tory and all associated Entity Manager instances. As an OSGi framework is a multi-tenant environ-

JPA Service Specification Version 1.1 JPA Provider

OSGi Compendium Release 8 Page 607

ment it should not be possible for one user of an Entity Manager Factory service to break the valid
usage of another. Therefore calls to the close method of the EntityManagerFactory registered in the
service registry must not close the Entity Manager Factory.

When an Entity Manager Factory Builder service is used to create an Entity Manager Factory the
same rules apply to the resulting Entity Manager Factory service, however the object returned by
the Entity Manager Factory Builder behaves differently. This object has a working close method
which must unregister the Entity Manager Factory service and close the Entity Manager Factory.
This allows callers of the Entity Manager Factory Builder to invalidate the Entity Manager Factories
that they create if, for example, a configuration changes, or a Data Source becomes invalid.

127.5 JPA Provider
JPA Providers supply the implementation of the JPA Services and the Persistence Provider service. It
is the responsibility of a JPA Provider to store and retrieve the entity classes from a relational data-
base. It is the responsibility of the JPA Provider to register a Persistence Provider and start tracking
Persistence Bundles, see Extending a Persistence Bundle on page 603.

127.5.1 Managed Model
A JPA Provider that supports running in managed mode should register a specific service for the Ja-
va EE Containers: the Persistence Provider service. The interface is the standard JPA Persistence-
Provider interface. See Dependencies on page 596 for the issues around the multiple versions that
this specification supports.

The service must be registered with the following service property:

• javax.persistence.provider - The JPA Provider implementation class name, a documented name
for all JPA Providers.

The Persistence Provider service enables a Java EE Container to find a particular JPA Provider. This
service is intended for containers only, not for Client Bundles because there are implicit assump-
tions in the JPA Providers about the Java EE environment. A Java EE Container must obey the life
cycle of the Persistence Provider service. If this service is unregistered then it must close all connec-
tions and clean up the corresponding resources.

127.5.2 Database Access
A Persistence Unit is configured to work with a relational database. JPA Providers must commu-
nicate with a relational database through a compliant JDBC database driver. The database and dri-
ver parameters are specified with properties in the Persistence Unit or the configuration properties
when a Entity Manager Factory Builder is used to build an Entity Manager Factory. All JPA Providers,
regardless of version, in an OSGi environment must support the following properties for database
access:

• javax.persistence. jdbc.dr iver - Fully-qualified name of the driver class.
• javax.persistence. jdbc.ur l - Driver-specific URL to indicate database information
• javax.persistence. jdbc.user - User name to use when obtaining connections
• javax.persistence. jdbc.password - Password to use when obtaining connections

There are severe limitations in specifying these properties after the Entity Manager Factory is creat-
ed for the first time, see Rebinding on page 608.

127.5.3 Data Source Factory Service Matching
Providers must use the javax.persistence. jdbc.dr iver property, as defined in JDBC Access in JPA on
page 600, to obtain a Data Source Factory service. The Data Source Factory is specified in Data Ser-

JPA Provider JPA Service Specification Version 1.1

Page 608 OSGi Compendium Release 8

vice Specification for JDBC™ Technology on page 567. The javax.persistence. jdbc.dr iver property must
be matched with the value of the Data Source Factory service property named osgi . jdbc.dr iver.c lass .

The Data Source Factory service is registered with the osgi . jdbc.dr iver.c lass service property that
holds the class name of the driver. This property must match the javax.persistence. jdbc.dr iver ser-
vice property of the Persistence Unit.

For example, if the Persistence Unit specifies the com.acme.db.Driver database driver in the
javax.persistence. jdbc.dr iver property (or in the Persistence Descriptor property element), then the
following filter would select an appropriate Data Source Factory:

(&(objectClass=org.osgi.service.jdbc.DataSourceFactory)
 (osgi . jdbc.dr iver.c lass=com.acme.db.Driver))

Once the Data Source Factory is obtained, the JPA Provider must obtain a DataSource object. This
Data Source object must then be used for all relational database access.

In [1] JPA 1.0 the JPA JDBC properties were not standardized. JPA Providers typically defined a set
of JDBC properties, similar to those defined in JPA 2.0, to configure JDBC driver access. JPA 1.0 JPA
Providers must look up the Data Source Factory service first using the JPA 2.0 JDBC properties. If
these properties are not defined then they should fall back to their proprietary driver properties.

127.5.4 Rebinding
In this specification, the Entity Manager Factory service is only registered when the Persistence Unit
is complete and a matching Data Source Factory service is available. However, the API of the Entity
Manager Factory Builder allows the creation of an Entity Manager Factory with configuration prop-
erties. Those configuration properties could contain the JDBC properties to bind to another Data
Source Factory service than it had already selected.

This case must not be supported by a JPA Provider, an Illegal Argument Exception must be thrown.
If such a case would be supported then the life cycle of the Entity Manager Factory service would
still be bound to the first Data Source Factory. There would be no way for the JPA Provider to sig-
nal to the Client Bundle that the returned Entity Manager Factory is no longer valid because the re-
bound Data Source Factory was unregistered.

Therefore, when an Entity Manager Factory is being created using the Entity Manager Factory
Builder, a JPA Provider must verify that the new properties are compatible with the properties of the
already created Entity Manager Factory. If no, then an Exception must be thrown. If they are com-
patible, then an instance of the previous Entity Manager Factory should be returned.

127.5.5 Enhancing Entity Classes
JPA Providers may choose to implement the JPA specifications using various implementation ap-
proaches and techniques. This promotes innovation in the area, but also opens the door to limita-
tions and constraints arising due to implementation choices. For example, there are JPA Providers
that perform byte code weaving during the entity class loading. Dynamic byte code weaving re-
quires that the entity classes are not loaded until the JPA Provider is first able to intercept the load-
ing of the entity class and be given an opportunity to do its weaving. It also implies that the Persis-
tence Bundle and any other bundles that import packages from that bundle must be refreshed if the
JPA Provider needs to be changed.

This is necessary because the JPA Services are registered against the Bundle Contexts of the Persis-
tence Bundles and not the Bundle Context of the JPA Providers. Client Bundles must then unget the
service to unbind themselves from the uninstalled JPA Provider. However, since most JPA Providers
perform some kind of weaving or class transformation on the entity classes, the Persistence Bundle
will likely need to be refreshed. This will cause the Client Bundles to be refreshed also because they
depend on the packages of the entity classes.

JPA Service Specification Version 1.1 Static Access

OSGi Compendium Release 8 Page 609

127.5.6 Class Loading
JPA Providers cannot have package dependencies on entity classes in Persistence Bundles because
they cannot know at install time what Persistence Bundles they will be servicing. However, when a
JPA Provider is servicing a Persistence Bundle, it must be able to load classes and resources from that
Persistence Bundle according to the OSGi bundle rules. To do this class loading it must obtain a class
loader that has the same visibility as the Persistence Bundle's bundle class loader. This will also al-
low it to load and manage metadata for the entity classes and resources for that Persistence Bundle's
assigned Persistence Units. These resources and entity classes must reside directly in the Persistence
Bundle, they must be accessed using the getEntry method. Entity classes and resources must not re-
side in fragments.

127.5.7 Validation
There is not yet an OSGi service specification defined for validation providers. If validation is re-
quired, the validation implementation will need to be included with the JPA Provider bundle.

127.6 Static Access
Non-managed client usage of JPA has traditionally been achieved through the Persistence class. In-
voking a static method on the Persistence class is a dependency on the returned JPA Provider that
cannot be managed by the OSGi framework.

However, such an unmanaged dependency is supported in this specification by the Static Persis-
tence bundle. This bundle provides backwards compatibility for programs that use existing JPA ac-
cess patterns. However, usage of this static model requires that the deployer ensures that the actors
needed are in place at the appropriate times by controlling the life cycles of all participating bun-
dles. The normal OSGi safe-guards and dependency handling do not work in the case of static access.

A Static Persistence Bundle must provide static access from the Persistence class to the JPA Services.

127.6.1 Access
There are two methods on the Persistence class:

• createEntityManagerFactory(Str ing)
• createEntityManagerFactory(Str ing,Map)

Both methods take the name of a Persistence Unit. The last method also takes a map that contains
extra configuration properties. To support the usage of the static methods on the Persistence class,
the implementation of the Persistence.createEntityManagerFactory method family must do a
lookup of one of the JPA Services associated with the selected Persistence Unit.

If no configuration properties are specified, the Static Persistence Bundle must look for an Entity
Manager Factory service with the osgi .unit .name property set to the given name. The default ser-
vice should be used because no selector for a version is provided. If no such service is available, nul l
must be returned. Provisioning of multiple versioned Persistence Units is not supported. Deployers
should ensure only a single version of a Persistence Unit with the same name is present in an OSGi
framework at any moment in time.

Otherwise, if configuration properties are provided, the Static Access implementation must look
for an Entity Manager Factory Builder service with the osgi .unit .name property set to the given Per-
sistence Unit name. If no such service exists, nul l must be returned. Otherwise, the default service
must be used to create an Entity Manager Factory with the given configuration properties. The re-
sult must be returned to the caller.

For service lookups, the Static Persistence Bundle must use its own Bundle Context, it must not at-
tempt to use the Bundle Context of the caller. All exceptions should be passed to the caller.

Capabilities JPA Service Specification Version 1.1

Page 610 OSGi Compendium Release 8

The class space of the Entity Manager Factory and the class space of the client cannot be enforced
to be consistent by the framework because it is the Persistence class that is doing the lookup of the
service, and not the actual calling Client Bundle that will be using the Entity Manager Factory. The
framework cannot make the connection and therefore cannot enforce that the class spaces corre-
spond. Deployers should therefore ensure that the involved class spaces are correctly wired.

127.7 Capabilities
The JPA Service Implementation must supply a number of capabilities for use by client bundles and
Deployers.

127.7.1 The Extender Capability
A JPA Service implementation must provide an extender which finds and extends persistence bun-
dles. The bundle providing this extender must provide a capability in the osgi .extender namespace
declaring an extender with the name JPA_CAPABILITY_NAME . This capability must also declare a us-
es constraint for the org.osgi .service. jpa and javax.persistence packages. For example:

Provide-Capability: osgi.extender;
 osgi.extender="osgi.jpa";
 version:Version="1.1";
 uses:="org.osgi.service.jpa,javax.persistence"

This capability must follow the rules defined for the osgi.extender Namespace on page 723.

All persistence bundles should require the osgi .extender capability from the JPA Service. This re-
quirement will wire the persistence bundle to the JPA Service implementation and ensure that the
JPA service is using the same API packages as the persistence bundle.

Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.jpa)(version>=1.1)(!(version>=2.0)))"

This requirement can be easily generated using the RequireJPAExtender annotation.

The JPA extender must only process a persistence bundle's persistence units if the following is true:

• The bundle's wiring has a required wire for at least one osgi .extender capability with the name
osgi . jpa and the first of these required wires is wired to the JPA extender.

• The bundle's wiring has no required wire for an osgi .extender capability with the name osgi . jpa .

Otherwise, the JPA Service extender must not process the persistence bundle

127.7.2 The JPA Contract Capability
Previous versions of this specification recommended that the JPA API packages were versioned us-
ing the OSGi recommended semantic versioning policy. Whilst this would have been an excellent
way to ensure compatibility between JPA persistence bundles, client bundles, and JPA providers, in
practice few bundles followed this versioning policy. As a result the various actors in the JPA service
can easily be created with have clashing version ranges.

This problem is not isolated to JPA, and so a general solution was created called [5] Portable Java Con-
tract Definitions. These define a capability namespace called osgi .contract

In order to permit JPA clients to reliably work when paired with newer versions of JPA there needs
to be a defined contract upon which the clients and persistence units can rely, otherwise a JPA 1.0
compatible client cannot declare a dependency which also accepts the backward compatible JPA 2.0
API. For JPA the following three contracts exist:

JPA Service Specification Version 1.1 Security

OSGi Compendium Release 8 Page 611

osgi.contract;osgi.contract=JavaJPA;version:Version=1;
 uses:="javax.persistence,javax.persistence.spi"

osgi.contract;osgi.contract=JavaJPA;version:Version=2;
 uses:="javax.persistence,javax.persistence.criteria,
 javax.persistence.metamodel,javax.persistence.spi"

osgi.contract;osgi.contract=JavaJPA;version:Version=2.1;
 uses:="javax.persistence,javax.persistence.criteria,
 javax.persistence.metamodel,javax.persistence.spi"

JPA API providers must declare the full set of API contract versions with which they are compatible.
As JPA API versions are backward compatible this will typically result in the provider exposing all
versions of a contract. Note that when a provider offers multiple versions of a contract then all of
the contract versions must be offered by a single capability. For example:

Export-Package: javax.persistence,javax.persistence.criteria,
 javax.persistence.metamodel,javax.persistence.spi
Provide-Capability: osgi.contract;osgi.contract=JavaJPA;
 version:List>Version<="2.1,2,1"; uses:="javax.persistence,
 javax.persistence.criteria,javax.persistence.metamodel,javax.persistence.spi"

The contract capability means that clients can safely import the API using the contract and no im-
port version. For example:

Import-Package: javax.persistence,javax.persistence.criteria
Require-Capability: osgi.contract;
 filter:="(&(osgi.contract=JavaJPA)(version=2.1))"

127.7.3 Service capabilities
The JPA Service implementation is responsible for registering both an EntityManagerFac-
toryBui lder service and a EntityManagerFactory service on behalf of the persistence bundle.
The persistence bundle should therefore provide two capabilities in the osgi .service name-
space, one representing the EntityManagerFactoryBui lder service, and another representing the
javax.persistence.EntityManagerFactory service. These capabilities must also declare uses con-
straints for the packages that they expose. For example:

Provide-Capability: osgi.service;
 objectClass:List<String>=
 "org.osgi.service.jpa.EntityManagerFactoryBuilder";
 uses:="org.osgi.service.jpa",
 osgi.service;objectClass:List<String>=
 "javax.persistence.EntityManagerFactory";
 uses:="javax.persistence"

This capability must follow the rules defined for the osgi.service Namespace on page 727.

127.8 Security
When Java permissions are enabled, the JPA service must perform the following security proce-
dures.

org.osgi.service.jpa JPA Service Specification Version 1.1

Page 612 OSGi Compendium Release 8

127.8.1 Service Permissions
The JPA service is built upon the existing OSGi service infrastructure. This means that Service Per-
mission applies regarding the ability to publish services. A persistence bundle therefore must have
ServicePermission[<interface>, REGISTER] for both the EntityManagerFactory and EntityManager-
FactoryBui lder services.

If a persistence bundle specifies a complete persistence unit then the persistence bundle must either
have ServicePermission[<org.osgi .service. jdbc.DataSourceFactory>, GET] , or be able to directly
load the configured database driver.

Client bundles that wish to configure a persistence unit using the EntityManagerFactoryBui lder ser-
vice must have ServicePermission[<org.osgi .service. jpa.EntityManagerFactoryBui lder>, GET] . Fur-
thermore, if this service is used to configure an incomplete persistence unit with a database driver
name then it is the getter of the EntityManagerFactoryBui lder service whose permissions must be
checked when obtaining the DataSourceFactory service. If the caller of the EntityManagerFactory
Builder passes a ready constructed database Driver or DataSource then no permission check is re-
quired.

127.8.2 Required Admin Permission
The JPA service implementation requires AdminPermission[*,CONTEXT] because it needs access to
the bundle's Bundle Context object with the Bundle.getBundleContext() method.

127.9 org.osgi.service.jpa

JPA Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. jpa; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. jpa; vers ion="[1.1 ,1 .2)"

127.9.1 Summary

• EntityManagerFactoryBui lder - This service interface offers JPA clients the ability to create in-
stances of EntityManagerFactory for a given named persistence unit.

127.9.2 public interface EntityManagerFactoryBuilder
This service interface offers JPA clients the ability to create instances of EntityManagerFactory for
a given named persistence unit. A service instance will be created for each named persistence unit
and can be filtered by comparing the value of the osgi.unit.name property containing the persis-
tence unit name. This service is used specifically when the caller wants to pass in factory-scoped
properties as arguments. If no properties are being used in the creation of the EntityManagerFactory
then the basic EntityManagerFactory service should be used.

Provider Type Consumers of this API must not implement this type

127.9.2.1 public static final String JPA_CAPABILITY_NAME = "osgi.jpa"

The name of the JPA extender capability.

JPA Service Specification Version 1.1 org.osgi.service.jpa.annotations

OSGi Compendium Release 8 Page 613

Since 1.1

127.9.2.2 public static final String JPA_SPECIFICATION_VERSION = "1.1"

The version of the extender capability for the JPA Service specification

Since 1.1

127.9.2.3 public static final String JPA_UNIT_NAME = "osgi.unit.name"

The name of the persistence unit.

127.9.2.4 public static final String JPA_UNIT_PROVIDER = "osgi.unit.provider"

The class name of the provider that registered the service and implements the JPA
javax.persistence.PersistenceProvider interface.

127.9.2.5 public static final String JPA_UNIT_VERSION = "osgi.unit.version"

The version of the persistence unit bundle.

127.9.2.6 public EntityManagerFactory createEntityManagerFactory(Map<String, Object> props)

props Properties to be used, in addition to those in the persistence descriptor, for configuring the Entity-
ManagerFactory for the persistence unit.

□ Return an EntityManagerFactory instance configured according to the properties defined in the cor-
responding persistence descriptor, as well as the properties passed into the method.

Returns An EntityManagerFactory for the persistence unit associated with this service. Must not be null.

127.9.2.7 public Bundle getPersistenceProviderBundle()

□ This method returns the Bundle which provides the PersistenceProvider implementation that is
used by this EntityManagerFactoryBuilder.

If the PersistenceProvider is provided as an OSGi service then this method must return the bundle
which registered the service. Otherwise this method must return the bundle which loaded the Per-
sistenceProvider implementation class.

Returns The Bundle which provides the PersistenceProvider implementation used by this EntityManager-
FactoryBuilder.

Since 1.1

127.9.2.8 public String getPersistenceProviderName()

□ This method returns the name of the PersistenceProvider implementation that is used by
this EntityManagerFactoryBuilder. The returned value will be the same as the value of the
JPA_UNIT_PROVIDER service property.

Returns the name of the PersistenceProvider implementation

Since 1.1

127.10 org.osgi.service.jpa.annotations

JPA Service Annotations Package Version 1.1.

This package contains annotations that can be used to require the JPA Service implementation.

Bundles should not normally need to import this package as the annotations are only used at build-
time.

References JPA Service Specification Version 1.1

Page 614 OSGi Compendium Release 8

127.10.1 Summary

• RequireJPAExtender - This annotation can be used to require the JPA extender.

127.10.2 @RequireJPAExtender
This annotation can be used to require the JPA extender. It can be used directly, or as a meta-annota-
tion.

Retention CLASS

Target TYPE , PACKAGE

127.11 References

[1] JPA 1.0
http://jcp.org/en/jsr/summary?id=220

[2] JPA 2.0
http://jcp.org/en/jsr/summary?id=317

[3] JPA 2.1
http://jcp.org/en/jsr/summary?id=317

[4] Java EE 5
http://www.oracle.com/technetwork/java/javaee/tech/index.html

[5] Portable Java Contract Definitions
https://docs.osgi.org/reference/portable-java-contracts.html

http://jcp.org/en/jsr/summary?id=220
http://jcp.org/en/jsr/summary?id=317
http://jcp.org/en/jsr/summary?id=317
http://www.oracle.com/technetwork/java/javaee/tech/index.html
https://docs.osgi.org/reference/portable-java-contracts.html

Web Applications Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 615

128 Web Applications Specification

Version 1.0

128.1 Introduction
The Java EE Servlet model has provided the backbone of web based applications written in Java. Giv-
en the popularity of the Servlet model, it is desirable to provide a seamless experience for deploying
existing and new web applications to Servlet containers operating on the OSGi framework. Previ-
ously, the Http Service in the catalog of OSGi compendium services was the only model specified in
OSGi to support the Servlet programming model. However, the Http Service, as defined in that spec-
ification, is focused on the run time, as well as manual construction of the servlet context, and thus
does not actually support the standard Servlet packaging and deployment model based on the Web
Application Archive, or WAR format.

This specification defines the Web Application Bundle, which is a bundle that performs the same
role as the WAR in Java EE. A WAB uses the OSGi life cycle and class/resource loading rules instead
of the standard Java EE environment. WABs are normal bundles and can leverage the full set of fea-
tures of the OSGi framework.

Web applications can also be installed as traditional WARs through a manifest rewriting process.
During the install, a WAR is transformed into a WAB. This specification was based on ideas devel-
oped in [5] PAX Web Extender.

This Web Application Specification provides support for web applications written to the Servlet 2.5
specification, or later. Given that Java Server Pages, or JSPs, are an integral part of the Java EE web ap-
plication framework, this specification also supports the JSP 2.1 specification or greater if present.
This specification details how a web application packaged as a WAR may be installed into an OSGi
framework, as well as how this application may interact with, and obtain, OSGi services.

128.1.1 Essentials

• Extender - Enable the configuration of components inside a bundle based on configuration data
provided by the bundle developer.

• Services - Enable the use of OSGi services within a Web Application.
• Deployment - Define a mechanism to deploy Web Applications, both OSGi aware and non OSGi

aware, in the OSGi environment.
• WAR File Support - Transparently enhance the contents of a WAR's manifest during installation

to add any headers necessary to deploy a WAR as an OSGi bundle.

128.1.2 Entities

• Web Container - The implementation of this specification. Consists of a Web Extender, a Web URL
Handler and a Servlet and Java Server Pages Web Runtime environment.

• Web Application - A program that has web accessible content. A Web Application is defined by [2]
Java EE Web Applications.

• Web Application Archive (WAR) - The Java EE standard resource format layout of a JAR file that
contains a deployable Web Application.

• Web Application Bundle - A Web Application deployed as an OSGi bundle, also called a WAB.
• WAB - The acronym for a Web Application Bundle.

Introduction Web Applications Specification Version 1.0

Page 616 OSGi Compendium Release 8

• Web Extender - An extender bundle that deploys the Web Application Bundle to the Web Run-
time based on the Web Application Bundle's state.

• Web URL Handler - A URL handler which transforms a Web Application Archive (WAR) to con-
form to the OSGi specifications during installation by installing the WAR through a special URL
so that it becomes a Web Application Bundle.

• Web Runtime - A Java Server Pages and Servlet environment, receiving the web requests and trans-
lating them to servlet calls, either from Web Application servlets or other classes.

• Web Component - A Servlet or Java Server Page (JSP).
• Servlet - An object implementing the Servlet interface; this is for the request handler model in the

Servlet Specification.
• Servlet Context - The model representing the Web Application in the Servlet Specification.
• Java Server Page (JSP) - A declarative, template based model for generating content through

Servlets that is optionally supported by the Web Runtime.
• Context Path - The URI path prefix of any content accessible in a Web Application.

Figure 128.1 Web Container Entities

Web URL Handler
Impl

Web Application

URL Stream
Handler Service
url.handler.protocol=webbundle

Web Extender
Impl

Web Runtime
Impl

Web ARchive

Event Admin

Web Container

invoke
servlets

install bundle

Servlet Context

web.xml

Web
Server

transformer

0,1

 g
et

 co
nt

en
t

co
nf

ig
ur

ed
 b

y

re
w

rit
es

m
an

ife
st

128.1.3 Dependencies
The package dependencies for the clients of this specification are listed in the following table.

Table 128.1 Dependency versions

Packages Export Version Client Import Range
javax.servlet 2.5 [2.5,3.0)
javax.servlet .http 2.5 [2.5,3.0)
javax.servlet . jsp.el 2.1 [2.1,3.0)
javax.servlet . jsp. jst l .core 1.2 [1.2,2.0)
javax.servlet . jsp. jst l .fmt 1.2 [1.2,2.0)
javax.servlet . jsp. jst l .sql 1 .2 [1.2,2.0)
javax.servlet . jsp. jst l .t lv 1.2 [1.2,2.0)
javax.servlet . jsp.resources 2.1 [2.1,3.0)

Web Applications Specification Version 1.0 Web Container

OSGi Compendium Release 8 Page 617

Packages Export Version Client Import Range
javax.servlet . jsp.tagext 2.1 [2.1,3.0)
javax.servlet . jsp 2.1 [2.1,3.0)

JSP is optional for the Web Runtime.

128.1.4 Synopsis
The Web Application Specification is composed of a number of cooperating parts, which are imple-
mented by a Web Container. A Web Container consists of:

• Web Extender - Responsible for deploying Web Application Bundles (WAB) to a Web Runtime,
• Web Runtime - Provides support for Servlet and optionally for JSPs, and
• Web URL Handler - Provides on-the-fly enhancements of non-OSGi aware Web ARchives (WAR)

so that they can be installed as a WAB.

WABs are standard OSGi bundles with additional headers in the manifest that serve as deployment
instructions to the Web Extender. WABs can also contain the Java EE defined web.xml descriptor in
the WEB-INF/ directory. When the Web Extender detects that a WAB is ready the Web Extender de-
ploys the WAB to the Web Runtime using information contained in the web.xml descriptor and the
appropriate manifest headers. The Bundle Context of the WAB is made available as a Servlet Con-
text attribute. From that point, the Web Runtime will use the information in the WAB to serve con-
tent to any requests. Both dynamic as well as static content can be provided.

The Web URL Handler allows the deployment of an unmodified WAR as a WAB into the OSGi
framework. This Web URL Handler provides a URL stream handler with the webbundle: scheme. In-
stalling a WAR with this scheme allows the Web URL Handler to interpose itself as a filter on the in-
put stream of the contents of the WAR, transforming the contents of the WAR into a WAB. The Web
URL Handler rewrites the manifest by adding necessary headers to turn the WAR into a valid WAB.
Additional headers can be added to the manifest that serve as instructions to the Web Extender.

After a WAB has been deployed to the Web Runtime, the Web Application can interact with the OS-
Gi framework via the provided Bundle Context. The Servlet Context associated with this WAB fol-
lows the same life cycle as the WAB. That is, when the underlying Web Application Bundle is start-
ed, the Web Application is deployed to the Web Runtime. When the underlying Web Application
Bundle is stopped because of a failure or other reason, the Web Application is undeployed from the
Web Run-time.

128.2 Web Container
A Web Container is the implementation of this specification. It consists of the following parts:

• Web Extender - Detects Web Application Bundles (WAB) and tracks their life cycle. Ready WABs
are deployed to the Web Runtime.

• Web Runtime - A runtime environment for a Web Application that supports the [3] Servlet 2.5 spec-
ification and [4] JSP 2.1 specification or later. The Web Runtime receives web requests and calls the
appropriate methods on servlets. Servlets can be implemented by classes or Java Server Pages.

• Web URL Handler - A URL stream handler providing the webbundle: scheme. This scheme can be
used to install WARs in an OSGi framework. The Web URL Handler will then automatically add
the required OSGi manifest headers.

The extender, runtime, and handler can all be implemented in the same or different bundles and
use unspecified mechanisms to communicate. This specification uses the defined names of the sub-
parts as the actor; the term Web Container is the general name for this collection of actors.

Web Application Bundle Web Applications Specification Version 1.0

Page 618 OSGi Compendium Release 8

128.3 Web Application Bundle
Bundles are the deployment and management entities under OSGi. A Web Application Bundle (WAB)
is deployed as an OSGi bundle in an OSGi framework, where each WAB provides a single Web Ap-
plication. A Web Application can make use of the [3] Servlet 2.5 specification and [4] JSP 2.1 specification
programming models, or later, to provide content for the web.

A WAB is defined as a normal OSGi bundle that contains web accessible content, both static and dy-
namic. There are no restrictions on bundles. A Web Application can be packaged as a WAB during
application development, or it can be transparently created at bundle install time from a standard
Web Application aRchive (WAR) via transformation by the Web URL Handler, see Web URL Handler
on page 622.

A WAB is a valid OSGi bundle and as such must fully describe its dependencies and exports (if any).
As Web Applications are modularized further into multiple bundles (and not deployed as WAR files
only) it is possible that a WAB can have dependencies on other bundles.

A WAB may be installed into the framework using the BundleContext. instal lBundle methods. Once
installed, a WAB's life cycle is managed just like any other bundle in the framework. This life cy-
cle is tracked by the Web Extender who will then deploy the Web Application to the Web Runtime
when the WAB is ready and will undeploy it when the WAB is no longer ready. This state is depicted
in Figure 128.2.

Figure 128.2 State diagram Web Application

DEPLOYING

init

collision resolved

DEPLOYED UNDEPLOYING

UNDEPLOYEDFAILED

Web Application
deployed to runtime

WAB or Web
Extender stopped

Web Application
no longer available

WAB started

failure

128.3.1 WAB Definition
A WAB is differentiated from non Web Application bundles through the specification of the addi-
tional manifest header:

Web-ContextPath ::= path

The Web-ContextPath header specifies the value of the Context Path of the Web Application. All
web accessible content of the Web Application is available on the web server relative to this Con-
text Path. For example, if the context path is /sales , then the URL would be something like: http://
www.acme.com/sales. The Context Path must always begin with a solidus (' / ' \u002F).

The Web Extender must not recognize a bundle as a Web Application unless the Web-ContextPath
header is present in its manifest and the header value is a valid path for the bundle.

A WAB can optionally contain a web.xml resource to specify additional configuration. This web.xml
must be found with the Bundle f indEntr ies method at the path:

Web Applications Specification Version 1.0 Web Application Bundle

OSGi Compendium Release 8 Page 619

 WEB-INF/web.xml

The f indEntr ies method includes fragments, allowing the web.xml to be provided by a fragment. The
Web Extender must fully support a web.xml descriptor that specifies Servlets, Filters, or Listeners
whose classes are required by the WAB.

128.3.2 Starting the Web Application Bundle
A WAB's Web Application must be deployed while the WAB is ready. Deployed means that the Web
Application is available for web requests. Once deployed, a WAB can serve its web content on the
given Context Path. Ready is when the WAB:

• Is in the ACTIVE state, or
• Has a lazy activation policy and is in the STARTING state.

The Web Extender should ensure that serving static content from the WAB does not activate the
WAB when it has a lazy activation policy.

To deploy the WAB, the Web Extender must initiate the deploying of the Web Application into a
Web Runtime. This is outlined in the following steps:

1. Wait for the WAB to become ready. The following steps can take place asynchronously with the
starting of the WAB.

2. Post an org/osgi/service/web/DEPLOYING event. See Events on page 625.
3. Validate that the Web-ContextPath manifest header does not match the Context Path of any oth-

er currently deployed web application. If the Context Path value is already in use by another
Web Application, then the Web Application must not be deployed, and the deployment fails, see
Failure on page 620. The Web Extender should log the collision. If the prior Web Application
with the same Context Path is undeployed later, this Web Application should be considered as a
candidate, see Stopping the Web Application Bundle on page 621.

4. The Web Runtime processes deployment information by processing the web.xml descriptor, if
present. The Web Container must perform the necessary initialization of Web Components in
the WAB as described in the [3] Servlet 2.5 specification. This involves the following sub-steps in
the given order:
• Create a Servlet Context for the Web Application.
• Instantiate configured Servlet event listeners.
• Instantiate configured application filter instances etc.

The Web Runtime is required to complete instantiation of listeners prior to the start of execu-
tion of the first request into the Web Application by the Web Runtime. Attribute changes to the
Servlet Context and Http Session objects can occur concurrently. The Servlet Container is not
required to synchronize the resulting notifications to attribute listener classes. Listener classes
that maintain state are responsible for the integrity of the data and should handle this case ex-
plicitly.

If event listeners or filters are used in the web.xml , then the Web Runtime will load the corre-
sponding classes from the bundle activating the bundle if it was lazily started. Such a configura-
tion will therefore not act lazily.

5. Publish the Servlet Context as a service with identifying service properties, see Publishing the
Servlet Context on page 620.

6. Post an org/osgi/service/web/DEPLOYED event to indicate that the web application is now avail-
able. See Events on page 625.

If at any moment before the org/osgi/service/web/DEPLOYED event is published the deployment of
the WAB fails, then the WAB deployment fails, see Failure on page 620.

Web Application Bundle Web Applications Specification Version 1.0

Page 620 OSGi Compendium Release 8

128.3.3 Failure
Any validation failures must prevent the Web Application from being accessible via HTTP, and
must result in a org/osgi/service/web/FAILED event being posted. See Events on page 625. The sit-
uation after the failure must be as if the WAB was never deployed.

128.3.4 Publishing the Servlet Context
To help management agents with tracking the state of Web Applications, the Web Extender must
register the Servlet Context of the WAB as a service, using the Bundle Context of the WAB. The
Servlet Context service must be registered with the service properties listed in the following table.

Table 128.2 Servlet Context Service Properties

Property Name Type Description
osgi .web.symbol icname Str ing The symbolic name for the Web Application

Bundle
osgi .web.version Str ing The version of the Web Application Bundle. If no

Bundle-Version is specified in the manifest then
this property must not be set.

osgi .web.contextpath Str ing The Context Path from which the WAB's content
will be served.

128.3.5 Static Content
A deployed WAB provides content on requests from the web. For certain access paths, this can serve
content from the resources of the web application: this is called static content. A Web Runtime must
use the Servlet Context resource access methods to service static content, the resource loading strat-
egy for these methods is based on the f indEntr ies method, see Resource Lookup on page 626. For
confidentiality reasons, a Web Runtime must not return any static content for paths that start with
one of the following prefixes:

WEB-INF/
OSGI-INF/
META-INF/
OSGI-OPT/

These protected directories are intended to shield code content used for dynamic content generation
from accidentally being served over the web, which is a potential attack route. In the servlet speci-
fication, the WEB-INF/ directory in the WAR is protected in such a way. However, this protection is
not complete. A dependent JAR can actually be placed outside the WEB-INF directory that can then
be served as static content. The same is true for a WAB. Though the protected directories must nev-
er be served over the web, there are no other checks required to verify that no content can be served
that is also available from the Bundle class path.

It is the responsibility of the author of the WAB to ensure that confidential information remains
confidential by placing it in one of the protected directories. WAB bundles should be constructed in
such a way that they do not accidentally expose code or confidential information. The simplest way
to achieve this is to follow the WAR model where code is placed in the WEB-INF/classes directory
and this directory is placed on the Bundle's class path as the first entry. For example:

Bundle-ClassPath: WEB-INF/classes, WEB-INF/lib/acme.jar

128.3.6 Dynamic Content
Dynamic content is content that uses code to generate the content, for example a servlet. This code
must be loaded from the bundle with the Bundle loadClass method, following all the Bundle class
path rules.

Web Applications Specification Version 1.0 Web Application Bundle

OSGi Compendium Release 8 Page 621

Unlike a WAR, a WAB is not constrained to package classes and code resources in the WEB-INF/
classes directory or dependent JARs in WEB-INF/l ib/ only. These entries can be packaged in any way
that's valid for an OSGi bundle as long as such directories and JARs are part of bundle class path as
set with the Bundle-ClassPath header and any attached fragments. JARs that are specified in the Bun-
dle-ClassPath header are treated like JARs in the WEB-INF/l ib/ directory of the Servlet specification.
Similarly, any directory that is part of the Bundle-ClassPath header is treated like WEB-INF/classes
directory of the Servlet specification.

Like WARs, code content that is placed outside the protected directories can be served up to clients
as static content.

128.3.7 Content Serving Example
This example consists of a WAB with the following contents:

acme.jar:
 Bundle-ClassPath: WEB-INF/classes, LIB/bar.jar
 Web-ContextPath: /acme

 WEB-INF/lib/foo.jar
 LIB/bar.jar
 index.html
 favicon.ico

The content of the embedded JARs foo. jar and bar. jar is:

foo.jar: bar.jar:
 META-INF/foo.tld META-INF/bar.tld
 foo/FooTag.class bar/BarTag.class

Assuming there are no special rules in place then the following lists specifies the result of a number
of web requests for static content:

/acme/index.html acme.wab:index.html
/acme/favicon.ico acme.wab:favicon.ico
/acme/WEB-INF/lib/foo.jar not found because protecteddirectory
/acme/LIB/bar.jar acme.wab:LIB/bar.jar (code, but not protected)

In this example, the tag classes in bar. jar must be found (if JSP is supported) but the tag classes in
foo. jar must not because foo. jar is not part of the bundle class path.

128.3.8 Stopping the Web Application Bundle
A web application is stopped by stopping the corresponding WAB. In response to a WAB STOPPING
event, the Web Extender must undeploy the corresponding Web Application from the Servlet Con-
tainer and clean up any resources. This undeploying must occur synchronously with the WAB's
stopping event. This will involve the following steps:

1. An org/osgi/service/web/UNDEPLOYING event is posted to signal that a Web Application will
be removed. See Events on page 625.

2. Unregister the corresponding Servlet Context service
3. The Web Runtime must stop serving content from the Web Application.
4. The Web Runtime must clean up any Web Application specific resources as per servlet 2.5 speci-

fication.
5. Emit an org/osgi/service/web/UNDEPLOYED event. See Events on page 625.
6. It is possible that there are one or more colliding WABs because they had the same Context Path

as this stopped WAB. If such colliding WABs exists then the Web Extender must attempt to de-
ploy the colliding WAB with the lowest bundle id.

Web URL Handler Web Applications Specification Version 1.0

Page 622 OSGi Compendium Release 8

Any failure during undeploying should be logged but must not stop the cleaning up of resources
and notification of (other) listeners as well as handling any collisions.

128.3.9 Uninstalling the Web Application Bundle
A web application can be uninstalled by uninstalling the corresponding WAB. The WAB will be
uninstalled from the OSGi framework.

128.3.10 Stopping of the Web Extender
When the Web Extender is stopped all deployed WABs are undeployed as described in Stopping the
Web Application Bundle on page 621. Although the WAB is undeployed it remains in the ACTIVE
state. When the Web Extender leaves the STOPPING state all WABs will have been undeployed.

128.4 Web URL Handler
The Web URL Handler acts as a filter on the Input Stream of an install operation. It receives the
WAB or WAR and it then generates a JAR that conforms to the WAB specification by rewriting the
manifest resource. This process is depicted in Figure 128.3.

Figure 128.3 Web URL Handler

Web URL Handler
Impl

URL Stream
Handler Service
url.handler.protocol=webbundle

Web ARchive
or

WAB

install bundle

= transformer

WAB

en
ha

nc
es

m
an

ife
st

When the Web Container bundle is installed it must provide the webbundle: scheme to the URL
class. The Web URL Handler has two primary responsibilities:

• WAB - If the source is already a bundle then only the Web-ContextPath can be set or overwritten.
• WAR - If the source is a WAR (that is, it must not contain any OSGi defined headers) then convert

the WAR into a WAB.

The Web URL Handler can take parameters from the query arguments of the install URL, see URL
Parameters on page 623.

The URL handler must validate query parameters, and ensure that the manifest rewriting results in
valid OSGi headers. Any validation failures must result in Bundle Exception being thrown and the
bundle install must fail.

Once a WAB is generated and installed, its life cycle is managed just like any other bundle in the
framework.

Web Applications Specification Version 1.0 Web URL Handler

OSGi Compendium Release 8 Page 623

128.4.1 URL Scheme
The Web URL Handler's scheme is defined to be:

scheme ::= 'webbundle:' embedded '?' web-params
embedded ::= <embedded URL according to RFC 1738>
web-params ::= (web-param ('&' web-param)*)?
web-param ::= <key> '=' <value>

The web-param <key> and <value> as well as the <embedded ur l> must follow [6] Uniform Resource
Locators, RFC 1738 for their escaping and character set rules.A Web URL must further follow all the
rules of a URL. Whitespaces are not allowed between terms.

An example for a webbundle: URL:

webbundle:http://www.acme.com:8021/sales.war?Web-ContextPath=/sales

Any URL scheme understood by the framework can be embedded, such as an http: , or f i le : URL.
Some forms of embedded URL also contain URL query parameters and this must be supported. The
embedded URL most be encoded as a standard URL. That is, the control characters like colon (' : '
\u003A), solidus (' / ' \u002F), percent ('%' \u0025), and ampersand ('& ' \u0026) must not be encod-
ed. Thus the value returned from the getPath method may contain a query part. Any implementa-
tion must take care to preserve both the query parameters for the embedded URL, and for the com-
plete webbundle: URL. A question mark must always follow the embedded URL to simplify this pro-
cessing. The following example shows an HTTP URL with some query parameters:

webbundle:http://www.acme.com/sales?id=123?Bundle-SymbolicName=com.example&
 Web-ContextPath=/

128.4.2 URL Parsing
The URL object for a webbundle: URL must return the following values for the given methods:

• getProtocol - webbundle
• getPath - The complete embedded URL
• getQuery - The parameters for processing of the manifest.

For the following example:

webbundle:http://acme.com/repo?war=example.war?Web-ContextPath=/sales

The aforementioned methods must return:

• getProtocol - webbundle
• getPath - http://acme.com/repo?war=example.war
• getQuery - Web-ContextPath=/sales

128.4.3 URL Parameters
All the parameters in the webbundle: URL are optional except for the Web-ContextPath parameter.
The parameter names are case insensitive, but their values must be treated as case sensitive. Table
128.3 describes the parameters that must be supported by any webbundle: URL Stream handler. A
Web URL Handler is allowed to support additional parameters.

Table 128.3 Web bundle URL Parameters

Parameter Name Description
Bundle-Symbol icName The desired symbolic name for the resulting WAB.

Web URL Handler Web Applications Specification Version 1.0

Page 624 OSGi Compendium Release 8

Parameter Name Description
Bundle-Version The version of the resulting WAB. The value of this parameter must

follow the OSGi versioning syntax.
Bundle-ManifestVersion The desired bundle manifest version. Currently, the only valid value

for this parameter is 2 .
Import-Package A list of packages that the war file depends on.
Web-ContextPath The Context Path from which the Servlet Container should serve con-

tent from the resulting WAB. This is the only valid parameter when
the input JAR is already a bundle. This parameter must be specified.

128.4.4 WAB Modification
The Web URL Handler can set or modify the Web-ContextPath of a WAB if the input source is al-
ready a bundle. It must be considered as a bundle when any of the OSGi defined headers listed in Ta-
ble 128.3 is present in the bundle.

For WAB Modification, the Web URL Handler must only support the Web-ContextPath parameter
and it must not modify any existing headers other than the Web-ContextPath. Any other parameter
given must result in a Bundle Exception.

128.4.5 WAR Manifest Processing
The Web URL Handler is designed to support the transparent deployment of Java EE Web ARchives
(WAR). Such WARs are ignorant of the requirements of the underlying OSGi framework that hosts
the Web Runtime. These WARs are not proper OSGi bundles because they do not contain the neces-
sary metadata in the manifest. For example, a WAR without a Bundle-ManifestVersion, Import-Pack-
age, and other headers cannot operate in an OSGi framework.

The Web URL Handler implementation copies the contents of the embedded URL to the output and
rewrites the manifest headers based on the given parameters. The result must be a WAB.

Any parameters specified must be treated as manifest headers for the web. The following manifest
headers must be set to the following values if not specified:

• Bundle-ManifestVersion - Must be set to 2.
• Bundle-Symbol icName - Generated in an implementation specific way.
• Bundle-ClassPath - Must consist of:

• WEB-INF/classes
• All JARs from the WEB-INF/l ib directory in the WAR. The order of these embedded JARs is un-

specified.
• If these JARs declare dependencies in their manifest on other JARs in the bundle, then these

jars must also be appended to the Bundle-ClassPath header. The process of detecting JAR de-
pendencies must be performed recursively as indicated in the Servlet Specification.

• Web-ContextPath - The Web-ContextPath must be specified as a parameter. This Context Path
should start with a leading solidus (' / ' \u002F). The Web URL handler must add the preceding
solidus it if it is not present.

The Web URL Handler is responsible for managing the import dependencies of the WAR. Imple-
mentations are free to handle the import dependencies in an implementation defined way. They can
augment the Import-Package header with byte-code analysis information, add a fixed set of clauses,
and/or use the DynamicImport-Package header as last resort.

Any other manifest headers defined as a parameter or WAR manifest header not described in this
section must be copied to the WAB manifest by the Web URL Handler. Such an header must not be
modified.

Web Applications Specification Version 1.0 Events

OSGi Compendium Release 8 Page 625

128.4.6 Signed WAR files
When a signed WAR file is installed using the Web URL Handler, then the manifest rewriting
process invalidates the signatures in the bundle. The OSGi specification requires fully signed bun-
dles for security reasons, security resources in partially signed bundles are ignored.

If the use of the signing metadata is required, the WAR must be converted to a WAB during devel-
opment and then signed. In this case, the Web URL Handler cannot be used. If the Web URL Han-
dler is presented with a signed WAR, the manifest name sections that contain the resource's check
sums must be stripped out by the URL stream handler. Any signer files (*.SF and their correspond-
ing DSA/RSA signature files) must also be removed.

128.5 Events
The Web Extender must track all WABs in the OSGi framework in which the Web Extender is in-
stalled. The Web Extender must post Event Admin events, which is asynchronous, at crucial points
in its processing. The topic of the event must be one of the following values:

• org/osgi/service/web/DEPLOYING - The Web Extender has accepted a WAB and started the
process of deploying a Web Application.

• org/osgi/service/web/DEPLOYED - The Web Extender has finished deploying a Web Application,
and the Web Application is now available for web requests on its Context Path.

• org/osgi/service/web/UNDEPLOYING - The web extender started undeploying the Web Applica-
tion in response to its corresponding WAB being stopped or the Web Extender is stopped.

• org/osgi/service/web/UNDEPLOYED - The Web Extender has undeployed the Web Application.
The application is no longer available for web requests.

• org/osgi/service/web/FAILED - The Web Extender has failed to deploy the Web Application, this
event can be fired after the DEPLOYING event has fired and indicates that no DEPLOYED event
will be fired.

For each event topic above, the following properties must be published:

• bundle.symbol icName - (Str ing) The bundle symbolic name of the WAB.
• bundle. id - (Long) The bundle id of the WAB.
• bundle - (Bundle) The Bundle object of the WAB.
• bundle.version - (Version) The version of the WAB.
• context.path - (Str ing) The Context Path of the Web Application.
• t imestamp - (Long) The time when the event occurred
• extender.bundle - (Bundle) The Bundle object of the Web Extender Bundle
• extender.bundle. id - (Long) The id of the Web Extender Bundle.
• extender.bundle.symbol icName - (Str ing) The symbolic name of the Web Extender Bundle.
• extender.bundle.version - (Version) The version of the Web Extender Bundle.

In addition, the org/osgi/service/web/FAILED event must also have the following property:

• exception - (Throwable) If an exception caused the failure, an exception detailing the error that
occurred during the deployment of the WAB.

• col l is ion - (Str ing) If a name collision occurred, the Web-ContextPath that had a collision
• col l is ion.bundles - (Collect ion<Long>) If a name collision occurred, a collection of bundle ids

that all have the same value for the Web-ContextPath manifest header.

Interacting with the OSGi Environment Web Applications Specification Version 1.0

Page 626 OSGi Compendium Release 8

128.6 Interacting with the OSGi Environment

128.6.1 Bundle Context Access
In order to properly integrate in an OSGi environment, a Web Application can access the OSGi ser-
vice registry for publishing its services, accessing services provided by other bundles, and listening
to bundle and service events to track the life cycle of these artifacts. This requires access to the Bun-
dle Context of the WAB.

The Web Extender must make the Bundle Context of the corresponding WAB available to the Web
Application via the Servlet Context osgi-bundlecontext attribute. A Servlet can obtain a Bundle
Context as follows:

BundleContext ctxt = (BundleContext)
 servletContext.getAttribute("osgi-bundlecontext");

128.6.2 Other Component Models
Web Applications sometimes need to inter-operate with services provided by other component
models, such as a Declarative Services or Blueprint. Per the Servlet specification, the Servlet Con-
tainer owns the life cycle of a Servlet; the life cycle of the Servlet must be subordinate to the life cy-
cle of the Servlet Context, which is only dependent on the life cycle of the WAB. Interactions be-
tween different bundles are facilitated by the OSGi service registry. This interaction can be managed
in several ways:

• A Servlet can obtain a Bundle Context from the Servlet Context for performing service registry
operations.

• Via the JNDI Specification and the osgi :service JNDI namespace. The OSGi JNDI specification
describes how OSGi services can be made available via the JNDI URL Context. It defines an
osgi :service namespace and leverages URL Context factories to facilitate JNDI integration with
the OSGi service registry.

Per this specification, it is not possible to make the Servlet life cycle dependent on the availability of
specific services. Any synchronization and service dependency management must therefore be done
by the Web Application itself.

128.6.3 Resource Lookup
The getResource and getResourceAsStream methods of the ServletContext interface are used
to access resources in the web application. For a WAB, these resources must be found accord-
ing to the f indEntr ies method, this method includes fragments. For the getResource and getRe-
sourceAsStream method, if multiple resources are found, then the first one must be used.

Since the getResource and getResourceAsStream methods do not support wildcards while the f ind-
Entr ies method does it is necessary to escape the wildcard asterisk ('* ' \u002A) with prefixing it
with a reverse solidus (' \ ' \u005C). This implies that a reverse solidus must be escaped with an extra
reverse solidus. For example, the path foo\bar* must be escaped to foo\\bar* .

The getResourcePaths method must map to the Bundle getEntryPaths method, its return type is a
Set and can not handle multiples. However, the paths from the getEntryPaths method are relative
while the methods of the getResourcePaths must be absolute.

For example, assume the following manifest for a bundle:

Bundle-ClassPath: localized, WEB-INF
...

This WAB has an attached fragment acme-de. jar with the following content:

Web Applications Specification Version 1.0 Security

OSGi Compendium Release 8 Page 627

META-INF/MANIFEST.MF
localized/logo.png

The getResource method for local ized/logo.png uses the f indEntr ies method to find a resource in
the directory / local ized and the resource logo.png . Assuming the host bundle has no local ized/ di-
rectory, the Web Runtime must serve the logo.png resource from the acme-de. jar .

128.6.4 Resource Injection and Annotations
The Web Application web.xml descriptor can specify the metadata-complete attribute on the web-
app element. This attribute defines whether the web.xml descriptor is complete, or whether the class-
es in the bundle should be examined for deployment annotations. If the metadata-complete at-
tribute is set to true , the Web Runtime must ignore any servlet annotations present in the class files
of the Web Application. Otherwise, if the metadata-complete attribute is not specified, or is set to
fa lse , the container should process the class files of the Web Application for annotations, if support-
ed.

A WAB can make use of the annotations defined by [7] JSR 250 Common Annotations for the Java Plat-
form if supported by the Web Extender. Such a WAB must import the packages the annotations are
contained in. A Web Extender that does not support the use of JSR 250 annotations must not process
a WAB that imports the annotations package.

128.6.5 Java Server Pages Support
Java Server Pages (JSP) is a rendering technology for template based web page construction. This
specification supports [4] JSP 2.1 specification if available with the Web Runtime. The servlet element
in a web.xml descriptor is used to describe both types of Web Components. JSP components are de-
fined implicitly in the web.xml descriptor through the use of an implicit . jsp extension mapping, or
explicitly through the use of a jsp-group element.

128.6.6 Compilation
A Web Runtime compiles a JSP page into a Servlet, either during the deployment phase, or at the
time of request processing, and dispatches the request to an instance of such a dynamically created
class. Often times, the compilation task is delegated to a separate JSP compiler that will be respon-
sible for identifying the necessary tag libraries, and generating the corresponding Servlet. The con-
tainer then proceeds to load the dynamically generated class, creates an instance and dispatches the
servlet request to that instance.

Supporting in-line compilation of a JSP inside a bundle will require that the Web Runtime main-
tains a private area where it can store such compiled classes. The Web Runtime can leverage its pri-
vate bundle storage area. The Web Runtime can construct a special class loader to load generated JSP
classes such that classes from the bundle class path are visible to newly compiled JSP classes.

The JSP specification does not describe how JSP pages are dynamically compiled or reloaded. Vari-
ous Web Runtime implementations handle the aspects in proprietary ways. This specification does
not bring forward any explicit requirements for supporting dynamic aspects of JSP pages.

128.7 Security
The security aspects of this specification are defined by the [3] Servlet 2.5 specification.

128.8 References

[1] Java Enterprise Edition Release 5

References Web Applications Specification Version 1.0

Page 628 OSGi Compendium Release 8

Java 1.5.0 Packages http://www.oracle.com/technetwork/java/javaee/tech/javaee5-jsp-135162.html

[2] Java EE Web Applications
http://www.oracle.com/technetwork/java/javaee/tech/webapps-138511.html

[3] Servlet 2.5 specification
http://jcp.org/aboutJava/communityprocess/mrel/jsr154/index.html

[4] JSP 2.1 specification
http://jcp.org/aboutJava/communityprocess/final/jsr245/index.html

[5] PAX Web Extender
http://team.ops4j.org/wiki/display/paxweb/Pax+Web

[6] Uniform Resource Locators, RFC 1738
http://www.ietf.org/rfc/rfc1738.txt

[7] JSR 250 Common Annotations for the Java Platform
http://jcp.org/aboutJava/communityprocess/pfd/jsr250/index.html

http://www.oracle.com/technetwork/java/javaee/tech/javaee5-jsp-135162.html
http://www.oracle.com/technetwork/java/javaee/tech/webapps-138511.html
http://jcp.org/aboutJava/communityprocess/mrel/jsr154/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr245/index.html
http://team.ops4j.org/wiki/display/paxweb/Pax+Web
http://www.ietf.org/rfc/rfc1738.txt
http://jcp.org/aboutJava/communityprocess/pfd/jsr250/index.html

Coordinator Service Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 629

130 Coordinator Service Specification

Version 1.0

130.1 Introduction
The OSGi programming model is based on the collaboration of standard and custom components.
In such a model there is no central authority that has global knowledge of the complete application.
Though this lack of authority can significantly increase reusability (and robustness) there are times
when the activities of the collaborators must be coordinated. For example, a service that is repeated-
ly called in a task could optimize performance by caching intermediate results until it knew the task
was ended.

To know when a task involving multiple collaborators has ended is the primary purpose of the Co-
ordinator service specification. The Coordinator service provides a rendezvous for an initiator to
create a Coordination where collaborators can decide to participate. When the Coordination has
ended, all participants are informed.

This Coordinator service provides an explicit Coordination model, the Coordination is explicitly
passed as a parameter, and an implicit model where the Coordination is associated with the current
thread. Implicit Coordinations can be nested.

Coordinators share the coordination aspects of the resource model of transactions. However, the
model is much lighter-weight because it does not support any of the ACID properties.

130.1.1 Essentials

• Coordination - Provide a solution to allow multiple collaborators to coordinate the outcome of a
task initiated by an initiator.

• Initiator - An initiator must be able to initiate a coordination and control the final outcome.
• Participants - Participants in the task must be informed when the coordination has ended or failed

as well as being able to terminate the Coordination.
• Time-out - A Coordination should fail after a given time-out.
• Blocking - Provide support for blocking and serializing access to Participants.
• Nesting - It must be possible to nest Coordinations.
• Per Thread Model - Provide a per-thread current Coordination model.
• Variables - Provide a variable space per Coordination

130.1.2 Entities

• Coordinator - A service that can create and enumerate Coordinations.
• Coordination - Represents the ongoing Coordination.
• Initiator - The party that initiates a Coordination.
• Participant - A party that wants to be informed of the outcome of a Coordination.
• Collaborator - Either a participant or initiator.

Usage Coordinator Service Specification Version 1.0

Page 630 OSGi Compendium Release 8

Figure 130.1 Class and Service overview

Participant ImplInitiator

Coordinator Impl

Coordinator

<<interface>>
Coordination

130.2 Usage
This section is an introduction in the usage of the Coordinator service. It is not the formal specifica-
tion, the normative part starts at Coordinator Service on page 639. This section leaves out some of
the details for clarity.

130.2.1 Synopsis
The Coordinator service provides a mechanism for multiple parties to collaborate on a common task
without a priori knowledge of who will collaborate in that task. A collaborator can participate by
adding a Participant to the Coordination. The Coordination will notify the Participants when the co-
ordination is ended or when it is failed.

Each Coordination has an initiator that creates the Coordination object through the Coordinator ser-
vice. The initiator can then push this object on a thread-local stack to make it an implicit Coordi-
nation or it can pass this object around as a parameter for explicit Coordinations. Collaborators can
then use the current Coordination on the stack or get it from a parameter. Whenever a bundle wants
to participate in the Coordination it adds itself to the Coordination as a participant. If necessary, a
collaborator can initiate a new Coordination, which could be a nested Coordination for implicit Co-
ordinations.

A Coordination must be terminated. Termination is either a normal end when the initiator calls the
end method or it is failed when the fa i l method is called. A Coordination can be failed by any of the
collaborators. A Coordination can also fail independently due to a time-out or when the initiator re-
leases its Coordinator service. All participants in the Coordination are informed in reverse participa-
tion order about the outcome in a callback for ended or failed Coordinations.

A typical action diagram with a successful outcome is depicted in Figure 130.2.

Coordinator Service Specification Version 1.0 Usage

OSGi Compendium Release 8 Page 631

Figure 130.2 Action Diagram Implicit Coordination

initiator Coordinator Coordination Collaborator Participant
begin()

new()

work()

addParticpant()

new()

end()
ended()

addParticpant()

130.2.2 Explicit Coordination
The general pattern for an initiator is to create a Coordination through the Coordinator service, per-
form the work in a try block, catch any exceptions and fail the Coordination in the catch block, and
then ensure ending the Coordination in the finally block. The finally block can cause an exception.
This is demonstrated in the following example:

Coordination c = coordinator.create("com.example.work",0);
try {
 doWork(c);
} catch(Exception e) {
 c.fail(e);
} finally {
 c.end();
}

This deceptively small template is quite robust:

• If the doWork method throws an Exception then the template fails with a Coordination Excep-
tion because it is failed in the try block.

• Any exceptions thrown in the try block are automatically causing the Coordination to fail.
• The Coordination is always terminated and removed from the stack due to the finally block.
• All failure paths, Coordinations that are failed by any of the collaborators, time-outs, or oth-

er problems are handled by the end method in the finally block. It will throw a FAILED or
PARTIALLY_ENDED Coordination Exception for any of the failures.

The different failure paths and their handling is pictured in Figure 130.3.

Usage Coordinator Service Specification Version 1.0

Page 632 OSGi Compendium Release 8

Figure 130.3 Flow through the Coordination template

create(...)

end(...)

method body

try

finally

asynchronous failurecatch

fail(...)

fail(...)

fail(...)

finally

The example shows an explicit Coordination because the create method is used, implicit Coordina-
tions are used in Implicit Coordinations on page 633. The parameters of the create method are the
name of the Coordination and its time-out. The name is used for informational purposes as well as
security. For security reasons, the name must follow the same syntax as the Bundle Symbolic Name.
In a secure environment the name can be used to limit Coordinations to a limited set of bundles. For
example, a set of bundles signed by a specific signer can use names like com.acme.* that are denied
to all other bundles.

The zero time-out specifies that the Coordination will not have a time-out. Otherwise it must be a
positive long, indicating the number of milliseconds the Coordination may take. However, imple-
mentations should have a configurable time-out to ensure that the system remains alive.

In the doWork method the real work is done in conjunction with the collaborators. Explicit Coordi-
nations can be passed to other threads if needed. Collaborators can decide to add participants when-
ever they require a notification when the Coordination has been terminated. For example, the fol-
lowing code could be called from the doWork method:

void foo(Coordination c) {
 doPrepare();
 c.addParticipant(this);
}

This method does the preparation work but does not finalize it so that next time it can use some in-
termediate results. For example, the prepare method could cache a connection to a database that
should be reused during the Coordination. The collaborator can assume that it will be called back
on either the fa i led or ended method. These methods could look like:

public void ended(Coordination c) { doFinish(); }
public void failed(Coordination c) { doFailed(); }

Coordinator Service Specification Version 1.0 Usage

OSGi Compendium Release 8 Page 633

The Coordinator provides the guarantee that this code will always call the doFinish method when
the Coordination succeeds and doFai led method when it failed.

The Participant must be aware that the ended(Coordination) and fa i led(Coordination) methods can
be called on any thread.

If the doWork method throws an exception it will end up in the catch block of the initiator. The
catch block will then fail the Coordination by calling the fa i l method with the given exception.
If the Coordination was already terminated because something else already had failed it then the
method call is ignored, only the first fail is used, later fails are ignored.

In all cases, the finally block is executed last. The finally block ends the Coordination. If this coor-
dination was failed then it will throw a Coordination Exception detailing the reason of the failure.
Otherwise it will terminate it and notify all the participants.

The Coordination Exception is a Runtime Exception making it unnecessary to declare it.

130.2.3 Multi Threading
Explicit Coordinations allow the Coordination objects to be passed to many different collabora-
tors who can perform the work on different threads. Each collaborator can fail the Coordination
at any moment in time or the time-out can occur on yet another thread. Participants must there-
fore be aware that the callbacks ended and fa i led can happen on any thread. The following exam-
ple shows a typical case where a task is parallelized. If any thread fails the Coordination, all other
threads could be notified before they're finished.

Executor executor = ...
final CountDownLatch latch = new CountdownLatch(10);
final Coordination c = coordinator.create("parallel", 0);
for (int i=0; i<10; i++) {
 executor.execute(
 new Runnable() {
 public void run() { baz(c); latch.countDown(); }
 });
 }
 latch.await();
 c.end();

The Coordination object is thread safe so it can be freely passed around.

130.2.4 Implicit Coordinations
An explicit Coordination requires that the Coordination is passed as a parameter to the doWork
method. The Coordinator also supports implicit Coordinations. With implicit Coordinations the Co-
ordinator maintains a thread local stack of Coordinations where the top of this stack is the current
Coordination for that thread. The usage of the implicit Coordination is almost identical to the ex-
plicit Coordinations except that all the work occurs on a single thread. The control flow is almost
identical to explicit Coordinations:

Coordination c = coordinator.begin("com.example.work",0);
try {
 doWork();
} catch(Exception e) {
 c.fail(e);
} finally {
 c.end();
}

Usage Coordinator Service Specification Version 1.0

Page 634 OSGi Compendium Release 8

See also Figure 130.3. However, in this case the finally block with the call to the end method is even
more important. With an implicit Coordination the Coordination is put on a thread local stack in
the begin method and must therefore be popped when the Coordination is finished. The finally
block ensures therefore the proper cleanup of this thread local stack.

The difference between implicit and explicit Coordinations is that the implicit Coordination is not
passed as a parameter, instead, collaborators use the current Coordination. With implicit Coordina-
tions all method invocations in a thread can always access the current Coordination, even if they
have many intermediates on the stack. The implicit model allows a collaborator many levels down
the stack to detect a current Coordination and register itself without the need to modify all interme-
diate methods to contain a Coordination parameter. The explicit model has the advantage of explic-
itness but requires all APIs to be modified to hold the parameter. This model does not support pass-
ing the parameter through layers that are not aware of the Coordination. For example, OSGi services
in general do not have a Coordination parameter in their methods making the use of explicit Coor-
dinations impossible.

Collaborators can act differently in the presence of a current Coordination. For example, a collabora-
tor can optimize its work flow depending on the presence of a current Coordination.

Coordinator coordinator = ...
void foo() {
 doPrepare();
 if (!coordinator.addParticipant(this))
 doFinish();
}

The Coordinator service has an addPart ic ipant method that makes working with the current Coor-
dination simple. If there is a current Coordination then the Coordinator service will add the partic-
ipant and return true , otherwise it returns fa lse . It is therefore easy to react differently in the pres-
ence of a current Coordination. In the previous example, the doFinish method will be called imme-
diately if there was no current Coordination, otherwise it is delayed until the Coordination fails or
succeeds. The participant callbacks look the same as in the previous section:

public void ended(Coordination c) { doFinish(); }
public void failed(Coordination c) { doFailed(); }

Though the code looks very similar for the implicit and explicit Coordinations there are some addi-
tional rules for implicit Coordinations.

The end method must be called on the same thread as the begin method, trying to end it on another
thread results in a WRONG_THREAD Coordination Exception being thrown.

Even though the end method must be called on the initiating thread, the callbacks to the Partici-
pants can be done on any thread as the specification allows the Coordinator to use multiple threads
for all callbacks.

130.2.5 Partial Ending
The Coordination is a best effort mechanism to coordinate, not a transaction model with integrity
guarantees. This means that users of the Coordinator service must understand that there are cases
where a Coordination ends in limbo. This happens when one of the Participants throws an Excep-
tion in the ended callback. This is similar to a transactional resource manager failing to commit in
a 2-phase commit after it has voted yes in the prepare phase; a problem that is the cause of much of
the complexity of a transaction manager. The Coordinator is limited to use cases that do not require
full ACID properties and can therefore be much simpler. However, users of the Coordinator service
must be aware of this limitation.

If a Participant throws an exception in the ended method, the end method that terminated the Co-
ordination must throw a PARTIALLY_ENDED Coordination Exception. It is then up to the initiator to

Coordinator Service Specification Version 1.0 Usage

OSGi Compendium Release 8 Page 635

correct the situations. In most cases, this means allowing the exception to be re-thrown and handle
the failure at the top level. Handling in those cases usually implies logging and continuing.

The following code shows how the PARTIALLY_ENDED case can be handled more explicitly.

Coordination c = coordinator.begin("work",0);
try {
 doWork();
} catch(Excption e) {
 c.fail(e);
} finally {
 try {
 c.end();
 } catch(CoordinationException e) {
 if (e.getType() == CoordinationException.PARTIALLY_ENDED) {
 // limbo!
 ...
 }
 }
}

130.2.6 Locking
To participate in a Coordination and receive callbacks a collaborator must add a Part ic ipant object to
the Coordination. The addPart ic ipant(Part ic ipant) method blocks if the given Part ic ipant object is
already used in another Coordination. This blocking facility can be used to implement a number of
simple locking schemes that can simplify maintaining state in a concurrent environment.

Using the Part ic ipant object as the key for the lock makes it simple to do course grained locking. For
example, a service implementation could use the service object as a lock, effectively serializing ac-
cess to this service when it is used in a Coordination. Coarse grained locking allows all the state to
be maintained in the coarse object and not having to worry about multiplexing simultaneous re-
quests. The following code uses the coarse locking pattern because the collaborator implements the
Part ic ipant interface itself:

public class Collaborator implements Participant{
 public void doWork(Coordination coordination) {
 ...
 coordination.addParticipant(this);
 }

 public void ended(Coordination c) { ... }
 public void failed(Coordination c) { ... }
}

The simplicity of the coarse grained locking is at the expense of lower performance because tasks
are serialized even if it would have no contention. Locks can therefore also be made more fine
grained, allowing more concurrency. In the extreme case, creating a new object for each participa-
tion makes it possible to never lock. For example, the following code never locks because it always
creates a new object for the Participant:

 public void doWork(Coordination coordination){
 final State state = ...
 coordination.addParticipant(
 new Participant() {
 public void ended(Coordination c) { state ... }
 public void failed(Coordination c) { state ...}

Usage Coordinator Service Specification Version 1.0

Page 636 OSGi Compendium Release 8

 }); }

130.2.7 Failing
Any collaborator can fail an ongoing Coordination by calling the fa i l (Throwable) method, the
Throwable parameter must not be nul l . When the Coordination has already terminated then this
is a no-op. The Coordinator service has a convenience method that fails the current Coordination if
present. The fa i l methods return a boolean that is true when the method call causes the termination
of the Coordination, in all other cases it is fa lse .

Failing a Coordination will immediately perform the callbacks and reject any addition-
al Participants by throwing an ALREADY_ENDED Coordination Exception. The asynchro-
nous nature of the fail method implies that it is possible to have been called even before the
addPart ic ipant(Part ic ipant) method has returned. Anybody that has the Coordination object can
check the failed state with the getFai lure() method.

In general, the best and most robust strategy to handle failures is to throw an Exception from the
collaborator, allowing the initiator to catch the exception and properly fail the Coordination.

130.2.8 Time-out
The time-out is specified in the Coordinator create(Str ing, long) or begin(Str ing, long) methods. A
time-out of zero is indefinite, otherwise the time-out specifies the number of milliseconds the Co-
ordination can take to terminate. A given time-out can be extended with the extendTimeout(long)
method. This method will add an additional time-out to the existing deadline if a prior deadline was
set. For example, the following code extends the time-out with 5 seconds whenever a message must
be sent to a remote address:

Object sendMessage(Message m) {
 Coordination c = coordinator.peek();
 Address a = m.getDestination();
 if (c != null && a.isRemote()) {
 c.extendTimeout(5000);
 }
 return sendMessage0(m);
}

Applications should not rely on the exact time-out of the Coordination and only use it as a safety
function against deadlocks and hanging collaborators.

130.2.9 Joining
When a Coordination is terminated it is not yet completely finished, the callback to the Participants
happens after the atomic termination. In certain cases it is necessary to ensure that a method does
not progress until all the participants have been notified. It is therefore possible to wait for the Coor-
dination to completely finish with the jo in(long) method. This method can have a time-out. For ex-
ample:

void collaborate(final Coordination c) {
 doWork();
 Thread t = new Thread() {
 public void run(){
 try {
 c.join(0);
 ... // really terminated here, all participantscalled back
 } catch(Exception e) { ... }
 }
 };

Coordinator Service Specification Version 1.0 Usage

OSGi Compendium Release 8 Page 637

 t.start();
}

130.2.10 Variables
A Participant is likely to have to maintain state that is particular for the collaboration. This state is
usually needed in the ended method to properly finalize the work. In general, the best place to store
this state is in the Part ic ipant object itself, inner classes and final variables are a good technique for
storing the state. However, the state can also be stored in a Coordination variable. Each Coordina-
tion has a private set of variables that can be obtained with the getVariables() method. The resulting
map takes a class as the key and returns an Object. The map is not synchronized, any changes to the
map must be synchronized on the returned Map object to ensure the visibility of the changes to oth-
er threads. The class used for the key is not related to the returned type, it is a Class object to provide
a convenient namespace.

The following example shows how the state can be stored with variables.

public void doWork(Coordination coordination){
 Map<Class<?>,Object> map = coordination.getVariables();
 synchronized(map) {
 State state = (State) map.get(SharedWorker.class);
 if (state == null) {
 state = new State(this);
 map.put(state);
 ... do initial work
 }
 }
 ... do other work
 coordination.addParticipant(this);
}
public void ended(Coordination c) {
 Map<Class<?>,Object> map = coordination.getVariables();
 synchronized(map) {
 State state = (State) map.get(SharedWorker.class);
 .. finalize
 }
}
public void failed(Coordination c) {
 Map<Class<?>,Object> map = coordination.getVariables();
 synchronized(map) {
 State state = (State) map.get(SharedWorker.class);
 .. finalize
 }
}

130.2.11 Optimizing Example
For example, a web based system has a charge service:

public interface Charge {
 void charge(String reason, int amount);
}

This service is used throughout the system for charging the tasks the system performs. Each servlet
request can actually create multiple Charge Data Records (CDR). For this reason, a Coordination is
started before the page is constructed. Each part of the page that has an associated cost must create a
CDR. There are the following issues at stake:

Usage Coordinator Service Specification Version 1.0

Page 638 OSGi Compendium Release 8

• Charging should not take place when failing, and
• Performance can be optimized to only persist the CDRs once, and
• The user must be passed to the Charge service.

To begin with the request code:

public void doGet(HttpServletRequest rq, HttpServletResponsersp) {
 Coordination c = coordinator.begin("com.acme.request", 30000);
 try {
 Principal p = rq.getUserPrincipal();
 Map<Class<?>,Object> map = c.getVariables();
 map.put(Principal.class, p);
 buildPage(rq,rsp);
 } catch(Exception e) { c.fail(e); }
 finally { c.end(); }
}

Each method that has a charge will call the Charge service. The following code shows an implemen-
tation of this Charge service.

public class ChargeImpl implements Charge,Participant {
 final List<CDR> records = new ArrayList<CDR>();

 public void charge(String reason, int amount) {
 Coordination c = coordinator.peek();
 if (c == null) {
 save(Arrays.asList(new CDR(null, reason, amount)));
 } else {
 Principal p = getPrincipal(c);
 records.add(new CDR(p, reason, amount));
 c.addParticipant(this);
 }
 }

 Principal getPrincipal(Coordination c) {
 if (c == null)
 return null;

 Map<Class<?>,Object> map = c.getVariables();
 synchronized(map) {
 Principal p = (Principal) map.get(Principal.class);
 return p != null ? p : getPrincipal(c.getEnclosingCoordination());
 }
 }

 public void ended(Coordination c) {
 save(records);
 records.clear();
 }
 public void failed(Coordination c) {
 records.clear();
 }

 void save(List<CDR> records) { ... }
}

Coordinator Service Specification Version 1.0 Coordinator Service

OSGi Compendium Release 8 Page 639

130.2.12 Security Example
The Coordination Permission is a filter based permission that is asserted for many of the methods in
the API, the bundle that is checked is always the bundle that created the corresponding Coordina-
tion. For example:

ALLOW {
 [BundleSignerCondition "cn=ACME"]
 (CoordinationPermission "(signer=cn=ACME)" "*")
}

This example allows bundles signed by ACME to perform all Coordination actions on Coordina-
tions created by bundles signed by ACME.

The filter can also assert the name of the Coordination:

coordination.name

It is therefore possible to create a name based protection scheme. By denying all bundles except a se-
lect group through the use of a name prefix, the use of Coordinations can be restricted to this select
group:

DENY {
 [BundleSignerCondition "cn=ACME" "!"]
 (CoordinationPermission "(coordination.name=com.acme.*)""*")
}
ALLOW {
 (CoordinationPermission "(coordination.name=*)" "*")
}

If a bundle is not signed by ACME it will be denied the use of Coordination names starting with
com.acme. though it will be allowed to use any other name. This effectively enables only bundles
signed by ACME to create Coordinations with this name prefix.

130.3 Coordinator Service
The Coordinator service is the entry point for the Coordination. It provides the following functions:

• Coordination creation
• Life cycle management of a Coordination
• Thread based Coordinations
• Introspection

130.3.1 Coordination Creation
A Coordination object is created by an initiator. An initiator can create a Coordination object with
the Coordinator create(Str ing, long) or begin(Str ing, long) method. Each Coordination when creat-
ed gets a positive long identity that is available with getId() . Ids are a unique identifier for a specif-
ic Coordinator service. The id is always increasing, that is, a Coordination with a higher id is created
later.

The create methods specify the name of the Coordination. This name is a security concept, see Secu-
rity on page 644, as well as used for debugging. The coordination name must therefore conform
to the same syntax as a bundle symbolic name:

coordination-name ::= symbolic-name // see OSGi Core Release 8

Coordinator Service Coordinator Service Specification Version 1.0

Page 640 OSGi Compendium Release 8

Passing a name that does not conform to this syntax must throw an Illegal Argument Exception.
There are no constraints on duplicates, multiple different Coordinations can use the same name.
The name of the Coordination is available with the getName() method.

130.3.2 Adding Participants
The Coordination object can be passed to collaborators as a parameter in a method call. Some of these
collaborators might be interested in participating in the given Coordination, they can achieve this by
adding a Part ic ipant object to the Coordination.

A Participant is a collaborator that requires a callback after the Coordination has been terminat-
ed, either when it ended or when it failed. To participate, it must add a Part ic ipant object to a Coor-
dination with the addPart ic ipant(Part ic ipant) method on Coordination. This method throws an
ALREADY_ENDED or FAILED Coordination Exception when the Coordination has been terminated.

When a Participant is:

• Not in any Coordination - Add it to the given Coordination and return.
• In target Coordination - Ignore, participant is already present. A Participant can participate in the

same Coordination multiple times by calling addPart ic ipant(Part ic ipant) but will only be called
back once when the Coordination is terminated. Its order must be defined by the first addition.

• In another Coordination - Lock until after the other Coordination has notified all the Participants.
Implementations can detect deadlocks in certain cases and throw a Coordination Exception if a
dead lock exist, otherwise the deadlock is solved when the Coordination times out.

Verifying if a Participant object is already in another Coordination must use identity and not equali-
ty.

130.3.3 Active
A Coordination is active until it is terminated. A Coordination can terminate because it is ended, or it
is failed. The following methods cause a termination:

• end() - A normal end. All participants that were added before the end call are called back on their
ended(Coordination) method.

• fa i l (Throwable) - The Coordination has failed, this will call back the fa i led(Coordination)
method on the participants. This method can be called by the Coordinator, the initiator, or any of
the collaborators. There are a number of failures that are built in to the Coordinator. These fail-
ures use singleton Exception instances defined in the Coordination interface:
• TIMEOUT - If the Coordination times out the Coordination is failed with the TIMEOUT excep-

tion instance in Coordination.
• RELEASED - If the Coordinator that created the Coordination was unget, all Coordinations cre-

ated by it will fail with the RELEASED exception.

The state diagram for the Coordination is pictured in Figure 130.4.

Figure 130.4 Coordination state diagram

ACTIVE

END FAIL

fail(Throwable)end()

automatic
transition
explicit
transition

Coordinator Service Specification Version 1.0 Coordinator Service

OSGi Compendium Release 8 Page 641

130.3.4 Explicit and Implicit Models
The Coordinator supports two very different models of usage: explicit and implicit. The explicit model
is when a Coordination is created and passed around as a parameter. The second model is the implic-
it model where the Coordinator maintains a thread local stack of Coordinations. Any collaborator
can then decide to use the top of the stack as the current Coordination. The peek() method provides
access to the current Coordination.

The begin(Str ing, long) method creates a new Coordination and pushes this on the stack, beginning
an implicit Coordination. This is identical to:

coordinator.create("work",0).push();

Once a Coordination is pushed on a stack it is from that moment on associated with the current
thread. A Coordination can only be pushed once, the ALREADY_PUSHED Coordination Exception
must be thrown when the Coordination is already associated with one of the thread local stacks
maintained by the Coordinator service.

The Coordination is removed from the stack in the end() method. The end() method must not only
terminate itself but it must also terminate all nested Coordinations.

The current Coordination can also be explicitly removed with the Coordinator pop() method.

A Coordination that is pushed on a thread local stack returns the associated thread on the get-
Thread() method. This method returns nul l for Coordinations not on any stack, that is, explicit Coor-
dinations.

130.3.5 Termination
Both the end() and fa i l (Throwable) methods terminate the Coordination if it was not already ter-
minated. Termination is atomic, only the end or the fa i l method can terminate the Coordination.
Though this happens on different threads, a Coordination can never both end and fail from any per-
spective. That is, if a fail races with end then only one of them can win and the other provides the
feedback that the Coordination was already terminated.

Terminating a Coordination has the following effects:

• It is atomic, it can only happen once in a Coordination
• It freezes the set of participants, no more participants can be added

130.3.6 Ending
The end() method should always be called at the end of a Coordination to ensure proper termina-
tion, notification, and cleanup. The end method throws a FAILED or PARTIALLY_ENDED Coordina-
tion Exception if the Coordination was failed before.

If the Coordination had already been ended before then this is a programming error and an
ALREADY_ENDED Configuration Exception is thrown. The end() method should never be called
twice on the same Coordination.

If the termination succeeds then the participants must be notified by calling the
ended(Coordination) method on each Participant that had been successfully added to the Coordina-
tion. This callback can take place on any thread but must be in reverse order of adding. That is, the
last added Participant is called back first.

Participants must never make any assumptions about the current Coordination in the callback. The
Coordination it was added to is therefore given as an explicit parameter in the ended(Coordination)
method.

If a Participant throws an Exception then this must not prevent the calling of the remaining par-
ticipants. The Exception should be logged. If a Participant has thrown an Exception then the end()

Coordinator Service Coordinator Service Specification Version 1.0

Page 642 OSGi Compendium Release 8

method must throw a PARTIALLY_ENDED Coordination Exception after the last Participant has re-
turned from its callback, otherwise the method returns normally. Participants should normally not
throw Exceptions in their callbacks.

If the Coordination is implicit (it is pushed on a stack) then the Coordination must be removed
from its stack after the participants have been called back. This requires that the ending thread is
the same as the thread of the Coordination. The end thread is the thread of the end() method call. If
the Coordination's thread is not the same as the ending thread then a WRONG_THREAD Coordina-
tion Exception is thrown.

If the ending Coordination is on the stack but it is not the current Coordination then each nested
Coordination must be ended before the current Coordination, see Nesting Implicit Coordinations on
page 642 for more information.

The fa i l (Throwable) method must not remove the current Coordination, it must remain on the
stack. The initiator must always call the end() method. Always calling end() in a f inal ly block is
therefore paramount.

130.3.7 Failing, TIMEOUT, ORPHANED, and RELEASED
Failing can happen asynchronously during the time a Coordination is active. A Coordination is
failed by calling fa i l (Throwable) . The Throwable argument must not be nul l , it is the cause of the
failure.

Failing a Coordination must first terminate it. If the Coordination was already terminated the
fa i l (Throwable) method has no effect. Otherwise, it must callback all its added Participants on the
fa i led(Coordination) callback method. Exceptions thrown from this method should be logged and
further ignored. The callback can occur on any thread, including the caller's.

Implicit Coordinations must not be popped from its stack in a fail nor is it necessary to call the fa i l
method from any particular thread. The removal of the Coordination from the stack must happen
in the end method.

There are two asynchronous events that can also fail the Coordination. If the Coordination times
out, it will be treated as a fa i l (TIMEOUT) and if the Coordinator is ungotten with active Coordina-
tions then each of those Coordinations must fail as if fa i l (RELEASED) is called.

A Coordination can also be orphaned. An orphaned Coordination has no longer any outside refer-
ences. This means that the Coordination can no longer be ended or failed. Such Coordinations must
fail with an ORPHANED Exception.

130.3.8 Nesting Implicit Coordinations
Implicit Coordinations can be nested. For this reason, the Coordinator maintains a thread local
stack of Coordinations where the top, accessible with the peek() method, is the current Coordina-
tion. Each time a new Coordination is begun with the begin(Str ing, long) method, the current Co-
ordination is replaced with the newly created Coordination. When that Coordination is ended, the
previous current Coordination is restored. Nesting is always on the same thread, implicit Coordina-
tions are always associated with a single thread, available through its getThread() method. The end
method must be called on the same thread as the begin(Str ing, long) or last push() method.

Using the standard model for implicit Coordinations, where the initiator always ends the Coordi-
nation on the same thread as it begun, ensures that nesting is properly handled. However, in cer-
tain cases it is necessary to manipulate the stack or make implicit Coordinations explicit or vice ver-
sa. For this reason, it is possible to pop Coordinations from the stack with the pop() method. This
method disassociates the Coordination from the current thread and restores the previous (if any)
Coordination as the current Thread. A Coordination can then be made the current Coordination for
a thread by calling the push() method. However, a Coordination can be pushed on the stack at most
once. If a Coordination is pushed a second time, in any thread, the ALREADY_PUSHED Coordination
Exception must be thrown.

Coordinator Service Specification Version 1.0 Coordinator Service

OSGi Compendium Release 8 Page 643

The Coordination is removed from its stack when the end() method is called. It is therefore highly
recommended to always end a Coordination in the nesting order. However, it is possible that a Co-
ordination is ended that is not the current Coordination, it has nested Coordinations that were not
properly ended. In that case all nested Coordinations must be ended in reverse creation order, that
is, the current Coordination first, by calling the end method on it.

If any Coordination fails to end properly (including PARTIALLY_ENDED) then the remaining Coordi-
nations on the stack must fail and chain the exceptions. In pseudo code:

while (coordinator.peek() != this) {
 try {
 coordinator.peek().end();
 } catch (CoordinationException e) {
 coordinator.peek().fail(e);
 }
}

130.3.9 Time-outs
When a Coordination is created it will receive a time-out. A time-out is a positive value or zero. A ze-
ro value indicates that the Coordination should have no time-out. This does not imply that a Coordi-
nation will never time-out, implementations are allowed to be configured with a limit to the maxi-
mum active time for a Coordination.

Collaborators can extend the time out with the extendTimeout(long) method. If no time-out was
set (0), this method will be ignored. Otherwise the given amount (which must be positive) is added
to the existing deadline. A Coordinator implementation can fail the Coordination earlier, however,
when configured to do so.

If a Coordination is timed out, the Coordination is failed with a fa i l (TIMEOUT) method call from an
unspecified thread, see Failing, TIMEOUT, ORPHANED, and RELEASED on page 642.

130.3.10 Released
The Coordination's life cycle is bound to the Coordinator service that created it. If the initiator's
bundle ungets this service then the Coordinator must fail all the Coordinations created by this Co-
ordinator by calling the fa i l (RELEASED) method.

Participants from bundles that are stopped are not taken into account. This means that it is possible
that a participant is called while its bundle is stopped. Stopped Participants should fail any Coordi-
nations that they participate in.

130.3.11 Coordinator Convenience Methods
The Coordinator contains a number of convenience methods that can be used by collaborators to in-
teract with the current Coordination.

• begin(Str ing, long) - Is logically the same as create(Str ing, long) . push() .
• addPart ic ipant(Part ic ipant) - This method makes it easy to react differently to the presence of a

current implicit Coordination. If a current Coordination exists, the participant is added and true
is returned (or an exception thrown if the Coordination is already terminated), otherwise fa lse is
returned.

• fa i l (Throwable) - If there is no current Coordination, this method returns false. Otherwise it re-
turns the result of calling fa i l (Throwable) on the current Coordination. This method therefore
only returns true when a current Coordination was actually terminated due to this call.

130.3.12 Administrative Access
The Coordination objects provide a number of methods that are used for administrating the Coordi-
nations and the Coordinator.

Security Coordinator Service Specification Version 1.0

Page 644 OSGi Compendium Release 8

• getBundle() - Provide the bundle that created the Coordination. This bundle is the bundle be-
longing to the Bundle Context used to get the Coordinator service.

• getFai lure() - The Exception that caused this Coordination to fail or nul l . There are two fixed ex-
ception instances for a time out (TIMEOUT), when the Coordination is orphaned (ORPHANED),
and when the Coordinator service is released (RELEASED).

• getId() - The Coordination's id.
• getName() - The name of the Coordination.
• getPart ic ipants() - The current list of participants. This is a mutable snapshot of the added partic-

ipants. Changing the snapshot has no effect on the Coordination.
• getThread() - Answer the thread associated with an implicit Coordination. If the Coordination is

not implicit then the answer is nul l .
• getEnclosingCoordination() - Return the enclosing Coordination.

And for the Coordinator:

• getCoordination(long) - Retrieve a Coordination by its id.
• getCoordinations() - Get a list of active Coordinations

130.3.13 Summary
A Coordination can exist in three different states ACTIVE, END, and FAIL. During its life it will tran-
sition from ACTIVE to either END or FAIL. The entry (when the state is entered) and exit (when the
state is left) actions when this transition takes place and the effect on the different methods are sum-
marized in the following table.

Table 130.1 States and transitions

State/Method ACTIVE END FAIL
entry action Notify all the participants by call-

ing the ended(Coordination)
method.

Notify all the participants by
calling the fa i led(Coordination)
method.

exit action Terminate
end() -> END .

Can throw
PARTIALLY_ENDED

throws ALREADY_ENDED throws FAILED

fai l (Throwable) -> FAIL , return true . return fa lse . return fa lse .

130.4 Security
This specification provides a Coordination Permission. This permission can enforce the name of the
coordination as well as assert the properties of the initiating bundle, like for example the signer or
bundle symbolic name. The permission therefore uses a filter as name, as defined in the filter based
permissions section in OSGi Core Release 8, see OSGi Core Release 8. There is one additional parame-
ter for the filter:

coordination.name

The value is the given name of the Coordination. Restricting the name of a Coordination allows the
deployer to limit the use of this name to a restricted set of bundles.

The following actions are defined:

• INITIATE - Required to initiate and control a Coordination.
• PARTICIPATE - Required to participate in a Coordination.

Coordinator Service Specification Version 1.0 org.osgi.service.coordinator

OSGi Compendium Release 8 Page 645

• ADMIN - Required to administrate a Coordinator.

The target bundle of the Coordination Permission is the initiator's bundle. This is the bundle that
got the Coordinator service to create the Coordination. An initiator must therefore have permission
to create Coordinations for itself.

There are two constructors available:

• CoordinationPermission(Str ing,Str ing) - The constructor for the granted permission. It is given a
filter expression and the actions that the permission applies to.

• CoordinationPermission(Str ing,Bundle,Str ing) - The constructor for the requested permission.
It is given the name of the permission, the bundle that created the corresponding coordination,
and the requested actions.

130.5 org.osgi.service.coordinator

Coordinator Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.coordinator; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.coordinator; vers ion="[1.0,1.1)"

130.5.1 Summary

• Coordination - A Coordination object is used to coordinate a number of independent Partici-
pants.

• CoordinationException - Unchecked exception which may be thrown by a Coordinator imple-
mentation.

• CoordinationPermission - A bundle's authority to create or use a Coordination.
• Coordinator - A Coordinator service coordinates activities between different parties.
• Part ic ipant - A Participant participates in a Coordination.

130.5.2 public interface Coordination
A Coordination object is used to coordinate a number of independent Participants.

Once a Coordination is created, it can be used to add Participant objects. When the Coordination is
ended, the participants are notified. A Coordination can also fail for various reasons. When this oc-
curs, the participants are notified of the failure.

A Coordination must be in one of two states, either ACTIVE or TERMINATED. The transition be-
tween ACTIVE and TERMINATED must be atomic, ensuring that a Participant can be guaranteed of
either receiving an exception when adding itself to a Coordination or of receiving notification the
Coordination has terminated.

A Coordination object is thread safe and can be passed as a parameter to other parties regardless of
the threads these parties use.

The following example code shows how a Coordination should be used.

 void foo() {

org.osgi.service.coordinator Coordinator Service Specification Version 1.0

Page 646 OSGi Compendium Release 8

 Coordination c = coordinator.create("work", 0);
 try {
 doWork(c);
 }
 catch (Exception e) {
 c.fail(e);
 }
 finally {
 c.end();
 }
 }

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

130.5.2.1 public static final Exception ORPHANED

A singleton exception that will be the failure cause when a Coordination has been orphaned.

130.5.2.2 public static final Exception RELEASED

A singleton exception that will be the failure cause when the Coordinations created by a bundle are
terminated because the bundle released the Coordinator service.

130.5.2.3 public static final Exception TIMEOUT

A singleton exception that will be the failure cause when a Coordination times out.

130.5.2.4 public void addParticipant(Participant participant)

participant The Participant to register with this Coordination. The participant must not be nul l .

□ Register a Participant with this Coordination.

Once a Participant is registered with this Coordination, it is guaranteed to receive a notification for
either normal or failure termination when this Coordination is terminated.

Participants are registered using their object identity. Once a Participant is registered with this Coor-
dination, subsequent attempts to register the Participant again with this Coordination are ignored
and the Participant is only notified once when this Coordination is terminated.

A Participant can only be registered with a single active Coordination at a time. If a Participant is al-
ready registered with an active Coordination, attempts to register the Participation with another ac-
tive Coordination will block until the Coordination the Participant is registered with terminates.
Notice that in edge cases the notification to the Participant that this Coordination has terminated
can happen before this method returns.

Attempting to register a Participant with a terminated Coordination will result in a CoordinationEx-
ception being thrown.

The ordering of notifying Participants must follow the reverse order in which the Participants were
registered.

Throws CoordinationException– If the Participant could not be registered with this Coordination. This ex-
ception should normally not be caught by the caller but allowed to be caught by the initiator of this
Coordination.

SecurityException– If the caller does not have CoordinationPermission[PARTICIPATE] for this Coor-
dination.

130.5.2.5 public void end()

□ Terminate this Coordination normally.

Coordinator Service Specification Version 1.0 org.osgi.service.coordinator

OSGi Compendium Release 8 Page 647

If this Coordination has been pushed on the thread local Coordination stack of anoth-
er thread, this method does nothing except throw a CoordinationException of type
CoordinationException.WRONG_THREAD.

If this Coordination has been pushed on the thread local Coordination stack of this thread but is not
the current Coordination, then the Coordinations on the thread local Coordination stack above this
Coordination must be terminated and removed from the thread local Coordination stack before this
Coordination is terminated. Each of these Coordinations, starting with the current Coordination,
will be terminated normally . If the termination throws a CoordinationException, then the next Co-
ordination on the thread local Coordination stack will be terminated as a failure with a failure cause
of the thrown CoordinationException. At the end of this process, this Coordination will be the cur-
rent Coordination and will have been terminated as a failure if any of the terminated Coordinations
threw a CoordinationException

If this Coordination is the current Coordination, then it will be removed from the thread local Coor-
dination stack.

If this Coordination is already terminated, a CoordinationException is thrown. If this Coordination
was terminated as a failure, the failure cause will be the cause of the thrown CoordinationExcep-
tion.

Otherwise, this Coordination is terminated normally and then all registered Participants are noti-
fied. Participants should finalize any work associated with this Coordination. The successful return
of this method indicates that the Coordination has terminated normally and all registered Partici-
pants have been notified of the normal termination.

It is possible that one of the Participants throws an exception during notification. If this happens,
this Coordination is considered to have partially failed and this method must throw a Coordina-
tionException of type CoordinationException.PARTIALLY_ENDED after all the registered Partici-
pants have been notified.

Throws CoordinationException– If this Coordination has failed, including timed out, or partially failed or
this Coordination is on the thread local Coordination stack of another thread.

SecurityException– If the caller does not have CoordinationPermission[INITIATE] for this Coordina-
tion.

130.5.2.6 public long extendTimeout(long timeMillis)

timeMillis The time in milliseconds to extend the current timeout. If the initial timeout was specified as 0, no
extension must take place. A zero must have no effect.

□ Extend the time out of this Coordination.

Participants can call this method to extend the timeout of this Coordination with at least the speci-
fied time. This can be done by Participants when they know a task will take more than normal time.

This method will return the new deadline if an extension took place or the current deadline if, for
whatever reason, no extension takes place. Note that if a maximum timeout is in effect, the deadline
may not be extended by as much as was requested, if at all. If there is no deadline, zero is returned.
Specifying a timeout extension of 0 will return the existing deadline.

Returns The new deadline in milliseconds. If the specified time is 0, the existing deadline is returned. If this
Coordination was created with an initial timeout of 0, no timeout is set and 0 is returned.

Throws CoordinationException– If this Coordination is terminated.

I l legalArgumentException– If the specified time is negative.

SecurityException– If the caller does not have CoordinationPermission[PARTICIPATE] for this Coor-
dination.

org.osgi.service.coordinator Coordinator Service Specification Version 1.0

Page 648 OSGi Compendium Release 8

130.5.2.7 public boolean fail(Throwable cause)

cause The failure cause. The failure cause must not be nul l .

□ Terminate this Coordination as a failure with the specified failure cause.

If this Coordination is already terminated, this method does nothing and returns fa lse .

Otherwise, this Coordination is terminated as a failure with the specified failure cause and then all
registered Participants are notified. Participants should discard any work associated with this Coor-
dination. This method will return true .

If this Coordination has been pushed onto a thread local Coordination stack, this Coordination is
not removed from the stack. The creator of this Coordination must still call end() on this Coordina-
tion to cause it to be removed from the thread local Coordination stack.

Returns true if this Coordination was active and was terminated by this method, otherwise fa lse .

Throws SecurityException– If the caller does not have CoordinationPermission[PARTICIPATE] for this Coor-
dination.

130.5.2.8 public Bundle getBundle()

□ Returns the bundle that created this Coordination. This is the bundle that obtained the Coordinator
service that was used to create this Coordination.

Returns The bundle that created this Coordination.

Throws SecurityException– If the caller does not have CoordinationPermission[ADMIN] for this Coordina-
tion.

130.5.2.9 public Coordination getEnclosingCoordination()

□ Returns the Coordination enclosing this Coordination if this Coordination is on the thread local Co-
ordination stack.

When a Coordination is pushed onto the thread local Coordination stack, the former current Coor-
dination, if any, is the enclosing Coordination of this Coordination. When this Coordination is re-
moved from the thread local Coordination stack, this Coordination no longer has an enclosing Co-
ordination.

Returns The Coordination enclosing this Coordination if this Coordination is on the thread local Coordina-
tion stack or nul l if this Coordination is not on the thread local Coordination stack or has no enclos-
ing Coordination.

Throws SecurityException– If the caller does not have CoordinationPermission[ADMIN] for this Coordina-
tion.

130.5.2.10 public Throwable getFailure()

□ Returns the failure cause of this Coordination.

If this Coordination has failed, then this method will return the failure cause.

If this Coordination timed out, this method will return TIMEOUT as the failure cause. If this Coordi-
nation was active when the bundle that created it released the Coordinator service, this method will
return RELEASED as the failure cause. If the Coordination was orphaned, this method will return
ORPHANED as the failure cause.

Returns The failure cause of this Coordination or nul l if this Coordination has not terminated as a failure.

Throws SecurityException– If the caller does not have CoordinationPermission[INITIATE] for this Coordina-
tion.

Coordinator Service Specification Version 1.0 org.osgi.service.coordinator

OSGi Compendium Release 8 Page 649

130.5.2.11 public long getId()

□ Returns the id assigned to this Coordination. The id is assigned by the Coordinator service which
created this Coordination and is unique among all the Coordinations created by the Coordinator
service and must not be reused as long as the Coordinator service remains registered. The id must be
positive and monotonically increases for each Coordination created by the Coordinator service.

Returns The id assigned to this Coordination.

130.5.2.12 public String getName()

□ Returns the name of this Coordination. The name is specified when this Coordination was created.

Returns The name of this Coordination.

130.5.2.13 public List<Participant> getParticipants()

□ Returns a snapshot of the Participants registered with this Coordination.

Returns A snapshot of the Participants registered with this Coordination. If no Participants are registered
with this Coordination, the returned list will be empty. The list is ordered in the order the Partic-
ipants were registered. The returned list is the property of the caller and can be modified by the
caller.

Throws SecurityException– If the caller does not have CoordinationPermission[INITIATE] for this Coordina-
tion.

130.5.2.14 public Thread getThread()

□ Returns the thread in whose thread local Coordination stack this Coordination has been pushed.

Returns The thread in whose thread local Coordination stack this Coordination has been pushed or nul l if
this Coordination is not in any thread local Coordination stack.

Throws SecurityException– If the caller does not have CoordinationPermission[ADMIN] for this Coordina-
tion.

130.5.2.15 public Map<Class<?>, Object> getVariables()

□ Returns the variable map associated with this Coordination. Each Coordination has a map that can
be used for communicating between different Participants. The key of the map is a class, allowing
for private data to be stored in the map by using implementation classes or shared data by using
shared interfaces. The returned map is not synchronized. Users of the map must synchronize on the
Map object while making changes.

Returns The variable map associated with this Coordination.

Throws SecurityException– If the caller does not have CoordinationPermission[PARTICIPANT] for this Coor-
dination.

130.5.2.16 public boolean isTerminated()

□ Returns whether this Coordination is terminated.

Returns true if this Coordination is terminated, otherwise fa lse if this Coordination is active.

130.5.2.17 public void join(long timeMillis) throws InterruptedException

timeMillis Maximum time in milliseconds to wait. Specifying a time of 0 will wait until this Coordination is
terminated.

□ Wait until this Coordination is terminated and all registered Participants have been notified.

Throws InterruptedException– If the wait is interrupted.

I l legalArgumentException– If the specified time is negative.

org.osgi.service.coordinator Coordinator Service Specification Version 1.0

Page 650 OSGi Compendium Release 8

SecurityException– If the caller does not have CoordinationPermission[PARTICIPATE] for this Coor-
dination.

130.5.2.18 public Coordination push()

□ Push this Coordination object onto the thread local Coordination stack to make it the current Coor-
dination.

Returns This Coordination.

Throws CoordinationException– If this Coordination is already on the any thread's thread local Coordina-
tion stack or this Coordination is terminated.

SecurityException– If the caller does not have CoordinationPermission[INITIATE] for this Coordina-
tion.

130.5.3 public class CoordinationException
extends RuntimeException
Unchecked exception which may be thrown by a Coordinator implementation.

130.5.3.1 public static final int ALREADY_ENDED = 4

The Coordination has already terminated normally.

130.5.3.2 public static final int ALREADY_PUSHED = 5

The Coordination was already on a thread's thread local Coordination stack.

130.5.3.3 public static final int DEADLOCK_DETECTED = 1

Registering a Participant with a Coordination would have resulted in a deadlock.

130.5.3.4 public static final int FAILED = 2

The Coordination has terminated as a failure with Coordination.fail(Throwable). When this excep-
tion type is used, the getCause() method must return a non-null value.

130.5.3.5 public static final int LOCK_INTERRUPTED = 6

The current thread was interrupted while waiting to register a Participant with a Coordination.

130.5.3.6 public static final int PARTIALLY_ENDED = 3

The Coordination has partially ended.

130.5.3.7 public static final int UNKNOWN = 0

Unknown reason for this exception.

130.5.3.8 public static final int WRONG_THREAD = 7

The Coordination cannot be ended by the calling thread since the Coordination is on the thread lo-
cal Coordination stack of another thread.

130.5.3.9 public CoordinationException(String message, Coordination coordination, int type, Throwable cause)

message The detail message for this exception.

coordination The Coordination associated with this exception.

cause The cause associated with this exception.

type The type of this exception.

□ Create a new Coordination Exception with a cause.

Throws I l legalArgumentException– If the specified type is FAILED and the specified cause is nul l .

Coordinator Service Specification Version 1.0 org.osgi.service.coordinator

OSGi Compendium Release 8 Page 651

130.5.3.10 public CoordinationException(String message, Coordination coordination, int type)

message The detail message for this exception.

coordination The Coordination associated with this exception.

type The type of this exception.

□ Create a new Coordination Exception.

Throws I l legalArgumentException– If the specified type is FAILED .

130.5.3.11 public long getId()

□ Returns the id of the Coordination associated with this exception.

Returns The id of the Coordination associated with this exception or -1 if no Coordination is associated with
this exception.

130.5.3.12 public String getName()

□ Returns the name of the Coordination associated with this exception.

Returns The name of the Coordination associated with this exception or "<>" if no Coordination is associated
with this exception.

130.5.3.13 public int getType()

□ Returns the type for this exception.

Returns The type of this exception.

130.5.4 public final class CoordinationPermission
extends BasicPermission
A bundle's authority to create or use a Coordination.

CoordinationPermission has three actions: in it iate , part ic ipate and admin .

Concurrency Thread-safe

130.5.4.1 public static final String ADMIN = "admin"

The action string admin .

130.5.4.2 public static final String INITIATE = "initiate"

The action string in it iate .

130.5.4.3 public static final String PARTICIPATE = "participate"

The action string part ic ipate .

130.5.4.4 public CoordinationPermission(String filter, String actions)

filter A filter expression. Filter attribute names are processed in a case sensitive manner. A special value of
"*" can be used to match all coordinations.

actions admin , in it iate or part ic ipate (canonical order).

□ Creates a new granted CoordinationPermission object. This constructor must only be used to create
a permission that is going to be checked.

Examples:

 (coordination.name=com.acme.*)
 (&(signer=*,o=ACME,c=US)(coordination.name=com.acme.*))
 (signer=*,o=ACME,c=US)

org.osgi.service.coordinator Coordinator Service Specification Version 1.0

Page 652 OSGi Compendium Release 8

When a signer key is used within the filter expression the signer value must escape the special filter
chars ('*', '(', ')').

The name is specified as a filter expression. The filter gives access to the following attributes:

• signer - A Distinguished Name chain used to sign the exporting bundle. Wildcards in a DN are
not matched according to the filter string rules, but according to the rules defined for a DN chain.

• location - The location of the exporting bundle.
• id - The bundle ID of the exporting bundle.
• name - The symbolic name of the exporting bundle.
• coordination.name - The name of the requested coordination.

Filter attribute names are processed in a case sensitive manner.

Throws I l legalArgumentException– If the filter has an invalid syntax.

130.5.4.5 public CoordinationPermission(String coordinationName, Bundle coordinationBundle, String actions)

coordinationName The name of the requested Coordination.

coordinationBun-
dle

The bundle which created the requested Coordination.

actions admin , in it iate or part ic ipate (canonical order).

□ Creates a new requested CoordinationPermission object to be used by the code that must perform
checkPermission . CoordinationPermission objects created with this constructor cannot be added to
an CoordinationPermission permission collection.

130.5.4.6 public boolean equals(Object obj)

obj The object to test for equality with this CoordinationPermission object.

□ Determines the equality of two CoordinationPermission objects. This method checks that specified
permission has the same name and CoordinationPermission actions as this CoordinationPermission
object.

Returns true if obj is a CoordinationPermission , and has the same name and actions as this CoordinationPer-
mission object; fa lse otherwise.

130.5.4.7 public String getActions()

□ Returns the canonical string representation of the CoordinationPermission actions.

Always returns present CoordinationPermission actions in the following order: admin , in it iate , par-
t ic ipate .

Returns Canonical string representation of the CoordinationPermission actions.

130.5.4.8 public int hashCode()

□ Returns the hash code value for this object.

Returns A hash code value for this object.

130.5.4.9 public boolean implies(Permission p)

p The requested permission.

□ Determines if the specified permission is implied by this object.

This method checks that the filter of the target is implied by the coordination name of this object.
The list of CoordinationPermission actions must either match or allow for the list of the target ob-
ject to imply the target CoordinationPermission action.

Coordinator Service Specification Version 1.0 org.osgi.service.coordinator

OSGi Compendium Release 8 Page 653

Returns true if the specified permission is implied by this object; fa lse otherwise.

130.5.4.10 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object suitable for storing CoordinationPermission objects.

Returns A new PermissionCol lect ion object.

130.5.5 public interface Coordinator
A Coordinator service coordinates activities between different parties.

A bundle can use the Coordinator service to create Coordination objects. Once a Coordination ob-
ject is created, it can be pushed on the thread local Coordination stack to be an implicit parameter as
the current Coordination for calls to other parties, or it can be passed directly to other parties as an
argument. The current Coordination, which is on the top of the current thread's thread local Coordi-
nation stack, can be obtained with peek().

Any active Coordinations created by a bundle must be terminated when the bundle releases the Co-
ordinator service. The Coordinator service must fail these Coordinations with the RELEASED excep-
tion.

A Participant can register to participate in a Coordination and receive notification of the termina-
tion of the Coordination.

The following example code shows a example usage of the Coordinator service.

 void foo() {
 Coordination c = coordinator.begin("work", 0);
 try {
 doWork();
 } catch (Exception e) {
 c.fail(e);
 } finally {
 c.end();
 }
 }

In the doWork method, code can be called that requires notification of the termination of the Coor-
dination. The doWork method can then register a Participant with the Coordination.

 void doWork() {
 if (coordinator.addParticipant(this)) {
 beginWork();
 } else {
 beginWork();
 finishWork();
 }
 }

 void ended(Coordination c) {
 finishWork();
 }

 void failed(Coordination c) {
 undoWork();
 }

Concurrency Thread-safe

org.osgi.service.coordinator Coordinator Service Specification Version 1.0

Page 654 OSGi Compendium Release 8

Provider Type Consumers of this API must not implement this type

130.5.5.1 public boolean addParticipant(Participant participant)

participant The Participant to register with the current Coordination. The participant must not be nul l .

□ Register a Participant with the current Coordination.

If there is no current Coordination, this method does nothing and returns fa lse .

Otherwise, this method calls Coordination.addParticipant(Participant) with the specified Partici-
pant on the current Coordination and returns true .

Returns fa lse if there was no current Coordination, otherwise returns true .

Throws CoordinationException– If the Participant could not be registered with the current Coordination.
This exception should normally not be caught by the caller but allowed to be caught by the initiator
of this Coordination.

SecurityException– If the caller does not have CoordinationPermission[PARTICIPATE] for the cur-
rent Coordination.

See Also Coordination.addParticipant(Participant)

130.5.5.2 public Coordination begin(String name, long timeMillis)

name The name of this coordination. The name does not have to be unique but must follow the symbol-
ic-name syntax from the Core specification.

timeMillis Timeout in milliseconds. A value of 0 means no timeout is required. If the Coordination is not ter-
minated within the timeout, the Coordinator service will fail the Coordination with a TIMEOUT ex-
ception.

□ Create a new Coordination and make it the current Coordination.

This method does that same thing as calling create(name, timeMillis).push()

Returns A new Coordination object

Throws I l legalArgumentException– If the specified name does not follow the symbol ic-name syntax or the
specified time is negative.

SecurityException– If the caller does not have CoordinationPermission[INITIATE] for the specified
name and creating bundle.

130.5.5.3 public Coordination create(String name, long timeMillis)

name The name of this coordination. The name does not have to be unique but must follow the symbol-
ic-name syntax from the Core specification.

timeMillis Timeout in milliseconds. A value of 0 means no timeout is required. If the Coordination is not ter-
minated within the timeout, the Coordinator service will fail the Coordination with a TIMEOUT ex-
ception.

□ Create a new Coordination.

Returns The new Coordination object.

Throws I l legalArgumentException– If the specified name does not follow the symbol ic-name syntax or the
specified time is negative.

SecurityException– If the caller does not have CoordinationPermission[INITIATE] for the specified
name and creating bundle.

130.5.5.4 public boolean fail(Throwable cause)

cause The failure cause. The failure cause must not be nul l .

□ Terminate the current Coordination as a failure with the specified failure cause.

Coordinator Service Specification Version 1.0 org.osgi.service.coordinator

OSGi Compendium Release 8 Page 655

If there is no current Coordination, this method does nothing and returns fa lse .

Otherwise, this method returns the result from calling Coordination.fail(Throwable) with the speci-
fied failure cause on the current Coordination.

Returns fa lse if there was no current Coordination, otherwise returns the result from calling
Coordination.fail(Throwable) on the current Coordination.

Throws SecurityException– If the caller does not have CoordinationPermission[PARTICIPATE] for the cur-
rent Coordination.

See Also Coordination.fail(Throwable)

130.5.5.5 public Coordination getCoordination(long id)

id The id of the requested Coordination.

□ Returns the Coordination with the specified id.

Returns A Coordination having with specified id or nul l if no Coordination with the specified id
exists, the Coordination with the specified id is terminated or the caller does not have
CoordinationPermission[ADMIN] for the Coordination with the specified id.

130.5.5.6 public Collection<Coordination> getCoordinations()

□ Returns a snapshot of all active Coordinations.

Since Coordinations can be terminated at any time, Coordinations in the returned collection can be
terminated before the caller examines the returned collection.

The returned collection must only contain the Coordinations for which the caller has
CoordinationPermission[ADMIN] .

Returns A snapshot of all active Coordinations. If there are no active Coordinations, the returned list will be
empty. The returned collection is the property of the caller and can be modified by the caller.

130.5.5.7 public Coordination peek()

□ Returns the current Coordination.

The current Coordination is the Coordination at the top of the thread local Coordination stack. If
the thread local Coordination stack is empty, there is no current Coordination. Each Coordinator
service maintains thread local Coordination stacks.

This method does not alter the thread local Coordination stack.

Returns The current Coordination or nul l if the thread local Coordination stack is empty.

130.5.5.8 public Coordination pop()

□ Remove the current Coordination from the thread local Coordination stack.

The current Coordination is the Coordination at the top of the thread local Coordination stack. If
the thread local Coordination stack is empty, there is no current Coordination. Each Coordinator
service maintains its own thread local Coordination stacks.

This method alters the thread local Coordination stack, if it is not empty, by removing the Coordina-
tion at the top of the thread local Coordination stack.

Returns The Coordination that was the current Coordination or nul l if the thread local Coordination stack is
empty.

Throws SecurityException– If the caller does not have CoordinationPermission[INITIATE] for the current
Coordination.

130.5.6 public interface Participant
A Participant participates in a Coordination.

org.osgi.service.coordinator Coordinator Service Specification Version 1.0

Page 656 OSGi Compendium Release 8

A Participant can participate in a Coordination by registering itself with the Coordination. After
successfully registering itself, the Participant is notified when the Coordination is terminated.

If a Coordination terminates normally, then all registered Participants are notified on their
ended(Coordination) method. If the Coordination terminates as a failure, then all registered Partici-
pants are notified on their failed(Coordination) method.

Participants are required to be thread safe as notification can be made on any thread.

A Participant can only be registered with a single active Coordination at a time. If a Participant is al-
ready registered with an active Coordination, attempts to register the Participation with another ac-
tive Coordination will block until the Coordination the Participant is registered with terminates.
Notice that in edge cases the notification to the Participant that the Coordination has terminated
can happen before the registration method returns.

Concurrency Thread-safe

130.5.6.1 public void ended(Coordination coordination) throws Exception

coordination The Coordination that has terminated normally.

□ Notification that a Coordination has terminated normally.

This Participant should finalize any work associated with the specified Coordination.

Throws Exception– If this Participant throws an exception, the Coordinator service should log the excep-
tion. The Coordination.end() method which is notifying this Participant must continue notifica-
tion of other registered Participants. When this is completed, the Coordination.end() method must
throw a CoordinationException of type CoordinationException.PARTIALLY_ENDED.

130.5.6.2 public void failed(Coordination coordination) throws Exception

coordination The Coordination that has terminated as a failure.

□ Notification that a Coordination has terminated as a failure.

This Participant should discard any work associated with the specified Coordination.

Throws Exception– If this Participant throws an exception, the Coordinator service should log the excep-
tion. The Coordination.fail(Throwable) method which is notifying this Participant must continue
notification of other registered Participants.

TR069 Connector Service Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 657

131 TR069 Connector Service
Specification

Version 1.0

131.1 Introduction
This chapter provides a specification for the TR069 Connector, an assistant to a Protocol Adapter
based on [1] TR-069 Amendment 3. A TR069 Connector provides a mapping of TR-069 concepts to/
from the Dmt Admin Service Specification on page 381. It mainly handles the low level details of Ob-
ject/Parameter Name to Dmt Admin URI mapping, and vice versa. TR-069 Protocol Adapter develop-
ers can use this service to simplify the use the Dmt Admin service. The TR069 Connector service is
based on the definition of a Protocol Mapping in Protocol Mapping on page 424. It is assumed that the
reader understands TR-069 and has a basic understanding of the Dmt Admin service.

The examples in this specification are not from a Broadband Forum Technical Report and are purely
fictional.

131.1.1 Essentials

• Connector - Provide a TR-069 view on top of the Dmt Admin service.
• Simplify - Simplify the handling of data models implemented through the DMT through the

TR-069 protocol.
• Browse - Implement the constructs for MAP and LIST handling.
• Native - Provide a mechanism for Data Plugins to convey conversion information to the Protocol

Adapter so that native TR-069 object models can be implemented as Data Plugins.

131.1.2 Entities

• TR069ConnectorFactory - Provides a way to create a TR069Connector that is bound to an active
Dmt Session.

• TR069Connector - Created by TR069ConnectorFactory on a Dmt Session; provides methods that
helps in using the TR-069 namespace and RPCs on a Dmt Admin DMT.

• ParameterValue - The value of a parameter, maps to the TR-069 ParameterValueStruct .
• ParameterInfo - Information about the parameter, maps to the TR-069 ParameterInfoStruct .
• DMT - The Device Management Tree as available through the Dmt Admin service.

TR-069 Protocol Primer TR069 Connector Service Specification Version 1.0

Page 658 OSGi Compendium Release 8

Figure 131.1 TR-069 Entities

TR069
Connector
Factory impl

TR-069 Protocol
Adapter Impl

TR069
Connector

Factory

Dmt Admin
Service Impl

Dmt
Admin

Remote Manager

131.1.3 Synopsis
A TR-069 Protocol Adapter first creates a Dmt Session on the node in the DMT that maps to an ob-
ject model that should be visible to the TR-069 Management Server. A Protocol Adapter can choose
to map a whole sub-tree or it can create a virtual object model based on different nodes, this depends
on the implementation of the Protocol Adapter.

When a TR-069 RPC arrives, the Protocol Adapter must parse the SOAP message and analyze the
request. In general, an RPC can request the update or retrieval of multiple values. The Protocol
Adapter must decompose these separate requests into single requests and execute them as a sin-
gle unit. If the request is a retrieval or update of a data model maintained in the Dmt Admin ser-
vice then the Protocol Adapter can use a TR069 Connector to simplify implementing this request.
The TR069 Connector Factory service can be used to create an instance of a TR069 Connector that is
based on a specific Dmt Session.

The TR069 Connector maps the Object or Parameter Name to a URI and perform the requested oper-
ation on the corresponding node. The name-to-URI conversion supports the LIST and MAP concepts
as defined in OSGi Object Modeling on page 423.

The TR069 Connector handles conversion from the Dmt Admin data types to the TR-069 data types.
There is a default mapping for the standard Dmt Admin formats including the comma separated list
supported by TR-069. However, Data Plugins that implement TR-069 aware object models can in-
struct the TR069 Connector by providing specific MIME types on the Meta Node.

Objects can be added and deleted but are, in general, not added immediately. These objects are lazily
created when they are accessed. The reason is that TR-069 does not support the concept of a session
with atomic semantics, a fact leveraged by certain object models in the DMT. Therefore, adding an
object will assign a instance id to an object but the creation of the object is delayed until the object is
used.

After all the requests in an RPC are properly handled the TR069 Connector must be closed, the Dmt
Session must be closed separately.

Errors are reported to the caller as they happen, if a Dmt Admin service error is fatal then the Dmt
Session will be closed and it will be necessary to create a new TR069 Connector.

131.2 TR-069 Protocol Primer
The [6] Broadband Forum is an organization for broadband wire-line solutions. They develop mul-
ti-service broadband packet networking specifications addressing interoperability, architecture, and
management. Their specifications enable home, business and converged broadband services, en-
compassing customer, access and backbone networks. One of the specifications of the Broadband Fo-
rum is the Technical Report No 69, also called TR-069, a specification of a management model.

TR069 Connector Service Specification Version 1.0 TR-069 Protocol Primer

OSGi Compendium Release 8 Page 659

131.2.1 Architecture
[1] TR-069 Amendment 3 is a technical report (Broadband Forum's specification model) that speci-
fies a management protocol based on [4] SOAP 1.1 over HTTP. The TR-069 technical report defines
a number of mandatory Remote Procedure Calls (RPCs) that allow a management system, the Au-
to-Configuration Server (ACS), to discover the capabilities of the Consumer Premises Equipment
(CPE) and do basic management. This model is depicted in Figure 131.2.

Figure 131.2 TR-069 Reference Architecture

ACS CPE
get/set/...

Inform

SOAP/HTTP

In TR-069, the CPE is always initiating the conversation with the ACS though the ACS can request a
session.

Inside the CPE there is a Protocol Adapter that implements the TR-069 RPCs. These RPCs read and
modify the objects models present in the CPE. There is usually a mechanism that allows the differ-
ent modules in the CPE to contribute a management object to the Protocol Adapter so that the Pro-
tocol Adapter does not require knowledge about highly specialized domains.

[2] TR-106 Amendment 3 specifies object model guidelines to be followed by all TR-069-enabled de-
vices as well as a formal model to document these object models.

131.2.2 Object Model
The object model of TR-069 consists of objects that contain parameters as well as tables that contain
objects. TR-106 says:

• Object - A named collection of parameters and/or other objects.
• Parameter - A name-value pair.
• Table - An enumeration of objects identified by an instance id.

Figure 131.3 Type Model TR-069

Object

Table

name

Parameter

instance id

0..n 1
1

111

1

1

1

Objects can also occur in tables, in that case the object name is suffixed with an instance id. An object
that has no instance id is a singleton, with an instance id they are referred to as tables. In the Broad-
band Forum technical reports tables end in the special suffix {i} , the instance id.

This provides the following structural definition for this specification:

named-value ::= NAME (object | table | parameter)

TR-069 Protocol Primer TR069 Connector Service Specification Version 1.0

Page 660 OSGi Compendium Release 8

object ::= named-value +
table ::= (instance object)*
parameter ::=
instance ::= INTEGER > 0

TR-069 talks about partial paths and parameter names. In this specification, a name is reserved for
the short relative name used inside an object, also called the local name. The term path is reserved for
the combination of object names, table names, and instance ids that are separated by a full stop ('.'
\u002E) and used to traverse an instance model.

path ::= parameter-path | object-path| table-path
segment ::= NAME '.' (instance '.')?
object-path ::= segment+
table-path ::= segment* NAME '.' // expect INTEGER next
parameter-path ::= object-path NAME
instance-path ::= table-path instance '.'

In this specification the following terms are used consistently:

• Object - Refers to a named type defining a certain set of parameters, objects, and tables.
• Table - A list of instances for a given object.
• Instance - An object element in a table at a certain id.
• Instance Id - The integer id used to identify an instance in a table.
• Alias - A name chosen by the ACS that uniquely identifies an instance.
• Singleton - An object that is not in a table.
• Name - The name of an object, table, or parameter refers to the local name only and not the path.
• Segment - A component in a path that always ends in a full stop. A segment can contain instance

ids to identify an instance.
• Path - A string uniquely identifying a path in the tree to either a parameter, an object, or a table.
• Object Path - A path that uniquely identifies an instance or a singleton. An object path must al-

ways ends in a full stop. This maps to the TR-069 concept of an ObjectName .
• Parameter Path - The name of the parameter preceded by the owning object. A path that does not

end in a full stop is always a parameter path.
• Table Path - An object path that lacks the last instance id. In TR-069 this is also sometimes called a

partial path. The last segment is an object path that must be followed by an instance id to address
an instance.

• Instance Path - A path to an instance in a table

This provides a hierarchy as depicted in Figure 131.4.

Figure 131.4 TR-069 Object and Parameter naming relative to the parameter MemoryStatus

InternetGateWayDevice

DeviceInfo

Memory
Status siblings

ancestors

descendants
children sub-tree

parameter

Services

VendorConfigFile.{i}

object

Device
Log

Free

TR069 Connector Service Specification Version 1.0 TR-069 Protocol Primer

OSGi Compendium Release 8 Page 661

131.2.3 Parameter Names
The grammars for parameter names and object names are as follows:

NAME ::= (Letter | '_')
 (Letter | Digit | '-' | '_' | CombiningChar| Extender)*

The productions Letter , Digit , CombiningChar , and Extender are defined in [5] Extensible Markup
Language (XML) 1.0 (Second Edition). The name basically supports the full Unicode character set for
letters and digits (including digits for other languages), including sets for languages like Hebrew and
Chinese. Examples of different parameter names are:

name // simple name
Name // case sensitive
_
--_
ångstrom
þingsten
ΨΣΩΠ

131.2.4 Parameter Type
A parameter value can have one of the data types defined in [2] TR-106 Amendment 3, they are sum-
marized in Table 131.1.

Table 131.1 TR-106 Data types

TR-106 Type Description
object Represents a structured type
str ing A Unicode string, optionally restricted in length
int 32 bit integer
long 64 bit integer
unsignedInt 32 bit unsigned integer
unsignedLong 64 bit unsigned integer
boolean Can have values 0 or false (fa lse) or 1 or true (true)
dateTime TR-069 recognizes three different date times. These three cases are differ-

entiated in the following way:

• Unknown time - If the time is not known.
• Relative time - Relative time is the time since boot time.
• Absolute time - Normal date and time.

base64 An array of bytes
hexBinary An array of bytes

SOAP messages always provide a type for the parameter value. For example:

<ParameterValueStruct>
 <name>Parameter1</name>
 <value xsi:type="long">1234</value>
</ParameterValueStruct>

The xsi prefix refers to the http://www.w3.org/2001/XMLSchema-instance namespace. How-
ever, this makes not all TR-106 types well defined, for example in XML Schema base64 is called

TR-069 Protocol Primer TR069 Connector Service Specification Version 1.0

Page 662 OSGi Compendium Release 8

base64Binary . This specification assumes that the names and definitions in Table 131.1 and pro-
vides appropriate constants for the Protocol Adapter.

Parameters can be read-only or read-write. All writable Parameters must also be readable although
security can cause certain parameters to be read as an empty string, for example passwords. Parame-
ters can reflect configuration as well as status of the device. External causes can cause parameters
to change at any time. The TR-069 protocol has the facility to call an Inform RPC to provide the ACS
with a notification of changed parameters.

131.2.5 Parameter Attributes
Parameter attributes provide the meta data for a parameter. In TR-069, the attributes are used to
manage notifications and access control. Each parameter in TR-069 can be watched by the ACS by
setting the corresponding parameter attribute to active or passive notifications. Passive notifications
are passed whenever the CPE communicates with the ACS and active notifications initiate a session.
Parameters that have a notification are said to be watched.

Access to the parameters can be managed by setting Access Control Lists via the corresponding para-
meter attribute.

131.2.6 Objects and Tables
TR-106 has the concept of an object stored in a table to allow multiple instances of the same type. It is
part of the object definition if it is stored in a table or not. An object cannot both appear as a table in-
stance and as a singleton.

Each instance in the table is addressed with an integer >= 1. This instance id is not chosen by the ACS
since it can be required to create a new instance due to an external event. For example the user plug-
ging in a USB device or starting a new VOIP session. The ACS must discover these instance ids by
asking the device for the instance ids in a table.

For example, the parameter path Device.LAN.DHCPOption.4.Request refers to a parameter on a
DHCPOption object that has the instance id 4. Instance ids are not sequential nor predictable. It is
the responsibility of the device to choose an instance id when an object is created. Instance ids are
assumed to be persistent so that the ACS can cache results from a discovery process.

Newer TR-069 objects have been given an Alias parameter. This alias uniquely identifies the table in-
stance.

TR-069 defines a convention for a parameter that contains the number of entries in a table. Any pa-
rameter name that ends with NumberOfEntr ies contains the number of entries in a table with the
name of the prefix in the same object. For example A.B.CNumberOfEntr ies provides the number of
entries in the table:

A.B.C.

131.2.7 RPCs
The object model implemented in a device is accessed and modified with RPCs. RPCs are remote pro-
cedure calls; a way to invoke a function remotely. TR-069 defines a number of mandatory RPCs and
provides a mechanism to extend and discover the set of RPCs implemented by a CPE. The mandato-
ry RPCs are listed in in the following table.

Table 131.2 TR-069 RPCs

RPC Description
GetRPCMethods Return a list of RPC methods
SetParameterValues Set one or more parameter values
GetParameterValues Get one or more parameter values

TR069 Connector Service Specification Version 1.0 TR069 Connector

OSGi Compendium Release 8 Page 663

RPC Description
GetParameterNames Get the parameter information for a parameter, object, or table.
SetParameterAttr ibutes Set parameter attributes
GetParameterAttr ibutes Get parameter attributes
AddObject Add a new object to a table
DeleteObject Delete an object from a table
Download Download software/firmware
Reboot Reboot the device

131.2.8 Authentication
The security model of TR-069 is based around the authentication taking place during the setup of a
TLS (formerly SSL) connection. This authentication is then used to manage the access control lists
via the parameter attributes.

131.2.9 Sessions and Transactions
A session with the ACS is always initiated by the CPE. The ACS can request a session, but it is always
the CPE that starts a session by opening the connection to the ACS and then sending an Inform RPC.
The session ends when the connection is closed, which happens after the ACS has informed the CPE
it has no more requests.

During a session, a CPE has the requirements that parameters must not change due to other sources
than the session and that the parameters are consistent with the changes. However, there is no
transactionality over the session, atomicity is only guaranteed for one RPC. An RPC can consist of
multiple parameter modifications that should therefore be atomically applied.

131.2.10 Events and Notifications
TR-069 sessions always start with an Inform RPC from the CPE to the ACS. This RPC contains any
events and notifications for parameters that were watched. Events signal crucial state changes from
the CPE to the ACS. For example, if a device has rebooted it will inform the ACS. Notifications are
caused by parameter changes, the Inform RPC contains a list of events and parameters with changed
values.

131.2.11 Errors
Invoked RPCs can return a fault status if errors occur during the execution of the RPC. For ACS to
CPE RPCs these fault codes start at 9000, for the reverse direction they start at 8000. Each RPC de-
fines the fault codes that can occur and their semantics in that context.

131.3 TR069 Connector
A TR-069 Protocol Adapter must be able to browse foreign Data Plugins on the device and support
native TR069 objects models implemented by a Data Plugin. As Data Plugins are available through
the Dmt Admin service, the Protocol Adapter must provide a bi-directional mapping between Dmt
Admin nodes and TR-069 parameters, notifications, and error codes.The mapping must enable a Da-
ta Plugin to provide a native Broadband Forum object model that limits itself to the required RPCs.

131.3.1 Role
Developers implementing the TR-069 protocol are not likely to be also experts in the Dmt Admin
service. This specification therefore provides a TR069 Connector Factory service that provides an
object that can map from the TR-069 concepts to the Dmt Admin concepts, supporting all the con-
structs defined in the OSGi Object Modeling on page 423.

TR069 Connector TR069 Connector Service Specification Version 1.0

Page 664 OSGi Compendium Release 8

The TR069 Connector only specifies a number of primitive functions to manage the DMT. Parsing
the SOAP messages, handling the notifications, and splitting the requests for TR069 Connector is
the responsibility of the Protocol Adapter. The reason that the TR069 Connector does not work on a
higher level is that a Protocol Adapter for TR-069 will likely communicate with other subsystems in
the CPE than the OSGi framework alone. Though the Dmt Plugin model is an attractive approach to
implement object models, there is history. Existing code will likely not be rewritten just because it
can be done better as a Data Plugin.

For example, a Data Plugin could implement the Device.DeviceInfo. object. However, this object ac-
tually resides in the DMT at a node:

./TR-069/Device/DeviceInfo

A TR-069 Protocol Adapter will therefore be confronted with a number of data models that reside in
different places. Each place provides one or more consistent data models but it is the responsibili-
ty of the TR-069 Protocol Adapter to ensure the ACS gets a consistent and standardized view of the
whole. To create this consistent view it will be necessary to adapt the paths given in the RPCs. It is
expected that a Protocol Adapter is required to have a certain amount of domain knowledge, for ex-
ample a table, that maps TR-069 paths to their actual providers.

The basic model is depicted in Figure 131.5.

Figure 131.5 TR-069 Connector Context

TR-069
Protocol Adapter

ACS Dmt Admin
Impl

TR-069 Foreign
Data Plugin Impl

TR-069 Native
Data Plugin Impl

Dmt Admin

Dmt Event
Listener

Data Plugin

TR069 Connec-
torFactory Impl

TR069
Connector Factory

Other object
model providers

Notification
Service Impl

Notification
Service

Remote
Alert Sender

The Protocol Adapter can be implemented as an OSGi Bundle or it can be implemented in native
code in the device. Both architectures are viable. For certain aspects like the TR-157a3 Software Mod-
ules a certain amount of native code will be required to manage the OSGi Framework as an Execu-
tion Environment.

In an environment where the Protocol Adapter is implemented outside an OSGi Framework it will
be necessary to create a link to the Dmt Admin service. This can be achieved with a proxy bundle in-
side the OSGi framework that dispatches any requests from the native Protocol Adapter to the func-
tionality present in the OSGi Framework. In this specification, it is assumed that such proxies can
be present. However, the examples are all assuming that the Protocol Adapter is running as a Bun-
dle.

131.3.2 Obtaining a TR069 Connector
A TR069 Connector is associated with a Dmt Session, the TR069ConnectorFactory provides the
create(DmtSession) method that will return a TR069Connector object. This object remains associ-
ated with the Dmt Session until the Dmt Session is closed, which can happen because of a fatal error
or when the TR069 Connector Factory is unregistered or un-gotten/released. Creating a TR069 Con-

TR069 Connector Service Specification Version 1.0 TR069 Connector

OSGi Compendium Release 8 Page 665

nector must not be expensive, Protocol Adapters should create and close them at will. Closing the
connector must not close the corresponding Dmt Session.

The TR069 Connector must use the root of the session as its base. That is, their URI mapping all para-
meters must start from the base. For example, if the session is opened at . /TR-069 then the parame-
ter IGD/DeviceInfo/Manufacturer must map to URI . /TR-069/IGD/DeviceInfo/Manufacturer .

If a Protocol Adapter will modify the tree then it should use an atomic session for all RPCs even if
the RPC indicates read-only. The reason for the atomicity is that in certain cases the lazy behavior
of the TR069 Connector requires the creation of objects during a read operation. If a non-atomic
session is used then the TR069 Connector must not attempt to lazily create objects and reject any
addObject(Str ing) and deleteObject(Str ing) methods. See also Lazy and Sessions on page 669.

131.3.3 Supported RPCs
The TR069 Connector supports a limited number of RPCs, and for those RPCs it only supports the
singleton case. The TR069 Connector provides support for the RPCs primitives listed in the follow-
ing table.

Table 131.3 Supported TR-069 RPCs

RPC Related Method Description
SetParameterValues setParameterValue(Str ing,Str ing, int) Set one or more parameter values. The connector sup-

ports setting a single value, ensuring the proper path
traversal and data type conversion

GetParameterValues getParameterValue(Str ing) Get one or more parameter values. The connector sup-
ports getting a single value, converting it to a Para-
meterValue object, which contains the value and the
type.

GetParameterNames getParameterNames(Str ing,boolean) Get the paths of objects and parameters from the sub-
tree or children that begins at the parameter path. The
TR-069 Connector supports the full traversal of the
given path and the next level option.

AddObject addObject(Str ing) Add a new object to a table. The fully supports the se-
mantics, taking the MAP and LIST nodes into account.
Node creation can be delayed until a node is really
needed.

DeleteObject deleteObject(Str ing) Delete an object from a table.

131.3.4 Name Escaping
An object or parameter path describes a traversal through a set of objects, this is almost the same
model that Dmt Admin provides. The difference is that the characters allowed in a TR-069 parame-
ter name are different from the Dmt Admin node names and that TR-069 does not support applica-
tion specific parameter/object names like the Dmt Admin service does.

A path consist of a number segments, where each segment identifies a name or instance id. TR-069
names can always be mapped to Dmt Admin node names as the character set of TR-069 parameter
names is restricted and falls within the character set of the Dmt Admin node names. The length of a
segment could be a problem but TR-069 paths are generally limited to have a length of less than 256
bytes. This specification therefore assumes that a segment of a TR-069 path is never too long to fit in
a Dmt Admin node name.

Mapping a Dmt Admin node name to a parameter name, needed for browsing, is more compli-
cated as Dmt Admin node names allow virtually every Unicode character except the solidus (' / '
\u002F). It is therefore necessary to escape Dmt Admin URIs into a path that is acceptable for
the TR-069 protocol. It is assumed that escaping is only used in a browsing mode since native

TR069 Connector TR069 Connector Service Specification Version 1.0

Page 666 OSGi Compendium Release 8

object models will never require escaping. The TR069 Connector must return names from the
getParameterNames(Str ing,boolean) call that the ACS can handle, optionally show to the user, and
then use to construct new paths for subsequent RPCs.

There is no obvious escape character defined in TR-069, like for example the reverse solidus (' \ '
\u005C) that the Dmt Admin uses for escaping. The character for escaping is the latin small letter
thorn ('þ ' \u00FE) because his character is highly unlikely to ever be used in a TR-069 path for a na-
tive object model, however, even if it is then it would be no problem for the escaping algorithm. The
thorn is a letter, allowing it to be used as the first character in a parameter name, this allows escap-
ing the first character.

A character in a segment that is not allowed must be escaped into the following sequence:

þ[0-9A-Z][0-9A-Z][0-9A-Z][0-9A-Z]

The 4 hexadecimal upper case digits form a hexadecimal number that is the Unicode for that charac-
ter. Each character that does not conform to the syntax specified in Parameter Names on page 661
or the thorn character itself must be replaced with the escape sequence. For example, the name
3ABCþ must be translated to:

þ0033ABCþ00FE

If the segment is an instance id then the segment must not be escaped. Otherwise, if the segment
does not start with a Letter or underscore, then the first character must be escaped with the thorn.

Unescaping must undo the escaping. Any sequence of þ[0-9A-Z][0-9A-Z][0-9A-Z][0-9A-Z]
must be replaced with the character with the corresponding Unicode. A thorn found without the
subsequent 4 hexadecimal upper case digits must be treated as a single thorn. For readability it is
best to minimize the escaping. However, any name given to the TR069 Connector that is escaped
must be properly interpreted even if the unescaped string did not require escaping. For example,
þ0031þ0032þ0033 must be usable as an object instance id as the unescaped form is 123, which is a
number.

A number of examples of the escaping are shown in the following table.

Table 131.4 Escaping Parameter Names

Segment Dmt Admin Escaped TR-069 Escaped Notes
DeviceInfo DeviceInfo DeviceInfo Most common case.
3x Hel lo World 3x Hel lo World þ0033xþ0020Hel loþ0020World The initial digit and the spaces must be

escaped in TR-069.
þorn þorn þornþ00FEorn A single thorn does not require escap-

ing as it is not followed by 4 hexadeci-
mal digits. So both forms are valid for
unescaping although escaping must de-
liver the þ00FE form.

appl icat ion/bin appl icat ion\/bin appl icat ionþ002Fbin The solidus must be escaped in both.
234 234 234 A numeral does not require escaping, it

is assumed to be an instance id.
234x 234x þ003234x A name that starts with a digit requires

the first digit to be escaped.
þ00FEorn þ00FEorn þ00FE00FEorn It is possible to encode even already es-

caped names.

The TR069 Connector only accepts escaped paths and returns escaped paths. When a method re-
turns a path it must be properly escaped and suitable as a TR-069 path.

TR069 Connector Service Specification Version 1.0 TR069 Connector

OSGi Compendium Release 8 Page 667

131.3.5 Root
In general, the TR-069 Protocol Adapter is free to choose what parts of the DMT it wants to expose. A
simple mapping table containing path prefixes can be used to define the handler for the given data
model. However, since the intention is to allow TR-069 object models to be implemented in Dmt Ad-
min Data Plugins there is a need to know where those plugins should reside in the DMT. This root is
defined as:

./TR-069

Any Data Plugin that wants to provide an object model in the TR-069 family of object models should
provide a Data Plugin rooted at the TR-069 root. For example, a Data Plugin implementing the
InternetGatewayDevice.DeviceInfo. object should register its Data Plugin under the data Root URI
. /TR-069/ InternetGatewayDevice/DeviceInfo

131.3.6 DMT Traversal
A path must be mapped from the TR-069 hierarchy to the Dmt Admin nodes URI. The Protocol
Adapter decides the base in the DMT by opening the Dmt Session with a session root parameter. The
TR-069 Connector must then traverse the tree from this base based on the TR-069 path. The Protocol
Adapter must use the Instance Id on page 430 for MAP and LIST nodes to traverse the DMT.

Assume that the URI of a node is requested for a given path P . The path P must be traversed from the
root node. The root node can find the child, the first segment in P, and then use the same routine re-
cursively for the remainder. This recursive routine must perform the following actions on each cur-
rent node:

• If path P is empty, then this is the requested node.
• S = first segment of path P up to the first full stop.
• R = remainder of path P after the first full stop or empty if no full stop.
• If S is an alias (surrounded by ' [' and '] '), replace S with the alias inside the brackets. For Dmt Ad-

min nodes aliases are identical to normal node names.
• unescape S (replace the thorns)
• If the current node is a MAP or a LIST and S is an integer

• Get the list L of children of the current nodes
• If the nodes in L have an InstanceId node find the node where the InstanceId matches the seg-

ment S as integer, this becomes then the next level node N and the algorithm is repeated with
path R .

• If no next node N was found then make it the child node of the current node with the name S .
• Repeat the algorithm with N with path R

Since each node that is traversed this way knows the node name it corresponds to it is easy to create
an encoded URI for Dmt Admin.

For example, the TR-069 path:

Device.DeviceInfo.Interface.14.Connections.3.BytesSent

Assuming that Interface node is a MAP node and its children have an InstanceId node, where the
WAN_1 node has an InstanceId of 14.

The Connections node is a LIST and the children have no InstanceId , therefore the name is the in-
dex. The translated URI then looks like:

Device/DeviceInfo/Interface/WAN_1/Connections/3/BytesSent

TR069 Connector TR069 Connector Service Specification Version 1.0

Page 668 OSGi Compendium Release 8

The toURI(Str ing,boolean) method can take a TR-069 path and perform the substitutions. If the cre-
ate parameter is true then the TR069 Connector will create missing nodes if possible. Missing nodes
can only be created under a LIST or MAP node.

A missing node is a node that is addressed by a path but not present in the DMT. For example, the
root of the session is . /TR-069 and the parameter path is A.B.C . If the DMT contains . /TR-069/A but
not . /TR-069/A/B then node B is a missing node.

131.3.7 Synthetic Nodes
The Protocol Adapter must synthesize an Alias parameter and for any MAP or LIST node called X it
must provide a sibling XNumberOfEntr ies parameter that provides the number of entries in table X .

131.3.7.1 Alias

The Alias node is a read-write parameter that must map to the actual node name of its parent.
For example, . /A/B/C/Al ias must map to C . Reading it must provide the this parent's node name
and writing it must rename this parent's node name. The Alias must be automatically pro-
vided on any child of a MAP node. The Alias parameter must also be returned in the result of
getParameterNames(Str ing,boolean) if its parent's children are included. It is not possible to con-
vert an Alias parameter name to a URI as the Alias node is synthetic and does not exist in the DMT.
The model of aliases are depicted in Figure 131.6.

Figure 131.6 Aliases

Alias
(synthetic)

child
1

1
node
name

Aliases can be used by the ACS to set the key of a MAP . For example, if a set of properties is defined as
a MAP :

Name Act Type Card. S Description
Propert ies Get MAP 1 P A Properties map
 [str ing] Get Set

Add Del
str ing 0. .n A Key/Value

An ACS can first add an object to the table. This will create an entry with a calculated instance id.
However, the ACS can then rename the node with the Alias node. In pseudo code:

AddObject ..Properties. (returnsnode name = 3421)
SetParameterValue ..Properties.3421.Alias = MyKey

Alternatively, addressing with an alias in the parameter name would be simpler:

AddObject ..Properties.[MyKey]

131.3.7.2 Number Of Entries

TR-069 has the convention of parameters that end with NumberOfEntr ies . For example, the parame-
ter UserNumberOfEntr ies in the object InternetGatewayDevice object contains the number of en-
tries of the InternetGatewayDevice.User table.

The Protocol Adapter must synthesize these NumberOfEntr ies parameters for each MAP or LIST
node. The NumberOfEntr ies parameter must be a sibling of the MAP or LIST node. Any such parame-
ter must also be returned in the result of the getParameterNames(Str ing,boolean) method.

TR069 Connector Service Specification Version 1.0 TR069 Connector

OSGi Compendium Release 8 Page 669

131.3.8 Lazy and Sessions
In the Dmt Admin service the session plays an important role in how the object model operates. Es-
pecially atomic sessions have a clear point to commit any changes so that many actions can be de-
ferred until all the information is available. In TR-069 there is no real session concept although one
RPC must be executed atomically even if it changes multiple parameters. As there are different RPCs
to create objects and set their parameters it is impossible to create and parameterize an object in a
single session. This creates problems with general DMT models.

It is recommended to operate all RPCs in an atomic session to allow these DMT models to leverage
the session commit phase. However, a TR-069 Connector must also accept a read only or exclusive
session. The session can then of course cause exceptions to be thrown at certain operations.

The connector must lazily create instances. An addObject(Str ing) method must not actually create
the object, it only has to create an instance id and ensure the uniqueness of this id over time. The id
must follow the rules from TR-069, it must not clash with an existing id even after such an id has
been used in the past.

This id is then returned to the ACS who will then use it in subsequent RPCs. When one of the sub-
sequent RPCs tries to access this not-yet existent node, for example a get or set, then the TR069 Con-
nector must create it before it sets or gets the value of this node. This lazy strategy allows the node
creation and the parameterization of that node to happen in a single session/RPC.

For example, in session 100 the addObject(Str ing) creates a new node. This node is not really cre-
ated but the unique instance id 4311 is assigned to it. After this RPC, the session is closed. The
ACS receives this instance and then prepares a GetParameterValues RPC to get the . . /4311/Foo
parameter. The management agent receives the RPC and opens a new session 200, it then calls
getParameterValue(Str ing) . The TR069 Connector will not find the appropriate entry 4311 in the
table. Instead of raising an error it creates this node and then gets the value for the . . /4311/Foo para-
meter.

A Data Plugin implementing a native TR-069 object model can override the lazy behavior by adding
a appl icat ion/x-tr-069-eager MIME type to the list of MIME types in the Meta Node. If this MIME
type is present then the node must be eagerly created during the addObject(Str ing) method.

The TR069 Connector must assign the unique id according to the TR-069 rules for instance ids.

131.3.9 Data Types
This specifications assume the [2] TR-106 Amendment 3 defined data types. TR-106 defines a num-
ber of data types, derived from XML Schema and creates a number of sub-types to discriminate be-
tween different use cases. A Protocol Adapter must be able to understand the types defined in Ta-
ble 131.5 to be able to faithfully define a data model based on [2] TR-106 Amendment 3. Discriminat-
ing between some of the sub-types requires inspection of the data. Each sub-type requires mapping
rules that are defined later. Each mapping is assigned a unique MIME sub-type in the appl icat ion
media type. That is, the TR-069 int type has a MIME type of appl icat ion/x-tr-069-int.

Table 131.5 TR-069 Types, MIME types

TR-069 Type MIME Type Notes
base64 x-tr-069-base64 Base 64 encoded
hexBinary x-tr-069-hexBinary Hex encoded
boolean x-tr-069-boolean
str ing x-tr-069-str ing General string type.
str ing (l ist) x-tr-069-l ist A comma separated string that acts as a list.
int x-tr-069-int Signed integer
unsignedInt x-tr-069-unsignedInt Unsigned integer
long x-tr-069-long Signed long

TR069 Connector TR069 Connector Service Specification Version 1.0

Page 670 OSGi Compendium Release 8

TR-069 Type MIME Type Notes
unsignedLong x-tr-069-unsignedLong Unsigned long
dateTime x-tr-069-dateTime Absolute UTC time, relative boot time, or

unknown time
 x-tr-069-eager Eager creation (not a data type, see Lazy

and Sessions on page 669).

It is the responsibility of the Protocol Adapter to properly clean up the parameter values, that is,
remove any unnecessary white space, etc. The TR069 Connector must accept any lexically correct
form of the value of a parameter. However, the connector must always return the value according to
the format of the data types specified by TR-069.

131.3.10 DMT to TR-069 Conversion
This section describes the conversion from a DMT node (a Dmt Data) to a TR-069 Parameter value.
The source is the DMT node retrieved from the DMT. The destination is the value and its type that
must be encoded in the TR-069 response. The meta node is the Meta Node associated with the source.
This model is depicted in Figure 131.7.

Figure 131.7 DMT to TR-069

Dmt Data Parameter Value

Meta Node

source

destination

meta node

TR069 Connector

value + type

The different conversions possible for the Dmt Data to the TR-069 Parameter value are shown in Ta-
ble 131.6. This table shows vertically the Dmt Admin formats and horizontally the TR-106 types de-
fined in Table 131.5. Each row has a default conversion type, indicated with a bold entry. For exam-
ple, the default conversion of a FORMAT_BOOLEAN to the boolean type is the default conversion.

This default conversion can be overridden by the Data Plugin by specifying an alternative MIME
type in the list of allowed MIME types in the Meta Node getMimeTypes() . If this list contains a
MIME type that has the prefix appl icat ion/x-tr-069- then the first entry in this list must be chosen
as the destination type instead of the default type. This way, a TR-069 Data Plugin can indicate the
exact type to a TR-069 Protocol Adapter.

For example, a Dmt Data has the format FORMAT_BASE64 . However, the Data Plugin for this node
has a Meta Node that contains

String[] { "application/x-tr-069-hexBinary"}

The resulting type must therefore be hexBinary in this example.

The Dmt Data nodes are leaf nodes, however, there is a special case for interior LIST nodes marked
with a appl icat ion/x-tr-069-l ist type in the Meta Node. These nodes must be converted to a comma
separated string as described in List on page 672.

Cells that are empty in the table indicate an impossible conversion that must be reported. Cells with
a name refer to one of the subsequent sections.

TR069 Connector Service Specification Version 1.0 TR069 Connector

OSGi Compendium Release 8 Page 671

Table 131.6 Dmt Data Format to TR-069 Data

ba
se

64

bo
ol

ea
n

da
te

Ti
m

e

he
xB

in
ar

y

in
t

lo
ng

st
rin

g

un
sig

ne
dI

nt

un
sig

ne
dL

on
g

FORMAT_BASE64 binary binary
FORMAT_BINARY binary binary
FORMAT_BOOLEAN = true |

fa lse

FORMAT_DATE date =
FORMAT_DATE_TIME date date
FORMAT_FLOAT number number number number number
FORMAT_INTEGER number number number number number
FORMAT_LONG number number number number number
LIST list
FORMAT_NULL fa lse date 0 0 "nul l " 0 0
FORMAT_RAW_BINARY binary binary
FORMAT_RAW_STRING =
FORMAT_STRING =
FORMAT_TIME date =
FORMAT_XML =

131.3.10.1 Date

If the destination type is str ing then a date must be formatted according to the TR-069 dateTime for-
mat. FORMAT_DATE and FORMAT_TIME must be set to a TR069_DATETIME typed destination with
just the day or just the time respectively. That is, the FORMAT_TIME must be treated as a relative
time for TR-069.

The Date object of the Dmt Data object represents the three different TR069_DATETIME types with
the getTime() method. The value of getTime() indicates what type of date time it is:

• Unknown - The getTime() method must be 0
• Relative - The getTime() method must return a negative number
• Absolute - The getTime() method must return a positive number

If a FORMAT_DATE , FORMAT_TIME , or FORMAT_DATE_TIME is converted to a string the string repre-
sentation of TR069_DATETIME must be used, including the form of unknown, relative, or absolute.
A FORMAT_NULL stands for an unknown time.

131.3.10.2 Binary

The Dmt Admin service has several binary formats (FORMAT_BASE64, FORMAT_BINARY, and
FORMAT_RAW_BINARY) that can be converted to TR069_HEXBINARY and TR069_BASE64 . All bi-
nary formats maintain their data as a byte[] . Conversion is therefore straightforward encoding of
the byte[] into the proper encoding: hex or base 64.

131.3.10.3 Number

The TR-069 Connector must convert numeric values (FORMAT_INTEGER , FORMAT_LONG ,
and FORMAT_FLOAT) to TR069_INT , TR069_LONG , TR069_UNSIGNED_INT , and
TR069_UNSIGNED_LONG values. Float values must be rounded according to the standard Java
rounding rules when converted to an integer or long .

TR069 Connector TR069 Connector Service Specification Version 1.0

Page 672 OSGi Compendium Release 8

A conversion must not exceed the range of the destination type. That is, if an integer is converted
to an unsigned int then negative values must be treated as an error. If the destination type is str ing
then the numeric value must be calculated with the Dmt Data toStr ing method.

131.3.10.4 List

LIST nodes with primitive children must be converted to a comma separated list. If the children
nodes are interior nodes then an error must be raised. The values of the comma separated list must
come from the children of the value node. Each of these children must be converted to a string type
according to Table 131.6. These children must then be escaped and concatenated with a comma as
separator according to the rules of TR-106 comma separated lists. Nested lists are not allowed.

131.3.11 TR-069 to Dmt Data Conversion
A TR-069 Parameter value consists of a string and a type identifier from the set of TR-069 types, see
Data Types on page 669. The conversion is depicted in Figure 131.7.

Figure 131.8 TR-069 to DMT

TR-069 string Dmt Data

Meta Node

source

destination
Protocol Connector

TR-069 type

The destination type is obtained from the corresponding Meta Node. If multiple formats are spec-
ified in the result of the getFormat() method then the most applicable type must be used. The fol-
lowing table lists the applicability for each TR-106 data type.

base64 FORMAT_BASE64, FORMAT_BINARY, FORMAT_RAW_BINARY
boolean FORMAT_BOOLEAN, FORMAT_STRING
dateTime FORMAT_DATE_TIME, FORMAT_DATE, FORMAT_TIME
hexBinary FORMAT_BASE64, FORMAT_BINARY, FORMAT_RAW_BINARY
int FORMAT_INTEGER, FORMAT_LONG, FORMAT_FLOAT, FORMAT_STRING
long FORMAT_LONG, FORMAT_FLOAT, FORMAT_INTEGER, FORMAT_STRING
string FORMAT_STRING, FORMAT_BOOLEAN, FORMAT_INTEGER, FORMAT_LONG,
 FORMAT_FLOAT, FORMAT_RAW_STRING, FORMAT_XML
unsignedInt FORMAT_INTEGER, FORMAT_LONG, FORMAT_FLOAT, FORMAT_STRING
unsignedLong FORMAT_LONG, FORMAT_FLOAT, FORMAT_INTEGER, FORMAT_STRING

If the conversion fails and there are untried formats left then the other formats must be used.

There is a special case when the destination node is a LIST node with primitive children and the
source is a str ing type. In that case the string must be parsed according to TR-106 comma separated
lists and each element must be stored as a child node.

The conversion matrix is in the following table. The equal sign indicates identity taking into ac-
count any encoding. It is not necessary that the source type corresponds to a MIME type in the meta
node.

TR069 Connector Service Specification Version 1.0 RPCs

OSGi Compendium Release 8 Page 673

Table 131.7 TR-069 Value to Dmt Data

FO
RM

AT
_B

AS
E6

4

FO
RM

AT
_B

IN
AR

Y

FO
RM

AT
_B

O
O

LE
AN

FO
RM

AT
_D

AT
E

FO
RM

AT
_D

AT
E_

TI
M

E

FO
RM

AT
_F

LO
AT

FO
RM

AT
_I

N
TE

G
ER

FO
RM

AT
_L

O
N

G

FO
RM

AT
_R

AW
_B

IN
AR

Y

FO
RM

AT
_R

AW
_S

TR
IN

G

FO
RM

AT
_S

TR
IN

G

FO
RM

AT
_T

IM
E

FO
RM

AT
_X

M
L

LI
ST

base64 binary binary binary
boolean bool true|

false

dateTime date date = date
hexBinary binary binary binary
int num num num =
long num num num =
str ing bool num num num = = = l ist
unsignedInt num num num =
unsignedLong num num num =

131.3.11.1 Date

A TR069_DATETIME can be converted to a FORMAT_DATE, FORMAT_TIME, and
FORMAT_DATE_TIME . A FORMAT_DATE must take the day part and a FORMAT_TIME must take the
time part.

131.3.11.2 Num

Source numbers must be converted to their destination counterpart. The conversion result must fail
if the result falls outside the range of the destination.

131.3.11.3 Bool

If the source is a str ing or boolean type and the destination FORMAT_BOOLEAN then the conversion
must parse the string ignoring the case. The strings true and fa lse map to their corresponding value.
The strings 0 must map to fa lse and 1 to true .

131.3.11.4 Binary

The source must be decoded according to its TR-069 type (TR069_BASE64 or TR069_HEXBINARY).
The resulting byte array can then be set with the DmtData(byte[] , int) with the destination format:
FORMAT_BINARY or FORMAT_BASE64 .

131.3.11.5 List

The source is a comma separated list and must be stored as children of the destination node.

131.4 RPCs
The following sections explain in more detail how the different RPCs are supported by the TR069
Connector operate.

RPCs TR069 Connector Service Specification Version 1.0

Page 674 OSGi Compendium Release 8

131.4.1 Get Parameter Values
The GetParameterValues RPC retrieves the value from one or more parameters. Each request in the
RPC can request one parameter value or provides an object or table path, requesting multiple values
with one path.

The getParameterValue(Str ing) method retrieves the value of one parameter in the DMT. The
getParameterNames(Str ing,boolean) method can be used to retrieve the values of a table or object.

For the getParameterValue(Str ing) method the TR069 Connector must first check for synthesized
parameters, see Synthetic Nodes on page 668 (Alias and NumberOfEntr ies). Otherwise, the para-
meter name must be converted to a URI, this must be done according to the toURI(Str ing,boolean)
method with the boolean set to true , creating any missing nodes if possible. The Dmt Data for this
node must be converted according to DMT to TR-069 Conversion on page 670. The returned Para-
meterValue contains the type and value of the parameter.

For example:

ParameterValue v = connector.getParameterValue(
 "Device.DeviceInfo.Manufacturer");
String value = v.getValue();
int type = v.getType();

131.4.2 Set Parameter Values
The SetParameterValues RPC sets a number of values in one RPC. The
setParameterValue(Str ing,Str ing, int) method corresponds to setting a single parameter in the DMT.
It takes a parameter path, a value, and the type of this parameter.

The TR069 Connector must first check if the requested destination is the Alias node of a MAP child.
If the Alias node is set, the name of the parent node must be renamed to the given value. The value
of the Alias node must be a TR-069 string type, the Connector must ensure the value is escaped when
necessary. See Synthetic Nodes on page 668 for further information about aliases.

Otherwise, the parameter name must be converted to a URI, this must be done according to the
toURI(Str ing,boolean) method with the boolean set to true .

The given value must be converted to a Dmt Data according to the TR-069 to Dmt Data Conversion on
page 672. For example:

connector.setParameterValue("Starwars.R2D.2.Start",
 "20110805T10:15:20Z", TR069_DATETIME);

131.4.3 Get Parameter Names
The GetParameterNames RPC allows an ACS to discover the parameters accessible on a particular
CPE as well as verifying the existence of a parameter. There are modes for this RPC depending on the
path and next level arguments. See the following table.

Table 131.8 Modes based on type of path and NextLevel arguments

NextLevel Parameter Path Table or Object Path
true Invalid Argument Fault code 9003 since

this field must always be fa lse for a para-
meter path.

Include only the children of the object or
table.

fa lse A single ParameterInfo object is returned
that provides information about the giv-
en parameter.

The whole sub-tree rooted at the given
object or table path, this includes the ob-
ject at the path itself. All objects must be
included even if they are empty.

TR069 Connector Service Specification Version 1.0 RPCs

OSGi Compendium Release 8 Page 675

The result must include only parameters, objects, and tables that are actually implemented by the
CPE. If a parameter is listed then a getParameterValue(Str ing) method called with this parameter's
path should succeed. As a convenience, the ParameterInfo class provides a getParameterValue()
method as a short cut to the value.

For example, assume the following instances:

IGD.LAN.1.Hosts.
IGD.LAN.1.Hosts.HostNumberOfEntries
IGD.LAN.1.Hosts.Host.
IGD.LAN.1.Hosts.Host.1.
IGD.LAN.1.Hosts.Host.1.Active
IGD.LAN.1.Hosts.Host.2.
IGD.LAN.1.Hosts.Host.2.Active
IGD.LAN.2.Hosts.
IGD.LAN.2.Hosts.HostNumberOfEntries

The following table demonstrates some of the different results based on these example instances.

Table 131.9 Example Get Parameter Names

Parameter Name Next level Results Comments
fa lse IGD.LAN.1.

IGD.LAN.1.Hosts.

IGD.LAN.1.Hosts.HostNumberOfEntr ies

IGD.LAN.1.Hosts.Host.

IGD.LAN.1.Hosts.Host.1 .

IGD.LAN.1.Hosts.Host.1 .Act ive

IGD.LAN.1.Hosts.Host.2.

IGD.LAN.1.Hosts.Host.2.Act ive

The path specifies an instance in at ta-
ble and since the Next Level is false
the whole sub-tree must be returned,
including the root of the sub-tree.

IGD.LAN.1.

true IGD.LAN.1.Hosts. The path is the same, an instance in a
table, but now only the children must
be returned for the source. There is on-
ly one child, Hosts . This must be re-
turned as an object path.

fa lse IGD.LAN.1.Hosts.Host.

 1 .Act ive

The path is a parameter path, there-
fore only the source is returned.

IGD.LAN.1.Hosts.«

 1.Act ive
true Fault 9003 Invalid Arguments, next level

must be false for a parameter path.
Next Level must not be set to true for a
parameter path

IGD.LAN.1 false or true Fault 9003 Invalid Arguments, it is not a
parameter path but an instance id

It is not allowed to specify a parame-
ter path that is actual pointing to an
instance.

For example:

Collection<ParameterInfo> pinfos = connector.getParameterNames("Device.");
for (ParameterInfo info : pinfos) {
 if (info.isParameter()) {
 System.out.println(
 connector.getParameterValue(info.getName()).getValue());
 }

Error and Fault Codes TR069 Connector Service Specification Version 1.0

Page 676 OSGi Compendium Release 8

}

131.4.4 Add Object
The AddObject RPC creates a new instance in a table. There basic form for this RPC is to create an
object and return the name of this object. It is also possible to specify an alias (a name specified in
square brackets) after the table path. In that case, the alias is used as the node name. In either case,
the path must be a valid table path pointing to a an existing MAP or LIST node.

When an object is added without an alias then the TR069 Connector must assign a unique id.
TR-069 mandates that this id is unique for the table. The TR069 Connector must be able to create
and maintain such a persistent id range. The Connector must ensure that any id chosen is not actu-
ally already in use or has been handed out recently. How such an id is calculated and maintained is
implementation dependent.

If alias based addressing is used, a name between square brackets, then the alias is retrieved from the
square brackets. The DMT must then be verified that no node exists in the corresponding table. If
it does already exist, an INVALID_PARAMETER_NAME exception is thrown. Otherwise the alias is re-
turned as the selected name.

If the corresponding MAP or LIST node has a Meta Node with a MIME type of appl icat ion/x-tr-69-
eager then the alias or instance id must be used to create the node. Otherwise the alias or instance id
must be returned without creating the node. The purpose of this lazy creation is to allow a single Set
Parameter Values RPC to atomically create a number of nodes and set their values.

For example:

String id = connector.addObject("Starwars.CP.3.Obiwan.");
connector.setParameterValue("Starwars.CP.3.Obiwan." + id+ ".Name",
 "cp30", TR069_STRING);

The previous code gets an assigned id with the addObject(Str ing) method. The
setParameterValue(Str ing,Str ing, int) then assigns the string cp30 to the Name node. This will first
create the actual node since it was not created in the addObject(Str ing) method and then sets the
value of the DMT Starwars/CP/3/Obiwan/<id>/Name node.

The addObject(Str ing) method requires an atomic session. If a non-atomic session is used then
the addObject(Str ing) method must not attempt to create any objects and an exception must be
thrown.

131.4.5 Delete Object
The DeleteObject RPC deletes an object from the tree, it takes the instance path as argument. This
behavior is implemented in the deleteObject(Str ing) method. The corresponding node must be
deleted if it exists. No error must be raised if the node does not exist in the DMT.

For example, deleting the object created in Add Object on page 676:

connector.deleteObject("Starwars.CP.3.Obiwan.cp30.");

131.5 Error and Fault Codes
The TR069 Connector must translate any Dmt Admin codes into a TR-069 fault code. Since the
methods in the TR069Connector only relate to a single value it is possible to provide a mapping
from Dmt Exception codes to TR-069 fault codes. It is the responsibility of the Protocol Adapter to
aggregate these errors in the response to a SetParameterValues RPCs.

A TR069 Connector must prevent exceptions from happening and ensure that the different applic-
able error cases defined in the TR-069 RPCs are properly reported as a TR069 Exception with the in-

TR069 Connector Service Specification Version 1.0 Managing the RMT

OSGi Compendium Release 8 Page 677

tended fault code. However, this section defines a list of default translations between Dmt Excep-
tions and TR-069 fault codes.

The following table contains the exceptions and the resulting fault codes. Any obligations that are
mandated by the TR-069 protocol are the responsibility of the TR-069 Protocol Adapter. The Dmt Ex-
ception is available from the TR-069 Exception for further inspection.

Table 131.10 Exceptions to TR-069 Fault code.

Exception Fault code Comments
ALERT_NOT_ROUTED INTERNAL_ERROR
COMMAND_FAILED INTERNAL_ERROR
COMMAND_NOT_ALLOWED REQUEST_DENIED
CONCURRENT_ACCESS INTERNAL_ERROR
DATA_STORE_FAILURE INTERNAL_ERROR
FEATURE_NOT_SUPPORTED REQUEST_DENIED
INVALID_URI INVALID_PARAMETER_NAME
LIMIT_EXCEEDED RESOURCES_EXCEEDED
METADATA_MISMATCH INVALID_PARAMETER_TYPE
NODE_ALREADY_EXISTS INTERNAL_ERROR
NODE_NOT_FOUND INVALID_PARAMETER_NAME
PERMISSION_DENIED NON_WRITABLE_PARAMETER
REMOTE_ERROR INTERNAL_ERROR
ROLLBACK_FAILED INTERNAL_ERROR
SESSION_CREATION_TIMEOUT REQUEST_DENIED
TRANSACTION_ERROR REQUEST_DENIED
UNAUTHORIZED REQUEST_DENIED
URI_TOO_LONG INVALID_PARAMETER_NAME
Dmt I l legal State Exception INTERNAL_ERROR
Security Exception REQUEST_DENIED
Other Exceptions REQUEST_DENIED

131.6 Managing the RMT
The RMT is not a native TR-069 model as it is not defined by BBF and it takes advantage of the Dmt
Admin features. This section therefore shows a number of examples how the RMT can be managed
from an ACS.

For example, on a specific CPE the following bundles are installed, the given name is the location

System Bundle
org-apache-felix-webconsole
org-apache-felix-configadmin
org-eclipse-equinox-scr
jp-co-ntt-admin
de-telekom-shell

The intention is to:

• Uninstall org-apache-fel ix-configadmin ,
• Install and start org-ecl ipse-equinox-cm ,

Native TR-069 Object Models TR069 Connector Service Specification Version 1.0

Page 678 OSGi Compendium Release 8

• Update jp-co-ntt-admin .

After the successful reconfiguration, the framework must restart. As framework changes must hap-
pen in a atomic session, the following parameters must be set in a single RPC:

SetParameterValues {
 Framework.Bundle.org-apache-felix-configadmin.RequestedState = UNINSTALLED
 Framework.Bundle.jp-co-ntt-admin.URL = http://....
 Framework.Bundle.org-eclipse-equinox-cm.URL = http://....
 Framework.Bundle.org-eclipse-equinox-cm.RequestedState = ACTIVE
 Framework.Bundle.org-eclipse-equinox-cm.AutoStart = true
 Framework.Bundle.Systemþ0020Bundle.URL = ""
}

The Protocol Adapter must open an atomic session on the $ node as defined in the RMT. It will then
set all the parameters in the previous list. As the Framework/Bundle/org-ecl ipse-equinox-cm node
does not exist, the TR069 Connector will create it because it is below a writable MAP node. The Sys-
tem Bundle is updated with an empty string, signalling an update. A System Bundle update is a
framework restart.

Once the session is committed after all the SetParameterValues elements are executed the Data Plu-
gin will perform the actions and report success or failure. The handler must then restart the frame-
work after the commit has returned.

131.7 Native TR-069 Object Models
This section provides an example of a Data Plugin that provides a native TR-069 Object Model. As
example is chosen a naive implementation of the Configuration Admin service. The object model
implemented has the following definition:

Path Type Write Read Description
CM.{i} . Object
CM.{i} .P id str ing x x The PID
CM.{i} .Propert ies.{ i} . Object Property nodes
CM.{i} .Propert ies.{ i} .Key str ing x x The key
CM.{i} .Propert ies.{ i} .Value str ing x x Comma separated values

The corresponding DMT sub-tree is defined like:

Name Act Type Card. S Description
CM Get MAP 1 P Base node for the CM model
 [str ing] Get Set

Add Del
Configurat ion 0. .n D A MAP of the PID

 InstanceId Get int 1 P The persistent instance Id
 P id Get str ing 1 P The PID of the configuration
 Propert ies Get MAP 1 P The properties
 [str ing] Get Set

Add Del
LIST 0. .n D A property definitions; a property

consists of a list of strings. Single
values are just a list with one ele-
ment.

 [index] Get Set
Add Del

str ing 0. .n D An element in the list

TR069 Connector Service Specification Version 1.0 org.osgi.service.tr069todmt

OSGi Compendium Release 8 Page 679

The Protocol Adapter allows an ACS to access the data model implemented in the Dmt Plugin. It al-
so allows the creation of new configuration objects.

131.8 org.osgi.service.tr069todmt

TR069 Connector Service Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.tr069todmt; vers ion="[1.0,2.0)"

Example import for providers of the API in this package:

Import-Package: org.osgi .service.tr069todmt; vers ion="[1.0,1.1)"

131.8.1 Summary

• ParameterInfo - Maps to the TR-069 ParameterInfoStruct that is returned from the
TR069Connector.getParameterNames(String, boolean) method.

• ParameterValue - Maps to the TR-069 ParameterValueStruct
• TR069Connector - A TR-069 Connector is an assistant to a TR-069 Protocol Adapter developer.
• TR069ConnectorFactory - A service that can create TR069 Connector
• TR069Exception - This exception is defined in terms of applicable TR-069 fault codes.

131.8.2 public interface ParameterInfo
Maps to the TR-069 ParameterInfoStruct that is returned from the
TR069Connector.getParameterNames(String, boolean) method.

131.8.2.1 public ParameterValue getParameterValue() throws TR069Exception

□ Provide the value of the node. This method throws an exception if it is called for anything but a pa-
rameter

Returns The Parameter Value of the corresponding object

Throws TR069Exception– If there is a problem

131.8.2.2 public String getPath()

□ The path of the parameter, either a parameter path, an instance path, a table path, or an object path.

Returns The name of the parameter

131.8.2.3 public boolean isParameter()

□ Returns true of this is a parameter, if it returns fa lse it is an object or table.

Returns true for a parameter, fa lse otherwise

131.8.2.4 public boolean isWriteable()

□ Return true if this parameter is writeable, otherwise fa lse . A parameter is writeable if the SetPara-
materValue with the given name would be successful if an appropriate value was given. If this is a
table path, the method specifies whether or not AddObject would be successful. If the parameter
path points to a table instance, the method specifies whether or not DeleteObject would be success-
ful.

org.osgi.service.tr069todmt TR069 Connector Service Specification Version 1.0

Page 680 OSGi Compendium Release 8

Returns If this parameter is writeable

131.8.3 public interface ParameterValue
Maps to the TR-069 ParameterValueStruct

131.8.3.1 public String getPath()

□ This is the path of a Parameter. In TR-069 this is called the Parameter Name.

Returns The path of the parameter

131.8.3.2 public int getType()

□ The type of the parameter. One of TR069Connector.TR069_INT,
TR069Connector.TR069_UNSIGNED_INT, TR069Connector.TR069_LONG,
TR069Connector.TR069_UNSIGNED_LONG, TR069Connector.TR069_STRING,
TR069Connector.TR069_DATETIME, TR069Connector.TR069_BASE64,
TR069Connector.TR069_HEXBINARY. This method is not part of the ParameterValueStruct but is
necessary to encode the type in the XML.

Returns The parameter type

131.8.3.3 public String getValue()

□ This is the value of the parameter. The returned value must be in a representation defined by the
TR-069 protocol.

Returns The value of the parameter

131.8.4 public interface TR069Connector
A TR-069 Connector is an assistant to a TR-069 Protocol Adapter developer. The connector manages
the low level details of converting the different TR-069 RPCs to a Device Management Tree managed
by Dmt Admin. The connector manages the conversions from the TR-069 Object Names to a node in
the DMT and vice versa.

The connector uses a Dmt Session from the caller, which is given when the connector is created. The
connector does not implement the exact RPCs but only provides the basic functions to set and get
the parameters of an object as well as adding and deleting an object in a table. A TR-069 developer
must still parse the XML, handle the relative and absolute path issues, open a Dmt Session etc.

The connector assumes that each parameter or object path is relative to the root of the Dmt Session.

This connector must convert the TR-069 paths to Dmt Admin URIs. This conversion must take into
account the LIST and MAP concepts defined in the specifications as well as the synthetic parameters
NumberOfEntr ies and Alias . These concepts define the use of an InstanceId node that must be used
by the connector to provide a TR-069 table view on the LIST and MAP nodes.

131.8.4.1 public static final String PREFIX = "application/x-tr-069-"

The MIME type prefix.

131.8.4.2 public static final int TR069_BASE64 = 64

Constant representing the TR-069 base64 type.

131.8.4.3 public static final int TR069_BOOLEAN = 32

Constant representing the TR-069 boolean type.

131.8.4.4 public static final int TR069_DATETIME = 256

Constant representing the TR-069 date time type.

TR069 Connector Service Specification Version 1.0 org.osgi.service.tr069todmt

OSGi Compendium Release 8 Page 681

131.8.4.5 public static final int TR069_DEFAULT = 0

Constant representing the default or unknown type. If this type is used a default conversion will
take place

131.8.4.6 public static final int TR069_HEXBINARY = 128

Constant representing the TR-069 hex binary type.

131.8.4.7 public static final int TR069_INT = 1

Constant representing the TR-069 integer type.

131.8.4.8 public static final int TR069_LONG = 4

Constant representing the TR-069 long type.

131.8.4.9 public static final String TR069_MIME_BASE64 = "application/x-tr-069-base64"

Constant representing the TR-069 base64 type.

131.8.4.10 public static final String TR069_MIME_BOOLEAN = "application/x-tr-069-boolean"

Constant representing the TR-069 boolean type.

131.8.4.11 public static final String TR069_MIME_DATETIME = "application/x-tr-069-dateTime"

Constant representing the TR-069 date time type.

131.8.4.12 public static final String TR069_MIME_DEFAULT = "application/x-tr-069-default"

Constant representing the default or unknown type. If this type is used a default conversion will
take place

131.8.4.13 public static final String TR069_MIME_EAGER = "application/x-tr-069-eager"

Constant representing the TR-069 eager type.

131.8.4.14 public static final String TR069_MIME_HEXBINARY = "application/x-tr-069-hexBinary"

Constant representing the TR-069 hex binary type.

131.8.4.15 public static final String TR069_MIME_INT = "application/x-tr-069-int"

Constant representing the TR-069 integer type.

131.8.4.16 public static final String TR069_MIME_LONG = "application/x-tr-069-long"

Constant representing the TR-069 long type.

131.8.4.17 public static final String TR069_MIME_STRING = "application/x-tr-069-string"

Constant representing the TR-069 string type.

131.8.4.18 public static final String TR069_MIME_STRING_LIST = "application/x-tr-069-string-list"

Constant representing the TR-069 string list type.

131.8.4.19 public static final String TR069_MIME_UNSIGNED_INT = "application/x-tr-069-unsignedInt"

Constant representing the TR-069 unsigned integer type.

131.8.4.20 public static final String TR069_MIME_UNSIGNED_LONG = "application/x-tr-069-unsignedLong"

Constant representing the TR-069 unsigned long type.

131.8.4.21 public static final int TR069_STRING = 16

Constant representing the TR-069 string type.

org.osgi.service.tr069todmt TR069 Connector Service Specification Version 1.0

Page 682 OSGi Compendium Release 8

131.8.4.22 public static final int TR069_UNSIGNED_INT = 2

Constant representing the TR-069 unsigned integer type.

131.8.4.23 public static final int TR069_UNSIGNED_LONG = 8

Constant representing the TR-069 unsigned long type.

131.8.4.24 public String addObject(String path) throws TR069Exception

path A table path with an optional alias at the end

□ Add a new node to the Dmt Admin as defined by the AddObject RPC. The path must map to either a
LIST or MAP node as no other nodes can accept new children.

If the path ends in an alias ([ALIAS]) then the node name must be the alias, however, no new node
must be created. Otherwise, the Connector must calculate a unique instance id for the new node
name that follows the TR-069 rules for instance ids. That is, this id must not be reused and must not
be in use. That is, the id must be reserved persistently.

If the LIST or MAP node has a Meta Node with a MIME type application/x-tr-069-eager then the node
must be immediately created. Otherwise no new node must be created, this node must be created
when the node is accessed in a subsequent RPC.

The alias name or instance id must be returned as identifier for the ACS.

Returns The name of the new node.

Throws TR069Exception– The following fault codes are defined for this method: 9001, 9002, 9003, 9004,
9005. If an AddObject request would result in exceeding the maximum number of such objects sup-
ported by the CPE, the CPE MUST return a fault response with the Resources Exceeded (9004) fault
code.

131.8.4.25 public void close()

□ Close this connector. This will not close the corresponding session.

131.8.4.26 public void deleteObject(String objectPath) throws TR069Exception

objectPath The path to an object in a table to be deleted.

□ Delete an object from a table. A missing node must be ignored.

Throws TR069Exception– The following fault codes are defined for this method: 9001, 9002, 9003, 9005.
If the fault is caused by an invalid objectPath value, the Invalid Parameter Name fault code (9005)
must be used instead of the more general Invalid Arguments fault code (9003). A missing node for
objectPath must be ignored.

131.8.4.27 public Collection<ParameterInfo> getParameterNames(String objectOrTablePath, boolean nextLevel)
throws TR069Exception

objectOrTablePath A path to an object or table.

nextLevel If true consider only the children of the object or table addressed by path , otherwise include the
whole sub-tree, including the addressed object or table.

□ Getting the ParameterInfo objects addressed by path. This method is intended to be used to imple-
ment the GetParameterNames RPC.

The connector must attempt to create any missing nodes that are needed for the objectOrTablePath
by using the toURI(String, boolean) method with true .

This method must traverse the sub-tree addressed by the path and return the paths to all the objects,
tables, and parameters in that tree. If the nextLevel argument is true then only the children object,
table, and parameter information must be returned.

The returned ParameterInfo objects must be usable to discover the sub-tree.

TR069 Connector Service Specification Version 1.0 org.osgi.service.tr069todmt

OSGi Compendium Release 8 Page 683

If the child nodes have an InstanceId node then the returned names must include the InstanceId val-
ues instead of the node names.

If the parent node is a MAP , then the synthetic Alias parameter must be included.

Any MAP and LIST node must include a ParameterInfo for the corresponding NumberOfEntr ies para-
meter.

Returns A collection of ParameterInfo objects representing the resulting child parameter, objects, and tables
as defined by the TR-069 ParameterInfoStruct .

Throws TR069Exception– If the fault is caused by an invalid ParameterPath value, the Invalid Parameter
Name fault code (9005) MUST be used instead of the more general Invalid Arguments fault code
(9003). A ParameterPath value must be considered invalid if it is not an empty string and does not
exactly match a parameter or object name currently present in the data model. If nextLevel is true
and objectOrTablePath is a parameter path rather than an object/table path, the method must re-
turn a fault response with the Invalid Arguments fault code (9003). If the value cannot be gotten for
some reason, this method can generate the following fault codes::

• 9001 TR069Exception.REQUEST_DENIED
• 9002 TR069Exception.INTERNAL_ERROR
• 9003 TR069Exception.INVALID_ARGUMENTS
• 9005 TR069Exception.INVALID_PARAMETER_NAME

131.8.4.28 public ParameterValue getParameterValue(String parameterPath) throws TR069Exception

parameterPath A parameter path (must refer to a valid parameter, not an object or table).

□ Getting a parameter value. This method should be used to implement the GetParameterValues RPC.
This method does not handle retrieving multiple values as the corresponding RPC can request with
an object or table path, this method only accepts a parameter path. Retrieving multiple values can
be achieved with the getParameterNames(String, boolean).

If the parameterPath ends in NumberOfEntr ies then the method must synthesize the value. The pa-
rameterPath then has a pattern like (object-path)(table-name)NumberOfEntr ies . The returned val-
ue must be an TR069_UNSIGNED_INT that contains the number of child nodes in the table (ob-
ject-path)(table-name) . For example, if A.B.CNumberOfEntr ies is requested the return value must
be the number of child nodes under A/B/C .

If the value of a an Alias node is requested then the name of the parent node must be returned. For
example, if the path is M.X.Al ias then the returned value must be X .

The connector must attempt to create any missing nodes along the way, creating parent nodes on
demand.

Returns The name, value, and type triad of the requested parameter as defined by the TR-069 ParameterVal-
ueStruct .

Throws TR069Exception– The following fault codes are defined for this method: 9001, 9002, 9003, 9004,
9005.

• 9001 TR069Exception.REQUEST_DENIED
• 9002 TR069Exception.INTERNAL_ERROR
• 9003 TR069Exception.INVALID_ARGUMENTS
• 9004 TR069Exception.RESOURCES_EXCEEDED
• 9005 TR069Exception.INVALID_PARAMETER_NAME

131.8.4.29 public void setParameterValue(String parameterPath, String value, int type) throws TR069Exception

parameterPath The parameter path

org.osgi.service.tr069todmt TR069 Connector Service Specification Version 1.0

Page 684 OSGi Compendium Release 8

value A trimmed string value that has the given type. The value can be in either canonical or lexical repre-
sentation by TR069.

type The type of the parameter (TR069_INT, TR069_UNSIGNED_INT,TR069_LONG,
TR069_UNSIGNED_LONG,TR069_STRING, TR069_DATETIME,TR069_BASE64,
TR069_HEXBINARY, TR069_BOOLEAN)

□ Setting a parameter. This method should be used to provide the SetParameterValues RPC. This
method must convert the parameter Name to a URI and replace the DMT node at that place. It must
follow the type conversions as described in the specification.

The connector must attempt to create any missing nodes along the way, creating parent nodes on
demand.

If the value of a an Alias node is set then the parent node must be renamed. For example, if the value
of M/X/Al ias is set to Y then the node will have a URI of M/Y/Al ias . The value must not be escaped as
the connector will escape it.

Throws TR069Exception– The following fault codes are defined for this method: 9001, 9002, 9003, 9004,
9005, 9006, 9007, 9008.

• 9001 TR069Exception.REQUEST_DENIED
• 9002 TR069Exception.INTERNAL_ERROR
• 9003 TR069Exception.INVALID_ARGUMENTS
• 9004 TR069Exception.RESOURCES_EXCEEDED
• 9005 TR069Exception.INVALID_PARAMETER_NAME
• 9006 TR069Exception.INVALID_PARAMETER_TYPE
• 9007 TR069Exception.INVALID_PARAMETER_VALUE
• 9008 TR069Exception.NON_WRITABLE_PARAMETER

131.8.4.30 public String toPath(String uri) throws TR069Exception

uri A Dmt Session relative URI

□ Convert a Dmt Session relative Dmt Admin URI to a valid TR-069 path, either a table, object, or pa-
rameter path depending on the structure of the DMT. The translation takes into account the special
meaning LIST , MAP , Alias , and InstanceId nodes.

Returns An object, table, or parameter path

Throws TR069Exception– If there is an error

131.8.4.31 public String toURI(String name, boolean create) throws TR069Exception

name A TR-069 path

create If true , create missing nodes when they reside under a MAP or LIST

□ Convert a TR-069 path to a Dmt Session relative Dmt Admin URI. The translation takes into account
the special meaning LIST , MAP , InstanceId node semantics.

The synthetic Alias or NumberOfEntr ies parameter cannot be mapped and must throw an
TR069Exception.INVALID_PARAMETER_NAME.

The returned path is properly escaped for TR-069.

The mapping from the path to a URI requires support from the meta data in the DMT, it is not pos-
sible to use a mapping solely based on string replacements. The translation takes into account the
semantics of the MAP and LIST nodes. If at a certain point a node under a MAP node does not exist
then the Connector can create it if the create flag is set to true . Otherwise a non-existent node will
terminate the mapping.

Returns A relative Dmt Admin URI

TR069 Connector Service Specification Version 1.0 org.osgi.service.tr069todmt

OSGi Compendium Release 8 Page 685

Throws TR069Exception– If there is an error

131.8.5 public interface TR069ConnectorFactory
A service that can create TR069 Connector

131.8.5.1 public TR069Connector create(DmtSession session)

session The session to use for the adaption. This session must not be closed before the TR069 Connector is
closed.

□ Create a TR069 connector based on the given session .

The session must be an atomic session when objects are added and/or parameters are going to be
set, otherwise it can be a read only or exclusive session. Due to the lazy creation nature of the TR069
Connector it is possible that a node must be created in a read method after a node has been added, it
is therefore necessary to always provide an atomic session when an ACS session requires modifying
parameters.

Returns A new TR069 Connector bound to the given session

131.8.6 public class TR069Exception
extends RuntimeException
This exception is defined in terms of applicable TR-069 fault codes. The TR-069 specification defines
the fault codes that can occur in different situations.

131.8.6.1 public static final int INTERNAL_ERROR = 9002

9002 Internal error

131.8.6.2 public static final int INVALID_ARGUMENTS = 9003

9003 Invalid Arguments

131.8.6.3 public static final int INVALID_PARAMETER_NAME = 9005

9005 Invalid parameter name (associated with Set/GetParameterValues, GetParameterNames, Set/
GetParameterAttributes, AddObject, and DeleteObject)

131.8.6.4 public static final int INVALID_PARAMETER_TYPE = 9006

9006 Invalid parameter type (associated with SetParameterValues)

131.8.6.5 public static final int INVALID_PARAMETER_VALUE = 9007

9007 Invalid parameter value (associated with SetParameterValues)

131.8.6.6 public static final int METHOD_NOT_SUPPORTED = 9000

9000 Method not supported

131.8.6.7 public static final int NON_WRITABLE_PARAMETER = 9008

9008 Attempt to set a non-writable parameter (associated with SetParameterValues)

131.8.6.8 public static final int NOTIFICATION_REJECTED = 9009

9009 Notification request rejected (associated with SetParameterAttributes method).

131.8.6.9 public static final int REQUEST_DENIED = 9001

9001 Request denied (no reason specified

References TR069 Connector Service Specification Version 1.0

Page 686 OSGi Compendium Release 8

131.8.6.10 public static final int RESOURCES_EXCEEDED = 9004

9004 Resources exceeded (when used in association with SetParameterValues, this MUST NOT be
used to indicate parameters in error)

131.8.6.11 public TR069Exception(String message)

message The message

□ A default constructor when only a message is known. This will generate a INTERNAL_ERROR fault.

131.8.6.12 public TR069Exception(String message, int faultCode, DmtException e)

message The message

faultCode The TR-069 defined fault code

e

□ A Constructor with a message and a fault code.

131.8.6.13 public TR069Exception(String message, int faultCode)

message The message

faultCode The TR-069 defined fault code

□ A Constructor with a message and a fault code.

131.8.6.14 public TR069Exception(DmtException e)

e The Dmt Exception

□ Create a TR069Exception from a Dmt Exception.

131.8.6.15 public DmtException getDmtException()

Returns the corresponding Dmt Exception

131.8.6.16 public int getFaultCode()

□ Answer the associated TR-069 fault code.

Returns Answer the associated TR-069 fault code.

131.9 References

[1] TR-069 Amendment 3
http://www.broadband-forum.org/technical/download/TR-069_Amendment-3.pdf

[2] TR-106 Amendment 3
http://www.broadband-forum.org/technical/download/TR-106_Amendment-3.pdf

[3] XML Schema Part 2: Datatypes Second Edition
http://www.w3.org/TR/xmlschema-2/

[4] SOAP 1.1
http://www.w3.org/TR/2000/NOTE- SOAP-20000508

[5] Extensible Markup Language (XML) 1.0 (Second Edition)
http://www.w3.org/TR/2000/WD-xml-2e-20000814#NT-Letter

[6] Broadband Forum
http://www.broadband-forum.org/

http://www.broadband-forum.org/technical/download/TR-069_Amendment-3.pdf
http://www.broadband-forum.org/technical/download/TR-106_Amendment-3.pdf
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2000/NOTE- SOAP-20000508
http://www.w3.org/TR/2000/WD-xml-2e-20000814#NT-Letter
http://www.broadband-forum.org/

Repository Service Specification Version 1.1 Introduction

OSGi Compendium Release 8 Page 687

132 Repository Service Specification

Version 1.1

132.1 Introduction
The guiding force behind the OSGi Specifications is a reusable component model. The OSGi Core Re-
lease 8 provides a solid foundation for such a component model by providing a component collab-
oration framework with a comprehensive management model. The service specifications provide
the abstract APIs to allow many different collaborations between components. This Repository Ser-
vice Specification provides the capability to manage the external access to components and other re-
sources.

Though the Repository service can be used as a standalone service to search and retrieve general bi-
nary artifacts, called resources, it is intended to be used in conjunction with the [6] Resolver Service
Specification.

The model of the Repository is based on the generic Requirement-Capability model defined in [3] Re-
source API Specification, this chapter relies on the definitions of the generic model.

132.1.1 Essentials

• External - Provide access to external components and resources.
• Resolve - The Repository API must be closely aligned with the Resolver API since they are intend-

ed to be used in conjunction.
• Searching - Support general queries.
• Metadata - Allow resources to provide content information.
• Retrieval - Allow the retrieval of Resources from remote locations.
• Batching - Repositories must be able to batch queries.
• Distribution - Allow Repositories to be defined with a simple storage scheme such that Reposito-

ries can be distributed on a removable media like a CD/DVD.
• Mirroring - Repositories must be able to support selecting a remote site based on the local situa-

tion.

132.1.2 Entities

• Repository - A facade to a (remote) set of resources described by capabilities.
• Resource - An artifact that has requirements that must be satisfied before it is available but pro-

vides capabilities when it becomes available.
• Requirement - An expression that asserts a capability.
• Capability - Describes a feature of the resource so that it can be required by a requirement.
• Resource Content - Provides access to the underlying bytes of the resource in the default format.

Using a Repository Repository Service Specification Version 1.1

Page 688 OSGi Compendium Release 8

Figure 132.1 Class and Service overview

Repository Impl

Repository

Management
Agent

Resolver

<<interface>>
Resource
Content

<<interface>>
Requirement

<<interface>>
Capability

<<interface>>
Resource

Resource ImplRepository
XML

metadata

repository
medium

132.1.3 Synopsis
There are many different repositories available on the Internet or on fixed media. A repository can
be made available to bundles by providing a Repository service. If such a bundle, for example a Man-
agement Agent performing a provisioning operation, finds that it has an unmatched requirement
then it can query the repository services to find matching capabilities. The Repository service can
implement the query in many different ways. It can ship the requirement to a remote side to be
processed or it can process the query locally.

This specification also provides an XML schema that can be used to describe a Repository. Instances
of this schema can be downloaded from a remote repository for local indexing or they can be stored
for example on a DVD together with the resources.

132.2 Using a Repository
The Repository service provides an abstraction to a, potentially remote, set of resources. In the
generic Capability-Requirement model, resources are modeled to declare capabilities and require-
ments. The primary purpose of a Repository is to enable a management agent that uses the Resolver
API to leverage a wide array of repositories. This Repository service specification allows different
Repository providers to be installed as bundles, and each bundle can register multiple Repository
services. The Repository is sufficiently abstract to allow many different implementations.

Repository services are identified by a number of service properties:

• service.pid - A mandatory unique identity for this Repository service.
• service.descr ipt ion - An optional human readable name for this Repository.
• repository.ur l - Optional URLs to landing pages of the repository, if they exist.

In general, the users of the Repository service should aggregate all services in the service registry.
This strategy allows the deployer to control the available Repositories. The following example, us-
ing Declarative Service annotations to show the dependencies on the service registry, shows how to
aggregate the different Repository services.

List<Repository> repos = new CopyOnWriteArrayList<Repository>();

Repository Service Specification Version 1.1 Using a Repository

OSGi Compendium Release 8 Page 689

@Reference(
cardinality = ReferenceCardinality.MULTIPLE,
policy = ReferencePolicy.DYNAMIC)
void addRepository(Repository repo) { repos.add(repo); }
void removeRepository(Repository repo) { repos.remove(repo); }

To access a resource in a Repository service it is necessary to construct a requirement, pass this to
the Repository service, and then use the returned capabilities to satisfy the resolver or to get the re-
source from the capability. The Repository then returns all matching capabilities. The requirement
matches the capability if their namespaces match and the requirement's filter is absent or matches
the attributes.

The f indProviders(Col lect ion) method takes a Collection of requirements. The reason for this col-
lection is that it allows the caller to specify multiple requirements simultaneously so that Reposito-
ries can batch requests, the requirements in this collection are further unrelated. That is, they do not
form an expression in any way. Multiple requirements as the parameter means that the result must
be a map so that the caller can find out what requirement matched what capabilities. For example:

List<Capability> find(Requirement r){
 List<Capability> result = new ArrayList<Capability>();

 for (Repository repo : repos) {
 Map<Requirement,Collection<Capability>> answer =
 repo.findProviders(Collections.singleton(r));
 result.addAll(answer.get(r));
 }
 return result;
}

Access to resources is indirect since the Repository returns capabilities. Each capability is declared
in a resource and the getResource() method provides access to the underlying resource. Since each
resource declares an osgi . identity capability it is possible to retrieve a resource from a repository if
the identity name, type, and version are known. For example, to get a bundle resource:

Resource getResource(String type, String name, Version version) {
 String filter = String.format(
 "(&(type=%s)(osgi.identity=%s)(version=%s))",
 type,
 name,
 version);

 RequirementBuilder builder = repo.newRequirementBuilder("osgi.identity");
 builder.addDirective("filter", filter);
 Requirement r = builder.build();

 List<Capability> capabilities = find(r);
 if (capabilities.isEmpty())
 return null;
 return capabilities.get(0).getResource();
}

Resources that originate from Repository services must implement the RepositoryContent interface,
this interface provides stream access to the default storage format. It is therefore possible to get the
content with the following code.

InputStream getContent(String type, String name, Version version) {

Using a Repository Repository Service Specification Version 1.1

Page 690 OSGi Compendium Release 8

 Resource r = getResource(type, name, version);
 if (r == null)
 return null;
 return ((RepositoryContent)r).getContent();
}

The getContent() method returns an Input Stream in the default format for that resource type. Re-
sources from a Repository should also have one or more osgi .content capabilities that advertise the
same resource in the same or different formats. The osgi .content capability has a number of attrib-
utes that provide information about the resource's download format:

• osgi .content - A unique SHA-256 for the content as read from the URL.
• url - A URL to the content.
• mime - An IANA MIME type for the content.
• size - Size in bytes of the content.

It is therefore possible to search for a specific MIME type and download that format. For example:

String getURL(String type, String name, Version version, String mime)
 throws Exception {
 Resource r = getResource(type, name, version);
 for (Capability cap : r.getCapabilities("osgi.content")) {
 Map<String,Object> attrs = cap.getAttributes();
 String actual = (String) attrs.get("mime");
 if (actual!=null && mime.equalsIgnoreCase(actual)) {
 String url = (String) attrs.get("url");
 if (url != null)
 return url;
 }
 }
 return null;
}

Since the osgi .content capability contains the SHA-256 digest as the osgi .content attribute it is pos-
sible to verify the download that it was correct.

Every resource has an osgi . identity capability. This namespace defines, in [2] Framework Namespaces,
the possibility to add related resources, for example javadoc or sources. A resource then has informa-
tional requirements to osgi . identity capabilities; these requirements are marked with a classi f ier di-
rective that holds the type of relation. The following example shows how it would be possible to find
such a related resource:

InputStream getRelated(Resource resource,String classifier)
 throws Exception {
 for (Requirement r : resource.getRequirements("osgi.identity")) {
 if (classifier.equals(r.getDirectives().get("classifier"))) {
 Collection<Capability> capabilities =
 repository.findProviders(Collections.singleton(r)).get(r);

 if (capabilities.isEmpty())
 continue;

 Capability c = capabilities.iterator().next();
 Resource related = c.getResource();
 return ((RepositoryContent)related).getContent();
 }

Repository Service Specification Version 1.1 Using a Repository

OSGi Compendium Release 8 Page 691

 }
 return null;
}

132.2.1 Combining Requirements
In some cases it may be useful to find resources in the repository that satisfy criteria across multiple
namespaces.

A simple Requirement object can contain a filter that makes assertions about capability attrib-
utes within a single namespace. So for example, a single requirement can state that a package
org.example.mypkg must be exported in a version between 3.1 inclusive and 4.0 exclusive:

 RequirementBuilder rb = repo.newRequirementBuilder("osgi.wiring.package");
 String rf = "(&(osgi.wiring.package=org.example.mypkg)"
 + "(version>=3.1)(!(version>=4.0)))";
 rb.addDirective("filter", rf);
 Requirement r = rb.build();

This requirement contains three conditions on the osgi .wir ing.package capability.

In some situations it may be needed to specify requirements that cover multiple namespaces.
For example a bundle might be needed that exports the above package, but the bundle must also
have the Apache License, Version 2.0 license. A resource's license is available as an attribute on the
osgi . identity namespace. Constructing a constraint that combines requirements from multiple
namespaces can be done by using an Expression Combiner, which can be obtained from the Reposi-
tory service. The Repository service provides a f indProviders(RequirementExpression) overload that
can take a requirement expression and returns a Promise to a collection of matching resources.

 RequirementBuilder lb = repo.newRequirementBuilder("osgi.identity");
 String lf = "(license=http://opensource.org/licenses/Apache-2.0)";
 lb.addDirective("filter", lf);

 RequirementExpression expr = repo.getExpressionCombiner().and(
 lb.buildExpression(), rb.buildExpression());

 Promise<Collection<Resource>> p = repo.findProviders(expr);

 // Let findProviders() do its work async and update a ui component
 // once the result is available
 p.then(new Success<Collection<Resource>, Void>() {
 public Promise<Void> call(Promise<Collection<Resource>> resolved)
 throws Exception {
 ui.update(resolved.getValue());
 return null;
 }
 });

 // Instead of the async chain above its also possiblye to
 // wait for the promise value synchronously:
 // Collection<Resource> resources = p.getValue();

For more details on OSGi Promises, see the Promises Specification on page 1407.

Repository Repository Service Specification Version 1.1

Page 692 OSGi Compendium Release 8

132.3 Repository
A Repository service provides access to capabilities that satisfy a given requirement. A Repository
can be the facade of a remote server containing a large amount of resources, a repository on remov-
able media, or even a collection of bundles inside a ZIP file. A Repository communicates in terms
of requirements and capabilities as defined in [3] Resource API Specification. This model is closely
aligned with the [6] Resolver Service Specification.

A Repository service must be registered with the service properties given in the following table.

Table 132.1 Repository Service Properties

Attribute Opt Type Description
service.pid mandatory Str ing A globally unique identifier for this Repository.
service.descr ipt ion optional Str ing The Repository Name
repository.ur l optional Str ing+ URLs related to this Repository.

The Repository implements the following methods:

• f indProviders(Col lect ion) - For each requirement find all the capabilities that match that require-
ment and return them as a Map<Requirement,Col lect ion<Capabi l i ty>> .

• f indProviders(RequirementExpression) - Find all resources that match the requirement expres-
sion. The requirement expression is used to combine multiple requirements using the and , or
and not operators.

• getExpressionCombiner() - Obtain an expression combiner. This expression combiner is used to
produce requirement expressions from simple requirements or other requirement expressions.

• newRequirementBui lder(Str ing) - Obtain a convenience builder for Requirement objects.

A Repository must not perform any namespace specific actions or matching. The Repository must
therefore match a requirement to a capability with the following rules:

• The namespace must be identical, and
• The requirement's filter is absent or it must match the capability's attributes.

Resources originating from a Repository service must additionally:

• Implement the RepositoryContent interfaces, see Repository Content on page 692.
• Provide at least one osgi .content Capability, see osgi.content Namespace on page 692.

132.3.1 Repository Content
Resources originating from a Repository must implement the RepositoryContent interface. The pur-
pose of this interface is to allow users of the Repositories access to an Input Stream that provides ac-
cess to the resource.

The RepositoryContent interface provides a single method:

• getContent() - Return an Input Stream for the resource, if more than one osgi .content capability
is present the content associated with the first capability is returned.

132.4 osgi.content Namespace
A resource is a logical concept, to install a resource in an environment it is necessary to get access to
its contents. A resource can be formatted in different ways. It is possible to deliver a bundle as a JAR
file, a Pack200 file, or some other format. In general, the RepositoryContent interface provides ac-
cess to the default format.

Repository Service Specification Version 1.1 XML Repository Format

OSGi Compendium Release 8 Page 693

The Repository can advertise the different formats with osgi .content capabilities. Each of those ca-
pabilities is identified with a unique SHA-256 checksum and has a URL for the resource in the spec-
ified format. The size and mime attributes provide information the download format, this can be
used for selection. If more than one osgi .content capability is associated with a resource, the first ca-
pability must represent the default format. If the resource has a standard or widely used format (e.g.,
JAR for bundles and ESA for subsystems), and that format is provided as part of the repository, then
that format should be the default format.

The osgi .content Namespace supports the attributes defined in the following table and Content-
Namespace .

Table 132.2 osgi.content definition

Name Kind M/O Type Syntax Description
osgi .content CA M String [0-9a-fA-F]{64} The SHA-256 hex encoded digest for this re-

source
url CA M String <url> The URL to the bytes. This must be an ab-

solute URL.
size CA M Long [0-9]+ The size of the resource in bytes as it will be

read from the URL.
mime CA M String <mime type> An IANA defined MIME type for the format

of this content.

132.5 XML Repository Format
This is an optional part of the specification since the Repository interface does not provide access
how the Repository obtains its information. However, the purpose of this part of the specification is
to provide a commonly recognized format for interchanging Repository metadata.

This section therefore describes an XML schema to represent Repository content. It is expected that
Internet based Repositories can provide such an XML file to clients. A Repository XML file can be
used as a common interchange format between multiple Repository implementations.

The Repository XML describes a number of resources with their capabilities and requirements. Addi-
tionally the XML can refer to other Repository XML files. The XML Schema can be found at its XML
namespace, see XML Repository Schema on page 697. The XML structure, which closely follows the
Requirement-Capability model, is depicted in Figure 132.2.

Figure 132.2 XML Structure

<repository>

<referral> <resource>

<requirement> <capability>

<attribute> <directive> <attribute> <directive>

XML Repository Format Repository Service Specification Version 1.1

Page 694 OSGi Compendium Release 8

The different elements are discussed in the following sections. All types are derived from the XML
Schema types, see [4] XML Schema Part 2: Data types Second Edition. Any relative URIs in a Repository
XML file must be resolved as specified in [5] XML Base (Second Edition), Resolving Relative URIs.

132.5.1 Repository Element
The repository element is the root of the document. The repository element has the following child
elements:

• referral* - Referrals to other repositories for a federated model, see Referral Element on page
694.

• resource* - Resource definitions, see Resource Element on page 694.

The repository element has the attributes defined in the following table.

Table 132.3 repository element attributes

Attribute Type Description
name NCName The name of this Repository. For informational purposes.
increment long Counter which increments every time the repository is

changed. Can be used by clients to check for changes. The
counter is not required to increase monotonically.

132.5.2 Referral Element
The purpose of the referral element is to allow a Repository to refer to other Repositories, allowing
for federated Repositories. Referrals are applied recursively. However, this is not always desired. It is
therefore possible to limit the depth of referrals. If the depth attribute is >= 1, the referred reposito-
ry must be included but it must not follow any referrals from the referred repository. If the depth at-
tribute is more than one, referrals must be included up to the given depth. Depths of referred repos-
itories must also be obeyed, where referred repositories may reduce the effective depth but not in-
crease it. For example if a top repository specifies a depth of 5 and a level 3 repository has a depth of
1 then the repository on level 5 must not be used. If not specified then there is no limit to the depth.
Referrals that have cycles must be ignored, a resource of a given Repository must only occur once in
a Repository.

The referral element has the attributes defined in the following table.

Table 132.4 referral element attributes

Attribute Type Description
depth int The max depth of referrals
url anyURI A URL to where the referred repository XML can be found.

The URL can be absolute or relative to the URI of the current
XML resource.

132.5.3 Resource Element
The resource element defines a Resource. The resource element has the following child elements:

• requirement* - The requirements of this resource, see Requirement Element on page 695.
• capabi l i ty* - The capabilities of this resource, see Capability Element on page 694.

The Resource element has no attributes.

132.5.4 Capability Element
The capabi l i ty element maps to a capability, it holds the attributes and directives. The capabi l i ty ele-
ment has the following child elements:

Repository Service Specification Version 1.1 XML Repository Format

OSGi Compendium Release 8 Page 695

• direct ive* - The directives for the capability, see Directive Element on page 696.
• attr ibute* - The attributes for the capability, see Attribute Element on page 695.

The capabi l i ty element has the attributes defined in the following table.

Table 132.5 capability element attributes

Attribute Type Description
namespace token The namespace of this capability

132.5.5 Requirement Element
The requirement element maps to a requirement, it holds the attributes and directives. The require-
ment element has the following child elements:

• direct ive* - The directives for the requirement, see Directive Element on page 696.
• attr ibute* - The attributes for the requirement, see Attribute Element on page 695.

The requirement element has the attributes defined in the following table.

Table 132.6 requirement element attributes

Attribute Type Description
namespace token The namespace of this requirement

132.5.6 Attribute Element
An attr ibute element describes an attribute of a capability or requirement. Attributes are used to
convey information about the Capability-Requirement. Attributes for the capability are used for
matching the requirement's filter. The meaning of attributes is described with the documentation of
the namespace in which they reside.

Attributes are optionally typed according to the [1] Framework Module Layer specification. The de-
fault type is Str ing , the value of the value attribute. However, if a type attribute is specified and it is
not Str ing then the value attribute must be converted according to the type attribute specifier. The
syntax of the type attribute is as follows:

type ::= list | scalar
list ::= 'List<' scalar '>' // no spaces between terminals
scalar ::= 'String' | 'Version' | 'Long' | 'Double'

A list conversion requires the value to be broken in tokens separated by comma (',' \u002C). White-
space around the list and around commas must be trimmed for non-String types. Each token must
then be converted to the given type according to the scalar type specifier. The exact rules for the
comma separated lists are defined in [1] Framework Module Layer, see Bundle Capability Attributes.

The conversion of value s , when scalar , must take place with the following methods:

• Str ing - No conversion, use s
• Version - Version.parseVersion(s)
• Long - After trimming whitespace, Long.parseLong(s)
• Double - After trimming whitespace, Double.parseDouble(s)

The attr ibute element has the attributes defined in the following table.

Table 132.7 attribute element attributes

Attribute Type Description
name token The name of the attribute

XML Repository Format Repository Service Specification Version 1.1

Page 696 OSGi Compendium Release 8

Attribute Type Description
value str ing The value of the attribute.
type The type of the attribute, the syntax is outlined in the previ-

ous paragraphs.

132.5.7 Directive Element
A direct ive element describes a directive of a capability or a requirement. Directives are used to con-
vey information about the Capability-Requirement. The meaning of directives is described with the
documentation of the namespace in which they reside.

The direct ive element has the attributes defined in the following table.

Table 132.8 directive element attributes

Attribute Type Description
name token The name of the attribute
value str ing The value of the attribute.

132.5.8 Sample XML File
The following example shows a very small XML file. The file contains one resource.

<repository name='OSGiRepository'
 increment='13582741'
 xmlns='http://www.osgi.org/xmlns/repository/v1.0.0'>
 <resource>

 <requirement namespace='osgi.wiring.package'>
 <directive name='filter' value=
 '(&(osgi.wiring.package=org.apache.commons.pool)(version>=1.5.6))'/>
 </requirement>

 <requirement namespace='osgi.identity'>
 <directive name='effective' value='meta'/>
 <directive name='resolution' value='optional'/>
 <directive name='filter' value=
 '(&(version=1.5.6)(osgi.identity=org.acme.pool-src))'
 <directive name='classifier' value='sources'/>
 </requirement>

 <capability namespace='osgi.identity'>
 <attribute name='osgi.identity' value='org.acme.pool'/>
 <attribute name='version'type='Version' value='1.5.6'/>
 <attribute name='type' value='osgi.bundle'/>
 </capability>

 <capability namespace='osgi.content'>
 <attribute name='osgi.content' value='e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855'
 <attribute name='url' value='http://www.acme.com/repository/org/acme/pool/org.acme.pool-1.5.6.jar'/>
 <attribute name='size' type='Long' value='4405'/>
 <attribute name='mime' value='application/vnd.osgi.bundle'/>
 </capability>

 <capability namespace='osgi.wiring.bundle'>
 <attribute name='osgi.wiring.bundle' value='org.acme.pool'/>
 <attribute name='bundle-version' type='Version' value='1.5.6'/>
 </capability>

 <capability namespace='osgi.wiring.package'>
 <attribute name='osgi.wiring.package' value='org.acme.pool'/>
 <attribute name='version' type='Version' value='1.1.2'/>
 <attribute name='bundle-version' type='Version' value='1.5.6'/>
 <attribute name='bundle-symbolic-name' value='org.acme.pool'/>
 <directive name='uses' value='org.acme.pool,org.acme.util'/>
 </capability>

 </resource>
</repository>

Repository Service Specification Version 1.1 XML Repository Schema

OSGi Compendium Release 8 Page 697

132.6 XML Repository Schema
The namespace of this schema is:

http://www.osgi.org/xmlns/repository/v1.0.0

The schema for this namespace can be found at the location implied in its name. The recommended
prefix for this namespace is repo .

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:repo="http://www.osgi.org/xmlns/repository/v1.0.0"
 targetNamespace="http://www.osgi.org/xmlns/repository/v1.0.0"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified"
 version="1.0.1">

 <element name="repository" type="repo:Trepository" />
 <complexType name="Trepository">
 <sequence>
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="resource" type="repo:Tresource" />
 <element name="referral" type="repo:Treferral" />
 </choice>
 <!-- It is non-deterministic, per W3C XML Schema 1.0:
 http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use name space="##any" below. -->
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="name" type="string">
 <annotation>
 <documentation xml:lang="en">
 The name of the repository. The name may contain
 spaces and punctuation.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="increment" type="long">
 <annotation>
 <documentation xml:lang="en">
 An indication of when the repository was last changed. Client's can
 check if a
 repository has been updated by checking this increment value.
 </documentation>
 </annotation>
 </attribute>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tresource">
 <annotation>
 <documentation xml:lang="en">
 Describes a general resource with
 requirements and capabilities.
 </documentation>
 </annotation>
 <sequence>
 <element name="requirement" type="repo:Trequirement" minOccurs="0" maxOccurs="unbounded"/>
 <element name="capability" type="repo:Tcapability" minOccurs="1" maxOccurs="unbounded"/>
 <!-- It is non-deterministic, per W3C XML Schema 1.0:
 http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use name space="##any" below. -->
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Treferral">
 <annotation>
 <documentation xml:lang="en">
 A referral points to another repository XML file. The

XML Repository Schema Repository Service Specification Version 1.1

Page 698 OSGi Compendium Release 8

 purpose of this element is to create a federation of
 repositories that can be accessed as a single
 repository.
 </documentation>
 </annotation>
 <attribute name="depth" type="int" use="optional">
 <annotation>
 <documentation xml:lang="en">
 The depth of referrals this repository acknowledges.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="url" type="anyURI" use="required">
 <annotation>
 <documentation xml:lang="en">
 The URL to the referred repository. The URL can be
 absolute or relative from the given repository's
 URL.
 </documentation>
 </annotation>
 </attribute>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tcapability">
 <annotation>
 <documentation xml:lang="en">
 A named set of type attributes and directives. A capability can be
 used to resolve a requirement if the resource is included.
 </documentation>
 </annotation>
 <sequence>
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="directive" type="repo:Tdirective" />
 <element name="attribute" type="repo:Tattribute" />
 </choice>
 <!-- It is non-deterministic, per W3C XML Schema 1.0:
 http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use name space="##any" below. -->
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="namespace" type="string">
 <annotation>
 <documentation xml:lang="en">
 Name space of the capability. Only requirements with the
 same name space must be able to match this capability.
 </documentation>
 </annotation>
 </attribute>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Trequirement">
 <annotation>
 <documentation xml:lang="en">
 A filter on a named set of capability attributes.
 </documentation>
 </annotation>
 <sequence>
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="directive" type="repo:Tdirective" />
 <element name="attribute" type="repo:Tattribute" />
 </choice>
 <!-- It is non-deterministic, per W3C XML Schema 1.0:
 http://www.w3.org/TR/xmlschema-1/#cos-nonambig
 to use name space="##any" below. -->
 <any namespace="##other" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="namespace" type="string">
 <annotation>
 <documentation xml:lang="en">
 Name space of the requirement. Only capabilities within the
 same name space must be able to match this requirement.

Repository Service Specification Version 1.1 XML Repository Schema

OSGi Compendium Release 8 Page 699

 </documentation>
 </annotation>
 </attribute>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tattribute">
 <annotation>
 <documentation xml:lang="en">
 A named value with an optional type that decorates
 a requirement or capability.
 </documentation>
 </annotation>
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="name" type="string">
 <annotation>
 <documentation xml:lang="en">
 The name of the attribute.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="value" type="string">
 <annotation>
 <documentation xml:lang="en">
 The value of the attribute.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="type" type="repo:TpropertyType" default="String">
 <annotation>
 <documentation xml:lang="en">
 The type of the attribute.
 </documentation>
 </annotation>
 </attribute>
 <anyAttribute processContents="lax" />
 </complexType>

 <complexType name="Tdirective">
 <annotation>
 <documentation xml:lang="en">
 A named value of type string that instructs a resolver
 how to process a requirement or capability.
 </documentation>
 </annotation>
 <sequence>
 <any namespace="##any" processContents="lax" minOccurs="0"
 maxOccurs="unbounded" />
 </sequence>
 <attribute name="name" type="string">
 <annotation>
 <documentation xml:lang="en">
 The name of the directive.
 </documentation>
 </annotation>
 </attribute>
 <attribute name="value" type="string">
 <annotation>
 <documentation xml:lang="en">
 The value of the directive.
 </documentation>
 </annotation>
 </attribute>
 <anyAttribute processContents="lax" />
 </complexType>

 <simpleType name="TpropertyType">
 <restriction base="string">
 <enumeration value="String" />
 <enumeration value="Version" />
 <enumeration value="Long" />
 <enumeration value="Double" />

Capabilities Repository Service Specification Version 1.1

Page 700 OSGi Compendium Release 8

 <enumeration value="List<String>" />
 <enumeration value="List<Version>" />
 <enumeration value="List<Long>" />
 <enumeration value="List<Double>" />
 </restriction>
 </simpleType>
 <attribute name="must-understand" type="boolean" default="false">
 <annotation>
 <documentation xml:lang="en">
 This attribute should be used by extensions to documents to require that
 the document consumer understand the extension. This attribute must be
 qualified when used.
 </documentation>
 </annotation>
 </attribute>
</schema>

132.7 Capabilities
Implementations of the Repository Service specification must provide the capabilities listed in this
section.

132.7.1 osgi.implementation Capability
The Repository Service implementation bundle must provide the osgi . implementation capability
with name osgi . repository . This capability can be used by provisioning tools and during resolution
to ensure that a Repository Service implementation is present. The capability must also declare a us-
es constraint for the org.osgi .service.repository package and provide the version of this specifica-
tion:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.repository";
 uses:="org.osgi.service.repository";
 version:Version="1.1"

This capability must follow the rules defined for the osgi.implementation Namespace on page 727.

132.7.2 osgi.service Capability
The Repository Service implementation must provide a capability in the osgi .service namespace
representing the Repository service. This capability must also declare a uses constraint for the
org.osgi .service.repository package. For example:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.repository.Repository";
 uses:="org.osgi.service.repository"

This capability must follow the rules defined for the osgi.service Namespace on page 727.

132.8 Security

132.8.1 External Access
Repositories in general will get their metadata and artifacts from an external source, which makes
them an attack vector for a malevolent Bundle that needs unauthorized external access. Since a Bun-
dle using a Repository has no knowledge of what sources the Repository will access it will be neces-
sary for the Repository to implement the external access in a doPriv i leged block. Implementations
must ensure that callers cannot influence/modify the metadata in such a way that the getContent()
method could provide access to arbitrary Internet resources. This could for example happen if:

Repository Service Specification Version 1.1 org.osgi.service.repository

OSGi Compendium Release 8 Page 701

• The implementation relies on the osgi .content namespace to hold the URL
• The attributes Map from the osgi .content Capability is modifiable

If the malevolent Bundle could change the osgi.content attribute it could change it to arbitrary
URLs. This example should make it clear that Repository implementations must be very careful.

132.8.2 Permissions
Implementations of this specification will need the following minimum permissions.

ServicePermission[...Repository, REGISTER]
SocketPermission[... carefully restrict external access...]

Users of this specification will need the following minimum permissions.

ServicePermission[...Repository, GET]

132.9 org.osgi.service.repository

Repository Service Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.repository; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.repository; vers ion="[1.1 ,1 .2)"

132.9.1 Summary

• AndExpression - A RequirementExpression representing the and of a number of requirement ex-
pressions.

• ContentNamespace - Content Capability and Requirement Namespace.
• ExpressionCombiner - An ExpressionCombiner can be used to combine requirement expres-

sions into a single complex requirement expression using the and , or and not operators.
• IdentityExpression - A RequirementExpression representing a requirement.
• NotExpression - A RequirementExpression representing the not (negation) of a requirement ex-

pression.
• OrExpression - A RequirementExpression representing the or of a number of requirement ex-

pressions.
• Repository - A repository service that contains resources.
• RepositoryContent - An accessor for the content of a resource.
• RequirementBui lder - A builder for requirements.
• RequirementExpression - The super interface for all requirement expressions.

132.9.2 public interface AndExpression
extends RequirementExpression
A RequirementExpression representing the and of a number of requirement expressions.

Since 1.1

org.osgi.service.repository Repository Service Specification Version 1.1

Page 702 OSGi Compendium Release 8

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

132.9.2.1 public List<RequirementExpression> getRequirementExpressions()

□ Return the requirement expressions that are combined by this AndExpression .

Returns An unmodifiable list of requirement expressions that are combined by this AndExpression . The list
contains the requirement expressions in the order they were specified when this requirement ex-
pression was created.

132.9.3 public final class ContentNamespace
extends Namespace
Content Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

132.9.3.1 public static final String CAPABILITY_MIME_ATTRIBUTE = "mime"

The capability attribute that defines the IANA MIME Type/Format for this content.

132.9.3.2 public static final String CAPABILITY_SIZE_ATTRIBUTE = "size"

The capability attribute that contains the size, in bytes, of the content. The value of this attribute
must be of type Long .

132.9.3.3 public static final String CAPABILITY_URL_ATTRIBUTE = "url"

The capability attribute that contains the URL to the content.

132.9.3.4 public static final String CONTENT_NAMESPACE = "osgi.content"

Namespace name for content capabilities and requirements.

Also, the capability attribute used to specify the unique identifier of the content. This identifier is
the SHA-256 hash of the content.

132.9.4 public interface ExpressionCombiner
An ExpressionCombiner can be used to combine requirement expressions into a single complex re-
quirement expression using the and , or and not operators.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

132.9.4.1 public AndExpression and(RequirementExpression expr1, RequirementExpression expr2)

expr1 The first requirement expression to combine into the returned requirement expression.

expr2 The second requirement expression to combine into the returned requirement expression

□ Combine two RequirementExpressions into a requirement expression using the and operator.

Returns An AndExpression representing an and of the specified requirement expressions.

Repository Service Specification Version 1.1 org.osgi.service.repository

OSGi Compendium Release 8 Page 703

132.9.4.2 public AndExpression and(RequirementExpression expr1, RequirementExpression expr2,
RequirementExpression... moreExprs)

expr1 The first requirement expression to combine into the returned requirement expression.

expr2 The second requirement expression to combine into the returned requirement expression

moreExprs Optional, additional requirement expressions to combine into the returned requirement expression.

□ Combine multiple RequirementExpressions into a requirement expression using the and operator.

Returns An AndExpression representing an and of the specified requirement expressions.

132.9.4.3 public IdentityExpression identity(Requirement req)

req The requirement to wrap in a requirement expression.

□ Wrap a Requirement in an IdentityExpression. This can be useful when working with a combina-
tion of Requirements and RequirementExpresions.

Returns An IdentityExpression representing the specified requirement.

132.9.4.4 public NotExpression not(RequirementExpression expr)

expr The requirement expression to negate.

□ Return the negation of a RequirementExpression.

Returns A NotExpression representing the not of the specified requirement expression.

132.9.4.5 public OrExpression or(RequirementExpression expr1, RequirementExpression expr2)

expr1 The first requirement expression to combine into the returned requirement expression.

expr2 The second requirement expression to combine into the returned requirement expression

□ Combine two RequirementExpressions into a requirement expression using the or operator.

Returns An OrExpression representing an or of the specified requirement expressions.

132.9.4.6 public OrExpression or(RequirementExpression expr1, RequirementExpression expr2,
RequirementExpression... moreExprs)

expr1 The first requirement expression to combine into the returned requirement expression.

expr2 The second requirement expression to combine into the returned requirement expression

moreExprs Optional, additional requirement expressions to combine into the returned requirement expression.

□ Combine multiple RequirementExpressions into a requirement expression using the or operator.

Returns An OrExpression representing an or of the specified requirement expressions.

132.9.5 public interface IdentityExpression
extends RequirementExpression
A RequirementExpression representing a requirement.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

132.9.5.1 public Requirement getRequirement()

□ Return the Requirement contained in this IdentityExpression .

Returns The requirement contained in this IdentityExpression .

org.osgi.service.repository Repository Service Specification Version 1.1

Page 704 OSGi Compendium Release 8

132.9.6 public interface NotExpression
extends RequirementExpression
A RequirementExpression representing the not (negation) of a requirement expression.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

132.9.6.1 public RequirementExpression getRequirementExpression()

□ Return the requirement expression that is negated by this NotExpression .

Returns The requirement expression that is negated by this NotExpression .

132.9.7 public interface OrExpression
extends RequirementExpression
A RequirementExpression representing the or of a number of requirement expressions.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

132.9.7.1 public List<RequirementExpression> getRequirementExpressions()

□ Return the requirement expressions that are combined by this OrExpression .

Returns An unmodifiable list of requirement expressions that are combined by this OrExpression . The list
contains the requirement expressions in the order they were specified when this requirement ex-
pression was created.

132.9.8 public interface Repository
A repository service that contains resources.

Repositories may be registered as services and may be used as by a resolve context during resolver
operations.

Repositories registered as services may be filtered using standard service properties.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

132.9.8.1 public static final String URL = "repository.url"

Service property to provide URLs related to this repository.

The value of this property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

132.9.8.2 public Map<Requirement, Collection<Capability>> findProviders(Collection<? extends Requirement>
requirements)

requirements The requirements for which matching capabilities should be returned. Must not be nul l .

□ Find the capabilities that match the specified requirements.

Returns A map of matching capabilities for the specified requirements. Each specified requirement must ap-
pear as a key in the map. If there are no matching capabilities for a specified requirement, then the
value in the map for the specified requirement must be an empty collection. The returned map is
the property of the caller and can be modified by the caller. The returned map may be lazily populat-
ed, so calling size() may result in a long running operation.

Repository Service Specification Version 1.1 org.osgi.service.repository

OSGi Compendium Release 8 Page 705

132.9.8.3 public Promise<Collection<Resource>> findProviders(RequirementExpression expression)

expression The RequirementExpression for which matching capabilities should be returned. Must not be nul l .

□ Find the resources that match the specified requirement expression.

Returns A promise to a collection of matching Resources. If there are no matching resources, an empty col-
lection is returned. The returned collection is the property of the caller and can be modified by the
caller. The returned collection may be lazily populated, so calling size() may result in a long run-
ning operation.

Since 1.1

132.9.8.4 public ExpressionCombiner getExpressionCombiner()

□ Return an expression combiner. An expression combiner can be used to combine multiple require-
ment expressions into more complex requirement expressions using and, or and not operators.

Returns An ExpressionCombiner .

Since 1.1

132.9.8.5 public RequirementBuilder newRequirementBuilder(String namespace)

namespace The namespace for the requirement to be created.

□ Return a new RequirementBui lder which provides a convenient way to create a requirement.

For example:

 Requirement myReq = repository.newRequirementBuilder("org.foo.ns1").
 addDirective("filter", "(org.foo.ns1=val1)").
 addDirective("cardinality", "multiple").build();

Returns A new requirement builder for a requirement in the specified namespace.

Since 1.1

132.9.9 public interface RepositoryContent
An accessor for the content of a resource. All Resource objects which represent resources in a Repos-
itory must implement this interface. A user of the resource can then cast the Resource object to this
type and then obtain an InputStream to the content of the resource.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

132.9.9.1 public InputStream getContent()

□ Returns a new input stream to the content of this resource. The content is represented on the re-
source through the osgi .content capability. If more than one such capability is associated with the
resource, the first such capability is returned.

Returns A new input stream for associated content.

132.9.10 public interface RequirementBuilder
A builder for requirements.

Since 1.1

Provider Type Consumers of this API must not implement this type

132.9.10.1 public RequirementBuilder addAttribute(String name, Object value)

name The attribute name.

org.osgi.service.repository Repository Service Specification Version 1.1

Page 706 OSGi Compendium Release 8

value The attribute value.

□ Add an attribute to the set of attributes.

Returns This requirement builder.

132.9.10.2 public RequirementBuilder addDirective(String name, String value)

name The directive name.

value The directive value.

□ Add a directive to the set of directives.

Returns This requirement builder.

132.9.10.3 public Requirement build()

□ Create a requirement based upon the values set in this requirement builder.

Returns A requirement created based upon the values set in this requirement builder.

132.9.10.4 public IdentityExpression buildExpression()

□ Create a requirement expression for a requirement based upon the values set in this requirement
builder.

Returns A requirement expression created for a requirement based upon the values set in this requirement
builder.

132.9.10.5 public RequirementBuilder setAttributes(Map<String, Object> attributes)

attributes The map of attributes.

□ Replace all attributes with the attributes in the specified map.

Returns This requirement builder.

132.9.10.6 public RequirementBuilder setDirectives(Map<String, String> directives)

directives The map of directives.

□ Replace all directives with the directives in the specified map.

Returns This requirement builder.

132.9.10.7 public RequirementBuilder setResource(Resource resource)

resource The resource.

□ Set the Resource .

A resource is optional. This method will replace any previously set resource.

Returns This requirement builder.

132.9.11 public interface RequirementExpression
The super interface for all requirement expressions. All requirement expressions must extend this
interface.

Since 1.1

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

Repository Service Specification Version 1.1 References

OSGi Compendium Release 8 Page 707

132.10 References

[1] Framework Module Layer
OSGi Core, Chapter 3 Module Layer

[2] Framework Namespaces
OSGi Core, Chapter 8, osgi.identity Namespace

[3] Resource API Specification
OSGi Core, Chapter 6 Resource API Specification

[4] XML Schema Part 2: Data types Second Edition
http://www.w3.org/TR/xmlschema-2/

[5] XML Base (Second Edition), Resolving Relative URIs
https://www.w3.org/TR/xmlbase/#resolution

[6] Resolver Service Specification
OSGi Core, Chapter 58 Resolver Service Specification

http://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xmlbase/#resolution

References Repository Service Specification Version 1.1

Page 708 OSGi Compendium Release 8

Service Loader Mediator Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 709

133 Service Loader Mediator
Specification

Version 1.0

133.1 Introduction
Java SE 6 introduced the Service Loader, a simple service-provider loading facility, that attempted to
unify the different ad-hoc mechanisms used by Java's many factories and builders. The design al-
lows a JAR to advertise the name of one or more embedded classes that implement a given interface
and consumers to obtain instances of these implementation classes through the Service Loader API.

Though the Service Loader is about extensibility, its own design is closed and therefore not extend-
able. It does not support a provider model that would allow different ways of finding interface im-
plementations; its classes are final and its policy is fixed. Unfortunately, the Service Loader's fixed
design uses a non-modular class loading policy; it defines its visibility scope with a class loader,
which in general requires full visibility of the application's class path. The Service Loader can there-
fore in OSGi not find implementations from other bundles. Additionally, the Service Loader also
does not enforce a life cycle; objects are handed out forever.

Since the Service Loader is the only standardized plugin mechanism in the JRE it is necessary that
the mechanism is supported in OSGi with as few changes as possible from the consumer's authors.
This specification therefore defines a mediator that ensures that the Service Loader is useful in an
OSGi Framework, allowing programs that leverage the Service Loader to be used in OSGi frame-
works almost as-is.

133.1.1 Essentials

• Compatibility - Allow JARs that run in a classic Java SE environment that leverage the Service
Loader to run in OSGi with only manifest modifications.

• Services - Register services for Service Provider bundles that opt-in.
• Security - Enforce service permissions for the Service Loader objects.
• Life Cycle - Manage the life cycle mismatch between OSGi bundles and the Service Loader's create

only model.

133.1.2 Entities

• Service Loader - An API in Java SE that allows a Consumer to find an implementation of a Service
Type from a Service Provider by searching a class loader for Service Providers.

• Service Type - The interface or class that the Service Provider must implement/extend.
• Provider Configuration File - A resource in the META-INF/services directory that has the fully

qualified name of the Service Type and contains one ore more fully qualified names of Service
Providers.

• Service Provider - An implementation class that implements or extends the Service Type.
• Consumer - A class that uses the Java SE Service Loader inside an OSGi framework.
• Mediator - An extender that mediates between Consumer bundles, the Service Loader API, and

Service Provider bundles in an OSGi environment. It consists of a Processor and a Registrar.

Introduction Service Loader Mediator Specification Version 1.0

Page 710 OSGi Compendium Release 8

• Processor - Modifies a bundle that uses the Service Loader API so that it works in an OSGi environ-
ment.

• Registrar - Registers services on behalf of a bundle that contains Service Providers.

Figure 133.1 Entities

Consumer

Service
Provider

Registrar

Service
Loader

Provider
Configuration
File

instantiates

osgi.extender=
osgi.serviceloader.registrar

manages
life cycle

advertised by

Service
TypeProcessor

Any OSGi Ser-
vice user

osgi.extender=
osgi.serviceloader.processor

processes

Mediator

osgi.serviceloader
(publishing)

decorates

osgi.serviceloader
(decorating)

133.1.3 Synopsis
This specification defines two different functions that are provided by a Mediator extender:

• Register OSGi services for each Service Provider.
• Allow Consumers that uses the Service Loader API to access Service Providers from other bun-

dles that would normally not be visible from a bundle.

A Service Provider bundle can provide access to all its Service Providers through OSGi services by
declaring a requirement on the osgi .serviceloader.registrar extender. This requirement activates
a Mediator to inspect the osgi .serviceloader capabilities. If no register directive is used then all
Service Providers for the given Service Type must be registered. Otherwise, each capability can
select one Service Provider with the register directive. The fully qualified name selects a specific
Service Provider, allowing different Service Providers to be registered with different service prop-
erties. The Mediator will then register an OSGi service factory for each selected capability. The
osgi .serviceloader capability's attributes are used to decorate the OSGi service registration with ser-
vice properties. The service factory returns a new instance for each service get.

Consumers are classes that use the Service Loader API to find Service Provider instances. Since the
Service Loader API requires full visibility the Service API fails to work inside an OSGi bundle. A
osgi .serviceloader.processor extender, which is the Mediator, processes bundles that require this ca-
pability by modifying calls to the Service Loader API to ensures that the Service Loader has visibility
to published Service Providers.

A Consumer's bundle by default receives visibility to all published Service Providers. Service
Providers are published when a bundle declares one or more osgi .serviceloader capabilities for a
Service Type. If the Consumer has an osgi .serviceloader requirement for the given Service Type
then the Mediator must only expose the bundles that are wired to those requirements and for each
bundle provide all its Service Providers.

Service Loader Mediator Specification Version 1.0 Java Service Loader API

OSGi Compendium Release 8 Page 711

133.2 Java Service Loader API
Java is quite unique with its focus on separation of specification and implementation. Virtually all Java
Specification Requests (JSR) provide a specification that can be implemented independently by dif-
ferent parties. Though this is one of the industry's best practices it raises a new problem: how to find
the implementation available in a Java environment from only the Service Type. A Service Type is
usually an interface but a base class can also be used.

Finding a Service Provider (the implementation class) from a Service Type is the so called instance
coupling problem. The use of Service Types removed the type coupling between the Consumer of the
contract and the Service Provider of the contract (the implementation) but to make things work there
is a need of at least one place where the Service Provider is instantiated. The very large number of
factories in Java reflects that this is a very common problem.

The general pattern for factories to find Service Providers was to search the class loaders for classes
with constant names, varying the package names, often using System properties to extend the dif-
ferent areas to be sought. Though a general pattern based on class loading tricks emerged in the Ja-
va VM and application programs, all these patterns differed in details and places where they looked.
This became harder and harder to maintain and often caused unexpected instances to be found.

The java.ut i l .ServiceLoader class was therefore first introduced in Java SE 6 to provide a generic so-
lution to this problem, see [1] Java Service Loader API. With this API Service Providers of a specifica-
tion can now advertise their availability by creating a Provider Configuration File in their JAR in the
META-INF/services directory. The name of this resource is the fully qualified name of the Service
Type, the Service Provider provides when instantiated.

The Provider Configuration File contains a number of lines with comments or a class name that im-
plements/extends the Service Type. For example:

org.example.Foo

A Service Provider must then advertise itself like:

META-INF/services/org.example.Foo:
 # Foo implementation
 org.acme.impl.FooImplementation

The Service Loader API finds all advertisers by constructing the name of the Provider Configuration
File from the Service Type and then calling the getResources method on the provided class loader.
This returns an enumeration of URLs to the advertisements. It then parses the contents of the re-
sources; that will provide it with a list of Service Providers for the sought Service Type without du-
plicates. The API will return an iterator that will instantiate an object for the next available Service
Provider.

To find the Configuration files for a given Service Type, the Service Loader uses a class loader. The
Consumer can select the following class loaders:

• A given class loader as an argument in the call to the constructor
• The Thread Context Class Loader (TCCL)
• The system loader (when nul l is passed or no TCCL is set)

The class loader restricts the visibility of the Service Loader to only the resources to which the class
loader has visibility. If the Service Loader has no access to the advertisement of a Service Provider
then it cannot detect it and it will thus not be found.

The Service Provider is loaded from the given class loader, however, the Class.forName method is
used, which stores it in the cache of the initiating class loader. This means that Service Providers are

Consumers Service Loader Mediator Specification Version 1.0

Page 712 OSGi Compendium Release 8

not garbage collected as long as there is a resolved bundle that used the Service Loader to get that
Service Provider.

In the Service Loader API, the class does not have to originate from the same JAR file as the adver-
tisement. In OSGi this is more restricted, the advertisement must come from the same bundle or
must be explicitly imported.

For example, to load a Foo instance the following code could be used:

ServiceLoader<Foo> sl =
 ServiceLoader.load(Foo.class);
Iterator<Foo> it = sl.iterator();
if (it.hasNext()) {
 Foo foo = it.next();
 ...
}

Though the Service Loader API is about extensibility and contract based programming it is in itself
not extendable nor replaceable. The ServiceLoader class is f inal , it comes from a sealed JAR, and is in
a java package. It also does not provide an API to provide alternate means to find implementations
for a Service Type.

133.3 Consumers
Consumers are classes that are not OSGi aware and directly use the Service Loader API. The Service
Loader has a non-modular design and Consumers therefore run into many issues when running in
an OSGi framework. Consumers should therefore in general be converted to use the OSGi service
layer since this solves the visibility issues, life cycle impedance mismatch, and other problems. The
Consumer part of this specification is therefore a last resort to use when existing code uses the Ser-
vice Loader API and cannot be modified to leverage the OSGi service layer.

133.3.1 Processing
The Service Loader Mediator can process the Consumer by modifying calls to the Service Loader
API. This specification does not detail how the Mediator ensures that the Consumer has visibility
to other Service Providers. However, a Mediator could for example set an appropriate Thread Con-
text Class Loader during the call to the Service Loader's constructor by weaving the Consumer's byte
codes.

133.3.2 Opting In
Processing is an opt-in process, the Consumer bundle must declare that it is willing to be processed.
The opt-in is handled by a requirement to the osgi .serviceloader.processor extender. This require-
ment must have a single cardinality (the default) since the Mediator uses the wiring to select the
Consumer to process when multiple Mediators are present.

For example, the following requirement in a manifest enables a bundle to be processed:

Require-Capability:
 osgi.extender;
 filter:="(&(osgi.extender=osgi.serviceloader.processor)
 (version>=1.0)(!(version>=2.0)))"

If the extender osgi .serviceloader.processor requirement is satisfied then the wired Mediator must
process the Consumer.

The Mediator must give visibility to all bundles with published Service Providers unless the Con-
sumer restricts the visibility by having osgi .serviceloader requirements. Bundles publish a Service

Service Loader Mediator Specification Version 1.0 Consumers

OSGi Compendium Release 8 Page 713

Type, meaning all their Service Providers for that type, by having at least one osgi .serviceloader ca-
pability for that Service Type.

133.3.3 Restricting Visibility
A Consumer's bundle can restrict its visibility to certain bundles by declaring an osgi .serviceloader
requirement for each Service Type it wants to use. Only bundles wired from those requirement pro-
vide their advertised Service Providers. If no such requirements are declared then all bundles with
the published Service Type become available.

The cardinality can be used to select a single Service Provider's bundle or multiple bundles if it
needs to see all Service Provider bundles. The requirement can be made optional if the Consumer's
bundle can work also when no Service Provider bundle is available. See osgi.serviceloader Namespace
on page 719 for more details.

For example, a requirement that restricts visibility to the org.example.Foo Service Providers could
look like:

Require-Capability:
 osgi.serviceloader;
 filter:="(osgi.serviceloader=org.example.Foo)";
 cardinality:=multiple

In this example, any bundle that publishes the org.example.Foo Service Type will contribute its Ser-
vice Providers.

Visibility can also be restricted to bundles that publish with capability's attributes. Any bundle that
has at least one matching capability will then be able to contribute all its Service Providers. For ex-
ample, the following example selects only bundles that have the classi f ied property set:

osgi.serviceloader; filter:="(classified=*)"

With Service Registrations, see Registering Services on page 716, the capability can discriminate be-
tween multiple Service Providers in the same bundle. The Service Loader API does not have this fea-
ture: any wired requirement has visibility to all Service Providers in the wired bundle, regardless of
the registered directive.

133.3.4 Life Cycle Impedance Mismatch
A Consumer can only see Service Provider instances of bundles that are active during the time the
next instance is created. That is, the Mediator must treat the life cycle of the Service Provider as if
it was a service. However, the Service Loader implementations perform extensive class loader tech-
niques and cache results. The exact life cycle of the Service Provider bundle with respect to the Con-
sumer is therefore impossible to enforce.

The Service Loader API does not have a life cycle, objects are assumed to stay alive during the du-
ration of the VM's process and due to the use of Class.forName in the Service Loader implementa-
tions. Therefore a Mediator should refresh a Consumer bundle when it is using a Service Provider
and that Service Provider's bundle becomes stopped otherwise long running applications can run
out of memory when bundles are regularly updated.

133.3.5 Consumer Example
A legacy JAR for which there is no more source code uses the Service Loader API to get access to
com.example.Codec instances through the Service Loader API.

It is wrapped in a bundle that then has the following manifest:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2

Service Provider Bundles Service Loader Mediator Specification Version 1.0

Page 714 OSGi Compendium Release 8

Bundle-SymbolicName: com.example.impl
Bundle-Version: 23.98.1.v199101232310.02011
Import-Package: com.example; version=3.45
Bundle-ClassPath: legacy.jar

The manifest must then declare that the bundle must be processed, this is triggered by requiring the
osgi .serviceloader.processor extender:

Require-Capability:
 osgi.extender;
 filter:="(&(osgi.extender=osgi.serviceloader.processor)
 (version>=1.0)(!(version>=2.0)))"

With this manifest, the Consumer bundle has full visibility to all Service Provider bundles that are
published. The following lines can be added to restrict the visibility to codecs that have support for
WAVE formats (although all Service Providers in that bundle will be visible to the consumer).

,
 osgi.serviceloader;
 filter:="(&(format=WAVE)(osgi.serviceloader=com.example.Codec))"

133.4 Service Provider Bundles
A Service Provider bundle is a bundle that contains one or more Service Providers that are usable by
the Service Loader API. This section shows how Service Provider bundles should be constructed and
what options they have.

133.4.1 Advertising
Service Providers are implementation classes that are advertised under a Service Type according to the
rules in the Service Loader API. A Service Provider is advertised with a Provider Configuration File in
a JAR. In an OSGi environment the Service Provider must reside in the same bundle as the advertise-
ment or be imported. A single Provider Configuration File can contain multiple Service Providers.
See Java Service Loader API on page 711.

133.4.2 Publishing the Service Providers
Service Providers can be used in two different scenarios:

• A Service Provider can be used by a processed Consumer as a Service Type, or
• It can be registered as a service.

A Service Type must be published to allow its use it in these scenarios. Publishing a Service Type con-
sists of providing one or more osgi .serviceloader capabilities for an advertised Service Type, see
osgi.serviceloader Namespace on page 719. These osgi .serviceloader capabilities must specify a ful-
ly qualified class name of the Service Type, there is no wildcarding allowed. Therefore, publishing a
service implicitly makes all corresponding Service Providers available to Consumers.

If a bundle does not provide osgi .serviceloader capabilities then it does not publish any Service
Providers and its Service Providers can therefore not be used by Consumers. They can then also not
be registered as OSGi services, see OSGi Services on page 715. Tools can use the advertisement of
the Service Provider in the JAR to automatically generate the osgi .serviceloader capabilities in the
manifest.

For example, the following capability publishes all the Service Providers in its bundle that advertise
the com.example.Codec interface:

Service Loader Mediator Specification Version 1.0 Service Provider Bundles

OSGi Compendium Release 8 Page 715

Provide-Capability:
 osgi.serviceloader;
 osgi.serviceloader=com.example.Codec;
 uses:="com.example"

A Service Provider bundle must not require the osgi .serviceloader.processor extender unless it
needs to be processed; publishing a Service Type is sufficient to allow Consumers to use the pub-
lished Service Types.

133.4.3 OSGi Services
The Service Provider can have its osgi .serviceloader capabilities be registered as services that pro-
vide instances from the Service Providers. For this, the Service Provider bundle must require the
osgi .serviceloader.registrar extender, which is the Mediator. For example:

Require-Capability:
 osgi.extender;
 filter:="(&(osgi.extender=osgi.serviceloader.registrar)
 (version>=1.0)(!(version>=2.0)))"

The registrar must then inspect each osgi .serviceloader capability and register an associated OSGi
Service for each Service Provider selected by that capability. A Service Provider is selected when:

• The capability has no register directive, or
• The register directive matches the fully qualified name of the Service Provider.

A register directive selects a Service Provider if it contains the fully qualified name of the Service
Provider, that is, the implementation class. Selection only works for services, Consumer will always
see all Service Providers regardless of the register directive due to limitations in the Service Loader
API.

For example, the following manifest selects all Service Providers of the com.example.Foo Service
Type since no register directive is present:

Provide-Capability:
 osgi.serviceloader;
 uses:="com.example";
 osgi.serviceloader=com.example.Foo

Selected Service Providers must be registered as defined in Registering Services on page 716, with
the capability's attributes as decorating service properties. Private service properties (attributes that
start with a full stop ('.' \u002E) and the defined capability attributes in the osgi .serviceloader
namespace are not registered as service properties.

The following example would register the format service property but not the .h int service property
for the com.acme.impl .WaveFoo Service Provider.

 osgi.serviceloader;
 osgi.serviceloader=com.example.Foo;
 uses:="com.example";
 format=WAVE;
 .hint=E5437Qy7;
 register:="com.acme.impl.WaveFoo"

The Mediator must only register OSGi services for selected Service Providers; the Service Provider
bundle can therefore decide not to register certain Service Providers and register them with another
mechanism, for example Declarative Services or in a bundle activator.

Service Loader Mediator Service Loader Mediator Specification Version 1.0

Page 716 OSGi Compendium Release 8

Since the Mediator must use the bundle context of the Service Provider to register the OSGi service
the Service Provider bundle must have the proper Service Permission REGISTER for the Service Type.

133.4.4 Service Provider Example
A Foo Codecs JAR needs to be ported to OSGi, it provides a Service Provider for the
org.example.Codec Service Type. In this example the JAR is given a new manifest:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-SymbolicName: com.example.foo.codecs
Import-Package: com.example; version=3.45

To ensure that the bundle opts in to registering its services it must require the
osgi .serviceloader.registrar extender.

Require-Capability:
 osgi.extender;
 filter:="(&(osgi.extender=osgi.serviceloader.registrar)
 (version>=1.0)(!(version>=2.0)))"

To publish two Service Providers for the same type, two capabilities must be declared:

Provide-Capability:
 osgi.serviceloader;
 osgi.serviceloader="com.example.Codec";
 format:List<String>="WAVE,WMF";
 register:="com.acme.impl.FooWaveCodec";
 uses:="com.example,org.apache.common.codecs",
 osgi.serviceloader;
 osgi.serviceloader="com.example.Codec";
 format:List<String>=SINUS;
 register:="com.acme.impl.sinus.FooSinusCodec";
 uses:="com.example"

This example implicitly publishes the Service Type com.example.Codec multiple times with dif-
ferent attributes. Consumers that match any of these capabilities will however have visibility to
all Service Providers since the Service Loader API cannot discriminate between different Service
Providers from the same bundle.

133.5 Service Loader Mediator
A Mediator is the osgi .serviceloader.processor and osgi .serviceloader.registrar extender bundle
that has the following responsibilities:

• It registers selected Service Providers as OSGi services.
• It processes any Consumers so that Service Loader API calls have proper visibility to published

Service Provider bundles.

133.5.1 Registering Services
The Mediator must track bundles that are wired to its osgi .extender=osgi .serviceloader.registrar
capability. These are called the managed bundles. For all managed bundles the Mediator must enu-
merate all osgi .serviceloader capabilities and register selected Service Providers as OSGi services. A
Service Provider is selected by an osgi .serviceloader capability when:

Service Loader Mediator Specification Version 1.0 Service Loader Mediator

OSGi Compendium Release 8 Page 717

• The advertised Service Type matches the corresponding osgi .serviceloader capability's Service
Type, and

• The register directive is absent, or
• The register directive contains the fully qualified name of the Service Provider.

An osgi .serviceloader capability that selects a Service Provider is said to decorate that Service
Provider. A capability can decorate multiple Service Providers of the same Service Type and the
same Service Provider can be decorated by different capabilities. Figure 133.2 depicts the resulting
relations and their cardinalities since the relations are non-trivial.

Figure 133.2 Cardinality Service Type

Service Type osgi.
serviceloader
Capability

Service
Provider

advertised
by

decorated
by (qualified by the register directive)

published by

1

0..n

0..n

0..n1

1..n

The OSGi service for each selected Service Provider must be registered under the advertised Service
Type of the Service Provider, which must match the Service Type specified in the capability.

133.5.2 OSGi Service Factory
The Mediator must register an OSGi service factory with the bundle context of the Service Provider's
bundle. The OSGi service factory must be implemented such that it creates a new instance for
each bundle that gets the service. This behavior is similar, though not quite identical, to the
ServiceLoader. load() method that gives each consumer a separate instance of the service. The differ-
ence is that different users inside a bundle will share the same instance.

Each service registration is controlled by a decorating osgi .serviceloader capability. The attributes
on this capability must be registered with the OSGi service as service properties, except for:

• Private - Private properties, property names that start with a full stop ('.' \u002E) must not be reg-
istered.

The following service property must be registered, overriding any identical named properties in the
decorating capability:

• serviceloader.mediator - (Long) The bundle id of the mediator.

The Mediator should not verify class space consistency since the OSGi framework already enforces
this as long as the publishing capability specifies the uses directive.

Any services registered in the OSGi Service Registry must be unregistered when the Service
Provider's bundle is stopped or the Mediator is stopped.

133.5.3 Service Loader and Modularity
The Service Loader API causes issues in a modular environment because it requires a class loader
that has wide visibility. In a modular environment like OSGi the Consumer, the Service Type, and
the Service Provider can, and should, all reside in different modules because they represent different
concerns. Best practice requires that only the Service Type is shared between these actors. However,

Service Loader Mediator Service Loader Mediator Specification Version 1.0

Page 718 OSGi Compendium Release 8

for the Service Loader to work as it was designed the Consumer must provide a class loader that has
visibility of the Service Provider. The Service Provider is an implementation class, exporting such
classes is the anathema of modularity. However, since the standard JRE provides application wide
visibility this was never a major concern.

The simplest solution is to make the Service Loader aware of OSGi, its API clear is mappable to the
OSGi service layer. However, the Service Loader is not extensible. The result is that using the Service
Loader in OSGi fails in general because the Service Loader is unable to find the Service Providers.
The issues are:

• The use of the Thread Context Class Loader (TCCL) is not defined in an OSGi environment. It
should be set by the caller and this cannot be enforced. The multi threaded nature of OSGi makes
it hard to predict what thread a Consumer will use, making it impossible to set an appropriate
TCCL outside the Consumer.

• A bundle cannot import META-INF/services since the name is not a package name. Even if it
could, the OSGi framework can only bind a single exporter to an importer for a given package.
The Service Loader API requires access to all these pseudo-packages via the Class Loader's getRe-
sources method, the technique used to find Service Providers.

• Instantiating a Service Provider requires access to internal implementation classes, by exporting
these classes, an implementing bundle would break its encapsulation.

• If a Service Provider was exported then importing this class in a Consumer bundle would couple
it to a specific implementation package; this also violates the principle of loose coupling.

• The Service Loader API does assume an eternal life cycle, there is no way to signal that a Service
Provider is no longer available. This is at odds with the dynamic bundle life cycle.

133.5.4 Processing Consumers
Consumers are not written for OSGi and require help to successfully use the Service Loader API. It is
the Mediator's responsibility to ensure that bundles that are wired to published Service Types have
access to these Service Provider's instances through the Service Loader API.

This specification does not define how this is done. There are a number of possibilities and it is up to
the Mediator to provide the guarantee to the Consumer that it has been properly processed.

A Mediator must only process Consumer's bundles that are wired to the osgi .extender capability for
the osgi .serviceloader.processor extender. Since Consumers must require this extender capability
with the default cardinality of 1 there can at most be one extender wired to a Consumer.

133.5.5 Visibility
The Mediator must process the Consumer bundle in such a way that when the Consumer uses the
Service Loader API it receives all the Service Providers of bundles that:

• Provide one or more osgi .serviceloader capabilities for the requested Service Type, and
• Are not type space incompatible with the requester for the given Service Type, and
• Either the Consumer has no osgi .serviceloader requirements or one of its requirements is wired

to one of the osgi .serviceloader capabilities.

The Mediator must verify that the Consumer has Service Permission GET for the given Service Type
since the Consumer uses the Service Type as a service. This specification therefore reuses the Service
Permission for this purpose. The check must be done with the ServicePermission(Str ing,Str ing)
constructor using the bundle's Access Control Context or the bundle's hasPermission method.

133.5.6 Life Cycle
There is a life cycle mismatch between the Service Loader API and the dynamic OSGi world. A Ser-
vice Loader provides a Consumer with an object that could come from a bundle that is later stopped

Service Loader Mediator Specification Version 1.0 osgi.serviceloader Namespace

OSGi Compendium Release 8 Page 719

and/or refreshed. Such an object becomes stale. Mediators should attempt to refresh bundles that
have access to these stale objects.

133.6 osgi.serviceloader Namespace
The osgi .serviceloader Namespace:

• Allows the Consumer's bundle to require the presence of a Service Provider for the required Ser-
vice Type.

• Provides the service properties for the service registration.
• Indicates which Service Providers should be registered as an OSGi service.

The namespace is defined in the following table and ServiceLoaderNamespace , see Common Name-
spaces Specification on page 723 for the legend of this table.

Table 133.1 osgi.serviceloader namespace definition

Name Kind M/O Type Syntax Description
osgi .serviceloader CA M String qname The Service Type's fully qualified name.
* CA O * * Additional matching attributes are per-

mitted. These attributes will be registered
as custom service properties unless they
are private (start with a full stop).

register CD O String qname Use this capability to register a different
Service Factory under the Service Type
for each selected Service Provider.

A Service Provider is selected if the Ser-
vice Type is the advertising Service Type
and the Service Provider's fully qualified
name matches the given name. If no reg-
ister directive is present all advertised
Service Providers must be registered. To
register no Service Providers, because the
capability must only be used to publish,
provide an empty string.

133.7 Use of the osgi.extender Namespace
This section specifies the extender names for Mediators. They are used by both by Consumer and
Service Provider bundles to ensure that a Mediator is present. Both names are defined for the general
osgi .extender namespace in osgi.extender Namespace in OSGi Core Release 8.

The osgi .extender namespace requires the use of an extender name, the name of the Mediator exten-
ders is:

osgi.serviceloader.processor
osgi.serviceloader.registrar

The version is for this specification is in both cases:

1.0.0

Security Service Loader Mediator Specification Version 1.0

Page 720 OSGi Compendium Release 8

133.8 Security

133.8.1 Mediator
The Mediator will require significant permissions to perform its tasks. First, it will require access to
the Bundle Context of the Service Provider bundle, which means it must have Admin Permission:

AdminPermission[<Service Provider Bundles>,CONTEXT|METADATA|CLASS]

Since it will have to register on behalf of the Service Provider bundle it must have complete liberty
to register services:

ServicePermission[<Service Type>,REGISTER]

Depending on the way the Consumers are processed additional requirements may be necessary.

The Mediator connects two parties; it must ensure that neither party will receive additional permis-
sions.

133.8.2 Consumers
Consumers must have:

ServicePermission[<Service Type>,GET]
PackagePermission[<Service Type's package>,IMPORT]
CapabilityPermission["osgi.extender", REQUIRE]
CapabilityPermission["osgi.serviceloader", REQUIRE]

The Mediator must ensure that the Consumer has the ServicePermission before it provides the in-
stance. It must use the Bundle Context hasPermission method or the bundle's Access Control Con-
text to verify this.

133.8.3 Service Providers
Service Providers must have:

ServicePermission[<Service Type>,REGISTER]
PackagePermission[<Service Type's package>,IMPORT]
CapabilityPermission["osgi.extender", REQUIRE]
CapabilityPermission["osgi.serviceloader", PROVIDE]

The Mediator must ensure that the Service Provider has the ServicePermission before it provides the
instance. It must use the Bundle Context hasPermission method or the bundle's Access Control Con-
text to verify this.

133.9 org.osgi.service.serviceloader

Service Loader Mediator Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.serviceloader; vers ion="[1.0,2.0)"

Service Loader Mediator Specification Version 1.0 References

OSGi Compendium Release 8 Page 721

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.serviceloader; vers ion="[1.0,1.1)"

133.9.1 Summary

• ServiceLoaderNamespace - Service Loader Capability and Requirement Namespace.

133.9.2 public final class ServiceLoaderNamespace
extends Namespace
Service Loader Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

All unspecified capability attributes are of one of the following types:

• Str ing
• Version
• Long
• Double
• List<Str ing>
• List<Version>
• List<Long>
• List<Double>

and are used as arbitrary matching attributes for the capability. The values associated with the speci-
fied directive and attribute keys are of type Str ing , unless otherwise indicated.

All unspecified capability attributes, unless the attribute name starts with full stop ('.' \u002E), are
also used as service properties when registering a Service Provider as a service.

Concurrency Immutable

133.9.2.1 public static final String CAPABILITY_REGISTER_DIRECTIVE = "register"

The capability directive used to specify the implementation classes of the service. The value of this
attribute must be of type List<Str ing> .

If this directive is not specified, then all advertised Service Providers that match the service type
name must be registered. If this directive is specified, then only Service Providers that match the ser-
vice type name whose implementation class is contained in the value of this attribute must be regis-
tered. To not register a service for this capability use an empty string.

133.9.2.2 public static final String SERVICELOADER_NAMESPACE = "osgi.serviceloader"

Namespace name for service loader capabilities and requirements.

Also, the capability attribute used to specify the fully qualified name of the service type.

133.10 References

[1] Java Service Loader API
http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html

http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html

References Service Loader Mediator Specification Version 1.0

Page 722 OSGi Compendium Release 8

Common Namespaces Specification Version 1.2 Introduction

OSGi Compendium Release 8 Page 723

135 Common Namespaces
Specification

Version 1.2

135.1 Introduction
A key aspect of the OSGi general dependency model based on requirements and capabilities is the
concept of a Namespace. A Namespace defines the semantics of a Requirement-Capability pair. The
generic model is defined in the [3] Resources API Specification. This section defines a number of Name-
spaces that are not part of the OSGi Core Release 8 specification. Unless an attribute is specifically
overridden, all Namespaces inherit the attributes and directives of the default Namespace as defined
[4] Framework Namespaces Specification.

Each Namespace is defined with the following items:

• Name - the name of an attribute or directive
• Kind - Defines where the attribute or directive can be used

• CA - Capability Attribute
• CD - Capability Directive
• RA - Requirement Attribute
• RD - Requirement Directive

• M/O - Mandatory (M) or Optional (O)
• Type - The data type
• Syntax - Any syntax rules. The syntax refers in general to the syntaxes defined in [5] General Syn-

tax Definitions and [6] Common Headers.

135.1.1 Versioning
In general, capabilities in a Namespace are versioned using Semantic Versioning. See [7] Semantic
Versioning. Therefore, a capability will specify a single version and a requirement will specify a ver-
sion range. See osgi.extender Namespace for an example.

For some Namespaces, capabilities are not versioned using Semantic Versioning. The versioning
scheme used in those Namespaces will be described in the specification for the Namespace.

135.2 osgi.extender Namespace
An Extender is a bundle that uses the life cycle events from another bundle, the extendee, to extend
that bundle's functionality when that bundle is active. It can use metadata (headers, or files inside
the extendee) to control its functionality. Extendees therefore have a dependency on the Extender
that can be modeled with the osgi .extender Namespace. The definition for this Namespace can be
found in the following table and the ExtenderNamespace class.

osgi.extender Namespace Common Namespaces Specification Version 1.2

Page 724 OSGi Compendium Release 8

Table 135.1 osgi.extender Namespace

Name Kind M/O Type Syntax Description
osgi .extender CA M String symbol ic-name A symbolic name for the extender. These names

are defined in their respective specifications and
should in general use the specification top level
package name. For example, org.acme.foo . The
OSGi Working Group reserves names that start
with "osgi .".

version CA M Version version A version. This version must correspond to the
specification of the extender.

Specifications for extenders (Blueprint, Declarative Services, etc.) should specify the values for these
attributes. Extenders that provide such a capability should list the packages that they use in their
specification in the uses directive of that capability to ensure class space consistency. For example a
Declarative Services implementation could declare its capability with the following manifest head-
er:

Provide-Capability: osgi.extender;
 osgi.extender="osgi.component";
 uses:="org.osgi.service.component";
 version:Version="1.3"

A bundle that depends on a Declarative Services implementation should require such an extender
with the following manifest header:

Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.component)(version>=1.3)(!(version>=2.0)))"

Extenders can extend an extendee bundle even if that bundle does not require the extender, unless
the extender's specification explicitly forbids this. It is recommended that an extender should only
extend a bundle if one of the following is true:

• The bundle's wiring has a required wire for at least one osgi .extender capability with the name
of the extender and the first of these required wires is wired to the extender.

• The bundle's wiring has no required wire for an osgi .extender capability with the name of the
extender.

Otherwise, the extender should not extend the bundle.

135.2.1 Extenders and Framework Hooks
The Framework provides a number of hooks that allow groups of bundles to be scoped. For exam-
ple, the Subsystem Service Specification. An extender may want to extend the complete set of bundles
installed in the Framework even when extendee bundles are hidden from the extender. The system
bundle context provides a complete view of the bundles and services available in the Framework
even if Framework hooks are used to scope groups of bundles. The system bundle context can be
used by an extender to track all bundles installed in the Framework regardless of how Framework
hooks are used to scope groups of bundles. This is useful in scenarios where several scoped groups
contain bundles that require an extender. Instead of requiring an extender to be installed in each
scoped group of bundles, a single extender that uses the system bundle context to track extendees
can be installed to extend all scoped groups of bundles.

Common Namespaces Specification Version 1.2 osgi.contract Namespace

OSGi Compendium Release 8 Page 725

135.3 osgi.contract Namespace
Products or technologies often have a number of related APIs consisting of a large set of packages.
Some IDEs have not optimized for OSGi and requires work for each imported package. In these de-
velopment environments using modularized systems tends to require a significant amount of man-
ual effort to manage the imported packages.

The osgi .contract Namespace addresses this IDE deficiency. It allows a developer to specify a single
name and version for a contract that can then be expanded to a potentially large number of pack-
ages. For example, a developer can then specify a dependency on Java Enterprise Edition 6 contract
that can be provided by an application server.

The osgi .contract Namespace provides such a name and binds it to a set of packages with the us-
es constraint. The bundle that declares this contract must then import or export each of the listed
packages with the correct versioning. Such a bundle is called a contract bundle. The contract bundle
must ensure that it is bound to the correct versions of the packages contained within the contract it
is providing. If the contract bundle imports the packages which are specified as part of the contract
then proper matching attributes must be used to make sure it is bound to the correct versions of the
packages.

Additionally, the osgi .contract Namespace can be used in cases where API is defined by parties
that do not use Semantic Versioning. In those cases, the version of the exported package can be un-
clear and so it is difficult to specify a meaningful version range for the package import. In such cas-
es, importing the package without specifying a version range and specifying a requirement in the
osgi .contract Namespace can provide a way to create portable bundles that use the API. OSGi has
defined contract names for a number of such APIs. See [2] Portable Java Contract Definitions for more
information.

An osgi .contract capability can then be used in the following ways:

• IDEs can use the information in the uses directive to make all those packages available on the
build path. In this case the developer no longer has to specify each package separately.

• During run time the uses clause is used to enforce that all packages in the contract form a consis-
tent class space.

The uses directive will make it impossible to get wired to packages that are not valid for the con-
tract. Since the uses constrains enforce the consistency, it is in principle not necessary to version the
imported packages on client bundles since only the correctly versioned packages can be used. Con-
tracts are aggregates and therefore make clients depend on the whole and all their transitive depen-
dencies, even if the client only uses a single package of the contract.

The recommended way of using contracts is to create a contract bundle that provides the
osgi .contract capability and imports the packages with their required version range. For example:

Provide-Capability: osgi.contract;
 osgi.contract=JavaServlet;
 version:Version=2.5;
 uses:="javax.servlet,javax.servlet.http"
Export-Package:
 javax.servlet; version="2.5",
 javax.servlet.http; version="2.5"

A contract may support multiple versions of a named contract. Such a contract must use a single ca-
pability for the contract name that specifies a list of all the versions that are supported. For example,
the JavaServlet 3.1 contract capability would be specified with the following:

Provide-Capability: osgi.contract;

osgi.contract Namespace Common Namespaces Specification Version 1.2

Page 726 OSGi Compendium Release 8

 osgi.contract=JavaServlet;
 version:List<Version>="2.5,3.0,3.1";
 uses:=
 "javax.servlet,
 javax.servlet.annotation,
 javax.servlet.descriptor,
 javax.servlet.http"
Export-Package:
 javax.servlet; version="3.1",
 javax.servlet.annotation; version="3.1",
 javax.servlet.descriptor; version="3.1",
 javax.servlet.http; version="3.1"

A client bundle that requires the Servlet 2.5 contract can then have the following manifest:

Require-Capability: osgi.contract;
 filter:="(&(osgi.contract=JavaServlet)(version=2.5))",
Import-Package:
 javax.servlet, javax.servlet.http

The client bundle will be constrained by the contract's uses constraints and automatically gets
the correct packages. In this example, no semantic versioning is used for the contract because the
Servlet Specifications do not use semantic versioning (version 3.0 is backward compatible with 2.X).

In this model it is even possible to use the normally not recommended DynamicImport-Package
header with a wild card since also this header is constrained by the uses constraints. However, using
a full wildcard can also dynamically import packages that are not part of the contract. To prevent
these unwanted dynamic imports, the exporter could include an attribute on the exports. For exam-
ple:

Require-Capability: osgi.contract;
 filter:="(&(osgi.contract=JavaServlet)(version=2.5))"
DynamicImport-Package:
 *;JavaServlet=contract

However, this model requires the exporter to specify an agreed attribute. The contract bundle does
not require such coordination; it also allows the package exporters to reside in different and unrelat-
ed bundles.

The definition of the osgi .contract Namespace is in the following table and in the ContractName-
space class. See [2] Portable Java Contract Definitions.

Table 135.2 osgi.contract Namespace

Name Kind M/O Type Syntax Description
osgi .contract CA M String symbol ic-name A symbolic name for the contract.
version CA O Version+ version A list of versions for the contract. A contract that

supports multiple versions must use a single ca-
pability with a version attribute that lists all ver-
sions supported.

uses CD O String package-name

(',' package-name)

For a contract, the standard uses clause is used to
indicate which packages are part of the contract.
The imports or exports of those packages link
these packages to a particular version.

135.3.1 Versioning
As the osgi .contract Namespace follows the versioning of the associated contract, capabilities in
this Namespace are not semantically versioned. The associated contracts are often versioned using

Common Namespaces Specification Version 1.2 osgi.service Namespace

OSGi Compendium Release 8 Page 727

marketing or other versioning schemes and therefore the version number cannot be used as an indi-
cation of backwards compatibility.

As a result, capabilities in the osgi .contract Namespace use a discrete versioning scheme. In such a
versioning scheme, each version is treated as separate without any implied relation to another ver-
sion. A capability lists all compatible versions. A requirement only selects a single version.

135.4 osgi.service Namespace
The Service Namespace is intended to be used for:

• Preventing a bundle from resolving if there is not at least one bundle that potentially can register
a specific service.

• Providing a hint to the provisioning agent that the bundle requires a given service.
• Used as template for specifications like Blueprint and Declarative Services to express their pro-

vided and referenced services in the Repository model, see the Repository Service Specification.

A bundle providing this capability indicates that it can register such a service with at least the given
custom attributes as service properties. At resolve time this is a promise since there is no guarantee
that during runtime the bundle will actually register such a service; clients must handle this with
the normal runtime dependency managers like Blueprint, Declarative Services, or others.

See the following table and the ServiceNamespace class for this Namespace definition.

Table 135.3 osgi.service Namespace

Name Kind M/O Type Syntax Description
objectClass CA M List

<Str ing>

qname

(',' qname)*

The fully qualified name of the object class of the
service.

* CA O * * Custom attributes that will be provided as service
properties if they do not conflict with the service
properties rules and are not private service prop-
erties. Private properties start with a full stop ('.'
\u002E).

135.4.1 Versioning
Capabilities in the osgi .service Namespace are not versioned. The package of a service's object class
is generally versioned and the package can be associated with the capability via the uses directive.

135.5 osgi.implementation Namespace
The Implementation Namespace is intended to be used for:

• Preventing a bundle from resolving if there is not at least one bundle that provides an implemen-
tation of the specified specification or contract.

• Providing uses constraints to ensure that bundles which require an implementation of a specifi-
cation or contract will be wired appropriately by the framework.

• Providing a hint to the provisioning agent that the bundle requires a given specification or con-
tract implementation.

• Used as a general capability Namespace for specifications or contracts to express their provided
function in the Repository model, see the Repository Service Specification.

osgi.unresolvable Namespace Common Namespaces Specification Version 1.2

Page 728 OSGi Compendium Release 8

A bundle providing this capability indicates that it implements a specification or contract with the
specified name and version. For example, the Asynchronous Service Specification would provide the
following capability:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.async";
 version:Version="1.0";
 uses:="org.osgi.service.async"

See the following table and the ImplementationNamespace class for this Namespace definition.

Table 135.4 osgi.implementation Namespace

Name Kind M/O Type Syntax Description
osgi . implementation CA M String symbol ic-name The symbolic name of the specification or con-

tract. The OSGi Working Group reserves names
that start with "osgi .".

version CA M Version version The version of the implemented specification or
contract.

* CA O * * Custom attributes that can be used to further
identify the implementation

135.6 osgi.unresolvable Namespace
The Unresolvable Namespace is intended to be used to mark a bundle as unresolvable:

• Preventing the bundle from resolving since it is intended for compilation use only and is not in-
tended for runtime use.

• Providing a hint to the provisioning agent that the bundle must not be included in a provision-
ing solution.

For example, a bundle that must be unresolvable at runtime can include the following requirement:

Require-Capability: osgi.unresolvable;
 filter:="(&(must.not.resolve=*)(!(must.not.resolve=*)))"

The filter expression in the example above always evaluates to fa lse .

See the UnresolvableNamespace class for this Namespace definition.

135.7 org.osgi.namespace.contract

Contract Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Working
Group.

135.7.1 Summary

• ContractNamespace - Contract Capability and Requirement Namespace.

Common Namespaces Specification Version 1.2 org.osgi.namespace.extender

OSGi Compendium Release 8 Page 729

135.7.2 public final class ContractNamespace
extends Namespace
Contract Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

135.7.2.1 public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"

The capability attribute contains the Versions of the specification of the contract. The value of this
attribute must be of type Version , Version[] , or List<Version> .

135.7.2.2 public static final String CONTRACT_NAMESPACE = "osgi.contract"

Namespace name for contract capabilities and requirements.

Also, the capability attribute used to specify the name of the contract.

135.8 org.osgi.namespace.extender

Extender Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Working
Group.

135.8.1 Summary

• ExtenderNamespace - Extender Capability and Requirement Namespace.

135.8.2 public final class ExtenderNamespace
extends Namespace
Extender Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

135.8.2.1 public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"

The capability attribute contains the Version of the specification of the extender. The value of this
attribute must be of type Version .

135.8.2.2 public static final String EXTENDER_NAMESPACE = "osgi.extender"

Namespace name for extender capabilities and requirements.

Also, the capability attribute used to specify the name of the extender.

org.osgi.namespace.service Common Namespaces Specification Version 1.2

Page 730 OSGi Compendium Release 8

135.9 org.osgi.namespace.service

Service Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Working
Group.

135.9.1 Summary

• ServiceNamespace - Service Capability and Requirement Namespace.

135.9.2 public final class ServiceNamespace
extends Namespace
Service Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

All unspecified capability attributes are of one of the following types:

• Str ing
• Version
• Long
• Double
• List<Str ing>
• List<Version>
• List<Long>
• List<Double>

and are used as arbitrary matching attributes for the capability. The values associated with the speci-
fied directive and attribute keys are of type Str ing , unless otherwise indicated.

Concurrency Immutable

135.9.2.1 public static final String CAPABILITY_OBJECTCLASS_ATTRIBUTE = "objectClass"

The capability attribute used to specify the types of the service. The value of this attribute must be
of type List<Str ing> .

A ServiceNamespace capability should express a uses constraint for all the packages mentioned in
the value of this attribute.

135.9.2.2 public static final String SERVICE_NAMESPACE = "osgi.service"

Namespace name for service capabilities and requirements.

135.10 org.osgi.namespace.implementation

Implementation Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Working
Group.

Common Namespaces Specification Version 1.2 org.osgi.namespace.unresolvable

OSGi Compendium Release 8 Page 731

135.10.1 Summary

• ImplementationNamespace - Implementation Capability and Requirement Namespace.

135.10.2 public final class ImplementationNamespace
extends Namespace
Implementation Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

135.10.2.1 public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"

The capability attribute contains the Version of the specification or contract being implemented.
The value of this attribute must be of type Version .

135.10.2.2 public static final String IMPLEMENTATION_NAMESPACE = "osgi.implementation"

Namespace name for "implementation" capabilities and requirements. This is also the capability at-
tribute used to specify the name of the specification or contract being implemented.

A ImplementationNamespace capability should express a uses constraint for the appropriate pack-
ages defined by the specification/contract the packages mentioned in the value of this attribute.

135.11 org.osgi.namespace.unresolvable

Unresolvable Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Working
Group.

135.11.1 Summary

• UnresolvableNamespace - Unresolvable Capability and Requirement Namespace.

135.11.2 public final class UnresolvableNamespace
extends Namespace
Unresolvable Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

135.11.2.1 public static final String UNRESOLVABLE_FILTER = "(&(must.not.resolve=*)(!(must.not.resolve=*)))"

An unresolvable filter expression.

References Common Namespaces Specification Version 1.2

Page 732 OSGi Compendium Release 8

This can be used as the filter expression for an UnresolvableNamespace requirement.

 @Requirement(namespace = UnresolvableNamespace.UNRESOLVABLE_NAMESPACE,
 filter = UnresolvableNamespace.UNRESOLVABLE_FILTER)

135.11.2.2 public static final String UNRESOLVABLE_NAMESPACE = "osgi.unresolvable"

Namespace name for "unresolvable" capabilities and requirements.

This is typically used as follows to prevent a bundle from being resolvable.

 Require-Capability: osgi.unresolvable;
 filter:="(&(must.not.resolve=*)(!(must.not.resolve=*)))"

135.12 References

[1] Specification References
https://docs.osgi.org/reference/

[2] Portable Java Contract Definitions
https://docs.osgi.org/reference/portable-java-contracts.html

[3] Resources API Specification
OSGi Core, Chapter 6 Resource API Specification

[4] Framework Namespaces Specification
OSGi Core, Chapter 8 Framework Namespaces Specification

[5] General Syntax Definitions
OSGi Core, General Syntax Definitions

[6] Common Headers
OSGi Core, Chapter 3, Common Header Syntax

[7] Semantic Versioning
OSGi Core, Chapter 3, Semantic Versioning

https://docs.osgi.org/reference/
https://docs.osgi.org/reference/portable-java-contracts.html

REST Management Service Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 733

137 REST Management Service
Specification

Version 1.0

137.1 Introduction
Cloud computing is a continuing trend in the IT industry. Due to its service model which embraces
dynamism as opposed to masking it, OSGi appears to be an ideal base for building scalable and de-
pendable applications for the cloud where changes in the deployment, network topology, and ser-
vice availability are the norm rather than the exception. One of the possible scenarios for OSGi to
be successfully applied to cloud computing is using it in a Platform as a Service (PaaS) spirit. Users
write their bundles and can deploy them to a provided OSGi instance running in the cloud. This,
however, requires the platform provider to expose the OSGi management API to the end user and
make them available through a network protocol. One of the popular approaches in cloud comput-
ing to remote communication is the use of RESTful web services.

Representational State Transfer (REST) is the architectural style of the world wide web. It can be
described as a set of constraints that govern the interactions between the main components of the
Internet. Recently, REST style interaction has gained popularity as a architecture for web services
(RESTful web services), mainly to overcome the perceived complexity and verbosity of SOAP-based
web services. This specification describes a REST interface for framework management, client-side
Java and JavaScript APIs, and an extension mechanism through which other bundles can contribute
their own RESTful management APIs and make them discoverable by clients.

137.1.1 Essentials

• Client-Server - A separation of concern between the entity responsible for the user-interaction
(client) and the other entity (server) responsible for data storage. For instance, in the original
world wide web the browser is the client rendering and presenting the content delivered by one
or more web servers. As a result, web content becomes more portable and content providers
more scalable.

• Stateless - State is entirely kept at the client side. Therefore, every request must contain all state
required for the server to accomplish the transaction and deliver content. The main rationale
behind this design constraint is to again improve the scalability since in a pure stateless design
the server resources are not burdened with maintaining any client state. Another perceived ad-
vantage is that the failure models of stateless interactions is simpler and fault tolerance easier to
achieve.

• Cacheable - Content marked as cacheable can be temporarily stored and used to immediately an-
swer future equivalent requests and improve efficiency and reduce network utilization and ac-
cess latencies. Due to the end-to-end principle, caches can be placed where necessary, e.g., at the
client (forward-proxy), at the server side (backward-proxy), or somewhere in-between for exam-
ple in a content delivery network. Content marked as non-cacheable must be freshly retrieved
with every request even in the presence of caches.

• Layered - Layering introduces natural boundaries to coupling since every layer only accesses the
services provided by the lower layer and provides services to the next higher layer.

Interacting with the REST Management Service REST Management Service Specification Version 1.0

Page 734 OSGi Compendium Release 8

• Uniform Interface - Generality of component interfaces provides a natural decoupling of imple-
mentation and interface. REST furthermore encourages the separation of identifiable resources
(addressing) and their representation (content delivery).

137.1.2 Entities

• Resource - A resource is an abstract piece of information that can be addressed by a resource iden-
tifier. The mapping of a resource to a concrete set of entities can vary over time.

• Representation - A representation is a sequence of bytes plus associated meta-data that describe the
state of a resource. The data format of a representation is called the media-type. Every concrete
representation of a resource is just one of arbitrarily many possible representations. The selec-
tion of a concrete representation of a resource can be made according to the media types support-
ed by both the client and the server.

• REST Management Service - The management service exposes a REST API for remotely managing
an OSGi framework through the network in a lightweight and portable fashion.

• Client - The client is a machine using the management service by issuing REST requests through
the network. It can do so either directly or indirectly, i.e., through client-side libraries using the
REST calls internally.

137.1.3 Synopsis
The manageable entities of an OSGi framework are mapped to resources accessible through re-
source identifiers. These identifiers are relative to the (usually externally accessible) root URL of the
management service. Clients can either discover this root URL or receive it through configuration.
Subsequently, a client is able to introspect the state of the framework and perform management op-
erations.

The internal state of a framework resource is expressed and transmitted as a representation. The for-
mat of the representation is subject to a mutual agreement between client and management service
regarding media types commonly supported by both endpoints. This specification describes two
representation formats: JSON and XML.

137.2 Interacting with the REST Management Service
The REST Management Service is not a traditional OSGi service and it does not appear in the service
registry. Its purpose is to expose a management interface to clients which can perform operations
on the framework through a network connection. Therefore, it is ideally suited for situations where
the user of an OSGi framework does not have direct access to the machine it is running on, a typical
situation in Infrastructure as a Service (IaaS) or Platform as a Service (PaaS). However, even in oth-
er domains having a lightweight and easily accessible management solution can be of benefit, e.g.,
for embedded devices. The advantage of REST is that it uses HTTP and therefore does usually not in-
terfere with firewalls. Furthermore, the REST format is easily embeddable into client-side scripting
technologies like JavaScript and can be consumed in web browsers.

Much of the value of the REST Management Service lies in client-side libraries which can use the
REST protocol and interact with the OSGi framework through the Management Service. Therefore,
this specification contains API for two clients, a Java Client API and a JavaScript Client API.

137.2.1 Resource Identifier Overview
The REST Management Service comprises of a set of resources that can be retrieved and in some cas-
es also modified through REST requests. These resources need to be made available under well-de-
fined paths so that clients can interact with them. As the initial entry point a client receives a URL
to the REST Management Service. This can be done, e.g., as part of the creation of a cloud-based OSGi

REST Management Service Specification Version 1.0 Interacting with the REST Management Service

OSGi Compendium Release 8 Page 735

framework, and the precise mechanism would be proprietary to the cloud platform used. Relative to
this URL the client can access the resources through the following resource identifiers:

framework
framework/state
framework/startlevel
framework/bundles

framework/bundles/representations

framework/bundle/{bundleid}
framework/bundle/{bundleid}/state
framework/bundle/{bundleid}/startlevel
framework/bundle/{bundleid}/header
framework/services

framework/services/representations

framework/service/{serviceid}

f ramework/bundle/0/state is an alias for f ramework/state

Extensions to the REST Management Service can be discovered by visiting the Extensions Resource
at:

extensions

For more details on the extension mechanism see Extending the REST Management Service on page
747

137.2.2 Filtering Results
The bundles , bundles/representat ions , services , and services/representat ions resources allow the
use of a query parameter which specifies a filter to restrict the result set. The filter expression fol-
lows the Core Specifications Framework Filter Syntax; see [1] Framework Filter Syntax.

Filters on services are matched against the service attributes. The query parameter is of the form:

f ramework/services?fi l ter=ldap-fi l ter

Filters on bundles are matched against the attributes of capabilities in the respective namespaces.
Filters on bundles have the form:

f ramework/bundles?namespace1=ldap-fi l ter1&namespace2=ldap-fi l ter2&.. .

If multiple capabilities for a given namespace are present, then a filter succeeds when one of these
capabilities matches. When multiple filter expressions across namespaces are given, these are com-
bined with the and operator.

137.2.3 Content Type Matching
Resources can present themselves through different representation variants. An implementation of
this specification must support at least the JSON representation and the XML representation of re-
sources. Clients can support a subset of representations. Matching the clients capabilities to under-
stand certain representation formats with the servers supported formats follows the typical HTTP
pattern of content negotiation and requires the client to set corresponding HTTP Accept headers for
supported formats in the form of their media types. This specification describes the format and me-
dia types for representations in JSON and XML format in Representations on page 741.

Implementations of the REST Management Service offering different variants of representations
must return the best matching variant based on the HTTP accept header. In addition, they must re-

Resources REST Management Service Specification Version 1.0

Page 736 OSGi Compendium Release 8

spect the file extensions defined for the different media types as specified in the respective IETF RFC
(e.g., ".xml" as specified in IETF RFC 3032 and ".json" as specified in IETF RFC 4627). If a file extension
is appended to the resource, an implementation must return the variant mandated by the file exten-
sion provided that it supports this content type.

137.3 Resources
The framework and its state is mapped to a set of different resources. Each resource is accessible
through a resource identifier, as summarized in Resource Identifier Overview on page 734.

137.3.1 Framework Startlevel Resource
f ramework/start level

The startlevel resource represents the active start level of the framework. It supports the GET and
PUT requests.

137.3.1.1 GET

The GET request retrieves a Framework Startlevel Representation from the REST management service.
The request can return the following status codes:

• 200 (OK): the request has been served successfully and the body of the response is a startlevel rep-
resentation.

• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested
representations.

137.3.1.2 PUT

The PUT request sets the target framework startlevel. The body of the request needs to be a Frame-
work Startlevel Representation. The request can return the following status codes:

• 204 (NO CONTENT): the request was received and valid. The framework will asynchronously
start to adjust the framework startlevel until the target startlevel has been reached.

• 415 (UNSUPPORTED MEDIA TYPE): the request had a media type that is not supported by the
REST management service.

• 400 (BAD REQUEST): the REST management service received an IllegalArgumentException
when trying to adjust the framework startlevel, e.g., because the requested startlevel was zero or
negative.

137.3.2 Bundles Resource
f ramework/bundles

The bundles resource represents the list of all bundles installed on the managed framework. It sup-
ports the GET request and two syntactically different forms of POST requests which are used to in-
stall new bundles to the framework.

Results for this resource can be filtered as described in Filtering Results on page 735.

137.3.2.1 GET

The GET request retrieves a Bundle List Representation from the REST management service. The re-
quest can return the following status codes:

• 200 (OK): the request has been served successfully and the body of the response is a bundle list
representation.

• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested
representations.

REST Management Service Specification Version 1.0 Resources

OSGi Compendium Release 8 Page 737

137.3.2.2 POST with Location String

The POST request installs a new bundle to the managed framework and thereby logically appends
it to the bundles resource. The new bundle to be installed is referenced by a location string which is
passed as the body of the request. In order to disambiguate the request from the other form of POST,
the content type must be set to text/plain. In practice, the location string is usually a URL. Since the
framework will use the location retrieving the physical bundle, it needs to be accessible from the re-
motely managed framework and not necessarily from the managing client.

The management service implementation must check if the result of the install request matches the
requested bundle since the OSGi framework will return an existing bundle object as the return val-
ue of an install call if there was already one with the same location string installed. One way of do-
ing it is comparing the last modification timestamp. A detected collision is indicated to the request-
ing clients through an error code 409.

The body of the response is a Bundle Representation of the newly installed bundle. The following sta-
tus codes can be returned:

• 200 (OK): the bundle has been successfully installed and the body of the response contains a Bun-
dle Representation.

• 400 (BAD REQUEST): the REST management service received a BundleException when trying to
install. The body of the message is a Bundle Exception Representation describing the reason why the
installation did not succeed.

• 409 (CONFLICT): there is already a bundle installed with the same location string.

137.3.2.3 POST with Bundle

This variant of the POST request uploads the bundle as the body of the request. The media type of
the request should be set to application/vnd.osgi.bundle which must be supported by all REST man-
agement services. Implementations are free to accept other media types for this request with the ex-
ception of text/plain. For instance, they can opt to additionally support application/zip or applica-
tion/x-jar.

Clients should use the HTTP Content-Location field to set a bundle location. If no content location
is given, REST management service implementations must generate a unique location string in or-
der to avoid unintended collisions between unrelated bundles.

The body of the response is Bundle Representation of the newly installed bundle. The following status
codes can be returned:

• 200 (OK): the bundle has been successfully installed and the body of the response contains the
URI.

• 400 (BAD REQUEST): the REST management service received a BundleException when trying to
install. The body of the message is a Bundle Exception Representation describing the reason why the
installation did not succeed.

• 409 (CONFLICT): there is already a bundle installed with the same location string.

137.3.3 Bundles Representations Resource
f ramework/bundles/representat ions

137.3.3.1 GET of the Representations

The bundles resource returns a list of the URIs of all bundles installed on the framework. For clients
interested in the details of multiple bundles there is also the possibility to retrieve the bundle repre-
sentation of each installed bundle with a single request through the bundles/representations resource.

The body of the response is a Bundle Representations List Representation. The request can return the fol-
lowing status codes:

Results for this resource can be filtered as described in Filtering Results on page 735.

Resources REST Management Service Specification Version 1.0

Page 738 OSGi Compendium Release 8

• 200 (OK): the request has been served successfully and the body of the response is a bundle list
representation.

• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested
representations.

137.3.4 Bundle Resource
f ramework/bundle/{bundleid}

The bundle resource represents a single, distinct bundle in the system. Hence, it has to be qualified
by a bundle id. The resource supports the GET, two variants of PUT, and the DELETE requests.

137.3.4.1 GET

The GET request retrieves a Bundle Representation from the REST management service. The request
can return the following status codes:

• 200 (OK): the request has been served successfully and the body of the response is a bundle repre-
sentation.

• 404 (NOT FOUND): there is not bundle with the given bundle id.
• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested

representations.

137.3.4.2 PUT with Location String

The PUT request updates the bundle with a new version, referenced by a location string which is
passed as the body of the request. In order to disambiguate the request from the other form of PUT,
the content type must be set to text/plain. The same rationale applies as for POST with Location
String and POST with Bundle on page 737, if a location string is given it must point to a location
reachable by the managed framework. If no location string is passed as the body of the request, the
framework will perform an update based on the existing bundle's location string.

The body of the response is Bundle Representation of the updated bundle. The following status codes
can be returned:

• 204 (NO CONTENT): the request was received and valid and the framework has issued the up-
date.

• 400 (BAD REQUEST): the REST management service received a BundleException when trying to
update. The body of the message is a Bundle Exception Representation describing the reason why
the update did not succeed.

• 404 (NOT FOUND): there is not bundle with the given bundle id.

137.3.4.3 PUT with Bundle

The PUT request updates the bundle with a new version, uploaded as the body of the request. The
media type of the request should be set to application/vnd.osgi.bundle which must be supported
by all REST management services. Implementations are free to accept other media types for this re-
quest with the exception of text/plain. For instance, they can opt to additionally support applica-
tion/zip or application/x-jar.

The body of the response is Bundle Representation of the updated bundle. The following status codes
can be returned:

• 204 (NO CONTENT): the request was received and valid and the framework has issued the up-
date.

• 400 (BAD REQUEST): the REST management service received a BundleException when trying to
update. The body of the message is a Bundle Exception Representation describing the reason why
the update did not succeed.

• 404 (NOT FOUND): there is not bundle with the given bundle id.

REST Management Service Specification Version 1.0 Resources

OSGi Compendium Release 8 Page 739

137.3.4.4 DELETE

The DELETE request uninstalls the bundle from the framework.

The body of the response is Bundle Representation of the uninstalled bundle, where the bundle state
will be UNINSTALLED. The following status codes can be returned:

• 204 (NO CONTENT): the request was received and valid and the framework has uninstalled the
bundle.

• 400 (BAD REQUEST): the REST management service received a BundleException when trying to
uninstall. The body of the message is a Bundle Exception Representation describing the reason why
the uninstallation did not succeed.

• 404 (NOT FOUND): there is not bundle with the given bundle id.

137.3.5 Bundle State Resource
f ramework/bundle/{bundleid}/state

The bundle state resource represents the internal state of an installed bundle qualified through its
bundle id. It supports the GET and PUT requests.

137.3.5.1 GET

The GET request retrieves a Bundle State Representation from the REST management service. The re-
quest can return the following status codes:

• 200 (OK): the request has been served successfully and the body of the response is a bundle state
representation.

• 404 (NOT FOUND): there is not bundle with the given bundle id.
• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested

representations.

137.3.5.2 PUT

The PUT request sets the target state for the given bundle. This can, e.g., be state=32 for transitioning
the bundle to started, or state=4 for stopping the bundle and transitioning it to resolved. The body
of the request needs to be a Bundle State Representation. Not all state transitions are valid. The body
of the response is the new Bundle State Representation. The request can return the following status
codes:

• 200 (OK): the request was received and valid. The framework has performed a state change and
the new bundle state is contained in the body.

• 400 (BAD REQUEST): the REST management service received a BundleException when trying to
perform the state transition. The body of the message is a Bundle Exception Representation describ-
ing the reason why the operation did not succeed.

• 402 (PRECONDITION FAILED): the requested target state is not reachable from the current bun-
dle state or is not a target state. An example such state is the STOPPING state.

• 404 (NOT FOUND): there is not bundle with the given bundle id.
• 415 (UNSUPPORTED MEDIA TYPE): the request had a media type that is not supported by the

REST management service.

137.3.6 Bundle Header Resource
f ramework/bundle/{bundleid}/header

The bundle header resource represents manifest header of a bundle which is qualified by its bundle
id. It can only be read through a GET request.

Resources REST Management Service Specification Version 1.0

Page 740 OSGi Compendium Release 8

137.3.6.1 GET

The GET request retrieves a Bundle Header Representation from the REST management service. The
raw header value is used unless an Accept-Language header is set on the HTTP request. If multiple
accepted languages are set only the first is used to localize the header. The request can return the fol-
lowing status codes:

• 200 (OK): the request has been served successfully and the body of the response is a bundle head-
er representation.

• 404 (NOT FOUND): there is not bundle with the given bundle id.
• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested

representations.

137.3.7 Bundle Startlevel Resource
f ramework/bundle/{bundleid}/start level

The bundle startlevel resource represents the start level of the bundle qualified by its bundle id. It
supports the GET and PUT requests.

137.3.7.1 GET

The GET request retrieves a Bundle Startlevel Representation from the REST management service. The
request can return the following status codes:

• 200 (OK): the request has been served successfully and the body of the response is a bundle
startlevel representation.

• 404 (NOT FOUND): there is not bundle with the given bundle id.
• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested

representations.

137.3.7.2 PUT

The PUT request sets the target bundle startlevel. The body of the request needs to be a Bundle
Startlevel Representation, however only the startLevel property is used. The request can return the fol-
lowing status codes:

• 200 (OK): the request was received and valid. The REST management service has changed the
bundle startlevel according to the target value. The body of the response is the new bundle
startlevel representation.

• 400 (BAD REQUEST): either the target startlevel state involved invalid values, e.g., a startlevel
smaller or equal to zero and the REST management service got an IllegalArgumentException, or
the REST management service received a BundleException when trying to perform the startlevel
change. In the latter case, the body of the message is a Bundle Exception Representation describing
the reason why the operation did not succeed.

• 404 (NOT FOUND): there is not bundle with the given bundle id.
• 415 (UNSUPPORTED MEDIA TYPE): the request had a media type that is not supported by the

REST management service.

137.3.8 Services Resource
f ramework/services

The services resource represents the set of all services available on the framework, optionally con-
strained by a filter expression. It is read-only and therefore only supports the GET request.

Results for this resource can be filtered as described in Filtering Results on page 735.

REST Management Service Specification Version 1.0 Representations

OSGi Compendium Release 8 Page 741

137.3.8.1 GET

The GET request retrieves a Service List Representation from the REST management service. The re-
quest can return the following status codes:

• 200 (OK): the request has been served successfully and the body of the response is a service list
representation.

• 400 (BAD REQUEST): the provided filter expression was not valid.
• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested

representations.

137.3.9 Services Representations Resource
f ramework/services/representat ions

137.3.9.1 GET of the Representations

The services resource returns a list of the URIs of all services registered on the framework. For
clients interested in the details of multiple services there is also the possibility to retrieve the service
representation of each available service with a single request through the services/representations re-
source. The body of the response is a Service Representations List Representation from the REST man-
agement service. The request can return the following status codes:

Results for this resource can be filtered as described in Filtering Results on page 735.

• 200 (OK): the request has been served successfully and the body of the response is a service list
representation.

• 400 (BAD REQUEST): the provided filter expression was not valid.
• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested

representations.

137.3.10 Service Resource
f ramework/service/{serviceid}

The service resource represents a single, distinct service in the framework. Hence, it has to be quali-
fied by a service id. Services can only be read through the REST Management Service and therefore
only support the GET request.

137.3.10.1 GET

The GET request retrieves a Service Representation . The request can return the following status codes:

• 200 (OK): the request has been served successfully and the body of the response is a service repre-
sentation.

• 404 (NOT FOUND): there is not service with the given service id.
• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested

representations.

137.4 Representations

137.4.1 Bundle Representation

137.4.1.1 JSON

Content-Type: appl icat ion/org.osgi .bundle+json

{
 "id":0,

Representations REST Management Service Specification Version 1.0

Page 742 OSGi Compendium Release 8

 "lastModified":1314999275542,
 "state":32,
 "symbolicName":"org.eclipse.osgi",
 "version":"3.7.0.v20110613"
}

137.4.1.2 XML

Content-Type: appl icat ion/org.osgi .bundle+xml

<bundle>
 <id>0</id>
 <lastModified>1314999275542</lastModified>
 <state>32</state>
 <symbolicName>org.eclipse.osgi</symbolicName>
 <version>3.7.0.v20110613</version>
</bundle>

137.4.2 Bundles Representations

137.4.2.1 Bundle List Representation

137.4.2.1.1 JSON

Content-Type: appl icat ion/org.osgi .bundles+json

[bundleURI, bundleURI, ..., bundleURI]

137.4.2.1.2 XML

Content-Type: appl icat ion/org.osgi .bundles+xml

<bundles>
 <uri>bundleURI</uri>
 <uri>bundleURI</uri>
 ...
 <uri>bundleURI</uri>
</bundles>

137.4.2.2 Bundle Representations List Representation

137.4.2.2.1 JSON

Content-Type: appl icat ion/org.osgi .bundles.representat ions+json

[BUNDLE REPRESENTATION, BUNDLE REPRESENTATION, ..., BUNDLE REPRESENTATION]

137.4.2.2.2 XML

Content-Type: appl icat ion/org.osgi .bundles.representat ions+xml

<bundles>
 BUNDLE REPRESENTATION
 BUNDLE REPRESENTATION
 ...
 BUNDLE REPRESENTATION
</bundles>

137.4.3 Bundle State Representation

137.4.3.1 JSON

Content-Type: appl icat ion/org.osgi .bundlestate+json

REST Management Service Specification Version 1.0 Representations

OSGi Compendium Release 8 Page 743

{
 "state":32
 "options":1
}

The options are used in start or stop calls. Valid options include, e.g., Bundle.START_TRANSIENT
and Bundle.START_ACTIVATION_POLICY.

137.4.3.2 XML

Content-Type: appl icat ion/org.osgi .bundlestate+xml

<bundleState>
 <state>32</state>
 <options>1</options>
</bundleState>

137.4.4 Bundle Header Representation

137.4.4.1 JSON

Content-Type: appl icat ion/org.osgi .bundleheader+json

{
 key:value,
 key:value,
 ...
 key:value
}

137.4.4.2 XML

Content-Type: appl icat ion/org.osgi .bundleheader+xml

<bundleHeader>
 <entry key="key" value="value"/>
 <entry key="key" value="value"/>
 ...
 <entry key="key" value="value"/>
<bundleHeader>

137.4.5 Framework Startlevel Representation

137.4.5.1 JSON

Content-Type: appl icat ion/org.osgi .f rameworkstart level+json

{
 "startLevel":6,
 "initialBundleStartLevel":4
}

137.4.5.2 XML

Content-Type: appl icat ion/org.osgi .f rameworkstart level+xml

<frameworkStartLevel>
 <startLevel>6</startLevel>
 <initialBundleStartLevel>4</initialBundleStartLevel>
</frameworkStartLevel>

Representations REST Management Service Specification Version 1.0

Page 744 OSGi Compendium Release 8

137.4.6 Bundle Startlevel Representation

137.4.6.1 JSON

Content-Type: appl icat ion/org.osgi .bundlestart level+json

{
 "startLevel":6

 "activationPolicyUsed":true
 "persistentlyStarted":false
}

137.4.6.2 XML

Content-Type: appl icat ion/org.osgi .bundlestart level+xml

<bundleStartLevel>
 <startLevel>6</startLevel>

 <activationPolicyUsed>true</actiovationPolicyUsed>
 <persistentlyStarted>false</persistentlyStarted>
</bundleStartLevel>

137.4.7 Service Representation

137.4.7.1 JSON

Content-Type: appl icat ion/org.osgi .service+json

{
 "id":10,
 "properties":
 {
 "prop1":"val1",
 "prop2":2.82,
 ...
 "prop3":true
 },
 "bundle":bundleURI,
 "usingBundles":[bundleURI, bundleURI, ... bundleURI]
}

Note: service properties are converted to JSON-supported data types where possible: "str ing" , number
or boolean (true|false) . If there is no conversion to JSON data types is possible the toStr ing() result
is used as a string value.

137.4.7.2 XML

Content-Type: appl icat ion/org.osgi .service+xml

<service>
 <id>10</id>
 <properties>
 <property name="prop1" value="val1"/>
 <property name="prop2" type="Float" value="2.82"/>
 ...
 <property name="prop3" type="Boolean" value="true"/>
 </properties>

REST Management Service Specification Version 1.0 Representations

OSGi Compendium Release 8 Page 745

 <bundle>bundleURI</bundle>
 <usingBundles>
 <bundle>bundleURI</bundle>
 <bundle>bundleURI</bundle>
 ...
 <bundle>bundleURI</bundle>
 </usingBundles>
</service>

Note: service properties are represented using the same method as used for the property XML ele-
ment in the Declarative Services specification, see Property and Properties Elements on page 284. Ser-
vice properties that cannot be represented using the supported data types, will be represented as
String values obtained via the toStr ing() method.

137.4.8 Services Representations

137.4.8.1 Service List Representation

137.4.8.1.1 JSON

Content-Type: appl icat ion/org.osgi .services+json

[serviceURI, serviceURI, ..., serviceURI]

137.4.8.1.2 XML

Content-Type: appl icat ion/org.osgi .services+xml

<services>
 <uri>serviceURI</uri>
 <uri>serviceURI</uri>
 ...
 <uri>serviceURI</uri>
</services>

137.4.8.2 Service Representations List Representation

137.4.8.2.1 JSON

Content-Type: org.osgi .services.representat ions+json

[SERVICE REPRESENTATION, SERVICE REPRESENTATION, ..., SERVICE REPRESENTATION]

137.4.8.2.2 XML

Content-Type: appl icat ion/org.osgi .services.representat ions+xml

<services>
 SERVICE REPRESENTATION
 SERVICE REPRESENTATION
 ...
 SERVICE REPRESENTATION
</services>

137.4.9 Bundle Exception Representation

137.4.9.1 JSON

Content-Type: appl icat ion/org.osgi .bundleexception+json

{

Clients REST Management Service Specification Version 1.0

Page 746 OSGi Compendium Release 8

 "typecode": 5,
 "message": "BundleException: Bundle activation error"
}

137.4.9.2 XML

Content-Type: appl icat ion/org.osgi .bundleexception+xml

<bundleexception>
 <typecode>5</typecode>
 <message>BundleException: Bundle activation error</message>
</bundleexception>

137.5 Clients
The REST service can be used by a variety of clients directly. In addition this specification describes
Client APIs built over this REST protocol to facilitate use from Java and JavaScript clients.

137.5.1 Java Client
The Java Client provides a Java API over the REST API providing a convenient and portable way to
use this API from a Java application.

To use the Java Client, obtain the RestCl ientFactory service. Create a client by providing the root
URL of the REST service, for example:

RestClientFactory restClientFactory = ... // from Service Registry
RestClient restClient = restClientFactory.createRestClient(
 new URI("http://localhost:8080/restendpoint"));

// Now we can start interacting
Collection<String> bundles = restClient.getBundlePaths();
BundleDTO newBundle = restClient.installBundle(bundleLocation, bundleStream);
restClient.startBundle(newBundle.id);

The more details on the Java Client can be found in the org.osgi .service.rest .c l ient API documenta-
tion section.

137.5.2 JavaScript Client
This specification also describes a JavaScript client to the REST Management service. This client
makes it easy to manage an OSGi framework from any JavaScript environment, including Web
Browsers.

The JavaScript client follows the promises programming style; the request is made asynchronously
and a success() or fa i lure() callback is made when the response arrives.

To use the JavaScript client create an instance of OSGiRestCl ient providing the root URL of the REST
service.

var client = new OSGiRestClient('http://localhost:8080/restendpoint');
client.installBundle({
 success : function(res) {
 // Start the bundle once the install has finished
 client.startBundle(res.id);
 },
 failure : function(httpCode, res) {
 // handle failure

REST Management Service Specification Version 1.0 Extending the REST Management Service

OSGi Compendium Release 8 Page 747

 }
});

More details on the JavaScript Client can be found in the JavaScr ipt Cl ient API API documentation
section.

137.6 Extending the REST Management Service
This specification describes a REST-based management interface for Core Framework functionali-
ty. Other services in the framework might also benefit from management access through REST. This
can involve services specified by the OSGi Working Group as part of the Core or Compendium Spec-
ifications but also application-specific functionality provided by the developer. It is desirable to ex-
pose such management services as extensions of the REST Management Service.

This REST service can be implemented by using various technologies such as Java Servlets, Restlet,
JAX-RS, and others. Therefore, it might not always be possible to integrate extensions at the imple-
mentation level because they might use other underlying technologies to implement their REST in-
terface. Defining a format for delegating requests between the REST Management Service and exten-
sions would furthermore necessarily expose implementation details and is therefore not feasible ei-
ther. As a consequence, this specification only describes how to logically integrate extensions with
the REST Management Service. Implementations of this specification might offer mechanisms for
tighter integration for the case that extensions are developed using the same underlying technology.

The main purpose of the extension mechanism is to advertise extensions to the core REST imple-
mentation, which makes them discoverable for clients. This mechanism can be used to check if a
REST interface exists for a specific service. This is done through the Extensions Resource which con-
tains a description and a path for every extension currently available. Implementations that want to
contribute their extensions to the REST Management Service can do so by registering the RestApiEx-
tension service using the [4] Whiteboard Pattern. The extension interface is only a marker and the
relevant information is exposed through the NAME , URI_PATH and optionally SERVICE properties.
Note that it is the responsibility of the extension to ensure that the endpoint announced via the
RestApiExtension service is actually present. The Whiteboard service does not realize the extension
endpoint; it purely announces it to the main REST implementation for inclusion in the Extensions
Resource.

In order to be discoverable REST interface extensions to OSGi Core or Compendium services must
use their canonical package name as advertised name. E.g., the name of the REST interface for the
User Admin must be org.osgi .service.useradmin . This way, a client is able to check if there is a giv-
en extension available on a host. User-defined extensions should use the package name of the ser-
vice they provide management capabilities for.

137.6.1 Extensions Resource
extensions

The extensions resource enumerates all extensions currently registered through the Whiteboard
Pattern. It is read-only and therefore only supports the GET request.

137.6.1.1 GET

The GET request retrieves a Extensions Representation . The request can return the following status
codes:

• 200 (OK): the request has been served successfully and the body of the response is a extension list
representation.

• 406 (NOT ACCEPTABLE): the REST management service does not support any of the requested
representations.

XML Schema REST Management Service Specification Version 1.0

Page 748 OSGi Compendium Release 8

137.6.2 Extensions Representation

137.6.2.1 JSON

Content-Type: appl icat ion/org.osgi .extensions+json

[{ "name" : "org.osgi.service.event", "path" : "contributions/eventadmin",
 "service" : 12 }, ...]

137.6.2.2 XML

Content-Type: appl icat ion/org.osgi .extensions+xml

<extensions>
 <extension>
 <name>org.osgi.service.event</name>
 <path>contributions/eventadmin</path>
 <service>12</service>
 </extension>
</extensions>

137.7 XML Schema
The namespace for XML representations is:

http://www.osgi.org/xmlns/rest/v1.0.0

The recommended prefix for this namespace is rest .

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:rest="http://www.osgi.org/xmlns/rest/v1.0.0"
 targetNamespace="http://www.osgi.org/xmlns/rest/v1.0.0"
 elementFormDefault="unqualified"
 attributeFormDefault="unqualified"
 version="1.0.0">

 <annotation>
 <documentation xml:lang="en">
 This is the XML Schema for
 XML representations used by
 the REST Management Service
 Specification.
 </documentation>
 </annotation>

 <element name="bundle" type="rest:Tbundle">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.bundle+xml content type.
 </documentation>
 </annotation>
 </element>
 <complexType name="Tbundle">
 <all>
 <element name="id" type="long" />
 <element name="lastModified" type="long" />
 <element name="state" type="integer" />
 <element name="symbolicName" type="string" />
 <element name="version" type="string" />
 </all>
 </complexType>

 <element name="bundles" type="rest:Tbundles">
 <annotation>
 <documentation xml:lang="en">
 Representation for the

REST Management Service Specification Version 1.0 XML Schema

OSGi Compendium Release 8 Page 749

 application/org.osgi.bundles+xml and
 application/org.osgi.bundles.representations+xml content
 types.
 </documentation>
 </annotation>
 </element>
 <complexType name="Tbundles">
 <choice>
 <element name="uri" type="string" minOccurs="0"
 maxOccurs="unbounded">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.bundles+xml content type.
 </documentation>
 </annotation>
 </element>
 <element name="bundle" type="rest:Tbundle"
 minOccurs="0" maxOccurs="unbounded">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.bundles.representations+xml
 content type.
 </documentation>
 </annotation>
 </element>
 </choice>
 </complexType>

 <element name="bundleState" type="rest:TbundleState">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.bundlestate+xml content type.
 </documentation>
 </annotation>
 </element>
 <complexType name="TbundleState">
 <all>
 <element name="state" type="integer" />
 <element name="options" type="integer" />
 </all>
 </complexType>

 <element name="bundleHeader" type="rest:TbundleHeader">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.bundleheader+xml content type.
 </documentation>
 </annotation>
 </element>
 <complexType name="TbundleHeader">
 <sequence>
 <element name="entry" minOccurs="0" maxOccurs="unbounded">
 <complexType>
 <attribute name="key" type="string" use="required" />
 <attribute name="value" type="string" use="required" />
 </complexType>
 </element>
 </sequence>
 </complexType>

 <element name="frameworkStartLevel" type="rest:TframeworkStartLevel">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.frameworkstartlevel+xml content
 type.
 </documentation>
 </annotation>
 </element>
 <complexType name="TframeworkStartLevel">
 <all>

XML Schema REST Management Service Specification Version 1.0

Page 750 OSGi Compendium Release 8

 <element name="startLevel" type="integer" />
 <element name="initialBundleStartLevel" type="integer" />
 </all>
 </complexType>

 <element name="bundleStartLevel" type="rest:TbundleStartLevel">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.bundlestartlevel+xml content type.
 </documentation>
 </annotation>
 </element>
 <complexType name="TbundleStartLevel">
 <all>
 <element name="startLevel" type="integer" />
 <element name="activationPolicyUsed" type="boolean" />
 <element name="persistentlyStarted" type="boolean" />
 </all>
 </complexType>

 <element name="service" type="rest:Tservice">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.service+xml content type.
 </documentation>
 </annotation>
 </element>
 <complexType name="Tservice">
 <all>
 <element name="id" type="long" />
 <element name="properties">
 <complexType>
 <sequence>
 <element name="property" minOccurs="0"
 maxOccurs="unbounded">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="name"
 type="string" use="required" />
 <attribute name="value"
 type="string" use="optional" />
 <attribute name="type"
 default="String" use="optional">
 <simpleType>
 <restriction
 base="string">
 <enumeration
 value="String" />
 <enumeration
 value="Long" />
 <enumeration
 value="Double" />
 <enumeration
 value="Float" />
 <enumeration
 value="Integer" />
 <enumeration
 value="Byte" />
 <enumeration
 value="Character" />
 <enumeration
 value="Boolean" />
 <enumeration
 value="Short" />
 </restriction>
 </simpleType>
 </attribute>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 </sequence>

REST Management Service Specification Version 1.0 XML Schema

OSGi Compendium Release 8 Page 751

 </complexType>
 </element>
 <element name="bundle" type="string" />
 <element name="usingBundles">
 <complexType>
 <sequence>
 <element name="bundle" type="string"
 minOccurs="0" maxOccurs="unbounded" />
 </sequence>
 </complexType>
 </element>
 </all>
 </complexType>

 <element name="services" type="rest:Tservices">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.services+xml and
 application/org.osgi.services.representations+xml
 content types.
 </documentation>
 </annotation>
 </element>
 <complexType name="Tservices">
 <choice>
 <element name="uri" type="string" minOccurs="0"
 maxOccurs="unbounded">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.services+xml content type.
 </documentation>
 </annotation>
 </element>
 <element name="service" type="rest:Tservice"
 minOccurs="0" maxOccurs="unbounded">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.services.representations+xml
 content type.
 </documentation>
 </annotation>
 </element>
 </choice>
 </complexType>

 <element name="bundleexception" type="rest:Tbundleexception">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.bundleexception+xml content type.
 </documentation>
 </annotation>
 </element>
 <complexType name="Tbundleexception">
 <all>
 <element name="typecode" type="integer" />
 <element name="message" type="string" />
 </all>
 </complexType>

 <element name="extensions" type="rest:Textensions">
 <annotation>
 <documentation xml:lang="en">
 Representation for the
 application/org.osgi.extensions+xml content type.
 </documentation>
 </annotation>
 </element>
 <complexType name="Textensions">
 <sequence>
 <element name="extension" minOccurs="0" maxOccurs="unbounded">
 <complexType>

Capabilities REST Management Service Specification Version 1.0

Page 752 OSGi Compendium Release 8

 <all>
 <element name="name" type="string" />
 <element name="path" type="string" />
 <element name="service" type="long" minOccurs="0" />
 </all>
 </complexType>
 </element>
 </sequence>
 </complexType>
</schema>

The schema is also available in digital form from [3] OSGi XML Schemas.

137.8 Capabilities

137.8.1 osgi.implementation Capability
An implementation of this specification must provide the osgi . implementation capability with
name osgi . rest . This capability can be used by provisioning tools and during resolution to ensure
that a REST Management implementation is present to handle REST requests defined in this specifi-
cation. The capability must also declare a uses constraint on the org.osgi .service.rest package:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.rest";
 uses:="org.osgi.service.rest";
 version:Version="1.0"

This capability must follow the rules defined for the osgi.implementation Namespace on page 727.

137.8.2 osgi.service Capability
A bundle providing the RestCl ientFactory service as described by this specification must inform
tools about this service by providing the osgi .service capability representing this service. This capa-
bility must also declare a uses constraint for the org.osgi .service.rest .c l ient package:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.rest.client.RestClientFactory";
 uses:="org.osgi.service.rest.client"

This capability must follow the rules defined for the osgi.service Namespace on page 727.

137.9 Security
Like any externally visible management interface, the REST interface exposes privileged operations
and hence requires access control. Since REST builds upon the HTTP(s) protocol, authentication
mechanisms and encryption can be applied the same way as usually done for web servers: they can
be layered below the REST protocol. E.g., confidentiality of the transmitted commands can be en-
sured by using HTTPS as the underlying transport. Authentication can be added by requiring, e.g.,
basic authentication prior to accepting a REST command. The REST interface should only be imple-
mented by a trusted bundle. Implementations of this specification require all Admin Permissions
and all Service Permissions.

137.10 org.osgi.service.rest

Rest Service Package Version 1.0.

REST Management Service Specification Version 1.0 org.osgi.service.rest.client

OSGi Compendium Release 8 Page 753

137.10.1 Summary

• RestApiExtension - Marker interface for registering extensions to the Rest API service.

137.10.2 public interface RestApiExtension
Marker interface for registering extensions to the Rest API service.

The REST service provides a RESTful interface to clients that need to manage an OSGi framework
through a network connection. Other components running on the same framework can contribute
their own specific REST interface and make it available and discoverable by registering this marker
service using the Whiteboard pattern.

Integration of third-party REST interfaces with the framework REST service on the implementation
level might not always be possible since it requires knowledge about the underlying implementa-
tion and an extension mechanism on that level. Specific technologies such as servlets might sup-
port this but the REST service could as well be implemented without the use of a supporting ab-
straction layer and not offer extensibility.

Using this marker service, the REST service includes the advertised service in the Extensions Re-
source, allowing clients to discover it and use the extension's functionality.

137.10.2.1 public static final String NAME = "org.osgi.rest.name"

This service property describes the package name of the technology manageable by this REST API
extension. Services specified in OSGi specifications must use their canonical package name as the
name. Third-party technologies should also use their package names. The type of this property is
java. lang.Str ing and the property is mandatory.

137.10.2.2 public static final String SERVICE = "org.osgi.rest.service"

This service property refers to the id of the service the REST API extension provides management
capabilities for. This can be useful if more than one service of a given type is present in the frame-
work. For example if more than one Http Service is available this property is used to associate a
REST extension managing the Http Service with a specific service instance. The type of the property
is java. lang.Long and the property is optional; if the REST extension is not directly associated with a
service in the service registry, the property should not be set.

137.10.2.3 public static final String URI_PATH = "org.osgi.rest.uri.path"

This service property describes a URI to the REST extension on this local machine. It is either an ful-
ly qualified URI with a different port if no integration with the framework REST service is possible
or a relative URI implicitly using the same port if integration is possible. The type of this property is
java. lang.Str ing and the property is mandatory.

137.11 org.osgi.service.rest.client

Rest Service Client Package Version 1.0.

137.11.1 Summary

• RestCl ient - A Java client API for a REST service endpoint.
• RestCl ientFactory - Factory to construct new REST client instances.

137.11.2 public interface RestClient
A Java client API for a REST service endpoint.

org.osgi.service.rest.client REST Management Service Specification Version 1.0

Page 754 OSGi Compendium Release 8

Provides a Java client API for accessing and managing a remote OSGi framework through the REST
API. Implementations of this interface will usually take the URL to the remote REST Management
Service instance as an argument in their constructor. Further arguments might be needed, for exam-
ple, if the cloud provider requires URL signing.

Provider Type Consumers of this API must not implement this type

137.11.2.1 public BundleDTO getBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Retrieve the bundle representation for a given bundle Id.

Returns A BundleDTO for the requested bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.2 public BundleDTO getBundle(String bundlePath) throws Exception

bundlePath Addresses the bundle by its URI path.

□ Retrieve the bundle representation for a given bundle path.

Returns A BundleDTO for the requested bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.3 public Map<String, String> getBundleHeaders(long id) throws Exception

id Addresses the bundle by its identifier.

□ Get the header for a bundle given by its bundle Id.

Returns Returns the map of headers entries.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.4 public Map<String, String> getBundleHeaders(String bundlePath) throws Exception

bundlePath Addresses the bundle by its URI path.

□ Get the header for a bundle given by its URI path.

Returns Returns the map of headers entries.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.5 public Collection<String> getBundlePaths() throws Exception

□ Get the bundles currently installed on the managed framework.

Returns Returns a collection of the bundle URIs in the form of Strings. The URIs are relative to the REST API
root URL and can be used to retrieve bundle representations.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.6 public Collection<BundleDTO> getBundles() throws Exception

□ Get the bundle representations for all bundles currently installed in the managed framework.

Returns Returns a collection of BundleDTO objects.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.7 public BundleStartLevelDTO getBundleStartLevel(long id) throws Exception

id Addresses the bundle by its identifier.

□ Get the start level for a bundle given by its bundle Id.

Returns Returns a BundleStartLevelDTO describing the current start level of the bundle.

REST Management Service Specification Version 1.0 org.osgi.service.rest.client

OSGi Compendium Release 8 Page 755

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.8 public BundleStartLevelDTO getBundleStartLevel(String bundlePath) throws Exception

bundlePath Addresses the bundle by its URI path.

□ Get the start level for a bundle given by its URI path.

Returns Returns a BundleStartLevelDTO describing the current start level of the bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.9 public int getBundleState(long id) throws Exception

id Addresses the bundle by its identifier.

□ Get the state for a given bundle Id.

Returns Returns the current bundle state as defined in (@link org.osgi.framework.Bundle}.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.10 public int getBundleState(String bundlePath) throws Exception

bundlePath Addresses the bundle by its URI path.

□ Get the state for a given bundle path.

Returns Returns the current bundle state as defined in (@link org.osgi.framework.Bundle}.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.11 public FrameworkStartLevelDTO getFrameworkStartLevel() throws Exception

□ Retrieves the current framework start level.

Returns Returns the current framework start level in the form of a FrameworkStartLevelDTO.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.12 public Collection<String> getServicePaths() throws Exception

□ Gets a collection of URI paths to all installed services.

Returns Returns a collection of URI paths to the installed services.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.13 public Collection<String> getServicePaths(String filter) throws Exception

filter Passes a filter to restrict the result set.

□ Gets a collection of URI paths to all installed services.

Returns Returns a collection of URI paths to the installed services.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.14 public ServiceReferenceDTO getServiceReference(long id) throws Exception

id Addresses the service by its identifier.

□ Get the service representation for a service given by its service Id.

Returns The service representation as ServiceReferenceDTO.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.15 public ServiceReferenceDTO getServiceReference(String servicePath) throws Exception

servicePath Addresses the service by its URI path.

org.osgi.service.rest.client REST Management Service Specification Version 1.0

Page 756 OSGi Compendium Release 8

□ Get the service representation for a service given by its URI path.

Returns The service representation as ServiceReferenceDTO.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.16 public Collection<ServiceReferenceDTO> getServiceReferences() throws Exception

□ Get the service representations for all services.

Returns Returns the service representations in the form of ServiceReferenceDTO objects.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.17 public Collection<ServiceReferenceDTO> getServiceReferences(String filter) throws Exception

filter Passes a filter to restrict the result set.

□ Get the service representations for all services.

Returns Returns the service representations in the form of ServiceReferenceDTO objects.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.18 public BundleDTO installBundle(String location) throws Exception

location Passes the location string to retrieve the bundle content from.

□ Install a new bundle given by an externally reachable location string, typically describing a URL.

Returns Returns the BundleDTO of the newly installed bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.19 public BundleDTO installBundle(String location, InputStream in) throws Exception

location Passes the location string to be used to install the new bundle.

in Passes the input stream to a bundle.

□ Install a new bundle given by an InputStream to a bundle content.

Returns Returns the BundleDTO of the newly installed bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.20 public void setBundleStartLevel(long id, int startLevel) throws Exception

id Addresses the bundle by its identifier.

startLevel The target start level.

□ Set the start level for a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.21 public void setBundleStartLevel(String bundlePath, int startLevel) throws Exception

bundlePath Addresses the bundle by its URI path.

startLevel The target start level.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.22 public void setFrameworkStartLevel(FrameworkStartLevelDTO startLevel) throws Exception

startLevel set the framework start level to this target.

□ Sets the current framework start level.

Throws Exception– An exception representing a failure in the underlying REST call.

REST Management Service Specification Version 1.0 org.osgi.service.rest.client

OSGi Compendium Release 8 Page 757

137.11.2.23 public void startBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Start a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.24 public void startBundle(String bundlePath) throws Exception

bundlePath Addresses the bundle by its URI path.

□ Start a bundle given by its URI path.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.25 public void startBundle(long id, int options) throws Exception

id Addresses the bundle by its identifier.

options Passes additional options as defined in org.osgi.framework.Bundle.start(int)

□ Start a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.26 public void startBundle(String bundlePath, int options) throws Exception

bundlePath Addresses the bundle by its URI path.

options Passes additional options as defined in org.osgi.framework.Bundle.start(int)

□ Start a bundle given by its URI path.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.27 public void stopBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Stop a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.28 public void stopBundle(String bundlePath) throws Exception

bundlePath Addresses the bundle by its URI path.

□ Stop a bundle given by its URI path.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.29 public void stopBundle(long id, int options) throws Exception

id Addresses the bundle by its identifier.

options Passes additional options as defined in org.osgi.framework.Bundle.stop(int)

□ Stop a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.30 public void stopBundle(String bundlePath, int options) throws Exception

bundlePath Addresses the bundle by its URI path.

options Passes additional options as defined in org.osgi.framework.Bundle.stop(int)

□ Stop a bundle given by its URI path.

Throws Exception– An exception representing a failure in the underlying REST call.

org.osgi.service.rest.client REST Management Service Specification Version 1.0

Page 758 OSGi Compendium Release 8

137.11.2.31 public BundleDTO uninstallBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Uninstall a bundle given by its bundle Id.

Returns Returns the BundleDTO of the uninstalled bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.32 public BundleDTO uninstallBundle(String bundlePath) throws Exception

bundlePath Addresses the bundle by its URI path.

□ Uninstall a bundle given by its URI path.

Returns Returns the BundleDTO of the uninstalled bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.33 public BundleDTO updateBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Updates a bundle given by its bundle Id using the bundle-internal update location.

Returns Returns the BundleDTO of the updated bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.34 public BundleDTO updateBundle(long id, String url) throws Exception

id Addresses the bundle by its identifier.

url The URL whose content is to be used to update the bundle.

□ Updates a bundle given by its URI path using the content at the specified URL.

Returns Returns the BundleDTO of the updated bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.2.35 public BundleDTO updateBundle(long id, InputStream in) throws Exception

id Addresses the bundle by its identifier.

in Passes an input stream to the new bundle content.

□ Updates a bundle given by its bundle Id and passing the new bundle content in the form of an In-
putStream.

Returns Returns the BundleDTO of the updated bundle.

Throws Exception– An exception representing a failure in the underlying REST call.

137.11.3 public interface RestClientFactory
Factory to construct new REST client instances. Each instance is specific to a REST service endpoint.

Implementations can choose to extend this interface to add additional creation methods, where ad-
ditional arguments are needed for request signing, etc.

In OSGi environments, this factory is registered as a service.

Provider Type Consumers of this API must not implement this type

137.11.3.1 public RestClient createRestClient(URI uri)

uri The URI to the REST service endpoint.

□ Create a new REST client instance.

REST Management Service Specification Version 1.0 JavaScript Client API

OSGi Compendium Release 8 Page 759

Returns A new REST client instance for the specified REST service endpoint.

137.12 JavaScript Client API
REST JavaScript Client API Version 1.0

137.12.1 Summary

• OSGiRestCl ient - A JavaScript client API for accessing and managing a remote OSGi framework
through the REST API.

• OSGiRestCal lback - Callback object provided to the OSGiRestCl ient functions. Invoked on com-
pletion of the remote invocation.

JavaScript does not support the concept of interfaces and therefore implementations of the
JavaScript client specification can provide objects of any type as long as they conform to the to the
signatures described in this specification.

To facilitate documenting the JavaScript APIs Web IDL is used; see [2] Web IDL. This clarifies the ac-
cepted arguments and return types for otherwise untyped functions. Web IDL is only used for docu-
mentation purposes and has no bearing on the implementation of this API.

Note: some data types in Web IDL have slightly different names than commonly used in languages
like Java or JavaScript. For example a Str ing is called DOMString and the equivalent of a Java long is
called long long . Additionally, when a representation as defined in this specification is passed to one
of the JavaScript client APIs this representation is provided as a JavaScript object. Following the rec-
ommendations for mapping these to Web IDL, these JavaScript Object parameters are described us-
ing the dict ionary data type. For more information see the Web IDL specification.

137.12.2 interface OSGiRestClient
Provides a JavaScript client API for accessing and managing a remote OSGi framework through the
REST API. Implementations will provide a proprietary constructor to create objects of this signa-
ture. Once created the object can be used from JavaScript environments to manage the framework.

137.12.2.1 void getBundle((DOMString or long long) bundle, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle representation as JavaScript object.

□ Get the Bundle representation of a specific bundle.

137.12.2.2 void getBundleHeader((DOMString or long long) bundle, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle Header representation as JavaScript object.

□ Get the Bundle Header representation of a specific bundle.

137.12.2.3 void getBundleRepresentations(OSGiRestCallback cb)

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle Representations List representation as JavaScript object.

□ List the bundles details.

JavaScript Client API REST Management Service Specification Version 1.0

Page 760 OSGi Compendium Release 8

137.12.2.4 void getBundles(OSGiRestCallback cb)

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle List representation as JavaScript object.

□ List the bundles.

137.12.2.5 void getBundleStartLevel((DOMString or long long) bundle, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle Start Level representation as JavaScript object.

□ Get the Bundle Start Level representation of a specific bundle.

137.12.2.6 void getBundleState((DOMString or long long) bundle, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle State representation as JavaScript object.

□ Get the Bundle State representation of a specific bundle.

137.12.2.7 void getFrameworkStartLevel(OSGiRestCallback cb)

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Framework Start Level representation as JavaScript object.

□ Obtain the Framework Start Level.

137.12.2.8 void getService((DOMString or long long) service, OSGiRestCallback cb)

service The service, either the numeric service ID or the service URI path.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Service representation as JavaScript object.

□ Get a service representation.

137.12.2.9 void getServiceRepresentations(OSGiRestCallback cb)

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Service Representations List representation as JavaScript object.

□ Get all services representations.

137.12.2.10 void getServices(OSGiRestCallback cb)

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Service List representation as JavaScript object.

□ Get all services URIs.

137.12.2.11 void installBundle((DOMString or ArrayBuffer) bundle, OSGiRestCallback cb)

bundle The Bundle to install, either represented as a URL or as an ArrayBuffer of

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle representation of the newly installed Bundle. This parameter is optional.

□ Install a bundle from a URI or by value.

137.12.2.12 void setBundleStartLevel((DOMString or long long) bundle, dictionary bsl, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

bsl A Bundle Start Level representation dictionary with the desired state.

REST Management Service Specification Version 1.0 JavaScript Client API

OSGi Compendium Release 8 Page 761

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the resulting Framework Start Level representation as JavaScript object. This parame-
ter is optional.

□ Change the Framework Start Level and/or initial bundle start level.

137.12.2.13 void setBundleState((DOMString or long long) bundle, dictionary state, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

state Bundle State representation dictionary with the desired state.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the resulting Bundle Start Level representation as JavaScript object. This parameter is
optional.

□ Change the Bundle Start Level and/or other options defined in the Bundle Start Level representa-
tion.

137.12.2.14 void setFrameworkStartLevel(dictionary fwsl, OSGiRestCallback cb)

fwsl Framework Start Level representation dictionary with the desired state.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the resulting Framework Start Level representation as JavaScript object. This parame-
ter is optional.

□ Change the Framework Start Level and/or initial bundle start level.

137.12.2.15 void startBundle((DOMString or long long) bundle, long options, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

options The options passed to the bundle's start method as a number. This parameter is optional.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle State representation as JavaScript object. This parameter is optional.

□ Start a bundle.

137.12.2.16 void stopBundle((DOMString or long long) bundle, long options, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

options The options passed to the bundle's start method as a number. This parameter is optional.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle State representation as JavaScript object. This parameter is optional.

□ Stop a bundle.

137.12.2.17 void uninstallBundle((DOMString or long long) bundle, OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle representation of the uninstalled Bundle. This parameter is optional.

□ Uninstall a bundle.

137.12.2.18 void updateBundle((DOMString or long long) bundle, (DOMString or ArrayBuffer) updated,
OSGiRestCallback cb)

bundle The bundle, either the numeric bundle ID or the bundle URI path.

updated The Bundle to update, either represented as a URL or as an ArrayBuffer of

cb The callbacks invoked on completion of the remote invocation. On success the success() callback is
invoked with the Bundle representation of the updated Bundle. This parameter is optional.

References REST Management Service Specification Version 1.0

Page 762 OSGi Compendium Release 8

□ Update a bundle from a URI or by value.

137.12.3 callback interface OSGiRestCallback
Objects implementing this signature are provided by users of the OSGiRestCl ient as callbacks. One
of the callback functions is invoked on completion of a REST invocation.

137.12.3.1 void success(object response)

response The result of the invocation. The type of this parameter is depends on the function being invoked. It
can be found in the documentation of the function.

□ Called when the invocation completes successfully.

137.12.3.2 void failure(short httpCode, object response)

httpCode The HTTP code returned. If no HTTP code is associated with the failure this parameter is set to -1 .

response The failure response.

□ Called when the invocation failed.

137.13 References

[1] Framework Filter Syntax
OSGi Core, Chapter 3.2.7 Filter Syntax

[2] Web IDL
http://www.w3.org/TR/WebIDL/

[3] OSGi XML Schemas
https://docs.osgi.org/xmlns/

[4] Whiteboard Pattern
https://docs.osgi.org/whitepaper/whiteboard-pattern/

http://www.w3.org/TR/WebIDL/
https://docs.osgi.org/xmlns/
https://docs.osgi.org/whitepaper/whiteboard-pattern/

Asynchronous Service Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 763

138 Asynchronous Service
Specification

Version 1.0

138.1 Introduction
OSGi Bundles collaborate using loosely coupled services registered in the OSGi service registry. This
is a powerful and flexible model, and allows for the dynamic replacement of services at runtime. OS-
Gi services are therefore a very common interaction pattern within OSGi.

As with most Java APIs and Objects, OSGi services are primarily synchronous in operation. This has
several benefits; synchronous APIs are typically easier to write and to use than asynchronous ones;
synchronous APIs provide immediate feedback; synchronous implementations typically have a less
complex threading model.

Asynchronous APIs, however, have different advantages. Asynchronous APIs can reduce bottle-
necks by encouraging more effective use of parallelism, improving the responsiveness of the ap-
plication. In many cases high throughput systems can be written more simply and elegantly using
asynchronous programming techniques.

The Promises Specification on page 1407 provides powerful primitives for asynchronous program-
ming, including the ability to compose flows in a functional style. There are, however, many exist-
ing services that do not use the Promise API. The purpose of the Asynchronous Service is to bridge
the gap between these existing, primarily synchronous, services in the OSGi service registry, and
asynchronous programming. The Asynchronous Service therefore provides a way to invoke arbi-
trary OSGi services asynchronously, providing results and failure notifications through the Promise
API.

138.1.1 Essentials

• Async Invocation - A single method call that is to be executed without blocking the requesting
thread.

• Client - Application code that wishes to invoke one or more OSGi services asynchronously.
• Async Service - The OSGi service representing the Asynchronous Services implementation. Used

by the Client to make one or more Async Invocations.
• Async Mediator - A mediator object created by the Async Service which represents the target ser-

vice. Used by the Client to register Async Invocations.
• Success Callback - A callback made when an Async Invocation completes with a normal return

value.
• Failure Callback - A callback made when an Async Invocation completes with an exception.

138.1.2 Entities

• Async Service - A service that can create Async Mediators and run Async Invocations.
• Target Service - A service that is to be called asynchronously by the Client.
• Client - The code that makes Async Invocations using the Async Service

Usage Asynchronous Service Specification Version 1.0

Page 764 OSGi Compendium Release 8

• Promise - A promise, representing the result of the Async Invocation.

Figure 138.1 Class and Service overview

Target ServiceClient

Async Impl

Async

<<interface>>
MyService

138.2 Usage
This section is an introduction in the usage of the Async Service. It is not the formal specification,
the normative part starts at Async Service on page 767. This section leaves out some of the details
for clarity.

138.2.1 Synopsis
The Async Service provides a mechanism for a client to asynchronously invoke methods on a target
service. The service may be aware of the asynchronous nature of the call and actively participate
in it, or be unaware and execute normally. In either case the client's thread will not block, and will
continue executing its next instructions. Clients are notified of the completion of their task, and
whether it was successful or not, through the use of the Promise API.

Each async invocation is registered by the client making a method call on an Async Mediator, and
then started by making a call to the Async Service that created the mediator. This call returns a
Promise that will eventually be resolved with the return value from the async invocation.

An Async Mediator can be created by the client, either from an Object, or directly from a Service
Reference. Using a service reference has the advantage that the mediator will track the underlying
service. This means that if the service is unregistered before the asynchronous call begins then the
Promise will resolve with a failure, rather than continuing using an invalid service object.

138.2.2 Making Async Invocations
The general pattern for a client is to obtain the Async Service, and a service reference for the target
service. The client then creates an Async Mediator for the target service, invokes a method on the
mediator, then starts the asynchronous call. This is demonstrated in the following example:

private Async asyncService;
private ServiceReference<Foo> fooRef;
private Foo mediated;

@Reference
void setAsync(Async async) {

Asynchronous Service Specification Version 1.0 Usage

OSGi Compendium Release 8 Page 765

 asyncService = async;
}

@Reference(service = Foo.class)
void setList(ServiceReference<Foo> foo) {
 fooRef = foo;
}

@Activate
void start() {
 mediated = asyncService.mediate(fooRef, Foo.class);
}

public synchronized void doStuff() {
 Promise<Boolean> promise = asyncService
 .call(mediated.booleanMethod(“aValue”));
 ...
}

This example demonstrates how simply clients can make asynchronous calls using the Async Ser-
vice. The eventual result can be obtained from the promise using one of the relevant callbacks.

One important thing to note is that whilst the call to cal l () or cal l (R) causes the async invocation to
begin, the actual execution of the underlying task may be queued until a thread is available to run
it. If the service has been unregistered before the execution actually begins then the promise will be
resolved with a Service Exception. The type of the Service Exception will be ASYNC_ERROR .

138.2.3 Async Invocations of Void Methods
The return value of the mediator method call is used to provide type information to the Async Ser-
vice. This, however, does not work for void methods that have no return value. In this case the client
can either pass an arbitrary object to the cal l (R) method, or use the zero argument cal l () method. In
either case the returned promise will eventually resolve with a value of nul l . This is demonstrated in
the following example.

private Async asyncService;
private ServiceReference<Foo> fooRef;
private Foo mediated;

@Reference
void setAsync(Async async) {
 asyncService = async;
}

@Reference(service = Foo.class)
void setList(ServiceReference<Foo> foo) {
 fooRef = foo;
}

@Activate
void start() {
 mediated = asyncService.mediate(fooRef, Foo.class);
}

Usage Asynchronous Service Specification Version 1.0

Page 766 OSGi Compendium Release 8

public synchronized void doStuff() {
 mediated.voidMethod();
 Promise<?> promise = asyncService
 .call();
 ...
}

138.2.4 Fire and Forget Calls
Sometimes a client does not require any notification that an async invocation has completed. In
this case the client could use one of the cal l () or cal l (R) methods and simply discard the returned
Promise object. This, however, can be wasteful of resources. The act of resolving the Promise object
may be expensive, for example it may involve serializing the return value over a network if the re-
mote call was asynchronous.

If the client knows that no Promise object representing the result of the asynchronous task is need-
ed then it can signal this to the Async Service. This allows the Async Service to better optimize the
async invocation by not providing a result.

To indicate that the client wants to make a fire-and-forget style call the client invokes the mediator
as normal, but then begins the asynchronous invocation using the execute() method as show below.

private Async asyncService;
private ServiceReference<Foo> fooRef;

private Foo mediated;

@Reference
void setAsync(Async async) {
 asyncService = async;
}

@Reference(service = Foo.class)
void setList(ServiceReference<Foo> foo) {
 fooRef = foo;
}

@Activate
void start() {
 mediated = asyncService.mediate(fooRef, Foo.class);
}

public synchronized void doStuff() {
 mediated.someMethod();
 asyncService.execute();
 ...
}

Note that the execute() method does still return a Promise. This Promise is not the same as the ones
returned by cal l () or cal l (R) , its resolution value does not provide access to the result, but instead in-
dicates whether the fire-and-forget call could be successfully started. If there is a failure which pre-
vents the task from being executed then this is used to fail the returned promise.

Asynchronous Service Specification Version 1.0 Async Service

OSGi Compendium Release 8 Page 767

138.2.5 Multi Threading
By their very definition asynchronous tasks do not run inline, and typically they will not run on the
same thread as the caller. This is not, however, a guarantee. A valid implementation of the Async
Service may have only one worker thread, which may be the thread currently running in the client
code. Async invocations also have the same threading model as the Promise API. This means that
callbacks may run on arbitrary threads, which may, or may not, be the same as the client thread, or
the thread which executed the asynchronous work.

It is important for multi-threaded clients to note that calls to the mediator and Async Service must
occur on the same thread. For example it is not supported to invoke a mediator using one thread,
and then to begin the async invocation by calling the cal l () , cal l (R) or execute() method on a differ-
ent thread.

138.3 Async Service
The Async Service is the primary interaction point between a client and the Async Service imple-
mentation. An Async Service implementation must expose a service implementing the Async inter-
face. Clients obtain an instance of the Async Service using the normal OSGi service registry mecha-
nisms, either directly using the OSGi framework API, or using dependency injection.

The Async Service is used to:

• Create async mediators
• Begin async invocations
• Obtain Promise objects representing the result of the async invocation

138.3.1 Using the Async Service
The first action that a client wishing to make an async invocation must take is to create an async
mediator using one of the mediate methods. Once created the client invokes the method that
should be run asynchronously, supplying the arguments that should be used. This call records the
invocation, but does not start the asynchronous task. The asynchronous task begins when the client
invokes one of the cal l or execute methods on the Async Service. The cal l methods must return a
Promise representing the async invocation. The promise must resolve with the value returned by
the async invocation, or fail with the failure thrown by the async invocation.

If the client attempts to begin an async invocation without first having called a method on the me-
diator object then the Async Service must detect this usage error and throw an I l legalStateExcep-
t ion to the client. This applies to all methods that begin an async invocation.

138.3.2 Asynchronous Failures
There are a variety of reasons that async invocations may be started correctly by the client, but then
fail without running the asynchronous task. In any of these cases the Promise representing the
async invocation must fail with a Service Exception. This Service Exception must be initialized with
a type of ASYNC_ERROR . If there is no promise representing the async invocation then there is no
way to notify the client of the failure, therefore the Service Exception must be logged by the Async
Service using all available Log Service implementations.

The following list of scenarios is not exhaustive, but indicates failure scenarios that must result in a
Service Exception with a type of async

• If the client is using a service reference backed mediator and the client bundle's bundle context
becomes invalid before looking up the target service.

• If the client is using a service reference backed mediator and the service is unregistered before
making the async invocation.

The Async Mediator Asynchronous Service Specification Version 1.0

Page 768 OSGi Compendium Release 8

• If the client is using a service reference backed mediator and the service lookup returns nul l
• If the Async Service is unable to accept new work, for example it is in the process of being shut

down.
• If the type of the mediator object does not match the type of the service object to be invoked.

138.3.3 Thread Safety and Instance Sharing
Implementations of the Async Service must be thread safe and may be used simultaneously across
multiple clients and from multiple threads within the same client. Whilst the Async Service is able
to be used across multiple threads, if a client wishes to make an async invocation then the call to the
mediator and the call to begin the async invocation must occur on the same thread. The returned
Promise may then be shared between threads if required.

It is expected, although not required, that the Async Service implementation will use a Service Fac-
tory to create customized implementations for each client bundle. This simplifies the tracking of
the relevant client bundle context to use when performing service lookups on the client bundle's
behalf. Clients should therefore not share instances of the Async Service with other bundles. Instead
both bundles should obtain their own instances from the service registry.

138.3.4 Service Object Lifecycle Management
If the Async Service is being used to call an OSGi service object and the service reference is available
then the service object should be looked up immediately before the asynchronous task begins ex-
ecuting. This ensures that the service is still available at the point it is eventually called. Any call
to getService must have a corresponding call to ungetService after the mediated method invoked
has returned and, if available, the promise is resolved, but before the asynchronous task releases its
thread of execution.

138.4 The Async Mediator
Async mediators are dynamically created objects that have the same type or interface as the object
being mediated, and are used to record method invocations and arguments. Mediator objects are
specific to an Async Service implementation, and must only be used in conjunction with the Async
Service object that they were created by.

Mediators may be created either from a ServiceReference or from a service object. The actions and
overall result are similar for both the mediate(ServiceReference,Class) and mediate(T,Class) meth-
ods, with the primary difference being that mediated objects created from a ServiceReference will
validate whether the service object is still available immediately before the asynchronous task is ex-
ecuted.

138.4.1 Building the Mediator Object
The client passes in a Class indicating the type that should be mediated. If the class object represents
an interface type then the generated mediator object must implement that interface. If the class ob-
ject represents a Java class type then the mediator object must either be an instance of that type or
extend it.

When building a mediator object the Async Service has the opportunity to detect numerous prob-
lems, for example if the referenced service to be mediated has been unregistered. Although fail-fast
behavior is usually preferable, in this case it would force the client to handle errors in two places;
both when creating the mediator, and for the returned Promise. To simplify client usage, error cases
detected when creating a mediator must not prevent the mediator from being created and must not
result in an exception being thrown. The only reason that the Async Service may fail to create a me-
diator is if the class object passed in cannot be mediated.

There are three reasons why the Async Service may not be able to mediate a class type:

Asynchronous Service Specification Version 1.0 Fire and Forget Invocations

OSGi Compendium Release 8 Page 769

• The class object passed in represents a final type.
• The class object passed in represents a type that has no zero-argument constructor.
• The class object passed in represents a type which has one or more public final methods present

in its type hierarchy (other than those declared by java. lang.Object).

If any of these constraints are violated and prevent the Async Service from creating a mediator then
the Async Service must throw an IllegalArgumentException.

138.4.2 Async Mediator Behaviors
When invoked, the Async mediator must record the method call, and its arguments, and then re-
turn rapidly and should avoid performing blocking operations. The values returned by the mediator
object are opaque, and the client should not attempt to interpret the returned value. The value may
be null (or null-like in the case of primitives) or contain implementation specific information. If the
mediated method call has a return type, specifically it is non-void, then this object must be passed to
the Async Service's cal l method when beginning the async invocation

Async mediators should make a best-effort attempt to detect incorrect API usage from the client. If
this incorrect usage is detected then the mediator object must throw an IllegalStateException when
invoked. An example of incorrect usage that must be detected is when a client makes multiple invo-
cations on a single mediator object from the same thread without making any calls to the Async Ser-
vice.

After a usage error has been detected and an IllegalStateException has been thrown the mediator ob-
ject must be reset so that a subsequent invocation from the client thread can proceed normally.

138.4.3 Thread Safety and Instance Sharing
Async mediators, like instances of the Async Service, are required to be thread safe. Clients may
therefore share mediator objects across threads, and can safely store them as instance fields. Whilst
mediators are thread safe, if a client wishes to make an async invocation then the call to the media-
tor and the call to cal l () or cal l (R) must occur on the same thread. The returned Promise may then be
shared between threads if required.

Async mediators created from ServiceReference objects remain directly associated with the service
reference and client bundle after creation. Clients should therefore not share mediator objects with
other bundles. Instead each bundle should create its own mediator.

138.5 Fire and Forget Invocations
The Async Service provides cal l () and cal l (R) methods for clients to use when they wish to receive
results from asynchronous tasks. Clients that do not need the result can simply discard the returned
Promise object. This, however, can be wasteful of resources. The act of resolving the Promise object
may be expensive, for example it may involve serializing the return value over a network.

To address this use case the Async Service provides the execute() method, which behaves similarly
to cal l () and cal l (R) , but does not provide access to the eventual result. Instead the execute() method
returns a Promise that indicates whether the fire-and-forget call is able to be successfully started.

The returned Promise must be resolved with nul l if the asynchronous task begins executing success-
fully. There is no happens-before relationship required, meaning that if the Promise resolves success-
fully then the task may, or may not, have started or finished. The primary usage of the Promise is ac-
tually to detect failures. If the fire-and-forget task cannot be executed for some reason, for example
the backing service has been unregistered, then the returned promise must be failed appropriately
using the same rules as defined in Asynchronous Failures on page 767. If the returned Promise is
failed then the fire-and-forget task has not executed and will not execute in the future.

Delegating to Asynchronous Implementations Asynchronous Service Specification Version 1.0

Page 770 OSGi Compendium Release 8

138.6 Delegating to Asynchronous Implementations
Some service APIs are already asynchronous in operation, and others are partly asynchronous, in
that some methods run asynchronously and others do not. There are also services which have a syn-
chronous API, but could run asynchronously because they are a proxy to another service. A good
example of this kind of service is a remote service. Remote services are local views of a remote end-
point, and depending upon the implementation of the endpoint it may be possible to make the re-
mote call asynchronously, optimizing the thread usage of any local asynchronous call.

Services that already have some level of asynchronous support may advertise this to clients and to
the Async Service by having their service object be an instanceof AsyncDelegate . The service object
can be cast to AsyncDelegate to be used by the Async Service implementation, or by the client di-
rectly, to make an asynchronous call on the service.

Because the Async Delegate behavior is transparently handled by the Async Service, clients of the
Async Service do not need to know whether the service object is an instanceof AsyncDelegate or
not. Their usage pattern can remain unchanged.

When making an async invocation, the Async Service must check to see whether the service ob-
ject is an instanceof AsyncDelegate . If the service object is an instanceof AsyncDelegate , then the
Async Service must attempt to delegate the asynchronous call. The exact delegation operation de-
pends on whether a Promise result is required.

138.6.1 Obtaining a Promise from an Async Delegate
If the result of the method invocation is needed by the client, then the Async Service must attempt
to delegate to the async(Method,Object[]) method. The delegation proceeds as follows:

• If the call to the Async Delegate returns a Promise, then the Promise returned by the Async Ser-
vice must be resolved with that Promise.

• If the call to the Async Delegate throws an exception, then the Promise returned by the Async
Service must be failed with the exception.

• If the Async Delegate is unable to optimize the call and returns nul l from the
async(Method,Object[]) method, the Async Service must continue processing the async invoca-
tion, treating the service as a normal service object.

138.6.2 Delegating Fire and Forget Calls to an Async Delegate
If the result of the method invocation is not needed by the client, then the Async Service must at-
tempt to delegate to the execute(Method,Object[]) method. This gives the Async Delegate imple-
mentation the opportunity to further optimize its processing. The delegation proceeds as follows:

• If the call to the Async Delegate returns true , then the Promise returned by the Async Service
must be resolved with nul l .

• If the call to the Async Delegate throws an exception, then the Promise returned by the Async
Service must be failed with the exception.

• If the Async Delegate is unable to optimize the call and returns fa lse from the
execute(Method,Object[]) method, the Async Service must continue processing the async invo-
cation, treating the service as a normal service object.

138.6.3 Lifecycle for Service Objects When Delegating
If an Async Delegate implementation accepts an asynchronous task, via a call to either
execute(Method,Object[]) or async(Method,Object[]) , then it is responsible for continuing to
process the work until completion. This means that if the service implementing Async Delegate is
unregistered for some reason, then the task must be properly cleaned up and succeed or fail as ap-
propriate.

Asynchronous Service Specification Version 1.0 Capabilities

OSGi Compendium Release 8 Page 771

If the Async Service implementation used a service reference to obtain the service, then it must re-
lease the service object after the task has been accepted. This means that if the service object is pro-
vided by a service factory, then the service object should take extra care not to destroy its internal
state when released. The service object must remain valid until all executing asynchronous tasks as-
sociated with the service object are either completed or failed.

If an Async Delegate implementation rejects an asynchronous task, by returning fa lse or nul l , the
Async Service implementation must take over the asynchronous invocation of the method. In this
case, if the Async Service implementation used a service reference to obtain the service, the Async
Service must not release the service object until the asynchronous task is completed.

If an Async Delegate implementation throws an exception and the Async Service implementation
used a service reference to obtain the service, then the service object must be released immediately.

138.7 Capabilities
Implementations of the Asynchronous Service specification must provide the following capabili-
ties.

• A capability in the osgi . implementation namespace declaring the implemented specification to
be osgi .async . This capability must also declare a uses constraint for the org.osgi .service.async
and org.osgi .service.async.delegate packages. For example:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.async";
 version:Version="1.0";
 uses:="org.osgi.service.async,org.osgi.service.async.delegate"

This capability must follow the rules defined for the osgi.implementation Namespace on page 727.
• A capability in the osgi .service namespace representing the Async service. This capability must

also declare a uses constraint for the org.osgi .service.async package. For example:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.async.Async";
 uses:="org.osgi.service.async"

This capability must follow the rules defined for the osgi.service Namespace on page 727.

138.8 Security
Asynchronous Services implementations must be careful to avoid elevating the privileges of client
bundles when calling services asynchronously, and also to avoid restricting the privileges of clients
that are permitted to make a call. This means that the implementation must:

• Be granted AllPermission . As the Async Service will always be on the stack when invoking a ser-
vice object asynchronously it must be granted AllPermission so that it does not interfere with se-
curity any checks made by the service object.

• Establish the caller's AccessControlContext in a worker thread before starting to call the service
object. This prevents a bundle from being able to call a service asynchronously that it would not
normally be able to call. The AccessControlContext must be collected during any call to cal l () ,
cal l (R) or execute() .

• Use a doPriv i leged block when mediating a concrete type. A no-args constructor in a concrete
type may perform actions that the client may not have permission to perform. This should not

org.osgi.service.async Asynchronous Service Specification Version 1.0

Page 772 OSGi Compendium Release 8

prevent the client from mediating the object, as the client is not directly performing these ac-
tions.

• If the mediator object was created using a service reference, then the Async Services implementa-
tion must use the client's bundle context when retrieving the target service. If the service lookup
occurs on a worker thread, then the lookup must use the AccessControlContext collected dur-
ing the call to cal l () , cal l (R) or execute() . This prevents the client bundle from being able to make
calls on a service object that they do not have permission to obtain, and ensures that an appropri-
ately customized object is returned if the service is implemented using a service factory.

Further security considerations can be addressed using normal OSGi security rules. For example ac-
cess to the Async Service can be controlled using ServicePermission[. . .Async, GET] .

138.9 org.osgi.service.async

Asynchronous Services Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.async; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.async; vers ion="[1.0,1.1)"

138.9.1 Summary

• Async - The Asynchronous Execution Service.

138.9.2 public interface Async
The Asynchronous Execution Service. This can be used to make asynchronous invocations on OSGi
services and objects through the use of a mediator object.

Typical usage:

 Async async = ctx.getService(asyncRef);

 ServiceReference<MyService> ref = ctx.getServiceReference(MyService.class);

 MyService mediator = async.mediate(ref, MyService.class);

 Promise<BigInteger> result = async.call(mediator.getSumOverAllValues());

The Promise API allows callbacks to be made when asynchronous tasks complete, and can be used
to chain Promises.

Multiple asynchronous tasks can be started concurrently, and will run in parallel if the Async Ser-
vice has threads available.

Provider Type Consumers of this API must not implement this type

138.9.2.1 public Promise<R> call(R r)

Type Parameters <R>

r The return value of the mediated call, used for type information.

Asynchronous Service Specification Version 1.0 org.osgi.service.async

OSGi Compendium Release 8 Page 773

□ Invoke the last method call registered by a mediated object as an asynchronous task. The result of
the task can be obtained using the returned Promise.

Typically the parameter for this method will be supplied inline like this:

 ServiceReference<I> s = ...;
 I i = async.mediate(s, I.class);
 Promise<String> p = async.call(i.foo());

Returns A Promise which can be used to retrieve the result of the asynchronous task.

138.9.2.2 public Promise<?> call()

□ Invoke the last method call registered by a mediated object as an asynchronous task. The result of
the task can be obtained using the returned Promise.

Generally it is preferable to use call(Object) like this:

 ServiceReference<I> s = ...;
 I i = async.mediate(s, I.class);
 Promise<String> p = async.call(i.foo());

However this pattern does not work for void methods. Void methods can therefore be handled like
this:

 ServiceReference<I> s = ...;
 I i = async.mediate(s, I.class);
 i.voidMethod()
 Promise<?> p = async.call();

Returns A Promise which can be used to retrieve the result of the asynchronous task.

138.9.2.3 public Promise<Void> execute()

□ Invoke the last method call registered by a mediated object as a "fire-and-forget" asynchronous task.
This method should be used by clients in preference to call() and call(Object) when no callbacks, or
other features of Promise, are needed.

The advantage of this method is that it allows for greater optimization of the underlying asyn-
chronous task. Clients are therefore likely to see better performance when using this method com-
pared to using call(Object) or call() and ignoring the returned Promise. The Promise returned by this
method is different from the Promise returned by call(Object) or call(), in that the returned Promise
will resolve when the fire-and-forget task is successfully started, or fail if the task cannot be started.
Note that there is no happens-before relationship and the returned Promise may resolve before or af-
ter the fire-and-forget task starts, or completes.

Typically this method is used like call():

 ServiceReference<I> s = ...;
 I i = async.mediate(s, I.class);
 i.someMethod()
 Promise<Void> p = async.execute();

Returns A Promise representing whether the fire-and-forget task was able to start.

138.9.2.4 public T mediate(T target, Class<T> iface)

Type Parameters <T>

target The service object to mediate.

iface The type that the mediated object should provide.

org.osgi.service.async.delegate Asynchronous Service Specification Version 1.0

Page 774 OSGi Compendium Release 8

□ Create a mediator for the specified object. The mediator is a generated object that registers the
method calls made against it. The registered method calls can then be run asynchronously using ei-
ther the call(Object), call(), or execute() method.

The values returned by method calls made on a mediated object are opaque and should not be inter-
preted.

Normal usage:

 I s = ...;
 I i = async.mediate(s, I.class);
 Promise<String> p = async.call(i.foo());

Returns A mediator for the service object.

Throws I l legalArgumentException– If the type represented by iface cannot be mediated.

138.9.2.5 public T mediate(ServiceReference<? extends T> target, Class<T> iface)

Type Parameters <T>

target The service reference to mediate.

iface The type that the mediated object should provide.

□ Create a mediator for the specified service. The mediator is a generated object that registers the
method calls made against it. The registered method calls can then be run asynchronously using ei-
ther the call(Object), call(), or execute() method.

The values returned by method calls made on a mediated object are opaque and should not be inter-
preted.

This method differs from mediate(Object, Class) in that it can track the availability of the specified
service. This is recommended as the preferred option for mediating OSGi services as asynchronous
tasks may not start executing until some time after they are requested. Tracking the validity of the
ServiceReference for the service ensures that these tasks do not proceed with an invalid object.

Normal usage:

 ServiceReference<I> s = ...;
 I i = async.mediate(s, I.class);
 Promise<String> p = async.call(i.foo());

Returns A mediator for the service object.

Throws I l legalArgumentException– If the type represented by iface cannot be mediated.

138.10 org.osgi.service.async.delegate

Asynchronous Services Delegation Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package contains only interfaces that are implemented by consumers.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.async.delegate; vers ion="[1.0,2.0)"

138.10.1 Summary

• AsyncDelegate - This interface is used by services to allow them to optimize Asynchronous calls
where they are capable of executing more efficiently.

Asynchronous Service Specification Version 1.0 org.osgi.service.async.delegate

OSGi Compendium Release 8 Page 775

138.10.2 public interface AsyncDelegate
This interface is used by services to allow them to optimize Asynchronous calls where they are ca-
pable of executing more efficiently.

This may mean that the service has access to its own thread pool, or that it can delegate work to a re-
mote node, or act in some other way to reduce the load on the Asynchronous Services implementa-
tion when making an asynchronous call.

138.10.2.1 public Promise<?> async(Method m, Object[] args) throws Exception

m The method to be asynchronously invoked.

args The arguments to be used to invoke the method.

□ Invoke the specified method as an asynchronous task with the specified arguments.

This method can be used by clients, or the Async Service, to optimize Asynchronous execution of
methods.

When called, this method should invoke the supplied method using the supplied arguments asyn-
chronously, returning a Promise that can be used to access the result.

If the method cannot be executed asynchronously by this method then nul l must be returned.

Returns A Promise representing the asynchronous result, or nul l if this method cannot be asynchronously
invoked.

Throws Exception– An exception should be thrown only if there was a serious error that prevented the asyn-
chronous task from starting. For example, the specified method does not exist on this object. Excep-
tions must not be thrown to indicate that the call does not support asynchronous invocation. In-
stead this method must return nul l . Exceptions must also not be thrown to indicate a failure from
the execution of the underlying method. This must be handled by failing the returned Promise.

138.10.2.2 public boolean execute(Method m, Object[] args) throws Exception

m The method to be asynchronously invoked.

args The arguments to be used to invoke the method.

□ Invoke the specified method as a "fire-and-forget" asynchronous task with the specified arguments.

This method can be used by clients, or the Async Service, to optimize Asynchronous execution of
methods.

When called, this method should invoke the specified method using the specified arguments asyn-
chronously. This method differs from async(Method, Object[]) in that it does not return a Promise.
This method therefore allows the implementation to perform more aggressive optimizations be-
cause the end result of the invocation does not need to be returned to the caller.

If the method cannot be executed asynchronously by this method then fa lse must be returned.

Returns true if the asynchronous execution request has been accepted, or fa lse if this method cannot be
asynchronously invoked by the AsyncDelegate.

Throws Exception– An exception should be thrown only if there was a serious error that prevented the asyn-
chronous task from starting. For example, the specified method does not exist on this object. Excep-
tions must not be thrown to indicate that the call does not support asynchronous invocation. In-
stead this method must return fa lse . Exceptions must also not be thrown to indicate a failure from
the execution of the underlying method.

org.osgi.service.async.delegate Asynchronous Service Specification Version 1.0

Page 776 OSGi Compendium Release 8

Device Service Specification for EnOcean™ Technology Version 1.0 Introduction

OSGi Compendium Release 8 Page 777

139 Device Service Specification for
EnOcean™ Technology

Version 1.0

139.1 Introduction
EnOcean is a standard wireless communication protocol designed for low-cost and low-power de-
vices by EnOcean Alliance.

EnOcean is widely supported by various types of devices such as smart meters, lights and many
kinds of sensors in the residential area. OSGi applications need to communicate with those EnO-
cean devices. This specification defines how OSGi bundles can be developed to discover and con-
trol EnOcean devices on the one hand, and act as EnOcean devices and interoperate with EnOcean
clients on the other hand. In particular, a Java mapping is provided for the standard representation
of EnOcean devices called EnOcean Equipment Profile (EEPs). See [2] EnOcean Equipment Profiles
v2.6.2.

The specification also describes the external API of an EnOcean Base Driver according to Device Ac-
cess specification.

139.2 Essentials
• Scope - This specification is limited to general device discovery and control aspects of the stan-

dard EnOcean specifications. Aspects concerning the representation of specific or proprietary
EnOcean profiles is not addressed.

• Transparency - EnOcean devices discovered on the network and devices locally implemented on
the platform are represented in the OSGi service registry with the same API.

• Lightweight implementation option - The full description of EnOcean device services on the OSGi
platform is optional. Some base driver implementations may implement all the classes includ-
ing EnOcean device description classes while Implementations targeting constrained devices are
able to implement only the part that is necessary for EnOcean device discovery and control.

• Network Selection - It must be possible to restrict the use of the EnOcean protocols to a selection of
the connected devices.

• Event handling - Bundles are able to listen to EnOcean events.
• Discover and control EnOcean devices as OSGi services - Available learned (via an EnOcean teach-in

procedure) EnOcean external endpoints are dynamically reified as OSGi services on the service
registry upon discovery.

• OSGi services as exported EnOcean devices - OSGi services implementing the API defined here and
explicitly set to be exported should be made available to networks with EnOcean-enabled end-
points in a transparent way.

Entities Device Service Specification for EnOcean™ Technology Version 1.0

Page 778 OSGi Compendium Release 8

139.3 Entities
• EnOcean Base Driver - The bundle that implements the bridge between OSGi and EnOcean net-

works, see Figure 139.1 on page 779. It is responsible for accessing the various EnOcean gate-
way chips on the execution machine, and ensures the reception and translation of EnOcean mes-
sages into proper objects. It is also used to send messages on the EnOcean network, using what-
ever chip it deems most appropriate.

• EnOcean Host - The EnOceanHost object is a link between the software and the EnOcean network.
It represents the chip configuration (gateway capabilities) described in [5] EnOcean System Specifi-
cation - Security of EnOcean Radio Networks v1.9. It is registered as an OSGi service.

• EnOcean Device - An EnOcean device. This entity is represented by a EnOceanDevice interface
and registered as a service within the framework. It carries the unique chip ID of the device, and
may represent either an imported or exported device, which may be a pure transmitter or a trans-
ceiver.

• EnOcean Message - Every EnOcean reporting equipment is supposed to follow a “profile”, which
is essentially the way the emitted data is encoded. In order to reflect this standard as it is defined
in [2] EnOcean Equipment Profiles v2.6.2, manufacturers are able to register the description of “Mes-
sages”, the essence of a profile, along with their associated payload (as Channels). See “EnOcean
Channels” below for more information.

• EnOcean Channel - EnOcean channels are available as an array inside EnOceanMessage objects.
They are a useful way to define any kind of payload that would be put inside of an EnOcean Mes-
sage.

EnOcean Messages and their associated Channels can be described with EnOceanMes-
sageDescription and EnOceanChannelDescription interfaces. Description providers aggregate
these descriptions in sets that they register with EnOceanMessageDescriptionSet and EnOcean-
ChannelDescriptionSet interfaces within the framework.

• EnOcean RPC - An interface that enables the invocation of vendor-specific Remote Procedure
Calls and Remote Management Commands. These are particular types of Messages and are not
linked to any EnOcean Profile, so that their descriptions are defined and registered in another
way. The RPCs are documented via the EnOceanRPCDescription objects gathered into registered
EnOceanRPCDescriptionSet services.

• EnOcean Handler - Enables clients to asynchronously get answers to their RPCs.
• EnOcean Client - An application that is intended to control EnOcean device services.
• EnOcean Exception - Delivers errors during EnOceanMessage serialization/deserialization or dur-

ing execution outside transmission.

Device Service Specification for EnOcean™ Technology Version 1.0 Operation Summary

OSGi Compendium Release 8 Page 779

Figure 139.1 EnOcean Service Specification class diagram.

sends m essages with EventAdm in

1 1

EnOcean Base Driver

sends

[Object] [Object]

An EnOcean Message
Descriptor

[Object]

[Object]

0..n

An EnOcean RPC
Descriptor

[Object]

[Object]

0..1 associated
with

0..n

A listener implementing
EventHandler

[Object]

0..1

requested
by

<<Interface>>
EnOceanRPC
DescriptionSet

<<Interface>>
EnOceanMessage
DescriptionSet

<<Interface>>
EnOceanChannel

Descript ionSet

<<Interface>>
EnOceanRPC

<<Interface>>
EnOceanM essage

DescriptionDescription

<<Interface>>
EnOceanChannel
Descript ion

<<Interface>>
EnOceanChannel

<<Interface>>
EnOceanMessage

<<Interface>>
EnOceanDevice

<<Interface>>
EnOceanHost

An EnOcean device
implementation

has hashas

0..n

An EnOcean device
implementer

1 11

1

0..n

1

0..n

1

0..n

0..n

has

1

1

0..n

receives m essages
with EventAdm in1

0..n

<<Interface>>
EnOceanRPC

An EnOcean device
client

gets

associated
with

associated
with

invoked
by

gets

139.4 Operation Summary
To make an EnOcean device service available to EnOcean clients on the OSGi platform, it must be
registered under the EnOceanDevice interface within the OSGi framework.

The EnOcean Base Driver is responsible for mapping external devices into EnOceanDevice objects,
through the use of an EnOcean gateway. See [1] Pervasive Service Composition in the Home Network. The
latter is represented on OSGi framework as an object implementing EnOceanHost interface. EnO-
cean “teach-in” messages will trigger this behavior, this is called a device import situation, see Figure
139.2 on page 779.

Figure 139.2 EnOcean device import.

EnOcean Base Driver

< < Interface> >
EnOceanDevice

An EnOcean client

< < Interface> >
EnOceanHost

An EnOcean device
im plem entat ion

1
0..n

1
sends m essages with EventAdm in

0..n

A listener im plem ent ing
EventHandler

0..n1

Client bundles may also expose framework-internal (local) EnOceanDevice instances, registered
within the framework, see Figure 139.3 on page 780. The Base Driver then should emulate those

Operation Summary Device Service Specification for EnOcean™ Technology Version 1.0

Page 780 OSGi Compendium Release 8

objects as EnOcean devices on the EnOcean network. This is a device export situation, made possi-
ble by the use of the 127 virtual base IDs available on an EnOcean gateway. For more information
about this process, see Export Situation on page 782.

Figure 139.3 EnOcean device export.

EnOcean Base Driver

< < Interface> >
EnOceanDevice

An EnOcean device
im plem enter

< < Interface> >
EnOceanHost

1
0..n

1

receives m essages
with EventAdm in

0..n

A listener im plem ent ing
EventHandler

EnOcean clients send RPCs (Remote Procedure Calls) to EnOcean devices and receives RPC respons-
es and messages from them. Messages coming from EnOcean devices are accessible through Event
Admin.

RPCs and messages content are specified by EnOcean Alliance or vendor-specific descriptions. Those
descriptions may be provided on the OSGi platform by any bundle through the registration of EnO-
ceanRPCDescriptionSet, EnOceanMessageDescriptionSet and EnOceanChannelDescriptionSet ser-
vices. Every service is a set of description that enables applications to retrieve information about
supported RPCs, messages or channels that compose messages.

Figure 139.4 Using a set of message descriptions.

[Object]

<<Interface>>
EnOceanChannel

Descript ionSet

[Object]

<<Interface>>
EnOceanM essage

Description

[Object]

<<Interface>>
EnOceanChannel
Descript ion

[Object]

<<Interface>>
EnOceanMessage
DescriptionSet

has

1 0..n

An EnOcean Message
Descriptor

An EnOcean device
client

has

1 0..n

Device Service Specification for EnOcean™ Technology Version 1.0 EnOcean Base Driver

OSGi Compendium Release 8 Page 781

139.5 EnOcean Base Driver
Most of the functionality described in the operation summary is implemented in an EnOcean base
driver. This bundle implements the EnOcean protocol and handles the interaction with bundles
that use the EnOcean devices. An EnOcean base driver is able to discover EnOcean devices on the
network and map each discovered device into an OSGi registered EnOceanDevice service. It is also
the receptor, through EventAdmin service and OSGi service registry, of all the events related to local
devices and clients. It enables bidirectional communication for RPC and Channel updates.

Several base drivers may be deployed on a residential OSGi device, one for every supported network
technology. An OSGi device abstraction layer may then be implemented as a layer of refinement dri-
vers above a layer of base drivers. The refinement driver is responsible for adapting technology-spe-
cific device services registered by the base driver into device services of another model, see Abstract-
Device interface in Figure 139.5 on page 781. In the case of a generic device abstraction layer, the
model is agnostic to technologies.

The EnOcean Alliance defines their own abstract model with EnOcean Equipment Profiles and re-
finement drivers may provide the implementation of all EEPs with EnOcean specific Java interfaces.
The AbstractDevice interface of Figure 139.5 on page 781 is then replaced by an EEP specific Ja-
va interface in that case. The need and the choice of the abstraction depends on the targeted applica-
tion domain.

Figure 139.5 EnOcean Base Driver and a refinement driver representing devices in an abstract model.

EnOcean Base Driver

<<Interface>>
EnOceanDevice

<<Interface>>
AbstractDevice

Application interacting
with an abstraction layer

Refinement Driver

Application interacting
with the base driver

139.6 EnOcean Host
The EnOcean host represents an EnOcean gateway chip. Any EnOcean device service implementa-
tion should rely on at least one Gateway Chip in order to send and receive messages on the external
EnOcean network. This interface enables standard control over an EnOcean compatible chip. Every
EnOceanHost object should at least be identified by its unique chip ID.

The EnOceanHost interface enables OSGi applications to:

• Get or set gateway metadata (version, name, etc);
• Reset the gateway chip device;
• Retrieve a chip ID (derived from EnOcean's BASE_ID) for the given Service PID of a device.

EnOcean Device Device Service Specification for EnOcean™ Technology Version 1.0

Page 782 OSGi Compendium Release 8

139.7 EnOcean Device

139.7.1 Generics
A physical EnOcean device is reified as an EnOceanDevice object within the framework.

An EnOcean device holds most of the natural properties for an EnOcean object: its unique ID, the
profile, a friendly name, its security information, and its available RPCs – along with the associated
getters (and setters when applicable). All those properties MUST be persistent across restart so that
teach-in procedures are made only once.

It also holds methods that reflect the natural actions a user application may physically trigger on
such a device: send a message to the device, send a teach-in message to the device, or switch the de-
vice to learning mode.

Every EnOcean Device keeps a service PID property that is assigned either by the base driver or by
any service-exporting bundle. The property value format is free and the value must be unique on
the framework.

The properties on which EnOceanDevice services can be filtered on are: the device's service PID and
chip ID, and its profile identifiers (RORG / FUNC / TYPE integers).

The EnOceanDevice also keeps security features as defined in the EnOcean Security Draft, [5] EnO-
cean System Specification - Security of EnOcean Radio Networks v1.9, which allow for a security level for-
mat (integer mask), an encryption key and/or a rolling authentication code.

The EnOceanDevice service MUST also be registered with the DEVICE_CATEGORY service property,
see Device Service Registration on page 58, that describes a array of categories to which the device be-
longs. One value MUST be EnOcean which is specified in DEVICE_CATEGORY .

Values for the additional service properties, DEVICE_DESCRIPTION , DEVICE_SERIAL as defined in
Device Service Registration on page 58, are not specified here as no description nor application-level
serial number are provided in the EnOcean standard protocol.

139.7.2 Import Situation
In import situations, the device's chip ID is uniquely set by the Base Driver, according to the one
present in the teach-in message that originated the Device's creation. The service PID, see [7] Persis-
tent Identifier (PID), should also be generated and deterministically derived from the chip ID to allow
reconstruction of a device without a new teach-in process after a framework restart.

139.7.3 Export Situation
In export situations:

1. The registering Client bundle sets the service PID of the EnOceanDevice object by itself, in a
unique manner, and registers that object.

2. The chip ID (this device's EnOcean source ID when it issues messages) will be allocated by the
Base Driver. The latter keeps a dictionary of the currently allocated chip IDs. The Client bundle
must also set an ENOCEAN_EXPORT property in the registered device's Property Map.

The standard way to programmatically retrieve an exported chip ID from a given service PID is by
using EnOceanHost's dedicated interface for this use.

The Base Driver MUST ensure the persistence of the CHIP_ID:SERVICE_PID mapping.

As an application developer, please refer to the documentation of your Base Driver to know its poli-
cies concerning exported chip ID updating, deletion and exhaustion.

Device Service Specification for EnOcean™ Technology Version 1.0 EnOcean Messages

OSGi Compendium Release 8 Page 783

139.7.4 Interface
The EnOceanDevice interface enables client bundles to:

• Get or set the security features of the device in a protected way;
• Retrieve the currently paired devices in the case of a receiver, as a collection of device IDs;
• Get the ID-based list of currently available RPCs for the device, as a Map of {manufactur-

erID:[functionId1, functionId2,...]};
• Invoke RPCs onto the device, through the invoke(EnOceanRPC,EnOceanHandler) call.

139.8 EnOcean Messages
EnOcean Messages are at the core of the EnOcean application layer as a whole and the EnOcean
Equipment Profile specification, [2] EnOcean Equipment Profiles v2.6.2, in particular. Every exchange
of information within EnOcean networks is done with a dedicated message. The EnOceanMessage
interface provides a set of getters. The latter enables OSGi applications to get the information con-
tained in the payload of an EnOcean message and defined as data and optional data of the EnOcean
Serial Protocol Type 1 (RADIO) message (see Table 2 in Section "1.6.1 Packet description" of [4] EnO-
cean System Specification - EnOcean Serial Protocol v1.17).

This model enables reading both the EnOcean radio telegram data and the associated metadata that
may be attached to it in a single object, EnOceanMessage.

In case the 'Optional Data' section gets missing at the lowest level (the radio access layer not follow-
ing ESP protocol for instance) it is the responsibility of the Base Driver to mock the missing field's
(dBm, destinationID, …) values.

139.8.1 Mode of operation
Any EnOceanMessage object creation will be mirrored to Event Admin.

Details about the available topics, filters and properties can be found in Event API on page 787.

EnOceanMessage objects will be created only if the originating device has already been registered in
the OSGi Service Registry, along with profile information.

139.8.2 Identification
The RORG of a message defines its shape and generic type; all the RORGs are defined in the EnOcean
Radio Specification.

An addressed message will be encapsulated into an Addressed Telegram (ADT) by the base driver
transparently; this means that from the application level, it will be represented under its original
RORG, but with a valid destinationID.

A particular EnOcean Equipment Profile message is identified by three numbers: its RORG, and its
FUNC, TYPE and EXTRA subtypes. In EnOcean, a (RORG, FUNC, TYPE) triplet is enough to identify a
profile; though an EXTRA identifier is sometimes needed to identify a particular message layout for
that profile.

Those identifiers allow for retrieving EnOceanMessageDescr ipt ion objects within a registered EnO-
ceanMessageDescr ipt ionSet , which give the application more information to parse the message.

139.8.3 Interface
The methods available in the EnOceanMessage interface are:

• Identification methods, retrieving the message's profile, sender ID, optional destination ID, sta-
tus;

EnOcean Message Description Device Service Specification for EnOcean™ Technology Version 1.0

Page 784 OSGi Compendium Release 8

• A method to get the raw bytes of payload data in the message. This data can then be passed to
the deserializer of the EnOceanMessageDescr ipt ion object to be converted to EnOceanChannel ,
which may -again- be documented (through EnOceanChannelDescr ipt ion objects) or not.

• Link quality information read-only methods that mirror some of the 'Optional Data' header in-
formation.

139.9 EnOcean Message Description
EnOceanMessageDescr ipt ion objects exposes only two methods:

• deseria l ize(byte[]) : makes the user able to deserialize the payload bytes of a raw EnOceanMes-
sage object, into a collection of EnOceanChannel objects.

• ser ia l ize(EnOceanChannel[]) : serializes the input EnOceanChannel objects into a collection of
bytes.

139.10 EnOcean Channel
The EnOceanChannel interface is the first step of an abstraction to generate or interpret EnOcean-
Message channels with plain Java types.

The simple EnOceanChannel interface provides a way to separate the different fields in a message
payload, knowing their offset and size in the byte array that constitutes the full message's payload.

At the EnOceanChannel level, the only way to get/set the information contained in the channel is
through a pair of getRawValue() and setRawValue(byte[]) methods, which act on plain bytes.

Those bytes are meant right-aligned, and the number of those bytes is the size of the data field,
floored up to the next multiple of 8. For instance, a 3-bit long channel would be encoded on one
byte, all the necessary information starting from bit 0.

Every EnOceanMessage as described in the EEP Specification contains a various amount of chan-
nels, each of them being identified by their unique ID.

This ID, or channelID, is constituted of the “Shortcut” field of this channel from the EEP 2.5 Specifi-
cation, [2] EnOcean Equipment Profiles v2.6.2, and a number fixed by the order of appearance of such a
“Shortcut” in the specification.

This unique identifier links a Channel to an EnOceanChannelDescr ipt ion object that provides more
information to encode and decode that channel's information; see below for more details. This en-
ables for loose coupling of the raw Channel itself and a richer, 3rd-party provided, information.

As an example, if the platform being developed is an electronic display that waits for Messages from
a well-known temperature sensor, the Client bundle on the platform may interpret the Temperature
Channels in every Temperature Message without needing an appropriate TemperatureChannelDe-
scription object; it may directly cast and convert the Byte[] array of every received message to a prop-
erly valued Double and display that.

Otherwise, it could as well use the channelID to get a TemperatureChannelDescription object that
would properly handle the deserialization process from the raw bytes to a proper, physical unit-aug-
mented, result.

Device Service Specification for EnOcean™ Technology Version 1.0 EnOcean Channel Description

OSGi Compendium Release 8 Page 785

Figure 139.6 EnOcean channel and EnOcean channel descriptions.

[Object]

[Object]

[Object]

0..1 associated
with

<<Interface>>
EnOceanChannel

Descript ionSet

<<Interface>>
EnOceanChannel
Descript ion

<<Interface>>
EnOceanChannel

has

1

1

0..n

<<Interface>>
EnOceanFlag
ChannelDescript ion

<<Interface>>
EnOceanEnum
ChannelDescript ion

<<Interface>>
EnOceanDat a
ChannelDescript ion

<<Interface>>
EnOceanChannel
Enum Value

has
1 0..n

139.11 EnOcean Channel Description
The EnOceanChannelDescr ipt ion interface enables the description of all the various channels as
specified in the EnOcean specification, as well as the description of channels issued by 3rd party ac-
tors.

Those description objects are retrieved from the registered EnOceanChannelDescr ipt ionSet inter-
face using an unique ID known as the channelID.

Here are the Channel types defined in this specification:

• TYPE_RAW : A collection of bytes. This type is used when the description is not provided, and is
thus the default. For this type, the deseria l ize(byte[]) call actually returns a byte[] collection. The
encryption key or a device ID on 4 bytes are examples of such raw types.

• TYPE_DATA : A scaled physical value. Used when the data can be mapped to a physical value; for
instance, the 'WND – Wind Speed' channel is a raw binary value, in a range from 0 to 255, that
will be mapped as a wind speed between 0 and 70 m/s. For this type, the deseria l ize(byte[]) call
actually returns a Double value.

• TYPE_FLAG : A boolean value. Used when the Channel value can be either 1 or 0. The “Teach-
In” Channel is a well-known example; this 1-bit field may either be 0 or 1, depending whether
the Message is a teach-in one or not. For this type, the deseria l ize(byte[]) call actually returns a
Boolean value.

• TYPE_ENUM : An enumeration of possible values. Used when the Channel can only take a dis-
crete number of values. More complicated than TYPE_FLAG , enumerated types may have thresh-
olds: for instance, the A5-30 “Digital Input- Input State (IPS)” channel is a 8-bit value which
means “Contact closed” between 0 and 195, and “Contact open” from 196 to 255. For this type, the
deseria l ize(byte[]) call actually returns an EnOceanChannelEnumValue object.

According to the channel type, the actual description object should implement one of the following
specialized interfaces. This will ease the use of casting to the specialized interfaces on documented
channels.

139.11.1 EnOcean Data Channel Description
The EnOceanDataChannelDescr ipt ion interface inherits from EnOceanChannelDescr ipt ion inter-
face.

EnOcean Remote Management Device Service Specification for EnOcean™ Technology Version 1.0

Page 786 OSGi Compendium Release 8

Two more methods give access to the integer input domain of the data channel (such as 0-255) and
to the floating-point output range of it (such as -30.0°C – 24.5°C). A method is also present to retrieve
the physical unit of the channel. The ser ia l ize(Object) and deseria l ize(byte[]) methods are imple-
mented to easily convert from the raw byte[] collection to a Double, and vice versa.

Here are a few samples of such Channels:

Table 139.1 EnOcean Data Channel Description example

Short Description Possible implemented name Domain Range Unit
TMP Temperature TemperatureScaledChannel_X 0..255 -10°..+30° °C
HUM Humidity HumidityScaledChannel_X 0..250 0..100 %

139.11.2 EnOcean Flag Channel Description
The EnOceanFlagChannelDescr ipt ion interface inherits from the EnOceanChannelDescr ipt ion in-
terface.

Those channels, are typically used for On/Off reporting values (like a switch); they have no addition-
al methods, though the deseria l ize(byte[]) method converts the input bit into a proper Boolean ob-
ject.

139.11.3 EnOcean Enumerated Channel Description
The EnOceanEnumChannelDescr ipt ion interface inherits from the EnOceanChannelDescr ipt ion in-
terface.

The additional method provided to this interface is getPossibleValues() , which returns an array of
the available EnOceanChannelEnumValue objects accessible to this channel. Every EnOceanChan-
nelEnumValue object contains its integer input range and a String identifier that defines its mean-
ing.

The ser ia l ize(Object) and deseria l ize(byte[]) methods of an EnOceanEnumChannelDescr ipt ion ob-
ject thus convert an integer input value (say, 156) to an EnOceanChannelEnumValue , and vice versa.

Here is an example that shows the input range and the associated EnOceanChannelEnumValue :

Table 139.2 EnOcean Enumerated Channel Description example

Device profile EnOceanChannelEnumValue Start Stop Meaning
FanStageSwitch_Stage3 0 144 Fan speed: Stage 3
FanStageSwitch_Stage2 145 164 Fan speed: Stage 2
FanStageSwitch_Stage1 165 189 Fan speed: Stage 1

Fan speed stage switch

FanStageSwitch_Stage0 190 209 Fan speed: Stage 0

139.12 EnOcean Remote Management
Remote Management is a feature which allows EnOcean devices to be configured and maintained
over the air using radio messages.

The Remote Procedure Calls, or RPCs - as defined by the EnOcean Remote Management specifi-
cation, [3] EnOcean System Specification - Remote Management v2.0 - are not related to any EnOcean
Equipment Profile.

Note that EnOcean Remote Commissioning is detailed in an additional EnOcean document, [6] EnO-
cean Remote Commissioning Summary v1.0.

Device Service Specification for EnOcean™ Technology Version 1.0 Working With an EnOcean Device

OSGi Compendium Release 8 Page 787

139.12.1 EnOcean RPC
An EnOceanRPC object enables client bundles to remotely manage EnOcean devices using already
defined behavior.

RPCs are defined by a MANUFACTURER_ID (11 bits, 0x7FF for the EnOcean alliance) and a unique
FUNCTION_ID code on 12 bits.

RPCs are called directly onto an EnOceanDevice object via the
invoke(EnOceanRPC,EnOceanHandler) method, which accepts also a non-mandatory EnOceanHan-
dler object as a parameter to retrieve the asynchronous answer.

Broadcasted RPCs can be addressed directly to the Base Driver using the relevant Event Admin topic;
see Event API on page 787.

139.12.2 EnOcean Handler
Responses to RPCs are processed by the driver and sent back to a handler using
notifyResponse(EnOceanRPC,byte[]) method when an EnOceanHandler is passed to the base driver.

139.13 Working With an EnOcean Device

139.13.1 Service Tracking
All discovered EnOcean devices in the local networks are registered under EnOceanDevice inter-
face within the OSGi framework. Every time an EnOcean device appears or quits the network, the
associated OSGi service is registered or unregistered in the OSGi service registry. Thanks to the EnO-
cean Base Driver, the OSGi service availability in the registry mirrors EnOcean device availability on
EnOcean network, [1] Pervasive Service Composition in the Home Network.

Thanks to service events, a bundle is able to track the addition, modification and removal of an EnO-
ceanDevice service.

The following example shows using a ServiceTracker to track EnOceanDevice services.

ServiceTracker<EnOceanDevice, EnOceanDevice> enOceanTracker =
 new ServiceTracker<>(bundleContext, EnOceanDevice.class, null);
enOceanTracker.open(); // open the tracker

...

// get a snaphot of the current EnOceanDevice services
EnOceanDevice[] enOceanDeviceSnapshot =
 enOceanTracker.getServices(new EnOceanDevice[0]);

...

enOceanTracker.close(); // close the tracker

139.14 Event API
EnOcean events must be delivered to the EventAdmin service by the EnOcean implementation,
if present. EnOcean event topic follow the following form: org/osgi/service/enocean/EnOcean-
Event/SUBTOPIC.

MESSAGE_RECEIVED and RPC_BROADCAST are the two available subtopics.

EnOcean Exceptions Device Service Specification for EnOcean™ Technology Version 1.0

Page 788 OSGi Compendium Release 8

139.14.1 MESSAGE_RECEIVED
Properties (every event may dispatch some or all of the following properties):

• CHIP_ID – . The chip ID of the sending device.
• service.pid – The service PID of the exported device.
• RORG – The RORG (Radio Telegram Type) of the sending device.
• FUNC – The FUNC profile identifier of the sending device.
• TYPE – The TYPE profile identifier of the sending device.
• PROPERTY_MESSAGE – The EnOceanMessage object associated with this event.
• PROPERTY_EXPORTED – The presence of this property means that this message has actually been

exported from a locally implemented EnOcean Device.

139.14.2 RPC_BROADCAST
This event is used whenever an RPC is broadcasted on EnOcean networks, in IMPORT or EXPORT
situations.

Properties (every event may dispatch some or all of the following properties):

• MANUFACTURER_ID – The RPC's manufacturer ID.
• FUNCTION_ID – The RPC's function ID .
• PROPERTY_EXPORTED – The presence of this property means that this RPC has actually been ex-

ported from a locally implemented EnOcean Device.
• PROPERTY_RPC – The EnOceanRPC object associated with this event.

139.15 EnOcean Exceptions
The EnOceanException can be thrown and holds information about the different EnOcean layers.
Here below, ESP stands for EnOcean Serial Protocol. The following errors are defined:

• ESP_UNEXPECTED_FAILURE – Operation was not successful.
• ESP_RET_NOT_SUPPORTED – The ESP command was not supported by the driver.
• ESP_RET_WRONG_PARAM – The ESP command was supplied wrong parameters.
• ESP_RET_OPERATION_DENIED – The ESP command was denied authorization.
• INVALID_TELEGRAM – The message was invalid.

139.16 Security
It is recommended that ServicePermission[EnOceanDevice|EnOceanHost, REGISTER|GET] be used
sparingly and only for bundles that are trusted.

139.17 org.osgi.service.enocean

EnOcean Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Device Service Specification for EnOcean™ Technology Version 1.0 org.osgi.service.enocean

OSGi Compendium Release 8 Page 789

Import-Package: org.osgi .service.enocean; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.enocean; vers ion="[1.0,1.1)"

139.17.1 Summary

• EnOceanChannel - Holds the raw value and channel identification info of an EnOceanChannel.
• EnOceanDevice - This interface represents a physical device that communicates over the EnO-

cean protocol.
• EnOceanEvent - Constants for use in EnOcean events.
• EnOceanException - This class contains code and definitions necessary to support common

EnOcean exceptions.
• EnOceanHandler - The interface used to get callback answers from a RPC or a Message.
• EnOceanHost - This interface represents an EnOcean Host, a device that offers EnOcean net-

working features.
• EnOceanMessage - Holds the necessary methods to interact with an EnOcean message.
• EnOceanRPC - A very basic interface for RPCs.

139.17.2 public interface EnOceanChannel
Holds the raw value and channel identification info of an EnOceanChannel.

139.17.2.1 public String getChannelId()

Returns The unique ID of this channel.

139.17.2.2 public int getOffset()

Returns The offset, in bits, where this channel is found in the telegram.

139.17.2.3 public byte[] getRawValue()

□ Gets the raw value of this channel.

Returns corresponding value.

139.17.2.4 public int getSize()

Returns The size, in bits, of this channel.

139.17.2.5 public void setRawValue(byte[] rawValue)

rawValue

□ Sets the raw value of a channel.

139.17.3 public interface EnOceanDevice
This interface represents a physical device that communicates over the EnOcean protocol.

139.17.3.1 public static final String CHIP_ID = "enocean.device.chip_id"

Property name for the mandatory CHIP_ID of the device

139.17.3.2 public static final String DEVICE_CATEGORY = "EnOcean"

Property name for the mandatory DEVICE_CATEGORY of the device

org.osgi.service.enocean Device Service Specification for EnOcean™ Technology Version 1.0

Page 790 OSGi Compendium Release 8

139.17.3.3 public static final String ENOCEAN_EXPORT = "enocean.device.export"

Property name that defines if the device is exported or not. If present, the device is exported.

139.17.3.4 public static final String FUNC = "enocean.device.profile.func"

Property name for the radiotelegram functional type of the profile associated with this device.

139.17.3.5 public static final String MANUFACTURER = "enocean.device.manufacturer"

Property name for the manufacturer ID that may be specified by some teach-in messages.

139.17.3.6 public static final String RORG = "enocean.device.profile.rorg"

Property name for the radiotelegram main type of the profile associated with this device.

139.17.3.7 public static final String SECURITY_LEVEL_FORMAT = "enocean.device.security_level_format"

Property name for the security level mask for this device. The format of that mask is specified in
EnOcean Security Draft.

139.17.3.8 public static final String TYPE = "enocean.device.profile.type"

Property name for the radiotelegram subtype of the profile associated with this device.

139.17.3.9 public int getChipId()

Returns The EnOcean device chip ID.

139.17.3.10 public byte[] getEncryptionKey()

□ Returns the current encryption key used by this device.

Returns The current encryption key, or null.

139.17.3.11 public int getFunc()

Returns The EnOcean profile FUNC, or -1 if unknown.

139.17.3.12 public int[] getLearnedDevices()

□ Gets the list of devices the device already has learned.

Returns The list of currently learned device's CHIP_IDs.

139.17.3.13 public int getManufacturer()

Returns The EnOcean manufacturer code, -1 if unknown.

139.17.3.14 public int getRollingCode()

□ Get the current rolling code of the device.

Returns The current rolling code in use with this device's communications.

139.17.3.15 public int getRorg()

Returns The EnOcean profile RORG.

139.17.3.16 public Map<Integer, Integer> getRPCs()

□ Retrieves the currently available RPCs to this device; those are stored using their
manfufacturerId:commandId identifiers.

Returns A list of the available RPCs, in a Map<Integer, Integer[]> form.

Device Service Specification for EnOcean™ Technology Version 1.0 org.osgi.service.enocean

OSGi Compendium Release 8 Page 791

139.17.3.17 public int getSecurityLevelFormat()

Returns The EnOcean security level format, or 0 as default (no security)

139.17.3.18 public int getType()

Returns The EnOcean profile TYPE, or -1 if unknown.

139.17.3.19 public void invoke(EnOceanRPC rpc, EnOceanHandler handler)

rpc

handler

□ Sends an RPC to the remote device.

Throws I l legalArgumentException –

139.17.3.20 public void remove()

□ Removes the device's OSGi service from OSGi service platform.

139.17.3.21 public void setEncryptionKey(byte[] key)

key the encryption key to be set.

□ Sets the encryption key of the device.

139.17.3.22 public void setFunc(int func)

func the EEP func of the device;

□ Manually sets the EEP FUNC of the device.

139.17.3.23 public void setLearningMode(boolean learnMode)

learnMode the desired state: true for learning mode, false to disable it.

□ Switches the device into learning mode.

139.17.3.24 public void setRollingCode(int rollingCode)

rollingCode the rolling code to be set or initiated.

□ Sets the rolling code of this device.

139.17.3.25 public void setType(int type)

type the EEP type of the device;

□ Manually sets the EEP TYPE of the device.

139.17.4 public final class EnOceanEvent
Constants for use in EnOcean events.

139.17.4.1 public static final String PROPERTY_EXPORTED = "enocean.message.is_exported"

Property key used to tell apart messages that are exported or imported.

139.17.4.2 public static final String PROPERTY_MESSAGE = "enocean.message"

Property key for the EnOceanMessage object embedded in an event.

139.17.4.3 public static final String PROPERTY_RPC = "enocean.rpc"

Property key for the EnOceanRPC object embedded in an event.

org.osgi.service.enocean Device Service Specification for EnOcean™ Technology Version 1.0

Page 792 OSGi Compendium Release 8

139.17.4.4 public static final String TOPIC_MSG_RECEIVED = "org/osgi/service/enocean/EnOceanEvent/
MESSAGE_RECEIVED"

Main topic for all OSGi dispatched EnOcean messages, imported or exported.

139.17.4.5 public static final String TOPIC_RPC_BROADCAST = "org/osgi/service/enocean/EnOceanEvent/
RPC_BROADCAST"

Main topic for all OSGi broadcast EnOcean RPCs, imported or exported.

139.17.5 public class EnOceanException
extends Exception
This class contains code and definitions necessary to support common EnOcean exceptions. This
class is mostly used with low-level, gateway-interacting code : EnOceanHost.

139.17.5.1 public static final short ESP_RET_NOT_SUPPORTED = 2

Operation is not supported by the target device.

139.17.5.2 public static final short ESP_RET_OPERATION_DENIED = 4

The operation was denied.

139.17.5.3 public static final short ESP_RET_WRONG_PARAM = 3

One of the parameters was badly specified or missing.

139.17.5.4 public static final short ESP_UNEXPECTED_FAILURE = 1

Unexpected failure.

139.17.5.5 public static final short INVALID_TELEGRAM = 240

The message was invalid.

139.17.5.6 public static final short SUCCESS = 0

SUCCESS status code.

139.17.5.7 public EnOceanException(String errordesc)

errordesc exception error description

□ Constructor for EnOceanException

139.17.5.8 public EnOceanException(int errorCode, String errorDesc)

errorCode the error code.

errorDesc the description.

□ Constructor for EnOceanException

139.17.5.9 public EnOceanException(int errorCode)

errorCode An error code.

□ Constructor for EnOceanException

139.17.5.10 public int errorCode()

□ Constructor for EnOceanException

Returns An EnOcean error code, defined by the EnOcean Forum working committee or an EnOcean vendor.

Device Service Specification for EnOcean™ Technology Version 1.0 org.osgi.service.enocean

OSGi Compendium Release 8 Page 793

139.17.6 public interface EnOceanHandler
The interface used to get callback answers from a RPC or a Message.

139.17.6.1 public void notifyResponse(EnOceanRPC original, byte[] payload)

original the original EnOceanRPC that originated this answer.

payload the payload of the response; may be deserialized to an EnOceanRPC object.

□ Notifies of the answer to a RPC.

139.17.7 public interface EnOceanHost
This interface represents an EnOcean Host, a device that offers EnOcean networking features.

139.17.7.1 public static final Object HOST_ID

The unique ID for this Host: this matches the CHIP_ID of the EnOcean Gateway Chip it embodies.

139.17.7.2 public static final int REPEATER_LEVEL_OFF = 0

repeater level to disable repeating; this is the default.

139.17.7.3 public static final int REPEATER_LEVEL_ONE = 1

repeater level to repeat every telegram at most once.

139.17.7.4 public static final int REPEATER_LEVEL_TWO = 2

repeater level to repeat every telegram at most twice.

139.17.7.5 public String apiVersion() throws EnOceanException

□ Returns the chip's API version info (cf. ESP3 command 0x03: CO_RD_VERSION)

Returns a String object containing the API version info.

Throws EnOceanException– if any problem occurs.

139.17.7.6 public String appVersion() throws EnOceanException

□ Returns the chip's application version info (cf. ESP3 command 0x03: CO_RD_VERSION)

Returns a String object containing the application version info.

Throws EnOceanException– if any problem occurs.

139.17.7.7 public int getBaseID() throws EnOceanException

□ Gets the BASE_ID of the chip, if set (cf. ESP3 command 0x08: CO_RD_IDBASE)

Returns the BASE_ID of the device as defined in EnOcean specification

Throws EnOceanException– if any problem occurs.

139.17.7.8 public int getChipId(String servicePID) throws EnOceanException

servicePID

□ Retrieves the CHIP_ID associated with the given servicePID, if existing on this chip.

Returns the associated CHIP_ID of the exported device.

Throws EnOceanException– if any problem occurs.

139.17.7.9 public int getRepeaterLevel() throws EnOceanException

□ Gets the current repeater level of the host (cf. ESP3 command 0x0A: CO_RD_REPEATER)

org.osgi.service.enocean Device Service Specification for EnOcean™ Technology Version 1.0

Page 794 OSGi Compendium Release 8

Returns one of the Repeater Level constants as defined above.

Throws EnOceanException– if any problem occurs.

139.17.7.10 public void reset() throws EnOceanException

□ Reset the EnOcean Host (cf. ESP3 command 0x02: CO_WR_RESET)

Throws EnOceanException– if any problem occurs.

139.17.7.11 public void setBaseID(int baseID) throws EnOceanException

baseID to be set.

□ Sets the base ID of the device, may be used up to 10 times (cf. ESP3 command 0x07:
CO_WR_IDBASE)

Throws EnOceanException– if any problem occurs.

139.17.7.12 public void setRepeaterLevel(int level) throws EnOceanException

level one of the Repeater Level constants as defined above.

□ Sets the repeater level on the host (cf. ESP3 command 0x09: CO_WR_REPEATER)

Throws EnOceanException– if any problem occurs.

139.17.8 public interface EnOceanMessage
Holds the necessary methods to interact with an EnOcean message.

139.17.8.1 public byte[] getBytes()

□ Gets the bytes corresponding to the whole message, including the CRC. The generated byte[] array
may be sent to an EnOcean gateway and is conform to EnOcean Radio Protocol.

Returns The serialized byte list corresponding to the binary message.

139.17.8.2 public int getDbm()

□ Returns the average RSSI on all the received subtelegrams, including redundant ones.

Returns The average RSSI perceived.

139.17.8.3 public int getDestinationId()

Returns the message's destination ID, or -1

139.17.8.4 public int getFunc()

Returns the message's FUNC

139.17.8.5 public byte[] getPayloadBytes()

□ Returns the payload bytes of this message.

Returns corresponding value.

139.17.8.6 public int getRorg()

Returns the message's RORG

139.17.8.7 public int getSecurityLevelFormat()

□ Returns the security level of this message, as specified in the 'Security of EnOcean Radio Networks'
draft, section 4.2.1.3.

Device Service Specification for EnOcean™ Technology Version 1.0 org.osgi.service.enocean

OSGi Compendium Release 8 Page 795

Returns The security level format.

139.17.8.8 public int getSenderId()

Returns the message's Sender ID

139.17.8.9 public int getStatus()

□ Gets the current EnOcean status of the Message. The 'status' byte is actually a bitfield that main-
ly holds repeater information, teach-in status, and more or less information depending on the ra-
diotelegram type.

Returns the current EnOcean status of this message.

139.17.8.10 public int getSubTelNum()

□ Returns the number of subtelegrams (usually 1) this Message carries.

Returns The number of subtelegrams in the case of multiframe messages.

139.17.8.11 public int getType()

Returns the message's TYPE

139.17.9 public interface EnOceanRPC
A very basic interface for RPCs.

139.17.9.1 public static final String FUNCTION_ID = "enocean.rpc.function_id"

The Function ID property string, used in EventAdmin RPC broadcasting.

139.17.9.2 public static final String MANUFACTURER_ID = "enocean.rpc.manufacturer_id"

The Manufacturer ID property string, used in EventAdmin RPC broadcasting.

139.17.9.3 public int getFunctionId()

□ Gets the functionID for this RPC.

Returns function id.

139.17.9.4 public int getManufacturerId()

□ Gets the manufacturerID for this RPC.

Returns manufacturer id.

139.17.9.5 public String getName()

□ Get a friendly name for the RPC

Returns the name.

139.17.9.6 public byte[] getPayload()

□ Gets the current payload of the RPC.

Returns the payload, in bytes, of this RPC.

139.17.9.7 public int getSenderId()

□ Sets the RPC's senderID. This member has to belong to EnOceanRPC interface, for the object may be
sent as a standalone using EventAdmin for instance.

Returns sender id.

org.osgi.service.enocean.descriptions Device Service Specification for EnOcean™ Technology Version 1.0

Page 796 OSGi Compendium Release 8

139.17.9.8 public void setSenderId(int chipId)

chipId

□ Sets the RPC's senderID.

139.18 org.osgi.service.enocean.descriptions

EnOcean Descriptions Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.enocean.descr ipt ions; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.enocean.descr ipt ions; vers ion="[1.0,1.1)"

139.18.1 Summary

• EnOceanChannelDescr ipt ion - Public and registered description interface for a channel.
• EnOceanChannelDescr ipt ionSet - This interface represents an EnOcean Channel Description

Set.
• EnOceanChannelEnumValue - This transitional interface is used to define all the possible values

taken by an enumerated channel.
• EnOceanDataChannelDescr ipt ion - Subinterface of EnOceanChannelDescription that describes

physical measuring channels.
• EnOceanEnumChannelDescr ipt ion - Subinterface of EnOceanChannelDescription that de-

scribes enumerated channels.
• EnOceanFlagChannelDescr ipt ion - Subinterface of EnOceanChannelDescription that describes

boolean channels.
• EnOceanMessageDescr ipt ion - This interface represents an EnOcean Message Description.
• EnOceanMessageDescr ipt ionSet - This interface represents an EnOcean Message Description

Set.

139.18.2 public interface EnOceanChannelDescription
Public and registered description interface for a channel. Encompasses all the possible subtypes for
a channel.

139.18.2.1 public static final String CHANNEL_ID = "enocean.channel.description.channel_id"

The unique ID of this EnOceanChannelDescription object.

139.18.2.2 public static final String TYPE_DATA = "enocean.channel.description.data"

A DATA channel maps itself to a Double value representing a physical measure.

139.18.2.3 public static final String TYPE_ENUM = "enocean.channel.description.enum"

An ENUM channel maps itself to one between a list of discrete EnOceanChannelEnumValue "value
objects".

139.18.2.4 public static final String TYPE_FLAG = "enocean.channel.description.flag"

A FLAG channel maps itself to a Boolean value.

Device Service Specification for EnOcean™ Technology Version 1.0 org.osgi.service.enocean.descriptions

OSGi Compendium Release 8 Page 797

139.18.2.5 public static final String TYPE_RAW = "enocean.channel.description.raw"

A RAW channel is only made of bytes.

139.18.2.6 public Object deserialize(byte[] bytes)

bytes the right-aligned raw bytes.

□ Tries to deserialize a series of bytes into a documented value object (raw bytes, Double or EnOcean-
ChannelEnumValue. Of course this method will be specialized for each EnOceanChannelDescrip-
tion subinterface, depending on the type of this channel.

Returns a value object.

Throws I l legalArgumentException –

139.18.2.7 public String getType()

□ Retrieves the type of the channel.

Returns one of the above-described types.

139.18.2.8 public byte[] serialize(Object obj)

obj the value of the channel.

□ Tries to serialize the channel into a series of bytes.

Returns the right-aligned value, in raw bytes, of the channel.

Throws I l legalArgumentException –

139.18.3 public interface EnOceanChannelDescriptionSet
This interface represents an EnOcean Channel Description Set. EnOceanChannelDescriptionSet is
registered as an OSGi Service. Provides a method to retrieve the EnOceanChannelDescription ob-
jects it documents.

139.18.3.1 public EnOceanChannelDescription getChannelDescription(String channelId)

channelId the unique string identifier of the description object.

□ Retrieves a EnOceanChannelDescription object according to its identifier.

Returns The corresponding EnOceanChannelDescription object, or null.

Throws I l legalArgumentException– if the supplied String is invalid, null, or other reason.

139.18.4 public interface EnOceanChannelEnumValue
This transitional interface is used to define all the possible values taken by an enumerated channel.

139.18.4.1 public String getDescription()

□ A non-mandatory description of what this enumerated value is about.

Returns the description of this channel.

139.18.4.2 public int getStart()

□ The start value of the enumeration.

Returns the start value.

139.18.4.3 public int getStop()

□ The stop value of the enumeration.

Returns the stop value.

org.osgi.service.enocean.descriptions Device Service Specification for EnOcean™ Technology Version 1.0

Page 798 OSGi Compendium Release 8

139.18.5 public interface EnOceanDataChannelDescription
extends EnOceanChannelDescription
Subinterface of EnOceanChannelDescription that describes physical measuring channels.

139.18.5.1 public int getDomainStart()

□ The start of the raw input range for this channel.

Returns the domain start.

139.18.5.2 public int getDomainStop()

□ The end of the raw input range for this channel.

Returns the domain stop.

139.18.5.3 public double getRangeStart()

□ The scale start at which this channel will be mapped to (-20,0°C for instance)

Returns the range start.

139.18.5.4 public double getRangeStop()

□ The scale stop at which this channel will be mapped to (+30,0°C for instance)

Returns the range stop.

139.18.5.5 public String getUnit()

□ The non-mandatory physical unit description of this channel.

Returns the unit as a String

139.18.6 public interface EnOceanEnumChannelDescription
extends EnOceanChannelDescription
Subinterface of EnOceanChannelDescription that describes enumerated channels.

139.18.6.1 public EnOceanChannelEnumValue[] getPossibleValues()

□ Gets all the possible value for this channel.

Returns corresponding value(s).

139.18.7 public interface EnOceanFlagChannelDescription
extends EnOceanChannelDescription
Subinterface of EnOceanChannelDescription that describes boolean channels.

139.18.8 public interface EnOceanMessageDescription
This interface represents an EnOcean Message Description.

139.18.8.1 public EnOceanChannel[] deserialize(byte[] bytes)

bytes to be deserialized.

□ Deserializes an array of bytes into the EnOceanChannels available to the payload, if possible.

Returns deserialized value.

Throws I l legalArgumentException– if the actual instance type of the message is not compatible with the
bytes it is fed with (RORG to begin with).

Device Service Specification for EnOcean™ Technology Version 1.0 References

OSGi Compendium Release 8 Page 799

139.18.8.2 public String getMessageDescription()

Returns the message description containing the RORG, (and the FUNC, and the TYPE if available), as well as,
the EEP's "title" (e.g. for F60201: Rocker Switch, 2 Rocker; Light and Blind Control - Application Style
1).

139.18.8.3 public byte[] serialize(EnOceanChannel[] channels)

channels to be serialized.

□ Serializes a series of EnOceanChannel objects into the corresponding byte[] sequence.

Returns serialized value.

Throws I l legalArgumentException– if the given channels is null.

139.18.9 public interface EnOceanMessageDescriptionSet
This interface represents an EnOcean Message Description Set. EnOceanMessageDescriptionSet is
registered as an OSGi Service. Provides method to retrieve the EnOceanMessageDescription objects
it documents.

139.18.9.1 public EnOceanMessageDescription getMessageDescription(int rorg, int func, int type, int extra)

rorg the radio telegram type of the message.

func The func subtype of this message.

type The type subselector.

extra Some extra information; some EnOceanMessageDescription objects need an additional specifier. If
not needed, has to be set to -1.

□ Retrieves a EnOceanMessageDescription object according to its identifiers. See EnOcean Equipment
Profile Specification for more details.

Returns The EnOceanMessageDescription object looked for, or null.

Throws I l legalArgumentException– if there was an error related to the input arguments.

139.19 References

[1] Pervasive Service Composition in the Home Network
Bottaro, A., Gérodolle, A., Lalanda, P., 21st IEEE International Conference on Advanced Information
Networking and Applications (AINA-07), Niagara Falls, Canada, May 2007

[2] EnOcean Equipment Profiles v2.6.2
EnOcean Alliance, https://www.enocean-alliance.org/en/enocean_standard/, November 19, 2014

[3] EnOcean System Specification - Remote Management v2.0
EnOcean Alliance, March 06, 2014

[4] EnOcean System Specification - EnOcean Serial Protocol v1.17
EnOcean Alliance, August 2, 2011

[5] EnOcean System Specification - Security of EnOcean Radio Networks v1.9
EnOcean Alliance, July 26, 2013

[6] EnOcean Remote Commissioning Summary v1.0
EnOcean Alliance, https://www.enocean-alliance.org/en/downloads/, December 01, 2014

[7] Persistent Identifier (PID)
OSGi Core Release, Service Layer

https://www.enocean-alliance.org/en/enocean_standard/
https://www.enocean-alliance.org/en/downloads/

References Device Service Specification for EnOcean™ Technology Version 1.0

Page 800 OSGi Compendium Release 8

Http Whiteboard Specification Version 1.1 Introduction

OSGi Compendium Release 8 Page 801

140 Http Whiteboard Specification

Version 1.1

140.1 Introduction
Servlets have become a popular and widely supported mechanism for providing dynamic con-
tent on the Internet. While servlets are defined in the [4] Java Servlet 3.1 Specification, the OSGi Http
Whiteboard Specification provides a light and convenient way of using servlets, servlet filters,
servlet listeners and web resources in an OSGi environment through the use of the [7] Whiteboard
Pattern.

The Http Whiteboard specification supports:

• Registering Servlets - Registering a servlet in the Service Registry makes it available to be bound to
an endpoint to serve content over the network.

• Registering Servlet Filters - Servlet filters support pre- and post-processing of servlet requests and
responses. Servlet filters can be registered in the Service Registry to include them in the handling
pipeline.

• Registering Resources - Resources such as HTML files, JavaScript, image files, and other static re-
sources can be made available over the network by registering resource services.

• Registering Servlet Listeners - The servlet specification defines a variety of listeners, which receive
callbacks when certain events take place.

Implementations of this specification can support the following versions of the HTTP protocol:

• [1] HTTP 1.0 Specification RFC-1945
• [2] HTTP 1.1 Specifications RFCs 7230-7235
• [3] HTTP/2 Specifications

Alternatively, implementations of this service can support other protocols if these protocols can
conform to the semantics of the Java Servlet API.

Http Whiteboard implementations must support version 3.1 or later of the Java Servlet API.

140.1.1 Entities
This specification defines the following entities:

• Http Whiteboard service - An object registered in the Service Registry under one of the Whiteboard
service interfaces defined by this specification.

• Http Whiteboard implementation - An implementation that processes Http Whiteboard services.
• Http Service Runtime service - Service providing runtime introspection into the Http Whiteboard

implementation.
• Listener - Various listeners can be registered to receive notifications about servlet or Http Session

events.
• Resource Service - A service thats binds static resources.
• Servlet - Component that dynamically generates web pages or other resources provided over the

network.

The Servlet Context Http Whiteboard Specification Version 1.1

Page 802 OSGi Compendium Release 8

• Servlet Context Helper - A service to control the behavior of the Servlet Context.
• Servlet Filter - Can be used to augment or transform web resources or for cross-cutting functional-

ity such as security, common widgets or otherwise.

Figure 140.1 Http Whiteboard Overview Diagram

ServletContextHelper

Servlet

Filter / Pre-processor

Resources Service

Http Whiteboard
implementation

Listeners

Http Service Runtime

140.2 The Servlet Context
The servlet specification defines the ServletContext which is provided to servlets at runtime by the
container. Whiteboard services defined by this specification are also provided with a ServletCon-
text . The behavior of this Servlet Context can be influenced by providing a ServletContextHelper
service. A custom ServletContextHelper can provide resources, mime-types, handle security and
supports a number of methods from the ServletContext .

The Http Whiteboard implementation must create a separate ServletContext instance for each
ServletContextHelper service. Whiteboard services can be associated with the Servlet Context
Helper by using the osgi .http.whiteboard.context.select property. If this property is not set, the de-
fault Servlet Context Helper is used.

To achieve the required behavior for ServletContext.getClassLoader each bundle must be provided
with a separate Servlet Context instance to serve the class loader of the Whiteboard services for that
bundle. For more information see getClassLoader in Table 140.2 on page 805.

Some implementations of the ServletContextHelper may be implemented using a Service Factory,
for example to provide resources from the associated bundle, as the default implementation does.
Therefore the Whiteboard implementation must get the Servlet Context Helper using the Bundle
Context of the bundle that registered the Whiteboard service.

Some environments may use [8] Core Service Hooks to isolate ServletContextHelper service registra-
tions. The Whiteboard implementation must check that the bundle registering the Whiteboard ser-
vice has the ability to find the ServletContextHelper service before allowing the Whiteboard ser-
vice to bind to the Servlet Context Helper. This can be done by calling one of the getServiceRefer-
ences methods on the Bundle Context of bundle that registered the Whiteboard service.

Http Whiteboard Specification Version 1.1 The Servlet Context

OSGi Compendium Release 8 Page 803

Table 140.1 Service registration properties for ServletContextHelper services.

Service Property Type Description
osgi .http.whiteboard.context.name

name

Str ing

required

Name of the Servlet Context Helper. This name
can be referred to by Whiteboard services via the
osgi .http.whiteboard.context.select property. The syntax of the
name is the same as the syntax for a Bundle Symbolic Name. The
default Servlet Context Helper is named default . To override the
default, register a custom ServletContextHelper service with the
name default . If multiple Servlet Context Helper services are reg-
istered with the same name, the one with the highest Service
Ranking is used. In case of a tie, the service with the lowest ser-
vice ID wins. In other words, the normal OSGi service ranking
applies.

Registrations with an invalid or unspecified name
are not used and reflected in the failure DTOs. See
HTTP_WHITEBOARD_CONTEXT_NAME .

osgi .http.whiteboard.context.path

path

Str ing

required

Additional prefix to the context path for servlets. This prop-
erty is mandatory. Valid characters are specified in IETF RFC
3986, section 3.3. The context path of the default Servlet Con-
text Helper is / . A custom default Servlet Context Helper may
use an alternative path. If the path is invalid or unspecified,
the service is not used and reflected in the failure DTOs. See
HTTP_WHITEBOARD_CONTEXT_PATH .

context. init .* Str ing

optional

Properties starting with this prefix are provided as init pa-
rameters through the ServletContext.getInitParameter
and ServletContext.getInitParameterNames methods. The
context. init . prefix is removed from the parameter name. See
HTTP_WHITEBOARD_CONTEXT_INIT_PARAM_PREFIX .

Multiple ServletContextHelper services can have identical or overlapping
osgi .http.whiteboard.context.path values. A matching servlet or resource is located as follows:

1. The Servlet Context Helper service with the longest matching path is matched first.
2. In the case of two Servlet Context Helpers with the same path, the service with the highest rank-

ing is searched first for a match. In the case of a tie, the lowest service ID is searched first.

For example, if two ServletContextHelper services are registered as follows

osgi.http.whiteboard.context.path = /foo
osgi.http.whiteboard.context.path = /foo/bar

Then a request for http:// localhost/foo/bar/someServlet is looked up in the following order:

1. /foo/bar context looking for a pattern to match /someServlet
2. /foo context looking for a pattern to match /bar/someServlet

Note that whole path segments must match. Therefore the following request can only be han-
dled by the Servlet Context Helper registered under the /foo path: http:// localhost/foo/bars/
someOtherServlet.

For details on the association process between servlet, servlet filter, resource and listener services
and the ServletContextHelper see Common Whiteboard Properties on page 808.

If a Servlet Context Helper can not be used, for example because it is shadowed by another Servlet
Context Helper service with the same name, but with a higher ranking, this is reflected in the
Fai ledServletContextDTO . Similarly, if an alternative default Servlet Context Helper is provided,

The Servlet Context Http Whiteboard Specification Version 1.1

Page 804 OSGi Compendium Release 8

the default Servlet Context Helper provided by the Http Whiteboard implementation is not used
and represented in a failure DTO.

An example Servlet Context Helper defined using Declarative Services annotations can be found be-
low, it prefixes the path with /myapp for any associated whiteboard service. Additionally, it serves
static resources from a non-standard location, a content delivery network. Other methods use the
default ServletContextHelper implementation.

@Component(service = ServletContextHelper.class, scope = ServiceScope.BUNDLE)
@HttpWhiteboardContext(name = "my-context", path = "/myapp")
public class CDNServletContextHelper extends ServletContextHelper {
 public URL getResource(String name) {
 try {
 return new URL("http://acmecdn.com/myapp/" + name);
 } catch (MalformedURLException e) {
 return null;
 }
 }
}

The following sections outline the methods a custom ServletContextHelper can override and the
behavior of the default implementation.

140.2.1 String getMimeType(String)
Called to provide the MIME type for a resource.

Default Behavior - Always returns nul l .

140.2.2 String getRealPath(String)
Called to support the ServletContext.getRealPath method.

Default Behavior - Always returns nul l .

140.2.3 URL getResource(String)
Obtain a URL for a given resource request.

Default Behavior - Assumes the resources are in the bundle registering the Whiteboard service.
Its Bundle.getEntry method is called to obtain a URL to the resource. The default Servlet Context
Helper implementation assumes the path to be relative to the bundle's root.

140.2.4 Set<String> getResourcePaths(String)
Called to support the ServletContext.getResourcePaths method. Returns all the matching resources
for the path.

Default Behavior - Assumes the resources are in the bundle registering the Whiteboard service. Its
Bundle.f indEntr ies method is called to obtain the listing.

140.2.5 Security Handling
The
handleSecurity(javax.servlet .http.HttpServletRequest, javax.servlet .http.HttpServletResponse)
method is invoked to handle implementation-defined security on the request. It is invoked before
the request is sent to the filter-servlet pipeline.

When the request returns from the filter-servlet pipeline the
f in ishSecurity(javax.servlet .http.HttpServletRequest, javax.servlet .http.HttpServletResponse)
method is called. This method can be used by the security handling mechanism to clean up any con-
text associated with the current request. f in ishSecurity is only called if handleSecurity returned true

Http Whiteboard Specification Version 1.1 The Servlet Context

OSGi Compendium Release 8 Page 805

for the specified request. If an exception occurs during processing of the pipeline, f in ishSecurity is
still called. This allows to clean up regardless of the result of the pipeline.

In the case a request is dispatched either using the include or forward method handleSecurity and
f in ishSecurity are called again on this new context. These calls are nested within the originating re-
quest. Servlet Context Helpers that implement these methods must be prepared to deal with such
nested invocations.

Default Behavior - handleSecurity always returns true . f in ishSecurity does nothing by default.

140.2.6 Behavior of the Servlet Context
The ServletContext provided to Whiteboard services is based on the associated ServletContex-
tHelper , Whiteboard service registration properties and the underlying servlet container.

Methods to programmatically add servlets, servlet filters and listeners are not supported on the
ServletContext . Such functionality is available by registering these entities as Whiteboard services.

Table 140.2 Behavior of ServletContext methods.

ServletContext method Since Description
addFi lter(. . .) 3.0 Throws UnsupportedOperationException .
addListener(. . .) 3.0 Throws UnsupportedOperationException .
addServlet(. . .) 3.0 Throws UnsupportedOperationException .
createFi l ter(Class) 3.0 Throws UnsupportedOperationException .
createListener(Class) 3.0 Throws UnsupportedOperationException .
createServlet(Class) 3.0 Throws UnsupportedOperationException .
declareRoles(Str ing . . .) 3.0 Throws UnsupportedOperationException .
getAttr ibute(Str ing) 2.0 Stored per ServletContextHelper . The Servlet

Context keeps a set of attributes per Servlet Con-
text Helper.

getAttr ibuteNames() 2.1 Stored per ServletContextHelper . The Servlet
Context keeps a set of attributes per Servlet Con-
text Helper.

getClassLoader() 3.0 Returns the class loader of the bundle that regis-
tered the Whiteboard service. An implementa-
tion of this specification can achieve this by re-
turning separate façades of the ServletContext
to each Whiteboard service. Each façade access-
es the Whiteboard service's Bundle Wiring to ob-
tain its class loader.

getContext(Str ing) 2.1 Backed by the Servlet Container.
getContextPath() 2.5 Return the web context path of the Servlet

Context. This takes into account the
osgi .http.whiteboard.context.path of the Servlet
Context Helper and the path of the Http runtime.

getDefaultSessionTrackingModes() 3.0 Backed by the Servlet Container.
getEffect iveMajorVersion() 3.0 Backed by the Servlet Container.
getEffect iveMinorVersion() 3.0 Backed by the Servlet Container.
getEffect iveSessionTracking-
Modes()

3.0 Backed by the Servlet Container.

getFi l terRegistrat ion(Str ing) 3.0 Backed by the Servlet Container.
getFi l terRegistrat ions() 3.0 Backed by the Servlet Container.
getInitParameter(Str ing) 2.2 From context. init .* service registration proper-

ties.

The Servlet Context Http Whiteboard Specification Version 1.1

Page 806 OSGi Compendium Release 8

ServletContext method Since Description
getInitParameterNames() 2.2 From context. init .* service registration proper-

ties.
getJspConfigDescr iptor() 3.0 Returns nul l .
getMajorVersion() 2.1 Backed by the Servlet Container.
getMimeType(Str ing) 2.1 Backed by the ServletContextHelper .
getMinorVersion() 2.1 Backed by the Servlet Container.
getNamedDispatcher(Str ing) 2.2 Provides the Whiteboard servlet with the

specified name, provided through the
osgi .http.whiteboard.servlet .name property, if
associated with this Servlet Context Helper. If
multiple servlets have the same name and are as-
sociated with this Servlet Context Helper then
the highest ranked servlet is used. In the case of a
tie, the one with the lowest service ID is used.

getRealPath(Str ing) 2.0 Backed by the ServletContextHelper .
getResource(Str ing) 2.1 Backed by the ServletContextHelper .
getRequestDispatcher(Str ing) 2.1 If the argument matches a servlet associated with

this Servlet Context Helper, this will be returned.
getResourceAsStream(Str ing) 2.1 Backed by the ServletContextHelper .
getResourcePaths(Str ing) 2.3 Backed by the ServletContextHelper .
getServlet(Str ing) 2.0 Deprecated. Backed by the Servlet Container.
getServletContextName() 2.2 The name of the ServletContextHelper provided

via the osgi .http.whiteboard.context.name ser-
vice property.

getServletNames() 2.0 Deprecated. Backed by the Servlet Container.
getServletRegistrat ion(Str ing) 3.0 Backed by the Servlet Container.
getServletRegistrat ions() 3.0 Backed by the Servlet Container.
getServlets() 2.0 Deprecated. Backed by the Servlet Container.
getServerInfo() 2.0 Backed by the Servlet Container.
getSessionCookieConfig() 3.0 Returns a SessionCookieConfig object. This ob-

ject is read-only and all setters throw a I l legalSta-
teException .

getVirtualServerName() 3.1 Backed by the Servlet Container.
log(Str ing) 2.0 Backed by the Servlet Container.
log(Exception, Str ing) 2.0 Deprecated. Backed by the Servlet Container.
log(Str ing, Throwable) 2.1 Backed by the Servlet Container.
removeAttr ibute(Str ing) 2.1 Stored per ServletContextHelper . The Servlet

Context keeps a set of attributes per Servlet Con-
text Helper.

setAttr ibute(Str ing, Object) 2.1 Stored per ServletContextHelper . The Servlet
Context keeps a set of attributes per Servlet Con-
text Helper.

setInitParameter(Str ing, Str ing) 3.0 Throws I l legalStateException . The ServletCon-
text has already been initialized.

setSessionTrackingModes(Set) 3.0 Throws I l legalStateException . The ServletCon-
text has already been initialized.

Http Whiteboard Specification Version 1.1 The Servlet Context

OSGi Compendium Release 8 Page 807

140.2.7 Relation to the Servlet Container
Implementations of this specification will often be backed by existing servlet containers or a Java EE
application server. There may also exist implementations which bridge into a servlet container into
which the OSGi Framework has been deployed as a Web Application.

In bridged situations the Http Whiteboard implementation will live in one servlet context and
all Whiteboard services registered by this implementation will be backed by the same underlying
Servlet Context. However, to exhibit the behavior described in Table 140.2 on page 805 different
Servlet Context objects may be required. Therefore an implementation of this specification may
need to create additional ServletContext objects which delegate certain functionality to the Servlet-
ContextHelper and other functionality to the Servlet Context of the Web Application, yet further
functionality can be obtained otherwise. In such cases the relationship may look like the below fig-
ure.

Figure 140.2 Servlet Context entities and their relation

Application Server

WebApp

Http Whiteboard

Servlet Context

Servlet Context

Servlet Context Servlet Context

Servlet Context Helper

OSGi Bundle OSGi Bundle

Whiteboard
Service A

Whiteboard
Service B

Whiteboard
Service C

Servlet Context provided by
Application Server.

Servlet Context associated
with the Servlet Context Helper
to provide behavior as defined
in the table above.

Servlet Context per whiteboard
services bundle to provide
getClassLoader() API.

Where Table 140.2 on page 805 states Backed by the Servlet Container and the Http Whiteboard im-
plementation is deployed in bridged mode, the API call can be forwarded to the top-level Servlet
Context. If the Http Whiteboard implementation is not deployed in bridged mode, it must provide
another means to handle these APIs.

In bridged deployments, the implementation needs to ensure the following:

1. That Whiteboard services are provided with the correct ServletContext keeping in mind that
each distinct ServletContextHelper should be associated with a separate ServletContext ob-
ject, which in turn may delegate certain requests to the underlying shared ServletContext as de-
scribed in the table above.

2. That Http Sessions are not shared amongst servlets registered with different ServletContex-
tHelpers. That is, HttpRequest.getSession calls must provide different sessions per associated
ServletContextHelper . Http Sessions are defined in chapter 7 of the [4] Java Servlet 3.1 Specifica-
tion.

Common Whiteboard Properties Http Whiteboard Specification Version 1.1

Page 808 OSGi Compendium Release 8

140.3 Common Whiteboard Properties
Whiteboard servlet, servlet filter, resource and listener services support common service registra-
tion properties to associate them with a ServletContextHelper and/or a Http Whiteboard imple-
mentation.

Table 140.3 Common properties

Service Property Type Description
osgi .http.whiteboard.context.select

HttpWhiteboardContextSelect

Str ing

optional

An LDAP-style filter to select the associated ServletContex-
tHelper service to use. Any service property of the Servlet
Context Helper can be filtered on. If this property is miss-
ing the default Servlet Context Helper is used.

For example, to select a Servlet Context Helper with name
myCTX provide the following value:

(osgi.http.whiteboard.context.name=myCTX)

To select all Servlet Context Helpers provide the following
value:

(osgi.http.whiteboard.context.name=*)

If no matching context exists this is reflected in the failure
DTOs. See HTTP_WHITEBOARD_CONTEXT_SELECT .

osgi .http.whiteboard.target

HttpWhiteboardTarget

Str ing

optional

The value of this service property is an LDAP-style filter ex-
pression to select the Http Whiteboard implementation(s)
to handle this Whiteboard service. The LDAP filter is
used to match HttpServiceRuntime services. Each Http
Whiteboard implementation exposes exactly one HttpSer-
viceRuntime service. This property is used to associate
the Whiteboard service with the Http Whiteboard im-
plementation that registered the HttpServiceRuntime
service. If this property is not specified, all Http White-
board implementations can handle the service. See
HTTP_WHITEBOARD_TARGET .

If multiple Servlet Context Helper services match the osgi .http.whiteboard.context.select proper-
ty the servlet, filter, resource or listener will be registered with all these Servlet Context Helpers. To
avoid multiple in it and destroy calls on the same instance, servlets and filters should be registered as
Prototype Service Factory.

140.4 Registering Servlets
Servlets can be registered with the Http Whiteboard implementation by registering them as White-
board services. This means that Servlet implementations are registered in the Service Registry under
the javax.servlet .Servlet interface.

Servlets are registered with one or more pattern through the osgi .http.whiteboard.servlet .pattern
service property. Each pattern defines the URL context that will trigger the servlet to handle the re-
quest. They are defined by the [4] Java Servlet 3.1 Specification in section 12.2, Specification of Mappings.
Note that these mapping rules are slightly different than those defined in the Http Service Specifica-
tion on page 39. The mapping rules are:

Http Whiteboard Specification Version 1.1 Registering Servlets

OSGi Compendium Release 8 Page 809

• A string beginning with a '/' character and ending with a "/*" suffix is used for path mapping.
• A string beginning with a "*." prefix is used as an extension mapping.
• The empty string ("") is a special URL pattern that exactly maps to the application's context root.

That is, requests of the form http://host:port/<context-root>/. In this case the path info is "/" and
the servlet path and context path are the empty string ("").

• A string containing only the '/' character indicates the "default" servlet of the application. In this
case, the servlet path is the request URI minus the context path and the path info is null.

• All other strings are used for exact matches only.

Servlet and resource service registrations associated with a single Servlet Context share the same
namespace. In case of identical registration patterns, service ranking rules are used to select the ser-
vice handling a request. That is, Whiteboard servlets that have patterns shadowed by other White-
board services associated with the same Servlet Context are represented in the failure DTOs.

The above rules can cause servlets that are already bound becoming unbound if a better match ar-
rives. This ensures a predictable end result regardless of the order in which services are registered.

A servlet may be registered with the property osgi .http.whiteboard.servlet .name which can be used
by servlet filters to address this servlet. If the servlet service does not have this property, the servlet
name defaults to the fully qualified class name of the service object.

With implementations that both implement this specification as well as the Http Service Specification
on page 39, situations can arise where a servlet is registered for the same pattern with the Http Ser-
vice as well as with the Http Whiteboard. The Servlet Context of the Http Service is treated in the
same way as all contexts managed by the Whiteboard implementation. The highest ranking is asso-
ciated with the context of the Http Service. For a request, contexts are processed in the order as de-
scribed in section The Servlet Context on page 802.

For example, if the Http Whiteboard implementation is listening on port 80 on the machine
www.acme.com and the Servlet object is registered with the pattern "/servlet" , then the Servlet
object's service method is called when the following URL is used from a web browser:

http://www.acme.com/servlet

The following table describes the properties that can be used by Servlets registered as Whiteboard
services. Additionally, the common properties listed in Table 140.3 on page 808 are supported.

Table 140.4 Service properties for Servlet Whiteboard services.

Service Property Type Description
osgi .http.whiteboard.servlet .«

 asyncSupported

HttpWhiteboardServletAsyncSup-
ported

Boolean |
Str ing

optional

Declares whether the servlet supports the asyn-
chronous operation mode. Allowed values are true
and fa lse independent of case. Defaults to fa lse . See
HTTP_WHITEBOARD_SERVLET_ASYNC_SUPPORTED .

osgi .http.whiteboard.servlet .«

 errorPage

HttpWhiteboardServletErrorPage

Str ing+

optional†

Register the servlet as an error page for the error code and/
or exception specified; the value may be a fully qualified ex-
ception type name or a three-digit HTTP status code in the
range 400-599 . Special values 4xx and 5xx can be used to
match value ranges. Any value not being a three-digit num-
ber is assumed to be a fully qualified exception class name. See
HTTP_WHITEBOARD_SERVLET_ERROR_PAGE .

osgi .http.whiteboard.servlet .«

 name

HttpWhiteboardServletName

Str ing

optional†

The name of the servlet. This name is used as the value of the
javax.servlet .ServletConfig.getServletName method and de-
faults to the fully qualified class name of the service object. See
HTTP_WHITEBOARD_SERVLET_NAME .

Registering Servlets Http Whiteboard Specification Version 1.1

Page 810 OSGi Compendium Release 8

Service Property Type Description
osgi .http.whiteboard.servlet .«

 pattern

HttpWhiteboardServletPattern

Str ing+

optional†

Registration pattern(s) for the servlet. See
HTTP_WHITEBOARD_SERVLET_PATTERN .

osgi .http.whiteboard.servlet .«

 mult ipart .enabled

enabled

Boolean |
Str ing

optional

Enables support for multipart configuration on the servlet. Allowed
values are true and false independent of case. Defaults to fa lse . See
HTTP_WHITEBOARD_SERVLET_MULTIPART_ENABLED .

osgi .http.whiteboard.servlet .«

 mult ipart .f i leSizeThreshold

fi leSizeThreshold

Integer

optional

The file size threshold after which the file is stored as a tempo-
rary file on disk while uploading. Defaults to 0. Files will be stored
in the directory as specified in . . . locat ion on the file system. See
HTTP_WHITEBOARD_SERVLET_MULTIPART_FILESIZETHRESHOLD .

osgi .http.whiteboard.servlet .«

 mult ipart . locat ion

location

Str ing

optional

The location where files are stored on disk. Defaults to the val-
ue of javax.servlet .context.tempdir servlet context attribute. If
this attribute is not set, the value of the java. io.tmpdir system
property will be used as default. If an absolute path is specified
then this path is used as-is. If a relative path is specified, it will
be used as relative to the default value. java. io.F i le . isAbsolute
must be used to evaluate whether a path is absolute or relative. See
HTTP_WHITEBOARD_SERVLET_MULTIPART_LOCATION .

osgi .http.whiteboard.servlet .«

 mult ipart .maxFi leSize

maxFi leSize

Long

optional

The maximum size for an uploaded file. Defaults to unlimit-
ed. Files larger than this size will cause a servlet exception. See
HTTP_WHITEBOARD_SERVLET_MULTIPART_MAXFILESIZE .

osgi .http.whiteboard.servlet .«

 mult ipart .maxRequestSize

maxRequestSize

Long

optional

The maximum size of a mult ipart/form-data re-
quest, in bytes. Defaults to unlimited. Requests larg-
er than this value will cause a servlet exception. See
HTTP_WHITEBOARD_SERVLET_MULTIPART_MAXREQUESTSIZE .

servlet . init .* Str ing

optional

Properties starting with this prefix are provided as init pa-
rameters to the javax.servlet .Servlet . init method. The
servlet . init . prefix is removed from the parameter name. See
HTTP_WHITEBOARD_SERVLET_INIT_PARAM_PREFIX .

† Note that at least one of the following properties must be specified on Servlet Whiteboard services:

 osgi.http.whiteboard.servlet.pattern
 osgi.http.whiteboard.servlet.name
 osgi.http.whiteboard.servlet.errorPage

Servlet objects are initialized by a Http Whiteboard implementation before they start serving re-
quests. The initialization is done by calling the Servlet object's Servlet . init(ServletConfig) method.
The ServletConfig parameter provides access to the initialization parameters specified when the
Servlet object was registered. Once the servlet is no longer used by the Http Whiteboard implemen-
tation the destroy method is called. Failure during Servlet . init will prevent the servlet from being
used, which is reflected using a failure DTO. In such a case the system treats the servlet as unusable
and attempts to find an alternative servlet matching the request.

If the service properties of the servlet Whiteboard service are modified, the destroy method is called.
Subsequently the servlet is re-initialized. If a Prototype Service Factory is used for the servlet this re-
initialization is done on a new service object.

When multiple Http Whiteboard implementations are present all of them can potentially process
the Servlet . In such situations it can be useful to associate the servlet with a specific implemen-
tation by specifying the osgi .http.whiteboard.target property on the Servlet service to match its
HttpServiceRuntime service.

Http Whiteboard Specification Version 1.1 Registering Servlets

OSGi Compendium Release 8 Page 811

If more than one Http Service Runtime matches the osgi .http.whiteboard.target property or the
property is not set, the Servlet will be processed by all the matching implementations. A Servlet ser-
vice that is processed by more than one Http Whiteboard implementation will have its in it method
called for each implementation that processes this Servlet . Similarly, the destroy method is called
once when the Servlet is shut down once for each implementation that processed it. As multiple in it
and destroy calls on the same Servlet instance are generally not desirable, Servlet implementations
should be registered as Prototype Service Factories as defined in the OSGi Core Release 8. This will en-
sure that each Http Whiteboard implementation processing the Servlet will use a separate instance,
ensuring that only one in it and destroy call is made per Servlet object. Servlets not registered as a
Prototype Service Factory may received in it and destroy calls multiple times on the same service ob-
ject.

The following example code uses Declarative Services annotations to register a servlet whiteboard
service.

@HttpWhiteboardServletPattern("/myservlet")
@Component(service = Servlet.class, scope = ServiceScope.PROTOTYPE,
 property = "servlet.init.myname=value")
public class MyServlet extends HttpServlet {
 private String name = "<not set>";

 public void init(ServletConfig config) {
 name = config.getInitParameter("myname");
 }

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws IOException {
 resp.setContentType("text/plain");
 resp.getWriter().println("Servlet name: " + name);
 }
}

This example registers the servlet at: /myservlet . Requests for http://www.acme.com/myservlet
map to the servlet, whose service method is called to process the request.

To associate the above example servlet with the example ServletContextHelper in The Servlet Con-
text on page 802, add the following service property:

osgi.http.whiteboard.context.select=(osgi.http.whiteboard.context.name=my-context)

This will cause the servlet to move to http://www.acme.com/myapp/myservlet as configured by the
custom Servlet Context Handler.

140.4.1 Multipart File Upload
Multipart file uploads are supported by specifying the osgi .http.whiteboard.servlet .mult ipart .*
properties on the Servlet service registration. The following example illustrates this:

@Component(service = Servlet.class)
@HttpWhiteboardServletPattern("/image")
@HttpWhiteboardServletMultipart(enabled = true, maxFileSize = 200000)
public class ImageServlet extends HttpServlet {

 @Override
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException, IOException {

Registering Servlets Http Whiteboard Specification Version 1.1

Page 812 OSGi Compendium Release 8

 Collection<Part> parts = request.getParts();

 for (Part part : parts) {
 System.out.printf("File %s, %s, %d%n", part.getName(),
 part.getContentType(), part.getSize());

 try (InputStream is = part.getInputStream()) {
 // ...
 }
 }
 }
}

140.4.2 Error Pages
Servlets can be used to serve Error Pages. These are invoked when an exception is thrown during
processing or if a servlet uses the sendError method with a status code between 400 and 599 .

For a servlet service to handle error situations the service property
osgi .http.whiteboard.servlet .errorPage must be set. This property can have multiple values, al-
lowing a single servlet to handle a variety of error situations. Possible values are 3-digit HTTP error
codes and fully qualified exception names.

Two special error code values are recognized. The special value 4xx means every error code in the
400-499 range. The special value 5xx means every error code in the 500-599 range. To override such
wildcard error page for a specific error, register an error page with the specific error code and a high-
er service ranking. Error pages shadowed by other error pages are reported via the failure DTOs. A
4xx/5xx wildcard error page is only reported in the failure DTOs if it is shadowed by another wild-
card page.

Matching exceptions follows the exception hierarchy. First the most specific exception class - the ac-
tual class of the exception - is looked up. If no matching error page for the most specific exception is
found, the error page for the super class of the exception is looked up and so on. The process ends by
looking up an error page for the java. lang.Throwable class.

While not being common practice, it is possible to combine the
osgi .http.whiteboard.servlet .errorPage and osgi .http.whiteboard.servlet .pattern properties. If a
single servlet registration has both these registration properties it is considered both an ordinary
servlet as well as an error page.

If an error or exception occurs for which an error page servlet can be matched, it is invoked to ren-
der the error page. If the error page servlet causes an error or exception while handling the request,
an implementation built-in error page is returned.

For example:

@Component(service = Servlet.class, scope = ServiceScope.PROTOTYPE)
@HttpWhiteboardServletErrorPage(errorPage = {"java.io.IOException", "500"})
public class MyErrorServlet extends HttpServlet {
 ...
}

The example servlet is invoked in case of a 500 error code, or if an IOException (or subclass) occurs.
If there is more than one error page registered for the same exception or error code, service ranking
rules are used to select the handling servlet.

140.4.3 Asynchronous Request Handling
Servlets can use the asynchronous request handling feature, as defined by the servlet specification.

Http Whiteboard Specification Version 1.1 Registering Servlet Filters

OSGi Compendium Release 8 Page 813

A servlet or servlet filter supporting the asynchronous mode must declare this with
the appropriate service property osgi .http.whiteboard.servlet .asyncSupported or
osgi .http.whiteboard.f i l ter.asyncSupported .

An example simple asynchronous servlet that handles the servlet requests in a thread from a cus-
tom thread pool rather than in the thread provided by the servlet container:

@Component(service = Servlet.class, scope = ServiceScope.PROTOTYPE)
@HttpWhiteboardServletPattern("/as")
@HttpWhiteboardServletAsyncSupported
public class AsyncServlet extends HttpServlet {
 ExecutorService executor = Executors.newCachedThreadPool(
 r -> new Thread(r, "Pooled Thread"));

 protected void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws IOException {
 doGetAsync(req.startAsync());
 }

 private void doGetAsync(AsyncContext asyncContext) {
 executor.submit(() -> {
 try {
 PrintWriter writer = asyncContext.getResponse().getWriter();
 writer.print("Servlet executed async in: " +
 Thread.currentThread()); // writes 'Pooled Thread'
 } finally {
 asyncContext.complete();
 }
 return null;
 });
 }
}

140.4.4 Annotations
Annotations defined in the Servlet API Specifications are ignored by an implementation of the Http
Whiteboard Specification. The OSGi service model is used instead by this specification.

Implementations of this specification may support these annotations through a proprietary opt-in
mechanism.

140.5 Registering Servlet Filters
Servlet filters provide a mechanism to intercept servlet invocations. They support modifying the
ServletRequest and ServletResponse objects and are often used to augment web pages generated by
servlets, for example with a common header or footer. Servlet filters can also be used to handle secu-
rity, do logging or transform the content produced by a servlet to a certain format.

Similar to servlets, servlet filters are registered as Whiteboard services, by registering a
javax.servlet .F i l ter instance in the Service Registry. The following table describes the supported ser-
vice properties. In addition the common properties as described in Table 140.3 on page 808 are
supported.

Registering Servlet Filters Http Whiteboard Specification Version 1.1

Page 814 OSGi Compendium Release 8

Table 140.5 Service properties for Fi lter Whiteboard services.

Service Property Type Description
osgi .http.whiteboard.f i l ter.«

 asyncSupported

HttpWhiteboardFi lterAsyncSupported

Str ing

optional

Declares whether the servlet filter supports asyn-
chronous operation mode. Allowed values are true
and fa lse independent of case. Defaults to fa lse . See
HTTP_WHITEBOARD_FILTER_ASYNC_SUPPORTED .

osgi .http.whiteboard.f i l ter.«

 dispatcher

HttpWhiteboardFi lterDispatcher

Str ing+

optional

Select the dispatcher configuration when the servlet filter
should be called. Allowed string values are REQUEST , ASYNC ,
ERROR , INCLUDE , and FORWARD . The default for a filter is
REQUEST . See HTTP_WHITEBOARD_FILTER_DISPATCHER .

osgi .http.whiteboard.f i l ter.name

HttpWhiteboardFi lterName

Str ing

optional

The name of a servlet filter. This name is used as the val-
ue of the Fi l terConfig.getFi l terName method and defaults
to the fully qualified class name of the service object. See
HTTP_WHITEBOARD_FILTER_NAME .

osgi .http.whiteboard.f i l ter.pattern

HttpWhiteboardFi lterPattern

Str ing+

optional†

Apply this servlet filter to the specified URL path patterns.
The format of the patterns is specified in the servlet specifica-
tion. See HTTP_WHITEBOARD_FILTER_PATTERN .

osgi .http.whiteboard.f i l ter. regex

HttpWhiteboardFi lterRegex

Str ing+

optional†

Apply this servlet filter to the specified URL paths. The
paths are specified as regular expressions following the
syntax defined in the java.ut i l . regex.Pattern class. See
HTTP_WHITEBOARD_FILTER_REGEX .

osgi .http.whiteboard.f i l ter.servlet

HttpWhiteboardFi lterServlet

Str ing+

optional†

Apply this servlet filter to the referenced servlet(s) by name.
See HTTP_WHITEBOARD_FILTER_SERVLET .

f i l ter. in it .* Str ing+

optional

Properties starting with this prefix are passed as init
parameters to the Fi l ter. in it method. The f i l ter. in it .
prefix is removed from the parameter name. See
HTTP_WHITEBOARD_FILTER_INIT_PARAM_PREFIX .

† Note that at least one of the following properties must be specified on Fi l ter Whiteboard services:

 osgi.http.whiteboard.filter.pattern
 osgi.http.whiteboard.filter.regex
 osgi.http.whiteboard.filter.servlet

Similar to servlets, Fi l ter objects are initialized by a Http Whiteboard implementation before they
start filtering requests. The initialization is done by calling the Fi l ter. in it(F i l terConfig) method. The
Fi l terConfig parameter provides access to f i l ter. in it .* properties on the servlet filter service registra-
tion. Once the Fi l ter is no longer used by the Http Whiteboard implementation, the destroy method
is called. When the service properties on the servlet filter are modified, the destroy method is called
and the servlet filter is subsequently re-initialized, if it can still be associated with a Http White-
board implementation after the modification. By default, a servlet filter can be used with any Servlet
Context Helper or Http Whiteboard implementation. To restrict a servlet filter to a single imple-
mentation or a specific Servlet Context Helper, the Common Whiteboard Properties on page 808 can
be used.

To deal with the dynamicity of the Whiteboard service lifecycle, it is recommended to implement
a servlet filter as Prototype Service Factory service. This will ensure that one single servlet filter in-
stance only receives one in it and one destroy call. Otherwise a single servlet filter instance can re-
ceive multiple such calls. This is similar to the behavior recommended for Servlet Whiteboard ser-
vices.

Multiple servlet filters can process the same servlet request/response. If more than one Fi l ter match-
es, the order in which they are processed is governed by their service ranking. The servlet filter with
the highest ranking is processed first in the filter chain, while the servlet filter with the lowest rank-

Http Whiteboard Specification Version 1.1 Registering Servlet Filters

OSGi Compendium Release 8 Page 815

ing is processed last, before the Servlet .service method is called. In the case of a service ranking tie,
the servlet filter with the lowest service. id is processed first. After the servlet completes its service
method the filter chain is unwound in reverse order.

Servlet filters are only applied to servlet requests if they are bound to the same Servlet Context
Helper and the same Http Whiteboard implementation.

The example Filter below adds some text before and after the content generated by a servlet:

@Component(scope = ServiceScope.PROTOTYPE)
@HttpWhiteboardFilterPattern("/*")
public class MyFilter implements Filter {
 public void init(FilterConfig filterConfig) throws ServletException {}

 public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain chain) throws IOException, ServletException {
 response.getWriter().write("before");
 chain.doFilter(request, response);
 response.getWriter().write("after");
 }

 public void destroy() {}
}

140.5.1 Servlet Pre-Processors
Servlet Filters are always run after
handleSecurity(javax.servlet .http.HttpServletRequest, javax.servlet .http.HttpServletResponse) is
called. However in some cases it is necessary to process servlet requests before security is handled.
For example if all requests must be logged, even ones that are rejected by security. In other scenarios,
requests may need to be prepared for the handleSecurity call.

A whiteboard Preprocessor service can be registered to handle such cases. The Preprocessor service
only supports the following service registration properties:

Table 140.6 Service properties for Preprocessor Whiteboard services.

Service Property Type Description
osgi .http.whiteboard.target

HttpWhiteboardTarget

Str ing

optional

The value of this service property is an LDAP-style filter expression to
select the Http Whiteboard implementation(s) to handle this White-
board service. The LDAP filter is used to match HttpServiceRuntime
services. Each Http Whiteboard implementation exposes exactly one
HttpServiceRuntime service. This property is used to associate the
Whiteboard service with the Http Whiteboard implementation that
registered the HttpServiceRuntime service. If this property is not speci-
fied, all Http Whiteboard implementations can handle the service. See
HTTP_WHITEBOARD_TARGET .

preprocessor. init .* Str ing+

optional

Properties starting with this prefix are passed as init pa-
rameters to the Fi l ter. in it method. The preprocessor. init .
prefix is removed from the parameter name. See
HTTP_WHITEBOARD_PREPROCESSOR_INIT_PARAM_PREFIX .

A Preprocessor is invoked before request dispatching is performed. If multiple pre-processors are
registered they are invoked in the order as described for servlet filters.

The Preprocessor has the same API as the servlet Fi l ter and is handled in the same way, the
in it and destroy are called at the appropriate life-cycle events. However, as pre-processors

Registering Resources Http Whiteboard Specification Version 1.1

Page 816 OSGi Compendium Release 8

are called before dispatching, the targeted servlet context is not yet know. Therefore the
Fi l terConfig.getServletContext returns the servlet context of the backing implementation, the
same context as returned by the request. As a pre-processor instance is not associated with a specific
servlet context, it is safe to implement it as a singleton.

When called in the doFi lter method, the pre-processor can use the Fi l terChain to
invoke the next pre-processor, or if the end of the chain is reached, start process-
ing the request. The pre-processor can also terminate the processing and gener-
ate a response directly. Before request processing returns to the pre-processors
f in ishSecurity(javax.servlet .http.HttpServletRequest, javax.servlet .http.HttpServletResponse) is
called. If an exception is thrown during request processing, the exception is propagated through the
pre-processors.

The example Preprocessor below logs a message before and after request processing:

@Component
public class MyPreprocessor implements Preprocessor {

 @Reference(service=LoggerFactory.class)
 private Logger logger;

 public void init(FilterConfig filterConfig) throws ServletException {}

 public void doFilter(ServletRequest request, ServletResponse response,
 FilterChain chain) throws IOException, ServletException {
 logger.debug("Request processing starts");
 chain.doFilter(request, response);
 logger.debug("Request processing ends");
 }

 public void destroy() {}
}

140.6 Registering Resources
A resource is a file containing images, static HTML pages, JavaScript, CSS, sounds, movies, etc. Re-
sources do not require any handling from the bundle. They are transferred directly from their source
- usually the JAR file that contains the code for the bundle - to the requester.

Resources can be served by registering a service of any type with a service registration property that
marks it as a resource service: osgi .http.whiteboard.resource.pattern . The actual service object reg-
istered is not used to serve resources, it is merely used to inform the Http Whiteboard implementa-
tion to serve resources from a certain source.

The following table describes the supported service properties. In addition the common properties
as described in Table 140.3 on page 808 are supported.

Table 140.7 Service properties for resource services.

Service Property Type Description
osgi .http.whiteboard.resource.pattern

pattern

Str ing+

required

The pattern(s) to be used to serve resources. As defined by
the [4] Java Servlet 3.1 Specification in section 12.2, Specifica-
tion of Mappings.

This property marks the service as a resource service.

See HTTP_WHITEBOARD_RESOURCE_PATTERN .

Http Whiteboard Specification Version 1.1 Registering Listeners

OSGi Compendium Release 8 Page 817

Service Property Type Description
osgi .http.whiteboard.resource.prefix

prefix

Str ing

required

The prefix used to map a requested resource to the bundle's
entries. If the request's path info is not null, it is append-
ed to this prefix. The resulting string is passed to the
getResource(Str ing) method of the associated Servlet Con-
text Helper.

See HTTP_WHITEBOARD_RESOURCE_PREFIX .

The examples below use Declarative Services annotations to register a resources service. Note that
this service is purely used to convey information to the Http Whiteboard implementation and is
never invoked.

@Component(service = MyResourceService.class)
@HttpWhiteboardResource(pattern = "/files/*", prefix = "/www")
public class MyResourceService {}

A Http Whiteboard implementation configured on port 80 will serve a request for http:// local-
host/fi les/cheese.html from the location /www/cheese.html .

The following example maps requests for /favicon. ico to serve the / logo.png resource. Note that the
pattern is not appended to the prefix as the path info in this case is null.

@Component(service = SomeResourceService.class)
@HttpWhiteboardResource(pattern = "/favicon.ico", prefix = "/logo.png")
public class SomeResourceService {}

The above examples use the default ServletContextHelper implementation, which loads these re-
sources from the bundle that registered the resource service. For more control around serving re-
sources, a resources service can be associated to a custom ServletContextHelper . For example, a cus-
tom Servlet Context Helper can serve resources from locations other than the current bundle.

140.6.1 Overlapping Resource and Servlet Registrations
Resources and servlets registered with the same Servlet Context share a single URI namespace.
This means that the value specified in osgi .http.whiteboard.resource.pattern competes with the
osgi .http.whiteboard.servlet .pattern property specified on servlets. If these values overlap, the
rules as outlined in Registering Servlets on page 808 are used to resolve conflicts, where resource
services are treated just like servlets. Shadowed resource patterns are reported as Fai ledResourceD-
TO .

140.7 Registering Listeners
The servlet specification defines listener interfaces that can be implemented to receive a variety of
servlet-related events. When using the Http Whiteboard implementation these listeners can be reg-
istered as Whiteboard services.

• ServletContextListener - Receive notifications when Servlet Contexts are initialized and de-
stroyed.

• ServletContextAttr ibuteListener - Receive notifications for Servlet Context attribute changes.
• ServletRequestListener - Receive notifications for servlet requests coming in and being de-

stroyed.
• ServletRequestAttr ibuteListener - Receive notifications when servlet Request attributes change.
• HttpSessionListener - Receive notifications when Http Sessions are created or destroyed.
• HttpSessionAttr ibuteListener - Receive notifications when Http Session attributes change.

Life Cycle Http Whiteboard Specification Version 1.1

Page 818 OSGi Compendium Release 8

• HttpSessionIdListener - Receive notifications when Http Session ID changes.

Events are sent to listeners registered in the Service Registry with the osgi .http.whiteboard. l istener
service property set to true , independent of case. Listeners can be associated with a ServletContex-
tHelper as described in Common Whiteboard Properties on page 808. Listeners not specifically as-
sociated with a Servlet Context Helper will receive events relating to the default Servlet Context
Helper.

Multiple listeners of the same type registered with a given Servlet Context Helper are invoked in se-
quence, service ranking rules are used to determine the order.

Table 140.8 Service properties for listener services.

Service Property Type Description
osgi .http.whiteboard. l istener

HttpWhiteboardListener

Boolean |
Str ing

required

When set to true this listener service is handled by the Http
Whiteboard implementation. When not set or set to fa lse
the service is ignored. Any other value is invalid and will be
reflected in a Fai ledListenerDTO . Note the property value is
case independent. See HTTP_WHITEBOARD_LISTENER .

An example listener that reports on client requests being initialized and destroyed is listed below:

@Component
@HttpWhiteboardListener
public class MyServletRequestListener implements ServletRequestListener {
 public void requestInitialized(ServletRequestEvent sre) {
 System.out.println("Request initialized for client: " +
 sre.getServletRequest().getRemoteAddr());
 }

 public void requestDestroyed(ServletRequestEvent sre) {
 System.out.println("Request destroyed for client: " +
 sre.getServletRequest().getRemoteAddr());
 }
}

For more details on the behavior of the listeners see the [4] Java Servlet 3.1 Specification.

140.8 Life Cycle
If a Whiteboard service is used by a Http Whiteboard implementation, the following order of ac-
tions are performed:

1. The service is obtained from the service registry.
2. For servlets and servlet filters, in it is called.

When the service is not used anymore, these actions are performed:

3. For servlets and servlet filters, destroy is called.
4. The service is released.

Note that some of the above actions may not be performed immediately, allowing an implementa-
tion to utilize lazy or asynchronous behavior.

As servlets and servlet filters services might come and go as well as ServletContextHelper services
might come and go, use of the Whiteboard services can be very dynamic. Therefore servlet and
servlet filter services might transition between bound to a Http Whiteboard implementation to be-

Http Whiteboard Specification Version 1.1 The Http Service Runtime Service

OSGi Compendium Release 8 Page 819

ing unbound and back to be bound. For example, when a matching Servlet Context Helper with
the same name arrives with a higher ranking than the currently bound Servlet Context Helper, the
servlet will be destroyed and re-initialized, bound to this better matching Servlet Context Helper.
This is to ensure that timing issues cannot dictate the topology of the system.

As in it and destroy are called each time the service life cycle changes, the recommended way to
register services is to use the Prototype Service scope as defined in the OSGi Core Release 8. This en-
sures a new instance is created for each time such service is re-initialized. If the prototype scope is
not used, the service should be prepared that after a call to destroy a new initialization through in it
might follow.

140.8.1 Whiteboard Service Dynamics and Active Requests
When the Http Whiteboard implementation receives a network request it establishes the process-
ing pipeline based on the available Whiteboard services (servlets, servlet filters and resource ser-
vices) and executes this pipeline. Between establishing the pipeline and finishing the processing,
services used in this pipeline might become unregistered. It is up to the Http Whiteboard imple-
mentation whether it completes the active request or throws a Servlet Exception in this case.

140.9 The Http Service Runtime Service
The HttpServiceRuntime service represents the runtime state information of a Http Whiteboard im-
plementation. This information is provided through Data Transfer Objects (DTOs). The architecture
of OSGi DTOs is described in OSGi Core Release 8.

Each Http Whiteboard implementation registers exactly one HttpServiceRuntime service which
can be used to target Whiteboard services defined in this specification to a specific Http Whiteboard
implementation.

Implementations of this specification that also implement the Http Service Specification on page 39
can provide runtime information for servlets registered using the HttpService via the HttpSer-
viceRuntime as well. In this case the osgi .http.service. id service property must be set to associate
the HttpServiceRuntime service with the HttpService .

The HttpServiceRuntime provides service registration properties to declare its underlying Http
Whiteboard implementation. These service properties can include implementation-specific key-val-
ue pairs. They also include the following:

Table 140.9 Service properties for the HttpServiceRuntime service

Service Property Type Description
osgi .http.endpoint Str ing+ Endpoint(s) where this Http Whiteboard implementation is lis-

tening. Registered Whiteboard services are made available here.
Values could be provided as URLs e.g. http://192.168.1.10:8080/
or relative paths, e.g. /myapp/ . Relative paths may be used if the
scheme and authority parts of the URLs are not known such as in a
bridged Http Service implementation. If the Http Service is serving
the root context and scheme and authority are not known, the val-
ue of the property is / . Each entry must end with a slash.

See HTTP_SERVICE_ENDPOINT .
osgi .http.service. id Col lect ion<Long> If this Http Whiteboard implementation also implements the

Http Service Specification on page 39, this property is set to hold the
service. id values of all the HttpService services provided by this
implementation.

See HTTP_SERVICE_ID .

The Http Service Runtime Service Http Whiteboard Specification Version 1.1

Page 820 OSGi Compendium Release 8

Service Property Type Description
service.changecount Long Whenever the DTOs available from the Http Service Runtime ser-

vice change, the value of this property will increase by an amount
of 1 or more.

This allows interested parties to be notified of changes
to the DTOs by observing Service Events of type
MODIFIED for the HttpServiceRuntime service. See
org.osgi .f ramework.Constants.SERVICE_CHANGECOUNT in OSGi
Core Release 8.

The Http Service Runtime service provides information on registered Whiteboard services through
the RuntimeDTO and RequestInfoDTO . The RuntimeDTO provides information on services that
have been successfully registered as well as information about the Whiteboard services that were
not successfully registered. Whiteboard services that have the required properties set but cannot
be processed, are reflected in the failure DTOs. Whiteboard services of interfaces described in this
specification that do not have the required properties set are ignored and not reflected in the failure
DTOs.

The Runtime DTO can be obtained using the getRuntimeDTO() method. The Runtime DTO provid-
ed has the following structure:

Figure 140.3 Runtime DTO Overview Diagram

Runtime DTO 0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

0..n

Servlet
Context DTO

Failed Servlet
Context DTO

Failed
Servlet DTO

Failed
Resource DTO

Failed
Filter DTO

Failed Error
Page DTO

Failed
Listener DTO

Servlet DTO

Resource DTO

Filter DTO

Error Page DTO

Listener DTO

0..n Pre-Processor
DTO

0..n Failed Pre-
Processor DTO

Handlers for a given request path can be found with the calculateRequestInfoDTO(Str ing) method.
This method returns a RequestInfoDTO with the following structure:

Http Whiteboard Specification Version 1.1 Integration with Http Service Contexts

OSGi Compendium Release 8 Page 821

Figure 140.4 Request Info DTO Overview Diagram

Request Info DTO

Pre-Processor DTO

Filter DTO

Servlet DTO

0..n

Resource DTO

0..n

Where servlets registered via the Http Service Specification on page 39 are returned via this service,
the Servlet DTO will report negative service IDs for these servlets to distinguish them from Servlet
Whiteboard services.

140.10 Integration with Http Service Contexts
Some systems are implemented using a mixture of Http Whiteboard services and Http Service
servlets and contexts as specified in the Http Service Specification on page 39. When a servlet is regis-
tered with the Http Service it is either registered with a provided HttpContext or it uses the default
Http Context. It can be desirable to register a Http Whiteboard filter, listener or error page that also
acts on servlets registered with the Http Service.

A Http Whiteboard service which should be registered with a Http Context from the Http
Service can achieve this by targeting a ServletContextHelper with the registration property
osgi .http.whiteboard.context.httpservice . The value for this property is not further specified. Note
that this mechanism only works if the Http Service is provided by the same implementation that al-
so provides the Http Whiteboard implementation.

The following example registers a servlet filter for all servlets managed by the Http Service.

@Component(service = Filter.class, scope=ServiceScope.PROTOTYPE)
@HttpWhiteboardFilterPattern("/*")
@HttpWhiteboardContextSelect(HttpWhiteboardConstants.HTTP_SERVICE_CONTEXT_FILTER)
public class MyFilter implements Filter

This specification does not provide a way to select in individual Http Context from the Http Service,
however a Http Whiteboard implementation may provide an implementation-specific mechanism
to do this. Also, the Http Service implementation is not required to register the Http Context objects
in the service registry. The matching can be done internally by the implementation.

Association with Http Context from the Http Service can only be done for servlet filters, error pages
and listeners. Servlets and resources cannot be associated with Http Contexts managed by the Http
Service. If this is attempted this will be reflected in the failure DTOs.

Configuration Properties Http Whiteboard Specification Version 1.1

Page 822 OSGi Compendium Release 8

140.11 Configuration Properties
If the Http Whiteboard implementation does not have its port values configured through some oth-
er means, the implementation should use the following Framework properties to determine the
port values to listen on.

• org.osgi .service.http.port - This property specifies the port used for servlets and resources acces-
sible via HTTP. The default value for this property is 80.

• org.osgi .service.http.port .secure - This property specifies the port used for servlets and re-
sources accessible via HTTPS. The default value for this property is 443.

140.12 Capabilities

140.12.1 osgi.implementation Capability
The Http Whiteboard implementation bundle must provide the osgi . implementation capability
with name osgi .http . This capability can be used by provisioning tools and during resolution to en-
sure that a Http Whiteboard implementation is present to process the Whiteboard services defined
in this specification. The capability must also declare a uses constraint for the Servlet and OSGi Http
Whiteboard packages and provide the version of this specification:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.http";
 uses:="javax.servlet, javax.servlet.http,
 org.osgi.service.http.context, org.osgi.service.http.whiteboard";
 version:Version="1.1"

This capability must follow the rules defined for the osgi.implementation Namespace on page 727.

Bundles registering services to be picked up by the Http Whiteboard implementation should re-
quire the osgi . implementation capability. For example:

Require-Capability: osgi.implementation;
 filter:="(&(osgi.implementation=osgi.http)
 (version>=1.1)(!(version>=2.0)))"

To simplify the creation of this requirement, the RequireHttpWhiteboard annotation can be used.

140.12.2 osgi.contract Capability
The Http Whiteboard implementation must provide a capability in the osgi .contract namespace
with name JavaServlet if it exports the javax.servlet and javax.servlet .http packages. See [5] Portable
Java Contract Definitions.

Providing the osgi .contract capability enables developer to build portable bundles for packages that
are not versioned under OSGi Semantic Versioning rules. For more details see osgi.contract Namespace
on page 725.

If the Servlet API is provided by another bundle, the Http Whiteboard implementation must be a
consumer of the API and require the contract.

Http Whiteboard Specification Version 1.1 Security

OSGi Compendium Release 8 Page 823

140.12.3 osgi.service Capability
The bundle providing the HttpServiceRuntime service must provide a capability in the osgi .service
namespace representing this service. This capability must also declare a uses constraint for the
org.osgi .service.http.runtime and org.osgi .service.http.runtime.dto packages:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.http.runtime.HttpServiceRuntime";
 uses:="org.osgi.service.http.runtime,org.osgi.service.http.runtime.dto"

This capability must follow the rules defined for the osgi.service Namespace on page 727.

140.13 Security
This section only applies when executing in an OSGi environment which is enforcing Java permis-
sions.

140.13.1 Service Permissions
Bundles that need to register Http Whiteboard services must be granted
ServicePermission[interfaceName, REGISTER] where interface name is the Http Whiteboard ser-
vice interface name.

The Http Whiteboard implementation must be granted ServicePermission[interfaceName, GET] to
retrieve the Http Whiteboard services from the service registry.

140.13.2 Introspection
Bundles that need to introspect the state of the Http runtime will need
ServicePermission[org.osgi .service.http.runtime.HttpServiceRuntime, GET] to obtain the HttpSer-
viceRuntime service and access the DTO types.

140.13.3 Accessing Resources with the Default Servlet Context Helper Implementation
The Http Whiteboard implementation must be granted AdminPermission[*,RESOURCE]
so that bundles may use the default ServletContextHelper implementation. This is
necessary because the implementation of the default ServletContextHelper must call
Bundle.getEntry to access the resources of a bundle and this method requires the caller to have
AdminPermission[bundle,RESOURCE] .

Any bundle may access resources in its own bundle by calling Class.getResource . This operation is
privileged. The resulting URL object may then be passed to the Http Whiteboard implementation as
the result of a ServletContextHelper.getResource call. No further permission checks are performed
when accessing bundle entry or resource URL objects, so the Http Whiteboard implementation does
not need to be granted any additional permissions.

140.13.4 Accessing Other Types of Resources
In order to access resources that were not returned from the default ServletContextHelper imple-
mentation, the Http Whiteboard implementation must be granted sufficient privileges to access
these resources. For example, if the getResource method of a ServletContextHelper service returns
a file URL, the Http Whiteboard implementation requires the corresponding Fi lePermission to read
the file. Similarly, if the getResource method of a ServletContextHelper service returns an HTTP
URL, the Http Whiteboard implementation requires the corresponding SocketPermission to con-
nect to the resource.

Therefore, in most cases, the Http Whiteboard implementation should be a privileged service that
is granted sufficient permission to serve any bundle's resources, no matter where these resources

org.osgi.service.http.context Http Whiteboard Specification Version 1.1

Page 824 OSGi Compendium Release 8

are located. Therefore, the Http Whiteboard implementation must capture the AccessControlCon-
text object of the bundle registering a ServletContextHelper service, and then use the captured Ac-
cessControlContext object when accessing resources returned by the ServletContextHelper service.
This situation prevents a bundle from supplying resources that it does not have permission to ac-
cess.

Therefore, the Http Whiteboard implementation should follow a scheme like the following exam-
ple. When using a ServletContextHelper service, it should capture the context.

ServiceReference<ServletContextHelper> servletContextHelperReference = ...
AccessControlContext acc = servletContextHelperReference.getBundle()
 .adapt(AccessControlContext.class);

When a URL returned by the getResource method of a ServletContextHelper service is used by the
Http Whiteboard implementation, the implementation must use the URL in a doPriv i leged con-
struct using the AccessControlContext object of the registering bundle:

AccessController.doPrivileged(
 new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 ...
 }
 }, acc);

This ensures the Http Whiteboard implementation can only use the URL if the bundle registering
the ServletContextHelper service that returned the URL also has permission to use the URL. The use
of a captured AccessControlContext only applies when accessing URL objects returned by the ge-
tResource method of the ServletContextHelper service.

140.13.5 Calling Http Whiteboard Services
This specification does not require that the Http Whiteboard implementation is granted All Permis-
sion or wraps calls to the Http Whiteboard services in a doPriv i leged block. Therefore, it is the re-
sponsibility of the Http Whiteboard service implementations to use a doPriv i leged block when per-
forming privileged operations.

140.13.6 Multipart Upload
If multipart upload is enabled for a servlet, the uploaded data is usually temporarily written to a file.
Therefore if security is enabled file permissions must be granted accordingly.

If a servlet is using the default path to store uploaded data, the Http Whiteboard implementation
needs Fi lePermission[path, "read,write,delete"] for that path. As the servlet is reading the data, the
bundle containing the servlet needs Fi lePermission[path, "read"] for that path.

If a servlet is providing the path to store uploaded data, the bundle containing the servlet needs
Fi lePermission[path, "read,write,delete"] for that path. The Http Whiteboard implementation
needs the same permissions for that path. Therefore, it is the responsibility of the Http Whiteboard
service implementations to use a doPriv i leged block when performing the write operation.

If security is enabled and any of the above required permissions is not granted, the multipart han-
dling servlet is regarded invalid and will not be registered. This state is reflected in the error DTOs.

140.14 org.osgi.service.http.context

Http Whiteboard Context Package Version 1.1.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.context

OSGi Compendium Release 8 Page 825

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.http.context; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.http.context; vers ion="[1.1 ,1 .2)"

140.14.1 Summary

• ServletContextHelper - Helper service for a servlet context used by a Http Whiteboard imple-
mentation to serve HTTP requests.

140.14.2 public abstract class ServletContextHelper
Helper service for a servlet context used by a Http Whiteboard implementation to serve HTTP re-
quests.

This service defines methods that the Http Whiteboard implementation may call to get information
for a request when dealing with whiteboard services.

Each ServletContextHelper is registered with a "osgi.http.whiteboard.context.name" service proper-
ty containing a name to reference by servlets, servlet filters, resources, and listeners. If there is more
than one ServletContextHelper registered with the same context name, the one with the highest
service ranking is active, the others are inactive.

A context is registered with the "osgi.http.whiteboard.context.path" service property to define a
path under which all services registered with this context are reachable. If there is more than one
ServletContextHelper registered with the same path, each duplicate context path is searched by ser-
vice ranking order according to org.osgi.framework.ServiceReference.compareTo(Object) until a
matching servlet or resource is found.

Servlets, servlet filters, resources, and listeners services may be associated with a ServletContex-
tHelper service with the "osgi.http.whiteboard.context.select" service property. If the referenced
ServletContextHelper service does not exist or is currently not active, the whiteboard services for
that ServletContextHelper are not active either.

If no ServletContextHelper service is associated, that is no "osgi.http.whiteboard.context.select" ser-
vice property is configured for a whiteboard service, a default ServletContextHelper is used.

Those whiteboard services that are associated with the same ServletContextHelper object will share
the same ServletContext object.

The behavior of the methods on the default ServletContextHelper is defined as follows:

• getMimeType - Always returns nul l .
• handleSecurity - Always returns true .
• getResource - Assumes the named resource is in the bundle of the whiteboard service, ad-

dressed from the root. This method calls the whiteboard service bundle's Bundle.getEntry
method, and returns the appropriate URL to access the resource. On a Java runtime environ-
ment that supports permissions, the Http Whiteboard implementation needs to be granted
org.osgi .f ramework.AdminPermission[*,RESOURCE] .

• getResourcePaths - Assumes that the resources are in the bundle of the whiteboard service. This
method calls Bundle.f indEntr ies method, and returns the found entries. On a Java runtime envi-
ronment that supports permissions, the Http Whiteboard implementation needs to be granted
org.osgi .f ramework.AdminPermission[*,RESOURCE] .

• getRealPath - Always returns nul l .

org.osgi.service.http.context Http Whiteboard Specification Version 1.1

Page 826 OSGi Compendium Release 8

See Also HttpWhiteboardConstants.HTTP_WHITEBOARD_CONTEXT_NAME,
HttpWhiteboardConstants.HTTP_WHITEBOARD_CONTEXT_PATH

Concurrency Thread-safe

140.14.2.1 public static final String AUTHENTICATION_TYPE = "org.osgi.service.http.authentication.type"

HttpServletRequest attribute specifying the scheme used in authentication. The value of the at-
tribute can be retrieved by HttpServletRequest.getAuthType .

140.14.2.2 public static final String AUTHORIZATION = "org.osgi.service.useradmin.authorization"

HttpServletRequest attribute specifying the Authorizat ion object obtained from the
org.osgi .service.useradmin.UserAdmin service. The value of the attribute can be retrieved by
HttpServletRequest.getAttr ibute(ServletContextHelper.AUTHORIZATION) .

140.14.2.3 public static final String REMOTE_USER = "org.osgi.service.http.authentication.remote.user"

HttpServletRequest attribute specifying the name of the authenticated user. The value of the at-
tribute can be retrieved by HttpServletRequest.getRemoteUser .

140.14.2.4 public ServletContextHelper()

□ Construct a new context helper.

If needed, the subclass will have to handle the association with a specific bundle.

140.14.2.5 public ServletContextHelper(Bundle bundle)

bundle The bundle to be associated with this context helper.

□ Construct a new context helper associated with the specified bundle.

140.14.2.6 public void finishSecurity(HttpServletRequest request, HttpServletResponse response)

request The HTTP request.

response The HTTP response.

□ Finishes the security context for the specified request.

Implementations of this service can implement this method to clean up resources which have been
setup in handleSecurity(HttpServletRequest, HttpServletResponse).

This method is only called if handleSecurity(HttpServletRequest, HttpServletResponse) returned
true for the specified request. This method is called once the pipeline finishes processing or if an ex-
ception is thrown from within the pipeline execution.

The default implementation of this method does nothing.

See Also handleSecurity(HttpServletRequest, HttpServletResponse)

Since 1.1

140.14.2.7 public String getMimeType(String name)

name The name for which to determine the MIME type.

□ Maps a name to a MIME type.

Called by the Http Whiteboard implementation to determine the MIME type for the specified
name. For whiteboard services, the Http Whiteboard implementation will call this method to sup-
port the ServletContext method getMimeType . For resource servlets, the Http Whiteboard imple-
mentation will call this method to determine the MIME type for the Content-Type header in the re-
sponse.

Returns The MIME type (e.g. text/html) of the specified name or nul l to indicate that the Http Whiteboard
implementation should determine the MIME type itself.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.context

OSGi Compendium Release 8 Page 827

140.14.2.8 public String getRealPath(String path)

path The virtual path to be translated to a real path.

□ Gets the real path corresponding to the given virtual path.

Called by the Http Whiteboard implementation to support the ServletContext method getRealPath
for whiteboard services.

Returns The real path, or nul l if the translation cannot be performed.

140.14.2.9 public URL getResource(String name)

name The name of the requested resource.

□ Maps a resource name to a URL.

Called by the Http Whiteboard implementation to map the specified resource name to a URL. For
servlets, the Http Whiteboard implementation will call this method to support the ServletContext
methods getResource and getResourceAsStream . For resources, the Http Whiteboard implementa-
tion will call this method to locate the named resource.

The context can control from where resources come. For example, the resource can be mapped to a
file in the bundle's persistent storage area via BundleContext.getDataFi le(name).toURI() .toURL() or
to a resource in the context's bundle via getClass() .getResource(name)

Returns A URL that a Http Whiteboard implementation can use to read the resource or nul l if the resource
does not exist.

140.14.2.10 public Set<String> getResourcePaths(String path)

path The partial path used to match the resources, which must start with a /.

□ Returns a directory-like listing of all the paths to resources within the web application whose
longest sub-path matches the supplied path argument.

Called by the Http Whiteboard implementation to support the ServletContext method getResour-
cePaths for whiteboard services.

Returns A Set containing the directory listing, or nul l if there are no resources in the web application whose
path begins with the supplied path.

140.14.2.11 public boolean handleSecurity(HttpServletRequest request, HttpServletResponse response) throws
IOException

request The HTTP request.

response The HTTP response.

□ Handles security for the specified request.

The Http Whiteboard implementation calls this method prior to servicing the specified request.
This method controls whether the request is processed in the normal manner or an error is re-
turned.

If the request requires authentication and the Authorizat ion header in the request is missing or not
acceptable, then this method should set the WWW-Authenticate header in the response object, set
the status in the response object to Unauthorized(401) and return fa lse . See also RFC 2617: HTTP
Authentication: Basic and Digest Access Authentication [http://www.ietf.org/rfc/rfc2617.txt].

If the request requires a secure connection and the getScheme method in the request does not re-
turn 'https' or some other acceptable secure protocol, then this method should set the status in the
response object to Forbidden(403) and return fa lse .

When this method returns fa lse , the Http Whiteboard implementation will send the response back
to the client, thereby completing the request. When this method returns true , the Http Whiteboard
implementation will proceed with servicing the request.

http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2617.txt

org.osgi.service.http.runtime Http Whiteboard Specification Version 1.1

Page 828 OSGi Compendium Release 8

If the specified request has been authenticated, this method must set the AUTHENTICATION_TYPE
request attribute to the type of authentication used, and the REMOTE_USER request attribute to the
remote user (request attributes are set using the setAttr ibute method on the request). If this method
does not perform any authentication, it must not set these attributes.

If the authenticated user is also authorized to access certain resources, this method must
set the AUTHORIZATION request attribute to the Authorizat ion object obtained from the
org.osgi .service.useradmin.UserAdmin service.

The servlet responsible for servicing the specified request determines the authentication type and
remote user by calling the getAuthType and getRemoteUser methods, respectively, on the request.

If there is the need to clean up resources at the end of the request, the method
finishSecurity(HttpServletRequest, HttpServletResponse) can be implemented. That method is only
called if this method returns true .

Returns true if the request should be serviced, fa lse if the request should not be serviced and Http White-
board implementation will send the response back to the client.

Throws IOException– May be thrown by this method. If this occurs, the Http Whiteboard implementation
will terminate the request and close the socket.

See Also finishSecurity(HttpServletRequest, HttpServletResponse)

140.15 org.osgi.service.http.runtime

Http Runtime Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.http.runtime; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.http.runtime; vers ion="[1.1 ,1 .2)"

140.15.1 Summary

• HttpServiceRuntime - The HttpServiceRuntime service represents the runtime information of
an Http Whiteboard implementation.

• HttpServiceRuntimeConstants - Defines standard names for Http Runtime Service constants.

140.15.2 public interface HttpServiceRuntime
The HttpServiceRuntime service represents the runtime information of an Http Whiteboard imple-
mentation.

It provides access to DTOs representing the current state of the service.

The HttpServiceRuntime service must be registered with the
HttpServiceRuntimeConstants.HTTP_SERVICE_ENDPOINT service property.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

140.15.2.1 public RequestInfoDTO calculateRequestInfoDTO(String path)

path The request path, relative to the root of the Http Whiteboard implementation.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.runtime.dto

OSGi Compendium Release 8 Page 829

□ Return a request info DTO containing the services involved with processing a request for the speci-
fied path.

Returns The request info DTO for the specified path.

140.15.2.2 public RuntimeDTO getRuntimeDTO()

□ Return the runtime DTO representing the current state.

Returns The runtime DTO.

140.15.3 public final class HttpServiceRuntimeConstants
Defines standard names for Http Runtime Service constants.

140.15.3.1 public static final String HTTP_SERVICE_ENDPOINT = "osgi.http.endpoint"

Http Runtime Service service property specifying the endpoints upon which the Http Whiteboard
implementation is listening.

An endpoint value is a URL or a relative path, to which the Http Whiteboard implementation is
listening. For example, http://192.168.1.10:8080/ or /myapp/ . A relative path may be used if the
scheme and authority parts of the URL are not known, e.g. in a bridged Http Whiteboard implemen-
tation. If the Http Whiteboard implementation is serving the root context and neither scheme nor
authority is known, the value of the property is "/". Both, a URL and a relative path, must end with a
slash.

An Http Whiteboard implementation can be listening on multiple endpoints.

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

140.15.3.2 public static final String HTTP_SERVICE_ID = "osgi.http.service.id"

Http Runtime Service service property to associate the Http Runtime Service with one or more
HttpService services.

If this Http Whiteboard implementation also implements the Http Service Specification, this ser-
vice property is set to a collection of service. id for the HttpService services registered by this imple-
mentation.

The value of this service property must be of type Collect ion<Long> .

140.16 org.osgi.service.http.runtime.dto

Http Runtime DTO Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.http.runtime.dto; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.http.runtime.dto; vers ion="[1.1 ,1 .2)"

140.16.1 Summary

• BaseServletDTO - Represents common information about a javax.servlet .Servlet service.
• DTOConstants - Defines standard constants for the DTOs.

org.osgi.service.http.runtime.dto Http Whiteboard Specification Version 1.1

Page 830 OSGi Compendium Release 8

• ErrorPageDTO - Represents a javax.servlet .Servlet for handling errors and currently being used
by a servlet context.

• Fai ledErrorPageDTO - Represents a javax.servlet .Servlet service registered as an error page but
currently not being used by a servlet context due to a problem.

• Fai ledFi lterDTO - Represents a servlet Fi l ter service which is currently not being used by a
servlet context due to a problem.

• Fai ledListenerDTO - Represents a listener service which is currently not being used by a servlet
context due to a problem.

• Fai ledPreprocessorDTO - Represents a preprocessor service which is currently not being used
due to a problem.

• Fai ledResourceDTO - Represents a resource definition which is currently not being used by a
servlet context due to a problem.

• Fai ledServletContextDTO - Represents a servlet context that is currently not used due to some
problem.

• Fai ledServletDTO - Represents a javax.servlet .Servlet service which is currently not being used
by a servlet context due to a problem.

• Fi l terDTO - Represents a servlet javax.servlet .F i l ter service currently being used for by a servlet
context.

• ListenerDTO - Represents a listener currently being used by a servlet context.
• PreprocessorDTO - Represents a preprocessor org.osgi .service.http.whiteboard.Preprocessor

service currently being used during request processing.
• RequestInfoDTO - Represents the services used to process a specific request.
• ResourceDTO - Represents a resource definition currently being used by a servlet context.
• RuntimeDTO - Represents the state of a Http Service Runtime.
• ServletContextDTO - Represents a javax.servlet .ServletContext created for servlets, resources,

servlet Filters, and listeners associated with that servlet context.
• ServletDTO - Represents a javax.servlet .Servlet currently being used by a servlet context.

140.16.2 public abstract class BaseServletDTO
extends DTO
Represents common information about a javax.servlet .Servlet service.

Concurrency Not Thread-safe

140.16.2.1 public boolean asyncSupported

Specifies whether the servlet supports asynchronous processing.

140.16.2.2 public Map<String, String> initParams

The servlet initialization parameters as provided during registration of the servlet. Additional para-
meters like the Http Service Runtime attributes are not included. If the service has no initialization
parameters, the map is empty.

140.16.2.3 public String name

The name of the servlet. This value is never nul l , unless this object represents a Fai ledServletDTO or
a Fai ledErrorPageDTO where the value might be nul l .

140.16.2.4 public long serviceId

Service property identifying the servlet. In the case of a servlet registered in the service registry and
picked up by a Http Whiteboard Implementation, this value is not negative and corresponds to the
service id in the registry. If the servlet has not been registered in the service registry, the value is neg-
ative and a unique negative value is generated by the Http Service Runtime in this case.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.runtime.dto

OSGi Compendium Release 8 Page 831

140.16.2.5 public long servletContextId

The service id of the servlet context for the servlet represented by this DTO.

140.16.2.6 public String servletInfo

The information string from the servlet.

This is the value returned by the Servlet .getServlet Info() method. For a Fai ledServletDTO or a
Fai ledErrorPageDTO this is always nul l .

140.16.2.7 public BaseServletDTO()

140.16.3 public final class DTOConstants
Defines standard constants for the DTOs.

140.16.3.1 public static final int FAILURE_REASON_EXCEPTION_ON_INIT = 4

An exception occurred during initializing of the service.

This reason can only happen for servlets and servlet filters.

140.16.3.2 public static final int FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING = 1

No matching ServletContextHelper .

140.16.3.3 public static final int FAILURE_REASON_SERVICE_IN_USE = 7

The service is not registered as a prototype scoped service and is already in use with a servlet context
and therefore can't be used with another servlet context.

140.16.3.4 public static final int FAILURE_REASON_SERVICE_NOT_GETTABLE = 5

The service is registered in the service registry but getting the service fails as it returns nul l .

140.16.3.5 public static final int FAILURE_REASON_SERVLET_CONTEXT_FAILURE = 2

Matching ServletContextHelper , but the context is not used due to a problem with the context.

140.16.3.6 public static final int FAILURE_REASON_SERVLET_READ_FROM_DEFAULT_DENIED = 10

The servlet is not registered as it is configured to have multipart enabled, but the bundle containing
the servlet has no read permission to the default location for the uploaded files.

Since 1.1

140.16.3.7 public static final int FAILURE_REASON_SERVLET_WRITE_TO_LOCATION_DENIED = 8

The servlet is not registered as it is configured to have multipart enabled, but the bundle containing
the servlet has no write permission to the provided location for the uploaded files.

Since 1.1

140.16.3.8 public static final int FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE = 3

Service is shadowed by another service.

For example, a service with the same service properties but a higher service ranking.

140.16.3.9 public static final int FAILURE_REASON_UNKNOWN = 0

Failure reason is unknown.

140.16.3.10 public static final int FAILURE_REASON_VALIDATION_FAILED = 6

The service is registered in the service registry but the service properties are invalid.

org.osgi.service.http.runtime.dto Http Whiteboard Specification Version 1.1

Page 832 OSGi Compendium Release 8

140.16.3.11 public static final int FAILURE_REASON_WHITEBOARD_WRITE_TO_DEFAULT_DENIED = 9

The servlet is not registered as it is configured to have multipart enabled, but the whiteboard imple-
mentation has no write permission to the default location for the uploaded files.

Since 1.1

140.16.3.12 public static final int FAILURE_REASON_WHITEBOARD_WRITE_TO_LOCATION_DENIED = 11

The servlet is not registered as it is configured to have multipart enabled, but the whiteboard imple-
mentation has no write permission to the provided location for the uploaded files.

Since 1.1

140.16.4 public class ErrorPageDTO
extends BaseServletDTO
Represents a javax.servlet .Servlet for handling errors and currently being used by a servlet context.

Concurrency Not Thread-safe

140.16.4.1 public long[] errorCodes

The error codes the error page is used for. This array might be empty.

140.16.4.2 public String[] exceptions

The exceptions the error page is used for. This array might be empty.

140.16.4.3 public ErrorPageDTO()

140.16.5 public class FailedErrorPageDTO
extends ErrorPageDTO
Represents a javax.servlet .Servlet service registered as an error page but currently not being used by
a servlet context due to a problem.

As the servlet represented by this DTO is not used due to a failure, the field
FailedErrorPageDTO.servletContextId always returns 0 and does not point to an existing Servlet-
ContextHelper .

Concurrency Not Thread-safe

140.16.5.1 public int failureReason

The reason why the servlet represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_EXCEPTION_ON_INIT,
DTOConstants.FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_SERVLET_CONTEXT_FAILURE,
DTOConstants.FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE

140.16.5.2 public FailedErrorPageDTO()

140.16.6 public class FailedFilterDTO
extends FilterDTO
Represents a servlet Fi l ter service which is currently not being used by a servlet context due to a
problem.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.runtime.dto

OSGi Compendium Release 8 Page 833

As the service represented by this DTO is not used due to a failure, the field
FailedFilterDTO.servletContextId always returns 0 and does not point to an existing servlet context.

Concurrency Not Thread-safe

140.16.6.1 public int failureReason

The reason why the servlet filter represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_EXCEPTION_ON_INIT,
DTOConstants.FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_SERVLET_CONTEXT_FAILURE,
DTOConstants.FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE

140.16.6.2 public FailedFilterDTO()

140.16.7 public class FailedListenerDTO
extends ListenerDTO
Represents a listener service which is currently not being used by a servlet context due to a problem.

As the listener represented by this DTO is not used due to a failure, the field
FailedErrorPageDTO.servletContextId always returns 0 and does not point to an existing servlet con-
text.

Concurrency Not Thread-safe

140.16.7.1 public int failureReason

The reason why the listener represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_EXCEPTION_ON_INIT,
DTOConstants.FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_SERVLET_CONTEXT_FAILURE,
DTOConstants.FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE

140.16.7.2 public FailedListenerDTO()

140.16.8 public class FailedPreprocessorDTO
extends PreprocessorDTO
Represents a preprocessor service which is currently not being used due to a problem.

Since 1.1

Concurrency Not Thread-safe

140.16.8.1 public int failureReason

The reason why the preprocessor represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_EXCEPTION_ON_INIT,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE

140.16.8.2 public FailedPreprocessorDTO()

org.osgi.service.http.runtime.dto Http Whiteboard Specification Version 1.1

Page 834 OSGi Compendium Release 8

140.16.9 public class FailedResourceDTO
extends ResourceDTO
Represents a resource definition which is currently not being used by a servlet context due to a
problem.

As the resource represented by this DTO is not used due to a failure, the field
FailedResourceDTO.servletContextId always returns 0 and does not point to an existing servlet con-
text.

Concurrency Not Thread-safe

140.16.9.1 public int failureReason

The reason why the resource represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_EXCEPTION_ON_INIT,
DTOConstants.FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_SERVLET_CONTEXT_FAILURE,
DTOConstants.FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE

140.16.9.2 public FailedResourceDTO()

140.16.10 public class FailedServletContextDTO
extends ServletContextDTO
Represents a servlet context that is currently not used due to some problem. The following fields re-
turn an empty array for a Fai ledServletContextDTO :

• ServletContextDTO.servletDTOs
• ServletContextDTO.resourceDTOs
• ServletContextDTO.filterDTOs
• ServletContextDTO.errorPageDTOs
• ServletContextDTO.listenerDTOs

The method ServletContextDTO.attributes returns an empty map for a Fai ledServletContextDTO .

Concurrency Not Thread-safe

140.16.10.1 public int failureReason

The reason why the servlet context represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_EXCEPTION_ON_INIT,
DTOConstants.FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_SERVLET_CONTEXT_FAILURE,
DTOConstants.FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE

140.16.10.2 public FailedServletContextDTO()

140.16.11 public class FailedServletDTO
extends ServletDTO
Represents a javax.servlet .Servlet service which is currently not being used by a servlet context due
to a problem.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.runtime.dto

OSGi Compendium Release 8 Page 835

As the servlet represented by this DTO is not used due to a failure, the field
FailedServletDTO.servletContextId always returns 0 and does not point to an existing servlet con-
text.

Concurrency Not Thread-safe

140.16.11.1 public int failureReason

The reason why the servlet represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_EXCEPTION_ON_INIT,
DTOConstants.FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_SERVLET_CONTEXT_FAILURE,
DTOConstants.FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE,
DTOConstants.FAILURE_REASON_SERVLET_WRITE_TO_LOCATION_DENIED,
DTOConstants.FAILURE_REASON_WHITEBOARD_WRITE_TO_DEFAULT_DENIED,
DTOConstants.FAILURE_REASON_SERVLET_READ_FROM_DEFAULT_DENIED

140.16.11.2 public FailedServletDTO()

140.16.12 public class FilterDTO
extends DTO
Represents a servlet javax.servlet .F i l ter service currently being used for by a servlet context.

Concurrency Not Thread-safe

140.16.12.1 public boolean asyncSupported

Specifies whether the servlet filter supports asynchronous processing.

140.16.12.2 public String[] dispatcher

The dispatcher associations for the servlet filter.

The specified names are used to determine in what occasions the servlet filter is called. This array is
never nul l .

140.16.12.3 public Map<String, String> initParams

The servlet filter initialization parameters as provided during registration of the servlet filter. Addi-
tional parameters like the Http Service Runtime attributes are not included. If the servlet filter has
not initialization parameters, this map is empty.

140.16.12.4 public String name

The name of the servlet filter. This field is never nul l .

140.16.12.5 public String[] patterns

The request mappings for the servlet filter.

The specified patterns are used to determine whether a request is mapped to the servlet filter. This
array might be empty.

140.16.12.6 public String[] regexs

The request mappings for the servlet filter.

The specified regular expressions are used to determine whether a request is mapped to the servlet
filter. This array might be empty.

org.osgi.service.http.runtime.dto Http Whiteboard Specification Version 1.1

Page 836 OSGi Compendium Release 8

140.16.12.7 public long serviceId

Service property identifying the servlet filter. In the case of a servlet filter registered in the service
registry and picked up by a Http Whiteboard Implementation, this value is not negative and corre-
sponds to the service id in the registry. If the servlet filter has not been registered in the service reg-
istry, the value is negative and a unique negative value is generated by the Http Service Runtime in
this case.

140.16.12.8 public long servletContextId

The service id of the servlet context for the servlet filter represented by this DTO.

140.16.12.9 public String[] servletNames

The servlet names for the servlet filter.

The specified names are used to determine the servlets whose requests are mapped to the servlet fil-
ter. This array might be empty.

140.16.12.10 public FilterDTO()

140.16.13 public class ListenerDTO
extends DTO
Represents a listener currently being used by a servlet context.

Concurrency Not Thread-safe

140.16.13.1 public long serviceId

Service property identifying the listener. In the case of a Listener registered in the service registry
and picked up by a Http Whiteboard Implementation, this value is not negative and corresponds to
the service id in the registry. If the listener has not been registered in the service registry, the value is
negative and a unique negative value is generated by the Http Service Runtime in this case.

140.16.13.2 public long servletContextId

The service id of the servlet context for the listener represented by this DTO.

140.16.13.3 public String[] types

The fully qualified type names the listener. This array is never empty.

140.16.13.4 public ListenerDTO()

140.16.14 public class PreprocessorDTO
extends DTO
Represents a preprocessor org.osgi .service.http.whiteboard.Preprocessor service currently being
used during request processing.

Since 1.1

Concurrency Not Thread-safe

140.16.14.1 public Map<String, String> initParams

The preprocessor initialization parameters as provided during registration of the preprocessor. Addi-
tional parameters like the Http Service Runtime attributes are not included. If the preprocessor has
not initialization parameters, this map is empty.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.runtime.dto

OSGi Compendium Release 8 Page 837

140.16.14.2 public long serviceId

Service property identifying the preprocessor. In the case of a preprocessor registered in the service
registry and picked up by a Http Whiteboard Implementation, this value is not negative and corre-
sponds to the service id in the registry. If the preprocessor has not been registered in the service reg-
istry, the value is negative and a unique negative value is generated by the Http Service Runtime in
this case.

140.16.14.3 public PreprocessorDTO()

140.16.15 public class RequestInfoDTO
extends DTO
Represents the services used to process a specific request.

Concurrency Not Thread-safe

140.16.15.1 public FilterDTO[] filterDTOs

The servlet filters processing this request. If no servlet filters are called for processing this request,
an empty array is returned.

140.16.15.2 public String path

The path of the request relative to the root.

140.16.15.3 public ResourceDTO resourceDTO

The resource processing this request. If the request is processed by a resource, this field points to
the DTO of the resource. If the request is processed by another type of component like a servlet, this
field is nul l .

140.16.15.4 public long servletContextId

The service id of the servlet context processing the request represented by this DTO.

140.16.15.5 public ServletDTO servletDTO

The servlet processing this request. If the request is processed by a servlet, this field points to the
DTO of the servlet. If the request is processed by another type of component like a resource, this
field is nul l .

140.16.15.6 public RequestInfoDTO()

140.16.16 public class ResourceDTO
extends DTO
Represents a resource definition currently being used by a servlet context.

Concurrency Not Thread-safe

140.16.16.1 public String[] patterns

The request mappings for the resource.

The specified patterns are used to determine whether a request is mapped to the resource. This val-
ue is never nul l .

140.16.16.2 public String prefix

The prefix of the resource.

org.osgi.service.http.runtime.dto Http Whiteboard Specification Version 1.1

Page 838 OSGi Compendium Release 8

140.16.16.3 public long serviceId

Service property identifying the resource. In the case of a resource registered in the service registry
and picked up by a Http Whiteboard Implementation, this value is not negative and corresponds to
the service id in the registry. If the resource has not been registered in the service registry, the value
is negative and a unique negative value is generated by the Http Service Runtime in this case.

140.16.16.4 public long servletContextId

The service id of the servlet context for the resource represented by this DTO.

140.16.16.5 public ResourceDTO()

140.16.17 public class RuntimeDTO
extends DTO
Represents the state of a Http Service Runtime.

Concurrency Not Thread-safe

140.16.17.1 public FailedErrorPageDTO[] failedErrorPageDTOs

Returns the representations of the error page javax.servlet .Servlet services associated with this run-
time but currently not used due to some problem. The returned array may be empty.

140.16.17.2 public FailedFilterDTO[] failedFilterDTOs

Returns the representations of the javax.servlet .F i l ter services associated with this runtime but cur-
rently not used due to some problem. The returned array may be empty.

140.16.17.3 public FailedListenerDTO[] failedListenerDTOs

Returns the representations of the listeners associated with this runtime but currently not used due
to some problem. The returned array may be empty.

140.16.17.4 public FailedPreprocessorDTO[] failedPreprocessorDTOs

Returns the representations of the servlet org.osgi .service.http.whiteboard.Preprocessor services
associated with this runtime but currently not used due to some problem. The returned array may
be empty.

Since 1.1

140.16.17.5 public FailedResourceDTO[] failedResourceDTOs

Returns the representations of the resources associated with this runtime but currently not used
due to some problem. The returned array may be empty.

140.16.17.6 public FailedServletContextDTO[] failedServletContextDTOs

Returns the representations of the javax.servlet .ServletContext objects currently not used by the
Http service runtime due to some problem. The returned array may be empty.

140.16.17.7 public FailedServletDTO[] failedServletDTOs

Returns the representations of the javax.servlet .Servlet services associated with this runtime but
currently not used due to some problem. The returned array may be empty.

140.16.17.8 public PreprocessorDTO[] preprocessorDTOs

Returns the representations of the org.osgi .service.http.whiteboard.Preprocessor objects used by
the Http Service Runtime. The returned array may be empty if the Http Service Runtime is currently
not using any org.osgi .service.http.whiteboard.Preprocessor objects.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.runtime.dto

OSGi Compendium Release 8 Page 839

Since 1.1

140.16.17.9 public ServiceReferenceDTO serviceDTO

The DTO for the corresponding org.osgi .service.http.runtime.HttpServiceRuntime . This value is
never nul l .

140.16.17.10 public ServletContextDTO[] servletContextDTOs

Returns the representations of the javax.servlet .ServletContext objects used by the Http Service
Runtime. The returned array may be empty if the Http Service Runtime is currently not using any
javax.servlet .ServletContext objects.

140.16.17.11 public RuntimeDTO()

140.16.18 public class ServletContextDTO
extends DTO
Represents a javax.servlet .ServletContext created for servlets, resources, servlet Filters, and
listeners associated with that servlet context. The Servlet Context is usually backed by a
org.osgi.service.http.context.ServletContextHelper service.

Concurrency Not Thread-safe

140.16.18.1 public Map<String, Object> attributes

The servlet context attributes.

The value type must be a numerical type, Boolean , Str ing , DTO or an array of any of the former.
Therefore this method will only return the attributes of the servlet context conforming to this con-
straint. Other attributes are omitted. If there are no attributes conforming to the constraint, an emp-
ty map is returned.

140.16.18.2 public String contextPath

The servlet context path. This is the value returned by the ServletContext.getContextPath()
method.

140.16.18.3 public ErrorPageDTO[] errorPageDTOs

Returns the representations of the error page Servlet services associated with this context. The rep-
resentations of the error page Servlet services associated with this context. The returned array may
be empty if this context is currently not associated with any error pages.

140.16.18.4 public FilterDTO[] filterDTOs

Returns the representations of the servlet Fi l ter services associated with this context. The represen-
tations of the servlet Fi l ter services associated with this context. The returned array may be empty if
this context is currently not associated with any servlet Fi l ter services.

140.16.18.5 public Map<String, String> initParams

The servlet context initialization parameters. This is the set of parameters provided when register-
ing this context. Additional parameters like the Http Service Runtime attributes are not included. If
the context has no initialization parameters, this map is empty.

140.16.18.6 public ListenerDTO[] listenerDTOs

Returns the representations of the listener services associated with this context. The representations
of the listener services associated with this context. The returned array may be empty if this context
is currently not associated with any listener services.

org.osgi.service.http.runtime.dto Http Whiteboard Specification Version 1.1

Page 840 OSGi Compendium Release 8

140.16.18.7 public String name

The name of the servlet context. The name of the corresponding
org.osgi.service.http.context.ServletContextHelper.

This is the value returned by the ServletContext.getServletContextName() method.

140.16.18.8 public ResourceDTO[] resourceDTOs

Returns the representations of the resource services associated with this context. The representa-
tions of the resource services associated with this context. The returned array may be empty if this
context is currently not associated with any resource services.

140.16.18.9 public long serviceId

Service property identifying the servlet context. In the case of a servlet context backed by a Servlet-
ContextHelper registered in the service registry and picked up by a Http Whiteboard Implementa-
tion, this value is not negative and corresponds to the service id in the registry. If the servlet context
is not backed by a service registered in the service registry, the value is negative and a unique nega-
tive value is generated by the Http Service Runtime in this case.

140.16.18.10 public ServletDTO[] servletDTOs

Returns the representations of the Servlet services associated with this context. The representations
of the Servlet services associated with this context. The returned array may be empty if this context
is currently not associated with any Servlet services.

140.16.18.11 public ServletContextDTO()

140.16.19 public class ServletDTO
extends BaseServletDTO
Represents a javax.servlet .Servlet currently being used by a servlet context.

Concurrency Not Thread-safe

140.16.19.1 public boolean multipartEnabled

Specifies whether multipart support is enabled.

Since 1.1

140.16.19.2 public int multipartFileSizeThreshold

Specifies the size threshold after which the file will be written to disk. If multipart is not enabled for
this servlet, 0 is returned.

See Also multipartEnabled

Since 1.1

140.16.19.3 public String multipartLocation

Specifies the location where the files can be stored on disk. If multipart is not enabled for this
servlet, nul l is returned.

See Also multipartEnabled

Since 1.1

140.16.19.4 public long multipartMaxFileSize

Specifies the maximum size of a file being uploaded. If multipart is not enabled for this servlet, 0 is
returned.

See Also multipartEnabled

Http Whiteboard Specification Version 1.1 org.osgi.service.http.whiteboard

OSGi Compendium Release 8 Page 841

Since 1.1

140.16.19.5 public long multipartMaxRequestSize

Specifies the maximum request size. If multipart is not enabled for this servlet, 0 is returned.

See Also multipartEnabled

Since 1.1

140.16.19.6 public String[] patterns

The request mappings for the servlet.

The specified patterns are used to determine whether a request is mapped to the servlet. This array
is never nul l . It might be empty for named servlets.

140.16.19.7 public ServletDTO()

140.17 org.osgi.service.http.whiteboard

Http Whiteboard Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.http.whiteboard; vers ion="[1.1 ,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.http.whiteboard; vers ion="[1.1 ,1 .2)"

140.17.1 Summary

• HttpWhiteboardConstants - Defines standard constants for the Http Whiteboard services.
• Preprocessor - Services registered as a Preprocessor using a whiteboard pattern are executed for

every request before the dispatching is performed.

140.17.2 public final class HttpWhiteboardConstants
Defines standard constants for the Http Whiteboard services.

140.17.2.1 public static final String DISPATCHER_ASYNC = "ASYNC"

Possible value for the HTTP_WHITEBOARD_FILTER_DISPATCHER property indicating the servlet
filter is applied in the asynchronous context.

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 6.2.5 F i l ters and the RequestDispatcher

140.17.2.2 public static final String DISPATCHER_ERROR = "ERROR"

Possible value for the HTTP_WHITEBOARD_FILTER_DISPATCHER property indicating the servlet
filter is applied when an error page is called.

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 6.2.5 F i l ters and the RequestDispatcher

140.17.2.3 public static final String DISPATCHER_FORWARD = "FORWARD"

Possible value for the HTTP_WHITEBOARD_FILTER_DISPATCHER property indicating the servlet
filter is applied to forward calls to the dispatcher.

org.osgi.service.http.whiteboard Http Whiteboard Specification Version 1.1

Page 842 OSGi Compendium Release 8

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 6.2.5 F i l ters and the RequestDispatcher

140.17.2.4 public static final String DISPATCHER_INCLUDE = "INCLUDE"

Possible value for the HTTP_WHITEBOARD_FILTER_DISPATCHER property indicating the servlet
filter is applied to include calls to the dispatcher.

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 6.2.5 F i l ters and the RequestDispatcher

140.17.2.5 public static final String DISPATCHER_REQUEST = "REQUEST"

Possible value for the HTTP_WHITEBOARD_FILTER_DISPATCHER property indicating the servlet
filter is applied to client requests.

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 6.2.5 F i l ters and the RequestDispatcher

140.17.2.6 public static final String HTTP_SERVICE_CONTEXT_FILTER = "(osgi.http.whiteboard.context.httpservice=*)"

If a servlet filter, error page or listener wants to be registered with the Http Context(s) managed by
the Http Service, they can select the contexts having the HTTP_SERVICE_CONTEXT_PROPERTY
property using this filter.

See Also HTTP_SERVICE_CONTEXT_PROPERTY

Since 1.1

140.17.2.7 public static final String HTTP_SERVICE_CONTEXT_PROPERTY = "osgi.http.whiteboard.context.httpservice"

If a servlet filter, error page or listener wants to be registered with the Http Context(s) managed by
the Http Service, they can select the contexts having this property.

Servlets or resources registered using this property are treated as an invalid registration.

See Also HTTP_SERVICE_CONTEXT_FILTER

Since 1.1

140.17.2.8 public static final String HTTP_WHITEBOARD_CONTEXT_INIT_PARAM_PREFIX = "context.init."

Service property prefix referencing a ServletContextHelper service.

For ServletContextHelper services this prefix can be used for service properties to mark them as ini-
tialization parameters which can be retrieved from the associated servlet context. The prefix is re-
moved from the service property name to build the initialization parameter name.

For ServletContextHelper services, the value of each initialization parameter service property must
be of type Str ing .

140.17.2.9 public static final String HTTP_WHITEBOARD_CONTEXT_NAME = "osgi.http.whiteboard.context.name"

Service property specifying the name of an ServletContextHelper service.

For ServletContextHelper services, this service property must be specified. Context services without
this service property are ignored.

Servlet, listener, servlet filter, and resource services might refer to a specific ServletContextHelper
service referencing the name with the HTTP_WHITEBOARD_CONTEXT_SELECT property.

For ServletContextHelper services, the value of this service property must be of type Str ing . The val-
ue must follow the "symbolic-name" specification from Section 1.3.2 of the OSGi Core Specification.

See Also HTTP_WHITEBOARD_CONTEXT_PATH, HTTP_WHITEBOARD_CONTEXT_SELECT,
HTTP_WHITEBOARD_DEFAULT_CONTEXT_NAME

140.17.2.10 public static final String HTTP_WHITEBOARD_CONTEXT_PATH = "osgi.http.whiteboard.context.path"

Service property specifying the path of an ServletContextHelper service.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.whiteboard

OSGi Compendium Release 8 Page 843

For ServletContextHelper services this service property is required. Context services without this
service property are ignored.

This property defines a context path under which all whiteboard services associated with this con-
text are registered. Having different contexts with different paths allows to separate the URL space.

For ServletContextHelper services, the value of this service property must be of type Str ing . The val-
ue is either a slash for the root or it must start with a slash but not end with a slash. Valid characters
are defined in rfc3986#section-3.3. Contexts with an invalid path are ignored.

See Also HTTP_WHITEBOARD_CONTEXT_NAME, HTTP_WHITEBOARD_CONTEXT_SELECT

140.17.2.11 public static final String HTTP_WHITEBOARD_CONTEXT_SELECT = "osgi.http.whiteboard.context.select"

Service property referencing a ServletContextHelper service.

For servlet, listener, servlet filter, or resource services, this service property refers to the associated
ServletContextHelper service. The value of this property is a filter expression which is matched
against the service registration properties of the ServletContextHelper service. If this service prop-
erty is not specified, the default context is used. If there is no context service matching, the servlet,
listener, servlet filter, or resource service is ignored.

For example, if a whiteboard service wants to select a servlet context helper with the name "Admin"
the expression would be "(osgi.http.whiteboard.context.name=Admin)". Selecting all contexts could
be done with "(osgi.http.whiteboard.context.name=*)".

For servlet, listener, servlet filter, or resource services, the value of this service property must be of
type Str ing .

See Also HTTP_WHITEBOARD_CONTEXT_NAME, HTTP_WHITEBOARD_CONTEXT_PATH

140.17.2.12 public static final String HTTP_WHITEBOARD_DEFAULT_CONTEXT_NAME = "default"

The name of the default ServletContextHelper. If a service is registered with this property, it is over-
riding the default context with a custom provided context.

See Also HTTP_WHITEBOARD_CONTEXT_NAME

140.17.2.13 public static final String HTTP_WHITEBOARD_FILTER_ASYNC_SUPPORTED =
"osgi.http.whiteboard.filter.asyncSupported"

Service property specifying whether a servlet Fi l ter service supports asynchronous processing.

By default servlet filters services do not support asynchronous processing.

The value of this service property must be of type Boolean .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 2.3.3.3 Asynchronous Processing

140.17.2.14 public static final String HTTP_WHITEBOARD_FILTER_DISPATCHER = "osgi.http.whiteboard.filter.dispatcher"

Service property specifying the dispatcher handling of a servlet Fi l ter .

By default servlet filter services are associated with client requests only (see value
DISPATCHER_REQUEST).

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> . Al-
lowed values are DISPATCHER_ASYNC, DISPATCHER_ERROR, DISPATCHER_FORWARD,
DISPATCHER_INCLUDE, DISPATCHER_REQUEST.

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 6.2.5 F i l ters and the RequestDispatcher

140.17.2.15 public static final String HTTP_WHITEBOARD_FILTER_INIT_PARAM_PREFIX = "filter.init."

Service property prefix referencing a Filter service.

org.osgi.service.http.whiteboard Http Whiteboard Specification Version 1.1

Page 844 OSGi Compendium Release 8

For Filter services this prefix can be used for service properties to mark them as initialization para-
meters which can be retrieved from the associated filter config. The prefix is removed from the ser-
vice property name to build the initialization parameter name.

For Filter services, the value of each initialization parameter service property must be of type Str ing .

140.17.2.16 public static final String HTTP_WHITEBOARD_FILTER_NAME = "osgi.http.whiteboard.filter.name"

Service property specifying the servlet filter name of a Fi l ter service.

This name is used as the value for the Fi l terConfig.getFi l terName() method. If this service property
is not specified, the fully qualified name of the service object's class is used as the servlet filter name.

Servlet filter names should be unique among all servlet filter services associated with a single
ServletContextHelper.

The value of this service property must be of type Str ing .

140.17.2.17 public static final String HTTP_WHITEBOARD_FILTER_PATTERN = "osgi.http.whiteboard.filter.pattern"

Service property specifying the request mappings for a Fi l ter service.

The specified patterns are used to determine whether a request should be mapped to the servlet fil-
ter. Filter services without this service property or the HTTP_WHITEBOARD_FILTER_SERVLET or
the HTTP_WHITEBOARD_FILTER_REGEX service property are ignored.

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 12.2 Specif icat ion of Mappings

140.17.2.18 public static final String HTTP_WHITEBOARD_FILTER_REGEX = "osgi.http.whiteboard.filter.regex"

Service property specifying the request mappings for a servlet Fi l ter service.

The specified regular expressions are used to determine whether a request should be mapped to
the servlet filter. The regular expressions must follow the syntax defined in java.ut i l . regex.Pattern .
Servlet filter services without this service property or the HTTP_WHITEBOARD_FILTER_SERVLET
or the HTTP_WHITEBOARD_FILTER_PATTERN service property are ignored.

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

See Also java.ut i l . regex.Pattern

140.17.2.19 public static final String HTTP_WHITEBOARD_FILTER_SERVLET = "osgi.http.whiteboard.filter.servlet"

Service property specifying the servlet names for a servlet Fi l ter service.

The specified names are used to determine the servlets whose requests should be
mapped to the servlet filter. Servlet filter services without this service property or the
HTTP_WHITEBOARD_FILTER_PATTERN or the HTTP_WHITEBOARD_FILTER_REGEX service
property are ignored.

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

140.17.2.20 public static final String HTTP_WHITEBOARD_IMPLEMENTATION = "osgi.http"

The name of the implementation capability for the Http Whiteboard specification

Since 1.1

140.17.2.21 public static final String HTTP_WHITEBOARD_LISTENER = "osgi.http.whiteboard.listener"

Service property to mark a Listener service as a Whiteboard service. Listener services with this prop-
erty set to the string value "true" will be treated as Whiteboard services opting in to being handled
by the Http Whiteboard implementation. If the value "false" is specified, the service is opting out
and this case is treated exactly the same as if this property is missing. If an invalid value is specified
this is treated as a failure.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.whiteboard

OSGi Compendium Release 8 Page 845

The value of this service property must be of type Str ing . Valid values are "true" and "false" ignoring
case.

140.17.2.22 public static final String HTTP_WHITEBOARD_PREPROCESSOR_INIT_PARAM_PREFIX = "preprocessor.init."

Service property prefix referencing a Preprocessor service.

For Preprocessor services this prefix can be used for service properties to mark them as initialization
parameters which can be retrieved from the associated filter configuration. The prefix is removed
from the service property name to build the initialization parameter name.

For Preprocessor services, the value of each initialization parameter service property must be of type
Str ing .

Since 1.1

140.17.2.23 public static final String HTTP_WHITEBOARD_RESOURCE_PATTERN =
"osgi.http.whiteboard.resource.pattern"

Service property specifying the request mappings for resources.

The specified patterns are used to determine whether a request should be mapped to resources. Re-
source services without this service property are ignored.

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 12.2 Specif icat ion of Mappings ,
HTTP_WHITEBOARD_RESOURCE_PREFIX

140.17.2.24 public static final String HTTP_WHITEBOARD_RESOURCE_PREFIX = "osgi.http.whiteboard.resource.prefix"

Service property specifying the resource entry prefix for a resource service.

If a resource service is registered with this property, requests are served with bundle resources.

This prefix is used to map a requested resource to the bundle's entries. The value must not end with
slash ("/") with the exception that a name of the form "/" is used to denote the root of the bundle. See
the specification text for details on how HTTP requests are mapped.

The value of this service property must be of type Str ing .

See Also HTTP_WHITEBOARD_RESOURCE_PATTERN

140.17.2.25 public static final String HTTP_WHITEBOARD_SERVLET_ASYNC_SUPPORTED =
"osgi.http.whiteboard.servlet.asyncSupported"

Service property specifying whether a Servlet service supports asynchronous processing.

By default servlet services do not support asynchronous processing.

The value of this service property must be of type Boolean .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 2.3.3.3 Asynchronous Processing

140.17.2.26 public static final String HTTP_WHITEBOARD_SERVLET_ERROR_PAGE =
"osgi.http.whiteboard.servlet.errorPage"

Service property specifying whether a Servlet service acts as an error page.

The service property values may be the name of a fully qualified exception class, a three digit HTTP
status code, the value "4xx" for all error codes in the 400 range, or the value "5xx" for all error codes
in the 500 range. Any value that is not a three digit number, or one of the two special values is con-
sidered to be the name of a fully qualified exception class.

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

org.osgi.service.http.whiteboard Http Whiteboard Specification Version 1.1

Page 846 OSGi Compendium Release 8

140.17.2.27 public static final String HTTP_WHITEBOARD_SERVLET_INIT_PARAM_PREFIX = "servlet.init."

Service property prefix referencing a Servlet service.

For Servlet services this prefix can be used for service properties to mark them as initialization para-
meters which can be retrieved from the associated servlet config. The prefix is removed from the ser-
vice property name to build the initialization parameter name.

For Servlet services, the value of each initialization parameter service property must be of type
Str ing .

140.17.2.28 public static final String HTTP_WHITEBOARD_SERVLET_MULTIPART_ENABLED =
"osgi.http.whiteboard.servlet.multipart.enabled"

Service property specifying whether a Servlet service has enabled multipart request processing.

By default servlet services do not have multipart request processing enabled.

The value of this service property must be of type Boolean .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 8.1.5 @Mult ipartConfig

Since 1.1

140.17.2.29 public static final String HTTP_WHITEBOARD_SERVLET_MULTIPART_FILESIZETHRESHOLD =
"osgi.http.whiteboard.servlet.multipart.fileSizeThreshold"

Service property specifying the size threshold after which the file will be written to disk.

When not set or when the value is not valid, the default threshold is determined by the implemen-
tation. This property is only evaluated if HTTP_WHITEBOARD_SERVLET_MULTIPART_ENABLED
is set to true .

The value of this service property must be of type Integer .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 14.4 Deployment Descr iptor Diagram

Since 1.1

140.17.2.30 public static final String HTTP_WHITEBOARD_SERVLET_MULTIPART_LOCATION =
"osgi.http.whiteboard.servlet.multipart.location"

Service property specifying the location where the files can be stored on disk.

When not set the default location is defined by the value of the system property "java.io.tmpdir".
This property is only evaluated if HTTP_WHITEBOARD_SERVLET_MULTIPART_ENABLED is set to
true .

The value of this service property must be of type Str ing .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 14.4 Deployment Descr iptor Diagram

Since 1.1

140.17.2.31 public static final String HTTP_WHITEBOARD_SERVLET_MULTIPART_MAXFILESIZE =
"osgi.http.whiteboard.servlet.multipart.maxFileSize"

Service property specifying the maximum size of a file being uploaded.

When not set or when the value is not valid, the default maximum size is [@code -1} (no maximum
size). This property is only evaluated if HTTP_WHITEBOARD_SERVLET_MULTIPART_ENABLED is
set to true .

The value of this service property must be of type Long .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 14.4 Deployment Descr iptor Diagram

Since 1.1

Http Whiteboard Specification Version 1.1 org.osgi.service.http.whiteboard

OSGi Compendium Release 8 Page 847

140.17.2.32 public static final String HTTP_WHITEBOARD_SERVLET_MULTIPART_MAXREQUESTSIZE =
"osgi.http.whiteboard.servlet.multipart.maxRequestSize"

Service property specifying the maximum request size.

When not set or when the value is not valid, the default maximum request size is -1 (no maximum
size). This property is only evaluated if HTTP_WHITEBOARD_SERVLET_MULTIPART_ENABLED is
set to true .

The value of this service property must be of type Long .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 14.4 Deployment Descr iptor Diagram

Since 1.1

140.17.2.33 public static final String HTTP_WHITEBOARD_SERVLET_NAME = "osgi.http.whiteboard.servlet.name"

Service property specifying the servlet name of a Servlet service.

The servlet is registered with this name and the name can be used as a reference to the servlet for fil-
tering or request dispatching.

This name is in addition used as the value for the ServletConfig.getServletName() method.
If this service property is not specified, the fully qualified name of the service object's
class is used as the servlet name. Filter services may refer to servlets by this name in their
HTTP_WHITEBOARD_FILTER_SERVLET service property to apply the filter to the servlet.

Servlet names should be unique among all servlet services associated with a single ServletContex-
tHelper.

The value of this service property must be of type Str ing .

140.17.2.34 public static final String HTTP_WHITEBOARD_SERVLET_PATTERN = "osgi.http.whiteboard.servlet.pattern"

Service property specifying the request mappings for a Servlet service.

The specified patterns are used to determine whether a request should be mapped to the servlet.
Servlet services without this service property, HTTP_WHITEBOARD_SERVLET_ERROR_PAGE or
HTTP_WHITEBOARD_SERVLET_NAME are ignored.

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

See Also Java Servlet Specif icat ion Version 3.0, Sect ion 12.2 Specif icat ion of Mappings

140.17.2.35 public static final String HTTP_WHITEBOARD_SPECIFICATION_VERSION = "1.1"

The version of the implementation capability for the Http Whiteboard specification

Since 1.1

140.17.2.36 public static final String HTTP_WHITEBOARD_TARGET = "osgi.http.whiteboard.target"

Service property specifying the target filter to select the Http Whiteboard implementation to
process the service.

An Http Whiteboard implementation can define any number of service properties which can be ref-
erenced by the target filter. The service properties should always include the osgi.http.endpoint ser-
vice property if the endpoint information is known.

If this service property is not specified, then all Http Whiteboard implementations can process the
service.

The value of this service property must be of type Str ing and be a valid filter string.

org.osgi.service.http.whiteboard.annotations Http Whiteboard Specification Version 1.1

Page 848 OSGi Compendium Release 8

140.17.3 public interface Preprocessor
extends Filter
Services registered as a Preprocessor using a whiteboard pattern are executed for every request be-
fore the dispatching is performed.

If there are several services of this type, they are run in order of their service ranking, the one with
the highest ranking is used first. In the case of a service ranking tie, the service with the lowest ser-
vice id is processed first.

The preprocessor is handled in the same way as filters. When a preprocessor is put into service
Filter.init(javax.servlet.FilterConfig) is called, when it is not used anymore Filter.destroy() is called.
As these preprocessors are run before dispatching and therefore the targeted servlet context is not
known yet, javax.servlet.FilterConfig.getServletContext() returns the servlet context of the backing
implementation. The same context is returned by the request object. The context path is the con-
text path of this underlying servlet context. The passed in chain can be used to invoke the next pre-
processor in the chain, or if the end of that chain is reached to start dispatching of the request. A pre-
processor might decide to terminate the processing and directly generate a response.

Service properties with the prefix
HttpWhiteboardConstants#HTTP_WHITEBOARD_PREPROCESSOR_INIT_PARAM_PREFIX are passed
as init parameters to this service.

Since 1.1

Concurrency Thread-safe

140.18 org.osgi.service.http.whiteboard.annotations

Http Whiteboard Annotations Package Version 1.1.

This package contains annotations that can be used to require the Http Whiteboard implementa-
tion.

Bundles should not normally need to import this package as the annotations are only used at build-
time.

140.18.1 Summary

• RequireHttpWhiteboard - This annotation can be used to require the Http Whiteboard imple-
mentation.

140.18.2 @RequireHttpWhiteboard
This annotation can be used to require the Http Whiteboard implementation. It can be used directly,
or as a meta-annotation.

This annotation is applied to several of the Http Whiteboard component property annotations
meaning that it does not normally need to be applied to Declarative Services components which use
the Http Whiteboard.

Retention CLASS

Target TYPE , PACKAGE

140.19 org.osgi.service.http.whiteboard.propertytypes

Http Whiteboard Specification Version 1.1 org.osgi.service.http.whiteboard.propertytypes

OSGi Compendium Release 8 Page 849

Http Whiteboard Property Types Package Version 1.1.

When used as annotations, component property types are processed by tools to generate Compo-
nent Descriptions which are used at runtime.

Bundles wishing to use this package at runtime must list the package in the Import-Package header
of the bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.http.whiteboard.propertytypes; vers ion="[1.1 ,2.0)"

140.19.1 Summary

• HttpWhiteboardContext - Component Property Type for the
osgi .http.whiteboard.context.name and osgi .http.whiteboard.context.path service properties.

• HttpWhiteboardContextSelect - Component Property Type for the
osgi .http.whiteboard.context.select service property.

• HttpWhiteboardFi lterAsyncSupported - Component Property Type for the
osgi .http.whiteboard.f i l ter.asyncSupported service property.

• HttpWhiteboardFi lterDispatcher - Component Property Type for the
osgi .http.whiteboard.f i l ter.dispatcher service property.

• HttpWhiteboardFi lterName - Component Property Type for the
osgi .http.whiteboard.f i l ter.name service property.

• HttpWhiteboardFi lterPattern - Component Property Type for the
osgi .http.whiteboard.f i l ter.pattern service property.

• HttpWhiteboardFi lterRegex - Component Property Type for the
osgi .http.whiteboard.f i l ter. regex service property.

• HttpWhiteboardFi lterServlet - Component Property Type for the
osgi .http.whiteboard.f i l ter.servlet service property.

• HttpWhiteboardListener - Component Property Type for the osgi .http.whiteboard. l istener ser-
vice property.

• HttpWhiteboardResource - Component Property Type for the
osgi .http.whiteboard.resource.pattern and osgi .http.whiteboard.resource.prefix service prop-
erties.

• HttpWhiteboardServletAsyncSupported - Component Property Type for the
osgi .http.whiteboard.servlet .asyncSupported service property.

• HttpWhiteboardServletErrorPage - Component Property Type for the
osgi .http.whiteboard.servlet .errorPage service property.

• HttpWhiteboardServletMult ipart - Component Property
Type for the osgi .http.whiteboard.servlet .mult ipart .enabled ,
osgi .http.whiteboard.servlet .mult ipart .f i leSizeThreshold ,
osgi .http.whiteboard.servlet .mult ipart . locat ion ,
osgi .http.whiteboard.servlet .mult ipart .maxFi leSize , and
osgi .http.whiteboard.servlet .mult ipart .maxRequestSize service properties.

• HttpWhiteboardServletName - Component Property Type for the
osgi .http.whiteboard.servlet .name service property.

• HttpWhiteboardServletPattern - Component Property Type for the
osgi .http.whiteboard.servlet .pattern service property.

• HttpWhiteboardTarget - Component Property Type for the osgi .http.whiteboard.target service
property.

org.osgi.service.http.whiteboard.propertytypes Http Whiteboard Specification Version 1.1

Page 850 OSGi Compendium Release 8

140.19.2 @HttpWhiteboardContext
Component Property Type for the osgi .http.whiteboard.context.name and
osgi .http.whiteboard.context.path service properties.

This annotation can be used on a ServletContextHelper to declare the values of the
HTTP_WHITEBOARD_CONTEXT_NAME and HTTP_WHITEBOARD_CONTEXT_PATH service
properties.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.2.1 String name

□ Service property identifying a servlet context helper name.

Returns The context name.

See Also HTTP_WHITEBOARD_CONTEXT_NAME

140.19.2.2 String path

□ Service property identifying a servlet context helper path.

Returns The context path.

See Also HTTP_WHITEBOARD_CONTEXT_PATH

140.19.2.3 String PREFIX_ = "osgi.http.whiteboard.context."

Prefix for the property name. This value is prepended to each property name.

140.19.3 @HttpWhiteboardContextSelect
Component Property Type for the osgi .http.whiteboard.context.select service property.

This annotation can be used on a Http Whiteboard component to declare the value of the
HTTP_WHITEBOARD_CONTEXT_SELECT service property.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.3.1 String value

□ Service property identifying the select property of a Http Whiteboard component.

Returns The filter expression.

See Also HTTP_WHITEBOARD_CONTEXT_SELECT

140.19.3.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

140.19.4 @HttpWhiteboardFilterAsyncSupported
Component Property Type for the osgi .http.whiteboard.f i l ter.asyncSupported service property.

This annotation can be used on a javax.servlet.Filter to declare the value of the
HTTP_WHITEBOARD_FILTER_ASYNC_SUPPORTED service property.

Http Whiteboard Specification Version 1.1 org.osgi.service.http.whiteboard.propertytypes

OSGi Compendium Release 8 Page 851

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.4.1 boolean asyncSupported default true

□ Service property identifying the asynchronous support of a filter.

Returns Whether the filter supports asynchronous processing.

See Also HTTP_WHITEBOARD_FILTER_ASYNC_SUPPORTED

140.19.4.2 String PREFIX_ = "osgi.http.whiteboard.filter."

Prefix for the property name. This value is prepended to each property name.

140.19.5 @HttpWhiteboardFilterDispatcher
Component Property Type for the osgi .http.whiteboard.f i l ter.dispatcher service property.

This annotation can be used on a javax.servlet.Filter to declare the value of the
HTTP_WHITEBOARD_FILTER_DISPATCHER service property.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.5.1 DispatcherType[] value default javax.servlet.DispatcherType.REQUEST

□ Service property identifying dispatcher values for the filter.

Returns The dispatcher values for the filter.

See Also HTTP_WHITEBOARD_FILTER_DISPATCHER

140.19.5.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

140.19.6 @HttpWhiteboardFilterName
Component Property Type for the osgi .http.whiteboard.f i l ter.name service property.

This annotation can be used on a javax.servlet.Filter to declare the value of the
HTTP_WHITEBOARD_FILTER_NAME service property.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.6.1 String value

□ Service property identifying a filter name.

Returns The filter name.

See Also HTTP_WHITEBOARD_FILTER_NAME

org.osgi.service.http.whiteboard.propertytypes Http Whiteboard Specification Version 1.1

Page 852 OSGi Compendium Release 8

140.19.6.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

140.19.7 @HttpWhiteboardFilterPattern
Component Property Type for the osgi .http.whiteboard.f i l ter.pattern service property.

This annotation can be used on a javax.servlet.Filter to declare the value of the
HTTP_WHITEBOARD_FILTER_PATTERN service property.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.7.1 String[] value

□ Service property identifying filter patterns.

Returns The filter patterns.

See Also HTTP_WHITEBOARD_FILTER_PATTERN

140.19.7.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

140.19.8 @HttpWhiteboardFilterRegex
Component Property Type for the osgi .http.whiteboard.f i l ter. regex service property.

This annotation can be used on a javax.servlet.Filter to declare the value of the
HTTP_WHITEBOARD_FILTER_REGEX service property.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.8.1 String[] value

□ Service property identifying filter regular expressions.

Returns The regular expressions for the filter.

See Also HTTP_WHITEBOARD_FILTER_REGEX

140.19.8.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

140.19.9 @HttpWhiteboardFilterServlet
Component Property Type for the osgi .http.whiteboard.f i l ter.servlet service property.

This annotation can be used on a javax.servlet.Filter to declare the value of the
HTTP_WHITEBOARD_FILTER_SERVLET service property.

See Also Component Property Types

Since 1.1

Retention CLASS

Http Whiteboard Specification Version 1.1 org.osgi.service.http.whiteboard.propertytypes

OSGi Compendium Release 8 Page 853

Target TYPE

140.19.9.1 String[] value

□ Service property identifying the servlets for the filter.

Returns The servlet names.

See Also HTTP_WHITEBOARD_FILTER_SERVLET

140.19.9.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

140.19.10 @HttpWhiteboardListener
Component Property Type for the osgi .http.whiteboard. l istener service property.

This annotation can be used on a Http Whiteboard listener to declare the value of the
HTTP_WHITEBOARD_LISTENER service property as being Boolean.TRUE .

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.10.1 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

140.19.11 @HttpWhiteboardResource
Component Property Type for the osgi .http.whiteboard.resource.pattern and
osgi .http.whiteboard.resource.prefix service properties.

This annotation can be used on any service to declare the values of the
HTTP_WHITEBOARD_RESOURCE_PATTERN and HTTP_WHITEBOARD_RESOURCE_PREFIX ser-
vice properties.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.11.1 String[] pattern

□ Service property specifying the request mappings for resources. The specified patterns are used to
determine whether a request should be mapped to resources.

Returns The resource patterns.

See Also HTTP_WHITEBOARD_RESOURCE_PATTERN

140.19.11.2 String prefix

□ Service property specifying the resource entry prefix for a resource service. This prefix is used to
map a requested resource to the bundle's entries. The value must not end with slash ("/") with the ex-
ception that a name of the form "/" is used to denote the root of the bundle.

Returns The resource prefix.

See Also HTTP_WHITEBOARD_RESOURCE_PREFIX

org.osgi.service.http.whiteboard.propertytypes Http Whiteboard Specification Version 1.1

Page 854 OSGi Compendium Release 8

140.19.11.3 String PREFIX_ = "osgi.http.whiteboard.resource."

Prefix for the property name. This value is prepended to each property name.

140.19.12 @HttpWhiteboardServletAsyncSupported
Component Property Type for the osgi .http.whiteboard.servlet .asyncSupported service property.

This annotation can be used on a javax.servlet.Servlet to declare the value of the
HTTP_WHITEBOARD_SERVLET_ASYNC_SUPPORTED service property.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.12.1 boolean asyncSupported default true

□ Service property identifying the asynchronous support of a servlet.

Returns Whether the servlet supports asynchronous processing.

See Also HTTP_WHITEBOARD_SERVLET_ASYNC_SUPPORTED

140.19.12.2 String PREFIX_ = "osgi.http.whiteboard.servlet."

Prefix for the property name. This value is prepended to each property name.

140.19.13 @HttpWhiteboardServletErrorPage
Component Property Type for the osgi .http.whiteboard.servlet .errorPage service property.

This annotation can be used on a javax.servlet.Servlet to declare the value of the
HTTP_WHITEBOARD_SERVLET_ERROR_PAGE service property.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.13.1 String[] errorPage

□ Service property identifying the error pages of a servlet.

Returns The servlet error pages.

See Also HTTP_WHITEBOARD_SERVLET_ERROR_PAGE

140.19.13.2 String PREFIX_ = "osgi.http.whiteboard.servlet."

Prefix for the property name. This value is prepended to each property name.

140.19.14 @HttpWhiteboardServletMultipart
Component Property Type for the osgi .http.whiteboard.servlet .mult ipart .enabled ,
osgi .http.whiteboard.servlet .mult ipart .f i leSizeThreshold ,
osgi .http.whiteboard.servlet .mult ipart . locat ion ,
osgi .http.whiteboard.servlet .mult ipart .maxFi leSize , and
osgi .http.whiteboard.servlet .mult ipart .maxRequestSize service properties.

This annotation can be used on a javax.servlet.Servlet to declare the val-
ues of the HTTP_WHITEBOARD_SERVLET_MULTIPART_ENABLED,

Http Whiteboard Specification Version 1.1 org.osgi.service.http.whiteboard.propertytypes

OSGi Compendium Release 8 Page 855

HTTP_WHITEBOARD_SERVLET_MULTIPART_FILESIZETHRESHOLD,
HTTP_WHITEBOARD_SERVLET_MULTIPART_LOCATION,
HTTP_WHITEBOARD_SERVLET_MULTIPART_MAXFILESIZE, and
HTTP_WHITEBOARD_SERVLET_MULTIPART_MAXREQUESTSIZE service properties.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.14.1 boolean enabled default true

□ Service property identifying the multipart handling of a servlet.

Returns Whether the servlet supports multipart handling.

See Also HTTP_WHITEBOARD_SERVLET_MULTIPART_ENABLED

140.19.14.2 int fileSizeThreshold default 0

□ Service property identifying the file size threshold for a multipart request handled by a servlet.

Returns The file size threshold for a multipart request..

See Also HTTP_WHITEBOARD_SERVLET_MULTIPART_FILESIZETHRESHOLD

140.19.14.3 String location default ""

□ Service property identifying the location for a multipart request handled by a servlet.

Returns The location for a multipart request..

See Also HTTP_WHITEBOARD_SERVLET_MULTIPART_LOCATION

140.19.14.4 long maxFileSize default -1L

□ Service property identifying the max file size for a multipart request handled by a servlet.

Returns The max file size for a multipart request..

See Also HTTP_WHITEBOARD_SERVLET_MULTIPART_MAXFILESIZE

140.19.14.5 long maxRequestSize default -1L

□ Service property identifying the max request size for a multipart request handled by a servlet.

Returns The max request size for a multipart request..

See Also HTTP_WHITEBOARD_SERVLET_MULTIPART_MAXREQUESTSIZE

140.19.14.6 String PREFIX_ = "osgi.http.whiteboard.servlet.multipart."

Prefix for the property name. This value is prepended to each property name.

140.19.15 @HttpWhiteboardServletName
Component Property Type for the osgi .http.whiteboard.servlet .name service property.

This annotation can be used on a javax.servlet.Servlet to declare the value of the
HTTP_WHITEBOARD_SERVLET_NAME service property.

See Also Component Property Types

Since 1.1

Retention CLASS

org.osgi.service.http.whiteboard.propertytypes Http Whiteboard Specification Version 1.1

Page 856 OSGi Compendium Release 8

Target TYPE

140.19.15.1 String value

□ Service property identifying a servlet name.

Returns The servlet name.

See Also HTTP_WHITEBOARD_SERVLET_NAME

140.19.15.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

140.19.16 @HttpWhiteboardServletPattern
Component Property Type for the osgi .http.whiteboard.servlet .pattern service property.

This annotation can be used on a javax.servlet.Servlet to declare the value of the
HTTP_WHITEBOARD_SERVLET_PATTERN service property.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.16.1 String[] value

□ Service property identifying servlet patterns.

Returns The servlet patterns.

See Also HTTP_WHITEBOARD_SERVLET_PATTERN

140.19.16.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

140.19.17 @HttpWhiteboardTarget
Component Property Type for the osgi .http.whiteboard.target service property.

This annotation can be used on a Http Whiteboard service to declare the value of the
HTTP_WHITEBOARD_TARGET service property.

See Also Component Property Types

Since 1.1

Retention CLASS

Target TYPE

140.19.17.1 String value

□ Service property identifying the Http Whiteboard target.

Returns The Http Whiteboard target filter expression.

See Also HTTP_WHITEBOARD_TARGET

140.19.17.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

Http Whiteboard Specification Version 1.1 References

OSGi Compendium Release 8 Page 857

140.20 References

[1] HTTP 1.0 Specification RFC-1945
http://www.ietf.org/rfc/rfc1945.txt, May 1996

[2] HTTP 1.1 Specifications RFCs 7230-7235
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7235

[3] HTTP/2 Specifications
https://http2.github.io

[4] Java Servlet 3.1 Specification
https://jcp.org/aboutJava/communityprocess/final/jsr340/

[5] Portable Java Contract Definitions
https://docs.osgi.org/reference/portable-java-contracts.html

[6] RFC 2617: HTTP Authentication: Basic and Digest Access Authentication
http://www.ietf.org/rfc/rfc2617.txt

[7] Whiteboard Pattern
https://docs.osgi.org/whitepaper/whiteboard-pattern/

[8] Core Service Hooks
OSGi Core, Chapter 55 Service Hook Service Specification

http://www.ietf.org/rfc/rfc1945.txt
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7235
https://http2.github.io
https://jcp.org/aboutJava/communityprocess/final/jsr340/
https://docs.osgi.org/reference/portable-java-contracts.html
http://www.ietf.org/rfc/rfc2617.txt
https://docs.osgi.org/whitepaper/whiteboard-pattern/

References Http Whiteboard Specification Version 1.1

Page 858 OSGi Compendium Release 8

Device Abstraction Layer Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 859

141 Device Abstraction Layer
Specification

Version 1.0

141.1 Introduction
The Internet-of-Things (IoT) has a major impact in the IT industry. It requires backend systems to re-
ceive information from sensors, actuators, and appliances in various vertical markets such as Smart
Home, eHealth, industrial automation, logistics, and automotive telematics. Application developers
have to face the still increasing amount of communication protocols which are the major hurdle for
interoperability.

The Device Abstraction Layer specification provides a unified interface for application developers to
interact with sensor, devices, etc. connected to a gateway. Application developers don't have to deal
with protocol specific details which simplifies the development of their applications.

The remote device control provides an opportunity to save energy, to support better security, to
save your time during daily tasks and more. The devices can play different roles in their networks as
event reporters, controllers, etc. That dynamic behavior is well mappable to the dynamic OSGi ser-
vice registry. When a new device is available in the network, there is a registration of a Device ser-
vice. It realizes basic set of management operations and provides a rich set of properties. The appli-
cations can track the device status, read descriptive information and follow the device relations. A
set of functions can belong to a single device. They represent the device operations and related prop-
erties in an atomic way. The device functions can be found in the OSGi service registry. The applica-
tions are allowed to get directly the required functions if they don't need information about the de-
vice. For example, light device is registered as Device service and there is Function service to turn on
and turn off the light. The application can operate with the light control service without access to
the device service.

141.1.1 Entities

• Device - represents the device in the OSGi service registry. It's described with a set of service prop-
erties and provides basic management operations.

• Function - atomic functional entity like switch or sensor. The function can belong to a device. The
function provides a set of properties and operations.

• FunctionEvent - asynchronous event. It's posted through EventAdmin service and notifies for Func-
t ion property change.

• FunctionData - data structure which carries Function property value with extra metadata.
• PropertyMetadata and OperationMetadata - contain metadata about the Function properties and

operations.

Device Category Device Abstraction Layer Specification Version 1.0

Page 860 OSGi Compendium Release 8

Figure 141.1 Device Abstraction Layer Overview

<<interface>>
Device

<<interface>>
Function

0..1 Function belongs

0..n

posts

 event contains

provides 0..n

provides 0..n

0..n provides

<<interface>>
PropertyMetaData

<<interface>>
OperationMetaData

receives
property
changeDevice user bundle Function user bundle

finds,
manages

finds,
gets property value,
executes operation

<<class>>
FunctionData

<<interface>>
EventHandler

<<class>>
FunctionEvent

0..n

0..n 0..n

141.2 Device Category
The device category defined in the scope of the Device Access service specification is called DAL .
DEVICE_CATEGORY constant contains the category name.

141.3 Device Service
The Device interface is dedicated to a common access to the devices provided by different protocols.
It can be mapped one to one with the physical device, but can be mapped only with a given func-
tional part of the device. Another mapping can be a device realized with a set of Device services and
different relations between them. Device service can represent pure software unit. For example, it
can simulate the real device work. There are basic management operations for removal and proper-
ty access. New protocol devices can be supported with the registration of new Device services.

If the underlying protocol and the implementation allow, the Device services must be registered
again after the OSGi framework restarts. The service properties must be restored, the supported
functions must be registered and Device relations must be visible to the applications.

141.3.1 Device Service Properties
The OSGi service registry has the advantage of being easily accessible. The services can be filtered
and accessed with their properties. The Device service has a rich set of such properties:

• SERVICE_UID – Specifies the device unique identifier. It's a mandatory property. The value type
is java. lang.Str ing . To simplify the unique identifier generation, the property value must follow
the rule:

UID ::= driver-name ':' device-id

• UID – device unique identifier
• driver-name – the value of the Device.SERVICE_DRIVER service property
• device-id – device unique identifier in the scope of the driver

• SERVICE_REFERENCE_UIDS – Specifies the reference device unique identifiers. It's an optional
property. The value type is java. lang.Str ing[] . It can be used to represent different relationships
between the devices. For example, The EnOcean controller can have a reference to the USB don-
gle.

Device Abstraction Layer Specification Version 1.0 Device Service

OSGi Compendium Release 8 Page 861

• SERVICE_DRIVER – Specifies the device driver name. For example, EnOcean, Z-Wave, Bluetooth,
etc. It's a mandatory property. The value type is java. lang.Str ing .

• SERVICE_NAME – Specifies the device name. It's an optional property. The value type is
java. lang.Str ing .

• SERVICE_STATUS – Specifies the current device status. It's a mandatory property. The value type
java. lang. Integer . The possible values are:
• STATUS_REMOVED – Indicates that the device has been removed from the network. That sta-

tus must be set as the last device status and after that the device service can be unregistered
from the service registry. The status is available for stale device services too. All transitions to
this status are described in Removed on page 865.

• STATUS_OFFLINE – Indicates that the device is currently not available for operations. The end
device is available in the network and can become online later. The controller is unplugged or
there is no connection. All transitions to and from this status are described in detail in Offline
on page 865.

• STATUS_ONLINE – Indicates that the device is currently available for operations. The recent
communication with the device has been passed through. All transitions to and from this sta-
tus are described in detail in Online on page 866.

• STATUS_PROCESSING – Indicates that the device is currently busy with an operation. All
transitions to and from this status are described in detail in Processing on page 867.

• STATUS_NOT_INITIALIZED – Indicates that the device is currently not initialized. Some pro-
tocols don't provide device information right after the device is connected. The device can be
initialized later when it's awakened. All transitions to and from this status are described in de-
tail in Not Initialized on page 868.

• STATUS_NOT_CONFIGURED – Indicates that the device is currently not configured. The de-
vice can require additional actions to become completely connected to the network. All tran-
sitions to and from this status are described in detail in Not Configured on page 869.

• SERVICE_STATUS_DETAIL – Provides the reason for the current device status. It's an op-
tional property. The property value cannot be externally set or modified. The value type is
java. lang. Integer . There are two value categories. Positive values indicate the reason for the cur-
rent status like STATUS_DETAIL_CONNECTING . Negative values indicate errors related to the
current device status like STATUS_DETAIL_BROKEN . The list with defined status details is:
• STATUS_DETAIL_CONNECTING – The device is currently connecting to the network.

The status detail indicates the reason with a positive value 1 . The device status must be
STATUS_PROCESSING .

• STATUS_DETAIL_INITIALIZING – The device is currently in process of initialization. The
status detail indicates the reason with a positive value 2 . The network controller initializ-
ing means that information about the network is currently read. The device status must be
STATUS_PROCESSING .

• STATUS_DETAIL_REMOVING – The device is leaving the network. The status detail indicates
the reason with positive value 3 . The device status must be STATUS_PROCESSING .

• STATUS_DETAIL_FIRMWARE_UPDATING – The device firmware is updating. The status detail
indicates the reason with positive value 4 . The device status must be STATUS_PROCESSING .

• STATUS_DETAIL_CONFIGURATION_UNAPPLIED – The device configuration is not applied.
The status detail indicates an error with a negative value -1 . The device status must be
STATUS_NOT_CONFIGURED .

• STATUS_DETAIL_BROKEN – The device is broken. The status detail indicates an error with a
negative value -2 . The device status must be STATUS_OFFLINE .

• STATUS_DETAIL_COMMUNICATION_ERROR – The device communication is problemat-
ic. The status detail indicates an error with a negative value -3 . The device status must be
STATUS_ONLINE or STATUS_NOT_INITIALIZED .

Device Service Device Abstraction Layer Specification Version 1.0

Page 862 OSGi Compendium Release 8

• STATUS_DETAIL_DATA_INSUFFICIENT – The device doesn't provide enough information and
cannot be determined. The status detail indicates an error with a negative value -4 . The de-
vice status must be STATUS_NOT_INITIALIZED .

• STATUS_DETAIL_INACCESSIBLE – The device is not accessible and further communication is
not possible. The status detail indicates an error with a negative value -5 . The device status
must be STATUS_OFFLINE .

• STATUS_DETAIL_CONFIGURATION_ERROR – The device cannot be configured. The
status detail indicates an error with a negative value -6 . The device status must be
STATUS_NOT_CONFIGURED .

• STATUS_DETAIL_DUTY_CYCLE – The device is in duty cycle. The status detail indicates an er-
ror with a negative value -7 . The device status must be STATUS_OFFLINE .

Custom status details are allowed, but they must not overlap the specified codes. To prevent pos-
sible collisions with further updates, custom codes must be greater than 100 and less than -100 .
Table 141.1 contains the mapping of the status details to the statuses.

Table 141.1 Status detail to status mapping.

Status Detail Status
CONNECTING PROCESSING
INITIALIZING PROCESSING
REMOVING PROCESSING
FIRMWARE_UPDATING PROCESSING
CONFIGURATION_UNAPPLIED NOT_CONFIGURED
BROKEN OFFLINE
COMMUNICATION_ERROR ONLINE, NOT_INITIALIZED
DATA_INSUFFICIENT NOT_INITIALIZED
INACCESSIBLE OFFLINE
CONFIGURATION_ERROR NOT_CONFIGURED
DUTY_CYCLE OFFLINE

• SERVICE_HARDWARE_VENDOR – Specifies the device hardware vendor. It's an optional property.
The value type is java. lang.Str ing .

• SERVICE_HARDWARE_VERSION – Specifies the device hardware version. It's an optional property.
The value type is java. lang.Str ing .

• SERVICE_FIRMWARE_VENDOR – Specifies the device firmware vendor. It's an optional property.
The value type is java. lang.Str ing .

• SERVICE_FIRMWARE_VERSION – Specifies the device firmware version. It's an optional property.
The value type is java. lang.Str ing .

• SERVICE_TYPES – Specifies the device types. It's an optional property. The value type is
java. lang.Str ing[] .

• SERVICE_MODEL – Specifies the device model. It's an optional property. The value type is
java. lang.Str ing .

• SERVICE_SERIAL_NUMBER – Specifies the device serial number. It's an optional property. The val-
ue type is java. lang.Str ing .

The next code snippet prints all online devices.

ServiceReference[] deviceSRefs = context.getServiceReferences(
 Device.class.getName(),
 '(' + Device.SERVICE_STATUS + '=' + Device.STATUS_ONLINE + ')');
if (deviceSRefs != null) {
 for (int i = 0; i < deviceSRefs.length; i++) {

Device Abstraction Layer Specification Version 1.0 Device Service

OSGi Compendium Release 8 Page 863

 printDevice(deviceSRefs[i]);
 }
}

Applications need to have an access to the device properties. For convenience, there are helper
methods:

• getServiceProperty(Str ing) – Returns the current value of the specified property. The method
will return the same value as org.osgi .f ramework.ServiceReference.getProperty(Str ing) for the
service reference of this device.

• getServicePropertyKeys() – Returns an array with all device service property keys. The method
will return the same value as org.osgi .f ramework.ServiceReference.getPropertyKeys() for the
service reference of this device.

141.3.2 Device Registration
The devices are registered as services in the OSGi service registry. The service interface is
org.osgi .service.dal .Device . There is a registration order. Device services are registered last on start
up. Before their registration, there is Function service registration. The function registration proce-
dure is described in Function Registration on page 871.

The OSGi service registry provides an access to the services, but there are no management
operations like remove a given service. The service provider is responsible to register and
unregister own services. That design doesn't provide an option to remove the device ser-
vices. The Device interface fills this gap with remove() method. It's a callback to the service
provider to remove the device from the network. The method can be optionally implemented.
java. lang.UnsupportedOperationException can be thrown if the method is not supported. When
the remove() is called:

• An appropriate command will be synchronously send to the device. As a result it can leave the
network.

• The device status will be set to STATUS_REMOVED .
• The related device service will be unregistered from the OSGi service registry.

There is an unregistration order. The registration reverse order is used when the services are unreg-
istered. Device services are unregistered first before Function services.

141.3.3 Reference Devices
Device service can have a reference to other devices. That link can be used to represent different re-
lationships between devices. For example, the EnOcean dongle can be used as USB Device and EnO-
cean network controller Device . The network controller device can have a reference to the physical
USB device as it's depicted on the next diagram.

Figure 141.2 Device Reference

has reference

Network
Controller

USB
Device

The related service property is SERVICE_REFERENCE_UIDS .

Device Service Device Abstraction Layer Specification Version 1.0

Page 864 OSGi Compendium Release 8

141.3.4 Device Status Transitions
The device status reveals the device availability. It can demonstrate that device is currently not
available for operations or that the device requires some additional configuration steps. The status
can move between the different values according to the rules defined in this section. The status tran-
sitions are summarized in Table 141.2, visualized on Figure 141.3 and described in detail in the next
sections. The initial device status is always STATUS_PROCESSING . When device info is processed,
the device can go to another status. The last possible device status is STATUS_REMOVED . The status
must be set when the device is removed from the network. After that status, the device service will
be unregistered.

Figure 141.3 Device Status Transitions

STATUS_PROCESSING

STATUS_REMOVED

STATUS_NOT_CONFIGURED

STATUS_NOT_INITIALIZED

STATUS_OFFLINE

STATUS_ONLINE

Table 141.2 Device Status Transitions

From\To Sta-
tus

PRO-
CESSING

ONLINE OFFLINE NOT
INITIALIZED

NOT CON-
FIGURED

REMOVED

PRO-
CESSING

- Initial de-
vice data has
been read.

Device is not
accessible.

Initial de-
vice data has
been partial-
ly read.

Device has a
pending con-
figuration.

Device has
been re-
moved.

ONLINE Device da-
ta is process-
ing.

- Device is not
accessible.

- Device has
a new pend-
ing configu-
ration.

Device has
been re-
moved.

OFFLINE Device da-
ta is process-
ing.

Device da-
ta has been
read.

- - Device has a
pending con-
figuration.

Device has
been re-
moved.

NOT
INITIALIZED

Device da-
ta is process-
ing.

- Device is not
accessible.

- - Device has
been re-
moved.

Device Abstraction Layer Specification Version 1.0 Device Service

OSGi Compendium Release 8 Page 865

From\To Sta-
tus

PRO-
CESSING

ONLINE OFFLINE NOT
INITIALIZED

NOT CON-
FIGURED

REMOVED

NOT CON-
FIGURED

Device da-
ta is process-
ing.

Device pend-
ing configu-
ration is sat-
isfied.

Device is not
accessible.

- - Device has
been re-
moved.

REMOVED - - - - - -

141.3.4.1 Removed

The device can go to STATUS_REMOVED from any other status. Once reached, the device status can-
not be updated any more. The device has been removed from the network and the device service is
unregistered from the OSGi service registry. If there are stale references to the Device service, their
status will be set to STATUS_REMOVED .

The common way for a given device to be removed is remove() method. When the method returns,
the device status will be STATUS_REMOVED . It requires a synchronous execution of the operation.

141.3.4.2 Offline

The STATUS_OFFLINE indicates that the device is currently not available for operations. That status
can be set, because of different reasons. The network controller has been unplugged, the connection
to the device has been lost, etc. The device can move to this status from any other status with the ex-
ception of STATUS_REMOVED . Transitions to and from this status are:

• From STATUS_OFFLINE to STATUS_REMOVED – The device has been removed. The status can be
set as a result of remove() method call.

• From STATUS_OFFLINE to STATUS_PROCESSING – Device data is processing.
• From STATUS_OFFLINE to STATUS_NOT_CONFIGURED – The device has a pending configura-

tion.
• From STATUS_OFFLINE to STATUS_ONLINE – Device data has been read and the device is current-

ly available for operations.
• From STATUS_OFFLINE to STATUS_NOT_INITIALIZED – That transition is not possible, be-

cause the status have to go through STATUS_PROCESSING . If the processing is unsuccessful,
STATUS_NOT_INITIALIZED will be set.

• To STATUS_OFFLINE from STATUS_REMOVED – That transition is not possible. If the device has
been removed, the service will be unregistered from the service registry.

• To STATUS_OFFLINE from STATUS_PROCESSING – The device is not accessible any more while
device data is processing.

• To STATUS_OFFLINE from STATUS_NOT_CONFIGURED – The device with pending configuration
is not accessible any more.

• To STATUS_OFFLINE from STATUS_ONLINE – The online device is not accessible any more.
• To STATUS_OFFLINE from STATUS_NOT_INITIALIZED – The not initialized device is not accessi-

ble any more.

The possible transitions are summarized on Figure 141.4.

Device Service Device Abstraction Layer Specification Version 1.0

Page 866 OSGi Compendium Release 8

Figure 141.4 Transitions to and from STATUS_OFFLINE

STATUS_OFFLINE STATUS_REMOVED

STATUS_PROCESSING

STATUS_NOT_CONFIGURED

STATUS_ONLINE

STATUS_NOT_INITIALIZED

141.3.4.3 Online

The STATUS_ONLINE indicates that the device is currently available for operations. The online de-
vices are initialized and ready for use. Transitions to and from this status are:

• From STATUS_ONLINE to STATUS_REMOVED – The device has been removed. The status can be
set as a result of remove() method call.

• From STATUS_ONLINE to STATUS_PROCESSING – The device data is processing.
• From STATUS_ONLINE to STATUS_NOT_CONFIGURED – The device has a pending configuration.
• From STATUS_ONLINE to STATUS_OFFLINE – The online device is not accessible any more.
• From STATUS_ONLINE to STATUS_NOT_INITIALIZED – That transition is not possible. Online de-

vices are initialized.
• To STATUS_ONLINE from STATUS_REMOVED – That transition is not possible. If the device has

been removed, the service will be unregistered from the service registry.
• To STATUS_ONLINE from STATUS_PROCESSING – Initial device data has been read. The device is

available for operations.
• To STATUS_ONLINE from STATUS_NOT_CONFIGURED – The device pending configuration is sat-

isfied.
• To STATUS_ONLINE from STATUS_OFFLINE – The device is accessible for operations.
• To STATUS_ONLINE from STATUS_NOT_INITIALIZED – That transition is not possible. The

device data has to be processed and then the device can become online. Intermediate status
STATUS_PROCESSING will be used.

The possible transitions are summarized on Figure 141.5.

Device Abstraction Layer Specification Version 1.0 Device Service

OSGi Compendium Release 8 Page 867

Figure 141.5 Transitions to and from STATUS_ONLINE

STATUS_OFFLINE STATUS_ONLINE

STATUS_REMOVED

STATUS_NOT_CONFIGURED

STATUS_PROCESSING

141.3.4.4 Processing

The status indicates that the device is currently busy with an operation. It can be time consuming
operation and can result to any other status. The operation processing can be reached by any oth-
er status except STATUS_REMOVED . For example, offline device requires some data processing to
become online. It will apply this status sequence: STATUS_OFFLINE , STATUS_PROCESSING and
STATUS_ONLINE . Transitions to and from this status are:

• From STATUS_PROCESSING to STATUS_REMOVED – The device has been removed. The status
can be set as a result of remove() method call.

• From STATUS_PROCESSING to STATUS_ONLINE – Initial device data has been read. The device is
available for operations.

• From STATUS_PROCESSING to STATUS_NOT_CONFIGURED – The device has a pending configu-
ration.

• From STATUS_PROCESSING to STATUS_OFFLINE – The device is not accessible any more.
• From STATUS_PROCESSING to STATUS_NOT_INITIALIZED – The device initial data is partially

read.
• To STATUS_PROCESSING from STATUS_REMOVED – That transition is not possible. If the device

has been removed, the service will be unregistered from the service registry.
• To STATUS_PROCESSING from STATUS_ONLINE – The device is busy with an operation.
• To STATUS_PROCESSING from STATUS_NOT_CONFIGURED – The device pending configuration

is satisfied and the device is busy with an operation.
• To STATUS_PROCESSING from STATUS_OFFLINE – The device is busy with an operation.
• To STATUS_PROCESSING from STATUS_NOT_INITIALIZED – The device initial data is processing.

The possible transitions are summarized on Figure 141.6.

Device Service Device Abstraction Layer Specification Version 1.0

Page 868 OSGi Compendium Release 8

Figure 141.6 Transitions to and from STATUS_PROCESSING

STATUS_OFFLINE STATUS_PROCESSING

STATUS_REMOVED

STATUS_NOT_INITIALIZED

STATUS_NOT_CONFIGURED

STATUS_ONLINE

141.3.4.5 Not Initialized

The status indicates that the device is currently not initialized. Some protocols don't provide
device information right after the device is connected. The device can be initialized later when
it's awakened. The not initialized device requires some data processing to become online.
STATUS_PROCESSING is used as an intermediate status. Transitions to and from this status are:

• From STATUS_NOT_INITIALIZED to STATUS_REMOVED – The device has been removed. The sta-
tus can be set as a result of remove() method call.

• From STATUS_NOT_INITIALIZED to STATUS_PROCESSING – The device data is processing.
• From STATUS_NOT_INITIALIZED to STATUS_NOT_CONFIGURED – That transition is not possi-

ble. Device requires some data processing.
• From STATUS_NOT_INITIALIZED to STATUS_OFFLINE – The device is not accessible any more.
• From STATUS_NOT_INITIALIZED to STATUS_ONLINE – That transition is not possible. Device re-

quires some data processing to become online.
• To STATUS_NOT_INITIALIZED from STATUS_REMOVED – That transition is not possible. If the

device has been removed, the service will be unregistered from the service registry.
• To STATUS_NOT_INITIALIZED from STATUS_PROCESSING – Device data is partially read.
• To STATUS_NOT_INITIALIZED from STATUS_NOT_CONFIGURED – That transition is not possi-

ble. When device pending configuration is satisfied, the device requires additional data process-
ing.

• To STATUS_NOT_INITIALIZED from STATUS_OFFLINE – That transition is not possible. Device re-
quires some data processing and then can become not initialized.

• To STATUS_NOT_INITIALIZED from STATUS_ONLINE – That transition is not possible. The online
device is initialized.

The possible transitions are summarized on Figure 141.7.

Device Abstraction Layer Specification Version 1.0 Device Service

OSGi Compendium Release 8 Page 869

Figure 141.7 Transitions to and from STATUS_NOT_INITIALIZED

STATUS_PROCESSING STATUS_NOT_INITIALIZED

STATUS_REMOVED

STATUS_OFFLINE

141.3.4.6 Not Configured

Indicates that the device is currently not configured. The device can require additional actions to be-
come completely connected to the network. For example, a given device button has to be pushed.
That status doesn't have transitions with STATUS_NOT_INITIALIZED , because some data processing
is required. Transitions to and from this status are:

• From STATUS_NOT_CONFIGURED to STATUS_REMOVED – The device has been removed. The
status can be set as a result of remove() method call.

• From STATUS_NOT_CONFIGURED to STATUS_PROCESSING – The device pending configuration
is satisfied and some additional data processing is required.

• From STATUS_NOT_CONFIGURED to STATUS_ONLINE – The device pending configuration is sat-
isfied.

• From STATUS_NOT_CONFIGURED to STATUS_OFFLINE – The device is not accessible any more.
• From STATUS_NOT_CONFIGURED to STATUS_NOT_INITIALIZED – That transition is not possi-

ble. When device pending configuration is satisfied, the device requires additional data process-
ing.

• To STATUS_NOT_CONFIGURED from STATUS_REMOVED – That transition is not possible. If the
device has been removed, the service will be unregistered from the service registry.

• To STATUS_NOT_CONFIGURED from STATUS_PROCESSING – Initial device data has been read
but there is a pending configuration.

• To STATUS_NOT_CONFIGURED from STATUS_ONLINE – The device has a pending configuration.
• To STATUS_NOT_CONFIGURED from STATUS_OFFLINE – The device is going to be online, but

has a pending configuration.
• To STATUS_NOT_CONFIGURED from STATUS_NOT_INITIALIZED – That transition is not possi-

ble. Device requires some data processing.

The possible transitions are summarized on Figure 141.8.

Function Service Device Abstraction Layer Specification Version 1.0

Page 870 OSGi Compendium Release 8

Figure 141.8 Transitions to and from STATUS_NOT_CONFIGURED

STATUS_OFFLINE STATUS_NOT_CONFIGURED

STATUS_REMOVED

STATUS_ONLINE

STATUS_PROCESSING

141.4 Function Service
The user applications have full control over the device with the Function services. Synchronous
or asynchronous operations can trigger different actions. For example, turn on or off the light, can
change the room temperature, send an user notification, etc. The action result can be reported im-
mediately or later in case of concurrent execution. As a result, a Function property can be updat-
ed. The property is the device value container. It can provide, sensor information, meter data, the
switch current position, etc. Different property access types allow the applications to read, write or
receive events.

141.4.1 Function Service Properties
The OSGi service registry has the advantage of being easily accessible. The services can be filtered
and accessed with their properties. The function service has a rich set of such properties:

• SERVICE_UID – mandatory service property. The property value is the function unique identifier.
The value type is java. lang.Str ing . To simplify the unique identifier generation, the property val-
ue must follow the rule:

function UID ::= device-id ':' function-id

• function UID – function unique identifier
• device-id – the value of the Device.SERVICE_UID Device service property
• function-id – function identifier in the scope of the device

If the function is not bound to a device, the function unique identifier can be device indepen-
dent.

• SERVICE_TYPE – optional service property. The service property value contains the function type.
For example, the sensor function can have different types like temperature, pressure, etc. The val-
ue type is java. lang.Str ing .

Organizations that want to use function types that do not clash with OSGi Working Group de-
fined types should prefix their types in own namespace.

• SERVICE_VERSION – optional service property. The service property value contains the function
version. That version can point to specific implementation version and vary in the different ven-
dor implementations. The value type is java. lang.Str ing .

Device Abstraction Layer Specification Version 1.0 Function Service

OSGi Compendium Release 8 Page 871

• SERVICE_DEVICE_UID – optional service property. The property value is the device identifier.
The function belongs to this device. The value type is java. lang.Str ing .

• SERVICE_REFERENCE_UIDS – optional service property. The service property value contains the
reference function unique identifiers. The value type is java. lang.Str ing[] . It can be used to repre-
sent different relationships between the functions.

• SERVICE_DESCRIPTION – optional service property. The property value is the function descrip-
tion. The value type is java. lang.Str ing .

• SERVICE_OPERATION_NAMES – optional service property. The property is missing when there
are no function operations and property must be set when there are function operations. The
property value is the function operation names. The value type is java. lang.Str ing[] . It's not pos-
sible to exist two or more function operations with the same name i.e. the operation overloading
is not allowed.

• SERVICE_PROPERTY_NAMES – optional service property. The property is missing when there are
no function properties and property must be set when there are function properties. The proper-
ty value is the function property names. The value type is java. lang.Str ing[] . It's not possible to
exist two or more function properties with the same name.

141.4.2 Function Registration
On start up, the Function services are registered before the Device service. It's possible that
SERVICE_DEVICE_UID points to missing service at the moment of the registration. The reverse or-
der is used when the services are unregistered. Device service is unregistered before the Function ser-
vices. The device registration procedure is available in Device Registration on page 863.

The Function service should be registered only under the function class hierarchy. Other classes
can be used if there are no ambiguous representations. For example, an ambiguous representa-
tion can be a function registered under two independent function classes like BinarySwitch and
Meter . In this example, both functions support the same property “state” with different meaning.
getPropertyMetadata(Str ing propertyName) method cannot determinate which property is re-
quested. It can be BinarySwitch “state” or Meter “state”.

To simplify the generic function discovery, the Function interface must be used for the service regis-
tration. In this way, the generic applications can easily find all services, which are functions in the
service registry. Because of this rule, this registration is not allowed:

context.registerService(MeterV1.class.getName(), this, regProps);

If the implementation would like to mark that there is a function, but no specific function interface
exists, the registration can be:

context.registerService(Function.class.getName(), this, regProps);

Note that such functions usually don't have operations and properties.

141.4.3 Function Interface
Function is built by a set of properties and operations. The function can have unique identifier, type,
version, description, link to the Device service and information about the referenced functions.
Function interface must be the base interface for all functions. If the device provider defines cus-
tom functions, all of them must extend Function interface. It provides a common access to the oper-
ations and properties metadata.

There are some general type rules, which unify the access to the function data. They make easier the
transfer over different protocols. All properties and operation arguments must use one of:

• Java primitive type or corresponding reference type.
• Numerical type i.e. the type which extends java. lang.Number . The numerical type must follow

these conventions:

Function Service Device Abstraction Layer Specification Version 1.0

Page 872 OSGi Compendium Release 8

• The type must provide a public static method called valueOf that returns an instance of the
given type and takes a single Str ing argument or a public constructor which takes a single
Str ing argument.

• The Str ing argument from the previous bullet can be provided by toStr ing() method of the in-
stance.

• java. lang.Str ing
• Java Bean, but its properties must use those rules. Java Bean is defined in [1] JavaBeans Spec.
• java.ut i l .Map instance. The map keys can be java. lang.Str ing . The values of a single type follow

these rules.
• Array of defined types.

In order to provide common behavior, all functions must follow a set of common rules related to the
implementation of their setters, getters, operations and events:

• The setter method must be executed synchronously. If the underlying protocol can return re-
sponse to the setter call, it must be awaited. It simplifies the property value modification and
doesn't require asynchronous callback.

• The operation method must be executed synchronously. If the underlying protocol can return an
operation confirmation or response, it must be awaited. It simplifies the operation execution and
doesn't require asynchronous callback.

• The getter must return the last know cached property value. The device implementation is re-
sponsible to keep that value up to date. It'll speed up the applications when the function proper-
ty values are collected. The same cached value can be shared between a few requests instead of a
few calls to the real device.

• The function operations, getters and setters must not override java. lang.Object and this interface
methods. For example:
• hashCode() – it's java. lang.Object method and invalid function operation;
• wait() – it's java. lang.Object method and invalid function operation;
• getClass() – it's java. lang.Object method and invalid function getter;
• getPropertyMetadata(Str ing propertyName) – it's org.osgi .service.dal .Function method and

invalid function getter.

141.4.4 Function Operations
Function operations are the main callable units. They can perform a specific task on the device like
turn on or turn off. They can be used by the applications to control the device. Operation names are
available as a value of the service property SERVICE_OPERATION_NAMES . The operations are identi-
fied by their names. It's not possible to exist two operations with the same name i.e. overloaded op-
erations are not allowed. They cannot override the property accessor methods. The operations are
regular java methods. That implies that they have zero or more arguments and zero or one return
value. The operation arguments and return value must follow the general type rules.

The operations can be optionally described with metadata. Metadata is accessible with
getOperat ionMetadata(Str ing) method. The result provides metadata about the operation, opera-
tion arguments and result value. Operation arguments and result value are using the same metadata
as the function properties. The full details are defined in the next section.

141.4.5 Function Properties
Function properties are class fields. Their values can be read with getter methods and can be
set with setter methods. The property names are available as a value of the service property
SERVICE_PROPERTY_NAMES . The properties are identified by their names. It's not possible to exist
two properties with the same name.

The function properties must be integrated according to these rules:

Device Abstraction Layer Specification Version 1.0 Function Service

OSGi Compendium Release 8 Page 873

• Getter methods must be available for all properties with ACCESS_READABLE access.
• Getter method must return a subclass of FunctionData .
• Setter methods must be available for all properties with ACCESS_WRITABLE access.
• Setter methods can be any combination of:

• Setter method which accepts a subclass of FunctionData .
• Setter method which accepts the values used by the FunctionData subclass, if there are no

equal types.
It's possible to have only one or both of them. Examples:
• There is MyFunctionData bean with BigDecimal value for a data property. Valid setters are

setData(MyFunctionData data) and setData(BigDecimal data) .
• There is MySecondFunctionData bean with BigDecimal prefix and BigDecimal suffix

for a data property. The prefix and suffix are using equal types and we cannot have a
setter with the values used by MySecondFunctionData . The only one possible setter is
setData(MySecondFunctionData data) .

• No methods are required for properties with ACCESS_EVENTABLE access.

The accessor method names must be defined according to [1] JavaBeans Spec.

The properties can be optionally described with a set of metadata properties. The property values
can be collected with getPropertyMetadata(Str ing) method. The method result is PropertyMetada-
ta with:

• Minimum value – available through getMinValue(Str ing) . The minimum value can be different
for the different units.

• Maximum value – available through getMaxValue(Str ing) . The maximum value can be different
for the different units.

• Enumeration of values – available through getEnumValues(Str ing) . The array of the possible val-
ues is sorted in increasing order according to the given unit.

• Step – available through getStep(Str ing) . The difference between two values in series. For exam-
ple, if the range is [0, 100] , the step can be 10 .

• Property access – available as a value in getMetadata(Str ing) result map. It's a bitmap of
java. lang. Integer type and doesn't depend on the given unit. The access is available only for
the function properties and it's missing for the operation arguments and result metadata. The
bitmap can be any combination of:
• ACCESS_READABLE – Marks the property as a readable. Function must provide a getter

method for this property according to [1] JavaBeans Spec. Function operations must not be
overridden by this getter method.

• ACCESS_WRITABLE – Marks the property as writable. Function must provide a setter method
for this property according to [1] JavaBeans Spec. Function operations must not be overridden
by this setter method.

• ACCESS_EVENTABLE – Marks the property as eventable. Function must not provide special
methods because of this access type. FunctionEvent is sent on property change. Note that the
event can be sent when there is no value change.

• Units - available as a value in getMetadata(Str ing) result map. They can be requested with
key UNITS . The value contains the property supported units. The property value type is
java. lang.Str ing[] . The array first element at index 0 represents the default unit. Each unit must
follow those rules:
• The International System of Units must be used where it's applicable. For example, kg for

kilogram and km for kilometer.
• If the unit name matches to a Unicode symbol name, the Unicode symbol must be used. For

example, the degree unit matches to the Unicode degree sign (°).

Security Device Abstraction Layer Specification Version 1.0

Page 874 OSGi Compendium Release 8

• If the unit name doesn't match to a Unicode symbol, the unit symbol must be built by Uni-
code Basic Latin block of characters, superscript and subscript characters. For example, watt
per square meter steradian is built by W/(m² sr) .

If those rules cannot be applied to the unit symbol, custom rules are allowed.

A set of predefined unit symbols are available in SIUnits interface.
• Description – available as a value in getMetadata(Str ing) result map. It can be requested with

key DESCRIPTION . The property value type is java. lang.Str ing and specifies a user readable de-
scription. It doesn't depend on the given unit.

• Vendor custom properties – available as a value in getMetadata(Str ing) result map and can de-
pend on the given unit. Organizations that want to use custom keys that do not clash with OSGi
Working Group defined should prefix their keys in own namespace.

141.4.6 Function Property Events
The eventable function properties can trigger a new event on each property value modification. It
doesn't require a modification of the value. For example, the motion sensor can send a few events
with no property value change when motion is detected and continued to be detected. The event
must use FunctionEvent class. The event properties are:

• FUNCTION_UID – the event source function unique identifier.
• PROPERTY_NAME – the property name.
• PROPERTY_VALUE – the property value.

For example, there is function with an eventable boolean property called “state”. When “state” value
is changed to fa lse , function implementation can post:

FunctionEvent {
 dal.function.UID=acme.function
 dal.function.property.name=”state”
 dal.function.property.value=ACMEFuntionData(java.lang.Boolean.FALSE...)
}

141.5 Security

141.5.1 Device Permission
The DevicePermission controls the bundle's authority to perform specific privileged administrative
operations on the devices. There is only one action for this permission REMOVE to protect remove()
method.

The name of the permission is a filter based. For more details about filter based permissions, see OS-
Gi Core Specification, Filter Based Permissions. The filter provides an access to all device service
properties. Filter attribute names are processed in a case sensitive manner. For example, the operator
can give a bundle the permission to only manage devices of vendor "acme":

org.osgi.service.dal.DevicePermission("dal.device.hardware.vendor=acme", "remove")

The permission action allows the operator to assign only the necessary permissions to the bundle.
For example, the management bundle can have permission to remove all registered devices:

org.osgi.service.dal.DevicePermission("*", "remove")

The code that needs to check the device permission must always use the constructor that takes the
device as a parameter Device with a single action. For example, the implementation of remove()
method must check that the caller has an access to the operation:

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Compendium Release 8 Page 875

public class DeviceImpl implements Device {
 ...
 public void remove() {
 securityManager.checkPermission(
 new DevicePermission(this, DevicePermission.REMOVE));
 }
 ...
}

141.5.2 Required Permissions
The Device implementation must check the caller for the appropriate DevicePermission before exe-
cution of the remove operation. Once the DevicePermission is checked against the caller the imple-
mentation will proceed with the actual operation. The operation can require a number of other per-
missions to complete. The implementation must isolate the caller from such permission checks by
use of proper privileged blocks.

DevicePermission check will keep the Device implementation in the call stack. This requires the
implementation to have this permission to perform the operation. The security policy should be
aware of this and should grant the correct permissions. Note that the DevicePermission is a filter
based permission, see OSGi Core Specification, Filter Based Permissions. It provides flexibility and
fine control based on the Device service properties.

141.6 org.osgi.service.dal

Device Abstraction Layer Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dal ; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dal ; vers ion="[1.0,1.1)"

141.6.1 Summary

• Device - Represents the device in the OSGi service registry.
• DeviceException - DeviceException is a special IOException , which is thrown to indicate that

there is a device operation fail.
• DevicePermission - A bundle's authority to perform specific privileged administrative opera-

tions on the devices.
• Function - Function service provides specific device operations and properties.
• FunctionData - Abstract Function data wrapper.
• FunctionEvent - Asynchronous event, which marks a function property value modification.
• OperationMetadata - Contains metadata about function operation.
• PropertyMetadata - Contains metadata about a function property, a function operation parame-

ter or a function operation return value.
• SIUnits - Contains most of the International System of Units unit symbols.

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 876 OSGi Compendium Release 8

141.6.2 public interface Device
Represents the device in the OSGi service registry. Note that Device services are registered last. Be-
fore their registration, there is Function services registration. The reverse order is used when the ser-
vices are unregistered. Device services are unregistered first before Function services.

141.6.2.1 public static final String DEVICE_CATEGORY = "DAL"

Constant for the value of the Constants.DEVICE_CATEGORY service property. That category is used
by all device services.

See Also Constants.DEVICE_CATEGORY

141.6.2.2 public static final String SERVICE_DESCRIPTION = "dal.device.description"

The service property value contains the device description. It's an optional property. The value type
is java. lang.Str ing .

141.6.2.3 public static final String SERVICE_DRIVER = "dal.device.driver"

The service property value contains the device driver name. For example, EnOcean, Z-Wave, Blue-
tooth, etc. It's a mandatory property. The value type is java. lang.Str ing .

141.6.2.4 public static final String SERVICE_FIRMWARE_VENDOR = "dal.device.firmware.vendor"

The service property value contains the device firmware vendor. It's an optional property. The value
type is java. lang.Str ing .

141.6.2.5 public static final String SERVICE_FIRMWARE_VERSION = "dal.device.firmware.version"

The service property value contains the device firmware version. It's an optional property. The value
type is java. lang.Str ing .

141.6.2.6 public static final String SERVICE_HARDWARE_VENDOR = "dal.device.hardware.vendor"

The service property value contains the device hardware vendor. It's an optional property. The value
type is java. lang.Str ing .

141.6.2.7 public static final String SERVICE_HARDWARE_VERSION = "dal.device.hardware.version"

The service property value contains the device hardware version. It's an optional property. The val-
ue type is java. lang.Str ing .

141.6.2.8 public static final String SERVICE_MODEL = "dal.device.model"

The service property value contains the device model. It's an optional property. The value type is
java. lang.Str ing .

141.6.2.9 public static final String SERVICE_NAME = "dal.device.name"

The service property value contains the device name. It's an optional property. The value type is
java. lang.Str ing .

141.6.2.10 public static final String SERVICE_REFERENCE_UIDS = "dal.device.reference.UIDs"

The service property value contains the reference device unique identifiers. It's an optional property.
The value type is java. lang.Str ing[] . It can be used to represent different relationships between the
devices. For example, the EnOcean controller can have a reference to the USB dongle.

141.6.2.11 public static final String SERVICE_SERIAL_NUMBER = "dal.device.serial.number"

The service property value contains the device serial number. It's an optional property. The value
type is java. lang.Str ing .

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Compendium Release 8 Page 877

141.6.2.12 public static final String SERVICE_STATUS = "dal.device.status"

The service property value contains the device status. It's a mandatory property. The value type is
java. lang. Integer . The possible values are:

• STATUS_ONLINE
• STATUS_OFFLINE
• STATUS_REMOVED
• STATUS_PROCESSING
• STATUS_NOT_INITIALIZED
• STATUS_NOT_CONFIGURED

141.6.2.13 public static final String SERVICE_STATUS_DETAIL = "dal.device.status.detail"

The service property value contains the device status detail. It holds the reason for the current de-
vice status. It's an optional property. The value type is java. lang. Integer . There are two value cate-
gories:

• positive values - those values contain details related to the current status. Examples:
STATUS_DETAIL_CONNECTING and STATUS_DETAIL_INITIALIZING.

• negative values - those values contain errors related to the current status. Examples:
STATUS_DETAIL_CONFIGURATION_UNAPPLIED, STATUS_DETAIL_BROKEN and
STATUS_DETAIL_COMMUNICATION_ERROR.

141.6.2.14 public static final String SERVICE_TYPES = "dal.device.types"

The service property value contains the device types like DVD, TV, etc. It's an optional property. The
value type is java. lang.Str ing[] .

141.6.2.15 public static final String SERVICE_UID = "dal.device.UID"

The service property value contains the device unique identifier. It's a mandatory property. The val-
ue type is java. lang.Str ing . To simplify the unique identifier generation, the property value must fol-
low the rule:

UID ::= driver-name ':' device-id

UID - device unique identifier

driver-name - the value of the SERVICE_DRIVER service property

device-id - device unique identifier in the scope of the driver

141.6.2.16 public static final Integer STATUS_DETAIL_BROKEN

Device status detail indicates that the device is broken. It can be used as a value of
SERVICE_STATUS_DETAIL service property. The device status must be STATUS_OFFLINE.

141.6.2.17 public static final Integer STATUS_DETAIL_COMMUNICATION_ERROR

Device status detail indicates that the device communication is problematic. It can be used as a val-
ue of SERVICE_STATUS_DETAIL service property. The device status must be STATUS_ONLINE or
STATUS_NOT_INITIALIZED.

141.6.2.18 public static final Integer STATUS_DETAIL_CONFIGURATION_ERROR

Device status detail indicates that the device cannot be configured. It can be used as
a value of SERVICE_STATUS_DETAIL service property. The device status must be
STATUS_NOT_CONFIGURED.

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 878 OSGi Compendium Release 8

141.6.2.19 public static final Integer STATUS_DETAIL_CONFIGURATION_UNAPPLIED

Device status detail indicates that the device configuration is not applied. It can be used
as a value of SERVICE_STATUS_DETAIL service property. The device status must be
STATUS_NOT_CONFIGURED.

141.6.2.20 public static final Integer STATUS_DETAIL_CONNECTING

Device status detail indicates that the device is currently connecting to the network. It can
be used as a value of SERVICE_STATUS_DETAIL service property. The device status must be
STATUS_PROCESSING.

141.6.2.21 public static final Integer STATUS_DETAIL_DATA_INSUFFICIENT

Device status detail indicates that the device doesn't provide enough information and cannot be de-
termined. It can be used as a value of SERVICE_STATUS_DETAIL service property. The device status
must be STATUS_NOT_INITIALIZED.

141.6.2.22 public static final Integer STATUS_DETAIL_DUTY_CYCLE

Device status detail indicates that the device is in duty cycle. It can be used as a value of
SERVICE_STATUS_DETAIL service property. The device status must be STATUS_OFFLINE.

141.6.2.23 public static final Integer STATUS_DETAIL_FIRMWARE_UPDATING

Device status detail indicates that the device firmware is updating. It can be used as a value of
SERVICE_STATUS_DETAIL service property. The device status must be STATUS_PROCESSING.

141.6.2.24 public static final Integer STATUS_DETAIL_INACCESSIBLE

Device status detail indicates that the device is not accessible and further communication is not
possible. It can be used as a value of SERVICE_STATUS_DETAIL service property. The device status
must be STATUS_OFFLINE.

141.6.2.25 public static final Integer STATUS_DETAIL_INITIALIZING

Device status detail indicates that the device is currently in process of initialization. It can
be used as a value of SERVICE_STATUS_DETAIL service property. The device status must be
STATUS_PROCESSING.

141.6.2.26 public static final Integer STATUS_DETAIL_REMOVING

Device status detail indicates that the device is leaving the network. It can be used as a value of
SERVICE_STATUS_DETAIL service property. The device status must be STATUS_PROCESSING.

141.6.2.27 public static final Integer STATUS_NOT_CONFIGURED

Device status indicates that the device is currently not configured. The device can require ad-
ditional actions to become completely connected to the network. It can be used as a value of
SERVICE_STATUS service property.

141.6.2.28 public static final Integer STATUS_NOT_INITIALIZED

Device status indicates that the device is currently not initialized. Some protocols don't provide de-
vice information right after the device is connected. The device can be initialized later when it's
awakened. It can be used as a value of SERVICE_STATUS service property.

141.6.2.29 public static final Integer STATUS_OFFLINE

Device status indicates that the device is currently not available for operations. It can be used as a
value of SERVICE_STATUS service property.

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Compendium Release 8 Page 879

141.6.2.30 public static final Integer STATUS_ONLINE

Device status indicates that the device is currently available for operations. The recent communica-
tion with the device has been passed through. It can be used as a value of SERVICE_STATUS service
property.

141.6.2.31 public static final Integer STATUS_PROCESSING

Device status indicates that the device is currently busy with an operation. It can be used as a value
of SERVICE_STATUS service property.

141.6.2.32 public static final Integer STATUS_REMOVED

Device status indicates that the device has been removed from the network. That status must be set
as the last device status. After that the device service can be unregistered from the service registry. It
can be used as a value of SERVICE_STATUS service property.

141.6.2.33 public Object getServiceProperty(String propKey)

propKey The property key.

□ Returns the current value of the specified property. The method will return the same value as
ServiceReference.getProperty(Str ing) for the service reference of this device.

This method must continue to return property values after the device service has been unregistered.

Returns The property value or nul l if the property key cannot be mapped to a value.

141.6.2.34 public String[] getServicePropertyKeys()

□ Returns an array with all device service property keys. The method will return the same value as
ServiceReference.getPropertyKeys() for the service reference of this device. The result cannot be
nul l .

Returns An array with all device service property keys, cannot be nul l .

141.6.2.35 public void remove() throws DeviceException

□ Removes this device.

The method must synchronously:

• Remove the device from the device network.
• Set the device status to STATUS_REMOVED.
• Unregister the device service from the OSGi service registry.

The caller should release the device service after successful execution, because the device will not be
operational.

Throws DeviceException– If an operation error is available.

UnsupportedOperationException– If the operation is not supported over this device.

SecurityException– If the caller does not have the appropriate DevicePermission(this device,
DevicePermission.REMOVE) and the Java Runtime Environment supports permissions.

I l legalStateException– If this device service object has already been unregistered.

141.6.3 public class DeviceException
extends IOException
DeviceException is a special IOException , which is thrown to indicate that there is a device oper-
ation fail. The error reason can be located with getCode() method. The cause is available with get-
Cause().

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 880 OSGi Compendium Release 8

141.6.3.1 public static final int COMMUNICATION_ERROR = 1

An exception code indicates that there is an error in the communication.

141.6.3.2 public static final int NO_DATA = 4

An exception code indicates that the requested value is currently not available.

141.6.3.3 public static final int NOT_INITIALIZED = 3

An exception code indicates that the device is not initialized. The device status is
Device.STATUS_NOT_INITIALIZED or Device.STATUS_PROCESSING.

141.6.3.4 public static final int TIMEOUT = 2

An exception code indicates that there is expired timeout without any processing.

141.6.3.5 public static final int UNKNOWN = 0

An exception code indicates that the error is unknown.

141.6.3.6 public DeviceException()

□ Construct a new device exception with nul l message. The cause is not initialized and the exception
code is set to UNKNOWN.

141.6.3.7 public DeviceException(String message)

message The exception message.

□ Constructs a new device exception with the given message. The cause is not initialized and the ex-
ception code is set to UNKNOWN.

141.6.3.8 public DeviceException(String message, Throwable cause)

message The exception message.

cause The exception cause.

□ Constructs a new device exception with the given message and cause. The exception code is set to
UNKNOWN.

141.6.3.9 public DeviceException(String message, Throwable cause, int code)

message The exception message.

cause The exception cause.

code The exception code.

□ Constructs a new device exception with the given message, cause and code.

141.6.3.10 public int getCode()

□ Returns the exception code. It indicates the reason for this exception. The code can be:

• UNKNOWN
• COMMUNICATION_ERROR
• TIMEOUT
• NOT_INITIALIZED
• NO_DATA
• custom code

Zero and positive values are reserved for this definition and further extensions of the device excep-
tion codes. Custom codes can be used only as negative values to prevent potential collisions.

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Compendium Release 8 Page 881

Returns An exception code.

141.6.4 public class DevicePermission
extends BasicPermission
A bundle's authority to perform specific privileged administrative operations on the devices. The
method Device.remove() is protected with REMOVE permission action.

The name of the permission is a filter based. See OSGi Core Specification, Filter Based Permissions.
The filter gives an access to all device service properties. Filter attribute names are processed in a
case sensitive manner.

141.6.4.1 public static final String REMOVE = "remove"

A permission action to remove the device.

141.6.4.2 public DevicePermission(String filter, String action)

filter A filter expression that can use any device service property. The filter attribute names are processed
in a case insensitive manner. A special value of "*" can be used to match all devices.

action REMOVE action.

□ Creates a new DevicePermission with the given filter and actions. The constructor must only be
used to create a permission that is going to be checked.

A filter example: (dal.device.hardware.vendor=acme)

An action: remove

Throws I l legalArgumentException– If the filter syntax is not correct or invalid action is specified.

NullPointerException– If the filter or action is null.

141.6.4.3 public DevicePermission(Device device, String action)

device The device that needs to be checked for a permission.

action REMOVE action.

□ Creates a new DevicePermission with the given device and actions. The permission must be used for
the security checks like:

securityManager.checkPermission(new DevicePermission(this , " remove")) . The permissions con-
structed by this constructor must not be added to the DevicePermission permission collections.

Throws I l legalArgumentException– If an invalid action is specified.

NullPointerException– If the device or action is null.

141.6.4.4 public boolean equals(Object obj)

obj The object being compared for equality with this object.

□ Two DevicePermission instances are equal if:

• Represents the same filter and action.
• Represents the same device (in respect to device unique identifier) and action.

Returns true if two permissions are equal, fa lse otherwise.

141.6.4.5 public String getActions()

□ Returns the canonical string representation of REMOVE action.

Returns The canonical string representation of the actions.

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 882 OSGi Compendium Release 8

141.6.4.6 public int hashCode()

□ Returns the hash code value for this object.

Returns Hash code value for this object.

141.6.4.7 public boolean implies(Permission p)

p The permission to be implied. It must be constructed by DevicePermission(Device, String).

□ Determines if the specified permission is implied by this object. The method will return fa lse if the
specified permission was not constructed by DevicePermission(Device, String). Returns true if the
specified permission is a DevicePermission and this permission filter matches the specified permis-
sion device properties.

Returns true if the specified permission is implied by this permission, fa lse otherwise.

Throws I l legalArgumentException– If the specified permission is not constructed by
DevicePermission(Device, String).

141.6.4.8 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion suitable for storing DevicePermission instances.

Returns A new PermissionCol lect ion instance.

141.6.5 public interface Function
Function service provides specific device operations and properties. Each function service must im-
plement this interface. In additional to this interface, the implementation can provide own:

• properties;
• operations.

The function service is registered in the service registry with these service properties:

• SERVICE_UID - mandatory service property. The property value contains the function unique
identifier.

• SERVICE_DEVICE_UID - optional service property. The property value is the Functional Device
identifiers. The function belongs to those devices.

• SERVICE_REFERENCE_UIDS - optional service property. The property value contains the refer-
ence function unique identifiers.

• SERVICE_TYPE - mandatory service property. The property value is the function type.
• SERVICE_VERSION - optional service property. The property value contains the function ver-

sion.
• SERVICE_DESCRIPTION - optional service property. The property value is the function descrip-

tion.
• SERVICE_OPERATION_NAMES - optional service property. The property is missing when there

are no function operations and property must be set when there are function operations. The
property value is the function operation names.

• SERVICE_PROPERTY_NAMES - optional service property. The property is missing when there
are no function properties and property must be set when there are function properties. The
property value is the function property names.

On start up, the Function services are registered before the Device services. It's possible that
SERVICE_DEVICE_UID point to missing services at the moment of the registration. The reverse or-
der is used when the services are unregistered. Function services are unregistered last after Device
services.

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Compendium Release 8 Page 883

The Function service should be registered only under the function class hierarchy. Other classes
can be used if there are no ambiguous representations. For example, an ambiguous representa-
tion can be a function registered under two independent function classes like BinarySwitch and
Meter . In this example, both functions support the same property state with different meaning.
getPropertyMetadata(Str ing propertyName) method cannot determinate which property is re-
quested. It can be BinarySwitch state or Meter state .

To simplify the generic function discovery, the Function interface must be used for the service regis-
tration. In this way, the generic applications can easily find all services, which are functions in the
service registry. Because of this rule, this registration is not allowed:

context.registerService(MeterV1.class.getName(), this , regProps);

If the implementation would like to mark that there is a function, but no specific function interface
exists, the registration can be:

context.registerService(Function.class.getName(), this , regProps);

Note that such functions usually don't have operations and properties.

The function properties must be integrated according to these rules:

• Getter methods must be available for all properties with PropertyMetadata.ACCESS_READABLE
access.

• Getter method must return a subclass of FunctionData.
• Setter methods must be available for all properties with PropertyMetadata.ACCESS_WRITABLE

access.
• Setter methods can be any combination of:

• Setter method which accepts a subclass of FunctionData.
• Setter method which accepts the values used by the FunctionData subclass, if there are no

equal types.

It's possible to have only one or both of them. Examples:
• There is MyFunctionData bean with BigDecimal value for a data property. Valid setters are

setData(MyFunctionData data) and setData(BigDecimal data) .
• There is MySecondFunctionData bean with BigDecimal prefix and BigDecimal suffix

for a data property. The prefix and suffix are using equal types and we cannot have a
setter with the values used by MySecondFunctionData . The only one possible setter is
setData(MySecondFunctionData data) .

• No methods are required for properties with PropertyMetadata.ACCESS_EVENTABLE access.

The accessor method names must be defined according JavaBeans specification.

The function operations are java methods, which cannot override the property accessor methods.
They can have zero or more parameters and zero or one return value.

Operation arguments and function properties are restricted by the same set of rules. The data type
can be one of the following types:

• Java primitive type or corresponding reference type.
• java. lang.Str ing .
• Numerical type i.e. the type which extends java. lang.Number . The numerical type must follow

these conventions:
• The type must provide a public static method called valueOf that returns an instance of the

given type and takes a single Str ing argument or a public constructor which takes a single
Str ing argument.

• The Str ing argument from the previous bullet can be provided by toStr ing() method of the in-
stance.

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 884 OSGi Compendium Release 8

• Beans , but the beans properties must use those rules. Java Beans are defined in JavaBeans specifi-
cation.

• java.ut i l .Maps. The keys can be java. lang.Str ing . The values of a single type follow these rules.
• Arrays of defined types.

The properties metadata is accessible with getPropertyMetadata(String). The operations metadata is
accessible with getOperationMetadata(String).

In order to provide common behavior, all functions must follow a set of common rules related to the
implementation of their setters, getters, operations and events:

• The setter method must be executed synchronously. If the underlying protocol can return re-
sponse to the setter call, it must be awaited. It simplifies the property value modifications and
doesn't require asynchronous callback.

• The operation method must be executed synchronously. If the underlying protocol can return an
operation confirmation or response, they must be awaited. It simplifies the operation execution
and doesn't require asynchronous callback.

• The getter must return the last know cached property value. The device implementation is re-
sponsible to keep that value up to date. It'll speed up the applications when the function proper-
ty values are collected. The same cached value can be shared between a few requests instead of a
few calls to the real device.

• The function operations, getters and setters must not override java. lang.Object and this interface
methods.

141.6.5.1 public static final String SERVICE_DESCRIPTION = "dal.function.description"

The service property value contains the function description. It's an optional property. The value
type is java. lang.Str ing .

141.6.5.2 public static final String SERVICE_DEVICE_UID = "dal.function.device.UID"

The service property value contains the device unique identifier. The function belongs to this de-
vice. It's an optional property. The value type is java. lang.Str ing .

141.6.5.3 public static final String SERVICE_OPERATION_NAMES = "dal.function.operation.names"

The service property value contains the function operation names. It's an optional property. The
property is missing when there are no function operations and property must be set when there are
function operations. The value type is java. lang.Str ing[] . It's not possible to exist two or more func-
tion operations with the same name i.e. the operation overloading is not allowed.

141.6.5.4 public static final String SERVICE_PROPERTY_NAMES = "dal.function.property.names"

The service property value contains the function property names. It's an optional property. The
property is missing when there are no function properties and property must be set when there are
function properties. The value type is java. lang.Str ing[] . It's not possible to exist two or more func-
tion properties with the same name.

141.6.5.5 public static final String SERVICE_REFERENCE_UIDS = "dal.function.reference.UIDs"

The service property value contains the reference function unique identifiers. It's an optional prop-
erty. The value type is java. lang.Str ing[] . It can be used to represent different relationships between
the functions.

141.6.5.6 public static final String SERVICE_TYPE = "dal.function.type"

The service property value contains the function type. It's an optional property. For example,
the sensor function can have different types like temperature, pressure, etc. The value type is
java. lang.Str ing .

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Compendium Release 8 Page 885

Organizations that want to use function types that do not clash with OSGi Working Group defined
types should prefix their types in own namespace.

The type doesn't mandate specific function interface. It can be used with different functions.

141.6.5.7 public static final String SERVICE_UID = "dal.function.UID"

The service property value contains the function unique identifier. It's a mandatory property. The
value type is java. lang.Str ing . To simplify the unique identifier generation, the property value must
follow the rule:

function UID ::= device-id ':' function-id

function UID - function unique identifier

device-id - the value of the Device.SERVICE_UID Device service property

function-id - function identifier in the scope of the device

If the function is not bound to a device, the function unique identifier can be device independent.

141.6.5.8 public static final String SERVICE_VERSION = "dal.function.version"

The service property value contains the function version. That version can point to specific imple-
mentation version and vary in the different vendor implementations. It's an optional property. The
value type is java. lang.Str ing .

141.6.5.9 public OperationMetadata getOperationMetadata(String operationName)

operationName The function operation name, for which metadata is requested.

□ Provides metadata about the function operation.

This method must continue to return the operation metadata after the function service has been un-
registered.

Returns The operation metadata for the given operation name. nul l if the operation metadata is not avail-
able.

Throws I l legalArgumentException– If the function operation with the specified name is not available.

141.6.5.10 public PropertyMetadata getPropertyMetadata(String propertyName)

propertyName The function property name, for which metadata is requested.

□ Provides metadata about the function property.

This method must continue to return the property metadata after the function service has been un-
registered.

Returns The property metadata for the given property name. nul l if the property metadata is not available.

Throws I l legalArgumentException– If the function property with the specified name is not available.

141.6.5.11 public Object getServiceProperty(String propKey)

propKey The property key.

□ Returns the current value of the specified property. The method will return the same value as
ServiceReference.getProperty(Str ing) for the service reference of this function.

This method must continue to return property values after the device function service has been un-
registered.

Returns The property value or nul l if the property key cannot be mapped to a value.

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 886 OSGi Compendium Release 8

141.6.5.12 public String[] getServicePropertyKeys()

□ Returns an array with all function service property keys. The method will return the same value as
ServiceReference.getPropertyKeys() for the service reference of this function. The result cannot be
nul l .

Returns An array with all function service property keys, cannot be nul l .

141.6.6 public abstract class FunctionData
implements Comparable<Object>
Abstract Function data wrapper. A subclass must be used for an access to the property values by all
functions. It takes care about the timestamp and additional metadata. The subclasses are responsi-
ble to provide concrete value and unit if required.

141.6.6.1 public static final String DESCRIPTION = "description"

Metadata key, which value represents the data description. The property value type is
java. lang.Str ing .

141.6.6.2 public static final String FIELD_METADATA = "metadata"

Represents the metadata field name. The field value is available with getMetadata(). The field type is
Map . The constant can be used as a key to FunctionData(Map).

141.6.6.3 public static final String FIELD_TIMESTAMP = "timestamp"

Represents the timestamp field name. The field value is available with getTimestamp(). The field
type is long . The constant can be used as a key to FunctionData(Map).

141.6.6.4 public FunctionData(Map<String, ?> fields)

fields Contains the new FunctionData instance field values.

□ Constructs new FunctionData instance with the specified field values. The map keys must match
to the field names. The map values will be assigned to the appropriate class fields. For example, the
maps can be: {"timestamp"=Long(1384440775495)}. That map will initialize the FIELD_TIMESTAMP
field with 1384440775495. If timestamp is missing, Long.MIN_VALUE is used.

• FIELD_TIMESTAMP - optional field. The value type must be Long .
• FIELD_METADATA - optional field. The value type must be Map .

Throws ClassCastException– If the field value types are not expected.

NullPointerException– If the fields map is nul l .

141.6.6.5 public FunctionData(long timestamp, Map<String, ?> metadata)

timestamp The data timestamp optional field.

metadata The data metadata optional field.

□ Constructs new FunctionData instance with the specified arguments.

141.6.6.6 public int compareTo(Object o)

o FunctionData to be compared.

□ Compares this FunctionData instance with the given argument. If the argument is not FunctionDa-
ta , it throws ClassCastException . Otherwise, this method returns:

• -1 if this instance timestamp is less than the argument timestamp. If they are equivalent, it can
be the result of the metadata map deep comparison.

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Compendium Release 8 Page 887

• 0 if all fields are equivalent.
• 1 if this instance timestamp is greater than the argument timestamp. If they are equivalent, it can

be the result of the metadata map deep comparison.

Metadata map deep comparison compares the elements of all nested java.ut i l .Map and array in-
stances. nul l is less than any other non-null instance.

Returns -1 , 0 or 1 depending on the comparison rules.

Throws ClassCastException– If the method argument is not of type FunctionData or metadata maps contain
values of different types for the same key.

NullPointerException– If the method argument is nul l .

See Also java.lang.Comparable.compareTo(java.lang.Object)

141.6.6.7 public boolean equals(Object other)

other The other instance to compare. It must be of FunctionData type.

□ Two FunctionData instances are equal if their metadata and timestamp are equivalent.

Returns true if this instance and argument have equivalent metadata and timestamp, fa lse otherwise.

See Also java.lang.Object.equals(java.lang.Object)

141.6.6.8 public Map<String, ?> getMetadata()

□ Returns FunctionData metadata. It's dynamic metadata related only to this specific value. Possible
keys:

• DESCRIPTION
• custom key

Returns FunctionData metadata or nul l is there is no metadata.

141.6.6.9 public long getTimestamp()

□ Returns FunctionData timestamp. The timestamp is the difference between the value collecting
time and midnight, January 1, 1970 UTC. It's measured in milliseconds. The device driver is respon-
sible to generate that value when the value is received from the device. java.lang.Long.MIN_VALUE
value means no timestamp.

Returns FunctionData timestamp.

141.6.6.10 public int hashCode()

□ Returns the hash code of this FunctionData .

Returns FunctionData hash code.

See Also java.lang.Object.hashCode()

141.6.7 public class FunctionEvent
extends Event
Asynchronous event, which marks a function property value modification. The event can be trig-
gered when there is a new property value, but it's possible to have events in series with no value
change. The event properties must contain:

• FUNCTION_UID - the event source function unique identifier.
• PROPERTY_NAME - the property name.

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 888 OSGi Compendium Release 8

• PROPERTY_VALUE - the property value. The property value type must be a subclass of Function-
Data.

141.6.7.1 public static final String EVENT_CLASS = "org/osgi/service/dal/FunctionEvent/"

Represents the event class. That constant can be useful for the event handlers depending on the
event filters.

141.6.7.2 public static final String EVENT_PACKAGE = "org/osgi/service/dal/"

Represents the event package. That constant can be useful for the event handlers depending on the
event filters.

141.6.7.3 public static final String FUNCTION_UID = "dal.function.UID"

Represents an event property key for function UID. The property value type is java. lang.Str ing . The
value represents the property value change source function identifier.

141.6.7.4 public static final String PROPERTY_NAME = "dal.function.property.name"

Represents an event property key for the function property name. The property value type is
java. lang.Str ing . The value represents the property name.

141.6.7.5 public static final String PROPERTY_VALUE = "dal.function.property.value"

Represents an event property key for the function property value. The property value type is a sub-
class of FunctionData . The value represents the property value.

141.6.7.6 public static final String TOPIC_PROPERTY_CHANGED = "org/osgi/service/dal/FunctionEvent/
PROPERTY_CHANGED"

Represents the event topic for the function property changed.

141.6.7.7 public FunctionEvent(String topic, Dictionary<String, ?> properties)

topic The event topic.

properties The event properties.

□ Constructs a new event with the specified topic and properties.

141.6.7.8 public FunctionEvent(String topic, Map<String, ?> properties)

topic The event topic.

properties The event properties.

□ Constructs a new event with the specified topic and properties.

141.6.7.9 public FunctionEvent(String topic, String functionUID, String propName, FunctionData propValue)

topic The event topic.

functionUID The event source function UID.

propName The event source property name.

propValue The event source property value.

□ Constructs a new event with the specified topic, function UID, property name and property value.

141.6.7.10 public String getFunctionPropertyName()

□ Returns the property name. The value is same as the value of PROPERTY_NAME.

Returns The property name.

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Compendium Release 8 Page 889

141.6.7.11 public FunctionData getFunctionPropertyValue()

□ Returns the property value. The value is same as the value of PROPERTY_VALUE.

Returns The property value.

141.6.7.12 public String getFunctionUID()

□ Returns the property value change source function identifier. The value is same as the value of
FUNCTION_UID property.

Returns The property value change source function.

141.6.8 public interface OperationMetadata
Contains metadata about function operation.

See Also Function, PropertyMetadata

141.6.8.1 public static final String DESCRIPTION = "description"

Metadata key, which value represents the operation description. The property value type is
java. lang.Str ing .

141.6.8.2 public Map<String, ?> getMetadata()

□ Returns metadata about the function operation. The keys of the java.ut i l .Map result must be of
java. lang.Str ing type. Possible keys:

• DESCRIPTION
• custom key

Returns The operation metadata or nul l if no such metadata is available.

141.6.8.3 public PropertyMetadata[] getParametersMetadata()

□ Returns metadata about the operation parameters or nul l if no such metadata is available.

Returns Operation parameters metadata.

141.6.8.4 public PropertyMetadata getReturnValueMetadata()

□ Returns metadata about the operation return value or nul l if no such metadata is available.

Returns Operation return value metadata.

141.6.9 public interface PropertyMetadata
Contains metadata about a function property, a function operation parameter or a function opera-
tion return value. The access to the function properties is a bitmap value of ACCESS metadata key.
Function properties can be accessed in three ways. Any combinations between them are possible:

• ACCESS_READABLE - available for all properties, which can be read. Function must provide a
getter method for an access to the property value.

• ACCESS_WRITABLE - available for all properties, which can be modified. Function must provide
a setter method for a modification of the property value.

• ACCESS_EVENTABLE - available for all properties, which can report the property value. Func-
tionEvents are sent on property change.

See Also Function, PropertyMetadata

141.6.9.1 public static final String ACCESS = "access"

Metadata key, which value represents the access to the function property. The property value is a
bitmap of Integer type. The bitmap can be any combination of:

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 890 OSGi Compendium Release 8

• ACCESS_READABLE
• ACCESS_WRITABLE
• ACCESS_EVENTABLE

For example, value Integer(3) means that the property is readable and writable, but not eventable.

The property access is available only for function properties and it's missing for the operation para-
meters.

141.6.9.2 public static final int ACCESS_EVENTABLE = 4

Marks the eventable function properties. The flag can be used as a part of bitmap value of ACCESS.

See Also Function

141.6.9.3 public static final int ACCESS_READABLE = 1

Marks the readable function properties. The flag can be used as a part of bitmap value of ACCESS.
The readable access mandates function to provide a property getter method.

See Also Function

141.6.9.4 public static final int ACCESS_WRITABLE = 2

Marks the writable function properties. The flag can be used as a part of bitmap value of ACCESS.
The writable access mandates function to provide a property setter methods.

See Also Function

141.6.9.5 public static final String DESCRIPTION = "description"

Metadata key, which value represents the property description. The property value type is
java. lang.Str ing .

141.6.9.6 public static final String UNITS = "units"

Metadata key, which value represents the property supported units. The property value type is
java. lang.Str ing[] . The array first element at index 0 represents the default unit. Each unit must fol-
low those rules:

• The International System of Units must be used where it's applicable. For example, kg for kilo-
gram and km for kilometer.

• If the unit name matches to an Unicode symbol name, the Unicode symbol must be used. For ex-
ample, the degree unit matches to the Unicode degree sign (°).

• If the unit name doesn't match to an Unicode symbol, the unit symbol must be built by Uni-
code Basic Latin block of characters, superscript and subscript characters. For example, watt per
square meter steradian is built by W/(m² sr) .

If those rules cannot be applied to the unit symbol, custom rules are allowed. A set of predefined
unit symbols are available in SIUnits interface.

141.6.9.7 public FunctionData[] getEnumValues(String unit)

unit The unit to align the supported values, can be nul l .

□ Returns the property possible values according to the specified unit. If the unit is nul l , the values set
is aligned to the default unit. If there is no such set of supported values, nul l is returned. The values
must be sorted in increasing order.

Returns The supported values according to the specified unit or nul l if no such values are supported. The val-
ues must be sorted in increasing order.

Throws I l legalArgumentException– If the unit is not supported.

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Compendium Release 8 Page 891

141.6.9.8 public FunctionData getMaxValue(String unit)

unit The unit to align the maximum value, can be nul l .

□ Returns the property maximum value according to the specified unit. If the unit is nul l , the maxi-
mum value is aligned to the default unit. If there is no maximum value, nul l is returned.

Returns The maximum value according to the specified unit or nul l if no maximum value is supported.

Throws I l legalArgumentException– If the unit is not supported.

141.6.9.9 public Map<String, ?> getMetadata(String unit)

unit The unit to align the metadata if it's applicable. It can be null, which means that the default unit
will be used.

□ Returns metadata about the function property or operation parameter. The keys of the java.ut i l .Map
result must be of java. lang.Str ing type. Possible keys:

• DESCRIPTION - doesn't depend on the given unit.
• ACCESS - available only for function property and missing for function operation parameters. It

doesn't depend on the given unit.
• UNITS - doesn't depend on the given unit.
• custom key - can depend on the unit. Organizations that want to use custom keys that do not

clash with OSGi Working Group defined should prefix their keys in own namespace.

Returns The property metadata or nul l if no such metadata is available.

141.6.9.10 public FunctionData getMinValue(String unit)

unit The unit to align the minimum value, can be nul l .

□ Returns the property minimum value according to the specified unit. If the unit is nul l , the mini-
mum value is aligned to the default unit. If there is no minimum value, nul l is returned.

Returns The minimum value according to the specified unit or nul l if no minimum value is supported.

Throws I l legalArgumentException– If the unit is not supported.

141.6.9.11 public FunctionData getStep(String unit)

unit The unit to align the step, can be nul l .

□ Returns the difference between two values in series. For example, if the range is [0, 100], the step can
be 10.

Returns The step according to the specified unit or nul l if no step is supported.

Throws I l legalArgumentException– If the unit is not supported.

141.6.10 public final class SIUnits
Contains most of the International System of Units unit symbols. The constant name rep-
resents the unit name. The constant value represents the unit symbol as it's defined in
PropertyMetadata.UNITS.

141.6.10.1 public static final String AMPERE = "A"

Unit of electric current defined by the International System of Units (SI). It's one of be base units
called ampere.

141.6.10.2 public static final String AMPERE_PER_METER = "A/m"

Unit of magnetic field strength. It's one of coherent derived units in the SI expressed in terms of base
units. The unit is called ampere per meter.

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 892 OSGi Compendium Release 8

141.6.10.3 public static final String AMPERE_PER_SQUARE_METER = "A/m\u00b2"

Unit of current density. It's one of coherent derived units in the SI expressed in terms of base units.
The unit is called ampere per square meter.

141.6.10.4 public static final String ANGSTROM = "\u212b"

Unit of length. It's one of other non-SI units. The unit is called angstrom.

141.6.10.5 public static final String BAR = "bar"

Unit of pressure. It's one of other non-SI units. The unit is called bar.

141.6.10.6 public static final String BARN = "b"

Unit of area. It's one of other non-SI units. The unit is called barn.

141.6.10.7 public static final String BECQUEREL = "Bq"

Unit of activity referred to a radionuclide. It's one of the coherent derived units in the SI with special
names and symbols. The unit is called becquerel.

141.6.10.8 public static final String BEL = "B"

Unit of logarithmic ratio quantities. It's one of other non-SI units. The unit is called bel.

141.6.10.9 public static final String CANDELA = "cd"

Unit of luminous intensity defined by the International System of Units (SI). It's one of be base units
called candela.

141.6.10.10 public static final String CANDELA_PER_SQUARE_METER = "cd/m\u00b2"

Unit of luminance. It's one of coherent derived units in the SI expressed in terms of base units. The
unit is called candela per square meter.

141.6.10.11 public static final String COULOMB = "C"

Unit of electronic charge, amount of electricity. It's one of the coherent derived units in the SI with
special names and symbols. The unit is called coulomb.

141.6.10.12 public static final String COULOMB_PER_CUBIC_METER = "C/m\u00b3"

Unit of electric charge density. It's one of coherent derived units whose names and symbols include
SI coherent derived units with special names and symbols. The unit is called coulomb per cubic me-
ter.

141.6.10.13 public static final String COULOMB_PER_KILOGRAM = "C/kg"

Unit of exposure (x- and gamma-rays). It's one of coherent derived units whose names and symbols
include SI coherent derived units with special names and symbols. The unit is called coulomb per
kilogram.

141.6.10.14 public static final String COULOMB_PER_SQUARE_METER = "C/m\u00b2"

Unit of surface charge density, electric flux density, electric displacement. It's one of coherent de-
rived units whose names and symbols include SI coherent derived units with special names and
symbols. The unit is called coulomb per square meter.

141.6.10.15 public static final String CUBIC_METER = "m\u00b3"

Unit of volume. It's one of coherent derived units in the SI expressed in terms of base units. The unit
is called cubic meter.

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Compendium Release 8 Page 893

141.6.10.16 public static final String CUBIC_METER_PER_KILOGRAM = "m\u00b3/kg"

Unit of specific volume. It's one of coherent derived units in the SI expressed in terms of base units.
The unit is called cubic meter per kilogram.

141.6.10.17 public static final String DAY = "d"

Unit of time. It's one of non-SI units accepted for use with the International System of Units. The
unit is called day.

141.6.10.18 public static final String DECIBEL = "dB"

Unit of logarithmic ratio quantities. It's one of other non-SI units. The unit is called decibel.

141.6.10.19 public static final String DEGREE = "\u00b0"

Unit of plane angle. It's one of non-SI units accepted for use with the International System of Units.
The unit is called degree.

141.6.10.20 public static final String DEGREE_CELSIUS = "\u2103"

Unit of Celsius temperature. It's one of the coherent derived units in the SI with special names and
symbols. The unit is called degree Celsius.

141.6.10.21 public static final String DYNE = "dyn"

Unit of force. It's one of non-SI units associated with the CGS and the CGS-Gaussian system of units.
The unit is called dyne.

141.6.10.22 public static final String ERG = "erg"

Unit of energy. It's one of non-SI units associated with the CGS and the CGS-Gaussian system of
units. The unit is called erg.

141.6.10.23 public static final String FARAD = "F"

Unit of capacitance. It's one of the coherent derived units in the SI with special names and symbols.
The unit is called farad.

141.6.10.24 public static final String FARAD_PER_METER = "F/m"

Unit of permittivity. It's one of coherent derived units whose names and symbols include SI coher-
ent derived units with special names and symbols. The unit is called farad per meter.

141.6.10.25 public static final String GAL = "Gal"

Unit of acceleration. It's one of non-SI units associated with the CGS and the CGS-Gaussian system
of units. The unit is called gal.

141.6.10.26 public static final String GAUSS = "G"

Unit of magnetic flux density. It's one of non-SI units associated with the CGS and the CGS-Gaussian
system of units. The unit is called gauss.

141.6.10.27 public static final String GRAY = "Gy"

Unit of absorbed dose, specific energy (imparted), kerma. It's one of the coherent derived units in the
SI with special names and symbols. The unit is called gray.

141.6.10.28 public static final String GRAY_PER_SECOND = "Gy/s"

Unit of absorbed dose rate. It's one of coherent derived units whose names and symbols include SI
coherent derived units with special names and symbols. The unit is called gray per second.

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 894 OSGi Compendium Release 8

141.6.10.29 public static final String HECTARE = "ha"

Unit of area. It's one of non-SI units accepted for use with the International System of Units. The
unit is called hectare.

141.6.10.30 public static final String HENRY = "H"

Unit of inductance. It's one of the coherent derived units in the SI with special names and symbols.
The unit is called henry.

141.6.10.31 public static final String HENRY_PER_METER = "H/m"

Unit of permeability. It's one of coherent derived units whose names and symbols include SI coher-
ent derived units with special names and symbols. The unit is called henry per meter.

141.6.10.32 public static final String HERTZ = "Hz"

Unit of frequency. It's one of the coherent derived units in the SI with special names and symbols.
The unit is called hertz.

141.6.10.33 public static final String HOUR = "h"

Unit of time. It's one of non-SI units accepted for use with the International System of Units. The
unit is called hour.

141.6.10.34 public static final String JOULE = "J"

Unit of energy, work, amount of electricity. It's one of the coherent derived units in the SI with spe-
cial names and symbols. The unit is called joule.

141.6.10.35 public static final String JOULE_PER_CUBIC_METER = "J/m\u00b3"

Unit of energy density. It's one of coherent derived units whose names and symbols include SI co-
herent derived units with special names and symbols. The unit is called joule per cubic meter.

141.6.10.36 public static final String JOULE_PER_KELVIN = "J/\u212a"

Unit of heat capacity, entropy. It's one of coherent derived units whose names and symbols include
SI coherent derived units with special names and symbols. The unit is called joule per kelvin.

141.6.10.37 public static final String JOULE_PER_KILOGRAM = "J/kg"

Unit of specific energy. It's one of coherent derived units whose names and symbols include SI co-
herent derived units with special names and symbols. The unit is called joule per kilogram.

141.6.10.38 public static final String JOULE_PER_KILOGRAM_KELVIN = "J/(kg \u212a)"

Unit of specific heat capacity, specific entropy. It's one of coherent derived units whose names and
symbols include SI coherent derived units with special names and symbols. The unit is called joule
per kilogram kelvin.

141.6.10.39 public static final String JOULE_PER_MOLE = "J/mol"

Unit of molar energy. It's one of coherent derived units whose names and symbols include SI coher-
ent derived units with special names and symbols. The unit is called joule per mole.

141.6.10.40 public static final String JOULE_PER_MOLE_KELVIN = "J/(mol \u212a)"

Unit of molar entropy, molar heat capacity. It's one of coherent derived units whose names and sym-
bols include SI coherent derived units with special names and symbols. The unit is called joule per
mole kelvin.

141.6.10.41 public static final String KATAL = "kat"

Unit of catalytic activity. It's one of the coherent derived units in the SI with special names and sym-
bols. The unit is called katal.

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Compendium Release 8 Page 895

141.6.10.42 public static final String KATAL_PER_CUBIC_METER = "kat/m\u00b3"

Unit of catalytic activity concentration. It's one of coherent derived units whose names and symbols
include SI coherent derived units with special names and symbols. The unit is called katal per cubic
meter.

141.6.10.43 public static final String KELVIN = "\u212a"

Unit of thermodynamic temperature defined by the International System of Units (SI). It's one of be
base units called kelvin.

141.6.10.44 public static final String KILOGRAM = "kg"

Unit of mass defined by the International System of Units (SI). It's one of be base units called kilo-
gram.

141.6.10.45 public static final String KILOGRAM_PER_CUBIC_METER = "kg/m\u00b3"

Unit of density, mass density, mass concentration. It's one of coherent derived units in the SI ex-
pressed in terms of base units. The unit is called kilogram per cubic meter.

141.6.10.46 public static final String KILOGRAM_PER_SQUARE_METER = "kg/m\u00b2"

Unit of surface density. It's one of coherent derived units in the SI expressed in terms of base units.
The unit is called kilogram per square meter.

141.6.10.47 public static final String KNOT = "kn"

Unit of speed. It's one of other non-SI units. The unit is called knot.

141.6.10.48 public static final String LITER = "l"

Unit of volume. It's one of non-SI units accepted for use with the International System of Units. The
unit is called liter. International System of Units accepts two symbols: lower-case l and capital L.
That constant value is using the lower-case l.

141.6.10.49 public static final String LUMEN = "lm"

Unit of luminous flux. It's one of the coherent derived units in the SI with special names and sym-
bols. The unit is called lumen.

141.6.10.50 public static final String LUX = "lx"

Unit of illuminance. It's one of the coherent derived units in the SI with special names and symbols.
The unit is called lux.

141.6.10.51 public static final String MAXWELL = "Mx"

Unit of magnetic flux. It's one of non-SI units associated with the CGS and the CGS-Gaussian system
of units. The unit is called maxwell.

141.6.10.52 public static final String METER = "m"

Unit of length defined by the International System of Units (SI). It's one of be base units called meter.

141.6.10.53 public static final String METER_PER_SECOND = "m/s"

Unit of speed, velocity. It's one of coherent derived units in the SI expressed in terms of base units.
The unit is called meter per second.

141.6.10.54 public static final String METER_PER_SECOND_SQUARED = "m/s\u00b2"

Unit of acceleration. It's one of coherent derived units in the SI expressed in terms of base units. The
unit is called meter per second squared.

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 896 OSGi Compendium Release 8

141.6.10.55 public static final String MILLIMETER_OF_MERCURY = "mmHg"

Unit of pressure. It's one of other non-SI units. The unit is called millimeter of mercury.

141.6.10.56 public static final String MOLE = "mol"

Unit of amount of substance defined by the International System of Units (SI). It's one of be base
units called mole.

141.6.10.57 public static final String MOLE_PER_CUBIC_METER = "mol/m\u00b3"

Unit of amount concentration, concentration. It's one of coherent derived units in the SI expressed
in terms of base units. The unit is called mole per cubic meter.

141.6.10.58 public static final String NAUTICAL_MILE = "M"

Unit of distance. It's one of other non-SI units. The unit is called nautical mile.

141.6.10.59 public static final String NEPER = "Np"

Unit of logarithmic ratio quantities. It's one of other non-SI units. The unit is called neper.

141.6.10.60 public static final String NEWTON = "N"

Unit of force. It's one of the coherent derived units in the SI with special names and symbols. The
unit is called newton.

141.6.10.61 public static final String NEWTON_METER = "N m"

Unit of moment of force. It's one of coherent derived units whose names and symbols include SI co-
herent derived units with special names and symbols. The unit is called newton meter.

141.6.10.62 public static final String NEWTON_PER_METER = "N/m"

Unit of surface tension. It's one of coherent derived units whose names and symbols include SI co-
herent derived units with special names and symbols. The unit is called newton per meter.

141.6.10.63 public static final String OERSTED = "Oe"

Unit of magnetic field. It's one of non-SI units associated with the CGS and the CGS-Gaussian system
of units. The unit is called oersted.

141.6.10.64 public static final String OHM = "\u2126"

Unit of electric resistance. It's one of the coherent derived units in the SI with special names and
symbols. The unit is called ohm.

141.6.10.65 public static final String PASCAL = "Pa"

Unit of pressure, stress. It's one of the coherent derived units in the SI with special names and sym-
bols. The unit is called pascal.

141.6.10.66 public static final String PASCAL_SECOND = "Pa s"

Unit of dynamic viscosity. It's one of coherent derived units whose names and symbols include SI
coherent derived units with special names and symbols. The unit is called pascal second.

141.6.10.67 public static final String PHOT = "ph"

Unit of illuminance. It's one of non-SI units associated with the CGS and the CGS-Gaussian system
of units. The unit is called phot.

141.6.10.68 public static final String PLANE_ANGLE_MINUTE = "\u2032"

Unit of plane angle. It's one of non-SI units accepted for use with the International System of Units.
The unit is called minute.

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Compendium Release 8 Page 897

141.6.10.69 public static final String PLANE_ANGLE_SECOND = "\u2033"

Unit of plane angle. It's one of non-SI units accepted for use with the International System of Units.
The unit is called second.

141.6.10.70 public static final String POISE = "P"

Unit of dynamic viscosity. It's one of non-SI units associated with the CGS and the CGS-Gaussian
system of units. The unit is called poise.

141.6.10.71 public static final String PREFIX_ATTO = "a"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called atto
and represents the 18th negative power of ten.

141.6.10.72 public static final String PREFIX_CENTI = "c"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called centi
and represents the 2nd negative power of ten.

141.6.10.73 public static final String PREFIX_DECA = "da"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called deca and
represents the 1st power of ten.

141.6.10.74 public static final String PREFIX_DECI = "d"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called deci
and represents the 1st negative power of ten.

141.6.10.75 public static final String PREFIX_EXA = "E"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called exa and
represents the 18th power of ten.

141.6.10.76 public static final String PREFIX_FEMTO = "f "

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called femto
and represents the 15th negative power of ten.

141.6.10.77 public static final String PREFIX_GIGA = "G"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called giga and
represents the 9th power of ten.

141.6.10.78 public static final String PREFIX_HECTO = "h"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called hecto and
represents the 2nd power of ten.

141.6.10.79 public static final String PREFIX_KILO = "k"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called kilo and
represents the 3rd power of ten.

141.6.10.80 public static final String PREFIX_MEGA = "M"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called mega and
represents the 6th power of ten.

141.6.10.81 public static final String PREFIX_MICRO = "\u00b5"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called micro
and represents the 6th negative power of ten.

org.osgi.service.dal Device Abstraction Layer Specification Version 1.0

Page 898 OSGi Compendium Release 8

141.6.10.82 public static final String PREFIX_MILLI = "m"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called milli
and represents the 3rd negative power of ten.

141.6.10.83 public static final String PREFIX_NANO = "n"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called nano
and represents the 9th negative power of ten.

141.6.10.84 public static final String PREFIX_PICO = "p"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called pico
and represents the 12th negative power of ten.

141.6.10.85 public static final String PREFIX_YOCTO = "y"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called yocto
and represents the 24th negative power of ten.

141.6.10.86 public static final String PREFIX_YOTTA = "Y"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called yotta and
represents the 24th power of ten.

141.6.10.87 public static final String PREFIX_ZEPTO = "z"

Adopted prefix symbol to form the symbols of the decimal submultiples of SI units. It's called zepto
and represents the 21th negative power of ten.

141.6.10.88 public static final String PREFIX_ZETTA = "Z"

Adopted prefix symbol to form the symbols of the decimal multiples of SI units. It's called zetta and
represents the 21th power of ten.

141.6.10.89 public static final String RADIAN = "rad"

Unit of plane angle. It's one of the coherent derived units in the SI with special names and symbols.
The unit is called radian.

141.6.10.90 public static final String RADIAN_PER_SECOND = "rad/s"

Unit of angular velocity. It's one of coherent derived units whose names and symbols include SI co-
herent derived units with special names and symbols. The unit is called radian per second.

141.6.10.91 public static final String RADIAN_PER_SECOND_SQUARED = "rad/s\u00b2"

Unit of angular acceleration. It's one of coherent derived units whose names and symbols include
SI coherent derived units with special names and symbols. The unit is called radian per second
squared.

141.6.10.92 public static final String RECIPROCAL_METER = "m\u207b\u00b9"

Unit of wavenumber. It's one of coherent derived units in the SI expressed in terms of base units.
The unit is called reciprocal meter.

141.6.10.93 public static final String SECOND = "s"

Unit of time defined by the International System of Units (SI). It's one of be base units called second.

141.6.10.94 public static final String SIEMENS = "S"

Unit of electric conductance. It's one of the coherent derived units in the SI with special names and
symbols. The unit is called siemens.

Device Abstraction Layer Specification Version 1.0 org.osgi.service.dal

OSGi Compendium Release 8 Page 899

141.6.10.95 public static final String SIEVERT = "Sv"

Unit of dose equivalent, ambient dose equivalent, directional dose equivalent, personal dose equiv-
alent. It's one of the coherent derived units in the SI with special names and symbols. The unit is
called sievert.

141.6.10.96 public static final String SQUARE_METER = "m\u00b2"

Unit of area. It's one of coherent derived units in the SI expressed in terms of base units. The unit is
called square meter.

141.6.10.97 public static final String STERADIAN = "sr"

Unit of solid angle. It's one of the coherent derived units in the SI with special names and symbols.
The unit is called steradian.

141.6.10.98 public static final String STILB = "sb"

Unit of luminance. It's one of non-SI units associated with the CGS and the CGS-Gaussian system of
units. The unit is called stilb.

141.6.10.99 public static final String STOKES = "St"

Unit of kinematic viscosity. It's one of non-SI units associated with the CGS and the CGS-Gaussian
system of units. The unit is called stokes.

141.6.10.100 public static final String TESLA = "T"

Unit of magnetic flux density. It's one of the coherent derived units in the SI with special names and
symbols. The unit is called tesla.

141.6.10.101 public static final String TIME_MINUTE = "min"

Unit of time. It's one of non-SI units accepted for use with the International System of Units. The
unit is called minute.

141.6.10.102 public static final String TONNE = "t"

Unit of mass. It's one of non-SI units accepted for use with the International System of Units. The
unit is called tonne.

141.6.10.103 public static final String VOLT = "V"

Unit of electric potential difference, electromotive force. It's one of the coherent derived units in the
SI with special names and symbols. The unit is called volt.

141.6.10.104 public static final String VOLT_PER_METER = "V/m"

Unit of electric field strength. It's one of coherent derived units whose names and symbols include
SI coherent derived units with special names and symbols. The unit is called volt per meter.

141.6.10.105 public static final String WATT = "W"

Unit of power, radiant flux. It's one of the coherent derived units in the SI with special names and
symbols. The unit is called watt.

141.6.10.106 public static final String WATT_PER_METER_KELVIN = "W/(m \u212a)"

Unit of thermal conductivity. It's one of coherent derived units whose names and symbols include SI
coherent derived units with special names and symbols. The unit is called watt per meter kelvin.

141.6.10.107 public static final String WATT_PER_SQUARE_METER = "W/m\u00b2"

Unit of heat flux density, irradiance. It's one of coherent derived units whose names and symbols in-
clude SI coherent derived units with special names and symbols. The unit is called watt per square
meter.

References Device Abstraction Layer Specification Version 1.0

Page 900 OSGi Compendium Release 8

141.6.10.108 public static final String WATT_PER_SQUARE_METER_STERADIAN = "W/(m\u00b2 sr)"

Unit of radiance. It's one of coherent derived units whose names and symbols include SI coherent
derived units with special names and symbols. The unit is called watt per square meter steradian.

141.6.10.109 public static final String WATT_PER_STERADIAN = "W/sr"

Unit of radiant intensity. It's one of coherent derived units whose names and symbols include SI co-
herent derived units with special names and symbols. The unit is called watt per steradian.

141.6.10.110 public static final String WEBER = "Wb"

Unit of magnetic flux. It's one of the coherent derived units in the SI with special names and sym-
bols. The unit is called weber.

141.7 References

[1] JavaBeans Spec
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html

http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html

Device Abstraction Layer Functions Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 901

142 Device Abstraction Layer
Functions Specification

Version 1.0

142.1 Introduction
Concrete function interfaces are used to unify the access and the control of the basic device opera-
tions and the related properties. The current section specifies the minimal set of such functionali-
ties. They can be extended or replaced to cover domain specific scenarios. The set is not closed and
can be incorporated with vendor specific functions. There is support for: control, monitoring and
metering information.

142.2 Functions

142.2.1 BooleanControl
BooleanControl function provides a binary control support. The property eventing must follow the
definition of Device Abstraction Layer, Function Property Events on page 874. The full function defini-
tion is available in the next tables.

Table 142.1 BooleanControl Operations

Name Description
inverse Reverses the BooleanControl state. If the current

state represents true value, it'll be changed to
fa lse . If the current state represents fa lse value,
it'll be changed to true .

setTrue Sets the BooleanControl state to true value.
setFalse Sets the BooleanControl state to fa lse value.

Table 142.2 BooleanControl Properties

Name Description
data Contains the current state of BooleanControl .

The property access is readable, writable and
eventable.

Different types can be used as a value of SERVICE_TYPE service property. The next list contains some
suitable to BooleanControl :

• LIGHT - indicates that there is a light device control. true state means that the light device will be
turned on. fa lse state means that the light device will be turned off.

• DOOR - indicates that there is a door position control. true state means that the door will be
opened. fa lse state means that the door will be closed.

Functions Device Abstraction Layer Functions Specification Version 1.0

Page 902 OSGi Compendium Release 8

• WINDOW - indicates that there is a window position control. true state means that the window
will be opened. fa lse state means that the window will be closed.

• POWER - indicates that there is electricity control. true state means that the power will be re-
stored. fa lse state means that the power will be cut.

• other type defined in Types
• vendor specific

The function is using BooleanData on page 906 data structure to provide the control state.

The next code snippet sets to true all BooleanControl functions, which control the light.

ServiceReference[] booleanControlSRefs = context.getServiceReferences(
 BooleanControl.class.getName(),
 '(' + Function.SERVICE_TYPE + '=' + Types.LIGHT + ')');
if (booleanControlSRefs != null) {
 for (int i = 0; i < booleanControlSRefs.length; i++) {
 BooleanControl booleanControl = (BooleanControl) context.getService(
 booleanControlSRefs[i]);
 if (booleanControl != null) {
 booleanControl.setTrue();
 context.ungetService(booleanControlSRefs[i]);
 }
 }
}

142.2.2 BooleanSensor
BooleanSensor function provides binary sensor monitoring. It reports the state when an important
event is available. There are no operations. The property eventing must follow the definition of De-
vice Abstraction Layer, Function Property Events on page 874. The full function definition is available
in the next table.

Table 142.3 BooleanSensor Properties

Name Description
data Contains the current state of BooleanSensor .

The property access is readable and eventable.

Different types can be used as a value of SERVICE_TYPE service property. The next list contains some
suitable to BooleanSensor :

• LIGHT - indicates that the BooleanSensor can detected light. true state means that there is light.
fa lse state means that there is no light.

• GAS - indicates that the BooleanSensor supports gas detection. true state means there is gas. fa lse
state means that there is no gas.

• SMOKE - indicates that the BooleanSensor can detect smoke. true state means that there is
smoke. fa lse state means that there is no smoke.

• DOOR - indicates that the BooleanSensor can detect the door state. true state means that the door
is opened. fa lse state means that the door is closed.

• WINDOW - indicates that the BooleanSensor can window state. true state means that the window
is opened. fa lse state means that the window is closed.

• POWER - indicates that the BooleanSensor can detect power/no power. true state means that
there is power. fa lse state means that there is no power.

• RAIN - indicates that the BooleanSensor can detect rain. true state means that there is rain. fa lse
state means that there is no rain.

Device Abstraction Layer Functions Specification Version 1.0 Functions

OSGi Compendium Release 8 Page 903

• CONTACT - indicates that the BooleanSensor can detect contact. true state means that there is
contact. fa lse state means that there is no contact.

• FIRE - indicates that the BooleanSensor can detect fire. true state means that there is fire. fa lse
state means that there is no fire.

• OCCUPANCY - indicates that the BooleanSensor can detect presence. true state means that some-
one is detected. fa lse state means that nobody is detected.

• WATER - indicates that the BooleanSensor can detect water leak. true state means that there is wa-
ter leak. fa lse state means that there is no water leak.

• MOTION - indicates that the BooleanSensor can detect motion. true state means that there is mo-
tion detection. fa lse state means that there is no motion detection.

• other type defined in Types
• vendor specific

The function is using BooleanData on page 906 data structure to provide the sensor state.

142.2.3 MultiLevelControl
MultiLevelControl function provides multi-level control support. The property eventing must fol-
low the definition of Device Abstraction Layer, Function Property Events on page 874. The full func-
tion definition is available in the next table.

Table 142.4 MultiLevelControl Properties

Name Description
data Contains the current state of MultiLevelControl .

The property access is readable, writable and
eventable.

Different types can be used as a value of SERVICE_TYPE service property. The next list contains some
suitable to MultiLevelControl :

• LIGHT - indicates that the MultiLevelControl can control light devices. Usually, such devices are
called dimmable. MultiLevelControl minimum value can switch off the device and MultiLevel-
Control maximum value can increase the device light to the maximum possible value.

• TEMPERATURE - indicates that the MultiLevelControl can control temperature devices. For exam-
ple, such device can be thermostat. MultiLevelControl minimum value is the lowest supported
temperature. MultiLevelControl maximum value is the highest supported temperature.

• FLOW - indicates that the MultiLevelControl can control the flow level. MultiLevelControl min-
imum value is the minimum supported flow level. MultiLevelControl maximum value is the
maximum supported flow level.

• PRESSURE - indicates that the MultiLevelControl can control the pressure level. MultiLevelCon-
trol minimum value is the lowest supported pressure level. MultiLevelControl maximum value
is the highest supported pressure level.

• HUMIDITY - indicates that the MultiLevelControl can control the humidity level. It's typical func-
tionality for HVAC (heating, ventilation, and air conditioning) devices. MultiLevelControl min-
imum value is the lowest supported humidity level. MultiLevelControl maximum value is the
highest supported humidity level.

• GAS - indicates that the MultiLevelControl can control the gas level. MultiLevelControl minimum
value is the lowest supported gas level. MultiLevelControl maximum value is the highest sup-
ported gas level.

• SMOKE - indicates that the MultiLevelControl can control the smoke level. MultiLevelControl
minimum value is the lowest supported smoke level. MultiLevelControl maximum value is the
highest supported smoke level.

Functions Device Abstraction Layer Functions Specification Version 1.0

Page 904 OSGi Compendium Release 8

• DOOR - indicates that the MultiLevelControl can control the door position. MultiLevelControl
minimum value can completely close the door. MultiLevelControl maximum value can open the
door to the maximum allowed position.

• WINDOW - indicates that the MultiLevelControl can control the window position. MultiLevel-
Control minimum value can completely close the window. MultiLevelControl maximum value
can open the window to the maximum allowed position.

• LIQUID - indicates that the MultiLevelControl can control the liquid level. MultiLevelControl
minimum value is the lowest supported liquid level. MultiLevelControl maximum value is the
highest supported liquid level.

• POWER - indicates that the MultiLevelControl can control the power level. MultiLevelControl
minimum value is the lowest supported power level. MultiLevelControl maximum value is the
highest supported power level.

• NOISINESS - indicates that the MultiLevelControl can control the noise level. MultiLevelControl
minimum value is the lowest supported noise level. MultiLevelControl maximum value is the
highest supported noise level.

• other type defined in Types
• vendor specific

The function is using LevelData on page 907 data structure to provide the level.

142.2.4 MultiLevelSensor
MultiLevelSensor function provides multi-level sensor monitoring. It reports its state when an im-
portant event is available. There are no operations. The property eventing must follow the defini-
tion of Device Abstraction Later, Function Property Events on page 874. The full function definition is
available in the next table.

Table 142.5 MultiLevelSensor Properties

Name Description
data Contains the current state of MultiLevelSensor .

The property access is readable and eventable.

Different types can be used as a value of SERVICE_TYPE service property. The next list contains some
suitable to MultiLevelSensor :

• LIGHT - indicates that the sensor can monitor the light level.
• TEMPERATURE - indicates that the sensor can monitor the temperature.
• FLOW - indicates that the sensor can monitor the flow level.
• PRESSURE - indicates that the sensor can monitor the pressure level.
• HUMIDITY - indicates that the sensor can monitor the humidity level.
• GAS - indicates that the sensor can monitor the gas level.
• SMOKE - indicates that the sensor can monitor the smoke level.
• DOOR - indicates that the sensor can monitor the door position.
• WINDOW - indicates that the sensor can monitor the window position.
• LIQUID - indicates that the sensor can monitor the liquid level.
• POWER - indicates that the sensor can monitor the power level.
• NOISINESS - indicates that the sensor can monitor the noise level.
• RAIN - indicates that the MultiLevelSensor can monitor the rain rate.
• other type defined in Types
• vendor specific

The function is using LevelData on page 907 data structure to provide the level.

Device Abstraction Layer Functions Specification Version 1.0 Functions

OSGi Compendium Release 8 Page 905

142.2.5 Meter
Meter function can measure metering information. It provides the current and total consumptions
or generations. The property eventing must follow the definition of Device Abstraction Later, Func-
tion Property Events on page 874. The full function definition is available in the next tables.

Table 142.6 Meter Properties

Name Description
total Contains the total consumption or production.

The property access is readable and eventable.
current Contains the current consumption or pro-

duction. The property access is readable and
eventable.

Different types can be used as a value of SERVICE_TYPE service property. The next list contains some
suitable to Meter :

• PRESSURE - indicates that the Meter measures pressure.
• GAS - indicates that the Meter measures the gas consumption.
• POWER - indicates that the Meter measures the power consumption.
• WATER - indicates that the Meter measures water consumption.
• HEAT - indicates that the Meter measures thermal energy provided by a source.
• COLD - indicates that the Meter measures thermal energy provided by a source.
• other type defined in Types
• vendor specific

The function is using LevelData on page 907 data structure to provide metering information.

Meter function service can be optionally registered with SERVICE_FLOW service property. The value
type is java. lang.Str ing . It contains the metering flow. Currently, the flow can be FLOW_IN for a con-
sumption or FLOW_OUT for a production.

142.2.6 Alarm
Alarm function provides alarm sensor support. There is only one eventable property and no opera-
tions. The property eventing must follow the definition of Device Abstraction Layer, Function Proper-
ty Events on page 874. The full function definition is available in the next table.

Table 142.7 BooleanSensor Properties

Name Description
alarm Specifies the alarm property name. The property

is eventable.

The function is using AlarmData on page 907 data structure to report the alarm. The property
eventing must follow the definition of Device Abstraction Layer, Function Property Events on page
874.

142.2.7 Keypad
Keypad function provides support for keypad control. The keypad typically consists of one or more
keys/buttons, which can be discerned. Different types of key presses like short and long press can
typically also be detected. Each key pressed event is followed by a key released event. It's not possi-
ble to have two consecutive key pressed or key released events. There is only one eventable proper-
ty and no operations. The property eventing must follow the definition of Device Abstraction Layer,
Function Property Events on page 874. The full function definition is available in the next table.

Functions Data Device Abstraction Layer Functions Specification Version 1.0

Page 906 OSGi Compendium Release 8

Table 142.8 Keypad Properties

Name Description
key Specifies a property name for a key from the key-

pad. The property is eventable.

The function is using KeypadData on page 907 data structure to report the keys.

142.2.8 WakeUp
WakeUp function provides device awake monitoring. It's especially applicable to battery-operat-
ed devices. Such device can notify the system that it's awake and can receive commands with a
PROPERTY_AWAKE property event. The property eventing must follow the definition of Device Ab-
straction Layer, Function Property Events on page 874.

The device can periodically wake up for commands. The interval can be managed with
PROPERTY_WAKE_UP_INTERVAL property.

Table 142.9 WakeUp Properties

Name Description
awake Specifies the awake eventable property name.

If the device is awake, it will trigger a property
event. The property value type is BooleanData on
page 906.

wakeUpInterval Specifies the wake up interval. The device can
periodically wake up and receive commands.
That interval is managed by this property.
The property access is readable, writable and
eventable. The property value type is LevelData
on page 907.

142.3 Functions Data
FunctionData subclasses are wrappers on top of the java types to cover the requirements of the De-
vice Abstraction Layer section. They can be received with the getter methods, can be set with the
setter methods and can be reported with FunctionEvent . The value can be described with different
properties like:

• timestamp - the timestamp is the difference between the value collecting time and midnight,
January 1, 1970 UTC. It's measured in milliseconds. The device driver is responsible to generate
that value when the value is received from the device.

• unit - represents the value unit as it's defined in Function Properties on page 872.
• description - represents a human readable description of the value.

142.3.1 BooleanData
BooleanData is used by BooleanControl on page 901, BooleanSensor on page 902 and WakeUp on
page 906.

It provides information about the function state. That data object contains boolean value, the value
collecting time and additional metadata. The value field is accessible with getValue() getter. Other
fields are inherited from the parent class FunctionData .

Two BooleanData instances are equal if they contain equal metadata, timestamp and boolean value.

compareTo(Object) method compares BooleanData instance with the given argument of the same
type and returns:

Device Abstraction Layer Functions Specification Version 1.0 Functions Data

OSGi Compendium Release 8 Page 907

• -1 if the instance field is less than a field of the specified argument.
• 0 if all fields are equivalent.
• 1 if the instance field is greater than a field of the specified argument.

The fields are compared in this order: timestamp, metadata, value.

142.3.2 LevelData
LevelData is used by MultiLevelControl on page 903, MultiLevelSensor on page 904, Meter on page
905 and WakeUp on page 906.

It provides information about the function level. That data object contains BigDecimal value and
the value unit. The measurement unit is used as it's defined in Function Properties on page 872. The
unit field is accessible with getUnit() getter. The level field is accessible with getLevel() getter.

Two LevelData instances are equal if they contain equal metadata, timestamp, unit and level.

compareTo(Object) method compares LevelData instance with the given argument of the same
type and returns:

• -1 if the instance field is less than a field of the specified argument.
• 0 if all fields are equivalent.
• 1 if the instance field is greater than a field of the specified argument.

The fields are compared in this order: timestamp, metadata, level, unit.

142.3.3 AlarmData
AlarmData is used by Alarm on page 905.

AlarmData data structure is used to provide information about the available alarm. That data object
contains:

• alarm type - indicates the meaning of the alarm like smoke, power fail, etc.
• alarm severity - indicates the alarm importance level like minor, critical, etc.

The severity field is accessible with getSeverity() getter. The type field is accessible with getType()
getter.

Two AlarmData instances are equal if they contain equal metadata, timestamp, type and severity.

compareTo(Object) method compares AlarmData instance with the given argument of the same
type and returns:

• -1 if the instance field is less than a field of the specified argument.
• 0 if all fields are equivalent.
• 1 if the instance field is greater than a field of the specified argument.

The fields are compared in this order: timestamp, metadata, type, severity.

142.3.4 KeypadData
KeypadData is used by Keypad on page 905.

KeypadData data structure is used to provide information when a change with some key from the
keypad has occurred. That data object contains the event type, sub-type, key code and key name.
Currently, there are two predefined event types:

• TYPE_PRESSED – used for a key pressed;
• TYPE_RELEASED – used for a key released.

org.osgi.service.dal.functions Device Abstraction Layer Functions Specification Version 1.0

Page 908 OSGi Compendium Release 8

Predefined event sub-types are:

• SUB_TYPE_PRESSED_NORMAL – used for a normal key pressed event. Usually, there is a single
press and the key is not held down. This sub-type is used with TYPE_PRESSED type.

• SUB_TYPE_PRESSED_LONG – used for a long key pressed event. Usually, there is a single press
and the key is held down. This sub-type is used with TYPE_PRESSED type.

• SUB_TYPE_PRESSED_DOUBLE – used for a double key pressed event. Usually, there are two
press actions and the key is not held down after the second press. This sub-type is used with
TYPE_PRESSED type.

• SUB_TYPE_PRESSED_DOUBLE_LONG – used for a double long key pressed event. Usually, there
are two press actions and the key is held down after the second press. This sub-type is used with
TYPE_PRESSED type.

The type field is accessible with getType() getter. The subType field is accessible with getSubType()
getter. The keyCode field is accessible with getKeyCode() getter. The keyName field is accessible
with getKeyName() getter.

Two KeypadData instances are equal if they contain equal metadata, timestamp, event type, sub-
type, key code and key name.

compareTo(Object) method compares KeypadData instance with the given argument of the same
type and returns:

• -1 if the instance field is less than a field of the specified argument.
• 0 if all fields are equivalent.
• 1 if the instance field is greater than a field of the specified argument.

The fields are compared in this order: timestamp, metadata, type, sub-type, key code, key name.

142.4 org.osgi.service.dal.functions

Device Abstraction Layer Functions Package 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dal .functions; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dal .functions; vers ion="[1.0,1.1)"

142.4.1 Summary

• Alarm - Alarm function provides alarm sensor support.
• BooleanControl - BooleanControl function provides a boolean control support.
• BooleanSensor - BooleanSensor function provides boolean sensor monitoring.
• Keypad - Keypad function provides support for keypad control.
• Meter - Meter function can measure metering information.
• MultiLevelControl - MultiLevelControl function provides multi-level control support.
• MultiLevelSensor - MultiLevelSensor function provides multi-level sensor monitoring.
• Types - Shares common constants for all functions defined in this package.
• WakeUp - WakeUp function provides device awake monitoring.

Device Abstraction Layer Functions Specification Version 1.0 org.osgi.service.dal.functions

OSGi Compendium Release 8 Page 909

142.4.2 public interface Alarm
extends Function
Alarm function provides alarm sensor support. There is only one eventable property and no opera-
tions.

See Also AlarmData

142.4.2.1 public static final String PROPERTY_ALARM = "alarm"

Specifies the alarm property name. The property is eventable.

See Also AlarmData

142.4.3 public interface BooleanControl
extends Function
BooleanControl function provides a boolean control support. The eventable function state is ac-
cessible with getData() getter and setData(boolean) setter. The state can be reversed with inverse()
method, can be set to true value with setTrue() method and can be set to fa lse value with setFalse()
method.

The control type can be:

• Types.LIGHT
• Types.DOOR
• Types.WINDOW
• Types.POWER
• other type defined in Types
• custom - vendor specific type

See Also BooleanData

142.4.3.1 public static final String OPERATION_INVERSE = "inverse"

Specifies the inverse operation name. The operation can be executed with inverse() method.

142.4.3.2 public static final String OPERATION_SET_FALSE = "setFalse"

Specifies the operation name, which sets the control state to fa lse value. The operation can be exe-
cuted with setFalse() method.

142.4.3.3 public static final String OPERATION_SET_TRUE = "setTrue"

Specifies the operation name, which sets the control state to true value. The operation can be exe-
cuted with setTrue() method.

142.4.3.4 public static final String PROPERTY_DATA = "data"

Specifies the state property name. The eventable property value is accessible with getData() method.

See Also BooleanData

142.4.3.5 public BooleanData getData() throws DeviceException

□ Returns the current state of BooleanControl . It's a getter method for PROPERTY_DATA property.

Returns The current state of BooleanControl .

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

See Also BooleanData, BooleanControl.PROPERTY_DATA

org.osgi.service.dal.functions Device Abstraction Layer Functions Specification Version 1.0

Page 910 OSGi Compendium Release 8

142.4.3.6 public void inverse() throws DeviceException

□ Reverses the BooleanControl state. If the current state represents true value, it'll be changed to
fa lse . If the current state represents fa lse value, it'll be changed to true . The operation name is
OPERATION_INVERSE.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

142.4.3.7 public void setData(boolean data) throws DeviceException

data The new function value.

□ Sets the BooleanControl state to the specified value. It's setter method for PROPERTY_DATA proper-
ty.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

I l legalArgumentException– If there is an invalid argument.

See Also BooleanControl.PROPERTY_DATA

142.4.3.8 public void setFalse() throws DeviceException

□ Sets the BooleanControl state to fa lse value. The operation name is OPERATION_SET_FALSE.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

142.4.3.9 public void setTrue() throws DeviceException

□ Sets the BooleanControl state to true value. The operation name is OPERATION_SET_TRUE.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

142.4.4 public interface BooleanSensor
extends Function
BooleanSensor function provides boolean sensor monitoring. It reports its state when an important
event is available. The eventable state is accessible with getData() getter. There are no operations.

The sensor type can be:

• Types.LIGHT
• Types.GAS
• Types.SMOKE
• Types.DOOR
• Types.WINDOW
• Types.POWER
• Types.RAIN
• Types.CONTACT
• Types.FIRE
• Types.OCCUPANCY
• Types.WATER
• Types.MOTION
• other type defined in Types
• custom - vendor specific type

Device Abstraction Layer Functions Specification Version 1.0 org.osgi.service.dal.functions

OSGi Compendium Release 8 Page 911

See Also BooleanData

142.4.4.1 public static final String PROPERTY_DATA = "data"

Specifies the state property name. The eventable property value is accessible with getData() getter.

142.4.4.2 public BooleanData getData() throws DeviceException

□ Returns the BooleanSensor current state. It's a getter method for PROPERTY_DATA property.

Returns The BooleanSensor current state.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

See Also BooleanData

142.4.5 public interface Keypad
extends Function
Keypad function provides support for keypad control. The keypad typically consists of one or more
keys/buttons, which can be discerned. Different types of key presses like short and long press can
typically also be detected. Each key pressed event is followed by a key released event. It's not possi-
ble to have two consecutive key pressed or key released events. There is only one eventable property
and no operations.

Keypad can enumerate all supported keys in the key property metadata,
PropertyMetadata.getEnumValues(String).

See Also KeypadData

142.4.5.1 public static final String PROPERTY_KEY = "key"

Specifies a property name for a key from the keypad. The property is eventable.

See Also KeypadData

142.4.6 public interface Meter
extends Function
Meter function can measure metering information. The function provides these properties:

• PROPERTY_CURRENT - eventable property accessible with getCurrent() getter;
• PROPERTY_TOTAL - eventable property accessible with getTotal() getter.

The sensor type can be:

• Types.PRESSURE
• Types.GAS
• Types.POWER
• Types.WATER
• Types.HEAT
• Types.COLD
• other type defined in Types
• custom - vendor specific type

See Also LevelData

142.4.6.1 public static final String FLOW_IN = "in"

Represents the metering consumption flow. It can be used as SERVICE_FLOW property value.

org.osgi.service.dal.functions Device Abstraction Layer Functions Specification Version 1.0

Page 912 OSGi Compendium Release 8

142.4.6.2 public static final String FLOW_OUT = "out"

Represents the metering production flow. It can be used as SERVICE_FLOW property value.

142.4.6.3 public static final String PROPERTY_CURRENT = "current"

Specifies the current consumption or production property name. The eventable property can be
read with getCurrent() getter.

142.4.6.4 public static final String PROPERTY_TOTAL = "total"

Specifies the total consumption or production property name. The eventable property can be read
with getTotal() getter.

142.4.6.5 public static final String SERVICE_FLOW = "dal.meter.flow"

The service property value contains the metering flow. It's an optional property and available only if
it's supported by the meter. The value type is java. lang.Str ing . Possible property values:

• FLOW_IN
• FLOW_OUT

142.4.6.6 public LevelData getCurrent() throws DeviceException

□ Returns the current metering info. It's a getter method for PROPERTY_CURRENT property.

Returns The current metering info.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

See Also LevelData

142.4.6.7 public LevelData getTotal() throws DeviceException

□ Returns the total metering info. It's a getter method for PROPERTY_TOTAL property.

Returns The total metering info.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

See Also LevelData

142.4.7 public interface MultiLevelControl
extends Function
MultiLevelControl function provides multi-level control support. The eventable function level is ac-
cessible with getData() getter and setData(BigDecimal, String) setter.

The control type can be:

• Types.LIGHT
• Types.TEMPERATURE
• Types.FLOW
• Types.PRESSURE
• Types.HUMIDITY
• Types.GAS
• Types.SMOKE
• Types.DOOR
• Types.WINDOW

Device Abstraction Layer Functions Specification Version 1.0 org.osgi.service.dal.functions

OSGi Compendium Release 8 Page 913

• Types.LIQUID
• Types.POWER
• Types.NOISINESS
• other type defined in Types
• custom - vendor specific type

See Also LevelData

142.4.7.1 public static final String PROPERTY_DATA = "data"

Specifies the level property name. The eventable property can be read with getData() getter and can
be set with setData(BigDecimal, String) setters.

142.4.7.2 public LevelData getData() throws DeviceException

□ Returns MultiLevelControl level. It's a getter method for PROPERTY_DATA property.

Returns MultiLevelControl level.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

See Also LevelData

142.4.7.3 public void setData(BigDecimal level, String unit) throws DeviceException

level The new control level.

unit The level unit.

□ Sets MultiLevelControl level according to the specified unit. It's a setter method for
PROPERTY_DATA property.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

I l legalArgumentException– If there is an invalid argument.

142.4.8 public interface MultiLevelSensor
extends Function
MultiLevelSensor function provides multi-level sensor monitoring. It reports its state when an im-
portant event is available. The eventable state is accessible with getData() getter. There are no opera-
tions.

The sensor type can be:

• Types.LIGHT
• Types.TEMPERATURE
• Types.FLOW
• Types.PRESSURE
• Types.HUMIDITY
• Types.GAS
• Types.SMOKE
• Types.DOOR
• Types.WINDOW
• Types.LIQUID
• Types.POWER
• Types.NOISINESS

org.osgi.service.dal.functions Device Abstraction Layer Functions Specification Version 1.0

Page 914 OSGi Compendium Release 8

• Types.RAIN
• other type defined in Types
• custom - vendor specific type

See Also LevelData

142.4.8.1 public static final String PROPERTY_DATA = "data"

Specifies the state property name. The eventable property can be read with getData() getter.

See Also LevelData

142.4.8.2 public LevelData getData() throws DeviceException

□ Returns the MultiLevelSensor current state. It's a getter method for PROPERTY_DATA property.

Returns The MultiLevelSensor current state.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

See Also LevelData

142.4.9 public interface Types
Shares common constants for all functions defined in this package. The defined function types are
mapped as follow:

• LIGHT - MultiLevelControl, MultiLevelSensor, BooleanSensor and BooleanControl
• TEMPERATURE - MultiLevelControl and MultiLevelSensor
• FLOW - MultiLevelControl and MultiLevelSensor
• PRESSURE - MultiLevelControl, MultiLevelSensor and Meter
• HUMIDITY - MultiLevelControl and MultiLevelSensor
• GAS - MultiLevelControl, MultiLevelSensor, BooleanSensor and Meter
• SMOKE - MultiLevelControl, MultiLevelSensor and BooleanSensor
• DOOR - MultiLevelControl, MultiLevelSensor, BooleanSensor and BooleanControl
• WINDOW - MultiLevelControl, MultiLevelSensor, BooleanSensor and BooleanControl
• LIQUID - MultiLevelControl and MultiLevelSensor
• POWER - MultiLevelControl, MultiLevelSensor, BooleanSensor, BooleanControl and Meter
• NOISINESS - MultiLevelControl and MultiLevelSensor
• RAIN - MultiLevelSensor and BooleanSensor
• CONTACT - BooleanSensor
• FIRE - BooleanSensor
• OCCUPANCY - BooleanSensor
• WATER - BooleanSensor and Meter
• MOTION - BooleanSensor
• HEAT - Meter
• COLD - Meter

The mapping is not mandatory. The function can use custom defined types.

142.4.9.1 public static final String COLD = "cold"

The function type is applicable to:

• Meter - indicates that the Meter measures thermal energy provided by a source.

Device Abstraction Layer Functions Specification Version 1.0 org.osgi.service.dal.functions

OSGi Compendium Release 8 Page 915

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.2 public static final String CONTACT = "contact"

The function type is applicable to:

• BooleanSensor - indicates that the BooleanSensor can detect contact. true state means that there
is contact. fa lse state means that there is no contact.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.3 public static final String DOOR = "door"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control the door position. Multi-
LevelControl minimum value can completely close the door. MultiLevelControl maximum value
can open the door to the maximum allowed position.

• MultiLevelSensor - indicates that the sensor can monitor the door position.
• BooleanSensor - indicates that the BooleanSensor can detect the door state. true state means that

the door is opened. fa lse state means that the door is closed.
• BooleanControl - indicates that there is a door position control. true state means that the door

will be opened. fa lse state means that the door will be closed.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.4 public static final String FIRE = "fire"

The function type is applicable to:

• BooleanSensor - indicates that the BooleanSensor can detect fire. true state means that there is
fire. fa lse state means that there is no fire.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.5 public static final String FLOW = "flow"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control the flow level. MultiLevel-
Control minimum value is the minimum supported flow level. MultiLevelControl maximum val-
ue is the maximum supported flow level.

• MultiLevelSensor - indicates that the sensor can monitor the flow level.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.6 public static final String GAS = "gas"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control the gas level. MultiLevel-
Control minimum value is the lowest supported gas level. MultiLevelControl maximum value is
the highest supported gas level.

• MultiLevelSensor - indicates that the sensor can monitor the gas level.
• BooleanSensor - indicates that the BooleanSensor supports gas detection. true state means there

is gas. fa lse state means that there is no gas.
• Meter - indicates that the Meter measures the gas consumption.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

org.osgi.service.dal.functions Device Abstraction Layer Functions Specification Version 1.0

Page 916 OSGi Compendium Release 8

142.4.9.7 public static final String HEAT = "heat"

The function type is applicable to:

• Meter - indicates that the Meter measures thermal energy provided by a source.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.8 public static final String HUMIDITY = "humidity"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control the humidity level. It's typ-
ical functionality for HVAC (heating, ventilation, and air conditioning) devices. MultiLevelCon-
trol minimum value is the lowest supported humidity level. MultiLevelControl maximum value
is the highest supported humidity level.

• MultiLevelSensor - indicates that the sensor can monitor the humidity level.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.9 public static final String LIGHT = "light"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control light devices. Usually, such
devices are called dimmable. MultiLevelControl minimum value can switch off the device and
MultiLevelControl maximum value can increase the device light to the maximum possible value.

• MultiLevelSensor - indicates that the sensor can monitor the light level.
• BooleanSensor - indicates that the BooleanSensor can detected light. true state means that there

is light. fa lse state means that there is no light.
• BooleanControl - indicates that there is a light device control. true state means that the light de-

vice will be turned on. fa lse state means that the light device will be turned off.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.10 public static final String LIQUID = "liquid"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control the liquid level. MultiLevel-
Control minimum value is the lowest supported liquid level. MultiLevelControl maximum value
is the highest supported liquid level.

• MultiLevelSensor - indicates that the sensor can monitor the liquid level.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.11 public static final String MOTION = "motion"

The function type is applicable to:

• BooleanSensor - indicates that the BooleanSensor can detect motion. true state means that there
is motion detection. fa lse state means that there is no motion detection.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.12 public static final String NOISINESS = "noisiness"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control the noise level. MultiLevel-
Control minimum value is the lowest supported noise level. MultiLevelControl maximum value
is the highest supported noise level.

Device Abstraction Layer Functions Specification Version 1.0 org.osgi.service.dal.functions

OSGi Compendium Release 8 Page 917

• MultiLevelSensor - indicates that the sensor can monitor the noise level.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.13 public static final String OCCUPANCY = "occupancy"

The function type is applicable to:

• BooleanSensor - indicates that the BooleanSensor can detect presence. true state means that
someone is detected. fa lse state means that nobody is detected.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.14 public static final String POWER = "power"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control the power level. MultiLevel-
Control minimum value is the lowest supported power level. MultiLevelControl maximum value
is the highest supported power level.

• MultiLevelSensor - indicates that the sensor can monitor the power level.
• BooleanSensor - indicates that the BooleanSensor can detect power/no power. true state means

that there is power. fa lse state means that there is no power.
• BooleanControl - indicates that there is electricity control. true state means that the power will

be restored. fa lse state means that the power will be cut.
• Meter - indicates that the Meter measures the power consumption.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.15 public static final String PRESSURE = "pressure"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control the pressure level. Multi-
LevelControl minimum value is the lowest supported pressure level. MultiLevelControl maxi-
mum value is the highest supported pressure level.

• MultiLevelSensor - indicates that the sensor can monitor the pressure level.
• Meter - Indicates that the Meter measures pressure.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.16 public static final String RAIN = "rain"

The function type is applicable to:

• MultiLevelSensor - indicates that the MultiLevelSensor can monitor the rain rate. It's not applica-
ble to MultiLevelControl .

• BooleanSensor - indicates that the BooleanSensor can detect rain. true state means that there is
rain. fa lse state means that there is no rain.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.17 public static final String SMOKE = "smoke"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control the smoke level. MultiLevel-
Control minimum value is the lowest supported smoke level. MultiLevelControl maximum val-
ue is the highest supported smoke level.

org.osgi.service.dal.functions Device Abstraction Layer Functions Specification Version 1.0

Page 918 OSGi Compendium Release 8

• MultiLevelSensor - indicates that the sensor can monitor the smoke level.
• BooleanSensor - indicates that the BooleanSensor can detect smoke. true state means that there

is smoke. fa lse state means that there is no smoke.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.18 public static final String TEMPERATURE = "temperature"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control temperature devices. For ex-
ample, such device can be thermostat. MultiLevelControl minimum value is the lowest support-
ed temperature. MultiLevelControl maximum value is the highest supported temperature.

• MultiLevelSensor - indicates that the sensor can monitor the temperature.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.19 public static final String WATER = "water"

The function type is applicable to:

• BooleanSensor - indicates that the BooleanSensor can detect water leak. true state means that
there is water leak. fa lse state means that there is no water leak.

• Meter - indicates that the Meter measures water consumption.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.9.20 public static final String WINDOW = "window"

The function type is applicable to:

• MultiLevelControl - indicates that the MultiLevelControl can control the window position. Mul-
t iLevelControl minimum value can completely close the window. MultiLevelControl maximum
value can open the window to the maximum allowed position.

• MultiLevelSensor - indicates that the sensor can monitor the window position.
• BooleanSensor - indicates that the BooleanSensor can window state. true state means that the

window is opened. fa lse state means that the window is closed.
• BooleanControl - indicates that there is a window position control. true state means that the win-

dow will be opened. fa lse state means that the window will be closed.

This type can be specified as a value of org.osgi.service.dal.Function.SERVICE_TYPE.

142.4.10 public interface WakeUp
extends Function
WakeUp function provides device awake monitoring. It's especially applicable to battery-operat-
ed devices. Such device can notify the system that it's awake and can receive commands with a
PROPERTY_AWAKE property event.

The device can periodically wake up for commands. The interval can be managed with
PROPERTY_WAKE_UP_INTERVAL property.

See Also LevelData, BooleanData

142.4.10.1 public static final String PROPERTY_AWAKE = "awake"

Specifies the awake property name. The property access type can be
PropertyMetadata.ACCESS_EVENTABLE. If the device is awake, it will trigger a property event.

Device Abstraction Layer Functions Specification Version 1.0 org.osgi.service.dal.functions.data

OSGi Compendium Release 8 Page 919

The property value type is BooleanData . The boolean data is always true . It marks that the device is
awake.

142.4.10.2 public static final String PROPERTY_WAKE_UP_INTERVAL = "wakeUpInterval"

Specifies the wake up interval. The device can periodically wake up and receive commands. That in-
terval is managed by this eventable property. The current property value is available with getWake-
UpInterval() and can be modified with setWakeUpInterval(BigDecimal, String).

142.4.10.3 public LevelData getWakeUpInterval() throws DeviceException

□ Returns the current wake up interval. It's a getter method for PROPERTY_WAKE_UP_INTERVAL
property. The device can periodically wake up and receive command based on this interval.

The interval can be measured in different units like hours, minutes, seconds, etc. The unit is speci-
fied in LevelData instance.

Returns The current wake up interval.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

See Also LevelData

142.4.10.4 public void setWakeUpInterval(BigDecimal interval, String unit) throws DeviceException

interval The new wake up interval.

unit The interval unit. If the unit is nul l , the interval is measured in milliseconds.

□ Sets wake up interval according to the specified unit. It's a setter method for
PROPERTY_WAKE_UP_INTERVAL property. The device can periodically wake up and receive com-
mand based on this interval. The unit can be nul l , then the interval is measured in milliseconds.

Throws I l legalStateException– If this function service object has already been unregistered.

DeviceException– If an operation error is available.

I l legalArgumentException– If there is an invalid argument.

142.5 org.osgi.service.dal.functions.data

Device Abstraction Layer Functions Data Package 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.dal .functions.data; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.dal .functions.data; vers ion="[1.0,1.1)"

142.5.1 Summary

• AlarmData - Function alarm data.
• BooleanData - Function boolean data wrapper.
• KeypadData - Represents a keypad event data that is collected when a change with some key

from the keypad has occurred.

org.osgi.service.dal.functions.data Device Abstraction Layer Functions Specification Version 1.0

Page 920 OSGi Compendium Release 8

• LevelData - Function level data wrapper.

142.5.2 public class AlarmData
extends FunctionData
Function alarm data. It cares about the alarm type, severity, timestamp and additional metadata. It
doesn't support unit. The alarm type is mapped to FunctionData value.

See Also Alarm, FunctionData

142.5.2.1 public static final String FIELD_SEVERITY = "severity"

Represents the severity field name. The field value is available with getSeverity(). The field type is
int . The constant can be used as a key to AlarmData(Map) .

142.5.2.2 public static final String FIELD_TYPE = "type"

Represents the type field name. The field value is available with getType(). The field type is int . The
constant can be used as a key to AlarmData(Map).

142.5.2.3 public static final int SEVERITY_CRITICAL = 3

The severity rating indicates that there a critical alarm. The severity priority is higher than
SEVERITY_MINOR and SEVERITY_MAJOR.

142.5.2.4 public static final int SEVERITY_MAJOR = 2

The severity rating indicates that there is a major alarm. The severity priority is higher than
SEVERITY_MINOR and lower than SEVERITY_CRITICAL.

142.5.2.5 public static final int SEVERITY_MINOR = 1

The severity rating indicates that there is a minor alarm. The severity priority is lower than
SEVERITY_MAJOR and SEVERITY_CRITICAL.

142.5.2.6 public static final int SEVERITY_UNDEFINED = 0

The severity constant indicates that there is no severity rating for this alarm.

142.5.2.7 public static final int TYPE_ACCESS_CONTROL = 1

The alarm type indicates that there is access control issue. For example, the alarm can indicate that
the door is unlocked.

142.5.2.8 public static final int TYPE_BURGLAR = 2

The alarm type indicates that there is a burglar notification. For example, the alarm can indicate
that the glass is broken.

142.5.2.9 public static final int TYPE_COLD = 3

The alarm type indicates that temperature is too low.

142.5.2.10 public static final int TYPE_GAS_CO = 4

The alarm type indicates that carbon monoxide (CO) is detected.

142.5.2.11 public static final int TYPE_GAS_CO2 = 5

The alarm type indicates that carbon dioxide (CO2) is detected.

142.5.2.12 public static final int TYPE_HARDWARE_FAIL = 7

The alarm type indicates that there is hardware failure.

Device Abstraction Layer Functions Specification Version 1.0 org.osgi.service.dal.functions.data

OSGi Compendium Release 8 Page 921

142.5.2.13 public static final int TYPE_HEAT = 6

The alarm type indicates that temperature is too high.

142.5.2.14 public static final int TYPE_POWER_FAIL = 8

The alarm type indicates a power cut.

142.5.2.15 public static final int TYPE_SMOKE = 9

The alarm type indicates that smoke is detected.

142.5.2.16 public static final int TYPE_SOFTWARE_FAIL = 10

The alarm type indicates that there is software failure.

142.5.2.17 public static final int TYPE_TAMPER = 11

The alarm type for a tamper indication.

142.5.2.18 public static final int TYPE_UNDEFINED = 0

The alarm type indicates that the type is not specified.

142.5.2.19 public static final int TYPE_WATER = 12

The alarm type indicates that a water leak is detected.

142.5.2.20 public AlarmData(Map<String, ?> fields)

fields Contains the new AlarmData instance field values.

□ Constructs new AlarmData instance with the specified field values. The map keys must match to the
field names. The map values will be assigned to the appropriate class fields. For example, the maps
can be: {"severity"=Integer(1)...}. That map will initialize the FIELD_SEVERITY field with 1. If severi-
ty is missing, SEVERITY_UNDEFINED is used.

• FIELD_SEVERITY - optional field. The value type must be Integer .
• FIELD_TYPE - optional field. The value type must be Integer .

Throws ClassCastException– If the field value types are not expected.

I l legalArgumentException– If the alarm severity is invalid.

NullPointerException– If the fields map is nul l .

142.5.2.21 public AlarmData(long timestamp, Map<String, ?> metadata, int severity, int type)

timestamp The alarm data timestamp optional field.

metadata The alarm data metadata optional field.

severity The alarm data severity optional field.

type The alarm data type optional field.

□ Constructs new AlarmData instance with the specified arguments.

Throws I l legalArgumentException– If the alarm severity is invalid.

142.5.2.22 public int compareTo(Object o)

o AlarmData to be compared.

□ Compares this AlarmData instance with the given argument. If the argument is not AlarmData , it
throws ClassCastException . Otherwise, this method returns:

org.osgi.service.dal.functions.data Device Abstraction Layer Functions Specification Version 1.0

Page 922 OSGi Compendium Release 8

• -1 if this instance field is less than a field of the specified argument.
• 0 if all fields are equivalent.
• 1 if this instance field is greater than a field of the specified argument.

The fields are compared in this order: timestamp, metadata, type, severity.

Returns -1 , 0 or 1 depending on the comparison rules.

Throws ClassCastException– If the method argument is not of type AlarmData .

See Also java.lang.Comparable.compareTo(java.lang.Object)

142.5.2.23 public boolean equals(Object o)

o The object to compare this data.

□ Two AlarmData instances are equal if they contain equal metadata, timestamp, type and severity.

Returns true if this object is equivalent to the specified one.

See Also org.osgi.service.dal.FunctionData.equals(java.lang.Object)

142.5.2.24 public int getSeverity()

□ Returns the alarm severity. The severity can be one of:

• SEVERITY_UNDEFINED
• SEVERITY_MINOR
• SEVERITY_MAJOR
• SEVERITY_CRITICAL

Returns The alarm severity.

142.5.2.25 public int getType()

□ Returns the alarm type. The type can be one of the predefined:

• TYPE_UNDEFINED
• TYPE_SMOKE
• TYPE_HEAT
• TYPE_COLD
• TYPE_GAS_CO
• TYPE_GAS_CO2
• TYPE_WATER
• TYPE_POWER_FAIL
• TYPE_HARDWARE_FAIL
• TYPE_SOFTWARE_FAIL
• vendor specific

Zero and positive values are reserved for this definition and further extensions of the alarm types.
Custom types can be used only as negative values to prevent potential collisions.

Returns The alarm type.

142.5.2.26 public int hashCode()

□ Returns the hash code for this AlarmData object. The hash code is a sum of
FunctionData.hashCode(), the alarm severity and the alarm type.

Device Abstraction Layer Functions Specification Version 1.0 org.osgi.service.dal.functions.data

OSGi Compendium Release 8 Page 923

Returns The hash code of this AlarmData object.

See Also org.osgi.service.dal.FunctionData.hashCode()

142.5.2.27 public String toString()

□ Returns the string representation of this alarm data.

Returns The string representation of this alarm data.

142.5.3 public class BooleanData
extends FunctionData
Function boolean data wrapper. It can contain a boolean value, timestamp and additional metadata.
It doesn't support measurement unit.

See Also BooleanControl, BooleanSensor, FunctionData

142.5.3.1 public static final String FIELD_VALUE = "value"

Represents the value field name. The field value is available with getValue(). The field type is
boolean . The constant can be used as a key to BooleanData(Map).

142.5.3.2 public BooleanData(Map<String, ?> fields)

fields Contains the new BooleanData instance field values.

□ Constructs new BooleanData instance with the specified field values. The map keys must match
to the field names. The map values will be assigned to the appropriate class fields. For example, the
maps can be: {"value"=Boolean(true)...}. That map will initialize the FIELD_VALUE field with true .

FIELD_VALUE - mandatory field. The value type must be Boolean .

Throws ClassCastException– If the field value types are not expected.

I l legalArgumentException– If the value is missing.

NullPointerException– If the fields map is nul l .

142.5.3.3 public BooleanData(long timestamp, Map<String, ?> metadata, boolean value)

timestamp The boolean data timestamp optional field.

metadata The boolean data metadata optional field.

value The boolean value mandatory field.

□ Constructs new BooleanData instance with the specified arguments.

142.5.3.4 public int compareTo(Object o)

o BooleanData to be compared.

□ Compares this BooleanData instance with the given argument. If the argument is not BooleanData ,
it throws ClassCastException . Otherwise, this method returns:

• -1 if this instance field is less than a field of the specified argument.
• 0 if all fields are equivalent.
• 1 if this instance field is greater than a field of the specified argument.

The fields are compared in this order: timestamp, metadata, value.

Returns -1 , 0 or 1 depending on the comparison rules.

Throws ClassCastException– If the method argument is not of type BooleanData .

org.osgi.service.dal.functions.data Device Abstraction Layer Functions Specification Version 1.0

Page 924 OSGi Compendium Release 8

See Also java.lang.Comparable.compareTo(java.lang.Object)

142.5.3.5 public boolean equals(Object o)

o The object to compare this data.

□ Two BooleanData instances are equal if they contain equal metadata, timestamp and boolean value.

Returns true if this object is equivalent to the specified one.

See Also org.osgi.service.dal.FunctionData.equals(java.lang.Object)

142.5.3.6 public boolean getValue()

□ Returns BooleanData value.

Returns BooleanData value.

142.5.3.7 public int hashCode()

□ Returns the hash code for this BooleanData object. The hash code is a sum of
FunctionData.hashCode() and Boolean.hashCode(), where Boolean.hashCode() represents the
boolean value hash code.

Returns The hash code of this BooleanData object.

See Also org.osgi.service.dal.FunctionData.hashCode()

142.5.3.8 public String toString()

□ Returns the string representation of this boolean data.

Returns The string representation of this boolean data.

142.5.4 public class KeypadData
extends FunctionData
Represents a keypad event data that is collected when a change with some key from the keypad has
occurred.

The key pressed event is using TYPE_PRESSED type, while the key released event is using
TYPE_RELEASED type.

See Also Keypad, FunctionData

142.5.4.1 public static final String FIELD_KEY_CODE = "keyCode"

Represents the key code field name. The field value is available with getKeyCode(). The field type is
int . The constant can be used as a key to KeypadData(Map).

142.5.4.2 public static final String FIELD_KEY_NAME = "keyName"

Represents the key name field name. The field value is available with getKeyName(). The field type
is Str ing . The constant can be used as a key to KeypadData(Map).

142.5.4.3 public static final String FIELD_SUB_TYPE = "subType"

Represents the event sub-type field name. The field value is available with getSubType(). The field
type is int . The constant can be used as a key to KeypadData(Map).

142.5.4.4 public static final String FIELD_TYPE = "type"

Represents the event type field name. The field value is available with getType(). The field type is
int . The constant can be used as a key to KeypadData(Map).

Device Abstraction Layer Functions Specification Version 1.0 org.osgi.service.dal.functions.data

OSGi Compendium Release 8 Page 925

142.5.4.5 public static final int SUB_TYPE_PRESSED_DOUBLE = 3

Represents a keypad event sub-type for a double key pressed event. Usually, there are two press ac-
tions and the key is not held down after the second press. This sub-type is used with TYPE_PRESSED
type.

142.5.4.6 public static final int SUB_TYPE_PRESSED_DOUBLE_LONG = 4

Represents a keypad event sub-type for a double long key pressed event. Usually, there are two press
actions and the key is held down after the second press. This sub-type is used with TYPE_PRESSED
type.

142.5.4.7 public static final int SUB_TYPE_PRESSED_LONG = 2

Represents a keypad event sub-type for a long key pressed event. Usually, there is a single press and
the key is held down. This sub-type is used with TYPE_PRESSED type.

142.5.4.8 public static final int SUB_TYPE_PRESSED_NORMAL = 1

Represents a keypad event sub-type for a normal key pressed event. Usually, there is a single press
and the key is not held down. This sub-type is used with TYPE_PRESSED type.

142.5.4.9 public static final int TYPE_PRESSED = 0

Represents a keypad event type for a key pressed event.

142.5.4.10 public static final int TYPE_RELEASED = 1

Represents a keypad event type for a key released event.

142.5.4.11 public KeypadData(Map<String, ?> fields)

fields Contains the new KeypadData instance field values.

□ Constructs new KeypadData instance with the specified field values. The map keys must match to
the field names. The map values will be assigned to the appropriate class fields. For example, the
maps can be: {"type"=Integer(1)...}. That map will initialize the FIELD_TYPE field with 1.

• FIELD_TYPE - mandatory field. The value type must be Integer .
• FIELD_SUB_TYPE - optional field. The value type must be Integer .
• FIELD_KEY_CODE - mandatory field. The value type must be Integer .
• FIELD_KEY_NAME - optional field. The value type must be Str ing .

Throws ClassCastException– If the field value types are not expected.

I l legalArgumentException– If the event type or key code is missing or invalid arguments are speci-
fied.

NullPointerException– If the fields map is nul l .

142.5.4.12 public KeypadData(long timestamp, Map<String, Object> metadata, int type, int subType, int keyCode,
String keyName)

timestamp The data timestamp optional field.

metadata The data metadata optional field.

type The data event type mandatory field.

subType The data event sub-type optional field or 0 if there is no sub-type.

keyCode The data key code mandatory field.

keyName The data key name optional field or nul l if there is no key name.

□ Constructs new KeypadData instance with the specified arguments.

org.osgi.service.dal.functions.data Device Abstraction Layer Functions Specification Version 1.0

Page 926 OSGi Compendium Release 8

142.5.4.13 public int compareTo(Object o)

o KeypadData to be compared.

□ Compares this KeypadData instance with the given argument. If the argument is not KeypadData , it
throws ClassCastException . Otherwise, this method returns:

• -1 if this instance field is less than a field of the specified argument.
• 0 if all fields are equivalent.
• 1 if this instance field is greater than a field of the specified argument.

The fields are compared in this order: timestamp, metadata, type, sub-type, key code, key name.

Returns -1 , 0 or 1 depending on the comparison rules.

Throws ClassCastException– If the method argument is not of type KeypadData .

See Also java.lang.Comparable.compareTo(java.lang.Object)

142.5.4.14 public boolean equals(Object o)

o The object to compare this data.

□ Two KeypadData instances are equal if they contain equal metadata, timestamp, event type, key
code and key name.

Returns true if this object is equivalent to the specified one.

See Also org.osgi.service.dal.FunctionData.equals(java.lang.Object)

142.5.4.15 public int getKeyCode()

□ The code of the key. This field is mandatory and it holds the semantics(meaning) of the key.

Returns The key code.

142.5.4.16 public String getKeyName()

□ Represents a human readable name of the corresponding key code. This field is optional and some-
times it could be missed(might be nul l).

Returns A string with the name of the key or nul l if not specified.

142.5.4.17 public int getSubType()

□ Returns the event sub-type. The sub-type provides additional details about the event. The sub-type
can be one of:

• SUB_TYPE_PRESSED_NORMAL
• SUB_TYPE_PRESSED_LONG
• SUB_TYPE_PRESSED_DOUBLE
• SUB_TYPE_PRESSED_DOUBLE_LONG
• custom sub-type

Zero and positive values are reserved for this definition and further extensions of the sub-types. Cus-
tom sub-types can be used only as negative values to prevent potential collisions.

Returns The event sub-type.

142.5.4.18 public int getType()

□ Returns the event type. The type represents the main reason for this event. It can be one of:

• TYPE_PRESSED

Device Abstraction Layer Functions Specification Version 1.0 org.osgi.service.dal.functions.data

OSGi Compendium Release 8 Page 927

• TYPE_RELEASED

Returns The event type.

142.5.4.19 public int hashCode()

□ Returns the hash code for this KeypadData object. The hash code is a sum of
FunctionData.hashCode(), String.hashCode(), event type, event sub-type and key code, where
String.hashCode() represents the key name hash code if available.

Returns The hash code of this LevelData object.

See Also org.osgi.service.dal.FunctionData.hashCode()

142.5.4.20 public String toString()

□ Returns the string representation of this keypad data.

Returns The string representation of this keypad data.

142.5.5 public class LevelData
extends FunctionData
Function level data wrapper. It supports all properties defined in FunctionData .

See Also MultiLevelControl, MultiLevelSensor, Meter, FunctionData

142.5.5.1 public static final String FIELD_LEVEL = "level"

Represents the level field name. The field value is available with getLevel(). The field type is BigDec-
imal . The constant can be used as a key to LevelData(Map).

142.5.5.2 public static final String FIELD_UNIT = "unit"

Represents the unit field name. The field value is available with getUnit(). The field type is Str ing .
The constant can be used as a key to LevelData(Map).

142.5.5.3 public LevelData(Map<String, ?> fields)

fields Contains the new LevelData instance field values.

□ Constructs new LevelData instance with the specified field values. The map keys must match to the
field names. The map values will be assigned to the appropriate class fields. For example, the maps
can be: {"level"=BigDecimal(1)...}. That map will initialize the FIELD_LEVEL field with 1.

• FIELD_LEVEL - mandatory field. The value type must be BigDecimal .
• FIELD_UNIT - optional field. The value type must be Str ing .

Throws ClassCastException– If the field value types are not expected.

I l legalArgumentException– If the level is missing.

NullPointerException– If the fields map is nul l .

142.5.5.4 public LevelData(long timestamp, Map<String, Object> metadata, BigDecimal level, String unit)

timestamp The data timestamp optional field.

metadata The data metadata optional field.

level The level value mandatory field.

unit The data unit optional field.

□ Constructs new LevelData instance with the specified arguments.

org.osgi.service.dal.functions.data Device Abstraction Layer Functions Specification Version 1.0

Page 928 OSGi Compendium Release 8

Throws NullPointerException– If level is nul l .

142.5.5.5 public int compareTo(Object o)

o LevelData to be compared.

□ Compares this LevelData instance with the given argument. If the argument is not LevelData , it
throws ClassCastException . Otherwise, this method returns:

• -1 if this instance field is less than a field of the specified argument.
• 0 if all fields are equivalent.
• 1 if this instance field is greater than a field of the specified argument.

The fields are compared in this order: timestamp, metadata, level, unit.

Returns -1 , 0 or 1 depending on the comparison rules.

Throws ClassCastException– If the method argument is not of type LevelData .

See Also java.lang.Comparable.compareTo(java.lang.Object)

142.5.5.6 public boolean equals(Object o)

o The object to compare this data.

□ Two LevelData instances are equal if they contain equal metadata, timestamp, unit and level.

Returns true if this object is equivalent to the specified one.

See Also org.osgi.service.dal.FunctionData.equals(java.lang.Object)

142.5.5.7 public BigDecimal getLevel()

□ Returns LevelData value. The value type is BigDecimal instead of double to guarantee value accura-
cy.

Returns The LevelData value.

142.5.5.8 public String getUnit()

□ Returns LevelData unit as it's specified in PropertyMetadata.UNITS or nul l if the unit is missing.

Returns The value unit or nul l if the unit is missing.

142.5.5.9 public int hashCode()

□ Returns the hash code for this LevelData object. The hash code is a sum of FunctionData.hashCode(),
String.hashCode() and BigDecimal.hashCode(), where String.hashCode() represents the unit hash
code and BigDecimal.hashCode() represents the level hash code.

Returns The hash code of this LevelData object.

See Also org.osgi.service.dal.FunctionData.hashCode()

142.5.5.10 public String toString()

□ Returns the string representation of this level data.

Returns The string representation of this level data.

Network Interface Information Service Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 929

143 Network Interface Information
Service Specification

Version 1.0

143.1 Introduction
The Network Interface Information Service is a service that provides a standard way for bundles to
receive notification about changes in the network interface and IP address.

When the IP address has changed, bundles utilizing the IP address information need to de-
tect this change. When using the standard Java API, such as java.net.NetworkInterface and
java.net. InetAddress , calls to confirm the IP address at regular intervals are required. Since this is a
process common to all bundles that need to detect any change in IP address information, this speci-
fication defines a notification feature for all available network interfaces, including the IP address.
In addition, this specification defines an API that provides the function to obtain the network inter-
face information and the information about the IP address bound to a network interface.

The name of a network interface can be Operating System specific. In order for bundles to refer to
the network interface it is necessary to distinguish the network interface in a form that it is inde-
pendent of the Operating System.

This specification defines the NetworkAdapter Service and NetworkAddress Service. These services
provide information about the network interface and IP addresses.

143.1.1 Entities

• Network Interface - Available and activated network interfaces provided in the execution environ-
ment. In this specification, the unit of the network interface is the logical interface, not the phys-
ical interface.

• NetworkAdapter - The OSGi service that provides information related to the Network Interface.
This service provides function similar to java.net.NetworkInterface .

• NetworkAddress - The OSGi service that provides information of IP addresses available on the exe-
cution environment in which a Network Interface Information Service bundle is running.

• Network Interface Information Service bundle - The OSGi bundle that implements NetworkAdapter
and NetworkAddress services. Network Interface Information Service bundle registers Net-
workAdapter and NetworkAddress services with the Framework.

• Network Interface Type - An identifier of the network interface. It is independent of the operat-
ing system. The two type of identifier string is specified in this specification. This specification
allows that Network Interface type other than them can be defined by the platform provider in
each environment. This identifier is used by user bundle to specify the network interface to be
monitored.

• IPAddressVersion - An identifier indicating the IP address version. For example, IPv4, IPv6. This
identifier is defined in this specification. This identifier is used by a bundle to specify the net-
work interface to be monitored.

NetworkAdapter Service Network Interface Information Service Specification Version 1.0

Page 930 OSGi Compendium Release 8

• IPAddressScope - An identifier indicating the scope of IP address. For example, GLOBAL, PRIVATE.
This identifier is defined in this specification. This identifier is used by a bundle to specify the
network interface to be monitored.

Figure 143.1 Network Interface Information Service Overview Diagram

A NetworkAddress
impl

A NetworkAdapter
impl

<<Interface>>
NetworkAddress

Network Interface Information Service bundle

1 0..n

a Network Interface
Information Service
user bundle Bundle using Network Interface

Information Service

<<Interface>>
NetworkAdapter

obtain the information of
Network Interface

obtain the information of
IP address

The NetworkAdapter service provides the network interface information for a logical interface. Net-
workAddress service provides the IP address information for an IP address. A NetworkAddress ser-
vice is associated with a NetworkAdapter service.

When network interface information is changed, the service properties of the corresponing Net-
workAdapter service and NetworkAddress service are changed. It is necessary for the bundle using
these services to track these services and be advised of changes in the network interface information
through Service Events.

143.2 NetworkAdapter Service
NetworkAdapter is an interface that provides information about a single network interface provided
by the execution environment. If multiple network interfaces are present, NetworkAdapter services
that correspond to each network interface must be registered. NetworkAdapter services must be reg-
istered with service properties as shown in the following table.

Table 143.1 Service properties of NetworkAdapter service

The key of service property Type Description
networkAdapter.type Str ing Required property. Network interface

type is set to a value.

Network Interface Information Service Specification Version 1.0 NetworkAdapter Service

OSGi Compendium Release 8 Page 931

The key of service property Type Description
networkAdapter.hardwareAddress byte[] Required property. Hardware address

(MAC address) is set to a value. This prop-
erty can also be obtained from getHard-
wareAddress() .

networkAdapter.name Str ing Required property. Network interface
name is set to a value. This property can
also be obtained from getName() .

networkAdapter.displayName Str ing Required property. Network interface dis-
play name is set to a value. This proper-
ty can also be obtained from getDisplay-
Name() .

networkAdapter. isUp boolean Required property. The value is true when
a network interface is up and running,
otherwise it is false.

networkAdapter. isLoopback boolean Required property. The value is true when
a network interface is a loopback inter-
face, otherwise it is false.

networkAdapter. isPointToPoint boolean Required property. The value is true when
a network interface is a point to point in-
terface, otherwise it is false.

networkAdapter. isVirtual boolean Required property. The value is true when
a network interface is a virtual interface,
otherwise it is false.

networkAdapter.supportsMult icast boolean Required property. The value is true when
a network interface supports multicast-
ing, otherwise it is false.

networkAdapter.parent Str ing Required property. Service PID of the Net-
workAdapter service which is parent of
this NetworkAdapter is specified.

networkAdapter.subInterface Str ing[] Required property. Service PID of the Net-
workAdapter service which is subinter-
face of this NetworkAdapter is specified.

When a network interface becomes available, a NetworkAdapter service associated with the net-
work interface is registered with the service registry. If the network interface becomes unavailable,
the corresponding NetworkAdapter service is unregistered.

When the attribute values of the network interface change, the NetworkAdapter service is updat-
ed with changed service properties. NetworkAdapter interface provides a method corresponding to
java.net.NetworkInterface in order to provide information on the associated network interface.

143.2.1 Network Interface Type
Identifying the network interface is possible by using the network interface name. However, since
the network interface name is an identifier that is dependent on the operating system, if network
interface name is used as identifier, bundles must be implemented to be aware of the operating sys-
tem. Therefore, in this specification, "network interface type” which is independent of the operat-
ing system, is used to identify the network interface. The network interface type string of "LAN" and
"WAN" are defined in this specification. This specification allows that Network Interface type other
than "LAN"and "WAN" can be defined by the platform provider in each environment. It is provided
by the platform provider on which Network Interface Information Service bundle is running. Net-
work Interface type "LAN"indicates the network interface connects to a local area network. Network
Interface type "WAN" indicates the network interface connects to an external network (i.e. Internet).

NetworkAddress Service Network Interface Information Service Specification Version 1.0

Page 932 OSGi Compendium Release 8

If a bundle wants to obtain the information of the network interface connected to the Internet, the
bundle is able to get it by obtaining NetworkAdapter service with the networkAdapter.type service
property set to the value "WAN".

This specification allows that Network Interface type other than "LAN"and "WAN" can be defined
by the platform provider in each environment. It may be provided by the platform provider on
which Network Interface Information Service bundle is running.

Table 143.2 Network Interface Type

Network Interface Type Description
LAN The network interface to connect to a local area net-

work.
WAN The network interface to connect to an external net-

work (i .e . Internet) .

143.3 NetworkAddress Service
NetworkAddress interface provides information about an IP address available in the execution en-
vironment in which the a Network Interface Information Service bundle is running. NetworkAd-
dress service is registered with the service registry together with service properties as shown in the
following table.

Table 143.3 Service properties of NetworkAddress service

The key of service property Type Description
networkAdapter.type Str ing Required property. Network interface

type is set to a value.
ipAddress.version Str ing Required property. IP address version is

set to a value.
ipAddress.scope Str ing Required property. IP address scope is set

to a value.
ipAddress Str ing Required property. IP address String is set

to a value.
subnetmask. length int Required property. Subnet mask length of

the required properties IPv4, or IPv6 pre-
fix length is set to a value.

networkAdapter.pid Str ing Required property. Service PID of the Net-
workAdapterService corresponding to
the network interface binding this IP ad-
dress is set to a value.

A NetworkAddress service is registered with the service registry for each available IP address. When
an associated IP address is deleted, or the network interface to which the IP address is bound be-
comes unavailable, the NetworkAddress service is unregistered. When the associated IP address
changes, the NetworkAddress service is updated with updated service properties. A bundle can de-
tect the change of IP address by monitoring the registration or unregistering, updating of the Net-
workAddress service. When registering a NetworkAdapter service, the Network Interface Informa-
tion Service bundle must register it with a unique service PID. Because IP addresses are bound to a
network interface, the service PID of the associated NetworkAdapter service and its network inter-
face type are set in the service properties of the NetworkAddress service.

143.3.1 IP Address Version
Defines the version of the IP address. A bundle can select NetworkAddress services using the follow-
ing IP address version.

Network Interface Information Service Specification Version 1.0 A Controller Example

OSGi Compendium Release 8 Page 933

Table 143.4 IP Address Version

IP Address Version Description
IPV4 IP address version which means IPv4 address.
IPV6 IP address version which means IPv6 address.

143.3.2 IP address scope
Defins the scope of the IP address. A bundle can select NetworkAddress services using the following
IP address scope.

Table 143.5 IP Address Scope

IP Address Scope Description
GLOBAL IP address scope which means global address.
PRIVATE_USE IP address scope which means pr ivate address.
LOOPBACK IP address scope which means loopback address.
L INKLOCAL IP address scope which means l ink local address.
UNIQUE_LOCAL IP address scope which means unique-localaddress.
UNSPECIFIED IP address scope which means the absence of an ad-

dress.

If a bundle which wants to check for an IP address of the IPv4 global, the bundle is able to confirm
by obtaining NetworkAddress service with the ipAddress.version service property set to the value
"IPV4" and the ipAddress.scope service property set to the value "GLOBAL".

143.4 A Controller Example
The following example shows the usage of NetworkAddress service. The sample Control ler class ex-
tends the ServiceTracker class so that it can track NetworkAddress services.

class Controller extends ServiceTracker {
 Controller(BundleContext context) {
 super(context, NetworkAdapter.class.getName(), null);
 }

 public Object addingService(ServiceReference ref) {
 NetworkAdapter addAdapter = (NetworkAdapter)super.addingService(ref);
 String type = addAdapter.getNetworkAdapterType();
 String displayName = addAdapter.getDisplayName();

 // ...

 String servicePID = (String)ref.getProperty(Constants.SERVICE_PID);
 try {
 String filter
 = "(" + NetworkAddress.NETWORKADAPTER_PID + "=" + servicePID + ")";
 ServiceReference[] refs
 = context.getServiceReferences(NetworkAddress.class.getName(), filter);
 for (int i = 0; i < refs.length; i++) {
 NetworkAddress address = (NetworkAddress) context.getService(refs[i]);
 String ipAddress = address.getIpAddress();
 int subnetMaskLength = address.getSubnetMaskLength();
 // ...

Security Network Interface Information Service Specification Version 1.0

Page 934 OSGi Compendium Release 8

 }
 } catch (InvalidSyntaxException e) {
 e.printStackTrace();
 }
 return addAdapter;
 }
}

143.5 Security
To acquire network interface information, a bundle needs ServicePermission[NetworkAdapter,
GET] and ServicePermission[NetworkAddress, GET] . It can use Filter Based Permissions. When a
platform provider performs access control of the bundle, It can set ServicePermission like the fol-
lowing example.

ServicePermission["(&(objectClass=org.osgi .service.networkadapter.NetworkAdapter)
(networkAdapter.type=LAN))",GET]

ServicePermission["(&(objectClass=org.osgi .service.networkadapter.NetworkAddress)
(networkAdapter.type=LAN) (ipAddress.version=IPV4)(ipAddress.scope=PRIVATE_USE))", GET]

The NetworkAdapter service and the NetworkAddress service should only be implemented
by trusted bundles. This bundle requires ServicePermission[NetworkAdapter, REGISTER] and
ServicePermission[NetworkAddress, REGISTER] .

143.6 org.osgi.service.networkadapter

Network Interface Information Service Specification Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.networkadapter; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.networkadapter; vers ion="[1.0,1.1)"

143.6.1 Summary

• NetworkAdapter - NetworkAdapter is an interface that provides information about single net-
work interfaces provided by the execution environment.

• NetworkAddress - This interface represents an IP address information.

143.6.2 public interface NetworkAdapter
NetworkAdapter is an interface that provides information about single network interfaces provided
by the execution environment.

If multiple network interfaces are present, NetworkAdapter Services that correspond to each net-
work interface must be registered. Network interface information service is set the following infor-
mation as service property.

• NETWORKADAPTER_TYPE : Network Interface Type

Network Interface Information Service Specification Version 1.0 org.osgi.service.networkadapter

OSGi Compendium Release 8 Page 935

• NETWORKADAPTER_DISPLAYNAME : Network Interface Display Name
• NETWORKADAPTER_NAME : Network Interface Name
• NETWORKADAPTER_HARDWAREADDRESS : Hardware Address
• NETWORKADAPTER_IS_UP : Running status of Network Interface
• NETWORKADAPTER_IS_LOOPBACK : To check loopback interface
• NETWORKADAPTER_IS_POINTTOPOINT : To check point to point interface
• NETWORKADAPTER_IS_VIRTUAL : To check virtual interface
• NETWORKADAPTER_SUPPORTS_MULTICAST : To check supports multicasting
• NETWORKADAPTER_PARENT : The PID of parent Network Interface
• NETWORKADAPTER_SUBINTERFACE : The PID of sub Network Interface

When a network interface becomes available, NetworkAdapter service associated with the network
interface is registered with the service registry. If the network interface becomes unavailable, the
corresponding NetworkAdapter service is unregistered.

When the attribute values of the network interface are set to the service property changes, Net-
workAdapter service is updated. NetworkAdapter interface provides a method corresponding to
java.net.NetworkInterface in order to provide information on the associated network interface.
However, this interface method does not support the Static method. In addition, because Net-
workInterface object or InetAddress object is registered in the service registry as NetworkAdapter
and NetworkAddress, the NetworkAdapter interface does not provide a method to get those objects.
NetworkAdapter provides a method to retrieve the value of an attribute of a network interface.

Concurrency Thread-safe

143.6.2.1 public static final byte[] EMPTY_BYTE_ARRAY

The value byte array of service property, when information is not available.

143.6.2.2 public static final String EMPTY_STRING = ""

The value string of service property, when information is not available.

143.6.2.3 public static final String[] EMPTY_STRING_ARRAY

The value string array of service property, when information is not available.

143.6.2.4 public static final String LAN = "LAN"

The string of network interface type which means the network interface to connect to a local area
network.

143.6.2.5 public static final String NETWORKADAPTER_DISPLAYNAME = "networkAdapter.displayName"

The key string of "networkAdapter.displayName" service property.

Network Interface display name is specified. EMPTY_STRING if no display name is available.

143.6.2.6 public static final String NETWORKADAPTER_HARDWAREADDRESS = "networkAdapter.hardwareAddress"

The key string of "networkAdapter.hardwareAddress" service property.

Hardware Address is specified. EMPTY_BYTE_ARRAY if no hardware address is available.

143.6.2.7 public static final String NETWORKADAPTER_IS_LOOPBACK = "networkAdapter.isLoopback"

The key string of "networkAdapter.isLoopback" service property.

The value is true when a network interface is a loopback interface, otherwise it is false.

143.6.2.8 public static final String NETWORKADAPTER_IS_POINTTOPOINT = "networkAdapter.isPointToPoint"

The key string of "networkAdapter.isPointToPoint" service property.

org.osgi.service.networkadapter Network Interface Information Service Specification Version 1.0

Page 936 OSGi Compendium Release 8

The value is true when a network interface is a point to point interface, otherwise it is false.

143.6.2.9 public static final String NETWORKADAPTER_IS_UP = "networkAdapter.isUp"

The key string of "networkAdapter.isUp" service property.

The value is true when a network interface is up and running, otherwise it is false.

143.6.2.10 public static final String NETWORKADAPTER_IS_VIRTUAL = "networkAdapter.isVirtual"

The key string of "networkAdapter.isVirtual" service property.

The value is true when a network interface is a virtual interface, otherwise it is false.

143.6.2.11 public static final String NETWORKADAPTER_NAME = "networkAdapter.name"

The key string of "networkAdapter.name" service property.

Network Interface Name is specified. EMPTY_STRING if no name is available.

143.6.2.12 public static final String NETWORKADAPTER_PARENT = "networkAdapter.parent"

The key string of "networkAdapter.parent" service property.

Service PID of the NetworkAdapter service which is parent of this NetworkAdapter is specified.
EMPTY_STRING if no parent is available.

143.6.2.13 public static final String NETWORKADAPTER_SUBINTERFACE = "networkAdapter.subInterface"

The key string of "networkAdapter.subInterface" service property.

Service PID of the NetworkAdapter service which is subinterface of this NetworkAdapter is speci-
fied. EMPTY_STRING_ARRAY if no subinterface is available.

143.6.2.14 public static final String NETWORKADAPTER_SUPPORTS_MULTICAST =
"networkAdapter.supportsMulticast"

The key string of "networkAdapter.supportsMulticast" service property.

The value is true when a network interface supports multicasting, otherwise it is false.

143.6.2.15 public static final String NETWORKADAPTER_TYPE = "networkAdapter.type"

The key string of "networkAdapter.type" service property.

Network Interface Type is specified.

143.6.2.16 public static final String WAN = "WAN"

The string of network interface type which means the network interface to connect to an external
network (i.e. Internet).

143.6.2.17 public String getDisplayName()

□ Returns the network interface display name of "networkAdapter.displayname" service property val-
ue.

Returns Network Interface display name, or null if "networkAdapter.displayname" service property value is
empty.

143.6.2.18 public byte[] getHardwareAddress()

□ Returns the MAC address of "networkAdapter.hardwareAddress" service property value.

Returns Hardware Address, or null if "networkAdapter.hardwareAddress" service property value is empty.

143.6.2.19 public int getMTU() throws SocketException

□ Returns the Maximum Transmission Unit (MTU) of this interface.

Network Interface Information Service Specification Version 1.0 org.osgi.service.networkadapter

OSGi Compendium Release 8 Page 937

Returns The value of the MTU for that interface.

Throws SocketException– If an I/O error occurs.

143.6.2.20 public String getName()

□ Returns the network interface name of "networkAdapter.name" service property value.

Returns Network Interface Name, or null if "networkAdapter.name" service property value is empty.

143.6.2.21 public String getNetworkAdapterType()

□ Returns the network interface type of "networkAdapter.type" service property value.

Returns Network Interface Type, or null if "networkAdapter.type" service property value is empty.

143.6.2.22 public boolean isLoopback() throws SocketException

□ Returns whether a network interface is a loopback interface.

Returns true if the interface is a loopback interface.

Throws SocketException– If an I/O error occurs.

143.6.2.23 public boolean isPointToPoint() throws SocketException

□ Returns whether a network interface is a point to point interface.

Returns true if the interface is a point to point interface.

Throws SocketException– If an I/O error occurs.

143.6.2.24 public boolean isUp() throws SocketException

□ Returns whether a network interface is up and running.

Returns true if the interface is up and running.

Throws SocketException– If an I/O error occurs.

143.6.2.25 public boolean isVirtual()

□ Returns whether this interface is a virtual interface (also called subinterface). Virtual interfaces are,
on some systems, interfaces created as a child of a physical interface and given different settings
(like address or MTU). Usually the name of the interface will the name of the parent followed by a
colon (:) and a number identifying the child since there can be several virtual interfaces attached to
a single physical interface.

Returns true if this interface is a virtual interface.

143.6.2.26 public boolean supportsMulticast() throws SocketException

□ Returns whether a network interface supports multicasting or not.

Returns true if the interface supports Multicasting.

Throws SocketException– If an I/O error occurs.

143.6.3 public interface NetworkAddress
This interface represents an IP address information.

NetworkAddress interface provides information of IP addresses available in which execution envi-
ronment on a Network Interface Information Service bundle is running. IP address information ser-
vice is set the following information as service property.

• NETWORKADAPTER_TYPE : Network Interface Type
• IPADDRESS_VERSION : IP Address Version

org.osgi.service.networkadapter Network Interface Information Service Specification Version 1.0

Page 938 OSGi Compendium Release 8

• IPADDRESS_SCOPE : IP Address Scope
• IPADDRESS : IP Address
• SUBNETMASK_LENGTH : Subnet Mask Length(IPv4) or Prefix Length(IPv6)
• NETWORKADAPTER_PID : Service PID of the NetworkAdapter service to which this service be-

longs

NetworkAddress service is registered with the service registry for each available IP address. When
associated IP addresses are deleted, or the network interface to which the IP address is bound be-
comes unavailable, the NetworkAddress service is unregistered. When the associated IP address
changes, NetworkAddress service is updated. The user bundle can detect the change of IP address
by monitoring the registration or unregistering, updating of NetworkAddress service. Because IP ad-
dresses are bound to the network interface, if any, Service PID of the associated NetworkAdapter ser-
vice and its network interface type are set to service property. NetworkAdapter service MUST be reg-
istered after the all associated NetworkAddress services are registered. On the other hand, when un-
registering services, after associated NetworkAdapter service is unregistered, NetworkAddress of all
related services are unregistered.

Concurrency Thread-safe

143.6.3.1 public static final Integer EMPTY_INTEGER

The value integer of service property, when information is not available.

143.6.3.2 public static final String IPADDRESS = "ipAddress"

The key string of "ipAddress" service property. IP Address is specified.

143.6.3.3 public static final String IPADDRESS_SCOPE = "ipAddress.scope"

The key string of "ipAddress.scope" service property. IP Address scope is specified.

143.6.3.4 public static final String IPADDRESS_SCOPE_GLOBAL = "GLOBAL"

The string of IP address scope which means global address.

The global address is defined as the address other than the address defined in the RFC6890.

143.6.3.5 public static final String IPADDRESS_SCOPE_HOST = "HOST"

The string of IP address scope which means "This host on this network".

See RFC6890 for the definition of "This host on this network".

143.6.3.6 public static final String IPADDRESS_SCOPE_LINKED_SCOPED_UNICAST = "LINKED_SCOPED_UNICAST"

The string of IP address scope which means "Linked-Scoped Unicast".

See RFC6890 for the definition of "Linked-Scoped Unicast".

143.6.3.7 public static final String IPADDRESS_SCOPE_LINKLOCAL = "LINKLOCAL"

The string of IP address scope which means "Link Local".

See RFC6890 for the definition of "Link Local".

143.6.3.8 public static final String IPADDRESS_SCOPE_LOOPBACK = "LOOPBACK"

The string of IP address scope which means "Loopback".

See RFC6890 for the definition of "Loopback".

143.6.3.9 public static final String IPADDRESS_SCOPE_PRIVATE_USE = "PRIVATE_USE"

The string of IP address scope which means "Private-Use Networks".

Network Interface Information Service Specification Version 1.0 org.osgi.service.networkadapter

OSGi Compendium Release 8 Page 939

See RFC6890 for the definition of "Private-Use Networks".

143.6.3.10 public static final String IPADDRESS_SCOPE_SHARED = "SHARED"

The string of IP address scope which means "Shared Address Space".

See RFC6890 for the definition of "Shared Address Space".

143.6.3.11 public static final String IPADDRESS_SCOPE_UNIQUE_LOCAL = "UNIQUE_LOCAL"

The string of IP address scope which means "Unique-Local".

See RFC6890 for the definition of "Unique-Local".

143.6.3.12 public static final String IPADDRESS_SCOPE_UNSPECIFIED = "UNSPECIFIED"

The string of IP address scope which means "Unspecified Address".

See RFC6890 for the definition of "Unspecified Address".

143.6.3.13 public static final String IPADDRESS_VERSION = "ipAddress.version"

The key string of "ipAddress.version" service property. IP Address version is specified.

143.6.3.14 public static final String IPADDRESS_VERSION_4 = "IPV4"

The string of IP address version which means IP address version 4.

143.6.3.15 public static final String IPADDRESS_VERSION_6 = "IPV6"

The string of IP address version which means IP address version 6.

143.6.3.16 public static final String NETWORKADAPTER_PID = "networkAdapter.pid"

The key string of "networkAdapter.pid" service property.

Service PID of the interface information service to which it belongs is specified.

143.6.3.17 public static final String NETWORKADAPTER_TYPE = "networkAdapter.type"

The key string of "networkAdapter.type" service property. Network Interface Type is specified.

143.6.3.18 public static final String SUBNETMASK_LENGTH = "subnetmask.length"

The key string of "subnetmask.length" service property.

Subnet Mask Length(IPv4) or Prefix Length(IPv6) is specified. EMPTY_INTEGER if no length is avail-
able.

143.6.3.19 public InetAddress getInetAddress()

□ Returns the InetAddress object of this IP address.

Returned object is created from "ipaddress" service property value.

Returns InetAddress, or null if "ipaddress" service property value is empty.

143.6.3.20 public String getIpAddress()

□ Returns the IP address of "ipaddress" service property value.

Returns IP Address string, or null if "ipaddress" service property value is empty.

143.6.3.21 public String getIpAddressScope()

□ Returns the IP address scope of "ipaddress.scope" service property value.

Returns IP Address Scope, or null if "ipaddress.scope" service property value is empty.

References Network Interface Information Service Specification Version 1.0

Page 940 OSGi Compendium Release 8

143.6.3.22 public String getIpAddressVersion()

□ Returns the IP address version of "ipaddress.version" service property value.

Returns IP Address Version, or null if "ipaddress.version" service property value is empty.

143.6.3.23 public String getNetworkAdapterPid()

□ Returns the "networkadapter.pid" service property value.

Returns Service ID of the interface information service to which it belongs, or null if "networkadapter.pid"
service property value is empty.

143.6.3.24 public String getNetworkAdapterType()

□ Returns the network interface type of "networkAdapter.type" service property value.

Returns Network Interface Type, or null if "networkAdapter.type" service property value is empty.

143.6.3.25 public int getSubnetMaskLength()

□ Returns the "subnetmask.length" service property value.

Returns Subnet Mask Length(IPv4) or Prefix Length(IPv6), or -1 if "subnetmask.length" service property val-
ue is empty.

143.7 References

[1] RFC 6890 : Special-Purpose IP Address Registries
http://www.ietf.org/rfc/rfc6890.txt, April 2013

http://www.ietf.org/rfc/rfc6890.txt

Resource Monitoring Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 941

144 Resource Monitoring Specification

Version 1.0

144.1 Introduction
Applications, executed on an OSGi platform, need hardware resources (CPU, memory, disk, storage
space) and software resources (sockets, threads). As these resources are limited, applications have to
share them in order to preserve system quality of service. This is a general fact in OSGi business cas-
es where multiple bundles share the OSGi framework. This is especially the case when the frame-
work is shared by distinct tenants, which are responsible for distinct set of bundles running with
their own business logic and lifecycle.

The chapter defines an API for applications to monitor hardware resources consumed by any set of
bundles. The bundle is the smallest unit that can be considered as a resource context, the entity that
is monitored. Monitored data may enable applications to take decisions on management actions to
apply. Resource management actions are mentioned as examples in this chapter, for example, ac-
tions on the lifecycle of components, bundles, the framework and the JVM, Java threads, raise of ex-
ceptions.

144.2 Essentials
• Monitoring - Bundle execution resource usage is monitored.
• Granular activation - The resource monitoring service can be activated and deactivated per bundle

or per bundle set.
• Extensibility - Five resource types are specified (CPU, memory, disk storage, alive thread and in-use

sockets). The list of monitored resource types is extensible and query-able.
• Eventing - The resource monitoring service notifies interested entities of exceeded limits.

144.3 Entities
• Resource Context - A logical entity for resource accounting. A context may be related to a single

bundle or a set of bundles.
• System Resource Context - Resource context of the core framework.
• Platform Resource Context - A Resource context monitoring the resource usage of the platform as a

whole.
• Resource Monitor - Monitors the usage of a specific resource type for a specific Resource Context.

Resource Monitors track resource usage. They hold Resource Thresholds instances. Resource
Monitor object implementation may depend on standard or proprietary JVM APIs, and on oper-
ating system features.

• Resource Monitor Factory - A factory creating Resource Monitor instances for every Resource Con-
text.

• CPU Monitor - Resource Monitor used to monitor CPU.
• Memory Monitor - Resource Monitor used to monitor memory.

Operation Summary Resource Monitoring Specification Version 1.0

Page 942 OSGi Compendium Release 8

• Socket Monitor - Resource Monitor used to monitor socket resource.
• Disk Storage Monitor - Resource Monitor for disk storage usage.
• Thread Monitor - Resource Monitor used to monitor alive Java Thread objects.
• Resource Listener - A Resource Listener receives resource threshold notifications.
• Resource Event - A Resource Event defines a notification to be synchronously sent to Resource Lis-

tener instances.
• Resource Context Listener - A Resource Context Listener receives notifications about resource con-

text creation and configuration.
• Resource Context Event - A Resource Context Event defines a notification to be sent to Resource

Context Listeners instances.
• Resource Monitoring Service - This is a singleton entity which manages Resource Context in-

stances. It is used to create new Resource Context instances and to enumerate existing contexts.
• Resource Monitoring Client - Makes any decision to ensure the quality of the service of the system.

They use the Resource Monitoring Service to create Resource Context instances. It configures
them by adding bundles and Resource Monitors.

Figure 144.1 Resource monitoring class diagram specification.

<<Interface>>
CPUMonitor

<<Interface>>
DiskStorage
Monitor

A ResourceMonitor
implementer

A ResourceMonitorFactory
implementer

Bundle

A ResourceMonitoring
Service implementer

<<Interface>>
ResourceMonitoring
Service

A ResourceContext
Listener

Resource Monitoring
Client

<<Interface>>
ResourceMonitorFactory

<<Interface>>
ResourceM onit or

<<Interface>>
ResourceContext

uses

[Object]

<<Interface>>
ResourceCont ext
List ener

uses
0..1

is not ified byResourceContextEvent

0..*

creates, ret rieves
1

creates

1

m onitors resource usage, and thresholds
1

not ifies ResourceEvent

[Object]

<<Interface>>
ResourceList ener

A ResourceListener

<<Interface>>
MemoryMonitor

<<Interface>>
SocketMonitor

0..*

0..*

0..* 0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

has

1

0..*
creates

ThreadMonitor
<<Interface>>

144.4 Operation Summary
Resource Monitoring Clients use the Resource Monitoring Service service to create Resource Con-
texts. These clients set bundles or group of bundles to Resource Contexts. They also request every
Resource Monitor Factory to create Resource Monitors for a resource type. These Resource Monitors
are associated to a single Resource Context.

When activated, Resource Monitors provide the current resource usage per Resource Context. Then,
they check whether the current resource usage is compatible with the thresholds held by their as-
sociated Resource Listeners. When one of these thresholds is violated, the related Resource Monitor
notifies the Resource Listener holding this threshold.

Resource Monitoring Specification Version 1.0 Resource Context

OSGi Compendium Release 8 Page 943

The Resource Monitoring Service manages the set of Resource Contexts. Resource Contexts are per-
sistent between platform restarts. Resource Context Listeners are notified when a Resource Context
is created or deleted or when a Resource Context configuration (that is, adding or removing of bun-
dle) is updated.

144.5 Resource Context
A ResourceContext instance is a logical entity used to account resource usage. Every Resource Con-
text defines a bundle scope which can be either a single bundle or a set of bundles. Once the bundle
scope is defined, resources used by those bundles are monitored through a set of per-resource-type
Resource Monitor instances.

Resource Context instances are persistent. The persistence of those instances is directly managed by
the Resource Monitoring Service instance.

Each Resource Context is uniquely identified by a name. It can be retrieved through the getName()
method. It can not be changed, that is it is definitively set when the Resource Context instance is
created.

The Resource Context bundle scope is retrieved through the getBundleIds() method. This bundle
scope can be extended through the addBundle(long) method. Bundles can also be removed from a
Resource Context through the removeBundle(long,ResourceContext) method. For this last method,
a Resource Context instance MAY be specified in order to associate the removed bundle to another
Resource Context instance.

Resource Monitor instances are retrieved through getMonitor(Str ing) method or the getMonitors()
method. The list of available resource types is retrieved through the Resource Monitoring Service
singleton instance.

Resource Monitor instances are added to and removed from a Resource Context
instance by calling either addResourceMonitor(ResourceMonitor) method or
removeResourceMonitor(ResourceMonitor) method. Both methods SHOULD only be called by Re-
sourceMonitorFactory instances (see createResourceMonitor(ResourceContext) method).

A Resource Context is retrieved through the Resource Monitoring Service service.

A Resource Context instance can be deleted through removeContext(ResourceContext) method.
The Resource Context input argument then defines a destination Resource Context instance for the
bundles belonging to the to-be-removed Resource Context instance.

144.6 System Resource Context
The System Resource Context is the Resource Context of the execution environment for the running
OSGi bundles. It includes the resources of bundle "0". It is retrieved through the Resource Monitor-
ing Service service.

The name of this context is “system”. See SYSTEM_CONTEXT_NAME .

144.7 Framework Resource Context
The Framework Resource Context is a Resource Context monitoring resources of the platform as a
whole. It is retrieved through the Resource Monitoring Service service. This Resource Context holds
all hosted bundles allowing access to the whole platform resource consumption.

The name of this context is “framework”. See FRAMEWORK_CONTEXT_NAME .

Resource Monitor Resource Monitoring Specification Version 1.0

Page 944 OSGi Compendium Release 8

144.8 Resource Monitor
A ResourceMonitor instance monitors a resource type consumed by the bundles of a specific Re-
source Context instance.

A Resource Context instance holds at most one Resource Monitor instance per monitor-able re-
source type. Resource Monitor instances are retrieved through their related Resource Context in-
stance. Resource Monitor instances give access to their related Resource Context instance through a
call to See getContext() method.

The monitored resource type is retrieved through the getResourceType() method.

The current usage of a resource consumed by a Resource Context instance is given through the ge-
tUsage() method. This method returns a Java Object to be casted to the appropriate Java object type
depending on the Resource type. The next table provides the expected Java Object type for each
specified resource type:

Table 144.1 Table of resource types.

Type of Resource Expected Java Object type Value description
CPU Long Cumulative CPU time in ns.
Memory Long Allocated memory in bytes.
Threads Long Number of alive thread.
Socket Long Number of in-use socket.
Disk storage space Long Bytes on the bundle persistent

storage area.

For example, for a MemoryMonitor instance, a call to getUsage() returns a Long java object indicat-
ing the amount of memory the related Resource Context instance is consuming.

A Resource Monitor instance is enabled and disabled through enable() and disable() methods. The
state (enabled or disabled) of a Resource Monitor is retrieved through a call to isEnabled() method.
Enable and disable monitoring mechanisms on-the-fly on localized set of bundles may be crucial for
performance issues. See [1] Adaptive Monitoring of End-user OSGi based Home Boxes.

A Resource Monitor instance can also be deleted (delete() method). isDeleted() method returns true
if the ResourceMonitor instance has been deleted.

Five types of Resource Monitor are specified:

• CPU Monitor
• Memory Monitor
• Socket Monitor
• Disk Storage Monitor
• Thread Monitor

The support of any Resource Monitor is optional. This list MAY be extended by the solution ven-
dor. The list of the types that are supported on the OSGi platform can be computed by querying Re-
sourceMonitorFactory services. Resource monitoring algorithms may vary with factories, see [2]
Memory Monitoring in a Multi-tenant OSGi Execution Environment. They are out of the scope of this
specification.

144.9 Resource Monitor Factory
A ResourceMonitorFactory is a service that provides Resource Monitor instances of a specific re-
source type (for example, CPUMonitor , MemoryMonitor , etc.) for every Resource Context.

Resource Monitoring Specification Version 1.0 CPU Monitor

OSGi Compendium Release 8 Page 945

Every Resource Monitor Factory service is registered with the
org.osgi . resourcemonitor ing.ResourceType mandatory property, see RESOURCE_TYPE_PROPERTY .
This property indicates which type of Resource Monitor a Resource Monitor Factory is able to create.
The type can also be retrieved through a call to getType() . The type MUST be unique (two Resource
Monitor Factory services MUST not have the same type).

New Resource Monitor instances are created by a call to createResourceMonitor(ResourceContext) .
This method returns a new Resource Monitor instance associated to the provided Resource Context
instance. The ResourceMonitorFactory MUST call addResourceMonitor(ResourceMonitor) to asso-
ciate the newly created ResourceMonitor with the provided ResourceContext instance. The newly
created Resource Monitor is disabled, that is, it is initially not monitoring the Resource Context re-
source consumption. It can be activated through a call to enable() .

Resource Monitor instances are deleted by calling delete() method.

A Resource Monitor instance MUST only be created through its ResourceMonitorFactory .

Resource Monitor Factory instances should be only used by the Resource Monitoring Service single-
ton instance. The Resource Monitoring Service singleton instance performs a service lookup on all
existing Resource Monitor Factories. It uses a Resource Monitor Factory instance when it has to cre-
ate a new Resource Context instance and their associated Resource Monitor instances.

144.10 CPU Monitor
A CPUMonitor instance is a Resource Monitor used to monitor the CPU usage of the bundles belong-
ing to a Resource Context.

CPU usage and thresholds are expressed as a cumulative number of nanoseconds (long). The encap-
sulated value can be retrieved with the getCPUUsage() method.

In case where a threshold is reached, the CPU Monitor instance generates an event triggering Re-
source Monitoring Clients defined corrective actions (for example, decrease thread priority).

144.11 Memory Monitor
A MemoryMonitor instance monitors and limits the memory used by the bundles of a Resource
Context instance.

Memory is accounted as bytes. Memory usage and thresholds are long java objects. The encapsulat-
ed value can be retrieved through the getMemoryUsage() method.

When an error threshold is reached, the next memory allocation MAY be prevented by the system
and MAY throw a specific Exception in the associated context.

144.12 Socket Monitor
A SocketMonitor instance monitors and limits the number of existing sockets (for example, TCP,
UDP) which are considered to be in use (for example, listening for incoming packet, bound, or send-
ing outgoing packets).

A Socket is considered to be in-use state when a native socket file descriptor is created. It leaves this
state when this socket file descriptor is deleted.

The number of in-use sockets is a long. The encapsulated value can be retrieved using getSocke-
tUsage() method.

Disk Storage Monitor Resource Monitoring Specification Version 1.0

Page 946 OSGi Compendium Release 8

When an ERROR threshold is reached, the next socket file descriptor creation in the associated con-
text MAY throw a SocketException.

144.13 Disk Storage Monitor
A DiskStorageMonitor instance monitors and limits the use of persistent storage within Bundle Per-
sistent Storage Area a Resource Context (the bundles actually belonging to it) consumes.

Disk Storage is expressed as a number of bytes of type long. The encapsulated value can be retrieved
using getUsedDiskStorage() method.

An IOException MAY be thrown in the associated context when an ERROR threshold is reached.

144.14 Thread Monitor
A ThreadMonitor instance monitors and limits the number of alive Java Thread objects for a Re-
source Context instance. A Thread is considered to be alive when it is in the RUNNABLE , BLOCKED ,
WAITING or TIMED_WAITING thread state.

Usage and thresholds are Java int objects. The encapsulated value can be retrieved using getAl-
iveThreads() method.

When an ERROR threshold is reached, any further thread activation will be prevented in the associ-
ated context. An InternalError exception MAY also be thrown in the associated context.

144.15 Resource Listener
A ResourceListener receives notifications about resource usage for a specific Resource Context and
a specific type of resource. A notification will be sent to a Resource Listener when one of its thresh-
olds is violated.

A Resource Listener holds two types of threshold:

• A lower threshold type. This kind of threshold is reached when the monitored resource usage de-
creases below the threshold.

• An upper threshold type. An upper threshold is reached when the monitored resource usage ex-
ceeds this threshold.

Each of them have two levels:

• a WARNING level.
• an ERROR level.

A threshold has the following state diagram, which transitions are associated to events:

Resource Monitoring Specification Version 1.0 Resource Listener

OSGi Compendium Release 8 Page 947

Figure 144.2 Threshold state diagram.

Normal Warning Error

when warning
threshold is reached.

when error threshold
is reached

back to normal back to warning

when error threshold
is directly reached

back to normal

A threshold state depends on the current consumption of resource and the type of threshold (upper
or lower threshold).

A Resource Listener is registered as an OSGi service. The implementer must provide the two follow-
ing mandatory properties:

• RESOURCE_CONTEXT property – a String defining the name of Resource Context for which the
Listener want to receive threshold notifications.

• RESOURCE_TYPE property – a String defining which type of resource the listener wants to moni-
tor.

It also has to provide at least one of these four properties when registered as an OSGi service:

• UPPER_WARNING_THRESHOLD
• UPPER_ERROR_THRESHOLD
• LOWER_WARNING_THRESHOLD
• LOWER_ERROR_THRESHOLD

These properties are mapped to the four types of threshold values a Resource Listener may support.
The service properties are used to notify the associated Resource Monitor when one of these thresh-
old values is modified.

Threshold values can also be retrieved through a set of getter methods. All of these methods returns
a Comparable object used by the associated Resource Monitor in order to determine the current
state of the current usage.

RESOURCE_CONTEXT and RESOURCE_TYPE properties are used by Resource Monitors to identify
their associated Resource Listeners. Once associated, a Resource Monitor retrieves the threshold set-
tings using service properties. When one of its thresholds is reached, the Resource Monitor calls
notify(ResourceEvent) .

Resource Listener Resource Monitoring Specification Version 1.0

Page 948 OSGi Compendium Release 8

Two examples of resource consumption are explained below, first with in-use sockets monitoring,
second with CPU monitoring. The next picture shows the state diagram of the number of in-use
state socket over the time.

Figure 144.3 Number of in-use sockets over the time.

Upper Threshold

Lower Threshold

: Error threshold

: Warning threshold

NORMAL

WARNING

ERROR

WARNING

ERROR

State :

Time

Number of in-use sockets

0

5

10

100

1000

: Events are emitted

In our example, the lower warning threshold and the lower error threshold of the Resource Listen-
er are respectively set to 10 and 5. When the number of in-use sockets decreases under 10, the usage
goes from the NORMAL state to the WARNING state and the Resource Listener receives a WARNING
event. If the number of in-use state sockets decreases again and goes down to 5, the usage goes from
the WARNING state to the ERROR state and the Resource Listener receives a ERROR Resource Event.

The upper threshold is also set. The upper warning threshold and the upper error threshold are
respectively set to 100 and 1000 in-use state sockets. When the number of sockets reaches 100,
the usage goes from the NORMAL state to the WARNING state and the Resource Listener receives a
WARNING Resource Event. If this number is still increasing and exceeds 1000, then the usage goes
from the WARNING state to the ERROR state and the Resource Listener receives an ERROR Resource
Event.

This is a typical use case for a Java Web server. Indeed, one of the most important quality of service
indicator is the number of in-use state sockets a java web server is handling. A low number of in-
use state sockets may indicate the java web server encounters network problems. On the contrary,
a high number of in-use state socket may be the result of an external network attack or it could also
indicates the java web server is overused and its administrator should take actions to load-balance
the charge to another java web server instance.

For other resource types, only upper thresholds may be useful. The next diagram shows the CPU
consumption a Resource Context is using over the time:

Resource Monitoring Specification Version 1.0 Resource Event

OSGi Compendium Release 8 Page 949

Figure 144.4 CPU consumption (%) over the time – Upper Threshold.

: Error threshold
: Warning threshold

NORMAL

WARNING

ERROR

State :

time

CPU consumption (%)

0

25

50

75

100

An Authority takes action
in order to preserve
the QOS :
 here it stops the bundle.

: Events are emitted

In this example, only the upper threshold is set. The upper warning threshold is set to 50%, the er-
ror one is set to 75%. CPU consumption fluctuates between 0 and 50%, the usage is in the NOR-
MAL state. Then it increases and reaches 50%. The usage then goes from the NORMAL state to the
WARNING state and the Resource Listener holding the threshold receives a WARNING Resource
Event.

Afterwards, CPU consumption decreases under 50%; the usage goes from the WARNING state to the
NORMAL state. The related Resource listener receives a NORMAL Resource Event.

It then increases again and exceeds 50%. The usage goes to the WARNING state. CPU consumption is
still increasing and exceeds 75%. At this moment, the usage goes from the WARNING state to the ER-
ROR state and the related Resource Listener receives an ERROR Resource Event.

After some seconds in the ERROR state, the Resource Listener implementation stops the bundle in
order to preserve the quality of service.

The choice of the type of threshold (lower or upper, or both of them) depends on the type of re-
source and the needs of the Resource Monitoring Clients providing the Resource Listener. Other re-
sources like the free memory may take advantage of a lower threshold.

144.16 Resource Event
A ResourceEvent instance is an event synchronously sent to a Resource Listener when one
of its thresholds is reached. This event is notified to a Resource Listener through a call to
ResourceListener.notify(ResourceEvent).

A Resource Event has a type among the following ones:

• ERROR – The resource consumption reaches either the upper or the lower error threshold of the
Resource Listener receiving this event.

Resource Context Listener Resource Monitoring Specification Version 1.0

Page 950 OSGi Compendium Release 8

• WARNING – The resource consumption reaches either the upper or the lower warning threshold
of the Resource Listener receiving this event.

• NORMAL – The resource consumption is back from warning or error state to normal state.

The Resource Listener instance analyzes this event by calling the following methods:

• getValue() method returns the resource consumption at the time when the Resource Event in-
stance was generated.

• isUpperThreshold() method returns true if the reached threshold is an upper threshold type. If
this method returns false, this is a lower threshold.

• getType() method indicates the state (WARNING, ERROR, or NORMAL) of the resource usage.
• getContext() method returns the Resource Context instance related to this event. The

Resource Listener can use it to retrieve the Resource Monitor instance. For example,
event.getContext() .getMonitor(event.getResourceType()) .

144.17 Resource Context Listener
A ResourceContextListener instance receives notifications about Resource Context lifecycle and
configuration.

A notification will be sent when:

• A Resource Context is created.
• A Resource Context is updated, that is, a bundle has been added or removed from a Resource Con-

text instance.
• A Resource Context is deleted.

An application which is interested in notifications has to register a Resource Context Listener in-
stance as an OSGi service. The application may provide a set of properties at registration time to re-
duce the number of notifications a Resource Listener instance will receive. The available property is:

• RESOURCE_CONTEXT property – An array of String defining the name of Resource Context in-
stances. If defined, a Resource Listener instance will only receive notifications related to these
specified Resource Context instances.

A Resource Context Listener instance is notified through a call to notify(ResourceContextEvent)
method.

144.18 Resource Context Event
A ResourceContextEvent instance is an event sent to Resource Context Listener instances through a
call to the notify(ResourceContextEvent) method.

A Resource Context Event has a type among the four following ones:

• RESOURCE_CONTEXT_CREATED – A new Resource Context instance has been created.
• RESOURCE_CONTEXT_REMOVED – A Resource Context instance has been deleted.
• BUNDLE_ADDED – A bundle has been added in the scope of a Resource Context instance.
• BUNDLE_REMOVED – A bundle has been removed from the scope of a Resource Context instance.

In the case of a RESOURCE_CONTEXT_CREATED event or a RESOURCE_CONTEXT_REMOVED event,
a call to getContext() returns the targeted Resource Context instance.

Resource Monitoring Specification Version 1.0 Resource Monitoring Service

OSGi Compendium Release 8 Page 951

In the case of a BUNDLE_ADDED type or BUNDLE_REMOVED type, getBundleId() returns the id of
the bundle to be added to or removed from. The related Resource Context instance is given by a call
to getContext() .

144.19 Resource Monitoring Service
The ResourceMonitor ingService manages the Resource Context instances. The Resource Monitor-
ing Service is available through the OSGi service registry.

This service holds the existing Resource Context instances. Resource Context instances are created
by calling the createContext(Str ing,ResourceContext) method. The caller provides a context name
as a string and optionally a template as a ResourceContext object.

The list of existing Resource Context instances can be retrieved through the following methods:

• getContext(Str ing) – returns the ResourceContext with the specified resource context name.
• getContext(long) – returns the ResourceContext associated to the provided bundle id.
• l istContext() – retrieve all existing Resource Context instances as an array.

The Resource Monitoring Service singleton manages the persistence of the Resource Context in-
stances. The following properties are stored:

• name of the Resource Context.
• list of the bundles belonging to the Resource Context.
• list of the Resource Monitor instances. For each one: the sampling period, and the monitoring pe-

riod.

The way the Resource Monitoring Service persists the Resource Context instances is implementa-
tion specific. The implementer is free to use any file format and file location it wants. At startup, the
Resource Monitoring Service will load the persisted Resource Context instances to restore the state
prior to shutdown.

144.20 Resource Monitoring Client
A Resource Monitoring Client uses the Resource Monitoring Service singleton instance to apply Re-
source Monitoring policies. These entities MAY:

• create and configure Resource Context instances (resource thresholds, bundle scope)
• take any decisions (stop a bundle, uninstall a bundle) if a Resource Context exceeds resource lim-

it.

These policies are out of the scope of this specification.

144.21 Security
It is recommended that ServicePermission[ResourceMonitor ingService|ResourceMonitor ingFacto-
ry|ResourceListener, REGISTER|GET] be used sparingly and only for bundles that are trusted.

144.22 org.osgi.service.resourcemonitoring

org.osgi.service.resourcemonitoring Resource Monitoring Specification Version 1.0

Page 952 OSGi Compendium Release 8

Resource Monitoring Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.resourcemonitor ing; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.resourcemonitor ing; vers ion="[1.0,1.1)"

144.22.1 Summary

• ResourceContext - Logical entity for resource accounting.
• ResourceContextEvent - A Resource Context Event instance is an event sent to Resource Con-

text Listener instances through a call to ResourceContextListener.notify(ResourceContextEvent)
method.

• ResourceContextException - Resource Context Exception.
• ResourceContextListener - A ResourceContextListener is notified whenever:

• a ResourceContext is created or deleted.
• a bundle is added or removed from a ResourceContext.

• ResourceEvent - An event is sent to a ResourceListener when resource usage violates one of their
thresholds.

• ResourceListener - A ResourceListener is an OSGi service which is notified when a Resource
Context violates one of the threshold defined by the listener.

• ResourceMonitor - Representation of the state of a resource for a resource context.
• ResourceMonitorException - Resource Monitor Exception reports an invalid usage of a monitor.
• ResourceMonitorFactory - A Resource Monitor Factory is a service that provides Resource Moni-

tor instances of a specific resource type (for example, CPUMonitor, MemoryMonitor...) for every
Resource Context.

• ResourceMonitor ingService - It manages the Resource Context instances.

144.22.2 public interface ResourceContext
Logical entity for resource accounting. A resource context has a group of member bundles, and a
bundle can be a member of 0 or 1 resource context.

Resource Monitoring Clients can use the ResourceMonitoringService.createContext(String, Re-
sourceContext) method to create ResourceContext instances.

Resource Monitoring Clients can use the getMonitor(String) method to get ResourceMonitor in-
stances for the supported resource types. These instances can then be used to monitor the usage of
the resources, or the set usage limits.

ResourceContexts are retrieved through the ResourceMonitoringService OSGi service.

144.22.2.1 public void addBundle(long bundleId) throws ResourceContextException

bundleId The bundle to add to this resource context

□ Adds a bundle to the resource context. The bundle will be a member of the context until it
is uninstalled, or explicitly removed from the context with removeBundle(long) method or
removeBundle(long, ResourceContext) method.

Resources previously allocated by this bundle (in another resource context) will not be moved to
this resource context. The change applies only for future allocations.

A ResourceContextEvent with type ResourceContextEvent.BUNDLE_ADDED will be sent.

Resource Monitoring Specification Version 1.0 org.osgi.service.resourcemonitoring

OSGi Compendium Release 8 Page 953

Throws ResourceContextException– For example, when the bundle can't be added to the ResourceContext.

144.22.2.2 public void addResourceMonitor(ResourceMonitor<?> resourceMonitor) throws ResourceContextException

resourceMonitor resourceMonitor instance to be added

□ Adds a new ResourceMonitor instance monitoring resource for this resource context. This method
should be called only by ResourceMonitorFactory instance.

Throws ResourceContextException– For example, when the monitor can't be added to the ResourceContext.

144.22.2.3 public boolean equals(Object resourceContext)

resourceContext resource context

□ A ResourceContext rc1 is equals to ResourceContext rc2 if rc1.getName() is equals to rc2.getName().

Returns true if getName().equals(resourceContext.getName()

144.22.2.4 public long[] getBundleIds()

□ Returns the bundle identifiers belonging to this Resource Context.

Returns An array of Bundle objects, or an empty array if no bundles are currently members of this context

144.22.2.5 public ResourceMonitor<?> getMonitor(String resourceType) throws ResourceContextException

resourceType The resource type, for which a resource monitor is requested

□ Returns a ResourceMonitor instance for the specified resource type. If the ResourceMonitoringSer-
vice implementation does not support this resource type, null is returned

Returns A ResourceMonitor instance, or null, if this resource type is not supported

Throws ResourceContextException– For example, when the monitor(s) can't be retrieved from the Resource-
Context.

144.22.2.6 public ResourceMonitor<?>[] getMonitors() throws ResourceContextException

□ Retrieves all the existing ResourceMonitor belonging to this context.

Returns an array of ResourceMonitor. May be empty if no ResourceMonitor

Throws ResourceContextException– For example, when the monitor(s) can't be retrieved from the Resource-
Context.

144.22.2.7 public String getName()

□ Returns the name of the resource context. Resource context names are unique within a framework
instance.

Returns The resource context name

144.22.2.8 public int hashCode()

□ Retrieves the hashCode value of a ResourceContext. The hashCode value of a ResourceContext is on-
ly based on the hashcode value of the name of the context.

Returns hashcode

144.22.2.9 public void removeBundle(long bundleId) throws ResourceContextException

bundleId bundle identifier

□ Removes the bundle identified by bundleId from the Resource Context. The bundle is no longer to
this Resource Context.

org.osgi.service.resourcemonitoring Resource Monitoring Specification Version 1.0

Page 954 OSGi Compendium Release 8

Throws ResourceContextException– For example, when the bundle can't be removed from the Resource-
Context.

144.22.2.10 public void removeBundle(long bundleId, ResourceContext destination) throws ResourceContextException

bundleId the identifier of the bundle to be removed from the Resource Context

destination A resource context in which to add the bundle, after removing it from this context. If no destination
is provided (that is null), the bundle is not associated to a new Resource Context.

□ Removes the bundle from this resource context. If a destinat ion context is specified, the bundle will
be added in it.

Resources previously allocated by this bundle will not be removed from the resource context. The
change applies only for future allocations.

A ResourceContextEvent with type ResourceContextEvent.BUNDLE_REMOVED will be sent.

Throws ResourceContextException– For example, when the bundle can't be removed from the Resource-
Context.

144.22.2.11 public void removeContext(ResourceContext destination) throws ResourceContextException

destination The ResourceContext where the resources currently allocated by this resource context will be
moved.

□ Removes a resource context. All resources allocated in this resource context will be moved to the
destinat ion context. If destinat ion is nul l , these resources will no longer be monitored.

A ResourceContextEvent with type ResourceContextEvent.RESOURCE_CONTEXT_REMOVED will
be sent.

Throws ResourceContextException– For example, when the resource context can't be removed.

144.22.2.12 public void removeResourceMonitor(ResourceMonitor<?> resourceMonitor) throws
ResourceContextException

resourceMonitor resource monitor instance to be removed

□ Removes a ResourceMonitor instance from the context.

Throws ResourceContextException– For example, when the monitor can't be removed from the Resource-
Context.

144.22.3 public class ResourceContextEvent
A Resource Context Event instance is an event sent to Resource Context Listener instances through
a call to ResourceContextListener.notify(ResourceContextEvent) method. A Resource Context Event
has a type among the four following ones:

• RESOURCE_CONTEXT_CREATED – A new Resource Context instance has been created.
• RESOURCE_CONTEXT_REMOVED – A Resource Context instance has been deleted.
• BUNDLE_ADDED – A bundle has been added in the scope of a Resource Context instance.
• BUNDLE_REMOVED – A bundle has been removed from the scope of a Resource Context in-

stance.

144.22.3.1 public static final int BUNDLE_ADDED = 2

A bundle has been added to e ResourceContext

The ResourceContext.addBundle(long) method has been invoked

144.22.3.2 public static final int BUNDLE_REMOVED = 3

A bundle has been removed from a ResourceContext

Resource Monitoring Specification Version 1.0 org.osgi.service.resourcemonitoring

OSGi Compendium Release 8 Page 955

ResourceContext.removeBundle(long) method or ResourceContext.removeBundle(long, Resource-
Context) method have been invoked, or the bundle has been uninstalled

144.22.3.3 public static final int RESOURCE_CONTEXT_CREATED = 0

A new ResourceContext has been created.

The ResourceMonitoringService.createContext(String, ResourceContext) method has been invoked.

144.22.3.4 public static final int RESOURCE_CONTEXT_REMOVED = 1

A ResourceContext has been removed

The ResourceContext.removeContext(ResourceContext) method has been invoked

144.22.3.5 public ResourceContextEvent(int pType, ResourceContext pResourceContext)

pType event type

pResourceContext context

□ Create a new ResourceContextEvent. This constructor should be used when the type of the event is
either RESOURCE_CONTEXT_CREATED or RESOURCE_CONTEXT_REMOVED.

144.22.3.6 public ResourceContextEvent(int pType, ResourceContext pResourceContext, long pBundleId)

pType event type

pResourceContext context

pBundleId bundle

□ Create a new ResourceContextEvent. This constructor should be used when the type of the event is
either BUNDLE_ADDED or BUNDLE_REMOVED.

144.22.3.7 public boolean equals(Object var0)

144.22.3.8 public long getBundleId()

Retrieves the identifier of the bundle being added to or removed from the Resource Context.

This method returns a valid value only when getType() returns:

• BUNDLE_ADDED
• BUNDLE_REMOVED

Returns the bundle id or -1 (invalid value).

144.22.3.9 public ResourceContext getContext()

□ Retrieves the Resource Context associated to this event

Returns Resource Context.

144.22.3.10 public int getType()

□ Retrieves the type of this Resource Context Event.

Returns the type of the event. One of:

• RESOURCE_CONTEXT_CREATED
• RESOURCE_CONTEXT_REMOVED
• BUNDLE_ADDED
• BUNDLE_REMOVED

org.osgi.service.resourcemonitoring Resource Monitoring Specification Version 1.0

Page 956 OSGi Compendium Release 8

144.22.3.11 public int hashCode()

144.22.3.12 public String toString()

144.22.4 public class ResourceContextException
extends Exception
Resource Context Exception.

144.22.4.1 public ResourceContextException(String msg)

msg message

□ Create a new ResourceContextException

144.22.4.2 public ResourceContextException(String msg, Throwable t)

msg message

t exception

□ Create a new ResourceContextException

144.22.5 public interface ResourceContextListener
A ResourceContextListener is notified whenever:

• a ResourceContext is created or deleted.
• a bundle is added or removed from a ResourceContext.

A ResourceContextListener is registered as an OSGi service. At registration time, the following
property may be provided:

• the RESOURCE_CONTEXT property which limits the Resource Context for which notifications
will be received. This property can be either a String value or an array of String. If this property is
not set, the Resource Context Listener receives events from all the Resource Context.

144.22.5.1 public static final String RESOURCE_CONTEXT = "resource.context"

Property specifying the ResourceContext(s) for which a notification will be received by this listener.

The property value is either a string (i.e the name of the ResourceContext) and an array of string
(several ResourceContext).

144.22.5.2 public void notify(ResourceContextEvent event)

event event.

□ Notify this listener about a ResourceContext events.

144.22.6 public class ResourceEvent<T>
<T> The type for the Resource.

An event is sent to a ResourceListener when resource usage violates one of their thresholds.

ResourceEvent objects are delivered synchronously to all matching ResourceListener services. A
typed code is used to identify the event.

See Also ResourceListener

144.22.6.1 public static final int ERROR = 2

Type of ResourceEvent indicating a threshold goes to the ERROR state.

Resource Monitoring Specification Version 1.0 org.osgi.service.resourcemonitoring

OSGi Compendium Release 8 Page 957

144.22.6.2 public static final int NORMAL = 0

Type of ResourceEvent indicating a threshold goes to the NORMAL state.

144.22.6.3 public static final int WARNING = 1

Type of ResourceEvent indicating a threshold goes to the WARNING state.

144.22.6.4 public ResourceEvent(int pType, ResourceContext pContext, boolean pIsUpperThreshold, Comparable<T>
pValue)

pType the event type

pContext the resource context

pIsUpperThresh-
old

whether it is an upper threshold

pValue the value

□ Creates a new ResourceEvent.

144.22.6.5 public boolean equals(Object var0)

144.22.6.6 public ResourceContext getContext()

□ Returns the resource context that caused the event.

Returns The resource context that caused the event.

144.22.6.7 public int getType()

□ Returns the event type. The type values are:

• NORMAL
• WARNING
• ERROR

Returns The event type

144.22.6.8 public Comparable<T> getValue()

□ Returns the resource consumption value. Relevant only for event types NORMAL, WARNING and
ERROR.

Returns the resource consumption value, or null if a resource monitor is not relevant.

144.22.6.9 public int hashCode()

144.22.6.10 public boolean isUpperThreshold()

□ Returns true if the threshold triggering this event is an upper threshold. This method is only used
when getType() returns NORMAL, WARNING or ERROR.

Returns true if it is an upper threshold.

144.22.6.11 public String toString()

144.22.7 public interface ResourceListener<T>
<T> The type for the Resource.

A ResourceListener is an OSGi service which is notified when a Resource Context violates one of the
threshold defined by the listener.

org.osgi.service.resourcemonitoring Resource Monitoring Specification Version 1.0

Page 958 OSGi Compendium Release 8

Every ResourceListener is associated to a specific Resource Context and a specific Resource type.
It defines two types of thresholds: a lower and a upper. A lower threshold is reached when the re-
source usage decreases below the threshold. On the contrary, an upper threshold is reached when
the resource usage exceeds the threshold.

Both lower or upper threshold are two levels: a warning level and error level. The warning level in-
dicates the resource usage becomes to be critical but are still acceptable. The error level indicates the
resource usage is now critical for the overall system and actions should be taken.

A Resource Listener is registered with these two mandatory properties:

• RESOURCE_CONTEXT which defines the ResourceContext associated to this Listener
• RESOURCE_TYPE which the type of resource

The next optional properties are used to specify threshold values. A ResourceListener must at least
provides one of them:

• ResourceListener.UPPER_WARNING_THRESHOLD
• ResourceListener.UPPER_ERROR_THRESHOLD
• ResourceListener.LOWER_WARNING_THRESHOLD
• ResourceListener.LOWER_ERROR_THRESHOLD

These threshold values can also be retrieved through methods.

Resource Listeners are associated to a Resource Context and a Resource Monitor based on the
RESOURCE_CONTEXT property and the RESOURCE_TYPE property (both of them are mandatory
at registration time).

Once associated, the ResourceMonitor gets the threshold values through the ser-
vice properties (i.e UPPER_WARNING_THRESHOLD, UPPER_ERROR_THRESHOLD,
LOWER_WARNING_THRESHOLD and LOWER_WARNING_THRESHOLD) and store them. Once
it detects a new resource consumption, it compares the new resource usage value with the thresh-
olds provided by the Resource Listener. If the resource usage violates one of these thresholds, the Re-
source Monitor notifies the ResourceListener through a call to notify(ResourceEvent).

A ResourceMonitor tracks threshold value modification by using a ServiceListener.

144.22.7.1 public static final String LOWER_ERROR_THRESHOLD = "lower.error.threshold"

Optional property defining the value of the lower error threshold.

144.22.7.2 public static final String LOWER_WARNING_THRESHOLD = "lower.warning.threshold"

Optional property defining the value of the lower warning threshold.

144.22.7.3 public static final String RESOURCE_CONTEXT = "resource.context"

Mandatory property specifying the Resource Context associated with the listener.

144.22.7.4 public static final String RESOURCE_TYPE = "resource.type"

Mandatory property defining the type of Resource (i.e the ResourceMonitor) associated to this Lis-
tener.

144.22.7.5 public static final String UPPER_ERROR_THRESHOLD = "upper.error.threshold"

Optional property defining the value of the upper error threshold.

144.22.7.6 public static final String UPPER_WARNING_THRESHOLD = "upper.warning.threshold"

Optional property defining the value of the upper warning threshold.

Resource Monitoring Specification Version 1.0 org.osgi.service.resourcemonitoring

OSGi Compendium Release 8 Page 959

144.22.7.7 public Comparable<T> getLowerErrorThreshold()

□ Retrieves the lower error threshold value set by the listener. If the resource usage decreases under
this threshold, the notify(ResourceEvent) will be called. The provided ResourceEvent then indicates
the ERROR state is reached.

Returns a comparable object or null if no threshold is set.

144.22.7.8 public Comparable<T> getLowerWarningThreshold()

□ Retrieves the lower warning threshold value set by the listener. If the resource usage decreases un-
der this threshold value, the notify(ResourceEvent) will be called. The provided ResourceEvent then
indicates the WARNING state is reached.

Returns a comparable object or null if no threshold is set.

144.22.7.9 public Comparable<T> getUpperErrorThreshold()

□ Retrieves the upper error threshold value set by this listener. If the resource usage exceeds this
threshold, the notify(ResourceEvent) will be called. The provided ResourceEvent then indicates the
ERROR state is reached.

Returns a comparable object or null if no threshold is reached.

144.22.7.10 public Comparable<T> getUpperWarningThreshold()

□ Retrieves the upper warning threshold value set by this listener. If the resource usage exceeds this
threshold, the notify(ResourceEvent) method will be called. The provided ResourceEvent then indi-
cates the WARNING state is reached.

Returns a comparable object or null if no threshold is reached.

144.22.7.11 public void notify(ResourceEvent<T> event)

event The ResourceEvent object

□ Receives a resource monitoring notification

144.22.8 public interface ResourceMonitor<T>
<T> The type for the Resource.

Representation of the state of a resource for a resource context.

ResourceMonitor objects are returned by the ResourceContext.getMonitor(String) method.

The ResourceMonitor object may be used to:

• Enable/Disable the monitoring of the corresponding resource type for the corresponding re-
source context

• View the current usage of the resource by this resource context

A resource monitor can have a sampling period, a monitored period, or both. For example, for CPU
monitoring, the resource monitor implementation can get the CPU usage of the running threads
once per minute, and calculate the CPU usage per context in percentages based on the last ten such
measurements. This could make a 60 000 milliseconds sampling period, and a 600 000 milliseconds
monitored period.

144.22.8.1 public void delete() throws ResourceMonitorException

□ Disable and delete this instance of Resource Monitor. This method MUST update the list of Re-
sourceMonitor instances hold by the Resource Context (getContext().removeMonitor(this)).

Throws ResourceMonitorException– For example, when the monitor can't be removed from the Resource-
Context.

org.osgi.service.resourcemonitoring Resource Monitoring Specification Version 1.0

Page 960 OSGi Compendium Release 8

144.22.8.2 public void disable() throws ResourceMonitorException

□ Disable the monitoring of this resource type for the resource context associated with this monitor
instance. The resource usage is not available until it is enabled again.

Throws ResourceMonitorException– if the ResourceMonitor instance has been previously deleted

144.22.8.3 public void enable() throws ResourceMonitorException

□ Enable the monitoring of this resource type for the resource context associated with this monitor
instance. This method SHOULD also update the current resource consumption value (to take into
account all previous resource allocations and releases occurred during the time the monitor was dis-
abled).

Throws ResourceMonitorException– if the ResourceMonitor instance can not be enabled (for example,
some MemoryMonitor implementations evaluate the memory consumption by tracking memo-
ry allocation operation at runtime. This kind of Monitor can not get instantaneous memory value.
Such Monitor instances need to be enabled at starting time.). if the ResourceMonitor instance has
been previously deleted

144.22.8.4 public boolean equals(Object resourceMonitor)

resourceMonitor

□ Checks if resourceMonitor is equals to the current instance. A ResourceMonitor rm1
is equals to a ResourceMonitor rm2 if rm1.getContext().equals(rm2.getContext()) and
r1.getType().equals(rm2.getType()).

Returns true if the current instance is equals to the provided resourceMonitor

144.22.8.5 public ResourceContext getContext()

□ Returns the resource context that this monitor belongs to

Returns The associated ResourceContext

144.22.8.6 public long getMonitoredPeriod()

□ Returns the time period for which the usage of this resource type is monitored.

Returns The monitored period in milliseconds, or -1 if a monitored period is not relevant for this resource
type.

144.22.8.7 public String getResourceType()

□ The name of the resource type that this monitor represents

Returns The name of the monitored resource type

144.22.8.8 public long getSamplingPeriod()

□ Returns the sampling period for this resource type.

Returns The sampling period in milliseconds, or -1 if a sampling period is not relevant for this resource type.

144.22.8.9 public Comparable<T> getUsage() throws ResourceMonitorException

□ Returns an object representing the current usage of this resource type by this resource context.

Returns The current usage of this resource type.

Throws ResourceMonitorException– if the ResourceMonitor instance is not enabled.

144.22.8.10 public int hashCode()

□ Retrieves the hashCode value of this ResourceMonitor. The hashCode value is based on the hash-
Code value of the associated ResourceContext and the hashCode value of the type.

Resource Monitoring Specification Version 1.0 org.osgi.service.resourcemonitoring

OSGi Compendium Release 8 Page 961

Returns hashcode

144.22.8.11 public boolean isDeleted()

□ Returns true if the ResourceMonitor instance has been deleted, that is the delete() method has been
called previously.

Returns true if deleted.

144.22.8.12 public boolean isEnabled()

□ Checks if the monitoring for this resource type is enabled for this resource context

Returns true if monitoring for this resource type is enabled for this context, fa lse otherwise

144.22.9 public class ResourceMonitorException
extends Exception
Resource Monitor Exception reports an invalid usage of a monitor.

144.22.9.1 public ResourceMonitorException(String msg)

msg message

□ Create a new ResourceMonitorException

144.22.9.2 public ResourceMonitorException(String msg, Throwable t)

msg message

t

□ Create a new ResourceMonitorException

144.22.10 public interface ResourceMonitorFactory<T>
<T> The type for the Resource.

A Resource Monitor Factory is a service that provides Resource Monitor instances of a specific re-
source type (for example, CPUMonitor, MemoryMonitor...) for every Resource Context. Every Re-
source Monitor Factory service is registered with the RESOURCE_TYPE_PROPERTY mandatory
property. This property indicates which type of Resource Monitor a Resource Monitor Factory is able
to create. The type can also be retrieved through a call to getType(). The type MUST be unique (two
Resource Monitor Factory instances MUST not have the same type).

144.22.10.1 public static final String RESOURCE_TYPE_PROPERTY = "org.osgi.resourcemonitoring.ResourceType"

Resource type property. The value is of type String. For example,
ResourceMonitoringService.RES_TYPE_CPU

144.22.10.2 public ResourceMonitor<T> createResourceMonitor(ResourceContext resourceContext) throws
ResourceMonitorException

resourceContext ResourceContext instance associated with the newly created ResourceMonitor instance

□ Creates a new ResourceMonitor instance. This instance is associated with the ResourceContext in-
stance provided as argument (ResourceContext.addResourceMonitor(ResourceMonitor) is called
by the factory). The newly ResourceMonitor instance is disabled. It can be enabled by calling
ResourceMonitor.enable().

Returns a ResourceMonitor instance

Throws ResourceMonitorException– If the factory is unable to create a ResourceMonitor For example, when
a ResourceMonitor of this type already exists for this ResourceContext

org.osgi.service.resourcemonitoring Resource Monitoring Specification Version 1.0

Page 962 OSGi Compendium Release 8

144.22.10.3 public String getType()

□ Returns the type of ResourceMonitor instance this factory is able to create.

Returns factory type

144.22.11 public interface ResourceMonitoringService
It manages the Resource Context instances. It is available through the OSGi service registry. This ser-
vice holds the existing Resource Context instances. Resource Context instances are created by call-
ing the createContext(String, ResourceContext) method.

144.22.11.1 public static final String FRAMEWORK_CONTEXT_NAME = "framework"

The name of the special, optional resource context, representing the whole OSGi framework.

144.22.11.2 public static final String RES_TYPE_CPU = "resource.type.cpu"

The name of the CPU resource type, used to monitor and control the CPU time used by a resource
context. ResourceMonitoringService implementations must create CPUMonitor instances for this
resource type.

144.22.11.3 public static final String RES_TYPE_DISK_STORAGE = "resource.type.disk.storage"

The name of the disk storage resource type, used to monitor and control the size of the persistent
storage used by a resource context. ResourceMonitoringService implementations must create DiskS-
torageMonitor instances for this resource type.

144.22.11.4 public static final String RES_TYPE_MEMORY = "resource.type.memory"

The name of the memory resource type, used to monitor and control the size of the java heap used
by a resource context. ResourceMonitoringService implementations must create MemoryMonitor
instances for this resource type.

144.22.11.5 public static final String RES_TYPE_SOCKET = "resource.type.socket"

The name of the socket resource type, used to monitor and control the number of existing sockets
used by a resource context. ResourceMonitoringService implementations must create SocketMoni-
tor instances for this resource type.

144.22.11.6 public static final String RES_TYPE_THREADS = "resource.type.threads"

The name of the threads resource type, used to monitor and control the number of threads created
by a resource context. ResourceMonitoringService implementations must create ThreadMonitor in-
stances for this resource type.

144.22.11.7 public static final String SYSTEM_CONTEXT_NAME = "system"

The name of the Resource Context associated with System bundle (bundle 0).

144.22.11.8 public ResourceContext createContext(String name, ResourceContext template)

name The name identifying the context. Names must be unique within the framework instance.

template If a template is provided, the new resource context will inherit all resource monitoring settings (en-
abled monitors, thresholds) from the template.

□ Creates a new ResourceContext.

A ResourceContextEvent with type ResourceContextEvent.RESOURCE_CONTEXT_CREATED will
be sent.

Returns A new ResourceContext instance.

Throws I l legalArgumentException– if a problem occurred, for example if the name is already used.

Resource Monitoring Specification Version 1.0 org.osgi.service.resourcemonitoring.monitor

OSGi Compendium Release 8 Page 963

144.22.11.9 public ResourceContext getContext(String name)

name The resource context name

□ Returns the context with the specified resource context name.

Returns An existing ResourceContext with the specified name, or null if such a context doesn't exist

144.22.11.10 public ResourceContext getContext(long bundleId)

bundleId bundle identifier

□ Returns the ResourceContext associated to the provided bundle id.

Returns the ResourceContext associated to bundle b or null if the bundle b does not belong to a Resource
Context.

144.22.11.11 public String[] getSupportedTypes()

□ Returns a list with the supported resource type names.

Returns An array containing the names of all resource types that this ResourceMonitoringService imple-
mentation supports.

144.22.11.12 public ResourceContext[] listContext()

□ Lists all available resource contexts. The list will contain the special
FRAMEWORK_CONTEXT_NAME context and the SYSTEM_CONTEXT_NAME context, if it is sup-
ported.

Returns An array of ResourceContext objects, or an empty array, if no contexts have been created.

144.23 org.osgi.service.resourcemonitoring.monitor

Resource Monitoring Monitor Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.resourcemonitor ing.monitor ; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.resourcemonitor ing.monitor ; vers ion="[1.0,1.1)"

144.23.1 Summary

• CPUMonitor - A ResourceMonitor for the ResourceMonitoringService.RES_TYPE_CPU resource
type.

• DiskStorageMonitor - A ResourceMonitor for the
ResourceMonitoringService.RES_TYPE_DISK_STORAGE resource type.

• MemoryMonitor - A ResourceMonitor for the ResourceMonitoringService.RES_TYPE_MEMORY
resource type.

• SocketMonitor - A ResourceMonitor for the ResourceMonitoringService.RES_TYPE_SOCKET re-
source type.

• ThreadMonitor - A ResourceMonitor for the ResourceMonitoringService.RES_TYPE_THREADS
resource type.

org.osgi.service.resourcemonitoring.monitor Resource Monitoring Specification Version 1.0

Page 964 OSGi Compendium Release 8

144.23.2 public interface CPUMonitor
extends ResourceMonitor<Long>
A ResourceMonitor for the ResourceMonitoringService.RES_TYPE_CPU resource type. CPUMonitor
instance monitors the CPU consumed by a ResourceContext instance.

144.23.2.1 public long getCPUUsage()

□ Returns the CPU usage as a cumulative number of nanoseconds

The getUsage() method returns the same value, wrapped in a long.

Returns the CPU usage in nanoseconds

144.23.3 public interface DiskStorageMonitor
extends ResourceMonitor<Long>
A ResourceMonitor for the ResourceMonitoringService.RES_TYPE_DISK_STORAGE resource type.
A DiskStorageMonitor instance monitors and limits the persistent storage of the bundle belonging
to the ResourceContext

144.23.3.1 public long getUsedDiskStorage()

□ Returns the sum of the size of the persistent storage areas of the bundles in this resource context.

The getUsage() method returns the same value, wrapped in a long.

Returns the sum of the sizes of the persistent storage areas in bytes

144.23.4 public interface MemoryMonitor
extends ResourceMonitor<Long>
A ResourceMonitor for the ResourceMonitoringService.RES_TYPE_MEMORY resource type. A Mem-
oryMonitor instance monitors and limits the memory used by a ResourceContext instance.

144.23.4.1 public long getMemoryUsage()

□ Returns the size of the java heap used by the bundles in this resource context.

The getUsage() method returns the same value, wrapped in a long.

Returns the size of the used java heap in bytes

144.23.5 public interface SocketMonitor
extends ResourceMonitor<Long>
A ResourceMonitor for the ResourceMonitoringService.RES_TYPE_SOCKET resource type. Socket-
Monitor instance are used to monitor and limit the number of in-use sockets per ResourceContext
instance. SocketMonitor instance handle all types of sockets (TCP, UDP, ...).

A TCP socket is considered to be in-use when it is bound (Socket.bind(java.net.SocketAddress)) or
when it is connected (Socket.connect(java.net.SocketAddress)). It leaves the in-use state when the
socket is closed (Socket.close()). *

A UDP socket is in-use when it is bound (DatagramSocket.bind(java.net.SocketAddress)) or con-
nected (DatagramSocket.connect(java.net.SocketAddress)). A UDP Socket leaves the in-use state
when it is closed (DatagramSocket.close()).

144.23.5.1 public long getSocketUsage()

□ Returns the number of existing socket created by a ResourceContext.

The getUsage() method returns the same value, wrapped in a long.

Resource Monitoring Specification Version 1.0 References

OSGi Compendium Release 8 Page 965

Returns the number of existing socket.

144.23.6 public interface ThreadMonitor
extends ResourceMonitor<Integer>
A ResourceMonitor for the ResourceMonitoringService.RES_TYPE_THREADS resource type. A
ThreadMonitor instance monitors and limits the thread created by a ResourceContext instance.

144.23.6.1 public int getAliveThreads()

□ Returns the number of alive threads created by the bundles in this resource context. A Thread is con-
sidered to be alive when its java state is one of the following:

• RUNNABLE
• BLOCKED
• WAITING
• TIMED_WAITING

The getUsage() method returns the same value, wrapped in a int.

Returns the number of alive threads created by this resource context

144.24 References

[1] Adaptive Monitoring of End-user OSGi based Home Boxes
Y. Maurel, A. Bottaro, R. Kopetz, and K. Attouchi. Component Base Software Engineering, 15th ACM
SIGSOFT International Symposium on Component-Based Software Engineering, CBSE'2012, Berti-
noro, Italy, June 2012.

[2] Memory Monitoring in a Multi-tenant OSGi Execution Environment
K. Attouchi, G. Thomas, A. Bottaro, and G. Muller. Proceedings of the 17th ACM SIGSOFT sympo-
sium on Component Based Software Engineering, CBSE’14, Lille, France, July 2014.

References Resource Monitoring Specification Version 1.0

Page 966 OSGi Compendium Release 8

USB Information Device Category Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 967

145 USB Information Device Category
Specification

Version 1.0

145.1 Introduction
The Device Access Specification on page 55 defines a unified and sophisticated way to handle devices
attached to a residential gateway or devices found in the home network by using various protocols
such as USB, ZigBee, Z-Wave, KNX, UPnP, etc.

Recently, OSGi is gaining popularity as enabling technology for building embedded systems in the
residential market as well as other Internet-of-Things (IoT) domains. Such systems often have USB
interfaces and the need of handling USB devices attached to these systems is increasing.

Device Category Specifications on page 59 defines the concept of device categories. This specification
defines a device category for USB devices.

145.1.1 Entities

• USBInfoDevice - The representation of a USB device. This service provide information defined by
the USB Implementers Forum, Inc.

Figure 145.1 USB Information Device Service Overview Diagram

A Device implA Driver impl

<<Interface>>
USBInfoDevice

Refining driver bundle USB information base driver bundle

attaches device and possible refines

0,1

0..n

Device Manager
impl

listens to all device registrations

0..n

1

device manager

<<Interface>>
Driver

1
corrects all drivers
and matches them to devices

0..n

USBInfoDevice Service USB Information Device Category Specification Version 1.0

Page 968 OSGi Compendium Release 8

145.2 USBInfoDevice Service
The device services are registered in the OSGi service registry with the USBInfoDevice interface. The
service is registered by a USB information base driver bundle when a USB device is attached. A USB
information base driver bundle must implement USBInfoDevice interface and register the OSGi ser-
vice under USBInfoDevice . Refining drivers can find USB devices via USBInfoDevice services and
identify the device. The USBInfoDevice service has a set of properties.

USB Specification, see [1] Universal Serial Bus Specification Revision 1.1 , defines that a USB device has
USB interface(s). A USB information base driver bundle must register USBInfoDevice services num-
ber of USB interfaces. A USBInfoDevice service has information that contains a USB device informa-
tion and a USB interface information.

The USB information base driver may need native drivers such as kernel drivers on Linux. This doc-
ument has a precondition that there are native drivers. It is out of scope how to install native dri-
vers.

145.2.1 Device Access Category
The device access category is called "USBInfo". The category name is defined as a value of
DEVICE_CATEGORY constant. It must be used as a part of theDEVICE_CATEGORY service property
value on the USBInfoDevice service. The category defines the following additional service proper-
ties for the USBInfoDevice service.

145.2.2 Service Properties based upon USB Specification
The USB Specification defines a Device Descriptor. USB devices report their attributes using descrip-
tors. The following USBInfoDevice service properties use information from the USB device descrip-
tor.

Table 145.1 Service properties of USBInfoDevice service from Device Descriptor

The key of service property Type Description Device Descriptor's
Field from USB
Spec.

usbinfo.bcdUSB Str ing OPTIONAL property key. The 4-
digit BCD format.

Example: "0210"

bcdUSB

usbinfo.bDeviceClass Str ing MANDATORY property key.
Hexadecimal, 2-digits.

Example: "ff"

bDeviceClass

usbinfo.bDeviceSubClass Str ing MANDATORY property key.
Hexadecimal, 2-digits.

Example: "ff"

bDeviceSubClass

usbinfo.bDeviceProtocol Str ing MANDATORY property key.
Hexadecimal, 2-digits.

Example: "ff"

bDeviceProtocol

usbinfo.bMaxPacketSize0 Integer OPTIONAL property key. bMaxPacketSize0
usbinfo. idVendor Str ing MANDATORY property key.

Hexadecimal, 4-digits.

Example: "0403"

idVendor

USB Information Device Category Specification Version 1.0 USBInfoDevice Service

OSGi Compendium Release 8 Page 969

The key of service property Type Description Device Descriptor's
Field from USB
Spec.

usbinfo. idProduct Str ing MANDATORY property key.
Hexadecimal, 4-digits.

Example: "8372"

idProduct

usbinfo.bcdDevice Str ing MANDATORY property key. The
4-digit BCD format.

Example: "0200"

bcdDevice

usbinfo.Manufacturer Str ing OPTIONAL property key. String
value referenced by iManufactur-
er. The value is not the index val-
ue of iManufacturer.

Example: "Buffalo Inc."

iManufacturer

usbinfo.Product Str ing OPTIONAL property key. String
value referenced by iProduct. The
value is not the index value of
iProduct.

Example: "USB2.0 PC Camera"

iProduct

usbinfo.Seria lNumber Str ing OPTIONAL property key. String
value referenced by iSerialNum-
ber. The value is not the index
value of iSerialNumber.

Example: "57B0002600000001"

iSerialNumber

usbinfo.bNumConfigurat ions Integer OPTIONAL property key. bNumConfigura-
tions

According to the USB Specification, a device descriptor has some Interface Descriptors.

Refining drivers need each interface descriptor's bInterfaceClass, bInterfaceSubClass and bInterface-
Protocol to identify devices. The following USBInfoDevice service properties use information from
the USB interface descriptor.

Table 145.2 Service properties of USBInfoDevice service from Interface Descriptor

The key of service property Type Description Interface
Descriptor's Field
from USB Spec.

usbinfo.bInterfaceNumber Integer MANDATORY property key. bInterfaceNumber
usbinfo.bAlternateSett ing Integer OPTIONAL property key. bAlternateSetting
usbinfo.bNumEndpoints Integer OPTIONAL property key. bNumEndpoints
usbinfo.bInterfaceClass Str ing MANDATORY property key.

Hexadecimal, 2-digits.

Example: "ff"

bInterfaceClass

usbinfo.bInterfaceSubClass Str ing MANDATORY property key.
Hexadecimal, 2-digits.

Example: "ff"

bInterfaceSub-
Class

usbinfo.bInterfaceProtocol Str ing MANDATORY property key.
Hexadecimal, 2-digits.

Example: "ff"

bInterfaceProtocol

Security USB Information Device Category Specification Version 1.0

Page 970 OSGi Compendium Release 8

The key of service property Type Description Interface
Descriptor's Field
from USB Spec.

usbinfo. Interface Str ing OPTIONAL property key. String
value referenced by iInterface.
The value is not the index value
of iInterface.

iInterface

145.2.3 Additional Service Properties
Some additional service properties are needed to identify and access a device by refining drivers.

Table 145.3 Additional service properties of USBInfoDevice service

The key of service property Type Description
usbinfo.bus Integer MANDATORY property key. The value is Integer. Used

to identify USB devices with same VID / PID. The value
is the ID of the USB bus assigned when connecting the
USB device. USB bus ID is integer. The USB bus ID does
not change while the USB device remains connected.

Example: 3
usbinfo.address Integer MANDATORY property key. The value is Integer. Used

to identify USB devices with same VID / PID. The val-
ue is the ID of the USB address assigned when connect-
ing the USB device. USB address is integer in the range
1-127. The USB address does not change while the USB
device remains connected.

Example: 2

145.2.4 Match scale
When the driver service is registered by the driver bundle, the Device Manager calls
match(ServiceReference) with the argument of the USBInfoDevice service's Service Reference. The
driver responds with a match value based on following choices.

• MATCH_VERSION - Constant for the USB device match scale, indicating a match with
USB_IDVENDOR , USB_IDPRODUCT and USB_BCDDEVICE . Value is 50.

• MATCH_MODEL - Constant for the USB device match scale, indicating a match with
USB_IDVENDOR and USB_IDPRODUCT . Value is 40.

• MATCH_PROTOCOL - Constant for the USB device match scale, indicating a match with
USB_BDEVICECLASS , USB_BDEVICESUBCLASS and USB_BDEVICEPROTOCOL , or a match with
USB_BINTERFACECLASS , USB_BINTERFACESUBCLASS and USB_BINTERFACEPROTOCOL . Value is
30.

• MATCH_SUBCLASS - Constant for the USB device match scale, indicating a match
USB_BDEVICECLASS and USB_BDEVICESUBCLASS , or a match with USB_BINTERFACECLASS and
USB_BINTERFACESUBCLASS . Value is 20.

• MATCH_CLASS - Constant for the USB device match scale, indicating a match with
USB_BDEVICECLASS , or a match with USB_BINTERFACECLASS . Value is 10.

145.3 Security
To acquire USB information device service, The refining bundle require that
ServicePermission[USBInfoDevice, GET] is assigned.

USB Information Device Category Specification Version 1.0 org.osgi.service.usbinfo

OSGi Compendium Release 8 Page 971

USBInfoDevice service should only be implemented by trusted bundles. This bundle requires
ServicePermission[USBInfoDevice, REGISTER] .

145.4 org.osgi.service.usbinfo

USB Information Device Category Specification Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.usbinfo; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.usbinfo; vers ion="[1.0,1.1)"

145.4.1 Summary

• USBInfoDevice - Represents a USB device.

145.4.2 public interface USBInfoDevice
Represents a USB device. For each USB device, an object is registered with the framework under the
USBInfoDevice interface. A USB information base driver must implement this interface.

The values of the USB property names are defined by the USB Implementers Forum, Inc.

Concurrency Thread-safe

145.4.2.1 public static final String DEVICE_CATEGORY = "USBInfo"

Constant for the value of the service property DEVICE_CATEGORY used for all USB devices.

A USB information base driver bundle must set this property key.

See Also org.osgi.service.device.Constants.DEVICE_CATEGORY

145.4.2.2 public static final int MATCH_CLASS = 10

Device Access match value indicating a match with USB_BDEVICECLASS or a match with
USB_BINTERFACECLASS.

145.4.2.3 public static final int MATCH_MODEL = 40

Device Access match value indicating a match with USB_IDVENDOR, and USB_IDPRODUCT.

145.4.2.4 public static final int MATCH_PROTOCOL = 30

Device Access match value indicating a match with USB_BDEVICECLASS,
USB_BDEVICESUBCLASS, and USB_BDEVICEPROTOCOL or a match with
USB_BINTERFACECLASS , USB_BINTERFACESUBCLASS, and USB_BINTERFACEPROTOCOL.

145.4.2.5 public static final int MATCH_SUBCLASS = 20

Device Access match value indicating a match with USB_BDEVICECLASS,
and USB_BDEVICESUBCLASS or a match with USB_BINTERFACECLASS, and
USB_BINTERFACESUBCLASS.

org.osgi.service.usbinfo USB Information Device Category Specification Version 1.0

Page 972 OSGi Compendium Release 8

145.4.2.6 public static final int MATCH_VERSION = 50

Device Access match value indicating a match with USB_IDVENDOR, USB_IDPRODUCT, and
USB_BCDDEVICE.

145.4.2.7 public static final String USB_ADDRESS = "usbinfo.address"

Service property to identify USB address.

Used to identify USB devices with same VID / PID. The value is the ID of the USB address assigned
when connecting the USB device. USB address is an integer in the range 1-127 and does not change
while the USB device remains connected. The value type is Integer.

145.4.2.8 public static final String USB_BALTERNATESETTING = "usbinfo.bAlternateSetting"

Service property for USB Interface Descriptor field "bAlternateSetting".

The value type is Integer. This service property is optional.

145.4.2.9 public static final String USB_BCDDEVICE = "usbinfo.bcdDevice"

Service property for USB Device Descriptor field "bcdDevice".

The value type is String; the value is in 4-digit BCD format. For example, "0200".

145.4.2.10 public static final String USB_BCDUSB = "usbinfo.bcdUSB"

Service property for USB Device Descriptor field "bcdUSB".

The value type is String; the value is in 4-digit BCD format. For example, "0210". This service proper-
ty is optional.

145.4.2.11 public static final String USB_BDEVICECLASS = "usbinfo.bDeviceClass"

Service property for USB Device Descriptor field "bDeviceClass".

The value type is String; the value is in 2-digit hexadecimal. For example, "ff".

145.4.2.12 public static final String USB_BDEVICEPROTOCOL = "usbinfo.bDeviceProtocol"

Service property for USB Device Descriptor field "bDeviceProtocol".

The value type is String; the value is in 2-digit hexadecimal. For example, "ff".

145.4.2.13 public static final String USB_BDEVICESUBCLASS = "usbinfo.bDeviceSubClass"

Service property for USB Device Descriptor field "bDeviceSubClass".

The value type is String; the value is in 2-digit hexadecimal. For example, "ff".

145.4.2.14 public static final String USB_BINTERFACECLASS = "usbinfo.bInterfaceClass"

Service property for USB Interface Descriptor field "bInterfaceClass".

The value type is String; the value is in 2-digit hexadecimal. For example, "ff".

145.4.2.15 public static final String USB_BINTERFACENUMBER = "usbinfo.bInterfaceNumber"

Service property for USB Interface Descriptor field "bInterfaceNumber".

The value type is Integer.

145.4.2.16 public static final String USB_BINTERFACEPROTOCOL = "usbinfo.bInterfaceProtocol"

Service property for USB Interface Descriptor field "bInterfaceProtocol".

The value type is String; the value is in 2-digit hexadecimal. For example, "ff".

USB Information Device Category Specification Version 1.0 org.osgi.service.usbinfo

OSGi Compendium Release 8 Page 973

145.4.2.17 public static final String USB_BINTERFACESUBCLASS = "usbinfo.bInterfaceSubClass"

Service property for USB Interface Descriptor field "bInterfaceSubClass".

The value type is String; the value is in 2-digit hexadecimal. For example, "ff".

145.4.2.18 public static final String USB_BMAXPACKETSIZE0 = "usbinfo.bMaxPacketSize0"

Service property for USB Device Descriptor field "bMaxPacketSize0".

The value type is Integer. This service property is optional.

145.4.2.19 public static final String USB_BNUMCONFIGURATIONS = "usbinfo.bNumConfigurations"

Service property for USB Device Descriptor field "bNumConfigurations".

The value type is Integer. This service property is optional.

145.4.2.20 public static final String USB_BNUMENDPOINTS = "usbinfo.bNumEndpoints"

Service property for USB Interface Descriptor field "bNumEndpoints".

The value type is Integer. This service property is optional.

145.4.2.21 public static final String USB_BUS = "usbinfo.bus"

Service property to identify USB bus.

Used to identify USB devices with same VID / PID. The value is the ID of the USB bus assigned when
connecting the USB device. The USB bus ID is an integer and does not change while the USB device
remains connected. The value type is Integer.

145.4.2.22 public static final String USB_IDPRODUCT = "usbinfo.idProduct"

Service property for USB Device Descriptor field "idProduct".

The value type is String; the value is in 4-digit hexadecimal. For example, "8372".

145.4.2.23 public static final String USB_IDVENDOR = "usbinfo.idVendor"

Service property for USB Device Descriptor field "idVendor".

The value type is String; the value is in 4-digit hexadecimal. For example, "0403".

145.4.2.24 public static final String USB_INTERFACE = "usbinfo.Interface"

Service property for name referenced by USB Interface Descriptor field "iInterface".

The value type is String. This service property is optional.

145.4.2.25 public static final String USB_MANUFACTURER = "usbinfo.Manufacturer"

Service property for name referenced by USB Device Descriptor field "iManufacturer".

The value type is String. For example, "Buffalo Inc.". This service property is optional.

145.4.2.26 public static final String USB_PRODUCT = "usbinfo.Product"

Service property for name referenced by USB Device Descriptor field "iProduct".

The value type is String. For example, "USB2.0 PC Camera". This service property is optional.

145.4.2.27 public static final String USB_SERIALNUMBER = "usbinfo.SerialNumber"

Service property for name referenced by USB Device Descriptor field "iSerialNumber".

The value type is String. For example, "57B0002600000001". This service property is optional.

References USB Information Device Category Specification Version 1.0

Page 974 OSGi Compendium Release 8

145.5 References

[1] Universal Serial Bus Specification Revision 1.1
September 23, 1998.

Serial Device Service Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 975

146 Serial Device Service Specification

Version 1.0

146.1 Introduction
Recently, OSGi is gaining popularity as an enabling technology for building embedded systems in
the residential market as well as other Internet-of-Things (IoT) domains. It is expected that commu-
nication with various devices attached to OSGi enabled gateways will be necessary.

Such communication can be implemented by means of serial connection when using non-IP de-
vices based on ZigBee and Z-wave protocols. The most typical case arises when a USB dongle that
supports such protocols is connected to the USB port of such a device, for example, residential gate-
way. The Operating System on the gateways will recognize the dongle as a virtual serial device and
initiate a serial communication with the application process.

The Serial Device Service specification defines an API for establishing communications between an
OSGi bundle and a serial device, such as a ZigBee coordinator or Z-Wave controller.

Device Category Specifications on page 59 defines the concept of device categories. USB Information De-
vice Category Specification on page 967 defines a device category for USB devices. This specification
and USB Information Device Category Specification on page 967 provide a solution for the USB serial
use case.

146.1.1 Entities

• SerialDevice - This is an OSGi service that is used to represent a serial device. This OSGi service
stores information regarding serial device and its status as service properties and provides com-
munication function with the device.

• SerialEventListener - A listener to events coming from Serial Devices.
• Serial base driver bundle - The bundle that implements SerialDevice . Serial base driver bundle reg-

isters SerialDevice services with the Framework. It provides communication function with the
(physical) serial devices.

• Refining driver bundle - Refining drivers provide a refined view of a physical device that is already
represented by another Device service registered with the Framework (see the details for Device
Access Specification).

SerialDevice Service Serial Device Service Specification Version 1.0

Page 976 OSGi Compendium Release 8

Figure 146.1 Serial Device Service class diagram

A Device impl.A Driver impl.

<<Interface>>
SerialDevice

Refining driver bundle Serial base driver bundle

attaches device
and possible refines

0,1

0..n

<<Interface>>
SerialEventListener

A Listener

receives events from0..n

1

146.2 SerialDevice Service
SerialDevice is the interface expressing a serial device. It maintains information and state of the se-
rial device as a service property. It provides the communication facility with the serial device. Each
SerialDevice expresses each serial device.

SerialDevice service is registered with the service registry with service properties as shown in the
following table.

Table 146.1 Service properties of SerialDevice service

The key of service property Type Description
DEVICE_CATEGORY Str ing[] Constant for the value of the service property

DEVICE_CATEGORY used for all Serial devices. Value is
"Serial".

ser ia l .comport Str ing MANDATORY property key. Represents the name of the
port.

Examples: "/dev/ttyUSB0", "COM5", "/dev/tty.usbserial-
XXXXXX"

The Serial base driver may need native libraries. This document has a precondition that there are na-
tive libraries. It is out of scope how to install native libraries.

Serial Device Service Specification Version 1.0 SerialEventListener Service

OSGi Compendium Release 8 Page 977

146.3 SerialEventListener Service
Serial events are sent using the white board model, in which a bundle interested in receiving the Se-
rial events registers an object implementing the SerialEventListener interface. A COM port name
can be set to limit the events for which a bundle is notified.

146.4 USB Serial Example
The Serial base driver registers a SerialDevice service that represents a (physical) Serial device. If the
device is USB Serial device, then it is recommended that the base driver implements USBInfoDevice
and SerialDevice concurrently, and registers the service under USBInfoDevice and SerialDevice in-
terfaces.

146.5 Security
To acquire the Serial device service, the refining bundle need that ServicePermission[Seria lDevice,
GET] are assigned.

To receive the Serial events, the bundles need that ServicePermission[Seria lEventListener,
REGISTER] are assigned.

SerialDevice service should only be implemented by trusted bundles. This bundle requires
ServicePermission[Seria lDevice, REGISTER] and ServicePermission[Seria lEventListener, GET] .

146.6 org.osgi.service.serial

Serial Device Service Specification Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.ser ia l ; vers ion="[1.0,2.0)"

146.6.1 Summary

• SerialConstants - Constants for serial device settings.
• SerialDevice - SerialDevice is a service representing a device performing serial communication.
• SerialDeviceException - A exception used to indicate that a serial device communication prob-

lem occurred.
• SerialEvent - A serial device event.
• SerialEventListener - Serial events are sent using the white board model, in which a bundle in-

terested in receiving the Serial events registers an object implementing the SerialEventListener
interface.

• SerialPortConfigurat ion - An object represents the Serial port configuration.

146.6.2 public final class SerialConstants
Constants for serial device settings.

org.osgi.service.serial Serial Device Service Specification Version 1.0

Page 978 OSGi Compendium Release 8

146.6.2.1 public static final int BAUD_115200 = 115200

Baud rate: 115200.

146.6.2.2 public static final int BAUD_14400 = 14400

Baud rate: 14400.

146.6.2.3 public static final int BAUD_19200 = 19200

Baud rate: 19200.

146.6.2.4 public static final int BAUD_38400 = 38400

Baud rate: 38400.

146.6.2.5 public static final int BAUD_57600 = 57600

Baud rate: 57600.

146.6.2.6 public static final int BAUD_9600 = 9600

Baud rate: 9600.

146.6.2.7 public static final int BAUD_AUTO = -1

Baud rate: Automatic baud rate (if available).

146.6.2.8 public static final int DATABITS_5 = 5

Data bits: 5.

146.6.2.9 public static final int DATABITS_6 = 6

Data bits: 6.

146.6.2.10 public static final int DATABITS_7 = 7

Data bits: 7.

146.6.2.11 public static final int DATABITS_8 = 8

Data bits: 8.

146.6.2.12 public static final int FLOWCONTROL_NONE = 0

Flow control: None.

146.6.2.13 public static final int FLOWCONTROL_RTSCTS_IN = 1

Flow control: RTS/CTS on input.

146.6.2.14 public static final int FLOWCONTROL_RTSCTS_OUT = 2

Flow control: RTS/CTS on output.

146.6.2.15 public static final int FLOWCONTROL_XONXOFF_IN = 4

Flow control: XON/XOFF on input.

146.6.2.16 public static final int FLOWCONTROL_XONXOFF_OUT = 8

Flow control: XON/XOFF on output.

146.6.2.17 public static final int PARITY_EVEN = 2

Parity: Even.

Serial Device Service Specification Version 1.0 org.osgi.service.serial

OSGi Compendium Release 8 Page 979

146.6.2.18 public static final int PARITY_MARK = 3

Parity: Mark.

146.6.2.19 public static final int PARITY_NONE = 0

Parity: None.

146.6.2.20 public static final int PARITY_ODD = 1

Parity: Odd.

146.6.2.21 public static final int PARITY_SPACE = 4

Parity: Space.

146.6.2.22 public static final int STOPBITS_1 = 1

Stop bits: 1.

146.6.2.23 public static final int STOPBITS_1_5 = 3

Stop bits: 1.5.

146.6.2.24 public static final int STOPBITS_2 = 2

Stop bits: 2.

146.6.3 public interface SerialDevice
SerialDevice is a service representing a device performing serial communication.

Concurrency Thread-safe

146.6.3.1 public static final String DEVICE_CATEGORY = "Serial"

Constant for the value of the service property DEVICE_CATEGORY used for all Serial devices.

A Serial base driver bundle must set this property key.

See Also org.osgi.service.device.Constants.DEVICE_CATEGORY

146.6.3.2 public static final String SERIAL_COMPORT = "serial.comport"

Service property for the serial comport.

Represents the name of the port. The value type is String.

For example, "/dev/ttyUSB0", "COM5", or "/dev/tty.usbserial-XXXXXX".

146.6.3.3 public SerialPortConfiguration getConfiguration()

□ Gets the Serial port configuration.

Returns The SerialPortConfiguration object containing the configuration.

146.6.3.4 public InputStream getInputStream() throws IOException

□ Returns an input stream.

Returns An input stream.

Throws IOException– if an I/O error occurred.

146.6.3.5 public OutputStream getOutputStream() throws IOException

□ Returns an output stream.

Returns An output stream.

org.osgi.service.serial Serial Device Service Specification Version 1.0

Page 980 OSGi Compendium Release 8

Throws IOException– If an I/O error occurred.

146.6.3.6 public boolean isCTS()

□ Returns the CTS state.

Returns The CTS state.

146.6.3.7 public boolean isDSR()

□ Returns the DSR state.

Returns The DSR state.

146.6.3.8 public boolean isDTR()

□ Returns the DTR state.

Returns The DTR state.

146.6.3.9 public boolean isRTS()

□ Returns the DTS state.

Returns The DTS state.

146.6.3.10 public void setConfiguration(SerialPortConfiguration configuration) throws SerialDeviceException

configuration The SerialPortConfiguration object containing the configuration.

□ Sets the Serial port configuration.

Throws SerialDeviceException– If the parameter is specified incorrectly or the parameter is not supported.

146.6.3.11 public void setDTR(boolean dtr) throws SerialDeviceException

dtr true for DTR on; fa lse for DTR for off.

□ Sets the DTR state.

Throws SerialDeviceException– If the parameter is not supported.

146.6.3.12 public void setRTS(boolean rts) throws SerialDeviceException

rts true for RTS on; fa lse for RTS for off.

□ Sets the RTS state.

Throws SerialDeviceException– If the parameter is not supported.

146.6.4 public class SerialDeviceException
extends Exception
A exception used to indicate that a serial device communication problem occurred.

146.6.4.1 public static final int PORT_IN_USE = 1

The port in use.

146.6.4.2 public static final int UNKNOWN = 0

The reason is unknown.

146.6.4.3 public static final int UNSUPPORTED_OPERATION = 2

The operation is unsupported.

146.6.4.4 public SerialDeviceException(int type, String message)

type The type for this exception.

Serial Device Service Specification Version 1.0 org.osgi.service.serial

OSGi Compendium Release 8 Page 981

message The message.

□ Creates a SerialDeviceException with the specified type and message.

146.6.4.5 public int getType()

□ Returns the type for this exception.

Returns The type of this exception.

146.6.5 public interface SerialEvent
A serial device event. SerialEvent objects are delivered to SerialEventListeners when an event oc-
curs.

A type of code is used to identify the event. Additional event types may be defined in the future.

Concurrency Thread-safe

146.6.5.1 public static final int DATA_AVAILABLE = 1

Event type indicating data available.

146.6.5.2 public String getComPort()

□ Returns the port name of this event.

This value must be equal to the value of SerialDevice.SERIAL_COMPORT service property of the Se-
rialDevice.

Returns The port name of this event.

146.6.5.3 public int getType()

□ Returns the type of this event.

Returns The type of this event.

146.6.6 public interface SerialEventListener
Serial events are sent using the white board model, in which a bundle interested in receiving the Se-
rial events registers an object implementing the SerialEventListener interface. A COM port name
can be set to limit the events for which a bundle is notified.

Concurrency Thread-safe

146.6.6.1 public static final String SERIAL_COMPORT = "serial.comport"

Key for a service property that is used to limit received events.

146.6.6.2 public void notifyEvent(SerialEvent event)

event The SerialEvent object.

□ Callback method that is invoked for received an event.

146.6.7 public class SerialPortConfiguration
An object represents the Serial port configuration.

Concurrency Immutable

146.6.7.1 public SerialPortConfiguration(int baudRate, int dataBits, int flowControl, int parity, int stopBits)

baudRate Baud rate.

dataBits Data bits.

org.osgi.service.serial Serial Device Service Specification Version 1.0

Page 982 OSGi Compendium Release 8

flowControl Flow control.

parity Parity.

stopBits Stop bits.

□ Creates an instance of the serial port configuration with the specified Baud rate, Data bits, Flow con-
trol, Parity and Stop bits.

146.6.7.2 public SerialPortConfiguration(int baudRate)

baudRate Baud rate.

□ Creates an instance of the serial port configuration with the specified Baud rate and the following
configuration: Data bits = 8, Flow control = none, Parity = none, Stop bits = 1.

146.6.7.3 public SerialPortConfiguration()

□ Creates an instance of the serial port configuration with the following configuration: Baud rate = au-
to, Data bits = 8, Flow control = none, Parity = none, Stop bits = 1.

146.6.7.4 public int getBaudRate()

□ Returns the baud rate.

Returns The baud rate.

146.6.7.5 public int getDataBits()

□ Returns the data bits.

Returns The data bits.

146.6.7.6 public int getFlowControl()

□ Returns the flow control.

Returns The flow control.

146.6.7.7 public int getParity()

□ Returns the parity.

Returns The parity.

146.6.7.8 public int getStopBits()

□ Returns the stop bits.

Returns The stop bits.

Transaction Control Service Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 983

147 Transaction Control Service
Specification

Version 1.0

147.1 Introduction
Software Transactions are an important aspect of most modern applications. The job of a Transac-
tion is to ensure logical consistency for units of work within the application. Any time that the ap-
plication accesses a persistent external resource then a Transaction ensures that the set of changes
made to the resource(s) are Atomic, Consistent, Isolated, and Durable (ACID).

There are a variety of techniques for managing the lifecycle of software Transactions used in an ap-
plication. The most primitive mechanisms are for the application code to directly interact with the
Transaction Manager, but higher level abstractions can automatically manage the lifecycle of Trans-
actions through the use of Aspect Oriented Programming. Whatever techniques are used to manage
the Transaction lifecycle it is also necessary for any resource access that occurs within the Transac-
tion to be registered with the Transaction manager. As with managing the Transaction lifecycle, this
work may be performed by the client, or by a an intermediate framework without direct action from
the client.

OSGi applications consist of a set of independent modules which interact via the OSGi service reg-
istry; as such there is no single container which can be relied upon to manage the range of tasks
needed to successfully use a Transaction. This leaves OSGi clients with little choice but to depend
on specific environments, sacrificing portability, or to directly use Transactions via the JTA Transac-
tion Services Specification on page 557. The purpose of the Transaction Control Service is twofold:

• To enable a portable, modular abstraction for Transaction lifecycle management
• To allow different resource types to be easily used within a Transaction

147.1.1 Essentials

• Scoped Work - A function or code block with an associated execution context, known as a Scope.
The Scope may be Transactional, that is, associated with a Transaction, or a No Transaction Scope,
that is, with no associated Transaction.

• Client - Application code that wishes to invoke one or more pieces of Scoped Work.
• Transaction Control Service - The OSGi service representing the Transaction Control Service imple-

mentation. Used by the Client to execute pieces of Scoped Work.
• Resource - A local or remote software component which is stateful and can participate in a trans-

action.
• Resource Provider - A service or object which provides managed access to a Scoped Resource, that

is, a managed connection to the Resource which integrates with ongoing Transactions as neces-
sary.

• Transaction Context - A Java object representing the state of a Scope

Usage Transaction Control Service Specification Version 1.0

Page 984 OSGi Compendium Release 8

Figure 147.1 Class and Service overview

Client <<service>>
ResourceProvider

Resource
Provider

<<service>>
TransactionControl Transaction

Control

147.1.2 Entities

• Transaction Control Service - A service that can execute pieces of work within a Scope, and be
queried to establish the current Scope.

• Client - The code that requests for Work to be run in a particular Scope.
• Work - A collection of instructions that interact with zero or more Resources within a Scope
• Scoped Resource - A resource connection with a managed lifecycle. The connection will automati-

cally participate in Transactions associated with Transactional Scopes, and its lifecycle is tied to
the Scope within which it is used.

147.2 Usage
This section is an introduction in the usage of the Transaction Control Service. It is not the formal
specification, the normative part starts at Transaction Control Service on page 987. This section
leaves out some of the details for clarity.

147.2.1 Synopsis
The Transaction Control Service provides a mechanism for a client to run work within a defined
Scope. Typically a Scope is also associated with a Transaction. The purpose of a Scope is to simpli-
fy the lifecycle of resources, and to allow those resources to participate in any ongoing Transaction.
Any Scoped Resources accessed during a Scope will remain available throughout the scope, and be
automatically cleaned up when the Scope completes.

Each Scope is started by the Client by passing piece of work to the Transaction Control Service. The
transaction control service will then begin a scope if needed, execute the work, and then complete
the scope if needed. The different methods on the Transaction Control Service provide different life-
cycle semantics for the Scope. Some methods establish a Transactional Scope, others may suspend
an active Transactional Scope replacing it with a No Transaction Scope.

When a piece of Scoped Work is executing it may access one or more Scoped Resources. When a
Scoped Resource is first accessed within a Scope it is bound to that Scope so that future accesses use
the same physical resource. At the end of the Scope the resource is detached from the scope and the
physical resource is released. If the Scope is Transactional then the Scoped Resource will also partici-
pate in the transaction.

At the end of a piece of Scoped Work the Scope is finished. For a No Transaction Scope this simply
involves calling any registered callbacks. For a Transactional Scope, however, the Transaction must
be completed or rolled back. If the Scoped Work exits normally, and no call has been made to force

Transaction Control Service Specification Version 1.0 Usage

OSGi Compendium Release 8 Page 985

the Transaction to roll back, then the Transaction will commit. If, however, the Work exits with an
Exception or the Transaction has been marked for roll back, then the Transaction will roll back. The
result of the Work then flows back to the caller in an appropriate way.

147.2.2 Running Scoped Work
The general pattern for a client is to obtain the Transaction Control Service and one or more Re-
source Provider instances. The Resource Provider(s) may come from the Service Registry, or from a
Factory, and are used to create Scoped Resource instances. These instances can then be used in the
scoped work. This is demonstrated in the following example:

@Reference
TransactionControl control;

Connection connection;

@Reference
void setResourceProvider(JDBCConnectionProvider provider) {
 connection = provider.getResrouce(control)
}

public void addMessage(String message) {
 control.required(() -> {
 PreparedStatement ps = connection.prepareStatement(
 "Insert into TEST_TABLE values (?)");
 ps.setString(1, message);
 return ps.executeUpdate();
 });
}

public List<String> listMessages(String message) {
 control.notSupported(() -> {
 List<String> results = new ArrayList<String>();
 ResultSet rs = connection.createStatement()
 .executeQuery("Select * from TEST_TABLE");
 while(rs.next()) {
 results.add(rs.getString(1));
 }
 return results;
 });
}

This example demonstrates how simply clients can execute scoped work using the Transaction
Control Service. In this case write operations always occur in a Transactional Scope, but read opera-
tions may occur in a Transactional Scope or a No Transaction Scope. In all cases the lifecycle of the
underlying connection is automatically managed, and there is no need to close or commit the con-
nection.

147.2.3 Accessing Scoped Resources
The Transaction Control Service can be used to manage the Scope of any piece of Work, but Scopes
are primarily used to simplify resource lifecycle management when using Scoped Resources. A
Scoped Resource is created using a Resource Provider, and the returned object can then be used in
any scope to access the associated Resource.

The example in Running Scoped Work on page 985 uses a JDBCConnectionProvider , which is a spe-
cialization of the generic ResourceProvider interface that returns JDBC Connection objects. Other

Usage Transaction Control Service Specification Version 1.0

Page 986 OSGi Compendium Release 8

specializations of the Resource Provider exist in this specification, and third party providers may
provide their own specializations for proprietary resource types.

Once a Resource Provider has been obtained, a Scoped Resource is created from it by passing the
Transaction Control Service to the getResource method. This returns the Scoped Resource object
that can then be used in Scoped Work.

147.2.4 Exception Management
One of the most significant sources of error in applications that use transactions is caused by incor-
rect Exception Handling. These errors are the primary reason for using a framework or container to
manage transactions, rather than trying to manage them in the application code.

Exceptions tend to be more common in code that makes use of transactions because the code is usu-
ally performing actions that may fail, for example making updates to a database. Also, many of these
exceptions (such as java.sql .SQLException) are checked exceptions. As Scoped Work will typical-
ly raise both checked and unchecked exceptions it is defined as a Cal lable . As the callable interface
throws Exception it is not necessary to catch or wrap any exception generated within Scoped Work.

// An SQLException may be raised by the query,
// but we don't need to catch it
control.required(() -> connection.createStatement()
 .executeQuery("Insert into TEST_TABLE values ('Hello World!')"));

An exception indicates that a problem has occurred in a piece of code therefore, by default, any
exception thrown from inside a Transactional Scope will cause the Transaction to roll back. This
means that the Scoped Work can safely ignore any updates that were made in the event of an excep-
tion.

147.2.4.1 Handling Exceptions

Scoped Work is free to throw checked or unchecked exceptions, however these exceptions cannot
be directly thrown on by the Transaction Control Service. The primary reason for this is that direct-
ly rethrowing the exception would force users of the Transaction Control Service to either:

• Declare throws Exception on the calling method
• Add try/catch Exception blocks around the calls to the Transaction Control Service.

Both of these solutions are undesirable, as they force unnecessary boilerplate code, and potentially
shadow real checked exceptions in the API. Exceptions generated as part of Scoped Work are there-
fore wrapped by the Transaction Control Service in a ScopedWorkException . ScopedWorkException
is an unchecked exception and so can be ignored if no special handling is required.

In the case where the callers API requires the unwrapped exception type to be thrown a Scoped-
WorkException can be easily unwrapped using the as method.

try {
 control.required(() -> connection.createStatement()
 .executeQuery("Insert into TEST_TABLE values ('Hello World!')"));
} catch (ScopedWorkException swe) {
 // This line throws the cause of the ScopedWorkException as
 // an SQLException or as a RuntimeException if appropriate
 throw swe.as(SQLException.class);
}

If there is more than one potential checked Exception type that should be rethrown then the asO-
neOf method can be used.

try {

Transaction Control Service Specification Version 1.0 Transaction Control Service

OSGi Compendium Release 8 Page 987

 control.required(() -> connection.createStatement()
 .executeQuery("Insert into TEST_TABLE values ('Hello World!')"));
} catch (ScopedWorkException swe) {
 // This line throws the cause of the ScopedWorkException as
 // an SQLException or as a RuntimeException if appropriate
 throw swe.asOneOf(SQLRecoverableException.class, SQLTransientException.class);
}

147.2.4.2 Avoiding Transaction Rollback

In general if a piece of Work running in a Transactional Scope exits with an exception the associated
Transaction will roll back. Sometimes, however, certain exception types should not cause the Trans-
action to roll back. This can be indicated to the Transaction Control Service when the Scope is being
declared.

control.build()
 .noRollbackFor(URISyntaxException.class)
 .required(() -> {
 ...
 });

In this example the Transaction does not roll back for any URISyntaxException . Sometimes this is
too coarse grained, and the Transaction should only avoid rolling back for one specific exception in-
stance. In this case the instance can be passed to the Transaction Control Service ignoreException
method.

control.required(() -> {
 try {
 // A URISynaxException from here is safe
 ...
 } catch (URISyntaxException e) {
 control.ignoreException(e);
 throw e;
 }
 // A URISynaxException from here is *not* safe
 ...
 });

147.2.5 Multi Threading
By its very definition a Scope is associated with a single piece of Work, and therefore a single thread.
If a piece of Scoped Work starts new threads, or submits tasks to other threads, then any code exe-
cuted on those threads will not occur within the Scope.

Scoped Resources are always thread-safe, and can be used concurrently in different Scopes. This
is true even if the underlying physical resources are not thread safe. It is the responsibility of the
Scoped Resource implementation to ensure that the underlying physical resources are protected
correctly.

147.3 Transaction Control Service
The Transaction Control Service is the primary interaction point between a client and the Transac-
tion Control Service implementation. A Transaction Control Service implementation must expose a
service implementing the TransactionControl interface.

Clients obtain an instance of the Transaction Control Service using the normal OSGi service registry
mechanisms, either directly using the OSGi framework API, or using dependency injection.

Transaction Control Service Transaction Control Service Specification Version 1.0

Page 988 OSGi Compendium Release 8

The Transaction Control Service is used to:

• Execute work within a defined scope
• Query the current execution scope
• Associate objects with the current execution scope
• Register for callbacks when the scope ends
• Enlist resource with the current transaction (if there is a Transaction Scope active)
• Mark the current scope for rollback (if there is a Transaction scope)

147.3.1 Scope Life Cycle
The life cycle of a scope is tied to the execution of a piece of scoped work. Unless a scope is being in-
herited then a scope starts immediately before the scoped work executes and ends immediately after
the scoped work completes, even if the scoped work throws an exception.

The first action that a client wishing to execute scoped work must take is to identify the type of
scope that they wish to use. The work should then be passed to the relevant method on the Transac-
tionControl service:

Table 147.1 Methods for executing scoped work

Method Name Existing Scope Description
required(Cal lable) Unscoped Begins a new Transaction scope and executes the work inside it
required(Cal lable) No Transaction scope Suspends the No Transaction Scope and begins a new Transaction

scope, executing the work inside it. After the work completes the
original scope is restored.

required(Cal lable) Transaction scope Runs the work within the existing scope
requiresNew(Cal lable) Unscoped Begins a new Transaction scope and executes the work inside it
requiresNew(Cal lable) No Transaction scope Suspends the No Transaction Scope and begins a new Transaction

scope, executing the work inside it. After the work completes the
original scope is restored.

requiresNew(Cal lable) Transaction scope Suspends the Transaction Scope and begins a new Transaction
scope, executing the work inside it. After the work completes the
original scope is restored.

supports(Cal lable) Unscoped Begins a new No Transaction scope and executes the work inside
it

supports(Cal lable) No Transaction scope Runs the work within the existing scope
supports(Cal lable) Transaction scope Runs the work within the existing scope
notSupported(Cal lable) Unscoped Begins a new No Transaction scope and executes the work inside

it
notSupported(Cal lable) No Transaction scope Runs the work within the existing scope
notSupported(Cal lable) Transaction scope Suspends the Transaction Scope and begins a new No Transaction

scope, executing the work inside it. After the work completes the
original transaction scope is restored.

Once the relevant method has been identified the client passes the scoped work to the Transaction
Control Service. In the typical case the Transaction Control Service must then:

1. Establish a new scope
2. Execute the scoped work
3. Finish the scope, calling any registered callbacks and committing the Transaction if the scope is

a Transaction Scope
4. Return the result of the scoped work to the client

Transaction Control Service Specification Version 1.0 Transaction Control Service

OSGi Compendium Release 8 Page 989

The Transaction Control Service must only finish a scope once, after the execution of the Scoped
Work which originally started the scope. This means that callbacks registered by a piece of Scoped
Work may not run immediately after the work finishes, but will be delayed until the parent task has
finished if the scope was inherited.

147.3.2 Scopes and Exception Management
Resource access is intrinsically error-prone, and therefore there are many potential failure scenarios.
Exceptions therefore form an important part of the scope lifecycle.

147.3.2.1 Client Exceptions

The work provided by the client to the Transaction Control Service is passed as a Cal lable , meaning
that the work may throw an Exception. An Exception thrown by the work is known as a Client Ex-
ception.

If a client exception is thrown then it must be caught by the Transaction Control Service and han-
dled appropriately by finishing the scope as required. Once the scope has completed the client ex-
ception must be wrapped in a ScopedWorkException and rethrown by the Transaction Control ser-
vice.

If a number of scopes are nested then a ScopedWorkException may be received as a client Excep-
tion. A ScopedWorkException must not be re-wrapped by the Transaction Control Service using the
normal Exception chaining mechanism, but instead a new ScopedWorkException must be creat-
ed initialized with the original cause. The caught ScopedWorkException must then be added to the
new ScopedWorkException as a suppressed Exception. This prevents clients from having to deeply
introspect the exception cause chain to locate the original error.

147.3.2.2 Rethrowing Client Exceptions

In the general case clients will not need to catch a ScopedWorkException, and it can be left to re-
port/handle at a higher level. Sometimes, however, the Exceptions thrown by a piece of work repre-
sent an important part of the API, and they need to be thrown on without being wrapped in a Scope-
dWorkException. The ScopedWorkException provides a simple mechanism to do this. The client
simply calls one of the asOneOf(Class,Class) methods which will throw the cause of the Exception
as one of the supplied checked Exception types, or directly as an unchecked Exception if the cause is
unchecked.

The asOneOf() methods always throw an Exception, but the method return value is declared as a
RuntimeException. This can be used to simplify the act of rethrowing the cause when using this
method.

try {
 txControl.required(() -> {
 // Do some work in here that may throw IOException
 // or ClassNotFoundException
 return result;
 });
} catch (ScopedWorkException swe) {
 throw swe.asOneOf(IOException.class, ClassNotFoundException.class);
}

If the cause of a ScopedWorkException is a checked exception, but that exception is not assignable
to any of the types passed to the asOneOf() method then the cause of the ScopedWorkException
will still be thrown, however there will be no compiler assistance for the user when writing their
throws clause.

Transaction Control Service Transaction Control Service Specification Version 1.0

Page 990 OSGi Compendium Release 8

147.3.2.3 Exceptions Generated by the Transaction Control Service

Many operations performed by the Transaction Control Service, particularly when finishing a
scope, may result in an Exception. Internal failures, for example a failure when attempting to com-
mit a resource, must be wrapped in a TransactionException and thrown to the client.

A TransactionException must never override a ScopedWorkException. In the case where a Scoped-
WorkException should be thrown and a Transaction Control Service failure occurs then the Trans-
actionException must be set as a suppressed exception in the ScopedWorkException.

147.3.3 Transaction Scope lifecycle
In addition to callbacks and scoped variables Transaction scopes also provide an ongoing software
transaction which shares the lifecycle of the scope. There are therefore additional lifecycle rules for
Transaction Scopes

147.3.3.1 Triggering Rollback in Transaction Scopes

By default a transaction will commit automatically when the piece of work completes normally. If
this is not desired (for example if the work's business logic determines that the transaction should
not complete) then the work may trigger a rollback in one of two ways.

Calling setRol lbackOnly() on the Transaction Control object will mark the transaction for rollback
so that it will never commit, even if the method completes normally. This is a one-way operation,
and the rollback state can be queried using getRol lbackOnly()

txControl.required(() -> {
 // Do some work in here
 ...
 // This work will not be committed!
 txControl.setRollbackOnly();
 return result;
 });

Throwing an exception from the piece of work will, by default, cause the transaction to be rolled
back. Note that this is different from Java EE behavior, where a checked exceptions does not trigger
rollback. This is a deliberate difference as many applications get the wrong behavior based on this
default. For example SQLException is a commonly thrown Exception in JDBC, but is rarely, if ever, a
“safe return”. Forgetting to override this behavior means that production code will fail to enforce the
correct transaction boundaries.

txControl.required(() -> {
 // Do some work in here
 ...
 // Uh oh – something went wrong!
 throw new IllegalStateException(“Kaboom!”);
 });

147.3.3.2 Avoiding Rollback

Sometimes it is preferable for a piece of work to throw an exception, but for that exception not to
trigger a rollback of the transaction. For example some business exceptions may be considered “nor-
mal”, or it may be the case that the work performed so far must be persisted for audit reasons.

There are two ways to prevent a transaction from rolling back when a particular exception occurs

The Transaction Control service provides a TransactionBui lder . The builder can be used to define
sets of Exception types that should, or should not, trigger rollback. The most specific match will be
used to determine whether the transaction should roll back or not.

Transaction Control Service Specification Version 1.0 Transaction Control Service

OSGi Compendium Release 8 Page 991

The Transaction Control service provides an ignoreException(Throwable) method. This can be used
from within an Active Transaction to declare a specific Exception object that should not trigger roll-
back.

If a transaction is marked for rollback using setRol lbackOnly() then it must roll back, even if the
work throws an exception which would not normally trigger a rollback.

147.3.3.3 Rollback in inherited transactions

If a piece of scoped work inherits a transaction scope then the transaction is not committed until
the inherited scope completes. Therefore if the nested scoped work throws an exception then this
must mark the transaction for rollback, unless the exception has been explicitly ignored or config-
ured not to cause rollback.

Any exception thrown by the nested scoped work must result in a ScopedWorkException in exactly
the same way as it would when not nested.

txControl.required(() -> {
 // Do some work in here
 ...
 try {
 txControl.required(() -> {
 // The outer transaction is inherited
 throw new RuntimeException();
 });
 } catch (ScopedWorkException swe) {
 // The transaction is still active, but now marked for rollback
 }
 });

147.3.3.4 Read Only transactions

Resources accessed within a transaction are frequently used to update persistent data, however in
some cases it is known in advance that no changes will be made to the data. In the case where no
changes are going to be made then different, more optimal, algorithms can be used by the resource
to improve performance. It is therefore useful for applications to be able to indicate when resources
are going to be used in a read-only way.

To indicate that a transaction is read-only the TransactionBuilder must be used.

txControl.build()
 .readOnly()
 .required(() -> {
 // Do some work in here
 ...
 return result;
 });

The readOnly method provides a hint to the TransactionControl service that the scoped work only
uses read access to resources. The TransactionControl service is free to ignore this hint if it does not
offer read-only optimizations. Also, read-only only applies to Transaction Scopes. No Transaction
Scopes always ignore the call to readOnly.

147.3.3.4.1 Determining whether a Transaction is read only

The TransactionContext provides access to whether the transaction is read only using the isRead-
Only() method. This method will return true if the transaction was started using the read only flag,
and the TransactionControl service supports read-only optimization.

The TransactionContext Transaction Control Service Specification Version 1.0

Page 992 OSGi Compendium Release 8

This method is primarily available so that resource providers can set their read-only status correctly
when they first enlist with the transaction. Resource providers are free to ignore the read only status
as it is provided for optimization only.

147.3.3.4.2 Writing to resources using in a read only transaction

When a client begins a transaction in read-only mode there is no API restriction that prevents them
from writing to one or more resources. If the scoped work does write to the resource then the result
is undefined. The write may succeed, or it may result in an exception, triggering a rollback.

Clients should avoid declaring a transaction as read only unless they are certain that no resources
are updated within the scope of the work. This includes any operations performed by external ser-
vices which inherit the transaction.

147.3.3.4.3 Changing the read state in nested transactions

When a client begins a Transaction Scope using the required method then it inherits the existing
Transaction Scope if it exists. It is not possible to change the writability of an inherited transaction.

In the case where the inherited transaction is a writable transaction then the readOnly() state de-
clared for the nested scope will be ignored. In the case where the inherited transaction is read only
then an attempt to change the transaction to a writable transaction will fail with a TransactionEx-
ception.

If the nested transaction is declared using requiresNew then it will create a new transaction which
may have a different writability from the outer scope.

147.4 The TransactionContext
When a client uses the TransactionControl service to scope a piece of work, the scope gains an asso-
ciated Transaction Context. The current transaction context is not normally needed by clients, but
is an important integration point for ResourceProviders, and for clients that wish to register transac-
tion completion callbacks.

The Transaction Control Service provides methods that can be used to query the current transaction
context.

• activeTransaction() - returns true if there is a Transaction scope associated with the currently ex-
ecuting work.

• activeScope() - returns true if there is a Transaction Scope or a No Transaction Scope associated
with the currently executing work.

• getCurrentContext() - returns the current TransactionContext , or nul l if the currently executing
code is unscoped. If the current work has a No Transaction scope then the returned Transaction
Context will report its status as NO_TRANSACTION

If a Transaction scope is active then it may either be backed by a Local Transaction, or by an XA
Transaction, which affects the types of resource that can be used with the Transaction Context. The
transaction support can be queried using the supportsLocal() and supportsXA() methods on the
transaction context object. Some implementations may support both XA and Local resources in the
same transaction, but these are still considered to be XA Transactions.

147.4.1 Transaction Lifecycle callbacks
In addition to registering Resources with the Transaction Context clients or resources may
register callback functions. Callback functions can run either before or after the transaction
finishes, depending as to whether they are registered using preCompletion(Runnable) or
postCompletion(Consumer) to register their callbacks.

Transaction Control Service Specification Version 1.0 The TransactionContext

OSGi Compendium Release 8 Page 993

Lifecycle callbacks may be registered at any point during the execution of scoped work. Once the
scoped work has finished it is no longer possible to register a pre-completion callback (for example
inside another lifecycle callback). Attempts to register a pre-completion callback outside the exe-
cution of the scoped work must fail with an I l legalStateException . Post-completion callbacks may
be also be registered with the Transaction Context after the scoped work completes, up to the point
where the first post-completion callback is called. Specifically a pre-completion callback, or a re-
source participating in the transaction may register a post-completion callback. Attempts to register
a post-completion callback after this must fail with an I l legalStateException .

147.4.1.1 Pre-completion Callbacks

Pre-completion callbacks run immediately after the end of the scoped work, and before any associat-
ed transaction finishes. Because pre-completion callbacks run before the end of the transaction they
are able to prevent it from committing, either by calling setRol lbackOnly() or potentially by throw-
ing a RuntimeException . If the scope is a No Transaction scope then there is no commit to prevent.

If scoped work completes with an exception that triggers rollback, then the Transaction Context
must be marked for rollback before calling any pre-completion callbacks.

Exceptions generated by pre-completion callbacks are gathered, If any of the generated Exceptions
would trigger rollback then the transaction is treated as having failed with the first of those excep-
tions. Any other exceptions are added as suppressed exceptions. Assuming that no Client Exception
occurred then the failure must be reported by throwing a TransactionRol ledBackException , or in
the case of a No Transaction scope, a TransactionException .

147.4.1.2 Post-completion Callbacks

Post-completion callbacks are run after any associated transaction finishes. As the transaction
has completed, post-completion callbacks receive the completion state of the transaction as a
method parameter. In the case of a No Transaction context there is no transaction, so the post-
completion callbacks immediately follow the pre-completion callbacks, and are passed a status of
NO_TRANSACTION.

Exceptions generated by post-completion callbacks are unable to affect the outcome of any transac-
tion, and must therefore be logged, but not acted on further by the Transaction Control service.

Although Post-completion callbacks run after the transaction, the Transaction Context must still
be valid when they execute. In particular post-completion callbacks must have access to any scoped
variables registered with the Transaction Context

147.4.2 Scoped variables
A Transaction context may be used to store scoped variables. These variables are attached to the
TransactionContext, and will be released after the Context finishes. Scoped resources are guaranteed
to be accessible in lifecycle callbacks.

Variables may be added to the scope using putScopedValue(Object,Object) and retrieved using
getScopedValue(Object) . These methods are valid both for Active Transactions and the No Transac-
tion scope.

147.4.3 Transaction Key
Every Active Transaction has an associated key, which will be unique within the lifetime of the
TransactionControl service's registration. That is, a registered Transaction Control instance will
never reuse a key. The key object is opaque, but is guaranteed to be suitable for use as a key in a
HashMap . Note that the Transaction Key is not globally unique, but only unique to the registered
TransactionControl service. In particular, two concurrently registered TransactionControl services
may simultaneously use the same key, and/or a Transaction Control implementation may reuse
keys if it unregisters and then re-registers its service with a different service id.

TransactionContexts for the No Transaction scope have a null key.

The TransactionContext Transaction Control Service Specification Version 1.0

Page 994 OSGi Compendium Release 8

147.4.4 The Transaction Status
The current state of a Transaction Context is represented by a Java enum, and can be queried by
calling getTransactionStatus() . The status of a Transaction Context will change over time until it
reaches a terminal state. Once a terminal state has been reached the status of the Transaction Con-
text will not change again.

The status of a Transaction Context will always move forward through the enum values, that is, the
status can never move from one state to another state with a lower sort order. Note that a Transac-
tion Context will not necessarily enter all of the intermediate states between two values.

Table 147.2 Transaction Status Values

Status Terminal Description
NO_TRANSACTION yes This Transaction Context is for a No Transaction Scope
ACTIVE no This Transaction Scope is executing and not marked for

rollback
MARKED_ROLLBACK no This Transaction Scope is executing and has been

marked for rollback
PREPARING no A two phase commit is occurring and the transaction is

being prepared. This state is visible during the prepare
calls on XA resources

PREPARED no A two phase commit is occurring and the transaction
has been prepared. This state is visible immediately pri-
or to committing or rolling back XA resources

COMMITTING no The transaction is being committed. This state is visible
during the commit calls on resources

COMMITTED yes The transaction was successfully committed.
ROLLING_BACK no The transaction is being rolled back. This state is visible

during the rol lback calls on resources
ROLLED_BACK yes The transaction was successfully rolled back.

147.4.5 Local Transaction scopes
A Local Transaction is not persistent, and therefore not recoverable. It also may not be atomic or
consistent if multiple resources are involved. Local transactions do, however, provide isolation and
durability, even when multiple resources are involved.

A Local Transaction is therefore a very good choice when a single resource is involved as it is ex-
tremely lightweight and provides ACID behavior. Local Transactions do provide benefits when mul-
tiple resources are involved, however it is important to realize that Local Transactions may end up
in a state where some commits have succeeded and others failed.

147.4.5.1 The Local Transaction Lifecycle

The transaction context for a local transaction begins in the ACTIVE state, and may enter the
MARKED_ROLLBACK state if the client calls setRollbackOnly().

A local transaction must always return true from the supportsLocal() method, indicating that Local-
Resource participants may be registered using the registerLocalResource(LocalResource) method.

Once the transactional work has completed and the pre-completion callbacks have run the transac-
tion will be proceed as follows:

Transaction Control Service Specification Version 1.0 The TransactionContext

OSGi Compendium Release 8 Page 995

Table 147.3 Lifecycle rules for Local Transactions

Active Marked for Rollback
1. Set the Transaction Status to COMMITTING
2. Call commit on the first LocalResource
3. If the first commit fails set the status Trans-

action Status to ROLLING_BACK and initial-
ize a TransactionRolledBackException with
its cause set to the failure.

4. Continue committing or rolling-back re-
sources based on the Transaction Status. If a
failure occurs then add it as a suppressed ex-
ception of an existing TransactionException,
creating a new TransactionException if this
is the first failure.

5. Set the Transaction Status to COMMITTED
or ROLLED_BACK as appropriate

6. Call the post-completion callbacks, passing
the Transaction Status

1. Set the Transaction Status to
ROLLING_BACK

2. Call rollback on each of the LocalResources
3. If a failure occurs then add it as a suppressed

exception of an existing TransactionExcep-
tion, creating a new TransactionException if
this is the first failure.

4. Set the Transaction Status to ROLLED_BACK
5. Call the post-completion callbacks, passing

the Transaction Status

147.4.5.2 Local Transaction Support Service Properties

A TransactionControl Service which supports local transactions may be identified using the
osgi . local .enabled property which will be set to Boolean.TRUE .

147.4.6 XA Transaction scopes
An XA transaction is persistent, and therefore can be recoverable. It is also atomic and consistent
even if multiple resources are involved.

An XA Transaction is therefore a very good choice when a multiple resource are involved as it pro-
vides ACID behavior. XA transactions are, however, more heavyweight than local transactions, and
should only be used where they are needed.

147.4.6.1 The XA Transaction Lifecycle

The transaction context for an XA transaction begins in the ACTIVE state, and may enter the
MARKED_ROLLBACK state if the client calls setRollbackOnly().

An XA transaction must always return true from the supportsXA() method, indicating that XA par-
ticipants may be registered using the registerXAResource method. XA transactions may also sup-
port one or more LocalResource participants. In this case the Transaction Context should also re-
turn true from the supportsLocal() method, indicating that LocalResource participants may be reg-
istered using the registerLocalResource method.

Once the transactional work has completed and the pre-completion callbacks have run the transac-
tion should be completed using the normal XA algorithm. If the transaction fails during a commit
attempt, resulting in a rollback, then the Transaction Control Service must generate a Transaction-
Rol ledBackException . If the transaction fails in any other way then the Transaction Control service
must generate a TransactionException . Exceptions from the commit should be added to an existing
ScopedWorkException if it exists.

147.4.6.2 XA Transaction Support Service Properties

A Transaction Control Service which supports XA transactions may be identified using the
osgi .xa.enabled property which will be set to Boolean.TRUE .

If the Transaction Control Service also supports Local transactions then it must also set the
osgi . local .enabled property to Boolean.TRUE .

Resource Providers Transaction Control Service Specification Version 1.0

Page 996 OSGi Compendium Release 8

147.5 Resource Providers
It is important that clients can easily control the transaction boundaries within their application,
but it is equally important that the resources that the clients use participate in these transactions. In
a Java EE Application server this is achieved by having the central application container create and
manage all of the resources. In the Spring framework the Application context is responsible for en-
suring that the resources are linked to a Transaction Manager.

There is no central container in OSGi, and so a modular solution is required. This specification de-
fines the concept of a Resource Provider. A Resource Provider is a generic service which can provide
a resource of some kind to the client. The Resource Provider exists to ensure that the resource being
used will always be enlisted with the correct transaction context.

147.5.1 Generic Resource Providers
The purpose of a ResourceProvider is to provide the client with a configured resource which will au-
tomatically integrate with the correct transaction context at runtime.

Resources are created from a Resource Provider using the following method:

public <T> T getResource(TransactionControl txControl);

Typically clients will not use a plain Resource Provider, but will search for a specific subclass in-
stead, which reifies the type parameter T . This allows for type safe access to resources, and ensures
that the correct ResourceProvider implementation has been found.

147.5.1.1 The Basic Resource Lifecycle

Resources returned by a Resource Provider are proxies to an underlying factory for physical re-
sources. Whenever the proxy is accessed then it should check the current transaction scope. If this
is the first time the proxy has been accessed in the scope then the proxy should associate a new
physical resource with the scope. If the scope is a Transaction scope then the resource must also be
enlisted into the transaction at this point. Subsequent uses of the proxy within the same scope must
use the same backing physical resource.

When a scope finishes any resources associated with the scope must be cleaned up without action
required by the client. This rule applies to both the Transaction scope and the No Transaction scope,
meaning that a client can safely write code using TransactionControl#supports without being con-
cerned about resource leaks.

147.5.1.2 Unscoped Resource Access

If a resource is accessed by unscoped code then it must throw a TransactionException to indicate
that it cannot be used without an active scope.

147.5.1.3 Closing, Flushing and Committing Resources

Most resources offer programmatic APIs for transaction and lifecycle management. For example
java.sql .Connection has methods called commit and close .

If a client attempts to close a scoped resource then this operation should be silently ignored. The re-
source will be automatically cleaned up when the current scope completes and so there is no need
to manually close the resource. Furthermore, if the resource were prematurely closed then it may
prevent other services from accessing the resource within this scope.

If the resource is being used in a Transaction Scope then any transaction lifecycle methods, such as
commit or rol lback , must not delegate to the real resource and must throw a TransactionException
instead.

Transaction Control Service Specification Version 1.0 Resource Providers

OSGi Compendium Release 8 Page 997

147.5.1.4 Releasing Resource Providers

Resource Provider instances typically hold references to one or more physical resources, often in
a pool. When a Resource Provider is no longer needed then it is important that these physical re-
sources can be released to avoid resource leaks. The way in which a Resource Provider can deter-
mine it is no longer needed depends upon how the Resource Provider is created.

If the Resource Provider is registered directly as a service then it may release its physical resources
when it is no longer used by any bundles. One way to achieve this is through the use of an OSGi Ser-
vice Factory.

In some cases a Resource Provider is created by the client using a service from the service registry. In
this case the lifecycle of the Resource Provider must be bounded by the lifecycle of the service that
created it. In particular if the client bundle releases the service which created the Resource Provider
then the Resource Provider must also be released. This mechanism ensures that Resource Providers
do not need to be explicitly released by a client bundle when it stops. In addition services which cre-
ate Resource Provider instances should provide a method which can be used to immediately release
a particular Resource Provider instance without releasing service which created it. This allows client
bundles to independently manage the lifecycle of multiple Resource Providers, and also to dynami-
cally replace a Resource Provider instance.

Once a Resource Provider has been released then all proxy instances associated with it must be in-
validated, and all methods on the proxies throw TransactionException .

147.5.2 JDBC Resource Providers
One of the most common resources to use in a transaction is a JDBC Connection. This specifica-
tion therefore defines a specialized resource provider for obtaining JDBC Connections called a JD-
BCConnectionProvider . The purpose of this type is simply to reify the generic type of the Resource-
Provider interface.

The scoped resource for a JDBC Connection Provider is a JDBC connection. The scoped resource al-
lows for JDBC connections to be transparently pooled, enlisted in Transaction Scopes, and automati-
cally closed.

147.5.2.1 JDBC and Transaction Scopes

When enlisted in an Active Transaction a JDBC connection will have autocommit set to false. Also
the following methods must not be called by the client and must trigger a TransactionException if
called.

• commit()
• setAutoCommit()
• setSavepoint()
• setSavepoint(Str ing)
• releaseSavepoint()
• rol lback()
• rol lback(Savepoint)

If the Active Transaction commits the JDBC Connection must commit any work performed in the
transaction. Similarly if the Active Transaction rolls back then the JDBC Connection must roll back
any work performed in the transaction. After the transaction completes the JDBC connection must
be cleaned up in an appropriate way, for example by closing it or returning it to a connection pool.
There is no need for the client to close the connection, and any attempt to do so must be ignored by
the resource provider.

Resource Providers Transaction Control Service Specification Version 1.0

Page 998 OSGi Compendium Release 8

147.5.2.2 JDBC and No Transaction Scopes

When accessed with from the No Transaction scope the JDBC connection may have autocommit set
to true or false depending on the underlying configuration of the resource provider. This value may
be changed by the client by using setAutoCommit within the scope, but the value will be reset after
the end of the scope.

In the No Transaction context the JDBC connection will not be committed or rolled back by the
Transaction Control Service or the Resource Provider. It is therefore the client's responsibility to call
commit or rol lback if appropriate. Savepoints may be used for partial rollback if desired.

After the end of the scope the JDBC connection must be automatically cleaned up by the Resource
Provider in an appropriate way, for example by closing it or returning it to a connection pool. There
is no need for the client to close the connection, and any attempt to do so must be ignored by the re-
source provider.

147.5.2.3 Closing the JDBC connection

As for all resource providers, calls to close() the connection must be ignored. JDBC connections also
have an abort() method. Abort is effectively an asynchronous close operation for a JDBC connection,
and so must also be ignored for any scoped connection.

147.5.2.4 The JDBCConnectionProviderFactory

The JDBCConnectionProvider may be provided as a service directly in the OSGi service registry,
however this may not be acceptable in all use cases. JDBC Connections are often authenticated us-
ing a username and password. If the username and password relate to a specific bundle then it may
not be appropriate to have the fully configured connections available in the Service Registry. In this
case the JDBCConnectionProviderFactory offers several factory methods that can programmatically
create a JDBCConnectionProvider.

147.5.2.4.1 JDBCConnectionProvider Configuration

Each factory method on the JDBCConnectionProviderFactory supplies set of properties which are
used to configure the JDBCConnectionProvider, including the connection pooling behavior, and
whether the ResourceProvider can be enlisted with XA and/or Local transactions.

By default the JDBCConnectionProvider will have a pool of 10 connections with a connection time-
out of 30 seconds, an idle timeout of 10 minutes and a maximum connection lifetime of 3 hours.
The JDBCConnectionProvider will also, by default, work all transaction types supported by the re-
source provider.

If the JDBCConnectionProvider is configured to enable XA then the DataSourceFactory being used
must support XADataSource creation. If a pre-configured DataSource is supplied then it must be
able to be unwrapped to an XADataSource.

147.5.2.4.2 Creating a JDBCConnectionProvider Using a DataSourceFactory

In this case the client provides the DataSourceFactory that should be used, along with the properties
that should be used to create the DataSource/XADataSource. If XA transactions are enabled then the
factory must create an XADataSource, otherwise the “osgi.use.driver” property can be used to force
the creation of a Driver instance rather than a DataSource.

147.5.2.4.3 Creating a JDBCConnectionProvider Using a DataSource

In this case the client provides a pre-configured DataSource that should be used. If XA transactions
are enabled then the DataSource must be able to be unwrapped to an XADataSource using the un-
wrap method.

147.5.2.4.4 Creating a JDBCConnectionProvider Using an XADataSource

In this case the client provides a preconfigured XADataSource that should be used by the resource
provider.

Transaction Control Service Specification Version 1.0 Resource Providers

OSGi Compendium Release 8 Page 999

147.5.2.4.5 Creating a JDBCConnectionProvider Using a Driver

In this case the client provides an instantiated driver class that should be used, along with the prop-
erties that should be used to create the JDBC connection. The JDBC properties must include a JDBC
url to use when connecting to the database. XA transactions may not be enabled when using a Dri-
ver instance.

147.5.2.4.6 Releasing a JDBCConnectionProvider

In some cases a client of the JDBCConnectionProviderFactory may wish to release a created JDBC-
ConnectionProvider without releasing the JDBCConnectionProviderFactory service. In this case the
JDBCConnectionProvider instance should be passed to the releaseProvider method, which will im-
mediately release the Resource Provider.

147.5.2.5 JDBCResourceProvider Examples

Setting up data Access with Declarative Services:

@Reference
TransactionControl txControl;

@Reference
JDBCConnectionProviderFactory resourceProviderFactory;

@Reference
DataSourceFactory dsf;

Connection connection;

@Activate
public void setUp(Config config) {
 Properties jdbc = new Properties();
 jdbc.setProperty(JDBC_URL, config.getURL());

 connection = resourceProviderFactory.getProviderFor(dsf, jdbc, null)
 .getResource(txControl);
}

Reading data from a table:

txControl.supports(() -> {
 ResultSet rs = connection.createStatement()
 .executeQuery("Select message from TEST_TABLE");

 rs.next();
 return rs.getString(1);
 });

Updating a table:

txControl.required(() ->
 connection.createStatement()
 .execute("Insert into TEST_TABLE values ('Hello World!')")
);

Resource Providers Transaction Control Service Specification Version 1.0

Page 1000 OSGi Compendium Release 8

147.5.3 JPA
JPA is a popular Object Relational Mapping (ORM) framework used to abstract away the low-level
database access from business code. As an alternative means of accessing a database it is just as im-
portant for JPA resources to participate in transactions as it is for JDBC resources. This RFC therefore
defines the JPAEntityManagerProvider interface as a specialized resource provider for JPA.

147.5.3.1 JPA and Transaction Scopes

When enlisted in a Transaction a JPA EntityManager will automatically track the state of persisted
entity types and update the database as necessary. When participating in a transaction it is forbid-
den to call the getTransaction method on the EntityManager as manual transaction management
is disabled. The jo inTransaction method, however must be a no-op, and the is JoinedToTransaction
must always return true .

If the Transaction commits the JPA EntityManager must commit any work performed in the trans-
action. Similarly if the Transaction rolls back then the JPA EntityManager must roll back any work
performed in the transaction. After the transaction completes the JPA EntityManager must be
cleaned up in an appropriate way, for example by closing it or returning it to a pool. There is no
need for the client to close the entity manager, and any attempt to do so must be ignored by the re-
source provider.

147.5.3.2 JPA and No Transaction Scopes

When accessed with from the No Transaction scope the JPA EntityManager will not be participating
in a Transaction or rolled back, it is therefore the client's responsibility to set up an EntityTransac-
tion and to call commit or rol lback as appropriate.

The jo inTransaction method must throw a TransactionException , and the is JoinedToTransaction
must always return fa lse .

After the end of the scope the EntityManager must be automatically cleaned up in an appropriate
way, for example by closing it or returning it to a pool.

147.5.3.3 RESOURCE_LOCAL and JTA EntityManagerFactory instances

When defining a JPA Persistence Unit the author must declare whether the EntityManagerFacto-
ry integrates with JTA transactions, or is suitable for resource local usage. The JPAEntityManager-
Provider must take this into account when creating the transactional resource.

JTA scoped EntityManager instances may not manage their own transactions and must throw a JPA
TransactionRequiredException if the client attempts to use the EntityTransaction interface. In effect
the EntityManager behaves as a Synchronized, Transaction-Scoped, Managed Persistence Context as
per the JPA 2.1 Specification. It is important to ensure that the Database connections used in a JTA
Persistence Unit are integrated with the ongoing transaction.

RESOURCE_LOCAL scoped EntityManager instances may not participate in XA transactions, but
otherwise behave in much the same way as JTA EntityManager instances. The one significant differ-
ence is that RESOURCE_LOCAL EntityManager instances may obtain an EntityTransaction when
running in the No Transaction context.

147.5.3.4 The JPAEntityManagerProvider Factory

The JPAEntityManagerProvider may be provided directly in the OSGi service registry, however this
may not be acceptable in all use cases. Database Connections are often authenticated using a user-
name and password. If the username and password relate to a specific bundle then it may not be
appropriate to have the configured connections available in the Service Registry. In this case the
JPAEntityManagerProviderFactory offers several factory methods that can programmatically create
a JPAEntityManagerProvider.

Transaction Control Service Specification Version 1.0 Resource Providers

OSGi Compendium Release 8 Page 1001

147.5.3.4.1 Creating a JPAEntityManagerProvider Using an EntityManagerFactoryBuilder

In this case the client provides the EntityManagerFactoryBuilder that should be used, along with the
properties that should be used to create the EntityManagerFactory.

The typical reason for using an EntityManagerFactoryBuilder is to allow for the late binding of con-
figuration, such as the database location. To support this usage pattern it is best to specify as few
properties as possible inside the persistence descriptor. For example:

<persistence-unit name="test-unit">
 <description>My application's persistence unit</description>
</persistence-unit>

Passing String class names and expecting the JPA provider to load the Database driver re-
flectively should be avoided, however a configured DataSource can be passed using the
javax.persistence. jtaDataSource property. If the JPA resource provider supports XA transactions
then this property may be used to pass a configured XADataSource to be enlisted by the provider.

The osgi . jdbc.provider property can be passed to the resource provider defining a JDBCConnec-
tionProvider that should be converted into a DataSource and passed to the EntityManageFactory-
Builder using the javax.persistence.jtaDataSource property. This allows the same physical data-
base connection to be used by JPA and by JDBC within the same scope. Note that when using the
osgi . jdbc.provider property to provide a connection to the database the JPA Resource Provider im-
plementation should ignore configuration properties that cannot be acted upon, for example con-
nection pool configuration, or setting an XA recovery identifier.

When configured to use JTA transactions most JPA implementations require integration with the
transaction lifecycle. The JPA resource provider is required introspect the Entity Manager Facto-
ry Builder and to provide sufficient configuration to integrate the JPA provider with the supplied
Transaction Control service. If the JPA resource provider is unable to supply the necessary configu-
ration for the JPA implementation being used then it must log a warning.

147.5.3.4.2 Creating a JPAEntityManagerProvider Using an EntityManagerFactory

In this case the client provides the configured EntityManagerFactory that should be used, along
with the properties that should be used to create the EntityManager.

When using an EntityManagerFactory to create the JPA resource provider there is no possibility for
the resource provider implementation to customize the configuration of the EntityManagerFacto-
ry. This means that the client is responsible for fully configuring the EntityManagerFactory in this
case. For Local Transactions this is reasonably simple, however for XA transactions this configura-
tion process may be very involved. For example JPA providers typically require custom plugins to in-
tegrate with external Transaction lifecycle management. It is recommended that clients use the En-
tity Manager Factory Builder when XA transactions are needed.

147.5.3.4.3 Releasing a JPAEntityManagerProvider

In some cases a client of the JPAEntityManagerProviderFactory may wish to release a created JPAEn-
tityManagerProvider without releasing the JPAEntityManagerProviderFactory service. In this case
the JPAEntityManagerProvider instance should be passed to the releaseProvider method, which will
immediately release the Resource Provider.

147.5.4 Connection Pooling
Database connections are usually heavyweight objects that require significant time to create. They
may also consume physical resources such as memory or network ports. Creating a new database
connection for every request is therefore wasteful, and adds unnecessary load to both the applica-
tion and the database. Caching of database connections is therefore a useful way of improving per-
formance. On the other hand applications must be careful not to create too many database connec-
tions. If one thousand requests arrive simultaneously then creating one thousand database connec-

Transaction Recovery Transaction Control Service Specification Version 1.0

Page 1002 OSGi Compendium Release 8

tions is likely to crash the database server. These two requirements make database connections an
excellent candidate for pooling. A small number of connections are made available and recycled af-
ter use. This saves the cost of recreating the connection and limits the overall load on the database.

In fact pooling is an excellent solution for many transactional resources, including JMS and EIS ac-
cess.

147.5.4.1 Pooling in OSGi

Pooling has traditionally been difficult in OSGi because most connection pooling libraries use re-
flective access to load the underlying resource connector. This obviously fails unless the pooling li-
brary creates a static wiring to the connector, or has dynamic package imports. Both of these solu-
tions are bad practices which create brittle dependencies.

The correct way to obtain Database connections in OSGi is to use a DataSourceFactory, however this
offers no Connection Pooling. There is no real equivalent of a DataSourceFactory for JMS Connec-
tionFactory instances, but they also require manual decoration to enable connection pooling.

As pooling is such a core requirement for transactional resource access it is required for JDBC-
ConnectionProviderFactory and JPAEntityManagerProviderFactory instances to offer connection
pooling. The resource provider properties can be used to override the connection pooling configura-
tion defaults (or to disable connection pooling entirely).

Third party resource providers should offer connection pooling using the same configuration prop-
erties and defaults wherever possible.

Table 147.4 Pooling configuration properties

Property Name Default Description
osgi .connection.pool ing.enabled true Whether connection pooling is enabled

for this ResourceProvider
osgi .connection.t imeout 30000 The maximum time that a client will

wait for a connection (in ms)
osgi . id le.t imeout 180000 The time that a connection will remain

idle before being closed (in ms)
osgi .connection. l i fet ime 10800000 The maximum time that a connection

will remain open (in ms)
osgi .connection.min 10 The minimum number of connections

that will be kept alive
osgi .connection.max 10 The maximum number of connections

that will exist in the pool

147.6 Transaction Recovery
The XA transaction protocol defines a recovery mechanism which can be used to resolve in-doubt
transactions. This is based upon the interaction of an XA Transaction Manager with an XAResource.
In an OSGi environment resources may come and go at any time, as may Transaction Manager in-
stances. Transaction recovery in OSGi is therefore a continuous, rather than a one-time process.

There are two main recovery scenarios that must be resolved by a Transaction Manager:

• Failure of one or more remote resources before the end of the transaction. In this case the Trans-
action Manager remains running and can roll-back or commit the other resources as appropri-
ate. When the failed resource(s) eventually become available again the Transaction Manager can
complete the in-doubt Transaction branch by committing it or rolling it back as appropriate.

• Failure of the Transaction Manager before the end of the transaction. In this case the Transac-
tion Manager must use its recovery log to discover any in-doubt transaction branches. When the

Transaction Control Service Specification Version 1.0 Transaction Recovery

OSGi Compendium Release 8 Page 1003

resources associated with the in-doubt transaction branches become available the Transaction
Manager can resolve the in-doubt branch by committing or rolling it back as appropriate.

In both of these cases it is crucial that the Transaction Manager can uniquely identify the resource
that is being recovered. The Transaction Manager must be able to tell that a returning resource is
suitable for recovering an in-doubt transaction branch.

The transaction branch itself has an Xid, which could theoretically be used to identify the resource.
The problem with this, however, is that if the resource has already completed the transaction
branch (for example if the failure occurred after sending a commit operation) then the resource may
have discarded the Xid. We therefore require another identifier for a resource. The identifier must
be unique to the Transaction Manager, but need not be Globally Unique. The identifier must also be
persistent, that is, the same resource must have the same identifier after a restart of the OSGi frame-
work. This ensures that transaction recovery can occur after a system crash.

147.6.1 Enlisting a Recoverable Resource in a Transaction
When a recoverable XA resource is associated with a TransactionContext using the registerXARe-
source method the resource identifier String is passed as a second argument. This is the identifier
that will be used to locate the resource during recovery. If the XAResource is not recoverable then it
may simply pass null as the second argument when registering.

147.6.2 Providing an XAResource for Recovery
When recovery is required the Transaction Manager may or may not be actively processing transac-
tions involving the required recoverable resource. Therefore the Transaction Control service must
be able to locate and obtain an XAResource instance for a named ResourceProvider.

To enable this the ResourceProvider must provide a whiteboard service which implements the Re-
coverableXAResource interface. This interface provides the resource identifier, and acts as a factory
for XAResources that can be used to recover Transaction Branches.

The Transaction Control service can use this whiteboard to locate the correct XAResource to use. It
may be, however, that when recovery is attempted it is not possible to provide a valid XAResource.
In this case the RecoverableXAResource service may throw an exception. For example if the Resour-
ceProvider is providing pooling and the pool is currently fully used then this may result in an excep-
tion.

Once the Transaction Control service has finished attempting to recover a Transaction branch then
it must release the XAResource it obtained from the RecoverableXAResource using the releaseXARe-
source method.

147.6.3 Identifying implementations which support recovery
Transaction Control implementations which support recovery must register the Transaction Con-
trol service with the osgi . recovery.enabled service property with a value of true if recovery is en-
abled. Recovery may only be enabled if the implementation is configured for recovery, for example
by configuring a transaction log.

Resource Provider factory services which support creating recoverable scoped resources must also
register the osgi . recovery.enabled service property with a value of true . The recovery identifier of
a scoped resource created by the factory is specified using the osgi . recovery. identi f ier property. It is
an error to attempt to create a recoverable scoped resource from a factory which does not support
recovery, and a TransactionException will be thrown to the caller if they attempt to set a recovery
identifier when using a factory that does not support recovery.

Capabilities Transaction Control Service Specification Version 1.0

Page 1004 OSGi Compendium Release 8

147.7 Capabilities
Implementations of the Transaction Control Service specification must provide a capability in the
osgi .service namespace representing the TransactionControl service. This capability must also de-
clare a uses constraint for the org.osgi .service.transact ion.control package, and attributes indicat-
ing whether the service supports local transactions, XA transactions, and recovery. For example, an
XA capable, recoverable Transaction Control implementation which also supports recovery would
offer the following capability.

Provide-Capability: osgi.service;objectClass:List<String>=
 "org.osgi.service.transaction.control.TransactionControl";
 uses:="org.osgi.service.transaction.control";osgi.local.enabled="true";
 osgi.xa.enabled="true";osgi.recovery.enabled="true"

Resource Provider Implementations must provide capabilities in the osgi .service namespace repre-
senting the ResourceProvider services and any factory services that they provide. These capabilities
must also declare uses constraints for the org.osgi .service.transact ion.control package and any oth-
er packages that they provide. In the case where a more specific type is registered (for example JD-
BCConnectionProvider) then that type should be used instead. The service properties that indicate
whether the resource provider supports local transactions, XA transactions, and recovery must be
advertised as attributes. For example:

Provide-Capability: osgi.service;objectClass:List<String>=
 "org.osgi.service.transaction.control.jdbc.JDBCConnectionProvider";
 uses:="org.osgi.service.transaction.control,org.osgi.service.transaction.
 control.jdbc";osgi.local.enabled="true";osgi.xa.enabled="true";
 osgi.recovery.enabled="true",
 osgi.service;objectClass:List<String>=
 "org.osgi.service.transaction.control.jdbc.JDBCConnectionProviderFactory";
 uses:="org.osgi.service.transaction.control,org.osgi.service.transaction.
 control.jdbc";osgi.local.enabled="true";osgi.xa.enabled="true";
 osgi.recovery.enabled="true"

These capabilities must follow the rules defined for the osgi.service Namespace on page 727.

147.8 Security
Access to the Transaction Control service and to Resource Provider services can be secured through
the standard OSGi service permission model.

Clients should be aware that when they run scoped work there will be code from the Transaction
Control service on the stack. Client operations that require specific privileges will therefore have to
be performed inside a doPrivileged block.

147.9 org.osgi.service.transaction.control

Transaction Control Service Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Transaction Control Service Specification Version 1.0 org.osgi.service.transaction.control

OSGi Compendium Release 8 Page 1005

Import-Package: org.osgi .service.transact ion.control ; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.transact ion.control ; vers ion="[1.0,1.1)"

147.9.1 Summary

• LocalResource - Resources that can integrate with local transactions should do so using this in-
terface

• ResourceProvider - A resource provider is used to provide a transactional resource to the appli-
cation

• ScopedWorkException - An Exception that is thrown when a piece of scoped work exits with an
Exception.

• TransactionBui lder - A builder for a piece of transactional work
• TransactionContext - A transaction context defines the current transaction, and allows re-

sources to register information and/or synchronizations
• TransactionControl - The interface used by clients to control the active transaction context
• TransactionException - An Exception indicating that there was a problem with starting, finish-

ing, suspending or resuming a transaction
• TransactionRol ledBackException - An Exception indicating that the active transaction was un-

expectedly rolled back
• TransactionStarter - Implementations of this interface are able to run a piece of work within a

transaction
• TransactionStatus - The status of the transaction A transaction may not enter all of the states in

this enum, however it will always traverse the enum in ascending order.

147.9.2 public interface LocalResource
Resources that can integrate with local transactions should do so using this interface

147.9.2.1 public void commit() throws TransactionException

□ Commit the resource

Throws TransactionException –

147.9.2.2 public void rollback() throws TransactionException

□ Roll back the resource

Throws TransactionException –

147.9.3 public interface ResourceProvider<T>
<T>

A resource provider is used to provide a transactional resource to the application

147.9.3.1 public T getResource(TransactionControl txControl) throws TransactionException

txControl

□ Get a resource which will associate with the current transaction context when used

Returns The resource which will participate in the current transaction

Throws TransactionException– if the resource cannot be registered with the transaction

org.osgi.service.transaction.control Transaction Control Service Specification Version 1.0

Page 1006 OSGi Compendium Release 8

147.9.4 public class ScopedWorkException
extends RuntimeException
An Exception that is thrown when a piece of scoped work exits with an Exception.

If the scope was inherited and therefore is still active when this exception is raised then the current
TransactionContext will be available from the ongoingContext() method.

Provider Type Consumers of this API must not implement this type

147.9.4.1 public ScopedWorkException(String message, Throwable cause, TransactionContext context)

message

cause

context

□ Creates a new TransactionException with the supplied message and cause

147.9.4.2 public T extends Throwable as(Class<T> throwable) throws T

Type Parameters <T extends Throwable>

throwable

□ Throws the cause of this Exception as a RuntimeException the supplied Exception type.

Usage is of the form:

 public void doStuff() throws IOException {
 try {
 ...
 } catch (ScopedWorkException swe) {
 throw swe.as(IOException.class);
 }
 }

Returns This method will always throw an exception

Throws T–

147.9.4.3 public RuntimeException asOneOf(Class<A> a, Class b) throws A, B

Type Parameters <A extends Throwable, B extends Throwable>

a

b

□ Throws the cause of this Exception as a RuntimeException or one of the supplied Exception types.

Usage is of the form:

 public void doStuff() throws IOException, ClassNotFoundException {
 try {
 ...
 } catch (ScopedWorkException swe) {
 throw swe.asOneOf(IOException.class, ClassNotFoundException.class);
 }
 }

Returns This method will always throw an exception

Throws A–

B–

Transaction Control Service Specification Version 1.0 org.osgi.service.transaction.control

OSGi Compendium Release 8 Page 1007

147.9.4.4 public RuntimeException asOneOf(Class<A> a, Class b, Class<C> c) throws A, B, C

Type Parameters <A extends Throwable, B extends Throwable, C extends Throwable>

a

b

c

□ Throws the cause of this Exception as a RuntimeException or one of the supplied Exception types.

Returns This method will always throw an exception

Throws A–

B–

See Also asOneOf(Class, Class)

147.9.4.5 public RuntimeException asOneOf(Class<A> a, Class b, Class<C> c, Class<D> d) throws A, B, C, D

Type Parameters <A extends Throwable, B extends Throwable, C extends Throwable, D extends Throwable>

a

b

c

d

□ Throws the cause of this Exception as a RuntimeException or one of the supplied Exception types.

Returns This method will always throw an exception

Throws A–

B–

C–

D–

See Also asOneOf(Class, Class)

147.9.4.6 public RuntimeException asRuntimeException()

Returns The cause of this Exception as a RuntimeException if it is one, or this otherwise

147.9.4.7 public TransactionContext ongoingContext()

Returns The ongoing transaction context if the current scope was still active when this exception was raised
or nul l otherwise. Note that this property will not be persisted during serialization.

147.9.5 public abstract class TransactionBuilder
implements TransactionStarter
A builder for a piece of transactional work

Provider Type Consumers of this API must not implement this type

147.9.5.1 protected final List<Class<? extends Throwable>> noRollbackFor

The list of Throwable types that must not trigger rollback

147.9.5.2 protected final List<Class<? extends Throwable>> rollbackFor

The list of Throwable types that must trigger rollback

org.osgi.service.transaction.control Transaction Control Service Specification Version 1.0

Page 1008 OSGi Compendium Release 8

147.9.5.3 public TransactionBuilder()

147.9.5.4 public final TransactionBuilder noRollbackFor(Class<? extends Throwable> t, Class<? extends Throwable>...
throwables)

t An exception type that should not trigger rollback

throwables further exception types that should not trigger rollback

□ Declare a list of Exception types (and their subtypes) that must not trigger a rollback. By default the
transaction will rollback for all Exceptions. If an Exception type is registered using this method
then that type and its subtypes will not trigger rollback. If the same type is registered using both
rollbackFor(Class, Class...) and noRollbackFor(Class, Class...) then the transaction will not begin and
will instead throw a TransactionException

Note that the behavior of this method differs from Java EE and Spring in two ways:

• In Java EE and Spring transaction management checked exceptions are considered "nor-
mal returns" and do not trigger rollback. Using an Exception as a normal return value is
considered a bad design practice. In addition this means that checked Exceptions such as
java.sql.SQLException do not trigger rollback by default. This, in turn, leads to implementation
mistakes that break the transactional behavior of applications.

• In Java EE it is legal to specify the same Exception type in rollbackFor and noRollbackFor. Stat-
ing that the same Exception should both trigger and not trigger rollback is a logical impossibili-
ty, and clearly indicates an API usage error. This API therefore enforces usage by triggering an ex-
ception in this invalid case.

Returns this builder

147.9.5.5 public abstract TransactionBuilder readOnly()

□ Indicate to the Transaction Control service that this transaction will be read-only. This hint may be
used by the Transaction Control service and associated resources to optimize the transaction.

Note that this method is for optimization purposes only. The TransactionControl service is free to
ignore the call if it does not offer read-only optimization.

If a transaction is marked read-only and then the scoped work performs a write operation on a re-
source then this is a programming error. The resource is free to raise an exception when the write is
attempted, or to permit the write operation. As a result the transaction may commit successfully, or
may rollback.

Returns this builder

147.9.5.6 public final TransactionBuilder rollbackFor(Class<? extends Throwable> t, Class<? extends Throwable>...
throwables)

t

throwables The Exception types that should trigger rollback

□ Declare a list of Exception types (and their subtypes) that must trigger a rollback. By default
the transaction will rollback for all Exceptions. If a more specific type is registered using
noRollbackFor(Class, Class...) then that type will not trigger rollback. If the same type is registered
using both rollbackFor(Class, Class...) and noRollbackFor(Class, Class...) then the transaction will not
begin and will instead throw a TransactionException

Note that the behavior of this method differs from Java EE and Spring in two ways:

• In Java EE and Spring transaction management checked exceptions are considered "nor-
mal returns" and do not trigger rollback. Using an Exception as a normal return value is

Transaction Control Service Specification Version 1.0 org.osgi.service.transaction.control

OSGi Compendium Release 8 Page 1009

considered a bad design practice. In addition this means that checked Exceptions such as
java.sql.SQLException do not trigger rollback by default. This, in turn, leads to implementation
mistakes that break the transactional behavior of applications.

• In Java EE it is legal to specify the same Exception type in rollbackFor and noRollbackFor. Stat-
ing that the same Exception should both trigger and not trigger rollback is a logical impossibili-
ty, and clearly indicates an API usage error. This API therefore enforces usage by triggering an ex-
ception in this invalid case.

Returns this builder

147.9.6 public interface TransactionContext
A transaction context defines the current transaction, and allows resources to register information
and/or synchronizations

Provider Type Consumers of this API must not implement this type

147.9.6.1 public boolean getRollbackOnly() throws IllegalStateException

□ Is this transaction marked for rollback only

Returns true if this transaction is rollback only

Throws I l legalStateException– if no transaction is active

147.9.6.2 public Object getScopedValue(Object key)

key

□ Get a value scoped to this transaction

Returns The resource, or nul l

147.9.6.3 public Object getTransactionKey()

□ Get the key associated with the current transaction

Returns the transaction key, or null if there is no transaction

147.9.6.4 public TransactionStatus getTransactionStatus()

Returns The current transaction status

147.9.6.5 public boolean isReadOnly()

Returns true if the TransactionContext supports read-only optimizations and the transaction was marked
read only. In particular it is legal for this method to return false even if the transaction was marked
read only by the initiating client.

147.9.6.6 public void postCompletion(Consumer<TransactionStatus> job) throws IllegalStateException

job

□ Register a callback that will be made after the scope completes

For transactional scopes the state of the scope will be either TransactionStatus.COMMITTED or
TransactionStatus.ROLLED_BACK.

For no-transaction scopes the state of the scope will always be
TransactionStatus.NO_TRANSACTION.

Post-completion callbacks should not throw Exceptions and cannot affect the outcome of a piece of
scoped work

org.osgi.service.transaction.control Transaction Control Service Specification Version 1.0

Page 1010 OSGi Compendium Release 8

Throws I l legalStateException– if no transaction is active

147.9.6.7 public void preCompletion(Runnable job) throws IllegalStateException

job The action to perform before completing the scope

□ Register a callback that will be made before a scope completes.

For transactional scopes the state of the scope will be either TransactionStatus.ACTIVE or
TransactionStatus.MARKED_ROLLBACK. Pre-completion callbacks may call setRollbackOnly() to
prevent a commit from proceeding.

For no-transaction scopes the state of the scope will always be
TransactionStatus.NO_TRANSACTION.

Exceptions thrown by pre-completion callbacks are treated as if they were thrown by the scoped
work, including any configured commit or rollback behaviors for transactional scopes.

Throws I l legalStateException– if the transaction has already passed beyond the
TransactionStatus.MARKED_ROLLBACK state

147.9.6.8 public void putScopedValue(Object key, Object value)

key

value

□ Associate a value with this transaction

147.9.6.9 public void registerLocalResource(LocalResource resource) throws IllegalStateException

resource

□ Register a Local resource with the current transaction

Throws I l legalStateException– if no transaction is active, or the current transaction does not support local
resources.

147.9.6.10 public void registerXAResource(XAResource resource, String recoveryId) throws IllegalStateException

resource

recoveryId The resource id to be used for recovery, the id may be nul l if this resource is not recoverable.

If an id is passed then a RecoverableXAResource with the same id must be registered in the service
registry for recovery to occur.

If the underlying TransactionControl service does not support recovery then it must treat the re-
source as if it is not recoverable.

□ Register an XA resource with the current transaction

Throws I l legalStateException– if no transaction is active, or the current transaction is not XA capable

147.9.6.11 public void setRollbackOnly() throws IllegalStateException

□ Mark this transaction for rollback

Throws I l legalStateException– if no transaction is active

147.9.6.12 public boolean supportsLocal()

Returns true if the current transaction supports Local resources

147.9.6.13 public boolean supportsXA()

Returns true if the current transaction supports XA resources

Transaction Control Service Specification Version 1.0 org.osgi.service.transaction.control

OSGi Compendium Release 8 Page 1011

147.9.7 public interface TransactionControl
extends TransactionStarter
The interface used by clients to control the active transaction context

Provider Type Consumers of this API must not implement this type

147.9.7.1 public boolean activeScope()

Returns true if a transaction is currently active, or if there is a "no transaction" context active

147.9.7.2 public boolean activeTransaction()

Returns true if a transaction is currently active

147.9.7.3 public TransactionBuilder build()

□ Build a transaction context to surround a piece of transactional work

Returns A builder to complete the creation of the transaction

147.9.7.4 public TransactionContext getCurrentContext()

Returns The current transaction context, which may be a "no transaction" context, or null if there is no ac-
tive context

147.9.7.5 public boolean getRollbackOnly() throws IllegalStateException

□ Gets the rollback status of the active transaction

Returns true if the transaction is marked for rollback

Throws I l legalStateException– if no transaction is active

147.9.7.6 public void ignoreException(Throwable t) throws IllegalStateException

t The exception to ignore

□ Marks that the current transaction should not be rolled back if the supplied Exception is thrown by
the current transactional work

Throws I l legalStateException– if no transaction is active

147.9.7.7 public void setRollbackOnly() throws IllegalStateException

□ Marks the current transaction to be rolled back

Throws I l legalStateException– if no transaction is active

147.9.8 public class TransactionException
extends RuntimeException
An Exception indicating that there was a problem with starting, finishing, suspending or resuming
a transaction

Provider Type Consumers of this API must not implement this type

147.9.8.1 public TransactionException(String message)

message

□ Creates a new TransactionException with the supplied message

147.9.8.2 public TransactionException(String message, Throwable cause)

message

org.osgi.service.transaction.control Transaction Control Service Specification Version 1.0

Page 1012 OSGi Compendium Release 8

cause

□ Creates a new TransactionException with the supplied message and cause

147.9.9 public class TransactionRolledBackException
extends TransactionException
An Exception indicating that the active transaction was unexpectedly rolled back

Provider Type Consumers of this API must not implement this type

147.9.9.1 public TransactionRolledBackException(String message)

message

□ Create a new TransactionRolledBackException with the supplied message

147.9.9.2 public TransactionRolledBackException(String message, Throwable cause)

cause

message

□ Create a new TransactionRolledBackException with the supplied message

147.9.10 public interface TransactionStarter
Implementations of this interface are able to run a piece of work within a transaction

Provider Type Consumers of this API must not implement this type

147.9.10.1 public T notSupported(Callable<T> work) throws TransactionException, ScopedWorkException

Type Parameters <T>

work

□ The supplied piece of work must be run outside the context of a transaction. If an existing transac-
tion is active then it must be suspended and a "no transaction" context associated with the work. Af-
ter the work has completed any suspended transaction must be resumed.

The "no transaction" context does not support resource enlistment, and will not commit or rollback
any changes, however it does provide a post completion callback to any registered functions. This
function is suitable for final cleanup, such as closing a connection

Returns The value returned by the work

Throws TransactionException– if there is an error starting or completing the transaction

ScopedWorkException– if the supplied work throws an Exception

147.9.10.2 public T required(Callable<T> work) throws TransactionException, TransactionRolledBackException,
ScopedWorkException

Type Parameters <T>

work

□ A transaction is required to run the supplied piece of work. If no transaction is active then it must be
started and associated with the work and then completed after the transactional work has finished.

Returns The value returned by the work

Throws TransactionException– if there is an error starting or completing the transaction

TransactionRol ledBackException– if the transaction rolled back due to a failure in one of the re-
sources or an internal error in the TransactionControl service

ScopedWorkException– if the supplied work throws an Exception

Transaction Control Service Specification Version 1.0 org.osgi.service.transaction.control

OSGi Compendium Release 8 Page 1013

147.9.10.3 public T requiresNew(Callable<T> work) throws TransactionException, TransactionRolledBackException,
ScopedWorkException

Type Parameters <T>

work

□ A new transaction is required to run the supplied piece of work. If an existing transaction is active
then it must suspended and a new transaction started and associated with the work. After the work
has completed the new transaction must also complete and any suspended transaction be resumed.

Returns The value returned by the work

Throws TransactionException– if there is an error starting or completing the transaction

TransactionRol ledBackException– if the transaction rolled back due to a failure

ScopedWorkException– if the supplied work throws an Exception

147.9.10.4 public T supports(Callable<T> work) throws TransactionException, ScopedWorkException

Type Parameters <T>

work

□ The supplied piece of work may run inside or outside the context of a transaction. If an existing
transaction or "no transaction" context is active then it will continue, otherwise a new "no transac-
tion" context is associated with the work. After the work has completed any created transaction con-
text must be completed.

The "no transaction" context does not support resource enlistment, and will not commit or rollback
any changes, however it does provide a post completion callback to any registered functions. This
function is suitable for final cleanup, such as closing a connection

Returns The value returned by the work

Throws TransactionException– if there is an error starting or completing the transaction

ScopedWorkException– if the supplied work throws an Exception

147.9.11 enum TransactionStatus
The status of the transaction A transaction may not enter all of the states in this enum, however it
will always traverse the enum in ascending order. In particular if the TransactionStatus is reported
as X then it will never proceed into a state Y where X.compareTo(Y) >= 0;

147.9.11.1 NO_TRANSACTION

No transaction is currently active

147.9.11.2 ACTIVE

A transaction is currently in progress

147.9.11.3 MARKED_ROLLBACK

A transaction is currently in progress and has been marked for rollback

147.9.11.4 PREPARING

A two phase commit is occurring and the transaction is being prepared

147.9.11.5 PREPARED

A two phase commit is occurring and the transaction has been prepared

147.9.11.6 COMMITTING

The transaction is in the process of being committed

org.osgi.service.transaction.control.jdbc Transaction Control Service Specification Version 1.0

Page 1014 OSGi Compendium Release 8

147.9.11.7 COMMITTED

The transaction has committed

147.9.11.8 ROLLING_BACK

The transaction is in the process of rolling back

147.9.11.9 ROLLED_BACK

The transaction has been rolled back

147.9.11.10 public static TransactionStatus valueOf(String name)

147.9.11.11 public static TransactionStatus[] values()

147.10 org.osgi.service.transaction.control.jdbc

Transaction Control JDBC Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.transact ion.control . jdbc; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.transact ion.control . jdbc; vers ion="[1.0,1.1)"

147.10.1 Summary

• JDBCConnectionProvider - A specialized ResourceProvider suitable for obtaining JDBC connec-
tions.

• JDBCConnectionProviderFactory - A factory for creating JDBCConnectionProvider instances

147.10.2 public interface JDBCConnectionProvider
extends ResourceProvider<Connection>
A specialized ResourceProvider suitable for obtaining JDBC connections.

Instances of this interface may be available in the Service Registry, or can be created using a JDBC-
ConnectionProviderFactory.

147.10.3 public interface JDBCConnectionProviderFactory
A factory for creating JDBCConnectionProvider instances

This factory can be used if the JDBCConnectionProvider should not be a public service, for example
to protect a username/password.

Provider Type Consumers of this API must not implement this type

147.10.3.1 public static final String CONNECTION_LIFETIME = "osgi.connection.lifetime"

The property used to set the maximum amount of time that connections in the pool should remain
open

Transaction Control Service Specification Version 1.0 org.osgi.service.transaction.control.jdbc

OSGi Compendium Release 8 Page 1015

147.10.3.2 public static final String CONNECTION_POOLING_ENABLED = "osgi.connection.pooling.enabled"

The property used to determine whether connection pooling is enabled for this resource provider

147.10.3.3 public static final String CONNECTION_TIMEOUT = "osgi.connection.timeout"

The property used to set the maximum amount of time that the pool should wait for a connection

147.10.3.4 public static final String IDLE_TIMEOUT = "osgi.idle.timeout"

The property used to set the maximum amount of time that connections in the pool should remain
idle before being closed

147.10.3.5 public static final String LOCAL_ENLISTMENT_ENABLED = "osgi.local.enabled"

The property used to determine whether local enlistment is enabled for this resource provider

147.10.3.6 public static final String MAX_CONNECTIONS = "osgi.connection.max"

The property used to set the maximum number of connections that should be held in the pool

147.10.3.7 public static final String MIN_CONNECTIONS = "osgi.connection.min"

The property used to set the minimum number of connections that should be held in the pool

147.10.3.8 public static final String OSGI_RECOVERY_IDENTIFIER = "osgi.recovery.identifier"

The property used to set the recovery identifier that should be used by this resource

147.10.3.9 public static final String USE_DRIVER = "osgi.use.driver"

The property used to set the maximum number of connections that should be held in the pool

147.10.3.10 public static final String XA_ENLISTMENT_ENABLED = "osgi.xa.enabled"

The property used to determine whether XA enlistment is enabled for this resource provider

147.10.3.11 public static final String XA_RECOVERY_ENABLED = "osgi.recovery.enabled"

The property used to determine whether XA recovery is enabled for this resource provider

147.10.3.12 public JDBCConnectionProvider getProviderFor(DataSourceFactory dsf, Properties jdbcProperties,
Map<String, Object> resourceProviderProperties)

dsf

jdbcProperties The properties to pass to the DataSourceFactory in order to create the underlying DataSource

resourceProvider-
Properties

Configuration properties to pass to the JDBC Resource Provider runtime

□ Create a private JDBCConnectionProvider using a DataSourceFactory. This call may fail with a
TransactionException if the supplied configuration is invalid. Examples of invalid configuration in-
clude:

• The properties request XA enlistment, but the provider implementation only supports local en-
listment

• The properties attempt to set a recovery alias, but the provider does not support recovery.

Returns A JDBCConnectionProvider that can be used in transactions

147.10.3.13 public JDBCConnectionProvider getProviderFor(DataSource ds, Map<String, Object>
resourceProviderProperties)

ds

resourceProvider-
Properties

Configuration properties to pass to the JDBC Resource Provider runtime

org.osgi.service.transaction.control.jpa Transaction Control Service Specification Version 1.0

Page 1016 OSGi Compendium Release 8

□ Create a private JDBCConnectionProvider using an existing DataSource. This call may fail with a
TransactionException if the supplied configuration is invalid. Examples of invalid configuration in-
clude:

• The properties request XA enlistment, but the provider implementation only supports local en-
listment

• The properties attempt to set a recovery alias, but the provider does not support recovery.

Returns A JDBCConnectionProvider that can be used in transactions

147.10.3.14 public JDBCConnectionProvider getProviderFor(Driver driver, Properties jdbcProperties, Map<String,
Object> resourceProviderProperties)

driver

jdbcProperties The properties to pass to the Driver in order to create a Connection

resourceProvider-
Properties

Configuration properties to pass to the JDBC Resource Provider runtime

□ Create a private JDBCConnectionProvider using an existing Driver. This call may fail with a Trans-
actionException if the supplied configuration is invalid. Examples of invalid configuration include:

• The properties request XA enlistment, but the provider implementation only supports local en-
listment

• The properties attempt to set a recovery alias, but the provider does not support recovery.

Returns A JDBCConnectionProvider that can be used in transactions

147.10.3.15 public JDBCConnectionProvider getProviderFor(XADataSource ds, Map<String, Object>
resourceProviderProperties)

ds

resourceProvider-
Properties

Configuration properties to pass to the JDBC Resource Provider runtime

□ Create a private JDBCConnectionProvider using an existing XADataSource. This call may fail with
a TransactionException if the supplied configuration is invalid. Examples of invalid configuration
include:

• The properties request XA enlistment, but the provider implementation only supports local en-
listment

• The properties attempt to set a recovery alias, but the provider does not support recovery.

Returns A JDBCConnectionProvider that can be used in transactions

147.10.3.16 public void releaseProvider(JDBCConnectionProvider provider)

provider

□ Release a JDBCConnectionProvider instance that has been created by this factory. Released instances
are eligible to be shut down and have any remaining open connections closed.

Note that all JDBCConnectionProvider instances created by this factory service are implicitly re-
leased when the factory service is released by this bundle.

Throws I l legalArgumentException– if the supplied resource was not created by this factory service instance.

147.11 org.osgi.service.transaction.control.jpa

Transaction Control Service Specification Version 1.0 org.osgi.service.transaction.control.jpa

OSGi Compendium Release 8 Page 1017

Transaction Control JPA Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.transact ion.control . jpa; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.transact ion.control . jpa; vers ion="[1.0,1.1)"

147.11.1 Summary

• JPAEntityManagerProvider - A specialized ResourceProvider suitable for obtaining JPA Entity-
Manager instances.

• JPAEntityManagerProviderFactory - A factory for creating JPAEntityManagerProvider instances

147.11.2 public interface JPAEntityManagerProvider
extends ResourceProvider<EntityManager>
A specialized ResourceProvider suitable for obtaining JPA EntityManager instances.

Instances of this interface may be available in the Service Registry, or can be created using a JPAEnti-
tyManagerProviderFactory.

147.11.3 public interface JPAEntityManagerProviderFactory
A factory for creating JPAEntityManagerProvider instances

This factory can be used if the JPAEntityManagerProvider should not be a public service, for exam-
ple to protect a username/password.

Provider Type Consumers of this API must not implement this type

147.11.3.1 public static final String CONNECTION_LIFETIME = "osgi.connection.lifetime"

The property used to set the maximum amount of time that connections in the pool should remain
open

147.11.3.2 public static final String CONNECTION_POOLING_ENABLED = "osgi.connection.pooling.enabled"

The property used to determine whether connection pooling is enabled for this resource provider

147.11.3.3 public static final String CONNECTION_TIMEOUT = "osgi.connection.timeout"

The property used to set the maximum amount of time that the pool should wait for a connection

147.11.3.4 public static final String IDLE_TIMEOUT = "osgi.idle.timeout"

The property used to set the maximum amount of time that connections in the pool should remain
idle before being closed

147.11.3.5 public static final String LOCAL_ENLISTMENT_ENABLED = "osgi.local.enabled"

The property used to determine whether local enlistment is enabled for this resource provider

147.11.3.6 public static final String MAX_CONNECTIONS = "osgi.connection.max"

The property used to set the maximum number of connections that should be held in the pool

147.11.3.7 public static final String MIN_CONNECTIONS = "osgi.connection.min"

The property used to set the minimum number of connections that should be held in the pool

org.osgi.service.transaction.control.jpa Transaction Control Service Specification Version 1.0

Page 1018 OSGi Compendium Release 8

147.11.3.8 public static final String OSGI_RECOVERY_IDENTIFIER = "osgi.recovery.identifier"

The property used to set the recovery identifier that should be used by this resource

147.11.3.9 public static final String PRE_ENLISTED_DB_CONNECTION = "osgi.jdbc.enlisted"

The property used to indicate that database connections will be automatically enlisted in ongoing
transactions without intervention from the JPA resource provider

147.11.3.10 public static final String TRANSACTIONAL_DB_CONNECTION = "osgi.jdbc.provider"

The property used to provide a JDBCConnectionProvider to the resource provider. This will be con-
verted into a DataSource by the factory, and passed to the EntityManagerFactoryBuilder using the
javax.persistence.jtaDataSource property

147.11.3.11 public static final String XA_ENLISTMENT_ENABLED = "osgi.xa.enabled"

The property used to determine whether XA enlistment is enabled for this resource provider

147.11.3.12 public static final String XA_RECOVERY_ENABLED = "osgi.recovery.enabled"

The property used to determine whether XA recovery is enabled for this resource provider

147.11.3.13 public JPAEntityManagerProvider getProviderFor(EntityManagerFactoryBuilder emfb, Map<String, Object>
jpaProperties, Map<String, Object> resourceProviderProperties)

emfb

jpaProperties The properties to pass to the EntityManagerFactoryBuilder in order to create the underlying Entity-
ManagerFactory and EntityManager instances

resourceProvider-
Properties

Configuration properties to pass to the JPA Resource Provider runtime

□ Create a private JPAEntityManagerProvider using an EntityManagerFactoryBuilder. This call may
fail with a TransactionException if the supplied configuration is invalid. Examples of invalid config-
uration include:

• The properties request XA enlistment, but the provider implementation only supports local en-
listment

• The properties attempt to set a recovery alias, but the provider does not support recovery.

If XA transactions are used then this factory will provide configuration to ensure that the JPA
Provider can participate correctly in ongoing transactions.

Returns A JPAEntityManagerProvider that can be used in transactions

147.11.3.14 public JPAEntityManagerProvider getProviderFor(EntityManagerFactory emf, Map<String, Object>
resourceProviderProperties)

emf

resourceProvider-
Properties

Configuration properties to pass to the JDBC Resource Provider runtime

□ Create a private JPAEntityManagerProvider using an existing EntityManagerFactory. This call may
fail with a TransactionException if the supplied configuration is invalid. Examples of invalid config-
uration include:

• The properties request XA enlistment, but the provider implementation only supports local en-
listment

• The properties attempt to set a recovery alias, but the provider does not support recovery.

Transaction Control Service Specification Version 1.0 org.osgi.service.transaction.control.recovery

OSGi Compendium Release 8 Page 1019

When using this method the client is responsible for all configuration of the EntityManagerFactory.
This includes setting any relevant integration plugins for ensuring that the JPA provider can partici-
pate in the ongoing transaction context.

Returns A JPAEntityManagerProvider that can be used in transactions

147.11.3.15 public void releaseProvider(JPAEntityManagerProvider provider)

provider

□ Release a JPAEntityManagerProvider instance that has been created by this factory. Released in-
stances are eligible to be shut down and have any remaining open connections closed.

Note that all JPAEntityManagerProvider instances created by this factory service are implicitly re-
leased when the factory service is released by this bundle.

Throws I l legalArgumentException– if the supplied resource was not created by this factory service instance.

147.12 org.osgi.service.transaction.control.recovery

Transaction Control Service Recovery Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.transact ion.control . recovery; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.transact ion.control . recovery; vers ion="[1.0,1.1)"

147.12.1 Summary

• RecoverableXAResource - A RecoverableXAResource service may be provided by a Resource-
Provider if they are able to support XA recovery operations.

147.12.2 public interface RecoverableXAResource
A RecoverableXAResource service may be provided by a ResourceProvider if they are able to support
XA recovery operations. There are two main sorts of recovery:

• Recovery after a remote failure, where the local transaction manager runs throughout
• Recovery after a local failure, where the transaction manager replays in-doubt transactions from

its log

This service is used in both of these cases. The identifier returned by getId() provides a persistent
name that can be used to correlate usage of the resource both before and after failure. This identifier
must also be passed to TransactionContext.registerXAResource(XAResource, String) each time the
recoverable resource is used.

147.12.2.1 public static final String OSGI_RECOVERY_ENABLED = "osgi.recovery.enabled"

This service property key is used by TransactionControl services and ResourceProvider factories to
indicate that they can support transaction recovery.

147.12.2.2 public String getId()

□ Get the id of this resource. This should be unique, and persist between restarts

org.osgi.service.transaction.control.recovery Transaction Control Service Specification Version 1.0

Page 1020 OSGi Compendium Release 8

Returns an identifier, never nul l

147.12.2.3 public XAResource getXAResource() throws Exception

□ Get a new, valid XAResource that can be used in recovery This XAResource will be returned later us-
ing the releaseXAResource(XAResource) method

Returns a valid, connected, XAResource

Throws Exception– If it is not possible to acquire a valid XAResource at the current time, for example if the
database is temporarily unavailable.

147.12.2.4 public void releaseXAResource(XAResource xaRes)

xaRes An XAResource previously returned by getXAResource()

□ Release the XAResource that has been used for recovery

Cluster Information Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 1021

148 Cluster Information Specification

Version 1.0

148.1 Introduction
Modern enterprise applications are most often deployed on distributed infrastructure such as a pri-
vate or public cloud environment, instead of on a single server. This is done to distribute the appli-
cation load, to replicate the application to guarantee availability or to exploit dedicated hardware
for certain application functionality (for example, a database server).

The unit of management is often no longer a single physical machine. Server infrastructure is nowa-
days mostly offered in a virtualized fashion, such as hardware virtualization using a hypervisor or
operating system virtualization using containers. Potentially these can also be hierarchically man-
aged, for example having multiple containers running inside a virtual machine. Therefore, it be-
comes key to manage an application running on a cluster of such (virtual) machines and/or contain-
ers.

Also in the context of the Internet of Things (IoT), often a number of gateway devices is deployed in
the network that connect various sensors and actuators creating a smart environment. Again, it be-
comes key to discover and manage these devices, and query their capabilities.

The OSGi specification already provides chapters describing how to deploy software on remote in-
frastructure, how to call remote services or how manage a remote OSGi framework. In this chapter
we define an API for a management agent to discover, list and inspect available nodes in the cluster.

148.1.1 Essentials

• Cluster - A cluster is a collection of nodes connected by a network. Most often the nodes are man-
aged by a public or private cloud provider.

• Node - A node is a discoverable entity in the cluster, for example a physical machine, a virtual ma-
chine (VM), a container or an OSGi framework.

148.1.2 Entities

• NodeStatus - The Node Status service represents a node in the cluster. This can be any entity in the
cluster such as a database server, a virtual machine, a container, an OSGi framework, etc.

• FrameworkNodeStatus - The Framework Node Status service represents an OSGi framework in the
cluster.

• FrameworkManager - The FrameworkManager service provides an interface to manage an OSGi
framework in the cluster.

OSGi frameworks in a cluster Cluster Information Specification Version 1.0

Page 1022 OSGi Compendium Release 8

Figure 148.1 Clusterinfo Entity overview

<<interface>>
Framework

ClusterInfo
Framework
NodeStatus

<<interface>>

<<interface>>

1

impl

NodeStatus
impl

0..n

1
0..n

impl

NodeStatus
NodeStatus

Framework
Manager

148.2 OSGi frameworks in a cluster
We distinguish two types of nodes in a cluster. On the one hand we have OSGi frameworks, which
publish their presence using a Framework Node Status service. On the other hand there can be oth-
er nodes in the cluster, such as the virtual machines or containers the OSGi frameworks are running
on, or an external server such as a database. These can be represented using a Node Status service.

When an OSGi framework is part of a cluster, this means it gets access to remote services of any oth-
er OSGi framework in that cluster. Ensuring the discovery, visibility and access of remote services
within the cluster is the responsibility of the Remote Service Admin Service Specification on page 509.

An example cluster deployment is shown in Figure 148.2 on page 1023. Here, a cluster consisting
of three virtual machines or containers has deployed a total of four OSGi frameworks. Each OSGi
framework has a Cluster Information implementation running that exposes a Framework Node Sta-
tus service. Besides these, there can also be an entity managing the virtual machines/containers (for
example, the cloud provider), that exposes three Node Status services, one for each VM/container. In
this case, each Framework Node Status will have a parent id pointing to the id of the Node Status of
the VM/container it is deployed on.

Cluster Information Specification Version 1.0 Node Status Service

OSGi Compendium Release 8 Page 1023

Figure 148.2 Example cluster deployment

ClusterInfo
impl

OSGi framework

ClusterInfo
impl

OSGi framework

ClusterInfo
impl

OSGi framework

ClusterInfo
impl

OSGi framework

VM/Container 1

VM/Container 2

VM/Container 3

VM/Container manager
ClusterInfo
impl

Framework
NodeStatus

Framework
NodeStatus

Framework
NodeStatus

Framework
NodeStatus

NodeStatus

148.3 Node Status Service
The NodeStatus service advertises the availability of a node in the cluster. This node can be any enti-
ty in the cluster such as a physical machine, a virtual machine, a container or an OSGi framework.

The Node Status service provides metadata about the node via its service properties. Each Node Sta-
tus must provide an id and cluster name. Optionally additional service properties can be provid-
ed such as the physical location of the node, the endpoints at which this node can be accessed, etc.
These service properties can be converted to a NodeStatusDTO to have type-safe access to these
properties using the Converter Specification on page 1469.

Table 148.1 Service properties of the NodeStatus service

Service Property Name Type Description
osgi .c luster info. id Str ing The globally unique ID for this node. For example

the Docker ID if this node is a Docker container, or
the framework UUID if this node is an OSGi frame-
work.

osgi .c luster info.c luster Str ing The name of the cluster this node belongs to.
osgi .c luster info.parent Str ing In the case this node is part of or embedded in anoth-

er node, this field contains the id of the parent node.
For example multiple virtual machines could run on
the same physical node.

osgi .c luster info.endpoint Str ing+ The endpoint(s) at which this node can be accessed
from the viewpoint of the consumer of the service.

osgi .c luster info.endpoint.pr ivate Str ing+ Private endpoint(s) at which this node can be ac-
cessed from within the cluster only.

osgi .c luster info.vendor Str ing The vendor name of the cloud/environment in
which the node operates.

Node Status Service Cluster Information Specification Version 1.0

Page 1024 OSGi Compendium Release 8

Service Property Name Type Description
osgi .c luster info.version Str ing The version of the cloud/environment in which the

node operates. The value follows the versioning
scheme of the cloud provider and may therefore not
comply with the OSGi versioning syntax.

osgi .c luster info.country Str ing ISO 3166-1 alpha-3 location where this node is run-
ning, if known.

osgi .c luster info. locat ion Str ing ISO 3166-2 location where this node is running,
if known. This location is more detailed than the
country code as it may contain province or territory.

osgi .c luster info.region Str ing Something smaller than a country and bigger than
a location (for example, us-east-1 or other cloud-spe-
cific location)

osgi .c luster info.zone Str ing Regions are often subdivided in zones that represent
different physical locations. The zone can be provid-
ed here.

osgi .c luster info.tags Str ing+ Tags associated with this node that can be con-
tributed to by the provider and also by bundles.

The Node Status service can also provide access to some dynamic properties of the node. The get-
Metr ics method allows to query key-value pairs, that are specific for that node. For example, for
an OSGi framework these could be CPU and memory usage, for a database node these could be the
number of database reads and writes, and for a VM these could be metrics made accessible by the
cloud provider. In this case the service implementor can provide DTOs to have a type-safe way to ac-
cess these metrics by converting the returned map to one of these DTOs. For example, an implemen-
tation could expose JMX metrics together with a type-safe DTO:

public class JMXMetricsDTO extends DTO {
 /**
 * The number of processors available
 */
 public int availableProcessors;

 /**
 * The average system load
 */
 public float systemLoadAverage;

 /**
 * The maximal amount of heap memory available to the JVM
 */
 public long heapMemoryMax;

 /**
 * The amount of heap memory used by the JVM
 */
 public long heapMemoryUsed;

 /**
 * The maximal amount of non-heap memory available to the JVM
 */
 public long nonHeapMemoryMax;

 /**

Cluster Information Specification Version 1.0 Framework Node Status Service

OSGi Compendium Release 8 Page 1025

 * The amount of non-heap memory used by the JVM
 */
 public long nonHeapMemoryUsed;
}

Such DTO can be used to obtain metrics from a NodeStatus service as follows:

// From service registry
NodeStatus ns = ...;
// Obtain all metrics for this node
Map<String, Object> metrics = ns.getMetrics();

// Convert the metrics map to a DTO for type-safe access
JMXMetricsDTO dto = Converters.standardConverter().convert(metrics)
 .to(JMXMetricsDTO.class);

// Use metrics
System.out.println("System Load Average: " + dto.systemLoadAverage);

148.4 Framework Node Status Service
In case the cluster node is an OSGi framework, the FrameworkNodeStatus service is used to repre-
sent the node. FrameworkNodeStatus extends NodeStatus , and the node id is the OSGi framework
UUID. Next to the Node Status service properties, this service has some additional service properties
describing the OSGi and Java runtime:

Table 148.2 Additional service properties of the FrameworkNodeStatus service

Service Property Name Type Description
org.osgi .f ramework.version Str ing The OSGi framework version.
org.osgi .f ramework.processor Str ing The OSGi framework processor architecture.
org.osgi .f ramework.os_name Str ing The OSGi framework operating system name.
java.version Str ing The Java version.
java.runtime.version Str ing The Java runtime version.
java.specif icat ion.version Str ing The Java specification version.
java.vm.version Str ing The Java VM version.

Similar to the Node Status service, the service properties of the Framework Node Status service can
be converted to a FrameworkNodeStatusDTO to have type-safe access to these properties using the
Converter Specification on page 1469.

The Framework Node Status service also extends the FrameworkManager interface, which provides
a management interface for the OSGi framework. This allows a remote management agent to inter-
act with the OSGi framework. The Framework Node Status service can be exported remotely with
Remote Services, however alternative mechanisms to distribute this service are also permitted. For
example, the FrameworkManager interface can also be made available through the REST Manage-
ment Service Specification on page 733.

The following example uses the NodeStatus properties from a FrameworkNodeStatus service to
see what country the framework is running in. If it is running in Germany a bundle specific for that
country is installed:

@Component
public class FrameworkProvisioner {
 private static final Converter CONVERTER = Converters.standardConverter();

Application-specific Node Status metadata Cluster Information Specification Version 1.0

Page 1026 OSGi Compendium Release 8

 @Reference(cardinality = MULTIPLE, policy = DYNAMIC)
 void addFramework(FrameworkNodeStatus fns, Map<String,Object> props) {
 // Convert the properties to the DTO for type safe access
 NodeStatusDTO dto = CONVERTER.convert(props).to(NodeStatusDTO.class);

 // Check the ISO 3166-1 alpha 3 country code
 if ("DEU".equals(dto.country)) {
 // If this framework runs in Germany, install a special bundle into it
 try {
 fns.installBundle("... Germany specific bundle ...");
 } catch (Exception e) {
 // log
 }
 }
 }
}

148.5 Application-specific Node Status metadata
The Node Status service provides a osgi .c luster info.tags property. Here, application specific tags can
be assigned to the NodeStatus services. For example, one could assign different roles to the nodes
such as "worker", "database", "storage", "gateway", etc. These roles are application-specific and should
be defined by the application developer.

Bundles can specify additional tags to be included in the FrameworkNodeStatus service
representing the current framework by registering any service with the service property
org.osgi .service.c luster info.tags providing a custom Str ing[] of tags. The Cluster Information im-
plementation will add those to the tags property of the FrameworkNodeStatus service that repre-
sents the OSGi framework. For example:

// Register an arbitrary service that communicates the tags
// to be added to the osgi.clusterinfo.tags service property.
Dictionary<String, Object> props = new Hashtable<>();
props.put("org.osgi.service.clusterinfo.tags",
 new String [] {"database", "large_box"});
bundleContext.registerService(MyClass.class, this, props);

148.6 Security

148.6.1 Cluster Tag Permission
The ClusterTagPermission class allows fine-grained control over which bundles may add which tags
to the Framework Node Status service. A bundle can be granted to add a certain tag to the Frame-
work Node Status, or be granted to add any tag using the * wildcard.

148.6.2 Required Permissions
The Cluster Information Specification should only be implemented by trusted bundles. These
bundles require ServicePermission[NodeStatus|FrameworkNodeStatus|FrameworkManager,
REGISTER] .

All bundles accessing the Cluster Information services should get ServicePermission[NodeStatus|
FrameworkNodeStatus|FrameworkManager, GET] .

Cluster Information Specification Version 1.0 org.osgi.service.clusterinfo

OSGi Compendium Release 8 Page 1027

Only trusted bundles who must be able to add Node Status tags should be assigned
ClusterTagPermission[ClusterTag, ADD] .

148.6.3 Remote service visibility in a cluster
By default, all remote OSGi services are visible within a cluster. This is handled by the Remote Service
Admin Service Specification on page 509.

148.7 org.osgi.service.clusterinfo

ClusterInfo Services Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.c luster info; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.c luster info; vers ion="[1.0,1.1)"

148.7.1 Summary

• ClusterTagPermission - A bundle's authority to add a tag to a NodeStatus service.
• FrameworkManager - Provides a management interface for accessing and managing a remote

OSGi framework.
• FrameworkNodeStatus - The FrameworkNodeStatus service represents a node in the cluster

that is also an OSGi framework.
• NodeStatus - The NodeStatus service represents a node in the cluster.

148.7.2 public final class ClusterTagPermission
extends Permission
A bundle's authority to add a tag to a NodeStatus service.

148.7.2.1 public static final String ADD = "add"

The action string add .

148.7.2.2 public ClusterTagPermission(String tag, String actions)

tag Give permission to add this tag, use * wildcard to give permission to add any tag.

actions add .

□ Defines the authority to add a tag to the NodeStatus service.

148.7.2.3 public boolean equals(Object obj)

obj The object to test for equality with this ClusterTagPermission object.

□ Determines the equality of two ClusterTagPermission objects. This method checks that specified
ClusterTagPermission has the same tag as this ClusterTagPermission object.

Returns true if obj is a ClusterTagPermission , and has the same tag as this ClusterTagPermission object; fa lse
otherwise.

org.osgi.service.clusterinfo Cluster Information Specification Version 1.0

Page 1028 OSGi Compendium Release 8

148.7.2.4 public String getActions()

□ Returns the canonical string representation of the ClusterTagPermission action.

Always returns the ADD action.

Returns Canonical string representation of the ClusterTagPermission actions.

148.7.2.5 public int hashCode()

□ Returns the hash code value for this object.

Returns A hash code value for this object.

148.7.2.6 public boolean implies(Permission p)

p The target permission to interrogate.

□ Determines if the specified permission is implied by this object.

This method checks that the tag of the target is implied by the tag name of this object.

Returns true if the specified ClusterTagPermission action is implied by this object; fa lse otherwise.

148.7.2.7 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object suitable for storing ClusterTagPermission objects.

Returns A new PermissionCol lect ion object.

148.7.3 public interface FrameworkManager
Provides a management interface for accessing and managing a remote OSGi framework. This inter-
face can be accessed remotely via Remote Services.

148.7.3.1 public BundleDTO getBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Retrieve the bundle representation for a given bundle Id.

Returns A BundleDTO for the requested bundle.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.2 public Map<String, String> getBundleHeaders(long id) throws Exception

id Addresses the bundle by its identifier.

□ Get the header for a bundle given by its bundle Id.

Returns Returns the map of headers entries.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.3 public Collection<BundleDTO> getBundles() throws Exception

□ Get the bundle representations for all bundles currently installed in the managed framework.

Returns Returns a collection of BundleDTO objects.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.4 public BundleStartLevelDTO getBundleStartLevel(long id) throws Exception

id Addresses the bundle by its identifier.

□ Get the start level for a bundle given by its bundle Id.

Cluster Information Specification Version 1.0 org.osgi.service.clusterinfo

OSGi Compendium Release 8 Page 1029

Returns Returns a BundleStartLevelDTO describing the current start level of the bundle.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.5 public int getBundleState(long id) throws Exception

id Addresses the bundle by its identifier.

□ Get the state for a given bundle Id.

Returns Returns the current bundle state as defined in org.osgi.framework.Bundle.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.6 public FrameworkStartLevelDTO getFrameworkStartLevel() throws Exception

□ Retrieves the current framework start level.

Returns Returns the current framework start level in the form of a FrameworkStartLevelDTO.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.7 public ServiceReferenceDTO getServiceReference(long id) throws Exception

id Addresses the service by its identifier.

□ Get the service representation for a service given by its service Id.

Returns The service representation as ServiceReferenceDTO.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.8 public Collection<ServiceReferenceDTO> getServiceReferences() throws Exception

□ Get the service representations for all services.

Returns Returns the service representations in the form of ServiceReferenceDTO objects.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.9 public Collection<ServiceReferenceDTO> getServiceReferences(String filter) throws Exception

filter Passes a filter to restrict the result set.

□ Get the service representations for all services.

Returns Returns the service representations in the form of ServiceReferenceDTO objects.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.10 public BundleDTO installBundle(String location) throws Exception

location Passes the location string to retrieve the bundle content from.

□ Install a new bundle given by an externally reachable location string, typically describing a URL.

Returns Returns the BundleDTO of the newly installed bundle.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.11 public void setBundleStartLevel(long id, int startLevel) throws Exception

id Addresses the bundle by its identifier.

startLevel The target start level.

□ Set the start level for a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.12 public void setFrameworkStartLevel(FrameworkStartLevelDTO startLevel) throws Exception

startLevel set the framework start level to this target.

org.osgi.service.clusterinfo Cluster Information Specification Version 1.0

Page 1030 OSGi Compendium Release 8

□ Sets the current framework start level.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.13 public void startBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Start a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.14 public void startBundle(long id, int options) throws Exception

id Addresses the bundle by its identifier.

options Passes additional options as defined in org.osgi.framework.Bundle.start(int)

□ Start a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.15 public void stopBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Stop a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.16 public void stopBundle(long id, int options) throws Exception

id Addresses the bundle by its identifier.

options Passes additional options as defined in org.osgi.framework.Bundle.stop(int)

□ Stop a bundle given by its bundle Id.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.17 public BundleDTO uninstallBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Uninstall a bundle given by its bundle Id.

Returns Returns the BundleDTO of the uninstalled bundle.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.18 public BundleDTO updateBundle(long id) throws Exception

id Addresses the bundle by its identifier.

□ Updates a bundle given by its bundle Id using the bundle-internal update location.

Returns Returns the BundleDTO of the updated bundle.

Throws Exception– An exception representing a failure in the underlying remote call.

148.7.3.19 public BundleDTO updateBundle(long id, String url) throws Exception

id Addresses the bundle by its identifier.

url The URL whose content is to be used to update the bundle.

□ Updates a bundle given by its URI path using the content at the specified URL.

Returns Returns the BundleDTO of the updated bundle.

Throws Exception– An exception representing a failure in the underlying remote call.

Cluster Information Specification Version 1.0 org.osgi.service.clusterinfo.dto

OSGi Compendium Release 8 Page 1031

148.7.4 public interface FrameworkNodeStatus
extends NodeStatus, FrameworkManager
The FrameworkNodeStatus service represents a node in the cluster that is also an OSGi framework.

148.7.5 public interface NodeStatus
The NodeStatus service represents a node in the cluster.

A node could represent an entity available in the network that is not necessarily running an OSGi
framework, such as a database or a load balancer.

148.7.5.1 public Map<String, Object> getMetrics(String... names)

names a set of metric names that have to be obtained from the node. Of no names are specified all available
metrics will be obtained. If a metric is requested that is not available by the node this metric is ig-
nored and not present in the returned map.

□ Get the current metrics or other dynamic data from the node. Nodes may support custom metrics
and as such the caller can request those metrics by name. The caller can specify the metric names to
avoid having to compute and send all metrics over, if the caller is only interested in a subset of the
available metrics.

Returns Map with the current node metrics

148.8 org.osgi.service.clusterinfo.dto

ClusterInfo DTO Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.c luster info.dto; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.c luster info.dto; vers ion="[1.0,1.1)"

148.8.1 Summary

• FrameworkNodeStatusDTO - Data Transfer Object for a FrameworkNodeStatus Service.
• NodeStatusDTO - Data Transfer Object for a NodeStatus Service.

148.8.2 public class FrameworkNodeStatusDTO
extends NodeStatusDTO
Data Transfer Object for a FrameworkNodeStatus Service.

148.8.2.1 public String java_runtime_version

The Java runtime version.

148.8.2.2 public String java_specification_version

The Java specification version.

148.8.2.3 public String java_version

The Java version.

org.osgi.service.clusterinfo.dto Cluster Information Specification Version 1.0

Page 1032 OSGi Compendium Release 8

148.8.2.4 public String java_vm_version

The Java VM version.

148.8.2.5 public String org_osgi_framework_os_name

The OSGi framework operating system name.

148.8.2.6 public String org_osgi_framework_processor

The OSGi framework processor architecture.

148.8.2.7 public String org_osgi_framework_version

The OSGi framework version.

148.8.2.8 public FrameworkNodeStatusDTO()

□ This DTO can be used to provide type safe access to properties of the FrameworkNodeStatus service.

148.8.3 public class NodeStatusDTO
extends DTO
Data Transfer Object for a NodeStatus Service.

148.8.3.1 public String cluster

The name of the cluster this node belongs to.

148.8.3.2 public String country

ISO 3166-1 alpha-3 location where this node instance is running, if known.

148.8.3.3 public String[] endpoints

The endpoint(s) at which this node can be accessed from the viewpoint of the consumer of the ser-
vice.

148.8.3.4 public String id

The globally unique ID for this node. For example the Docker ID if this node is a Docker container,
or the framework UUID if this node is an OSGi framework.

148.8.3.5 public String location

ISO 3166-2 location where this node instance is running, if known. This location is more detailed
than the country code as it may contain province or territory.

148.8.3.6 public String parentid

An optional parentID indicating this node is part of or embedded in another node. For example mul-
tiple virtual machines could run on the same physical node.

148.8.3.7 public static final String PREFIX_ = "osgi.clusterinfo."

Prefix used for the converter

148.8.3.8 public String[] privateEndpoints

Private endpoint(s) at which this node can be accessed from within the cluster only.

148.8.3.9 public String region

Something smaller than a country and bigger than a location (e.g. us-east-1 or other cloud-specific
location)

Cluster Information Specification Version 1.0 org.osgi.service.clusterinfo.dto

OSGi Compendium Release 8 Page 1033

148.8.3.10 public String[] tags

Tags associated with this node that can be contributed to by the provider and also by bundles.

148.8.3.11 public String vendor

The vendor name of the cloud/environment in which the node operates.

148.8.3.12 public String version

The version of the cloud/environment in which the node operates. The value follows the versioning
scheme of the cloud provider and may therefore not comply with the OSGi versioning syntax.

148.8.3.13 public String zone

Regions are often subdivided in zones that represent different physical locations. The zone can be
provided here.

148.8.3.14 public NodeStatusDTO()

□ This DTO can be used to provide type safe access to properties of the NodeStatus service.

org.osgi.service.clusterinfo.dto Cluster Information Specification Version 1.0

Page 1034 OSGi Compendium Release 8

Device Service Specification for ZigBee™ Technology Version 1.0 Introduction

OSGi Compendium Release 8 Page 1035

149 Device Service Specification for
ZigBee™ Technology

Version 1.0

149.1 Introduction
The [1] ZigBee Specification is a standard wireless communication protocol designed for low-cost and
low-power devices from the ZigBee Alliance. ZigBee is widely supported by various types of devices
such as smart meters, lights and many kinds of sensors in the residential area. OSGi applications
need to communicate with those ZigBee devices.

This specification defines how OSGi bundles can be developed to discover and control ZigBee de-
vices on the one hand, and act as ZigBee devices and interoperate with ZigBee clients on the other
hand. In particular, a Java mapping is provided for the standard hierarchical representation of Zig-
Bee devices called the ZigBee Cluster Library. The [2] ZigBee Cluster Library Specification also describes
the external API of a ZigBee Base Driver based upon the OSGi Device Access Specification.

149.2 Essentials
• Scope – This specification is limited to general device discovery and control aspects of the ZigBee

and the ZigBee Cluster Library specifications. Aspects concerning the representation of specific
ZigBee profiles are not addressed.

• Transparency – ZigBee devices discovered on the network and devices locally implemented on
the platform are represented in the OSGi service registry with the same API.

• Lightweight implementation option – The full description of ZigBee device services on the OSGi plat-
form is optional. Some base driver implementations may implement all the classes including
ZigBee device description classes while implementations targeting constrained devices are able
to implement only the part that is necessary for ZigBee device discovery and control.

• Network Selection – It must be possible to restrict the use of the ZigBee protocols to a selection of
the connected networks.

• Logical node type selection – It is possible to make an OSGi-based device appearing as a ZigBee end
device, a ZigBee router or a ZigBee coordinator.

• Event handling – Bundles are able to listen to ZigBee events.
• Discover and Control ZigBee Endpoints as OSGi services – available ZigBee endpoints are dynamical-

ly reified as OSGi services in the service registry.
• Export OSGi services as ZigBee Endpoints – available ZigBee endpoints are dynamically reified as

OSGi services in the service registry.

149.3 Entities
• ZigBee Base Driver – The bundle that implements the bridge between OSGi and ZigBee networks.

Entities Device Service Specification for ZigBee™ Technology Version 1.0

Page 1036 OSGi Compendium Release 8

• ZigBee Node – A physical ZigBee node. This entity is represented by a ZigBeeNode object. It is reg-
istered as an OSGi service by the Base Driver.

• ZigBee Endpoint – A logical device that defines a communication entity within a ZigBee node
through which a specific application profile is carried. This concept is represented by a Zig-
BeeEndpoint object. Registered as an OSGi service, an endpoint can be local (implemented on the
Framework) or external (implemented by another device on the network).

• ZigBee Device Description – Statically describes a ZigBee endpoint by providing its input/output
clusters and specifies which of described commands and attributes are mandatory or not. This
entity is represented by a ZigBeeDeviceDescription object.

• ZigBee Device Description Set – A service representing a set of ZigBeeDeviceDescription objects.
• ZigBee Cluster – Represents a ZigBee cluster entity, that is, a set of attributes and commands. It al-

lows the read and write of attribute values, and allows command invocation. This concept is rep-
resented by a ZCLCluster object.

• ZigBee Cluster Description – Cluster description provides details about available commands and
attributes for a specific Cluster. A cluster description should be constant. A cluster description
holds either a Client or a Server Cluster description and refers to a global cluster description.

• ZigBee Global Cluster Description – Global cluster description holds the server and client cluster de-
scription as well as common information such as cluster id, description and name. This concept
is represented by a ZCLGlobalClusterDescription object.

• ZigBee Command Description – Statically describes a specific cluster command by giving its name,
id, parameters. This entity is represented by a ZCLCommandDescription object.

• ZigBee Parameter Description – A ZigBee parameter description has a name, a range and a data type.
This entity description is represented by a ZCLParameterDescription object.

• ZigBee Attribute – Holds the current value of an existing cluster attribute, it allows easy
(de)encoding. This concept is represented by a ZCLAttribute object.

• ZigBee Attribute Description – Statically describes a ZigBee Attributes (data type, name, default val-
ue). It does not hold any current value. This concept is represented by a ZCLAttributeDescription
object.

• ZigBee Event Listener Service – A service that listens to events coming from ZigBee devices.
• ZigBee Event – An event generated by a ZigBee node. It contains a modified attribute value of a

specific cluster. This concept is represented by a ZigBeeEvent object.
• ZigBee Command Response Stream – A stream is a helper that manages asynchronous responses

from several endpoints that received a same request message. This entity is represented by a Zig-
BeeCommandResponseStream. For methods that generates a message to a unique endpoint, a
Promise is used instead.

• ZigBee Host – The machine that hosts the code to run a ZigBee device or client. It contains infor-
mation related to the Host. If the host is in the coordinator logical node type, it enables network-
ing configuration. It is registered as an OSGi service. This concept is represented by ZigBeeHost.

• ZigBee Client – An application that is intended to control ZigBee devices services.
• ZigBee Group – Enables group management. It is registered as an OSGi service.

Device Service Specification for ZigBee™ Technology Version 1.0 Operation Summary

OSGi Compendium Release 8 Page 1037

Figure 149.1 ZigBee Service Specification class Diagram org.osgi.service.zigbee package

0..n

0..n

0..n

0..n

<<Interface>>
ZCLGlobalCluster
Description

<<Interface>>
ZCLCommand
Description

<<Interface>>
ZCLParameter
Description

<<Interface>>
ZCLCluster

<<Interface>>
ZCLCluster
Description

<<Interface>>
ZigBeeEndpoint

<<Interface>>
ZigBeeNode

<<Interface>>
ZigBeeGroup

<<Interface>>
ZigBeeHost

<<Interface>>
ZigBeeDevice
DescriptionSet

<<Interface>>
ZigBeeDevice
Description

A ZigBee Endpoint
Implementer

Implementation
A ZigBee EndpointA ZigBee Client

Implementation

A ZigBee Device
Descriptor

<<Interface>>
ZCLDataType
Description

<<Interface>>
ZCLAttribute
Description

<<Interface>>
ZCLAttribute

<<Interface>>
ZCLEventListener

A Listener

0..n

1

1..n

1

0..n

0..n 0..n

0..n

1

0..n

0..1

0..n 0..1

1

0..n

0..n

0..1

0..n

0..1

0..n

0..n

1 owns

is owned by is owned by

is owned by

is owned by

is owned by

is owned bytransmits events to

transmits events to

is owned by

is associated with

is owned by

gets

is associated to

describes describes

describes

has

1 0..n

1

1 1

1

1

1

1

1

1

0..n

0..n

creates
1

is discovered or owned by

A ZigBee Node

ZigBee Base Driver

149.4 Operation Summary
OSGi applications interact with ZigBee devices through their object representation (proxies) regis-
tered in OSGi service registry. To make a ZigBee device available as an OSGi service to ZigBee clients
on the framework, an OSGi service object must be registered under the ZigBeeNode interface with
the OSGi framework and an OSGi service must be registered under the ZigBeeEndpoint interface
with the OSGi framework for every endpoint that is contained by the ZigBee node.

The ZigBee Base Driver is responsible for mapping networked devices into ZigBeeNode and Zig-
BeeEndpoint objects, through the use of a ZigBee radio chip. The latter is represented on the OSGi
framework as an object implementing ZigBeeHost interface. This is called a device import situation
(see Figure 149.2 on page 1038).

Operation Summary Device Service Specification for ZigBee™ Technology Version 1.0

Page 1038 OSGi Compendium Release 8

Figure 149.2 ZigBee device import

ZigBee Base Driver

< < Interface> >
ZigBeeEndpoint

A ZigBee client

< < Interface> >
ZigBeeHost

A ZigBee endpoint
im plem entat ion

1
0..n

A listener

0..n1

< < Interface> >
ZCLEvent List ener

10..n
is used by

1 1

im ports

1 0..nexposes 10..n
is requested by

0..nnot ifies
0..n is registered by

0..n

1
exposes

OSGi bundles may also expose framework-internal (local) ZigBeeEndpoint instances, registered
within the framework (see Figure 149.3 on page 1038). The Base Driver then should emulate those
objects as ZigBee endpoints associated to the ZigBee node represented by the underlying ZigBee host
(ZigBee chip) on the ZigBee network. This is a device export situation. For more information about
this process, please report to section Implementing a ZigBee Endpoint on page 1048.

Figure 149.3 ZigBee device export

ZigBee Base Driver

< < Interface> >
ZigBeeEndpoint

< < Interface> >
ZCLEvent List ener

A ZigBee endpoint
im plem enter

< < Interface> >
ZigBeeHost

1
0..n

A listener

1 0..nexposes

10..n
is exposed by

1 0..nexports

1 0..nregisters 0..n is not ified by

0..n

10..n
is requested by

To control ZigBee devices, a bundle should track ZigBeeEndpoint services in the OSGi service reg-
istry and control them appropriately. OSGi applications can browse the clusters (ZCLCluster ob-
jects) that are discovered on every registered ZigBeeEndpoint and attributes (ZCLAttribute objects)
that are discovered on every ZCLCluster . They can invoke commands on these clusters and get the
current value of attributes.

Several methods obey an asynchronous mechanism. For instance, ZigBee command invocation is
made through the call to ZCLCluster invoke method that returns a Promise . When the command
response is received, the Promise is resolved and Promise.getValue() returns the expected response
value. The Promise is resolved by the base driver in the device import situation and by the invoked
local ZCLCluster in the device export situation. A ZCLCommandResponseStream is used instead of a
Promise in case of a method that generates a message broadcast (or groupcast) to potentially several
endpoints.

OSGi bundles – called listeners in Figure 149.1 – subscribe to attribute value changes through the
Whiteboard Pattern ([6] Listeners considered harmful: The whiteboard pattern). They register an ob-
ject under the ZCLEventListener interface with properties identifying a ZigBee attribute and a spe-
cial event filter. This registration is conveyed as a ZigBee configure report command on the ZigBee
network in the device import situation. Reports are received by the base driver and transmitted as
notifyEvent(ZigBeeEvent) method calls on relevant ZCLEventListener services in this situation. Lo-
cal ZigBeeEndpoint objects directly call these methods to notify listeners with reports in the export
situation. The Base Driver conveys events received through a ZCLEventListener to networked the
ZigBee endpoints that have subscribed to relevant reports.

Endpoints, clusters, commands and attributes are specified by ZigBee Alliance or vendor-specific de-
scriptions. Those descriptions may be provided on the OSGi platform by any bundle through the
registration of ZigBeeDeviceDescr ipt ionSet services (see Figure 149.4 on page 1039). Every ser-
vice is a set of descriptions that enables applications to retrieve information about the clusters, com-
mands, attributes supported by the described type of endpoint.

Device Service Specification for ZigBee™ Technology Version 1.0 ZigBee Base Driver

OSGi Compendium Release 8 Page 1039

Figure 149.4 Using a set of device descriptions

0..n

[Object] 0..n0..n

< < Interface> >
ZigBeeDevice
Descript ionSet

[Object]

< < Interface> >
ZigBeeDevice
Descript ion

has

1

A ZigBee Device
Descriptor

A ZigBee Client

inform s0..n1 registers

149.5 ZigBee Base Driver
Most of the functionality described in the operation summary is implemented in a ZigBee base dri-
ver. A ZigBee base driver is a bundle that implements the ZigBee protocols and handles the inter-
action with bundles that use the ZigBee devices. It must discover ZigBee devices on the ZigBee net-
work and map each discovered device into an OSGi registered ZigBeeNode service. It must also ex-
port, on the ZigBee Network, ZigBeeEndpoint services (programmatically registered as OSGi ser-
vices).

ZigBeeNode object also provides simple methods to handle standard ZigBee Device Object network-
ing features: getLinksQual ity() , getRoutingTable() , and leave() .

Figure 149.5 ZigBee Cluster Library model

N ode

A ttribu te

E ndp oint

C lus te r

C om m a nd IO P a ra m e te r

R e port (S ubs c ribe)

R e a d / W rite

All interfaces corresponding to the ZigBee Cluster Library model (see Figure 149.5 on page 1039)
must be implemented in order to discover and control asynchronously ZigBee devices. Classes relat-
ed to the description of these entities named with suffix Descript ion may optionally be implement-
ed. This rule follows the fact that ZigBee device descriptions are not downloadable on the device it-
self and are often given to developers in an out-of-band manner.

Several base drivers may be deployed on a residential OSGi device, one for every supported network
technology. An OSGi device abstraction layer may then be implemented as a layer of refining dri-
vers above a layer of base drivers. The refining driver is responsible for adapting technology-specif-
ic device services registered by the base driver into device services of another model (see Abstract-
Device interface in Figure 149.6 on page 1040). In the case of a generic device abstraction layer, the
model is agnostic to technologies.

ZigBee Node Device Service Specification for ZigBee™ Technology Version 1.0

Page 1040 OSGi Compendium Release 8

Figure 149.6 The ZigBee Base Driver and a refining driver representing devices in an abstract model

ZigBee Base Driver < < Interface> >
ZigBeeEndpoint

< < Interface> >
Abst ract Device

Applicat ion interact ing
with an abst ract ion layer

Refining Driver

Applicat ion interact ing
with the base driver

1 0..nim ports 1 0..nis used by

1

0..n

is used by

1 0..nreifies 1 0..nis used by

The ZigBee Alliance defines their own abstract model with ZigBee Profiles, for example, Home Au-
tomation, Lighting, and refining drivers may provide the implementation of all ZigBee standard
devices with ZigBee-specific Java interfaces. The AbstractDevice interface of Figure 149.6 on page
1040 is then replaced by a ZigBee-specific Java interface in that case. The need and the choice of the
abstraction depends on the targeted application domain.

149.6 ZigBee Node
A ZigBee node represents a physical ZigBee device and should adhere to a specific application pro-
file that can be either public or private. Profiles define the environment of the application, the type
of devices and the clusters used for them to communicate.

A physical device is reified and registered as a ZigBeeNode service in the Framework. A ZigBee node
holds several ZigBee endpoints that are registered as ZigBeeEndpoint objects.

ZigBee nodes properties are defined in the ZigBee Specification. These properties must be registered
in the OSGi Framework services registry so they are searchable. ZigBeeNode must be registered with
the following properties:

• IEEE_ADDRESS – (zigbee.node. ieee.address/BigInteger) specifies the IEEE Address of a ZigBee
node.

• LOGICAL_TYPE – (zigbee.node.descr ipt ion.node.type/Short) specifies a device logical type.
• MANUFACTURER_CODE – (zigbee.node.descr ipt ion.manufacturer.code/Integer) specifies a

manufacturer code that is allocated by the ZigBee Alliance, relating to the device manufacturer.
• POWER_SOURCE – (zigbee.node.power.source/Boolean) is the ZigBee power source, that is,

3rd bit of "MAC Capabilities" in Node Descriptor, which is set to 1 if the current power source is
mains power, set to 0 otherwise.

• RECEIVER_ON_WHEN_IDLE – (zigbee.node.receiver.on.when. idle/Boolean) represents the Zig-
Bee receiver on when idle, that is, 4th bit of "MAC Capabilities" in Node Descriptor, which is set
to 1 if the device does not disable its receiver to conserve power during idle periods, set to 0 oth-
erwise.

• PAN_ID – (zigbee.node.pan. id/ Integer) (Personal Area Network Identifier) is a 16-bit value that
identifies a ZigBee network. Every ZigBeeNode object is associated to a PAN ID, which can be re-
trieved through the getPanId() method.

• EXTENDED_PAN_ID – (zigbee.node.pan.extended. id/BigInteger) Extended PAN ID is a 64-bit
numbers that uniquely identify a PAN. It is intended to enhance selection of a PAN and enable
recognition of network after PAN ID change (due to a previous conflict). getExtendedPanId() re-
turns the network extended PAN ID if specified.

Note: PAN_ID and EXTENDED_PAN_ID are optional, but at least one of these properties MUST be
specified.

• DEVICE_CATEGORY (see the OSGi Device Access Specification) – (DEVICE_CATEGORY) de-
scribes a table of the categories to which the device belongs. One of the values MUST be
“ZigBee” (DEVICE_CATEGORY).

Device Service Specification for ZigBee™ Technology Version 1.0 ZigBee Node

OSGi Compendium Release 8 Page 1041

Additional properties (defined in the OSGi Device Access Specification) may be set:

• DEVICE_DESCRIPTION – if the complex descriptor of the device is available, the value MUST be
set and MUST be the value returned by getModelName() .

• DEVICE_SERIAL – if the complex descriptor of the device is available, the value MUST be set and
MUST be the value returned by getSeria lNumber() .

Finally, service.pid property MUST be set.

ZigBee nodes describes themselves using descriptor data structures:

• getNodeDescr iptor() – Returns a Promise object that is asynchronously resolved with a Zig-
BeeNodeDescr iptor object representing the Node Descriptor which contains information about
the node capabilities. On failure, the promise is resolved with an exception instead.

• getComplexDescr iptor() – Returns a Promise object that is asynchronously resolved with a Zig-
BeeComplexDescr iptor object representing the Complex Descriptor which contains extended in-
formation for each device description contained in this node. On failure, the promise is resolved
with an exception instead, especially an exception with NO_DESCRIPTOR error code if no Com-
plex Descriptor is provided.

• getPowerDescr iptor() – Returns a Promise object that is asynchronously resolved with a Zig-
BeePowerDescr iptor object representing the Power Descriptor which contains power-related in-
formation of this node. On failure, the promise is resolved with an exception instead, especially
an exception with NO_DESCRIPTOR error code if no Power Descriptor is provided.

• getUserDescr ipt ion() – Returns a Promise object that is asynchronously resolved with the
unique field named “User description” of the User Descriptor, which contains information that
allows the user to identify the device using user-friendly character string. On failure, the promise
is resolved with an exception instead, especially an exception with NO_DESCRIPTOR error code
if no User Descriptor is provided.

ZigBeeNode objects provide invoke methods to send network frames within ZDP layer, while in-
voking ZigBee Cluster Library (ZCL) commands is enabled on ZCLCluster objects. ZCL commands
can be however broadcast on a ZigBee node thanks to broadcast methods. Broadcasting enables the
sending of a ZCL command to all clusters identified with an identifier of all endpoints available on
the targeted ZigBee node.

All discovered ZigBee nodes in the local networks are registered under the ZigBeeNode interface
within the OSGi Framework. Every time a ZigBee node appears or quits the network, the associat-
ed OSGi service is registered or unregistered in the OSGi service registry. Thanks to the ZigBee Base
Driver, the OSGi service availability in the registry mirrors ZigBee device availability on ZigBee net-
works. Using a remote ZigBee node thus involves tracking ZigBeeNode services in the OSGi service
registry. The following code illustrates how this can be done. The sample Control ler class extends
the ServiceTracker class so that it can track all ZigBeeNode services and add them to a user interface,
such as a remote controller application. The friendly name of this node is retrieved in order to be
printed on the user interface.

class Controller extends ServiceTracker {
 UI ui;
 Controller(BundleContext context) {
 super(context, ZigBeeNode.class, null);
 }
 public Object addingService(ServiceReference ref) {
 ZigBeeNode node = (ZigBeeNode)super.addingService(ref);
 ui.addNode(node);
 return node;
 }
 public void removedService(ServiceReference ref, Object endpoint) {
 ui.removeNode((ZigBeeNode) node);

ZigBee Endpoint Device Service Specification for ZigBee™ Technology Version 1.0

Page 1042 OSGi Compendium Release 8

 super.removedService(ref);
 }
 ...
}

public class UI {
 public void addNode(ZigBeeNode node) {
 final Promise p = node.getUserDescription();
 p.onResolve(new Runnable() {
 public void run() {
 try {
 String friendlyName = (String) p.getValue();
 createUINode(node, friendlyName);
 } catch (InvocationTargetException e) {
 log.info("Get User Description command returned "
 + "a failure: " + e.getCause() + ”.”);
 createUINode(node, "No friendly name");
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 });
 }
...
}

149.7 ZigBee Endpoint
Communication between devices is done through an addressable component called ZigBee end-
point which holds a number of ZigBee clusters. A ZigBee cluster represents a functional unit in a de-
vice.

An endpoint defines a communication entity within a device through which a specific application
is carried. So, it represents a logical device object used for communication.

For example, a remote control light might allocate Endpoint 7 for the control of lights in the master
bedroom, Endpoint 9 to manage the heating and air conditioning system, and Endpoint 14 for con-
trolling the security system.

The ZigBee specification defines that a maximum of 240 Endpoints is allowed per ZigBeeNode . End-
point 0, also called the ZigBee Device Object (ZDO), is reserved for the management operations on
both ZigBee node and ZigBee endpoints, endpoint 255 is reserved for broadcasting to all endpoints,
endpoints 241-254 are reserved for future use.

Endpoint 0 and endpoint 255 capabilities are not exposed, only endpoints 1-240 should be registered
as services. Endpoints are registered under the ZigBeeEndpoint interface with the following proper-
ties:

• IEEE_ADDRESS – (zigbee.node. ieee.address/BigInteger) specifies the IEEE Address of the parent
node.

• ENDPOINT_ID – (zigbee.endpoint. id/Short) specifies the endpoint address within the node. Ap-
plications shall only use endpoints 1-240.

• PROFILE_ID – (zigbee.device.profi le . id/ Integer) identifies the profile that the endpoint belongs
to. The profile can be either a ZigBee Alliance standard profile or a vendor-specific profile. The
ZigBee specification defines several profile identifiers, and some others are vendor specific.

Device Service Specification for ZigBee™ Technology Version 1.0 ZigBee Device Description

OSGi Compendium Release 8 Page 1043

• HOST_PID – (zigbee.endpoint.host.pid/Str ing) – The ZigBee local host identifier is intended to
uniquely identify the ZigBee local host, since there could be many hosts on the same platform.
All the endpoints that belong to a specific network MUST specify the value of the associated host
number.

• DEVICE_ID – (zigbee.device. id/ Integer) identifies the device description supported by this end-
point. Like for profile identifiers, the ZigBee specification defines several device identifiers. Ven-
dors are also able to define specific device identifiers.

• DEVICE_VERSION – (zigbee.device.version/Integer) specifies the device description version sup-
ported by this endpoint.

• INPUT_CLUSTERS – (zigbee.endpoint.c lusters. input/ Integer[]) specifies the list of input cluster
ids supported by this endpoint. Input cluster are called Server cluster.

• OUTPUT_CLUSTERS – (zigbee.endpoint.c lusters.output/ Integer[]) specifies the list of output
cluster ids supported by this endpoint. Output cluster are called Client cluster.

• DEVICE_CATEGORY (see the OSGi Device Access Specification) – (DEVICE_CATEGORY) de-
scribes a table of the categories to which the device belongs. One of the values MUST be
“ZigBee” (DEVICE_CATEGORY).

Finally, service.pid property MUST be set. In device import case, it is a free unique identifier that en-
ables OSGi ZigBee clients to identify any imported endpoint across node reboots. It may concate-
nate the endpoint IEEE address, a separator, for example, '_', and the endpoint ID. In endpoint ex-
port case, it is a free unique identifier that enables the base driver to identify any exported endpoint
across local bundle restarts. In this case, service.pid property may concatenate bundle identifier, a
separator, for example, '_', and a number.

A ZigBeeEndpoint may contain a number of input or output clusters. ZigBeeEndpoint provides
getServerCluster(int) and getCl ientCluster(int) to return a specific server input or client output
cluster.

Every endpoint must provide a simple descriptor. getSimpleDescr iptor() returns a Promise object
that is asynchronously resolved with a ZigBeeSimpleDescr iptor object which contains general in-
formation about the endpoint or with an exception in case of a failure.

ZigBeeEndpoint interface provides two methods to bind and unbind ZigBee clusters:
bind(Str ing, int) and unbind(Str ing, int) . The entity that wants to bind clusters is responsible for ini-
tializing, maintaining and removing the bindings across ZigBeeEndpoint service events. This enti-
ty is the local OSGi Application that asked this binding or the ZigBee Base Driver if the binding has
been requested by a remote ZigBee node.

ZigBeeEndpoint interface provides a getBoundEndPoints(int) method that provides the table of
bound ZigBeeEndpoint objects identified by their service PIDs.

149.8 ZigBee Device Description
A ZigBee endpoint may have a description used to describe his input and output clusters, and which
of these clusters are mandatory or optional. A ZigBeeDeviceDescr ipt ion object provides associated
information about an endpoint.

149.9 ZigBee Device Description Set
ZigBeeDeviceDescr ipt ionSet objects may be registered as OSGi services by any bundle. A Zig-
BeeDeviceDescr ipt ionSet provides getDeviceSpecif icat ion(int ,short) which returns the device de-
scription, if provided, for the identified endpoint, or nul l otherwise. A ZigBeeDeviceDescr ipt ionSet
service should be registered with the following properties:

ZCL Cluster Device Service Specification for ZigBee™ Technology Version 1.0

Page 1044 OSGi Compendium Release 8

• VERSION – (zigbee.profi le .vers ion/Short) The application profile version.
• PROFILE_ID – see ZigBeeEndpoint .PROFILE_ID property.
• PROFILE_NAME – (zigbee.profi le .name/Str ing) The profile name.
• MANUFACTURER_CODE – see ZigBeeNode .MANUFACTURER_CODE property.
• DEVICES – (zigbee.profi le .devices/ Integer[]) comma separated list of devices identifiers sup-

ported by the set.

149.10 ZCL Cluster
Devices communicate with each other by means of clusters, which may be inputs to or outputs of
the device. For example, ZigBee Home Automation profile provides a cluster dedicated to the control
of lighting subsystems. Clusters are represented under ZCLCluster interface.

ZCLCluster objects combine one or more ZigBee commands (or frames) and ZCLAttr ibute objects.

ZCLCluster provides some methods for reading and writing attributes values:

• readAttr ibutes(ZCLAttr ibuteInfo[]) – The ZigBee Base driver MAY generate the read attributes
command on behalf of the OSGi application that is invoking this method. The latter returns a
Promise object that is asynchronously resolved with a Map of ZCLReadStatusRecord identified
by their attribute identifiers. On failure, the promise is resolved with an exception instead.

• writeAttr ibutes(boolean,Map) – The ZigBee Base driver generates the write attributes command
on behalf of the OSGi application that is invoking this method. The boolean undivided para-
meter specifies that if any attribute cannot be written, for example, if an attribute is not imple-
mented on the device, or a value to be written is outside the valid range, no attribute values are
changed.

ZCLCluster objects use ZCLFrame to invoke ZigBee commands :

• invoke(ZCLFrame) – a sequence of bytes represents the command frame. The source endpoint is
not specified in this method call. To send the appropriate message on the network, the base dri-
ver must generate a source endpoint. The latter must not correspond to any exported endpoint.

• invoke(ZCLFrame,Str ing) – a sequence of bytes represents the command frame, and exportedSer-
vicePID is the source endpoint of the command request. In targeted situations, the source end-
point is the valid service PID of an exported endpoint.

A Promise is returned and manages the command response asynchronously.

149.11 ZCL Cluster Description
A ZCLClusterDescr ipt ion describes the server or client part of a ZCLCluster . It lists the available
commands and attributes for this client or server cluster.

Every cluster client and server may have attributes (see [2] ZigBee Cluster Library Specification, Chap-
ter 2.2.1), received and generated commands. ZCLClusterDescr ipt ion provides methods to describe
commands, attributes and retrieve general cluster information.

149.12 ZCL Global Cluster Description
ZCLGlobalClusterDescr ipt ion describes a cluster general information: id, name, description. It pro-
vides the ZCLClusterDescr ipt ion for both client and server part of this cluster.

Device Service Specification for ZigBee™ Technology Version 1.0 ZigBee Command Description

OSGi Compendium Release 8 Page 1045

149.13 ZigBee Command Description
ZCLCommandDescr ipt ion describes a ZigBee command.

ZCLCommandDescr ipt ion contains ZCLParameterDescr ipt ion objects which describe the command
parameters.

All clusters (server and client) shall support generation, reception and execution of the default re-
sponse command.

Every cluster (server or client) that implements attributes shall support reception of, execution of,
and response to all commands to discover, read, write, report, configure reporting of, and read re-
porting configuration of these attributes. Generation of these commands is application dependent.

149.14 ZigBee Attribute
A ZigBee cluster is associated with a set of attributes. Every attribute is represented by an object im-
plementing ZCLAttr ibute interface extending ZCLAttr ibuteInfo . ZCLAttr ibute provides getValue()
and setValue(Object) to retrieve and set the current attribute value with the use of a Promise , which
returns the response asynchronously.

149.15 ZigBee Attribute Description
A ZCLAttr ibuteDescr ipt ion also extends ZCLAttr ibuteInfo and describes information about a specif-
ic ZCLAttr ibute .

149.16 ZCL Data Type Description
ZCLAttr ibuteInfo and ZCLParameterDescr ipt ion provide getDataType() and getDataTypeDescr ip-
t ion() methods, respectively, which return ZCLDataTypeDescr ipt ion objects. One object is associat-
ed to every ZigBee data type, see ZigBeeDataTypes constants in ZigBee Data Types section below.

149.17 ZCL Simple Type Description
ZCLSimpleTypeDescr ipt ion extends ZCLDataTypeDescr ipt ion interface to provide the following
methods:

• ser ia l ize(ZigBeeDataOutput,Object) – Serializes a Java object corresponding to the Java data
type given by getJavaDataType() , and adds the result to the given ZigBeeDataOutput according
to ZigBee Cluster Library.

• deseria l ize(ZigBeeDataInput) – Deserializes the given data into a Java object of the Java data
type given by getJavaDataType() .

Every ZigBee data type is associated to a ZCLSimpleTypeDescr ipt ion implementation, except ZigBee
Array, Bag, Set, and Structure types.

Promise and Response Stream objects Device Service Specification for ZigBee™ Technology Version 1.0

Page 1046 OSGi Compendium Release 8

149.18 Promise and Response Stream objects
Promise and ZCLCommandResponseStream objects handle ZigBee network communication la-
tency and errors. An org.osgi .ut i l .promise.Promise is immediately returned by every method that
generates a message exchange with one ZigBee endpoint, that is, the sending of a message to this
endpoint and the handling of a unique response from this endpoint. No exception is thrown by
this method. The Promise handles the expected result and any occurring error asynchronously.
The caller can either get a callback when the Promise is resolved with a value or an error, or the
Promise can be used in chaining. Both onResolve(Runnable) callbacks and then(Success, Fai lure)
chaining can be repeated any number of times, even after the Promise has been resolved. When
the Promise is resolved, callbacks and chaining are called, Promise. isDone() returns true, and ei-
ther Promise.getValue() returns a value or Promise.getFai lure() returns a relevant Throwable . The
type of the value and the type of Throwable are specific to the method returning the Promise . In
import situations, the base driver fails the Promise when a timeout is reached before any response
is received on the network. The returned failure is then a ZigBeeException with TIMEOUT error
code. The associated timeout is given by getCommunicat ionTimeout() . It can be set by calling
setCommunicat ionTimeout(long) on the appropriate ZigBeeHost object.

A ZCLCommandResponseStream is immediately returned by every method that generates the
sending of a message to potentially several endpoints with the expectation of a response from
several of them. No exception is thrown by this method. The caller can register a handler with
forEach(Predicate) . The unique method of the handler is called with a ZCLCommandResponse
every time a response is received from one of the targeted endpoints until the ZCLComman-
dResponseStream is closed. The latter is closed either when the handler returns false to the test
method or close() is called. ZCLCommandResponseStream is used for the following message invoca-
tion types:

• Broadcasting: Sending a message to all available endpoints of a specific type and receiving re-
sponses from each of them, see broadcast(int ,ZCLFrame,Str ing) .

• Groupcasting: Sending a message to the endpoints of a specific type in a group of endpoints and
receiving responses from each of them, see groupcast(int ,ZCLFrame,Str ing) .

• Nodecasting: Sending a message to the endpoints of a specific type on a node and receiving re-
sponses from each of them, see broadcast(int ,ZCLFrame,Str ing) .

149.19 ZigBee Data Types
The ZigBeeDataTypes class provides all standard ZigBee data type identifiers as constants. It should
be noted that actual value of these constants do not necessarily match the values assigned in the
ZCL specification for these data types.

The org.osgi .service.z igbee.types package contains an implementation class for each of the ZCL
scalar data types, with the exception of NO_DATA and UNKNOWN . Each of these classes declares a
static getInstance() method, that returns a singleton of the class itself. Moreover, because they im-
plement the ZCLSimpleTypeDescr ipt ion interface, they provide methods for getting some metada-
ta information about the ZCL data type they represent, like the relative ZigBeeDataTypes constant
(getId() method) and the Java class the ZCL data type is mapped to. Methods to marshal and unmar-
shal the data type into a ZigBeeDataInput stream and from a ZigBeeDataOutput stream according
to the ZigBee specification, are provided as well.

Here is the table of encoding relations between ZigBee types and Java types, used in this specifica-
tion:

Device Service Specification for ZigBee™ Technology Version 1.0 ZigBee Data Types

OSGi Compendium Release 8 Page 1047

Table 149.1 Mapping of ZCL Data Types to Java

ZigBeeDataType constant ZigBee type Java Type
NO_DATA No data
GENERAL_DATA_8 8-bit data Byte
GENERAL_DATA_16 16-bit data Short
GENERAL_DATA_24 24-bit data Integer
GENERAL_DATA_32 32-bit data Integer
GENERAL_DATA_40 40-bit data Long
GENERAL_DATA_48 48-bit data Long
GENERAL_DATA_56 56-bit data Long
GENERAL_DATA_64 64-bit data Long
BOOLEAN Boolean Boolean
BITMAP_8 8-bit bitmap Byte
BITMAP_16 16-bit bitmap Short
BITMAP_24 24-bit bitmap Integer
BITMAP_32 32-bit bitmap Integer
BITMAP_40 40-bit bitmap Long
BITMAP_48 48-bit bitmap Long
BITMAP_56 56-bit bitmap Long
BITMAP_64 64-bit bitmap Long
UNSIGNED_INTEGER_8 Unsigned 8-bit integer Short
UNSIGNED_INTEGER_16 Unsigned 16-bit integer Integer
UNSIGNED_INTEGER_24 Unsigned 24-bit integer Integer
UNSIGNED_INTEGER_32 Unsigned 32-bit integer Long
UNSIGNED_INTEGER_40 Unsigned 40-bit integer Long
UNSIGNED_INTEGER_48 Unsigned 48-bit integer Long
UNSIGNED_INTEGER_56 Unsigned 56-bit integer Long
UNSIGNED_INTEGER_64 Unsigned 64-bit integer BigInteger
SIGNED_INTEGER_8 Signed 8-bit integer Byte
SIGNED_INTEGER_16 Signed 16-bit integer Short
SIGNED_INTEGER_24 Signed 24-bit integer Integer
SIGNED_INTEGER_32 Signed 32-bit integer Integer
SIGNED_INTEGER_40 Signed 40-bit integer Long
SIGNED_INTEGER_48 Signed 48-bit integer Long
SIGNED_INTEGER_56 Signed 56-bit integer Long
SIGNED_INTEGER_64 Signed 64-bit integer Long
ENUMERATION_8 8-bit enumeration Short
ENUMERATION_16 16-bit enumeration Integer
FLOATING_SEMI Semi-precision float Float
FLOATING_SINGLE Single precision float Float
FLOATING_DOUBLE Double Double
CHARACTER_STRING Character string Str ing
OCTET_STRING Octet string byte[]
LONG_CHARACTER_STRING Character string Str ing
LONG_OCTET_STRING Octet string byte[]
ARRAY Array

Implementing a ZigBee Endpoint Device Service Specification for ZigBee™ Technology Version 1.0

Page 1048 OSGi Compendium Release 8

ZigBeeDataType constant ZigBee type Java Type
STRUCTURE Structure
SET Set
BAG Bag
CLUSTER_ID Cluster ID Integer
ATTRIBUTE_ID Attribute ID Integer
BACNET_OID BACnet OID1

(Unsigned 32-bit integer)

Long

TIME_OF_DAY Time of day byte[4]
DATE Date byte[4]
UTC_TIME UTC Time Long
IEEE_ADDRESS IEEE address (MAC-48,EUI-48/64) BigInteger
SECURITY_KEY_128 128-bit Security Key byte[8]
UNKNOWN Unknown

1 BACnet OID (Object identifier) data type is included to allow interworking with BACnet (see [5]
ASHRAE 135-2004 Standard). The format is described in the referenced standard.

149.20 Implementing a ZigBee Endpoint
OSGi services can also be exported as ZigBee endpoints to the local networks, in a way that is trans-
parent to typical ZigBee devices endpoints. This allows developers to bridge legacy devices to ZigBee
networks. A ZigBeeEndpoint MUST be registered with the following properties to export an OSGi
service as a ZigBee endpoint:

• ZIGBEE_EXPORT – To indicate that the endpoint is an exportable endpoint.

An OSGi platform can be connected to multiple ZigBee networks. HOST_PID , PAN_ID and
EXTENDED_PAN_ID are used to select the appropriate network. At least one of these properties
MUST be specified. If provided, HOST_PID has priority over PAN_ID and EXTENDED_PAN_ID to iden-
tify the host that is targeted for export.

In addition, the ZigBeeEndpoint service MUST declare the same properties as an imported endpoint.
The bundle registering endpoint services must make sure these properties are set accordingly or
that none of these properties are set. In case a ZigBee host is not initialized yet or the base driver is
not active on the OSGi framework, an endpoint implementation MAY not have any of the above
identifiers.

If the Base Driver is active and at a ZigBee host is started, then the Base Driver makes an attempt
to export the endpoint on the ZigBee network associated to the ZigBee HOST_PID , PAN_ID or
EXTENDED_PAN_ID . The associated ZigBeeNode object MUST be one of the available ZigBeeHost ob-
jects. Every time an endpoint is registered or unregistered with both ZIGBEE_EXPORT and PAN_ID
and/or EXTENDED_PAN_ID properties set, the associated ZigBeeHost service is modified accordingly
(getEndpoints() returns a different array of ZigBeeEndpoint objects).

If - and only if - an error is detected on the properties of the ZigBee endpoint to be exported, then the
Base Driver calls the notExported(ZigBeeException) method with a relevant ZigBeeException object
as the input argument. The method SHOULD be called even if a ZigBee Host is not started.

The endpoint has to be registered with an ID that is unique. If the chosen ID already exists as a prop-
erty of a local endpoint with the same host or if it already exists in an optional cache of the base dri-
ver, the base driver calls the notExported(ZigBeeException) method with the ZigBeeException ob-
ject as the input argument with OSGI_EXISTING_ID error code. The base driver may keep IDs in a

Device Service Specification for ZigBee™ Technology Version 1.0 Event API

OSGi Compendium Release 8 Page 1049

cache for endpoints that might come back in the registry. The range of potential IDs is 1-240 accord-
ing to [1] ZigBee Specification.

The reader must note that a same ZigBeeEndpoint object cannot be registered several times with dis-
tinct PAN IDs since thegetNodeAddress() method can only return one ZigBee node address.

If the PAN ID corresponds to more than one ZigBeeHost service, the ZigBeeEndpoint MUST define
the Extended PAN ID property which uniquely identifies a ZigBee network. The base driver will call
notExported(ZigBeeException) with the error code OSGI_MULTIPLE_HOSTS if the Extended PAN ID
property is not properly defined in this specific situation.

Moreover, if the HOST PID corresponds to more than one ZigBeeHost, the base driver will also call
notExported(ZigBeeException) with the error code OSGI_MULTIPLE_HOSTS .

149.21 Event API
Eventing is available in import and export situations:

• External events from the network must be dispatched to listeners inside the OSGi Service Plat-
form. The ZigBee Base driver is responsible for mapping the network events to internal listener
events.

• Implementations of ZigBee endpoints must send out events to local listeners. The ZigBee Base
driver dispatches events to the network from its own listeners.

ZigBee events are sent using the whiteboard pattern, [6] Listeners considered harmful: The white-
board pattern, in which a bundle interested in receiving the ZigBee events registers an object im-
plementing the ZCLEventListener interface. The service MUST be registered with PAN_ID and/or
EXTENDED_PAN_ID properties. These properties indicate the network targeted by the listener since
an OSGi platform can host multiple ZigBee networks.

A filter can be set to limit the events for which a bundle is notified. The ZigBee Base driver must reg-
ister a ZCLEventListener service for every attribute report configured in the configure reporting
commands it receives from the network.

The filter refers to the combination of the properties registered with the ZCLEventListener service.
Each ZCLEventListener MUST be registered with all the following mandatory properties:

• ID – (zigbee.cluster. id/ Integer) Only events generated by endpoints matching a specific cluster
are delivered.

• ID – (zigbee.attr ibute. id/ Integer) Only events generated by endpoints matching a specific at-
tribute are delivered.

• ATTRIBUTE_DATA_TYPE – (zigbee.attr ibute.datatype/Short) The Attribute data type field con-
tains the data type of the attribute that is to be reported (see [2] ZigBee Cluster Library Specification
2.4.7.1.4 Attribute Data Type Field).

The optional properties are:

• IEEE_ADDRESS – (zigbee.node. ieee.address/BigInteger) Only events generated by endpoints
matching the specific node are delivered.

• ENDPOINT_ID – (zigbee.endpoint. id/Short) Only events matching a specific endpoint are deliv-
ered.

• MIN_REPORT_INTERVAL – (zigbee.attr ibute.min.report . interval/ Integer) The minimum inter-
val, in seconds, between issuing reports of the specified attribute (see [2] ZigBee Cluster Library
Specification. – 2.4.7.1.5).

• MAX_REPORT_INTERVAL – (zigbee.attr ibute.max.report . interval/ Integer) The maximum inter-
val, in seconds, between issuing reports of the specified attribute (see [2] ZigBee Cluster Library
Specification. 2.4.7.1.6).

Monitoring Events and Sending Commands Device Service Specification for ZigBee™ Technology Version 1.0

Page 1050 OSGi Compendium Release 8

• REPORTABLE_CHANGE – (zigbee.attr ibute.reportable.change/Double) The minimum change to
the attribute that will result in a report being issued. This property is mandatory if the data type
is analog . If the data type is digital , the base driver will ignore it.

If the endpoint sets a timeout between two attribute reports, the notifyTimeOut(int) method is then
called with the timeout argument. In the import situation, the base driver calls this method on the
relevant listeners when it receives a configure reporting command with a set TIMEOUT_PERIOD
field (see [2] ZigBee Cluster Library Specification 2.4.7 Configure Reporting Command). In the ex-
port situation, the local endpoint calls this method on relevant listeners and, in case the base dri-
ver is one of the notified listeners, it sends a configure reporting request with the appropriate
TIMEOUT_PERIOD field to interested endpoints on the network.

A ZigBee event is represented by a ZigBeeEvent object.

If an event is generated by either the local endpoint or via the base driver for an external device, the
notifyEvent(ZigBeeEvent) method is called on all registered ZCLEventListener services for which
the source event matches the service properties. The way events must be delivered is the same as de-
scribed in Delivering Events in the Life Cycle Layer chapter of the OSGi Core Release 8 specification.

The ZigBee base driver SHOULD group subscriptions into one configure reporting request to the tar-
geted ZigBee device. It SHOULD also notify every listener with respect to their specific expectations.

149.22 Monitoring Events and Sending Commands
In the example below, a button of the user interface monitors the state (on or off) of a smart plug
and enables the user to switch the plug on and off. To monitor the plug state, a ZCLEventListener is
registered with the properties related to the node, endpoint, cluster and attribute representing the
plug and its state. When an appropriate event is sent on the network, the base driver (or a local end-
point implementer) notifies the listener. The listener then changes the state value shown by the but-
ton. When the user clicks on the button, a command is invoked on the plug.

public class UIOnOffButton implements ZCLEventListener {
 public UIOnOffButton(BigInteger ieeeAddress, Short endpointId, Integer
 clusterId, Integer attributeId, Short dataType,
 BundleContext bc) {
 Dictionary properties = new Hashtable();
 properties.put(ZigBeeNode.IEEE_ADDRESS, ieeeAddress);
 properties.put(ZigBeeEndpoint.ENDPOINT_ID, endpointId);
 properties.put(ZCLCluster.ID, clusterId);
 properties.put(ZCLAttribute.ID, attributeId);
 properties.put(ZCLEventListener.ATTRIBUTE_DATA_TYPE, dataType);
 // events will be filtered by the basedriver call notifyEvent() method
 // only when the event comes from a node, endpoint, cluster, attribute
 // matching these properties
 bc.registerService(ZCLEventListener.class.getName(), this, properties);
 }

 public void notifyEvent(ZigBeeEvent event) {
 // change the attribute value of the UICluster
 Object value = event.getValue();
 changeUIValue(value);
 }

 public void notifyTimeOut(int timeout) {
 log.info("Timeout notified");

Device Service Specification for ZigBee™ Technology Version 1.0 Monitoring Events and Sending Commands

OSGi Compendium Release 8 Page 1051

 }

 public void onFailure(ZCLException e) {
 log.info("Failure registering the listener: " + e);
 }

 public void changeUIValue(Object value) {

 }

 public void onClick() {
 // the button has been clicked
 // get the ZCLCluster
 ServiceReference[] srs = bundleContext.getServiceReferences(
 ZigBeeEndpoint.class.getName(),
 "(&(" + ZigBeeNode.IEEE_ADDRESS + "=" + ieeeAddress
 + ")(" + ZigBeeEndpoint.ENDPOINT_ID + "=" + endpointID
 + "))");
 if (srs.length>0){
 ZCLCluster onOffCluster =
 ((ZigBeeEndpoint) bundleContext.getService(srs[0]))
 .getServerCluster(ZCL_ONOFF_CLUSTER_ID);
 if (onOffCluster != null) {
 final Promise p = onOffCluster.invoke(new ToggleCommand());
 p.onResolve(new Runnable() {
 public void run(){
 try {
 ZCLFrame frame = (ZCLFrame) p.getValue();
 log.info("toggle command returned success.");
 } catch (InvocationTargetException e) {
 log.info("toggle command returned a failure: "
 + e + ”.”);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 });
 }
 }
 }

 class ToggleCommand implements ZCLFrame {
 ...
 }
...
}

ZCL Exception Device Service Specification for ZigBee™ Technology Version 1.0

Page 1052 OSGi Compendium Release 8

149.23 ZCL Exception
The ZCLException extends the ZigBeeException . It holds information about the different ZigBee
ZCL layers. Error codes specified by ZigBee Alliance are conveyed by the errorCode field of ZCLEx-
ception objects.

149.24 ZDP Exception
The ZDPException extends the ZigBeeException . It holds information about the ZigBee ZDP layer.
Error codes specified by ZigBee Alliance are conveyed by the errorCode field of ZDPException ob-
jects.

149.25 APS Exception
The APSException extends the ZigBeeException . It holds information about the ZigBee APS layer.
Error codes specified by ZigBee Alliance are conveyed by the errorCode field of APSException ob-
jects.

149.26 ZigBee Exception
Some error codes are specified by the OSGi Working Group:

• OSGI_EXISTING_ID– another endpoint exists with the same ID.
• OSGI_MULTIPLE_HOSTS– several hosts exist for this PAN ID target or HOST_PID target.

149.27 ZCL Frame
The ZCLFrame contains a ZCLHeader , and a payload. It must used when invoking a command.

The ZCLHeader describes the header of a ZCLFrame .

The transaction id of each ZCLHeader must be managed by the base driver.

Only getters (not setters) are shared by client applications, the base driver and endpoint implemen-
tations. Therefore only getters are specified.

149.28 ZigBee Group
ZigBeeGroup enables group management (that is, it provides jo inGroup(Str ing) and
leaveGroup(Str ing) methods).

The creation of groups is made through the createGroupService(int) method.

A ZigBeeGroup service should be registered with the following property:

• ID – (zigbee.group.id/Integer) The 16-bit group address of the device.

And, the following ZigBeeEndpoint properties:

• DEVICE_CATEGORY

Device Service Specification for ZigBee™ Technology Version 1.0 ZigBee Networking

OSGi Compendium Release 8 Page 1053

• INPUT_CLUSTERS
• HOST_PID

A ZigBeeGroup service enables the ZigBee groupcasting of command invocation thanks to the
groupcast(int ,ZCLFrame) and groupcast(int ,ZCLFrame,Str ing) methods. A groupcast message is re-
ceived by the endpoints that are members of the targeted group.

149.29 ZigBee Networking

149.29.1 Logical node type
The ZigBee specification defines three types of ZigBee nodes on the network:

• ZigBee Coordinator (ZC) – The most capable device, the coordinator forms the root of the net-
work. There is exactly one ZigBee coordinator in every network. It is able to store information
about the network, to act as the Trust Center and repository for security keys. COORDINATOR
represents the ZigBee coordinator.

• ZigBee Router (ZR) – A router is capable of extending a ZigBee network by routing data from oth-
er ZigBee devices. ROUTER represents a ZigBee router.

• ZigBee End Device (ZED) – An end device contains just enough functionality to talk to the parent
node (either the coordinator or a router); it cannot relay data from other devices. ZED represents
a ZigBee end device.

Every discovered ZigBeeNode on the network has a logical node type returned by calling the get-
LogicalType() method on the node's ZigBeeNodeDescr iptor .

149.29.2 Network selection
The base driver provides a ZigBeeHost object for every available ZigBee local host. A ZigBee local
host can represent a ZigBee chip on a USB dongle, a ZigBee built-in chip or a ZigBee Gateway Device
(see [7] ZigBee Gateway). This object must be registered as a ZigBeeHost service. The ZigBeeHost in-
terface has methods to start and stop the host, to store the networking configuration information
(channel, channel mask, logical type, PAN ID, Extended PAN ID, security level, network key), and to
open the network for devices to join it (permit Join(short)).

ZigBeeHost also enables the broadcast of ZCL commands on a ZigBee network thanks to the
broadcast(int ,ZCLFrame) and broadcast(int ,ZCLFrame,Str ing) methods. Broadcasting enables the
sending of a ZCL command to all clusters identified with an identifier of all endpoints available on
the nodes of a ZigBee network within a number of hops defined by the broadcast radius of the coor-
dinator (see the getBroadcastRadius() and setBroadcastRadius(short) methods).

In ZigBee networks, the coordinator must select a PAN identifier and a channel to start a network.
After that, it behaves essentially like a router. The coordinator and routers can allow other devices to
join the network and route data.

After an end device joins a router or coordinator, it is able to transmit or receive data through that
router or coordinator. The router or coordinator that allowed an end device to join becomes the par-
ent of the end device. Since the end device can sleep, the parent must be able to buffer or retain in-
coming data packets targeting the end device until the end device is able to wake up and receive the
data.

149.29.3 Network coordination
When the ZigBeeHost is configured as the network coordinator, the getLogicalType() method on
the node's ZigBeeNodeDescr iptor MUST return COORDINATOR . The ZigBeeHost object will then
be able to use the following operations for managing the network:

Security Device Service Specification for ZigBee™ Technology Version 1.0

Page 1054 OSGi Compendium Release 8

• updateNetworkChannel(byte) - Updates the network channel.
• setChannelMask(int) - Sets a new configured channel mask.
• refreshNetwork() – Requests the base driver to launch new discovery requests and refresh de-

vices service registration according to current devices availability. This method is made manda-
tory since ZigBee specification allows devices not to notify the network when they leave it.

149.29.4 Networking considerations
The Network Address is a 16-bit address that is assigned by the coordinator when a node has joined a
network and that must be unique for a given network in order for the node to be identified uniquely.
ZigBeeNode provides getNetworkAddress() and getIEEEAddress() which returns device network ad-
dress and device IEEE MAC address.

149.30 Security

149.30.1 Security management
ZigBee security is based on a 128-bit algorithm built on the security model provided by IEEE
802.15.4. ZigBee specification which defines the Trust Center.

The Trust Center is the device trusted by devices within a network to distribute keys for the purpose
of network and end-to-end application configuration management. All members of the network
shall recognize exactly one Trust Center, and there shall be exactly one Trust Center in each secure
network.

The security of a network of ZigBee devices is based on link keys and a network key. Unicast com-
munication between entities is secured by means of a 128-bit link key shared by two devices, one
of those is normally the Trust Center. Broadcast communications are secured by means of a 128-
bit network key shared among all devices in the network. The master key is only used as an initial
shared secret between two devices when they perform the Key Establishment to generate Link Keys.

Security configuration is provided by the getSecurityLevel() method returning whether the securi-
ty mode is activated or not on the ZigBee network.

A ZigBeeHost with a COORDINATOR logical node type will acts as a the Trust Center according to
the ZigBee specification. It can also be any other device on the network. The Trust Center stores all
the shared network keys. The getPreconfiguredLinkKey() method returns the network master key.

149.30.2 Conditional permission
When a bundle registers a ZigBeeEndpoint OSGi service, then the base driver exposes this end-
point on the outside ZigBee network and this endpoint has the ability to communicate with the
other network devices. The base driver also provides an equivalent behavior when discovering a
ZigBee endpoint from the outside network and exposing it as an OSGi Service in the OSGi Frame-
work service registry. It is therefore recommended that ServicePermission[ZigBeeHost|ZigBeeEnd-
point|ZCLEventListener, REGISTER|GET] be used sparingly and only for trusted bundles.

149.31 org.osgi.service.zigbee

Device Service Specification for ZigBee Technology.

This is the main package of this specification. It defines the interfaces that models the ZigBee con-
cepts, like the ZigBee node and the ZigBee endpoint.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Compendium Release 8 Page 1055

Each time a new ZigBee node is discovered, the driver will register a
org.osgi.service.zigbee.ZigBeeNode service and then one org.osgi.service.zigbee.ZigBeeEndpoint ser-
vice for each ZigBee endpoint discovered on the node.

org.osgi.service.zigbee.ZigBeeEndpoint interface provides the
org.osgi.service.zigbee.ZigBeeEndpoint.getServerCluster(int) method to get an interface reference to
a ZCLCluster object.

org.osgi.service.zigbee.ZCLCluster interface contains methods that directly maps to the ZCL pro-
file-wide commands, like Read Attributes and Write Attributes, and allow the developer to forge its
own commands and send them through the invoke() methods.

ZCL Attribute reportings are configured, registering a org.osgi.service.zigbee.ZCLEventListener, pro-
vided that this service is registered with the right service properties.

In addition to ZCL frames, the current specification allows also to send ZDP frames. Broadcasting
and endpoint broadcasting is also supported for ZCL frames.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.z igbee; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.z igbee; vers ion="[1.0,1.1)"

149.31.1 Summary

• APSException - This exception class is specialized for the APS errors.
• ZCLAttr ibute - This interface represents a ZCLAttribute.
• ZCLAttr ibuteInfo - This interface provides information about the attribute, like its ZCL attribute

ID, if it manufacturer specific and about its data type (see getDataType).
• ZCLCluster - This interface represents a ZCL Cluster.
• ZCLCommandResponse - A response event for a ZCLCommandResponseStream.
• ZCLCommandResponseStream - This type represents a stream of responses to a broadcast opera-

tion.
• ZCLEventListener - This interface represents a listener to events from ZigBee Device nodes.
• ZCLException - This class represents root exception for all the code related to ZigBee/ZCL.
• ZCLFrame - This interface models the ZigBee Cluster Library Frame.
• ZCLHeader - This interface represents the ZCL Frame Header.
• ZCLReadStatusRecord - This interface the reading result of

ZCLCluster.readAttributes(ZCLAttributeInfo[]).
• ZDPException - This class represents root exception for all the code related to ZDP.
• ZDPFrame - This interface represents a ZDP frame.
• ZDPResponse - This type represents a successful ZDP invocation.
• ZigBeeDataInput - The ZigBeeDataInput interface is designed for converting a series of bytes in

Java data types.
• ZigBeeDataOutput - The ZigBeeDataOutput interface is designed for converting Java data types

into a series of bytes.
• ZigBeeDataTypes - This class contains the constants that are used internally by these API to rep-

resent the ZCL data types.
• ZigBeeEndpoint - This interface represents a ZigBee EndPoint.
• ZigBeeEvent - This interface represents events generated by a ZigBee Device node.

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 1056 OSGi Compendium Release 8

• ZigBeeException - This class represents root exception for all the code related to ZigBee.
• ZigBeeGroup - This interface represents a ZigBee Group.
• ZigBeeHost - This interface represents the machine that hosts the code to run a ZigBee device or

client.
• ZigBeeLinkQual ity - This interface represents an entry of the NeighborTableList.
• ZigBeeNode - This interface represents a ZigBee node, means a physical device that can commu-

nicate using the ZigBee protocol.
• ZigBeeRoute - This interface represents an entry of the RoutingTableList

149.31.2 public class APSException
extends ZigBeeException
This exception class is specialized for the APS errors. See "Table 2.26 APS Sub-layer Status Values" of
the ZigBee specification 1_053474r17ZB_TSC-ZigBee-Specification.pdf.

149.31.2.1 public static final int ASDU_TOO_LONG = 65

A transmit request failed since the ASDU is too large and fragmentation is not supported.

149.31.2.2 public static final int DEFRAG_DEFERRED = 66

A received fragmented frame could not be defragmented at the current time.

149.31.2.3 public static final int DEFRAG_UNSUPPORTED = 67

A received fragmented frame could not be defragmented since the device does not support fragmen-
tation.

149.31.2.4 public static final int ILLEGAL_REQUEST = 68

A parameter value was out of range.

149.31.2.5 public static final int INVALID_BINDING = 69

An APSME-UNBIND.request failed due to the requested binding link not existing in the binding ta-
ble.

149.31.2.6 public static final int INVALID_GROUP = 70

An APSME-REMOVE-GROUP.request has been issued with a group identifier that does not appear in
the group table.

149.31.2.7 public static final int INVALID_PARAMETER = 71

A parameter value was invalid or out of range.

149.31.2.8 public static final int NO_ACK = 72

An APSDE-DATA.request requesting acknowledged transmission failed due to no acknowledgment
being received.

149.31.2.9 public static final int NO_BOUND_DEVICE = 73

An APSDE-DATA.request with a destination addressing mode set to 0x00 failed due to there being
no devices bound to this device.

149.31.2.10 public static final int NO_SHORT_ADDRESS = 74

An APSDE-DATA.request with a destination addressing mode set to 0x03 failed due to no corre-
sponding short address found in the address map table.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Compendium Release 8 Page 1057

149.31.2.11 public static final int NOT_SUPPORTED = 75

An APSDE-DATA.request with a destination addressing mode set to 0x00 failed due to a binding ta-
ble not being supported on the device.

149.31.2.12 public static final int SECURED_LINK_KEY = 76

An ASDU was received that was secured using a link key.

149.31.2.13 public static final int SECURED_NWK_KEY = 77

An ASDU was received that was secured using a network key.

149.31.2.14 public static final int SECURITY_FAIL = 78

An APSDE-DATA.request requesting security has resulted in an error during the corresponding secu-
rity processing.

149.31.2.15 public static final int SUCCESS = 0

A request has been executed successfully.

149.31.2.16 public static final int TABLE_FULL = 79

An APSME-BIND.request or APSME.ADDGROUP. request issued when the binding or group tables,
respectively, were full.

149.31.2.17 public static final int UNSECURED = 80

An ASDU was received without any security.

149.31.2.18 public static final int UNSUPPORTED_ATTRIBUTE = 81

An APSME-GET.request or APSMESET. request has been issued with an unknown attribute identifi-
er.

149.31.2.19 public APSException(String errorDesc)

errorDesc exception an error description.

□ Creates a APSException containing only a description, but no error codes. If issued on this exception
the getErrorCode() and getZigBeeErrorCode() methods return the UNKNOWN_ERROR constant.

149.31.2.20 public APSException(int errorCode, String errorDesc)

errorCode One of the error codes defined in this interface or UNKNOWN_ERROR if the actual error is not list-
ed in this interface. In this case if the native ZigBee error code is known, it is preferred to use the
APSException(int, int, String) constructor, passing UNKNOWN_ERROR as first parameter and the
native ZigBee error as the second.

errorDesc An error description which explain the type of problem.

□ Creates a APSException containing a specific errorCode . Using this constructor with errorCode set
to UNKNOWN_ERROR is equivalent to call APSException(String).

149.31.2.21 public APSException(int errorCode, int zigBeeErrorCode, String errorDesc)

errorCode One of the error codes defined in this interface or UNKNOWN_ERROR the actual error is not cov-
ered in this interface. In this case the zigBeeErrorCode parameter must be the actual status code re-
turned by the ZigBee stack.

zigBeeErrorCode The actual APS status code or UNKNOWN_ERROR if this status is unknown.

errorDesc An error description which explain the type of problem.

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 1058 OSGi Compendium Release 8

□ Creates a APSException containing a specific errorCode or zigBeeErrorCode . Using this construc-
tor with both the errorCode and zigBeeErrorCode set to UNKNOWN_ERROR is equivalent to call
APSException(String).

149.31.3 public interface ZCLAttribute
extends ZCLAttributeInfo
This interface represents a ZCLAttribute.

Its extends ZCLAttributeInfo to add methods to read and write the ZCL attribute from and to the
ZigBee node with respectively the getValue() and setValue(Object) methods.

149.31.3.1 public static final String ID = "zigbee.attribute.id"

Property key for the optional attribute id of a ZigBee Event Listener.

149.31.3.2 public Promise<Object> getValue()

□ Gets the current value of the attribute.

As described in section 2.4.1.3 Effect on Receipt of the ZCL specification, a Read
attributes command can have the following status: ZCLException.SUCCESS,
ZCLException.UNSUPPORTED_ATTRIBUTE, or ZCLException.INVALID_VALUE.

Returns A promise representing the completion of this asynchronous call. The response object returned
by Promise.getValue() is the requested attribute value in the relevant Java data type (see get-
DataType() method and ZCLDataTypeDescription.getJavaDataType()) or in byte[] if getDataType()
returns null. The response object is null if an ZCLException.UNSUPPORTED_ATTRIBUTE or
ZCLException.INVALID_VALUE error occurs and the adequate ZCLException is returned by
Promise.getFailure() .

149.31.3.3 public Promise<Void> setValue(Object value)

value the Java value to set.

□ Sets the current value of the attribute.

As described in section 2.4.3.3 Effect on Receipt of the ZCL specification, a Write at-
tributes command may return the following status: ZCLException.SUCCESS,
ZCLException.UNSUPPORTED_ATTRIBUTE, ZCLException.INVALID_DATA_TYPE,
ZCLException.READ_ONLY, ZCLException.INVALID_VALUE, or
ZDPException.NOT_AUTHORIZED.

Returns A promise representing the completion of this asynchronous call. Promise.getFailure() returns null
if the attribute value has been successfully written. The adequate ZigBeeException is returned other-
wise.

149.31.4 public interface ZCLAttributeInfo
This interface provides information about the attribute, like its ZCL attribute ID, if it manufacturer
specific and about its data type (see getDataType).

149.31.4.1 public static final String ID = "zigbee.attribute.id"

Property key for the optional attribute id of a ZigBee Event Listener.

149.31.4.2 public ZCLDataTypeDescription getDataType()

□ Returns the data type of this attribute.

Returns The attribute data type. It may be null if the data type is not retrievable (issue with read attribute
and discover attributes commands).

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Compendium Release 8 Page 1059

149.31.4.3 public int getId()

□ Returns the ID of this attribute.

Returns the attribute identifier (that is, the attribute's ID).

149.31.4.4 public int getManufacturerCode()

□ Returns the manufacturer code of this attribute.

Returns The manufacturer code that defined this attribute, if the attribute does not belong to any manufac-
ture extension then it returns -1.

149.31.4.5 public boolean isManufacturerSpecific()

□ Checks if the attribute is manufacturer specific.

Returns true if and only if this attribute is related to a manufacturer extension.

149.31.5 public interface ZCLCluster
This interface represents a ZCL Cluster. Along with methods to retrieve the cluster information, like
its ID, it provides methods to asynchronously send commands to the cluster and other methods that
wrap most of the ZCL general commands.

Every asynchronous method defined in this interface returns back its result through the use of a
Promise.

149.31.5.1 public static final String DOMAIN = "zigbee.cluster.domain"

Property key for the optional cluster domain. A ZigBee Event Listener service can announce for
what ZigBee clusters domains it wants notifications.

149.31.5.2 public static final String ID = "zigbee.cluster.id"

Property key for the optional cluster id. A ZigBee Event Listener service can announce for what Zig-
Bee clusters it wants notifications.

149.31.5.3 public static final String NAME = "zigbee.cluster.name"

Property key for the optional cluster name. A ZigBee Event Listener service can announce for what
ZigBee clusters it wants notifications.

149.31.5.4 public Promise<ZCLAttribute> getAttribute(int attributeId)

attributeId the ZCL attribute identifier.

□ Returns the cluster ZCLAttribute identifying that matches the given attributeId.
ZCLCluster.getAttribute(int, int) method retrieves manufacturer-specific attributes.

Returns A promise representing the completion of this asynchronous call. In case of success in get-
ting the attribute, the promise will be resolved with a ZCLAttribute instance. If attribut-
eId do not exist in the cluster, then the promise fails with a ZCLException with status code
ZCLException.UNSUPPORTED_ATTRIBUTE.

149.31.5.5 public Promise<ZCLAttribute> getAttribute(int attributeId, int code)

attributeId the ZCL attribute identifier

code the manufacturer code of the attribute to be retrieved. If -1 is used, the method behaves exactly like
ZCLCluster.getAttribute(int)

□ Retrieves a ZCLAttribute object for a manufacturer specific attribute. If the code parameter is -1 it
behaves like the ZCLCluster.getAttribute(int) and retrieves the non-manufacturer specific attribute
attr ibuteId .

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 1060 OSGi Compendium Release 8

Returns A Promise representing the completion of this asynchronous call. The promise will be resolved with
the requested ZCLAttribute. If a command such as ZCL Read Attributes or Discover Attributes has
already been called once by the ZigBee host, the Promise can be quickly resolved. The resolution
may be longer the first time one of the ZCLCluster methods to get one or all attributes is successful-
ly called. If attributeId do not exist in the cluster, then the promise fails with a ZCLException with
status code ZCLException.UNSUPPORTED_ATTRIBUTE

149.31.5.6 public Promise<ZCLAttribute> getAttributes()

□ Returns an array of ZCLAttribute objects representing all this cluster's attributes.

This method returns only standard attributes. To retrieve manufacturer specific attributes use
method ZCLCluster.getAttributes(int)

Returns A Promise representing the completion of this asynchronous call. The promise will be resolved with
an array of ZCLAttribute objects.

149.31.5.7 public Promise<ZCLAttribute> getAttributes(int code)

code The the manufacturer code. Pass -1 to retrieve standard (that is, non-manufacturer specific) attribut-
es.

□ Returns an array of ZCLAttribute objects representing all the specific manufacturer attributes avail-
able on the cluster.

This method behaves like the ZCLCluster.getAttributes() method if the passed value is -1.

Returns A Promise representing the completion of this asynchronous call. The promise will be resolved with
an array of ZCLAttribute objects. If a command such as ZCL Read Attributes or Discover Attributes
has already been called once by the ZigBee host, the Promise can be quickly resolved. The resolution
may be longer the first time one of the ZCLCluster methods to get one or all attributes is successful-
ly called.

149.31.5.8 public Promise<short> getCommandIds()

□ Returns an array of all the commandIds of the ZCLCluster.

This method is implemented for ZCL devices compliant version equal or later than
1.2 of the Home Automation Profile or other profiles that adds a general command
that enables discovery of command identifiers. When the device implements a pro-
file that does not support this feature, the promise fails with a ZCLException with code
ZCLException.GENERAL_COMMAND_NOT_SUPPORTED.

Returns A Promise representing the completion of this asynchronous call. The promise will be resolved with
short[] containing the command identifiers supported by the cluster.

149.31.5.9 public int getId()

□ Returns the identifier of this cluster.

Returns the cluster identifier.

149.31.5.10 public Promise<ZCLFrame> invoke(ZCLFrame frame)

frame The frame containing the command to issue.

□ Invokes a command on this cluster with a ZCLFrame. The returned promise provides the invocation
response in an asynchronous way. The source endpoint is not specified in this method call. To send
the appropriate message on the network, the base driver must generate a source endpoint. The latter
must not correspond to any exported endpoint.

Returns A promise representing the completion of this asynchronous call. Promise.getValue() returns the re-
sponse ZCLFrame.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Compendium Release 8 Page 1061

149.31.5.11 public Promise<ZCLFrame> invoke(ZCLFrame frame, String exportedServicePID)

frame The frame containing the command to issue.

exportedServi-
cePID

: the source endpoint of the command request. In targeted situations, the source endpoint is the
valid service PID of an exported endpoint.

□ Invokes a command on this cluster. This method is to be used by applications when the targeted de-
vice has to distinguish between source endpoints of the message. For instance, alarms cluster (see
3.11 Alarms Cluster in [ZCL]) generated events are differently interpreted if they come from the
oven or from the intrusion alert system.

Returns A promise representing the completion of this asynchronous call. Promise.getValue() returns the re-
sponse ZCLFrame.

149.31.5.12 public Promise<Map<Integer, ZCLReadStatusRecord>> readAttributes(ZCLAttributeInfo[] attributes)

attributes An array of ZCLAttributeInfo.

□ Reads a list of attributes by issuing a ZCL Read Attributes command. The attribute list is provided in
terms of an array of ZCLAttributeInfo objects.

As described in section 2.4.1.3 Effect on Receipt of the ZCL specification, a Read Attributes command re-
sults in a list of attribute status records comprising a mix of successful and unsuccessful attribute
reads.

The method returns a promise. The object used to resolve the Promise is a Map<Integer, ZCLRead-
StatusRecord> . For each Map entry, the key contains the attribute identifier and the value, a ZigBee
Read Attributes Status Record, which is made of the status of the read of this attribute, the ZigBee
data type of the attribute and the attribute value in the corresponding Java wrapper type (or null in
case of an unsupported attribute or in case of an invalid value). For attributes which data type serial-
ization is not supported (that is, ZCLDataTypeDescription.getJavaDataType() returns null), the val-
ue is of type byte[].

When the list of attributes do not fit into a single ZCLFrame, ZigBee clusters truncate the list of at-
tributes returned in the response. The client has to check the Map of results to send a new request
for the attributes which values are missing. In export situations, the base driver may truncate the
read attribute command response sent to networked devices in order to obey the rules.

NOTE: According to the ZigBee Specification all the attributes must be standard attributes or belong
to the same manufacturer code, otherwise the promise must fail with a IllegalArgumentException
exception.

Returns A promise representing the completion of this asynchronous call. The promise may fail with an Il-
legalArgumentException if the array size is 0 or if one of the array entries is nul l or not valid. An Il-
legalArgumentException is also thrown if some of ZCLAttributeInfo are manufacturer specific and
other are standard, or even if there are mix of attributes with different manufacturer specific code. If
the passed argument is nul l the promise must fail with a NullPointerException .

149.31.5.13 public Promise<Map<Integer, Integer>> writeAttributes(boolean undivided, Map<? extends
ZCLAttributeInfo, ?> attributesAndValues)

undivided true if an undivided write attributes command is requested, fa lse if not.

attributesAndVal-
ues

A Map<ZCLAttr ibuteInfo, Object> of attributes and values to be written. For ZCLAttributeInfo ob-
jects which serialization is not supported (that is, getDataType() .getJavaDataType() returns null),
the value must be of type byte[].

□ Writes a set of attributes on the cluster using the ZCL Write Attributes or the Write Attributes Undivid-
ed commands, according to the passed undivided parameter.

The promise resolves with a Map<Integer, Integer> . If all the attributes have been written success-
fully, the map is empty. In case of failure in writing specific attribute(s), the map is filled with en-
tries related to those attributes. Every key is set with the id of an attribute that was not written suc-

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 1062 OSGi Compendium Release 8

cessfully, every value with the status returned in the associated write attribute response record accord-
ingly re-mapped to one of the constants defined in the ZCLException class.

According to the ZigBee Specification all the attributes must be standard attributes or, if manufac-
turer-specific they must have the same manufacturer code, otherwise an IllegalArgumentException
occurs.

Returns A promise representing the completion of this asynchronous call. If resolved successfully the
promise may return an empty Map<Integer, Integer> . Otherwise the map will be filled with the sta-
tus information about the attributes that were not written. The key represents the attributeID and
the value the status present in the corresponding attribute record returned by the ZCL Write Attrib-
utes response message. The original ZCL status values must be re-mapped to the list of status values
listed in the ZCLException class. The promise may fail with an IllegalArgumentException if some of
ZCLAttributeInfo are manufacturer specific and other are standard, or even if there are mix of attrib-
utes with different manufacturer specific code.

149.31.6 public interface ZCLCommandResponse
A response event for a ZCLCommandResponseStream.

149.31.6.1 public Promise<ZCLFrame> getResponse()

□ Returns a promise holding the response.

Returns A Promise holding the ZCLFrame response, or a failure exception if this is not a success response.

149.31.6.2 public boolean isEnd()

□ Checks if this is a terminal close event.

Returns true if this is a terminal close event.

149.31.7 public interface ZCLCommandResponseStream
This type represents a stream of responses to a broadcast operation. It can be closed by the client
using the close method is called. The ZCLCommandResponseStream is used to process a stream
of responses from a ZigBee network. Responses are consumed by registering a handler with
forEach(Predicate). Responses received before a handler is registered are buffered until a handler is
registered, or until the close method is called. A handler consumes events returning true to contin-
ue delivery. At some point the ZigBee service invocation will terminate event delivery by sending a
close event (a ZCLCommandResponse which returns true from ZCLCommandResponse.isEnd(). Af-
ter a close event the handler function will be dereferenced.

149.31.7.1 public void close()

□ Closes this response, indicating that no further responses are needed. Any buffered responses will be
discarded, and a close event will be sent to a handler if it is registered.

149.31.7.2 public void forEach(Predicate<? super ZCLCommandResponse> handler)

handler A handler to process ZCLCommandResponse objects

□ Registers a handler that will be called for each of the received responses. Only one handler may be
registered. Any responses that arrive before a handler is registered will be buffered and pushed into
the handler when it is registered. If the handler returns fa lse from its accept method then the han-
dler will be released and no further events will be delivered. Any remaining buffered events will be
discarded, and this object marked as closed. If the handler does not close the stream early then the
ZigBee service implementation will eventually send a close event.

Throws I l legalStateException– if a handler has already been registered, or if this object has been closed
(a ZCLCommandResponse which returns true from ZCLCommandResponse.isEnd(). After a close
event the handler function will be dereferenced.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Compendium Release 8 Page 1063

149.31.8 public interface ZCLEventListener
This interface represents a listener to events from ZigBee Device nodes.

149.31.8.1 public static final String ATTRIBUTE_DATA_TYPE = "zigbee.attribute.datatype"

Property key for the optional attribute data type of an attribute reporting configuration record, cf.
ZCL Figure 2.16 Format of the Attribute Reporting Configuration Record.

149.31.8.2 public static final String MAX_REPORT_INTERVAL = "zigbee.attribute.max.report.interval"

Property key for the optional maximum interval, in seconds between issuing reports of the at-
tribute. A ZigBee Event Listener service can declare the maximum frequency at which events it
wants notifications.

149.31.8.3 public static final String MIN_REPORT_INTERVAL = "zigbee.attribute.min.report.interval"

Property key for the optional minimum interval, in seconds between issuing reports of the attribute.
A ZigBee Event Listener service can declare the minimum frequency at which events it wants notifi-
cations.

149.31.8.4 public static final String REPORTABLE_CHANGE = "zigbee.attribute.reportable.change"

Property key for the optional maximum change to the attribute that will result in a report being is-
sued. A ZigBee Event Listener service can declare the maximum frequency at which events it wants
notifications.

149.31.8.5 public void notifyEvent(ZigBeeEvent event)

event a set of events.

□ Notifies the reception of an event. This method is called asynchronously.

149.31.8.6 public void notifyTimeOut(int timeout)

timeout the timeout in seconds.

□ Notifies that the timeout is elapsed. No event will be received in the interval.

149.31.8.7 public void onFailure(ZCLException e)

e the ZCLException.

□ Notifies that a failure has occurred.

That is, when either a ZCLException.UNSUPPORTED_ATTRIBUTE,
ZCLException.UNREPORTABLE_TYPE, ZCLException.INVALID_VALUE, or
ZCLException.INVALID_DATA_TYPE status occurs.

149.31.9 public class ZCLException
extends ZigBeeException
This class represents root exception for all the code related to ZigBee/ZCL. The provided constants
names, but not the values, maps to the ZCL error codes defined in the ZCL specification.

149.31.9.1 public static final int CALIBRATION_ERROR = 18

ZCL Calibration Error error code.

149.31.9.2 public static final int CLUSTER_COMMAND_NOT_SUPPORTED = 3

ZCL Cluster Command Not Supported error code.

149.31.9.3 public static final int DUPLICATE_EXISTS = 12

ZCL Duplicate Exists error code.

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 1064 OSGi Compendium Release 8

149.31.9.4 public static final int FAILURE = 1

ZCL Failure error code.

149.31.9.5 public static final int GENERAL_COMMAND_NOT_SUPPORTED = 4

ZCL General Command Not Supported error code.

149.31.9.6 public static final int HARDWARE_FAILURE = 16

HARDWARE_FAILURE - in this case, an additional exception describing the problem can be nested.

149.31.9.7 public static final int INSUFFICIENT_SPACE = 11

ZCL Insufficient Space error code.

149.31.9.8 public static final int INVALID_DATA_TYPE = 15

ZCL Invalid Data Type error code.

149.31.9.9 public static final int INVALID_FIELD = 7

ZCL Invalid Field error code.

149.31.9.10 public static final int INVALID_VALUE = 9

ZCL Invalid Value error code.

149.31.9.11 public static final int MALFORMED_COMMAND = 2

ZCL Malformed Command error code.

149.31.9.12 public static final int MANUF_CLUSTER_COMMAND_NOT_SUPPORTED = 5

ZCL Manuf Cluster Command Not Supported error code.

149.31.9.13 public static final int MANUF_GENERAL_COMMAND_NOT_SUPPORTED = 6

ZCL Manuf General Command Not Supported error code.

149.31.9.14 public static final int NOT_FOUND = 13

ZCL Not Found error code.

149.31.9.15 public static final int READ_ONLY = 10

ZCL Read Only error code.

149.31.9.16 public static final int SOFTWARE_FAILURE = 17

Software Failure error code - in this case, an additional exception describing the problem can be
nested.

149.31.9.17 public static final int SUCCESS = 0

ZCL Success error code.

149.31.9.18 public static final int UNREPORTABLE_TYPE = 14

Unreportable Type error code.

149.31.9.19 public static final int UNSUPPORTED_ATTRIBUTE = 8

ZCL Unsupported Attribute error code.

149.31.9.20 public ZCLException(String errorDesc)

errorDesc exception error description.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Compendium Release 8 Page 1065

□ Creates a ZCLException containing only a description, but no error codes. If issued on this exception
the getErrorCode() and getZigBeeErrorCode() methods return the UNKNOWN_ERROR constant.

149.31.9.21 public ZCLException(int errorCode, String errorDesc)

errorCode One of the error codes defined in this interface or UNKNOWN_ERROR if the actual error is not list-
ed in this interface. In this case if the native ZigBee error code is known, it is preferred to use the
ZCLException(int, int, String) constructor, passing UNKNOWN_ERROR as first parameter and the
native ZigBee error as the second.

errorDesc An error description which explain the type of problem.

□ Creates a ZCLException containing a specific errorCode . Using this constructor with errorCode set
to UNKNOWN_ERROR is equivalent to call ZCLException(String).

149.31.9.22 public ZCLException(int errorCode, int zigBeeErrorCode, String errorDesc)

errorCode One of the error codes defined in this interface or UNKNOWN_ERROR the actual error is not cov-
ered in this interface. In this case the zigBeeErrorCode parameter must be the actual status code re-
turned by the ZigBee stack.

zigBeeErrorCode The actual ZCL status code or UNKNOWN_ERROR if this status is unknown.

errorDesc An error description which explain the type of problem.

□ Creates a ZCLException containing a specific errorCode or zigBeeErrorCode . Using this construc-
tor with both the errorCode and zigBeeErrorCode set to UNKNOWN_ERROR is equivalent to call
ZCLException(String).

149.31.10 public interface ZCLFrame
This interface models the ZigBee Cluster Library Frame.

149.31.10.1 public byte[] getBytes()

□ Returns a byte array containing the raw ZCL frame, suitable to be sent on the wire. The returned
byte array contains the whole ZCL Frame, including the ZCL Frame Header and the ZCL Frame pay-
load.

Returns a byte array containing a raw ZCL frame, suitable to be sent on the wire. Any modifications issued
on the returned array must not affect the internal representation of the ZCLFrame interface imple-
mentation.

149.31.10.2 public int getBytes(byte[] buffer)

buffer The buffer where to copy the raw ZCL frame.

□ Copy in the passed array the internal raw ZCLFrame.

Returns The actual number of bytes copied.

149.31.10.3 public ZigBeeDataInput getDataInput()

□ Returns ZigBeeDataInput for reading the ZCLFrame payload content. Every call to this method re-
turns a different instance. The returned instances must not share the current position to the under-
lying ZCLFrame payload.

Returns a DataInput for the payload of the ZCLFrame. This method does not generate a copy of the payload.

Throws I l legalStateException– if the InputStream is not available.

149.31.10.4 public ZCLHeader getHeader()

□ Returns the header of this frame.

Returns the header of this frame.

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 1066 OSGi Compendium Release 8

149.31.10.5 public int getSize()

□ Retrieve the current size of the internal raw frame (that is the size of the byte[] that would be re-
turned if calling the getBytes() method.

Returns The size of the raw ZCL frame.

149.31.11 public interface ZCLHeader
This interface represents the ZCL Frame Header.

149.31.11.1 public short getCommandId()

□ Returns the command identifier of this frame.

Returns the command identifier of this frame.

149.31.11.2 public short getFrameControlField()

□ Returns the Frame Control field of this frame.

Returns the frame control field of this frame.

149.31.11.3 public int getManufacturerCode()

□ Returns the manufacturer code of this frame.

Returns the manufacturer code if the ZCL Frame is manufacturer specific, otherwise returns -1.

149.31.11.4 public byte getSequenceNumber()

□ Returns the transaction Sequence Number of this frame.

Returns the transaction sequence number of this frame.

149.31.11.5 public boolean isClientServerDirection()

□ Checks the client server direction of the frame.

Returns the isClientServerDirection value.

149.31.11.6 public boolean isClusterSpecificCommand()

□ Checks the frame Type Sub-field of the frame control field.

Returns true if the frame control field states that the command is cluster specific. Returns false otherwise.

149.31.11.7 public boolean isDefaultResponseDisabled()

□ Checks if the default response is disabled.

Returns true if the ZCL Header Frame Control Field "Disable Default Response Sub-field" is 1. Returns fa lse
otherwise.

149.31.11.8 public boolean isManufacturerSpecific()

□ Checks if the frame is manufacturer specific.

Returns true if the ZCL frame is manufacturer specific (that is, the Manufacturer Specific Sub-field of the
ZCL Frame Control Field is 1.

149.31.12 public interface ZCLReadStatusRecord
This interface the reading result of ZCLCluster.readAttributes(ZCLAttributeInfo[]).

149.31.12.1 public ZCLAttributeInfo getAttributeInfo()

□ Returns the ZCLAttributeInfo related to the reading operation.

Returns the ZCLAttributeInfo related to the reading operation.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Compendium Release 8 Page 1067

149.31.12.2 public ZigBeeException getFailure()

□ Returns the potential failure of the reading operation.

Returns null in case of success, otherwise the ZigBeeException specifying the failing of the reading.

149.31.12.3 public Object getValue()

□ Returns the value of the related read attribute.

Returns null in case of failure or invalid data, otherwise the Java Object representing the ZigBee value.

149.31.13 public class ZDPException
extends ZigBeeException
This class represents root exception for all the code related to ZDP.

See Table 2.137 ZDP Enumerations Description in ZIGBEE SPECIFICATION: 1_053474r17ZB_TSC-
ZigBee-Specification.pdf.

149.31.13.1 public static final int DEVICE_NOT_FOUND = 34

The requested device did not exist on a device following a child descriptor request to a parent.

149.31.13.2 public static final int INSUFFICIENT_SPACE = 42

The device does not have storage space to support the requested operation.

149.31.13.3 public static final int INV_REQUESTTYPE = 33

The supplied request type was invalid.

149.31.13.4 public static final int INVALID_EP = 35

The supplied endpoint was equal to 0x00 or between 0xf1 and 0xff.

149.31.13.5 public static final int NO_DESCRIPTOR = 41

A child descriptor was not available following a discovery request to a parent.

149.31.13.6 public static final int NO_ENTRY = 40

The unbind request was unsuccessful due to the coordinator or source device not having an entry in
its binding table to unbind.

149.31.13.7 public static final int NO_MATCH = 39

The end device bind request was unsuccessful due to a failure to match any suitable clusters.

149.31.13.8 public static final int NOT_ACTIVE = 36

The requested endpoint is not described by a simple descriptor.

149.31.13.9 public static final int NOT_AUTHORIZED = 45

The permissions configuration table on the target indicates that the request is not authorized from
this device.

149.31.13.10 public static final int NOT_PERMITTED = 43

The device is not in the proper state to support the requested operation.

149.31.13.11 public static final int NOT_SUPPORTED = 37

The requested optional feature is not supported on the target device.

149.31.13.12 public static final int SUCCESS = 0

The requested operation or transmission was completed successfully.

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 1068 OSGi Compendium Release 8

149.31.13.13 public static final int TABLE_FULL = 44

The device does not have table space to support the operation.

149.31.13.14 public static final int TIMEOUT = 38

A timeout has occurred with the requested operation.

149.31.13.15 public ZDPException(String errorDesc)

errorDesc exception error description.

□ Creates a ZDPException containing only a description, but no error codes. If issued on this excep-
tion the getErrorCode() and getZigBeeErrorCode() methods return the UNKNOWN_ERROR con-
stant.

149.31.13.16 public ZDPException(int errorCode, String errorDesc)

errorCode One of the error codes defined in this interface or UNKNOWN_ERROR if the actual error is not list-
ed in this interface. In this case if the native ZigBee error code is known, it is preferred to use the
ZDPException(int, int, String) constructor, passing UNKNOWN_ERROR as first parameter and the
native ZigBee error as the second.

errorDesc An error description which explain the type of problem.

□ Creates a ZDPException containing a specific errorCode . Using this constructor with errorCode set
to UNKNOWN_ERROR is equivalent to call ZDPException(String).

149.31.13.17 public ZDPException(int errorCode, int zigBeeErrorCode, String errorDesc)

errorCode One of the error codes defined in this interface or UNKNOWN_ERROR the actual error is not cov-
ered in this interface. In this case the zigBeeErrorCode parameter must be the actual status code re-
turned by the ZigBee stack.

zigBeeErrorCode The actual ZDP status code or UNKNOWN_ERROR if this status is unknown.

errorDesc An error description which explain the type of problem.

□ Creates a ZDPException containing a specific errorCode or zigBeeErrorCode . Using this construc-
tor with both the errorCode and zigBeeErrorCode set to UNKNOWN_ERROR is equivalent to call
ZDPException(String).

149.31.14 public interface ZDPFrame
This interface represents a ZDP frame.

See Figure 2.19 Format of the ZDP Frame ZIGBEE SPECIFICATION: 1_053474r17ZB_TSC-Zig-
Bee-Specification.pdf.

This interface MUST be implemented by the developer invoking the ZigBeeNode.invoke(int, int,
ZDPFrame) method.

Notes:

• This interface hides on purpose the Transaction Sequence Number field because it MUST be han-
dled internally by the ZigBee Base Driver

• The interface does not provide any method for writing the payload because the ZigBee Base Dri-
ver needs only to read the payload.

149.31.14.1 public ZigBeeDataInput getDataInput()

□ Returns the ZigBeeDataInput of the payload of this frame.

Returns the ZigBeeDataInput of the payload of the ZDPFrame. This method, in contrary to getPayload(),
doesn't require to create a copy of the payload.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Compendium Release 8 Page 1069

Throws I l legalStateException– if a ZigBeeDataInput stream cannot be returned because the underlying
ZDPFrame implementation was not correctly initialized.

149.31.14.2 public byte[] getPayload()

□ Returns a copy of the payload of this frame.

Returns A copy of the payload of this frame.

149.31.15 public interface ZDPResponse
This type represents a successful ZDP invocation. Note that the underlying call may not have suc-
ceeded, The ZDPFrame frame must be introspected to identify the response from the ZigBeeNode.

149.31.15.1 public int getClusterId()

□ Returns the clusterId this response refers to.

Returns the clusterId this response refers to.

149.31.15.2 public ZDPFrame getFrame()

□ Returns the ZDPFrame containing the response.

Returns the ZDPFrame containing the response.

149.31.16 public interface ZigBeeDataInput
The ZigBeeDataInput interface is designed for converting a series of bytes in Java data types. The
purpose of this interface is the same as the DataInput interface available in the standard Java library,
with the difference that in this interface, byte ordering is little endian, whereas in the DataInput in-
terface is big endian.

Each method provided by this interface read one or more bytes from the underlying stream, com-
bine them, and return a Java data type. The pointer to the stream is then moved immediately after
the last byte read. If this pointer past the available buffer bounds, a subsequent call to one of these
methods will throw a EOFException.

149.31.16.1 public byte readByte() throws IOException

□ Reads a byte from the DataInput Stream.

Returns the byte read from the data input.

Throws EOFException– When the end of the input has been reached and there are no more data to read.

IOException– If an I/O error occurs.

149.31.16.2 public byte[] readBytes(int len) throws IOException

len the number of bytes to read.

□ Reads the specified amount of bytes from the underlying stream and return a copy of them. If the
number of available bytes is less than the requested len, it throws an EOFException.

Returns return a copy of the bytes contained in the stream.

Throws EOFException– if there are not at least len bytes left on the data input.

IOException– If an I/O error occurs.

149.31.16.3 public double readDouble() throws IOException

□ Reads a number of type Double.

Returns a decoded double.

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 1070 OSGi Compendium Release 8

Throws EOFException– if there are not at least size 8 bytes left on the data input.

IOException– If an I/O error occurs.

149.31.16.4 public float readFloat(int size) throws IOException

size expected value for this parameter are 2 or 4 depending if reading
ZigBeeDataTypes.FLOATING_SEMI or ZigBeeDataTypes.FLOATING_SINGLE.

□ Reads a number of type Float.

Returns The f loat number read from the data input.

Throws EOFException– if there are not at least size bytes left on the data input.

IOException– If an I/O error occurs.

I l legalArgumentException– If the passed size is not in the allowed range.

149.31.16.5 public int readInt(int size) throws IOException

size the number of bytes that have to be read. Allowed values for this parameter are in the range [1, 4].

□ Reads an integer of the specified size . The sign bit of the size -bytes integer is left-extended. In oth-
er words if a readInt(2) is issued and the byte read are 0x01, 0x02 and 0xf0, the method returns
0xfff00201. For this reason if the 4 bytes read from the stream represent an unsigned value, to get the
expected value the and bitwise operator must be used:

int u = readInt(3) & 0xffffff ;

Returns the integer read from the data input.

Throws EOFException– When the end of the input has been reached and there are no more data to read.

IOException– If an I/O error occurs.

I l legalArgumentException– If the passed size is not in the allowed range.

149.31.16.6 public long readLong(int size) throws IOException

size the number of bytes that have to be read. Allowed values for this parameter are in the range [1, 8].

□ Reads a certain amount of bytes and returns a long. The sign bit of the read size -bytes long is left-ex-
tended. In other words if a readLong(2) is issued and the byte read are 0x01 and 0xf0, the method re-
turns 0xfffffffffffff001L. For this reason if the 2 bytes read from the stream represent an unsigned val-
ue, to get the expected value the and bitwise operator must be used:

long u = readLong(2) & 0xffff ;

Returns The long value read from the data input.

Throws EOFException– if there are not at least size bytes left on the data input.

IOException– If an I/O error occurs.

I l legalArgumentException– If the passed size is not in the allowed range.

149.31.17 public interface ZigBeeDataOutput
The ZigBeeDataOutput interface is designed for converting Java data types into a series of bytes. The
purpose of this interface is the same as the DataOutput interface provided by Java, with the differ-
ence that in this interface, the generated bytes ordering is little endian, whereas in the DataOutput
is big endian.

149.31.17.1 public void writeByte(byte value)

value The value to append.

□ Appends a byte to the data output.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Compendium Release 8 Page 1071

To avoid losing information, the passed value must be in the range [-128, 127] for signed numbers
and [0, 255] for unsigned numbers.

149.31.17.2 public void writeBytes(byte[] bytes, int length) throws IOException

bytes A buffer containing the bytes to append to the data output stream.

length The length in bytes that have to be actually appended.

□ Appends on the Data Output Stream a byte array. The byte array is written on the data output start-
ing from the byte at index 0.

Throws IOException– If an I/O error occurs.

I l legalArgumentException– If the passed buffer is null or shorter than length bytes.

149.31.17.3 public void writeDouble(double value) throws IOException

value The double value to append.

□ Appends on the Data Output Stream a double value.

Throws IOException– If an I/O error occurs.

149.31.17.4 public void writeFloat(float value, int size) throws IOException

value The f loat value to append.

size The size in bytes that have to be actually appended. The size must be 2 for semi precision floats or 4
for standard precision floats (see the ZigBee Cluster Library specifications).

□ Appends on the Data Output Stream a float value.

Throws IOException– If an I/O error occurs.

I l legalArgumentException– If the passed size is not within the allowed range.

149.31.17.5 public void writeInt(int value, int size) throws IOException

value The integer value to append

size The size in bytes that have to be actually appended. The size must be in the range [1,4].

□ Appends an int value to the data output.

To avoid losing information, according to the size argument, the passed long value if it represents a
signed number must fit in the range [-2^(size * 8 - 1), -2^(size * 8 - 1) - 1].

For unsigned numbers it should fit in the range [0, -2^(size * 8) - 1].

For instance if size is 2 the correct range for signed numbers is [0xffff8000, 0x7fff] (that is, [-32768,
+32767]), whereas for unsigned numbers is [0L, 0xffff].

Although this method allows write even 1 byte of the passed int value, it is suggested to use the
writeByte(byte) because this latter could be implemented in a more efficient way.

Throws IOException– If an I/O error occurs.

I l legalArgumentException– If the passed size is not within the allowed range.

149.31.17.6 public void writeLong(long value, int size) throws IOException

value The long value to append

size The size in bytes that have to be actually appended. The size must be in the range [1,8].

□ Appends a long to the data output.

To avoid losing information, according to the size argument, the passed long value if it represents a
signed number must fit in the range [-2^(size * 8 - 1), -2^(size * 8 - 1) - 1].

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 1072 OSGi Compendium Release 8

For unsigned numbers it should fit in the range [0, -2^(size * 8) - 1].

For instance if size is 3 the correct range for signed numbers is [0xffffffffff800000L, 0x7fffffL] (that is,
[-21474836448, +2147483647]), whereas for unsigned numbers is [0L, 0xffffffL].

Although this method allows write even 1 byte of the passed long value, it is suggested to use the
writeByte(byte) because this latter could be implemented in a more efficient way.

Throws IOException– If an I/O error occurs.

I l legalArgumentException– If the passed size is not within the allowed range.

149.31.18 public class ZigBeeDataTypes
This class contains the constants that are used internally by these API to represent the ZCL data
types.

These constants do not match the values used in the ZigBee specification, but follow the rules be-
low:

• bit 0-3: if bit 6 is one, these bits represents the size of the data type in bytes.
• bit 6: if set to 1 bits 0-3 represents the size of the data type in bytes.

Related documentation: [1] ZigBee Cluster Library specification, Document 075123r04ZB, May 29,
2012.

149.31.18.1 public static final short ARRAY = 16

According to ZigBee Cluster Library [1], an Array is an ordered sequence of zero or more elements, all
of the same data type. This data type may be any ZCL defined data type, including Array, Structure,
Bag or Set. The total nesting depth is limited to 15.

149.31.18.2 public static final short ATTRIBUTE_ID = 6

The type of an attribute identifier.

149.31.18.3 public static final short BACNET_OID = 7

According to ZigBee Cluster Library [1], the BACnet OID data type is included to allow interworking
with BACnet. The format is described in the referenced standard.

149.31.18.4 public static final short BAG = 19

According to ZigBee Cluster Library [1], a Bag behaves exactly the same as a Set, except that two ele-
ments may have the same value.

149.31.18.5 public static final short BITMAP_16 = 89

Bitmap16-bit

149.31.18.6 public static final short BITMAP_24 = 90

Bitmap 24-bit

149.31.18.7 public static final short BITMAP_32 = 91

Bitmap 32-bit

149.31.18.8 public static final short BITMAP_40 = 92

Bitmap 40-bit

149.31.18.9 public static final short BITMAP_48 = 93

Bitmap 48-bit

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Compendium Release 8 Page 1073

149.31.18.10 public static final short BITMAP_56 = 94

Bitmap 56-bit

149.31.18.11 public static final short BITMAP_64 = 95

Bitmap 64-bit

149.31.18.12 public static final short BITMAP_8 = 88

According to ZigBee Cluster Library [1], the Bitmap type holds logical values, one per bit, depending
on its length. There is no value that represents an invalid value of this type. The Bitmap type is de-
fined with several sizes: 8, 16, 24, 32, 40, 48, 56 and 64 bits.

149.31.18.13 public static final short BOOLEAN = 1

According to ZigBee Cluster Library [1], the Boolean type represents a logical value, either FALSE
(0x00) or TRUE (0x01). The value 0xff represents an invalid value of this type. All other values of
this type are forbidden.

149.31.18.14 public static final short CHARACTER_STRING = 121

According to ZigBee Cluster Library [1], the Character String data type contains data octets encoding
characters according to the language and character set field of the complex descriptor.

149.31.18.15 public static final short CLUSTER_ID = 5

The type of a cluster identifier.

149.31.18.16 public static final short DATE = 3

The Date data type format is specified in section 2.5.2.20 of ZigBee Cluster Specification [1].

149.31.18.17 public static final short ENUMERATION_16 = 113

Enumeration 16-bit

149.31.18.18 public static final short ENUMERATION_8 = 112

According to ZigBee Cluster Library [1], the Enumeration type represents an index into a lookup ta-
ble to determine the final value. The values 0xff and 0xffff represent invalid values of the 8-bit and
16-bit types respectively.

149.31.18.19 public static final short FLOATING_DOUBLE = 250

According to ZigBee Cluster Library [1], the format of the double precision data type is based on the
IEEE 754 standard for binary floating-point arithmetic.

149.31.18.20 public static final short FLOATING_SEMI = 248

According to ZigBee Cluster Library [1], the ZigBee semi-precision number format is based on the
IEEE 754 standard for binary floating-point arithmetic.

149.31.18.21 public static final short FLOATING_SINGLE = 249

According to ZigBee Cluster Library [1], the format of the single precision data type is based on the
IEEE 754 standard for binary floating-point arithmetic.

149.31.18.22 public static final short GENERAL_DATA_16 = 81

General Data 16-bit

149.31.18.23 public static final short GENERAL_DATA_24 = 82

General Data 24-bit

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 1074 OSGi Compendium Release 8

149.31.18.24 public static final short GENERAL_DATA_32 = 83

General Data 32-bit

149.31.18.25 public static final short GENERAL_DATA_40 = 84

General Data 40-bit

149.31.18.26 public static final short GENERAL_DATA_48 = 85

General Data 48-bit

149.31.18.27 public static final short GENERAL_DATA_56 = 86

General Data 56-bit

149.31.18.28 public static final short GENERAL_DATA_64 = 87

General Data 64-bit

149.31.18.29 public static final short GENERAL_DATA_8 = 80

According to ZigBee Cluster Library [1], the General Data type may be used when a data element is
needed but its use does not conform to any of other types. The General Data type is defined with sev-
eral sizes: 8, 16, 24, 32, 40, 48, 56 and 64 bits.

149.31.18.30 public static final short IEEE_ADDRESS = 8

According to ZigBee Cluster Library [1], the IEEE Address data type is a 64-bit IEEE address that is
unique to every ZigBee device. A value of 0xffffffffffffffff indicates that the address is unknown.

149.31.18.31 public static final short LONG_CHARACTER_STRING = 123

According to ZigBee Cluster Library [1], the Long Character String data type contains data octets en-
coding characters according to the language and character set field of the complex descriptor.

149.31.18.32 public static final short LONG_OCTET_STRING = 122

According to ZigBee Cluster Library [1], the Long Octet String data type contains data in applica-
tion-defined formats.

149.31.18.33 public static final short NO_DATA = 0

According to ZigBee Cluster Library [1], the no data type represents an attribute with no associated
data.

149.31.18.34 public static final short OCTET_STRING = 120

According to ZigBee Cluster Library [1], the Octet String data type contains data in application-de-
fined formats.

149.31.18.35 public static final short SECURITY_KEY_128 = 9

According to ZigBee Cluster Library [1], the 128-bit Security Key data type is for use in ZigBee securi-
ty, and may take any 128-bit value.

149.31.18.36 public static final short SET = 18

According to ZigBee Cluster Library [1], a Set is a collection of elements with no associated order.
Each element has the same data type, which may be any ZCL defined data type, including Array,
Structure, Bag or Set. The nesting depth is limited to 15.

149.31.18.37 public static final short SIGNED_INTEGER_16 = 225

Signed Integer 16-bit

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Compendium Release 8 Page 1075

149.31.18.38 public static final short SIGNED_INTEGER_24 = 226

Signed Integer 24-bit

149.31.18.39 public static final short SIGNED_INTEGER_32 = 227

Signed Integer 32-bit

149.31.18.40 public static final short SIGNED_INTEGER_40 = 228

Signed Integer 40-bit

149.31.18.41 public static final short SIGNED_INTEGER_48 = 229

Signed Integer 48-bit

149.31.18.42 public static final short SIGNED_INTEGER_56 = 230

Signed Integer 56-bit

149.31.18.43 public static final short SIGNED_INTEGER_64 = 231

Signed Integer 64-bit

149.31.18.44 public static final short SIGNED_INTEGER_8 = 224

According to ZigBee Cluster Library [1], the Signed Integer type represents a signed integer with a
decimal range of -(2^7-1) to 2^7-1, - (2^15-1) to 2^15-1, -(2^23-1) to 2^23-1, -(2^31-1) to 2^31-1, -(2^39-1)
to 2^39-1, -(2^47-1) to 2^47-1, -(2^55-1) to 2^55-1, or -(2^63-1) to 2^63-1, depending on its length.
The values that represents an invalid value of this type are 0x80, 0x8000, 0x800000, 0x80000000,
0x8000000000, 0x800000000000, 0x80000000000000 and 0x8000000000000000 respectively. This
type is defined with several sizes: 8, 16, 24, 32, 40, 48, 56 and 64 bits.

149.31.18.45 public static final short STRUCTURE = 17

According to ZigBee Cluster Library [1], a Structure is an ordered sequence of elements, which may
be of different data types. Each data type may be any ZCL defined data type, including Array, Struc-
ture, Bag or Set. The total nesting depth is limited to 15.

149.31.18.46 public static final short TIME_OF_DAY = 2

The Time of Day data type format is specified in section 2.5.2.19 of ZCL specification [1].

149.31.18.47 public static final short UNKNOWN = 255

The UNKNOWN type is used when the data type is unknown.

149.31.18.48 public static final short UNSIGNED_INTEGER_16 = 97

Unsigned Integer 16-bit

149.31.18.49 public static final short UNSIGNED_INTEGER_24 = 98

Unsigned Integer 24-bit

149.31.18.50 public static final short UNSIGNED_INTEGER_32 = 99

Unsigned Integer 32-bit

149.31.18.51 public static final short UNSIGNED_INTEGER_40 = 100

Unsigned Integer 40-bit

149.31.18.52 public static final short UNSIGNED_INTEGER_48 = 101

Unsigned Integer 48-bit

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 1076 OSGi Compendium Release 8

149.31.18.53 public static final short UNSIGNED_INTEGER_56 = 102

Unsigned Integer 56-bit

149.31.18.54 public static final short UNSIGNED_INTEGER_64 = 103

Unsigned Integer 64-bit

149.31.18.55 public static final short UNSIGNED_INTEGER_8 = 96

According to ZigBee Cluster Library [1], the Unsigned Integer type represents an unsigned integer
with a decimal range of 0 to 2^8-1, 0 to 2^16-1, 0 to 2^24-1, 0 to 2^32-1, 0 to 2^40-1, 0 to 2^48-1, 0 to
2^56-1, or 0 to 2^64-1, depending on its length. The values that represents an invalid value of this
type are 0xff, 0xffff, 0xffffff, 0xffffffff, 0xffffffffff, 0xffffffffffff, 0xffffffffffffff and 0xffffffffffffffff re-
spectively. This type is defined with several sizes: 8, 16, 24, 32, 40, 48, 56 and 64 bits.

149.31.18.56 public static final short UTC_TIME = 4

According to ZigBee Cluster Library [1], UTCTime is an unsigned 32-bit value representing the num-
ber of seconds since 0 hours, 0 minutes, 0 seconds, on the 1st of January, 2000 UTC (Universal Coor-
dinated Time). The value that represents an invalid value of this type is 0xffffffffff.

149.31.19 public interface ZigBeeEndpoint
This interface represents a ZigBee EndPoint. A ZigBeeEndpoint must be registered as a OSGi service
with ZigBeeNode.IEEE_ADDRESS, and ZigBeeEndpoint.ENDPOINT_ID properties.

149.31.19.1 public static final String DEVICE_CATEGORY = "ZigBee"

Constant used by all ZigBee devices indicating the device category. It is a mandatory service proper-
ty for this service.

149.31.19.2 public static final String DEVICE_ID = "zigbee.device.id"

Property containing the application device identifier. This identifier is also contained in the ZigBee
Simple Descriptor. This property is of type Integer.

It is mandatory property for this service.

149.31.19.3 public static final String DEVICE_VERSION = "zigbee.device.version"

Property containing the application device version. The application device version is also contained
in the ZigBee endpoint Simple Descriptor. This property is of type Byte.

It is mandatory property for this service.

149.31.19.4 public static final String ENDPOINT_ID = "zigbee.endpoint.id"

Property containing the EndPoint ID of the device. This property is of type Short and its value must
be in the range allowed by the ZigBee specifications for Zigbee endpoints identifiers.

It is mandatory service property for ZigBeeEndpoint services.

149.31.19.5 public static final String HOST_PID = "zigbee.endpoint.host.pid"

Property containing the ZigBeeHost's pid. This property is of type String.

The ZigBee local host identifier is intended to uniquely identify the ZigBee local host, since there
could be many hosts on the same platform.

All the endpoints that belong to a specific network MUST specify the value of the associated host
pid. It is mandatory for imported endpoints, optional for exported endpoints.

149.31.19.6 public static final String INPUT_CLUSTERS = "zigbee.endpoint.clusters.input"

Property containing a list of input clusters. This list is contained also in the ZigBee Simple Descrip-
tor returned by the ZigBeeEndpoint service. This property is of type int[].

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Compendium Release 8 Page 1077

It is mandatory service property for this service.

149.31.19.7 public static final String OUTPUT_CLUSTERS = "zigbee.endpoint.clusters.output"

Property containing a list of output clusters. This list is contained also in the ZigBee Simple Descrip-
tor of the ZigBeeEndpoint service. This property is of type int[].

It is a mandatory service property for this service.

149.31.19.8 public static final String PROFILE_ID = "zigbee.device.profile.id"

Property containing the application profile identifier also contained in the ZigBee Simple Descrip-
tor. This property is of type Integer.

It is mandatory service property for this service.

149.31.19.9 public static final String ZIGBEE_EXPORT = "zigbee.export"

Property used to mark if a ZigBeeEndPoint service is an exported one or not. Imported endpoints do
not have this property set. This service property requires no specific values.

149.31.19.10 public Promise<Void> bind(String servicePid, int clusterId)

servicePid the PID of the endpoint to bind to

clusterId the cluster identifier to bind to

□ Adds the following entry in the Binding Table of the device:

this .getNodeAddress() , this .getId() , cluster Id , device.getNodeAddress() , device.getId()

As described in "Table 2.7 APSME-BIND.confirm Parameters" of the ZigBee specification
1_053474r17ZB_TSC-ZigBee-Specification.pdf, a binding request can have the following re-
sults: APSException.SUCCESS, APSException.ILLEGAL_REQUEST, APSException.TABLE_FULL,
APSException.NOT_SUPPORTED.

Returns A promise representing the completion of this asynchronous call. Promise.getFailure() returns null
if the cluster has been successfully bound. The adequate ZigBeeEndpoint is returned otherwise.

149.31.19.11 public Promise<List<String>> getBoundEndPoints(int clusterId)

clusterId the cluster identifier of the targeted bindings.

□ Returns bound endpoints (identified by their service PIDs) on a specific cluster ID. It is implemented
on the base driver with Mgmt_Bind_req command. It is implemented without a command request
in local endpoints.

As described in "Table 2.129 Fields of the Mgmt_Bind_rsp Command" of the ZigBee specification
1_053474r17ZB_TSC-ZigBee-Specification.pdf, a Mgmt_Bind_rsp command can have the following
status: APSException.NOT_SUPPORTED or any status code returned from the APSME-GET.confirm
primitive (see APSException).

Returns A promise representing the completion of this asynchronous call. Promise.getValue() returns a List
of the bound endpoint service PIDs if the command is successful. The response object is null and the
adequate APSException is returned by Promise.getFailure() otherwise.

149.31.19.12 public ZCLCluster getClientCluster(int clientClusterId)

clientClusterId The client(output) cluster identifier.

□ Returns the client cluster identified by the cluster identifier.

Returns the client(output) cluster identified by the cluster identifier, or null if the given id is not listed in the
simple descriptor.

Throws I l legalArgumentException– If the passed argument is outside the range [0, 0xffff].

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 1078 OSGi Compendium Release 8

149.31.19.13 public ZCLCluster[] getClientClusters()

□ Returns an array of client (output) clusters.

Returns an array of client (output) clusters, returns an empty array if does not provides any clients clusters.

149.31.19.14 public short getId()

□ Returns the identifier of this endpoint, that is the Endpoint ID.

Returns the identifier of this endpoint, value ranges from 1 to 240.

149.31.19.15 public BigInteger getNodeAddress()

□ Returns the IEEE Address of the node containing this endpoint.

Returns the IEEE Address of the node containing this endpoint.

149.31.19.16 public ZCLCluster getServerCluster(int serverClusterId)

serverClusterId The server(input) cluster identifier.

□ Returns the server (input) cluster identified by the given identifier.

Returns the server (input) cluster identified by the given identifier, or null if the given id is not listed in the
simple descriptor.

Throws I l legalArgumentException– If the passed argument is outside the range [0, 0xffff].

149.31.19.17 public ZCLCluster[] getServerClusters()

□ Returns an array of server (input) clusters.

Returns an array of server (input) clusters, returns an empty array if it does not provide any server cluster.

149.31.19.18 public Promise<ZigBeeSimpleDescriptor> getSimpleDescriptor()

□ Returns the simple descriptor of this endpoint. As described in "Table 2.93 Fields of
the Simple_Desc_rsp Command" of the ZigBee specification 1_053474r17ZB_TSC-Zig-
Bee-Specification.pdf, a simple_decr request can have the following status: ZDPException.SUCCESS,
ZDPException.INVALID_EP, ZDPException.NOT_ACTIVE, ZDPException.DEVICE_NOT_FOUND,
ZDPException.INV_REQUESTTYPE or ZDPException.NO_DESCRIPTOR.

Returns A promise representing the completion of this asynchronous call. Promise.getValue() returns the
node simple descriptor ZigBeeSimpleDescriptor in case of success and Promise.getFailure() returns
the adequate ZDPException otherwise.

149.31.19.19 public void notExported(ZigBeeException e)

e A device ZigBeeException the occurred exception.

□ Notifies that the base driver is unable to export this endpoint. This method is called by the base dri-
ver and used to give details about issues preventing the export of an endpoint.

149.31.19.20 public Promise<Void> unbind(String servicePid, int clusterId)

servicePid The pid of the service to unbind.

clusterId The cluster identifier to unbind.

□ Removes the following entry in the Binding Table of the device if it exists:

this .getNodeAddress() , this .getId() , cluster Id , device.getNodeAddress() , device.getId()

As described in "Table 2.9 APSME-UNBIND.confirm Parameters" of the ZigBee specification
1_053474r17ZB_TSC-ZigBee-Specification.pdf, an unbind request can have the following results:
APSException.SUCCESS, APSException.ILLEGAL_REQUEST, APSException.INVALID_BINDING.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Compendium Release 8 Page 1079

Returns A promise representing the completion of this asynchronous call. Promise.getFailure() returns null
if the cluster has been successfully bound. The adequate APSException is returned otherwise.

149.31.20 public interface ZigBeeEvent
This interface represents events generated by a ZigBee Device node.

149.31.20.1 public int getAttributeId()

□ Returns the attribute identifier (that is, the attribute's ID).

Returns the attribute identifier (that is, the attribute's ID).

149.31.20.2 public int getClusterId()

□ Returns the cluster id associated to this ZigBeeEvent.

Returns the cluster id.

149.31.20.3 public short getEndpointId()

□ Returns the endpoint identifier.

Returns the endpoint identifier.

149.31.20.4 public BigInteger getIEEEAddress()

□ Returns the ZigBee device node IEEE Address.

Returns the ZigBee device node IEEE Address.

149.31.20.5 public Object getValue()

□ Returns an object containing the new value of the related ZigBee attribute.

Returns an object containing the new value for the ZigBee attribute that has changed.

149.31.21 public class ZigBeeException
extends RuntimeException
This class represents root exception for all the code related to ZigBee. The provided constants
names, but not the values.

149.31.21.1 protected final int errorCode

The error code associated to this exception.

See Also getErrorCode()

149.31.21.2 public static final int OSGI_EXISTING_ID = 48

The error code used when another endpoint exists with the same ID.

149.31.21.3 public static final int OSGI_MULTIPLE_HOSTS = 49

The error code used when several hosts exist for this PAN ID target or HOST_PID target.

149.31.21.4 public static final int TIMEOUT = 50

The error code used when the timeout of ZigBee asynchronous exchange is reached.

149.31.21.5 public static final int UNKNOWN_ERROR = -1

This error code is used if the ZigBee error returned is not covered by this API specification.

149.31.21.6 protected final int zigBeeErrorCode

The actual error code returned by the ZigBee node.

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 1080 OSGi Compendium Release 8

See Also ZigBeeException.getZigBeeErrorCode()

149.31.21.7 public ZigBeeException(String errorDesc)

errorDesc exception error description.

□ Creates a ZigBeeException containing only a description, but no error codes. If issued on this excep-
tion the getErrorCode() and getZigBeeErrorCode() methods return the UNKNOWN_ERROR con-
stant.

149.31.21.8 public ZigBeeException(int errorCode, String errorDesc)

errorCode One of the error codes defined in this interface or UNKNOWN_ERROR if the actual error is not list-
ed in this interface.

errorDesc An error description which explain the type of problem.

□ Creates a ZigBeeException containing a specific errorCode . Using this constructor with errorCode
set to UNKNOWN_ERROR is equivalent to call ZigBeeException(String).

149.31.21.9 public ZigBeeException(int errorCode, int zigBeeErrorCode, String errorDesc)

errorCode One of the error codes defined in this interface or UNKNOWN_ERROR the actual error is not cov-
ered in this interface.

zigBeeErrorCode The actual status code or UNKNOWN_ERROR if this status is unknown.

errorDesc An error description which explain the type of problem.

□ Creates a ZigBeeException containing a specific errorCode or zigBeeErrorCode . Using this construc-
tor with both the errorCode and zigBeeErrorCode set to UNKNOWN_ERROR is equivalent to call
ZigBeeException(String).

149.31.21.10 public int getErrorCode()

□ Returns the error code.

Returns the error code.

149.31.21.11 public int getZigBeeErrorCode()

□ Returns the potential ZigBee error code.

Returns One of the error codes defined above. If the returned error code is UNKNOWN_ERROR and the
hasZigBeeErrorCode() returns true then the getZigBeeErrorCode() provides the actual ZigBee error
code returned by the device.

149.31.21.12 public boolean hasZigBeeErrorCode()

□ Checks if this exception has a ZigBee error code.

Returns true if the ZigBeeException convey also the actual error code returned by the ZigBee stack.

149.31.22 public interface ZigBeeGroup
This interface represents a ZigBee Group.

No Implement Consumers of this API must not implement this interface

149.31.22.1 public static final String ID = "zigbee.group.id"

Key of the String containing the Group Address of the device.

It is a mandatory property for this service.

149.31.22.2 public int getGroupAddress()

□ Returns the 16-bit group address.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Compendium Release 8 Page 1081

Returns the 16-bit group address.

149.31.22.3 public ZCLCommandResponseStream groupcast(int clusterId, ZCLFrame frame)

clusterId a cluster identifier.

frame a command frame sequence.

□ Sends a ZCL frame to the group represented by this service. The returned stream will provide the in-
vocation response(s) in an asynchronous way.

The source endpoint is not specified in this method call. To send the appropriate message on the
network, the base driver must generate a source endpoint. The latter must not correspond to any ex-
ported endpoint.

Returns a ZCLCommandResponseStream to collect every ZCL frame one after the other in case of multiple
responses.

149.31.22.4 public ZCLCommandResponseStream groupcast(int clusterId, ZCLFrame frame, String exportedServicePID)

clusterId a cluster identifier.

frame a command frame sequence.

exportedServi-
cePID

: the source endpoint of the command request. In targeted situations, the source endpoint is the
valid service PID of an exported endpoint.

□ Sends a ZCL frame to the ZigBee group represented by this service. The returned stream will provide
the invocation response(s) in an asynchronous way.

This method is to be used by applications when the targeted device has to distinguish between
source endpoints of the message. For instance, alarms cluster (see 3.11 Alarms Cluster in [ZCL]) gen-
erated events are differently interpreted if they come from the oven or from the intrusion alert sys-
tem.

Returns a ZCLCommandResponseStream to collect every ZCL frame one after the other in case of multiple
responses.

149.31.22.5 public Promise<Void> joinGroup(String pid)

pid String representing the service PID of the ZigBeeEndpoint to add to this Group.

□ Requests an endpoint to join this group. This method may be invoked on exported and imported
endpoints. In the former case, the ZigBee Base Driver should rely on the APSME-ADD-GROUP API
defined by the ZigBee Specification, or it will use the proper commands of the Groups cluster of the
ZigBee Specification Library. As described in "Table 2.15 APSME-ADD-GROUP.confirm Parameters"
of the ZigBee specification 1_053474r17ZB_TSC-ZigBee-Specification.pdf, an add_group request
can have the following status: APSException.SUCCESS, APSException.INVALID_PARAMETER or
APSException.TABLE_FULL. When the joining is performed remotely on an imported ZigBeeEnd-
point, it may also fail because the command is not supported by the remote endpoint, or because the
remote device cannot perform the operation at the moment (see ZCLException).

Returns A promise representing the completion of this asynchronous call. Promise.getFailure() returns null
if the cluster has been successfully bound. The adequate ZigBeeException is returned otherwise.

149.31.22.6 public Promise<Void> leaveGroup(String pid)

pid String representing the service PID of the ZigBeeEndpoint to remove from this Group.

□ Requests an endpoint to leave this group. This method may be invoked on exported and imported
endpoints. In the former case, the ZigBee Base Driver should rely on the APSME-REMOVE-GROUP
API defined by the ZigBee Specification, or it will use the proper commands of the Groups cluster of
the ZigBee Specification Library. As described in "Table 2.17 APSME-REMOVE-GROUP.confirm Para-
meters" of the ZigBee specification 1_053474r17ZB_TSC-ZigBee-Specification.pdf, a remove_group
request can have the following status: APSException.SUCCESS, APSException.INVALID_GROUP or

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 1082 OSGi Compendium Release 8

APSException.INVALID_PARAMETER. When the command is invoked remotely on an imported
ZigBeeEndpoint, it may also fail because the command is not supported by the remote endpoint, or
because the remote device cannot perform the operation at the moment (see ZCLException).

Returns A promise representing the completion of this asynchronous call. Promise.getFailure() returns null
if the cluster has been successfully bound. The adequate ZigBeeException is returned otherwise.

149.31.23 public interface ZigBeeHost
extends ZigBeeNode
This interface represents the machine that hosts the code to run a ZigBee device or client. This ma-
chine is, for example, the ZigBee chip/dongle that is controlled by the base driver (below/under the
OSGi execution environment).

ZigBeeHost is more than a ZigBeeNode.

It must be registered as a OSGi service.

Even if not specified explicitly in the javadoc, any method of this interface must throw an Ille-
galArgumentException exception if a or one of the passed arguments has a value not admitted by
the method.

No Implement Consumers of this API must not implement this interface

149.31.23.1 public static final short UNLIMITED_BROADCAST_RADIUS = 255

Value constant to set an unlimited broadcast radius.

149.31.23.2 public ZCLCommandResponseStream broadcast(int clusterID, ZCLFrame frame)

clusterID The cluster ID this ZCL frame must be sent to.

frame A ZCL Frame.

□ Broadcasts a ZCL frame to the cluster ID of all the nodes of the ZigBee network. The
setBroadcastRadius(short) method, may be used to limit the broadcast radius used in the subsequent
broadcast calls.

Returns a response stream instance that collects and allows the caller to be asynchronously notified about
the ZCLFrame responses sent back by the ZigBee nodes.

149.31.23.3 public ZCLCommandResponseStream broadcast(int clusterID, ZCLFrame frame, String exportedServicePID)

clusterID The cluster ID.

frame A ZCL Frame.

exportedServi-
cePID

the source endpoint of the command request. In targeted situations, the source endpoint is the valid
service PID of an exported endpoint.

□ Broadcasts a ZCL frame to the cluster ID of all the nodes of the ZigBee network. The passed export-
edServicePID allows to force the source endpoint of the message sent to be the endpoint id of the ex-
ported ZigBeeEndPoint service having the specified service.pid property.

Returns a response stream instance that collects and allows the caller to be asynchronously notified about
the ZCLFrame responses sent back by the ZigBee nodes.

See Also Setting the broadcast radius.

149.31.23.4 public void createGroupService(int groupAddress) throws Exception

groupAddress the address of the group to create.

□ Creates a ZigBeeGroup service that has not yet been discovered by the ZigBee Base Driver or that
does not exist on the ZigBee network yet.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Compendium Release 8 Page 1083

Throws Exception– when a ZigBeeGroup service with the same groupAddress already exists.

149.31.23.5 public short getBroadcastRadius()

□ Returns the current broadcast radius value.

Returns the current broadcast radius value.

149.31.23.6 public int getChannel() throws Exception

□ Returns the current network channel.

Returns the current network channel.

Throws Exception– Any exception related to the communication with the chip.

149.31.23.7 public int getChannelMask() throws Exception

□ Returns the currently configured channel mask.

Returns the currently configured channel mask.

Throws Exception– Any exception related to the communication with the chip.

149.31.23.8 public long getCommunicationTimeout()

□ Returns the current value set for the communication timeout.

Returns the current value set for the communication timeout expressed in milliseconds.

149.31.23.9 public String getPreconfiguredLinkKey() throws Exception

□ Returns the current preconfigured link key.

Returns the current preconfigured link key.

Throws Exception– Any exception related to the communication with the chip.

149.31.23.10 public int getSecurityLevel() throws Exception

□ Returns the network security level.

Returns the network security level, that is, 0 if security is disabled, an int code if enabled (see "Table 4.38 Se-
curity Levels Available to the NWK, and APS Layers" of the ZigBee specification").

Throws Exception– Any exception related to the communication with the chip.

149.31.23.11 public boolean isStarted()

□ Checks the host's start/stop state.

Returns true if the host is started.

149.31.23.12 public void permitJoin(short duration) throws Exception

duration The time during which associations are permitted.

□ Indicates if a ZigBee device can join the network.

Broadcasts a Mgmt_Permit_req to all routers and the coordinator. If the duration argument is
not equal to zero or 0xFF, the argument is a number of seconds and joining is permitted un-
til it counts down to zero, after which time, joining is not permitted. If the duration is set to
zero, joining is not permitted. If set to 0xFF, joining is permitted indefinitely or until another
Mgmt_Permit_Joining_req is received by the coordinator.

As described in "Table 2.133 Fields of the Mgmt_Permit_Joining_rsp Command" of the Zig-
Bee specification 1_053474r17ZB_TSC-ZigBee-Specification.pdf, a permitJoin request can
have the following status: ZDPException.SUCCESS, ZDPException.INV_REQUESTTYPE,

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 1084 OSGi Compendium Release 8

ZDPException.NOT_AUTHORIZED or any status code returned from the
NLMEPERMITJOINING.confirm primitive.

Throws Exception– Any exception related to the communication with the chip.

149.31.23.13 public Promise<Boolean> refreshNetwork() throws Exception

□ Forces a new network scan. It checks that the ZigBeeNode services are still representing an available
node on the network. It also updates the whole representation of all nodes (endpoints, clusters, de-
scriptors, attributes).

Returns A promise representing the completion of this asynchronous call. In case of success the promise
will resolve with Boolean.TRUE otherwise the promise is failed with an exception.

Throws Exception– Any exception related to the communication with the chip.

149.31.23.14 public void setBroadcastRadius(short broadcastRadius)

broadcastRadius - is the number of routers that the messages are allowed to cross. Radius value is in the range from 0
to 0xff.

□ Sets the broadcast radius value. By default the ZigBeeHost must use
UNLIMITED_BROADCAST_RADIUS as default value for the broadcast.

Throws I l legalArgumentException– if set with a value out of the expected range.

I l legalStateException– if set when the ZigBeeHost is "running".

149.31.23.15 public void setChannelMask(int mask) throws IOException

mask A value representing the channel mask.

□ Sets a new configured channel mask.

As described in "Table 2.13 APSME-SET.confirm Parameters" of the ZigBee specifi-
cation 1_053474r17ZB_TSC-ZigBee-Specification.pdf, a set request can have the fol-
lowing status: APSException.SUCCESS, APSException.INVALID_PARAMETER or
APSException.UNSUPPORTED_ATTRIBUTE.

Throws I l legalStateException– If the host is already started.

IOException– for serial communication exception.

149.31.23.16 public void setCommunicationTimeout(long timeout)

timeout the number of milliseconds before firing a timeout exception.

□ Sets the timeout for the communication sent through this device.

149.31.23.17 public void setExtendedPanId(BigInteger extendedPanId)

extendedPanId The network Extended PAN identifier(EPID)

□ Sets the extendedPanId.

Throws I l legalStateException– If the host is already started.

149.31.23.18 public void setLogicalType(short logicalNodeType) throws Exception

logicalNodeType The logical node type.

□ Sets the host logical node type. ZigBee defines three different types of node:
ZigBeeNode.COORDINATOR, ZigBeeNode.ROUTER and ZigBeeNode.ZED.

Throws I l legalStateException– If the host is already started.

Exception– Any exception related to the communication with the chip.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Compendium Release 8 Page 1085

149.31.23.19 public void setPanId(int panId)

panId The network Personal Area Network identifier (PAN ID)

□ Sets the panId.

Throws I l legalArgumentException– if set with a value out of the expected range [0x0000, 0xffff].

I l legalStateException– If the host is already started.

149.31.23.20 public void start() throws Exception

□ Starts the host. If the host is a ZigBeeNode.COORDINATOR, then it can be started with or without
ZigBeeNode.PAN_ID and ZigBeeNode.EXTENDED_PAN_ID (that is, if no PAN_ID, and Extended
PAN_ID are given, then they will be automatically generated and then added to the service proper-
ties).

If the host is a ZigBeeNode.ROUTER, or a ZigBeeNode.ZED, then the host may start without a regis-
tered ZigBeeNode.PAN_ID property; the property will be set when the host will find and join a Zig-
Bee network.

The host status must be persistent, that is, if the host was started, then the host must starts again
when the bundle restarts. In addition, the values of channel, pan id, extended pan id, and host PID
must remain the same.

Throws Exception– Any exception related to the communication with the chip.

149.31.23.21 public void stop() throws Exception

□ Stops the host.

Throws Exception– Any exception related to the communication with the chip.

149.31.23.22 public void updateNetworkChannel(byte channel) throws IOException

channel The network channel.

□ Updates the network channel. 802.15.4 and ZigBee divide the 2.4GHz band into 16 channels, num-
bered from 11 to 26.

As described in "Table 2.4.3.3.9 Mgmt_NWK_Update_req" of the ZigBee specification
1_053474r17ZB_TSC-ZigBee-Specification.pdf, this request is sent as broadcast by the network man-
ager with a ScanDuration to be set with the channel parameter.

Throws I l legalStateException– If the host is started, or the host is not a network manager.

IOException– for serial communication exception.

149.31.24 public interface ZigBeeLinkQuality
This interface represents an entry of the NeighborTableList.

See Table 2.126 NeighborTableList Record Format in ZIGBEE SPECIFICATION: 1_053474r17ZB_TSC-
ZigBee-Specification.pdf.

No Implement Consumers of this API must not implement this interface

149.31.24.1 public static final int CHILD_NEIGHBOR = 241

Constant value representing a child relationship between current ZigBeeNode and the neighbor.

149.31.24.2 public static final int OTHERS_NEIGHBOR = 243

Constant value representing a others relationship between current ZigBeeNode and the neighbor.

149.31.24.3 public static final int PARENT_NEIGHBOR = 240

Constant value representing a parent relationship between current ZigBeeNode and the neighbor.

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 1086 OSGi Compendium Release 8

149.31.24.4 public static final int PREVIOUS_CHILD_NEIGHBOR = 244

Constant value representing a previous child relationship between current ZigBeeNode and the
neighbor.

149.31.24.5 public static final int SIBLING_NEIGHBOR = 242

Constant value representing a sibling relationship between current ZigBeeNode and the neighbor.

149.31.24.6 public int getDepth()

□ Returns the depth field of the NeighborTableList Record Format.

Returns the tree-depth of device.

149.31.24.7 public int getLQI()

□ Returns the Link Quality Indicator. See the LQI field of the NeighborTableList Record Format.

Returns the Link Quality Indicator estimated by ZigBeeNode returning this for communicating with Zig-
BeeNode identified by the getNeighbor().

149.31.24.8 public String getNeighbor()

□ Returns the Service.PID referring to the ZigBeeNode representing a neighbor.

Returns the Service.PID referring to the ZigBeeNode representing a neighbor.

149.31.24.9 public int getRelationship()

□ Returns the relationship with the neighbor. See the Relationship field of the NeighborTableList
Record Format.

Returns the relationship between ZigBeeNode returning this LQI and the ZigBeeNode identified by the get-
Neighbor().

149.31.25 public interface ZigBeeNode
This interface represents a ZigBee node, means a physical device that can communicate using the
ZigBee protocol.

Each physical device may contain up 240 logical devices which are represented by the ZigBeeEnd-
point class.

Each logical device is identified by an EndPoint address, but shares:

• either the 64-bit 802.15.4 IEEE Address
• or the 16-bit ZigBee Network Address.

No Implement Consumers of this API must not implement this interface

149.31.25.1 public static final short COORDINATOR = 2

Constant value used as logical type value when the ZigBee device is a Coordinator.

149.31.25.2 public static final String EXTENDED_PAN_ID = "zigbee.node.extended.pan.id"

Key of String containing the device node network extended PAN ID. If the device type is "Coordina-
tor", the extended pan id may be available only after the network is started. It means that internally
the ZigBeeHost interface must update the service properties.

This property is of type BigInteger

149.31.25.3 public static final String IEEE_ADDRESS = "zigbee.node.ieee.address"

Property key for the mandatory node IEEE Address representing node MAC address. MAC Address is
a 12-digit(48-bit) or 16-digit(64-bit) hexadecimal numbers.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Compendium Release 8 Page 1087

149.31.25.4 public static final String LOGICAL_TYPE = "zigbee.node.description.node.type"

Property name for the device logical type. The property value is of type Short.

149.31.25.5 public static final String MANUFACTURER_CODE = "zigbee.node.description.manufacturer.code"

Property name for a manufacturer code that is allocated by the ZigBee Alliance, relating the manu-
facturer to the device. The property is of type Integer.

149.31.25.6 public static final String PAN_ID = "zigbee.node.pan.id"

Property containing the ZigBee network PAN ID. The property is of type Integer.

149.31.25.7 public static final String POWER_SOURCE = "zigbee.node.power.source"

ZigBee power source, that is, 3rd bit of "MAC Capabilities" in Node Descriptor. Set to true if the cur-
rent power source is mains power, set to fa lse , otherwise.

This property is of type Boolean.

149.31.25.8 public static final String RECEIVER_ON_WHEN_IDLE = "zigbee.node.receiver.on.when.idle"

ZigBee receiver on when idle, that is, 4th bit of "MAC Capabilities" in Node Descriptor. Set to true if
the device does not disable its receiver to conserve power during idle periods, set to fa lse otherwise.

This property is of type Boolean.

149.31.25.9 public static final short ROUTER = 3

Constant value used as logical type value when the ZigBee device is a Router.

149.31.25.10 public static final short ZED = 1

Constant value used as logical type value when the ZigBee device is an End Device.

149.31.25.11 public ZCLCommandResponseStream broadcast(int clusterID, ZCLFrame frame)

clusterID the cluster ID the broadcast message is directed.

frame a ZCL Frame that contains the command that have to be broadcast to the specific cluster of all the
endpoints running on the node.

□ Broadcasts a given ZCL Frame to cluster cluster ID on all the ZigBeeEndpoint that are running on
this node (endpoint broadcasting).

Returns a response stream instance that collects and allows a client to be asynchronously notified about the
ZCLFrame responses sent back by the ZigBee nodes.

149.31.25.12 public ZCLCommandResponseStream broadcast(int clusterID, ZCLFrame frame, String exportedServicePID)

clusterID the cluster ID the broadcast message is directed.

frame a ZCL Frame that contains the command that have to be broadcast to the specific cluster of all the
endpoints running on the node.

exportedServi-
cePID

the source endpoint of the command request. In targeted situations, the source endpoint is the valid
service PID of an exported endpoint.

□ Broadcasts a given ZCL Frame to cluster cluster ID on all the ZigBeeEndpoint that are running on
this node (endpoint broadcasting). The source endpoint of the APS message sent, is set to the end-
point identifier of the exportedServicePID service.

Returns a response stream instance that collects and allows the caller to be asynchronously notified about
the ZCLFrame responses sent back by the ZigBee nodes.

149.31.25.13 public Promise<ZigBeeComplexDescriptor> getComplexDescriptor()

□ Retrieves the ZigBee node Complex Descriptor.

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 1088 OSGi Compendium Release 8

As described in Table 2.92 Fields of the Complex_Desc_rsp Command of the ZigBee specification, a
Complex_Desc_rsp command can return with the following status codes:

• ZDPException.SUCCESS
• ZDPException.DEVICE_NOT_FOUND
• ZDPException.INV_REQUESTTYPE
• ZDPException.NO_DESCRIPTOR

Returns A promise representing the completion of this asynchronous call. It will be used in order to return
the complex descriptor ZigBeeComplexDescriptor. If the ZDP Complex_Desc_rsp do not return suc-
cess, the promise must fail with a ZDPException exception with the correct status code.

149.31.25.14 public ZigBeeEndpoint[] getEndpoints()

□ Returns the array of the endpoints hosted by this node.

Returns the array of the endpoints hosted by this node, returns an empty array if this node does not host any
endpoint.

149.31.25.15 public BigInteger getExtendedPanId()

□ Returns the network Extended PAN identifier (EPID).

Returns the network Extended PAN identifier (EPID).

149.31.25.16 public String getHostPid()

□ Returns the OSGi service PID of the ZigBee Host that is on the network of this node.

Returns the OSGi service PID of the ZigBee Host that is on the network of this node.

149.31.25.17 public BigInteger getIEEEAddress()

□ Returns the ZigBee device node IEEE Address of this node.

Returns the ZigBee device node IEEE Address of this node.

149.31.25.18 public Promise<Map<String, ZigBeeLinkQuality>> getLinksQuality()

□ Retrieves the link quality information to the neighbor nodes.

An implementation of this method may use the Mgmt_Lqi_req and Mgmt_Lqi_rsp messages to re-
trieve the Link Quality table (also known as NeighborTableList in the ZigBee Specification).

The method limit the Link Quality table to the ZigBeeNode service discovered.

In case of failure, the target device may report error code ZDPException.NOT_SUPPORTED.

Returns A promise representing the completion of this asynchronous call. It will be resolved with the result
of this operation. In case of success the resolved value will be a Map containing the Service.PID as
String key of the ZigBeeNode service and the value the ZigBeeLinkQuality for that node. In case of
errors the promise must fail with the correct ZDPException.

149.31.25.19 public int getNetworkAddress()

□ Returns the current network address (alias short-address) of this node.

Returns the current network address of this node.

149.31.25.20 public Promise<ZigBeeNodeDescriptor> getNodeDescriptor()

□ Retrieves the ZigBee node Node Descriptor. As described in Table 2.91 Fields of the Node_Desc_rsp Com-
mand of the ZigBee specification, a Node_Desc_rsp command can return with the following status
codes:

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Compendium Release 8 Page 1089

• ZDPException.SUCCESS
• ZDPException.DEVICE_NOT_FOUND
• ZDPException.INV_REQUESTTYPE
• ZDPException.NO_DESCRIPTOR

Returns A promise representing the completion of this asynchronous call. It will be used in order to return
the node descriptor ZigBeeNodeDescriptor. If the ZDP Node_Desc_rsp do not return success, the
promise must fail with a ZDPException exception with the correct status code.

149.31.25.21 public int getPanId()

□ Returns the network Personal Area Network identifier (PAN ID).

Returns the network Personal Area Network identifier (PAN ID).

149.31.25.22 public Promise<ZigBeePowerDescriptor> getPowerDescriptor()

□ Retrieves the ZigBee node Power Descriptor. As described in Table 2.92 Fields of the Power_Desc_rsp
Command of the ZigBee specification, a Power_Desc_rsp command can return with the following sta-
tus codes:

• ZDPException.SUCCESS
• ZDPException.DEVICE_NOT_FOUND
• ZDPException.INV_REQUESTTYPE
• ZDPException.NO_DESCRIPTOR

Returns A promise representing the completion of this asynchronous call. It will be used in order to return
the node power descriptor ZigBeePowerDescriptor. If the ZDP Power_Desc_rsp do not return success,
the promise must fail with a ZDPException exception with the correct status code.

149.31.25.23 public Promise<Map<String, ZigBeeRoute>> getRoutingTable()

□ Retrieves the routing table information of the node. This routing table is also known as Rout-
ingTableList in the ZigBee Specification.

An implementation of this method may use the Mgmt_Rtg_req ZDP command to retrieve the Rout-
ing Table .

The target device may report a status code ZDPException.NOT_SUPPORTED in case of failure.

Returns A promise representing the completion of this asynchronous call. In case of success, the resolved
value will be a Map containing the Service.PID as String key of the ZigBeeNode service and the val-
ue the ZigBeeRoute for that node. In case of failure a ZDPException exception with the correct status
code must be used to fail the promise.

149.31.25.24 public Promise<String> getUserDescription()

□ Returns the user description of this node. As described in Table 2.97 Fields of the User_Desc_rsp Com-
mand of the ZigBee specification, a User_Desc_rsp may return the following status:

• ZDPException.SUCCESS
• ZDPException.NOT_SUPPORTED
• ZDPException.DEVICE_NOT_FOUND
• ZDPException.INV_REQUESTTYPE
• ZDPException.NO_DESCRIPTOR

Returns A promise representing the completion of this asynchronous call. It will be used in order to return
the node user description (String). In case of errors the promise will fail with a ZDPException excep-
tion containing the response status code value.

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 1090 OSGi Compendium Release 8

149.31.25.25 public Promise<ZDPFrame> invoke(int clusterIdReq, int expectedClusterIdRsp, ZDPFrame message)

clusterIdReq the cluster Id of the ZDPFrame that will be sent to the device.

expectedClusterI-
dRsp

the expected cluster Id of the response to the ZDPFrame sent.

message the ZDPFrame containing the message.

□ Sends the ZDPFrame to this ZigBeeNode with the specified cluster id. This method expects a specific
cluster in the response to the request.

Returns A promise representing the completion of this asynchronous call. In case of success the promise re-
solves with the response ZDPFrame.

149.31.25.26 public Promise<ZDPFrame> invoke(int clusterIdReq, ZDPFrame message)

clusterIdReq the cluster Id of the ZDPFrame that will be sent to the device.

message the ZDPFrame containing the message.

□ Sends the ZDPFrame to this ZigBeeNode with the specified cluster id. This method expects a specif-
ic cluster in the response to the request. This method considers that the 0x8000 + clusterIdReq is the
clusterId expected from messaged received for the message sent by this request.

Returns A promise representing the completion of this asynchronous call. In case of success the promise re-
solves with the response ZDPFrame.

149.31.25.27 public Promise<Void> leave()

□ Requests this node to leave the ZigBee network.

As described in Table 2.131 Fields of the Mgmt_Leave_rsp Command of the ZigBee specification, a
Mgmt_Leave_rsp ZDP command may return the following status values:

• ZDPException.SUCCESS
• ZDPException.NOT_SUPPORTED
• ZDPException.NOT_AUTHORIZED
• any status code returned from the NLMELEAVE.confirm primitive

Returns A promise representing the completion of this asynchronous call. In case of success, the promise is
resolved with a nul l value, otherwise with the correct ZDPException exception.

149.31.25.28 public Promise<Void> leave(boolean rejoin, boolean removeChildren)

rejoin true if the device being asked to leave from the current parent is requested to rejoin the network.
Otherwise, fa lse .

removeChildren true if the device being asked to leave the network is also being asked to remove its child devices, if
any. Otherwise, fa lse .

□ Requests the device to leave the network.

As described in Table 2.131 Fields of the Mgmt_Leave_rsp Command of the ZigBee specification, a
Mgmt_Leave_rsp command could return the following status values:

• ZDPException.SUCCESS
• ZDPException.NOT_SUPPORTED
• ZDPException.NOT_AUTHORIZED
• any status code returned from the NLMELEAVE.confirm primitive

Returns A promise representing the completion of this asynchronous call. In case of success, the ZigBeeN-
ode service must be unregistered, first and then the promise may be resolved with a nul l value, oth-
erwise with the correct ZDPException exception.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Compendium Release 8 Page 1091

149.31.25.29 public Promise<Void> setUserDescription(String userDescription)

userDescription the user description.

□ Sets the user description of this node. As described in Table 2.137 ZDP Enumerations Description of the
ZigBee specification, a Set_User_Desc_rsp request may return the following status:

• ZDPException.SUCCESS
• ZDPException.DEVICE_NOT_FOUND
• ZDPException.INV_REQUESTTYPE
• ZDPException.NO_DESCRIPTOR

Returns A promise representing the completion of this asynchronous call. In case of success the promise re-
turns a nul l value. In case of errors the promise must fail with a ZDPException exception containing
the response status code value.

149.31.26 public interface ZigBeeRoute
This interface represents an entry of the RoutingTableList

See Table 2.128 RoutingTableList Record Format in ZIGBEE SPECIFICATION: 1_053474r17ZB_TSC-
ZigBee-Specification.pdf.

No Implement Consumers of this API must not implement this interface

149.31.26.1 public static final int ACTIVE = 240

Constant value representing an active route.

149.31.26.2 public static final int DISCOVERY_FAILED = 242

Constant value representing a failed route discovery.

149.31.26.3 public static final int DISCOVERY_UNDERWAY = 241

Constant value representing a route that is under discovery.

149.31.26.4 public static final int INACTIVE = 243

Constant value representing an inactive route.

149.31.26.5 public static final int VALIDATION_UNDERWAY = 244

Constant value representing a route which is under validation.

149.31.26.6 public String getDestination()

□ Returns the service PID of the ZigBeeNode as destination of this route entry.

Returns the service PID of the ZigBeeNode as destination of this route entry.

149.31.26.7 public String getNextHop()

□ Returns the service PID of the ZigBeeNode to send the data for reaching the destination.

Returns the service PID of the ZigBeeNode to send the data for reaching the destination.

149.31.26.8 public int getStatus()

□ Returns the status of this route.

Returns the status of this route (or routing link) as defined by ZigBee Specification: ACTIVE,
DISCOVERY_UNDERWAY, DISCOVERY_FAILED, INACTIVE, VALIDATION_UNDERWAY.

org.osgi.service.zigbee.descriptions Device Service Specification for ZigBee™ Technology Version 1.0

Page 1092 OSGi Compendium Release 8

149.32 org.osgi.service.zigbee.descriptions

Device Service Specification for ZigBee Technology Descriptions.

This package contains the interfaces for descriptions. The latter may be used to embed meta infor-
mation about the ZigBee devices, and in other words a meta description of each device type present
in a ZCL profile, or even custom devices.

It is not mandatory to provide this meta model for being able to interact with a specific device, but
the presence of this meta model would make much easier to implement, for example user inter-
faces.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.z igbee.descr ipt ions; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.z igbee.descr ipt ions; vers ion="[1.0,1.1)"

149.32.1 Summary

• ZCLAttr ibuteDescr ipt ion - This interface represents a ZCLAttributeDescription.
• ZCLClusterDescr ipt ion - This interface represents a ZCL Cluster description.
• ZCLCommandDescr ipt ion - This interface represents a ZCLCommandDescription.
• ZCLDataTypeDescr ipt ion - This interface is used for representing any of the ZigBee Data Types

defined in the ZCL.
• ZCLGlobalClusterDescr ipt ion - This interface represents Cluster global description.
• ZCLParameterDescr ipt ion - This interface represents a ZigBee parameter description.
• ZCLSimpleTypeDescr ipt ion - This interface is used for representing any of the simple ZigBee

Data Types defined in the ZCL.
• ZigBeeDeviceDescr ipt ion - This interface represents a ZigBee device description.
• ZigBeeDeviceDescr ipt ionSet - This interface represents a ZigBee Device description Set.

149.32.2 public interface ZCLAttributeDescription
extends ZCLAttributeInfo
This interface represents a ZCLAttributeDescription.

149.32.2.1 public Object getDefaultValue()

□ Returns the attribute default value.

Returns the attribute default value.

149.32.2.2 public String getName()

□ Returns the attribute name.

Returns the attribute name.

149.32.2.3 public String getShortDescription()

□ Returns the attribute functional description.

Returns the attribute functional description.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.descriptions

OSGi Compendium Release 8 Page 1093

149.32.2.4 public boolean isMandatory()

□ Checks if this attribute is mandatory.

Returns true, if and only if the attribute is mandatory.

149.32.2.5 public boolean isPartOfAScene()

□ Checks if this attribute is part of a scene.

Returns true if the attribute is part of a scene (cluster), false otherwise.

149.32.2.6 public boolean isReadOnly()

□ Checks if this attribute is read-only.

Returns true if the attribute is read only, false otherwise (that is, if the attribute is read/write or optionally
writable (R*W)).

149.32.2.7 public boolean isReportable()

□ Checks if this attribute is reportable.

Returns true if and only if the attribute support subscription.

149.32.3 public interface ZCLClusterDescription
This interface represents a ZCL Cluster description.

149.32.3.1 public ZCLAttributeDescription[] getAttributeDescriptions()

□ Returns an array of the attribute descriptions.

Returns an array of the attribute descriptions.

149.32.3.2 public ZCLCommandDescription[] getGeneratedCommandDescriptions()

□ Returns an array of the generated command descriptions.

Returns an array of the generated command descriptions.

149.32.3.3 public ZCLGlobalClusterDescription getGlobalClusterDescription()

□ Returns an array of the command descriptions.

Returns an array of the command descriptions.

149.32.3.4 public int getId()

Returns the cluster identifier.

149.32.3.5 public ZCLCommandDescription[] getReceivedCommandDescriptions()

□ Returns an array of the received command description.

Returns an array of the received command description.

149.32.4 public interface ZCLCommandDescription
This interface represents a ZCLCommandDescription.

149.32.4.1 public short getId()

□ Returns the command identifier.

Returns the command identifier.

149.32.4.2 public int getManufacturerCode()

□ Returns the manufacturer code. Default value is: -1 (no code).

org.osgi.service.zigbee.descriptions Device Service Specification for ZigBee™ Technology Version 1.0

Page 1094 OSGi Compendium Release 8

Returns the manufacturer code.

149.32.4.3 public String getName()

□ Returns the command name.

Returns the command name.

149.32.4.4 public ZCLParameterDescription[] getParameterDescriptions()

□ Returns an array of the parameter descriptions.

Returns an array of the parameter descriptions.

149.32.4.5 public String getShortDescription()

□ Returns the command functional description.

Returns the command functional description.

149.32.4.6 public boolean isClientServerDirection()

□ Checks if this is a server-side command (that is going from the client to server direction).

Returns the isClientServerDirection value.

149.32.4.7 public boolean isClusterSpecificCommand()

Returns the isClusterSpecificCommand value.

149.32.4.8 public boolean isMandatory()

□ Checks if this command it mandatory.

Returns true, if and only if the command is mandatory.

149.32.4.9 public boolean isManufacturerSpecific()

□ Checks if the command is manufacturer specific.

Returns true if end only if getManufacturerCode() is not. -1.

149.32.5 public interface ZCLDataTypeDescription
This interface is used for representing any of the ZigBee Data Types defined in the ZCL. Each of these
data types has a set of associated information that this interface definition permits to retrieve using
the specific methods.

• The data type identifier
• The data type name
• The data type is analog or digital
• The Java class used to represent the data type.

No Implement Consumers of this API must not implement this interface

149.32.5.1 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.32.5.2 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.descriptions

OSGi Compendium Release 8 Page 1095

Returns the corresponding Java type class.

149.32.5.3 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.32.5.4 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.32.6 public interface ZCLGlobalClusterDescription
This interface represents Cluster global description.

149.32.6.1 public ZCLClusterDescription getClientClusterDescription()

□ Returns the client cluster description.

Returns the client cluster description.

149.32.6.2 public String getClusterDescription()

□ Returns the cluster functional description.

Returns the cluster functional description.

149.32.6.3 public String getClusterFunctionalDomain()

□ Returns the cluster functional domain.

Returns the cluster functional domain.

149.32.6.4 public int getClusterId()

□ Returns the cluster identifier.

Returns the cluster identifier.

149.32.6.5 public String getClusterName()

□ Returns the cluster name.

Returns the cluster name.

149.32.6.6 public ZCLClusterDescription getServerClusterDescription()

□ Returns the server cluster description.

Returns the server cluster description.

149.32.7 public interface ZCLParameterDescription
This interface represents a ZigBee parameter description.

149.32.7.1 public ZCLDataTypeDescription getDataTypeDescription()

□ Returns the parameter data type.

Returns the parameter data type.

149.32.8 public interface ZCLSimpleTypeDescription
extends ZCLDataTypeDescription
This interface is used for representing any of the simple ZigBee Data Types defined in the ZCL.

org.osgi.service.zigbee.descriptions Device Service Specification for ZigBee™ Technology Version 1.0

Page 1096 OSGi Compendium Release 8

The interface extends the ZCLDataTypeDescription by providing serialize and deserialize methods
to marshal and unmarshal the data into the ZigBeeDataInput and from ZigBeeDataOutput streams.

Related documentation: [1] ZigBee Cluster Library specification, Document 075123r04ZB, May 29,
2012.

No Implement Consumers of this API must not implement this interface

149.32.8.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws NullPointerException– If ZigBeeDataInput parameter is nul l .

IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.32.8.2 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

NullPointerException– If ZigBeeDataOutput parameter is nul l .

I l legalArgumentException– If the passed value parameter does not belong to the expected class or
its value exceeds the possible values allowed (range or length).

149.32.9 public interface ZigBeeDeviceDescription
This interface represents a ZigBee device description.

149.32.9.1 public ZCLClusterDescription[] getClientClustersDescriptions()

□ Returns an array of client cluster descriptions.

Returns an array of client cluster descriptions.

149.32.9.2 public int getId()

□ Returns the device identifier.

Returns the device identifier.

149.32.9.3 public String getName()

□ Returns the device name.

Returns the device name.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.descriptors

OSGi Compendium Release 8 Page 1097

149.32.9.4 public int getProfileId()

□ Returns the profile identifier.

Returns the profile identifier.

149.32.9.5 public ZCLClusterDescription[] getServerClustersDescriptions()

□ Returns an array of server cluster descriptions.

Returns an array of server cluster descriptions.

149.32.9.6 public Integer getVersion()

□ Returns the device version.

Returns the device version.

149.32.10 public interface ZigBeeDeviceDescriptionSet
This interface represents a ZigBee Device description Set. A Set is registered as an OSGi Service that
provides method to retrieve endpoint descriptions. In addition to the ZigBeeDeviceDescriptionSet's
(OSGi service) properties; ZigBeeDeviceDescriptionSet is also expected to be registered as an OSGi
service with the following ZigBeeEndpoint.PROFILE_ID, and ZigBeeNode.MANUFACTURER_CODE
properties.

149.32.10.1 public static final String DEVICES = "zigbee.profile.devices"

Property key for a comma separated list of devices identifiers supported by the set. This property is
mandatory.

149.32.10.2 public static final String PROFILE_NAME = "zigbee.profile.name"

Property key for a profile name. This property is mandatory.

149.32.10.3 public static final String VERSION = "zigbee.profile.version"

Property key for a version of the application profile. The format is 'major.minor' with major and mi-
nor being integers. This property is mandatory.

149.32.10.4 public ZigBeeDeviceDescription getDeviceSpecification(int deviceId, short version)

deviceId Identifier of the device.

version The version of the application profile.

□ Returns the description of a device identified by its identifier and its version.

Returns The associated device description.

149.33 org.osgi.service.zigbee.descriptors

Device Service Specification for ZigBee Technology Descriptors.

This package contains the interfaces representing the ZigBee descriptors and the fields defined in-
side some of them.

An interface for modeling the ZigBee User Descriptor is missing because this descrip-
tor has only one field (the UserDescription). Therefore this field can be read and written
using respectively the org.osgi.service.zigbee.ZigBeeNode.getUserDescription() and the
org.osgi.service.zigbee.ZigBeeNode.setUserDescription(String) methods.

The org.osgi.service.zigbee.descriptors.ZigBeeNodeDescriptor,
org.osgi.service.zigbee.descriptors.ZigBeePowerDescriptor and the

org.osgi.service.zigbee.descriptors Device Service Specification for ZigBee™ Technology Version 1.0

Page 1098 OSGi Compendium Release 8

org.osgi.service.zigbee.descriptors.ZigBeeComplexDescriptor are read using the appropriate meth-
ods in the org.osgi.service.zigbee.ZigBeeNode interface, whereas the ZigBeeSimpleDescriptor can be
read using the appropriate method of the org.osgi.service.zigbee.ZigBeeEndpoint services registered
in the framework.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.z igbee.descr iptors; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.z igbee.descr iptors; vers ion="[1.0,1.1)"

149.33.1 Summary

• ZigBeeComplexDescr iptor - This interface represents a Complex Descriptor as described in the
ZigBee Specification.

• ZigBeeFrequencyBand - This interface represents a the frequency band field.
• ZigBeeMacCapabi l iyFlags - This interface represents the Node Descriptor MAC Capability Flags

as described in the ZigBee Specification.
• ZigBeeNodeDescr iptor - This interface represents a Node Descriptor as described in the ZigBee

Specification.
• ZigBeePowerDescr iptor - This interface represents a power descriptor as described in the ZigBee

Specification.
• ZigBeeServerMask - Represents the ZigBee Server Mask field of the ZigBee Node Descriptor.
• ZigBeeSimpleDescr iptor - This interface represents a simple descriptor as described in the Zig-

Bee Specification.

149.33.2 public interface ZigBeeComplexDescriptor
This interface represents a Complex Descriptor as described in the ZigBee Specification.

The Complex Descriptor contains extended information for each of the device descriptions con-
tained in the node. The use of the Complex Descriptor is optional.

No Implement Consumers of this API must not implement this interface

149.33.2.1 public String getCharacterSetIdentifier()

□ Returns the encoding used by characters in the character set.

Returns the encoding used by characters in the character set.

149.33.2.2 public String getDeviceURL()

□ Returns the Device URL.

Returns the Device URL.

149.33.2.3 public byte[] getIcon()

□ Returns the icon field.

Returns the icon field.

149.33.2.4 public String getIconURL()

□ Returns the icon URL.

Returns the icon URL.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.descriptors

OSGi Compendium Release 8 Page 1099

149.33.2.5 public String getLanguageCode()

□ Returns the language code used for character strings.

Returns the language code used for character strings.

149.33.2.6 public String getManufacturerName()

□ Returns the manufacturer name.

Returns the manufacturer name.

149.33.2.7 public String getModelName()

□ Returns the model name.

Returns the model name.

149.33.2.8 public String getSerialNumber()

□ Returns the serial number.

Returns the serial number.

149.33.3 public interface ZigBeeFrequencyBand
This interface represents a the frequency band field.

No Implement Consumers of this API must not implement this interface

149.33.3.1 public boolean is2400()

□ Checks if the radio band is 2.4GHz.

Returns true if and only if the radio is operating in the frequency band 2400MHz to 2483MHz.

149.33.3.2 public boolean is868()

□ Checks if the radio band is 868MHz.

Returns true if and only if the radio is operating in the frequency band 868 to 868.6 MHz.

149.33.3.3 public boolean is915()

□ Checks if the radio band is 900MHz.

Returns true if and only if the radio is operating in the frequency band 908MHz to 928MHz.

149.33.4 public interface ZigBeeMacCapabiliyFlags
This interface represents the Node Descriptor MAC Capability Flags as described in the ZigBee Spec-
ification.

No Implement Consumers of this API must not implement this interface

149.33.4.1 public boolean isAddressAllocate()

□ Checks if the device is address allocate.

Returns true if the device is address allocate or false otherwise.

149.33.4.2 public boolean isAlternatePANCoordinator()

□ Checks if this node is capable of becoming PAN coordinator.

Returns true if this node is capable of becoming PAN coordinator or false otherwise.

149.33.4.3 public boolean isFullFunctionDevice()

□ Checks if this node a Full Function Device (FFD).

org.osgi.service.zigbee.descriptors Device Service Specification for ZigBee™ Technology Version 1.0

Page 1100 OSGi Compendium Release 8

Returns true if this node a Full Function Device (FFD), false otherwise (it is a Reduced Function Device, RFD).

149.33.4.4 public boolean isMainsPower()

□ Checks if the current power source is mains power.

Returns true if the current power source is mains power or false otherwise.

149.33.4.5 public boolean isReceiverOnWhenIdle()

□ Checks if the device does not disable its receiver to conserve power during idle periods.

Returns true if the device does not disable its receiver to conserve power during idle periods or false other-
wise.

149.33.4.6 public boolean isSecurityCapable()

□ Checks if the device is capable of sending and receiving secured frames

Returns true if the device is capable of sending and receiving secured frames or false otherwise.

149.33.5 public interface ZigBeeNodeDescriptor
This interface represents a Node Descriptor as described in the ZigBee Specification.

The Node Descriptor contains information about the capabilities of the node.

No Implement Consumers of this API must not implement this interface

149.33.5.1 public ZigBeeFrequencyBand getFrequencyBand()

□ Returns the radio frequency band the node is currently operating on.

Returns returns the information about the radio frequency band the node is currently operating on.

149.33.5.2 public short getLogicalType()

□ Returns the logical type of the described node.

Returns one of: ZigBeeNode.COORDINATOR, ZigBeeNode.ROUTER, ZigBeeNode.ZED.

149.33.5.3 public ZigBeeMacCapabiliyFlags getMacCapabilityFlags()

□ Returns the MAC Capability Flags field information.

Returns the MAC Capability Flags field information.

149.33.5.4 public int getManufacturerCode()

□ Returns the manufacturer code of the described node.

Returns the manufacturer code of the described node.

149.33.5.5 public int getMaxBufferSize()

□ Returns the maximum buffer size of the described node.

Returns the maximum buffer size of the described node.

149.33.5.6 public int getMaxIncomingTransferSize()

□ Returns the maximum incoming transfer size of the described node.

Returns the maximum incoming transfer size of the described node.

149.33.5.7 public int getMaxOutgoingTransferSize()

□ Returns the maximum outgoing transfer size of the described node.

Returns the maximum outgoing transfer size of the described node.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.descriptors

OSGi Compendium Release 8 Page 1101

149.33.5.8 public ZigBeeServerMask getServerMask()

□ Returns the server mask of the described node.

Returns the server mask of the described node.

149.33.5.9 public boolean isComplexDescriptorAvailable()

□ Checks if a complex descriptor is available.

Returns true if a complex descriptor is available or false otherwise.

149.33.5.10 public boolean isExtendedActiveEndpointListAvailable()

□ Checks if extended active endpoint list is available.

Returns true if extended active endpoint list is available or false otherwise.

149.33.5.11 public boolean isExtendedSimpleDescriptorListAvailable()

□ Checks if extended simple descriptor is available.

Returns true if extended simple descriptor is available or false otherwise.

149.33.5.12 public boolean isUserDescriptorAvailable()

□ Checks if a user descriptor is available.

Returns true if a user descriptor is available or false otherwise.

149.33.6 public interface ZigBeePowerDescriptor
This interface represents a power descriptor as described in the ZigBee Specification.

The Power Descriptor gives a dynamic indication of the power status of the node.

No Implement Consumers of this API must not implement this interface

149.33.6.1 public static final short CRITICAL_LEVEL = 0

Current power source level: critical.

149.33.6.2 public static final short FULL_LEVEL = 3

Current power source level: 100%.

149.33.6.3 public static final short LOW_LEVEL = 1

Current power source level: 33%.

149.33.6.4 public static final short MIDDLE_LEVEL = 2

Current power source level: 66%.

149.33.6.5 public short getCurrentPowerMode()

□ Returns the current power mode.

Returns the current power mode.

149.33.6.6 public short getCurrentPowerSource()

□ Returns the current power source field of the Power Descriptor.

Returns the current power source field of the Power Descriptor.

149.33.6.7 public short getCurrentPowerSourceLevel()

□ Returns the current power source level.

org.osgi.service.zigbee.descriptors Device Service Specification for ZigBee™ Technology Version 1.0

Page 1102 OSGi Compendium Release 8

Returns the current power source level. May be one of CRITICAL_LEVEL, LOW_LEVEL, MIDDLE_LEVEL,
FULL_LEVEL.

149.33.6.8 public boolean isConstantMainsPowerAvailable()

□ Checks if constant (mains) power is available.

Returns true if constant (mains) power is available or false otherwise.

149.33.6.9 public boolean isDisposableBattery()

□ Checks if the currently selected power source is the disposable battery.

Returns true if the currently selected power source is the disposable battery.

149.33.6.10 public boolean isDisposableBatteryAvailable()

□ Checks if a disposable battery is available.

Returns true if a disposable battery is available or false otherwise.

149.33.6.11 public boolean isMainsPower()

□ Checks if the currently selected power source is the mains power.

Returns true if the currently selected power source is the mains power.

149.33.6.12 public boolean isOnWhenStimulated()

□ Checks if the receiver is on when the device is simulated.

Returns true if the Current Power Mode field tells that the receiver is on when the device is stimulated by
pressing a button, for instance.

149.33.6.13 public boolean isPeriodicallyOn()

□ Checks if the Current Power Mode field is periodically on.

Returns true if the Current Power Mode field is periodically on.

149.33.6.14 public boolean isRechargableBattery()

□ Checks if the currently selected power source is the rechargeable battery.

Returns true if the currently selected power source is the rechargeable battery.

149.33.6.15 public boolean isRechargableBatteryAvailable()

□ Checks if a rechargeable battery is available.

Returns true if a rechargeable battery is available or false otherwise.

149.33.6.16 public boolean isSyncronizedWithOnIdle()

□ Checks if synchronized with the receiver on-when-idle subfield of the node descriptor.

Returns true if the Current Power Mode field is synchronized on idle.

149.33.7 public interface ZigBeeServerMask
Represents the ZigBee Server Mask field of the ZigBee Node Descriptor.

No Implement Consumers of this API must not implement this interface

149.33.7.1 public boolean isBackupBindingTableCache()

□ Checks if the server is a Backup Binding Table Cache.

Returns true if and only if the server is a Backup Binding Table Cache.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.descriptors

OSGi Compendium Release 8 Page 1103

149.33.7.2 public boolean isBackupDiscoveryCache()

□ Checks if the server is a Backup Discovery Cache.

Returns true if and only if the server is a Backup Discovery Cache.

149.33.7.3 public boolean isBackupTrustCenter()

□ Checks if the server is a Backup Trust Center.

Returns true if and only if the server is a Backup Trust Center.

149.33.7.4 public boolean isNetworkManager()

□ Checks if the server is a Network Manager.

Returns true if and only if the server is a Network Manager.

149.33.7.5 public boolean isPrimaryBindingTableCache()

□ Checks if the server is a Primary Binding Table Cache.

Returns true if and only if the server is a Primary Binding Table Cache.

149.33.7.6 public boolean isPrimaryDiscoveryCache()

□ Checks if the server is a Primary Discovery Cache.

Returns true if and only if the server is a Primary Discovery Cache.

149.33.7.7 public boolean isPrimaryTrustCenter()

□ Checks if the server is a Primary Trust Center.

Returns true if and only if the server is a Primary Trust Center.

149.33.8 public interface ZigBeeSimpleDescriptor
This interface represents a simple descriptor as described in the ZigBee Specification.

The Simple Descriptor contains information specific to each endpoint present in the node.

149.33.8.1 public int getApplicationDeviceId()

□ Returns the application device id as defined per profile.

Returns the application device id as defined per profile.

149.33.8.2 public byte getApplicationDeviceVersion()

□ Returns the version of the endpoint application.

Returns the version of the endpoint application.

149.33.8.3 public int getApplicationProfileId()

□ Returns the application profile id.

Returns the application profile id.

149.33.8.4 public short getEndpoint()

□ Returns the endpoint for which this descriptor is defined.

Returns the endpoint for which this descriptor is defined.

149.33.8.5 public int[] getInputClusters()

□ Returns an array of input (server) cluster identifiers.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1104 OSGi Compendium Release 8

Returns an array of input (server) cluster identifiers, returns an empty array if does not provides any input
(server) clusters.

149.33.8.6 public int[] getOutputClusters()

□ Returns an array of output (client) cluster identifiers.

Returns an array of output (client) cluster identifiers, returns an empty array if does not provides any output
(client) clusters.

149.33.8.7 public boolean providesInputCluster(int clusterId)

clusterId the cluster identifier.

□ Checks if this endpoint implements the given cluster id as an input cluster.

Returns true if and only if this endpoint implements the given cluster id as an input cluster.

149.33.8.8 public boolean providesOutputCluster(int clusterId)

clusterId the cluster identifier.

□ Checks if this endpoint implements the given cluster id as an output cluster.

Returns true if and only if this endpoint implements the given cluster id as an output cluster.

149.34 org.osgi.service.zigbee.types

Device Service Specification for ZigBee Technology Data Types.

Utility classes modeling the ZCL data types. Each class provides the static getInstance() method for
retrieving a singleton instance of the class itself.

Every class contains methods for getting information about the data type like its ID and name. It is
also possible to know if the data type is analog or digital or get the Java class it is mapped in.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.z igbee.types; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.z igbee.types; vers ion="[1.0,1.1)"

See Also org.osgi.service.zigbee.descriptions.ZCLDataTypeDescription

149.34.1 Summary

• ZigBeeArray - A singleton class that represents the 'Array' data type, as it is defined in the ZigBee
Cluster Library specification.

• ZigBeeAttr ibuteID - A singleton class that represents the 'Attribute ID' data type, as it is defined
in the ZigBee Cluster Library specification.

• ZigBeeBACnet - A singleton class that represents the 'Unsigned Integer 32-bit' data type, as it is
defined in the ZigBee Cluster Library specification.

• ZigBeeBag - A singleton class that represents the 'Bag' data type, as it is defined in the ZigBee
Cluster Library specification.

• ZigBeeBitmap16 - A singleton class that represents the 'Bitmap 16-bit' data type, as it is defined
in the ZigBee Cluster Library specification.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1105

• ZigBeeBitmap24 - A singleton class that represents the 'Bitmap 24-bit' data type, as it is defined
in the ZigBee Cluster Library specification.

• ZigBeeBitmap32 - A singleton class that represents the 'Bitmap 32-bit' data type, as it is defined
in the ZigBee Cluster Library specification.

• ZigBeeBitmap40 - A singleton class that represents the 'Bitmap 40-bit' data type, as it is defined
in the ZigBee Cluster Library specification.

• ZigBeeBitmap48 - A singleton class that represents the 'Bitmap 48-bit' data type, as it is defined
in the ZigBee Cluster Library specification.

• ZigBeeBitmap56 - A singleton class that represents the 'Bitmap 56-bit' data type, as it is defined
in the ZigBee Cluster Library specification.

• ZigBeeBitmap64 - A singleton class that represents the 'Bitmap 64-bit' data type, as it is defined
in the ZigBee Cluster Library specification.

• ZigBeeBitmap8 - A singleton class that represents the 'Bitmap 8-bit' data type, as it is defined in
the ZigBee Cluster Library specification.

• ZigBeeBoolean - A singleton class that represents the 'Boolean' data type, as it is defined in the
ZigBee Cluster Library specification.

• ZigBeeCharacterStr ing - A singleton class that represents the 'Character String' data type, as it is
defined in the ZigBee Cluster Library specification.

• ZigBeeCluster ID - A singleton class that represents the 'Cluster ID' data type, as it is defined in
the ZigBee Cluster Library specification.

• ZigBeeDate - A singleton class that represents the 'Date' data type, as it is defined in the ZigBee
Cluster Library specification.

• ZigBeeEnumeration16 - A singleton class that represents the 'Enumeration 16-bit' data type, as it
is defined in the ZigBee Cluster Library specification.

• ZigBeeEnumeration8 - A singleton class that represents the 'Enumeration 8-bit' data type, as it is
defined in the ZigBee Cluster Library specification.

• ZigBeeFloatingDouble - A singleton class that represents the 'Floating Double' data type, as it is
defined in the ZigBee Cluster Library specification.

• ZigBeeFloatingSemi - A singleton class that represents the 'Floating Semi' data type, as it is de-
fined in the ZigBee Cluster Library specification.

• ZigBeeFloatingSingle - A singleton class that represents the 'Floating Single' data type, as it is
defined in the ZigBee Cluster Library specification.

• ZigBeeGeneralData16 - A singleton class that represents the 'General Data 16-bit' data type, as it
is defined in the ZigBee Cluster Library specification.

• ZigBeeGeneralData24 - A singleton class that represents the 'General Data 24-bit' data type, as it
is defined in the ZigBee Cluster Library specification.

• ZigBeeGeneralData32 - A singleton class that represents the 'General Data 32-bit' data type, as it
is defined in the ZigBee Cluster Library specification.

• ZigBeeGeneralData40 - A singleton class that represents the 'General Data 40-bit' data type, as it
is defined in the ZigBee Cluster Library specification.

• ZigBeeGeneralData48 - A singleton class that represents the 'General Data 48-bit' data type, as it
is defined in the ZigBee Cluster Library specification.

• ZigBeeGeneralData56 - A singleton class that represents the 'General Data 56-bit' data type, as it
is defined in the ZigBee Cluster Library specification.

• ZigBeeGeneralData64 - A singleton class that represents the 'General Data 64-bit' data type, as it
is defined in the ZigBee Cluster Library specification.

• ZigBeeGeneralData8 - A singleton class that represents the 'General Data 8-bit' data type, as it is
defined in the ZigBee Cluster Library specification.

• ZigBeeIEEE_ADDRESS - A singleton class that represents the 'IEEE ADDRESS' data type, as it is
defined in the ZigBee Cluster Library specification.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1106 OSGi Compendium Release 8

• ZigBeeLongCharacterStr ing - A singleton class that represents the 'Long Character String' data
type, as it is defined in the ZigBee Cluster Library specification.

• ZigBeeLongOctetStr ing - A singleton class that represents the 'Long Octet String' data type, as it
is defined in the ZigBee Cluster Library specification.

• ZigBeeOctetStr ing - A singleton class that represents the 'Octet String' data type, as it is defined
in the ZigBee Cluster Library specification.

• ZigBeeSecurityKey128 - A singleton class that represents the 'Security Key 128' data type, as it is
defined in the ZigBee Cluster Library specification.

• ZigBeeSet - A singleton class that represents the 'Set' data type, as it is defined in the ZigBee
Cluster Library specification.

• ZigBeeSignedInteger16 - A singleton class that represents the 'Signed Integer 16-bit' data type,
as it is defined in the ZigBee Cluster Library specification.

• ZigBeeSignedInteger24 - A singleton class that represents the 'Signed Integer 24-bit' data type,
as it is defined in the ZigBee Cluster Library specification.

• ZigBeeSignedInteger32 - A singleton class that represents the 'Signed Integer 32-bit' data type,
as it is defined in the ZigBee Cluster Library specification.

• ZigBeeSignedInteger40 - A singleton class that represents the 'Signed Integer 40-bit' data type,
as it is defined in the ZigBee Cluster Library specification.

• ZigBeeSignedInteger48 - A singleton class that represents the 'Signed Integer 48-bit' data type,
as it is defined in the ZigBee Cluster Library specification.

• ZigBeeSignedInteger56 - A singleton class that represents the 'Signed Integer 56-bit' data type,
as it is defined in the ZigBee Cluster Library specification.

• ZigBeeSignedInteger64 - A singleton class that represents the 'Signed Integer 64-bit' data type,
as it is defined in the ZigBee Cluster Library specification.

• ZigBeeSignedInteger8 - A singleton class that represents the 'Signed Integer 8-bit' data type, as it
is defined in the ZigBee Cluster Library specification.

• ZigBeeStructure - A singleton class that represents the 'Structure' data type, as it is defined in
the ZigBee Cluster Library specification.

• ZigBeeTimeOfDay - A singleton class that represents the 'Time Of Day' data type, as it is defined
in the ZigBee Cluster Library specification.

• ZigBeeUnsignedInteger16 - A singleton class that represents the 'Unsigned Integer 16-bit' data
type, as it is defined in the ZigBee Cluster Library specification.

• ZigBeeUnsignedInteger24 - A singleton class that represents the 'Unsigned Integer 24-bit' data
type, as it is defined in the ZigBee Cluster Library specification.

• ZigBeeUnsignedInteger32 - A singleton class that represents the 'Unsigned Integer 32-bit' data
type, as it is defined in the ZigBee Cluster Library specification.

• ZigBeeUnsignedInteger40 - A singleton class that represents the 'Unsigned Integer 40-bit' data
type, as it is defined in the ZigBee Cluster Library specification.

• ZigBeeUnsignedInteger48 - A singleton class that represents the 'Unsigned Integer 48-bit' data
type, as it is defined in the ZigBee Cluster Library specification.

• ZigBeeUnsignedInteger56 - A singleton class that represents the 'Unsigned Integer 56-bit' data
type, as it is defined in the ZigBee Cluster Library specification.

• ZigBeeUnsignedInteger64 - A singleton class that represents the 'Unsigned Integer 64-bit' data
type, as it is defined in the ZigBee Cluster Library specification.

• ZigBeeUnsignedInteger8 - A singleton class that represents the 'Unsigned Integer 8-bit' data
type, as it is defined in the ZigBee Cluster Library specification.

• ZigBeeUTCTime - A singleton class that represents the 'UTC Time' data type, as it is defined in
the ZigBee Cluster Library specification.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1107

149.34.2 public class ZigBeeArray
implements ZCLDataTypeDescription
A singleton class that represents the 'Array' data type, as it is defined in the ZigBee Cluster Library
specification.

149.34.2.1 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.2.2 public static ZigBeeArray getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.2.3 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.2.4 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.2.5 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.3 public class ZigBeeAttributeID
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Attribute ID' data type, as it is defined in the ZigBee Cluster Li-
brary specification.

149.34.3.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.3.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1108 OSGi Compendium Release 8

149.34.3.3 public static ZigBeeAttributeID getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.3.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.3.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.3.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.3.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.4 public class ZigBeeBACnet
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Unsigned Integer 32-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.4.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.4.2 public short getId()

□ Returns the data type identifier.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1109

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.4.3 public static ZigBeeBACnet getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.4.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.4.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.4.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.4.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.5 public class ZigBeeBag
implements ZCLDataTypeDescription
A singleton class that represents the 'Bag' data type, as it is defined in the ZigBee Cluster Library
specification.

149.34.5.1 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.5.2 public static ZigBeeBag getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1110 OSGi Compendium Release 8

149.34.5.3 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.5.4 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.5.5 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.6 public class ZigBeeBitmap16
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Bitmap 16-bit' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.6.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.6.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.6.3 public static ZigBeeBitmap16 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.6.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.6.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.6.6 public boolean isAnalog()

□ Checks if the data type is analog.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1111

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.6.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.7 public class ZigBeeBitmap24
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Bitmap 24-bit' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.7.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.7.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.7.3 public static ZigBeeBitmap24 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.7.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.7.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1112 OSGi Compendium Release 8

149.34.7.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.7.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.8 public class ZigBeeBitmap32
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Bitmap 32-bit' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.8.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.8.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.8.3 public static ZigBeeBitmap32 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.8.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.8.5 public String getName()

□ Returns the associated data type name.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1113

Returns the associated data type name string.

149.34.8.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.8.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.9 public class ZigBeeBitmap40
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Bitmap 40-bit' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.9.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.9.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.9.3 public static ZigBeeBitmap40 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.9.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1114 OSGi Compendium Release 8

149.34.9.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.9.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.9.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.10 public class ZigBeeBitmap48
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Bitmap 48-bit' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.10.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.10.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.10.3 public static ZigBeeBitmap48 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.10.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1115

Returns the corresponding Java type class.

149.34.10.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.10.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.10.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.11 public class ZigBeeBitmap56
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Bitmap 56-bit' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.11.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.11.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.11.3 public static ZigBeeBitmap56 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1116 OSGi Compendium Release 8

149.34.11.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.11.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.11.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.11.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.12 public class ZigBeeBitmap64
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Bitmap 64-bit' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.12.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.12.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1117

149.34.12.3 public static ZigBeeBitmap64 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.12.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.12.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.12.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.12.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.13 public class ZigBeeBitmap8
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Bitmap 8-bit' data type, as it is defined in the ZigBee Cluster Li-
brary specification.

149.34.13.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.13.2 public short getId()

□ Returns the data type identifier.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1118 OSGi Compendium Release 8

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.13.3 public static ZigBeeBitmap8 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.13.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.13.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.13.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.13.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.14 public class ZigBeeBoolean
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Boolean' data type, as it is defined in the ZigBee Cluster Library
specification.

149.34.14.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1119

149.34.14.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.14.3 public static ZigBeeBoolean getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.14.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.14.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.14.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.14.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.15 public class ZigBeeCharacterString
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Character String' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.15.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1120 OSGi Compendium Release 8

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.15.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.15.3 public static ZigBeeCharacterString getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.15.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.15.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.15.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.15.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.16 public class ZigBeeClusterID
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Cluster ID' data type, as it is defined in the ZigBee Cluster Li-
brary specification.

149.34.16.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1121

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.16.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.16.3 public static ZigBeeClusterID getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.16.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.16.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.16.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.16.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.17 public class ZigBeeDate
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Date' data type, as it is defined in the ZigBee Cluster Library
specification.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1122 OSGi Compendium Release 8

The ZigBee data type is mapped to a byte[4] array where byte[0] must contain the Year field (be care-
ful that in the ZCL specification this byte do not contain the actual year, but an offset) whereas
byte[3] the Day of Week. The array is marshaled/unmarshaled starting from byte[0].

149.34.17.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.17.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.17.3 public static ZigBeeDate getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.17.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.17.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.17.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.17.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1123

149.34.18 public class ZigBeeEnumeration16
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Enumeration 16-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.18.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.18.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.18.3 public static ZigBeeEnumeration16 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.18.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.18.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.18.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.18.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1124 OSGi Compendium Release 8

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.19 public class ZigBeeEnumeration8
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Enumeration 8-bit' data type, as it is defined in the ZigBee Clus-
ter Library specification.

149.34.19.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.19.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.19.3 public static ZigBeeEnumeration8 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.19.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.19.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.19.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.19.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1125

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.20 public class ZigBeeFloatingDouble
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Floating Double' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.20.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.20.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.20.3 public static ZigBeeFloatingDouble getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.20.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.20.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.20.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.20.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1126 OSGi Compendium Release 8

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.21 public class ZigBeeFloatingSemi
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Floating Semi' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.21.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.21.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.21.3 public static ZigBeeFloatingSemi getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.21.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.21.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.21.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.21.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1127

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.22 public class ZigBeeFloatingSingle
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Floating Single' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.22.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.22.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.22.3 public static ZigBeeFloatingSingle getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.22.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.22.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.22.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1128 OSGi Compendium Release 8

149.34.22.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.23 public class ZigBeeGeneralData16
implements ZCLSimpleTypeDescription
A singleton class that represents the 'General Data 16-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.23.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.23.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.23.3 public static ZigBeeGeneralData16 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.23.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.23.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.23.6 public boolean isAnalog()

□ Checks if the data type is analog.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1129

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.23.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.24 public class ZigBeeGeneralData24
implements ZCLSimpleTypeDescription
A singleton class that represents the 'General Data 24-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.24.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.24.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.24.3 public static ZigBeeGeneralData24 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.24.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.24.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1130 OSGi Compendium Release 8

149.34.24.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.24.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.25 public class ZigBeeGeneralData32
implements ZCLSimpleTypeDescription
A singleton class that represents the 'General Data 32-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.25.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.25.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.25.3 public static ZigBeeGeneralData32 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.25.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.25.5 public String getName()

□ Returns the associated data type name.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1131

Returns the associated data type name string.

149.34.25.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.25.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.26 public class ZigBeeGeneralData40
implements ZCLSimpleTypeDescription
A singleton class that represents the 'General Data 40-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.26.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.26.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.26.3 public static ZigBeeGeneralData40 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.26.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1132 OSGi Compendium Release 8

149.34.26.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.26.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.26.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.27 public class ZigBeeGeneralData48
implements ZCLSimpleTypeDescription
A singleton class that represents the 'General Data 48-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.27.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.27.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.27.3 public static ZigBeeGeneralData48 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.27.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1133

Returns the corresponding Java type class.

149.34.27.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.27.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.27.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.28 public class ZigBeeGeneralData56
implements ZCLSimpleTypeDescription
A singleton class that represents the 'General Data 56-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.28.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.28.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.28.3 public static ZigBeeGeneralData56 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1134 OSGi Compendium Release 8

149.34.28.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.28.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.28.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.28.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.29 public class ZigBeeGeneralData64
implements ZCLSimpleTypeDescription
A singleton class that represents the 'General Data 64-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.29.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.29.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1135

149.34.29.3 public static ZigBeeGeneralData64 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.29.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.29.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.29.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.29.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.30 public class ZigBeeGeneralData8
implements ZCLSimpleTypeDescription
A singleton class that represents the 'General Data 8-bit' data type, as it is defined in the ZigBee Clus-
ter Library specification.

149.34.30.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.30.2 public short getId()

□ Returns the data type identifier.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1136 OSGi Compendium Release 8

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.30.3 public static ZigBeeGeneralData8 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.30.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.30.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.30.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.30.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.31 public class ZigBeeIEEE_ADDRESS
implements ZCLSimpleTypeDescription
A singleton class that represents the 'IEEE ADDRESS' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.31.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1137

149.34.31.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.31.3 public static ZigBeeIEEE_ADDRESS getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.31.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.31.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.31.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.31.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.32 public class ZigBeeLongCharacterString
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Long Character String' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.32.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1138 OSGi Compendium Release 8

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.32.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.32.3 public static ZigBeeLongCharacterString getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.32.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.32.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.32.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.32.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.33 public class ZigBeeLongOctetString
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Long Octet String' data type, as it is defined in the ZigBee Clus-
ter Library specification.

149.34.33.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1139

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.33.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.33.3 public static ZigBeeLongOctetString getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.33.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.33.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.33.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.33.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.34 public class ZigBeeOctetString
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Octet String' data type, as it is defined in the ZigBee Cluster Li-
brary specification.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1140 OSGi Compendium Release 8

149.34.34.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.34.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.34.3 public static ZigBeeOctetString getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.34.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.34.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.34.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.34.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1141

149.34.35 public class ZigBeeSecurityKey128
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Security Key 128' data type, as it is defined in the ZigBee Clus-
ter Library specification.

149.34.35.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.35.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.35.3 public static ZigBeeSecurityKey128 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.35.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.35.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.35.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.35.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1142 OSGi Compendium Release 8

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.36 public class ZigBeeSet
implements ZCLDataTypeDescription
A singleton class that represents the 'Set' data type, as it is defined in the ZigBee Cluster Library spec-
ification.

149.34.36.1 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.36.2 public static ZigBeeSet getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.36.3 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.36.4 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.36.5 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.37 public class ZigBeeSignedInteger16
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Signed Integer 16-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.37.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.37.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1143

149.34.37.3 public static ZigBeeSignedInteger16 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.37.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.37.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.37.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.37.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.38 public class ZigBeeSignedInteger24
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Signed Integer 24-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.38.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.38.2 public short getId()

□ Returns the data type identifier.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1144 OSGi Compendium Release 8

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.38.3 public static ZigBeeSignedInteger24 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.38.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.38.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.38.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.38.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.39 public class ZigBeeSignedInteger32
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Signed Integer 32-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.39.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1145

149.34.39.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.39.3 public static ZigBeeSignedInteger32 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.39.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.39.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.39.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.39.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.40 public class ZigBeeSignedInteger40
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Signed Integer 40-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.40.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1146 OSGi Compendium Release 8

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.40.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.40.3 public static ZigBeeSignedInteger40 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.40.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.40.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.40.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.40.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.41 public class ZigBeeSignedInteger48
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Signed Integer 48-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.41.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1147

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.41.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.41.3 public static ZigBeeSignedInteger48 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.41.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.41.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.41.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.41.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.42 public class ZigBeeSignedInteger56
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Signed Integer 56-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1148 OSGi Compendium Release 8

149.34.42.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.42.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.42.3 public static ZigBeeSignedInteger56 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.42.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.42.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.42.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.42.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1149

149.34.43 public class ZigBeeSignedInteger64
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Signed Integer 64-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.43.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.43.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.43.3 public static ZigBeeSignedInteger64 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.43.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.43.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.43.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.43.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1150 OSGi Compendium Release 8

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.44 public class ZigBeeSignedInteger8
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Signed Integer 8-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.44.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.44.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.44.3 public static ZigBeeSignedInteger8 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.44.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.44.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.44.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.44.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1151

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.45 public class ZigBeeStructure
implements ZCLDataTypeDescription
A singleton class that represents the 'Structure' data type, as it is defined in the ZigBee Cluster Li-
brary specification.

149.34.45.1 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.45.2 public static ZigBeeStructure getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.45.3 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.45.4 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.45.5 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.46 public class ZigBeeTimeOfDay
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Time Of Day' data type, as it is defined in the ZigBee Cluster
Library specification. The ZigBee data type is mapped to a byte[4] array where byte[0] must contain
the Hour field and byte[3] the Hundredths of seconds. The array is marshaled/unmarshaled starting
from byte[0].

149.34.46.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1152 OSGi Compendium Release 8

149.34.46.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.46.3 public static ZigBeeTimeOfDay getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.46.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.46.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.46.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.46.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.47 public class ZigBeeUnsignedInteger16
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Unsigned Integer 16-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.47.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1153

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.47.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.47.3 public static ZigBeeUnsignedInteger16 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.47.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.47.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.47.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.47.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.48 public class ZigBeeUnsignedInteger24
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Unsigned Integer 24-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.48.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1154 OSGi Compendium Release 8

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.48.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.48.3 public static ZigBeeUnsignedInteger24 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.48.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.48.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.48.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.48.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.49 public class ZigBeeUnsignedInteger32
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Unsigned Integer 32-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1155

149.34.49.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.49.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.49.3 public static ZigBeeUnsignedInteger32 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.49.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.49.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.49.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.49.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1156 OSGi Compendium Release 8

149.34.50 public class ZigBeeUnsignedInteger40
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Unsigned Integer 40-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.50.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.50.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.50.3 public static ZigBeeUnsignedInteger40 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.50.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.50.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.50.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.50.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1157

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.51 public class ZigBeeUnsignedInteger48
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Unsigned Integer 48-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.51.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.51.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.51.3 public static ZigBeeUnsignedInteger48 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.51.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.51.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.51.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.51.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1158 OSGi Compendium Release 8

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.52 public class ZigBeeUnsignedInteger56
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Unsigned Integer 56-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.52.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.52.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.52.3 public static ZigBeeUnsignedInteger56 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.52.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.52.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.52.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.52.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1159

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.53 public class ZigBeeUnsignedInteger64
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Unsigned Integer 64-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.53.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.53.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.53.3 public static ZigBeeUnsignedInteger64 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.53.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.53.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.53.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.53.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 1160 OSGi Compendium Release 8

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.54 public class ZigBeeUnsignedInteger8
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Unsigned Integer 8-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.54.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.54.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.54.3 public static ZigBeeUnsignedInteger8 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.54.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.54.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.54.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Compendium Release 8 Page 1161

149.34.54.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.55 public class ZigBeeUTCTime
implements ZCLSimpleTypeDescription
A singleton class that represents the 'UTC Time' data type, as it is defined in the ZigBee Cluster Li-
brary specification.

149.34.55.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.55.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.55.3 public static ZigBeeUTCTime getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.55.4 public Class<?> getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.55.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.55.6 public boolean isAnalog()

□ Checks if the data type is analog.

References Device Service Specification for ZigBee™ Technology Version 1.0

Page 1162 OSGi Compendium Release 8

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.55.7 public void serialize(ZigBeeDataOutput os, Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.35 References

[1] ZigBee Specification
Document 053474r17, ZigBee Alliance, October 19, 2007.

[2] ZigBee Cluster Library Specification
Document 075123r04ZB, ZigBee Alliance, May 29, 2012.

[3] Pervasive Service Composition in the Home Network
André Bottaro, Anne Gérodolle, Philippe Lalanda, 21st IEEE International Conference on Advanced
Information Networking and Applications (AINA-07), Niagara Falls, Canada, May 2007.

[4] Device and Service Discovery in Home Networks with OSGi
Pavlin Dobrev, David Famolari, Christian Kurzke, Brent A. Miller, IEEE Communications magazine,
Volume 40, Issue 8, pp. 86-92, August 2002.

[5] ASHRAE 135-2004 Standard
Data Communication Protocol for Building Automation and Control Networks.

[6] Listeners considered harmful: The whiteboard pattern
Peter Kriens, BJ Hargrave for the OSGi Working Group, Technical Whitepaper, August 2004.
https://docs.osgi.org/whitepaper/whiteboard-pattern/

[7] ZigBee Gateway
ZigBee Alliance, 2011.

https://docs.osgi.org/whitepaper/whiteboard-pattern/

Configurator Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 1163

150 Configurator Specification

Version 1.0

150.1 Introduction
OSGi defines a model to provide bundles with configurations. This is specified in the Configura-
tion Admin specification where a configuration is identified by a persistent identity (PID). A PID is
a unique token, recommended to be conforming to the symbolic name syntax. A configuration con-
sists of a set of properties, where a property consists of a string key and a corresponding value. The
type of the value is limited to the primitive types and their wrappers, Strings, or Java Arrays/List/
Vector of these.

This specification defines a mechanism to feed configurations into the Configuration Admin Ser-
vice through configuration resources. A single configuration resource can feed multiple PIDs with
configuration and multiple configuration resources can be provided in one or more bundles.

150.2 Entities
The following entities are used in this specification.

• Configuration Admin Service - Standard service to configure OSGi-based systems. See Configuration
Admin Service Specification on page 81.

• Configuration Resource - A JSON resource in a bundle containing configurations. This resource is
processed by an implementation of this specification.

• Extendee - The extendee is a bundle containing configuration resources. It is extended by an imple-
mentation of this specification.

• Configurator - The Configurator implements the behavior specified in this specification. It
processes configuration resources and passes the configuration dictionary on to the Configura-
tion Admin Service.

• Configuration dictionary - The configuration information when it is passed to the Configuration
Admin Service. It consists of a Dictionary object with a number of properties and identifiers.

• Persistent Identity (PID) - A configuration dictionary is associated with a unique PID to identify the
destination of this data. See The Persistent Identity on page 84.

• Configuration Object - Implements the Configurat ion interface and contains the configuration dic-
tionary for a Managed Service or one of the configuration dictionaries for a Managed Service Fac-
tory. These objects are manipulated by configuring bundles.

• Coordinator Service - The coordinator groups related operations to optimize handling of these op-
erations. Using the coordinator with configuration updates can minimize the volatility in the
system. See Coordinator Service Specification on page 629.

Configuration Resources Configurator Specification Version 1.0

Page 1164 OSGi Compendium Release 8

Figure 150.1 Configurator Entity Overview

Configuration
PID

Configuration
Resource

Configurator
Implementation

creates
updates
deletes configurations

reads

declares
1..n

Configuration
Admin Service

0..n

150.3 Configuration Resources
The Configurator is processing configuration resources containing configurations. The resources
can either be part of a bundle or be provided to the Configurator on startup.

150.3.1 Configuration Resource Format
The format for a configuration resource is [1] JSON (JavaScript Object Notation) and it must be UTF-8
encoded. An example configuration resource has the following structure:

{
 // Resource Format Version
 ":configurator:resource-version" : 1,

 // First Configuration
 "pid.a": {
 "key": "val",
 "some_number": 123
 },

 // Second Configuration
 "pid.b": {
 "a_boolean": true
 }
}

Comments in the form of [2] JSMin (The JavaScript Minifier) comments are supported, that is, any text
on the same line after // is ignored and any text between /* */ is ignored.

Configuration resources provide a set of configuration dictionaries each with a PID key to target a
specific PID in the Configuration Admin Service and zero or more configuration values for this PID.
Keys starting with the prefix :configurator: contain information about the resource or instructions
for the Configurator and therefore are not interpreted as PIDs containing configurations. If a key
contains an invalid PID, this entry is ignored and the Configurator should log an error with the Log
Service if available.

Configurator Specification Version 1.0 Configuration Resources

OSGi Compendium Release 8 Page 1165

The Configurator defines the following special keys on the resource level.

Table 150.1 Resource-level Configurator Keys

Key Value type Syntax Description
:configurator:

 resource-version

Number integer > 0 The version of the configuration resource format.
This specification only supports version 1 . If this
entry is omitted then version 1 is assumed. Re-
sources specifying an unsupported or invalid ver-
sion are ignored and the Configurator should log an
error with the Log Service if available.

:configurator:

 symbol ic-name

String symbolic-name The symbolic name of the configuration resource. If
not specified the symbolic name of the bundle con-
taining the resource is used. Mandatory for configu-
ration resources that do not reside in a bundle.

:configurator:vers ion String version The version of this configuration resource. If not
specified the version of the bundle containing the
resource is used. Mandatory for configuration re-
sources that do not reside in a bundle.

150.3.2 PIDs, Factory Configurations and Targeted PIDs
Configuration resources provide a set of configuration dictionaries each with a PID key to target a
specific PID in the Configuration Admin Service.

Factory configurations can be addressed using the factory PID and a name by starting with the fac-
tory PID, appending a tilde (' ~ ' \u007e), and then appending the name. This ensures a well-known
name for the factory configuration instance. The PID for such a configuration is exactly this key.
The Configurator must use the getFactoryConfigurat ion methods on Configuration Admin Service
to create or obtain configurations with the given factory PID and name.

Targeted PIDs are supported through the configuration resource. In the case of single configura-
tions, the full targeted PID is used as the key. For factory configurations, the key is assembled by
chaining the targeted factory PID, a tilde (' ~ ' \u007e), and the name.

The Configurator obtains all configurations with the location value of ? to allow the configurations
to be received by multiple bundles.

The Configurator uses the Configurat ion.updateIfDifferent method on the configuration object to
avoid any volatility in the system if the configuration applied has not been changed.

150.3.3 Configuration Dictionary
A configuration dictionary for the Configuration Admin Service is specified through a JSON object
in the configuration resource. It is introduced using the PID as the key. The value is a JSON object
containing the configuration dictionary.

The Configurator removes any comments and all properties where the key is starting with the spe-
cial prefix :configurator: from the configuration object before converting it to a configuration dic-
tionary that is provided to the Configuration Admin Service.

The Configurator defines special keys that can be used within the configuration object.

Table 150.2 PID-level Configurator Keys

Key Value type Syntax Description
:configurator:pol icy String default or force Specifies the overwrite policy on configurations set

by non-Configurator sources. See Overwrite Policies
on page 1168.

Configuration Resources Configurator Specification Version 1.0

Page 1166 OSGi Compendium Release 8

Key Value type Syntax Description
:configurator:ranking Number integer The ranking of this configuration. If multiple bun-

dles provide configuration for the same PID rank-
ing rules are used to decide which configuration
gets applied, see Ranking on page 1167.

150.3.4 Data Types
Configuration values support data types as specified with the Filter Syntax in the OSGi Core Specifi-
cation. Configuration resources are specified in JSON, which supports a more basic set of data types.
The following table describes how values are converted from JSON to configuration values.

Table 150.3 JSON Conversions

JSON type To Java type
Boolean Boolean
Number Whole number: Long

Floating point number: Double
String Str ing
Array Array, or if requested Collect ion . Contents are

boxed. If the array contents are of the same JSON
type, the associated Java type is used as the array
type. Otherwise the array elements are convert-
ed to String and a Str ing[] array is used.

Object Literal object as JSON String

If a specific data type is required for a configuration, the Configurator can be instructed to convert
the JSON value to a given data type. The target type can be specified by adding a colon : and the de-
sired data type to the property name. Supported data types are Str ing , Integer , Long , Float , Double ,
Byte , Short , Character and Boolean . Additionally arrays of Scalar or primitive types are support-
ed and Collect ion of scalar. The primitive types that can be specified for arrays are: int , long , f loat ,
double , byte , short , char , boolean . For Collect ion the Configurator picks a suitable implementation
that preserves order. Both bare Collect ion as well as typed collections that use the generics style no-
tation are supported. If a requested conversion cannot be performed, then the configuration is not
processed and the Configurator implementation should log an error.

An example configuration resource with typed data:

{
 "my.pid": {
 "port:Integer" : 300,
 "an_int_array:int[]" : [2, 3, 4],
 "an_Integer_collection:Collection<Integer>" : [2, 3, 4],
 "complex": {
 "a" : 1,
 "b" : "two"
 }
 }
}

The above configuration gets converted to a configuration dictionary with the following entries (in
pseudo Java language):

Integer port = 300;
int[] an_int_array = {2, 3, 4};
Collection<Integer> an_Integer_collection = {2, 3, 4};

Configurator Specification Version 1.0 Configuration Resources

OSGi Compendium Release 8 Page 1167

String complex = "{ \"1\" : 1, \"b\" : \"two\" }"

As an alternative of specifying data types for the Configurator, consumers of configuration can con-
vert the configuration values to the desired type by using the OSGi Converter see Converter Specifica-
tion on page 1469. A convenient way to convert a configuration map to the desired data types is by
using the Converter to convert it to an annotation instance or by using a Declarative Services com-
ponent property type.

150.3.4.1 Binary Data

In some cases binary data is associated with configurations such as certificates, security keys or oth-
er resources. The Configurator can manage this binary data. The bundle developer places the bina-
ries in a location in the extendee and references it from the configuration resource, marking its type
as binary :

{
 "my.config": {
 "security.enabled": true,
 "public.key:binary" : "/OSGI-INF/files/mykey.pub"
 }
}

When the Configurator applies the configuration, it extracts the binary file to a public area on the
file system. The Configurator creates a subdirectory with as name the PID of the configuration. The
PID must be URL-encoded to ensure that it does not contain characters that are illegal on a file sys-
tem. The binary file is extracted in this subdirectory. The Configurator then applies the configura-
tion with as value for the binary entry the absolute path of the extracted binary file.

A binary data property can also specify an array of binary resources by declaring the binary[] data
type. Each resource referenced is extracted as a separate file on the file system and the value of the
property will be an array of strings, each string being the full path of one extracted binary.

By default a directory called binar ies in the bundle data area of the Configurator implementation is
used. An alternative location can be specified via the configurator.binar ies framework property. The
value of this property must be an absolute path on the file system to which the Configurator has
write access. If the directory does not exist the Configurator will create it. If the Configurator cannot
write to this location, it logs an error and uses the default location instead.

When a configuration is removed, its associated binary files are also removed from the file system.
When a configuration is updated, associated binary files are updated, if necessary. In the case of an
update the Configurator should use a different filename for the extracted binary file to avoid any
open file lock issues.

150.3.5 Ranking
The order in which the Configurator processes bundles is not defined. To control which configu-
rations are in effect configuration ranking can be used. Configuration ranking is similar to service
ranking; it is an integer which defaults to 0. Configurations with a higher ranking are preferred over
configurations with a lower ranking. When multiple configurations arrive over time it is possible
that the Configurator changes the effective configuration if a higher ranked configuration arrives
later. The design of the Configurator is such that the effective set of configurations once the system
stabilizes is consistent, regardless of the order in which bundles are installed and processed.

The ranking of a configuration can be specified by adding the :configurator:ranking property. The
value of this property is converted to an Integer as defined by the Converter specification. If the val-
ue cannot be converted a warning should be logged. When multiple configurations for a given PID
have the same ranking the bundle providing the configuration with the lowest bundle ID is pre-
ferred. If multiple configurations for the same PID with the same ranking are specified within a sin-
gle bundle, the first one encountered is used.

Configuration Resources Configurator Specification Version 1.0

Page 1168 OSGi Compendium Release 8

The following example shows two bundles with a configuration resource containing a configura-
tion for the same PID:

Resource in Bundle A:
{
 "my.pid": {
 "port:Integer" : 300,
 ":configurator:ranking" : 100
 }
}

Resource in Bundle B:
{
 "my.pid": {
 "port:Integer" : 100,
 ":configurator:ranking" : 10
 }
}

Bundle A contains the configuration with the higher ranking. Therefore, regardless of the installa-
tion order of bundle A and B, the configuration from Bundle A will be in effect after both bundles
are installed and processed by the Configurator.

150.3.6 Overwrite Policies
In an IT operations scenario configurations are often updated by a systems administrator to suit
the deployments requirements. In such scenarios it may be undesirable to have these modifications
overwritten by a software update which includes a configuration resource. In other cases, bundles
with configuration resources are used to enforce best practices or compliance with corporate guide-
lines, which should replace any previous manual settings. This specification defines policies to de-
fine the overwrite behavior of the Configurator when configurations have been set or modified by
another entity.

Configuration policies are set by specifying the :configurator:pol icy property. Accepted values are
default and force . This policy defines the behavior when a configuration to be applied was set by an-
other entity in the system, or if it was modified by someone from the values set by the Configurator.
The default value for this property is default . If the specified value is invalid an error is logged and
the default value is used.

Table 150.4 Applying Configurations: Overwrite Policies

Policy value Action
default No action
force Configuration is added

The Configurator must keep track of configuration change count values to identify configurations
that were changed by other entities or administrators.

When a bundle that provides configuration resources is uninstalled, the Configurator removes any
configurations that it has provided on behalf of this bundle from the system. Before it removes a
configuration the Configurator checks with the Configuration Admin Service whether the con-
figuration it has provided has been changed by another entity. If the configuration has not been
changed by another entity it is removed. If it has been changed then whether the configuration is re-
moved depends on the value of the configurator:pol icy property:

Table 150.5 Removing externally modified configurations

Policy value Action
default No action

Configurator Specification Version 1.0 Bundle Configuration Resources

OSGi Compendium Release 8 Page 1169

Policy value Action
force Configuration is removed

When a configuration is removed the Configurator checks whether another, lower ranked, configu-
ration resource is available. If present the Configurator sets this configuration.

The following examples explain the two policy options. In the first example Bundle A contains
a configuration for the PID my.pid without specifying the policy. In this case the default policy is
used:

{
 "my.pid": {
 "port:Integer" : 300
 }
}

The following actions demonstrate the behavior of the default policy:

1. The framework is started without any configuration for PID my.pid .
2. Bundle A is installed, the Configurator creates the configuration for PID my.pid .
3. An administrator manually changes the configuration for PID my.pid .
4. Bundle A is updated with an updated configuration for PID my.pid . The Configurator detects the

manual change of the configuration in Configuration Admin Service and does not apply the up-
dated configuration from the bundle.

5. Bundle A is uninstalled. The Configurator detects the manual change of the configuration in
Configuration Admin Service and does not delete the configuration.

In the second example Bundle A contains a configuration for the PID my.pid this time with the over-
write policy set to force .

{
 "my.pid": {
 "port:Integer" : 300,
 ":configurator:policy" : "force"
 }
}

The following actions demonstrate the behavior of the force policy:

1. The framework is started without any configuration for PID my.pid .
2. Bundle A is installed, the Configurator creates the configuration for PID my.pid .
3. An administrator manually changes the configuration for PID my.pid .
4. Bundle A is updated with an updated configuration for PID my.pid . The Configurator applies the

updated configuration.
5. Bundle A is uninstalled. The Configurator detects the manual change of the configuration in

Configuration Admin Service and deletes the configuration.

150.4 Bundle Configuration Resources
The Configurator follows the OSGi extender model and looks for JSON configuration resources
in installed bundles, if the bundle has opted-in to be processed. In order to get processed, a bundle
must require the Configurator extender:

Require-Capability: osgi.extender;
 filter := "(&(osgi.extender=osgi.configurator)

Initial Configurations Configurator Specification Version 1.0

Page 1170 OSGi Compendium Release 8

 (version>=1.0)(!(version>=2.0)))"

The Configurator must ensure to only process bundles that it is wired to by the resolver.

By default the configuration resources are in the OSGI-INF/configurator directory in the bundle.

Configuration files are UTF-8 encoded and have the . json file extension. Files not having this exten-
sion are ignored. The Configurator processes the configuration resources within a single bundle in
lexical order using the full resource path for sorting.

150.5 Initial Configurations
When the Configurator starts it calls bundleContext.getProperty("configurator. init ia l") to ob-
tain initial configurations from the runtime environment. If this property is available its value is
processed as follows:

1. If the value starts with a left curly bracket ('{' \u007B), ignoring any leading white space, the
Configurator will interpret the value as a literal configuration JSON resource.

2. Otherwise the value is treated as a comma-separated list of URLs. The Configurator will read the
resource at each URL and parse it as a JSON Configuration resource. If any errors occur during
this process they are logged and the URL is skipped. The URLs are processed in alphabetical or-
der of their provided value.

The ranking of these configurations can be set in the configuration resource as described in Ranking
on page 1167. The Configurator treats the initial configurations as being provided from a bundle
with the bundle id -1 .

If the framework is restarted, the Configurator needs to check whether the provided initial configu-
rations are different than on the previous startup. The implementation is free to use whatever is ap-
propriate to perform this check, like comparing last modified for the URLs or using a hash etc. If the
provided configuration is different than on a previous startup, this is treated like a bundle update
with an updated configuration.

150.6 Life Cycle
The Configurator uses the Configuration Admin Service. Therefore the Configurator implementa-
tion should require the Configuration Admin Service through a service requirement. The Configu-
rator should not start processing configuration resources until it has runtime access to the Configu-
ration Admin Service.

The Configurator uses the Configuration Admin Service that is visible to both the Configurator it-
self as well as the bundle that is being processed. If there are multiple candidates, the service with
the highest ranking is used. If there is no Configuration Admin Service visible to both the bundle
that is processed and the Configurator, the processing is delayed until such a service becomes avail-
able.

When the Configurator starts, it processes all started bundles and applies configurations provid-
ed by those bundles. From then on, the Configurator processes bundles as they enter the STARTING
state. The Configurator should process as many bundles as possible in a single pass to minimize
volatility for PIDs where multiple configurations with different rankings are provided.

When a bundle containing configuration resources is updated, the configurations must be updated
in the Configuration Admin Service to which they were originally provided, keeping in mind that
the system might have been restarted in-between. One way of keeping track of the original Configu-
ration Admin Service is via the bundle location of the bundle providing the service. If this service is

Configurator Specification Version 1.0 Grouping and Coordinations

OSGi Compendium Release 8 Page 1171

not available the Configurator must attempt to apply the updated configuration when this Configu-
ration Admin Service re-appears.

Configurations remain in the system until the bundle that provided the configurations is unin-
stalled. When this happens, the Configurator must uninstall the configurations from the Configu-
ration Admin Service to which it originally installed it as is the case with updates. If this Configu-
ration Admin Service is not available at this time, the Configurator must remember the configura-
tions that are to be removed, and remove them when the Configuration Admin Service re-appears at
a later time.

When the Configurator becomes active, it must check whether configurations that it installed pre-
viously are still valid. If the bundles that provided these configurations have been uninstalled, the
associated configurations must be removed. If a bundle is updated the associated configurations are
also updated. The Configurator calls updateIfDifferent on the configuration to avoid volatility in
the system if the actual configuration values did not change.

When updating or removing configurations, the Configurator must take the Overwrite Policies on
page 1168 into account. This means that for certain policy values an externally modified configu-
ration is not replaced or removed.

When a bundle that provides the Configuration Admin Service is uninstalled, the Configurator con-
siders all configurations previously provided to that Configuration Admin Service as not yet ap-
plied. If another Configuration Admin Service is or becomes visible to both the Configurator and
the bundle containing configuration resources, the Configurator will provide the configurations to
this Configuration Admin Service as new.

When the Configurator is stopped or uninstalled the configurations applied will remain in the sys-
tem.

150.7 Grouping and Coordinations
The Coordinator Service Specification on page 629 defines a mechanism for multiple parties to collabo-
rate on a common task without a priori knowledge of who will collaborate in that task. The Configu-
rator must participate in such scenarios to coordinate with provisioning or configuration tasks.

Whenever the Configurator is processing configuration resources and interacting with the Config-
uration Admin Service, the Configurator must check whether a Coordinator Service is present. If it
is present, the Configurator checks for an implicit coordination on the current thread. If such an im-
plicit coordination exists, the Configurator does not need to create one. However, if such an implicit
coordination is not present, the Configurator starts an implicit coordination on the current thread
when interacting with the Configuration Admin Service and ends this coordinator when it is fin-
ished doing the current set of work. The Configurator does not need to delay applying any changes
to the Configuration Admin Service until the coordination ends.

150.8 Security
When Java permissions are enabled, the Configurator must perform the following security proce-
dures.

150.8.1 Configuration Permission
The Configurator manages configurations on behalf of the bundle contain-
ing the configuration resources. Therefore the Configurator needs to have the
Configurat ionPermission[*,org.osgi .service.cm.Configurat ionPermission.CONFIGURE] .

Capabilities Configurator Specification Version 1.0

Page 1172 OSGi Compendium Release 8

Every bundle has the implicit right to receive and configure configurations with a location that ex-
actly matches the Bundle's location or that is nul l . Therefore the extendee does not need to special
permissions.

150.8.2 Service Permission
The Configurator needs ServicePermission[<interface>, GET] for the Coordinator service.

The extendee needs ServicePermission[<interface>, GET] for the Configuration Admin Service.

150.8.3 Configuration Admin Service
The Configurator does get the Configuration Admin Service on behalf of the extendee. Therefore
the extendee needs to be included in permission checks for getting the Configuration Admin Ser-
vice. The Configurator needs to perform the required calls to ensure the extendee has the necessary
permission to get the Configuration Admin Service.

150.8.4 File Permission
If binaries are used, the Configurator needs to have read/write/delete permission to the configured
directory to store the binaries.

A bundle using a binary referenced from a configuration needs to have read permission to correct
sub directory of the configured binary directory. The subdirectory is named after the PID of the con-
figuration.

By default binaries are stored in the bundle data are of the Configurator. While this works without
Java security enabled, permission configuration for the extendees gets challenging as the location of
the bundle data area is only known at runtime. Therefore with Java security enabled, the directory
holding the binaries should be configured to allow permission configuration for the extendees.

150.9 Capabilities

150.9.1 osgi.extender Capability
The Configurator implementation bundle must provide the osgi .extender capability with name
osgi .configurator with the version of this specification:

Provide-Capability: osgi.extender;
 osgi.extender="osgi.configurator";
 version:Version="1.0"

This capability must follow the rules defined for the osgi.extender Namespace on page 723.

Bundles providing configuration resources must require the osgi .extender capability to opt in to
being processed by the Configurator. The default location for configuration resources is in OSGI-
INF/configurator . A bundle can specify alternate locations for configuration resources through
the configurat ions attribute. The value of this attribute is of type Str ing or List<Str ing> . Each val-
ue represents a path inside the bundle. This path is always relative to the root of the bundle and
may start with a slash / . A path value of / indicates the root of the bundle. The Configurator uses
Bundle.f indEntr ies to find all resources with the . json extension in this location. Sub directories are
not considered. If the configurat ion attribute specifies multiple paths, these are visited in the order
specified. Duplicate paths are ignored. Paths that do not exist in the bundle are logged as an error
and skipped. Resources in a single directory are processed in alphabetical order. For example:

Require-Capability: osgi.extender;
 filter:="(&(osgi.extender=osgi.configurator)
 (version>=1.0)(!(version>=2.0)))";

Configurator Specification Version 1.0 osgi.configuration Namespace

OSGi Compendium Release 8 Page 1173

 configurations="resources/configs"

To simplify the creation of this requirement the RequireConfigurator annotation can be used. This
annotation allows the configurat ions attribute to be defined is a value other than the default is
needed.

@RequireConfigurator("resources/configs")

150.10 osgi.configuration Namespace
Configuration resources define configuration for one or more PIDs. To declare what configuration is
being provided, the osgi .configurat ion capability namespace can be used. Configuration resources
and bundles can define the osgi .configurat ion capability for each configuration that they define.
This capability should have resolve time effectiveness.

The osgi .configurat ion Namespace supports the attributes defined in the following table and Con-
figurat ionNamespace .

Table 150.6 osgi.configuration namespace definition

Name Kind M/O Type Syntax Description
service.pid CA O† Str ing qname Defines the PID of the configuration.
service.factoryPid CA O† Str ing qname Defines the factory PID if this is a factory configuration.

† Note that at least one of service.pid or service.factorypid must be defined. If the configuration
is a standard configuration then only the service.pid is used. If the configuration is a factory con-
figuration with an automatically generated identity then only the service.factoryPid is used. If
the configuration is a factory configuration with a specified identity then both the service.pid and
service.factoryPid are used.

150.11 Configuration Resources in a Repository
The configuration file format in Configuration Resources on page 1164 defines a portable representa-
tion of configurations for the Configuration Admin Service. Whilst the Configurator implementa-
tion is necessary to process these configurations when they are packaged inside a bundle or provid-
ed on startup, these files can also offer significant value to other tools for deployment and manage-
ment outside of the Configurator usage.

If configuration resources are used in an OSGi repository, in order to integrate with querying and
the resolution process, the configuration resources should define the appropriate capabilities.

In addition to the common requirements and capabilities, a standalone configuration resource must
declare the following capabilities when in an OSGi repository:

• An osgi .content capability. The mime type of the configuration resource should be appl ica-
t ion/vnd.osgi .configurat ion+json.

• An osgi . identity capability. This capability requires that each resource define a symbolic
name and version. These can be obtained from the mandatory :configurator:symbol ic-name
and :configurator:vers ion keys in the configuration resource. As type attribute the string
osgi .configurat ion must be used.

150.12 org.osgi.service.configurator

org.osgi.service.configurator Configurator Specification Version 1.0

Page 1174 OSGi Compendium Release 8

Configurator Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.configurator; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.configurator; vers ion="[1.0,1.1)"

150.12.1 Summary

• ConfiguratorConstants - Defines standard constants for the Configurator services.

150.12.2 public final class ConfiguratorConstants
Defines standard constants for the Configurator services.

150.12.2.1 public static final String CONFIGURATOR_BINARIES = "configurator.binaries"

Framework property specifying the directory to be used by the Configurator to store binary files.

If a value is specified, the Configurator will write all binaries to the given directory. Therefore the
Configurator bundle needs read and write access to this directory.

If this property is not specified, the Configurator will store all binary files in its bundle private data
area.

150.12.2.2 public static final String CONFIGURATOR_EXTENDER_NAME = "osgi.configurator"

The name of the extender capability attribute for the Configurator

150.12.2.3 public static final String CONFIGURATOR_INITIAL = "configurator.initial"

Framework property specifying initial configurations to be applied by the Configurator on startup.

If the value of this property starts with a '{' (ignoring leading whitespace) it is interpreted as JSON
and directly feed into the Configurator.

Otherwise the value is interpreted as a comma separated list of URLs pointing to JSON documents.

150.12.2.4 public static final String CONFIGURATOR_SPECIFICATION_VERSION = "1.0"

The version of the extender capability for the Configurator specification

150.12.2.5 public static final String POLICY_DEFAULT = "default"

Value for defining the default policy.

See Also PROPERTY_POLICY

150.12.2.6 public static final String POLICY_FORCE = "force"

Value for defining the force policy.

See Also PROPERTY_POLICY

150.12.2.7 public static final String PROPERTY_POLICY = ":configurator:policy"

Configuration property for the configuration policy.

Allowed values are POLICY_DEFAULT and POLICY_FORCE

See Also POLICY_DEFAULT, POLICY_FORCE

Configurator Specification Version 1.0 org.osgi.service.configurator.annotations

OSGi Compendium Release 8 Page 1175

150.12.2.8 public static final String PROPERTY_PREFIX = ":configurator:"

Prefix to mark properties as input for the Configurator when processing a configuration resource.

150.12.2.9 public static final String PROPERTY_RANKING = ":configurator:ranking"

Configuration property for the configuration ranking.

The value of this property must be convertible to a number.

150.12.2.10 public static final String PROPERTY_RESOURCE_VERSION = ":configurator:resource-version"

Global property in the configuration resource specifying the version of the resource format.

Currently only version 1 is defined for the JSON format and therefore the only allowed value is 1 for
this property. If this property is not specified, 1 is assumed.

150.12.2.11 public static final String PROPERTY_SYMBOLIC_NAME = ":configurator:symbolic-name"

Global property in the configuration resource specifying the symbolic name of the configuration re-
source. If not specified the symbolic name of the bundle containing the resource is used. Mandatory
for configuration resources that do not reside in a bundle

150.12.2.12 public static final String PROPERTY_VERSION = ":configurator:version"

Global property in the configuration resource specifying the version of the resource. If not specified
the version of the bundle containing the resource is used. Mandatory for configuration resources
that do not reside in a bundle.

150.13 org.osgi.service.configurator.annotations

Configurator Annotations Package Version 1.0.

This package contains annotations that can be used to require the Configurator extender.

Bundles should not normally need to import this package as the annotations are only used at build-
time.

150.13.1 Summary

• RequireConfigurator - This annotation can be used to require the Configurator extender.

150.13.2 @RequireConfigurator
This annotation can be used to require the Configurator extender. It can be used directly, or as a
meta-annotation.

This annotation allows users to define custom locations that should be searched for configuration
files using RequireConfigurator.value()

Retention CLASS

Target TYPE , PACKAGE

150.13.2.1 String[] value default {}

□ This attribute can be used to define one or more locations that the configurator must search, in or-
der, for configuration files.

If no locations are defined then the Configurator default of /OSGI-INF/configurator will be used.

Returns A list of bundle locations containing configuration files

org.osgi.service.configurator.namespace Configurator Specification Version 1.0

Page 1176 OSGi Compendium Release 8

150.14 org.osgi.service.configurator.namespace

Configurator Namespace Package Version 1.0.

Bundles should not need to import this package at runtime since all the types in this package just
contain constants for capability and requirement namespaces specified by the OSGi Working
Group.

150.14.1 Summary

• Configurat ionNamespace - Configuration Capability and Requirement Namespace.

150.14.2 public final class ConfigurationNamespace
extends Namespace
Configuration Capability and Requirement Namespace.

This class defines the names for the attributes and directives for this namespace. All unspecified ca-
pability attributes are of type Str ing and are used as arbitrary matching attributes for the capability.
The values associated with the specified directive and attribute keys are of type Str ing , unless other-
wise indicated.

Concurrency Immutable

150.14.2.1 public static final String CONFIGURATION_NAMESPACE = "osgi.configuration"

Namespace name for configuration capabilities and requirements.

Also, the capability attribute used to specify the name of the extension.

150.14.2.2 public static final String FACTORY_PID_ATTRIBUTE = "service.factoryPid"

The capability attribute contains the factory PID if this is a factory configuration. The value of this
attribute must be of type String.

150.14.2.3 public static final String SERVICE_PID_ATTRIBUTE = "service.pid"

The capability attribute contains the PID of the configuration. The value of this attribute must be of
type String.

150.15 References

[1] JSON (JavaScript Object Notation)
https://www.json.org

[2] JSMin (The JavaScript Minifier)
https://www.crockford.com/javascript/jsmin.html

https://www.json.org
https://www.crockford.com/javascript/jsmin.html

JAX-RS Whiteboard Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 1177

151 JAX-RS Whiteboard Specification

Version 1.0

151.1 Introduction
REpresentational State Transfer (REST) is a simple pattern for producing Web Services. RESTful ser-
vices use URI pattern matching to match a particular web resource. Different HTTP verbs, for exam-
ple GET and DELETE , map to different operations on that resource. Standard HTTP response codes
are used to communicate the result of an operation, potentially including a response body if the op-
eration returns a result.

The [1] Java API for RESTful Web Services Specification defines a set of annotation mappings which al-
low Plain Old Java Objects (POJOs) to be directly exposed as RESTful web resources; these resources
can also be grouped together using a JAX-RS Appl icat ion . Furthermore the specification defines a
plugable model for extending the behavior of the application and the features of the JAX-RS contain-
er itself. For example an extension may define specific error responses that should be sent when par-
ticular exceptions occur, or an extension may add support for serializing responses to a different for-
mat. The OSGi JAX-RS Whiteboard Specification provides a light and convenient way of using these
POJOs, applications and extensions in an OSGi environment through the use of the [3] Whiteboard
Pattern.

The JAX-RS Whiteboard specification supports:

• Registering Resources - Registering a JAX-RS annotated POJO in the Service Registry makes it avail-
able to be bound to an endpoint and to start responding to incoming requests.

• Registering Applications - Registering a JAX-RS Appl icat ion in the Service Registry makes it avail-
able to be bound to an endpoint and to start responding to incoming requests.

• Registering Extensions - The JAX-RS specification defines a variety of plugable extensions. JAX-RS
extensions can be registered in the Service Registry to include them in the handling pipeline.

• Requiring Extensions - Sometimes JAX-RS resources, or even JAX-RS extensions, depend upon the
presence of another extension. For example a JAX-RS resource and a JAX-RS exception mapper
may both depend on a JSON serializer. JAX-RS Whiteboard services may define preconditions
that must be satisfied before they can be bound.

JAX-RS Whiteboard implementations must support at least version 2.1 of the JAX-RS API.

151.1.1 Entities
This specification defines the following entities:

• JAX-RS Whiteboard service - An object registered in the Service Registry providing the necessary
Whiteboard service properties defined by this specification. JAX-RS Whiteboard services may be
resource, application or extension services

• JAX-RS Whiteboard implementation - An implementation that provides one or more JAX-RS White-
boards.

• JAX-RS Whiteboard - A runtime instance that processes JAX-RS Whiteboard services. Each JAX-RS
Whiteboard service may be processed by multiple JAX-RS Whiteboards. Different JAX-RS White-
boards provided by the same JAX-RS Whiteboard implementation may configured differently, for
example using different ports or root contexts.

The JAX-RS Whiteboard JAX-RS Whiteboard Specification Version 1.0

Page 1178 OSGi Compendium Release 8

• JAX-RS Service Runtime service - A service providing runtime introspection into a JAX-RS White-
board instance.

• JAX-RS Resource Service - A service that provides one or more RESTful resource methods which
map to incoming HTTP requests.

• JAX-RS Application Service - A service that provides a javax.ws.rs .core.Appl icat ion to be hosted by
a JAX-RS Whiteboard.

• JAX-RS Extension Service - A service that extends the functionality of a JAX-RS Whiteboard.
• Static Resources - JAX-RS resources that are included programmatically in a JAX-RS Whiteboard

application, rather than being added at runtime by the whiteboard.

Figure 151.1 JAX-RS Whiteboard Overview Diagram

Resource

Extension

Implementation

JAX-RS Service
Runtime

JAX-RS
Whiteboard

JAX-RS
Whiteboard

JAX-RS
Whiteboard

JAX-RS Service
Runtime

JAX-RS

JAX-RS

Application
JAX-RS

The Figure 151.1 shows an OSGi framework running a JAX-RS Whiteboard Implementation bun-
dle. This bundle has been configured to provide two JAX-RS whiteboards, each of which has a corre-
sponding JAX-RS Service Runtime Service. The various JAX-RS Whiteboard services available in the
framework are discovered and processed by both whiteboards.

151.2 The JAX-RS Whiteboard
An important principle of the JAX-RS Whiteboard specification is that an OSGi framework may
contain many active JAX-RS Whiteboards at any time, even if there is only a single JAX-RS White-
board implementation present in the framework. In addition to providing a web endpoint with
which to register Whiteboard services, a JAX-RS Whiteboard provides a holder for JAX-RS Applica-
tions.

All JAX-RS Whiteboards have a default application which is used to register resources that do not
target an existing application. In this respect a JAX-RS whiteboard application shares some similar-
ities with a Servlet Context in the Http Whiteboard Specification on page 801. Resources registered
with a JAX-RS Whiteboard are always registered as part of an application. The generated name of
the default application is .default , and it is mapped to the root context of the JAX-RS Whiteboard.

A JAX-RS Whiteboard implementation must create a JAX-RS Whiteboard instance, however it is ex-
pected that most implementations will permit multiple JAX-RS whiteboards to be configured. These
instances may differ significantly, or may simply offer the same capabilities on a different port.

For details on the association process between JAX-RS Whiteboard services and a JAX-RS White-
board see Common Whiteboard Properties on page 808.

JAX-RS Whiteboard Specification Version 1.0 The JAX-RS Whiteboard

OSGi Compendium Release 8 Page 1179

151.2.1 The JAX-RS Service Runtime Service
The JaxrsServiceRuntime service represents the runtime state information of a JAX-RS Whiteboard
instance. This information is provided through Data Transfer Objects (DTOs). The architecture of
OSGi DTOs is described in OSGi Core Release 8.

Each JAX-RS Whiteboard implementation registers exactly one JaxrsServiceRuntime service
per JAX-RS Whiteboard. The service properties of the JAX-RS Service Runtime Service can be
used to target JAX-RS Whiteboard services at specific JAX-RS whiteboards, as described by the
osgi . jaxrs .whiteboard.target property in Common Whiteboard Properties on page 1180.

The JaxrsServiceRuntime provides service registration properties to declare its underlying JAX-RS
Whiteboard. These service properties can include implementation-specific key-value pairs. They al-
so include the following:

Table 151.1 Service properties for the JaxrsServiceRuntime service

Service Property Name Type Description
osgi . jaxrs .endpoint Str ing+ Endpoint(s) where this JAX-RS Whiteboard is listening. Registered

Whiteboard services are made available here. Values could be provided
as URLs e.g. http://192.168.1.10:8080/ or relative paths, e.g. /myapp/ .
Relative paths may be used if the scheme and authority parts of the URLs
are not known, for example if the JAX-RS Whiteboard is delegating to a
bridged Http Service implementation. If the JAX-RS Whiteboard Service
is serving the root context and scheme and authority are not known, the
value of the property is / . Each entry must end with a slash.

See JAX_RS_SERVICE_ENDPOINT .
service.changecount Long Whenever the DTOs available from the JAX-RS Service Runtime service

change, the value of this property will increase.

This allows interested parties to be notified of changes to the DTOs by
observing Service Events of type MODIFIED for the JaxrsServiceRuntime
service. See org.osgi .f ramework.Constants.SERVICE_CHANGECOUNT in
OSGi Core Release 8.

151.2.2 Inspecting the Runtime DTOs
The JAX-RS Service Runtime service provides information about registered Whiteboard services
through the RuntimeDTO .

The Runtime DTO provides information about services that have been successfully registered as
well as information about the JAX-RS Whiteboard services that were not successfully registered.
JAX-RS Whiteboard services that have the required properties set but cannot be processed, are re-
flected in the failure DTOs. JAX-RS Whiteboard services of interfaces described in this specification
that do not have the required properties set are ignored and not reflected in the failure DTOs.

The Runtime DTO can be obtained using the getRuntimeDTO() method. The Runtime DTO returned
provides a snapshot of the state of the JAX-RS Runtime, including the JAX-RS Whiteboard resources,
extensions and applications that are active in each registered application. The Runtime DTO also in-
cludes information about Whiteboard services which could not be activated.

151.2.2.1 DTO properties

When whiteboard services are registered with the whiteboard they must be introspected and this
information reflected in the DTO(s) for that service. This introspection will include looking for an-
notations such as @GET and @Path both at a class and method level. The values associated with
these annotations must then be appropriately combined, for example when @Path is declared on a
type and method level, and recorded in the DTO.

Common Whiteboard Properties JAX-RS Whiteboard Specification Version 1.0

Page 1180 OSGi Compendium Release 8

151.2.2.2 Failure DTOs

There are a variety of reasons that whiteboard services may not be able to be used by the white-
board. For example, if the whiteboard service cannot be retrieved from the service registry, or if the
whiteboard service provides an invalid service property value, such as a malformed filter.

In these cases the failed services are represented in the Runtime DTO under one of the failed DTO
properties. Depending upon the failure reason one or more of the properties of the failed DTO may
be unavailable. For example if the service cannot be retrieved from the service registry then it can-
not be introspected for annotations. A failure DTO will always contain the service id for the failed
service and the failure reason. The whiteboard implementation must then fill in other DTO proper-
ties on a best effort basis.

151.2.3 Relation to the Servlet Container
Implementations of this specification will often be backed by existing servlet containers, such as
the OSGi Http Whiteboard, or a Java EE application server. There may also exist implementations
which bridge into a servlet container into which the OSGi Framework has been deployed as a Web
Application.

In bridged situations the JAX-RS Whiteboard implementation will have limited facilities for creat-
ing new JAX-RS whiteboards, and may also have limited information about its environment.

Information about the surrounding Servlet Container, including ServletContext information and
HttpSession data, is available to JAX-RS Whiteboard resources using standard JAX-RS injection be-
havior.

@GET
@Path("{name}")
public String interrogateSession(@PathParam("name") String name,
 @Context HttpServletRequest req) {
 HttpSession s = req.getSession();
 return String.valueOf(s.getAttribute(name));
}

A JAX-RS Whiteboard implementation needs to ensure that Http Sessions are not shared amongst
different JAX-RS Whiteboards, or amongst different JAX-RS Whiteboard applications. That is,
HttpServletRequest.getSession() calls must provide different sessions for each whiteboard applica-
tion with which a JAX-RS whiteboard service is associated.

151.2.4 Isolation between JAX-RS Whiteboards
Even when they are created by the same JAX-RS Whiteboard implementation, each JAX-RS White-
board instance is separate, and isolated from other instances. Importantly, JAX-RS Whiteboard ser-
vices targeted to one JAX-RS Whiteboard application must not be visible in any other Whiteboard
or applications to which they are not targeted.

This isolation restriction is critical, as it ensures that different JAX-RS Whiteboard applications can
be configured with different, potentially overlapping, incompatible extension features.

151.3 Common Whiteboard Properties
JAX-RS Whiteboard services support common service registration properties to associate them with
a JAX-RS Whiteboard. These properties apply to whiteboard resources, extensions and applications
except where explicitly stated otherwise. Each service property has an associated Component Prop-
erty Type annotation that can be used to easily apply the property to a Declarative Services Compo-
nent.

JAX-RS Whiteboard Specification Version 1.0 Common Whiteboard Properties

OSGi Compendium Release 8 Page 1181

Table 151.2 Common properties

Service Property Type Description
osgi . jaxrs .name

JaxrsName

Str ing

optional

A user defined name that can be used to identify a JAX-RS white-
board service. Names must follow OSGi symbolic name rules, and
also must not start with the prefixes '.' or 'osgi .' .

If no name is defined for a JAX-RS whiteboard service then one is
generated for it. This generated name will start with a '.' . The pre-
fix osgi . is currently unused, but reserved for future versions of this
specification.

If a JAX-RS service is registered with an illegal name then it is not
bound and this is reflected in the failure DTOs. If two JAX-RS ser-
vices are registered with the same name (even if they are advertised
as different types) then only the higher ranked service is bound and
the lower ranked service(s) are reflected in the failure DTOs. See
JAX_RS_NAME .

osgi . jaxrs .appl icat ion.select†

JaxrsAppl icat ionSelect

Str ing

optional

An LDAP-style filter to select the JAX-RS Application(s) with which
this Whiteboard service should be associated. Any service proper-
ty of the Application can be filtered on. If this filter is not defined
then the default Application is used. The default application can al-
so be specifically targeted using the application name .default .

For example, to select an Application with name myApp provide
the following filter:

(osgi.jaxrs.name=myApp)

To select all Applications in the whiteboard provide the following
value:

(osgi.jaxrs.name=*)

If no matching application exists this is reflected in the failure
DTOs. See JAX_RS_APPLICATION_SELECT .

† Note that this property is not valid for JAX-RS Application ser-
vices.

osgi . jaxrs .extension.select

JaxrsExtensionSelect

Str ing+

optional

A set of LDAP-style filters used to express dependencies on one
or more extension services. If a filter is provided then the JAX-RS
Whiteboard attempts to match that filter against the service prop-
erties of the Whiteboard runtime, the service properties of the
whiteboard application, and each of the extension services current-
ly active in the application. This search may occur in any order. If
all of the supplied filters are matched then the whiteboard service
is registered into the JAX-RS Whiteboard application.

For example, to require an extension which provides JSON serial-
ization advertising property name ser ia l ize.to with value JSON pro-
vide the following filter:

(serialize.to=JSON)

A more detailed version of this example is available in A JAX-RS
Whiteboard Extension Example on page 1190

If any filter(s) fail to match then this is reflected in the failure
DTOs. See JAX_RS_EXTENSION_SELECT .

Registering JAX-RS Resources JAX-RS Whiteboard Specification Version 1.0

Page 1182 OSGi Compendium Release 8

Service Property Type Description
osgi . jaxrs .whiteboard.target

JaxrsWhiteboardTarget

Str ing

optional

The value of this service property is an LDAP-style filter expres-
sion to select the JAX-RS Whiteboard(s) to handle this White-
board service. The LDAP filter is used to match JaxrsServiceRun-
t ime services. Each JAX-RS Whiteboard exposes exactly one
JaxrsServiceRuntime service. This property is used to associate
the Whiteboard service with the JAX-RS Whiteboard that reg-
istered the JaxrsServiceRuntime service. If this property is not
specified then the service will target all JAX-RS Whiteboards. See
JAX_RS_WHITEBOARD_TARGET .

151.4 Registering JAX-RS Resources
JAX-RS resources can be registered with the JAX-RS Whiteboard by registering them as Whiteboard
services. This means that the resource POJO implementations are registered in the Service Registry.
As JAX-RS resources are POJOs they may be registered using any valid service interface, including
Object . The JAX-RS container will then use reflection to discover methods and annotations on the
resource object, just as it would outside of OSGi.

As JAX-RS resources have no common interface type they are instead registered with the
osgi . jaxrs .resource service property with a value of "true" . This property serves as a marker to the
JAX-RS whiteboard runtime, indicating that this OSGi service should be hosted as a JAX-RS White-
board resource.

151.4.1 JAX-RS Resource mapping
JAX-RS resources use the Path annotation to bind themselves to particular URIs within the JAX-
RS container. The path annotation can be applied to the resource class, and to individual resource
methods. For example the following JAX-RS resource:

@Path("foo")
public class Foo {

 private final List<String> entries =
 Arrays.asList("fizz", "buzz", "fizzbuzz");

 @GET
 public List<String> getFoos() {
 return Collections.unmodifiableList(entries);
 }

 @GET
 @Path("{name}")
 public String getFoo(@PathParam("name") String name) {
 if(entries.contains(name)) {
 return "A foo called " + name;
 }
 throw new IllegalArgumentException(“No foo called “ + name);
 }

}

This JAX-RS resource defines two resource methods. The Path annotation applied to the class sets
the base URI for all methods in the resource. The getFoos() method is therefore bound to the URI

JAX-RS Whiteboard Specification Version 1.0 Registering JAX-RS Resources

OSGi Compendium Release 8 Page 1183

foo . The Path annotation on the getFoo() method makes this method a sub-resource which captures
the next token in the URI. This method is therefore bound to URIs of the form foo/buzz .

When used as an OSGi JAX-RS Whiteboard service a JAX-RS resource follows the same mapping
rules, but the base context(s) it uses are determined by the Application(s) to which it is mapped. For
example, when mapped to the default application of a whiteboard with endpoint http://127.0.0.1/
the getFoos() method would be available at http://127.0.0.1/foo .

151.4.1.1 Clashing resource mappings

Resource services bound to a JAX-RS whiteboard application share a single URI namespace with oth-
er resources in the application (including any existing static resources). When JAX-RS services are
bound it is possible that one or more methods on these services will map to the same URI. This situ-
ation is permitted by the JAX-RS specification which defines a detailed selection algorithm.

When clashes occur in the JAX-RS whiteboard then resources supplied using the service whiteboard
must be preferred to static resources contained in the application. If two or more whiteboard re-
sources exist then they must be ordered using their service ranking. Unlike for other services in the
JAX-RS whiteboard, whiteboard resource services must not be ordered using their natural ordering.
Whiteboard resource services with the same ranking must be considered equal, following the nor-
mal resource method selection rules defined in the JAX-RS specification. As per the core specifica-
tion, whiteboard services with no service.ranking property must be treated as having a ranking of 0 .

151.4.2 JAX-RS Whiteboard Resource Lifecycle
A key tenet of JAX-RS is that all resource objects are stateless. In the JAX-RS specification resources
therefore have one of two scopes, they are either singleton, or request-scoped. Singleton resources
are created once, potentially outside the JAX-RS container, and request-scoped resources are created
on-demand for each request, then discarded afterwards.

Typically JAX-RS developers are encouraged to write request-scoped resources, as this makes it dif-
ficult to accidentally write stateful components. In OSGi, however, it is more common to write sin-
gleton services. On demand instances of OSGi services can be created, but only if the service is regis-
tered as a prototype scope.

The JAX-RS whiteboard implementation is responsible for managing the mismatch between the
OSGi service lifecycle model and the JAX-RS resource lifecycle model. If the JAX-RS whiteboard
resource is registered as prototype scope then the implementation must treat the resources as re-
quest-scoped, creating a new service instance for each request and releasing it when the request
completes. Otherwise the JAX-RS whiteboard service must be registered as a singleton scope re-
source within the application. Singleton scope whiteboard resources must be released by the JAX-RS
whiteboard when the application with which they have been registered is removed from the white-
board, even if this is only a temporary situation.

If a failure occurs when getting the resource service this will prevent the service from being used,
which is reflected using a failure DTO. In such a case the system treats the resource as unusable.

When multiple JAX-RS Whiteboard implementations are present all of them can potentially
process the whiteboard resources. In such situations it can be useful to associate the servlet with a
specific whiteboard by specifying the osgi .http.whiteboard.target property on the service.

151.4.2.1 Resource Context Injection

JAX-RS resources may have objects injected into them by the JAX-RS container. These objects may be
related to an incoming request, for example an HTTP header value, or part of the container runtime.
Injected resources are annotated with a JAX-RS annotation, for example @Context , and may be in-
jected as method parameters, or as fields in the object.

If the JAX-RS injected objects are passed as method parameters then the resource object may be a
singleton. If, however, the objects are injected into fields by the JAX-RS container then the resource
should be declared as a prototype scope. JAX-RS Whiteboard implementations may support field in-

Registering JAX-RS Resources JAX-RS Whiteboard Specification Version 1.0

Page 1184 OSGi Compendium Release 8

jection for singleton resources, however this behavior is non portable, and may lead to errors at run-
time when using other implementations.

151.4.2.2 Request-Scoped Resources

Request-scoped resources are created on demand for a request and then discarded afterwards. Criti-
cally for OSGi services the JAX-RS whiteboard must not release a prototype scope service until after
the response has completed. If the resource makes use of a JAX-RS AsyncResponse , SseEventSink or
a StreamingOutput then this may be some time after the return of resource method, and potentially
on a different thread.

JAX-RS whiteboard implementations must therefore take special care not to release request scoped
instances until they are completely finished.

151.4.2.3 Asynchronous Responses

JAX-RS supports asynchronous responses either for single-valued results, or for streams of data.

Single valued results may be provided by the AsyncResponse type which is injected into resource
methods using the @Suspended annotation. If the resource is request scoped then the resource
must not be released until after the AsyncResponse has completed.

The following example demonstrates the use of the AsyncResponse :

@Component(service = MyResource.class,
 scope = ServiceScope.PROTOTYPE)
 @JaxrsResource
 public class MyResource {

 @Path(“foo”)
 @GET
 public void getFoo(@Suspended AsyncResponse async) {
 Promise<String> p = doLongRunningTaskAsynchronously();
 p.onSuccess(v -> async.resume(v))
 .onFailure(t -> async.resume(t));
 }
}

Single valued asynchronous results can also be provided by returning a suitable type from the re-
source method. This can be a CompletionStage as described in the JAX-RS specification, or an OSGi
Promise type. In this case the response from the resource method will be sent once the returned type
has completed, either successfully or by failing.

The following example demonstrates the use of an asynchronous return value:

@Component(service = MyResource.class,
 scope = ServiceScope.PROTOTYPE)
 @JaxrsResource
 public class MyResource {

 @Path(“foo”)
 @GET
 public Promise<String> getFoo() {
 Promise<String> p = doLongRunningTaskAsynchronously();
 return p;
 }
}

Multi-valued results in JAX-RS are handled using Server Sent Events. To send Server Sent Events a
JAX-RS resource must declare its produced media type appropriately, and inject its resource method

JAX-RS Whiteboard Specification Version 1.0 Registering JAX-RS Resources

OSGi Compendium Release 8 Page 1185

with a SseEventSink . The resource must also gain access to a Sse to use as a factory for Outbound
Server Sent Events. If the resource is request scoped then the resource must not be released until af-
ter the SseEvent has closed.

The following example demonstrates the use of the Server Sent Events:

@Component(service = MyResource.class,
 scope = ServiceScope.PROTOTYPE)
 @JaxrsResource
 public class MyResource {

 @Context
 Sse sse;

 @GET
 @Produces(MediaType.SERVER_SENT_EVENTS)
 public void getFoo(@Context SseEventSink sink) {
 PushStream<String> p = getStreamOfMessages();
 p.map(sse::newEvent)
 .forEach(e -> sink::send)
 .onResolve(sink::close);
 }
}

151.4.3 Resource Service Properties
The following table describes the properties that can be used by JAX-RS resources registered as
Whiteboard services. Additionally, the common properties listed in Table 151.2 on page 1181 are
supported.

Table 151.3 Service properties for JAX-RS Whiteboard resource services.

Service Property Type Description
osgi . jaxrs .resource

JaxrsResource

Str ing /
Boolean

required

Declares that this service must be processed by the JAX-RS white-
board when set to true . See JAX_RS_RESOURCE .

151.4.4 A JAX-RS Whiteboard Resource Example
The following example code uses Declarative Services annotations to register a JAX-RS Whiteboard
service.

@Component(service = MyResource.class,
 scope = ServiceScope.PROTOTYPE)
 @JaxrsResource
 public class MyResource {

 @GET
 @Path("hello")
 @Produces("text/plain")
 public String sayHello(){
 return "Hello World!";
 }
 }

This example registers the resource method at: /hel lo . Requests for http://www.acme.com/hel lo
map to the resource method, which is called to process the request.

Registering JAX-RS Extensions JAX-RS Whiteboard Specification Version 1.0

Page 1186 OSGi Compendium Release 8

To associate the above example resource with another application add the following service proper-
ty:

osgi.jaxrs.application.select=(osgi.jaxrs.name=myApp)

This can also be added using the property annotation:

@JaxrsApplicationSelect("(osgi.jaxrs.name=myApp)")

Setting this property requires a JAX-RS application named myApp to be registered:

@Component(service=Application.class)
@JaxrsName("myApp")
@JaxrsApplicationBase("foo")
public class MyApplication extends Application {}

Now the whiteboard resource will be available at http://www.acme.com/foo/hel lo as configured by
the custom JAX-RS application.

151.5 Registering JAX-RS Extensions
JAX-RS extensions can be registered with the JAX-RS Whiteboard by registering them as White-
board services. This means that the extension implementations are registered in the Service Reg-
istry. It is relatively common for a single extension type to provide more than one extension inter-
face, for example MessageBodyReader and MessageBodyWriter are often provided by a single ob-
ject.

Extension services must be registered with the JAX-RS application that they target using only the
interfaces that they advertise in the OSGi service registry. If, for example, an extension service ob-
ject implements MessageBodyReader and ContainerRequestFi l ter but only advertises Message-
BodyReader in its service registration then it must only be used as a MessageBodyReader

The following JAX-RS extension interfaces are supported by this specification:

• ContainerRequestFi l ter and ContainerResponseFi lter - these extensions are used to alter the
HTTP request and response parameters.

• ReaderInterceptor and Writer Interceptor - these extensions are used to alter the incoming or out-
going objects for the call.

• MessageBodyReader and MessageBodyWriter - these extensions are used to deserialize/serialize
objects to the wire for a given media type, for example appl icat ion/json .

• ContextResolver extensions are used to provide objects for injection into other JAX-RS resources
and extensions.

• ExceptionMapper extensions are used to map exceptions thrown by JAX-RS resources into re-
sponses.

• ParamConverterProvider extensions are used to map rich parameter types to and from String val-
ues.

• Feature and DynamicFeature - these extensions are used as a way to register multiple extension
types with the JAX-RS container. Dynamic Features further allow the extensions to be targeted to
specific resources within the JAX-RS container.

As JAX-RS extensions have many possible interface types, none of which are defined by this specifi-
cation, they must be registered with the osgi . jaxrs .extension service property with a value of true .
This property serves as a marker to the JAX-RS whiteboard runtime, indicating that this OSGi ser-
vice should be used as a JAX-RS Whiteboard extension.

JAX-RS Whiteboard Specification Version 1.0 Registering JAX-RS Extensions

OSGi Compendium Release 8 Page 1187

If the osgi . jaxrs .extension is added to a service which does not advertise any of the JAX-RS extension
types then this is an error, and must result in a failure DTO being created.

151.5.1 Name Binding and JAX-RS Extensions
By default JAX-RS extensions are applied to every request, however sometimes they are only need-
ed for a subset of resource methods. In this case a NameBinding annotation can be used to apply the
extension to a subset of resource methods. The following example declares a binding annotation
called FizzBuzz and uses it to bind an extension which replaces occurrences of "fizz" with "fizzbuzz".

@Target({ElementType.TYPE, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@NameBinding
public @interface FizzBuzz{}

@Component
@JaxrsExtension
@FizzBuzz
public class FizzBuzzReplacer implements WriterInterceptor {

 public void aroundWriteTo(WriterInterceptorContext ctx) {
 Object entity = ctx.getEntity();

 if(entity != null) {
 ctx.setEntity(entity.toString()
 .replace("fizz", "fizzbuzz"));
 }
 ctx.proceed();
 }
}

@Component(service=FizzResource.class)
@JaxrsResource
@Path("fizzbuzz")
public class FizzResource {

 @GET
 @FizzBuzz
 public String getFoos() {
 return "fizz, buzz, fizzbuzz";
 }
}

The result of an http request to the f izzbuzz URI will be fizzbuzz, buzz, fizzbuzzbuzz

The JAX-RS whiteboard implementation must support the use of NameBinding to limit the scope of
applied whiteboard extensions.

151.5.2 Extension ordering
JAX-RS filters can be annotated with @PreMatching to indicate that they should be applied before
the JAX-RS container works out which resource should be called by the incoming request. These fil-
ters can therefore change the request such that it maps to a different resource than it would have be-
fore the filter’s operation. Pre-matching filters cannot use NameBinding as no corresponding named
resource is available to the runtime when they operate.

When used in the OSGi JAX-RS Whiteboard JAX-RS extensions follow the same ordering rules as de-
fined by the JAX-RS specification. Where more than one extension of a particular type is available

Registering JAX-RS Extensions JAX-RS Whiteboard Specification Version 1.0

Page 1188 OSGi Compendium Release 8

then they are ordered according to their javax.annotation.Pr ior ity . If two extensions of the same
type have the same priority then the whiteboard implementation must break the tie by ordering the
extensions according to the natural ordering of their service references, with static extensions being
ranked below all whiteboard services.

The extension processing flow is as follows:

1. Server receives a request
2. Pre-matching ContainerRequestFi l ters are executed. Changes made here can affect which re-

source method is chosen
3. The Server matches the request to a resource method
4. Post-matching ContainerRequestFilters are executed. This includes execution of all filters which

match the incoming path and any name-bound filters.
5. ReaderInterceptors which match the incoming path are applied to the incoming request body. If

the request has no body then the ReaderInterceptors are not called.
6. The list of MessageBodyReaders applicable to the path and incoming content type are tried ac-

cording to the standard ordering rules. The first MessageBodyReader which states that it can de-
serialize the entity “wins” and is used to create the entity object. If the incoming request has no
body then no MessageBodyReaders are called.

7. If the resource is request scoped then it is instantiated and injected with relevant types from any
defined ContextResolvers. These are queried in order for each of the injectable fields.

8. The resource method is executed, passing any injected parameters from the request, and from
any ContextResolvers. These are queried in turn for each of the injectable parameters.

9. ContainerResponseFi lters are executed passing the method's response when it is complete. This
includes execution of all filters, in order, which match the incoming path and any name-bound
filters. Note that if an AsyncResponse is used then the response may not complete on the same
thread as the incoming request.

10. Writer Interceptor s which match the incoming path are applied to the outgoing response
stream. If the response has no body then the WriterInterceptors are not called.

11. The list of MessageBodyWriters applicable to the path and outgoing content type are tried ac-
cording to the standard ordering rules. The first writer which states that it can serialize the enti-
ty “wins” and is used to write out the entity object. If there is no response body then no writers
are called.

12. The Server response is flushed and committed. If the resource that created the response was re-
quest scoped then it must only be released once the response is complete. Note that this may be
at some point in the future, and on a different thread if the resource is using an AsyncResponse

151.5.3 Extension dependencies
The osgi . jaxrs .extension.select property described in Common Whiteboard Properties on page 1180
applies to extensions as well as JAX-RS resources. This is because one extension may depend on an-
other.

The most common reason for an extension to have a dependency is for a context injection depen-
dency. Dependencies are often provided by a ContextResolver so that they can be injected into
another extension. The following example demonstrates a simple dependency on a Jackson Ob-
jectMapper.

@JaxrsExtension
@JaxrsName("configProvider")
@Component
public class ConfigProvider implements ContextResolver {

 private ObjectMapper mapper = new ObjectMapper();

JAX-RS Whiteboard Specification Version 1.0 Registering JAX-RS Extensions

OSGi Compendium Release 8 Page 1189

 public <T> getContext(Class<T> clazz) {
 if(ObjectMapper.class.equals(clazz)) {
 return mapper;
 }
 return null;
 }
}

@JaxrsExtension
@JaxrsExtensionSelect("(osgi.jaxrs.name=configProvider)")
@Component(scope=ServiceScope.PROTOTYPE)
public class ConfiguredExtension implements WriterInterceptor {

 @Context
 private Providers providers;

 public void aroundWriteTo(WriterInterceptorContext ctx) {
 Object entity = ctx.getEntity();

 if(entity != null) {
 ObjectMapper mapper = providers
 .getContextResolver(ObjectMapper.class)
 .getContext(ObjectMapper.class);

 ctx.setEntity(mapper.writeValueAsString(entity));
 }
 ctx.proceed();
 }
}

151.5.4 Built in extensions
Depending on the capabilities of the JAX-RS whiteboard implementation, and any statically defined
extensions that make up a JAX-RS Whiteboard application, there may be numerous non standard
extensions available. These extensions must be represented using service properties on the JAX-RS
Service Runtime, or the whiteboard application as appropriate. This is why the extension select fil-
ters must also be matched against the JAX-RS Service Runtime service and the whiteboard applica-
tion being targeted.

151.5.5 JAX-RS Whiteboard Extension Lifecycle
JAX-RS extensions have a different lifecycle from JAX-RS resources, within a single application a
JAX-RS extension always behaves as a singleton. If a JAX-RS whiteboard extension is registered as
prototype scope then the whiteboard implementation must obtain a separate instance for every ap-
plication to which the extension is applied. Whiteboard extension services must be released by the
JAX-RS whiteboard when the application with which they have been registered is removed from the
whiteboard, even if this is only a temporary situation.

JAX-RS extensions often require configuration, and need to be configured differently for different
applications. This configuration is typically provided by a JAX-RS ContextResolver and injected in-
to fields of the extension by the JAX-RS container. It is therefore highly recommended that JAX-RS
Whiteboard extensions are always registered as prototype scope, so that separate instances can be
created for each whiteboard application.

If an extension is registered as a singleton service then it should not rely on any fields being inject-
ed by the JAX-RS Whiteboard implementation. JAX-RS Whiteboard implementations may support

Registering JAX-RS Applications JAX-RS Whiteboard Specification Version 1.0

Page 1190 OSGi Compendium Release 8

field injection for singleton extensions, however this behavior is non portable, and may lead to er-
rors at runtime when using other implementations.

151.5.6 Extension Service Properties
The following table describes the properties that can be used by JAX-RS extensions registered as
Whiteboard services. Additionally, the common properties listed in Table 151.2 on page 1181 are
supported.

Table 151.4 Service properties for JAX-RS Whiteboard extension services.

Service Property Type Description
osgi . jaxrs .extension

JaxrsExtension

Str ing /
Boolean

required

Declares that this service must be processed by the JAX-RS white-
board when set to true . See JAX_RS_EXTENSION .

151.5.7 A JAX-RS Whiteboard Extension Example
The following example code uses Declarative Services annotations to register a require JAX-RS
Whiteboard extension which provides JSON support, and requires the extension from a JAX-RS
whiteboard resource.

@Component(property="serialize.to=JSON")
@JaxrsExtension
public class JsonProvider implements MessageBodyReader,
 MessageBodyWriter {
 ...
}

 @Component(service = Object.class,
 scope = ServiceScope.PROTOTYPE)
 @JaxrsResource
 @JaxrsExtensionSelect("(serialize.to=JSON)")
 public class MyResource {

 @GET
 @Path("hello")
 @Produces(MediaType.APPLICATION_JSON)
 public List<String> getList(){
 return Arrays.asList("Hello", "World!");
 }
 }

151.6 Registering JAX-RS Applications
The JAX-RS specification defines the concept of an Appl icat ion . An application is an object which
collects together one or more JAX-RS resources and extensions, and provides them to the JAX-RS
container. These resources may be provided as pre-instantiated singletons, or as Class objects to be
reflectively instantiated.

The OSGi JAX-RS whiteboard supports direct registration of Applications for two reasons:

• To support the use of legacy JAX-RS applications with the whiteboard
• To provide simple scoping of JAX-RS resources and extensions within a whiteboard, in this sce-

nario it can be desirable to register an otherwise empty Application. This application can then be
targeted by whiteboard services using the osgi . jaxrs .appl icat ion.select property.

JAX-RS Whiteboard Specification Version 1.0 Registering JAX-RS Applications

OSGi Compendium Release 8 Page 1191

Appl icat ions can be registered with the JAX-RS Whiteboard by registering them as Whiteboard ser-
vices which advertise themselves using the JAX-RS Appl icat ion type. In addition the whiteboard
services must provide a osgi . jaxrs .appl icat ion.base property. The value of this property is the URI
path relative to the root whiteboard context at which the application will be registered. Note that
the value of any Appl icat ionPath annotation will be applied by the container in addition to the
osgi . jaxrs .appl icat ion.base .

Each registered Whiteboard Application service is provided as a separate application within the
whiteboard, and is isolated from other applications, including the default application. Whiteboard
applications may be empty, may include zero or more static resources, and may include zero or
more static extensions.

151.6.1 Application shadowing
The base URI for each application within the whiteboard must be unique. If two or more applica-
tions targeting the same whiteboard are registered with the same base URI then only the highest
ranked service will be made available. All other application services with that URI will have a fail-
ure DTO created for them. The same rules also apply to the osgi . jaxrs .name property, with the high-
est ranked service shadowing other applications with the same name.

The default application is implicitly created by the whiteboard and has the name .default . The de-
fault application has a lower ranking than all registered services. Therefore an application regis-
tered with a base of / will shadow a default application bound at / .

A whiteboard application service may set an osgi . jaxrs .name of .default to replace the default appli-
cation. This technique may be used to rebind the default application to a base uri other than / .

If a whiteboard application fails (for example if the service get fails), or cannot be immediately de-
ployed (for example if it has an unsatisfied osgi . jaxrs .extension.select) then any applications that it
shadows are still shadowed and relevant failure DTOs are created for all of the applications.

151.6.2 Application Extension Dependencies
It is possible for an application to require additional whiteboard extensions before it is eligible to be
hosted by the whiteboard. When making this determination the Whiteboard implementation must
perform a dry-run validation of the osgi . jaxrs .extension.select filter, applying all of the whiteboard
extensions targeted to the application before determining whether the application's requirements
are met.

151.6.3 Application Service Properties
The following table describes the properties that can be used by JAX-RS applications registered as
Whiteboard services. Additionally, the common properties listed in Table 151.2 on page 1181 are
supported, except for the osgi . jaxrs .appl icat ion.select property.

Table 151.5 Service properties for JAX-RS Whiteboard application services.

Service Property Type Description
osgi . jaxrs .appl icat ion.base

JaxrsAppl icat ionBase

Str ing

required

Declares that this service must be processed by the JAX-RS white-
board, and defines the URI, relative to the root context of the
whiteboard, at which the Application should be registered. See
JAX_RS_APPLICATION_BASE .

151.6.4 Accessing the Application service properties
In JAX-RS the @Context annotation may be used to inject the Appl icat ion instance into a resource
or extension. Application configuration properties can also be injected using the Configurat ion
type.

Advertising JAX-RS Endpoints JAX-RS Whiteboard Specification Version 1.0

Page 1192 OSGi Compendium Release 8

When using the JAX-RS Whiteboard it can also be necessary to access the service properties as-
sociated with the application hosting the resource, for example to allow customization of the
resource's response. To this end, the JAX-RS whiteboard implementation must make the Applica-
tion service properties available as a Map in the configuration. The key used to store this map is
osgi . jaxrs .appl icat ion.servicePropert ies , and it can be found in any injected Configurat ion instance.

Furthermore, for Feature and DynamicFeature extensions the application service properties must be
visible in the FeatureContext passed to the extension when applying it to the application. The Fea-
tureContext interface provides programmatic access to the Configurat ion for the application, so this
visibility is achieved in the same manner as for an injected Configuration instance.

In the case where the hosting application is not an OSGi service, for example a Whiteboard
implementation may choose to provide its default application as an internal detail, then the
osgi . jaxrs .appl icat ion.servicePropert ies map must exist containing the osgi . jaxrs .name of the ap-
plication and the service properties associated with the JaxrsServiceRuntime service.

151.6.5 A JAX-RS Whiteboard Application Example
The following example code uses Declarative Services annotations to register a JAX-RS Whiteboard
application, and shows how to target an additional whiteboard resource to that application.

@Component(service=Application.class)
@JaxrsApplicationBase("example")
@JaxrsName("myApp")
public class MyApplication extends Application {
 public Set<Class<?>> getClasses() {
 return new HashSet<>(Arrays.asList(StaticResource.class));
 }
}

 @Component(service = MyResource.class,
 scope = ServiceScope.PROTOTYPE)
 @JaxrsResource
 @JaxrsApplicationSelect("(osgi.jaxrs.name=myApp)")
 public class MyResource {

 @GET
 @Path("hello")
 @Produces("text/plain")
 public List<String> getList(){
 return Arrays.asList("Hello", "World!");
 }
 }

The MyResource service will be available at http://www.acme.com/example/hel lo

151.7 Advertising JAX-RS Endpoints
All JAX-RS Whiteboard services may be registered with an optional osgi . jaxrs .name property. For
Whiteboard resources and applications (but not extensions), if the registered service has set this
property then the JAX-RS container must register a JaxrsEndpoint service identifying the URI(s) that
can be used to access the service.

The endpoint service must declare the following properties:

JAX-RS Whiteboard Specification Version 1.0 Whiteboard Error Handling

OSGi Compendium Release 8 Page 1193

Table 151.6 Service properties for JAX-RS Whiteboard application services.

Service Property Name Type Description
osgi . jaxrs .name Str ing

required

The name of the JAX-RS bean or application that has been regis-
tered.

osgi . jaxrs .ur i L ist<Str ing>

required

The URI(s) that can be used to access the JAX-RS resource or ap-
plication

service.exported. interfaces Str ing

required

Set appropriately to export the Endpoint service using OSGi Re-
mote Services.

osgi . jaxrs .bundle.symbol icname Str ing

required

Set to the symbolic name of the bundle that provided the JAX-
RS whiteboard service.

osgi . jaxrs .bundle. id Long

required

Set to the id of the bundle that provided the JAX-RS service

osgi . jaxrs .bundle.version Version

required

Set to the version of the bundle that provided the JAX-RS ser-
vice

osgi . jaxrs .service. id Long

required

Set to the service id of the JAX-RS service

151.8 Whiteboard Error Handling
There are a number of error cases where the JAX-RS whiteboard may be unable to correctly register
a resource. All of these cases must result in a failure DTO being created with the appropriate error
code.

• Failure to obtain a service instance - In the case where a published service is unable to be obtained
by the JAX-RS whiteboard then the service is deny listed by the container. A failure DTO is made
available from the JaxrsServiceRuntime representing the deny listed service object.

• Invalid service objects - JAX-RS extension and Application objects are required to advertise certain
interfaces, or to extend certain types. If a service advertises itself using a JAX-RS whiteboard ser-
vice property, but fails to advertise an appropriate JAX-RS type, or fails to provide any resource
methods then this is an error and the service must be deny listed by the container. A failure DTO
is available from the JaxrsServiceRuntime representing the deny listed service object.

• Overlapping Application mappings - As with resources in a single application it is possible that
two JAX-RS resources will register for the same path across applications. In this case the appli-
cation with the longer base URI is shadowed, and a failure DTO is available from the JaxrsSer-
viceRuntime representing the shadowed Application. Note that determining when two JAX-RS
applications overlap requires an analysis of the resource paths and all of sub-resource paths. If
any of these paths clash then the entirety of the shadowed application must be unregistered and
marked as a failure. It is an implementation error for some application resource paths to be avail-
able while others are shadowed.

• Class-Space Compatibility - Much of the JAX-RS mapping definition is handled using annotations
with runtime visibility. As JAX-RS beans are POJOs there is no guarantee of class-space compat-
ibility when the JAX-RS implementation searches for whiteboard services. The JAX-RS white-
board must therefore confirm that the registered service shares the correct view of the JAX-RS
packages. If the class space is not consistent then the JAX-RS whiteboard container must not reg-
ister the services, but instead should create a failure DTO indicating that the JAX-RS object is un-
able to be registered due to an incompatible class-space.

• Missing Required Extensions - If a JAX-RS resource or extension requires one or more extensions us-
ing a osgi . jaxrs .extension.select filter then at any given time it is possible that the JAX-RS con-

The JAX-RS Client API JAX-RS Whiteboard Specification Version 1.0

Page 1194 OSGi Compendium Release 8

tainer will not be able to host the resource. At this time a failure DTO must be created for the rel-
evant resource or extension service.

151.9 The JAX-RS Client API
The JAX-RS specification includes a client API for making REST requests. The normal mechanism
for obtaining a Client is to use a ClientBui lder , which is instantiated using a static factory method.
Static factory methods require the reflective loading of classes and suffer from significant lifecycle
issues, as there is no way to force indirectly wired objects to be discarded if the implementation bun-
dle is stopped or uninstalled.

JAX-RS implementations must therefore register their ClientBuilder implementations as OSGi ser-
vices for bundles to use in making Client instances. The ClientBuilder must be registered as a pro-
totype scoped service. This allows bundles to configure multiple separate Client instances, and en-
sures that separate bundles will never accidentally provide conflicting configuration to the same
ClientBuilder instance.

151.9.1 Client Filters, Interceptors, Readers and Writers
While Container extensions can be made available using whiteboard services, the same is not true
for Clients. There are two main reasons for this:

1. There is no simple way to scope the filters and interceptors that would be applied to a given
client. In a multi-tenant environment this could lead to unexpected behaviors.

2. Clients are not, in general, expected to be extended by third parties. The Client model is de-
signed to be used by a bundle when making requests from a REST API. If further requests need
to be made by a different bundle then it should create and configure a separate client. This is dif-
ferent from the whiteboard server, where one container port may host several distinct sets of re-
sources.

In order to add filters, interceptors, readers and writers to the JAX-RS client users should use the
ClientBui lder#register() method when building their client.

151.9.2 Reactive Clients
The JAX-RS client API supports both synchronous and asynchronous calls. In JAX-RS 2.1 the asyn-
chronous behavior of the client was extended using the RxInvoker (reactive invoker) interface. All
clients are required to support a reactive invoker which returns CompletionStage instances, howev-
er in OSGi the common representation of an asynchronous return is the Promise . This specification
therefore provides the PromiseRxInvoker interface which can be used to obtain Promises from the
JAX-RS client.

It is the responsibility of the JAX-RS whiteboard implementation to create instances of PromiseRxIn-
voker . The exact mechanism by which instances are created is undefined, however it is possible to
register a portable factory to create PromiseRxInvoker instances by implementing the RxInvoker-
Provider interface and registering this type with the JAX-RS client. This portable implementation,
however, is forced to use a blocking model by the underlying JAX-RS API, and so implementations
may choose to implement a more optimized non-blocking model using internal types.

Clients of this specification may make use of the PromiseRxInvoker using normal JAX-RS idioms. For
example:

Client client = clientBuilder.build();
Promise<String> p = client.target(REST_SERVICE_URL)
 .path("/foo")
 .path("/{name}")

JAX-RS Whiteboard Specification Version 1.0 The JAX-RS Client API

OSGi Compendium Release 8 Page 1195

 .resolveTemplate("name", buzz)
 .request()
 .rx(PromiseRxInvoker.class)
 .get(String.class);

151.9.3 Consuming Server Sent Events
In JAX-RS 2.1 support was added for Server Sent Events. These events are consumed by a REST client
using the SseEventSource . The SseEventSource is not created by a JAX-RS client instance, but is
normally created using a static factory method, which does not work in a modular environment.
Therefore the JAX-RS whiteboard implementation must register a SseEventSourceFactory service in
the service registry. This object serves as a factory for the JAX-RS SSE types.

Note that the SseEventSource has no way to register filters or message body processors. All of the
filters and necessary processors must be registered with the JAX-RS client that is used to create the
WebTarget used when building the SseEventSource. A client may therefore consume Server Sent
Events in the following way:

Client client = clientBuilder.build();

WebTarget target = client.target(REST_SERVICE_URL)
 .path("/foo")
 .path("/{name}")
 .resolveTemplate("name", buzz);

SseEventSource source = sseFactory.newSource(target);

source.register(event -> doSomething(event));

source.open();

A SseEventSource may easily be converted into a PushEventSource (and consequently a
PushStream) as follows. Note that the implementation does not respond to back-pressure requests
and should typically be used with a buffer.

SseEventSource source = sseBuilder.newSource(target);

PushEventSource<InboundSseEvent> pes = pec ->
 source.register(e -> {
 try {
 if(pec.accept(PushEvent.data(e)) < 0) {
 source.close();
 }
 } catch (Exception e) {
 try {
 pec.accept(PushEvent.error(e));
 } finally {
 source.close();
 }
 }
 },
 t -> pec.accept(PushEvent.error(t)),
 () -> pec.accept(PushEvent.close()));
 source.open();
 return source;
 };

Portability and Interoperability JAX-RS Whiteboard Specification Version 1.0

Page 1196 OSGi Compendium Release 8

151.10 Portability and Interoperability
The extensions defined by the JAX-RS specification make JAX-RS runtimes highly plugable, and it
is common to extend the behavior of an application using this model. In many cases the custom
behaviors are specific to a particular use case, for example mapping a specific exception into a Re-
sponse , and there is no need for portability. In some common cases, however, there are extensions
that can be used across a great many applications.

In order to ensure that a JAX-RS whiteboard application can make use of a common extension ser-
vice in a portable way this specification defines standard service property names that should be reg-
istered, as appropriate, by whiteboard extension services, whiteboard applications with static exten-
sions, and JAX-RS whiteboard implementations that provide built-in extension capabilities.

151.10.1 Media Type support
A common use of the JAX-RS extension mechanism is to provide support for additional media types,
both for consuming incoming requests and for producing responses. All JAX-RS whiteboards must
implicitly support text/plain and appl icat ion/xml (using JAXB), however commonly used media
types, such as appl icat ion/json must be provided as an extension.

To ensure that whiteboard resources can depend on support for a particular media type in a portable
way this specification defines the osgi . jaxrs .media.type property. This property key should be regis-
tered with one or more media types that are supported, and may be provided by:

• A Whiteboard extension - if the extension provides general purpose support for reading from
and writing to a media type then it should register this property.

• A Whiteboard application - if the application provides general purpose support for reading from
and writing to a media type using a static extension then it should register this property.

• A JAX-RS Whiteboard implementation - if the implementation provides general purpose built-in
support for reading from and writing to a media type then it should register this property. If the
built-in extension is always available then it should also be advertised by the osgi.service Capabili-
ty on page 1198 for the JaxrsServiceRuntime.

The term general purpose is used to indicate that the media type support must not require im-
plementation specific mapping metadata (for example annotations) and should, at a mini-
mum, work with the OSGi scalar types and DTOs. The property key is available as a constant in
JAX_RS_MEDIA_TYPE .

151.10.1.1 Media Type names, wildcards and suffixes

Where possible the value(s) of the osgi . jaxrs .media.type property should use the IANA registered
names of the media type(s) supported, for example appl icat ion/json . Officially registered media
types are available from [4] IANA Media Type Registrations. If there is no officially registered media
type then a vendor type should be used. Personal types may also be used, however due to the lack of
portability afforded by personal types it is recommended that a non-standard property key is used
for personal types.

Wildcard types (containing a *) are often used by extensions to indicate that they can create a vari-
ety of different media types. Rarely this is because the extension can serialize into multiple different
formats. More typically this is because the extension can serialize into a format which has multiple
names, or multiple formats which use the same basic serialization. Suffixes can further modify this
behavior, for example VCards may be serialized as XML using appl icat ion/vcard+xml or as JSON us-
ing appl icat ion/vcard+json.

Wildcard types must not be used as values for the osgi . jaxrs .media.type property as these do not
provide sufficient information for whiteboard resources to reliably select a media type provider.
Where a provider wishes to advertise support for a general suffix, for example +json or +cbor then

JAX-RS Whiteboard Specification Version 1.0 Portability and Interoperability

OSGi Compendium Release 8 Page 1197

the provider must advertise the primary media type associated with the suffix; in the supplied ex-
ample these would be appl icat ion/json and appl icat ion/cbor. Clients wishing to use suffixed types
should therefore also depend on the primary media type, not the suffixed type, if they wish to be
portable. Where greater specificity is required it is recommended that the extension be selected
based on additional custom properties. This should also be used for suffixes that have no primary
type, for example +der . Official media type registrations are available from [5] IANA Media Type Suf-
fix Registrations

151.10.1.2 Media Type Selection Example

The most commonly required media type for JAX-RS services is appl icat ion/json . To this end this
specification defines a Component Property annotation JSONRequired which can be applied to a
Declarative Services component to express:

• An extension requirement for runtime appl icat ion/json media type support
• A requirement for the JAX-RS whiteboard
• An optional active time requirement for appl icat ion/json media type support, for use in applica-

tion resolution/assembly.

Custom third-party annotations can easily be created to support additional media types as neces-
sary, and are used as follows:

@Component(service = MyResource.class,
 scope = ServiceScope.PROTOTYPE)
 @JaxrsResource
 @JSONRequired
 @Produces(MediaType.APPLICATION_JSON)
 public class MyResource {

 @Path(“foo”)
 @GET
 public List<String> getFoos() {
 return Arrays.asList("foo", "bar", "baz");
 }
}

A corresponding component property type (JaxrsMediaType) exists for use on a JAX-RS whiteboard
extension or application service which provides media type support. This can be used to declare
that one or more media types are supported.

@Component(scope = ServiceScope.PROTOTYPE)
 @JaxrsExtension
 @JaxrsMediaType(MediaType.APPLICATION_JSON)
 public class MyFeature implements Feature {

 public boolean configure(FeatureContext context) {
 context.register(MyJSONCodec.class);
 return true;
 }
}

Capabilities JAX-RS Whiteboard Specification Version 1.0

Page 1198 OSGi Compendium Release 8

151.11 Capabilities

151.11.1 osgi.implementation Capability
The JAX-RS Whiteboard implementation bundle must provide the osgi . implementation capabili-
ty with name osgi . jaxrs . This capability can be used by provisioning tools and during resolution to
ensure that a JAX-RS Whiteboard implementation is present to process the Whiteboard services de-
fined in this specification. The capability must also declare a uses constraint for the javax.ws.rs .*
specification packages, and for the and OSGi JAX-RS Whiteboard package. The version of this capa-
bility must match the version of this specification:

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.jaxrs";
 uses:="javax.ws.rs, javax.ws.rs.client, javax.ws.rs.container,
 javax.ws.rs.core, javax.ws.rs.ext, javax.ws.rs.sse,
 org.osgi.service.jaxrs.whiteboard";
 version:Version="1.0"

This capability must follow the rules defined for the osgi.implementation Namespace on page 727.

151.11.2 osgi.contract Capability
The JAX-RS Whiteboard implementation must provide a capability in the osgi .contract namespace
with name JavaJAXRS if it exports the JAX-RS specification packages. See [5] Portable Java Contract De-
finitions.

Providing the osgi .contract capability enables developer to build portable bundles for packages that
are not versioned under OSGi Semantic Versioning rules. For more details see osgi.contract Namespace
on page 725.

If the JAX-RS API is provided by another bundle, the JAX-RS Whiteboard implementation must be a
consumer of the API and require the contract.

151.11.3 osgi.service Capability
The bundle providing the JaxrsServiceRuntime service must provide a capability in the osgi .service
namespace representing this service. This capability must also declare a uses constraint for the
org.osgi .service. jaxrs .runtime and org.osgi .service. jaxrs .runtime.dto packages:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.jaxrs.runtime.JaxrsServiceRuntime";
 uses:="org.osgi.service.jaxrs.runtime,org.osgi.service.jaxrs.runtime.dto"

The bundle providing the javax.ws.rs .c l ient.Cl ientBui lder service must also provide a capability in
the osgi .service namespace representing this service. This capability must declare that the service is
prototype scope, and that there is a uses constraint for the javax.ws.rs .c l ient package:

Provide-Capability: osgi.service;
 objectClass:List<String>="javax.ws.rs.client.ClientBuilder";
 uses:="javax.ws.rs.client,org.osgi.service.jaxrs.client";
 service.scope="prototype"

The bundle providing the org.osgi .service. jaxrs .c l ient.SseEventSourceFactory service must also
provide a capability in the osgi .service namespace representing this service. This capability must
declare a uses constraint for the org.osgi .service. jaxrs .c l ient package:

Provide-Capability: osgi.service;

JAX-RS Whiteboard Specification Version 1.0 Security

OSGi Compendium Release 8 Page 1199

 objectClass:List<String>="org.osgi.service.jaxrs.client.SseEventSourceFactory";
 uses:="org.osgi.service.jaxrs.client"

These capabilities must follow the rules defined for the osgi.service Namespace on page 727.

151.12 Security
This section only applies when executing in an OSGi environment which is enforcing Java permis-
sions.

151.12.1 Service Permissions
Bundles that need to register JAX-RS Whiteboard services must be granted
ServicePermission[interfaceName, REGISTER] where interface name is the relevant JAX-RS White-
board service interface name.

The Http Whiteboard implementation must be granted ServicePermission[*, GET] to retrieve the
JAX-RS Whiteboard services from the service registry.

151.12.2 Runtime Introspection
Bundles that need to introspect the state of the JAX-RS runtime will need
ServicePermission[org.osgi .service. jaxrs .runtime. JaxrsServiceRuntime, GET] to obtain the JAX-RS
Service Runtime service and access the DTO types.

151.12.3 Calling JAX-RS Whiteboard Services
This specification does not require that the JAX-RS Whiteboard implementation is granted All Per-
mission or wraps calls to the JAX-RS Whiteboard services in a doPriv i leged block. Therefore, it is the
responsibility of the JAX-RS Whiteboard services to use a doPriv i leged block when performing privi-
leged operations.

151.13 org.osgi.service.jaxrs.client

JAX-RS Client Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. jaxrs .c l ient; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. jaxrs .c l ient; vers ion="[1.0,1.1)"

151.13.1 Summary

• PromiseRxInvoker - A specialization of the RxInvoker which creates Promise instances.
• SseEventSourceFactory - A factory for SseEventSource instances.

151.13.2 public interface PromiseRxInvoker
extends RxInvoker<Promise>
A specialization of the RxInvoker which creates Promise instances.

org.osgi.service.jaxrs.client JAX-RS Whiteboard Specification Version 1.0

Page 1200 OSGi Compendium Release 8

Bundles may obtain an instance of a PromiseRxInvoker using a ClientBuilder obtained from the ser-
vice registry and calling the javax.ws.rs.client.Invocation.Builder.rx(Class) method.

Provider Type Consumers of this API must not implement this type

151.13.2.1 public Promise<Response> delete()

151.13.2.2 public Promise<R> delete(Class<R> arg0)

Type Parameters <R>

151.13.2.3 public Promise<R> delete(GenericType<R> arg0)

Type Parameters <R>

151.13.2.4 public Promise<Response> get()

151.13.2.5 public Promise<R> get(Class<R> arg0)

Type Parameters <R>

151.13.2.6 public Promise<R> get(GenericType<R> arg0)

Type Parameters <R>

151.13.2.7 public Promise<Response> head()

151.13.2.8 public Promise<R> method(String arg0, Class<R> arg1)

Type Parameters <R>

151.13.2.9 public Promise<R> method(String arg0, Entity<?> arg1, Class<R> arg2)

Type Parameters <R>

151.13.2.10 public Promise<R> method(String arg0, Entity<?> arg1, GenericType<R> arg2)

Type Parameters <R>

151.13.2.11 public Promise<Response> method(String arg0, Entity<?> arg1)

151.13.2.12 public Promise<R> method(String arg0, GenericType<R> arg1)

Type Parameters <R>

151.13.2.13 public Promise<Response> method(String arg0)

151.13.2.14 public Promise<Response> options()

151.13.2.15 public Promise<R> options(Class<R> arg0)

Type Parameters <R>

151.13.2.16 public Promise<R> options(GenericType<R> arg0)

Type Parameters <R>

151.13.2.17 public Promise<R> post(Entity<?> arg0, Class<R> arg1)

Type Parameters <R>

JAX-RS Whiteboard Specification Version 1.0 org.osgi.service.jaxrs.runtime

OSGi Compendium Release 8 Page 1201

151.13.2.18 public Promise<R> post(Entity<?> arg0, GenericType<R> arg1)

Type Parameters <R>

151.13.2.19 public Promise<Response> post(Entity<?> arg0)

151.13.2.20 public Promise<R> put(Entity<?> arg0, Class<R> arg1)

Type Parameters <R>

151.13.2.21 public Promise<R> put(Entity<?> arg0, GenericType<R> arg1)

Type Parameters <R>

151.13.2.22 public Promise<Response> put(Entity<?> arg0)

151.13.2.23 public Promise<Response> trace()

151.13.2.24 public Promise<R> trace(Class<R> arg0)

Type Parameters <R>

151.13.2.25 public Promise<R> trace(GenericType<R> arg0)

Type Parameters <R>

151.13.3 public interface SseEventSourceFactory
A factory for SseEventSource instances.

Bundles may obtain an instance of a SseEventSourceFactory using the service registry. This service
may then be used to construct SseEventSource instances for the supplied WebTarget.

Provider Type Consumers of this API must not implement this type

151.13.3.1 public SseEventSource.Builder newBuilder(WebTarget target)

target The web target to consume events from

□ Create a new javax.ws.rs.sse.SseEventSource.Builder

Returns a builder which can be used to further configure the event source

151.13.3.2 public SseEventSource newSource(WebTarget target)

target The web target to consume events from

□ Create a new SseEventSource

Returns a configured event source

151.14 org.osgi.service.jaxrs.runtime

JAX-RS Runtime Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

org.osgi.service.jaxrs.runtime JAX-RS Whiteboard Specification Version 1.0

Page 1202 OSGi Compendium Release 8

Import-Package: org.osgi .service. jaxrs .runtime; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. jaxrs .runtime; vers ion="[1.0,1.1)"

151.14.1 Summary

• JaxrsEndpoint - A JaxrsEndpoint service represents a registered JAX-RS whiteboard resource or
application.

• JaxrsServiceRuntime - The JaxrsServiceRuntime service represents the runtime information of a
JAX-RS Whiteboard implementation.

• JaxrsServiceRuntimeConstants - Defines standard names for JAX-RS Runtime Service constants.

151.14.2 public interface JaxrsEndpoint
A JaxrsEndpoint service represents a registered JAX-RS whiteboard resource or application.

It provides access to service properties representing the service, and the URI at which it is available.

Provider Type Consumers of this API must not implement this type

151.14.2.1 public static final String JAX_RS_BUNDLE_ID = "osgi.jaxrs.bundle.id"

A service property providing the bundle id of the bundle which registered the whiteboard service.

151.14.2.2 public static final String JAX_RS_BUNDLE_SYMBOLICNAME = "osgi.jaxrs.bundle.symbolicname"

A service property providing the symbolic name of the bundle which registered the whiteboard ser-
vice.

151.14.2.3 public static final String JAX_RS_BUNDLE_VERSION = "osgi.jaxrs.bundle.version"

A service property providing the bundle version of the bundle which registered the whiteboard ser-
vice.

151.14.2.4 public static final String JAX_RS_SERVICE_ID = "osgi.jaxrs.service.id"

A service property providing the service id of the whiteboard service.

151.14.2.5 public static final String JAX_RS_URI = "osgi.jaxrs.uri"

A service property representing the URI(s) at which this resource or application is available.

151.14.3 public interface JaxrsServiceRuntime
The JaxrsServiceRuntime service represents the runtime information of a JAX-RS Whiteboard im-
plementation.

It provides access to DTOs representing the current state of the service.

The JaxrsServiceRuntime service must be registered with the
JaxrsServiceRuntimeConstants.JAX_RS_SERVICE_ENDPOINT service property.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

151.14.3.1 public RuntimeDTO getRuntimeDTO()

□ Return the runtime DTO representing the current state.

Returns The runtime DTO.

151.14.4 public final class JaxrsServiceRuntimeConstants
Defines standard names for JAX-RS Runtime Service constants.

JAX-RS Whiteboard Specification Version 1.0 org.osgi.service.jaxrs.runtime.dto

OSGi Compendium Release 8 Page 1203

151.14.4.1 public static final String JAX_RS_SERVICE_ENDPOINT = "osgi.jaxrs.endpoint"

JAX-RS Runtime Service service property specifying the endpoints upon which the JAX-RS imple-
mentation is available.

An endpoint value is a URL or a relative path, to which the JAX-RS Whiteboard implementation is
listening. For example, http://192.168.1.10:8080/ or /myapp/ . A relative path may be used if the
scheme and authority parts of the URL are not known, e.g. if a bridged Http Whiteboard implemen-
tation is used. If the JAX-RS Whiteboard implementation is serving the root context and neither
scheme nor authority is known, the value of the property is "/". Both, a URL and a relative path, must
end with a slash.

A JAX-RS Whiteboard implementation can be listening on multiple endpoints.

The value of this service property must be of type Str ing , Str ing[] , or Collect ion<Str ing> .

151.15 org.osgi.service.jaxrs.runtime.dto

JAX-RS Runtime DTO Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. jaxrs .runtime.dto; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. jaxrs .runtime.dto; vers ion="[1.0,1.1)"

151.15.1 Summary

• Appl icat ionDTO - Represents a JAX-RS Application service.
• BaseAppl icat ionDTO - Represents common information about a JAX-RS application service.
• BaseDTO - Represents common information about a JAX-RS service.
• BaseExtensionDTO - Represents common information about a JAX-RS extension service.
• DTOConstants - Defines standard constants for the DTOs.
• ExtensionDTO - Represents a JAX-RS Filter service currently being hosted by the JaxrsSer-

viceRuntime
• Fai ledAppl icat ionDTO - Represents a JAX-RS service which is currently not being used due to a

problem.
• Fai ledExtensionDTO - Represents a JAX-RS Extension service which is currently not being used

due to a problem.
• Fai ledResourceDTO - Represents a JAX-RS resource service which is currently not being used

due to a problem.
• ResourceDTO - Represents common information about a JAX-RS resource service.
• ResourceMethodInfoDTO - Represents information about a JAX-RS resource method.
• RuntimeDTO - Represents the state of a JAX-RS Service Runtime.

151.15.2 public class ApplicationDTO
extends BaseApplicationDTO
Represents a JAX-RS Application service.

Concurrency Not Thread-safe

org.osgi.service.jaxrs.runtime.dto JAX-RS Whiteboard Specification Version 1.0

Page 1204 OSGi Compendium Release 8

151.15.2.1 public ResourceMethodInfoDTO[] resourceMethods

The RequestPaths handled by statically defined resources in this Application

151.15.2.2 public ApplicationDTO()

151.15.3 public abstract class BaseApplicationDTO
extends BaseDTO
Represents common information about a JAX-RS application service.

Concurrency Not Thread-safe

151.15.3.1 public String base

The base URI of the resource defined by JaxrsWhiteboardConstants.JAX_RS_APPLICATION_BASE.

151.15.3.2 public ExtensionDTO[] extensionDTOs

Returns the representations of the dynamic JAX-RS extension services associated with this Applica-
tion. The returned array may be empty if this application is currently not associated with any JAX-
RS extension services.

151.15.3.3 public ResourceDTO[] resourceDTOs

Returns the representations of the dynamic JAX-RS resource services associated with this Applica-
tion. The returned array may be empty if this application is currently not associated with any JAX-
RS Resource services.

151.15.3.4 public BaseApplicationDTO()

151.15.4 public abstract class BaseDTO
extends DTO
Represents common information about a JAX-RS service.

Concurrency Not Thread-safe

151.15.4.1 public String name

The name of the service if it set one using JaxrsWhiteboardConstants.JAX_RS_NAME, otherwise
this value will contain the generated name for this service

151.15.4.2 public long serviceId

Service property identifying the JAX-RS service

151.15.4.3 public BaseDTO()

151.15.5 public abstract class BaseExtensionDTO
extends BaseDTO
Represents common information about a JAX-RS extension service.

Concurrency Not Thread-safe

151.15.5.1 public String[] extensionTypes

The extension types recognized for this service.

151.15.5.2 public BaseExtensionDTO()

JAX-RS Whiteboard Specification Version 1.0 org.osgi.service.jaxrs.runtime.dto

OSGi Compendium Release 8 Page 1205

151.15.6 public final class DTOConstants
Defines standard constants for the DTOs. The error codes are defined to take the same values as used
by the Http Service Whiteboard

151.15.6.1 public static final int FAILURE_REASON_DUPLICATE_NAME = 6

The service is registered in the service registry with the JaxrsWhiteboardConstants.JAX_RS_NAME
property and a service with that name already exists in the runtime

151.15.6.2 public static final int FAILURE_REASON_NOT_AN_EXTENSION_TYPE = 4

The extension service is registered in the service registry but the service is not registered using a rec-
ognized extension type

151.15.6.3 public static final int FAILURE_REASON_REQUIRED_APPLICATION_UNAVAILABLE = 7

The service is registered in the service registry with the
JaxrsWhiteboardConstants.JAX_RS_APPLICATION_SELECT property and the filters is not matched
by any running application.

151.15.6.4 public static final int FAILURE_REASON_REQUIRED_EXTENSIONS_UNAVAILABLE = 5

The service is registered in the service registry with the
JaxrsWhiteboardConstants.JAX_RS_EXTENSION_SELECT property and one or more of the filters is
not matched.

151.15.6.5 public static final int FAILURE_REASON_SERVICE_NOT_GETTABLE = 2

The service is registered in the service registry but getting the service fails as it returns nul l .

151.15.6.6 public static final int FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE = 1

Service is shadowed by another service.

For example, a service with the same service properties but a higher service ranking.

151.15.6.7 public static final int FAILURE_REASON_UNKNOWN = 0

Failure reason is unknown.

151.15.6.8 public static final int FAILURE_REASON_VALIDATION_FAILED = 3

The service is registered in the service registry but the service properties are invalid.

151.15.7 public class ExtensionDTO
extends BaseExtensionDTO
Represents a JAX-RS Filter service currently being hosted by the JaxrsServiceRuntime

Concurrency Not Thread-safe

151.15.7.1 public String[] consumes

The media types consumed by this service, if provided in an Consumes annotation

151.15.7.2 public ResourceDTO[] filteredByName

The resourceDTOs that are mapped to this extension using a NameBinding annotation

151.15.7.3 public String[] nameBindings

The full names of the NameBinding annotations applied to this extension, if any

151.15.7.4 public String[] produces

The media types produced by this service, if provided in an Produces annotation

org.osgi.service.jaxrs.runtime.dto JAX-RS Whiteboard Specification Version 1.0

Page 1206 OSGi Compendium Release 8

151.15.7.5 public ExtensionDTO()

151.15.8 public class FailedApplicationDTO
extends BaseApplicationDTO
Represents a JAX-RS service which is currently not being used due to a problem.

The service represented by this DTO is not used due to a failure, but the
BaseApplicationDTO.extensionDTOs and BaseApplicationDTO.resourceDTOs may be non-empty if
whiteboard services have been associated with this failed application.

Concurrency Not Thread-safe

151.15.8.1 public int failureReason

The reason why the resource represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_VALIDATION_FAILED,
DTOConstants.FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE,
DTOConstants.FAILURE_REASON_REQUIRED_EXTENSIONS_UNAVAILABLE

151.15.8.2 public FailedApplicationDTO()

151.15.9 public class FailedExtensionDTO
extends BaseExtensionDTO
Represents a JAX-RS Extension service which is currently not being used due to a problem.

Concurrency Not Thread-safe

151.15.9.1 public int failureReason

The reason why the extension represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_VALIDATION_FAILED,
DTOConstants.FAILURE_REASON_NOT_AN_EXTENSION_TYPE,
DTOConstants.FAILURE_REASON_REQUIRED_EXTENSIONS_UNAVAILABLE

151.15.9.2 public FailedExtensionDTO()

151.15.10 public class FailedResourceDTO
extends BaseDTO
Represents a JAX-RS resource service which is currently not being used due to a problem.

Concurrency Not Thread-safe

151.15.10.1 public int failureReason

The reason why the resource represented by this DTO is not used.

See Also DTOConstants.FAILURE_REASON_UNKNOWN,
DTOConstants.FAILURE_REASON_SERVICE_NOT_GETTABLE,
DTOConstants.FAILURE_REASON_VALIDATION_FAILED,
DTOConstants.FAILURE_REASON_REQUIRED_EXTENSIONS_UNAVAILABLE

151.15.10.2 public FailedResourceDTO()

JAX-RS Whiteboard Specification Version 1.0 org.osgi.service.jaxrs.runtime.dto

OSGi Compendium Release 8 Page 1207

151.15.11 public class ResourceDTO
extends BaseDTO
Represents common information about a JAX-RS resource service.

Concurrency Not Thread-safe

151.15.11.1 public ResourceMethodInfoDTO[] resourceMethods

The RequestPaths handled by this resource

151.15.11.2 public ResourceDTO()

151.15.12 public class ResourceMethodInfoDTO
extends DTO
Represents information about a JAX-RS resource method. All information is determined by reading
the relevant annotations, from the JAX-RS type and not interpreted further. Dynamic information,
or information provided in other ways may not be represented in this DTO.

Concurrency Not Thread-safe

151.15.12.1 public String[] consumingMimeType

The mime-type(s) consumed by this resource method, null if Consumes is not defined

151.15.12.2 public String method

The HTTP verb being handled, for example GET, DELETE, PUT, POST, HEAD, OPTIONS, null if no
HttpMethod is defined

151.15.12.3 public String[] nameBindings

The NameBinding annotations that apply to this resource method, if any

151.15.12.4 public String path

The path of this resource method. Placeholder information present in the URI pattern will not be in-
terpreted and simply returned as defined.

151.15.12.5 public String[] producingMimeType

The mime-type(s) produced by this resource method, null if Produces is not defined

151.15.12.6 public ResourceMethodInfoDTO()

151.15.13 public class RuntimeDTO
extends DTO
Represents the state of a JAX-RS Service Runtime.

Concurrency Not Thread-safe

151.15.13.1 public ApplicationDTO[] applicationDTOs

Returns the representations of the JAX-RS Application services associated with this Runtime. The re-
turned array may be empty if this whiteboard is currently not associated with any JAX-RS applica-
tion services.

151.15.13.2 public ApplicationDTO defaultApplication

Returns the current state of the default application for this Runtime.

org.osgi.service.jaxrs.whiteboard JAX-RS Whiteboard Specification Version 1.0

Page 1208 OSGi Compendium Release 8

151.15.13.3 public FailedApplicationDTO[] failedApplicationDTOs

Returns the representations of the JAX-RS extension services targeted to this runtime but currently
not used due to some problem. The returned array may be empty.

151.15.13.4 public FailedExtensionDTO[] failedExtensionDTOs

Returns the representations of the JAX-RS extension services targeted to this runtime but currently
not used due to some problem. The returned array may be empty.

151.15.13.5 public FailedResourceDTO[] failedResourceDTOs

Returns the representations of the JAX-RS resource services targeted to this runtime but currently
not used due to some problem. The returned array may be empty.

151.15.13.6 public ServiceReferenceDTO serviceDTO

The DTO for the corresponding JaxrsServiceRuntime . This value is never nul l .

151.15.13.7 public RuntimeDTO()

151.16 org.osgi.service.jaxrs.whiteboard

JAX-RS Whiteboard Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. jaxrs .whiteboard; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. jaxrs .whiteboard; vers ion="[1.0,1.1)"

151.16.1 Summary

• JaxrsWhiteboardConstants - Defines standard constants for the JAX-RS Whiteboard services.

151.16.2 public final class JaxrsWhiteboardConstants
Defines standard constants for the JAX-RS Whiteboard services.

151.16.2.1 public static final String JAX_RS_APPLICATION_BASE = "osgi.jaxrs.application.base"

Service property specifying the base URI mapping for a JAX-RS application service.

The specified uri is used to determine whether a request should be mapped to the resource. Services
without this service property are ignored.

The value of this service property must be of type Str ing , and will have a "/" prepended if no "/" ex-
ists.

If two applications are registered with the same base uri then the lower ranked service is failed with
a cause of DTOConstants.FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE

151.16.2.2 public static final String JAX_RS_APPLICATION_SELECT = "osgi.jaxrs.application.select"

Service property specifying the target application for a JAX-RS resource or extension service.

The specified filter is used to determine whether a resource should be included in a particular appli-
cation. Services without this service property are bound to the default Application.

JAX-RS Whiteboard Specification Version 1.0 org.osgi.service.jaxrs.whiteboard

OSGi Compendium Release 8 Page 1209

If a filter property is registered and no application running in the white-
board matches the filter then the service will be failed with a cause of
DTOConstants.FAILURE_REASON_REQUIRED_APPLICATION_UNAVAILABLE

The value of this service property must be of type Str ing , and be a valid OSGi filter.

151.16.2.3 public static final String JAX_RS_APPLICATION_SERVICE_PROPERTIES =
"osgi.jaxrs.application.serviceProperties"

The property key which can be used to find the application service properties inside an injected
Configuration

151.16.2.4 public static final String JAX_RS_DEFAULT_APPLICATION = ".default"

The name of the default JAX-RS application in every Whiteboard instance.

151.16.2.5 public static final String JAX_RS_EXTENSION = "osgi.jaxrs.extension"

Service property specifying that a JAX-RS resource should be processed by the whiteboard.

The value of this service property must be of type Str ing or Boolean and set to "true" or true .

A service providing this property must be registered as one or more of the following types:

• MessageBodyReader
• MessageBodyWriter
• ContainerRequestFilter
• ContainerResponseFilter
• ReaderInterceptor
• WriterInterceptor
• ContextResolver
• ExceptionMapper
• ParamConverterProvider
• Feature
• DynamicFeature

If a service with this property does not match any of the defined types then it is registered as a fail-
ure DTO with the error code DTOConstants.FAILURE_REASON_NOT_AN_EXTENSION_TYPE,

151.16.2.6 public static final String JAX_RS_EXTENSION_SELECT = "osgi.jaxrs.extension.select"

A Service property specifying one or more target filters used to select the set of JAX-RS extension ser-
vices required to support this whiteboard service.

A JAX-RS Whiteboard service may require one or more extensions to be available so that it can func-
tion. For example a resource which declares that it @Produces("text/ json") requires a MessageBody-
Writer which supports JSON to be available.

This service property provides a String+ set of LDAP filters which will be applied to the service prop-
erties of all extensions available in the JAX-RS container. If all of the filters are satisfied then this ser-
vice is eligible to be hosted by the JAX-RS container.

This service property may be declared by any JAX-RS whiteboard service, whether it is a resource, or
an extension.

If this service property is not specified, then no extensions are required.

If one or more filter properties are registered and no suitable
extension(s) are available then the service will be failed with a cause of
DTOConstants.FAILURE_REASON_REQUIRED_EXTENSIONS_UNAVAILABLE

The value of this service property must be of type Str ing and be a valid filter string.

org.osgi.service.jaxrs.whiteboard.annotations JAX-RS Whiteboard Specification Version 1.0

Page 1210 OSGi Compendium Release 8

151.16.2.7 public static final String JAX_RS_MEDIA_TYPE = "osgi.jaxrs.media.type"

A service property specifying that a JAX-RS extension service, JAX-RS application service, or JAX-
RS Whiteboard implementation provides support for reading from and writing to a specific media
type.

The value of this property will be one or more media type identifiers, and where possible IANA reg-
istered names, such as appl icat ion/json should be used. The value must not be a wildcard type. Sup-
port for multiple media types that use the same suffix should be supported by registering the media
type associated with the suffix.

151.16.2.8 public static final String JAX_RS_NAME = "osgi.jaxrs.name"

Service property specifying the name of a JAX-RS whiteboard service.

This name is provided as a property on the registered Endpoint service so that the URI for a particu-
lar JAX-RS service can be identified. If this service property is not specified, then no Endpoint infor-
mation will be registered for this resource.

Resource names must be unique among all services associated with a single Whiteboard implemen-
tation. If a clashing name is registered then the lower ranked service will be failed with a cause of
DTOConstants.FAILURE_REASON_DUPLICATE_NAME

The value of this service property must be of type Str ing .

151.16.2.9 public static final String JAX_RS_RESOURCE = "osgi.jaxrs.resource"

Service property specifying that a JAX-RS resource should be processed by the whiteboard.

The value of this service property must be of type Str ing or Boolean and set to "true" or true .

151.16.2.10 public static final String JAX_RS_WHITEBOARD_IMPLEMENTATION = "osgi.jaxrs"

The name of the implementation capability for the JAX-RS Whiteboard specification

151.16.2.11 public static final String JAX_RS_WHITEBOARD_SPECIFICATION_VERSION = "1.0"

The version of the implementation capability for the JAX-RS Whiteboard specification

151.16.2.12 public static final String JAX_RS_WHITEBOARD_TARGET = "osgi.jaxrs.whiteboard.target"

Service property specifying the target filter to select the JAX-RS Whiteboard implementation to
process the service.

A JAX-RS Whiteboard implementation can define any number of service properties which can be
referenced by the target filter. The service properties should always include the osgi.jaxrs.endpoint
service property if the endpoint information is known.

If this service property is not specified, then all JAX-RS Whiteboard implementations can process
the service.

The value of this service property must be of type Str ing and be a valid filter string.

151.17 org.osgi.service.jaxrs.whiteboard.annotations

JAX-RS Whiteboard Annotations Package Version 1.0.

This package contains annotations that can be used to require the JAX-RS Whiteboard implementa-
tion.

Bundles should not normally need to import this package as the annotations are only used at build-
time.

JAX-RS Whiteboard Specification Version 1.0 org.osgi.service.jaxrs.whiteboard.propertytypes

OSGi Compendium Release 8 Page 1211

151.17.1 Summary

• RequireJaxrsWhiteboard - This annotation can be used to require the JAX-RS Whiteboard imple-
mentation.

151.17.2 @RequireJaxrsWhiteboard
This annotation can be used to require the JAX-RS Whiteboard implementation. It can be used di-
rectly, or as a meta-annotation.

This annotation is applied to several of the JAX-RS Whiteboard component property annotations
meaning that it does not normally need to be applied to Declarative Services components which use
the JAX-RS Whiteboard.

Retention CLASS

Target TYPE , PACKAGE

151.18 org.osgi.service.jaxrs.whiteboard.propertytypes

JAX-RS Whiteboard Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. jaxrs .whiteboard; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. jaxrs .whiteboard; vers ion="[1.0,1.1)"

151.18.1 Summary

• JaxrsAppl icat ionBase - Component Property Type for the osgi . jaxrs .appl icat ion.base service
property.

• JaxrsAppl icat ionSelect - Component Property Type for the osgi . jaxrs .appl icat ion.select service
property.

• JaxrsExtension - Component Property Type for the osgi . jaxrs .extension service property.
• JaxrsExtensionSelect - Component Property Type for the osgi . jaxrs .extension.select service

property.
• JaxrsMediaType - Component Property Type for the osgi . jaxrs .media.type service property.
• JaxrsName - Component Property Type for the osgi . jaxrs .name service property.
• JaxrsResource - Component Property Type for the osgi . jaxrs .resource service property.
• JaxrsWhiteboardTarget - Component Property Type for the osgi . jaxrs .whiteboard.target service

property.
• JSONRequired - Component Property Type for requiring JSON media type support using the

JaxrsWhiteboardConstants.JAX_RS_MEDIA_TYPE service property.

151.18.2 @JaxrsApplicationBase
Component Property Type for the osgi . jaxrs .appl icat ion.base service property.

This annotation can be used on a JAX-RS resource or extension to declare the value of the
org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_APPLICATION_BASE service
property.

org.osgi.service.jaxrs.whiteboard.propertytypes JAX-RS Whiteboard Specification Version 1.0

Page 1212 OSGi Compendium Release 8

See Also Component Property Types

Retention CLASS

Target TYPE

151.18.2.1 String value

□ Service property providing a base context URI for a JAX-RS whiteboard application.

Returns The base URI for this application.

See Also org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_APPLICATION_BASE

151.18.2.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

151.18.3 @JaxrsApplicationSelect
Component Property Type for the osgi . jaxrs .appl icat ion.select service property.

This annotation can be used on a JAX-RS resource or extension to declare the value of the
org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_APPLICATION_SELECT ser-
vice property.

See Also Component Property Types

Retention CLASS

Target TYPE

151.18.3.1 String value

□ Service property providing an OSGi filter identifying the application(s) to which this service should
be bound.

Returns The filter for selecting the applications to bind to.

See Also org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_APPLICATION_SELECT

151.18.3.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

151.18.4 @JaxrsExtension
Component Property Type for the osgi . jaxrs .extension service property.

This annotation can be used on a JAX-RS service to declare the value of the
org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_EXTENSION service property.

See Also Component Property Types

Retention CLASS

Target TYPE

151.18.4.1 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

151.18.5 @JaxrsExtensionSelect
Component Property Type for the osgi . jaxrs .extension.select service property.

This annotation can be used on a JAX-RS resource or extension to declare the value of the
org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_EXTENSION_SELECT service
property.

JAX-RS Whiteboard Specification Version 1.0 org.osgi.service.jaxrs.whiteboard.propertytypes

OSGi Compendium Release 8 Page 1213

See Also Component Property Types

Retention CLASS

Target TYPE

151.18.5.1 String[] value

□ Service property providing one or more OSGi filters identifying the extension(s) or application fea-
tures which this service requires to work.

Returns The filters for selecting the extensions to require.

See Also org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_EXTENSION_SELECT

151.18.5.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

151.18.6 @JaxrsMediaType
Component Property Type for the osgi . jaxrs .media.type service property.

This annotation can be used on a JAX-RS extension or application to declare the value of the
org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_MEDIA_TYPE service proper-
ty.

See Also Component Property Types

Retention CLASS

Target TYPE

151.18.6.1 String[] value

□ Service property identifying the name(s) of media types supported by this service.

Returns The JAX-RS media types supported.

See Also org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_MEDIA_TYPE

151.18.6.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

151.18.7 @JaxrsName
Component Property Type for the osgi . jaxrs .name service property.

This annotation can be used on a JAX-RS service to declare the value of the
org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_NAME service property.

See Also Component Property Types

Retention CLASS

Target TYPE

151.18.7.1 String value

□ Service property identifying the name of a JAX-RS service for processing by the whiteboard.

Returns The JAX-RS service name.

See Also org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_NAME

151.18.7.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

org.osgi.service.jaxrs.whiteboard.propertytypes JAX-RS Whiteboard Specification Version 1.0

Page 1214 OSGi Compendium Release 8

151.18.8 @JaxrsResource
Component Property Type for the osgi . jaxrs .resource service property.

This annotation can be used on a JAX-RS resource to declare the value of the
org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_RESOURCE service property.

See Also Component Property Types

Retention CLASS

Target TYPE

151.18.8.1 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

151.18.9 @JaxrsWhiteboardTarget
Component Property Type for the osgi . jaxrs .whiteboard.target service property.

This annotation can be used on a JAX-RS resource or extension to declare the value of the
org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_WHITEBOARD_TARGET ser-
vice property.

See Also Component Property Types

Retention CLASS

Target TYPE

151.18.9.1 String value

□ Service property providing an OSGi filter identifying the whiteboard(s) to which this service should
be bound.

Returns The filter for selecting the whiteboards to bind to.

See Also org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants.JAX_RS_WHITEBOARD_TARGET

151.18.9.2 String PREFIX_ = "osgi."

Prefix for the property name. This value is prepended to each property name.

151.18.10 @JSONRequired
Component Property Type for requiring JSON media type support using the
JaxrsWhiteboardConstants.JAX_RS_MEDIA_TYPE service property.

This annotation can be used on a JAX-RS resource to declare require that JSON support is available
before the resource becomes active. It also adds an optional Requirement for a service providing this
media type to aid with provisioning.

See Also Component Property Types

Retention CLASS

Target TYPE

151.18.10.1 String osgi_jaxrs_extension_select default "(osgi.jaxrs.media.type=application/json)"

□ Provides an extension selection filter for an extension supporting the JSON media type

Returns A filter requiring an osgi . jaxrs .media.type of appl icat ion/json

151.18.10.2 String FILTER = "(osgi.jaxrs.media.type=application/json)"

A filter requiring an osgi . jaxrs .media.type of appl icat ion/json

JAX-RS Whiteboard Specification Version 1.0 References

OSGi Compendium Release 8 Page 1215

151.19 References

[1] Java API for RESTful Web Services Specification
https://jcp.org/en/jsr/detail?id=370

[2] Portable Java Contract Definitions
https://docs.osgi.org/reference/portable-java-contracts.html

[3] Whiteboard Pattern
https://docs.osgi.org/whitepaper/whiteboard-pattern/

[4] IANA Media Type Registrations
https://www.iana.org/assignments/media-types/media-types.xhtml

[5] IANA Media Type Suffix Registrations
https://www.iana.org/assignments/media-type-structured-suffix/media-type-structured-suffix.xhtml

https://jcp.org/en/jsr/detail?id=370
https://docs.osgi.org/reference/portable-java-contracts.html
https://docs.osgi.org/whitepaper/whiteboard-pattern/
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-type-structured-suffix/media-type-structured-suffix.xhtml

References JAX-RS Whiteboard Specification Version 1.0

Page 1216 OSGi Compendium Release 8

CDI Integration Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 1217

152 CDI Integration Specification

Version 1.0

152.1 Introduction
Contexts and Dependency Injection ([1] CDI) is the standard dependency injection technology for Java. [2]
CDI 2.0 is the current version.

The CDI specification is a composition of the following high level features:

• A well-defined life cycle for stateful objects bound to life cycle contexts,
where the set of contexts is extensible

• A sophisticated, typesafe dependency injection mechanism, including the
ability to select dependencies at either development or deployment time,
without verbose configuration

• Support for Java EE modularity and the Java EE component architecture - the
modular structure of a Java EE application is taken into account when resolv-
ing dependencies between Java EE components

• Integration with the Unified Expression Language (EL), allowing any contex-
tual object to be used directly within a JSF or JSP page

• The ability to decorate injected objects
• The ability to associate interceptors to objects via typesafe interceptor bind-

ings
• An event notification model
• A web conversation context in addition to the three standard web contexts

defined by the Java Servlets specification
• A Service Provider Interface (SPI) allowing portable extensions to integrate

cleanly with the container

—CDI

This specification describes how OSGi is integrated into the CDI programming model and the inter-
action with these features.

152.1.1 Essentials

• Dependency Injection - Provide an advanced dependency injection framework for bundles that can
create and wire objects and services together into an application.

• Extender Model - Enable the configuration of components inside a bundle based on configuration
data provided by the bundle developer. The life cycle of these components is controlled by the
extender based on the extended bundle's state.

• Unencumbered - Does not require any special bundle activator or other code to be written inside
the bundle in order to have components instantiated and configured.

• Services - Enable the usage of OSGi services as injected dependencies.
• Configuration - Enable the usage of Configuration Admin configuration objects as injected depen-

dencies.

Introduction CDI Integration Specification Version 1.0

Page 1218 OSGi Compendium Release 8

• Dependencies - Allow components to depend on configuration objects and services and to register
services, with the full breadth of the OSGi capabilities.

• Reactive - It must be possible to react to changes in the external dependencies with different poli-
cies.

• Introspection - It must be possible to introspect the service components.
• Business Logic - A focus on writing business logic by using the features of CDI and reusable func-

tionality provided by extensions.
• Familiarity - Familiar to Java developers knowledgeable in CDI.

152.1.2 Entities

• CDI Entities
• CDI - Contexts and Dependency Injection 2.0.
• Bean - A Java class that satisfies the criteria of a bean as defined in CDI and which provides

contextual objects that define application state and/or logic.
• Producer - A producer method or field acts as a source of objects to be injected. It is an alterna-

tive to beans.
• Contextual Instance - The object instances produced by beans or producers within a given con-

text.
• Context - A Service Provider Interface (SPI) defining the life cycle for a set of contextual in-

stances. The context also determines which contextual instances of beans are visible to the
contextual instances of other beans.

• Scope - A (CDI) scope identifies a particular Context implementation. All beans have a scope
and are therefore bound to a particular context implementation. A scope is represented by
an annotation type. Any contextual instances produced from the bean exist within a context
identified by the scope.

• Injection Point - A location in a contextual instance or producer which is the target for injection
for a contextual instance.

• Qualifier - An annotation used to define a quality used for matching. Qualifiers are applied to
injection points, beans, producers (among other things). CDI finds beans matching an injec-
tion point's type then makes sure the qualifiers of the bean match all those on the injection
point.

• Stereotype - An annotation meta-annotated with javax.enterpr ise. inject .Stereotype used to
define a recurring role by aggregating a CDI scope and various other aspects into a reusable
unit.

• Decorators and Interceptors - Actors that intercept certain method invocations of contextual in-
stances.

• Portable Extension - A portable extension uses the CDI SPI to provide additional and reusable
functionality to a set of CDI beans.

• CDI Container - For each CDI bundle, required portable extensions are loaded , metadata and
bean classes are analyzed to create a bean injection graph. This process is encapsulated by a
CDI container.

• Entities defined by this specification
• CDI Bundle - An OSGi bundle containing CDI beans.
• CDI Extension Bundle - A bundle providing one or more portable extensions.
• CDI Component Runtime (CCR) - The actor that manages the CDI containers and their life cycle

and allows introspection of CDI containers.
• Configuration Object - Configuration Admin object which implements the Configurat ion inter-

face and contains configuration data.

CDI Integration Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 1219

• Factory Configuration Object - A Configuration Object having a factory PID whose instances for
which there can be 0 or N are under the control of Configuration Admin, all sharing the same
factory PID.

• Single Configuration Object - A configuration object that has no factory PID and remains singu-
larly independent from all other configuration objects.

• Component - A set of beans whose life cycle is derived from it's dependencies.
• Dependency - A configuration object or service upon which beans depend. These dependencies

are dynamic in that their life cycle is independently controlled by other actors within the OS-
Gi Framework and CCR must properly accommodate for this.

• Configuration Template - The static metadata describing a configuration object dependency.
• Reference Template - The static metadata describing a reference dependency.
• Component Template - The static definition of a component combining all the metadata defined

by its beans, and its dependencies. The component template does not change between restarts
of the CDI bundle.

• Component Scope - A (CDI) scope defined by this specification that represents the granular life
cycle associated with a set of dependencies.

• Component Instance - A runtime instance of the component template which observes and re-
acts to the state of the OSGi Framework based on the metadata of the component template.

• Container Component - A component encompassing all beans in the CDI container not in the
component scope. The container component results in a single component instance.

• Single Component - A component that encompasses beans that have the Component Scope,
whose dependencies may include single configuration objects and services. A single compo-
nent results in a single component instance.

• Factory Component - A component that encompassed beans having the Component Scope, that
are driven by factory configuration objects and whose dependencies may include single con-
figuration objects and services. A factory component results in any number of component in-
stances, one for every factory configuration object.

152.1.3 Synopsis
The CDI Extender reads CDI metadata from started CDI bundles. These metadata are in the form
of XML documents, annotation types and requirements which define the set of beans available to
the CDI container. Beans express dependencies on OSGi configuration objects and services and are
assembled into components. The life cycle of a component is driven from the dependencies of its
beans.

There are three types of components:

• Container Component - Consists of beans not in the component scope. There is exactly one contain-
er component per CDI bundle. It's life cycle is synonymous with the CDI container. The con-
tainer component must be completely satisfied before other component types can be satisfied.
The container component may provide multiple services. Altering the state of the container
component's static dependencies results in the entire CDI container, and all other component
types being destroyed and recreated.

• Single Component - A Single Component begins with a bean annotated by the @SingleComponent
annotation and is further enhanced by other beans in it's injection graph that are component
scoped. A single component may provide immediate functionality or a service resulting in an
immediate instance or a single service registration. Unlike the container component, single com-
ponents may be created, destroyed and react to changes in the state of it's dependencies in isola-
tion, without affecting the entire CDI container. A single component's life cycle is driven first by
the container component which must be satisfied and second by it's dependencies.

• Factory Component - A Factory Component begins with a bean annotated by the @FactoryCompo-
nent annotation and is further enhanced by other beans in it's injection graph that are compo-
nent scoped. A factory component may provide immediate functionality or a service, resulting in

Components CDI Integration Specification Version 1.0

Page 1220 OSGi Compendium Release 8

one immediate instance or service registration. Unlike the container component, factory compo-
nents may be created, destroyed and react to changes in the state of it's dependencies in isolation,
without affecting the entire CDI container. A factory component's life cycle is driven first by the
container component which must be satisfied, secondly by factory configuration which result in
one component instance per factory configuration object, and finally by it's dependencies.

Figure 152.1 CCR Model

O
SGi

Container
Component

O
SGi

Single
Component

O
SGi

Factory
Component

O
SGi

Component
1 0..n

1

1

CDIBean

describes

O
SGi

Component
Template

1 0..n

1

0..n

O
SGi

Dependency
Template

satisfies

O
SGi

Configuration

O
SGi

Service

O
SGi

Component
Instance 1 0..n

1

0..n

O
SGi

Dependency

CDIContext
Instance

152.2 Components
A traditional CDI application is composed of beans that have a well-defined life cycle based on the
CDI scope they declare. This specification defines a component model in terms of beans and scopes
as they are defined in the CDI specification in order to act as a good CDI citizen.

Components are defined by this specification to have the following characteristics:

• Components exist within a CDI bundle.
• Components are defined by collections of beans (referred to as component beans).
• Components may have dependencies on configuration objects and services. These dependencies

are described using annotations defined by this specification.
• Components have properties, referred to as component properties. Some of these are defined by this

specification and must be present. Others are aggregated from various configuration sources as
defined in Component Properties on page 1229.

CDI Integration Specification Version 1.0 Component Scope

OSGi Compendium Release 8 Page 1221

• Components have unique names within the CDI bundle.
• Components produce one or more component instances. Component instances are the runtime

representation of the component. They independently react to the state of the dependencies de-
clared by their component beans.

152.3 Component Scope
This specification uses the facilities of CDI [8] Scopes and contexts to define a life cycle for beans
specifically for supporting a relationship with OSGi dependencies.

Associated with every CDI scope is an object implementing javax.enterpr ise.context.spi .Context or
javax.enterpr ise.context.spi .AlterableContext . The life cycle and visibility rules for said scope are
defined by this implementation which collaborates with the CDI container to create or destroy con-
textual instances. Contextual instances associated with the scope exist within a context which acts as
a cache, creating new or returning existing contextual instances as needed. These contexts are man-
aged by CCR in conjunction with the CDI container.

Figure 152.2 CDI Scope Model

<<annotation>>
Scope

identifies

Context
Implementation

<<interface>>
Context

1

0..n
Context
Instance 1

0..n

Contextual
Instance

The component scope is a [9] Pseudo-scope identified by the @ComponentScoped annotation. The com-
ponent scope allows component instances to use component beans to create or destroy contextual in-
stances when dependencies are satisfied or unsatisfied without interfering with the life cycle of oth-
er component instances (including the container component).

The context implementation must be registered with the CDI container using the CDI SPI. For ex-
ample:

void afterBeanDiscovery(
 @Observes javax.enterprise.inject.spi.AfterBeanDiscovery abd) {

 Context ctx = ...

Component Scope CDI Integration Specification Version 1.0

Page 1222 OSGi Compendium Release 8

 abd.addContext(ctx);
}

The ComponentScoped annotation must be registered with the CDI container using the CDI SPI.
For example:

void beforeBeanDiscovery(
 @Observes javax.enterprise.inject.spi.BeforeBeanDiscovery bbd) {

 bbd.addScope(ComponentScoped.class, false, false);
}

152.3.1 Contexts
The creation and destruction of the component scope's contexts must adhere to the following
process:

• The following steps are taken to create a context:
1. the context is made active - The method javax.enterpr ise.context.spi .Context. isActive() must

return true .
2. contextual instances are created and injected - Contextual instances can be retrieved by calling

javax.enterpr ise.context.spi .Context.get(. . .) .
3. the @Initialized event is fired - On success of step 2, the CDI event

@Init ia l ized(ComponentScoped.class) is fired synchronously. See Table 152.1.

When the component is a single component, the event payload is the contextual instance of
the bean marked @SingleComponent .

When the component is a factory component the event payload is the contextual instance of
the bean marked @FactoryComponent .

Any qualifiers defined on the bean of the contextual instance must be attached to the event.

On failure of step 2, errors are logged and made available in errors.
4. the context is deactivated - The method javax.enterpr ise.context.spi .Context. isActive() must

return fa lse .
• The following steps are taken to destroy a context:

1. the context is made active - The method javax.enterpr ise.context.spi .Context. isActive() must
return true .

2. the @BeforeDestroy is fired - The CDI event @BeforeDestroy(ComponentScoped.class) is fired
synchronously. See Table 152.1.

When the component is a single component the event payload is the contextual instance of the
bean marked @SingleComponent .

When the component is a factory component the event payload is the contextual instance of
the bean marked @FactoryComponent .

Any qualifiers defined on the bean of the contextual instance must be attached to the event.
3. contextual instances are destroyed - Any exceptions are logged.
4. the context is deactivated - The method javax.enterpr ise.context.spi .Context. isActive() must

return fa lse .
5. the context is destroyed
6. the @Destroyed event is fired - The CDI event @Destroyed(ComponentScoped.class) is fired

synchronously. See Table 152.1.

When the component is a single component the event payload is the contextual instance of the
bean marked @SingleComponent .

CDI Integration Specification Version 1.0 Component Scope

OSGi Compendium Release 8 Page 1223

When the component is a factory component the event payload is the contextual instance of
the bean marked @FactoryComponent .

Any qualifiers defined on the bean of the contextual instance must be attached to the event.

Note that the object may not be usable during this event because the context under which it
was created is already destroyed.

Table 152.1 Component Context Events

Event Qualifier Condition
@Init ia l ized(ComponentScoped.class) when a context is initialized and ready

for use
@BeforeDestroy(ComponentScoped.class) when a context is about to be de-

stroyed, but before actual destruction
@Destroyed(ComponentScoped.class) after a context is destroyed

152.3.1.1 When Contexts are Created

A context is created under each of the following conditions:

1. Immediate instance - A component instance that does not provide a service requires the immedi-
ate creation of a context.

2. Singleton scoped service from a @SingleComponent - A single component instance that provides a
singleton scoped service requires the immediate creation of a context.

The service object is the contextual instance of the bean marked @SingleComponent obtained
from the context.

3. Singleton scoped service from a @FactoryComponent - A factory component instance that provides
a singleton scoped service requires the immediate creation of a context for each factory configu-
ration object.

The service object is the contextual instance of the bean marked @FactoryComponent obtained
from the context.

4. Bundle scoped service - A component instance that provides a bundle scope service requires the
creation of a context when the ServiceFactory.getService() method is called.

If the component is a single component, the service object is the contextual instance of the bean
marked @SingleComponent obtained from the context.

If the component is a factory component, the service object is the contextual instance of the bean
marked @FactoryComponent obtained from the context.

The context is released and destroyed when the ServiceFactory.ungetService() method is called.
5. Prototyped scoped service - A component instance that provides a prototype scope service requires

the creation of a context when the PrototypeServiceFactory.getService() method is called.

If the component is a single component, the service object is the contextual instance of the bean
marked @SingleComponent obtained from the context.

If the component is a factory component, the service object is the contextual instance of the bean
marked @FactoryComponent obtained from the context.

The context is released and destroyed when the PrototypeServiceFactory.ungetService()
method is called.

In addition to the cases specified above, all contexts produced by an immediate component or by
the service registration are released and destroyed when the component instance is no longer satis-
fied or when the CDI container is destroyed.

Container Component CDI Integration Specification Version 1.0

Page 1224 OSGi Compendium Release 8

152.4 Container Component
The container component is composed of all the beans available to the CDI container which are not
ComponentScoped.

The container component draws it's name from the CDI container id. By default, the CDI container
id is equal to the Bundle-Symbol icName of the CDI bundle prefixed by 'osgi .cdi . '.

containerId ::= 'osgi.cdi.' bsn
bsn ::= < Bundle-SymbolicName >

The container id can be specified using the container.id attribute of the CDI extender requirement
in the bundle manifest. The value must follow the Bundle-Symbol icName syntax. For example:

Require-Capability:
 osgi.extender;
 filter:=”(&(osgi.extender=osgi.cdi)(version>=1.0)(!(version>=2.0.0)))”;
 container.id="my.id"

152.4.1 Container Component Configuration
The container component must be configurable using it's container id as a PID; referred to as the
container PID.

containerPID ::= < container id >

Given a bundle with Bundle-Symbol icName equal to com.acme.bar which does not set the
container. id attribute in the requirement, the container id would be:

osgi.cdi.com.acme.bar

From the requirement example above where the container id is set to my.id , the container PID
would be:

my.id

The configuration object used to satisfy the container PID must be a single configuration object.
However the configuration policy for this configuration object is optional and is not required to satis-
fy the container component.

152.4.2 Container Component Life Cycle
The container component is largely synonymous with the CDI container. When the dependencies
of the container component are satisfied the CDI container completes it's initialization process and
subsequently is fully functional. When the dependencies of the container component are no longer
satisfied the CDI container is shutdown and all contextual instances are destroyed.

A container component with no beans would be immediately satisfied since it specifies no depen-
dencies.

152.5 Standard Definitions

152.5.1 Annotation Inheritance
Annotations are not inherited unless meta-annotated by @java. lang.annotation. Inherited .

CDI Integration Specification Version 1.0 Single Component

OSGi Compendium Release 8 Page 1225

152.5.2 Code Examples
This specification provides several source code examples. In order to avoid repetition the following
Java types are defined and re-used throughout:

interface Dog {}

interface Hound extends Dog {}

abstract class BassetHound implements Hound {}

class Spot extends BassetHound {}

class Buddy implements Hound {}

152.6 Single Component
A Single Component begins with and is rooted by a bean annotated by the @SingleComponent anno-
tation. It is further enhanced by beans in it's injection graph that are @ComponentScoped which
are discovered according to CDI's rules for [7] Typesafe Resolution starting from the @SingleCompo-
nent bean and recursing through all injection points until all injection points are resolved.

Resolution results which contain non-root beans marked with @SingleComponent or @Facto-
ryComponent result in a definition error.

Any failed resolutions result in a definition error.

Applying any scope besides @ComponentScoped to a bean marked with @SingleComponent re-
sults in a definition error.

Any @ComponentPropert ies or @Reference injection point that is resolved by beans which are
not provided by CCR results in a definition error.

A single component has an implicit dependency on the container component. Therefore it may nev-
er be satisfied until the container component is satisfied.

152.6.1 Single Component Naming
The @SingleComponent annotation is a stereotype which carries the @javax. inject .Named meta-an-
notation. This indicates that the default component name is:

“the unqualified class name of the bean class, after converting the first character
to lower case”

—CDI

For example:

// component.name = fido
@SingleComponent
class Fido {}

However, the name may be specified by adding @javax. inject .Named directly to the bean and speci-
fying a value whose syntax follows cname defined by the [11] General Syntax Definitions.

// component.name = Champ
@SingleComponent
@Named("Champ")
class Fido {}

Single Component CDI Integration Specification Version 1.0

Page 1226 OSGi Compendium Release 8

152.6.2 Single Component Configuration
By default a single component must be configurable by using it's component name, prefixed by
the container PID and a period (.), as a configuration PID. This component PID will be represented
throughout the remained of the specification by the symbol Φ (capital Phi).

Φ ::= containerPID '.' compName
containerPID ::= < container PID >
compName ::= < component name >

A single component may change or add additional PIDs on which it depends. When multiple PIDs
are referenced the order is relevant and affects the aggregation of the configuration objects into a
flattened dictionary of component properties. Later PIDs take precedence over earlier PIDs. Also, it
must be possible to reposition the component PID within the order. The PID annotation is used to
control both referenced PIDs and their order.

The following is an example of a component that is configurable by it's component PID:

// component pids = [Φ]
@SingleComponent
class Fido {}

An example of a component replacing it's component PID with a specific PID:

// component pids = [com.acme.foo]
@SingleComponent
@PID("com.acme.foo")
class Fido {}

An example of multiple PIDs:

// component pids = [com.acme.foo, com.gamma.bar]
@SingleComponent
@PID("com.acme.foo")
@PID("com.gamma.bar")
class Fido {}

See Component Properties on page 1229 for how multiple component PIDs are merged into compo-
nent properties.

Using @PID without arguments refers to the component PID:

// component pids = [Φ]
@SingleComponent
@PID
class Fido {}

This allows the component PID to be included anywhere in the order:

// component pids = [com.acme.foo, Φ, com.gamma.bar]
@SingleComponent
@PID("com.acme.foo")
@PID
@PID("com.gamma.bar")
class Fido {}

Each @PID annotation may specify a policy for the configuration object. The property policy is used
to specify the value. The possible values are:

• OPTIONAL - A configuration object is not required. This is the default policy.

CDI Integration Specification Version 1.0 Factory Component

OSGi Compendium Release 8 Page 1227

• REQUIRED - A configuration object is required.

// component pids = [com.acme.foo, Φ, com.gamma.bar]
@SingleComponent
@PID(value = "com.acme.foo", policy = Policy.REQUIRED)
@PID
@PID("com.gamma.bar")
class Fido {}

It is a definition error to refer to the same PID more than once.

The configuration objects used to satisfy the single component's referenced PIDs must be single con-
figuration objects.

152.7 Factory Component
A Factory Component begins with and is rooted by a bean annotated by the @FactoryComponent an-
notation. It is further enhanced by beans in it's injection graph that are @ComponentScoped which
are discovered according to CDI's rules for [7] Typesafe Resolution starting from the @FactoryCompo-
nent bean and recursing through all injection points until all injection points are resolved.

The @FactoryComponent annotation indicates that the component is bound to the life cycle of fac-
tory configuration objects associated with the factory PID specified in it's value property (or it's de-
fault component factory PID). Each factory configuration object associated with this factory PID re-
sults in a new component instance. The component properties of the component instance are supple-
mented by the properties of the factory configuration object.

Resolution results which contain a non-root bean marked with @SingleComponent or @Facto-
ryComponent result in a definition error.

Any failed resolutions result in a definition error.

Applying any scope besides @ComponentScoped to a bean marked with @FactoryComponent re-
sults in a definition error.

Any @ComponentPropert ies or @Reference injection point that is resolved by beans which are
not provided by CCR results in a definition error.

A factory component has an implicit dependency on the container component. Therefore it may
never be satisfied until the container component is satisfied.

152.7.1 Factory Component Naming
The @FactoryComponent annotation is a stereotype which carries the @javax. inject .Named meta-
annotation. This indicates that the default component name is:

“the unqualified class name of the bean class, after converting the first character
to lower case”

—CDI

For example:

// component.name = fido
@FactoryComponent
class Fido {}

However, the name may be specified by adding @javax. inject .Named directly to the bean and speci-
fying a value whose syntax follows cname defined by the [11] General Syntax Definitions.

// component.name = Champ

Factory Component CDI Integration Specification Version 1.0

Page 1228 OSGi Compendium Release 8

@FactoryComponent
@Named("Champ")
class Fido {}

152.7.2 Factory Component Configuration
By default a factory component must be configurable by using it's component name, prefixed by
the container PID and a period (.), as a factory PID. This component factory PID will be represented
throughout the remained of the specification by the symbol Σ (capital Sigma).

Σ ::= containerPID '.' compName
containerPID ::= < container PID >
compName ::= < component name >

An example of a factory component that is configurable by it's component factory PID:

// component pids = [Σ]
@FactoryComponent
class Fido {}

A factory component may specify a factory PID using it's value property. The value must conform to
the syntax defined for the Bundle-Symbol icName header.

An example of a factory component specifying a factory PID:

// component pids = [com.acme.foo-####]
@FactoryComponent("com.acme.foo")
class Fido {}

A factory component may change or add additional PIDs on which it depends. When multiple PIDs
are referenced the order is relevant and affects the aggregation of the configuration objects into a
flattened dictionary of component properties. Later PIDs take precedence over earlier PIDs. The PID
annotation is used to control both referenced PIDs and their order.

An example of multiple PIDs:

// component pids = [com.gamma.bar, com.acme.foo-####]
@FactoryComponent("com.acme.foo")
@PID("com.gamma.bar")
class Fido {}

Each @PID annotation may specify a policy for the configuration dependency. The property policy
is used to specify the value. The possible values are:

• OPTIONAL - A configuration object is not required. This is the default policy.
• REQUIRED - A configuration object is required.

// component pids [com.acme.foo, com.gamma.bar, Σ]
@FactoryComponent
@PID(value = "com.acme.foo", policy = Policy.REQUIRED)
@PID("com.gamma.bar")
class Fido {}

See Component Properties on page 1229 for how multiple component PIDs are merged into compo-
nent properties.

The component factory PID always reserves the highest precedence among specified PIDs and is po-
sitioned last in PID ordering for the purpose of aggregation

A factory component can only reference a single factory PID.

Notwithstanding the factory PID, it is a definition error to refer to the same PID more than once.

CDI Integration Specification Version 1.0 Component Properties

OSGi Compendium Release 8 Page 1229

The configuration object used to satisfy the factory component's component factory PID must be a
factory configuration object.

Configuration objects used to satisfy the PIDs referred to by the @PID annotations must be single
configuration objects.

152.8 Component Properties
Each component instance is associated with a set of component properties. Component properties are
specified in the following configuration sources (in order of precedence, where the properties provided
by later lines overwrite those of earlier lines):

1. Properties specified as Bean Property Types on the bean annotated with @SingleComponent or
@FactoryComponent must be treated according to Bean Property Types on page 1231.

2. Properties provided by single configuration objects whose PIDs are matched to and are
processed in the order they are specified by the component.

3. Properties provided by a factory configuration object whose PID matches to the factory PID
specified by the factory component.

The precedence behavior allows certain default values to be specified in component metadata while
allowing properties to be replaced and extended by a configuration object.

Normally, a property value from a higher precedence configuration source replace a property val-
ue from a lower precedence configuration source. However, the service.pid property values receive
different treatment. For the service.pid property, if the property appears multiple times in the con-
figuration sources, CCR must aggregate all the values found into a Collect ion<Str ing> having an it-
eration order such that the first item in the iteration is the property value from the lowest prece-
dence configuration source and the last item in the iteration is the property value from the high-
est precedence configuration source. If the component refers to multiple PIDs, then the order of the
service.pid property values collected from the corresponding configuration objects must match the
order in which the PIDs are specified by the component. The values of the service.pid component
property are the values as they come from the configuration sources and may container more values
than those referred to by the component.

CCR always adds the following component properties, which cannot be overridden:

• component.name - The component name. The syntax for the component.name follows cname
defined by the [11] General Syntax Definitions.

• component. id - A unique value (Long) that is larger than all previously assigned values. These
values are not persistent across restarts of CCR.

152.8.1 Reference Properties
This specification defines some component properties which are associated with a specific refer-
ence. These are called reference properties. The name of a reference property for a reference is the
name of the reference appended with a full stop ('.' \u002E) and a suffix unique to the reference
property. Reference properties can be set wherever component properties can be set.

All component property names starting with a reference name followed by a full stop ('.' \u002E)
are reserved for use by this specification.

Following are the reference properties defined by this specification.

152.8.1.1 Target Property

The target property is a reference property which aids in the selection of target services for the refer-
ence. See Reference Injection Points on page 1240. The name of a target property is the name of a refer-
ence appended with .target .

Component Properties CDI Integration Specification Version 1.0

Page 1230 OSGi Compendium Release 8

target ::= refName '.target'
refName ::= < reference name >

For example, the target property for a reference with the name http

@Inject
@Reference
Http http;

would have the name http.target . The value of a target property is a filter String used to select target
services for the reference.

http.target=(context.name=foo)

A default target property value can also be set by the @Reference.target property.

The target property value must be a valid filter String according to [12] Filter Syntax. Invalid filters
result in unmatchable reference filters.

CCR must support the target property for all references.

152.8.1.2 Minimum Cardinality Property

The initial minimum cardinality of a reference is specified by the optionality of the reference. The
minimum cardinality of a reference cannot exceed the multiplicity: a scalar reference has a multi-
plicity of 1 and a java.ut i l .L ist or java.ut i l .Col lect ion reference has a multiplicity of n.

The minimum cardinality property is a reference property which can be used to raise the minimum
cardinality of a reference from its initial value. That is, a 0..1 cardinality can be raised to a 1. .1 cardi-
nality by setting the reference's minimum cardinality property to 1 . A 0..n cardinality can be raised
to a m..n cardinality by setting the reference's minimum cardinality property to m such that m is a
positive integer. The minimum cardinality of a reference cannot be lowered. A mandatory reference
cannot be reduced to optional through this property. That is, a 1. .1 cardinality can not be lowered to
a 0..1 cardinality because the component was written to expect at least one bound service.

The name of a minimum cardinality property is the name of a reference appended with
.cardinal ity.minimum .

minimumCardinality ::= refName '.cardinality.minimum'
refName ::= < reference name >

For example, the minimum cardinality property for a reference with the name http

@Inject
@Reference
Http http;

would have the name http.cardinal ity.minimum .

http.cardinality.minimum=3

The value of a minimum cardinality property must be a positive integer or a value that can be co-
erced into a positive integer using the conversions defined by the Converter Specification on page
1469. If the numerical value of the minimum cardinality property is not valid for the reference's
cardinality or the minimum cardinality property value cannot be coerced into a numerical value,
then the minimum cardinality property must be ignored and a warning message logged.

Attempts to reduce the initial minimum cardinality will result in a warning message to be logged
and the value to be otherwise ignored.

CCR must support the minimum cardinality property for all references.

CDI Integration Specification Version 1.0 Bean Property Types

OSGi Compendium Release 8 Page 1231

152.9 Bean Property Types
Component properties can be defined and accessed through a user defined annotation type, called
a bean property type, containing the property names, property types and default values. A bean prop-
erty type allows properties to be defined and accessed in a type safe manner. Bean Property Types
must be annotated with the BeanPropertyType meta-annotation.

The following example shows the definition of a bean property type called Props which defines
three properties where the name of the property is the name of the method, the type of the proper-
ty is the return type of the method and the default value for the property is the default value of the
method.

@BeanPropertyType
public @interface Props {
 boolean enabled() default true;
 String[] names() default {"a", "b"};
 String topic() default "default/topic";
}

Bean Property Types can be used in several ways:

• Bean Property Types can be used along side the SingleComponent or FactoryComponent annota-
tions to provide component properties.

• Bean Property Types can be used on Appl icat ionScoped or Dependent scoped beans, where the
Service annotation is applied to provide service properties.

• Bean Property Types can be used on fields and methods annotated with @Produces , where the
Service annotation is applied, to provide service properties.

• Bean Property Types can be used on injection points where the Reference annotation is applied,
to provide target filter properties. Target filter properties can only provide AND filters.

• Bean Property Types can be used on injection points as the injection point type where the Com-
ponentProperties annotation is applied to provide type safe coercion of component properties.

Each use defines property names, types and values.

The following example shows a component bean annotated with the example Props bean property
type which specifies a property value for the component which is different than the default value.
The example also shows an injection point method taking the example Props bean property type as
the injection point type and the method implementation accesses component property values by in-
voking methods on the bean property type object.

@SingleComponent
@Props(names="myapp")
public class MyBean {
 @Inject
 void activate(Props props) {
 if (props.enabled()) {
 // do something
 }
 for (String name : props.names()) {
 // do something with each name
 }
 }
}

Bean Property Types must be defined as annotation types. This is done for several reasons. First,
the limitations on annotation type definitions make them well suited for Bean Property Types. The

Bean Property Types CDI Integration Specification Version 1.0

Page 1232 OSGi Compendium Release 8

methods must have no parameters and the return types supported are limited to a set which is well
suited for component properties. Second, annotation types support default values which is useful
for defining the default value of a component property. Finally, as annotations, they can be used to
annotate bean classes.

At runtime, when CCR needs to provide injection points an object whose type is a bean property
type, CCR must construct an instance of the bean property type whose methods are backed by the
values of the component properties. This object can then be used to obtain the property values in a
type safe manner.

152.9.1 Bean Property Type Mapping
Each method of a bean property type is mapped to a component property. The property name is
derived from the method name. Certain common property name characters, such as full stop ('.'
\u002E) and hyphen-minus (' - ' \u002D) are not valid in Java identifiers. So the name of a method
must be converted to its corresponding property name as follows:

• A single dollar sign ('$ ' \u0024) is removed unless it is followed by:
• A low line ('_ ' \u005F) and a dollar sign in which case the three consecutive characters ("$_

$") are converted to a single hyphen-minus (' - ' \u002D).
• Another dollar sign in which case the two consecutive dollar signs ("$$") are converted to a

single dollar sign.
• A single low line ('_ ' \u005F) is converted into a full stop ('.' \u002E) unless is it followed by an-

other low line in which case the two consecutive low lines ("__") are converted to a single low
line.

• All other characters are unchanged.
• If the bean property type declares a PREFIX_ field whose value is a compile-time constant String,

then the property name is prefixed with the value of the PREFIX_ field.

Table 152.2 contains some name mapping examples.

Table 152.2 Bean Property Type Name Mapping Examples

Bean Property Type Method Name Component Property Name
myProperty143 myProperty143
$new new
my$$prop my$prop
dot_prop dot.prop
_secret .secret
another__prop another_prop
three___prop three_.prop
four_$__prop four._prop
five_$_prop five. .prop
six$_$prop six-prop
seven$$_$prop seven$.prop

However, if the bean property type is a single-element annotation, see 9.7.3 in [16] The Java Language
Specification, Java SE 8 Edition, then the property name for the value method is derived from the name
of the bean property type rather than the name of the method.

In this case, the simple name of the bean property type, that is, the name of the class without any
package name or outer class name, if the bean property type is an inner class, must be converted to
the property name as follows:

CDI Integration Specification Version 1.0 Bean Property Types

OSGi Compendium Release 8 Page 1233

• When a lower case character is followed by an upper case character, a full stop ('.' \u002E) is in-
serted between them.

• Each upper case character is converted to lower case.
• All other characters are unchanged.
• If the bean property type declares a PREFIX_ field whose value is a compile-time constant String,

then the property name is prefixed with the value of the PREFIX_ field.

Table 152.3 contains some mapping examples for the value method.

Table 152.3 Single-Element Annotation Mapping Examples for value Method

Bean Property Type Name value Method Component Property Name
ServiceRanking service.ranking
Some_Name some_name
OSGiProperty osgi .property

If the bean property type is a marker annotation, see 9.7.2 in [16] The Java Language Specification, Java
SE 8 Edition, then the property name is derived from the name of the bean property type, as is de-
scribed above for single-element annotations, and the value of the property is Boolean.TRUE . Mark-
er annotations can be used to annotate component beans to set a component property to the value
Boolean.TRUE . However, since marker annotations have no methods, they are of no use as injection
point types.

The property type can be directly derived from the type of the method. All types supported for anno-
tation elements can be used except for annotation types. Method types of an annotation type or ar-
ray thereof are not supported.

If the method type is Class or Class[] , then the property type must be Str ing or Str ing[] , respectively,
whose values are fully qualified class names in the form returned by the Class.getName() method.

If the method type is an enumeration type or an array thereof, then the property type must be Str ing
or Str ing[] , respectively, whose values are the names of the enum constants in the form returned by
the Enum.name() method.

152.9.2 Coercing Bean Property Type Values
When a bean property type is used as an injection point type alone with @ComponentPropert ies ,
CCR must create a contextual instance that implements the bean property type and maps the meth-
ods of the bean property type to component properties. The name of the method is converted to the
property name as described in Bean Property Type Mapping on page 1232. The property value may
need to be coerced to the type of the method. In Table 152.4, the columns are source types, that is,
the type of the component property value, and the rows are target types, that is, the method types.
The property value is v; number is a primitive numerical type and Number is a wrapper numerical
type. An invalid coercion is represented by throw . Such a coercion attempt must result in throwing
a Bean Property Exception when the bean property type method is called. Any other coercion error,
such as parsing a non-numerical String to a number or the inability to coerce a String into a Class or
enum object, must be wrapped in a Bean Property Exception and thrown when the bean property
type method is called.

Table 152.4 Coercion From Property Value to Method Type

target \ source String Boolean Character Number Collection/array
String v v. toString() v. toString() v. toString() If v has no elements, nul l ; other-

wise the first element of v is co-
erced.

Bean Property Types CDI Integration Specification Version 1.0

Page 1234 OSGi Compendium Release 8

target \ source String Boolean Character Number Collection/array
boolean Boolean. parse-

Boolean(v)
v. booleanVal-
ue()

v. charValue() !
= 0

v. doubleVal-
ue() != 0

If v has no elements, fa lse ; other-
wise the first element of v is co-
erced.

char v. length() > 0 ?
v. charAt(0) : 0

v. booleanVal-
ue() ? 1 : 0

v. charValue() (char) v. intVal-
ue()

If v has no elements, 0; otherwise
the first element of v is coerced.

number Number.
parseNumber(
v)

v. booleanVal-
ue() ? 1 : 0

(number) v.
charValue()

v. numberVal-
ue()

If v has no elements, 0; otherwise
the first element of v is coerced.

Class Bundle. load-
Class(v)

throw throw throw If v has no elements, nul l ; other-
wise the first element of v is co-
erced.

EnumType EnumType. val-
ueOf(v)

throw throw throw If v has no elements, nul l ; other-
wise the first element of v is co-
erced.

annotation type throw throw throw throw throw
array A single element array is created and v is coerced into the single el-

ement of the new array.
An array the size of v is created
and each element of v is coerced
into the corresponding element
of the new array.

Component properties whose names do not map to bean property type methods are ignored. If
there is no corresponding component property for a bean property type method, the bean property
type method must:

• Return 0 for numerical and char method types.
• Return fa lse for boolean method type.
• Return nul l for String, Class, and enum.
• Return an empty array for array method types.
• Throw a BeanPropertyException for annotation method types.

152.9.3 Standard Bean Property Types
Bean Property Types for standard service properties are specified in the
org.osgi.service.cdi.propertytypes package.

The ServiceDescription bean property type can be used to add the service.descr ipt ion component
property, service property or target filter. The ServiceRanking bean property type can be used to add
the service.ranking component property, service property or target filter. The ServiceVendor bean
property type can be used to add the service.vendor component property, service property or target
filter. For example, using these Bean Property Types as annotations:

@FactoryComponent
@ServiceDescription(”My Acme Service implementation”)
@ServiceRanking(100)
@ServiceVendor("My Corp")
public class MyBean implements AcmeService {}

will result in the following component properties:

service.description=My Acme Service implementation # String
service.ranking=100 # Integer
service.vendor=My Corp # String

CDI Integration Specification Version 1.0 Providing Services

OSGi Compendium Release 8 Page 1235

The ExportedService bean property type can be used to specify service properties for remote ser-
vices.

152.10 Providing Services
A key aspect of working with OSGi is the ability to provide services. Services are published to the
service registry specifying service types. The @Service annotation provides this capability to CCR
and serves a dual role; the first of which is indicating that a bean publishes a service, the second in-
dicating the service types. @Service can be applied in any one of the following ways:

152.10.1 @Service applied to bean class
Applying the @Service annotation to the bean class indicates the set of service types will be one of
(in order of precedence):

1. the specified type(s) - When providing a specified value, these are the types under which the ser-
vice is published.

// service types = [BassetHound, Dog]
@Service({BassetHound.class, Dog.class})
class Spot {}

2. directly implemented interfaces - These are the interfaces for which the bean class directly specifies
an implements clause.

// service types = [Hound]
@Service
class Fido implements Hound {}

3. bean class - The class of the bean itself is the type under which the service is published.

// service types = [Fido]
@Service
class Fido

The @Service annotation is never inherited. CCR ignores instances of the annotation on super class-
es, interfaces or super interfaces for this purpose.

152.10.2 @Service applied to type use
A convenient readability optimization is to apply the @Service annotation on type_use. This is to
say that it may be applied to extends and/or implements clauses. For example:

// service types = [BassetHound]
class Fido extends @Service BassetHound {}

Or:

// service types = [Hound]
class Fido implements @Service Hound {}

The two approaches can be combined. @Service annotations are collected so that the service is pub-
lished with all collected types:

// service types = [BassetHound, Hound]
class Fido extends @Service BassetHound implements @Service Hound {}

Providing Services CDI Integration Specification Version 1.0

Page 1236 OSGi Compendium Release 8

In this scenario, any use of the @Service.value property will result in a definition error.

Applying @Service to both bean class, and type use will result in a definition error.

152.10.3 @Service applied to Producers
Applying the @Service annotation to producer methods or fields indicates the set of service types
as described in the following table (earlier rows take precedence over later rows).

Table 152.5 @Service applied to Producers

Case Description
the type(s) specified by
@Service.value

When providing a specified @Service.value , these are the types
under which the service is published.

// service types = [BassetHound, Dog]
@Produces
@Service({BassetHound.class, Dog.class})
Spot getSpot() {
 return new Spot();
}

the returned interface In the case of a producer method, if the return type is an interface,
this type is used as the service type.

// service types = [Dog]
@Produces
@Service
Dog getDog() {
 return new Spot();
}

all directly implemented inter-
faces of returned type

In the case of a producer method, if the return type is a concrete
type, use any interfaces directly implemented by the concrete
type.

// service types = [Hound]
@Produces
@Service
Buddy getBuddy() {
 return new Buddy();
}

the return type In the case of a producer method, if the return type is a concrete
type which does not directly implement any interfaces, use the
concrete type.

class Fido {}

// service types = [Fido]
@Produces
@Service
Fido getFido() {
 return new Fido();
}

CDI Integration Specification Version 1.0 Providing Services

OSGi Compendium Release 8 Page 1237

Case Description
the field interface In the case of a producer field, if the field type is an interface this

type is used as the service type.

// service types = [Dog]
@Produces
@Service
Dog dog = new Spot();

all directly implemented inter-
faces of the field type

In the case of a producer field, if the field type is a concrete type
use any interfaces directly implemented by the concrete type.

// service types = [Hound]
@Produces
@Service
Buddy buddy = new Buddy();

the field type In the case of a producer field if the field type is a concrete type
which does not directly implement any interfaces use the con-
crete type.

class Fido {}

// service types = [Fido]
@Produces
@Service
Fido fido = new Fido();

152.10.4 @Service Type Restrictions
Regardless of the source, no service type may be a generic type. A generic type found in the set of ser-
vice types will result in a definition error.

Service types must be a subset of bean types, including types restricted by the use of the
@javax.enterpr ise. inject .Typed annotation. This restriction is required to support CDI features like
Decorators and Interceptors.

Using the @Service annotation on injection points will result in a definition error.

152.10.5 Service Properties
The main source of service properties is Component Properties on page 1229.

When CCR registers a service on behalf of a component instance, CCR must follow the recommen-
dations in Property Propagation on page 89 and must not propagate private configuration properties.
That is, the service properties of the registered service must be all the component properties of the
component configuration whose property names do not start with full stop ('.' \u002E).

Component properties whose names start with full stop are available to the component instance
but are not available as service properties of the registered service.

152.10.5.1 Container component service properties

In addition to component properties, services provided by the container component obtain addi-
tional service properties from Bean Property Types on the bean or producer providing the service.
See Bean Property Types on page 1231.

Providing Services CDI Integration Specification Version 1.0

Page 1238 OSGi Compendium Release 8

152.10.6 Service Scope
Service scope represents the scope of the registered service object. There are three scopes supported
by the OSGi Framework. Each can be represented in CCR.

• Bundle scope - In order to specify a bundle scoped service, the @ServiceInstance annotation is
specified on the bean class, producer method or producer field with the value BUNDLE.

@Service
@ServiceInstance(ServiceScope.BUNDLE)
class Fido implements Hound {}

• Prototype scope - In order to specify a prototype scoped service, the @ServiceInstance annotation
is specified on the bean class, producer method or producer field with the value PROTOTYPE.
The service object is the contextual instance created by the producer or bean.

@Service
@ServiceInstance(ServiceScope.PROTOTYPE)
class Fido implements Hound {}

• Singleton scope - Unless otherwise specified, services are singleton scoped but the scope can be
explicitly expressed if the @ServiceInstance annotation is specified on the bean class, produc-
er method or producer field with the value SINGLETON. The service object is the contextual in-
stance created by the producer or bean.

@Service
@ServiceInstance(ServiceScope.SINGLETON) // equal to omitting the annotation
class Fido implements Hound {}

152.10.7 Container Component Services
Beans, producer methods and producer fields that are @Applicat ionScoped result in contextual in-
stances that are shared throughout the CDI container. Therefore they can only provide singleton
scoped services. Each such case results in a single service registration. The service object is the con-
textual instance created by the producer or bean. However, @Applicat ionScoped beans can imple-
ment org.osgi .f ramework.ServiceFactory or org.osgi .f ramework.PrototypeServiceFactory in order
to provide bundle or prototype scoped service objects.

Beans, producer methods and producer fields that are @Dependent result in contextual instances
which are never shared in that a new contextual instance is created for each caller. Therefore they
can provide services of all scopes as outlined in Service Scope on page 1238. The service object is a
contextual instance created by the producer or bean on each request for a service object.

The use of @ServiceInstance on @Applicat ionScoped beans will result in a definition error.

152.10.8 Single Component Services
Single components can only apply the @Service annotation to beans marked with @SingleCom-
ponent .

A single component providing a service results in a single service registration.

Service objects provided by the service registration are defined by the creation of contexts. In all cas-
es, the service object provided is the contextual instance of the bean marked @SingleComponent
obtained from the context.

CDI Integration Specification Version 1.0 Component Property Injection Points

OSGi Compendium Release 8 Page 1239

152.10.9 Factory Component Services
Factory components can only apply the @Service annotation to beans marked with @Facto-
ryComponent .

A factory component providing a service results in one service registration for every factory config-
uration object associated with the factory PID of the component.

Service objects provided by the service registration are defined by the creation of contexts. In all cas-
es, the service object provided is the contextual instance of the bean marked @FactoryComponent
obtained from the context.

152.11 Component Property Injection Points
A bean specifies injection of component properties using the @ComponentProperties annotation at
an injection point.

The type typically associated with component properties is java.ut i l .Map<Str ing, Object> :

@Inject
@ComponentProperties
Map<String, Object> componentProperties;

However, component properties can be automatically converted to any type compatible with the
conversions defined by the Converter Specification on page 1469.

Given the following configuration properties:

pool.name (String)
min.threads (int)
max.threads (int)
keep.alive.timeout (long)

The following example demonstrates conversion of component properties into a type safe object
with defaults.

public static @interface PoolConfig {
 String pool_name();
 int min_threads() default 2;
 int max_threads() default 10;
 long keep_alive_timeout() default 500;
}

@Inject
@ComponentProperties
PoolConfig poolConfig;

Using @Reference in conjunction with @ComponentPropert ies will result in a definition error.

152.11.1 Coordinator Support
The Coordinator Service Specification on page 629 defines a mechanism for multiple parties to collab-
orate on a common task without a priori knowledge of who will collaborate in that task. Like Config-
uration Admin Service Specification on page 81, CCR must participate in such scenarios to coordinate
with provisioning or configuration tasks.

If configuration changes occur and an implicit coordination exists, CCR must delay taking action
on the configuration changes until the coordination terminates, regardless of whether the coordina-
tion fails or terminates regularly.

Reference Injection Points CDI Integration Specification Version 1.0

Page 1240 OSGi Compendium Release 8

152.12 Reference Injection Points
Any injection point annotated with @Reference declares a service dependency.

152.12.1 Reference injection point types
Injection points specifying @Reference are limited to one of the following injection point types as rep-
resentations of the dependent service(s). Given that type S is a type under which a service is pub-
lished, the following injection point types are supported:

Table 152.6 Reference injection point types

Injection Point Type Description
S // S = Dog

@Inject
@Reference
Dog dog;

org.osgi .f ramework.ServiceReference<S> // S = Dog
@Inject
@Reference
ServiceReference<Dog> dog;

java.ut i l .Map<Str ing, ? | Object> In this case the @Reference annotation must
specify service type S using it's value property.

// S = Dog
@Inject
@Reference(Dog.class)
Map<String, Object> dogProperties;

Failure to specify the type in this scenario results
in a definition error.

java.ut i l .Map.Entry<Map<Str ing, ? | Object>, S> Represents a tuple containing the map of service
properties as the key and the service instance as
the value.

// S = Dog
@Inject
@Reference
Map.Entry<Map<String, ?>, Dog> dog;

BeanServiceObjects<S> // S = Dog
@Inject
@Reference
BeanServiceObjects<Dog> dogs;

S must be a concrete service type. The OSGi service registry does not support generics, therefore S
cannot specify a generic type.

A definition error will result if any other types are used with injection points marked @Reference
unless otherwise specified by this specification.

CDI Integration Specification Version 1.0 Reference Injection Points

OSGi Compendium Release 8 Page 1241

152.12.2 Reference Service scope
For a bound service, CCR must get the service object from the OSGi Framework's service registry us-
ing the getService method on the component's Bundle Context. If the service object for a bound ser-
vice has been obtained and the service becomes unbound, CCR must unget the service object using
the ungetService method on the component's Bundle Context and discard all references to the ser-
vice object. This ensures that the bundle will only be exposed to a single instance of the service ob-
ject at any given time.

For a bound service of a reference where the PrototypeRequired annotation was specified, only ser-
vices registered with prototype service scope can be considered as target services. This ensures that
each component instance can be exposed to a single, distinct instance of the service object. Using
@PrototypeRequired effectively adds service.scope=prototype to the target property of the refer-
ence. A service that does not use prototype service scope cannot be used as a bound service for a ref-
erence with @PrototypeRequired since the service cannot provide a distinct service object for each
component instance.

@Inject
@PrototypeRequired
@Reference
Hound hound;

152.12.3 Bean Service Objects
A Bean Service Objects for the bound service, can be used to obtain the actual service object or ob-
jects. This approach is useful when the referenced service has prototype service scope and the com-
ponent instance needs multiple service objects for the service.

@Inject
@PrototypeRequired
@Reference
BeanServiceObjects<Hound> hounds;

The @PrototypeRequired annotation is optional. See Service Scope on page 1238.

152.12.4 Reference Greediness
References are greedy by default which means that higher ranking matches are immediately bound.
Use the @Reluctant annotation to indicate that higher ranking matches should not bind once the
reference has been resolved. Note that in the case of static references the component will be de-
stroyed and recreated in order to immediately apply the better match. In the case of the container
component, this will result in the entire CDI container being destroyed and recreated.

A static, greedy reference:

@Inject
@Reference
Hound hound;

A static, reluctant reference:

@Inject
@Reluctant
@Reference
Hound hound;

Reference Injection Points CDI Integration Specification Version 1.0

Page 1242 OSGi Compendium Release 8

152.12.5 Service Type
As demonstrated earlier, it's possible to specify the service type of the reference by using
@Reference.value() property. This supports use cases like java.ut i l .Map<Str ing, ?> where the ser-
vice type cannot be determined.

@Inject
@Reference(Hound.class)
Map<String, Object> properties;

This makes it possible to target a more specific service type. A reference injection point whose type
is Dog may target a service of type BassetHound :

@Inject
@Reference(BassetHound.class)
Dog dog;

The injection point type must be compatible with the service type. Otherwise a definition error will
result.

152.12.6 Any Service Type
A special exception to the service type rules is defined when the special marker type Reference.Any
is set as @Reference.value . This allows for any service to match the reference. However, the follow-
ing criteria must be satisfied:

1. @Reference.value must specify the single value Reference.Any.class
2. @Reference.target must specify a valid, non-empty filter value
3. The injection point service type must be java. lang.Object . For example:

@Inject
@Reference(value = Reference.Any.class, target = "(foo=bar)")
Optional<Object> match;

or

@Inject
@Reference(value = Reference.Any.class, target = "(foo=bar)")
List<Object> matches;

Note that there may be performance impacts resulting from matching too broad a set of services.
By definition the above list example with a target filter equal to (service. id=*) is perfectly valid
but will match all services in the registry which will likely neither be very useful nor perfor-
mant.

152.12.7 Target Filter
Target services for a reference are constrained by the reference's service type and the target property.
A default target filter can be applied by specifying @Reference.target() property.

For example, a component wants to track all Dog services that have a service property
service.vendor whose value is equal to Acme, Ltd. :

@Inject
@Reference(target = "(service.vendor=Acme, Ltd.)")
Collection<Dog> dogs;

CDI Integration Specification Version 1.0 Reference Injection Points

OSGi Compendium Release 8 Page 1243

152.12.7.1 Bean Property Types as target filters

Annotations meta-annotated with BeanPropertyType appearing on an injection point in conjunc-
tion with the @Reference annotation will further enhance the target filter as described by the rules
for converting Bean Property Types on page 1231 to a map of properties assembled into a filter
String according to the following steps:

1. any key=array pairs are flattened into many key=scalar pairs, one pair for each array value
2. format every key=scalar pair using the production

pair ::= '(' pairKey '=' pairScalar ')'
pairKey ::= < key >
pairScalar ::= < scalar >

If scalar must contain one of the characters reverse solidus (' \ ' \u005C), asterisk ('* ' \u002A),
parentheses open (' (' \u0028) or parentheses close (') ' \u0029), then these characters must be
preceded with the reverse solidus (' \ ' \u005C) character. Spaces are significant in scalar . Space
characters are defined by Character. isWhiteSpace()

3. concatenate all results of step 2. into a single String
4. append the value of @Reference.target() to the result of step 3.
5. format the result of step 4. using the production

target ::= '(' '&' step4 ')'
step4 ::= < result of step 4. >

Given the following example:

enum Tricks {
 SIT, STAND, SHAKE_PAW, TREAT_ON_NOSE
}
@Repeatable(...)
@BeanPropertyType
@interface Trick {
 Tricks value();
}

@Inject
@Reference(target = "(service.vendor=Acme Kennels, Ltd.)")
@Trick(SIT)
@Trick(TREAT_ON_NOSE)
Dog dog;

The target filter will be:

(&(trick=sit)(trick=treat_on_nose)(service.vendor=Acme Kennels, Ltd.))

152.12.8 Reference Names
The @javax. inject .Named annotation may be used to specify a name to serve as the base of the com-
ponent properties used to configure the reference. If not specified the name of the reference will be
derived from the fully qualified class name of the class defining the reference injection point and
the reference injection point.

The production for generated names is:

name ::= prefix '.' suffix

Reference Injection Points CDI Integration Specification Version 1.0

Page 1244 OSGi Compendium Release 8

prefix ::= named | qname
named ::= < @Named.value >
suffix ::= field | ctor | method
field ::= < name of field >
ctor ::= 'new' pIndex
method ::= mName pIndex
mName ::= < method name >
pIndex ::= < index of @Reference parameter >

It is a definition error to have two references with the same name.

It is a definition error to specify the @javax. inject .Named annotation with no value.

In the following example the reference name is example.F ido.mate and the target and
minimum cardinality properties of the reference will be example.F ido.mate.target and
example.F ido.mate.cardinal ity.minimum respectively:

package example;

@SingleComponent
class Fido {
 @Inject
 @Reference
 Dog mate;
}

In the following example the reference name is foo and the target and minimum cardinality proper-
ties of the reference will be foo.target and foo.cardinal ity.minimum respectively:

package example;

@SingleComponent
class Fido {
 @Inject
 @Named("foo")
 @Reference
 Dog mate;
}

152.12.9 Static References
Static references are the most common form of reference injection point. Static means that their
values do not change during the lifetime of the component instance which means that in order to
change the service bound to the reference injection point, the entire component instance must be
destroyed and recreated.

The following are more examples of static reference injection points:

@Inject
@Reference
Dog dog;

@Inject
@Reference(BassetHound.class)
Map<String, Object> props;

@Inject
void setHounds(@Reference BeanServiceObjects<Hound> hounds) {...}

CDI Integration Specification Version 1.0 Reference Injection Points

OSGi Compendium Release 8 Page 1245

@Inject
@Reference
ServiceReference<Spot> spot;

Static reference injection points are mandatory by default. They require a number of services equal
to or greater than their minimum cardinality to be available in order for the component instance to
resolve.

152.12.10 Static Optional References
Optional reference injection points allow a component instance to become resolved when fewer
matching services are found than required by the reference's minimum cardinality. The injection
point type must be java.ut i l .Optional<R> where R is one of the supported reference injection point
types.

The following are examples of static optional references:

@Inject
@Reference
Optional<Dog> dog;

@Inject
@Reference(BassetHound.class)
Optional<Map<String, Object>> props;

@Inject
void setHounds(@Reference Optional<BeanServiceObjects<Hound>> hounds) {...}

@Inject
@Reference
Optional<ServiceReference<Spot>> spot;

As with other static references, static means that their values do not change during the lifetime of
the component instance which means that in order to change the service bound to the reference in-
jection point, the entire component instance must be destroyed and recreated.

152.12.11 Static Multi-cardinality References
Multi-cardinality references are specified using an injection point type of java.ut i l .Col lect ion<R> , or
java.ut i l .L ist<R> where R is one of the supported reference injection point types. Repeating the static
examples as multi-cardinality references, we get:

@Inject
@Reference
List<Dog> dogs;

@Inject
@Reference(BassetHound.class)
Collection<Map<String, Object>> props;

@Inject
void setHounds(@Reference List<BeanServiceObjects<Hound>> hounds) {...}

@Inject
@Reference
Collection<ServiceReference<Spot>> spots;

Reference Injection Points CDI Integration Specification Version 1.0

Page 1246 OSGi Compendium Release 8

Multi-cardinality references are naturally optional since the default value of the minimum cardinali-
ty property is 0 . See Minimum Cardinality Property on page 1230.

As with other static references, static means that their values do not change during the lifetime of
the component instance which means that in order to change the services bound to the reference in-
jection point, the entire component instance must be destroyed and recreated.

152.12.12 Default Minimum Cardinality
As stated in Minimum Cardinality Property on page 1230 every reference has a configurable refer-
ence property name.cardinal ity.minimum . However, there are cases where it is appropriate to spec-
ify a non-zero default minimum cardinality. The MinimumCardinality annotation provides this
functionality.

The following is an example of setting the minimum cardinality:

@Inject
@MinimumCardinality(3)
@Reference
List<Dog> guards;

The value must be a positive integer.

Specifying this annotation on a unary reference results in a definition error.

152.12.13 Dynamic References
Dynamic reference injection points are specified using an injection point type of
javax. inject .Provider<R> where R is one of the supported reference injection point types,
java.ut i l .Optional<R> , java.ut i l .Col lect ion<R> , or java.ut i l .L ist<R> .

The following are examples of dynamic references:

@Inject
@Reference
Provider<Dog> dog;

@Inject
@Reference(BassetHound.class)
Provider<Collection<Map<String, Object>>> props;

@Inject
void setHounds(
 @Reference
 Provider<List<BeanServiceObjects<Hound>>> hounds
) {...}

@Inject
@Reference
Provider<Optional<ServiceReference<Spot>>> spots;

The evaluation of javax. inject .Provider.get() is performed such that each invocation may produce a
different result except for returning nul l .

Specifying the @MinimumCardinal ity annotation with a non-zero value on a dynamic, multi-cardi-
nality reference results in the component not being resolved until the number of matching services
becomes equal to or greater than the specified minimum cardinality.

CDI Integration Specification Version 1.0 Interacting with Service Events

OSGi Compendium Release 8 Page 1247

152.13 Interacting with Service Events
It is often necessary to observe the addition, modification and removal of services from the service
registry. This specification provides 3 special bean types, referred to as binder types, which make it
possible to bind methods to coordinate across the service events of set of services. The type argu-
ment S indicates the service type expected unless further reduced as described by Service Type on
page 1242. Bean Property Types may also be used to expand the target filter as defined in Bean Prop-
erty Types as target filters on page 1243.

• BindService<S> - The BindService bean allows for coordination of service events when the ser-
vice instance is required.

• BindBeanServiceObjects<S> - The BindBeanServiceObjects bean allows for coordination of ser-
vice events when bean service objects are required.

• BindServiceReference<S> - The BindServiceReference bean allows for coordination of service
events when the service reference is required.

These bean types declare a builder style interface for binding the necessary methods to coordinate
the events. The following example binds service event methods over the set of services whose type
is Dog and having the service property service.vendor=Acme Inc. :

@Inject
@ServiceVendor("Acme Inc.")
void bindDogs(BindService<Dog> binder) {
 binder.
 adding(this::adding).
 modified(this::modified).
 removed(this::removed).
 bind();
}

void adding(Dog dog, Map<String,Object> properties) {...}
void modified(Dog dog, Map<String,Object> properties) {...}
void removed(Dog dog, Map<String,Object> properties) {...}

The terminal bind() method must be called to inform CCR that the bind process is complete. Bind-
ing a subset of methods is allowed. Only the last bind method specified for any given service event
will be used. For example, given the following invocation:

@Inject
void bindDogs(BindService<Dog> binder) {
 binder.
 adding(this::addingA).
 adding(this::addingB).
 bind();
}

only the method addingB will be used.

An example of a binder type injected into a field:

@Inject
void bindDogs(BindBeanServiceObjects<Dog> binder) {
 binder.
 adding(this::adding).
 removed(this::removed).

CDI Component Runtime CDI Integration Specification Version 1.0

Page 1248 OSGi Compendium Release 8

 bind();
}

void adding(BeanServiceObjects<Dog> dogs) {...}
void removed(BeanServiceObjects<Dog> dogs) {...}

Binder objects are @Dependent objects and are not thread safe. They are intended to be used during
the creation phase of component beans before the end of the [10] @PostConstruct method. Executing
any binder object method after this time will result in unspecified behavior.

152.14 CDI Component Runtime
CDI Component Runtime (CCR) is the actor that manages the CDI containers and their life cycle
and allows for their introspection.

152.14.1 Relationship to the OSGi Framework
CCR must have access to the Bundle Context of any CDI bundle. CCR needs access to the Bundle
Context for the following reasons:

• To be able to register and get services on behalf of a CDI bundle.
• To interact with the Configuration Admin on behalf of a CDI bundle.
• To interact with the Log Service on behalf of a CDI bundle.
• To make the Bundle Context available for injection in the CDI bundle's beans.

CCR should use the Bundle.getBundleContext() method to obtain the Bundle Context reference.

152.14.2 Injecting the Bundle Context
The Bundle Context of the CDI bundle can be injected. The injection point must be of type
org.osgi .f ramework.BundleContext and must not specify any qualifiers.

@Inject
BundleContext bundleContext;

152.14.3 Starting and Stopping CCR
When CCR is implemented as a bundle, any containers activated by CCR must be deactivated when
the CCR bundle is stopped. When the CCR bundle is started, it must process the CDI metadata de-
clared in CDI bundles. This includes bundles which are started and are awaiting lazy activation.

152.14.4 Logging Messages
When CCR must log a message to the Log Service, it must use a Logger named using the
component's name and associated with the CDI bundle. To obtain the Logger object, CCR must call
the LoggerFactory.getLogger(Bundle bundle, Str ing name, Class loggerType) method passing the
CDI bundle as the first argument and the name of the component as the second argument. If CCR
cannot know the component name, because the error is not associated with a component or the er-
ror occurred before the component template is processed, then CCR must use the bundle's Root Log-
ger, that is, the Logger named ROOT .

152.14.5 Bundle Activator Interaction
A CDI bundle may also declare a Bundle Activator. Such a bundle may also be marked for lazy ac-
tivation. Since CDI containers are activated by CCR and Bundle Activators are called by the OSGi

CDI Integration Specification Version 1.0 CDI Component Runtime

OSGi Compendium Release 8 Page 1249

Framework, a bundle using both a CDI container and a Bundle Activator must take care. The Bundle
Activator's start method must not rely upon CCR having activated the bundle's CDI container. How-
ever, the CDI container can rely upon the Bundle Activator's start method having been called. That
is, there is a happens-before relationship between the Bundle Activator's start method being run and
the CDI container being activated.

152.14.6 Introspection
CCR provides an introspection API for examining the runtime state of the CDI bundles processed
by CCR. CCR must register a CDIComponentRuntime service upon startup. The CDI Component
Runtime service provides methods to inspect CDI containers. The service uses Data Transfer Objects
(DTO) as arguments and return values. The rules for Data Transfer Objects are specified in OSGi Core
Release 8 on page 19.

The CDI Component Runtime service provides the following methods.

• getContainerDTOs(Bundle...) - For each specified bundle, if the bundle is active and processed by
CCR, and the bundle is a valid CDI bundle, the returned collection will contain a ContainerDTO
describing the CDI container.

• getContainerTemplateDTO(Bundle) - If the specified bundle is active and processed by CCR, and
the bundle is a valid CDI bundle, the method will return a ContainerTemplateDTO describing
the template metadata of the CDI container.

The runtime state of the containers can change at any time. So any information returned by these
methods only provides a snapshot of the state at the time of the method call.

There are a number of DTOs available via the CDI Component Runtime service.

CDI Component Runtime CDI Integration Specification Version 1.0

Page 1250 OSGi Compendium Release 8

Figure 152.3 CDI Component Runtime DTOs

0..n

0..n

0..n

1

(*)

(**)

0..n

0..n

0..1

Cdi Component
Runtime

Container DTO

Extension DTO

Bundle DTO

Component DTO

Component
Instance DTO

Configuration DTO

Reference DTO

Activation DTO

Service
Reference DTO

0..n

0..n

0..n

1..n

0..n

0..n

1

1

1

1

1

1

Container
Template DTO

Extension
Template DTO

Component
Template DTO

Configuration
Template DTO

Reference
Template DTO

Activation
Template DTO

 (*) CONTAINER = 1, SINGLE = 0..1, FACTORY = 0..n

 (**) CONTAINER = 0..n, SINGLE = 0..n, FACTORY = 1..n

The ContainerDTO specifies a changeCount field of type long . Whenever the DTOs bellow the Con-
tainerDTO change, CCR will increment the ContainerDTO 's changeCount. Whenever any Contain-
erDTO changes, CCR will update the service.changecount service property of the CDIComponen-
tRuntime service. CCR may use a single update to the service.changecount property to reflect up-
dates in multiple ContainerDTOs . See org.osgi .f ramework.Constants.SERVICE_CHANGECOUNT in
OSGi Core Release 8.

152.14.7 Logger Support
CCR provides special support for logging via the Log Service specification. CCR must provide @De-
pendent objects of type org.osgi .service. log.Logger and org.osgi .service. log.FormatterLogger .

To obtain the Logger object for injection, CCR must call the LoggerFactory.getLogger(Bundle
bundle, Str ing name, Class loggerType) method passing the bundle declaring the compo-
nent as the first argument, the fully qualified name of the injection point's declaring class

CDI Integration Specification Version 1.0 Capabilities

OSGi Compendium Release 8 Page 1251

as the second argument, and the type of the injection point; org.osgi .service. log.Logger or
org.osgi .service. log.FormatterLogger , as the third argument. The typical usage is:

@Inject
Logger logger;

@PostConstruct
void init() {
 logger.debug("Initialized");
}

Another example using method injection along with component properties (coerced to Config):

public static @interface Config {
 String component_name();
}

@Inject
void setup(@ComponentProperties Config config, Logger logger) {
 logger.trace(“Activating component {}”, config.component_name());
}

152.14.8 Disabling Components
All components in a CDI bundle are enabled by default. However, any component can be disabled
through configuration using the single configuration object associated with the container PID by
defining a property using the component name suffixed with .enabled . The value's type is boolean .

enabled ::= compName '.enabled'
compName ::= < component name >

The following is an example disabling a component whose name is foo :

foo.enabled=false

The container component can be disabled using it's component name, which is the container id. As a
result of disabling the container component, all components in the CDI bundle are also disabled.

152.14.9 Container Component and Service Cycles
There is no special support to allow service cycles within the container component. CDI provides ex-
isting mechanisms for wiring and collaborating within the CDI container. However, if an container
component defines a dynamic, optional reference, then a service subsequently provided by the con-
tainer component may satisfy the reference at some point when the container component is satis-
fied. However, if the reference is static and mandatory and the only potentially matching service is
one provided by the container component itself, then the container component would wait forever
for a service that will never arrive. This is simple design error. The information about unsatisfied ref-
erences is available from the CDIComponentRuntime service.

152.15 Capabilities
CCR must provide the following capabilities.

A capability in the osgi .extender namespace declaring an extender with the name osgi.cdi. In addi-
tion to the specification packages, this capability must declare a uses constraint for the javax. inject
package. For example:

Provide-Capability:

Capabilities CDI Integration Specification Version 1.0

Page 1252 OSGi Compendium Release 8

 osgi.extender;
 osgi.extender="osgi.cdi";
 version:Version="1.0";
 uses:="javax.inject, org.osgi.service.cdi, org.osgi.service.cdi.annotations,
 org.osgi.service.cdi.reference, org.osgi.service.cdi.runtime,
 org.osgi.service.cdi.runtime.dto,
 org.osgi.service.cdi.runtime.dto.template"

This capability must follow the rules defined for the osgi.extender Namespace on page 723.

A CDI bundle must require the osgi .extender capability from CCR. This requirement will wire the
bundle to the CCR implementation and ensure that CCR is using the same org.osgi .service.cdi .*
packages as the bundle if the bundle uses those packages.

Require-Capability:
 osgi.extender;
 filter:="(&(osgi.extender=osgi.cdi)(version>=1.0)(!(version>=2.0)))"

CCR must only process a CDI bundle if the bundle's wiring has a required wire for at least one
osgi .extender capability with the name osgi .cdi and the first of these required wires is wired to CCR.

When using the annotations Bean or Beans, the above requirement is automatically added to the
manifest when the code is processed by a supporting build tool capable of interpreting Bundle Anno-
tations defined in OSGi Core Release 8 on page 19.

The requirement may be specified directly on any class or package in the CDI bundle by using the
RequireCDIExtender annotation when the code is processed by a supporting build tool capable of
interpreting Bundle Annotations defined in OSGi Core Release 8 on page 19.

Specifying CDI bean descriptors - As specified in Bean Descriptors on page 1253 a CDI bundle
must declare all CDI bean descriptors CCR is expected to operate on. This is done by adding the at-
tribute descr iptor , of type List<Str ing> , to the requirement.

Specifying the list of bean classes - As specified in Bean Discovery on page 1253 a CDI bundle
must declare all bean classes CCR is expected to operate on. This is done by adding the attribute
beans , of type List<Str ing> , to the requirement.

A capability in the osgi . implementation namespace declaring an implementation with the name
osgi.cdi. In addition to the specification packages, this capability must also declare a uses constraint
for the javax.enterpr ise.* packages. For example:

Provide-Capability:
 osgi.implementation;
 osgi.implementation="osgi.cdi";
 version:Version="1.0";
 uses:="javax.enterprise.context, javax.enterprise.context.control,
 javax.enterprise.context.spi, javax.enterprise.event,
 javax.enterprise.inject, javax.enterprise.inject.literal,
 javax.enterprise.inject.spi, javax.enterprise.inject.spi.configurator,
 javax.enterprise.util, org.osgi.service.cdi,
 org.osgi.service.cdi.annotations,
 org.osgi.service.cdi.reference, org.osgi.service.cdi.runtime,
 org.osgi.service.cdi.runtime.dto,
 org.osgi.service.cdi.runtime.dto.template"

This capability must follow the rules defined for the osgi.implementation Namespace on page 727.

A capability in the osgi .service namespace representing the CDIComponentRuntime service. This
capability must also declare a uses constraint for the org.osgi .service.cdi . runtime package. For ex-
ample:

CDI Integration Specification Version 1.0 Relationship to CDI features

OSGi Compendium Release 8 Page 1253

Provide-Capability:
 osgi.service;
 objectClass:List<String>=
 "org.osgi.service.cdi.runtime.CDIComponentRuntime";
 uses:="org.osgi.service.cdi.runtime"

This capability must follow the rules defined for the osgi.service Namespace on page 727.

A capability in the osgi .service namespace for every service declared by the metadata in the CDI
bundle.

152.16 Relationship to CDI features
CDI has many features which may occasionally interact with the OSGi CDI integrations defined by
this specification.

152.16.1 Bean Descriptors
The [6] Packaging and deployment chapter of the CDI specification defines XML descriptors which are
used to control the CDI container. This specification expects that these descriptors be declared using
the osgi .cdi extender requirement attribute descr iptor of type List<Str ing> . For example:

Require-Capability:
 osgi.extender;
 filter:=”(&(osgi.extender=osgi.cdi)(version>=1.0)(!(version>=2.0.0)))”;
 descriptor:List<String>="META-INF/beans.xml"

If the attribute is not specified the default value of META-INF/beans.xml is used.

CCR must find descriptors by calling Bundle.getResources(Str ing) for each specified value. Note
that the accepted syntax for the values is the same as for java. lang.ClassLoader.getResources . See
osgi .cdi extender capability.

152.16.2 Bean Discovery
The CDI specification defines 3 bean discover modes which perform runtime class discovery:

• all - All classes in the jar are passed to the CDI container and processed.
• none - No classes in the jar are passed to the CDI container. It is assumed however that portable ex-

tensions may yet provide beans.
• annotated (default) - Only classes matching the definition of annotated beans as defined by the [4]

Default bean discovery mode are passed to the CDI container and processed.

This specification avoids runtime class analysis concern by ignoring the bean discovery mode speci-
fied or implied by the descriptors, requiring bean classes to be pre-calculated at build time such that
the CDI container receives a concrete list of classes to process.

It is expected that the aforementioned bean discover modes be implemented in build tooling and be
performed at build time.

A CDI bundle must specify the list of classes to process using the osgi .cdi extender requirement at-
tribute beans of type List<Str ing> . For example:

Require-Capability:
 osgi.extender;
 filter:=”(&(osgi.extender=osgi.cdi)(version>=1.0)(!(version>=2.0.0)))”;
 beans:List<String>="org.foo.Bar, org.foo.baz.Fum"

Relationship to CDI features CDI Integration Specification Version 1.0

Page 1254 OSGi Compendium Release 8

See osgi .cdi extender capability.

152.16.2.1 Build tool support

The bean descriptors specified by the CDI specification allow for narrowing the range of processed
classes by defining [5] Exclude f i l ters . While these filters are still considered, they are only applied
over the concrete list of classes passed from the beans attribute.

Build tools may opt to implement bean discover modes. Implementing the discovery mode all sim-
ply requires placing the names of all classes found in the bundle in the beans attribute. Implement-
ing the discovery mode annotated involves collecting the names of all classes matching the defini-
tion of annotated beans as defined by the [4] Default bean discovery mode and placing those in the
beans attribute.

Another option is to use the CLASS retention annotation defined by this specification.

The CLASS retention annotation Bean may be applied to a class to indicate to supporting build tools
it must be included in the beans list.

The CLASS retention annotation Beans may be applied to a package to indicate to supporting build
tools that all classes in the package must be included in the beans list.

Specifying a value indicates to supporting build tools that the specified classes in the package must
be included in the beans list.

152.16.3 Portable Extensions
CDI Portable Extensions use CDI's SPI which provides a powerful mechanism for extending the base
functionality of CDI. Portable extensions may add, modify or read bean and bean class metadata, de-
fine custom contexts, and much more. Through the SPI a portable extension can participate in all
aspects of the CDI Container's life cycle.

Portable extensions must be provided as OSGi services using the interface
javax.enterpr ise. inject .spi .Extension . Portable extension services must specify the service property
osgi .cdi .extension whose value is a name identifying the functionality provided by the portable ex-
tension.

Table 152.7 Portable Extension Service Properties

Service Property Type Description
osgi .cdi .extension String The name of the Portable Extension

For example, a portable extension service that provides an implementation of the [14] Java Transac-
tion API should specify the value of it's osgi .cdi .extension service property using the [15] Portable
Java Contract name specified for it, which is JavaJTA .

Portable Extension bundles must define a capability using the namespace osgi .cdi .extension
having an attribute osgi .cdi .extension whose value is the same as the name specified in the
osgi .cdi .extension service property of the portable extension service. The capability must also spec-
ify a version attribute of type Version . The capability must also specify a uses directive listing all of
the Java packages provided as part of the Portable Extension's API. If the portable extension imple-
ments an API specified as a Portable Java Contract the uses list should match the Portable Java Con-
tract.

Provide-Capability:
 osgi.cdi.extension;
 osgi.cdi.extension=JavaJTA;
 version:Version="1.2";
 uses:="javax.transaction,javax.transaction.xa"

CDI Integration Specification Version 1.0 Relationship to CDI features

OSGi Compendium Release 8 Page 1255

CDI bundles express a dependency on a portable extension by specifying a requirement in the
osgi .cdi .extension namespace whose f i l ter matches a portable extension capability. For example:

Require-Capability:
 osgi.cdi.extension;
 filter:=”(&(osgi.cdi.extension=JavaJTA)(version=1.2))”;

See osgi .cdi extender capability.

A Portable extension bundle must require the osgi . implementation capability from CCR. This re-
quirement will wire the extension bundle to the CCR implementation and ensure that CCR is using
the same javax.enterpr ise.* packages as the portable extension bundle.

Require-Capability:
 osgi.implementation;
 filter:="(&(osgi.implementation=osgi.cdi)(version>=1.0)(!(version>=2.0)))"

The requirement may be specified directly on any class in the portable extension bundle by using
the RequireCDIImplementation annotation when the code is processed by tooling capable of inter-
preting Bundle Annotations defined in OSGi Core Release 8 on page 19.

152.16.3.1 Portable Extension Services and Beans

Portable extension bundles intending to provide additional beans must do so programmatically us-
ing the SPI. Bean descriptors in the bundle providing the portable extension service are not visible
to the CDI container and therefore play no role in bean discovery.

152.16.3.2 Embedded Portable Extension

Portable extensions which are embedded in the CDI bundle are discoverable through the CDI speci-
fied service loader mechanism using the class loader of the CDI bundle.

152.16.4 Bean Manager
When the container component is satisfied CCR must published the CDI container's
javax.enterpr ise. inject .spi .BeanManager to the service registry using the ServiceContext of the CDI
bundle accompanied by the following service property:

Table 152.8 Bean Manager Service Properties

Service Property Type Description
osgi .cdi .container. id String The container id. The constant

CDI_CONTAINER_ID_PROPERTY exists
for convenience. See Container Compo-
nent on page 1224.

The javax.enterpr ise. inject .spi .BeanManager must be unregistered when the container component
becomes unsatisfied.

152.16.5 Decorators and Interceptors
Decorators and Interceptors are used to wrap contextual instances with proxies to deliver ad-
ditional, targeted functionality. However, these features do not support [3] unproxyable bean
types. Attempting to apply either feature to a bean or producer having an unproxyable bean
type will result in a definition error. This limitation extends to CCR where applicable. The
@javax.enterpr ise. inject .Typed annotation is available to explicitly reduce the set of bean types,
making it possible to use either feature on beans having unproxyable types. Implementations of

Security CDI Integration Specification Version 1.0

Page 1256 OSGi Compendium Release 8

this specification must support the use of @javax.enterpr ise. inject .Typed when publishing ser-
vices.

Service objects are the product of beans and producers. As such they may be targeted by Decora-
tors and/or Interceptors and wrapped by proxies. Therefore the subset of types under which the
service is published must be a subset of the bean types, including further restrictions declared by
@javax.enterpr ise. inject .Typed . Service types not contained in the restricted set of bean types will
result in a definition error. See @Service Type Restrictions on page 1237.

152.17 Security
When Java permissions are enabled, CCR must perform the following security procedures.

152.17.1 Service Permissions
CCR dependencies are built upon the existing OSGi service infrastructure. This means that Service
Permission applies regarding the ability to publish, find or bind services.

If a component specifies a service, that component cannot be satisfied unless the CDI bundle has
ServicePermission[<provides>, REGISTER] for each provided interface specified for the service.

If a component's reference does not specify optional cardinality, the reference cannot be satisfied
unless the CDI bundle has ServicePermission[<interface>, GET] for the specified interface in the
reference. If the reference specifies optional cardinality but the component's bundle does not have
ServicePermission[<interface>, GET] for the specified interface in the reference, no service must be
bound for this reference.

CCR must have ServicePermission[CDIComponentRuntime, REGISTER] permission to register the
CDIComponentRuntime service. Administrative bundles wishing to use the CDIComponentRun-
time service must have ServicePermission[CDIComponentRuntime, GET] permission. In general,
this permission should only be granted to administrative bundles to limit access to the potentially
intrusive methods provided by this service.

152.17.2 Required Admin Permission
CCR requires AdminPermission[*,CONTEXT] because it needs access to the CDI bundle's Bundle
Context object with the Bundle.getBundleContext() method.

152.17.3 Using hasPermission
CCR does all publishing, finding and binding of services on behalf of the component using the Bun-
dle Context of the CDI bundle. This means that normal stack-based permission checks will check
CCR and not the component's bundle. Since CCR is registering and getting services on behalf of a
CDI bundle, CCR must call the Bundle.hasPermission method to validate that a CDI bundle has the
necessary permission to register or get a service.

152.17.4 Configuration Multi-Locations and Regions
CCR must ensure a bundle has the proper Configurat ionPermission for a Configuration used by its
components when the Configuration has a multi-location. See Using Multi-Locations on page 99 for
more information on multi-locations and Regions on page 100 for more information on regions. If a
bundle does not have the necessary permission for a multi-location Configuration, then CCR must
act as if the Configuration does not exist for the bundle.

152.18 org.osgi.service.cdi

CDI Integration Specification Version 1.0 org.osgi.service.cdi

OSGi Compendium Release 8 Page 1257

CDI Integration Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.cdi ; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.cdi ; vers ion="[1.0,1.1)"

152.18.1 Summary

• CDIConstants - Defines CDI constants.
• ComponentType - Define the possible values for ComponentTemplateDTO.type.
• Configurat ionPol icy - Defines the possible values for configuration policy.
• MaximumCardinal ity - Defines the possible values for maximum cardinality of dependencies.
• ReferencePol icy - Defines the possible values of the policy of a reference towards propagating

service changes to the CDI runtime
• ReferencePol icyOption - Defines the possible values of the policy of a satisfied reference to-

wards new matching services appearing.
• ServiceScope - Possible values for ActivationTemplateDTO.scope.

152.18.2 public class CDIConstants
Defines CDI constants.

Provider Type Consumers of this API must not implement this type

152.18.2.1 public static final String CDI_CAPABILITY_NAME = "osgi.cdi"

Capability name for CDI Integration.

Used in Provide-Capabi l i ty and Require-Capabi l i ty manifest headers with the osgi .extender name-
space. For example:

 Require-Capability: osgi.extender; «
 filter:="(&(osgi.extender=osgi.cdi)(version>=1.0)(!(version>=2.0)))"

152.18.2.2 public static final String CDI_COMPONENT_NAME = "$"

Special string representing the name of a Component.

This string can be used with PID OR factory PID to specify the name of the component.

For example:

 @PID(CDI_COMPONENT_NAME)

152.18.2.3 public static final String CDI_CONTAINER_ID = "container.id"

The attribute of the CDI extender requirement declaring the container's id.

 Require-Capability: osgi.extender; «
 filter:="(&(osgi.extender=osgi.cdi)(version>=1.0)(!(version>=2.0)))"; «
 container.id="my.container"

152.18.2.4 public static final String CDI_CONTAINER_ID_PROPERTY = "osgi.cdi.container.id"

The key used for the container id service property in services provided by CCR.

org.osgi.service.cdi CDI Integration Specification Version 1.0

Page 1258 OSGi Compendium Release 8

152.18.2.5 public static final String CDI_EXTENSION_PROPERTY = "osgi.cdi.extension"

A service property applied to javax.enterpr ise. inject .spi .Extension services, whose value is the
name of the extension.

152.18.2.6 public static final String CDI_SPECIFICATION_VERSION = "1.0"

Compile time constant for the Specification Version of CDI Integration.

Used in Version and Requirement annotations. The value of this compile time constant will change
when the specification version of CDI Integration is updated.

152.18.2.7 public static final String REQUIREMENT_BEANS_ATTRIBUTE = "beans"

The 'beans ' attribute on the CDI extender requirement.

The value of this attribute is a list of bean class names that will be processed by CCR. The default
value is an empty list. For example:

 Require-Capability: osgi.extender; «
 filter:="(&(osgi.extender=osgi.cdi)(version>=1.0)(!(version>=2.0)))"; «
 beans:List<String>="com.acme.Foo,com.acme.bar.Baz"

152.18.2.8 public static final String REQUIREMENT_DESCRIPTOR_ATTRIBUTE = "descriptor"

The 'descr iptor ' attribute on the CDI extender requirement.

The value of this attribute is a list of bean CDI bean descriptor file paths to be searched on the Bun-
dle-ClassPath . For example:

 Require-Capability: osgi.extender; «
 filter:="(&(osgi.extender=osgi.cdi)(version>=1.0)(!(version>=2.0)))"; «
 descriptor:List<String>="META-INF/beans.xml"

152.18.3 enum ComponentType
Define the possible values for ComponentTemplateDTO.type.

152.18.3.1 CONTAINER

The component is the Container Component.

152.18.3.2 SINGLE

The component is an Single Component.

152.18.3.3 FACTORY

The component is an Factory Component.

152.18.3.4 public static ComponentType valueOf(String name)

152.18.3.5 public static ComponentType[] values()

152.18.4 enum ConfigurationPolicy
Defines the possible values for configuration policy.

152.18.4.1 OPTIONAL

Defines the optional configuration policy.

152.18.4.2 REQUIRED

Defines the required configuration policy.

CDI Integration Specification Version 1.0 org.osgi.service.cdi

OSGi Compendium Release 8 Page 1259

152.18.4.3 public static ConfigurationPolicy valueOf(String name)

152.18.4.4 public static ConfigurationPolicy[] values()

152.18.5 enum MaximumCardinality
Defines the possible values for maximum cardinality of dependencies.

152.18.5.1 ONE

Defines a unary reference.

152.18.5.2 MANY

Defines a plural reference.

152.18.5.3 public static MaximumCardinality fromInt(int value)

value The integer representation of an upper cardinality boundary

□ Resolve an integer to an upper cardinality boundary.

Returns The enum representation of the upper cardinality boundary described by value

152.18.5.4 public int toInt()

□ Convert this upper cardinality boundary to an integer

Returns The integer representation of this upper cardinality boundary

152.18.5.5 public static MaximumCardinality valueOf(String name)

152.18.5.6 public static MaximumCardinality[] values()

152.18.6 enum ReferencePolicy
Defines the possible values of the policy of a reference towards propagating service changes to the
CDI runtime

152.18.6.1 STATIC

Reboot the CDI component that depends on this reference

152.18.6.2 DYNAMIC

Update the CDI reference

152.18.6.3 public static ReferencePolicy valueOf(String name)

152.18.6.4 public static ReferencePolicy[] values()

152.18.7 enum ReferencePolicyOption
Defines the possible values of the policy of a satisfied reference towards new matching services ap-
pearing.

152.18.7.1 GREEDY

Consume the matching service applying it's ReferencePolicy

152.18.7.2 RELUCTANT

Do not consume the matching service

org.osgi.service.cdi.annotations CDI Integration Specification Version 1.0

Page 1260 OSGi Compendium Release 8

152.18.7.3 public static ReferencePolicyOption valueOf(String name)

152.18.7.4 public static ReferencePolicyOption[] values()

152.18.8 enum ServiceScope
Possible values for ActivationTemplateDTO.scope.

152.18.8.1 SINGLETON

This activation will only ever create one instance

The instance is created after the parent component becomes satisfied and is destroyed before the
parent component becomes unsatisfied.

If ActivationTemplateDTO.serviceClasses is not empty the instance will be registered as an OSGi ser-
vice with service.scope=singleton .

152.18.8.2 BUNDLE

This activation will register an OSGi service with service.scope=bundle .

The service is registered just after all SINGLETON activations are set up and just before all SINGLE-
TON activations are torn down.

The ActivationTemplateDTO.serviceClasses is not empty when this scope is used.

152.18.8.3 PROTOTYPE

This activation will register an OSGi service with service.scope=prototype .

The service is registered just after all SINGLETON activations are set up and just before all SINGLE-
TON activations are torn down.

The ActivationTemplateDTO.serviceClasses is not empty when this scope is used.

152.18.8.4 public static ServiceScope valueOf(String name)

152.18.8.5 public static ServiceScope[] values()

152.19 org.osgi.service.cdi.annotations

CDI Integration Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.cdi .annotat ions; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.cdi .annotat ions; vers ion="[1.0,1.1)"

152.19.1 Summary

• Bean - Annotation used to indicate that build tooling must be included the class in the osgi .cdi
beans list.

CDI Integration Specification Version 1.0 org.osgi.service.cdi.annotations

OSGi Compendium Release 8 Page 1261

• BeanPropertyType - Identify the annotated annotation as a Bean Property Type.
• BeanPropertyType.Literal - Support inline instantiation of the BeanPropertyType annotation.
• Beans - Annotation used to indicate that build tooling must be included the specified classes in

the osgi .cdi beans list.
• ComponentPropert ies - Annotation used with Inject in order to have component properties in-

jected.
• ComponentPropert ies.L iteral - Support inline instantiation of the ComponentProperties anno-

tation.
• ComponentScoped - This scope is used to declare a bean who's lifecycle is determined by the

state of it's OSGi dependencies and the SingleComponent(s) and FactoryComponent(s) that may
reference it through injection.

• ComponentScoped.Literal - Support inline instantiation of the ComponentScoped annotation.
• FactoryComponent - Identifies a factory component.
• FactoryComponent.L iteral - Support inline instantiation of the FactoryComponent annotation.
• MinimumCardinal ity - Annotation used in conjunction with Reference to specify the minimum

cardinality reference property.
• MinimumCardinal ity.L iteral - Support inline instantiation of the MinimumCardinality annota-

tion.
• PID - Annotation used in collaboration with ComponentScoped to specify singleton configura-

tions and their policy.
• PID.Literal - Support inline instantiation of the PID annotation.
• PIDs - Annotation used in conjunction with ComponentScoped in order to associate configura-

tions with the component bean.
• PIDs.L iteral - Support inline instantiation of the PIDs annotation.
• PrototypeRequired - Used with @Reference, BindService, BindBeanServiceObjects and BindSer-

viceReference to indicate that the service must be service.scope=prototype .
• PrototypeRequired.Literal - Support inline instantiation of the PrototypeRequired annotation.
• Reference - Annotation used on injection points informing the CDI container that the injection

should apply a service obtained from the OSGi registry.
• Reference.Any - A marker type used in Reference.value to indicate that a reference injection

point may accept any service type(s).
• Reference.Literal - Support inline instantiation of the Reference annotation.
• Reluctant - Annotation used to indicate that the behavior of the reference should be reluctant.
• Reluctant.L iteral - Support inline instantiation of the Reluctant annotation.
• RequireCDIExtender - This annotation can be used to require the CDI Component Runtime ex-

tender.
• RequireCDIImplementation - This annotation can be used to require the CDI Component Run-

time implementation.
• Service - Annotation used to specify that a bean should be published as a service.
• Service.L iteral - Support inline instantiation of the Service annotation.
• ServiceInstance - Annotation used on beans, observer methods and observer fields to specify the

service scope for the service.
• ServiceInstance.Literal - Support inline instantiation of the ServiceInstance annotation.
• SingleComponent - Identifies a single component.
• SingleComponent.L iteral - Support inline instantiation of the SingleComponent annotation.

152.19.2 @Bean
Annotation used to indicate that build tooling must be included the class in the osgi .cdi beans list.

Retention CLASS

org.osgi.service.cdi.annotations CDI Integration Specification Version 1.0

Page 1262 OSGi Compendium Release 8

Target TYPE

152.19.3 @BeanPropertyType
Identify the annotated annotation as a Bean Property Type.

Bean Property Type can be applied to beans annotated with SingleComponent, FactoryComponent,
to beans annotated with ApplicationScoped or Dependent where the Service annotation is applied,
to methods and fields marked as Produces where the Service annotation is applied, or to injection
points where the Reference annotation is applied.

See Also Bean Property Types.

Retention RUNTIME

Target ANNOTATION_TYPE

152.19.4 public static final class BeanPropertyType.Literal
extends AnnotationLiteral<BeanPropertyType>
implements BeanPropertyType
Support inline instantiation of the BeanPropertyType annotation.

152.19.4.1 public static final BeanPropertyType INSTANCE

Default instance.

152.19.4.2 public Literal()

152.19.5 @Beans
Annotation used to indicate that build tooling must be included the specified classes in the osgi .cdi
beans list.

Retention CLASS

Target PACKAGE

152.19.5.1 Class<?>[] value default {}

□ Specify the list of classes from the current package. Specifying no value (or an empty array) indi-
cates to include all classes in the package.

152.19.6 @ComponentProperties
Annotation used with Inject in order to have component properties injected.

See "Component Properties".

Retention RUNTIME

Target FIELD , PARAMETER

152.19.7 public static final class ComponentProperties.Literal
extends AnnotationLiteral<ComponentProperties>
implements ComponentProperties
Support inline instantiation of the ComponentProperties annotation.

152.19.7.1 public static final ComponentProperties INSTANCE

Default instance.

CDI Integration Specification Version 1.0 org.osgi.service.cdi.annotations

OSGi Compendium Release 8 Page 1263

152.19.7.2 public Literal()

152.19.8 @ComponentScoped
This scope is used to declare a bean who's lifecycle is determined by the state of it's OSGi dependen-
cies and the SingleComponent(s) and FactoryComponent(s) that may reference it through injection.

Retention RUNTIME

Target FIELD , METHOD , PARAMETER , TYPE

152.19.9 public static final class ComponentScoped.Literal
extends AnnotationLiteral<ComponentScoped>
implements ComponentScoped
Support inline instantiation of the ComponentScoped annotation.

152.19.9.1 public static final ComponentScoped INSTANCE

Default instance.

152.19.9.2 public Literal()

152.19.10 @FactoryComponent
Identifies a factory component.

Factory components MUST always be ComponentScoped. Applying any other scope will result in a
definition error.

See Also Factory Component

Retention RUNTIME

Target TYPE

152.19.10.1 String value default "$"

□ The configuration PID for the configuration of this Component.

The value specifies a configuration PID who's configuration properties are available at injection
points in the component.

A special string ("$") can be used to specify the name of the component as a configuration PID. The
CDI_COMPONENT_NAME constant holds this special string.

For example:

 @FactoryPID(CDI_COMPONENT_NAME)

152.19.11 public static final class FactoryComponent.Literal
extends AnnotationLiteral<FactoryComponent>
implements FactoryComponent
Support inline instantiation of the FactoryComponent annotation.

152.19.11.1 public static final FactoryComponent.Literal of(String pid)

pid the factory configuration pid

Returns an instance of FactoryComponent

org.osgi.service.cdi.annotations CDI Integration Specification Version 1.0

Page 1264 OSGi Compendium Release 8

152.19.11.2 public String value()

152.19.12 @MinimumCardinality
Annotation used in conjunction with Reference to specify the minimum cardinality reference prop-
erty.

Specifying the MinimumCardinality annotation with the value of 0 on a unary reference is a defini-
tion error.

Retention RUNTIME

Target FIELD , PARAMETER

152.19.12.1 int value default 1

□ The minimum cardinality of the reference.

The value must be a positive integer.

For example:

 @MinimumCardinal ity(3)

152.19.13 public static final class MinimumCardinality.Literal
extends AnnotationLiteral<MinimumCardinality>
implements MinimumCardinality
Support inline instantiation of the MinimumCardinality annotation.

152.19.13.1 public static final MinimumCardinality.Literal of(int value)

value the minimum cardinality

Returns an instance of MinimumCardinality

152.19.13.2 public int value()

152.19.14 @PID
Annotation used in collaboration with ComponentScoped to specify singleton configurations and
their policy.

Retention RUNTIME

Target FIELD , METHOD , PARAMETER , TYPE

152.19.14.1 String value default "$"

□ The configuration PID for the configuration of this Component.

The value specifies a configuration PID who's configuration properties are available at injection
points in the component.

A special string ("$") can be used to specify the name of the component as a configuration PID. The
CDI_COMPONENT_NAME constant holds this special string.

For example:

 @PID(CDI_COMPONENT_NAME)

CDI Integration Specification Version 1.0 org.osgi.service.cdi.annotations

OSGi Compendium Release 8 Page 1265

152.19.14.2 ConfigurationPolicy policy default OPTIONAL

□ The configuration policy associated with this PID.

Controls how the configuration must be satisfied depending on the presence and type of a corre-
sponding Configuration object in the OSGi Configuration Admin service. Corresponding configura-
tion is a Configuration object where the PID is equal to value.

If not specified, the configuration is not required.

152.19.15 public static final class PID.Literal
extends AnnotationLiteral<PID>
implements PID
Support inline instantiation of the PID annotation.

152.19.15.1 public static final PID.Literal of(String pid, ConfigurationPolicy policy)

pid the configuration pid

policy the policy of the configuration

Returns an instance of PID

152.19.15.2 public ConfigurationPolicy policy()

152.19.15.3 public String value()

152.19.16 @PIDs
Annotation used in conjunction with ComponentScoped in order to associate configurations with
the component bean.

Retention RUNTIME

Target FIELD , METHOD , PARAMETER , TYPE

152.19.16.1 PID[] value

□ The set of ordered configurations available to the component.

152.19.17 public static final class PIDs.Literal
extends AnnotationLiteral<PIDs>
implements PIDs
Support inline instantiation of the PIDs annotation.

152.19.17.1 public static PIDs of(PID[] pids)

pids array of PID

Returns an instance of PIDs

152.19.17.2 public PID[] value()

152.19.18 @PrototypeRequired
Used with @Reference, BindService, BindBeanServiceObjects and BindServiceReference to indicate
that the service must be service.scope=prototype .

Retention RUNTIME

Target FIELD , METHOD , PARAMETER , TYPE

org.osgi.service.cdi.annotations CDI Integration Specification Version 1.0

Page 1266 OSGi Compendium Release 8

152.19.19 public static final class PrototypeRequired.Literal
extends AnnotationLiteral<PrototypeRequired>
implements PrototypeRequired
Support inline instantiation of the PrototypeRequired annotation.

152.19.19.1 public static final PrototypeRequired INSTANCE

Default instance

152.19.19.2 public Literal()

152.19.20 @Reference
Annotation used on injection points informing the CDI container that the injection should apply a
service obtained from the OSGi registry.

*

See Also Reference Annotation

Retention RUNTIME

Target FIELD , PARAMETER

152.19.20.1 Class<?> value default Object.class

□ Specify the type of the service for this reference.

If not specified, the type of the service for this reference is derived from the injection point type.

If a value is specified it must be type compatible with (assignable to) the service type derived from
the injection point type, otherwise a definition error will result.

152.19.20.2 String target default ""

□ The target property for this reference.

If not specified, no target property is set.

152.19.21 public static final class Reference.Any
A marker type used in Reference.value to indicate that a reference injection point may accept any
service type(s).

The injection point service type must be specified as Object.

The value must be specified by itself.

For example:

 @Inject
 @Reference(value = Any.class, target = "(bar=baz)")
 List<Object> services;

152.19.21.1 public Any()

152.19.22 public static final class Reference.Literal
extends AnnotationLiteral<Reference>
implements Reference
Support inline instantiation of the Reference annotation.

CDI Integration Specification Version 1.0 org.osgi.service.cdi.annotations

OSGi Compendium Release 8 Page 1267

152.19.22.1 public static final Reference.Literal of(Class<?> service, String target)

service

target

Returns instance of Reference

152.19.22.2 public String target()

152.19.22.3 public Class<?> value()

152.19.23 @Reluctant
Annotation used to indicate that the behavior of the reference should be reluctant. Used in conjunc-
tion with @Reference, BindService, BindServiceReference or BindBeanServiceObjects.

Retention RUNTIME

Target FIELD , METHOD , PARAMETER , TYPE

152.19.24 public static final class Reluctant.Literal
extends AnnotationLiteral<Reluctant>
implements Reluctant
Support inline instantiation of the Reluctant annotation.

152.19.24.1 public static final Reluctant INSTANCE

Default instance

152.19.24.2 public Literal()

152.19.25 @RequireCDIExtender
This annotation can be used to require the CDI Component Runtime extender. It can be used direct-
ly, or as a meta-annotation.

Retention CLASS

Target TYPE , PACKAGE

152.19.25.1 String[] descriptor default "META-INF/beans.xml"

□ Specify CDI bean descriptor file paths to be searched on the Bundle-ClassPath . For example:

 @RequireCDIExtender(descriptor = "META-INF/beans.xml")

Returns CDI bean descriptor file paths.

152.19.25.2 Class<?>[] beans default {}

□ Specify OSGi Beans classes to be used by the CDI container. For example:

 @RequireCDIExtender(beans = {com.foo.BarImpl.class, com.foo.impl.BazImpl.class})

Returns OSGi Beans classes to be used by the CDI container.

152.19.26 @RequireCDIImplementation
This annotation can be used to require the CDI Component Runtime implementation. It can be used
directly, or as a meta-annotation.

org.osgi.service.cdi.annotations CDI Integration Specification Version 1.0

Page 1268 OSGi Compendium Release 8

Retention CLASS

Target TYPE , PACKAGE

152.19.27 @Service
Annotation used to specify that a bean should be published as a service.

The behavior of this annotation depends on it's usage:

• on the bean type - publish the service using all implemented interfaces. If there are no imple-
mented interfaces use the bean class.

• on the bean's type_use(s) - publish the service using the collected interface(s).

Use of @Service on both type and type_use will result in a definition error.

Where this annotation is used affects how service scopes are supported:

• @SingleComponent, @FactoryComponent or @Dependent bean - The provided service can be
of any scope. The bean can either implement ServiceFactory or PrototypeServiceFactory or use
@Bundle or @Prototype to set it's service scope. If none of those options are used the service is a
singleton scope service.

• @ApplicationScoped bean - The provided service is a singleton scope service unless the bean im-
plements ServiceFactory or PrototypeServiceFactory. It cannot use @Bundle or @Prototype to
set it's service scope. Use of those annotations in this case will result in a definition error.

Retention RUNTIME

Target FIELD , METHOD , TYPE , TYPE_USE

152.19.27.1 Class<?>[] value default {}

□ Override the interfaces under which this service is published.

Returns the service types

152.19.28 public static final class Service.Literal
extends AnnotationLiteral<Service>
implements Service
Support inline instantiation of the Service annotation.

152.19.28.1 public static final Service.Literal of(Class<?>[] interfaces)

interfaces

Returns instance of Service

152.19.28.2 public Class<?>[] value()

152.19.29 @ServiceInstance
Annotation used on beans, observer methods and observer fields to specify the service scope for the
service. Used in conjunction with Service.

Retention RUNTIME

Target TYPE , FIELD , METHOD

152.19.29.1 ServiceScope value default SINGLETON

□ The scope of the service.

CDI Integration Specification Version 1.0 org.osgi.service.cdi.propertytypes

OSGi Compendium Release 8 Page 1269

152.19.30 public static final class ServiceInstance.Literal
extends AnnotationLiteral<ServiceInstance>
implements ServiceInstance
Support inline instantiation of the ServiceInstance annotation.

152.19.30.1 public static ServiceInstance.Literal of(ServiceScope type)

type the type of the ServiceInstance

Returns an instance of ServiceInstance

152.19.30.2 public ServiceScope value()

152.19.31 @SingleComponent
Identifies a single component.

Single components MUST always be ComponentScoped. Applying any other scope will result in a
definition error.

See Also Single Component

Retention RUNTIME

Target TYPE

152.19.32 public static final class SingleComponent.Literal
extends AnnotationLiteral<SingleComponent>
implements SingleComponent
Support inline instantiation of the SingleComponent annotation.

152.19.32.1 public static final SingleComponent INSTANCE

Default instance.

152.19.32.2 public Literal()

152.20 org.osgi.service.cdi.propertytypes

Bean Property Types Package Version 1.0.

When used as annotations, bean property types are processed by CCR to generate default compo-
nent properties, service properties and target filters.

Bundles wishing to use this package at runtime must list the package in the Import-Package header
of the bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.cdi .propertytypes; vers ion="[1.0,2.0)"

152.20.1 Summary

• BeanPropertyException - This Runtime Exception is thrown when a Bean Property Type method
attempts an invalid component property coercion.

• ExportedService - Bean Property Type for the remote service properties for an exported service.
• ServiceDescr ipt ion - Bean Property Type for the service.descr ipt ion service property.

org.osgi.service.cdi.propertytypes CDI Integration Specification Version 1.0

Page 1270 OSGi Compendium Release 8

• ServiceRanking - Bean Property Type for the service.ranking service property.
• ServiceVendor - Bean Property Type for the service.vendor service property.

152.20.2 public class BeanPropertyException
extends RuntimeException
This Runtime Exception is thrown when a Bean Property Type method attempts an invalid compo-
nent property coercion. For example when the bean property type method Long test() ; is applied to
a component property "test" of type String.

152.20.2.1 public BeanPropertyException(String message)

message The message for this exception.

□ Create a Bean Property Exception with a message.

152.20.2.2 public BeanPropertyException(String message, Throwable cause)

message The message for this exception.

cause The causing exception.

□ Create a Bean Property Exception with a message and a nested cause.

152.20.3 @ExportedService
Bean Property Type for the remote service properties for an exported service.

This annotation can be used as defined by BeanPropertyType to declare the values of the remote ser-
vice properties for an exported service.

See Also Bean Property Types , Remote Services Specif icat ion

Retention RUNTIME

Target FIELD , METHOD , PARAMETER , TYPE

152.20.3.1 Class<?>[] service_exported_interfaces

□ Service property marking the service for export. It defines the interfaces under which the service
can be exported.

If an empty array is specified, the property is not added to the component description.

Returns The exported service interfaces.

See Also Constants.SERVICE_EXPORTED_INTERFACES

152.20.3.2 String[] service_exported_configs default {}

□ Service property identifying the configuration types that should be used to export the service.

If an empty array is specified, the default value, the property is not added to the component descrip-
tion.

Returns The configuration types.

See Also Constants.SERVICE_EXPORTED_CONFIGS

152.20.3.3 String[] service_exported_intents default {}

□ Service property identifying the intents that the distribution provider must implement to distribute
the service.

If an empty array is specified, the default value, the property is not added to the component descrip-
tion.

Returns The intents that the distribution provider must implement to distribute the service.

CDI Integration Specification Version 1.0 org.osgi.service.cdi.propertytypes

OSGi Compendium Release 8 Page 1271

See Also Constants.SERVICE_EXPORTED_INTENTS

152.20.3.4 String[] service_exported_intents_extra default {}

□ Service property identifying the extra intents that the distribution provider must implement to dis-
tribute the service.

If an empty array is specified, the default value, the property is not added to the component descrip-
tion.

Returns The extra intents that the distribution provider must implement to distribute the service.

See Also Constants.SERVICE_EXPORTED_INTENTS_EXTRA

152.20.3.5 String[] service_intents default {}

□ Service property identifying the intents that this service implements.

If an empty array is specified, the default value, the property is not added to the component descrip-
tion.

Returns The intents that the service implements.

See Also Constants.SERVICE_INTENTS

152.20.4 @ServiceDescription
Bean Property Type for the service.descr ipt ion service property.

This annotation can be used as defined by BeanPropertyType to declare the value the
Constants.SERVICE_DESCRIPTION service property.

See Also Bean Property Types

Retention RUNTIME

Target FIELD , METHOD , PARAMETER , TYPE

152.20.4.1 String value

□ Service property identifying a service's description.

Returns The service description.

See Also Constants.SERVICE_DESCRIPTION

152.20.5 @ServiceRanking
Bean Property Type for the service.ranking service property.

This annotation can be used as defined by BeanPropertyType to declare the value of the
Constants.SERVICE_RANKING service property.

See Also Bean Property Types

Retention RUNTIME

Target FIELD , METHOD , PARAMETER , TYPE

152.20.5.1 int value

□ Service property identifying a service's ranking.

Returns The service ranking.

See Also Constants.SERVICE_RANKING

152.20.6 @ServiceVendor
Bean Property Type for the service.vendor service property.

org.osgi.service.cdi.reference CDI Integration Specification Version 1.0

Page 1272 OSGi Compendium Release 8

This annotation can be used as defined by BeanPropertyType to declare the value of the
Constants.SERVICE_VENDOR service property.

See Also Bean Property Types

Retention RUNTIME

Target FIELD , METHOD , PARAMETER , TYPE

152.20.6.1 String value

□ Service property identifying a service's vendor.

Returns The service vendor.

See Also Constants.SERVICE_VENDOR

152.21 org.osgi.service.cdi.reference

CDI Integration Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.cdi .annotat ions; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.cdi .annotat ions; vers ion="[1.0,1.1)"

152.21.1 Summary

• BeanServiceObjects - Allows multiple service objects for a service to be obtained.
• BindBeanServiceObjects - A bean provided by CCR for binding actions to life cycle events of

matching services.
• BindService - A bean provided by CCR for binding actions to life cycle events of matching ser-

vices.
• BindServiceReference - A bean provided by CCR for binding actions to life cycle events of

matching services.

152.21.2 public interface BeanServiceObjects<S>
<S> Type of Service

Allows multiple service objects for a service to be obtained.

A component instance can receive a BeanServiceObjects object via a reference that is typed
BeanServiceObjects .

For services with prototype scope, multiple service objects for the service can be obtained. For ser-
vices with singleton or bundle scope, only one, use-counted service object is available.

Any unreleased service objects obtained from this BeanServiceObjects object are automatically re-
leased by Service Component Runtime when the service becomes unbound.

See Also ServiceObjects

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

CDI Integration Specification Version 1.0 org.osgi.service.cdi.reference

OSGi Compendium Release 8 Page 1273

152.21.2.1 public S getService()

□ Returns a service object for the associated service.

This method will always return nul l when the associated service has been become unbound.

Returns A service object for the associated service or nul l if the service is unbound, the customized service
object returned by a ServiceFactory does not implement the classes under which it was registered or
the ServiceFactory threw an exception.

Throws I l legalStateException– If the component instance that received this BeanServiceObjects object has
been deactivated.

See Also ungetService(Object)

152.21.2.2 public ServiceReference<S> getServiceReference()

□ Returns the ServiceReference for the service associated with this BeanServiceObjects object.

Returns The ServiceReference for the service associated with this BeanServiceObjects object.

152.21.2.3 public void ungetService(S service)

service A service object previously provided by this ReferenceServiceObjects object.

□ Releases a service object for the associated service.

The specified service object must no longer be used and all references to it should be destroyed after
calling this method.

Throws I l legalStateException– If the component instance that received this ReferenceServiceObjects ob-
ject has been deactivated.

I l legalArgumentException– If the specified service object was not provided by this BeanServiceOb-
jects object.

See Also getService()

152.21.3 public interface BindBeanServiceObjects<S>
<S> the service argument type.

A bean provided by CCR for binding actions to life cycle events of matching services.

See Also Reference

Provider Type Consumers of this API must not implement this type

152.21.3.1 public BindBeanServiceObjects<S> adding(Consumer<BeanServiceObjects<S>> action)

action the action, whose argument is the Bean Service Objects, to subscribe to the adding service event

□ Subscribe an action to the adding service event.

Only the last adding action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.3.2 public void bind()

□ The bind terminal operation is required to instruct CCR that all the bind actions have been speci-
fied, otherwise bind actions will never be called by CCR.

Calling bind again has no effect.

152.21.3.3 public BindBeanServiceObjects<S> modified(Consumer<BeanServiceObjects<S>> action)

action the action, whose argument is the Bean Service Objects, to subscribe to the modified service event

org.osgi.service.cdi.reference CDI Integration Specification Version 1.0

Page 1274 OSGi Compendium Release 8

□ Subscribe an action to the modified service event.

Only the last modified action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.3.4 public BindBeanServiceObjects<S> removed(Consumer<BeanServiceObjects<S>> action)

action the action, whose argument is the Bean Service Objects, to subscribe to the removed service event

□ Subscribe an action to the removed service event.

Only the last removed action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.4 public interface BindService<S>
<S> the service argument type.

A bean provided by CCR for binding actions to life cycle events of matching services.

See Also Reference

Provider Type Consumers of this API must not implement this type

152.21.4.1 public BindService<S> adding(Consumer<S> action)

action the action, whose argument is the service instance, to subscribe to the adding service event

□ Subscribe an action to the adding service event.

Only the last adding action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.4.2 public BindService<S> adding(BiConsumer<S, Map<String, Object>> action)

action the action, whose arguments are the service instance and the Map<Str ing, Object> of service proper-
ties, to subscribe to the adding service event

□ Subscribe an action to the adding service event.

Only the last adding action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.4.3 public void bind()

□ The bind terminal operation is required to instruct CCR that all the bind actions have been speci-
fied, otherwise bind actions will never be called by CCR.

Calling bind again has no effect.

152.21.4.4 public BindService<S> modified(Consumer<S> action)

action the action, whose argument is the service instance, to subscribe to the modified service event

□ Subscribe an action to the modified service event.

Only the last modified action is used.

Returns self

CDI Integration Specification Version 1.0 org.osgi.service.cdi.reference

OSGi Compendium Release 8 Page 1275

Throws I l legalStateException– when called after bind

152.21.4.5 public BindService<S> modified(BiConsumer<S, Map<String, Object>> action)

action the action, whose arguments are the service instance and the Map<Str ing, Object> of service proper-
ties, to subscribe to the modified service event

□ Subscribe an action to the modified service event.

Only the last modified action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.4.6 public BindService<S> removed(Consumer<S> action)

action the action, whose argument is the service instance, to subscribe to the removed service event

□ Subscribe an action to the removed service event.

Only the last removed action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.4.7 public BindService<S> removed(BiConsumer<S, Map<String, Object>> action)

action the action, whose arguments are the service instance and the Map<Str ing, Object> of service proper-
ties, to subscribe to the removed service event

□ Subscribe an action to the removed service event.

Only the last removed action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.5 public interface BindServiceReference<S>
<S> the service argument type.

A bean provided by CCR for binding actions to life cycle events of matching services.

See Also Reference

Provider Type Consumers of this API must not implement this type

152.21.5.1 public BindServiceReference<S> adding(Consumer<ServiceReference<S>> action)

action the action, whose argument is the service reference, to subscribe to the adding service event

□ Subscribe an action to the adding service event.

Only the last adding action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.5.2 public BindServiceReference<S> adding(BiConsumer<ServiceReference<S>, S> action)

action the action, whose arguments are the service reference and the service object, to subscribe to the
adding service event

□ Subscribe an action to the adding service event.

Only the last adding action is used.

Returns self

org.osgi.service.cdi.runtime CDI Integration Specification Version 1.0

Page 1276 OSGi Compendium Release 8

Throws I l legalStateException– when called after bind

152.21.5.3 public void bind()

□ The bind terminal operation is required to instruct CCR that all the bind actions have been speci-
fied, otherwise bind actions will never be called by CCR.

Calling bind again has no effect.

152.21.5.4 public BindServiceReference<S> modified(Consumer<ServiceReference<S>> action)

action the action, whose argument is the service reference, to subscribe to the modified service event

□ Subscribe an action to the modified service event.

Only the last modified action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.5.5 public BindServiceReference<S> modified(BiConsumer<ServiceReference<S>, S> action)

action the action, whose arguments are the service reference and the service object, to subscribe to the mod-
ified service event

□ Subscribe an action to the modified service event.

Only the last modified action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.5.6 public BindServiceReference<S> removed(Consumer<ServiceReference<S>> action)

action the action, whose argument is the service reference, to subscribe to the removed service event

□ Subscribe an action to the removed service event.

Only the last removed action is used.

Returns self

Throws I l legalStateException– when called after bind

152.21.5.7 public BindServiceReference<S> removed(BiConsumer<ServiceReference<S>, S> action)

action the action, whose arguments are the service reference and the service object, to subscribe to the re-
moved service event

□ Subscribe an action to the removed service event.

Only the last removed action is used.

Returns self

Throws I l legalStateException– when called after bind

152.22 org.osgi.service.cdi.runtime

CDI Integration Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

CDI Integration Specification Version 1.0 org.osgi.service.cdi.runtime.dto

OSGi Compendium Release 8 Page 1277

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.cdi ; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.cdi ; vers ion="[1.0,1.1)"

152.22.1 Summary

• CDIComponentRuntime - The CDIComponentRuntime service represents the actor that man-
ages the CDI containers and their life cycle.

152.22.2 public interface CDIComponentRuntime
The CDIComponentRuntime service represents the actor that manages the CDI containers and their
life cycle. The CDIComponentRuntime service allows introspection of the managed CDI containers.

This service must be registered with a Constants.SERVICE_CHANGECOUNT service property that
must be updated each time any of the DTOs available from this service change.

Access to this service requires the ServicePermission[CDIComponentRuntime, GET] permission. It
is intended that only administrative bundles should be granted this permission to limit access to the
potentially intrusive methods provided by this service.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

152.22.2.1 public Collection<ContainerDTO> getContainerDTOs(Bundle... bundles)

bundles The bundles who's container description snapshots are to be returned. Specifying no bundles, or the
equivalent of an empty Bundle array, will return the container descriptions of all active bundles that
define a container.

□ Returns a collection of container description snapshots for a set of bundles.

Returns A set of descriptions of the container of the specified bundles . Only bundles that have an associated
container are included. If a bundle is listed multiple times in bundles only one ContainerDTO is re-
turned. Returns an empty collection if no CDI containers are found.

152.22.2.2 public ContainerTemplateDTO getContainerTemplateDTO(Bundle bundle)

bundle The bundle defining a container. Must not be nul l and must be active.

□ Returns the ContainerTemplateDTO for the specified bundle

Returns The container template for of the specified bundle or nul l if it does not have an associated container.

152.23 org.osgi.service.cdi.runtime.dto

CDI Integration Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.cdi .dto; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.cdi .dto; vers ion="[1.0,1.1)"

org.osgi.service.cdi.runtime.dto CDI Integration Specification Version 1.0

Page 1278 OSGi Compendium Release 8

152.23.1 Summary

• Activat ionDTO - A snapshot of the runtime state of a component activation.
• ComponentDTO - A snapshot of the runtime state of a component.
• ComponentInstanceDTO - A snapshot of the runtime state of a component.
• Configurat ionDTO - A snapshot of the runtime state of a component factory configuration de-

pendency
• ContainerDTO - A snapshot of the runtime state of a CDI container
• ExtensionDTO - A snapshot of the runtime state of an javax.enterpr ise. inject .spi .Extension de-

pendency required by this CDI container.
• ReferenceDTO - A snapshot of the runtime state of a component reference dependency

152.23.2 public class ActivationDTO
extends DTO
A snapshot of the runtime state of a component activation.

Concurrency Not Thread-safe

152.23.2.1 public List<String> errors

The list of errors which occurred during initialization. An empty list means there were no errors.

Must not be nul l .

152.23.2.2 public ServiceReferenceDTO service

The service this activation may have registered.

Must not be nul l if template.serviceClasses is not empty.

152.23.2.3 public ActivationTemplateDTO template

The template describing this activation.

Must not be nul l

152.23.2.4 public ActivationDTO()

152.23.3 public class ComponentDTO
extends DTO
A snapshot of the runtime state of a component.

Concurrency Not Thread-safe

152.23.3.1 public boolean enabled

Indicates if the component is enabled. The default is true .

A setting of fa lse on the container component results in all components in the bundle being disabled.

152.23.3.2 public List<ComponentInstanceDTO> instances

The component instances created by this component.

• When template is of type ComponentType.CONTAINER - there will be 1 ComponentInstanceD-
TO

• When template is of type ComponentType.SINGLE - there will be 1 ComponentInstanceDTO
• When template is of type ComponentType.FACTORY - there will be one ComponentInstanceD-

TO for every factory configuration object associated with the factory PID of the component.

CDI Integration Specification Version 1.0 org.osgi.service.cdi.runtime.dto

OSGi Compendium Release 8 Page 1279

Must not be nul l

152.23.3.3 public ComponentTemplateDTO template

The template of this component.

Must not be nul l

152.23.3.4 public ComponentDTO()

152.23.4 public class ComponentInstanceDTO
extends DTO
A snapshot of the runtime state of a component.

Concurrency Not Thread-safe

152.23.4.1 public List<ActivationDTO> activations

The activations of the component.

Must not be nul l .

152.23.4.2 public List<ConfigurationDTO> configurations

The configuration dependencies of this component.

Must not be nul l .

152.23.4.3 public Map<String, Object> properties

The resolved configuration properties for the component.

Contains the merger of all consumed configurations merged in the order of configurations.

All configuration dependencies are satisfied when not nul l .

152.23.4.4 public List<ReferenceDTO> references

The service dependencies of the component.

Can be empty when the component has no reference dependencies.

The component instance is satisfied when the sum of ReferenceDTO.minimumCardinality equals
the size of ReferenceDTO.matches for each value.

Must not be nul l .

152.23.4.5 public ComponentInstanceDTO()

152.23.5 public class ConfigurationDTO
extends DTO
A snapshot of the runtime state of a component factory configuration dependency

Concurrency Not Thread-safe

152.23.5.1 public Map<String, Object> properties

The properties of this configuration.

The configuration dependency is satisfied when not nul l .

152.23.5.2 public ConfigurationTemplateDTO template

The template of this configuration dependency

org.osgi.service.cdi.runtime.dto CDI Integration Specification Version 1.0

Page 1280 OSGi Compendium Release 8

Must never be nul l

152.23.5.3 public ConfigurationDTO()

152.23.6 public class ContainerDTO
extends DTO
A snapshot of the runtime state of a CDI container

Concurrency Not Thread-safe

152.23.6.1 public BundleDTO bundle

The bundle declaring the CDI container.

Must not be 0.

152.23.6.2 public long changeCount

The change count of the container at the time this DTO was created

Must not be 0.

152.23.6.3 public List<ComponentDTO> components

The components defined by this CDI container.

Must not be nul l . The list always contains at least one element representing the container compo-
nent. See Container Component.

152.23.6.4 public List<String> errors

The list of errors reported during attempted initialization of the container instance.

152.23.6.5 public List<ExtensionDTO> extensions

The extension dependencies of this CDI container.

Must not be nul l .

152.23.6.6 public ContainerTemplateDTO template

The template of this Container DTO.

Must not be nul l .

152.23.6.7 public ContainerDTO()

152.23.7 public class ExtensionDTO
extends DTO
A snapshot of the runtime state of an javax.enterpr ise. inject .spi .Extension dependency required by
this CDI container.

Concurrency Not Thread-safe

152.23.7.1 public ServiceReferenceDTO service

The service reference of the extension.

The extension dependency is satisfied when not nul l .

152.23.7.2 public ExtensionTemplateDTO template

The template of this extension dependency.

Must not be nul l

CDI Integration Specification Version 1.0 org.osgi.service.cdi.runtime.dto.template

OSGi Compendium Release 8 Page 1281

152.23.7.3 public ExtensionDTO()

152.23.8 public class ReferenceDTO
extends DTO
A snapshot of the runtime state of a component reference dependency

Concurrency Not Thread-safe

152.23.8.1 public List<ServiceReferenceDTO> matches

The list of service references that match this reference.

Must not be nul l

Can be empty when there are no matching services.

This dependency is satisfied when minimumCardinality <= matches.s ize() <=
MaximumCardinality.toInt() where the maximum cardinality can be obtained from the associated
ReferenceTemplateDTO.

152.23.8.2 public int minimumCardinality

The runtime minimum cardinality of the dependency.

• If template.maximumCardinality is ONE the value must be either 0 or 1.
• If template.maximumCardinality is MANY the value must be from 0 to Integer.MAX_VALUE.

152.23.8.3 public String targetFilter

Indicates the runtime target filter used in addition to the template.serviceType to match services.

152.23.8.4 public ReferenceTemplateDTO template

The template of this reference.

Must not be nul l

152.23.8.5 public ReferenceDTO()

152.24 org.osgi.service.cdi.runtime.dto.template

CDI Integration Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.cdi .dto.model ; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.cdi .dto.model ; vers ion="[1.0,1.1)"

152.24.1 Summary

• Activat ionTemplateDTO - Activations represent either immediate instances or service objects
produced by component instances.

• ComponentTemplateDTO - A static description of a CDI component.

org.osgi.service.cdi.runtime.dto.template CDI Integration Specification Version 1.0

Page 1282 OSGi Compendium Release 8

• Configurat ionTemplateDTO - A description of a configuration dependency of a component The
content of this DTO is resolved form metadata at initialization time and remains the same be-
tween the CDI bundle restarts.

• ContainerTemplateDTO - Description of a CDI container.
• ExtensionTemplateDTO - Models an extension dependency of the ContainerDTO
• ReferenceTemplateDTO - A description of a reference dependency of a component

152.24.2 public class ActivationTemplateDTO
extends DTO
Activations represent either immediate instances or service objects produced by component in-
stances.

The content of this DTO is resolved form metadata at initialization time and remains the same be-
tween the CDI bundle restarts.

Concurrency Not Thread-safe

152.24.2.1 public Map<String, Object> properties

The default properties for activations which represent container component services. This will nev-
er be populated for single or factory components.

These are merged (and possibly replaced) with runtime properties.

Must not be nul l . May be empty if no default properties are provided.

152.24.2.2 public ServiceScope scope

The ServiceScope of this activation

Must not be nul l .

152.24.2.3 public List<String> serviceClasses

Describes the set of fully qualified names of the interfaces/classes under which this activation will
publish and OSGi service

Must not be nul l . An empty array indicated this activation will not publish an OSGi service

152.24.2.4 public ActivationTemplateDTO()

152.24.3 public class ComponentTemplateDTO
extends DTO
A static description of a CDI component.

At runtime it is spit between a ComponentInstanceDTO which handles the resolution of the config-
urations, references and the creation of ComponentInstanceDTO instances and one or more Com-
ponentInstanceDTO instances, which handle the resolution of references and the creation of activa-
tions.

Concurrency Not Thread-safe

152.24.3.1 public List<ActivationTemplateDTO> activations

The activations associated with the component.

Must not be nul l .

152.24.3.2 public List<String> beans

The set of beans that make up the component.

CDI Integration Specification Version 1.0 org.osgi.service.cdi.runtime.dto.template

OSGi Compendium Release 8 Page 1283

Must not be nul l .

152.24.3.3 public List<ConfigurationTemplateDTO> configurations

The configuration dependencies of this component.

There is always at least one default singleton configuration.

May contain at most one factory configuration.

Must not be nul l .

152.24.3.4 public String name

A name unique within the container.

Must not be nul l .

152.24.3.5 public Map<String, Object> properties

The default component properties.

These are merged (and possibly replaced) with runtime properties.

Must not be nul l . May be empty if no default properties are provided.

152.24.3.6 public List<ReferenceTemplateDTO> references

The service dependencies of the component.

The list will be empty if there are no service dependencies.

Must not be nul l .

152.24.3.7 public ComponentType type

The type of the component.

Must not be nul l .

152.24.3.8 public ComponentTemplateDTO()

152.24.4 public class ConfigurationTemplateDTO
extends DTO
A description of a configuration dependency of a component The content of this DTO is resolved
form metadata at initialization time and remains the same between the CDI bundle restarts.

Concurrency Not Thread-safe

152.24.4.1 public MaximumCardinality maximumCardinality

The maximum cardinality of the configuration dependency.

• When MaximumCardinality.ONE this is a singleton configuration dependency.
• When MaximumCardinality.MANY this is a factory configuration dependency.

Must not be nul l .

152.24.4.2 public String pid

The PID of the tracked configuration object(s).

Must not be nul l .

152.24.4.3 public ConfigurationPolicy policy

The policy for the configuration dependency.

org.osgi.service.cdi.runtime.dto.template CDI Integration Specification Version 1.0

Page 1284 OSGi Compendium Release 8

Must not be nul l .

152.24.4.4 public ConfigurationTemplateDTO()

152.24.5 public class ContainerTemplateDTO
extends DTO
Description of a CDI container.

Concurrency Not Thread-safe

152.24.5.1 public List<ComponentTemplateDTO> components

The components defined in this CDI container.

Must not be nul l

Has at lest one element for the container component. See Container Component.

152.24.5.2 public List<ExtensionTemplateDTO> extensions

The extension dependencies of this CDI container.

Must not be nul l

May be empty if the CDI container does not require CDI extensions.

152.24.5.3 public String id

The id of the CDI container.

152.24.5.4 public ContainerTemplateDTO()

152.24.6 public class ExtensionTemplateDTO
extends DTO
Models an extension dependency of the ContainerDTO

Concurrency Not Thread-safe

152.24.6.1 public String serviceFilter

The service filter used for finding the extension service.

The value must be associated to the osgi .cdi extender requirement whose 'extension ' attribute con-
tains a value equal to serviceFilter.

Must not be nul l .

152.24.6.2 public ExtensionTemplateDTO()

152.24.7 public class ReferenceTemplateDTO
extends DTO
A description of a reference dependency of a component

The content of this DTO is resolved form metadata at initialization time and remains the same be-
tween the CDI bundle restarts.

Concurrency Not Thread-safe

152.24.7.1 public MaximumCardinality maximumCardinality

The maximum cardinality of the reference.

CDI Integration Specification Version 1.0 References

OSGi Compendium Release 8 Page 1285

152.24.7.2 public int minimumCardinality

The minimum cardinality of the reference.

Contains the minimum cardinality statically resolved from the CDI bundle metadata. The mini-
mum cardinality can be replaced by configuration at runtime.

• If maximumCardinality is ONE the value must be either 0 or 1.
• If maximumCardinality is MANY the value must be from 0 to Integer.MAX_VALUE.

152.24.7.3 public String name

A unique within the container and persistent across reboots identified for this activation

The value must not be nul l . The value must be equal to the reference name.

152.24.7.4 public ReferencePolicy policy

Indicates if the reference is dynamic or static in nature.

152.24.7.5 public ReferencePolicyOption policyOption

Indicates if the reference is greedy or reluctant in nature.

152.24.7.6 public String serviceType

Indicates the type of service matched by the reference.

The value must not be nul l .

152.24.7.7 public String targetFilter

Indicates a target filter used in addition to the serviceType to match services.

Contains the target filter resolved from the CDI bundle metadata. The filter can be replaced by con-
figuration at runtime.

152.24.7.8 public ReferenceTemplateDTO()

152.25 References

[1] CDI
http://www.cdi-spec.org/

[2] CDI 2.0
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html

[3] unproxyable bean types
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#unproxyable

[4] Default bean discovery mode
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#default_bean_discovery

[5] Exclude filters
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#exclude_filters

[6] Packaging and deployment
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#packaging_deployment

[7] Typesafe Resolution
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#typesafe_resolution

[8] Scopes and contexts

http://www.cdi-spec.org/
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#unproxyable
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#default_bean_discovery
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#exclude_filters
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#packaging_deployment
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#typesafe_resolution

References CDI Integration Specification Version 1.0

Page 1286 OSGi Compendium Release 8

http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#contexts

[9] Pseudo-scope
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#normal_scope

[10] @PostConstruct
https://javaee.github.io/javaee-spec/javadocs/javax/annotation/PostConstruct.html

[11] General Syntax Definitions
OSGi Core, General Syntax Definitions

[12] Filter Syntax
OSGi Core, Filter Syntax

[13] Dependency Injection for Java
https://jcp.org/en/jsr/detail?id=330

[14] Java Transaction API
https://github.com/eclipse-ee4j/jta-api

[15] Portable Java Contract
https://docs.osgi.org/reference/portable-java-contracts.html

[16] The Java Language Specification, Java SE 8 Edition
https://docs.oracle.com/javase/specs/jls/se8/html/index.html

http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#contexts
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#normal_scope
https://javaee.github.io/javaee-spec/javadocs/javax/annotation/PostConstruct.html
https://jcp.org/en/jsr/detail?id=330
https://github.com/eclipse-ee4j/jta-api
https://docs.osgi.org/reference/portable-java-contracts.html
https://docs.oracle.com/javase/specs/jls/se8/html/index.html

Service Layer API for oneM2M™ Version 1.0 Introduction of oneM2M

OSGi Compendium Release 8 Page 1287

153 Service Layer API for oneM2M™

Version 1.0

153.1 Introduction of oneM2M
oneM2M™ is a standard for IoT platform, which is standardized by oneM2M partnership project.
oneM2M defines set of functionalities that are commonly used in IoT applications, which is called
Common Services Function (CSF). The implementation of the CSF is provided by Communication
Service Entity (CSE). oneM2M also defines the interface to use the CSF with REST oriented API that
consist of limited types of operation (CREATE, RETRIEVE, UPDATE, DELETE, NOTIFY) on many
types of resources. Applications of oneM2M use the interface to communicate with CSEs. In a sys-
tem managed by a single service provider, multiple CSEs can exist and they form tree structure. The
root CSE is called Infrastructure Node CSE (IN-CSE). Each application connects to one of CSEs in the
system. CSEs have routing capability and application can send request to any CSEs in the system
through the directly-connected CSE.

One of characteristic aspects of oneM2M is to allow multiple protocols and serialization formats for
messages. Currently specified protocols are HTTP, CoAP, MQTT and WebSocket, and specified serial-
ization are XML, JSON and CBOR (Concise Binary Object Representation). To make specification co-
herent, oneM2M specifications are separated into abstract level and concrete level. As abstract level,
TS-0001 defines the oneM2M architecuture and resource types and TS-0004 defines data procedures
and data structures. As concrete level, TS-0008 , TS-0009 , TS-0010 , and TS-0020 define concrete pro-
tocol which are mappoed to model of the abstract level. Here, the interface defined in abstract level,
which independent on concrete protocols, is regarded as oneM2M Service Layer.

oneM2M Partners Type 1 (ARIB, ATIS, CCSA, ETSI, TIA, TSDSI, TTA, TTC) register oneM2M trade-
marks and logos in their respective jurisdictions.

153.2 Application Portability Problem of oneM2M
One of potential problems is application portability. oneM2M specifies protocol based interfaces,
but doesn’t specify a programming level API. Without a standardized API, application program
tends to be built tightly coupled with the libraries handling the communication method (combina-
tion of protocol and serialization) that is initially intend to use. In that case it would be hard to op-
erate the application in another environment where different communication method is used; basi-
cally it is required to modify the application drastically. oneM2M could introduce segmentation of
ecosystem within oneM2M compliant applications due to the lack of application portability.

153.3 Introduction of Service Layer API for oneM2M
This chapter provides interface to oneM2M applications for communicating communicate CSE
at Service Layer of oneM2M. The providing API is protocol and serialization agnostic for prevent-
ing the problem above. Once application developer write code, it can be run in other environment
where different communication method is used.

Essentials Service Layer API for oneM2M™ Version 1.0

Page 1288 OSGi Compendium Release 8

Another benefit of the service is reduction of computational resources, typically latency of execu-
tion in a certain cases, where both application and CSE is implemented on OSGi framework. In that
case, it is possible to reduce executiontime for serialization/deserialization of data, context-switch of
applications, compared to the case where they communicates with a certain communication proto-
col.

153.4 Essentials
• Protocol Agnostic - API is independent on protocol that are used in communications. oneM2M

specifies multiple protocols, which are HTTP, CoAP, MQTT and WebSocket. conversion opera-
tions.

• Serialization Agnostic - API is independent on serialization that are actually used in communica-
tions. oneM2M specifies multiple serializations, which are XML, JSON and CBOR .

• Support of synchoronous and asynchronous method call - API allows both of calling manners.
• Use of Data Transfer Object (DTO) - DTO is used as parameters passing on API. Since oneM2M de-

fines many types, concrete DTOs are specified for the higher level structure, and for lower struc-
tures generic DTO is used.

• Low level and high level operations - API allows for applications to use both low level operation and
high level operation, where low level operation allows all possible oneM2M operations and high
level operation allows resource level operations, which are create, retrieve, update, and delete.

153.5 Entities
The following entities are used in this specification:

• Application Bundle - Application, which use oneM2M CSE's capability. This specification assumes
that an application bundle consists an oneM2M application.

• ServiceLayer - This is the API used by oneM2M applications.
• NotificationListener - Listener Interface, which is necessary to implement by oneM2M applica-

tions, when then need to received notifications.
• ServiceLayer Implementation Bundle - Bundle providing implementation of ServiceLayer and its

ServiceFactory.
• oneM2M CSE - oneM2M's Server. It may exist remotely or locally.

Service Layer API for oneM2M™ Version 1.0 oneM2M ServiceLayer

OSGi Compendium Release 8 Page 1289

Figure 153.1 Entity overview of Service Layer API for oneM2M

a Clienta Listener

ServiceLayer

ServiceLayer

<<interface>> < < interface> >

Notification
Listener

Impl
Service
Factory

created by

ImplImpl

se
n

d
s n

o
tifica

tio
n

u
se

s

oneM2M
CSE

communicates

Application Bundle

153.6 oneM2M ServiceLayer
oneM2M ServiceLayer is the interface used by an application for sending request and get response
as return method. It contains low level API and high level API.

request() method allows very raw data type access and it enables all possible message exchanges
among oneM2M entities. This is called the low level API. The method takes requestPrimitive as an
argument and returns responseRequest. It allows all possible operation of oneM2M. For the return
type, OSGi Promise (Promises Specification on page 1407) is used for allowing synchronous and
asynchronous calling manner.

The low level API may be redundant to application developers, because they need to write composi-
tion of requestPrimitive and decomposition of responsePrimitive. Following methods allow applica-
tion developers to develop application with less lines of code. They provides higher level of abstrac-
tion; operation level of resource such as create, retrieve, update, delete, notify and discovery. They
cover typical oneM2M operations but do not cover all of possible messages of oneM2M.

Implementation of these high level API automatically inserts ‘requestID’ and ‘from’ parameter to Re-
questDTO.

Following example shows temperature measurement application using container resource and con-
tentInstance resource.

ServiceReference<ServiceLayer> sr = bc

oneM2M ServiceLayer Service Layer API for oneM2M™ Version 1.0

Page 1290 OSGi Compendium Release 8

 .getServiceReference(ServiceLayer.class);
ServiceLayer sl = bc.getService(sr);

ResourceDTO container = new ResourceDTO();
container.resourceType = Constants.RT_contentInstance;
container.resourceName = "temperatureStore";
sl.create("/CSE1/csebase", container).getValue();

ScheduledExecutorService service = Executors
 .newSingleThreadScheduledExecutor();

AtomicInteger count = new AtomicInteger(0);

service.scheduleAtFixedRate(() -> {
 ResourceDTO instance = new ResourceDTO();
 instance.resourceType = Constants.RT_contentInstance;
 instance.resourceName = "instance" + count.getAndIncrement();
 instance.attribute = new HashMap<String,Object>();
 instance.attribute.put("content", measureTemperature());

 sl.create("/CSE1/csebase/temperatureStore", instance);
}, 0, 60, TimeUnit.SECONDS);

Following example shows visualizing application of temperature data.

ServiceReference<ServiceLayer> sr = (ServiceReference<ServiceLayer>) bc
 .getServiceReference("org.osgi.service.onem2m.ServiceLayer");
ServiceLayer sl = bc.getService(sr);

FilterCriteriaDTO fc = new FilterCriteriaDTO();
fc.createdAfter = "20200101T120000";
fc.createdBefore = "20200101T130000";
List<Integer> resourceTypes = new ArrayList<Integer>();
resourceTypes.add(Constants.RT_contentInstance);
fc.resourceType = resourceTypes;
fc.filterOperation = FilterOperation.AND;

List<String> l = sl.discovery("/CSE1/csebase/temperatureStore", fc)
 .getValue();
List<Pair<String,Double>> renderData = new ArrayList<Pair<String,Double>>();
for (String uri : l) {
 ResourceDTO resource = sl.retrieve(uri).getValue();
 renderData.add(new Pair<String,Double>(resource.creationTime,
 (Double) resource.attribute.get("content")));
}

renderService(renderData);

Service Layer API for oneM2M™ Version 1.0 NotificationListener

OSGi Compendium Release 8 Page 1291

153.7 NotificationListener
NotificationListener is an interface for receiving oneM2M notification. An application that needs to
receive oneM2M notifications must implement the interface and register it to the OSGi registry.

A ServiceLayer Implementation Bundle must call the notify() method of the NotificationListener,
when it receives notification from CSE. In notification, target address is designated by AE-ID. The
ServiceLayer Implementation Bundle finds the coresponding instance of the NotificationListener by
checking its registerer bundle and checking internal mapping table of AE-ID and application bun-
dle.

public class MyListener implements NotificationListener {
 public void notified(RequestPrimitiveDTO request){
 NotificationDTO notification = request.content.notification;
 NotificationEventDTO event = notification.notificationEvent;
 Object updatedResource = event.representation;
 NotificationEventType type = event.notificationEventType;
 if(type == NotificationEventType.update_of_resource){
 // check updated resource, execute some actions.
 }
 }
}

@Activate
public void activate(BundleContext bc) {
 NotificationListener l = new MyListener();
 bc.registerService(NotificationListener.class, l, null);
 }
}

DTO Service Layer API for oneM2M™ Version 1.0

Page 1292 OSGi Compendium Release 8

153.8 DTO
OSGi DTOs are used for representing data structured passed on the API. Some of the data structures,
which are directly referred from API or in small number of hops, are specified with concrete field
names. The following figure shows DTOs with concrete field names, and reference relationship of
class. Following DTO's rule, instances must not have loop reference relationship.

Figure 153.2 DTOs representing high level structures

At t r ib u t e DTO

Ge n e r icDTO

Ch ild Re sou r ce Re fDTO

Da s In foDTO F ilt e r Cr it e r ia DTO

IPEDiscove r yRe q u e s tDTO

Loca lToke n Id Ass ig n m e n tDTO

N ot ifica t ion DTO

N ot ifica t ion Eve n tDTO

Pr im it ive Con te n tDTO

Re q u e s tPr im it ive DTO

Re sou r ce DTO

Re sou r ce Wr a p p e r DTO

Re sp on se Pr im it ive DTO

S e cu r it yIn foDTO

Re sp on se Typ e In foDTO

ResourceDTO represents oneM2M resource. ResourceDTO has both fields with concrete names
and a field (named as attribute) for having sub-elements in generic manner. All of fields of the Re-
sourceDTO represent attributes. Most of attributes have a primitive type and part of attributes have
structured value. For structured value, if it possible defined concrete DTOs must be used, otherwise
GenericDTO must be used.

oneM2M specifies two types of key names for representing name of resources, attributes, and ele-
ments of data structure, which are long name and short name. Long name is human readable rep-
resentation, for example "resourceID", meanwhile short name is compact representation for mini-
mizing network transfer, consist with typically 2-4 alphabetical characters, for example "ri". All field
names in concrete DTOs are based on long name. Long name should be used for key names of Gener-
icDTO and attribute names of ResourceDTO.

153.9 Security
Implementation of ServiceLayer may use credentials on behalf of application bundles on the com-
munication with oneM2M CSE. So ServiceLayer Implementation should pass the service reference

Service Layer API for oneM2M™ Version 1.0 org.osgi.service.onem2m

OSGi Compendium Release 8 Page 1293

of ServiceLayer to only the proper application bundle. Use of ServiceFactory is to realize this. Appli-
cation Bundles should not pass the service reference to other application bundles.

How to configure those credentials is left to developer of ServiceLayer Implementation, and it is out
of scope the specification.

153.10 org.osgi.service.onem2m

Service Layer API for oneM2M Specification Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.onem2m; version="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.onem2m; version="[1.0,1.1)"

153.10.1 Summary

• Notif icat ionListener - Interface to receive notification from other oneM2M entities.
• OneM2MException - General Exception for oneM2M.
• ServiceLayer - Primary Interface for an oneM2M application entity to send request and get re-

sponse to/from other oneM2M entity.

153.10.2 public interface NotificationListener
Interface to receive notification from other oneM2M entities.

Application that receives notification must implement this interface and register to OSGi service
registry. No service property is required.

153.10.2.1 public void notified(RequestPrimitiveDTO request)

request request primitive

□ receive notification.

153.10.3 public class OneM2MException
extends IOException
General Exception for oneM2M.

153.10.3.1 public OneM2MException(String message, int errorCode)

message The exception message.

errorCode The exception error code.

□ Construct a OneM2MException with a message and an error code.

153.10.3.2 public int getErrorCode()

□ Return the error code for the exception.

Returns The error code for the exception.

org.osgi.service.onem2m Service Layer API for oneM2M™ Version 1.0

Page 1294 OSGi Compendium Release 8

153.10.4 public interface ServiceLayer
Primary Interface for an oneM2M application entity to send request and get response to/from other
oneM2M entity.

It contains low level API and high level API. The only low level method is request() and other meth-
ods are categorized as high level API.

Provider Type Consumers of this API must not implement this type

153.10.4.1 public Promise<ResourceDTO> create(String uri, ResourceDTO resource)

uri URI for parent resource of the resource being created.

resource resource data

□ create resource

The create() method is a method to create new resource under specified uri. The second argument
resource is expression of resource to be generated. The resourceType field of the resourceDTO must
be assigned. For other fields depends on resource type. Section 7.4 of TS-00004 specifies the optional-
ities of the fields.

Returns Promise of created resource

153.10.4.2 public Promise<Boolean> delete(String uri)

uri target URI for deleting resource

□ delete resource

delete resource on the URI specified by uri argument.

Returns promise of execution status

153.10.4.3 public Promise<List<String>> discovery(String uri, FilterCriteriaDTO fc)

uri URI for resource tree to start the search

fc filter criteria selecting resources

□ find resources with filter condition specified in fc argument.

Discovery Result Type is kept as blank and default value of target CSE is used for the parameter.

Returns list of URIs matching the condition specified in fc

153.10.4.4 public Promise<List<String>> discovery(String uri, FilterCriteriaDTO fc,
RequestPrimitiveDTO.DesiredIdentifierResultType drt)

uri URI for resource tree to start the search

fc filter criteria

drt Discovery Result Type (structured/unstructured)

□ find resources with filter condition specified in fc argument.

With this method application can specify desired identifier in result

Returns list of URIs matching the condition specified in fc

153.10.4.5 public Promise<Boolean> notify(String uri, NotificationDTO notification)

uri uri of destination

notification content of notification

□ send notification

Service Layer API for oneM2M™ Version 1.0 org.osgi.service.onem2m.dto

OSGi Compendium Release 8 Page 1295

Returns Promise of notification execution status

153.10.4.6 public Promise<ResponsePrimitiveDTO> request(RequestPrimitiveDTO request)

request request primitive

□ send a request and receive response.

This method allows very raw data type access and it enables all possible message exchanges among
oneM2M entities. This is called the low level API. This method allows all possible operation of
oneM2M. For the return type, OSGi Promise is used for allowing synchronous and asynchronous
calling manner.

Returns promise of ResponseDTO.

153.10.4.7 public Promise<ResourceDTO> retrieve(String uri)

uri URI for retrieving resource

□ retrieve resource

retrieve resource on URI specified by uri argument. This method retrieve all attributes of the re-
source.

Returns retrieved resource data

153.10.4.8 public Promise<ResourceDTO> retrieve(String uri, List<String> targetAttributes)

uri URI for retrieving resource

targetAttributes names of the target attribute

□ retrieve resource with selected attributes.

retrieve resource on URI specified by uri argument. This method retrieve selected attributes by tar-
getAttributes argument. The retrieve() methods are methods to retrieve resource on URI specified
by uri argument.

Returns retrieved resource data

153.10.4.9 public Promise<ResourceDTO> update(String uri, ResourceDTO resource)

uri URI for updating resource

resource data resource

□ update resource

The update() method is a method to update resource on the URI specified by uri argument. The re-
source argument holds attributes to be updated. Attributes not to be updated shall not included in
the argument.

Returns updated resource

153.11 org.osgi.service.onem2m.dto

Service Layer Data Transfer Objects for oneM2M Specification Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.onem2m.dto; vers ion="[1.0,2.0)"

org.osgi.service.onem2m.dto Service Layer API for oneM2M™ Version 1.0

Page 1296 OSGi Compendium Release 8

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.onem2m.dto; vers ion="[1.0,1.1)"

153.11.1 Summary

• Attr ibuteDTO - DTO expresses Attribute.
• ChildResourceRefDTO - DTO expresses ChildResourceRef.
• Constants - This class defines constants for resource types.
• DasInfoDTO - DTO expresses DasInfo.
• Fi l terCriter iaDTO - DTO expresses FilterCriteria.
• Fi l terCriter iaDTO.Fi l terOperat ion - Enum FilterOperation
• Fi l terCriter iaDTO.Fi l terUsage - Enum FilterUsage
• GenericDTO - GenericDTO expresses miscellaneous data structures of oneM2M.
• IPEDiscoveryRequestDTO - IPEDiscoveryRequestDTO is an element of NotificationEventDTO
• LocalTokenIdAssignmentDTO - DTO expresses LocalTokenIdAssignment.
• Notif icat ionDTO - DTO expresses Notification.
• Notif icat ionEventDTO - DTO expresses NotificationEventDTO
• Notif icat ionEventDTO.Notif icat ionEventType - NotificationEventType
• Primit iveContentDTO - DTO expresses Primitive Content.
• ReleaseVersion - enum expresses oneM2M specification version.
• RequestPr imit iveDTO - DTO expresses Request Primitive.
• RequestPr imit iveDTO.DesiredIdenti f ierResultType - Enum for DesiredIdentifierResultType
• RequestPr imit iveDTO.Operation - enum type for Operation
• RequestPr imit iveDTO.ResultContent - enum type for Result Content
• ResourceDTO - DTO expresses Resource.
• ResourceWrapperDTO - DTO expresses ResourceWrapper.
• ResponsePrimit iveDTO - DTO expresses Response Primitive.
• ResponsePrimit iveDTO.ContentStatus - Enum ContentStatus
• ResponseTypeInfoDTO - DTO expresses ResponseTypeInfo
• ResponseTypeInfoDTO.ResponseType - enum ResponseType
• Security InfoDTO - DTO expresses Security Info.
• Security InfoDTO.Security InfoType - Enum SecurityInfoType

153.11.2 public class AttributeDTO
extends DTO
DTO expresses Attribute.

This class is typically used in FilterCriteriaDTO for expressing matching condition.

See Also oneM2M TS-0004 6.3.5.9 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

Concurrency Not Thread-safe

153.11.2.1 public String name

Attribute name

153.11.2.2 public Object value

Supposed value of the attribute

153.11.2.3 public AttributeDTO()

http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf

Service Layer API for oneM2M™ Version 1.0 org.osgi.service.onem2m.dto

OSGi Compendium Release 8 Page 1297

153.11.3 public class ChildResourceRefDTO
extends DTO
DTO expresses ChildResourceRef.

See Also oneM2M TS-0004 6.3.5.29 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf], oneM2M XSD chil-
dResourceRef [https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-common-
Types-v3_11_0.xsd#L885-893]

Concurrency Not Thread-safe

153.11.3.1 public String name

name of the child resource pointed to by the URI

153.11.3.2 public String specializationID

resource type specialization of the child resource pointed to by the URI in case type represents a
flexContainer. This is an optional field.

153.11.3.3 public Integer type

resourceType of the child resource pointed to by the URI

153.11.3.4 public String uri

URI to the child resource.

153.11.3.5 public ChildResourceRefDTO()

153.11.4 public final class Constants
This class defines constants for resource types.

See Also oneM2M TS-0004 6.3.4.2.1 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.4.1 public static final int RT_accessControlPolicy = 1

resource type for accessControlPolicy

153.11.4.2 public static final int RT_accessControlPolicyAnnc = 10001

resource type for accessControlPolicyAnnc

153.11.4.3 public static final int RT_AE = 2

resource type for AE

153.11.4.4 public static final int RT_AEAnnc = 10002

resource type for AEAnnc

153.11.4.5 public static final int RT_AEContactList = 43

resource type for AEContactList

153.11.4.6 public static final int RT_AEContactListPerCSE = 44

resource type for AEContactListPerCSE

153.11.4.7 public static final int RT_authorizationDecision = 35

resource type for authorizationDecision

http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L885-893
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L885-893
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L885-893
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L885-893
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf

org.osgi.service.onem2m.dto Service Layer API for oneM2M™ Version 1.0

Page 1298 OSGi Compendium Release 8

153.11.4.8 public static final int RT_authorizationInformation = 37

resource type for authorizationInformation

153.11.4.9 public static final int RT_authorizationPolicy = 36

resource type for authorizationPolicy

153.11.4.10 public static final int RT_backgroundDataTransfer = 49

resource type for backgroundDataTransfer

153.11.4.11 public static final int RT_container = 3

resource type for container

153.11.4.12 public static final int RT_containerAnnc = 10003

resource type for containerAnnc

153.11.4.13 public static final int RT_contentInstance = 4

resource type for contentInstance

153.11.4.14 public static final int RT_contentInstanceAnnc = 10004

resource type for contentInstanceAnnc

153.11.4.15 public static final int RT_crossResourceSubscription = 48

resource type for crossResourceSubscription

153.11.4.16 public static final int RT_CSEBase = 5

resource type for CSEBase

153.11.4.17 public static final int RT_delivery = 6

resource type for delivery

153.11.4.18 public static final int RT_dynamicAuthorizationConsultation = 34

resource type for dynamicAuthorizationConsultation

153.11.4.19 public static final int RT_dynamicAuthorizationConsultationAnnc = 10034

resource type for dynamicAuthorizationConsultationAnnc

153.11.4.20 public static final int RT_eventConfig = 7

resource type for eventConfig

153.11.4.21 public static final int RT_execInstance = 8

resource type for execInstance

153.11.4.22 public static final int RT_flexContainer = 28

resource type for flexContainer

153.11.4.23 public static final int RT_flexContainerAnnc = 10028

resource type for flexContainerAnnc

153.11.4.24 public static final int RT_group = 9

resource type for group

Service Layer API for oneM2M™ Version 1.0 org.osgi.service.onem2m.dto

OSGi Compendium Release 8 Page 1299

153.11.4.25 public static final int RT_groupAnnc = 10009

resource type for groupAnnc

153.11.4.26 public static final int RT_localMulticastGroup = 45

resource type for localMulticastGroup

153.11.4.27 public static final int RT_locationPolicy = 10

resource type for locationPolicy

153.11.4.28 public static final int RT_locationPolicyAnnc = 10010

resource type for locationPolicyAnnc

153.11.4.29 public static final int RT_m2mServiceSubscriptionProfile = 11

resource type for m2mServiceSubscriptionProfile

153.11.4.30 public static final int RT_mgmtCmd = 12

resource type for mgmtCmd

153.11.4.31 public static final int RT_mgmtObj = 13

resource type for mgmtObj

153.11.4.32 public static final int RT_mgmtObjAnnc = 10013

resource type for mgmtObjAnnc

153.11.4.33 public static final int RT_multimediaSession = 46

resource type for multimediaSession

153.11.4.34 public static final int RT_multimediaSessionAnnc = 10046

resource type for multimediaSessionAnnc

153.11.4.35 public static final int RT_node = 14

resource type for node

153.11.4.36 public static final int RT_nodeAnnc = 10014

resource type for nodeAnnc

153.11.4.37 public static final int RT_notificationTargetMgmtPolicyRef = 25

resource type for notificationTargetMgmtPolicyRef

153.11.4.38 public static final int RT_notificationTargetPolicy = 26

resource type for notificationTargetPolicy

153.11.4.39 public static final int RT_ontology = 39

resource type for ontology

153.11.4.40 public static final int RT_ontologyAnnc = 10039

resource type for ontologyAnnc

153.11.4.41 public static final int RT_ontologyRepository = 38

resource type for ontologyRepository

org.osgi.service.onem2m.dto Service Layer API for oneM2M™ Version 1.0

Page 1300 OSGi Compendium Release 8

153.11.4.42 public static final int RT_ontologyRepositoryAnnc = 10038

resource type for ontologyRepositoryAnnc

153.11.4.43 public static final int RT_policyDeletionRules = 27

resource type for policyDeletionRules

153.11.4.44 public static final int RT_pollingChannel = 15

resource type for pollingChannel

153.11.4.45 public static final int RT_remoteCSE = 16

resource type for remoteCSE

153.11.4.46 public static final int RT_remoteCSEAnnc = 10016

resource type for remoteCSEAnnc

153.11.4.47 public static final int RT_request = 17

resource type for request

153.11.4.48 public static final int RT_role = 31

resource type for role

153.11.4.49 public static final int RT_schedule = 18

resource type for schedule

153.11.4.50 public static final int RT_scheduleAnnc = 10018

resource type for scheduleAnnc

153.11.4.51 public static final int RT_semanticDescriptor = 24

resource type for semanticDescriptor

153.11.4.52 public static final int RT_semanticDescriptorAnnc = 10024

resource type for semanticDescriptorAnnc

153.11.4.53 public static final int RT_semanticMashupInstance = 41

resource type for semanticMashupInstance

153.11.4.54 public static final int RT_semanticMashupInstanceAnnc = 10041

resource type for semanticMashupInstanceAnnc

153.11.4.55 public static final int RT_semanticMashupJobProfile = 40

resource type for semanticMashupJobProfile

153.11.4.56 public static final int RT_semanticMashupJobProfileAnnc = 10040

resource type for semanticMashupJobProfileAnnc

153.11.4.57 public static final int RT_semanticMashupResult = 42

resource type for semanticMashupResult

153.11.4.58 public static final int RT_semanticMashupResultAnnc = 10042

resource type for semanticMashupResultAnnc

Service Layer API for oneM2M™ Version 1.0 org.osgi.service.onem2m.dto

OSGi Compendium Release 8 Page 1301

153.11.4.59 public static final int RT_serviceSubscribedAppRule = 19

resource type for serviceSubscribedAppRule

153.11.4.60 public static final int RT_serviceSubscribedNode = 20

resource type for serviceSubscribedNode

153.11.4.61 public static final int RT_statsCollect = 21

resource type for statsCollect

153.11.4.62 public static final int RT_statsConfig = 22

resource type for

153.11.4.63 public static final int RT_subscription = 23

resource type for statsConfig

153.11.4.64 public static final int RT_timeSeries = 29

resource type for timeSeries

153.11.4.65 public static final int RT_timeSeriesAnnc = 10029

resource type for timeSeriesAnnc

153.11.4.66 public static final int RT_timeSeriesInstance = 30

resource type for timeSeriesInstance

153.11.4.67 public static final int RT_timeSeriesInstanceAnnc = 10030

resource type for timeSeriesInstanceAnnc

153.11.4.68 public static final int RT_token = 32

resource type for token

153.11.4.69 public static final int RT_transaction = 51

resource type for transaction

153.11.4.70 public static final int RT_transactionMgmt = 50

resource type for transactionMgmt

153.11.4.71 public static final int RT_triggerRequest = 47

resource type for triggerRequest

153.11.5 public class DasInfoDTO
extends DTO
DTO expresses DasInfo. DAS is short for Dynamic Authorization Server.

See Also oneM2M TS-0004 6.3.5.45 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf], oneM2M XSD dynAuthToken-
ReqInfo and dasInfo [https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-common-
Types-v3_11_0.xsd#L1135-1147]

Concurrency Not Thread-safe

153.11.5.1 public GenericDTO dasRequest

Information to send to the Dynamic Authorization Server

http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L1135-1147
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L1135-1147
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L1135-1147
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L1135-1147

org.osgi.service.onem2m.dto Service Layer API for oneM2M™ Version 1.0

Page 1302 OSGi Compendium Release 8

See Also oneM2M XSD dynAuthDasRequest [https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-
commonTypes-v3_11_0.xsd#L1149-1198]

153.11.5.2 public String securedDasRequest

Secured Information to send to the Dynamic Authorization Server. JWS or JWE is assigned to this
field.

153.11.5.3 public String uri

Dynamic Authorization Server URI

153.11.5.4 public DasInfoDTO()

153.11.6 public class FilterCriteriaDTO
extends DTO
DTO expresses FilterCriteria. This data structure is used for searching resources.

See Also oneM2M TS-0004 6.3.5.8 [http://www.onem2m.org/images/files/deliver-
ables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf], oenM2M
TS-0004 7.3.3.17.17 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

Concurrency Not Thread-safe

153.11.6.1 public String applyRelativePath

Apply Relative Path

153.11.6.2 public List<AttributeDTO> attribute

Attribute

153.11.6.3 public List<AttributeDTO> childAttribute

Child Attribute

153.11.6.4 public List<String> childLabels

Child Labels

153.11.6.5 public List<Integer> childResourceType

Child Resource Type

153.11.6.6 public String contentFilterQuery

Content Filter Query

153.11.6.7 public Integer contentFilterSyntax

Content Filter Syntax

153.11.6.8 public List<String> contentType

Content Type

153.11.6.9 public String createdAfter

Created After

153.11.6.10 public String createdBefore

Created Before

https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L1149-1198
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L1149-1198
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L1149-1198
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf

Service Layer API for oneM2M™ Version 1.0 org.osgi.service.onem2m.dto

OSGi Compendium Release 8 Page 1303

153.11.6.11 public String expireAfter

Expire After

153.11.6.12 public String expireBefore

Expire Before

153.11.6.13 public FilterCriteriaDTO.FilterOperation filterOperation

Filter Operation

153.11.6.14 public FilterCriteriaDTO.FilterUsage filterUsage

Filter Usage

153.11.6.15 public List<String> labels

Labels

153.11.6.16 public String labelsQuery

Label Query

153.11.6.17 public Integer level

Level

153.11.6.18 public Integer limit

Limit number of Answers

153.11.6.19 public String modifiedSince

Modified Since

153.11.6.20 public Integer offset

Offset

153.11.6.21 public List<AttributeDTO> parentAttribute

Parent Attribute

153.11.6.22 public List<String> parentLabels

Parent Labels

153.11.6.23 public List<Integer> parentResourceType

Parent Resource Type

153.11.6.24 public List<Integer> resourceType

Resource Type

153.11.6.25 public List<String> semanticsFilter

Semantic Filter

153.11.6.26 public Integer sizeAbove

Size Above

153.11.6.27 public Integer sizeBelow

Size Below

org.osgi.service.onem2m.dto Service Layer API for oneM2M™ Version 1.0

Page 1304 OSGi Compendium Release 8

153.11.6.28 public Integer stateTagBigger

State Tag Bigger

153.11.6.29 public Integer stateTagSmaller

State Tag Smaller

153.11.6.30 public String unmodifiedSince

Unmodified Since

153.11.6.31 public FilterCriteriaDTO()

153.11.7 enum FilterCriteriaDTO.FilterOperation
Enum FilterOperation

See Also oneM2M TS-0004 6.3.4.2.34 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.7.1 AND

Logical AND

153.11.7.2 OR

Logical OR

153.11.7.3 public int getValue()

□ get assigned value

Returns assigned integer value

153.11.7.4 public static FilterCriteriaDTO.FilterOperation valueOf(String name)

153.11.7.5 public static FilterCriteriaDTO.FilterOperation[] values()

153.11.8 enum FilterCriteriaDTO.FilterUsage
Enum FilterUsage

See Also oneM2M TS-0004 6.3.4.2.31 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.8.1 DiscoveryCriteria

Discovery Criteria

153.11.8.2 ConditionalRetrival

Conditional Retrieve

153.11.8.3 IPEOndemandDiscovery

IPE on Demand Discovery

153.11.8.4 public int getValue()

□ get assigned integer value

Returns assigned integer value

153.11.8.5 public static FilterCriteriaDTO.FilterUsage valueOf(String name)

http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf

Service Layer API for oneM2M™ Version 1.0 org.osgi.service.onem2m.dto

OSGi Compendium Release 8 Page 1305

153.11.8.6 public static FilterCriteriaDTO.FilterUsage[] values()

153.11.9 public class GenericDTO
extends DTO
GenericDTO expresses miscellaneous data structures of oneM2M.

Concurrency Not Thread-safe

153.11.9.1 public Map<String, Object> element

Substructure of DTO. Type of the value part should be one of types allowed as OSGi DTO.

153.11.9.2 public GenericDTO()

153.11.10 public class IPEDiscoveryRequestDTO
extends DTO
IPEDiscoveryRequestDTO is an element of NotificationEventDTO

See Also oneM2M TS-0004 6.3.5.13 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

Concurrency Not Thread-safe

153.11.10.1 public FilterCriteriaDTO filterCriteria

FilterCriteria

See Also oneM2M TS-0004 6.3.5.8 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.10.2 public String originator

originator

153.11.10.3 public IPEDiscoveryRequestDTO()

153.11.11 public class LocalTokenIdAssignmentDTO
extends DTO
DTO expresses LocalTokenIdAssignment.

See Also oneM2M XSD dynAuthLocalTokenIdAssignments and localTokenIdAssignment [https://
git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L1112-1123]

Concurrency Not Thread-safe

153.11.11.1 public String localTokenID

local token ID

153.11.11.2 public String tokenID

token ID

153.11.11.3 public LocalTokenIdAssignmentDTO()

153.11.12 public class NotificationDTO
extends DTO
DTO expresses Notification.

http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L1112-1123
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L1112-1123
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L1112-1123

org.osgi.service.onem2m.dto Service Layer API for oneM2M™ Version 1.0

Page 1306 OSGi Compendium Release 8

See Also oneM2M TS-0004 6.3.5.13 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

Concurrency Not Thread-safe

153.11.12.1 public Boolean aeReferenceIDChange

aeReferenceIDChange element

See Also oneM2M TS-0004 7.5.1.2.17 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.12.2 public Boolean aeRegistrationPointChange

AE Registration Point Change

See Also oneM2M TS-0004 7.5.1.2.16 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.12.3 public String creator

creator

153.11.12.4 public IPEDiscoveryRequestDTO ipeDiscoveryRequest

IPE Discovery Request.

153.11.12.5 public NotificationEventDTO notificationEvent

Notification Event

153.11.12.6 public String notificationForwardingURI

notification forwarding URI

153.11.12.7 public String notificationTarget

ID for notification target

153.11.12.8 public Boolean subscriptionDeletion

Flag showing subscription deletion This field is optional.

153.11.12.9 public String subscriptionReference

URI referring subscription resource.

153.11.12.10 public String trackingID1

tracking ID 1

See Also oneM2M TS-0004 7.5.1.2.16 [http://www.onem2m.org/images/files/deliver-
ables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf], oneM2M
TS-0004 7.5.1.2.17 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.12.11 public String trackingID2

tracking ID 1

See Also oneM2M TS-0004 7.5.1.2.16 [http://www.onem2m.org/images/files/deliver-
ables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf], oneM2M
TS-0004 7.5.1.2.17 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.12.12 public Boolean verificationRequest

Flag showing verification request. This field is optional.

http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf

Service Layer API for oneM2M™ Version 1.0 org.osgi.service.onem2m.dto

OSGi Compendium Release 8 Page 1307

153.11.12.13 public NotificationDTO()

153.11.13 public class NotificationEventDTO
DTO expresses NotificationEventDTO

This data structure is held in NotificationDTO.

See Also oneM2M TS-0004 6.3.5.13 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

Concurrency Not Thread-safe

153.11.13.1 public NotificationEventDTO.NotificationEventType notificationEventType

notificationEventType

See Also oneM2M TS-0004 6.3.4.2.19 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.13.2 public Map<String, Object> operationMonitor

operationMonitor

See Also oneM2M TS-0004 6.3.5.57 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.13.3 public Object representation

m2m:representation

See Also oneM2M TS-0004 6.3.5.62 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.13.4 public NotificationEventDTO()

153.11.14 enum NotificationEventDTO.NotificationEventType
NotificationEventType

See Also oneM2M TS-0004 6.3.4.2.19 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.14.1 update_of_resource

update_of_resouce. This is the default value.

153.11.14.2 delete_of_resource

delete_of_resource

153.11.14.3 create_of_direct_child_resource

create_of_direct_child_resource

153.11.14.4 delete_of_direct_child_resouce

create_of_direct_child_resouce

153.11.14.5 retrieve_of_container_resource_with_no_child_resource

retrieve_of_container_resource_with_no_child_resource

153.11.14.6 public int getValue()

□ Return notification type value.

http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf

org.osgi.service.onem2m.dto Service Layer API for oneM2M™ Version 1.0

Page 1308 OSGi Compendium Release 8

Returns The notification type value.

153.11.14.7 public static NotificationEventDTO.NotificationEventType valueOf(String name)

153.11.14.8 public static NotificationEventDTO.NotificationEventType[] values()

153.11.15 public class PrimitiveContentDTO
extends DTO
DTO expresses Primitive Content.

This Data structure is used as union. Only one field MUST have a value, the others MUST be null.

See Also oneM2M TS-0004 6.3.5.5 [http://www.onem2m.org/images/files/deliv-
erables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf],
oneM2M TS-0004 7.2.1 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf], oneM2M XSD primi-
tiveContent [https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-common-
Types-v3_11_0.xsd#L596-602]

Concurrency Not Thread-safe

153.11.15.1 public List<NotificationDTO> aggregatedNotification

Aggregated Notification

153.11.15.2 public List<ResponsePrimitiveDTO> aggregatedResponse

Aggregated Response

153.11.15.3 public List<String> attributeList

Attribute List

153.11.15.4 public List<ChildResourceRefDTO> childResourceRefList

Child Resource RefList

153.11.15.5 public String debugInfo

Debug Info

153.11.15.6 public List<String> listOfURIs

List Of URIs

153.11.15.7 public NotificationDTO notification

Notification

153.11.15.8 public String queryResult

Query Result

153.11.15.9 public RequestPrimitiveDTO requestPrimitive

Request Primitive

153.11.15.10 public ResourceDTO resource

Resource

153.11.15.11 public ResourceWrapperDTO resourceWrapper

Resource Wrapper

http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L596-602
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L596-602
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L596-602
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L596-602

Service Layer API for oneM2M™ Version 1.0 org.osgi.service.onem2m.dto

OSGi Compendium Release 8 Page 1309

153.11.15.12 public ResponsePrimitiveDTO responsePrimitive

Response Primitive

153.11.15.13 public SecurityInfoDTO securityInfo

Security Info

153.11.15.14 public String uri

URI

153.11.15.15 public PrimitiveContentDTO()

153.11.16 enum ReleaseVersion
enum expresses oneM2M specification version.

This information is introduced after Release 2.0 and oneM2M uses only R2A, R3_0 (as 2a and 3).

See Also oneM2M XSD releaseVersion [https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-com-
monTypes-v3_11_0.xsd#L450-455]

153.11.16.1 R1_0

Release 1

153.11.16.2 R1_1

Release 1.1

153.11.16.3 R2_0

Release 2

153.11.16.4 R2A

Release 2A

153.11.16.5 R3_0

Release 3

153.11.16.6 R4_0

Release 4 (reserved for future)

153.11.16.7 R5_0

Release 5 (reserved for future)

153.11.16.8 public static ReleaseVersion valueOf(String name)

153.11.16.9 public static ReleaseVersion[] values()

153.11.17 public class RequestPrimitiveDTO
extends DTO
DTO expresses Request Primitive.

See Also oneM2M TS-0004 6.4.1 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf], oneM2M XSD requestPrimitive
[https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-requestPrimitive-v3_11_0.xsd]

Concurrency Not Thread-safe

https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L450-455
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L450-455
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L450-455
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-requestPrimitive-v3_11_0.xsd
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-requestPrimitive-v3_11_0.xsd

org.osgi.service.onem2m.dto Service Layer API for oneM2M™ Version 1.0

Page 1310 OSGi Compendium Release 8

153.11.17.1 public Boolean authorizationRelationshipIndicator

Authorization Relationship Indicator

153.11.17.2 public Boolean authorizationSignatureIndicator

Authorization Signature Indicator

153.11.17.3 public List<String> authorizationSignatures

Authorization Signatures

In oneM2M this parameter is expressed in m2m:signatureList.

See Also oneM2M TS-0004 6.3.4.2.8 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf], oneM2M XSD signatureList [https://
git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L129-137]

153.11.17.4 public PrimitiveContentDTO content

Primitive Content

See Also oneM2M TS-0004 6.3.5.5 [http://www.onem2m.org/images/files/deliver-
ables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf], oneM2M
TS-0004 7.2.1.1 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.17.5 public Boolean deliveryAggregation

Delivery Aggregation

This parameter is related to CMDH(Communication Management and Delivery Handling) policy.

See Also oneM2M TS-0004 D.12 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.17.6 public RequestPrimitiveDTO.DesiredIdentifierResultType desiredIdentifierResultType

Desired Identifier Result Type

This parameter specifies identifier type in response, such as structured or unstructured. This para-
meter used to be Discovery Result Type in previous oneM2M release.

See Also oneM2M TS-0004 6.3.4.2.8 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.17.7 public Integer eventCategory

Event Category

allowed values are 2(Immediate), 3(BestEffort), 4(Latest), and 100-999 as user defined range.

See Also oneM2M TS-0004 6.3.3 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf], oneM2M XSD eventCat [https://
git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L326], oneM2M
XSD stdEventCats [https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-enumera-
tionTypes-v3_11_0.xsd#L208-221]

153.11.17.8 public FilterCriteriaDTO filterCriteria

Filter Criteria

See Also oneM2M TS-0004 6.3.5.8 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.17.9 public String from

From Parameter.

http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L129-137
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L129-137
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L129-137
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L326
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L326
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L326
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-enumerationTypes-v3_11_0.xsd#L208-221
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-enumerationTypes-v3_11_0.xsd#L208-221
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-enumerationTypes-v3_11_0.xsd#L208-221
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-enumerationTypes-v3_11_0.xsd#L208-221
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf

Service Layer API for oneM2M™ Version 1.0 org.osgi.service.onem2m.dto

OSGi Compendium Release 8 Page 1311

Originator of the request is stored.

See Also oneM2M TS-0004 6.3.4.2.5 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.17.10 public String groupRequestIdentifier

Group Request Identifier TODO: search doc.

153.11.17.11 public List<String> groupRequestTargetMembers

Group Request Target Members

153.11.17.12 public List<String> localTokenIDs

Local Token Identifiers

In oneM2M this parameter is expressed as list of xs:NCName.

153.11.17.13 public RequestPrimitiveDTO.Operation operation

Operation This field is mandatory.

See Also oneM2M TS-0004 6.3.4.2.5 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.17.14 public String operationExecutionTime

Operation Execution Time

153.11.17.15 public String originatingTimestamp

Originating Timestamp

153.11.17.16 public ReleaseVersion releaseVersionIndicator

Release Version

153.11.17.17 public String requestExpirationTimestamp

Request Expiration Timestamp

* This parameter is related to CMDH(Communication Management and Delivery Handling) policy.

See Also oneM2M TS-0004 D.12 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.17.18 public String requestIdentifier

Request Identifier

See Also oneM2M TS-0004 6.3.3 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.17.19 public Integer resourceType

Resource Type

See Also oneM2M TS-0004 6.3.4.2.1 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.17.20 public ResponseTypeInfoDTO responseType

Response Type Info

See Also oneM2M TS-0004 6.3.5.30 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf

org.osgi.service.onem2m.dto Service Layer API for oneM2M™ Version 1.0

Page 1312 OSGi Compendium Release 8

153.11.17.21 public RequestPrimitiveDTO.ResultContent resultContent

Result Content

See Also oneM2M TS-0004 6.3.4.2.7 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.17.22 public String resultExpirationTimestamp

Result Expiration Timestamp

This parameter is related to CMDH(Communication Management and Delivery Handling) policy.

See Also oneM2M TS-0004 D.12 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.17.23 public String resultPersistence

Result Persistence

This parameter is related to CMDH(Communication Management and Delivery Handling) policy.

See Also oneM2M TS-0004 D.12 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.17.24 public List<String> roleIDs

Role IDs

153.11.17.25 public Boolean semanticQueryIndicator

Semantic Query Indicator

See Also oneM2M TS-0004 7.3.3.19 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.17.26 public String to

To Parameter

153.11.17.27 public List<String> tokenIDs

Token Identifiers

In oneM2M this parameter is expressed as list of m2m:tokenID.

See Also oneM2M XSD signatureList [https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-common-
Types-v3_11_0.xsd#L66-70]

153.11.17.28 public Boolean tokenRequestIndicator

Token Request Indicator

153.11.17.29 public List<String> tokens

Tokens

Each token is in m2m:dynAuthJWT

See Also oneM2M XSD signatureList [https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-common-
Types-v3_11_0.xsd#L417-426]

153.11.17.30 public String vendorInformation

Vendor Information

Used for vendor specific information. No procedure is defined for the parameter.

153.11.17.31 public RequestPrimitiveDTO()

http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L66-70
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L66-70
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L66-70
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L417-426
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L417-426
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L417-426

Service Layer API for oneM2M™ Version 1.0 org.osgi.service.onem2m.dto

OSGi Compendium Release 8 Page 1313

153.11.18 enum RequestPrimitiveDTO.DesiredIdentifierResultType
Enum for DesiredIdentifierResultType

See Also oneM2M TS-0004 6.3.4.2.8 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.18.1 structured

structured

153.11.18.2 unstructured

unstructured

153.11.18.3 public int getValue()

□ Return result type value.

Returns The result type value.

153.11.18.4 public static RequestPrimitiveDTO.DesiredIdentifierResultType valueOf(String name)

153.11.18.5 public static RequestPrimitiveDTO.DesiredIdentifierResultType[] values()

153.11.19 enum RequestPrimitiveDTO.Operation
enum type for Operation

See Also oneM2M XSD resultContent [https://git.onem2m.org/PRO/XSD/blob/master/v1_0_0/CDT-enumera-
tionTypes-v1_0_0.xsd#L149-166]

153.11.19.1 Create

Create

153.11.19.2 Retrieve

Retrieve

153.11.19.3 Update

Update

153.11.19.4 Delete

Delete

153.11.19.5 Notify

Notify

153.11.19.6 public int getValue()

□ get assigned integer value

Returns assigned integer value

153.11.19.7 public static RequestPrimitiveDTO.Operation valueOf(String name)

153.11.19.8 public static RequestPrimitiveDTO.Operation[] values()

153.11.20 enum RequestPrimitiveDTO.ResultContent
enum type for Result Content

http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
https://git.onem2m.org/PRO/XSD/blob/master/v1_0_0/CDT-enumerationTypes-v1_0_0.xsd#L149-166
https://git.onem2m.org/PRO/XSD/blob/master/v1_0_0/CDT-enumerationTypes-v1_0_0.xsd#L149-166
https://git.onem2m.org/PRO/XSD/blob/master/v1_0_0/CDT-enumerationTypes-v1_0_0.xsd#L149-166

org.osgi.service.onem2m.dto Service Layer API for oneM2M™ Version 1.0

Page 1314 OSGi Compendium Release 8

See Also oneM2M XSD resultContent [https://git.onem2m.org/PRO/XSD/blob/master/v1_0_0/CDT-enumera-
tionTypes-v1_0_0.xsd#L183-205]

153.11.20.1 nothing

nothing

153.11.20.2 attributes

attributes

153.11.20.3 hierarchicalAddress

hierarchicalAddress

153.11.20.4 hierarchicalAddressAndAttributes

hierarchicalAddressAndAttributes

153.11.20.5 attributesAndChildResources

attributesAndChildResources

153.11.20.6 attributesAndChildResourceReferences

attributesAndChildResourceReferences

153.11.20.7 childResourceReferences

childResourceReferences

153.11.20.8 originalResource

originalResource

153.11.20.9 childResources

childResources

153.11.20.10 public int getValue()

□ get assigned integer value

Returns assigned integer value

153.11.20.11 public static RequestPrimitiveDTO.ResultContent valueOf(String name)

153.11.20.12 public static RequestPrimitiveDTO.ResultContent[] values()

153.11.21 public class ResourceDTO
extends DTO
DTO expresses Resource.

Universal attributes are expressed in field of the class. Common attributes and other attributes are
stored in attribute field.

See Also oneM2M TS-0001 9.6.1.3.1 [http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-
Functional_Architecture-V3_15_1.pdf]

Concurrency Not Thread-safe

153.11.21.1 public Map<String, Object> attribute

Non Universal Attribute. Value Part must be the types that are allowed for OSGi DTO. In case of val-
ue part can be expressed DTO in this package, the DTO must be used. In case of value part have sub-
elements, GenericDTO must be used.

https://git.onem2m.org/PRO/XSD/blob/master/v1_0_0/CDT-enumerationTypes-v1_0_0.xsd#L183-205
https://git.onem2m.org/PRO/XSD/blob/master/v1_0_0/CDT-enumerationTypes-v1_0_0.xsd#L183-205
https://git.onem2m.org/PRO/XSD/blob/master/v1_0_0/CDT-enumerationTypes-v1_0_0.xsd#L183-205
http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf

Service Layer API for oneM2M™ Version 1.0 org.osgi.service.onem2m.dto

OSGi Compendium Release 8 Page 1315

153.11.21.2 public String creationTime

Creation time

See Also oneM2M TS-0001 9.6.1.3.1 [http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-
Functional_Architecture-V3_15_1.pdf]

153.11.21.3 public String lastModifiedTime

last modified time

See Also oneM2M TS-0001 9.6.1.3.1 [http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-
Functional_Architecture-V3_15_1.pdf]

153.11.21.4 public String parentID

Parent ID Resource ID of parent resource.

See Also oneM2M TS-0001 9.6.1.3.1 [http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-
Functional_Architecture-V3_15_1.pdf]

153.11.21.5 public String resourceID

Resource ID

See Also oneM2M TS-0001 9.6.1.3.1 [http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-
Functional_Architecture-V3_15_1.pdf]

153.11.21.6 public String resourceName

Resource name

See Also oneM2M TS-0001 9.6.1.3.1 [http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-
Functional_Architecture-V3_15_1.pdf]

153.11.21.7 public Integer resourceType

Resource Type

See Also oneM2M TS-0001 9.6.1.3.1 [http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-
Functional_Architecture-V3_15_1.pdf], oenM2M TS-0004 6.3.4.2.1 [http://www.onem2m.org/im-
ages/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.21.8 public ResourceDTO()

153.11.22 public class ResourceWrapperDTO
extends DTO
DTO expresses ResourceWrapper.

See Also oneM2M TS-0004 6.3.5.25 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

Concurrency Not Thread-safe

153.11.22.1 public ResourceDTO resource

Resource

153.11.22.2 public String uri

Hierarchical URI of the resource

153.11.22.3 public ResourceWrapperDTO()

http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf

org.osgi.service.onem2m.dto Service Layer API for oneM2M™ Version 1.0

Page 1316 OSGi Compendium Release 8

153.11.23 public class ResponsePrimitiveDTO
extends DTO
DTO expresses Response Primitive.

See Also oneM2M TS-0004 6.4.2 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf], oneM2M XSD responsePrimitive
[https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-responsePrimitive-v3_11_0.xsd]

Concurrency Not Thread-safe

153.11.23.1 public List<LocalTokenIdAssignmentDTO> assignedTokenIdentifiers

Assigned Token Identifiers

See Also oneM2M TS-0004 6.3.5.43 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.23.2 public Boolean AuthSignatureReqInfo

AuthSignatureReqInfo

153.11.23.3 public PrimitiveContentDTO content

Primitive Content

See Also oneM2M TS-0004 6.3.5.5 [http://www.onem2m.org/images/files/deliver-
ables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf], oneM2M
TS-0004 7.2.1.2 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.23.4 public Integer contentOffset

Content Offset

153.11.23.5 public ResponsePrimitiveDTO.ContentStatus contentStatus

Content Status

See Also oneM2M TS-0004 6.3.4.2.44 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.23.6 public Integer eventCategory

Event Category

allowed values are 2(Immediate), 3(BestEffort), 4(Latest), and 100-999 as user defined range.

See Also oneM2M TS-0004 6.3.3 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf], oneM2M XSD eventCat [https://
git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L326], oneM2M
XSD stdEventCats [https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-enumera-
tionTypes-v3_11_0.xsd#L208-221]

153.11.23.7 public String from

From Parameter

153.11.23.8 public String originatingTimestamp

Originating Timestamp To Parameter

See Also oneM2M TS-0004 Table 6.3.3-1 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-responsePrimitive-v3_11_0.xsd
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-responsePrimitive-v3_11_0.xsd
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L326
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L326
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-commonTypes-v3_11_0.xsd#L326
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-enumerationTypes-v3_11_0.xsd#L208-221
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-enumerationTypes-v3_11_0.xsd#L208-221
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-enumerationTypes-v3_11_0.xsd#L208-221
https://git.onem2m.org/PRO/XSD/blob/master/v3_11_0/CDT-enumerationTypes-v3_11_0.xsd#L208-221
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf

Service Layer API for oneM2M™ Version 1.0 org.osgi.service.onem2m.dto

OSGi Compendium Release 8 Page 1317

153.11.23.9 public ReleaseVersion releaseVersionIndicator

Release Version Indicator

153.11.23.10 public String requestIdentifier

Request Identifier

See Also oneM2M TS-0004 6.3.3 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.23.11 public Integer responseStatusCode

Response Status Code

See Also oneM2M TS-0004 6.3.4.2.9 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.23.12 public String resultExpirationTimestamp

ResultExpiration Timestamp

See Also oneM2M TS-0004 Table 6.3.3-1 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.23.13 public String to

To Parameter

See Also oneM2M TS-0004 6.3.3 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.23.14 public List<DasInfoDTO> tokenReqInfo

Token Request Info

See Also oneM2M TS-0004 6.3.5.45 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.23.15 public String vendorInformation

Vendor Information

Used for vendor specific information. No procedure is defined for the parameter.

153.11.23.16 public ResponsePrimitiveDTO()

153.11.24 enum ResponsePrimitiveDTO.ContentStatus
Enum ContentStatus

See Also oneM2M TS-0004 6.3.4.2.44 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.24.1 PARTIAL_CONTENT

PARTIAL_CONTENT

153.11.24.2 FULL_CONTENT

FULL_CONTENT

153.11.24.3 public static ResponsePrimitiveDTO.ContentStatus valueOf(String name)

153.11.24.4 public static ResponsePrimitiveDTO.ContentStatus[] values()

http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf

org.osgi.service.onem2m.dto Service Layer API for oneM2M™ Version 1.0

Page 1318 OSGi Compendium Release 8

153.11.25 public class ResponseTypeInfoDTO
extends DTO
DTO expresses ResponseTypeInfo

See Also oneM2M TS-0004 6.3.5.30 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

Concurrency Not Thread-safe

153.11.25.1 public List<String> notificationURI

Notification URI

See Also oneM2M TS-0004 6.3.5.30 [http://www.onem2m.org/images/files/deliver-
ables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf], oneM2M
TS-0004 7.5.1.2.5 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.25.2 public ResponseTypeInfoDTO.ResponseType responseTypeValue

Response Type Value

See Also oneM2M TS-0004 6.3.4.2.6 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.25.3 public ResponseTypeInfoDTO()

153.11.26 enum ResponseTypeInfoDTO.ResponseType
enum ResponseType

See Also oneM2M TS-0004 6.3.4.2.6 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.26.1 nonBlockingRequestSynch

nonBlockingRequestSynch

153.11.26.2 nonBlockingRequestAsynch

nonBlockingRequestAsynch

153.11.26.3 blockingRequest

blockingRequest

153.11.26.4 flexBlocking

flexBlocking

153.11.26.5 public int getValue()

□ get assigned value

Returns assigned integer value.

153.11.26.6 public static ResponseTypeInfoDTO.ResponseType valueOf(String name)

153.11.26.7 public static ResponseTypeInfoDTO.ResponseType[] values()

153.11.27 public class SecurityInfoDTO
extends DTO
DTO expresses Security Info.

http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf

Service Layer API for oneM2M™ Version 1.0 org.osgi.service.onem2m.dto

OSGi Compendium Release 8 Page 1319

This class is used as union. SecurityInfoType field indicates which type of content is stored.

See Also oenM2M TS-0004 6.3.5.48 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

Concurrency Not Thread-safe

153.11.27.1 public GenericDTO dasRequest

Das Request

153.11.27.2 public GenericDTO dasResponse

Das Response

153.11.27.3 public byte[] escertkeMessage

Escertke Message

153.11.27.4 public String esprimObject

Esprim Object

153.11.27.5 public GenericDTO esprimRandObject

Esprim Rand Object

153.11.27.6 public SecurityInfoDTO.SecurityInfoType securityInfoType

Security Info Type

See Also oenM2M TS-0004 6.3.4.2.35 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.27.7 public SecurityInfoDTO()

153.11.28 enum SecurityInfoDTO.SecurityInfoType
Enum SecurityInfoType

See Also oenM2M TS-0004 6.3.4.2.35 [http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf]

153.11.28.1 DynamicAuthorizationRequest

DynamicAuthorizationRequest

153.11.28.2 DynamicAuthorizationResponse

DynamicAuthorizationResponse

153.11.28.3 ReceiverESPrimRandObjectRequest

ReceiverESPrimRandObjectRequest

153.11.28.4 ReceiverESPrimRandObjectResponse

ReceiverESPrimRandObjectResponse

153.11.28.5 ESPrimObject

ESPrimObject

153.11.28.6 ESCertKEMessage

ESCertKEMessage

http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf

References Service Layer API for oneM2M™ Version 1.0

Page 1320 OSGi Compendium Release 8

153.11.28.7 DynamicAuthorizationRelationshipMappingRequest

DynamicAuthorizationRelationshipMappingRequest

153.11.28.8 DynamicAuthorizationRelationshipMappingResponse

DynamicAuthorizationRelationshipMappingResponse

153.11.28.9 public int getValue()

□ Get assigned value.

Returns assigned value

153.11.28.10 public static SecurityInfoDTO.SecurityInfoType valueOf(String name)

153.11.28.11 public static SecurityInfoDTO.SecurityInfoType[] values()

153.12 References

[1] oneM2M: TS-0001 Functional Architecture V3.15.1
http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-
V3_15_1.pdf

[2] oneM2M: TS-0004 Service Layer Core Protocol V3.11.2
http://www.onem2m.org/images/files/deliverables/Re-
lease3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf

[3] oneM2M: TS-0008 CoAP Protocol Binding V3.3.1
https://www.onem2m.org/images/files/deliverables/Release3/TS-0008-CoAP_Protocol_Binding-
V3_3_1cl.pdf

[4] oneM2M: TS-0009 HTTP Protocol Binding V3.2.1
https://www.onem2m.org/images/files/deliverables/Release3/TS-0009-HTTP_Protocol_Binding-
V3_2_1cl.pdf

[5] oneM2M: TS-0010 MQTT Protocol Binding V3.0.1
https://www.onem2m.org/images/files/deliverables/Release3/TS-0010-MQTT_protocol_binding-
V3_0_1.pdf

[6] oneM2M: TS-0020 WebSocket Protocol Binding V3.0.1
https://www.onem2m.org/images/files/deliverables/Release3/TS-0020-
WebSocket_Protocol_Binding-V3_0_1.pdf

[7] oneM2M-schemas
https://git.onem2m.org/PRO/XSD

http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0001-Functional_Architecture-V3_15_1.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
http://www.onem2m.org/images/files/deliverables/Release3/TS-0004_Service_Layer_Core_Protocol_V3_11_2.pdf
https://www.onem2m.org/images/files/deliverables/Release3/TS-0008-CoAP_Protocol_Binding-V3_3_1cl.pdf
https://www.onem2m.org/images/files/deliverables/Release3/TS-0008-CoAP_Protocol_Binding-V3_3_1cl.pdf
https://www.onem2m.org/images/files/deliverables/Release3/TS-0009-HTTP_Protocol_Binding-V3_2_1cl.pdf
https://www.onem2m.org/images/files/deliverables/Release3/TS-0009-HTTP_Protocol_Binding-V3_2_1cl.pdf
https://www.onem2m.org/images/files/deliverables/Release3/TS-0010-MQTT_protocol_binding-V3_0_1.pdf
https://www.onem2m.org/images/files/deliverables/Release3/TS-0010-MQTT_protocol_binding-V3_0_1.pdf
https://www.onem2m.org/images/files/deliverables/Release3/TS-0020-WebSocket_Protocol_Binding-V3_0_1.pdf
https://www.onem2m.org/images/files/deliverables/Release3/TS-0020-WebSocket_Protocol_Binding-V3_0_1.pdf
https://git.onem2m.org/PRO/XSD

Residential Device Management Tree Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 1321

154 Residential Device Management
Tree Specification

Version 1.0

154.1 Introduction
The chapter defines the Device Management Tree (DMT) for residential applications called the Res-
idential Management Tree (RMT). This RMT is based on the Dmt Admin Service Specification on page
381. The RMT allows remote managers to manage the residential device through an abstract tree. As
this tree is an abstract representation, different management protocols can use the same underlying
management components, the Dmt Admin Plugins, in the OSGi framework.

This chapter requires full understanding of the concepts in the Dmt Admin Service Specification on
page 381 and uses its terminology.

154.1.1 Essentials
The following essentials are associated with the Residential Management Tree specification:

• Complete - The RMT must cover all functionality to completely manage an OSGi Framework as
defined by OSGi Core Release 8.

• Performance - The RMT runs on devices with limited resources.
• Searchable - Provide an efficient way to search the RMT remotely.
• Services - Provide efficient access to standardized services like the Log Service.

154.1.2 Entities

• Remote Manager - The entity that remotely controls an OSGi Framework.
• Management Agent - An entity running on the device that is responsible for the management of

the local OSGi Framework. It usually acts as a proxy for a Remote Manager.
• Protocol Adapter - Communicates with a Remote Manager and translates the protocol instructions

to instructions to a local Management Agent.
• DMT - The Device Management Tree. This is the general structure available through the Dmt Ad-

min service.
• RMT - The Residential Management Tree. This is the part of the DMT that is involved with resi-

dential management.

The Residential Management Tree Residential Device Management Tree Specification Version 1.0

Page 1322 OSGi Compendium Release 8

Figure 154.1 Device Management Architecture

Remote
Manager

Protocol
Adapter

Dmt Admin

Management
Admin Plugin

protocol
object models

DMT

RMT

OSGi
Framework

154.2 The Residential Management Tree
The OSGi node is the root node for OSGi specific information. This OSGi node can be placed any-
where in the Device Management Tree and acts as parent to all the top level nodes in this specifica-
tion. Therefore, in this specification the parent node of, for example, the Framework node is referred
to as $, which effectively represents the OSGi node. The description of the nodes are using the types
defined in OSGi Object Modeling on page 423.

The value of $ for a specific system can be defined with the following Framework property:

org.osgi.dmt.residential

For this specifications, the RMT Consists of the following top level nodes:

• Framework - Managing the local Framework
• Fi l ter - Searching nodes in the DMT
• Log - Access to the log

154.3 Managing Bundles
The Framework node provides a remote management model for managing the life cycle of bundles
and inspecting the Framework's state.

To change the state, for example install a new bundle, requires an atomic session on at least the
Framework node. The model is constructed to reflect the requested state. When the session is com-
mitted, the underlying Plugin must effectuate these requested states into the real state.

For example, to install a bundle it is first necessary to create a new Bundle child node. The Bun-
dle node is a MAP node, the name of the child node is the locat ion of the bundle as given in the
instal lBundle(location, input stream) method and returned from the getLocation() method.

This location should not be treated as the actual URL of the bundle, the location is better intended
to be used a management name for the bundle as the remote manager can choose it. It is normally

Residential Device Management Tree Specification Version 1.0 Managing Bundles

OSGi Compendium Release 8 Page 1323

best to make this name a reverse domain name, for example com.acme.admin . The name " System
Bundle" is a reserved name for the system bundle. The Framework management plugin must there-
fore not treat the location as a URL.

Creating the child node has no effect as long as the session is not committed. This new Bundle node
automatically gets the members defined in the Bundle type.

The URL node should be set to the download URL, the URL used to download the JAR file from. The
URL node is used as the download URL for an install operation (after the node is created newly) or
the update location when the node is changed after the bundle had been installed in a previous ses-
sion. Creating a new Bundle node without setting the URL must generate an error when the session
is committed.

To start this newly installed bundle, the manager can set the RequestedState to ACTIVE . If this bun-
dle needs to be started when the framework is restarted, then the AutoStart node can be set to true .
If there bundles to be uninstalled then their RequestedState node must be set to UNINSTALLED as
it is not possible to delete a Bundle node. The RequestedState must be applied after the bundle has
been installed or updated. An uninstalled bundle will be automatically removed from the RMT.

The RequestedState node is really the requested state, depending on start levels and other existing
conditions the bundle can either follow the requested state or have another state if, for example, its
start level is not met. The RequestedState must be stored persistently between invocations, its ini-
tial value is INSTALLED .

The manager can create any number of new Bundle nodes to install a number of bundles at the same
time during commit. It can also change the life cycle of existing bundles. None of these changes
must have any effect until the session is committed.

If the session is finally committed, the Plugin must compare the state in the Dmt Admin tree with
the actual state and update the framework accordingly. The order in which the operations occur is
up to the implementation except for framework operations, they must always occur last. After bun-
dles have been installed, uninstalled, or updated, the Plugin must refresh all the packages to ensure
that the remote management system sees a consistent state.

Downloading the bundles from a remote system can take substantial time. As the commit is used
synchronously, it is sometimes advisable to download the bundles to the device before they are in-
stalled.

If any error occurs, any changes that were made since the beginning of the last transaction point
must be rolled back. An error should be reported. The remote manager therefore gets an atomic be-
havior, either all changes succeed or all fail. A manager should also be aware that if its own bundle,
or any of its dependencies, is updated it will be stopped and will not be able to properly report the
outcome to the management system, either a failure or success.

154.3.1 Bundle Life Cycle Example
For example, the following code installs my_bundle , updates up_bundle , and uninstalls old_bundle :

String $ = ... // get the OSGi node
DmtSession session = admin.getSession($ + "/Framework",
 DmtSession.LOCK_TYPE_ATOMIC);
try {
 session.createInteriorNode("Bundle/my_bundle");
 session.setNodeValue("Bundle/my_bundle/URL", new DmtData(
 "http://www.example.com/bundles/my_bundle.jar"));
 session.setNodeValue("Bundle/my_bundle/AutoStart",
 DmtData.TRUE_VALUE);
 session.setNodeValue("Bundle/my_bundle/RequestedState",
 new DmtData("ACTIVE"));

Managing Bundles Residential Device Management Tree Specification Version 1.0

Page 1324 OSGi Compendium Release 8

 session.setNodeValue("Bundle/up_bundle/URL", new DmtData(
 "http://www.example.com/bundles/up_bundle-2.jar"));

 session.setNodeValue("Bundle/old_bundle/RequestedState",
 new DmtData("UNINSTALLED"));
 try {
 session.commit();
 } catch (Exception e) {
 // failure ...
 log....
 }
} catch (Exception e) {
 session.rollback();
 log...
}

154.3.2 Framework Restart
There are no special operations for managing the life cycle of the Framework, these operations are
done on the System Bundle, or bundle 0. The framework can be stopped or restarted:

• Restart - Restarting is an update, requiring the URL to be set to a new URL. This must shutdown
the framework after the commit has succeeded.

• Stopping - Stopping is setting the RequestedState to INSTALLED

If the URL node has changed, the RequestedState will be ignored and the framework must only be
restarted.

Sessions that modify nodes inside the Framework sub-tree must always be atomic and opened on the
Framework node. The Data Plugin managing the Framework node is only required to handle a single
simultaneous atomic session for its whole sub-tree.

For example, the following code restarts the framework after the commit has succeeded.

DmtSession session = admin.getSession($ +"/Framework",
 DmtSession.LOCK_TYPE_ATOMIC);
session.setNodeValue("Bundle/System Bundle/URL",
 new DmtData(""));
session.commit();

154.3.3 Access to Wiring
During runtime a bundle is wired to several different entities, other bundles, fragments, packages,
and services. The framework defines a general Requirement-Capability model and this model is re-
flected in the Wiring API in OSGi Core Release 8. The Requirement-Capability model maps to a very
generic way of describing wires between requirers and providers that is applicable to all of the OSGi
constructs.

The Core defines namespaces for:

• osgi .wir ing.bundle - The namespace for the Require-Bundle header. It wires the bundle with the
Require-Bundle header to the bundle with the required Bundle-SymbolicName and Bundle-Ver-
sion header.

• osgi .wir ing.host - The namespace for the Fragment-Host header. It wires from bundle with the
Fragment-Host header to the bundle with the required Bundle-SymbolicName and Bundle-Ver-
sion header.

• osgi .wir ing.package - The namespace for the Import/Export-Package header. It wires from bundle
with the Import-Package header to the bundle with the Export-Package header.

Residential Device Management Tree Specification Version 1.0 Managing Bundles

OSGi Compendium Release 8 Page 1325

In the Core API, the wiring is based on the Bundle revisions. However, this specification requires
that all bundles are refreshed after a management operation to ensure a consistent wiring state. The
management model therefore ignores the Bundle Revision and instead provides wiring only for
bundles since the manager is unable to see different revision of a bundle anyway. The general Re-
quirement-Capability model is depicted in Figure 154.2.

Figure 154.2 Requirements and Capabilities and their Wiring

Capability

Requirement

Requirement/Capability

Runtime
fragmenthost

Bundle

The core does not specify a namespace for services. However, services can also be modeled with re-
quirements capabilities. The registrar is the provider and the service properties are the capabili-
ty. The getter is the requirer, its filter is the requirement. This specification therefore also defines a
namespaces for services:

osgi.wiring.rmt.service

This namespace is defined in osgi.wiring.rmt.service Namespace on page 1328.

To access the wiring, each Bundle node has a Wires node. This is a MAP of LIST of Wire . The key of
the MAP node is the name of the namespace, that is, the wires are organized by namespace. This pro-
vides convenient access to all wires of a given namespace. The value of the MAP node is a LIST node,
providing sequential access to the actual wires.

A Wire node provides the following information:

• Namespace - The namespace of the wire
• Requirement - The requirement that cause the wire
• Capabi l i ty - The capability that satisfied the wire
• Requirer - The location of the bundle that required the wire
• Provider - The location of the bundle that satisfied the requirement

154.3.4 Wiring Example
The following example code demonstrates how the wires can be printed out:

String prefix ="Bundle/my_bundle/Wires/osgi.wiring.package";
String [] wires = session.getChildNodeNames(prefix);
for (String wire : wires) {
 String name = session.getNodeValue(prefix + "/"
 + wire + "/Capability/Attribute/osgi.wiring.package").getString();
 String provider = session.getNodeValue(prefix + "/"
 + wire + "/Provider").getString();
 String requirer = session.getNodeValue(prefix + "/"
 + wire + "/Requirer").getString();

Filtering Residential Device Management Tree Specification Version 1.0

Page 1326 OSGi Compendium Release 8

 System.out.printf("%-20s %-30s %s\n", name, provider, requirer);
}

154.4 Filtering
Frequently it is necessary to search through the tree of nodes for nodes matching specific criteria.
Having to use Java to do this filtering can become cumbersome and impossible if the searching has
to happen remotely. For that reason, the RMT contains a Fi l ter node. This node allows a manager
to specify a Target and a Fi l ter . The Target is an absolute URI that defines a set of nodes that the Fil-
ter Plugin must search. This set is defined by allowing wildcards in the target. A single asterisk ('* '
\u002A) matches a single level, the minus sign (' - ' \u002C) specifies any number of levels and must
not be used at the end of the URI. This implies that there is always a final node. The reason that a mi-
nus sign must not be last is that the final node's type would be undefined, any node on any sub-level
would match.

The Target node must be specified as an absolute URI that must always end in a solidus (' / ' \u002F)
to signify that it represents a path to an interior node. The URI is absolute because the Filter is spec-
ified in a persistent node. It is possible to open a session, create the filter specification, close the ses-
sion, and then open a new session, and use the earlier specified Target . As the two involved session
do not have to have the same session, the base could differ, making it hard to use relative addressing.
However, the result is always unique to a session. It is therefore possible to use relative URIs in the
read out of the result.

For example, the tree in Figure 154.3 defines a sub-tree.

Figure 154.3 Example Sub-Tree

.

B C

D E

F GG

A

The following table shows a number of example targets on the previous sub-tree and their resulting
final nodes, assuming the result is read in a session open on . /A .

Table 154.1 Example Target and results on a session opened on ./A

Target Final nodes
. /A/*/ B, C
./A/*/E/*/ C/E/F, C/E/G
./A/-/G/ C/D/G, C/E/G
./A/*/*/*/ C/D/G, C/E/F, C/E/G
./A/-/*/ This is an error,. /A/-/*/ is the same as . /A/-/ , which is not allowed.
. /A/*/*/ C/D, C/E

Residential Device Management Tree Specification Version 1.0 Log Access

OSGi Compendium Release 8 Page 1327

The Fi l ter specifies a standard OSGi Filter expression that is applied to the final nodes. If no filter is
specified then all final nodes match. However, when there is a filter specified it is applied against the
final node and only the final nodes that are matching the filter as included in the result.

A node is matched against a filter by using some of its children as properties. The properties of a
node are defined by:

• Primitive child nodes, or
• LIST nodes that have primitive as child nodes. Such nodes must be treated as multi-valued prop-

erties.

The matching rules in the filter must follow the standard OSGi Filter rules. If the filter matches such
a node then it must be available as a session relative URI in the ResultUriL ist node. The relative URIs
are listed in the ResultUriL ist .

The result nodes must only include nodes that satisfy the following conditions:

• The node must match the Target node's URI specification
• The node must be visible in the current session
• The node must not reside in the Filter sub-tree
• The node must be an interior node
• The caller must have access to the node
• It must be possible to get all the values of the child nodes that are necessary for filter matching
• The node must match the filter if a filter is specified

The result is also available as a sub-tree under the Result node and can be traversed as sub-tree in Re-
sult . This tree contains all the result nodes and their sub-tree. The results under the Result node are a
snapshot and cannot be modified, they are read only. This result can be removed after the session is
closed.

154.4.1 Example
For example, the following code prints out the location of active bundles:

session.createInteriorNode("Filter/mq-1");
session.setNodeValue("Filter/mq-1/Target",
 new DmtData($+"/Framework/Bundle/*/"));
session.setNodeValue("Filter/mq-1/Filter", new DmtData("(AutoStart=true)"));

String[] autostarted = session.getChildNodeNames(
 "Filter/mq-1/Result/Framework/Bundle");
System.out.println("Auto started bundles");
for (String location : autostarted)
 System.out.println(location);

session.deleteNode("Filter/mq-1");

154.5 Log Access
The Log node provides access to the Log Service, the node contains a LIST of LogEntry nodes. The
length of this list is implementation dependent. The list is sorted in most recent first order. This al-
lows a manager to retrieve the latest logs. For example, the following code print out the latest 100
log entries:

DataSession session = admin.getSession($+"/Log/LogEntries");

osgi.wiring.rmt.service Namespace Residential Device Management Tree Specification Version 1.0

Page 1328 OSGi Compendium Release 8

try {
 for (int i =0; i<100; i++) {
 Date date = session.getNodeValue(i+"/Time").getDateTime();
 String message = session.getNodeValue(i+"/Message").getString();
 System.out.println(date + " " + message);
 }
} finally {
 session.close();
}

154.6 osgi.wiring.rmt.service Namespace
This section defines a namespace for the Requirement-Capability model to maintain services
through the standard wiring API. A service is a capability, the Capability attributes are the service
properties. The bundle that gets the service has a requirement on that service.

The filter of the service requirement is not the original filter since this is not possible to obtain reli-
ably. Instead the filter must assert of the service. id , for example: (service. id=123) .

The resulting filter is specified as the f i l ter : directive on the Requirement. This is depicted in Figure
154.4.

Figure 154.4 Requirements and Capabilities and their Wiring

getting
bundle

registering
bundle

service
service

filter
service

properties

The osgi .wir ing.rmt.service attributes are defined in the following table.

Table 154.2 osgi.wiring.rmt.service namespace

Attribute Name Type Syntax Description
osgi .wir ing.rmt.service Str ing service. id The service id.
objectClass Str ing[] fqn Fully qualified name of the types under which this

service is listed
* * * Any service property

154.7 Tree Summary
$ _G__ NODE 1 P

154.7.1 Filter

 org.osgi/1.0/MAP
 Filter _G__ MAP 0,1 P
 [string] AG_D NODE 0..* D
 Filter _GR_ string 1 A
 Target _GR_ string 1 A
 Limit _GR_ integer 1 A

Residential Device Management Tree Specification Version 1.0 Tree Summary

OSGi Compendium Release 8 Page 1329

 Result _G__ Node 1 A

 org.osgi/1.0/LIST
 ResultUriList _G__ LIST 1 A
 [list] _G__ string 0..* D
 InstanceId _G__ integer 1 A

154.7.2 Framework

 Framework _G__ NODE 1 P
 StartLevel _GR_ integer 1 A
 InitialBundleStartLevel _GR_ integer 1 A

 org.osgi/1.0/MAP
 Bundle _G__ MAP 1 A
 [string] AG__ NODE 0..* D
 StartLevel _GR_ integer 1 A
 InstanceId _G__ integer 1 A
 URL _GR_ string 1 A
 AutoStart _GR_ boolean 1 A
 FaultType _G__ integer 0,1 A
 FaultMessage _G__ string 0,1 A
 BundleId _G__ long 0,1 A
 SymbolicName _G__ string 0,1 A

 org.osgi/1.0/LIST
 BundleType _G__ LIST 0,1 A
 [list] _G__ string 0..* D

 org.osgi/1.0/MAP
 Headers _G__ MAP 0,1 A
 [string] _G__ string 0..* D
 Location _G__ string 1 A
 RequestedState _GR_ string 1 A
 LastModified _G__ date_time 0,1 A

 org.osgi/1.0/MAP
 Wires _G__ MAP 0,1 A

 org.osgi/1.0/LIST
 [string] _G__ LIST 0..* D
 [list] _G__ NODE 0..* D
 InstanceId _G__ integer 1 A
 Requirement _G__ NODE 1 A
 Filter _G__ string 1 A

 org.osgi/1.0/MAP
 Directive _G__ MAP 1 A
 [string] _G__ string 0..* D

 org.osgi/1.0/MAP
 Attribute _G__ MAP 1 A
 [string] _G__ string 0..* D
 Capability _G__ NODE 1 A

org.osgi.dmt.residential Residential Device Management Tree Specification Version 1.0

Page 1330 OSGi Compendium Release 8

 org.osgi/1.0/MAP
 Directive _G__ MAP 1 A
 [string] _G__ string 0..* D

 org.osgi/1.0/MAP
 Attribute _G__ MAP 1 A
 [string] _G__ string 0..* D
 Namespace _G__ string 1 A
 Requirer _G__ string 1 A
 Provider _G__ string 1 A

 org.osgi/1.0/LIST
 Signers _G__ LIST 0,1 A
 [list] _G__ NODE 0..* D
 InstanceId _G__ integer 1 A
 IsTrusted _G__ boolean 1 A

 org.osgi/1.0/LIST
 CertificateChain _G__ LIST 1 A
 [list] _G__ string 0..* D

 org.osgi/1.0/LIST
 Entries _G__ LIST 0,1 A
 [list] _G__ NODE 0..* D
 InstanceId _G__ integer 1 A
 Path _G__ string 1 A
 Content _G__ binary 1 A
 State _G__ string 0,1 A
 Version _G__ string 0,1 A

 org.osgi/1.0/MAP
 Property _G__ MAP 1 A
 [string] _G__ string 0..* D

154.7.3 Log

 Log _G__ NODE 0,1 P

 org.osgi/1.0/LIST
 LogEntries _G__ LIST 1 A
 [list] _G__ NODE 0..* D
 Bundle _G__ string 1 A
 Time _G__ date_time 1 A
 Level _G__ integer 1 A
 Message _G__ string 1 A
 Exception _G__ string 0,1 A

154.8 org.osgi.dmt.residential

154.8.1 $
The $ describes the root node for OSGi Residential Management. The path to this node is defined in
the system property: org.osgi .dmt.residential .

Residential Device Management Tree Specification Version 1.0 org.osgi.dmt.residential

OSGi Compendium Release 8 Page 1331

Table 154.3 Sub-tree Description for $

Name Act Type Card. S Description
Framework Get Framework 1 P The Framework node used to manage the lo-

cal framework.
Fi l ter Get MAP 0,1 P
 [Str ing] Add Del

Get
Fi l ter 0. .* D

The Filter node searches the nodes in a tree
that correspond to a target URI and an option-
al filter expression. A new Filter is created by
adding a node to the Filter node. The name of
the node is chosen by the remote manager. If
multiple managers are active they must agree
on a scheme to avoid conflicts or an atomic
sessions must be used to claim exclusiveness.

Filter nodes are persistent but an implemen-
tation can remove the node after a suitable
timeout that should at least be 1 hour.

If this functionality is not supported on this
device then the node is not present.

Log Get Log 0,1 P Access to the optional Log.

If this functionality is not supported on this
device then the node is not present.

154.8.2 Bundle
The management node for a Bundle. It provides access to the life cycle control of the bundle as well
to its metadata, resources, and wiring.

To install a new bundle an instance of this node must be created. Since many of the sub-nodes are
not yet valid as the information from the bundle is not yet available. These nodes are marked to be
optional and will only exists after the bundle has been really installed.

154.8.2.1 FRAGMENT = "FRAGMENT"

The type returned for a fragment bundle.

154.8.2.2 INSTALLED = "INSTALLED"

The Bundle INSTALLED state.

154.8.2.3 RESOLVED = "RESOLVED"

The Bundle RESOLVED state.

154.8.2.4 STARTING = "STARTING"

The Bundle STARTING state.

154.8.2.5 ACTIVE = "ACTIVE"

The Bundle ACTIVE state.

154.8.2.6 STOPPING = "STOPPING"

The Bundle STOPPING state.

154.8.2.7 UNINSTALLED = "UNINSTALLED"

The Bundle UNINSTALLED state.

org.osgi.dmt.residential Residential Device Management Tree Specification Version 1.0

Page 1332 OSGi Compendium Release 8

Table 154.4 Sub-tree Description for Bundle

Name Act Type Card. S Description
URL Get Set str ing 1 A The URL to download the archive from for

this bundle. By default this is the empty
string. In an atomic session this URL can be
replaced to a new URL, which will trigger an
update of this bundle during commit. If this
value is set it must point to a valid JAR from
which a URL can be downloaded, unless it is
the system bundle. If it is the empty string no
action must be taken except when it is the sys-
tem bundle.

If the URL of Bundle 0 (The system bundle)
is replaced to any value, including the empty
string, then the framework will restart.

If both a the URL node has been set the bun-
dle must be updated before any of the other
aspects are handled like RequestedState and
StartLevel.

AutoStart Get Set boolean 1 A Indicates if this Bundle must be started when
the Framework is started.

If the AutoStart node is true then this bundle
is started when the framework is started and
its StartLevel is met.

If the AutoStart node is set to true and the
bundle is not started then it will automatical-
ly be started if the start level permits it. If the
AutoStart node is set to fa lse then the bundle
must not be stopped immediately.

If the AutoStart value of the System Bundle is
changed then the operation must be ignored.

The default value for this node is true
FaultType Get integer 0,1 A The BundleException type associated with a

failure on this bundle, -1 if no fault is associ-
ated with this bundle. If there was no Bundle
Exception associated with the failure the code
must be 0 (UNSPECIFIED). The FaultMessage
provides a human readable message.

Only present after the bundle is installed.
FaultMessage Get str ing 0,1 A A human readable message detailing an error

situation or an empty string if no fault is asso-
ciated with this bundle.

Only present after the bundle is installed.
BundleId Get long 0,1 A The Bundle Id as defined by the getBundleId()

method.

If there is no installed Bundle yet, then this
node is not present.

Residential Device Management Tree Specification Version 1.0 org.osgi.dmt.residential

OSGi Compendium Release 8 Page 1333

Name Act Type Card. S Description
SymbolicName Get str ing 0,1 A The Bundle Symbolic Name as defined by the

Bundle getSymbol icName() method. If this re-
sult is nul l then the value of this node must be
the empty string.

If there is no installed Bundle yet, then this
node is not present.

Version Get str ing 0,1 A The Bundle's version as defined by the Bundle
getVersion() method.

If there is no installed Bundle yet, then this
node is not present.

BundleType Get LIST 0,1 A
 [l ist] Get str ing 0. .* D

A list of the types of the bundle. Currently on-
ly a single type is provided:

• FRAGMENT

If there is no installed Bundle yet, then this
node is not present.

Headers Get MAP 0,1 A
 [Str ing] Get str ing 0. .* D

The Bundle getHeaders() method.

If there is no installed Bundle yet, then this
node is not present.

Location Get str ing 1 A The Bundle's Location as defined by the Bun-
dle getLocation() method.

The location is specified by the management
agent when the bundle is installed. This lo-
cation should be a unique name for a bundle
chosen by the management system. The Bun-
dle Location is immutable for the Bundle's life
(it is not changed when the Bundle is updat-
ed). The Bundle Location is also part of the
URI to this node.

State Get str ing 0,1 A Return the state of the current Bundle. The
values can be:

• INSTALLED
• RESOLVED
• STARTING
• ACTIVE
• STOPPING

If there is no installed Bundle yet, then this
node is not present.

The default value is UNINSTALLED after cre-
ation.

org.osgi.dmt.residential Residential Device Management Tree Specification Version 1.0

Page 1334 OSGi Compendium Release 8

Name Act Type Card. S Description
RequestedState Get Set str ing 1 A Is the requested state the manager wants the

bundle to be in. Can be:

• INSTALLED - Ensure the bundle is stopped
and refreshed.

• RESOLVED - Ensure the bundle is resolved.
• ACTIVE - Ensure the bundle is started.
• UNINSTALLED - Uninstall the bundle.

The Requested State is a request. The manage-
ment agent must attempt to achieve the de-
sired state but there is a no guarantee that this
state is achievable. For example,a Framework
can resolve a bundle at any time or the active
start level can prevent a bundle from running.
Any errors must be reported on FaultType and
FaultMessage.

If the AutoStart node is true then the bun-
dle must be persistently started, otherwise it
must be transiently started. If the StartLevel
is not met then the commit must fail if AutoS-
tart is fa lse as a Bundle cannot be transiently
started when the start level is not met.

If both a the URL node has been set as well as
the RequestedState node then this must result
in an update after which the bundle should go
to the RequestedState.

The RequestedState must be stored persistent-
ly so that it contains the last requested state.
The initial value of the RequestedState must
be INSTALLED.

StartLevel Get Set integer 1 A The Bundle's current Start Level as defined
by the BundleStartLevel adapt interface getS-
tartLevel() method. Changing the StartLevel
can change the Bundle State as a bundle can
become eligible for starting or stopping.

If the URL node is set then a bundle must be
updated before the start level is set,

LastModified Get date_time 0,1 A The Last Modified time of this bundle as
defined by the Bundle getlastModified()
method.

If there is no installed Bundle yet then this
node is not present.

Residential Device Management Tree Specification Version 1.0 org.osgi.dmt.residential

OSGi Compendium Release 8 Page 1335

Name Act Type Card. S Description
Wires Get MAP 0,1 A
 [Str ing] Get LIST 0. .* D
 [l ist] Get Wire 0. .* D

A MAP of name space -> to Wire. A Wire is a
relation between to bundles where the type
of the relation is defined by the name space.
For example, osgi .wir ing.package name space
defines the exporting and importing of pack-
ages. Standard osgi name spaces are:

• osgi .wir ing.bundle
• osgi .wir ing.package
• osgi .wir ing.host

As the Core specification allows custom name
spaces this list can be more extensive.

This specification adds one additional
name space to reflect the services, this is the
osgi .wir ing.rmt.service name space. This
name space will have a wire for each time a
registered service by this Bundle was gotten
for the first time by a bundle. A capability
in the service name space holds all the regis-
tered service properties. The requirement has
no attributes and a single f i l ter directive that
matches the service id property.

If there is no installed Bundle yet then this
node is not present.

Signers Get LIST 0,1 A
 [l ist] Get Cert i f icate 0. .* D

Return all signers of the bundle. See the Bun-
dle getSignerCert i f icates() method with the
SIGNERS_ALL parameter.

If there is no installed Bundle yet then this
node is not present.

Entr ies Get LIST 0,1 A
 [l ist] Get Entry 0. .* D

An optional node providing access to the en-
tries in the Bundle's JAR. This list must be cre-
ated from the Bundle getEntryPaths() method
called with an empty String. For each found
entry, an Entry object must be made available.

If there is no installed Bundle yet then this
node is not present.

InstanceId Get integer 1 A Instance Id used by foreign protocol adapters
as a unique integer key not equal to 0. The in-
stance id for a bundle must be (Bundle Id %
2^32) + 1.

154.8.3 Bundle.Certificate
Place holder for the Signers DN names.

Table 154.5 Sub-tree Description for Bundle.Certificate

Name Act Type Card. S Description
IsTrusted Get boolean 1 A Return if this Certificate is trusted.
Cert i f icateChain Get LIST 1 A
 [l ist] Get str ing 0. .* D

A list of signer DNs of the certificates in the
chain.

org.osgi.dmt.residential Residential Device Management Tree Specification Version 1.0

Page 1336 OSGi Compendium Release 8

Name Act Type Card. S Description
InstanceId Get integer 1 A Instance Id to allow addressing by Instance Id.

154.8.4 Bundle.Entry
An Entry describes an entry in the Bundle, it combines the path of an entry with the content. Only
entries that have content will be returned, that is, empty directories in the Bundle's archive are not
returned.

Table 154.6 Sub-tree Description for Bundle.Entry

Name Act Type Card. S Description
Path Get str ing 1 A The path in the Bundle archive to the entry.
Content Get binary 1 A The binary content of the entry.
InstanceId Get integer 1 A Instance Id to allow addressing by Instance Id.

154.8.5 Filter
A Filter node can find the nodes in a given sub-tree that correspond to a given filter expression. This
Filter node is a generic mechanism to select a part of the sub-tree (except itself).

Searching is done by treating an interior node as a map where its leaf nodes are attributes for a filter
expression. That is, an interior node matches when a filter matches on its children. The matching
nodes' URIs are gathered under a ResultUriList node and as a virtual sub-tree under the Result node.

The Filter node can specify the Target node. The Target is an absolute URI ending in a slash, poten-
tially with wild cards. Only nodes that match the target node are included in the result.

There are two different wild cards:

• Asterisk ('* ' \u002A) - Specifies a wild card for one interior node name only. That is A/* / matches
an interior nodes A/B , A/C , but not A/X/Y . The asterisk wild card can be used anywhere in the URI
like A/* /C . Partial matches are not supported, that is a URI like A/xyz* is invalid.

• Minus sign (' - ' \u002D) - Specifies a wildcard for any number of descendant nodes. This is A/-/X/
matches A/B/X , A/C/X , but also A/X . Partial matches are not supported, that is a URI like A/xyz- is
not supported. The - wild card must not be used at the last segment of a URI

The Target node selects a set of nodes N that can be viewed as a list of URIs or as a virtual sub-tree.
The Result node is the virtual sub-tree (beginning at the session base) and the ResultUriList is a LIST
of session relative URIs. The actual selection of the nodes must be postponed until either of these
nodes (or one of their sub-nodes) is accessed for the first time. Either nodes represent a read-only
snapshot that is valid until the end of the session.

It is possible to further refine the selection by specifying the Filter node. The Filter node is an LDAP
filter expression or a simple wild card ('*') which selects all the nodes. As the wild card is the default,
all nodes selected by the Target are selected by default.

The Filter must be applied to each of the nodes selected by target in the set N . By definition, these
nodes are interior nodes only. LDAP expressions assert values depending on their key. In this case, the
child leaf nodes of a node in set N are treated as the property on their parent node.

The attribute name in the LDAP filter can only reference a direct leaf node of the node in the set N or
an interior node with the DDF type org.osgi.service.dmt.DmtConstants.DDF_LIST with leaf nodes as
children, i.e. a LIST. A LIST of primitives must be treated in the filter as a multi valued property, any
of its values satisfy an assertion on that attribute.

Attribute names must not contains a slash, that is, it is only possible to assert values directly below
the node selected by the target .

Each of these leaf nodes and LISTs can be used in the LDAP Filter as a key/value pair. The compar-
ison must be done with the type used in the Dmt Data object of the compared node. That is, if the

Residential Device Management Tree Specification Version 1.0 org.osgi.dmt.residential

OSGi Compendium Release 8 Page 1337

Dmt Admin data is a number, then the comparison rules of the number must be used. The attributes
given to the filter must be converted to the Java object that represents their type.

The set N must therefore consists only of nodes where the Filter matches.

It is allowed to change the Target or the Filter node after the results are read. In that case, the Result
and ResultUriList must be cleared instantaneously and the search redone once either result node is
read.

The initial value of Target is the empty string, which indicates no target.

Table 154.7 Sub-tree Description for Filter

Name Act Type Card. S Description
Target Get Set str ing 1 A An absolute URI always ending in a slash ('/'),

with optional wildcards, selecting a set of
sub-nodes N . Wildcards can be an asterisk (
'* ' \u002A) or a minus sign (' - ' \u002D). An
asterisk can be used in place of a single node
name in the URI, a minus sign stands for any
number of consecutive node names. The de-
fault value of this node is the empty string,
which indicates that no nodes must be select-
ed. Changing this value must clear any exist-
ing results. If the Result() or ResultUriList is
read to get N then a new search must be exe-
cuted.

A URI must always end in '/' to indicate that
the target can only select interior nodes.

Fi l ter Get Set str ing 1 A An optional filter expression that filters nodes
in the set N selected by Target. The filter ex-
pression is an LDAP filter or an asterisk ('*').
An asterisk is the default value and match-
es any node in set N . If an LDAP expression is
set in the Filter node then the set N must on-
ly contain nodes that match the given filter.
The values the filter asserts are the immediate
leafs and LIST nodes of the nodes in set N . The
name of these child nodes is the name of the
attribute matched in the filter.

The nodes can be removed by the Filter imple-
mentation after a timeout defined by the im-
plementation.

Limit Get Set integer 1 A Limits the number of results to the given
number. If this node is not set there is no lim-
it. The default value is not set, thus no limit.

Result Get NODE 1 A The Result tree is a virtual read-only tree of
all nodes that were selected by the Target and
matched the Filter, that is, all nodes in set N .
The Result node acts as a parent instead of the
session root for each node in N .

The Result node is a snapshot taken the first
time it is accessed after a change in the Fi l ter
and/or the Target nodes.

org.osgi.dmt.residential Residential Device Management Tree Specification Version 1.0

Page 1338 OSGi Compendium Release 8

Name Act Type Card. S Description
ResultUriL ist Get LIST 1 A
 [l ist] Get str ing 0. .* D

A list of URIs of nodes in the Device Manage-
ment Tree from the node selected by the Tar-
get that match the Filter node. All URIs are
relative to current session. The Result node is
a snapshot taken the first time it is accessed
after a change in the Fi l ter and/or the Target
nodes.

InstanceId Get integer 1 A Instance Id to allow addressing by Instance Id.

154.8.6 Framework
The Framework node represents the information about the Framework itself. The Framework node
allows manipulation of the OSGi framework, start level, framework life cycle, and bundle life cycle.

All modifications to a Framework object must occur in an atomic session. All changes to the frame-
work must occur during the commit.

The Framework node allows the manager to install (create a new child node in Bundle), to uninstall
change the state of the bundle (see Bundle.RequestedState()), update the bundle (see URL), start/
stop bundles, and update the framework. The implementation must execute these actions in the fol-
lowing order during the commit of the session:

1. Create a snapshot of the current installed bundles and their state.
2. stop all bundles that will be uinstalled and updated
3. Uninstall all the to be uninstalled bundles (bundles whose RequestedState is

Bundle.UNINSTALLED)
4. Update all bundles that have a modified URL with this URL using the Bundle

update(InputStream) method in the order that the order that the URLs were last set.
5. Install any new bundles from their URL in the order that the order that the URLs were last set.
6. Refresh all bundles that were updated and installed
7. Ensure that all the bundles have their correct start level
8. If the RequestedState was set, follow this state. Otherwise ensure that any Bundles that have the

AutoStart flag set to true are started persistently. Transiently started bundles that were stopped
in this process are not restarted. The bundle id order must be used.

9. Wait until the desired start level has been reached
10. Return from the commit without error.

If any of the above steps runs in an error (except the restart) than the actions should be undone and
the system state must be restored to the snapshot.

If the System Bundle was updated (its URL) node was modified, then after the commit has returned
successfully, the OSGi Framework must be restarted.

Table 154.8 Sub-tree Description for Framework

Name Act Type Card. S Description
StartLevel Get Set integer 1 A The StartLevel manages the Framework's cur-

rent Start Level. Maps to the Framework Start
Level set/getStartLevel() methods.

This node can set the requested Framework's
StartLevel, however it doesn't store the value.
This node returns the Framework's StartLevel
at the moment of the call.

Residential Device Management Tree Specification Version 1.0 org.osgi.dmt.residential

OSGi Compendium Release 8 Page 1339

Name Act Type Card. S Description
In it ia lBundleS-
tartLevel

Get Set integer 1 A Configures the initial bundle start level, maps
to the the FrameworkStartLevel set/getIni-
t ia lBundleStartLevel() method.

Bundle Get MAP 1 A
 [Str ing] Add Get Bundle 0. .* D

The MAP of location -> Bundle. Each Bundle
is uniquely identified by its location. The lo-
cation is a string that must be unique for each
bundle and can be chosen by the management
system.

The Bundles node will be automatically filled
from the installed bundles, representing the
actual state.

New bundles can be installed by creating
a new node with a given location. At com-
mit, this bundle will be installed from their
Bundle.URL node.

The location of the System Bundle
must be "System Bundle" (see the Core's
Constants.SYSTEM_BUNDLE_LOCATION),
this node cannot be uninstalled and most op-
erations on this node have special meaning.

It is strongly recommended to use a logical
name for the location of a bundle, for example
reverse domain names or a UUID.

To uninstall a bundle, set the
Bundle.RequestedState to UNINSTALLED , the
nodes in Bundle cannot be deleted.

Property Get MAP 1 A
 [Str ing] Get str ing 0. .* D

The Framework Properties.

The Framework properties come from the
Bundle Context getProperty() method. How-
ever, this method does not provide the names
of the available properties. If the handler of
this node is aware of the framework prop-
erties then these should be used to provide
the node names. If these properties are now
known, the handler must synthesize the
names from the following sources

• System Properties (as they are backing the
Framework properties)

• Launching properties as defined in the OS-
Gi Core specification

• Properties in the residential specification
• Other known properties

154.8.7 Wire
A Wire is a link between two bundles where the semantics of this link is defined by the used name
space. This is closely modeled after the Wiring API in the Core Framework.

org.osgi.dmt.residential Residential Device Management Tree Specification Version 1.0

Page 1340 OSGi Compendium Release 8

Table 154.9 Sub-tree Description for Wire

Name Act Type Card. S Description
Namespace Get str ing 1 A The name space of this wire. Can be:

• osgi.wiring.bundle - Defined in the OSGi
Core

• osgi.wiring.package - Defined in the OSGi
Core

• osgi.wiring.host - Defined in the OSGi Core
• osgi.wiring.rmt.service - Defined in this

specification
• * - Generic name spaces

The osgi.wiring.rmt.service name space is not
defined by the OSGi Core as it is not part of
the module layer. The name space has the fol-
lowing layout:

• Requirement - A filter on the service.id ser-
vice property.

• Capability - All service properties as attrib-
utes. No defined directives.

• Requirer - The bundle that has gotten the
service

• Provider - The bundle that has registered
the service

There is a wire for each registration-get pair.
That is, if a service is registered by A and got-
ten by B and C then there are two wires: B->A
and C->A .

Requirement Get Requirement 1 A The Requirement that caused this wire.
Capabi l i ty Get Capabi l i ty 1 A The Capability that satisfied the requirement

of this wire.
Requirer Get str ing 1 A The location of the Bundle that contains the

requirement for this wire.
Provider Get str ing 1 A The location of the Bundle that provides the

capability for this wire.
InstanceId Get integer 1 A Instance Id to allow addressing by Instance Id.

154.8.8 Wire.Capability
Describes a Capability.

Table 154.10 Sub-tree Description for Wire.Capability

Name Act Type Card. S Description
Direct ive Get MAP 1 A
 [Str ing] Get str ing 0. .* D

The Directives for this capability.

Attr ibute Get MAP 1 A
 [Str ing] Get str ing 0. .* D

The Attributes for this capability.

Residential Device Management Tree Specification Version 1.0 org.osgi.dmt.service.log

OSGi Compendium Release 8 Page 1341

154.8.9 Wire.Requirement
Describes a Requirement.

Table 154.11 Sub-tree Description for Wire.Requirement

Name Act Type Card. S Description
Fi l ter Get str ing 1 A The Filter string for this requirement.
Direct ive Get MAP 1 A
 [Str ing] Get str ing 0. .* D

The Directives for this requirement. These di-
rectives must contain the filter: directive as
described by the Core.

Attr ibute Get MAP 1 A
 [Str ing] Get str ing 0. .* D

The Attributes for this requirement.

154.9 org.osgi.dmt.service.log

154.9.1 Log
Provides access to the Log Entries of the Log Service.

Table 154.12 Sub-tree Description for Log

Name Act Type Card. S Description
LogEntr ies Get LIST 1 A
 [l ist] Get LogEntry 0. .* D

A potentially long list of Log Entries. The
length of this list is implementation depen-
dent. The order of the list is most recent event
at index 0 and later events with higher consec-
utive indexes. No new entries must be added
to the log when there is an open exclusive or
atomic session.

154.9.2 LogEntry
A Log Entry node is the representation of a LogEntry from the OSGi Log Service.

Table 154.13 Sub-tree Description for LogEntry

Name Act Type Card. S Description
Time Get date_time 1 A Time of the Log Entry.
Level Get integer 1 A The severity level of the log entry. The value is

the same as the Log Service level values:

• LOG_ERROR 1
• LOG_WARNING 2
• LOG_INFO 3
• LOG_DEBUG 4

Other values are possible because the Log Ser-
vice allows custom levels.

Message Get str ing 1 A Textual, human-readable description of the
log entry.

Bundle Get str ing 1 A The location of the bundle that originated this
log or an empty string.

org.osgi.dmt.service.log Residential Device Management Tree Specification Version 1.0

Page 1342 OSGi Compendium Release 8

Name Act Type Card. S Description
Exception Get str ing 0,1 A Human readable information about an excep-

tion. Provides the exception information if
any, optionally including the stack trace.

TR-157 Amendment 3 Software Module Guidelines Version 1.0 Management Agent

OSGi Compendium Release 8 Page 1343

155 TR-157 Amendment 3 Software
Module Guidelines

Version 1.0
[1] Broadband Forum (BBF) has defined an object model for managing the software modules in a CPE.
The BBF Software Modules object defines Execution Environments, Deployment Units, and Execu-
tion Units. These concepts are mapped in the following table.

Table 155.1 Mapping of concepts

Software Modules Concept OSGi Concept
Execution Environment OSGi Framework
Deployment Unit Bundle
Execution Unit Bundle

There can be multiple Execution Environments of the same or different types. The parent Execution
Environment is either the native environment, for example Linux, or it can be another Framework.
A BBF Deployment Unit and Execution Unit both map to a bundle since there is no need to separate
those concepts in OSGi. An implementation of this object model should have access to all the Exe-
cution Environments as the Deployment Units and Execution Units are represented in a single ta-
ble.

This section is not a specification in the normal sense. The intention of this chapter is to provide
guidelines for implementers of the [4] TR-157a3 Internet Gateway Device Software Modules on an OSGi
Framework.

155.1 Management Agent
The Broadband Forum TR-157 Software Modules standard provides a uniform view of the different
execution environments that are available in a device. Execution Environments can model the un-
derlying operating system, an OSGi framework, or other environments that support managing the
execution of code.

Most parameters in the Software Modules object model map very well to their OSGi counter parts.
However, there are a number of issues that require support from a management agent. This manage-
ment agent must maintain state to implement the contract implied by the Software Modules stan-
dard. For example, the OSGi Framework does not have an Initial Start Level, an OSGi Framework
always starts at an environment property defined start level. However, the standard requires that a
Framework must start at a given level after it is launched.

There are many other actions that require a management agent to provide the functionality re-
quired by TR-157 that is not build into the OSGi Framework since the standard requires a view that
covers the whole device, not just the OSGi environment. The assumed architecture is depicted in
Figure 155.1.

Parameter Mapping TR-157 Amendment 3 Software Module Guidelines Version 1.0

Page 1344 OSGi Compendium Release 8

Figure 155.1 Management Agent Architecture

ACS TR-069
Protocol Adapter

TR-069
Management
Agent

Other Exec Envs
Mngmt

OSGi Exec Env
Mngmt

Framework

Bundle

ExecEnv.{i}

DeploymentUnit.{i}
ExecutionUnit.{i}

JARs1

0..n

1..n

1

155.2 Parameter Mapping
The following table provides OSGi specific information for the different parameters in the Software
Modules object model.

Table 155.2 OSGi Specific Information for the BBF Software Modules object model

TR-069 Software Module

Object Parameter

Mapping in case of OSGi

Device.SoftwareModules.
 ExecEnvNumberOfEntr ies
 DeploymentUnitNumberOfEntr ies
 ExecutionUnitNumberOfEntr ies
Device.SoftwareModules.ExecEnv.{i} .
 Enable Indicates whether or not this OSGi Framework is enabled. Disabling an en-

abled OSGi Framework must stop it, while enabling a disabled OSGi Frame-
work must launch it. When an Execution Environment is disabled, Bundles
installed in that OSGi Framework will be unaffected, but any Bundles on that
OSGi Framework are automatically made inactive. When an OSGi Framework
is disabled it is impossible to make changes to the installed bundles, install
new bundles, or query any information about the bundles. Disabling the OS-
Gi Framework could place the device in a non-manageable state. For example,
if the OSGi Framework runs the Protocol Adapter or has a management agent
then it is possible that the device can no longer be restarted.

 Status Indicates the status of the OSGi Framework. Enumeration of:

• Up - The OSGi Framework is up and running.
• Error - The OSGi Framework could not be launched.
• Disabled - The OSGi Framework is not enabled

TR-157 Amendment 3 Software Module Guidelines Version 1.0 Parameter Mapping

OSGi Compendium Release 8 Page 1345

TR-069 Software Module

Object Parameter

Mapping in case of OSGi

 Reset Setting this parameter to true causes this OSGi Framework to revert back to
the state it was in when the device last issued a 0 BOOTSTRAP Inform event
(bootstrap). The following requirements dictate what must happen for the re-
set to be complete:

• The system must restore the set of bundles that were present at the last
bootstrap event. That means that installed bundles since that moment
must be uninstalled, updated bundles rolled back, and uninstalled bundles
re-installed.

• The OSGi Framework must roll back to the version it had during the previ-
ous rollback.

• The OSGi Framework must be restarted after the previous requirements
have been met.

The value of this parameter is not part of the device configuration and is al-
ways fa lse when read.

 Al ias A non-volatile handle used to reference this instance for alias based address-
ing.

 Name A Name that adequately distinguishes this OSGi Framework from all other
OSGi Frameworks. This must be the OSGi Framework UUID as stored in the
org.osgi .f ramework.uuid property.

 Type Indicates the complete type and specification version of this ExecEnv . For an
OSGi Framework it must be:

OSGi <version>

Where the <version> is the value of the framework property
org.osgi .f ramework.version

 Init ia lRunLevel The run level that this ExecEnv will be in upon startup (whether that is caused
by a CPE Boot or the Execution Environment starting). Run levels map to di-
rectly OSGi start levels. However, the OSGi Framework has no concept of an
initial start level, it can use the org.osgi .f ramework.start level .beginning en-
vironment property but this requires a management to control it. A manage-
ment agent must therefore handle this value and instruct the OSGi Frame-
work to move to this start level after a reboot.

If the value of CurrentRunLevel is set to -1, then the value of this parameter is
irrelevant when read. Setting its value to -1 must have no impact on the start
level of this OSGi Framework.

 RequestedRunLevel Sets the start level of this OSGi Framework, meaning that altering this
parameter's value will change the value of the CurrentRunLevel asynchro-
nously. Start levels dictate which Bundles will be started. Setting this value
when CurrentRunLevel is -1 must have no impact on the start Level of this OS-
Gi Framework. The value of this parameter is not part of the device configura-
tion and must always be -1 when read.

Parameter Mapping TR-157 Amendment 3 Software Module Guidelines Version 1.0

Page 1346 OSGi Compendium Release 8

TR-069 Software Module

Object Parameter

Mapping in case of OSGi

 CurrentRunLevel The start level that this OSGi Framework is currently operating in. This val-
ue is altered by changing the RequestedRunLevel parameter. Upon startup
(whether that is caused by a CPE Boot or the Execution Environment starting)
CurrentRunLevel must be set equal to In it ia lRunLevel by some management
agent.

If Run Levels are not supported by this OSGi Framework then CurrentRunLev-
el must be -1.

 Version The Version of this OSGi Framework as specified by its Vendor. This is not the
version of its specification. Must be the value of the System Bundle's getVer-
sion() method.

 Vendor The vendor that produced this OSGi Framework, the value of the
org.osgi .f ramework.vendor Framework property.

 ParentExecEnv The value must be the path name of a row in the ExecEnv table, it can either be
the operating system or another OSGi Framework if the framework is nested.
If the referenced object is deleted, the parameter value must be set to an emp-
ty string. If this value is an empty string then this is the Primary Execution Envi-
ronment.

 Al locatedDiskSpace Implementation specific.
 Avai lableDiskSpace Implementation specific.
 Al locatedMemory Implementation specific.
 Avai lableMemory Implementation specific.
 ProcessorRefList Comma-separated list of paths into the DeviceInfo.Processor table. If the refer-

enced object is deleted, the corresponding item must be removed from the list.
Represents the processors that this OSGi Framework has available to it.

 Act iveExecutionUnits Comma-separated list of paths into the ExecutionUnit table. If the referenced
object is deleted, the corresponding item must be removed from the list. Repre-
sents the Bundles currently active on this OSGi Framework.

Device.SoftwareModules.

 DeploymentUnit .{ i} .

This table serves as the Bundles inventory and contains status information
about each Bundle. A new instance of this table gets created during the instal-
lation of a Bundle.

 UUID A Universally Unique Identifier either provided by the ACS, or generated by
the CPE, at the time of Deployment Unit Installation. The format of this val-
ue is defined by [2] RFC 4122 A Universally Unique IDentifier (UUID) URN Name-
space Version 3 (Name-Based) and [5] TR-069a3 CPE WAN Management Proto-
col. This value must not be altered when the Bundle is updated. A management
agent should use the UUID as the bundle location since the location plays the
same role.

 DUID The Bundle id from the getBundleId() method.
 Al ias A non-volatile handle used to reference this instance.
 Name Indicates the Bundle Symbolic Name of this Bundle. The value of this para-

meter is used in the generation of the UUID based on the rules defined in [5]
TR-069a3 CPE WAN Management Protocol.

TR-157 Amendment 3 Software Module Guidelines Version 1.0 Parameter Mapping

OSGi Compendium Release 8 Page 1347

TR-069 Software Module

Object Parameter

Mapping in case of OSGi

 Status Indicates the status of this Bundle. Enumeration of:

• Instal l ing - This bundle is in the process of being Installed and should tran-
sition to the Installed state. This state will never be visible in an OSGi
Framework.

• Instal led - This bundle has been successfully installed.This maps to the
Bundle INSTALLED or RESOLVED state.

• Updating - This bundle is in the process of being updated and should transi-
tion to the Installed state. This state will never be visible in an OSGi Frame-
work.

• Uninstal l ing - This bundle is in the process of being uninstalled and should
transition to the uninstalled state.This state will never be visible in an OS-
Gi Framework.

• Uninstal led - This bundle has been successfully uninstalled. This state will
never be visible in an OSGi Framework.

 Resolved Indicates whether or not this DeploymentUnit has resolved all of its depen-
dencies. Must be true if this Bundle's state is ACTIVE , STARTING , STOPPING , or
RESOLVED . Otherwise it must be fa lse .

 URL Contains the URL used by the most recent ChangeDUState RPC to either In-
stall or Update this Bundle. This must be remembered by a management agent
since this information is not available in a Bundle.

 Descr ipt ion Textual description of this Bundle, must be the value of the Bundle-Descrip-
tion manifest header or an empty string if not present.

 Vendor The author of this DeploymentUnit formatted as a domain name. The value
of this parameter is used in the generation of the UUID based on the rules de-
fined in [5] TR-069a3 CPE WAN Management Protocol. The recommended value
is the value of the Bundle-Vendor header.

 Version Version of this Bundle, it mist be he value of the geVersion() method.
 VendorLogList Empty String
 VendorConfigList Empty String
 ExecutionUnitList A path into the ExecutionUnit table for the corresponding ExecutionUnit for

this Bundle, which is also the bundle since the relation is 1:1.
 ExecutionEnvRef The value must be the path name of a row in the ExecEnv table of the corre-

sponding OSGi Framework.
Device.SoftwareModules.

 ExecutionUnit .{ i} .

This table serves as the Execution Unit inventory and contains both status in-
formation about each Execution Unit as well as configurable parameters for
each Execution Unit. This list contains all the bundles since in an OSGi Frame-
work Deployment Unit and Execution Unit are mapped to Bundles.

 EUID Table wide identifier for a bundle chosen by the OSGi Framework during in-
stallation of the associated DeploymentUnit . The value must be unique across
ExecEnv instances. It is recommended that this be a combination of the Exe-
cEnv.{i} .Name and an OSGi Framework local unique value. The unique value
for an OSGi framework should be the Bundle Location.

 Al ias A non-volatile handle used to reference this instance.
 Name The name should be unique across all Bundles instances contained within its

associated DeploymentUnit . As the Deployment Unit and the Execution Unit
are the same the value must be the Bundle Symbolic Name.

 ExecEnvLabel The name must be unique across all Bundles contained within a specific OSGi
Framework. This must therefore be the Bundle Id.

Parameter Mapping TR-157 Amendment 3 Software Module Guidelines Version 1.0

Page 1348 OSGi Compendium Release 8

TR-069 Software Module

Object Parameter

Mapping in case of OSGi

 AutoStart If true and the proper start level is met, then this Bundle will be automatically
started by the device after its OSGi Framework's start level is met. If fa lse this
Bundle must not be started after launch until it is explicitly commanded to do
so.

An OSGi bundle is persistently started or transiently started. It is not possible
to change this state without affecting the active state of the bundle. Therefore,
if the AutoStart is set to true , the bundle must be started persistently, even if
it is already started. This will record the persistent start state. If the AutoStart
is set to fa lse , the bundle must be stopped. Therefore, in an OSGi Framework
setting the AutoStart flag to true has the side effect that the bundle is started if
it was not active; setting it to fa lse will stop the bundle.

 RunLevel Determines when this Bundle will be started. If AutoStart is true and the Cur-
rentRunLevel is greater than or equal to this RunLevel , then this ExecutionUnit
must be started, if run levels are enabled. This maps directly to the Bundles
start level.

 Status Indicates the status of this ExecutionUnit . Enumeration of:

• Id le - This Bundle is in an Idle state and not running. This maps to the Bun-
dle INSTALLED or Bundle RESOLVED state.

• Start ing - This Bundle is in the process of starting and should transition
to the Active state. This maps to the STARTING state in OSGi. In an OSGi
Framework, lazily activated bundles can remain in the STARTING state for a
long time.

• Active - This instance is currently running. This maps to the Bundle ACTIVE
state.

• Stopping - This instance is in the process of stopping and should transition
to the Idle state.

 RequestedState Indicates the state transition that the ACS is requesting for this Bundle. Enu-
meration of:

• Id le - If this Bundle is currently in STARTING or ACTIVE state then the CPE
must attempt to stop the Bundle; otherwise this requested state is ignored.

• Active - If this Bundle is currently in the INSTALLED or RESOLVED state the
management agent must attempt to start the Bundle. If this ExecutionUnit
is in the STOPPING state the request is rejected and a fault raised. Otherwise
this requested state is ignored.

If this Bundle is disabled and an attempt is made to alter this value, then a
CWMP Fault must be generated. The value of this parameter is not part of the
device configuration and is always an empty string when read. Bundles must
be started transiently when the AutoStart is fa lse , otherwise persistently.

TR-157 Amendment 3 Software Module Guidelines Version 1.0 Parameter Mapping

OSGi Compendium Release 8 Page 1349

TR-069 Software Module

Object Parameter

Mapping in case of OSGi

 ExecutionFaultCode If while running or transitioning between states this Bundle raises an Excep-
tion then this parameter embodies the problem. Enumeration of:

• NoFault - No fault, default value.
• Fai lureOnStart - Threw an exception when started.
• Fai lureOnAutoStart - Failed to be started by the framework, this must be

intercepted by the management agent because this is a Framework Error
event.

• Fai lureOnStop - Raised an exception while stopping
• Fai lureWhileActive - Raised when a bundle cannot be restarted after a back-

ground operation of the Framework, for example refreshing.
• DependencyFai lure - Failed to resolve
• UnStartable - Cannot be raised in OSGi since this is the same error as Fai l-

ureOnStart .

For fault codes not included in this list, the vendor can include vendor-specific
values, which must use the format defined in Section 3.3 of [6] TR-106a4 Data
Model Template for TR-069-Enabled Devices.

 ExecutionFaultMessage If while running or transitioning between states this Bundle identifies a fault
this parameter provides a more detailed explanation of the problem enumerat-
ed in the ExecutionFaultCode .

If ExecutionFaultCode has the value of NoFault then the value of this parame-
ter must be an empty string and ignored. This message must be the message
value of the exception thrown by the Bundle.

 Vendor Vendor of this Bundle. The value of the Bundle-Vendor manifest header
 Descr ipt ion Textual description of this Bundle. The value of the Bundle-Description mani-

fest header
 Version Version of the Bundle. The value of the getVersion() method.
 VendorLogList Empty string.
 VendorConfigList Empty string.
 DiskSpaceInUse Implementation defined
 MemoryInUse Implementation defined
 References Empty String
 AssociatedProcessList Empty String as an OSGi bundle reuses the process of the VM.
 SupportedDataModelList Comma-separated list of strings. Each list item must be the path name of a

row in the DeviceInfo.SupportedDataModel table. If the referenced object is
deleted, the corresponding item must be removed from the list. Represents the
CWMP-DT schema instances that have been introduced to this device because
of the existence of this ExecutionUnit . In OSGi this is implementation defined.

 ExecutionEnvRef The path to the OSGi Framework that hosts this bundle in the ExecEnv table.
Device.SoftwareModules.

 ExecutionUnit .{ i} .Extensions.

This object proposes a general location for vendor extensions specific to this
Execution Unit, which allows multiple Execution Units to expose parameters
without the concern of conflicting parameter names. This part is not used in
OSGi.

References TR-157 Amendment 3 Software Module Guidelines Version 1.0

Page 1350 OSGi Compendium Release 8

155.3 References

[1] Broadband Forum
http://www.broadband-forum.org

[2] RFC 4122 A Universally Unique IDentifier (UUID) URN Namespace
http://tools.ietf.org/html/rfc4122

[3] TR-157a3 Component Objects for CWMP
http://www.broadband-forum.org/technical/download/TR-157_Amendment-3.pdf

[4] TR-157a3 Internet Gateway Device Software Modules
http://www.broadband-forum.org/cwmp/tr-157-1-3-0-
igd.html#D.InternetGatewayDevice.SoftwareModules

[5] TR-069a3 CPE WAN Management Protocol
http://www.broadband-forum.org/technical/download/TR-069_Amendment-3.pdf

[6] TR-106a4 Data Model Template for TR-069-Enabled Devices
http://www.broadband-forum.org/technical/download/TR-106_Amendment-4.pdf

http://www.broadband-forum.org
http://tools.ietf.org/html/rfc4122
http://www.broadband-forum.org/technical/download/TR-157_Amendment-3.pdf
http://www.broadband-forum.org/cwmp/tr-157-1-3-0-igd.html#D.InternetGatewayDevice.SoftwareModules
http://www.broadband-forum.org/cwmp/tr-157-1-3-0-igd.html#D.InternetGatewayDevice.SoftwareModules
http://www.broadband-forum.org/technical/download/TR-069_Amendment-3.pdf
http://www.broadband-forum.org/technical/download/TR-106_Amendment-4.pdf

Typed Event Service Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 1351

157 Typed Event Service Specification

Version 1.0

157.1 Introduction
Eventing systems are a common part of software programs, used to distribute information between
parts of an application. To address this, the Event Admin Service Specification on page 357 was created
as one of the earliest specifications defined by the OSGi Compendium. The design and usage of the
Event Admin specification, however, makes certain trade-offs that do not fit well with modern appli-
cation design:

• Type Safety - Events are sent and received as opaque maps of key-value pairs. The “schema” of an
event is therefore ill-defined and relies on “magic strings” being used correctly to locate data, and
on careful handling of data values with unknown types.

• Unhandled Events - Events that are sent but have no interested Event Consumers are silently dis-
carded. There is no way to know that an event was not handled, short of disrupting the system by
registering a handler for all events.

• Observability - There is no simple, non-invasive way to monitor the flow of events through the
system. The ability to monitor and profile applications using Event Admin is therefore relatively
limited.

Adding these features to the original Event Admin Service Specification on page 357 specification is not
feasible without breaking backward compatibility for clients. Therefore this specification exists to
provide an alternative eventing model which supports these different requirements by making dif-
ferent design trade-offs.

157.1.1 Essentials

• Event - A set of data created by an Event Source, encapsulated as an object and delivered to one or
more Event Consumers.

• Event Schema - A definition of the expected data layout within an event, including the names of
data fields and the types of data that they contain.

• Event Topic - A String identifying the topic of an Event, effectively defining the Event Schema and
the purpose of the event.

• Event Source - A software component which creates and sends events.
• Event Consumer - A software component which receives events.
• DTO - A Data Transfer Object as per the OSGi DTO Specification.
• Event Bus - A software component used by an Event Source and responsible for delivering Events

to Event Consumers.

Events Typed Event Service Specification Version 1.0

Page 1352 OSGi Compendium Release 8

Figure 157.1 Class and Service overview

Event Source
Impl

an Event
Consumer Impl

receive
event

send
event

<<service>>
TypedEventBus

Typed Event Impl

<<service>>
TypedEventHandler1 0..n

<<DTO>>
Event

157.1.2 Entities

• Typed Event Bus - A service registered by the Typed Event implementation that can be passed an
Event object and that will distribute that event to any suitable Event Handler Services.

• Event Handler - A service registered by an Event Consumer suitable for receiving Event data from
the Typed Event Bus.

157.2 Events
In this specification an Event is a set of string keys associated with data values. The defined set of al-
lowable keys and permitted value types for the keys in an Event is known as the Event Schema. Both
the Event Source and Event Consumers must agree on a schema, or set of compatible schemas, in or-
der for events to be consumed correctly.

157.2.1 Type Safe Events
A Type Safe Event is one in which the Event Schema is defined as a Java class. Using a Java class pro-
vides a formal definition of the schema - event data uses field names in the class as the keys, and
each field definition defines the permitted type of the value.

Type Safe Event classes are expected to conform to OSGi DTO rules. The architecture of OSGi DTOs
is described in OSGi Core Release 8. All methods, all static fields, and any non public instance fields of
an event object must be ignored by the Typed Event Service when processing the Event data.

Some implementations of the Typed Event Service may support Type Safe Event classes that do not
conform to the DTO rules, transforming them as needed in an implementation specific way. This

Typed Event Service Specification Version 1.0 Events

OSGi Compendium Release 8 Page 1353

is permitted by this specification, however consumers which rely on this behaviour may not be
portable between different implementations of this specification.

157.2.1.1 Nested Data Structures

OSGi DTOs are permitted to have data values which are also DTOs, allowing nested data structures
to be created. This is also allowed for Type Safe Events, but with the same restriction that the event
data must be a tree. There is no restriction on the depth of nesting permitted.

157.2.2 Untyped Events
An Untyped Event is one in which there is no Java class defining the Event Schema. In this case the
event data is defined using a Map type with Str ing keys and values limited to types acceptable as
fields in a DTO, excepting:

• DTO types - an untyped event may not have DTOs inside it as these form part of a typed schema.
• Maps are only permitted if they follow the rules for Untyped events, that is having Str ing keys

and DTO restricted value types excluding DTOs.

Untyped Event instances are capable of representing exactly the same data as present in a Type Safe
Event instance, and are also subject to the same restrictions, that is the data must be a tree. Nested
data should be included as sub-maps within the event map, and these sub-maps may in turn contain
nested data.

157.2.3 Non Standard Type Safe Events
Some Event schemas may be represented by an existing type which does not match the OSGi DTO
rules. In this case there are two main options:

• Create a DTO representation of the event schema, and convert from the existing type into the
DTO representation in code.

• Convert the event data into an Untyped Event representation using nested Maps.

For example, the following code demonstrates how an object following the JavaBeans pattern can be
converted into a DTO type or an untyped map:

public class ExampleJavaBean {
 private String message;

 public String getMessage() { return message; }

 public void setMessage(String message) { this.message = message; }
}

public class ExampleEvent {
 public String message;
}

@Component
public class ExampleEventSource {
 private ExampleEvent createEventFromJavaBean(ExampleJavaBean bean) {
 return Converters.standardConverter().convert(bean)
 .to(ExampleEvent.class);
 }

 private Map<String, Object> createMapFromJavaBean(ExampleJavaBean bean) {
 return Converters.standardConverter().convert(bean)
 .to(new TypeReference<Map<String, Object>>(){});

Publishing Events Typed Event Service Specification Version 1.0

Page 1354 OSGi Compendium Release 8

 }
}

157.2.4 Event Mutability and Thread Safety
The Typed Event Service is inherently multi-threaded. Events may be published from multiple
threads, and event data may be delivered to consumers on multiple threads. Event Sources and
Event Consumers must therefore assume that event data is shared between threads from the mo-
ment that it is first passed to the TypedEventBus .

157.2.4.1 Typed Event Mutability

Typed Events, and in particular DTO types, provide a simple yet powerful mechanism for defining
an Event Schema in a type-safe way. However their use of mutable public fields means that they are
potentially dangerous when shared between threads. Event Sources and Event Consumers should
assume that their event instances are shared between threads and therefore not mutate the event da-
ta after publication or receipt.

If an Event Handler does need to make changes to an incoming event then it must copy the event
data into a new DTO instance. Note that any nested DTO values in the event data must also be
copied if they are to be mutated.

157.2.4.2 Untyped Event Mutability

When an event source publishes untyped event data, it passes a Map instance to the Typed
Event Bus. The Typed Event Bus is not required to take a copy of this Map, and therefore the
event source must not change the Map, or any data structures within the Map, after the call to
del iverUntyped(Str ing,Map) .

Untyped Events are delivered as implementations of the Map interface. Bundles consuming untyped
events should not rely on the event object being any particular implementation of Map, and should
treat the event object as immutable. The Typed Event Bus implementation may make copies of the
event data, or enforce the immutability of the map, before passing the event data to an Event Han-
dler.

157.3 Publishing Events
To publish an event, the Event Source must retrieve the Typed Event Bus service from the OSGi ser-
vice registry. The Event Source then creates an event object and calls one of the Typed Event Bus
service's methods to publish the event. Event publication is asynchronous, meaning that when a
call to the Typed Event Bus returns there is no guarantee that all, or even any, listeners have been no-
tified.

157.3.1 Event Topics
Events are always published to a topic. The topic of an event defines the schema of the event. Topics
exist in order to give Event Consumers information about the schema of the event, and the opportu-
nity to register for just the events they are interested in. When a topic is designed, its name should
not include any other information, such as the publisher of the event or the data associated with the
event, those parts are intended to be stored in the event properties.

The topic therefore serves as a first-level filter for determining which handlers should receive the
event. Typed Event service implementations use the structure of the topic to optimize the dispatch-
ing of the events to the handlers. The following example code demonstrates how to send an event to
a topic.

public class ExampleEvent {
 public String message;

Typed Event Service Specification Version 1.0 Publishing Events

OSGi Compendium Release 8 Page 1355

}

@Component
public class ExampleEventSource {
 @Reference
 TypedEventBus bus;

 public void sendEvent() {
 ExampleEvent event = new ExampleEvent();
 event.message = "The time is " + LocalDateTime.now();

 bus.deliver("org/osgi/example/ExampleEvent", event);
 }
}

Topics are arranged in a hierarchical namespace. Each level is defined by a token and levels are sepa-
rated by solidi (' / ' \u002F). More precisely, the topic must conform to the following grammar:

// For further information see General Syntax Definitions in Core

topictoken :: (jletterordigit | '-') +

topic ::= topictoken ('/' topictoken) *

Topics should be designed to become more specific when going from left to right. Consumers can
provide a prefix that matches a topic, using the preferred order allows a handler to minimize the
number of prefixes it needs to register.

Topics are case-sensitive. As a convention, topics should follow the reverse domain name scheme
used by Java packages to guarantee uniqueness. The separator must be a solidus (' / ' \u002F) instead
of the full stop ('.' \u002E).

This specification uses the convention ful ly/qual i f ied/package/ClassName/ACTION . If necessary, a
pseudo-class-name is used.

157.3.2 Automatically Generated Topics
In many cases the name of a topic contains no information other than defining the schema of the
events sent on that topic. Therefore, when publishing a Typed Event to the Typed Event Bus, the
Typed Event implementation is able to automatically generate a topic name based on the the type of
the event object being published.

For the del iver(Object) method on the Typed Event Bus where no topic string is provided, the imple-
mentation must create a topic string using the fully qualified class name of the event object. To con-
vert the class name into a valid topic the full stop . separators must be converted into solidus / sepa-
rators. A non-normative example implementation follows:

public void deliver(Object event) {
 String topicName = event.getClass().getName().replace('.', '/');

 this.deliver(topicName, event);
}

The following example demonstrates how an Event Source can make use of an automatically gener-
ated topic name.

package org.osgi.example;

Receiving Events Typed Event Service Specification Version 1.0

Page 1356 OSGi Compendium Release 8

public class ExampleEvent {
 public String message;
}

@Component
public class ExampleEventSource {
 @Reference
 TypedEventBus bus;

 public void sendEvent() {
 ExampleEvent event = new ExampleEvent();
 event.message = "The time is " + LocalDateTime.now();

 // This event will be delivered to the
 // topic "org/osgi/example/ExampleEvent"
 bus.deliver(event);
 }
}

157.3.3 Thread Safety
The TypedEventBus implementation must be thread safe and allow for simultaneous event publica-
tion from multiple threads. For any given source thread, events must be delivered in the same order
as they were published by that thread. Events published by different threads, however, may be deliv-
ered in a different order from the one in which they were published.

For example, if thread A publishes events 1, 2 and 3, while thread B publishes events 4, 5 and 6, then
the events may be delivered:

• 1, 2, 3, 4, 5, 6
• 4, 1, 2, 5, 6, 3
• and so on

but events will never be delivered 1, 2, 6, 4, 5, 3

157.4 Receiving Events
Event Consumers can receive events by registering an appropriate Event Handler service in the Ser-
vice Registry. This is a TypedEventHandler to receive events as type-safe objects, or an UntypedEven-
tHandler to receive events as untyped Map structures.

Published events are then delivered, using the whiteboard pattern, to any Event Handler service
which has registered interest in the topic to which the event was published.

157.4.1 Receiving Typed Events
Typed Events are received by registering a TypedEventHandler implementation. This service has a
single method notify which receives the String topic name and Object event data. The TypedEven-
tHandler implementation must be registered as a service in the service registry using the TypedE-
ventHandler interface.

The TypedEventHandler interface is parameterized, and so it is expected that the implementation
reifies the type parameter into a specific type. In this case the Typed Event implementation must
adapt the Event object into the type defined by the TypedEventHandler implementation. Implemen-
tations of this specification are free to choose their own adaptation mechanism, however it must
guarantee at least the same functionality as Converter Specification on page 1469.

Typed Event Service Specification Version 1.0 Receiving Events

OSGi Compendium Release 8 Page 1357

A simple example of receiving a typed event follows:

public class ExampleEvent {
 public String message;
}

@Component
public class ExampleTypedConsumer implements TypedEventHandler<ExampleEvent> {
 @Override
 public void notify(String topic, ExampleEvent event) {
 System.out.println("Received event: " + event.message);
 }
}

If the TypedEventHandler implementation is unable to reify the type, or the required type is more
specific than the reified type, then the Typed Event Handler must be registered with the event.type
service property. This property has a string value containing the fully-qualified type name of the
type that the Typed Event Handler expects to receive. This type must be loaded by the Typed Event
implementation using the classloader of the bundle which registered the Typed Event Handler ser-
vice. The loaded type must then be used as the target type when converting events. For example:

public class ExampleEvent {
 public String message;
}

public class SpecialisedExampleEvent extends ExampleEvent {
 public int sequenceId = Integer.MIN_VALUE;
}

@Component
@EventType(SpecialisedExampleEvent.class)
public class ExampleTypedConsumer implements TypedEventHandler<ExampleEvent> {
 @Override
 public void notify(String topic, ExampleEvent event) {
 System.out.println("Received event: " + event.message);

 // The event will always be of type SpecialisedExampleEvent
 System.out.println("Event sequence id was " +
 ((SpecialisedExampleEvent) event).sequenceId);
 }
}

By default the reified type of the TypedEventHandler will be used as the target topic for the Event
Handler. If the event.type property is set then this is used as the default topic instead of the rei-
fied type. To use a specific named topic the Typed Event Handler service may be registered with an
event.topics service property specifying the topic(s) as a String+ value.

public class ExampleEvent {
 public String message;
}

@Component
@EventTopics({"foo", "foo/bar"})
public class ExampleTypedConsumer implements TypedEventHandler<ExampleEvent> {
 @Override
 public void notify(String topic, ExampleEvent event) {

Receiving Events Typed Event Service Specification Version 1.0

Page 1358 OSGi Compendium Release 8

 System.out.println("Event received on topic: " + topic +
 " with message: " + event.message);
 }
}

157.4.2 Receiving Untyped Events
Untyped Events are received by registering an UntypedEventHandler implementation. This service
has a single method notifyUntyped which receives the Str ing topic name and Map event data. The
Untyped Event Handler implementation must be registered as a service in the service registry using
the UntypedEventHandler interface.

When delivering an event to an Untyped Event Handler the Typed Event Service must, if necessary,
convert the event data to a nested map structure.

The event.topics service property must be used when registering an Untyped Event Hander service.
If it is not, then no events will be delivered to that Untyped Event Handler service.

public class ExampleEvent {
 public String message;
}

@Component
@EventTopics({"foo", "foo/bar"})
public class ExampleUntypedConsumer implements UntypedEventHandler {
 @Override
 public void notifyUntyped(String topic, Map<String,Object> event) {
 System.out.println("Event received on topic: " + topic
 + " with message: " + event.get("message"));
 }
}

157.4.3 Wildcard Topics
The event.topics property may contain one or more wildcard topics. These are Strings which con-
tain a topic name and append “/*”. This value means that the Event Handler must be called for
Events sent to sub-topics of the named topic. For example the component:

@Component
@EventTopics("foo/*")
public class ExampleUntypedConsumer implements UntypedEventHandler {
 @Override
 public void notifyUntyped(String topic, Map<String,Object> event) {
 System.out.println("Event received on topic: " + topic
 + " with message: " + event.get("message"));
 }
}

would receive events sent to the topics foo/bar and foo/baz , but not the topics foo or foo-
bar/fizzbuzz.

The * character in a wildcard topic must always follow a solidus / character, and must be the final
character in the topic string, meaning that topic names such as foo* and foo/*/bar are not valid.
The only exception to this rule is that it is valid to use the topic name * to receive events on all top-
ics. While it is valid to do so, using the topic * is not typically recommended. For a mechanism to
monitor the events flowing through the system see Monitoring Events on page 1361.

Typed Event Service Specification Version 1.0 Receiving Events

OSGi Compendium Release 8 Page 1359

157.4.4 Unhandled Events
Unhandled Events are events sent by an Event Source but which have no Event Handler service lis-
tening to their topic. Rather than these events being discarded, the Typed Event implementation
will search the service registry for services implementing UnhandledEventHandler .

If any services are found then the Typed Event implementation will call the notifyUnhandled
method passing the topic name and event data to all of the registered Unhandled Event Handler ser-
vices.

public class ExampleEvent {
 public String message;
}

@Component
public class ExampleUnhandledConsumer implements UnhandledEventHandler {
 @Override
 public void notifyUnhandled(String topic, Map<String,Object> event) {
 System.out.println("Unhandled Event received on topic: " + topic);
 }
}

157.4.5 Filtering Events
Sometimes the use of a topic is insufficient to restrict the events received by an event consumer. In
these cases the consumer can further restrict the events that they receive by using a filter. The filter
is supplied using the event.f i l ter service property, the value of which is an LDAP filter string. This
filter is applied to the event data, and only events which match the filter are delivered to the event
handler service.

157.4.5.1 Nested Event Data

Complex events may contain nested data structures, such as DTOs, as values in the event data. As
LDAP filtering is only designed to match against simple data this means that some event properties
cannot be filtered using the event.f i l ter property. The event filter is therefore only suitable for use in
matching top-level event properties.

157.4.5.2 Ignored Events

Note that the use of a filter is different from receiving an event and choosing to ignore it based on its
data. If an event fails to match the filter supplied by an event handler service then it is not delivered
to that event handler. This means that the event data remains eligible to be sent to an UnhandledE-
ventHandler unless another event handler does receive it. An event that is received, but ignored, by
an event handler service does count as having been delivered, and so will never be sent to an Unhan-
dledEventHandler .

157.4.6 Failing Event Handlers
Event Handler implementations are called by the Typed Event Bus implementation, and are expect-
ed:

• Not to throw exceptions from their callback method
• To return quickly - any long running tasks should be moved to another thread

If a Typed Event Bus implementation detects an Event Handler that is behaving incorrectly, either
by throwing exceptions, or by taking a long time to process the event, or some other problem, then
the implementation may block further event delivery to that Event Handler.

Receiving Events Typed Event Service Specification Version 1.0

Page 1360 OSGi Compendium Release 8

If an Event Handler is blocked by the event implementation then this situation must be logged. Al-
so, if a blocked Event Handler service is updated then the block must be removed by the implemen-
tation. If the updated service continues to behave incorrectly then the block may be reinstated.

157.4.7 Event Handler Service Properties
The service properties that can be used to configure an Event Handler service are outlined in the fol-
lowing table.

Table 157.1 Service properties applicable to Event Handler services

Service Property Name Type Description
event.topics Str ing+ Declares the topic pattern(s) for which the service should be called. This

service property is required for UntypedEventHandler services, but Type-
dEventHandler services may omit it if they are only interested in the de-
fault topic name for their reified type.

See TYPED_EVENT_TOPICS .
event.type Str ing Defines the target type into which events should be converted before be-

ing passed to the Event Handler service. This service property is forbidden
for UntypedEventHandler services, but TypedEventHandler services may
use it if they wish to further refine the type of data they wish to receive.

See TYPED_EVENT_TYPE .
event.f i l ter Str ing Defines an LDAP filter which should be tested against the properties in

the event data. Only events which pass the filter will be passed to the the
Event Handler service. Ths service property is permitted for both Type-
dEventHandler and UntypedEventHandler services.

See TYPED_EVENT_FILTER .

157.4.8 Error Handling
There are several possible error scenarios for Event Handlers:

• TypedEventHandler - If the target event type is not discoverable, that is there is no reified type in-
formation, nor is there an event.type property, then the target type for the event is not known.
In this situation there is no way for the Typed Event implementation to correctly target an event
schema, and the TypedEventHandler must be ignored. The implementation must write a mes-
sage to the log indicating which service is being ignored.

• TypedEventHandler - If the target event type is discoverable but cannot be loaded using the class
loader of the bundle which registered the Typed Event Handler service then there is no way for
the Typed Event implementation to correctly target an event schema, and the Event Handler
must be ignored. The implementation must write a message to the log indicating which service
is being ignored.

• All Handler Types - If the event data cannot be adapted to the target type, that is the incoming da-
ta cannot be transformed due to badly mismatched property names or values, then that specific
Event cannot be submitted to the Handler. The Typed Event implementation must write a mes-
sage to the log indicating which service failed to receive the event. If this error occurs repeatedly
then the Typed Event implementation may choose to deny list and ignore the Event Handler ser-
vice. Deny listing decisions must be written to the log.

• All Handler Types - If the event.topics property contains one or more invalid values then the
Event Handler service must be ignored. The implementation must write a message to the log in-
dicating which service is being ignored.

Typed Event Service Specification Version 1.0 The Typed Event Bus Service

OSGi Compendium Release 8 Page 1361

157.5 The Typed Event Bus Service
The Typed Event implementation must register a Typed Event Bus service in the service registry.
This service must implement and advertise the TypedEventBus interface.

157.5.1 Error Handling
It is not possible to know that an Event cannot be delivered until delivery is attempted. It is there-
fore not possible (or acceptable, given the asynchronous nature of delivery) to throw an exception
to the sender of an event if there are problems delivering the event. The Event Bus service should
not throw exceptions from any publication methods except:

• NullPointerException if the event data is nul l .
• I l legalArgumentException if a topic name is supplied and it violates the topic name syntax.

157.6 Monitoring Events
An important part of a software system is the ability to monitor it appropriately to determine
whether it is functioning correctly, without having the measurements disrupt the system. To this
end the Typed Event implementation must register a TypedEventMonitor service which can be used
to monitor the flow of events through the Event Bus.

Events flowing through the Typed Event Bus can be monitored using one of the monitorEvents
methods from the TypedEventMonitor service. These methods return a PushStream which delivers
MonitorEvent instances each time an event is sent via the TypedEventBus . The monitor events con-
tain the event topic, the event data, and a timestamp indicating when the event was sent.

157.6.1 Event History
In a running system it is often useful for monitoring tools to replay recent data immediately after a
problem has occurred. For that reason Typed Event Monitor instances may store past events so that
they can be replayed if requested. There are two monitorEvents methods capable of replaying histo-
ry:

• monitorEvents(int) takes an int representing the number of past events that should be replayed
from the cached history

• monitorEvents(Instant) takes an Instant , representing the time in the past from which the
stream of monitoring events should start.

Note that storing Event History is considered a best-effort option and it is not required that the im-
plementation supply the full set of requested events. If insufficient past events are available then
the implementation must provide the maximum amount of history available.

157.7 Capabilities

157.7.1 osgi.implementation Capability
The Typed Event implementation bundle must provide the osgi . implementation capability with
the name TYPED_EVENT_IMPLEMENTATION . This capability can be used by provisioning tools and
during resolution to ensure that a Typed Event implementation is present. The capability must also
declare a uses constraint for the org.osgi .service.typedevent package and provide the version of this
specification:

Security Typed Event Service Specification Version 1.0

Page 1362 OSGi Compendium Release 8

Provide-Capability: osgi.implementation;
 osgi.implementation="osgi.typedevent";
 uses:="org.osgi.service.typedevent";
 version:Version="1.0"

The RequireTypedEvent annotation can be used to require this capability.

This capability must follow the rules defined for the osgi.implementation Namespace on page 727.

157.7.2 osgi.service Capability
The bundle providing the Typed Event Bus service must provide capabilities in the osgi .service
namespace representing the services it is required to register. This capability must also declare uses
constraints for the relevant service packages:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.typedevent.TypedEventBus";
 uses:="org.osgi.service.typedevent",
 osgi.service;
 objectClass:List<String>="org.osgi.service.typedevent.monitor.TypedEventMonitor";
 uses:="org.osgi.service.typedevent.monitor"

This capability must follow the rules defined for the osgi.service Namespace on page 727.

157.8 Security

157.8.1 Topic Permission
The TopicPermission class allows fine-grained control over which bundles may post events to a giv-
en topic and which bundles may receive those events.

The target parameter for the permission is the topic name. TopicPermission classes uses a wildcard
matching algorithm similar to the BasicPermission class, except that solidi (' / ' \u002F) are used as
separators instead of full stop characters. For example, a name of a/b/* implies a/b/c but not x/y/z or
a/b .

There are two available actions: PUBLISH and SUBSCRIBE . These control a bundle's ability to either
publish or receive events, respectively. Neither one implies the other.

157.8.2 Required Permissions
Bundles that need to consume events must be granted permission to register the appropriate han-
dler service. For Example: ServicePermission [org.osgi .service.typedevent.TypedEventHandler ,
REGISTER] or ServicePermission [org.osgi .service.typedevent.UntypedEventHandler , REGISTER] or
ServicePermission [org.osgi .service.typedevent.UnhandledEventHandler , REGISTER]. In addition,
bundles that consume events require TopicPermission[<topic>, SUBSCRIBE] for each topic they
want to be notified about.

Bundles that need to publish events must be granted permission to get the TypedEventBus service,
that is ServicePermission[org.osgi .service.typedevent.TypedEventBus, GET] so that they may re-
trieve the Typed Event Bus and use it. In addition, event sources require TopicPermission[<topic>,
PUBLISH] for each topic they want to send events to. This includes any default topic names that are
used when publishing

Bundles that need to monitor events flowing through the bus must
be granted permission to get the TypedEventMonitor service, that is
ServicePermission[org.osgi .service.typedevent.monitor.TypedEventMonitor, GET] so that they
may retrieve the Typed Event Monitor and use it.

Typed Event Service Specification Version 1.0 org.osgi.service.typedevent

OSGi Compendium Release 8 Page 1363

Only a bundle that provides a Typed Event implementation should be granted
ServicePermission[org.osgi .service.typedevent.TypedEventBus, REGISTER] and
ServicePermission[org.osgi .service.typedevent.monitor.TypedEventMonitor, REGISTER] to regis-
ter the services defined by this specification.

The Typed Event implementation must be granted
ServicePermission[org.osgi .service.typedevent.TypedEventHandler, GET] ,
ServicePermission[org.osgi .service.typedevent.UntypedEventHandler, GET] ,
ServicePermission[org.osgi .service.typedevent.UnhandledEventHandler, GET] ,
ServicePermission[org.osgi .service.typedevent.TypedEventBus, REGISTER] and
ServicePermission[org.osgi .service.typedevent.monitor.TypedEventMonitor, REGISTER] as these
actions are all required to implement the specification.

157.8.3 Security Context During Event Callbacks
During an event notification, the Typed Event implementation's Protection Domain will be on the
stack above the handler's Protection Domain. Therefore, if a handler needs to perform a secure oper-
ation using its own privileges, it must invoke the doPriv i leged method to isolate its security context
from that of its caller.

The event delivery mechanism must not wrap event notifications in a doPriv i leged call.

157.9 org.osgi.service.typedevent

Typed Event Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.typedevent; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.typedevent; vers ion="[1.0,1.1)"

157.9.1 Summary

• TopicPermission - A bundle's authority to publish or subscribe to typed events on a topic.
• TypedEventBus - The Typed Event service.
• TypedEventConstants - Defines standard names for Typed Event properties.
• TypedEventHandler - Listener for Typed Events.
• UnhandledEventHandler - Listener for Unhandled Events.
• UntypedEventHandler - Listener for Untyped Events.

157.9.2 public final class TopicPermission
extends Permission
A bundle's authority to publish or subscribe to typed events on a topic.

A topic is a slash-separated string that defines a topic.

For example:

 org / osgi / service / foo / FooEvent / ACTION

org.osgi.service.typedevent Typed Event Service Specification Version 1.0

Page 1364 OSGi Compendium Release 8

Topics may also be given a default name based on the event type that is published to the topic.
These use the fully qualified class name of the event object as the name of the topic.

For example:

 com.acme.foo.event.EventData

TopicPermission has two actions: publ ish and subscr ibe .

Concurrency Thread-safe

157.9.2.1 public static final String PUBLISH = "publish"

The action string publ ish .

157.9.2.2 public static final String SUBSCRIBE = "subscribe"

The action string subscr ibe .

157.9.2.3 public TopicPermission(String name, String actions)

name Topic name.

actions publ ish ,subscr ibe (canonical order).

□ Defines the authority to publish and/or subscribe to a topic within the Typed Event service specifi-
cation.

The name is specified as a slash-separated string. Wildcards may be used. For example:

 org/osgi/service/fooFooEvent/ACTION
 com/isv/*
 *

A bundle that needs to publish events on a topic must have the appropriate TopicPermission for that
topic; similarly, a bundle that needs to subscribe to events on a topic must have the appropriate Top-
icPermssion for that topic.

157.9.2.4 public boolean equals(Object obj)

obj The object to test for equality with this TopicPermission object.

□ Determines the equality of two TopicPermission objects. This method checks that specified Top-
icPermission has the same topic name and actions as this TopicPermission object.

Returns true if obj is a TopicPermission , and has the same topic name and actions as this TopicPermission ob-
ject; fa lse otherwise.

157.9.2.5 public String getActions()

□ Returns the canonical string representation of the TopicPermission actions.

Always returns present TopicPermission actions in the following order: publ ish ,subscr ibe .

Returns Canonical string representation of the TopicPermission actions.

157.9.2.6 public int hashCode()

□ Returns the hash code value for this object.

Returns A hash code value for this object.

157.9.2.7 public boolean implies(Permission p)

p The target permission to interrogate.

Typed Event Service Specification Version 1.0 org.osgi.service.typedevent

OSGi Compendium Release 8 Page 1365

□ Determines if the specified permission is implied by this object.

This method checks that the topic name of the target is implied by the topic name of this object. The
list of TopicPermission actions must either match or allow for the list of the target object to imply
the target TopicPermission action.

 x/y/*,"publish" -> x/y/z,"publish" is true
 *,"subscribe" -> x/y,"subscribe" is true
 *,"publish" -> x/y,"subscribe" is false
 x/y,"publish" -> x/y/z,"publish" is false

Returns true if the specified TopicPermission action is implied by this object; fa lse otherwise.

157.9.2.8 public PermissionCollection newPermissionCollection()

□ Returns a new PermissionCol lect ion object suitable for storing TopicPermission objects.

Returns A new PermissionCol lect ion object.

157.9.3 public interface TypedEventBus
The Typed Event service. Bundles wishing to publish events must obtain this service and call one of
the event delivery methods.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

157.9.3.1 public void deliver(Object event)

event The event to send to all listeners which subscribe to the topic of the event.

□ Initiate asynchronous, ordered delivery of an event. This method returns to the caller before de-
livery of the event is completed. Events are delivered in the order that they are received by this
method.

The topic for this event will be automatically set to the fully qualified type name for the supplied
event object.

Logically equivalent to calling del iver(event.getClass() .getName().replace('.', ' / ') , event)

Throws NullPointerException– if the event object is null

157.9.3.2 public void deliver(String topic, Object event)

topic The topic to which this event should be sent.

event The event to send to all listeners which subscribe to the topic.

□ Initiate asynchronous, ordered delivery of an event. This method returns to the caller before de-
livery of the event is completed. Events are delivered in the order that they are received by this
method.

Throws NullPointerException– if the event object is null

I l legalArgumentException– if the topic name is not valid

157.9.3.3 public void deliverUntyped(String topic, Map<String, ?> event)

topic The topic to which this event should be sent.

event A Map representation of the event data to send to all listeners which subscribe to the topic.

□ Initiate asynchronous, ordered delivery of event data. This method returns to the caller before de-
livery of the event is completed. Events are delivered in the order that they are received by this
method.

org.osgi.service.typedevent Typed Event Service Specification Version 1.0

Page 1366 OSGi Compendium Release 8

Throws NullPointerException– if the event map is null

I l legalArgumentException– if the topic name is not valid

157.9.4 public final class TypedEventConstants
Defines standard names for Typed Event properties.

Provider Type Consumers of this API must not implement this type

157.9.4.1 public static final String TYPED_EVENT_FILTER = "event.filter"

The name of the service property used to indicate a filter that should be applied to events from the
TYPED_EVENT_TOPICS. Only events which match the filter will be delivered to the Event Handler
service.

If this service property is not present then all events from the topic(s) will be delivered to the Event
Handler service.

157.9.4.2 public static final String TYPED_EVENT_IMPLEMENTATION = "osgi.typedevent"

The name of the implementation capability for the Typed Event specification

157.9.4.3 public static final String TYPED_EVENT_SPECIFICATION_VERSION = "1.0"

The version of the implementation capability for the Typed Event specification

157.9.4.4 public static final String TYPED_EVENT_TOPICS = "event.topics"

The name of the service property used to indicate the topic(s) to which an a TypedEventHandler or
UntypedEventHandler service is listening.

If this service property is not present then the reified type parameter from the TypedEventHandler
implementation class will be used to determine the topic.

157.9.4.5 public static final String TYPED_EVENT_TYPE = "event.type"

The name of the service property used to indicate the type of the event objects received by a TypedE-
ventHandler service.

If this service property is not present then the reified type parameter from the TypedEventHandler
implementation class will be used.

157.9.5 public interface TypedEventHandler<T>
<T> The type of the event to be received

Listener for Typed Events.

TypedEventHandler objects are registered with the Framework service registry and are notified with
an event object when an event is sent.

TypedEventHandler objects are expected to reify the type parameter T with the type of object
they wish to receive when implementing this interface. This type can be overridden using the
TypedEventConstants.TYPED_EVENT_TOPICS service property.

TypedEventHandler objects may be registered with a service property
TypedEventConstants.TYPED_EVENT_TOPICS whose value is the list of topics in which the event
handler is interested.

For example:

 String[] topics = new String[] {
 "com/isv/*"
 };
 Hashtable ht = new Hashtable();

Typed Event Service Specification Version 1.0 org.osgi.service.typedevent.annotations

OSGi Compendium Release 8 Page 1367

 ht.put(EventConstants.TYPE_SAFE_EVENT_TOPICS, topics);
 context.registerService(TypedEventHandler.class, this, ht);

Concurrency Thread-safe

157.9.5.1 public void notify(String topic, T event)

topic The topic to which the event was sent

event The event that occurred.

□ Called by the TypedEventBus service to notify the listener of an event.

157.9.6 public interface UnhandledEventHandler
Listener for Unhandled Events.

UnhandledEventHandler objects are registered with the Framework service registry and are notified
with an event object when an event is sent, but no other handler is found to receive the event

Concurrency Thread-safe

157.9.6.1 public void notifyUnhandled(String topic, Map<String, Object> event)

topic The topic to which the event was sent

event The event that occurred.

□ Called by the TypedEventBus service to notify the listener of an unhandled event.

157.9.7 public interface UntypedEventHandler
Listener for Untyped Events.

UntypedEventHandler objects are registered with the Framework service registry and are notified
with an event object when an event is sent.

UntypedEventHandler objects must be registered with a service property
TypedEventConstants.TYPED_EVENT_TOPICS whose value is the list of topics in which the event
handler is interested.

For example:

 String[] topics = new String[] {
 "com/isv/*"
 };
 Hashtable ht = new Hashtable();
 ht.put(EventConstants.TYPE_SAFE_EVENT_TOPICS, topics);
 context.registerService(UntypedEventHandler.class, this, ht);

Concurrency Thread-safe

157.9.7.1 public void notifyUntyped(String topic, Map<String, Object> event)

topic The topic to which the event was sent

event The event that occurred.

□ Called by the TypedEventBus service to notify the listener of an event.

157.10 org.osgi.service.typedevent.annotations

Typed Event Annotations Package Version 1.0.

org.osgi.service.typedevent.monitor Typed Event Service Specification Version 1.0

Page 1368 OSGi Compendium Release 8

This package contains annotations that can be used to require the Typed Event implementation.

Bundles should not normally need to import this package as the annotations are only used at build-
time.

157.10.1 Summary

• RequireTypedEvent - This annotation can be used to require the Typed Event implementation.

157.10.2 @RequireTypedEvent
This annotation can be used to require the Typed Event implementation. It can be used directly, or
as a meta-annotation.

This annotation is applied to several of the Typed Event component property type annotations
meaning that it does not normally need to be applied to Declarative Services components which use
the Typed Event specification.

Since 1.0

Retention CLASS

Target TYPE , PACKAGE

157.11 org.osgi.service.typedevent.monitor

Typed Event Monitoring Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.typedevent.monitor ; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.typedevent.monitor ; vers ion="[1.0,1.1)"

157.11.1 Summary

• MonitorEvent - A monitoring event.
• TypedEventMonitor - The EventMonitor service can be used to monitor the events that are sent

using the EventBus, and that are received from remote EventBus instances

157.11.2 public class MonitorEvent
A monitoring event.

Provider Type Consumers of this API must not implement this type

157.11.2.1 public Map<String, Object> eventData

The Data from the Event in Map form

157.11.2.2 public Instant publicationTime

The time at which the event was published

157.11.2.3 public String topic

The Event Topic

Typed Event Service Specification Version 1.0 org.osgi.service.typedevent.propertytypes

OSGi Compendium Release 8 Page 1369

157.11.2.4 public MonitorEvent()

157.11.3 public interface TypedEventMonitor
The EventMonitor service can be used to monitor the events that are sent using the EventBus, and
that are received from remote EventBus instances

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

157.11.3.1 public PushStream<MonitorEvent> monitorEvents()

□ Get a stream of events, starting now.

Returns A stream of event data

157.11.3.2 public PushStream<MonitorEvent> monitorEvents(int history)

history The requested number of historical events, note that fewer than this number of events may be re-
turned if history is unavailable, or if insufficient events have been sent.

□ Get a stream of events, including up to the requested number of historical data events.

Returns A stream of event data

157.11.3.3 public PushStream<MonitorEvent> monitorEvents(Instant history)

history The requested time after which historical events, should be included. Note that events may have
been discarded, or history unavailable.

□ Get a stream of events, including historical data events prior to the supplied time

Returns A stream of event data

157.12 org.osgi.service.typedevent.propertytypes

Typed Event Component Property Types Package Version 1.0.

When used as annotations, component property types are processed by tools to generate Compo-
nent Descriptions which are used at runtime.

Bundles wishing to use this package at runtime must list the package in the Import-Package header
of the bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.typedevent.propertytypes; vers ion="[1.0,2.0)"

157.12.1 Summary

• EventFi l ter - Component Property Type for the TypedEventConstants.TYPED_EVENT_FILTER
service property of an Event Handler service.

• EventTopics - Component Property Type for the TypedEventConstants.TYPED_EVENT_TOPICS
service property of a TypedEventHandler or UntypedEventHandler service.

• EventType - Component Property Type for the TypedEventConstants.TYPED_EVENT_TYPE ser-
vice property of an TypedEventHandler service.

157.12.2 @EventFilter
Component Property Type for the TypedEventConstants.TYPED_EVENT_FILTER service property
of an Event Handler service.

org.osgi.service.typedevent.propertytypes Typed Event Service Specification Version 1.0

Page 1370 OSGi Compendium Release 8

This annotation can be used on an TypedEventHandler or UntypedEventHandler component to de-
clare the value of the TypedEventConstants.TYPED_EVENT_FILTER service property.

See Also Component Property Types

Retention CLASS

Target TYPE

157.12.2.1 String value

□ Service property specifying the event filter for a TypedEventHandler or UntypedEventHandler ser-
vice.

Returns The event filter.

See Also TypedEventConstants.TYPED_EVENT_FILTER

157.12.3 @EventTopics
Component Property Type for the TypedEventConstants.TYPED_EVENT_TOPICS service property
of a TypedEventHandler or UntypedEventHandler service.

This annotation can be used on a component to declare the values of the
TypedEventConstants.TYPED_EVENT_TOPICS service property.

See Also Component Property Types

Retention CLASS

Target TYPE

157.12.3.1 String[] value

□ Service property specifying the Event topics of interest to an TypedEventHandler or UntypedEven-
tHandler service.

Returns The event topics.

See Also TypedEventConstants.TYPED_EVENT_TOPICS

157.12.4 @EventType
Component Property Type for the TypedEventConstants.TYPED_EVENT_TYPE service property of
an TypedEventHandler service.

This annotation can be used on an TypedEventHandler component to declare the value of the
TypedEventConstants.TYPED_EVENT_TYPE service property.

See Also Component Property Types

Retention CLASS

Target TYPE

157.12.4.1 Class<?> value

□ Service property specifying the EventType for a TypedEventHandler service.

Returns The event filter.

See Also TypedEventConstants.TYPED_EVENT_TYPE

Log Stream Provider Service Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 1371

158 Log Stream Provider Service
Specification

Version 1.0

158.1 Introduction
The Log Stream Provider service can be used to create Push Streams of Log Entries. Since the log is
basically an ongoing stream of Log Entries having asynchronous arrival, a Push Stream of LogEntry
objects can be used receive the Log Entries. See Push Stream Specification on page 1435 for informa-
tion on Push Streams and how to use them.

Figure 158.1 Log Stream Diagram org.osgi.service.log.stream package

<<interface>>
Log Stream
Provider

<<interface>>
Log Entry

a Log Stream
Provider user
bundle

Log Stream
Provider impl

Log Stream Provider
implementation bundle

<<interface>>
Push Stream

Get a
Push Stream

Use a
Push Stream

1 0..n
creates

pushes

This specification defines the methods and semantics of interfaces which bundle developers can use
to retrieve log entries.

Bundles can use the Log Stream Provider to retrieve Log Entry objects that were recorded recently or
to receive Log Entry objects as they are logged by other bundles.

158.1.1 Entities

• LogEntry - An interface that allows access to a log entry in the log. It includes all the information
that can be logged through the Logger as well as a time stamp, a sequence number, thread infor-
mation, and location information. See [1] Log Service for more information about LogEntry.

• LogStreamProvider - A service interface that allows access to a PushStream of LogEntry objects.

Log Stream Provider Log Stream Provider Service Specification Version 1.0

Page 1372 OSGi Compendium Release 8

158.2 Log Stream Provider
Push Streams created by the LogStreamProvider must:

• Be buffered with a buffer large enough to contain the history, if included.
• Have the QueuePol icyOption.DISCARD_OLDEST queue policy option.
• Use a shared executor.
• Have a parallelism of one.

The following code snippet show how one could get future Log Entries and print them.

logStreamProvider.createStream()
 .forEach(l -> System.out.println(l))
 .onResolve(() -> System.out.println("stream closed"));

The LogStreamProvider service offers a HISTORY option which will prime the returned Push Stream
with the available log history, if any. The following code will process the available historical log en-
tries followed by any new log entries.

logStreamProvider.createStream(LogStreamProvider.Options.HISTORY)
 .forEach(l -> System.out.println(l))
 .onResolve(() -> System.out.println("stream closed"));

158.3 Capabilities
The bundle providing the LogStreamProvider service must provide a capability in the osgi .service
namespace representing this service. This capability must also declare a uses constraint for the
org.osgi .service. log.stream package:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.log.stream.LogStreamProvider";
 uses:="org.osgi.service.log.stream"

This capability must follow the rules defined for the osgi .service Namespace.

158.4 Security
The Log Stream Provide Service specification should only be implemented by trusted bundles.
These bundles require ServicePermission[LogStreamProvider, REGISTER] .

Only trusted bundles who must be able to access log entries should be assigned
ServicePermission[LogStreamProvider, GET] .

158.5 org.osgi.service.log.stream

Log Stream Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Log Stream Provider Service Specification Version 1.0 References

OSGi Compendium Release 8 Page 1373

Example import for consumers using the API in this package:

Import-Package: org.osgi .service. log.stream; version="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service. log.stream; version="[1.0,1.1)"

158.5.1 Summary

• LogStreamProvider - LogStreamProvider service for creating a PushStream of LogEntry objects.
• LogStreamProvider.Options - Creation options for the PushStream of LogEntry objects.

158.5.2 public interface LogStreamProvider
LogStreamProvider service for creating a PushStream of LogEntry objects.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

158.5.2.1 public PushStream<LogEntry> createStream(LogStreamProvider.Options... options)

options The options to use when creating the PushStream.

□ Create a PushStream of LogEntry objects.

The returned PushStream must:

• Be buffered with a buffer large enough to contain the history, if included.
• Have the QueuePolicyOption.DISCARD_OLDEST queue policy option.
• Use a shared executor.
• Have a parallelism of one.

When this LogStreamProvider service is released by the obtaining bundle, this LogStreamProvider
service must call PushStream.close() on the returned PushStream object if it has not already been
closed.

Returns A PushStream of LogEntry objects.

158.5.3 enum LogStreamProvider.Options
Creation options for the PushStream of LogEntry objects.

158.5.3.1 HISTORY

Include history.

Prime the created PushStream with the available historical LogEntry objects. The number of avail-
able LogEntry objects is implementation specific.

The created PushStream will supply the available historical LogEntry objects followed by newly cre-
ated LogEntry objects.

158.5.3.2 public static LogStreamProvider.Options valueOf(String name)

158.5.3.3 public static LogStreamProvider.Options[] values()

158.6 References
[1] Log Service

Changes Log Stream Provider Service Specification Version 1.0

Page 1374 OSGi Compendium Release 8

OSGi Core, Chapter 101 Log Service Specification

158.7 Changes
• This chapter was created by moving the Log Stream Provider Service out of the Log Service chap-

ter.

Feature Service Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 1375

159 Feature Service Specification

Version 1.0

159.1 Introduction
OSGi has become a platform capable of running large applications for a variety of purposes, includ-
ing rich client applications, server-side systems and cloud and container based architectures. As
these applications are generally based on many bundles, describing each bundle individually in an
application definition becomes unwieldy once the number of bundles reaches a certain level.

When developing large scale applications it is often the case that few people know the role of every
single bundle or configuration item in the application. To keep the architecture understandable
a grouping mechanism is needed that allows for the representation of parts of the application in-
to larger entities that keep reasoning about the system manageable. In such a domain members of
teams spread across an organization will need to be able to both develop new parts for the applica-
tion as well as make tweaks or enhancements to parts developed by others such as adding configura-
tion and resources or changing one or more bundles relevant to their part of the application.

The higher level constructs that define the application should be reusable in different contexts, for
example if one team has developed a component to handle job processing, different applications
should be able to use it, and if needed tune its configuration or other aspects so that it works in each
setting without having to know each and every detail that the job processing component is built up
from.

Applications are often associated with additional resources or metadata, for example database
scripts or custom artifacts. By including these with the application definition, all the related entities
are encapsulated in a single artifact.

By combining various applications or subsystems together, systems are composed of existing,
reusable building blocks, where all these blocks can work together. Architects of these systems need
to think about components without having to dive into the individual implementation details of
each subcomponent. The Features defined in this specification can be used to model such applica-
tions. Features contain the definition of an application or component and may be composed into
larger systems.

159.1.1 Essentials

• Declarative - Features are declarative and can be mapped to different implementations.
• Extensible - Features are extensible with custom content to facilitate all information related to a

Feature to be co-located.
• Human Readable - No special software is needed to read or author Features.
• Machine Readable - Features are easily be processed by tools.

159.1.2 Entities
The following entities are used in this specification:

• Feature - A Feature contains a number of entities that, when provided to a launcher can be turned
into an executable system. Features are building blocks which may be assembled into larger sys-
tems.

Feature Feature Service Specification Version 1.0

Page 1376 OSGi Compendium Release 8

• Bundles - A Feature can contain one ore more bundles.
• Configuration - A Feature can contain configurations for the Configuration Admin service.
• Extension - A Feature can contain a number of extensions with custom content.
• Launcher - A launcher turns one or more Features into an executable system.
• Processor - A Feature processor reads Features and perform a processing operation on them, such

as validation, transformation or generation of new entities based on the Features.
• Properties - Framework launching properties can be specified in a Feature.

Figure 159.1 Features Entity overview

Feature

Variables

Configuration

Bundle

Artifact
Extension

Text Extension

JSON Extension

0..n

0..n

0..n

159.2 Feature
Features are defined by declaring JSON documents or by using the Feature API . Each Feature has a
unique ID which includes a version. It holds a number of entities, including a list of bundles, config-
urations and others. Features are extensible, that is a Feature can also contain any number of custom
entities which are related to the Feature.

Features may have dependencies on other Features. Features inherit the capabilities and require-
ments from all bundles listed in the Feature.

Once created, a Feature is immutable. Its definition cannot be modified. However it is possible to
record caching related information in a Feature through transient extensions. This cached content is
not significant for the definition of the Feature or part of its identity.

159.2.1 Identifiers
Identifiers used throughout this specification are defined using the Maven Identifier model. They
are composed of the following parts:

• Group ID
• Artifact ID
• Version
• Type (optional)

Feature Service Specification Version 1.0 Feature

OSGi Compendium Release 8 Page 1377

• Classifier (optional)

Note that if Version has the -SNAPSHOT suffix, the identifier points at an unreleased artifact that is
under development and may still change.

For more information see [3] Apache Maven Pom Reference. The format used to specify identifiers is as
follows:

groupId ':' artifactId (':' type (':' classifier)?)? ':' version

159.2.2 Feature Identifier
Each Feature has a unique identifier. Apart from providing a persistent handle to the Feature, it also
provides enough information to find the Feature in an artifact repository. This identifier is defined
using the format described in Identifiers on page 1376.

159.2.2.1 Identifier type

Features use as identifier type the value osgifeature .

159.2.3 Attributes
A Feature can have the following attributes:

Table 159.1 Feature Attributes

Attribute Data Type Kind Description
name String Optional The short descriptive name of the Feature.
categories Array of String Optional, de-

faults to an emp-
ty array

The categories this Feature belongs to. The
values are user-defined.

complete boolean Optional, de-
faults to fa lse

Completeness of the Feature. A Feature is
complete when it has no external dependen-
cies.

description String Optional A longer description of the Feature.
docURL String Optional A location where documentation can be

found for the Feature.
license String Optional The license of the Feature. The license only

relates to the Feature itself and not to any ar-
tifacts that might be referenced by the Fea-
ture. The license follows the Bundle-License
format as specified in the Core specification.

SCM String Optional SCM information relating to the feature.
The syntax of the value follows the Bun-
dle-SCM format. See the 'Bundle Manifest
Headers' section in the OSGi Core specifica-
tion.

vendor String Optional The vendor of the Feature.

An initial Feature without content can be declared as follows:

{
 "feature-resource-version": "1.0",
 "id": "org.acme:acmeapp:1.0.0",

 "name": "The ACME app",

Comments Feature Service Specification Version 1.0

Page 1378 OSGi Compendium Release 8

 "description":
 "This is the main ACME app, from where all functionality is reached."

 /*
 Additional Feature entities here
 ...
 */
}

159.2.4 Using the Feature API
Features can also be created, read and written using the Feature API. The main entry point for this
API is the FeatureService . The Feature API uses the builder pattern to create entities used in Fea-
tures.

A builder instance is used to create a single entity and cannot be re-used to create a second one.
Builders are created from the Bui lderFactory , which is available from the FeatureService through
getBui lderFactory() .

FeatureService fs = ... // from Service Registry
BuilderFactory factory = fs.getBuilderFactory();

FeatureBuilder builder = factory.newFeatureBuilder(
 fs.getID("org.acme", "acmeapp", "1.0.0"));
builder.setName("The ACME app");
builder.setDescription("This is the main ACME app, "
 + "from where all functionality is reached.");

Feature f = builder.build();

The Feature API can also be useful in environments outside of an OSGi Framework where no ser-
vice registry is available, for example in a build-system environment. In such environments the Fea-
tureService can be obtained by using the java.ut i l .ServiceLoader mechanism.

159.3 Comments
Comments in the form of [2] JSMin (The JavaScript Minifier) comments are supported, that is, any text
on the same line after // is ignored and any text between /* */ is ignored.

159.4 Bundles
Features list zero or more bundles that implement the functionality provided by the Feature. Bun-
dles are listed by referencing them in the bundles array so that they can be resolved from a reposito-
ry. Bundles can have metadata associated with them, such as the relative start order of the bundle in
the Feature. Custom metadata may also be provided. A single Feature can provide multiple versions
of the same bundle, if desired.

Bundles are referenced using the identifier format described in Identifiers on page 1376. This means
that Bundles are referenced using their Maven coordinates. The bundles array contains JSON objects
which can contain the bundle IDs and specify optional additional metadata.

159.4.1 Bundle Metadata
Arbitrary key-value pairs can be associated with bundle entries to store custom metadata alongside
the bundle references. Reverse DNS naming should be used with the keys to avoid name clashes

Feature Service Specification Version 1.0 Bundles

OSGi Compendium Release 8 Page 1379

when metadata is provided by multiple entities. Keys not using the reverse DNS naming scheme are
reserved for OSGi use.

Bundle metadata supports str ing keys and str ing , number or boolean values.

The following example shows a simple Feature describing a small application with its dependen-
cies:

{
 "feature-resource-version": "1.0",
 "id": "org.acme:acmeapp:1.0.1",

 "name": "The Acme Application",
 "license": "https://opensource.org/licenses/Apache-2.0",
 "complete": true,

 "bundles": [
 { "id": "org.osgi:org.osgi.util.function:1.1.0" },
 { "id": "org.osgi:org.osgi.util.promise:1.1.1" },
 {
 "id": "org.apache.commons:commons-email:1.5",

 // This attribute is used by custom tooling to
 // find the associated javadoc
 "org.acme.javadoc.link":
 "https://commons.apache.org/proper/commons-email/javadocs/api-1.5"
 },
 { "id": "com.acme:acmelib:1.7.2" }
]

 /*
 Additional Feature entities here
 ...
 */
}

159.4.2 Using the Feature API
A Feature with Bundles can be created using the Feature API as follows:

FeatureService fs = ... // from Service Registry
BuilderFactory factory = fs.getBuilderFactory();

FeatureBuilder builder = factory.newFeatureBuilder(
 fs.getID("org.acme", "acmeapp", "1.0.1"));
builder.setName("The Acme Application");
builder.setLicense("https://opensource.org/licenses/Apache-2.0");
builder.setComplete(true);

FeatureBundle b1 = factory
 .newBundleBuilder(fs.getIDfromMavenCoordinates(
 "org.osgi:org.osgi.util.function:1.1.0"))
 .build();
FeatureBundle b2 = factory
 .newBundleBuilder(fs.getIDfromMavenCoordinates(
 "org.osgi:org.osgi.util.promise:1.1.1"))
 .build();

Configurations Feature Service Specification Version 1.0

Page 1380 OSGi Compendium Release 8

FeatureBundle b3 = factory
 .newBundleBuilder(fs.getIDfromMavenCoordinates(
 "org.apache.commons:commons-email:1.1.5"))
 .addMetadata("org.acme.javadoc.link",
 "https://commons.apache.org/proper/commons-email/javadocs/api-1.5")
 .build();
FeatureBundle b4 = factory
 .newBundleBuilder(fs.getIDfromMavenCoordinates(
 "com.acme:acmelib:1.7.2"))
 .build();

builder.addBundles(b1, b2, b3, b4);
Feature f = builder.build();

159.5 Configurations
Features support configuration using the OSGi Configurator syntax, see Configurator Specification on
page 1163. This is specified with the configurat ions key in the Feature. A Launcher can apply these
configurations to the Configuration Admin service when starting the system.

It is an error to define the same PID twice in a single Feature. An entity processing the feature must
fail in this case.

Example:

{
 "feature-resource-version": "1.0",
 "id": "org.acme:acmeapp:osgifeature:configs:1.0.0",
 "configurations": {
 "org.apache.felix.http": {
 "org.osgi.service.http.port": 8080,
 "org.osgi.service.http.port.secure": 8443
 }
 }
}

159.6 Variables
Configurations and Framework Launching Properties support late binding of values. This enables
setting these items through a Launcher, for example to specify a database user name, server port
number or other information that may be variable between runtimes.

Variables are declared in the var iables section of the Feature and they can have a default value spec-
ified. The default must be of type str ing , number or boolean . Variables can also be declared to not
have a default, which means that they must be provided with a value through the Launcher. This is
done by specifying nul l as the default in the variable declaration.

Example:

{
 "feature-resource-version": "1.0",
 "id": "org.acme:acmeapp:osgifeature:configs:1.1.0",
 "variables": {
 "http.port": 8080,
 "db.username": "scott",

Feature Service Specification Version 1.0 Extensions

OSGi Compendium Release 8 Page 1381

 "db.password": null
 },
 "configurations": {
 "org.acme.server.http": {
 "org.osgi.service.http.port:Integer": "${http.port}"
 },
 "org.acme.db": {
 "username": "${db.username}-user",
 "password": "${db.password}"
 }
 }
}

Variables are referenced with the curly brace placeholder syntax: ${ variable-name } in the configu-
ration value or framework launching property value section. To support conversion of variables to
non-string types the configurator syntax specifying the datatype with the configuration key is used,
as in the above example.

Multiple variables can be referenced for a single configuration or framework launching property
value and variables may be combined with text. If no variable exist with the given name, then the ${
variable-name } must be retained in the value.

159.7 Extensions
Features can include custom content. This makes it possible to keep custom entities and informa-
tion relating to the Feature together with the rest of the Feature.

Custom content is provided through Feature extensions, which are in one of the following formats:

• Text - A text extension contains an array of text.
• JSON - A JSON extension contains embedded custom JSON content.
• Artifacts - A list of custom artifacts associated with the Feature.

Extensions can have a variety of consumers. For example they may be handled by a Feature Launch-
er or by an external tool which can process the extension at any point of the Feature life cycle.

Extensions are of one of the following three kinds:

• Mandatory - The entity processing this Feature must know how to handle this extension. If it can-
not handle the extension it must fail.

• Optional - This extension is optional. If the entity processing the Feature cannot handle it, the ex-
tension can be skipped or ignored. This is the default.

• Transient - This extension contains transient information which may be used to optimize the pro-
cessing of the Feature. It is not part of the Feature definition.

Extensions are specified as JSON objects under the extensions key in the Feature. A Feature can con-
tain any number of extensions, as long as the extension keys are unique. Extension keys should use
reverse domain naming to avoid name clashing of multiple extensions in a single Feature. Exten-
sions names without a reverse domain naming prefix are reserved for OSGi use.

159.7.1 Text Extensions
Text extensions support the addition of custom text content to the Feature. The text is provided as a
JSON array of strings.

Example:

Extensions Feature Service Specification Version 1.0

Page 1382 OSGi Compendium Release 8

{
 "feature-resource-version": "1.0",
 "id": "org.acme:acmeapp:2.0.0",

 "name": "The Acme Application",
 "license": "https://opensource.org/licenses/Apache-2.0",

 "extensions": {
 "org.acme.mydoc": {
 "type": "text",
 "text": [
 "This application provides the main acme ",
 "functionality."
]
 }
 }
}

159.7.2 JSON Extensions
Custom JSON content is added to Features by using a JSON extension. The content can either be a
JSON object or a JSON array.

The following example extension declares under which execution environment the Feature is com-
plete, using a custom JSON object.

{
 "feature-resource-version": "1.0",
 "id": "org.acme:acmeapp:2.1.0",

 "name": "The Acme Application",
 "license": "https://opensource.org/licenses/Apache-2.0",

 "extensions": {
 "org.acme.execution-environment": {
 "type": "json",
 "json": {
 "environment-capabilities":
 ["osgi.ee; filter:=\"(&(osgi.ee=JavaSE)(version=11))\""],
 "framework": "org.osgi:core:6.0.0",
 "provided-features": ["org.acme:platform:1.1"]
 }
 }
 }
}

159.7.3 Artifact list Extensions
Custom extensions can be used to associate artifacts that are not listed as bundles with the Feature.

For example, database definition resources may be listed as artifacts in a Feature. In the following ex-
ample, the extension org.acme.ddlf i les lists Database Definition Resources which must be handled
by the launcher agent, that is, the database must be configured when the application is run:

{
 "feature-resource-version": "1.0",
 "id": "org.acme:acmeapp:2.2.0",

Feature Service Specification Version 1.0 Framework Launching Properties

OSGi Compendium Release 8 Page 1383

 "name": "The Acme Application",
 "license": "https://opensource.org/licenses/Apache-2.0",
 "complete": true,

 "bundles": [
 "org.osgi:org.osgi.util.function:1.1.0",
 "org.osgi:org.osgi.util.promise:1.1.1",
 "com.acme:acmelib:2.0.0"
],

 "extensions": {
 "org.acme.ddlfiles": {
 "kind": "mandatory",
 "type": "artifacts",
 "artifacts": [
 { "id": "org.acme:appddl:1.2.1" },
 {
 "id": "org.acme:appddl-custom:1.0.3",
 "org.acme.target": "custom-db"
 }
]
 }
 }
}

As with bundle identifiers, custom artifacts are specified in an object in the artifacts list with an ex-
plicit id and optional additional metadata. The keys of the metadata should use a reverse domain
naming pattern to avoid clashes. Keys that do not use reverse domain name as a prefix are reserved
for OSGi use. Supported metadata values must be of type str ing , number or boolean .

159.8 Framework Launching Properties
When a Feature is launched in an OSGi framework it may be necessary to specify Framework Prop-
erties. These are provided in the Framework Launching Properties extension section of the Fea-
ture. The Launcher must be able to satisfy the specified properties. If it cannot ensure that these are
present in the running Framework the launcher must fail.

Framework Launching Properties can reference Variables as defined in Variables on page 1380.
These variables are substituted before the properties are set.

Example:

{
 "feature-resource-version": "1.0",
 "id": "org.acme:acmeapp:osgifeature:fw-props:2.0.0",

 "variables": {
 "fw.storage.dir": "/tmp" // Can be overridden through the launcher
 },

 "extensions": {
 "framework-launching-properties": {
 "type": "json",
 "json": {

Resource Versioning Feature Service Specification Version 1.0

Page 1384 OSGi Compendium Release 8

 "org.osgi.framework.system.packages.extra":
 "javax.activation;version=\"1.1.1\"",
 "org.osgi.framework.bootdelegation": "javax.activation",
 "org.osgi.framework.storage": "${fw.storage.dir}"
 }
 }
 }
}

159.9 Resource Versioning
Feature JSON resources are versioned to support updates to the JSON structure in the future. To de-
clare the document version of the Feature use the feature-resource-version key in the JSON docu-
ment.

{
 "feature-resource-version": "1.0",
 "id": "org.acme:acmeapp:1.0.0"

 /*
 Additional Feature entities here
 ...
 */
}

The currently supported version of the Feature JSON documents is 1.0. If no Feature Resource Ver-
sion is specified 1.0 is used as the default.

159.10 Capabilities

159.10.1 osgi.service Capability
The bundle providing the Feature Service must provide a capability in the osgi .service namespace
representing the services it is registering. This capability must also declare uses constraints for the
relevant service packages:

Provide-Capability: osgi.service;
 objectClass:List<String>="org.osgi.service.feature.FeatureService";
 uses:="org.osgi.service.feature"

This capability must follow the rules defined for the osgi.service Namespace on page 727.

159.11 org.osgi.service.feature

Feature Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.feature; vers ion="[1.0,2.0)"

Feature Service Specification Version 1.0 org.osgi.service.feature

OSGi Compendium Release 8 Page 1385

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.feature; vers ion="[1.0,1.1)"

159.11.1 Summary

• Bui lderFactory - The Builder Factory can be used to obtain builders for the various entities.
• Feature - The Feature Model Feature.
• FeatureArt i fact - An Artifact is an entity with an ID, for use in extensions.
• FeatureArt i factBui lder - A builder for FeatureArtifact objects.
• FeatureBui lder - A builder for Feature Models.
• FeatureBundle - A Bundle which is part of a feature.
• FeatureBundleBui lder - A builder for Feature Model FeatureBundle objects.
• FeatureConfigurat ion - Represents an OSGi Configuration in the Feature Model.
• FeatureConfigurat ionBui lder - A builder for Feature Model FeatureConfiguration objects.
• FeatureConstants - Defines standard constants for the Feature specification.
• FeatureExtension - A Feature Model Extension.
• FeatureExtension.Kind - The kind of extension: optional, mandatory or transient.
• FeatureExtension.Type - The type of extension
• FeatureExtensionBui lder - A builder for Feature Model FeatureExtension objects.
• FeatureService - The Feature service is the primary entry point for interacting with the feature

model.
• ID - ID used to denote an artifact.

159.11.2 public interface BuilderFactory
The Builder Factory can be used to obtain builders for the various entities.

Provider Type Consumers of this API must not implement this type

159.11.2.1 public FeatureArtifactBuilder newArtifactBuilder(ID id)

id The artifact ID for the artifact object being built.

□ Obtain a new builder for Artifact objects.

Returns The builder.

159.11.2.2 public FeatureBundleBuilder newBundleBuilder(ID id)

id The ID for the bundle object being built. If the ID has no type specified, a default type of @{code jar}
is assumed.

□ Obtain a new builder for Bundle objects.

Returns The builder.

159.11.2.3 public FeatureConfigurationBuilder newConfigurationBuilder(String pid)

pid The persistent ID for the Configuration being built.

□ Obtain a new builder for Configuration objects.

Returns The builder.

159.11.2.4 public FeatureConfigurationBuilder newConfigurationBuilder(String factoryPid, String name)

factoryPid The factory persistent ID for the Configuration being built.

name The name of the configuration being built. The PID for the configuration will be the factoryPid + '~'
+ name

org.osgi.service.feature Feature Service Specification Version 1.0

Page 1386 OSGi Compendium Release 8

□ Obtain a new builder for Factory Configuration objects.

Returns The builder.

159.11.2.5 public FeatureExtensionBuilder newExtensionBuilder(String name, FeatureExtension.Type type,
FeatureExtension.Kind kind)

name The extension name.

type The type of extension: JSON, Text or Artifacts.

kind The kind of extension: Mandatory, Optional or Transient.

□ Obtain a new builder for Feature objects.

Returns The builder.

159.11.2.6 public FeatureBuilder newFeatureBuilder(ID id)

id The ID for the feature object being built. If the ID has no type specified, a default type of osgifeature
is assumed.

□ Obtain a new builder for Feature objects.

Returns The builder.

159.11.3 public interface Feature
The Feature Model Feature.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.3.1 public List<FeatureBundle> getBundles()

□ Get the bundles.

Returns The bundles. The returned list is unmodifiable.

159.11.3.2 public List<String> getCategories()

□ Get the categories.

Returns The categories. The returned list is unmodifiable.

159.11.3.3 public Map<String, FeatureConfiguration> getConfigurations()

□ Get the configurations. The iteration order of the returned map should follow the definition order of
the configurations in the feature.

Returns The configurations. The returned map is unmodifiable.

159.11.3.4 public Optional<String> getDescription()

□ Get the description.

Returns The description.

159.11.3.5 public Optional<String> getDocURL()

□ Get the documentation URL.

Returns The documentation URL.

159.11.3.6 public Map<String, FeatureExtension> getExtensions()

□ Get the extensions. The iteration order of the returned map should follow the definition order of the
extensions in the feature.

Feature Service Specification Version 1.0 org.osgi.service.feature

OSGi Compendium Release 8 Page 1387

Returns The extensions. The returned map is unmodifiable.

159.11.3.7 public ID getID()

□ Get the Feature's ID.

Returns The ID of this Feature.

159.11.3.8 public Optional<String> getLicense()

□ Get the license of this Feature. The syntax of the value follows the Bundle-License header syntax. See
the 'Bundle Manifest Headers' section in the OSGi Core specification.

Returns The license.

159.11.3.9 public Optional<String> getName()

□ Get the name.

Returns The name.

159.11.3.10 public Optional<String> getSCM()

□ Get the SCM information relating to the feature. The syntax of the value follows the Bundle-SCM
format. See the 'Bundle Manifest Headers' section in the OSGi Core specification.

Returns The SCM information.

159.11.3.11 public Map<String, Object> getVariables()

□ Get the variables. The iteration order of the returned map should follow the definition order of the
variables in the feature. Values are of type: String, Boolean or BigDecimal for numbers. The nul l
JSON value is represented by a null value in the map.

Returns The variables. The returned map is unmodifiable.

159.11.3.12 public Optional<String> getVendor()

□ Get the vendor.

Returns The vendor.

159.11.3.13 public boolean isComplete()

□ Get whether the feature is complete or not.

Returns Completeness value.

159.11.4 public interface FeatureArtifact
An Artifact is an entity with an ID, for use in extensions.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.4.1 public ID getID()

□ Get the artifact's ID.

Returns The ID of this artifact.

159.11.4.2 public Map<String, Object> getMetadata()

□ Get the metadata for this artifact.

Returns The metadata. The returned map is unmodifiable.

org.osgi.service.feature Feature Service Specification Version 1.0

Page 1388 OSGi Compendium Release 8

159.11.5 public interface FeatureArtifactBuilder
A builder for FeatureArtifact objects.

Concurrency Not Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.5.1 public FeatureArtifactBuilder addMetadata(String key, Object value)

key Metadata key.

value Metadata value.

□ Add metadata for this Artifact.

Returns This builder.

159.11.5.2 public FeatureArtifactBuilder addMetadata(Map<String, Object> metadata)

metadata The map with metadata.

□ Add metadata for this Artifact by providing a map. All metadata in the map is added to any previ-
ously provided metadata.

Returns This builder.

159.11.5.3 public FeatureArtifact build()

□ Build the Artifact object. Can only be called once on a builder. After calling this method the current
builder instance cannot be used any more.

Returns The Feature Artifact.

159.11.6 public interface FeatureBuilder
A builder for Feature Models.

Concurrency Not Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.6.1 public FeatureBuilder addBundles(FeatureBundle... bundles)

bundles The Bundles to add.

□ Add Bundles to the Feature.

Returns This builder.

159.11.6.2 public FeatureBuilder addCategories(String... categories)

categories The Categories.

□ Adds one or more categories to the Feature.

Returns This builder.

159.11.6.3 public FeatureBuilder addConfigurations(FeatureConfiguration... configs)

configs The Configurations to add.

□ Add Configurations to the Feature.

Returns This builder.

159.11.6.4 public FeatureBuilder addExtensions(FeatureExtension... extensions)

extensions The Extensions to add.

□ Add Extensions to the Feature

Feature Service Specification Version 1.0 org.osgi.service.feature

OSGi Compendium Release 8 Page 1389

Returns This builder.

159.11.6.5 public FeatureBuilder addVariable(String key, Object defaultValue)

key The key.

defaultValue The default value.

□ Add a variable to the Feature. If a variable with the specified key already exists it is replaced with
this one. Variable values are of type: String, Boolean or BigDecimal for numbers.

Returns This builder.

Throws I l legalArgumentException– if the value is of an invalid type.

159.11.6.6 public FeatureBuilder addVariables(Map<String, Object> variables)

variables to be added.

□ Add a map of variables to the Feature. Pre-existing variables with the same key in are overwritten if
these keys exist in the map. Variable values are of type: String, Boolean or BigDecimal for numbers.

Returns This builder.

Throws I l legalArgumentException– if a value is of an invalid type.

159.11.6.7 public Feature build()

□ Build the Feature. Can only be called once on a builder. After calling this method the current builder
instance cannot be used any more.

Returns The Feature.

159.11.6.8 public FeatureBuilder setComplete(boolean complete)

complete If the feature is complete.

□ Set the Feature Complete flag. If this method is not called the complete flag defaults to fa lse .

Returns This builder.

159.11.6.9 public FeatureBuilder setDescription(String description)

description The description.

□ Set the Feature Description.

Returns This builder.

159.11.6.10 public FeatureBuilder setDocURL(String docURL)

docURL The Documentation URL.

□ Set the documentation URL.

Returns This builder.

159.11.6.11 public FeatureBuilder setLicense(String license)

license The License.

□ Set the License.

Returns This builder.

159.11.6.12 public FeatureBuilder setName(String name)

name The Name.

□ Set the Feature Name.

org.osgi.service.feature Feature Service Specification Version 1.0

Page 1390 OSGi Compendium Release 8

Returns This builder.

159.11.6.13 public FeatureBuilder setSCM(String scm)

scm The SCM information.

□ Set the SCM information.

Returns This builder.

159.11.6.14 public FeatureBuilder setVendor(String vendor)

vendor The Vendor.

□ Set the Vendor.

Returns This builder.

159.11.7 public interface FeatureBundle
A Bundle which is part of a feature.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.7.1 public ID getID()

□ Get the bundle's ID.

Returns The ID of this bundle.

159.11.7.2 public Map<String, Object> getMetadata()

□ Get the metadata for this bundle.

Returns The metadata. The returned map is unmodifiable.

159.11.8 public interface FeatureBundleBuilder
A builder for Feature Model FeatureBundle objects.

Concurrency Not Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.8.1 public FeatureBundleBuilder addMetadata(String key, Object value)

key Metadata key.

value Metadata value.

□ Add metadata for this Bundle.

Returns This builder.

159.11.8.2 public FeatureBundleBuilder addMetadata(Map<String, Object> metadata)

metadata The map with metadata.

□ Add metadata for this Bundle by providing a map. All metadata in the map is added to any previous-
ly provided metadata.

Returns This builder.

159.11.8.3 public FeatureBundle build()

□ Build the Bundle object. Can only be called once on a builder. After calling this method the current
builder instance cannot be used any more.

Returns The Bundle.

Feature Service Specification Version 1.0 org.osgi.service.feature

OSGi Compendium Release 8 Page 1391

159.11.9 public interface FeatureConfiguration
Represents an OSGi Configuration in the Feature Model.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.9.1 public Optional<String> getFactoryPid()

□ Get the Factory PID from the configuration, if any.

Returns The Factory PID, or nul l if there is none.

159.11.9.2 public String getPid()

□ Get the PID from the configuration.

Returns The PID.

159.11.9.3 public Map<String, Object> getValues()

□ Get the configuration key-value map.

Returns The key-value map. The returned map is unmodifiable.

159.11.10 public interface FeatureConfigurationBuilder
A builder for Feature Model FeatureConfiguration objects.

Concurrency Not Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.10.1 public FeatureConfigurationBuilder addValue(String key, Object value)

key The configuration key.

value The configuration value. Acceptable data types are the data type supported by the Configuration Ad-
min service, which are the Primary Property Types as defined for the Filter Syntax in the OSGi Core
specification.

□ Add a configuration value for this Configuration object. If a value with the same key was previously
provided (regardless of case) the previous value is overwritten.

Returns This builder.

Throws I l legalArgumentException– if the value is of an invalid type.

159.11.10.2 public FeatureConfigurationBuilder addValues(Map<String, Object> configValues)

configValues The map of configuration values to add. Acceptable value types are the data type supported by the
Configuration Admin service, which are the Primary Property Types as defined for the Filter Syntax
in the OSGi Core specification.

□ Add a map of configuration values for this Configuration object. Values will be added to any previ-
ously provided configuration values. If a value with the same key was previously provided (regard-
less of case) the previous value is overwritten.

Returns This builder.

Throws I l legalArgumentException– if a value is of an invalid type or if the same key is provided in different
capitalizations (regardless of case).

159.11.10.3 public FeatureConfiguration build()

□ Build the Configuration object. Can only be called once on a builder. After calling this method the
current builder instance cannot be used any more.

org.osgi.service.feature Feature Service Specification Version 1.0

Page 1392 OSGi Compendium Release 8

Returns The Configuration.

159.11.11 public final class FeatureConstants
Defines standard constants for the Feature specification.

159.11.11.1 public static final String FEATURE_IMPLEMENTATION = "osgi.feature"

The name of the implementation capability for the Feature specification.

159.11.11.2 public static final String FEATURE_SPECIFICATION_VERSION = "1.0"

The version of the implementation capability for the Feature specification.

159.11.12 public interface FeatureExtension
A Feature Model Extension. Extensions can contain either Text, JSON or a list of Artifacts.

Extensions are of one of the following kinds:

• Mandatory: this extension must be processed by the runtime
• Optional: this extension does not have to be processed by the runtime
• Transient: this extension contains transient information such as caching data that is for opti-

mization purposes. It may be changed or removed and is not part of the feature's identity.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.12.1 public List<FeatureArtifact> getArtifacts()

□ Get the Artifacts from this extension.

Returns The Artifacts. The returned list is unmodifiable.

Throws I l legalStateException– If called on an extension which is not of type ARTIFACTS.

159.11.12.2 public String getJSON()

□ Get the JSON from this extension.

Returns The JSON.

Throws I l legalStateException– If called on an extension which is not of type JSON.

159.11.12.3 public FeatureExtension.Kind getKind()

□ Get the extension kind.

Returns The kind.

159.11.12.4 public String getName()

□ Get the extension name.

Returns The name.

159.11.12.5 public List<String> getText()

□ Get the Text from this extension.

Returns The lines of text. The returned list is unmodifiable.

Throws I l legalStateException– If called on an extension which is not of type TEXT.

159.11.12.6 public FeatureExtension.Type getType()

□ Get the extension type.

Feature Service Specification Version 1.0 org.osgi.service.feature

OSGi Compendium Release 8 Page 1393

Returns The type.

159.11.13 enum FeatureExtension.Kind
The kind of extension: optional, mandatory or transient.

159.11.13.1 MANDATORY

A mandatory extension must be processed.

159.11.13.2 OPTIONAL

An optional extension can be ignored if no processor is found.

159.11.13.3 TRANSIENT

A transient extension contains computed information which can be used as a cache to speed up op-
eration.

159.11.13.4 public static FeatureExtension.Kind valueOf(String name)

159.11.13.5 public static FeatureExtension.Kind[] values()

159.11.14 enum FeatureExtension.Type
The type of extension

159.11.14.1 JSON

A JSON extension.

159.11.14.2 TEXT

A plain text extension.

159.11.14.3 ARTIFACTS

An extension that is a list of artifact identifiers.

159.11.14.4 public static FeatureExtension.Type valueOf(String name)

159.11.14.5 public static FeatureExtension.Type[] values()

159.11.15 public interface FeatureExtensionBuilder
A builder for Feature Model FeatureExtension objects.

Concurrency Not Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.15.1 public FeatureExtensionBuilder addArtifact(FeatureArtifact artifact)

artifact The artifact to add.

□ Add an Artifact to the extension. Can only be called for extensions of type
FeatureExtension.Type.ARTIFACTS.

Returns This builder.

159.11.15.2 public FeatureExtensionBuilder addText(String text)

text The text to be added.

org.osgi.service.feature Feature Service Specification Version 1.0

Page 1394 OSGi Compendium Release 8

□ Add a line of text to the extension. Can only be called for extensions of type
FeatureExtension.Type.TEXT.

Returns This builder.

159.11.15.3 public FeatureExtension build()

□ Build the Extension. Can only be called once on a builder. After calling this method the current
builder instance cannot be used any more.

Returns The Extension.

159.11.15.4 public FeatureExtensionBuilder setJSON(String json)

json The JSON to be added.

□ Add JSON in String form to the extension. Can only be called for extensions of type
FeatureExtension.Type.JSON.

Returns This builder.

159.11.16 public interface FeatureService
The Feature service is the primary entry point for interacting with the feature model.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.16.1 public BuilderFactory getBuilderFactory()

□ Get a factory which can be used to build feature model entities.

Returns A builder factory.

159.11.16.2 public ID getID(String groupId, String artifactId, String version)

groupId The group ID (not nul l , not empty).

artifactId The artifact ID (not nul l , not empty).

version The version (not nul l , not empty).

□ Obtain an ID.

Returns The ID.

159.11.16.3 public ID getID(String groupId, String artifactId, String version, String type)

groupId The group ID (not nul l , not empty).

artifactId The artifact ID (not nul l , not empty).

version The version (not nul l , not empty).

type The type (not nul l , not empty).

□ Obtain an ID.

Returns The ID.

159.11.16.4 public ID getID(String groupId, String artifactId, String version, String type, String classifier)

groupId The group ID (not nul l , not empty).

artifactId The artifact ID (not nul l , not empty).

version The version (not nul l , not empty).

type The type (not nul l , not empty).

Feature Service Specification Version 1.0 org.osgi.service.feature

OSGi Compendium Release 8 Page 1395

classifier The classifier (not nul l , not empty).

□ Obtain an ID.

Returns The ID.

159.11.16.5 public ID getIDfromMavenCoordinates(String coordinates)

coordinates The Maven Coordinates.

□ Obtain an ID from a Maven Coordinates formatted string. The supported syntax is as follows:

groupId ' : ' art i fact Id (' : ' type (' : ' c lassi f ier)?)? ' : ' vers ion

Returns the ID.

159.11.16.6 public Feature readFeature(Reader jsonReader) throws IOException

jsonReader A Reader to the JSON input

□ Read a Feature from JSON

Returns The Feature represented by the JSON

Throws IOException– When reading fails

159.11.16.7 public void writeFeature(Feature feature, Writer jsonWriter) throws IOException

feature the Feature to write.

jsonWriter A Writer to which the Feature should be written.

□ Write a Feature Model to JSON

Throws IOException– When writing fails.

159.11.17 public interface ID
ID used to denote an artifact. This could be a feature model, a bundle which is part of the feature
model or some other artifact.

Artifact IDs follow the Maven convention of having:

• A group ID
• An artifact ID
• A version
• A type identifier (optional)
• A classifier (optional)

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

159.11.17.1 public static final String FEATURE_ID_TYPE = "osgifeature"

ID type for use with Features.

159.11.17.2 public String getArtifactId()

□ Get the artifact ID.

Returns The artifact ID.

159.11.17.3 public Optional<String> getClassifier()

□ Get the classifier.

Returns The classifier.

org.osgi.service.feature.annotation Feature Service Specification Version 1.0

Page 1396 OSGi Compendium Release 8

159.11.17.4 public String getGroupId()

□ Get the group ID.

Returns The group ID.

159.11.17.5 public Optional<String> getType()

□ Get the type identifier.

Returns The type identifier.

159.11.17.6 public String getVersion()

□ Get the version.

Returns The version.

159.11.17.7 public String toString()

□ This method returns the ID using the following syntax:

groupId ' : ' art i fact Id (' : ' type (' : ' c lassi f ier)?)? ' : ' vers ion

Returns The string representation.

159.12 org.osgi.service.feature.annotation

Feature Annotations Package Version 1.0.

This package contains annotations that can be used to require the Feature Service implementation.

Bundles should not normally need to import this package as the annotations are only used at build-
time.

159.12.1 Summary

• RequireFeatureService - This annotation can be used to require the Feature implementation.

159.12.2 @RequireFeatureService
This annotation can be used to require the Feature implementation. It can be used directly, or as a
meta-annotation.

Retention CLASS

Target TYPE , PACKAGE

159.13 References

[1] JSON (JavaScript Object Notation)
https://www.json.org

[2] JSMin (The JavaScript Minifier)
https://www.crockford.com/javascript/jsmin.html

[3] Apache Maven Pom Reference
https://maven.apache.org/pom.html

https://www.json.org
https://www.crockford.com/javascript/jsmin.html
https://maven.apache.org/pom.html

XML Parser Service Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 1397

702 XML Parser Service Specification

Version 1.0

702.1 Introduction
The Extensible Markup Language (XML) has become a popular method of describing data. As more
bundles use XML to describe their data, a common XML Parser becomes necessary in an embedded
environment in order to reduce the need for space. Not all XML Parsers are equivalent in function,
however, and not all bundles have the same requirements on an XML parser.

This problem was addressed in the Java API for XML Processing, see [4] JAXP for Java 2 Standard Edi-
tion and Enterprise Edition. This specification addresses how the classes defined in JAXP can be used
in an OSGi framework. It defines how:

• Implementations of XML parsers can become available to other bundles
• Bundles can find a suitable parser
• A standard parser in a JAR can be transformed to a bundle

702.1.1 Essentials

• Standards - Leverage existing standards in Java based XML parsing: JAXP, SAX and DOM
• Unmodified JAXP code - Run unmodified JAXP code
• Simple - It should be easy to provide a SAX or DOM parser as well as easy to find a matching pars-

er
• Multiple - It should be possible to have multiple implementations of parsers available
• Extendable - It is likely that parsers will be extended in the future with more functionality

702.1.2 Entities

• XMLParserActivator - A utility class that registers a parser factory from declarative information in
the Manifest file.

• SAXParserFactory - A class that can create an instance of a SAXParser class.
• DocumentBuilderFactory - A class that can create an instance of a DocumentBui lder class.
• SAXParser - A parser, instantiated by a SaxParserFactory object, that parses according to the SAX

specifications.
• DocumentBuilder - A parser, instantiated by a DocumentBui lderFactory , that parses according to

the DOM specifications.

JAXP XML Parser Service Specification Version 1.0

Page 1398 OSGi Compendium Release 8

Figure 702.1 XML Parsing diagram

SAXParser
Factory

Document
Builder Factory

XMLParser
Activator

SAXParser
user

Document
Builder user

Subclass impl.

SAXParser Document
Builder

Document Builder
impl.

SAXParser impl.

parses withparses with

registered by registered by

instantiatesinstant. by

reads bundle META-INF
Parser Implementation
Bundle

getsgets

0..*0..*

0..*0..*

0..*0..*

0..*0..*

0,1 0,1

0,10,1

0..*10..* 1

702.1.3 Operations
A bundle containing a SAX or DOM parser is started. This bundle registers a SAXParserFactory and/
or a DocumentBui lderFactory service object with the Framework. Service registration properties de-
scribe the features of the parsers to other bundles. A bundle that needs an XML parser will get a SAX-
ParserFactory or DocumentBui lderFactory service object from the Framework service registry. This
object is then used to instantiate the requested parsers according to their specifications.

702.2 JAXP
XML has become very popular in the last few years because it allows the interchange of complex in-
formation between different parties. Though only a single XML standard exists, there are multiple
APIs to XML parsers, primarily of two types:

• The Simple API for XML (SAX1 and SAX2)
• Based on the Document Object Model (DOM 1 and 2)

Both standards, however, define an abstract API that can be implemented by different vendors.

A given XML Parser implementation may support either or both of these parser types by imple-
menting the org.w3c.dom and/or org.xml.sax packages. In addition, parsers have characteristics
such as whether they are validating or non-validating parsers and whether or not they are name-
space aware.

An application which uses a specific XML Parser must code to that specific parser and become cou-
pled to that specific implementation. If the parser has implemented [4] JAXP, however, the applica-
tion developer can code against SAX or DOM and let the runtime environment decide which parser
implementation is used.

JAXP uses the concept of a factory. A factory object is an object that abstracts the creation of another
object. JAXP defines a DocumentBui lderFactory and a SAXParserFactory class for this purpose.

XML Parser Service Specification Version 1.0 XML Parser service

OSGi Compendium Release 8 Page 1399

JAXP is implemented in the javax.xml.parsers package and provides an abstraction layer between
an application and a specific XML Parser implementation. Using JAXP, applications can choose to
use any JAXP compliant parser without changing any code, simply by changing a System property
which specifies the SAX- and DOM factory class names.

In JAXP, the default factory is obtained with a static method in the SAXParserFactory or Document-
Bui lderFactory class. This method will inspect the associated System property and create a new in-
stance of that class.

702.3 XML Parser service
The current specification of JAXP has the limitation that only one of each type of parser factories
can be registered. This specification specifies how multiple SAXParserFactory objects and Docu-
mentBui lderFactory objects can be made available to bundles simultaneously.

Providers of parsers should register a JAXP factory object with the OSGi service registry under the
factory class name. Service properties are used to describe whether the parser:

• Is validating
• Is name-space aware
• Has additional features

With this functionality, bundles can query the OSGi service registry for parsers supporting the spe-
cific functionality that they require.

702.4 Properties
Parsers must be registered with a number of properties that qualify the service. In this specification,
the following properties are specified:

• PARSER_NAMESPACEAWARE - The registered parser is aware of name-spaces. Name-spaces allow
an XML document to consist of independently developed DTDs. In an XML document, they are
recognized by the xmlns attribute and names prefixed with an abbreviated name-space identifi-
er, like: <xsl : i f . . .> . The type is a Boolean object that must be true when the parser supports name-
spaces. All other values, or the absence of the property, indicate that the parser does not imple-
ment name-spaces.

• PARSER_VALIDATING - The registered parser can read the DTD and can validate the XML accord-
ingly. The type is a Boolean object that must true when the parser is validating. All other values,
or the absence of the property, indicate that the parser does not validate.

702.5 Getting a Parser Factory
Getting a parser factory requires a bundle to get the appropriate factory from the service registry. In
a simple case in which a non-validating, non-name-space aware parser would suffice, it is best to use
getServiceReference(Str ing) .

DocumentBuilder getParser(BundleContext context)
 throws Exception {
 ServiceReference ref = context.getServiceReference(
 DocumentBuilderFactory.class.getName());
 if (ref == null)
 return null;

Adapting a JAXP Parser to OSGi XML Parser Service Specification Version 1.0

Page 1400 OSGi Compendium Release 8

 DocumentBuilderFactory factory =
 (DocumentBuilderFactory) context.getService(ref);
 return factory.newDocumentBuilder();
}

In a more demanding case, the filtered version allows the bundle to select a parser that is validating
and name-space aware:

SAXParser getParser(BundleContext context)
 throws Exception {
 ServiceReference refs[] = context.getServiceReferences(
 SAXParserFactory.class.getName(),
 "(&(parser.namespaceAware=true)"
 + "(parser.validating=true))");
 if (refs == null)
 return null;
 SAXParserFactory factory =
 (SAXParserFactory) context.getService(refs[O]);
 return factory.newSAXParser();
}

702.6 Adapting a JAXP Parser to OSGi
If an XML Parser supports JAXP, then it can be converted to an OSGi aware bundle
by adding a BundleActivator class which registers an XML Parser Service. The utility
org.osgi .ut i l .xml.XMLParserActivator class provides this function and can be added (copied, not ref-
erenced) to any XML Parser bundle, or it can be extended and customized if desired.

702.6.1 JAR Based Services
Its functionality is based on the definition of the [5] JAR File specification, services directory. This spec-
ification defines a concept for service providers. A JAR file can contain an implementation of an ab-
stractly defined service. The class (or classes) implementing the service are designated from a file in
the META-INF/services directory. The name of this file is the same as the abstract service class.

The content of the UTF-8 encoded file is a list of class names separated by new lines. White space is
ignored and the number sign ('# ' \u0023) is the comment character.

JAXP uses this service provider mechanism. It is therefore likely that vendors will place these ser-
vice files in the META-INF/services directory.

702.6.2 XMLParserActivator
To support this mechanism, the XML Parser service provides a utility class that should be normally
delivered with the OSGi framework implementation. This class is a Bundle Activator and must start
when the bundle is started. This class is copied into the parser bundle, and not imported.

The start method of the utility BundleActivator class will look in the META-INF/services service
provider directory for the files javax.xml.parsers.SAXParserFactory (SAXFACTORYNAME) or
javax.xml.parsers.DocumentBui lderFactory (DOMFACTORYNAME). The full path name is specified
in the constants SAXCLASSFILE and DOMCLASSFILE respectively.

If either of these files exist, the utility BundleActivator class will parse the contents according to the
specification. A service provider file can contain multiple class names. Each name is read and a new
instance is created. The following example shows the possible content of such a file:

ACME example SAXParserFactory file

XML Parser Service Specification Version 1.0 Usage of JAXP

OSGi Compendium Release 8 Page 1401

com.acme.saxparser.SAXParserFast # Fast
com.acme.saxparser.SAXParserValidating # Validates

Both the javax.xml.parsers.SAXParserFactory and the javax.xml.parsers.DocumentBui lderFactory
provide methods that describe the features of the parsers they can create. The XMLParserActivator
activator will use these methods to set the values of the properties, as defined in Properties on page
1399, that describe the instances.

702.6.3 Adapting an Existing JAXP Compatible Parser
To incorporate this bundle activator into a XML Parser Bundle, do the following:

• If SAX parsing is supported, create a /META-INF/services/ javax.xml.parsers.SAXParserFactory re-
source file containing the class names of the SAXParserFactory classes.

• If DOM parsing is supported, create a /META-INF/ser-
vices/ javax.xml.parsers.DocumentBui lderFactory file containing the fully qualified class names
of the DocumentBui lderFactory classes.

• Create manifest file which imports the packages org.w3c.dom , org.xml.sax , and
javax.xml.parsers .

• Add a Bundle-Activator header to the manifest pointing to the XMLParserActivator , the sub-class
that was created, or a fully custom one.

• If the parsers support attributes, properties, or features that should be registered
as properties so they can be searched, extend the XMLParserActivator class and
override setSAXPropert ies(javax.xml.parsers.SAXParserFactory,Hashtable) and
setDOMPropert ies(javax.xml.parsers.DocumentBui lderFactory,Hashtable) .

• Ensure that custom properties are put into the Hashtable object. JAXP does not provide a way for
XMLParserActivator to query the parser to find out what properties were added.

• Bundles that extend the XMLParserActivator class must call the original methods via super to
correctly initialize the XML Parser Service properties.

• Compile this class into the bundle.
• Install the new XML Parser Service bundle.
• Ensure that the org.osgi .ut i l .xml.XMLParserActivator class is contained in the bundle.

702.7 Usage of JAXP
A single bundle should export the JAXP, SAX, and DOM APIs. The version of contained packages
must be appropriately labeled. JAXP 1.1 or later is required which references SAX 2 and DOM 2. See
[4] JAXP for the exact version dependencies.

This specification is related to related packages as defined in the JAXP 1.1 document. The following
table contains the expected minimum versions.

Table 702.1 JAXP 1.1 minimum package versions

Package Minimum Version
javax.xml.parsers 1.1
org.xml.sax 2.0
org.xml.sax.helpers 2.0
org.xsml.sax.ext 1.0
org.w3c.dom 2.0

The Xerces project from the Apache group, [6] Xerces 2 Java Parser, contains a number libraries that
implement the necessary APIs. These libraries can be wrapped in a bundle to provide the relevant
packages.

Security XML Parser Service Specification Version 1.0

Page 1402 OSGi Compendium Release 8

702.8 Security
A centralized XML parser is likely to see sensitive information from other bundles. Provi-
sioning an XML parser should therefore be limited to trusted bundles. This security can be
achieved by providing ServicePermission[javax.xml.parsers.DocumentBui lderFactory |
javax.xml.parsers.SAXFactory,REGISTER] to only trusted bundles.

Using an XML parser is a common function, and
ServicePermission[javax.xml.parsers.DOMParserFactory | javax.xml.parsers.SAXFactory, GET]
should not be restricted.

The XML parser bundle will need Fi lePermission[<<ALL FILES>>,READ] for parsing of files because
it is not known beforehand where those files will be located. This requirement further implies that
the XML parser is a system bundle that must be fully trusted.

702.9 org.osgi.util.xml

XML Parser Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .ut i l .xml; vers ion="[1.0,2.0)"

702.9.1 Summary

• XMLParserActivator - A BundleActivator class that allows any JAXP compliant XML Parser to
register itself as an OSGi parser service.

702.9.2 public class XMLParserActivator
implements BundleActivator, ServiceFactory<Object>
A BundleActivator class that allows any JAXP compliant XML Parser to register itself as an OSGi
parser service. Multiple JAXP compliant parsers can concurrently register by using this Bundle-
Activator class. Bundles who wish to use an XML parser can then use the framework's service reg-
istry to locate available XML Parsers with the desired characteristics such as validating and name-
space-aware.

The services that this bundle activator enables a bundle to provide are:

• javax.xml.parsers.SAXParserFactory(SAXFACTORYNAME)
• javax.xml.parsers.DocumentBui lderFactory(DOMFACTORYNAME)

The algorithm to find the implementations of the abstract parsers is derived from the JAR file speci-
fications, specifically the Services API.

An XMLParserActivator assumes that it can find the class file names of the factory classes in the fol-
lowing files:

• /META-INF/services/ javax.xml.parsers.SAXParserFactory is a file contained in a jar available to
the runtime which contains the implementation class name(s) of the SAXParserFactory.

• /META-INF/services/ javax.xml.parsers.DocumentBui lderFactory is a file contained in a jar avail-
able to the runtime which contains the implementation class name(s) of the DocumentBui lder-
Factory

XML Parser Service Specification Version 1.0 org.osgi.util.xml

OSGi Compendium Release 8 Page 1403

If either of the files does not exist, XMLParserActivator assumes that the parser does not support that
parser type.

XMLParserActivator attempts to instantiate both the SAXParserFactory and the DocumentBui lder-
Factory . It registers each factory with the framework along with service properties:

• PARSER_VALIDATING- indicates if this factory supports validating parsers. It's value is a
Boolean .

• PARSER_NAMESPACEAWARE- indicates if this factory supports namespace aware parsers It's
value is a Boolean .

Individual parser implementations may have additional features, properties, or attributes which
could be used to select a parser with a filter. These can be added by extending this class and overrid-
ing the setSAXPropert ies and setDOMPropert ies methods.

Concurrency Thread-safe

702.9.2.1 public static final String DOMCLASSFILE = "/META-INF/services/javax.xml.parsers.DocumentBuilderFactory"

Fully qualified path name of DOM Parser Factory Class Name file

702.9.2.2 public static final String DOMFACTORYNAME = "javax.xml.parsers.DocumentBuilderFactory"

Filename containing the DOM Parser Factory Class name. Also used as the basis for the SERVICE_PID
registration property.

702.9.2.3 public static final String PARSER_NAMESPACEAWARE = "parser.namespaceAware"

Service property specifying if factory is configured to support namespace aware parsers. The value is
of type Boolean .

702.9.2.4 public static final String PARSER_VALIDATING = "parser.validating"

Service property specifying if factory is configured to support validating parsers. The value is of type
Boolean .

702.9.2.5 public static final String SAXCLASSFILE = "/META-INF/services/javax.xml.parsers.SAXParserFactory"

Fully qualified path name of SAX Parser Factory Class Name file

702.9.2.6 public static final String SAXFACTORYNAME = "javax.xml.parsers.SAXParserFactory"

Filename containing the SAX Parser Factory Class name. Also used as the basis for the SERVICE_PID
registration property.

702.9.2.7 public XMLParserActivator()

702.9.2.8 public Object getService(Bundle bundle, ServiceRegistration<Object> registration)

bundle The bundle using the service.

registration The ServiceRegistrat ion object for the service.

□ Creates a new XML Parser Factory object.

A unique XML Parser Factory object is returned for each call to this method.

The returned XML Parser Factory object will be configured for validating and namespace aware sup-
port as specified in the service properties of the specified ServiceRegistration object. This method
can be overridden to configure additional features in the returned XML Parser Factory object.

Returns A new, configured XML Parser Factory object or null if a configuration error was encountered

org.osgi.util.xml XML Parser Service Specification Version 1.0

Page 1404 OSGi Compendium Release 8

702.9.2.9 public void setDOMProperties(DocumentBuilderFactory factory, Hashtable<String, Object> props)

factory - the DocumentBuilderFactory object

props - Hashtable of service properties.

Set the customizable DOM Parser Service Properties.

This method attempts to instantiate a validating parser and a namespace aware parser to determine
if the parser can support those features. The appropriate properties are then set in the specified
props object.

This method can be overridden to add additional DOM2 features and properties. If you want to be
able to filter searches of the OSGi service registry, this method must put a key, value pair into the
properties object for each feature or property. For example, properties.put("http://www.acme.com/
features/foo", Boolean.TRUE);

702.9.2.10 public void setSAXProperties(SAXParserFactory factory, Hashtable<String, Object> properties)

factory - the SAXParserFactory object

properties - the properties object for the service

Set the customizable SAX Parser Service Properties.

This method attempts to instantiate a validating parser and a namespace aware parser to determine
if the parser can support those features. The appropriate properties are then set in the specified
properties object.

This method can be overridden to add additional SAX2 features and properties. If you want to be
able to filter searches of the OSGi service registry, this method must put a key, value pair into the
properties object for each feature or property. For example, properties.put("http://www.acme.com/
features/foo", Boolean.TRUE);

702.9.2.11 public void start(BundleContext context) throws Exception

context The execution context of the bundle being started.

□ Called when this bundle is started so the Framework can perform the bundle-specific activities nec-
essary to start this bundle. This method can be used to register services or to allocate any resources
that this bundle needs.

This method must complete and return to its caller in a timely manner.

This method attempts to register a SAX and DOM parser with the Framework's service registry.

Throws Exception– If this method throws an exception, this bundle is marked as stopped and the Frame-
work will remove this bundle's listeners, unregister all services registered by this bundle, and re-
lease all services used by this bundle.

702.9.2.12 public void stop(BundleContext context) throws Exception

context The execution context of the bundle being stopped.

□ This method has nothing to do as all active service registrations will automatically get unregistered
when the bundle stops.

Throws Exception– If this method throws an exception, the bundle is still marked as stopped, and the
Framework will remove the bundle's listeners, unregister all services registered by the bundle, and
release all services used by the bundle.

702.9.2.13 public void ungetService(Bundle bundle, ServiceRegistration<Object> registration, Object service)

bundle The bundle releasing the service.

registration The ServiceRegistrat ion object for the service.

XML Parser Service Specification Version 1.0 References

OSGi Compendium Release 8 Page 1405

service The XML Parser Factory object returned by a previous call to the getService method.

□ Releases a XML Parser Factory object.

702.10 References

[1] XML
http://www.w3.org/XML

[2] SAX
http://www.saxproject.org/

[3] DOM Java Language Binding
http://www.w3.org/TR/REC-DOM-Level-1/java-language-binding.html

[4] JAXP
http://jaxp.java.net/

[5] JAR File specification, services directory
http://download.oracle.com/javase/1.4.2/docs/guide/jar/jar.html

[6] Xerces 2 Java Parser
http://xerces.apache.org/xerces2-j/

http://www.w3.org/XML
http://www.saxproject.org/
http://www.w3.org/TR/REC-DOM-Level-1/java-language-binding.html
http://jaxp.java.net/
http://download.oracle.com/javase/1.4.2/docs/guide/jar/jar.html
http://xerces.apache.org/xerces2-j/

References XML Parser Service Specification Version 1.0

Page 1406 OSGi Compendium Release 8

Promises Specification Version 1.2 Introduction

OSGi Compendium Release 8 Page 1407

705 Promises Specification

Version 1.2

705.1 Introduction
One of the fundamental pieces of an asynchronous programming model is the mechanism
by which clients retrieve the result of the asynchronous task. Since Java 5, there has been a
java.ut i l .concurrent.Future interface available in the Java class libraries, which means that it is
the de facto API in Java for handling the result of an asynchronous task. Futures have some limita-
tions however in that they have no mechanism for registering callbacks. Java 8 introduces the class
java.ut i l .concurrent.CompletableFuture which addresses this but it is a complex API.

This specification defines a Promises API which is independent of all other OSGi specifications in-
cluding the OSGi Framework and thus can be easily used outside of the OSGi environment.

A Promise object holds the result of a potentially asynchronous task. The receiver of a Promise ob-
ject can register callbacks on the Promise to be notified when the result is available or can block on
the result becoming available. Promises can be chained together in powerful ways to handle asyn-
chronous work flows and recovery.

Promises capture the effects of latency and errors by making these explicit in the API signatures. La-
tency is represented by callbacks which will eventually be called. Errors are represented by the fail-
ure member. In essence, this is what sets Promises apart from things such as RPC calls where such
effects are not explicitly captured but rather attempted to be transparently handled.

705.1.1 Essentials

• Common concepts - The API is inspired by the Promises work in JavaScript and uses the same basic
concepts. See [2] JavaScript Promises.

• Independent - The design is independent of all other OSGi specifications and can be used outside
of an OSGi environment.

• Asynchronous - The design supports asynchronous tasks.
• Small - The API and implementation are very compact.
• Complete - The design provides a very complete set of operations for Promise which are primi-

tives that can be used to address most use cases.
• Monad - The design supports monadic programming. See [4] Monad.
• Resolution - A Promise can be resolved successfully with a value or unsuccessfully with an excep-

tion.
• Generified - Generics are used to promote type safety.

705.1.2 Entities

• Promise - A Promise object holds the eventual result of a potentially asynchronous task.
• Callback - The receiver of a Promise can register callbacks on the Promise to be notified when the

task is completed.
• Deferred - A Deferred object represents the potentially asynchronous task and is used to resolve

the Promise.

Promise Promises Specification Version 1.2

Page 1408 OSGi Compendium Release 8

Figure 705.1 Class diagram of org.osgi.util.promise

<<class>>
Deferred resolves

<<interface>>
Promise1

<<class>>
PromiseFactory <<interface>>

Failure
<<interface>>
Success

<<interface>>
Runnable

0..n0..n 0..n

calls callscalls

705.2 Promise
A Promise object holds the eventual result of a potentially asynchronous task. A Promise is either
unresolved or resolved. An unresolved Promise does not have the result of the associated task avail-
able while a resolved Promise has the result of the associated task available. The isDone() method
must return true if the Promise is resolved and fa lse if the Promise is unresolved. A Promise must
only be resolved once.

A resolved Promise can be either resolved with a value, which means the associated task completed
successfully and supplied a result, or resolved with a failure, which means the associated task com-
pleted unsuccessfully and supplied an exception. The getFai lure() method can be called to determine
if the resolved Promise completed successfully with a value or unsuccessfully with a failure. If the
getFai lure() method returns a Throwable , the Promise resolved unsuccessfully with a failure. If the
getFai lure() method returns nul l , the Promise resolved successfully with a value that can be ob-
tained from getValue() .

If the Promise is unresolved, then calling getFai lure() or getValue() must block until the Promise is
resolved. In general, these two methods should not be used outside of a callback. Use callbacks to be
notified when the Promise is resolved. See Callbacks on page 1409.

705.3 Deferred
Promise is an interface which can allow for many Promise implementations. This API contains the
Deferred class which provides access to the standard Promise implementation. A Deferred object
can be created by calling the deferred() method on a PromiseFactory object.

A PromiseFactory object is created with a specified callback executor and a specified scheduled ex-
ecutor to use for created Promise objects and the Promise objects associated with created Deferred
objects. If the callback executor or the scheduled executor is not specified or is specified as nul l , then
implementation default executors will be used. The Deferred() constructor will create a Deferred
whose associated Promise uses the implementation default executors. All Promise objects created
by a Promise must use the same executors as the creating Promise. Callbacks must be called using
the callback executor. The scheduled executor must be used by the t imeout(long) and delay(long)
operations. The in l ineExecutor() method can be used to obtain an executor which runs callbacks
immediately on the thread calling the Executor.execute method. This behavior is similar to how
callbacks were executed in the default Promise implementation of Promise 1.0 specification.

The Promise associated with a Deferred object can be obtained using getPromise() . This Promise
can then be supplied to other parties who can use it to be notified of and obtain the eventual result.

public Promise<String> getTimeConsumingAnswer() {
 Deferred<String> deferred = factory.deferred();
 asynchronously(() -> doTask(deferred));

Promises Specification Version 1.2 Callbacks

OSGi Compendium Release 8 Page 1409

 return deferred.getPromise();
}

A Deferred object can later be used to resolve the associated Promise successfully by calling
resolve(T) or unsuccessfully by calling fa i l (Throwable) .

private void doTask(Deferred<String> deferred) {
 try {
 String answer = computeTimeConsumingAnswer();
 deferred.resolve(answer); // successfully resolve with value
 } catch (Exception e) {
 deferred.fail(e); // unsuccessfully resolve with exception
 }
}

A Deferred object can also be used to resolve the associated Promise with the eventual result of
another Promise by calling resolveWith(Promise) or the result of a CompletionStage by calling
resolveWith(CompletionStage) .

private void doTask(Deferred<String> deferred) {
 try {
 Promise<String> promise = getPromiseWithTheAnswer();
 deferred.resolveWith(promise); // resolve with another Promise
 } catch (Exception e) {
 deferred.fail(e); // unsuccessfully resolve with exception
 }
}

If resolve(T) or fa i l (Throwable) is called when the Promise associated with the Deferred is already
resolved, then an Illegal State Exception must be thrown.

Care must be taken in sharing a Deferred object with other parties since the other parties can re-
solve the associated Promise. A Deferred object should be made available only to the party that will
responsible for resolving the associated Promise.

705.4 Callbacks
To be notified when a Promise has been resolved, callbacks are used. The Promise API provides two
forms of callbacks: the basic Runnable and Consumer callbacks and the more specialized Success
and Fai lure callbacks.

A callback may be called on a different thread than the thread which registered the callback. So the
callback must be thread safe but can rely upon that the registration of the callback happens-before the
callback is called.

Resolving a Promise happens-before any registered callback is called. That is, for the resolved Promise,
in a registered callback isDone() must return true and getValue() and getFai lure() must not block.

Callbacks may be registered at any time including before and after a Promise has been resolved. If
a callback is registered before the Promise is resolved, it will be called later when the Promise is re-
solved. If a callback is registered on an already resolved Promise, it will be called right away.

705.4.1 Runnable
The onResolve(Runnable) method is used to register a Runnable with the Promise which must be
called when the Promise is resolved either successfully with a value or unsuccessfully with a failure.
The resolved Promise is not passed to the Runnable, so if the Runnable implementation needs access
to the resolved Promise, it must take care to ensure it has access.

Chaining Promises Promises Specification Version 1.2

Page 1410 OSGi Compendium Release 8

final Promise<String> answer = getTimeConsumingAnswer();
answer.onResolve(() -> doSomethingWithAnswer(answer));

The onResolve(Runnable) method returns the Promise object upon which it is called.

705.4.2 Consumer
The thenAccept(Consumer) method is used to register a Consumer with the Promise which must be
called when the Promise is resolved successfully with a value. The value of the resolved Promise is
passed to the Consumer .

final Promise<String> answer = getTimeConsumingAnswer().thenAccept(s ->
 doSomethingWithAnswer(s)
);

The thenAccept(Consumer) method returns a new Promise which will be resolved with either the
exception thrown from the Consumer , if one is thrown, or with the Promise.

The onSuccess(Consumer) method is used to register a Consumer with the Promise which must be
called when the Promise is resolved successfully with a value. The value of the resolved Promise is
passed to the Consumer . The onSuccess(Consumer) method returns the Promise object upon which
it is called.

The onFai lure(Consumer) method is used to register a Consumer with the Promise which must
be called when the Promise is resolved unsuccessfully with a failure. The failure of the resolved
Promise is passed to the Consumer . The onFai lure(Consumer) method returns the Promise object
upon which it is called.

705.4.3 Success and Failure
The then(Success) and then(Success,Fai lure) methods can be used to register the more specialized
Success and Fai lure callbacks. The Success callback is only called if the Promise is successfully re-
solved with a value. The Fai lure callback is only called if the Promise is unsuccessfully resolved with
a failure.

Promise<String> answer = getTimeConsumingAnswer();
answer.then(p -> processResult(p.getValue()), p -> handleFailure(p.getFailure()));

The then methods return a new Promise which can be used to chain Promises together.

705.5 Chaining Promises
The then(Success) , then(Success,Fai lure) , and thenAccept(Consumer) methods also provide a
means to chain Promises together. These methods return a new Promise which is chained to the
original Promise upon which the method was called. The returned Promise must be resolved when
the original Promise is resolved after the specified Success, Failure, or Consumer callback is execut-
ed. The result of the executed callback must be used to resolve the returned Promise. A sequence of
calls to the then methods can be used to create a chain of promises which are resolved in sequence.

For the then(Success) or then(Success,Fai lure) methods, if the original Promise is successfully re-
solved, the Success callback is executed and the Promise returned by the Success callback, if any, or
thrown exception is used to resolve the Promise returned from the method. If the original Promise is
resolved with a failure, the Failure callback is executed and the Promise returned from the method
is resolved with a failure.

For the thenAccept(Consumer) method, if the original Promise is successfully resolved, the Con-
sumer callback is executed and the value of the original Promise or thrown exception is used to re-
solve the Promise returned from the method. If the original Promise is resolved with a failure, the

Promises Specification Version 1.2 Monad

OSGi Compendium Release 8 Page 1411

Consumer callback is not executed and the Promise returned from the method is resolved with the
failure of the original Promise.

In the following example, a Promise which will supply the name of the file to download is chained
to a Promise which will return a mirror URL to use to download the file which is then further
chained to a Promise which will return an Input Stream from which to read the download file.

Promise<String> name = getDownloadName();
Promise<URL> mirror = name.then(p -> getMirror(p.getValue()));
Promise<InputStream> in = mirror.then(p -> getStream(p.getValue()));

Since we probably do not need the intermediate Promises, we can collapse the chain into a single
statement.

Promise<InputStream> in = getDownloadName().then(p -> getMirror(p.getValue()))
 .then(p -> getStream(p.getValue()));

The chain of Promises will also propagate any exceptions that occur to resolve the last Promise in
the chain which means we do not need to do any exception handling in the intermediate tasks.
Promises can also be chained by using the monadic programming methods in Monad on page
1411.

705.6 Monad
The Promise API supports monadic programming. See [4] Monad. The Promise interface defines a
number of interesting methods including map , f latMap and f i l ter .

• f i l ter(Predicate) - Filter the value of the Promise.

If the Promise is successfully resolved, the predicate argument is called with the value of the
Promise. If the predicate accepts the value, then the value is used to successfully resolve the
Promise returned by the filter method. If the predicate does not accept the value, the Promise re-
turned by the filter method is unsuccessfully resolved with a No Such Element Exception. If the
predicate throws an exception, the Promise returned by the filter method is unsuccessfully re-
solved with that exception.

If the Promise is unsuccessfully resolved, the predicate argument is not called and the Promise
returned by the filter method is unsuccessfully resolved with the failure of the Promise.

• map(Function) - Map the value of the Promise.

If the Promise is successfully resolved, the function argument is called with the value of the
Promise. The value returned by the function is used to successfully resolve the Promise returned
by the map method. If the function throws an exception, the Promise returned by the map
method is unsuccessfully resolved with that exception.

If the Promise is unsuccessfully resolved, the function argument is not called and the Promise re-
turned by the map method is unsuccessfully resolved with the failure of the Promise.

• f latMap(Function) - FlatMap the value of the Promise.

If the Promise is successfully resolved, the function argument is called with the value of the
Promise. The Promise returned by the function is used to resolve the Promise returned by the
flatMap method. If the function throws an exception, the Promise returned by the flatMap
method is unsuccessfully resolved with that exception.

If the Promise is unsuccessfully resolved, the function argument is not called and the Promise re-
turned by the flatMap method is unsuccessfully resolved with the failure of the Promise.

• recover(Function) - Recover from the unsuccessful resolution of the Promise with a recovery val-
ue.

Timing Promises Specification Version 1.2

Page 1412 OSGi Compendium Release 8

If the Promise is successfully resolved, the function argument is not called and the Promise re-
turned by the recover method is resolved with the value of the Promise.

If the Promise is unsuccessfully resolved, the function argument is called with the Promise to
supply a recovery value. If the recovery value is not nul l , the Promise returned by the recover
method is successfully resolved with the recovery value. If the recovery value is nul l , the Promise
returned by the recover method is unsuccessfully resolved with the failure of the Promise. If the
function throws an exception, the Promise returned by the recover method is unsuccessfully re-
solved with that exception.

• recoverWith(Function) - Recover from the unsuccessful resolution of the Promise with a recov-
ery Promise.

If the Promise is successfully resolved, the function argument is not called and the Promise re-
turned by the recover method is resolved with the value of the Promise.

If the Promise is unsuccessfully resolved, the function argument is called with the Promise to
supply a recovery Promise. If the recovery Promise is not nul l , the Promise returned by the recov-
er method is resolved with the recovery Promise. If the recovery Promise is nul l , the Promise re-
turned by the recover method is unsuccessfully resolved with the failure of the Promise. If the
function throws an exception, the Promise returned by the recover method is unsuccessfully re-
solved with that exception.

• fa l lbackTo(Promise) - Fall back to the value of the Promise argument if the Promise unsuccessful-
ly resolves.

If the Promise is successfully resolved, the Promise argument is not used and the Promise re-
turned by the fallbackTo method is resolved with the value of the Promise.

If the Promise is unsuccessfully resolved, the Promise argument is used to provide a fallback
value when it becomes resolved. If the Promise argument is successfully resolved, the Promise
returned by the fallbackTo method is resolved with the value of the Promise argument. If the
Promise argument is unsuccessfully resolved, the Promise returned by the fallbackTo method is
unsuccessfully resolved with the failure of the Promise.

These functions can be used to build pipelines of chained Promises that are processed in sequence.
For example, in the following chain, the value of the original promise, once resolved, is filtered for
acceptable values. If the filter says the value is not acceptable, the recover method will be used to re-
place it with a default value.

return promise.filter(v -> isValueOk(v)).recover(p -> getDefaultValue())

With these chains, one can write powerful programs without the need to resort to complex if/else
and try/catch logic.

705.7 Timing
The Promise API provides methods to affect the timing of resolving Promises.

• t imeout(long) - Time out the resolution of the Promise.

If the Promise is successfully resolved before the timeout, the returned Promise is resolved with
the value of the Promise. If the Promise is resolved with a failure before the timeout, the returned
Promise is resolved with the failure of the Promise. If the timeout is reached before the Promise
is resolved, the returned Promise is failed with a TimeoutException .

• delay(long) - Delay after the resolution of the Promise.

Once the Promise is resolved, resolve the returned Promise with the Promise after the specified
delay.

Promises Specification Version 1.2 Functional Interfaces

OSGi Compendium Release 8 Page 1413

705.8 Functional Interfaces
In Java 8, the concept of Functional Interfaces is introduced. See [5] Function Interfaces. Function-
al interfaces are types with a single abstract method. Instances of functional interfaces can be cre-
ated with lambda expressions, method references, or constructor references. Many methods on
Promise take functional interface arguments and so are suitable for use with lambda expressions
and method references in Java 8.

Four of these functional interfaces are Function , Predicate , Suppl ier , and Consumer . These are
equivalent to functional interfaces which are part of the java.ut i l .function package introduced in Ja-
va 8 with additional static methods to support interoperation. OSGi defines these interfaces to allow
throwing checked exceptions which can be propagated in a chain of Promises.

705.9 Utility Methods
The API also provides several useful utility methods when working with Promises.

Often, you may need to create an already resolved Promise to return or chain with another Promise.
The resolved(T) method can be used to create a new Promise already successfully resolved with the
specified value. The fa i led(Throwable) method can be used to create a new Promise already unsuc-
cessfully resolved with the specified exception. These methods also exists as static methods on the
Promises class returning Promises which use the implementation default executors.

 return getTimeConsumingAnswer().fallbackTo(factory.resolved("Fallback Value"));

The resolvedWith(Promise) method can be used to return a new Promise that will be resolved with
the specified Promise.

The submit(Cal lable) method can be used to return a new Promise that will hold the result of the
specified task. The task will be executed on the callback executor.

The al l (Col lect ion) method returns a Promise that is a latch on the specified Promises. The re-
turned Promise must resolve only when all of the specified Promises have resolved. The toPromise()
method returns a Collector which can be used on a Stream of Promises to collect the results of the
Promises into a latch using the al l (Col lect ion) method as the finisher. The al l method also exists as a
static method on the Promises class returning a Promise which uses the implementation default ex-
ecutors.

Interoperation with CompletionStage is supported. The resolvedWith(CompletionStage) method
returns a Promise that is resolved by the specified CompletionStage. The toCompletionStage()
method returns a CompletionStage that is resolved by the receiving Promise.

705.10 Security
The Promise API does not define any OSGi services nor does the API perform any privileged actions.
Therefore, it has no security considerations.

705.11 org.osgi.util.promise

Promise Package Version 1.2.

org.osgi.util.promise Promises Specification Version 1.2

Page 1414 OSGi Compendium Release 8

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .ut i l .promise; vers ion="[1.2,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .ut i l .promise; vers ion="[1.2,1 .3)"

705.11.1 Summary

• Deferred - A Deferred Promise resolution.
• Fai ledPromisesException - Promise failure exception for a collection of failed Promises.
• Fai lure - Failure callback for a Promise.
• Promise - A Promise of a value.
• PromiseFactory - Promise factory to create Deferred and Promise objects.
• PromiseFactory.Option - Defines the options for a Promise factory.
• Promises - Static helper methods for Promises.
• Success - Success callback for a Promise.
• TimeoutException - Timeout exception for a Promise.

705.11.2 public class Deferred<T>
<T> The value type associated with the created Promise.

A Deferred Promise resolution.

Instances of this class can be used to create a Promise that can be resolved in the future. The
associated Promise can be successfully resolved with resolve(Object) or resolved with a fail-
ure with fail(Throwable). It can also be resolved with the resolution of another promise using
resolveWith(Promise).

The associated Promise can be provided to any one, but the Deferred object should be made avail-
able only to the party that will responsible for resolving the Promise.

Concurrency Immutable

Provider Type Consumers of this API must not implement this type

705.11.2.1 public Deferred()

□ Create a new Deferred.

The associated promise will use the default callback executor and default scheduled executor.

See Also PromiseFactory.deferred()

705.11.2.2 public void fail(Throwable failure)

failure The failure of the resolved Promise. Must not be nul l .

□ Fail the Promise associated with this Deferred.

After the associated Promise is resolved with the specified failure, all registered callbacks are called
and any chained Promises are resolved. This may occur asynchronously to this method.

Resolving the associated Promise happens-before any registered callback is called. That is, in a regis-
tered callback, Promise.isDone() must return true and Promise.getValue() and Promise.getFailure()
must not block.

Throws I l legalStateException– If the associated Promise was already resolved.

Promises Specification Version 1.2 org.osgi.util.promise

OSGi Compendium Release 8 Page 1415

705.11.2.3 public Promise<T> getPromise()

□ Returns the Promise associated with this Deferred.

All Promise objects created by the associated Promise will use the executors of the associated
Promise.

Returns The Promise associated with this Deferred.

705.11.2.4 public void resolve(T value)

value The value of the resolved Promise.

□ Successfully resolve the Promise associated with this Deferred.

After the associated Promise is resolved with the specified value, all registered callbacks are called
and any chained Promises are resolved. This may occur asynchronously to this method.

Resolving the associated Promise happens-before any registered callback is called. That is, in a regis-
tered callback, Promise.isDone() must return true and Promise.getValue() and Promise.getFailure()
must not block.

Throws I l legalStateException– If the associated Promise was already resolved.

705.11.2.5 public Promise<Void> resolveWith(Promise<? extends T> with)

with A Promise whose value or failure must be used to resolve the associated Promise. Must not be nul l .

□ Resolve the Promise associated with this Deferred with the specified Promise.

If the specified Promise is successfully resolved, the associated Promise is resolved with the value of
the specified Promise. If the specified Promise is resolved with a failure, the associated Promise is re-
solved with the failure of the specified Promise.

After the associated Promise is resolved with the specified Promise, all registered callbacks are called
and any chained Promises are resolved. This may occur asynchronously to this method.

Resolving the associated Promise happens-before any registered callback is called. That is, in a regis-
tered callback, Promise.isDone() must return true and Promise.getValue() and Promise.getFailure()
must not block.

Returns A Promise that is resolved only when the associated Promise is resolved by the specified Promise.
The returned Promise must be successfully resolved with the value nul l , if the associated Promise
was resolved by the specified Promise. The returned Promise must be resolved with a failure of Ille-
galStateException, if the associated Promise was already resolved when the specified Promise was
resolved.

705.11.2.6 public Promise<Void> resolveWith(CompletionStage<? extends T> with)

with A CompletionStage whose result must be used to resolve the associated Promise. Must not be nul l .

□ Resolve the Promise associated with this Deferred with the specified CompletionStage.

If the specified CompletionStage is completed normally, the associated Promise is resolved with the
value of the specified CompletionStage. If the specified CompletionStage is completed exceptional-
ly, the associated Promise is resolved with the failure of the specified CompletionStage.

After the associated Promise is resolved with the specified CompletionStage, all registered callbacks
are called and any chained Promises are resolved. This may occur asynchronously to this method.

Resolving the associated Promise happens-before any registered callback is called. That is, in a regis-
tered callback, Promise.isDone() must return true and Promise.getValue() and Promise.getFailure()
must not block.

Returns A Promise that is resolved only when the associated Promise is resolved by the specified Comple-
tionStage. The returned Promise must be successfully resolved with the value nul l , if the associat-
ed Promise was resolved by the specified CompletionStage. The returned Promise must be resolved

org.osgi.util.promise Promises Specification Version 1.2

Page 1416 OSGi Compendium Release 8

with a failure of IllegalStateException, if the associated Promise was already resolved when the spec-
ified CompletionStage was completed.

Since 1.2

705.11.2.7 public String toString()

□ Returns a string representation of the associated Promise.

Returns A string representation of the associated Promise.

Since 1.1

705.11.3 public class FailedPromisesException
extends RuntimeException
Promise failure exception for a collection of failed Promises.

705.11.3.1 public FailedPromisesException(Collection<Promise<?>> failed, Throwable cause)

failed A collection of Promises that have been resolved with a failure. Must not be nul l , must not be empty
and all of the elements in the collection must not be nul l .

cause The cause of this exception. This is typically the failure of the first Promise in the specified collec-
tion.

□ Create a new FailedPromisesException with the specified Promises.

705.11.3.2 public Collection<Promise<?>> getFailedPromises()

□ Returns the collection of Promises that have been resolved with a failure.

Returns The collection of Promises that have been resolved with a failure. The returned collection is unmod-
ifiable.

705.11.4 public interface Failure
Failure callback for a Promise.

A Failure callback is registered with a Promise using the Promise.then(Success, Failure) method and
is called if the Promise is resolved with a failure.

This is a functional interface and can be used as the assignment target for a lambda expression or
method reference.

Concurrency Thread-safe

705.11.4.1 public void fail(Promise<?> resolved) throws Exception

resolved The failed resolved Promise.

□ Failure callback for a Promise.

This method is called if the Promise with which it is registered resolves with a failure.

In the remainder of this description we will refer to the Promise returned by Promise.then(Success,
Failure) when this Failure callback was registered as the chained Promise.

If this methods completes normally, the chained Promise must be failed with the same exception
which failed the resolved Promise. If this method throws an exception, the chained Promise must be
failed with the thrown exception.

Throws Exception– The chained Promise must be failed with the thrown exception.

705.11.5 public interface Promise<T>
<T> The value type associated with this Promise.

Promises Specification Version 1.2 org.osgi.util.promise

OSGi Compendium Release 8 Page 1417

A Promise of a value.

A Promise represents a future value. It handles the interactions for asynchronous processing. A De-
ferred object can be used to create a Promise and later resolve the Promise. A Promise is used by the
caller of an asynchronous function to get the result or handle the error. The caller can either get a
callback when the Promise is resolved with a value or an error, or the Promise can be used in chain-
ing. In chaining, callbacks are provided that receive the resolved Promise, and a new Promise is gen-
erated that resolves based upon the result of a callback.

Both callbacks and chaining can be repeated any number of times, even after the Promise has been
resolved.

Example callback usage:

 Promise<String> foo = foo();
 foo.onResolve(() -> System.out.println("resolved"));

Example chaining usage;

 Success<String,String> doubler = p -> Promises
 .resolved(p.getValue() + p.getValue());
 Promise<String> foo = foo().then(doubler).then(doubler);

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

705.11.5.1 public Promise<T> delay(long milliseconds)

milliseconds The time to delay in milliseconds. Zero and negative time is treated as no delay.

□ Delay after the resolution of this Promise.

Once this Promise is resolved, resolve the returned Promise with this Promise after the specified de-
lay.

Returns A Promise that is resolved with this Promise after this Promise is resolved and the specified delay
has elapsed.

Since 1.1

705.11.5.2 public Promise<T> fallbackTo(Promise<? extends T> fallback)

fallback The Promise whose value must be used to resolve the returned Promise if this Promise resolves with
a failure. Must not be nul l .

□ Fall back to the value of the specified Promise if this Promise fails.

If this Promise is successfully resolved, the returned Promise must be resolved with the value of this
Promise.

If this Promise is resolved with a failure, the successful result of the specified Promise is used to re-
solve the returned Promise. If the specified Promise is resolved with a failure, the returned Promise
must be failed with the failure of this Promise rather than the failure of the specified Promise.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that returns the value of this Promise or falls back to the value of the specified Promise.

705.11.5.3 public Promise<T> filter(Predicate<? super T> predicate)

predicate The Predicate to evaluate the value of this Promise. Must not be nul l .

□ Filter the value of this Promise.

If this Promise is successfully resolved, the returned Promise must either be resolved with the value
of this Promise, if the specified Predicate accepts that value, or failed with a NoSuchElementExcep-

org.osgi.util.promise Promises Specification Version 1.2

Page 1418 OSGi Compendium Release 8

t ion , if the specified Predicate does not accept that value. If the specified Predicate throws an excep-
tion, the returned Promise must be failed with the exception.

If this Promise is resolved with a failure, the returned Promise must be failed with that failure.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that filters the value of this Promise.

705.11.5.4 public Promise<R> flatMap(Function<? super T, Promise<? extends R>> mapper)

Type Parameters <R>

<R> The value type associated with the returned Promise.

mapper The Function that must flatMap the value of this Promise to a Promise that must be used to resolve
the returned Promise. Must not be nul l .

□ FlatMap the value of this Promise.

If this Promise is successfully resolved, the returned Promise must be resolved with the Promise
from the specified Function as applied to the value of this Promise. If the specified Function throws
an exception, the returned Promise must be failed with the exception.

If this Promise is resolved with a failure, the returned Promise must be failed with that failure.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that returns the value of this Promise as mapped by the specified Function.

705.11.5.5 public Throwable getFailure() throws InterruptedException

□ Returns the failure of this Promise.

If this Promise is not resolved, this method must block and wait for this Promise to be resolved be-
fore completing.

If this Promise was resolved with a failure, this method returns with the failure of this Promise. If
this Promise was successfully resolved, this method must return nul l .

Returns The failure of this resolved Promise or nul l if this Promise was successfully resolved.

Throws InterruptedException– If the current thread was interrupted while waiting.

705.11.5.6 public T getValue() throws InvocationTargetException, InterruptedException

□ Returns the value of this Promise.

If this Promise is not resolved, this method must block and wait for this Promise to be resolved be-
fore completing.

If this Promise was successfully resolved, this method returns with the value of this Promise. If this
Promise was resolved with a failure, this method must throw an InvocationTargetException with
the failure exception as the cause.

Returns The value of this resolved Promise.

Throws InvocationTargetException– If this Promise was resolved with a failure. The cause of the Invoca-
t ionTargetException is the failure exception.

InterruptedException– If the current thread was interrupted while waiting.

705.11.5.7 public boolean isDone()

□ Returns whether this Promise has been resolved.

This Promise may be successfully resolved or resolved with a failure.

Returns true if this Promise was resolved either successfully or with a failure; fa lse if this Promise is unre-
solved.

Promises Specification Version 1.2 org.osgi.util.promise

OSGi Compendium Release 8 Page 1419

705.11.5.8 public Promise<R> map(Function<? super T, ? extends R> mapper)

Type Parameters <R>

<R> The value type associated with the returned Promise.

mapper The Function that must map the value of this Promise to the value that must be used to resolve the
returned Promise. Must not be nul l .

□ Map the value of this Promise.

If this Promise is successfully resolved, the returned Promise must be resolved with the value of
specified Function as applied to the value of this Promise. If the specified Function throws an excep-
tion, the returned Promise must be failed with the exception.

If this Promise is resolved with a failure, the returned Promise must be failed with that failure.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that returns the value of this Promise as mapped by the specified Function.

705.11.5.9 public Promise<T> onFailure(Consumer<? super Throwable> failure)

failure The Consumer callback that receives the failure of this Promise. Must not be nul l .

□ Register a callback to be called with the failure for this Promise when this Promise is resolved with a
failure. The callback will not be called if this Promise is resolved successfully.

This method may be called at any time including before and after this Promise has been resolved.

Resolving this Promise happens-before any registered callback is called. That is, in a registered call-
back, isDone() must return true and getValue() and getFailure() must not block.

A callback may be called on a different thread than the thread which registered the callback. So the
callback must be thread safe but can rely upon that the registration of the callback happens-before the
registered callback is called.

Returns This Promise.

Since 1.1

705.11.5.10 public Promise<T> onResolve(Runnable callback)

callback The callback to be called when this Promise is resolved. Must not be nul l .

□ Register a callback to be called when this Promise is resolved.

The specified callback is called when this Promise is resolved either successfully or with a failure.

This method may be called at any time including before and after this Promise has been resolved.

Resolving this Promise happens-before any registered callback is called. That is, in a registered call-
back, isDone() must return true and getValue() and getFailure() must not block.

A callback may be called on a different thread than the thread which registered the callback. So the
callback must be thread safe but can rely upon that the registration of the callback happens-before the
registered callback is called.

Returns This Promise.

705.11.5.11 public Promise<T> onSuccess(Consumer<? super T> success)

success The Consumer callback that receives the value of this Promise. Must not be nul l .

□ Register a callback to be called with the result of this Promise when this Promise is resolved success-
fully. The callback will not be called if this Promise is resolved with a failure.

This method may be called at any time including before and after this Promise has been resolved.

org.osgi.util.promise Promises Specification Version 1.2

Page 1420 OSGi Compendium Release 8

Resolving this Promise happens-before any registered callback is called. That is, in a registered call-
back, isDone() must return true and getValue() and getFailure() must not block.

A callback may be called on a different thread than the thread which registered the callback. So the
callback must be thread safe but can rely upon that the registration of the callback happens-before the
registered callback is called.

Returns This Promise.

Since 1.1

705.11.5.12 public Promise<T> recover(Function<Promise<?>, ? extends T> recovery)

recovery If this Promise resolves with a failure, the specified Function is called to produce a recovery value to
be used to resolve the returned Promise. Must not be nul l .

□ Recover from a failure of this Promise with a recovery value.

If this Promise is successfully resolved, the returned Promise must be resolved with the value of this
Promise.

If this Promise is resolved with a failure, the specified Function is applied to this Promise to produce
a recovery value.

• If the recovery value is not nul l , the returned Promise must be resolved with the recovery value.
• If the recovery value is nul l , the returned Promise must be failed with the failure of this Promise.
• If the specified Function throws an exception, the returned Promise must be failed with that ex-

ception.

To recover from a failure of this Promise with a recovery value of nul l , the recoverWith(Function)
method must be used. The specified Function for recoverWith(Function) can return
Promises.resolved(nul l) to supply the desired nul l value.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that resolves with the value of this Promise or recovers from the failure of this Promise.

705.11.5.13 public Promise<T> recoverWith(Function<Promise<?>, Promise<? extends T>> recovery)

recovery If this Promise resolves with a failure, the specified Function is called to produce a recovery Promise
to be used to resolve the returned Promise. Must not be nul l .

□ Recover from a failure of this Promise with a recovery Promise.

If this Promise is successfully resolved, the returned Promise must be resolved with the value of this
Promise.

If this Promise is resolved with a failure, the specified Function is applied to this Promise to produce
a recovery Promise.

• If the recovery Promise is not nul l , the returned Promise must be resolved with the recovery
Promise.

• If the recovery Promise is nul l , the returned Promise must be failed with the failure of this
Promise.

• If the specified Function throws an exception, the returned Promise must be failed with that ex-
ception.

This method may be called at any time including before and after this Promise has been resolved.

Returns A Promise that resolves with the value of this Promise or recovers from the failure of this Promise.

705.11.5.14 public Promise<R> then(Success<? super T, ? extends R> success, Failure failure)

Type Parameters <R>

Promises Specification Version 1.2 org.osgi.util.promise

OSGi Compendium Release 8 Page 1421

<R> The value type associated with the returned Promise.

success The Success callback to be called when this Promise is successfully resolved. May be nul l if no Suc-
cess callback is required. In this case, the returned Promise must be resolved with the value nul l
when this Promise is successfully resolved.

failure The Failure callback to be called when this Promise is resolved with a failure. May be nul l if no Fail-
ure callback is required.

□ Chain a new Promise to this Promise with Success and Failure callbacks.

The specified Success callback is called when this Promise is successfully resolved and the specified
Failure callback is called when this Promise is resolved with a failure.

This method returns a new Promise which is chained to this Promise. The returned Promise must
be resolved when this Promise is resolved after the specified Success or Failure callback is executed.
The result of the executed callback must be used to resolve the returned Promise. Multiple calls to
this method can be used to create a chain of promises which are resolved in sequence.

If this Promise is successfully resolved, the Success callback is executed and the result Promise, if
any, or thrown exception is used to resolve the returned Promise from this method. If this Promise is
resolved with a failure, the Failure callback is executed and the returned Promise from this method
is failed.

This method may be called at any time including before and after this Promise has been resolved.

Resolving this Promise happens-before any registered callback is called. That is, in a registered call-
back, isDone() must return true and getValue() and getFailure() must not block.

A callback may be called on a different thread than the thread which registered the callback. So the
callback must be thread safe but can rely upon that the registration of the callback happens-before the
registered callback is called.

Returns A new Promise which is chained to this Promise. The returned Promise must be resolved when this
Promise is resolved after the specified Success or Failure callback, if any, is executed.

705.11.5.15 public Promise<R> then(Success<? super T, ? extends R> success)

Type Parameters <R>

<R> The value type associated with the returned Promise.

success The Success callback to be called when this Promise is successfully resolved. May be nul l if no Suc-
cess callback is required. In this case, the returned Promise must be resolved with the value nul l
when this Promise is successfully resolved.

□ Chain a new Promise to this Promise with a Success callback.

This method performs the same function as calling then(Success, Failure) with the specified Success
callback and nul l for the Failure callback.

Returns A new Promise which is chained to this Promise. The returned Promise must be resolved when this
Promise is resolved after the specified Success, if any, is executed.

See Also then(Success, Failure)

705.11.5.16 public Promise<T> thenAccept(Consumer<? super T> consumer)

consumer The Consumer callback that receives the value of this Promise. Must not be nul l .

□ Chain a new Promise to this Promise with a Consumer callback that receives the value of this
Promise when it is successfully resolved.

The specified Consumer is called when this Promise is resolved successfully.

This method returns a new Promise which is chained to this Promise. The returned Promise must be
resolved when this Promise is resolved after the specified callback is executed. If the callback throws

org.osgi.util.promise Promises Specification Version 1.2

Page 1422 OSGi Compendium Release 8

an exception, the returned Promise is failed with that exception. Otherwise the returned Promise is
resolved with the success value from this Promise.

This method may be called at any time including before and after this Promise has been resolved.

Resolving this Promise happens-before any registered callback is called. That is, in a registered call-
back, isDone() must return true and getValue() and getFailure() must not block.

A callback may be called on a different thread than the thread which registered the callback. So the
callback must be thread safe but can rely upon that the registration of the callback happens-before the
registered callback is called.

Returns A new Promise which is chained to this Promise. The returned Promise must be resolved when this
Promise is resolved after the specified Consumer is executed.

Since 1.1

705.11.5.17 public Promise<T> timeout(long milliseconds)

milliseconds The time to wait in milliseconds. Zero and negative time is treated as an immediate timeout.

□ Time out the resolution of this Promise.

If this Promise is successfully resolved before the timeout, the returned Promise is resolved with
the value of this Promise. If this Promise is resolved with a failure before the timeout, the returned
Promise is resolved with the failure of this Promise. If the timeout is reached before this Promise is
resolved, the returned Promise is failed with a TimeoutException.

Returns A Promise that is resolved when either this Promise is resolved or the specified timeout is reached.

Since 1.1

705.11.5.18 public CompletionStage<T> toCompletionStage()

□ Returns a new CompletionStage that will be resolved with the result of this Promise.

Returns A new CompletionStage that will be resolved with the result of this Promise.

Since 1.2

705.11.6 public class PromiseFactory
Promise factory to create Deferred and Promise objects.

Instances of this class can be used to create Deferred and Promise objects which use the executors
used to construct this object for any callback or scheduled operation execution.

Since 1.1

Concurrency Immutable

705.11.6.1 public PromiseFactory(Executor callbackExecutor)

callbackExecutor The executor to use for callbacks. nul l can be specified for the default callback executor.

□ Create a new PromiseFactory with the specified callback executor.

The default scheduled executor and default options will be used.

705.11.6.2 public PromiseFactory(Executor callbackExecutor, ScheduledExecutorService scheduledExecutor)

callbackExecutor The executor to use for callbacks. nul l can be specified for the default callback executor.

scheduledExecutor The scheduled executor for use for scheduled operations. nul l can be specified for the default sched-
uled executor.

□ Create a new PromiseFactory with the specified callback executor and specified scheduled executor.

The default options will be used.

Promises Specification Version 1.2 org.osgi.util.promise

OSGi Compendium Release 8 Page 1423

705.11.6.3 public PromiseFactory(Executor callbackExecutor, ScheduledExecutorService scheduledExecutor,
PromiseFactory.Option... options)

callbackExecutor The executor to use for callbacks. nul l can be specified for the default callback executor.

scheduledExecutor The scheduled executor for use for scheduled operations. nul l can be specified for the default sched-
uled executor.

options Options for PromiseFactory.

□ Create a new PromiseFactory with the specified callback executor, specified scheduled executor, and
specified options.

Since 1.2

705.11.6.4 public Promise<List<T>> all(Collection<Promise<S>> promises)

Type Parameters <T, S extends T>

<T> The value type of the List value associated with the returned Promise.

<S> The value type of the specified Promises.

promises The Promises which must be resolved before the returned Promise must be resolved. Must not be
nul l and all of the elements in the collection must not be nul l .

□ Returns a new Promise that is a latch on the resolution of the specified Promises.

The returned Promise uses the callback executor and scheduled executor of this PromiseFactory ob-
ject.

The returned Promise acts as a gate and must be resolved after all of the specified Promises are re-
solved.

Returns A Promise that must be successfully resolved with a List of the values in the order of the specified
Promises if all the specified Promises are successfully resolved. The List in the returned Promise is
the property of the caller and is modifiable. The returned Promise must be resolved with a failure
of FailedPromisesException if any of the specified Promises are resolved with a failure. The failure
FailedPromisesException must contain all of the specified Promises which resolved with a failure.

705.11.6.5 public Deferred<T> deferred()

Type Parameters <T>

<T> The value type associated with the returned Deferred.

□ Create a new Deferred with the callback executor and scheduled executor of this PromiseFactory ob-
ject.

Use this method instead of Deferred.Deferred() to create a new Deferred whose associated Promise
uses executors other than the default executors.

Returns A new Deferred with the callback and scheduled executors of this PromiseFactory object

705.11.6.6 public Executor executor()

□ Returns the executor to use for callbacks.

Returns The executor to use for callbacks. This will be the default callback executor if nul l was specified for
the callback executor when this PromiseFactory was created.

705.11.6.7 public Promise<T> failed(Throwable failure)

Type Parameters <T>

<T> The value type associated with the returned Promise.

failure The failure of the resolved Promise. Must not be nul l .

org.osgi.util.promise Promises Specification Version 1.2

Page 1424 OSGi Compendium Release 8

□ Returns a new Promise that has been resolved with the specified failure.

The returned Promise uses the callback executor and scheduled executor of this PromiseFactory ob-
ject.

Use this method instead of Promises.failed(Throwable) to create a Promise which uses executors
other than the default executors.

Returns A new Promise that has been resolved with the specified failure.

705.11.6.8 public static Executor inlineExecutor()

□ Returns an Executor implementation that executes tasks immediately on the thread calling the
Executor.execute method.

Returns An Executor implementation that executes tasks immediately on the thread calling the
Executor.execute method.

705.11.6.9 public Promise<T> resolved(T value)

Type Parameters <T>

<T> The value type associated with the returned Promise.

value The value of the resolved Promise.

□ Returns a new Promise that has been resolved with the specified value.

The returned Promise uses the callback executor and scheduled executor of this PromiseFactory ob-
ject.

Use this method instead of Promises.resolved(Object) to create a Promise which uses executors oth-
er than the default executors.

Returns A new Promise that has been resolved with the specified value.

705.11.6.10 public Promise<T> resolvedWith(CompletionStage<? extends T> with)

Type Parameters <T>

<T> The value type associated with the returned Promise.

with A CompletionStage whose result will be used to resolve the returned Promise. Must not be nul l .

□ Returns a new Promise that will be resolved with the result of the specified CompletionStage.

The returned Promise uses the callback executor and scheduled executor of this PromiseFactory ob-
ject.

If the specified CompletionStage is completed normally, the returned Promise is resolved with the
value of the specified CompletionStage. If the specified CompletionStage is completed exceptional-
ly, the returned Promise is resolved with the exception of the specified CompletionStage.

After the returned Promise is resolved with the specified CompletionStage, all registered callbacks
are called and any chained Promises are resolved. This may occur asynchronously to this method.

Resolving the returned Promise happens-before any registered callback is called. That is, in a regis-
tered callback, Promise.isDone() must return true and Promise.getValue() and Promise.getFailure()
must not block.

Returns A new Promise that will be resolved with the result of the specified CompletionStage.

Since 1.2

705.11.6.11 public Promise<T> resolvedWith(Promise<? extends T> with)

Type Parameters <T>

<T> The value type associated with the returned Promise.

Promises Specification Version 1.2 org.osgi.util.promise

OSGi Compendium Release 8 Page 1425

with A Promise whose value or failure must be used to resolve the returned Promise. Must not be nul l .

□ Returns a new Promise that will be resolved with the specified Promise.

The returned Promise uses the callback executor and scheduled executor of this PromiseFactory ob-
ject.

If the specified Promise is successfully resolved, the returned Promise is resolved with the value of
the specified Promise. If the specified Promise is resolved with a failure, the returned Promise is re-
solved with the failure of the specified Promise.

After the returned Promise is resolved with the specified Promise, all registered callbacks are called
and any chained Promises are resolved. This may occur asynchronously to this method.

Resolving the returned Promise happens-before any registered callback is called. That is, in a regis-
tered callback, Promise.isDone() must return true and Promise.getValue() and Promise.getFailure()
must not block.

Returns A new Promise that is resolved with the specified Promise.

Since 1.2

705.11.6.12 public ScheduledExecutorService scheduledExecutor()

□ Returns the scheduled executor to use for scheduled operations.

Returns The scheduled executor to use for scheduled operations. This will be the default scheduled executor
if nul l was specified for the scheduled executor when this PromiseFactory was created.

705.11.6.13 public Promise<T> submit(Callable<? extends T> task)

Type Parameters <T>

<T> The value type associated with the returned Promise.

task The task whose result will be available from the returned Promise.

□ Returns a new Promise that will hold the result of the specified task.

The returned Promise uses the callback executor and scheduled executor of this PromiseFactory ob-
ject.

The specified task will be executed on the callback executor.

Returns A new Promise that will hold the result of the specified task.

705.11.6.14 public Collector<Promise<S>, ?, Promise<List<T>>> toPromise()

Type Parameters <T, S extends T>

<T> The value type of the List value result of the collected all(Collection) Promise.

<S> The value type of the input Promises.

□ Returns a Collector that accumulates the results of the input Promises into a new all(Collection)
Promise.

Returns A Collector which accumulates the results of all the input Promises into a new all(Collection)
Promise.

Since 1.2

705.11.7 enum PromiseFactory.Option
Defines the options for a Promise factory.

The default options are no options unless the boolean system property
org.osgi .ut i l .promise.al lowCurrentThread is set to fa lse . When this is the case, the option
Option.CALLBACKS_EXECUTOR_THREAD is a default option.

org.osgi.util.promise Promises Specification Version 1.2

Page 1426 OSGi Compendium Release 8

Since 1.2

705.11.7.1 CALLBACKS_EXECUTOR_THREAD

Run callbacks on an executor thread. If this option is not set, callbacks added to a resolved Promise
may be immediately called on the caller's thread to avoid a thread context switch.

705.11.7.2 public static PromiseFactory.Option valueOf(String name)

705.11.7.3 public static PromiseFactory.Option[] values()

705.11.8 public class Promises
Static helper methods for Promises.

These methods return Promises which use the default callback executor and default scheduled ex-
ecutor. See PromiseFactory for similar methods which use executors other than the default execu-
tors.

See Also PromiseFactory

Concurrency Thread-safe

705.11.8.1 public static Promise<List<T>> all(Collection<Promise<S>> promises)

Type Parameters <T, S extends T>

<T> The value type of the List value associated with the returned Promise.

<S> A subtype of the value type of the List value associated with the returned Promise.

promises The Promises which must be resolved before the returned Promise must be resolved. Must not be
nul l and all of the elements in the collection must not be nul l .

□ Returns a new Promise that is a latch on the resolution of the specified Promises.

The returned Promise acts as a gate and must be resolved after all of the specified Promises are re-
solved.

Returns A Promise which uses the default callback executor and default scheduled executor that is resolved
only when all the specified Promises are resolved. The returned Promise must be successfully re-
solved with a List of the values in the order of the specified Promises if all the specified Promises are
successfully resolved. The List in the returned Promise is the property of the caller and is modifiable.
The returned Promise must be resolved with a failure of FailedPromisesException if any of the spec-
ified Promises are resolved with a failure. The failure FailedPromisesException must contain all of
the specified Promises which resolved with a failure.

See Also PromiseFactory.all(Collection)

705.11.8.2 public static Promise<List<T>> all(Promise<? extends T>... promises)

Type Parameters <T>

<T> The value type associated with the specified Promises.

promises The Promises which must be resolved before the returned Promise must be resolved. Must not be
nul l and all of the arguments must not be nul l .

□ Returns a new Promise that is a latch on the resolution of the specified Promises.

The new Promise acts as a gate and must be resolved after all of the specified Promises are resolved.

Returns A Promise which uses the default callback executor and scheduled executor that is resolved only
when all the specified Promises are resolved. The returned Promise must be successfully resolved
with a List of the values in the order of the specified Promises if all the specified Promises are suc-

Promises Specification Version 1.2 org.osgi.util.promise

OSGi Compendium Release 8 Page 1427

cessfully resolved. The List in the returned Promise is the property of the caller and is modifiable.
The returned Promise must be resolved with a failure of FailedPromisesException if any of the spec-
ified Promises are resolved with a failure. The failure FailedPromisesException must contain all of
the specified Promises which resolved with a failure.

See Also PromiseFactory.all(Collection)

705.11.8.3 public static Promise<T> failed(Throwable failure)

Type Parameters <T>

<T> The value type associated with the returned Promise.

failure The failure of the resolved Promise. Must not be nul l .

□ Returns a new Promise that has been resolved with the specified failure.

Returns A new Promise which uses the default callback executor and default scheduled executor that has
been resolved with the specified failure.

See Also PromiseFactory.failed(Throwable)

705.11.8.4 public static Promise<T> resolved(T value)

Type Parameters <T>

<T> The value type associated with the returned Promise.

value The value of the resolved Promise.

□ Returns a new Promise that has been resolved with the specified value.

Returns A new Promise which uses the default callback executor and default scheduled executor that has
been resolved with the specified value.

See Also PromiseFactory.resolved(Object)

705.11.9 public interface Success<T, R>
<T> The value type of the resolved Promise passed as input to this callback.

<R> The value type of the returned Promise from this callback.

Success callback for a Promise.

A Success callback is registered with a Promise using the Promise.then(Success) method and is
called if the Promise is resolved successfully.

This is a functional interface and can be used as the assignment target for a lambda expression or
method reference.

Concurrency Thread-safe

705.11.9.1 public Promise<R> call(Promise<T> resolved) throws Exception

resolved The successfully resolved Promise.

□ Success callback for a Promise.

This method is called if the Promise with which it is registered resolves successfully.

In the remainder of this description we will refer to the Promise returned by this method as the re-
turned Promise and the Promise returned by Promise.then(Success) when this Success callback was
registered as the chained Promise.

If the returned Promise is nul l then the chained Promise must resolve immediately with a success-
ful value of nul l . If the returned Promise is not nul l then the chained Promise must be resolved when
the returned Promise is resolved.

org.osgi.util.function Promises Specification Version 1.2

Page 1428 OSGi Compendium Release 8

Returns The Promise to use to resolve the chained Promise, or nul l if the chained Promise is to be resolved
immediately with the value nul l .

Throws Exception– The chained Promise must be failed with the thrown exception.

705.11.10 public class TimeoutException
extends Exception
Timeout exception for a Promise.

Since 1.1

705.11.10.1 public TimeoutException()

□ Create a new TimeoutException .

705.12 org.osgi.util.function

Function Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .ut i l .function; vers ion="[1.2,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .ut i l .function; vers ion="[1.2,1 .3)"

705.12.1 Summary

• Consumer - A function that accepts a single argument and produces no result.
• Function - A function that accepts a single argument and produces a result.
• Predicate - A predicate that accepts a single argument and produces a boolean result.
• Suppl ier - A function that produces a result.

705.12.2 public interface Consumer<T>
<T> The type of the function input.

A function that accepts a single argument and produces no result.

This is a functional interface and can be used as the assignment target for a lambda expression or
method reference.

Since 1.1

Concurrency Thread-safe

705.12.2.1 public void accept(T t) throws Exception

t The input to this function.

□ Applies this function to the specified argument.

Throws Exception– An exception thrown by the method.

705.12.2.2 public Consumer<T> andThen(Consumer<? super T> after)

after The Consumer to be called after this Consumer is called. Must not be nul l .

Promises Specification Version 1.2 org.osgi.util.function

OSGi Compendium Release 8 Page 1429

□ Compose the specified Consumer to be called after this Consumer .

Returns A Consumer composed of this Consumer and the specified Consumer .

705.12.2.3 public static Consumer<T> asConsumer(Consumer<T> wrapped)

Type Parameters <T>

<T> The type of the function input.

wrapped The java.ut i l .function.Consumer to wrap. Must not be nul l .

□ Returns a Consumer which wraps a java.ut i l .function.Consumer .

Returns A Consumer which wraps the specified java.ut i l .function.Consumer .

705.12.2.4 public static Consumer<T> asJavaConsumer(Consumer<T> wrapped)

Type Parameters <T>

<T> The type of the function input.

wrapped The Consumer to wrap. Must not be nul l .

□ Returns a java.ut i l .function.Consumer which wraps the specified Consumer and throws any thrown
exceptions.

The returned java.ut i l .function.Consumer will throw any exception thrown by the wrapped Con-
sumer .

Returns A java.ut i l .function.Consumer which wraps the specified Consumer .

705.12.2.5 public static Consumer<T> asJavaConsumerIgnoreException(Consumer<T> wrapped)

Type Parameters <T>

<T> The type of the function input.

wrapped The Consumer to wrap. Must not be nul l .

□ Returns a java.ut i l .function.Consumer which wraps the specified Consumer and discards any
thrown Exception s.

The returned java.ut i l .function.Consumer will discard any Exception thrown by the wrapped Con-
sumer .

Returns A java.ut i l .function.Consumer which wraps the specified Consumer .

705.12.3 public interface Function<T, R>
<T> The type of the function input.

<R> The type of the function output.

A function that accepts a single argument and produces a result.

This is a functional interface and can be used as the assignment target for a lambda expression or
method reference.

Concurrency Thread-safe

705.12.3.1 public Function<T, S> andThen(Function<? super R, ? extends S> after)

Type Parameters <S>

<S> The type of the value supplied by the specified Function .

after The Function to be called on the value returned by this Function . Must not be nul l .

□ Compose the specified Function to be called on the value returned by this Function .

org.osgi.util.function Promises Specification Version 1.2

Page 1430 OSGi Compendium Release 8

Returns A Function composed of this Function and the specified Function .

705.12.3.2 public R apply(T t) throws Exception

t The input to this function.

□ Applies this function to the specified argument.

Returns The output of this function.

Throws Exception– An exception thrown by the method.

705.12.3.3 public static Function<T, R> asFunction(Function<T, R> wrapped)

Type Parameters <T, R>

<T> The type of the function input.

<R> The type of the function output.

wrapped The java.ut i l .function.Function to wrap. Must not be nul l .

□ Returns a Function which wraps the specified java.ut i l .function.Function .

Returns A Function which wraps the specified java.ut i l .function.Function .

705.12.3.4 public static Function<T, R> asJavaFunction(Function<T, R> wrapped)

Type Parameters <T, R>

<T> The type of the function input.

<R> The type of the function output.

wrapped The Function to wrap. Must not be nul l .

□ Returns a java.ut i l .function.Function which wraps the specified Function and throws any thrown
exceptions.

The returned java.ut i l .function.Function will throw any exception thrown by the wrapped Func-
t ion .

Returns A java.ut i l .function.Function which wraps the specified Function .

705.12.3.5 public static Function<T, R> asJavaFunctionOrElse(Function<T, R> wrapped, R orElse)

Type Parameters <T, R>

<T> The type of the function input.

<R> The type of the function output.

wrapped The Function to wrap. Must not be nul l .

orElse The value to return if the specified Function throws an Exception .

□ Returns a java.ut i l .function.Function which wraps the specified Function and the specified value.

If the the specified Function throws an Exception , the the specified value is returned.

Returns A java.ut i l .function.Function which wraps the specified Function and the specified value.

705.12.3.6 public static Function<T, R> asJavaFunctionOrElseGet(Function<T, R> wrapped, Supplier<? extends R>
orElseGet)

Type Parameters <T, R>

<T> The type of the function input.

<R> The type of the function output.

wrapped The Function to wrap. Must not be nul l .

Promises Specification Version 1.2 org.osgi.util.function

OSGi Compendium Release 8 Page 1431

orElseGet The java.ut i l .function.Suppl ier to call for a return value if the specified Function throws an Excep-
t ion .

□ Returns a java.ut i l .function.Function which wraps the specified Function and the specified
java.ut i l .function.Suppl ier .

If the the specified Function throws an Exception , the value returned by the specified
java.ut i l .function.Suppl ier is returned.

Returns A java.ut i l .function.Function which wraps the specified Function and the specified
java.ut i l .function.Suppl ier .

705.12.3.7 public Function<S, R> compose(Function<? super S, ? extends T> before)

Type Parameters <S>

<S> The type of the value consumed the specified Function .

before The Function to be called to supply a value to be consumed by this Function . Must not be nul l .

□ Compose the specified Function to be called to supply a value to be consumed by this Function .

Returns A Function composed of this Function and the specified Function .

705.12.4 public interface Predicate<T>
<T> The type of the predicate input.

A predicate that accepts a single argument and produces a boolean result.

This is a functional interface and can be used as the assignment target for a lambda expression or
method reference.

Concurrency Thread-safe

705.12.4.1 public Predicate<T> and(Predicate<? super T> and)

and The Predicate to be called after this Predicate is called. Must not be nul l .

□ Compose this Predicate logical-AND the specified Predicate .

Short-circuiting is used, so the specified Predicate is not called if this Predicate returns fa lse .

Returns A Predicate composed of this Predicate and the specified Predicate using logical-AND.

705.12.4.2 public static Predicate<T> asJavaPredicate(Predicate<T> wrapped)

Type Parameters <T>

<T> The type of the predicate input.

wrapped The Predicate to wrap. Must not be nul l .

□ Returns a java.ut i l .function.Predicate which wraps the specified Predicate and throws any thrown
exceptions.

The returned java.ut i l .function.Predicate will throw any exception thrown by the wrapped Predi-
cate .

Returns A java.ut i l .function.Predicate which wraps the specified Predicate .

705.12.4.3 public static Predicate<T> asJavaPredicateOrElse(Predicate<T> wrapped, boolean orElse)

Type Parameters <T>

<T> The type of the predicate input.

wrapped The Predicate to wrap. Must not be nul l .

orElse The value to return if the specified Predicate throws an Exception .

org.osgi.util.function Promises Specification Version 1.2

Page 1432 OSGi Compendium Release 8

□ Returns a java.ut i l .function.Predicate which wraps the specified Predicate and the specified value.

If the the specified Predicate throws an Exception , the the specified value is returned.

Returns A java.ut i l .function.Predicate which wraps the specified Predicate and the specified value.

705.12.4.4 public static Predicate<T> asJavaPredicateOrElseGet(Predicate<T> wrapped, BooleanSupplier orElseGet)

Type Parameters <T>

<T> The type of the predicate input.

wrapped The Predicate to wrap. Must not be nul l .

orElseGet The java.ut i l .function.BooleanSuppl ier to call for a return value if the specified Predicate throws an
Exception .

□ Returns a java.ut i l .function.Predicate which wraps the specified Predicate and the specified
java.ut i l .function.BooleanSuppl ier .

If the the specified Predicate throws an Exception , the value returned by the specified
java.ut i l .function.BooleanSuppl ier is returned.

Returns A java.ut i l .function.Predicate which wraps the specified Predicate and the specified
java.ut i l .function.BooleanSuppl ier .

705.12.4.5 public static Predicate<T> asPredicate(Predicate<T> wrapped)

Type Parameters <T>

<T> The type of the predicate input.

wrapped The java.ut i l .function.Predicate to wrap. Must not be nul l .

□ Returns a Predicate which wraps the specified java.ut i l .function.Predicate .

Returns A Predicate which wraps the specified java.ut i l .function.Predicate .

705.12.4.6 public Predicate<T> negate()

□ Return a Predicate which is the negation of this Predicate .

Returns A Predicate which is the negation of this Predicate .

705.12.4.7 public Predicate<T> or(Predicate<? super T> or)

or The Predicate to be called after this Predicate is called. Must not be nul l .

□ Compose this Predicate logical-OR the specified Predicate .

Short-circuiting is used, so the specified Predicate is not called if this Predicate returns true .

Returns A Predicate composed of this Predicate and the specified Predicate using logical-OR.

705.12.4.8 public boolean test(T t) throws Exception

t The input to this predicate.

□ Evaluates this predicate on the specified argument.

Returns true if the specified argument is accepted by this predicate; fa lse otherwise.

Throws Exception– An exception thrown by the method.

705.12.5 public interface Supplier<T>
<T> The type of the function output.

A function that produces a result.

Promises Specification Version 1.2 org.osgi.util.function

OSGi Compendium Release 8 Page 1433

This is a functional interface and can be used as the assignment target for a lambda expression or
method reference.

Concurrency Thread-safe

705.12.5.1 public static Supplier<T> asJavaSupplier(Supplier<T> wrapped)

Type Parameters <T>

<T> The type of the function output.

wrapped The Suppl ier to wrap. Must not be nul l .

□ Returns a java.ut i l .function.Suppl ier which wraps the specified Suppl ier and throws any thrown ex-
ceptions.

The returned java.ut i l .function.Suppl ier will throw any exception thrown by the wrapped Suppl ier .

Returns A java.ut i l .function.Suppl ier which wraps the specified Suppl ier .

705.12.5.2 public static Supplier<T> asJavaSupplierOrElse(Supplier<T> wrapped, T orElse)

Type Parameters <T>

<T> The type of the function output.

wrapped The Suppl ier to wrap. Must not be nul l .

orElse The value to return if the specified Suppl ier throws an Exception .

□ Returns a java.ut i l .function.Suppl ier which wraps the specified Suppl ier and the specified value.

If the the specified Suppl ier throws an Exception , the the specified value is returned.

Returns A java.ut i l .function.Suppl ier which wraps the specified Suppl ier and the specified value.

705.12.5.3 public static Supplier<T> asJavaSupplierOrElseGet(Supplier<T> wrapped, Supplier<? extends T> orElseGet)

Type Parameters <T>

<T> The type of the function output.

wrapped The Suppl ier to wrap. Must not be nul l .

orElseGet The java.ut i l .function.Suppl ier to call for a return value if the specified Suppl ier throws an Excep-
t ion .

□ Returns a java.ut i l .function.Suppl ier which wraps the specified Suppl ier and the specified
java.ut i l .function.Suppl ier .

If the the specified Suppl ier throws an Exception , the value returned by the specified
java.ut i l .function.Suppl ier is returned.

Returns A java.ut i l .function.Suppl ier which wraps the specified Suppl ier and the specified
java.ut i l .function.Suppl ier .

705.12.5.4 public static Supplier<T> asSupplier(Supplier<T> wrapped)

Type Parameters <T>

<T> The type of the function output.

wrapped The java.ut i l .function.Suppl ier to wrap. Must not be nul l .

□ Returns a Suppl ier which wraps the specified java.ut i l .function.Suppl ier .

Returns A Suppl ier which wraps the specified java.ut i l .Suppl ier.Function .

705.12.5.5 public T get() throws Exception

□ Returns a value.

References Promises Specification Version 1.2

Page 1434 OSGi Compendium Release 8

Returns The output of this function.

Throws Exception– An exception thrown by the method.

705.13 References

[1] JavaScript Promises
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

[2] JavaScript Promises
https://web.dev/promises/

[3] ECMAScript® 2022 Language Specification
https://tc39.es/ecma262/#sec-promise-objects

[4] Monad
https://en.wikipedia.org/wiki/Monad_%28functional_programming%29

[5] Function Interfaces
https://docs.oracle.com/javase/specs/jls/se8/html/jls-9.html#jls-9.8

705.14 Changes
• Added support for resolving a Promise with a CompletionStage,

resolvedWith(CompletionStage) and resolveWith(CompletionStage) , and creating a Comple-
tionStage resolved by a Promise, toCompletionStage() .

• The PromiseFactory class has a new constructor,
PromiseFactory(Executor,ScheduledExecutorService,Option. . .) , which allows the caller to spec-
ify PromiseFactory.Options. The option CALLBACKS_EXECUTOR_THREAD specifies to run call-
backs on an executor thread. If this option is not set, callbacks added to a resolved promise may
be immediately called on the caller's thread to avoid a thread context switch.

• Added the resolvedWith(Promise) method which can be used to return a new Promise that will
be resolved with a specified promise.

• Added the toPromise() method which returns a Collector which can be used on a Stream of
Promises to collect the results of the Promises into a latch using the al l (Col lect ion) method as
the finisher.

• Updated org.osgi .ut i l .function package to add Suppl ier interface as well as a number of static
methods to support interoperation with the java.ut i l .function equivalents.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://web.dev/promises/
https://tc39.es/ecma262/#sec-promise-objects
https://en.wikipedia.org/wiki/Monad_%28functional_programming%29
https://docs.oracle.com/javase/specs/jls/se8/html/jls-9.html#jls-9.8

Push Stream Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 1435

706 Push Stream Specification

Version 1.0

706.1 Introduction
In large-scale distributed systems events are a commonly used communication mechanism for pass-
ing data and triggering behaviors. Events are typically generated asynchronously rather than at the re-
quest of the processing system, and once received an event usually undergoes some level of transfor-
mation before being stored, acted upon, or forwarded to another consumer.

Pipelines and streams are a popular and effective model for consuming and processing events, with
numerous APIs providing this sort of model. One of the most well-known processing pipeline APIs
is the Java 8 Streams API, which provides a functional pipeline for operating on Collections. The
Streams API is inherently pull based” as it relies on iterators and spliterators to pull the next entry
from the stream. This is the primary difference between synchronous and asynchronous models. In
an asynchronous world events are pushed into the pipeline as they are received.

This specification defines a PushStream API which can be used on devices which support the Java 8
compact1 profile. The PushStream API defined by this specification depends on OSGi Promises but
is independent of all other OSGi specifications, including the OSGi Framework, and thus can be eas-
ily used outside of the OSGi environment.

A PushStream object encapsulates a pipeline of a potentially asynchronous tasks which will be per-
formed when an event arrives. The result of the processing pipeline is represented using a Promise
object which will resolve when the result has been calculated.

PushStream capture the effects of errors, finite streams and back pressure by making these explicit
in the API signatures. Errors and End of Stream conditions are represented by specific events which
are pushed into the stream. Back pressure is represented by a delay value returned from the event
pipeline stages.

706.1.1 Essentials

• Common concepts - The API is inspired by the Streams API in Java 8 and uses the same basic con-
cepts. See [1] Java 8 Stream API.

• Independent - The design is independent of all other OSGi specifications (except for OSGi Promis-
es) and can be used outside of an OSGi environment.

• Asynchronous - The design is built to handle asynchronously produced events.
• Back Pressure - The design provides a means for event pipelines to communicate back-pressure to

the Event Source.
• Complete - The design provides a very complete set of operations for PushStreams which are

primitives that can be used to address most use cases.
• Generified - Generics are used to promote type safety.

706.1.2 Entities

• Push Event Source - A PushEventSource object represents a source of asynchronous events, and
can be used to create a PushStream.

Asynchronous Event Streams Push Stream Specification Version 1.0

Page 1436 OSGi Compendium Release 8

• Push Event Consumer - A Push Event Consumer object represents a sink for asynchronous events,
and can be attached to a PushEventSource or a PushStream.

• Push Stream - A PushStream object represents a pipeline for processing asynchronous events.
• Terminal Operation - The final operation of a PushStream pipeline results in a Promise which rep-

resents the completion state of the pipeline. The operation also begins the processing of events.

706.2 Asynchronous Event Streams
The Push Stream API is built upon the principals of Asynchronous Event streams, and therefore re-
quires three basic primitives:

• An event object
• A source of event objects
• A consumer of event objects

706.2.1 The Push Event
The PushEvent is an object representing an event. Every Push Event has an event type, which has
one of three values:

• DATA - A data event encapsulates a typed object
• ERROR - An error event encapsulates an exception and indicates a failure in the event stream.
• CLOSE - A close event represents the end of the stream of events.

An event stream consists of zero or more data events followed by a terminal event. A terminal event
is either an error or a close, and it indicates that there will be no more events in this stream. Depend-
ing on the reason for the terminal event it may be possible to re-attach to the event source and con-
sume more events.

706.2.2 The Push Event Source
A Push Event Source object represents a source of asynchronous Push Events. The event source de-
fines a single method open(PushEventConsumer) which can be used to connect to the source and
begin receiving a stream of events.

The open method of the Push Event Source returns an AutoCloseable which can be used to close the
event stream. If the close method is called on this object then the stream is terminated by sending a
close event. If additional calls are made to the close method then they return without further action.

706.2.3 The Push Event Consumer
A Push Event Consumer object represents a sink for asynchronous Push Events. The event con-
sumer defines a single method accept(PushEvent) which can be used to receive a stream of events.

The accept method of the Push Event Consumer returns a long representing back pressure. Back pres-
sure is described in detail in Back pressure on page 1442. If the returned long is negative then the
event stream should be closed by the event source.

706.2.4 Closing the Event Stream
There are three ways in which a stream of events can complete normally.

• The Push Event Source may close the stream at any time by sending a terminal event to the con-
sumer. Upon receiving a terminal event the consumer should clean up any resources and not ex-
pect to receive further messages. Note that in a multi-threaded system the consumer may receive
events out of order, and in this case data events may be received after a terminal event. Event
processors should be careful to ignore data events that occur after terminal events, and to ensure

Push Stream Specification Version 1.0 The Push Stream

OSGi Compendium Release 8 Page 1437

that any downstream consumers receive any pending data events before forwarding the terminal
event.

• The open method of the Push Event Source returns an AutoCloseable which can be used to close
the event stream. If the close method is called on this object then the stream is terminated by
sending a close event. If additional calls are made to the close method then they return without
action. If the close method is called after a terminal event has been sent for any other reason then
it must return without action.

• The accept method of the Push Event Consumer returns a long indicating back pressure. If the
long is negative then the event source must close the stream by sending a close event.

706.3 The Push Stream
Simple event passing can be achieved by connecting a Push Event Consumer directly to a Push
Event Source, however this model forces a large amount of flow-control and resource manage-
ment into a single location. Furthermore it is difficult to reuse business logic across different event
streams.

The PushStream provides a powerful, flexible pipeline for event processing. The Push Stream API
shares many concepts with the Java 8 Streams API, in particular Push Streams are lazy, they may not
consume the entire event stream, and they can be composed from functional steps.

706.3.1 Simple Pipelines
A Push Stream can be created from a Push Event Source by using a PushStreamProvider . A Push
Stream represents a stage in an event processing pipeline. The overall pipeline is constructed from
zero or more intermediate operations, and completed with a single terminal operation.

Each intermediate operation returns a new Push Stream object chained to the previous pipeline
step. Once a Push Stream object has had an intermediate operation invoked on it then it may not
have any other operations chained to it. Terminal operations are either void, or return a Promise rep-
resenting the future result of the pipeline. These API patterns allow Push Streams to be built using a
fluent API.

Push Stream instances are lazy, and so the Push Stream will not be connected to the Push Event
Source until a terminal operat ion is invoked on the Push Stream. This means that a push stream ob-
ject can be safely built without events being received when the pipeline is partially initialized.

706.3.1.1 Mapping, Flat Mapping and Filtering

The simplest intermediate operations on a Push Stream are mapping and filtering. These operations
use stateless, non-interfering functions to alter the data received by the next stage in the pipeline.

706.3.1.1.1 Mapping

Mapping is the act of transforming an event from one type into another. This may involve taking a
field from the object, or performing some simple processing on it. When mapping there is an one to
one relationship between input and output events, that is, each input event is mapped to exactly one
output event.

 PushStream<String> streamOfStrings = getStreamOfStrings();

 PushStream<Integer> streamOfLengths =
 streamOfStrings.map(String::length);

If the mapping function throws an Exception then an Error Event is propagated down the stream
to the next pipeline step. The failure in the error event is set to the Exception thrown by the map-
ping function. The current pipeline step is also closed, and the close operation is propagated back

The Push Stream Push Stream Specification Version 1.0

Page 1438 OSGi Compendium Release 8

upstream to the event source by closing previous pipeline stages. Any subsequently received events
must not be propagated and must return negative back pressure.

706.3.1.1.2 Flat Mapping

Flat Mapping is the act of transforming an event from one type into multiple events of another type.
This may involve taking fields from an object, or performing some simple processing on it. When
flat mapping there is a one to many relationship between input and output events, that is, each input
event is mapped to zero or more output events.

A flat mapping function should asynchronously consume the event data and return a Push Stream
containing the flow of subsequent events.

 PushStream<String> streamOfStrings = getStreamOfStrings();

 PushStream<Character> streamOfCharacters =
 streamOfStrings.flatMap(s -> {
 SimplePushEventSource<Character> spes =
 getSimplePushEventSource();

 spes.connectPromise()
 .onResolve(() ->
 executor.execute(() -> {
 for(int i = 0; i < s.length; i++) {
 spes.publish(s.charAt(i));
 }
 });
 return pushStreamProvider.createStream(spes);
 });

If the flat mapping function throws an Exception then an Error Event is propagated down the
stream to the next pipeline step. The failure in the error event is set to the Exception thrown by the
mapping function. The current pipeline step is also closed, and the close operation is propagated
back upstream to the event source by closing previous pipeline stages. Any subsequently received
events must not be propagated and must return negative back pressure.

706.3.1.1.3 Filtering

Filtering is the act of removing events from the stream based on some characteristic of the event
data. This may involve inspecting the fields of the data object, or performing some simple process-
ing on it. If the filter function returns true for an event then it will be passed to the next stage of
the pipeline. If the filter function returns false then it will be discarded, and not passed to the next
pipeline stage.

 PushStream<String> streamOfStrings = getStreamOfStrings();

 PushStream<String> filteredStrings =
 streamOfStrings.filter(s -> s.length() == 42);

If the filtering function throws an Exception then an Error Event is propagated down the stream to
the next pipeline step. The failure in the error event is set to the Exception thrown by the filter func-
tion. The current pipeline step is also closed, and the close operation is propagated back upstream to
the event source by closing previous pipeline stages. Any subsequently received events must not be
propagated and must return negative back pressure.

706.3.1.1.4 Asynchronous Mapping

Mapping operations may sometimes take time to calculate their results. PushStream operations
should, in general be fast and non-blocking and so long-running mapping operations should be run

Push Stream Specification Version 1.0 The Push Stream

OSGi Compendium Release 8 Page 1439

on a separate thread. The asyncMap(int , int ,Function) operation allows the mapping function to re-
turn a Promise representing the ongoing calculation of the mapped value. When this promise re-
solves then its value will be passed to the next pipeline stage.

As asynchronous mapping operations are long-running they require back pressure to be generated
as the number of running operations increases. The amount of back pressure returned is equal to
the number of pending promises (aside from the mapping operation that has just started) plus the
number of waiting threads if the maximum number of concurrent promises has been reached. The
returned back pressure when only a single promise is running is therefore always zero.

706.3.1.2 Stateless and Stateful Intermediate Operations

Intermediate operations are either stateless or stateful. Stateless operations are ones where the
pipeline stage does not need to remember the previous data from the stream. Mapping, Flat Map-
ping and Filtering are all stateless operations. The following table lists the stateless operations on
the Push Stream.

Table 706.1 Stateless Intermediate Operations on the Push Stream

Intermediate Operation Description
adjustBackPressure(LongUnaryOperator)

adjustBackPressure(ToLongBiFunction)

Register a transformation function to adjust the back pressure
returned by the previous entry in the stream. The result of this
function will be returned as back pressure.

asyncMap(int , int ,Function) Register a mapping function which will asynchronously calcu-
late the value to be passed to the next stage of the stream. The re-
turned back pressure is equal to one less than the number of out-
standing promises, plus the number of queued threads, multi-
plied by the delay value.

f i l ter(Predicate) Register a selection function to be called with each data event in
the stream. If the function returns true then the event will propa-
gated, if fa lse then the event will dropped from the stream.

f latMap(Function) Register a transformation function to be called with each data
event in the stream. Each incoming data element is converted in-
to a stream of elements. The transformed data is then propagated
to the next stage of the stream.

fork(int , int ,Executor) Pushes event processing onto one or more threads in the supplied
Executor returning a fixed back pressure

map(Function) Register a transformation function to be called with each data
event in the stream. The transformed data is propagated to the
next stage of the stream.

merge(PushStream) Merges this stream and another stream into a single stream. The
returned stream will not close until both parent streams are
closed.

sequential() Forces data events to be delivered sequentially to the next stage of
the stream. Events may be delivered on multiple threads, but will
not arrive concurrently at the next stage of the pipeline.

spl it(Predicate. . .) Register a set of filter functions to select elements that should be
forwarded downstream. The returned streams correspond to the
supplied filter functions.

Stateful operations differ from stateless operations in that they must remember items from the
stream. Sometimes stateful operations must remember large numbers of events, or even the entire
stream. For example the dist inct operation remembers the identity of each entry in the stream, and
filters out duplicate events.

Care should be taken when using Stateful operations with large or infinite streams. For example
the sorted operation must process the entire stream until it receives a close event. At this point the

The Push Stream Push Stream Specification Version 1.0

Page 1440 OSGi Compendium Release 8

events can be sorted and delivered in order. It is usually a good idea to use the l imit operation to re-
strict the length of the stream before performing a stateful operation which must remember many
elements.

The following table lists all of the stateful operations of the PushStream.

Table 706.2 Stateful Intermediate Operations on the Push Stream

Intermediate Operation Description
buffer() Introduces a buffer before the next stage of the stream. The buffer

can be used to provide a circuit breaker, or to allow a switch of
consumer thread(s).

bui ldBuffer() Introduces a configurable buffer before the next stage of the
stream. The buffer can be used to provide a circuit breaker, or to
allow a switch of consumer thread(s).

coalesce(Function)

coalesce(int ,Function)

coalesce(IntSuppl ier,Function)

Register a coalescing function which aggregates one or more da-
ta events into a single data event which will be passed to the next
stage of the stream.

The number of events to be accumulated is either provided as a
fixed number, or as the result of a function

dist inct() A variation of f i l ter(Predicate) which drops data from the stream
that has already been seen. Specifically if a data element equals
an element which has previously been seen then it will be
dropped. This stateful operation must remember all data that has
been seen.

l imit(long) Limits the length of the stream to the defined number of ele-
ments. Once that number of elements are received then a close
event is propagated to the next stage of the stream.

l imit(Durat ion) Limits the time that the stream will remain open to the supplied
Duration . Once that time has elapsed then a close event is propa-
gated to the next stage of the stream.

skip(long) Drops the supplied number of data events from the stream and
then forwards any further data events.

sorted()

sorted(Comparator)

Remembers all items in the stream until the stream ends. At this
point the data in the stream will be propagated to the next stage
of the stream, either in the Natural Ordering of the elements, or
in the order defined by the supplied Comparator.

t imeout(Duration) Tracks the time since the last event was received. If no event is re-
ceived within the supplied Duration then an error event is propa-
gated to the next stage of the stream. The exception in the event
will be an org.osgi .ut i l .promise.TimeoutException .

window(Duration,Function)

window(Duration,Executor,Function)

window(Suppl ier, IntSuppl ier,BiFunction)

window(Suppl ier, IntSuppl ier,Executor,BiFunction)

Collects events over the specified time-limit, passing them to the
registered handler function. If no events occur during the time
limit then a Collection containing no events is passed to the han-
dler function.

706.3.1.3 Terminal Operations

Terminal operations mark the end of a processing pipeline. Invoking a terminal operation causes
the PushStream to connect to its underlying event source and begin processing.

The simplest terminal operation is the count() operation. This method returns a promise that will
resolve when the stream finishes. If the stream finishes with a close event then the promise will

Push Stream Specification Version 1.0 The Push Stream

OSGi Compendium Release 8 Page 1441

resolve with a Long representing the number of events that reached the end of the pipeline. If the
stream finishes with an error then the promise will fail with that error.

Terminal operations such as forEachEvent(PushEventConsumer) are passed a handler function
which will be called for each piece of data that reaches the end of the stream. If the handler function
throws an Exception then the Promise returned by the terminal operation must fail with the Excep-
tion thrown by the handler function.

Some terminal operations, like count require the full stream to be processed, others are able to fin-
ish before the end of the stream. These are known as short circuiting operations. An example of a
short-circuiting operation is f indFirst() . This operation resolves the promise with the first event
that is received by the end of the pipeline. Once a short-circuiting operation has completed it prop-
agates negative back-pressure through the pipeline to close the source of events. Any subsequent-
ly received events must not affect the result and must return negative back pressure. If an asynchro-
nous pipeline step is encountered, such as a buffer, the close operation is propagated back upstream
to the event source by closing previous pipeline stages.

Table 706.3 Non Short Circuiting Terminal Operations on the Push Stream

Terminal Operation Description
col lect(Col lector) Uses the Java Collector API to collect the data from events into a

single Collection, Map, or other type.
count() Counts the number of events that reach the end of the stream

pipeline.
forEach(Consumer) Register a function to be called back with the data from each

event in the stream
forEachEvent(PushEventConsumer) Register a PushEventConsumer to be called back with each event

in the stream. If negative back-pressure is returned then the
stream will be closed.

max(Comparator) Uses a Comparator to find the largest data element in the stream
of data. The promise is resolved with the final result when the
stream finishes.

min(Comparator) Uses a Comparator to find the smallest data element in the
stream of data. The promise is resolved with the final result when
the stream finishes.

reduce(BinaryOperator)

reduce(T,BinaryOperator)

reduce(U,BiFunction,BinaryOperator)

Uses a Binary Operator function to combine event data into a sin-
gle object. The promise is resolved with the final result when the
stream finishes.

toArray()

toArray(IntFunction)

Collects together all of the event data in a single array which is
used to resolve the returned promise.

Table 706.4 Short Circuiting Terminal Operations on the Push Stream

Terminal Operation Description
al lMatch(Predicate) Resolves with fa lse if any event reaches the end of the stream

pipeline that does not match the predicate. If the stream ends
without any data matching the predicate then the promise re-
solves with true

anyMatch(Predicate) Resolves with true if any data event reaches the end of the stream
pipeline and matches the supplied predicate. If the stream ends
without any data matching the predicate then the promise re-
solves with fa lse

The Push Stream Push Stream Specification Version 1.0

Page 1442 OSGi Compendium Release 8

Terminal Operation Description
f indAny() Resolves with an Optional representing the data from the first

event that reaches the end of the pipeline. If the stream ends
without any data reaching the end of the pipeline then the
promise resolves with an empty Optional.

f indFirst() Resolves with an Optional representing the data from the first
event that reaches the end of the pipeline. If the stream ends
without any data reaching the end of the pipeline then the
promise resolves with an empty Optional.

noneMatch(Predicate) Resolves with fa lse if any data event reaches the end of the stream
pipeline and matches the supplied predicate. If the stream ends
without any data matching the predicate then the promise re-
solves with true

706.3.2 Buffering, Back pressure and Circuit Breakers
Buffering and Back Pressure are an important part of asynchronous stream processing. Back pres-
sure and buffering are therefore an important part of the push stream API.

706.3.2.1 Back pressure

In a synchronous model the producer's thread is held by the consumer until the consumer has fin-
ished processing the data. This is not true for asynchronous systems, and so a producer can easily
overwhelm a consumer with data. Back pressure is therefore used in asynchronous systems to allow
consumers to control the speed at which producers provide data.

Back pressure in the asynchronous event processing model is provided by the PushEventConsumer.
The value returned by the accept method of the PushEventConsumer is an indication of the request-
ed back pressure. A return of zero indicates that event delivery may continue immediately. A posi-
tive return value indicates that the source should delay sending any further events for the requested
number of milliseconds. A negative return value indicates that no further events should be sent and
that the stream can be closed.

Back pressure in a Push Stream can also be applied mid-way through the process-
ing pipeline through the use of the adjustBackPressure(LongUnaryOperator) or
adjustBackPressure(ToLongBiFunction) methods. These methods can be used to increase or decrease
the back pressure requested by later stages of the pipeline.

706.3.2.2 Buffering

In asynchronous systems events may be produced and consumed at different rates. If the consumer
is faster than the producer then there is no issue, however if the producer is faster than the con-
sumer then events must be held somewhere. Back pressure provides some assistance here, howev-
er some sources do not have control over when events are produced. In these cases the data must be
buffered until it can be processed.

As well as providing a queue for pending work, introducing buffers allows event processing to be
moved onto a different thread, and for the number of processing threads to be changed part way
through the pipeline. Buffering can therefore protect an PushEventSource from having its event
generation thread “stolen” by a consumer which executes a long running operation. As a result the
PushEventSource can be written more simply, without a thread switch, if a buffer is used.

Buffering also provides a “fire break” for back-pressure. Back-pressure return values propagate back
along a PushStream until they reach a part of the stream that is able to respond. For some PushEven-
tSource implementations it is not possible to slow or delay event generation, however a buffer can
always respond to back pressure by not releasing events from the buffer. Buffers can therefore be
used to “smooth out” sources that produce bursts of events more quickly than they can be immedi-
ately processed. This simplifies the creation of PushEventConsumer instances, which can rely on
their back-pressure requests being honored.

Push Stream Specification Version 1.0 The Push Stream

OSGi Compendium Release 8 Page 1443

Buffering is provided by the Push Stream using default configuration values, either when creating
the Push Stream from the Push Stream Provider, or using the buffer method. These defaults are de-
scribed in Building a Buffer or Push Stream on page 1443.

The default configuration values can be overridden by using a BufferBui lder to explicitly provide the
buffering parameters. If no Executor is provided then the PushStream will create its own internal
Executor with the same number of threads as the defined parallelism. An internally created Execu-
tor will be shut down when the PushStream is closed.

706.3.2.3 Buffering policies

Buffering policies govern the behavior of a buffer as it becomes full.

The QueuePol icy of the buffer determines what happens when the queue becomes full. Different
policies may discard incoming data, evict data from the buffer, block, or throw an exception.

The QueuePol icyOption provides basic implementations of the queue policies, but custom polices
can be implemented to provide more complex behaviors.

The PushbackPol icy of the buffer determines how much back pressure is requested by the buffer.
Different policies may return a constant value, slowly increase the back pressure as the buffer fills,
or return an exponentially increasing value when the buffer is full.

The PushbackPol icyOption provides basic implementations of the push back policies, but custom
polices can be implemented to provide more complex behaviors.

706.3.2.4 Building a Buffer or Push Stream

The PushStreamBui lder can be obtained from a Push Stream Provider and used to customize the
buffer at the start of the PushStream, or it can be used to create an unbuffered PushStream. An un-
buffered PushStream uses the incoming event delivery thread to process the events, and therefore
users must be careful not to block the thread, or perform long-running tasks. The default configura-
tion building a Push Stream is as follows:

• A parallelism of one
• A FAIL queue policy
• A LINEAR push back policy with a maximum push back of one second
• A Buffer with a capacity of 32 elements

A Push Stream also requires a timer and an executor. For a new Push Stream the Push Stream
Provider must create a new fixed pool of worker threads with the same size as the parallelism. The
Push Stream Provider may create a new ScheduledExecutorService for each new Push Stream,
or reuse a common Scheduler. When adding a buffer to an existing Push Stream the existing
executor and timer used by the Push Stream are reused by default. The builder of the Buffer/
Push Stream may provide their own executor and timer using the withExecutor(Executor) and
withScheduler(ScheduledExecutorService) methods

706.3.2.5 Circuit Breakers

Buffering is a powerful tool in event processing pipelines, however it cannot help in the situation
where the average event production rate is higher than the average processing rate. Rather than hav-
ing an infinitely growing buffer a circuit breaker is used. A circuit breaker is a buffer which fails the
stream when the buffer is full. This halts event processing and prevents the consuming system from
being overwhelmed.

The default policy for push stream buffers is the FAIL policy, which means that push stream buffers
are all circuit breakers by default.

The Push Stream Push Stream Specification Version 1.0

Page 1444 OSGi Compendium Release 8

706.3.3 Forking
Sometimes the processing that needs to be performed on an event is long-running. An important
part of the asynchronous eventing model is that callbacks are short and non-blocking, which means
that these callbacks should not run using the primary event thread. One solution to this is to buffer
the stream, allowing a thread handoff at the buffer and limiting the impact of the long-running task.
Buffering, however, has other consequences, and so it may be the case that a simple thread hand-off
is preferable.

Forking allows users to specify a maximum number of concurrent downstream operations. Incom-
ing events will block if this limit has been reached. If there are blocked threads then the returned
back pressure for an event will be equal to the number of queued threads multiplied by the supplied
timeout value. If there are no blocked threads then the back pressure will be zero.

706.3.4 Coalescing and Windowing
Coalescing and windowing are both processes by which multiple incoming data events are col-
lapsed into a single outgoing event.

706.3.4.1 Coalescing

There are two main ways to coalesce a stream.

The first mechanism delegates all responsibility to the coalescing function, which returns an Op-
tional . The coalescing function is called for every data event, and returns an optional which either
has a value, or is empty. If the optional has a value then this value is passed to the next stage of the
processing pipeline. If the optional is empty then no data event is passed to the next stage.

The second mechanism allows the stream to be configured with a (potentially variable) buffer size.
The stream then stores values into this buffer. When the buffer is full then the stream passes the
buffer to the handler function, which returns data to be passed to the next stage. If the stream finish-
es when a buffer is partially filled then the partially filled buffer will be passed to the handler func-
tion.

When coalescing events there is no opportunity for feedback from the event handler while the
events are being buffered. As a result back pressure from the handler is zero except when the event
triggers a call to the next stage. When the next stage is triggered the back pressure from that stage is
returned.

706.3.4.2 Windowing

Windowing is similar to coalescing, the primary difference between coalescing and windowing is
the way in which the next stage of processing is triggered. A coalescing stage collects events until it
has the correct number and then passes them to the handler function, regardless of how long this
takes. A windowing stage collects events for a given amount of time, and then passes the collected
events to the handler function, regardless of how many events are collected.

To avoid the need for a potentially infinite buffer a windowing stage may also place a limit on the
number of events to be buffered. If this limit is reached then the window finishes early and the
buffer is passed to the client, just like a coalescing stage. In this mode of operation the handler func-
tion is also passed the length of time for which the window lasted.

As windowing requires the collected events to be delivered asynchronously there is no opportuni-
ty for back-pressure from the previous stage to be applied upstream. Windowing therefore returns
zero back-pressure in all cases except when a buffer size limit has been declared and is reached. If a
window size limit is reached then the windowing stage returns the remaining window time as back
pressure. Applying back pressure in this way means that the event source will tend not to repeated-
ly over saturate the window.

Push Stream Specification Version 1.0 The Push Stream

OSGi Compendium Release 8 Page 1445

706.3.5 Merging and Splitting
Merging and Splitting are actions that can be used to combine push streams, or to convert one
stream into many streams.

706.3.5.1 Merging

A client may need to consume data from more than one Event Sources. In this case the PushStream
may be used to merge two event streams. The returned stream will receive events from both parent
streams, but will only close when both parent streams have delivered terminal events.

706.3.5.2 Splitting

Sometimes it is desirable to split a stream into multiple parallel pipelines. These pipelines are inde-
pendent from the point at which they are split, but share the same source and upstream pipeline.

Splitting a stream is possible using the spl it(Predicate<? super T > . . . predicates) method. For each
predicate a PushStream will be returned that receives the events accepted by the predicate.

The lifecycle of a split stream differs from that of a normal stream in two key ways:

• The stream will begin event delivery when any of the downstream handlers encounters a termi-
nal operation

• The stream will only close when all of the downstream handlers are closed

706.3.6 Time Limited Streams
An important difference between Push Streams and Java 8 Streams is that events occur over time,
there are therefore some operations that do not apply to Java 8 Streams which are relevant to Push
Streams.

The l imit() operation on a Stream can be used to limit the number of elements that are processed,
however on a Push Stream that number of events may never be reached, even though the stream has
not closed. Push Streams therefore also have a l imit method which takes a Duration . This duration
limits the time for which the stream is open, closing it after the duration has elapsed.

The t imeout operation of a Push Stream can be used to end a stream if no events are received for the
given amount of time. If an event is received then this resets the timeout counter. The timeout oper-
ation is therefore a useful mechanism for identifying pipelines which have stalled in their process-
ing. If the timeout expires then it propagates an error event to the next stage of the pipeline. The Ex-
ception in the error event is an org.osgi .ut i l .promise.TimeoutException .

706.3.7 Closing Streams
A PushStream represents a stage in the processing pipeline and is AutoCloseable . When the close()
method is invoked it will not, in general, coincide with the processing of an event. The closing of a
stream in this way must therefore do the following things:

• Send a close event downstream to close the stream
• Discard events subsequently received by this pipeline stage, and return negative backpressure

for any that do arrive at this pipeline stage.
• Propagate the close operation upstream until the AutoCloseable returned by the

open(PushEventConsumer) method is closed.

The result of this set of operations must be that all stages of the pipeline, including the connection
to the PushEventSource , are eagerly closed. This may be as a result of receiving a close event, nega-
tive back pressure, or the close call being propagated back up the pipeline, but it must not wait for
the next event. For example, if an event is produced every ten minutes and the stream is closed one
minute after an event is created then it must not take a further nine minutes to close the connection
to the Push Event Source.

The Push Stream Provider Push Stream Specification Version 1.0

Page 1446 OSGi Compendium Release 8

706.4 The Push Stream Provider
The PushStreamProvider can be used to assist with a variety of asynchronous event handling use
cases. A Push Stream Provider can create Push Stream instances from a Push Event Source, it can
buffer an Push Event Consumer, or it can turn a Push Stream into a reusable Push Event Source.

706.4.1 Building Buffers
The Push Stream Provider allows several types of buffered objects to be created. By default all Push
Streams are created with a buffer, but other objects can also be wrapped in a buffer. For example a
Push Event Consumer can be wrapped in a buffer to isolate it from a Push Event Source. The Simple-
PushEventSource also has a buffer, which is used to isolate the event producing thread from event
consumers.

In all cases buffers are configured using a BufferBui lder with the following defaults:

• A parallelism of one
• A FAIL QueuePolicy
• A LINEAR PushbackPolicy with a maximum pushback of one second
• A Buffer with a capacity of 32 elements

A Buffer requires a timer and an executor. If no Executor is provided when creating a buffer then
the buffer will have its own internal Executor with the same number of threads as the defined par-
allelism. The Push Stream Provider may create a new ScheduledExecutorService for each buffer, or
reuse a common Scheduler. The builder of the Buffer may provide their own executor and timer us-
ing the withExecutor(Executor) and withScheduler(ScheduledExecutorService) methods

Any internally created Executor will be shut down after the buffer has processed a terminal event.

706.4.2 Mapping between Java 8 Streams and Push Streams
There are a number of scenarios where an application developer may wish to convert between a Ja-
va 8 Stream and a PushStream. In particular, the f latMap(Function) operation of a Push Stream takes
a single event and converts it into many events in a Push Stream. Common operations, such as split-
ting the event into child events will result in a Java Collection, or a Java 8 Stream. These need to be
converted into a Push Stream before they can be returned from the flatMap operation.

To assist this model the PushStreamProvider provides two streamOf methods. These convert a Java 8
Stream into a Push Stream, changing the pull-based model of Java 8 Streams into the asynchronous
model of the Push Stream.

The first streamOf(Stream) method takes a Java 8 Stream. The PushStream created by this method
is not fully asynchronous, it uses the connecting thread to consume the Java 8 Stream. As a result
the streams created using this method will block terminal operations. This method should therefore
not normally be used for infinite event streams, but instead for short, finite streams of data that can
be processed rapidly, for example as the result of a flatmapping operation. In this scenario reusing
the incoming thread improves performance. In the following example an incoming list of URLs is
registered for download.

PushStreamProvider psp = new PushStreamProvider();

PushStream<List<URL>> urls = getURLStream();

urls.flatMap(l -> psp.streamOf(l.stream()))
 .forEach(url -> registerDownload(url));

For larger Streams of data, or when truly asynchronous operation is required, there is a second
streamOf(Executor,ScheduledExecutorService,Stream) method which allows for asynchronous

Push Stream Specification Version 1.0 Simple Push Event Sources

OSGi Compendium Release 8 Page 1447

consumption of the stream. The Executor is used to consume elements from the Java 8 Stream us-
ing a single task. This mode of operation is suitable for use with infinite data streams, or for streams
which require a truly asynchronous mode of operation, and does not require the stream to be paral-
lel. If nul l is passed for the Executor then the PushStreamProvider will create a fixed thread pool of
size 2. This allows for work to continue in the Push Stream even if the passed-in Stream blocks the
consuming thread. If nul l is passed for the ScheduledExecutor then the Push Stream Provider may
create a new scheduler or use a shared default.

706.5 Simple Push Event Sources
The PushEventSource and PushEventConsumer are both functional interfaces, however it is notice-
ably harder to implement a PushEventSource than a PushEventConsumer. A PushEventSource must
be able to support multiple independently closeable consumer registrations, all of which are provid-
ing potentially different amounts of back pressure.

To simplify the case where a user wishes to write a basic event source the PushStreamProvider is
able to create a SimplePushEventSource. The SimplePushEventSource handles the details of imple-
menting PushEventSource, providing a simplified API for the event producing code to use.

Events can be sent via the Simple Push Event Source publ ish(T) method at any time until it is closed.
These events may be silently ignored if no consumer is connected, but if one or more consumers are
connected then the event will be asynchronously delivered to them.

Close or error events can be sent equally easily using the endOfStream() and error(Throwable)
methods. These will send disconnection events to all of the currently connected consumers and re-
move them from the Simple Push Event Source. Note that sending these events does not close the
Simple Push Event Source. Subsequent connection attempts will succeed, and events can still be
published.

706.5.1 Optimizing Event Creation
In addition to the publication methods the Simple Push Event Source provides isConnected() and
connectPromise() methods. The isConnected method gives a point-in-time snapshot of whether
there are any connections to the Simple Push Event Source. If this method returns false then the
event producer may wish to avoid creating the event, particularly if it is computationally expensive
to do so. The connectPromise method returns a Promise representing the current connection state.
This Promise resolves when there is a client connected (which means it may be resolved immedi-
ately as it is created). If the Simple Push Event Source is closed before the Promise resolves then the
Promise is failed with an IllegalStateException. The connect Promise can be used to trigger the ini-
tialization of an event thread, allowing lazier startup.

PushStreamProvider psp = new PushStreamProvider();

SimplePushEventSource<Long> ses = psp.createSimpleEventSource(Long.class))

Success<Void,Void> onConnect = p -> {
 new Thread(() -> {
 long counter = 0;
 // Keep going as long as someone is listening
 while (ses.isConnected()) {
 ses.publish(++counter);
 Thread.sleep(100);
 System.out.println("Published: " + counter);
 }
 // Restart delivery when a new listener connects
 ses.connectPromise().then(onConnect);

Security Push Stream Specification Version 1.0

Page 1448 OSGi Compendium Release 8

 }).start();
 return null;
 };

// Begin delivery when someone is listening
ses.connectPromise().then(onConnect);

// Create a listener which prints out even numbers
psp.createStream(ses).
 filter(l -> l % 2L == 0).
 limit(5000L).
 forEach(f -> System.out.println("Consumed event: " + f));

706.6 Security
The Push Stream API does not define any OSGi services nor does the API perform any privileged ac-
tions. Therefore, it has no security considerations.

706.7 org.osgi.util.pushstream

Push Stream Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest.

Example import for consumers using the API in this package:

Import-Package: org.osgi .ut i l .pushstream; version="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .ut i l .pushstream; version="[1.0,1.1)"

706.7.1 Summary

• BufferBui lder - Create a buffered section of a Push-based stream
• PushbackPol icy - A PushbackPolicy is used to calculate how much back pressure to apply based

on the current buffer.
• PushbackPol icyOption - PushbackPolicyOption provides a standard set of simple PushbackPoli-

cy implementations.
• PushEvent - A PushEvent is an immutable object that is transferred through a communication

channel to push information to a downstream consumer.
• PushEvent.EventType - The type of a PushEvent.
• PushEventConsumer - An Async Event Consumer asynchronously receives Data events until it

receives either a Close or Error event.
• PushEventSource - An event source.
• PushStream - A Push Stream fulfills the same role as the Java 8 stream but it reverses the control

direction.
• PushStreamBui lder - A Builder for a PushStream.
• PushStreamProvider - A factory for PushStream instances, and utility methods for handling Pu-

shEventSources and PushEventConsumers
• QueuePol icy - A QueuePolicy is used to control how events should be queued in the current

buffer.

Push Stream Specification Version 1.0 org.osgi.util.pushstream

OSGi Compendium Release 8 Page 1449

• QueuePol icyOption - QueuePolicyOption provides a standard set of simple QueuePolicy imple-
mentations.

• SimplePushEventSource - A SimplePushEventSource is a helper that makes it simpler to write a
PushEventSource.

706.7.2 public interface BufferBuilder<R, T, U extends BlockingQueue<PushEvent<?
extends T>>>

<R> The type of object being built

<T> The type of objects in the PushEvent

<U> The type of the Queue used in the user specified buffer

Create a buffered section of a Push-based stream

Provider Type Consumers of this API must not implement this type

706.7.2.1 public R build()

Returns the object being built

706.7.2.2 public BufferBuilder<R, T, U> withBuffer(U queue)

queue

□ The BlockingQueue implementation to use as a buffer

Returns this builder

706.7.2.3 public BufferBuilder<R, T, U> withExecutor(Executor executor)

executor

□ Set the Executor that should be used to deliver events from this buffer

Returns this builder

706.7.2.4 public BufferBuilder<R, T, U> withParallelism(int parallelism)

parallelism

□ Set the maximum permitted number of concurrent event deliveries allowed from this buffer

Returns this builder

706.7.2.5 public BufferBuilder<R, T, U> withPushbackPolicy(PushbackPolicy<T, U> pushbackPolicy)

pushbackPolicy

□ Set the PushbackPolicy of this builder

Returns this builder

706.7.2.6 public BufferBuilder<R, T, U> withPushbackPolicy(PushbackPolicyOption pushbackPolicyOption, long time)

pushbackPolicyOp-
tion

time

□ Set the PushbackPolicy of this builder

Returns this builder

706.7.2.7 public BufferBuilder<R, T, U> withQueuePolicy(QueuePolicy<T, U> queuePolicy)

queuePolicy

org.osgi.util.pushstream Push Stream Specification Version 1.0

Page 1450 OSGi Compendium Release 8

□ Set the QueuePolicy of this Builder

Returns this builder

706.7.2.8 public BufferBuilder<R, T, U> withQueuePolicy(QueuePolicyOption queuePolicyOption)

queuePolicyOption

□ Set the QueuePolicy of this Builder

Returns this builder

706.7.2.9 public BufferBuilder<R, T, U> withScheduler(ScheduledExecutorService scheduler)

scheduler

□ Set the ScheduledExecutorService that should be used to trigger timed events after this buffer

Returns this builder

706.7.3 public interface PushbackPolicy<T, U extends BlockingQueue<PushEvent<?
extends T>>>

<T> The type of the data

<U> The type of the queue

A PushbackPolicy is used to calculate how much back pressure to apply based on the current buffer.
The PushbackPolicy will be called after an event has been queued, and the returned value will be
used as back pressure.

See Also PushbackPolicyOption

706.7.3.1 public long pushback(U queue) throws Exception

queue

□ Given the current state of the queue, determine the level of back pressure that should be applied

Returns a back pressure value in nanoseconds

Throws Exception –

706.7.4 enum PushbackPolicyOption
PushbackPolicyOption provides a standard set of simple PushbackPolicy implementations.

See Also PushbackPolicy

706.7.4.1 FIXED

Returns a fixed amount of back pressure, independent of how full the buffer is

706.7.4.2 ON_FULL_FIXED

Returns zero back pressure until the buffer is full, then it returns a fixed value

706.7.4.3 ON_FULL_EXPONENTIAL

Returns zero back pressure until the buffer is full, then it returns an exponentially increasing
amount, starting with the supplied value and doubling it each time. Once the buffer is no longer full
the back pressure returns to zero.

706.7.4.4 LINEAR

Returns zero back pressure when the buffer is empty, then it returns a linearly increasing amount of
back pressure based on how full the buffer is. The maximum value will be returned when the buffer
is full.

Push Stream Specification Version 1.0 org.osgi.util.pushstream

OSGi Compendium Release 8 Page 1451

706.7.4.5 public abstract PushbackPolicy<T, U> getPolicy(long value)

Type Parameters <T, U extends BlockingQueue<PushEvent<? extends T>>>

value

□ Create a PushbackPolicy instance configured with a base back pressure time in nanoseconds The ac-
tual backpressure returned will vary based on the selected implementation, the base value, and the
state of the buffer.

Returns A PushbackPolicy to use

706.7.4.6 public static PushbackPolicyOption valueOf(String name)

706.7.4.7 public static PushbackPolicyOption[] values()

706.7.5 public abstract class PushEvent<T>
<T> The payload type of the event.

A PushEvent is an immutable object that is transferred through a communication channel to push
information to a downstream consumer. The event has three different types:

• EventType.DATA – Provides access to a typed data element in the stream.
• EventType.CLOSE – The stream is closed. After receiving this event, no more events will follow.
• EventType.ERROR – The stream ran into an unrecoverable problem and is sending the reason

downstream. The stream is closed and no more events will follow after this event.

Concurrency Immutable

Provider Type Consumers of this API must not implement this type

706.7.5.1 public static PushEvent<T> close()

Type Parameters <T>

<T> The payload type.

□ Create a new close event.

Returns A new close event.

706.7.5.2 public static PushEvent<T> data(T payload)

Type Parameters <T>

<T> The payload type.

payload The payload.

□ Create a new data event.

Returns A new data event wrapping the specified payload.

706.7.5.3 public static PushEvent<T> error(Throwable t)

Type Parameters <T>

<T> The payload type.

t The error.

□ Create a new error event.

Returns A new error event with the specified error.

org.osgi.util.pushstream Push Stream Specification Version 1.0

Page 1452 OSGi Compendium Release 8

706.7.5.4 public T getData()

□ Return the data for this event.

Returns The data payload.

Throws I l legalStateException– if this event is not a EventType.DATA event.

706.7.5.5 public Throwable getFailure()

□ Return the error that terminated the stream.

Returns The error that terminated the stream.

Throws I l legalStateException– if this event is not an EventType.ERROR event.

706.7.5.6 public abstract PushEvent.EventType getType()

□ Get the type of this event.

Returns The type of this event.

706.7.5.7 public boolean isTerminal()

□ Answer if no more events will follow after this event.

Returns fa lse if this is a data event, otherwise true .

706.7.5.8 public PushEvent<X> nodata()

Type Parameters <X>

<X> The new payload type.

□ Convenience to cast a close/error event to another payload type. Since the payload type is not need-
ed for these events this is harmless. This therefore allows you to forward the close/error event down-
stream without creating anew event.

Returns The current error or close event mapped to a new payload type.

Throws I l legalStateException– if the event is a EventType.DATA event.

706.7.6 enum PushEvent.EventType
The type of a PushEvent.

706.7.6.1 DATA

A data event forming part of the stream

706.7.6.2 ERROR

An error event that indicates streaming has failed and that no more events will arrive

706.7.6.3 CLOSE

An event that indicates that the stream has terminated normally

706.7.6.4 public static PushEvent.EventType valueOf(String name)

706.7.6.5 public static PushEvent.EventType[] values()

706.7.7 public interface PushEventConsumer<T>
<T> The type for the event payload

An Async Event Consumer asynchronously receives Data events until it receives either a Close or
Error event.

Push Stream Specification Version 1.0 org.osgi.util.pushstream

OSGi Compendium Release 8 Page 1453

706.7.7.1 public static final long ABORT = -1L

If ABORT is used as return value, the sender should close the channel all the way to the upstream
source. The ABORT will not guarantee that no more events are delivered since this is impossible in a
concurrent environment. The consumer should accept subsequent events and close/clean up when
the Close or Error event is received. Though ABORT has the value -1, any value less than 0 will act as
an abort.

706.7.7.2 public static final long CONTINUE = 0L

A 0 indicates that the consumer is willing to receive subsequent events at full speeds. Any value
more than 0 will indicate that the consumer is becoming overloaded and wants a delay of the given
milliseconds before the next event is sent. This allows the consumer to pushback the event delivery
speed.

706.7.7.3 public long accept(PushEvent<? extends T> event) throws Exception

event The event

□ Accept an event from a source. Events can be delivered on multiple threads simultaneously. Howev-
er, Close and Error events are the last events received, no more events must be sent after them.

Returns less than 0 means abort, 0 means continue, more than 0 means delay ms

Throws Exception– to indicate that an error has occurred and that no further events should be delivered to
this PushEventConsumer

706.7.8 public interface PushEventSource<T>
<T> The payload type

An event source. An event source can open a channel between a source and a consumer. Once the
channel is opened (even before it returns) the source can send events to the consumer. A source
should stop sending and automatically close the channel when sending an event returns a negative
value, see PushEventConsumer.ABORT. Values that are larger than 0 should be treated as a request
to delay the next events with those number of milliseconds.

706.7.8.1 public AutoCloseable open(PushEventConsumer<? super T> aec) throws Exception

aec the consumer (not null)

□ Open the asynchronous channel between the source and the consumer. The call returns an Auto-
Closeable. This can be closed, and should close the channel, including sending a Close event if the
channel was not already closed. The returned object must be able to be closed multiple times with-
out sending more than one Close events.

Returns a AutoCloseable that can be used to close the stream

Throws Exception –

706.7.9 public interface PushStream<T>
extends AutoCloseable

<T> The Payload type

A Push Stream fulfills the same role as the Java 8 stream but it reverses the control direction. The Ja-
va 8 stream is pull based and this is push based. A Push Stream makes it possible to build a pipeline
of transformations using a builder kind of model. Just like streams, it provides a number of termi-
nating methods that will actually open the channel and perform the processing until the channel
is closed (The source sends a Close event). The results of the processing will be send to a Promise,
just like any error events. A stream can be used multiple times. The Push Stream represents a
pipeline. Upstream is in the direction of the source, downstream is in the direction of the terminat-
ing method. Events are sent downstream asynchronously with no guarantee for ordering or con-

org.osgi.util.pushstream Push Stream Specification Version 1.0

Page 1454 OSGi Compendium Release 8

currency. Methods are available to provide serialization of the events and splitting in background
threads.

Provider Type Consumers of this API must not implement this type

706.7.9.1 public PushStream<T> adjustBackPressure(LongUnaryOperator adjustment)

adjustment

□ Changes the back-pressure propagated by this pipeline stage.

The supplied function receives the back pressure returned by the next pipeline stage and returns the
back pressure that should be returned by this stage. This function will not be called if the previous
pipeline stage returns negative back pressure.

Returns Builder style (can be a new or the same object)

706.7.9.2 public PushStream<T> adjustBackPressure(ToLongBiFunction<T, Long> adjustment)

adjustment

□ Changes the back-pressure propagated by this pipeline stage.

The supplied function receives the data object passed to the next pipeline stage and the back pres-
sure that was returned by that stage when accepting it. The function returns the back pressure that
should be returned by this stage. This function will not be called if the previous pipeline stage re-
turns negative back pressure.

Returns Builder style (can be a new or the same object)

706.7.9.3 public Promise<Boolean> allMatch(Predicate<? super T> predicate)

predicate

□ Closes the channel and resolve the promise with false when the predicate does not matches a pay
load. If the channel is closed before, the promise is resolved with true.

This is a short circuiting terminal operation

Returns A Promise that will resolve when an event fails to match the predicate, or the end of the stream is
reached

706.7.9.4 public Promise<Boolean> anyMatch(Predicate<? super T> predicate)

predicate

□ Close the channel and resolve the promise with true when the predicate matches a payload. If the
channel is closed before the predicate matches, the promise is resolved with false.

This is a short circuiting terminal operation

Returns A Promise that will resolve when an event matches the predicate, or the end of the stream is reached

706.7.9.5 public PushStream<R> asyncMap(int n, int delay, Function<? super T, Promise<? extends R>> mapper)

Type Parameters <R>

n number of simultaneous promises to use

delay Nr of ms/promise that is queued back pressure

mapper The mapping function

□ Asynchronously map the payload values. The mapping function returns a Promise representing the
asynchronous mapping operation.

The PushStream limits the number of concurrently running mapping operations, and returns back
pressure based on the number of existing queued operations.

Push Stream Specification Version 1.0 org.osgi.util.pushstream

OSGi Compendium Release 8 Page 1455

Returns Builder style (can be a new or the same object)

Throws I l legalArgumentException– if the number of threads is < 1 or the delay is < 0

NullPointerException– if the mapper is null

706.7.9.6 public PushStream<T> buffer()

□ Buffer the events in a queue using default values for the queue size and other behaviors. Buffered
work will be processed asynchronously in the rest of the chain. Buffering also blocks the transmis-
sion of back pressure to previous elements in the chain, although back pressure is honored by the
buffer.

Buffers are useful for "bursty" event sources which produce a number of events close together, then
none for some time. These bursts can sometimes overwhelm downstream event consumers. Buffer-
ing will not, however, protect downstream components from a source which produces events faster
than they can be consumed. For fast sources filter(Predicate) and coalesce(int, Function) fork(int,
int, Executor) are better choices.

Returns Builder style (can be a new or the same object)

706.7.9.7 public PushStreamBuilder<T, U> buildBuffer()

Type Parameters <U extends BlockingQueue<PushEvent<? extends T>>>

□ Build a buffer to enqueue events in a queue using custom values for the queue size and other behav-
iors. Buffered work will be processed asynchronously in the rest of the chain. Buffering also blocks
the transmission of back pressure to previous elements in the chain, although back pressure is hon-
ored by the buffer.

Buffers are useful for "bursty" event sources which produce a number of events close together, then
none for some time. These bursts can sometimes overwhelm downstream event consumers. Buffer-
ing will not, however, protect downstream components from a source which produces events faster
than they can be consumed. For fast sources filter(Predicate) and coalesce(int, Function) fork(int,
int, Executor) are better choices.

Buffers are also useful as "circuit breakers" in the pipeline. If a QueuePolicyOption.FAIL is used then
a full buffer will trigger the stream to close, preventing an event storm from reaching the client.

Returns A builder which can be used to configure the buffer for this pipeline stage.

706.7.9.8 public void close()

□ Close this PushStream by sending an event of type PushEvent.EventType.CLOSE downstream. Clos-
ing a PushStream is a safe operation that will not throw an Exception.

Calling close() on a closed PushStream has no effect.

706.7.9.9 public PushStream<R> coalesce(Function<? super T, Optional<R>> f)

Type Parameters <R>

f

□ Coalesces a number of events into a new type of event. The input events are forwarded to a accumu-
lator function. This function returns an Optional. If the optional is present, it's value is send down-
stream, otherwise it is ignored.

Returns Builder style (can be a new or the same object)

706.7.9.10 public PushStream<R> coalesce(int count, Function<Collection<T>, R> f)

Type Parameters <R>

count

org.osgi.util.pushstream Push Stream Specification Version 1.0

Page 1456 OSGi Compendium Release 8

f

□ Coalesces a number of events into a new type of event. A fixed number of input events are forward-
ed to a accumulator function. This function returns new event data to be forwarded on.

Returns Builder style (can be a new or the same object)

706.7.9.11 public PushStream<R> coalesce(IntSupplier count, Function<Collection<T>, R> f)

Type Parameters <R>

count

f

□ Coalesces a number of events into a new type of event. A variable number of input events are for-
warded to a accumulator function. The number of events to be forwarded is determined by calling
the count function. The accumulator function then returns new event data to be forwarded on.

Returns Builder style (can be a new or the same object)

706.7.9.12 public Promise<R> collect(Collector<? super T, A, R> collector)

Type Parameters <R, A>

collector

□ See Stream. Will resolve once the channel closes.

This is a terminal operation

Returns A Promise representing the collected results

706.7.9.13 public Promise<Long> count()

□ See Stream. Will resolve onces the channel closes.

This is a terminal operation

Returns A Promise representing the number of values in the stream

706.7.9.14 public PushStream<T> distinct()

□ Remove any duplicates. Notice that this can be expensive in a large stream since it must track previ-
ous payloads.

Returns Builder style (can be a new or the same object)

706.7.9.15 public PushStream<T> filter(Predicate<? super T> predicate)

predicate The predicate that is tested (not null)

□ Only pass events downstream when the predicate tests true.

Returns Builder style (can be a new or the same object)

706.7.9.16 public Promise<Optional<T>> findAny()

□ Close the channel and resolve the promise with the first element. If the channel is closed before, the
Optional will have no value.

This is a terminal operation

Returns a promise

706.7.9.17 public Promise<Optional<T>> findFirst()

□ Close the channel and resolve the promise with the first element. If the channel is closed before, the
Optional will have no value.

Push Stream Specification Version 1.0 org.osgi.util.pushstream

OSGi Compendium Release 8 Page 1457

Returns a promise

706.7.9.18 public PushStream<R> flatMap(Function<? super T, ? extends PushStream<? extends R>> mapper)

Type Parameters <R>

mapper The flat map function

□ Flat map the payload value (turn one event into 0..n events of potentially another type).

Returns Builder style (can be a new or the same object)

706.7.9.19 public Promise<Void> forEach(Consumer<? super T> action)

action The action to perform

□ Execute the action for each event received until the channel is closed. This is a terminating method,
the returned promise is resolved when the channel closes.

This is a terminal operation

Returns A promise that is resolved when the channel closes.

706.7.9.20 public Promise<Long> forEachEvent(PushEventConsumer<? super T> action)

action

□ Pass on each event to another consumer until the stream is closed.

This is a terminal operation

Returns a promise

706.7.9.21 public PushStream<T> fork(int n, int delay, Executor e)

n number of simultaneous background threads to use

delay Nr of ms/thread that is queued back pressure

e an executor to use for the background threads.

□ Execute the downstream events in up to n background threads. If more requests are outstanding ap-
ply delay * nr of delayed threads back pressure. A downstream channel that is closed or throws an
exception will cause all execution to cease and the stream to close

Returns Builder style (can be a new or the same object)

Throws I l legalArgumentException– if the number of threads is < 1 or the delay is < 0

NullPointerException– if the Executor is null

706.7.9.22 public PushStream<T> limit(long maxSize)

maxSize Maximum number of elements has been received

□ Automatically close the channel after the maxSize number of elements is received.

Returns Builder style (can be a new or the same object)

706.7.9.23 public PushStream<T> limit(Duration maxTime)

maxTime The maximum time that the stream should remain open

□ Automatically close the channel after the given amount of time has elapsed.

Returns Builder style (can be a new or the same object)

706.7.9.24 public PushStream<R> map(Function<? super T, ? extends R> mapper)

Type Parameters <R>

org.osgi.util.pushstream Push Stream Specification Version 1.0

Page 1458 OSGi Compendium Release 8

mapper The map function

□ Map a payload value.

Returns Builder style (can be a new or the same object)

706.7.9.25 public Promise<Optional<T>> max(Comparator<? super T> comparator)

comparator

□ See Stream. Will resolve onces the channel closes.

This is a terminal operation

Returns A Promise representing the maximum value, or null if no values are seen before the end of the
stream

706.7.9.26 public PushStream<T> merge(PushEventSource<? extends T> source)

source The source to merge in.

□ Merge in the events from another source. The resulting channel is not closed until this channel and
the channel from the source are closed.

Returns Builder style (can be a new or the same object)

706.7.9.27 public PushStream<T> merge(PushStream<? extends T> source)

source The source to merge in.

□ Merge in the events from another PushStream. The resulting channel is not closed until this chan-
nel and the channel from the source are closed.

Returns Builder style (can be a new or the same object)

706.7.9.28 public Promise<Optional<T>> min(Comparator<? super T> comparator)

comparator

□ See Stream. Will resolve onces the channel closes.

This is a terminal operation

Returns A Promise representing the minimum value, or null if no values are seen before the end of the
stream

706.7.9.29 public Promise<Boolean> noneMatch(Predicate<? super T> predicate)

predicate

□ Closes the channel and resolve the promise with false when the predicate matches any pay load. If
the channel is closed before, the promise is resolved with true.

This is a short circuiting terminal operation

Returns A Promise that will resolve when an event matches the predicate, or the end of the stream is reached

706.7.9.30 public PushStream<T> onClose(Runnable closeHandler)

closeHandler Will be called on close

□ Provide a handler that must be run after the PushStream is closed. This handler will run after any
downstream operations have processed the terminal event but before any upstream operations have
processed the terminal event.

Returns This stream

706.7.9.31 public PushStream<T> onError(Consumer<? super Throwable> errorHandler)

errorHandler Will be called on an error event

Push Stream Specification Version 1.0 org.osgi.util.pushstream

OSGi Compendium Release 8 Page 1459

□ Provide a handler that will be called if the PushStream is closed with an event of type
PushEvent.EventType.ERROR. The error value from this event will be passed to the callback func-
tion after the PushStream is closed. This handler will run after any downstream operations have
processed the error event but before any upstream operations have processed the error event.

Returns This stream

706.7.9.32 public Promise<T> reduce(T identity, BinaryOperator<T> accumulator)

identity The identity/begin value

accumulator The accumulator

□ Standard reduce, see Stream. The returned promise will be resolved when the channel closes.

This is a terminal operation

Returns A

706.7.9.33 public Promise<Optional<T>> reduce(BinaryOperator<T> accumulator)

accumulator The accumulator

□ Standard reduce without identity, so the return is an Optional. The returned promise will be re-
solved when the channel closes.

This is a terminal operation

Returns an Optional

706.7.9.34 public Promise<U> reduce(U identity, BiFunction<U, ? super T, U> accumulator, BinaryOperator<U>
combiner)

Type Parameters <U>

identity

accumulator

combiner combines two U's into one U (for example, combine two lists)

□ Standard reduce with identity, accumulator and combiner. The returned promise will be resolved
when the channel closes.

This is a terminal operation

Returns The promise

706.7.9.35 public PushStream<T> sequential()

□ Ensure that any events are delivered sequentially. That is, no overlapping calls downstream. This
can be used to turn a forked stream (where for example a heavy conversion is done in multiple
threads) back into a sequential stream so a reduce is simple to do.

Returns Builder style (can be a new or the same object)

706.7.9.36 public PushStream<T> skip(long n)

n number of elements to skip

□ Skip a number of events in the channel.

Returns Builder style (can be a new or the same object)

Throws I l legalArgumentException– if the number of events to skip is negative

706.7.9.37 public PushStream<T> sorted()

□ Sorted the elements, assuming that T extends Comparable. This is of course expensive for large or
infinite streams since it requires buffering the stream until close.

org.osgi.util.pushstream Push Stream Specification Version 1.0

Page 1460 OSGi Compendium Release 8

Returns Builder style (can be a new or the same object)

706.7.9.38 public PushStream<T> sorted(Comparator<? super T> comparator)

comparator

□ Sorted the elements with the given comparator. This is of course expensive for large or infinite
streams since it requires buffering the stream until close.

Returns Builder style (can be a new or the same object)

706.7.9.39 public PushStream<T>[] split(Predicate<? super T>... predicates)

predicates the predicates to test

□ Split the events to different streams based on a predicate. If the predicate is true, the event is dis-
patched to that channel on the same position. All predicates are tested for every event.

This method differs from other methods of PushStream in three significant ways:

• The return value contains multiple streams.
• This stream will only close when all of these child streams have closed.
• Event delivery is made to all open children that accept the event.

Returns streams that map to the predicates

706.7.9.40 public PushStream<T> timeout(Duration idleTime)

idleTime The length of time that the stream should remain open when no events are being received.

□ Automatically fail the channel if no events are received for the indicated length of time. If the time-
out is reached then a failure event containing a TimeoutException will be sent.

Returns Builder style (can be a new or the same object)

706.7.9.41 public Promise<Object> toArray()

□ Collect the payloads in an Object array after the channel is closed. This is a terminating method, the
returned promise is resolved when the channel is closed.

This is a terminal operation

Returns A promise that is resolved with all the payloads received over the channel

706.7.9.42 public Promise<A> toArray(IntFunction<A> generator)

Type Parameters <A>

<A> The element type of the resulting array.

generator A function which returns an array into which the payloads are stored.

□ Collect the payloads in an Object array after the channel is closed. This is a terminating method,
the returned promise is resolved when the channel is closed. The type of the array is handled by the
caller using a generator function that gets the length of the desired array.

This is a terminal operation

Returns A promise that is resolved with all the payloads received over the channel. The promise will be
failed with an ArrayStoreException if the runtime type of the array returned by the array generator
is not a supertype of the runtime type of every payload in the channel.

706.7.9.43 public PushStream<R> window(Duration d, Function<Collection<T>, R> f)

Type Parameters <R>

d

Push Stream Specification Version 1.0 org.osgi.util.pushstream

OSGi Compendium Release 8 Page 1461

f

□ Buffers a number of events over a fixed time interval and then forwards the events to an accumula-
tor function. This function returns new event data to be forwarded on. Note that:

• The collection forwarded to the accumulator function will be empty if no events arrived during
the time interval.

• The accumulator function will be run and the forwarded event delivered as a different task,
(and therefore potentially on a different thread) from the one that delivered the event to this
PushStream.

• Due to the buffering and asynchronous delivery required, this method prevents the propagation
of back-pressure to earlier stages

Returns Builder style (can be a new or the same object)

706.7.9.44 public PushStream<R> window(Duration d, Executor executor, Function<Collection<T>, R> f)

Type Parameters <R>

d

executor

f

□ Buffers a number of events over a fixed time interval and then forwards the events to an accumula-
tor function. This function returns new event data to be forwarded on. Note that:

• The collection forwarded to the accumulator function will be empty if no events arrived during
the time interval.

• The accumulator function will be run and the forwarded event delivered by a task given to the
supplied executor.

• Due to the buffering and asynchronous delivery required, this method prevents the propagation
of back-pressure to earlier stages

Returns Builder style (can be a new or the same object)

706.7.9.45 public PushStream<R> window(Supplier<Duration> timeSupplier, IntSupplier maxEvents, BiFunction<Long,
Collection<T>, R> f)

Type Parameters <R>

timeSupplier

maxEvents

f

□ Buffers a number of events over a variable time interval and then forwards the events to an accumu-
lator function. The length of time over which events are buffered is determined by the time func-
tion. A maximum number of events can also be requested, if this number of events is reached then
the accumulator will be called early. The accumulator function returns new event data to be for-
warded on. It is also given the length of time for which the buffer accumulated data. This may be
less than the requested interval if the buffer reached the maximum number of requested events ear-
ly. Note that:

• The collection forwarded to the accumulator function will be empty if no events arrived during
the time interval.

• The accumulator function will be run and the forwarded event delivered as a different task,
(and therefore potentially on a different thread) from the one that delivered the event to this
PushStream.

org.osgi.util.pushstream Push Stream Specification Version 1.0

Page 1462 OSGi Compendium Release 8

• Due to the buffering and asynchronous delivery required, this method prevents the propagation
of back-pressure to earlier stages

• If the window finishes by hitting the maximum number of events then the remaining time in
the window will be applied as back-pressure to the previous stage, attempting to slow the pro-
ducer to the expected windowing threshold.

Returns Builder style (can be a new or the same object)

706.7.9.46 public PushStream<R> window(Supplier<Duration> timeSupplier, IntSupplier maxEvents, Executor executor,
BiFunction<Long, Collection<T>, R> f)

Type Parameters <R>

timeSupplier

maxEvents

executor

f

□ Buffers a number of events over a variable time interval and then forwards the events to an accumu-
lator function. The length of time over which events are buffered is determined by the time func-
tion. A maximum number of events can also be requested, if this number of events is reached then
the accumulator will be called early. The accumulator function returns new event data to be for-
warded on. It is also given the length of time for which the buffer accumulated data. This may be
less than the requested interval if the buffer reached the maximum number of requested events ear-
ly. Note that:

• The collection forwarded to the accumulator function will be empty if no events arrived during
the time interval.

• The accumulator function will be run and the forwarded event delivered as a different task,
(and therefore potentially on a different thread) from the one that delivered the event to this
PushStream.

• If the window finishes by hitting the maximum number of events then the remaining time in
the window will be applied as back-pressure to the previous stage, attempting to slow the pro-
ducer to the expected windowing threshold.

Returns Builder style (can be a new or the same object)

706.7.10 public interface PushStreamBuilder<T, U extends BlockingQueue<PushEvent<?
extends T>>>
extends BufferBuilder<PushStream<T>, T, U>

<T> The type of objects in the PushEvent

<U> The type of the Queue used in the user specified buffer

A Builder for a PushStream. This Builder extends the support of a standard BufferBuilder by allow-
ing the PushStream to be unbuffered.

Provider Type Consumers of this API must not implement this type

706.7.10.1 public PushStreamBuilder<T, U> unbuffered()

□ Tells this PushStreamBuilder to create an unbuffered stream which delivers events directly to its
consumer using the incoming delivery thread. Setting the PushStreamBuilder to be unbuffered
means that any buffer, queue policy or push back policy will be ignored. Note that calling one of:

• withBuffer(BlockingQueue)
• withQueuePolicy(QueuePolicy)

Push Stream Specification Version 1.0 org.osgi.util.pushstream

OSGi Compendium Release 8 Page 1463

• withQueuePolicy(QueuePolicyOption)
• withPushbackPolicy(PushbackPolicy)
• withPushbackPolicy(PushbackPolicyOption, long)
• withParallelism(int)

after this method will reset this builder to require a buffer.

Returns the builder

706.7.10.2 public PushStreamBuilder<T, U> withBuffer(U queue)

queue

□ The BlockingQueue implementation to use as a buffer

Returns this builder

706.7.10.3 public PushStreamBuilder<T, U> withExecutor(Executor executor)

executor

□ Set the Executor that should be used to deliver events from this buffer

Returns this builder

706.7.10.4 public PushStreamBuilder<T, U> withParallelism(int parallelism)

parallelism

□ Set the maximum permitted number of concurrent event deliveries allowed from this buffer

Returns this builder

706.7.10.5 public PushStreamBuilder<T, U> withPushbackPolicy(PushbackPolicy<T, U> pushbackPolicy)

pushbackPolicy

□ Set the PushbackPolicy of this builder

Returns this builder

706.7.10.6 public PushStreamBuilder<T, U> withPushbackPolicy(PushbackPolicyOption pushbackPolicyOption, long
time)

pushbackPolicyOp-
tion

time

□ Set the PushbackPolicy of this builder

Returns this builder

706.7.10.7 public PushStreamBuilder<T, U> withQueuePolicy(QueuePolicy<T, U> queuePolicy)

queuePolicy

□ Set the QueuePolicy of this Builder

Returns this builder

706.7.10.8 public PushStreamBuilder<T, U> withQueuePolicy(QueuePolicyOption queuePolicyOption)

queuePolicyOption

□ Set the QueuePolicy of this Builder

org.osgi.util.pushstream Push Stream Specification Version 1.0

Page 1464 OSGi Compendium Release 8

Returns this builder

706.7.10.9 public PushStreamBuilder<T, U> withScheduler(ScheduledExecutorService scheduler)

scheduler

□ Set the ScheduledExecutorService that should be used to trigger timed events after this buffer

Returns this builder

706.7.11 public final class PushStreamProvider
A factory for PushStream instances, and utility methods for handling PushEventSources and Pu-
shEventConsumers

706.7.11.1 public PushStreamProvider()

706.7.11.2 public BufferBuilder<PushEventConsumer<T>, T, U> buildBufferedConsumer(PushEventConsumer<T>
delegate)

Type Parameters <T, U extends BlockingQueue<PushEvent<? extends T>>>

delegate

□ Build a buffered PushEventConsumer with custom configuration.

The returned consumer will be buffered from the event source, and will honor back pressure re-
quests from its delegate even if the event source does not.

Buffered consumers are useful for "bursty" event sources which produce a number of events close
together, then none for some time. These bursts can sometimes overwhelm the consumer. Buffer-
ing will not, however, protect downstream components from a source which produces events faster
than they can be consumed.

Buffers are also useful as "circuit breakers". If a QueuePolicyOption.FAIL is used then a full buffer
will request that the stream close, preventing an event storm from reaching the client.

Note that this buffered consumer will close when it receives a terminal event, or if the delegate re-
turns negative backpressure. No further events will be propagated after this time.

Returns a PushEventConsumer with a buffer directly before it

706.7.11.3 public BufferBuilder<PushEventSource<T>, T, U> buildEventSourceFromStream(PushStream<T> stream)

Type Parameters <T, U extends BlockingQueue<PushEvent<? extends T>>>

stream

□ Convert an PushStream into an PushEventSource. The first call to
PushEventSource.open(PushEventConsumer) will begin event processing.

The PushEventSource will remain active until the backing stream is closed, and permits multiple
consumers to PushEventSource.open(PushEventConsumer) it. Note that this means the caller of
this method is responsible for closing the supplied stream if it is not finite in length.

Late joining consumers will not receive historical events, but will immediately receive the terminal
event which closed the stream if the stream is already closed.

Returns a PushEventSource backed by the PushStream

706.7.11.4 public BufferBuilder<SimplePushEventSource<T>, T, U> buildSimpleEventSource(Class<T> type)

Type Parameters <T, U extends BlockingQueue<PushEvent<? extends T>>>

type

Push Stream Specification Version 1.0 org.osgi.util.pushstream

OSGi Compendium Release 8 Page 1465

□ Build a SimplePushEventSource with the supplied type and custom buffering behaviors. The Sim-
plePushEventSource will respond to back pressure requests from the consumers connected to it.

Returns a SimplePushEventSource

706.7.11.5 public PushStreamBuilder<T, U> buildStream(PushEventSource<T> eventSource)

Type Parameters <T, U extends BlockingQueue<PushEvent<? extends T>>>

eventSource The source of the events

□ Builds a push stream with custom configuration.

The resulting PushStream may be buffered or unbuffered depending on how it is configured.

Returns A PushStreamBuilder for the stream

706.7.11.6 public PushEventConsumer<T> createBufferedConsumer(PushEventConsumer<T> delegate)

Type Parameters <T>

delegate

□ Create a buffered PushEventConsumer with the default configured buffer, executor size, queue,
queue policy and pushback policy. This is equivalent to calling

 buildBufferedConsumer(delegate).create();

The returned consumer will be buffered from the event source, and will honor back pressure re-
quests from its delegate even if the event source does not.

Buffered consumers are useful for "bursty" event sources which produce a number of events close
together, then none for some time. These bursts can sometimes overwhelm the consumer. Buffer-
ing will not, however, protect downstream components from a source which produces events faster
than they can be consumed.

Returns a PushEventConsumer with a buffer directly before it

706.7.11.7 public PushEventSource<T> createEventSourceFromStream(PushStream<T> stream)

Type Parameters <T>

stream

□ Convert an PushStream into an PushEventSource. The first call to
PushEventSource.open(PushEventConsumer) will begin event processing. The PushEven-
tSource will remain active until the backing stream is closed, and permits multiple consumers to
PushEventSource.open(PushEventConsumer) it. This is equivalent to:

 buildEventSourceFromStream(stream).create();

Returns a PushEventSource backed by the PushStream

706.7.11.8 public SimplePushEventSource<T> createSimpleEventSource(Class<T> type)

Type Parameters <T>

type

□ Create a SimplePushEventSource with the supplied type and default buffering behaviors. The Sim-
plePushEventSource will respond to back pressure requests from the consumers connected to it.
This is equivalent to:

 buildSimpleEventSource(type).create();

Returns a SimplePushEventSource

org.osgi.util.pushstream Push Stream Specification Version 1.0

Page 1466 OSGi Compendium Release 8

706.7.11.9 public PushStream<T> createStream(PushEventSource<T> eventSource)

Type Parameters <T>

eventSource

□ Create a stream with the default configured buffer, executor size, queue, queue policy and pushback
policy. This is equivalent to calling

 buildStream(source).create();

This stream will be buffered from the event producer, and will honor back pressure even if the
source does not.

Buffered streams are useful for "bursty" event sources which produce a number of events close to-
gether, then none for some time. These bursts can sometimes overwhelm downstream processors.
Buffering will not, however, protect downstream components from a source which produces events
faster (on average) than they can be consumed.

Event delivery will not begin until a terminal operation is reached on the chain of PushStreams.
Once a terminal operation is reached the stream will be connected to the event source.

Returns A PushStream with a default initial buffer

706.7.11.10 public PushStream<T> streamOf(Stream<T> items)

Type Parameters <T>

items The items to push into the PushStream

□ Create an Unbuffered PushStream from a Java Stream The data from the stream will be pushed in-
to the PushStream synchronously as it is opened. This may make terminal operations blocking un-
less a buffer has been added to the PushStream. Care should be taken with infinite Streams to avoid
blocking indefinitely.

Returns A PushStream containing the items from the Java Stream

706.7.11.11 public PushStream<T> streamOf(Executor executor, ScheduledExecutorService scheduler, Stream<T> items)

Type Parameters <T>

executor The worker to use to push items from the Stream into the PushStream

scheduler The scheduler to use to trigger timed events in the PushStream

items The items to push into the PushStream

□ Create an Unbuffered PushStream from a Java Stream The data from the stream will be pushed into
the PushStream asynchronously using the supplied Executor.

Returns A PushStream containing the items from the Java Stream

706.7.12 public interface QueuePolicy<T, U extends BlockingQueue<PushEvent<? extends
T>>>

<T> The type of the data

<U> The type of the queue

A QueuePolicy is used to control how events should be queued in the current buffer. The QueuePoli-
cy will be called when an event has arrived.

See Also QueuePolicyOption

706.7.12.1 public void doOffer(U queue, PushEvent<? extends T> event) throws Exception

queue

Push Stream Specification Version 1.0 org.osgi.util.pushstream

OSGi Compendium Release 8 Page 1467

event

□ Enqueue the event and return the remaining capacity available for events

Throws Exception– If an error occurred adding the event to the queue. This exception will cause the
connection between the PushEventSource and the PushEventConsumer to be closed with an
EventType.ERROR

706.7.13 enum QueuePolicyOption
QueuePolicyOption provides a standard set of simple QueuePolicy implementations.

See Also QueuePolicy

706.7.13.1 DISCARD_OLDEST

Attempt to add the supplied event to the queue. If the queue is unable to immediately accept the
value then discard the value at the head of the queue and try again. Repeat this process until the
event is enqueued.

706.7.13.2 BLOCK

Attempt to add the supplied event to the queue, blocking until the enqueue is successful.

706.7.13.3 FAIL

Attempt to add the supplied event to the queue, throwing an exception if the queue is full.

706.7.13.4 public abstract QueuePolicy<T, U> getPolicy()

Type Parameters <T, U extends BlockingQueue<PushEvent<? extends T>>>

Returns a QueuePolicy implementation

706.7.13.5 public static QueuePolicyOption valueOf(String name)

706.7.13.6 public static QueuePolicyOption[] values()

706.7.14 public interface SimplePushEventSource<T>
extends PushEventSource<T>, AutoCloseable

<T> The type of the events produced by this source

A SimplePushEventSource is a helper that makes it simpler to write a PushEventSource. Users do
not need to manage multiple registrations to the stream, nor do they have to be concerned with
back pressure.

Provider Type Consumers of this API must not implement this type

706.7.14.1 public void close()

□ Close this source. Calling this method indicates that there will never be any more events published
by it. Calling this method sends a close event to all connected consumers. After calling this method
any PushEventConsumer that tries to open(PushEventConsumer) this source will immediately re-
ceive a close event, and will not see any remaining buffered events.

706.7.14.2 public Promise<Void> connectPromise()

□ This method can be used to delay event generation until an event source has connected. The re-
turned promise will resolve as soon as one or more PushEventConsumer instances have opened the
SimplePushEventSource.

References Push Stream Specification Version 1.0

Page 1468 OSGi Compendium Release 8

The returned promise may already be resolved if this SimplePushEventSource already has connect-
ed consumers. If the SimplePushEventSource is closed before the returned Promise resolves then it
will be failed with an IllegalStateException.

Note that the connected consumers are able to asynchronously close their connections to this Sim-
plePushEventSource, and therefore it is possible that once the promise resolves this SimplePu-
shEventSource may no longer be connected to any consumers.

Returns A promise representing the connection state of this EventSource

706.7.14.3 public void endOfStream()

□ Close this source for now, but potentially reopen it later. Calling this method asynchronously sends
a close event to all connected consumers and then disconnects them. Any events previously queued
by the publish(Object) method will be delivered before this close event.

After calling this method any PushEventConsumer that wishes may open(PushEventConsumer)
this source, and will receive subsequent events.

706.7.14.4 public void error(Throwable t)

t the error

□ Close this source for now, but potentially reopen it later. Calling this method asynchronously
sends an error event to all connected consumers and then disconnects them. Any events previously
queued by the publish(Object) method will be delivered before this error event.

After calling this method any PushEventConsumer that wishes may open(PushEventConsumer)
this source, and will receive subsequent events.

706.7.14.5 public boolean isConnected()

□ Determine whether there are any PushEventConsumers for this PushEventSource. This can be used
to skip expensive event creation logic when there are no listeners.

Returns true if any consumers are currently connected

706.7.14.6 public void publish(T t)

t

□ Asynchronously publish an event to this stream and all connected PushEventConsumer instances.
When this method returns there is no guarantee that all consumers have been notified. Events pub-
lished by a single thread will maintain their relative ordering, however they may be interleaved
with events from other threads.

Throws I l legalStateException– if the source is closed

706.8 References

[1] Java 8 Stream API
https://docs.oracle.com/javase/8/docs/api/java/util/stream/pack-
age-summary.html#package.description

https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html#package.description
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html#package.description

Converter Specification Version 1.0 Introduction

OSGi Compendium Release 8 Page 1469

707 Converter Specification

Version 1.0

707.1 Introduction
Data conversion is an inherent part of writing software in a type safe language. In Java, converting
strings to proper types or to convert one type to a more convenient type is often done manually. Any
errors are then handled inline.

In release 6, the OSGi specifications introduced Data Transfer Objects (DTOs). DTOs are public ob-
jects without open generics that only contain public instance fields based on simple types, arrays,
and collections. In many ways DTOs can be used as an alternative to Java beans. Java beans are hid-
ing their fields and provide access methods which separates the contract (the public interface) from
the internal usage. Though this model has advantages in technical applications it tends to add over-
head. DTOs unify the specification with the data since the data is what is already public when it is
sent to another process or serialized.

This specification defines the OSGi Converter that makes it easy to convert many types to other
types, including scalars, Collections, Maps, Beans, Interfaces and DTOs without having to write the
boilerplate conversion code. The converter strictly adheres to the rules specified in this chapter.
Converters can also be customized using converter builders.

707.2 Entities
The following entities are used in this specification:

• Converter - a converter can perform conversion operations.
• Standard Converter - a converter implementation that follows this specification.
• Converter Builder - can create customized converters by specifying rules for specific conversions.
• Source - the object to be converted.
• Target - the target of the conversion.
• Source Type - the type of the source to be converted.
• Target Type - the desired type of the conversion target.
• Rule - a rule is used to customize the behavior of the converter.

Figure 707.1 Converter Entity overview

obtain standard
converter 1..n

<<interface>>
Converter
Builder

<<interface>>
Converter

<<interface>>
TargetRuleobtain converter

builder

<<class>>
Converters

create custom
converter

<<abstract class>>
Rule

<<class>>
TypeRule

Standard Converter Converter Specification Version 1.0

Page 1470 OSGi Compendium Release 8

707.3 Standard Converter
The Standard Converter is a converter that follows precisely what is described in this specification.
It converts source objects to the desired target type if a suitable conversion is available. An instance
can be obtained by calling the static standardConverter() method on the Converters class.

Some example conversions:

Converter c = Converters.standardConverter();

// Scalar conversions
MyEnum e = c.convert(MyOtherEnum.BLUE).to(MyEnum.class);
BigDecimal bd = c.convert(12345).to(BigDecimal.class);

// Collection/array conversions
List<String> ls = Arrays.asList("978", "142", "-99");
long[] la = c.convert(ls).to(long[].class);

// Map conversions
Map someMap = new HashMap();
someMap.put("timeout", "700");
MyInterface mi = c.convert(someMap).to(MyInterface.class);
int t = mi.timeout(); // t=700

707.4 Conversions
For scalars, conversions are only performed when the target type is not compatible with the source
type. For example, when requesting to convert a java.math.BigDecimal to a java. lang.Number the
big decimal is simply used as-is as this type is assignable to the requested target type.

In the case of arrays, Collections and Map-like structures a new object is always returned, even if the
target type is compatible with the source type. This copy can be owned and optionally further modi-
fied by the caller.

707.4.1 Generics
When converting to a target type with generic type parameters it is necessary to capture these to in-
struct the converter to produce the correct parameterized type. This can be achieved with the Type-
Reference based APIs, for example:

Converter c = Converters.standardConverter();
List<Long> list = c.convert("123").to(new TypeReference<List<Long>>(){});
// list will contain the Long value 123L

707.4.2 Scalars

707.4.2.1 Direct conversion between scalars

Direct conversion between the following scalars is supported:

Table 707.1 Scalar types that support direct conversions

to \ from Boolean Character Number nul l
boolean v.booleanValue() v.charValue() != 0 v.numberValue() != 0 false
char v.booleanValue() ? 1 : 0 v.charValue() (char) v. intValue() 0

Converter Specification Version 1.0 Conversions

OSGi Compendium Release 8 Page 1471

to \ from Boolean Character Number nul l
number v.booleanValue() ? 1 : 0 (number) v.charValue() v.numberValue() 0

Where conversion is done from corresponding primitive types, these types are boxed before con-
verting. Where conversion is done to corresponding boxed types, the types are boxed after convert-
ing.

Direct conversions between Enums and ints and between Dates and longs are also supported, see
the sections below.

Conversions between from Map.Entry to scalars follow special rules, see Map.Entry on page 1472.

All other conversions between scalars are done by converting the source object to a String first and
then converting the String value to the target type.

707.4.2.2 Conversion to String

Conversion of scalars to Str ing is done by calling toStr ing() on the object to be converted. In the case
of a primitive type, the object is boxed first.

A nul l object results in a nul l String value.

Exceptions:

• java.ut i l .Calendar and java.ut i l .Date are converted to Str ing as described in Date and Calendar on
page 1472.

• Map.Entry is converter to String according to the rules in Map.Entry on page 1472.

707.4.2.3 Conversion from String

Conversion from String is done by attempting to invoke the following methods, in order:

1. publ ic stat ic valueOf(Str ing s)
2. public constructor taking a single Str ing argument.

Some scalars have special rules for converting from String values. See below.

Table 707.2 Special cases converting to scalars from String

Target Method
char / Character v. length() > 0 ? v.charAt(0) : 0
java.t ime.Duration Duration.parse(v)
java.t ime. Instant Instant.parse(v)
java.t ime.LocalDate LocalDate.parse(v)
java.t ime.LocalDateTime LocalDateTime.parse(v)
java.t ime.LocalTime LocalTime.parse(v)
java.t ime.MonthDay MonthDay.parse(v)
java.t ime.OffsetTime OffsetTime.parse(v)
java.t ime.OffsetDateTime OffsetDateTime.parse(v)
java.t ime.Year Year.parse(v)
java.t ime.YearMonth YearMonth.parse(v)
java.t ime.ZonedDateTime ZonedDateTime.parse(v)
java.ut i l .Calendar See Date and Calendar on page 1472.
java.ut i l .Date See Date and Calendar on page 1472.
java.ut i l .UUID UUID.fromStr ing(v)
java.ut i l . regex.Pattern Pattern.compile(v)

Conversions Converter Specification Version 1.0

Page 1472 OSGi Compendium Release 8

Note to implementors: some of the classes mentioned in table Table 707.2 are introduced in Java 8.
However, a converter implementation does not need to depend on Java 8 in order to function. An
implementation of the converter specification could determine its Java runtime dynamically and
handle classes in this table depending on availability.

707.4.2.4 Date and Calendar

A java.ut i l .Date instance is converted to a long value by calling Date.getTime() . Converting a long
into a java.ut i l .Date is done by calling new Date(long) .

Converting a Date to a String will produce a ISO-8601 UTC date/time string in the following format:
2011-12-03T10:15:30Z . In Java 8 this can be done by calling Date.toInstant() .toStr ing() . Convert-
ing a String to a Date is done by parsing this ISO-8601 format back into a Date. In Java 8 this func-
tion is performed by calling Date.from(Instant.parse(v)) .

Conversions from Calendar objects are done by converting the Calendar to a Date via getTime()
first, and then converting the resulting Date to the target type. Conversions to a Calendar object are
done by converting the source to a Date object with the desired time (always in UTC) and then set-
ting the time in the Calendar object via setTime() .

707.4.2.5 Enums

Conversions to Enum types are supported as follows.

Table 707.3 Converting to Enum types

Source Method
Number EnumType.values()[v. intValue()]
Str ing EnumType.valueOf(v) . If this does not produce

a result a case-insensitive lookup is done for a
matching enum value.

Primitives are boxed before conversion is done. Other source types are converted to String before
converting to Enum.

707.4.2.6 Map.Entry

Conversion of Map.Entry<K,V> to a target scalar type is done by evaluating the compatibility of the
target type with both the key and the value in the entry and then using the best match. This is done
in the following order:

1. If one of the key or value is the same as the target type, then this is used. If both are the same, the
key is used.

2. If one of the key or value type is assignable to the target type, then this is used. If both are assign-
able the key is used.

3. If one of the key or value is of type Str ing , this is used and converted to the target type. If both
are of type Str ing the key is used.

4. If none of the above matches the key is converted into a Str ing and this value is then converted
to the target type.

Note that when applying these rules care must be taken with nul l keys and values. A nul l is not an
Object and therefore has no type. As a result nul l is never the same type as, or type assignable to, a
target type.

Conversion to Map.Entry from a scalar is not supported.

707.4.3 Arrays and Collections
This section describes conversions from, to and between Arrays and Collections. This includes Lists,
Sets, Queues and Double-ended Queues (Deques).

Converter Specification Version 1.0 Conversions

OSGi Compendium Release 8 Page 1473

707.4.3.1 Converting from a scalar

Scalars are converted into a Collection or Array by creating an instance of the target type suitable
for holding a single element. The scalar source object will be converted to target element type if nec-
essary and then set as the element.

A nul l value will result in an empty Collection or Array.

Exceptions:

• Converting a Str ing to a char[] or Character[] will result in an array with characters representing
the characters in the String.

707.4.3.2 Converting to a scalar

If a Collection or array needs to be converted to a scalar, the first element is taken and converted in-
to the target type. Example:

Converter converter = Converters.standardConverter();
String s = converter.convert(new int[] {1,2}).to(String.class)); // s="1"

If the collection or array has no elements, the nul l value is used to convert into the target type.

Note: deviations from this mechanism can be achieved by using a ConverterBui lder . For example:

// Use an ConverterBuilder to create a customized converter
ConverterBuilder cb = converter.newConverterBuilder();
cb.rule(new Rule<int[], String>(v -> Arrays.stream(v).
 mapToObj(Integer::toString).collect(Collectors.joining(","))) {});
cb.rule(new Rule<String, int[]>(v -> Arrays.stream(v.split(",")).
 mapToInt(Integer::parseInt).toArray()) {});
Converter c = cb.build();

String s2 = c.convert(new int[] {1,2}).to(String.class)); // s2="1,2"
int[] sa = c.convert("1,2").to(String[].class); // sa={1,2}

Exceptions:

• Converting a char[] or Character[] into a Str ing results in a String where each character repre-
sents the elements of the character array.

707.4.3.3 Converting to an Array or Collection

When converting to an Array or Collection a separate instance is returned that can be owned by the
caller. By default the result is created eagerly and populated with the converted content.

When converting to a java.ut i l .Col lect ion , java.ut i l .L ist or java.ut i l .Set the converter can produce a
live view over the backing object that changes when the backing object changes. The live view can
be enabled by specifying the view() modifier.

In all cases the object returned is a separate instance that can be owned by the client. Once the client
modifies the returned object a live view will stop reflecting changes to the backing object.

Table 707.4 Collection / Array target creation

Target Method
Collection interface A mutable implementation is created. For example, if the tar-

get type is java.ut i l .Queue then the converter can create a
java.ut i l .L inkedList . When converting to a subinterface of
java.ut i l .Set the converter must choose a set implementation
that preserves iteration order.

Conversions Converter Specification Version 1.0

Page 1474 OSGi Compendium Release 8

Target Method
Collection concrete type A new instance is created by calling Class.newInstance() on

the provided type. For example if the target type is Array-
Deque then the converter creates a target object by calling
ArrayDeque.class.newInstance() . The converter may choose to
use a call a well-known constructor to optimize the creation of
the collection.

Collect ion , List or Set with
view() modifier

A live view over the backing object is created, changes to the
backing object will be reflected, unless the view object is modi-
fied by the client.

T[] A new array is created via Array.newInstance(Class<T> c ls , int x)
where x is the required size of the target collection.

Before inserting values into the resulting collection/array they are converted to the desired tar-
get type. In the case of arrays this is the type of the array. When inserting into a Collection gener-
ic type information about the target type can be made available by using the to(TypeReference) or
to(Type) methods. If no type information is available, source elements are inserted into the target
object as-is without further treatment.

For example, to convert an array of Str ings into a list of Integers:

List<Integer> result =
 converter.convert(Arrays.asList("1","2","3")).
 to(new TypeReference<List<Integer>>() {});

The following example converts an array of ints into a set of Doubles. Note that the resulting set
must preserve the same iteration order as the original array:

Set<Double> result =
 converter.convert(new int[] {2,3,2,1}).
 to(new TypeReference<Set<Double>>() {})
// result is 2.0, 3.0, 1.0

Values are inserted in the target Collection/array as follows:

• If the source object is nul l , an empty collection/array is produced.
• If the source is a Collection or Array, then each of its elements is converted into desired target

type, if known, before inserting. Elements are inserted into the target collection in their normal
iteration order.

• If the source is a Map-like structure (as described in Maps, Interfaces, Java Beans, DTOs and Annota-
tions on page 1474) then Map.Entry elements are obtained from it by converting the source to a
Map (if needed) and then calling Map.entrySet() . Each Map.Entry element is then converted into
the target type as described in Map.Entry on page 1472 before inserting in the target.

707.4.3.4 Converting to maps

Conversion to a map-like structure from an Array or Collection is not supported by the Standard
Converter.

707.4.4 Maps, Interfaces, Java Beans, DTOs and Annotations
Entities that can hold multiple key-value pairs are all treated in a similar way. These entities include
Maps, Dictionaries, Interfaces, Java Beans, Annotations and OSGi DTOs. We call these map-like types.
Additionally objects that provide a map view via getPropert ies() are supported.

When converting between map-like types, a Map can be used as intermediary. When converting to
other, non map-like, structures the map is converted into an iteration order preserving collection of
Map.Entry values which in turn is converted into the target type.

Converter Specification Version 1.0 Conversions

OSGi Compendium Release 8 Page 1475

707.4.4.1 Converting from a scalar

Conversions from a scalar to a map-like type are not supported by the standard converter.

707.4.4.2 Converting to a scalar

Conversions of a map-like structure to a scalar are done by iterating through the entries of the map
and taking the first Map.Entry instance. Then this instance is converted into the target scalar type as
described in Map.Entry on page 1472.

An empty map results in a nul l scalar value.

707.4.4.3 Converting to an Array or Collection

A map-like structure is converted to an Array or Collection target type by creating an ordered collec-
tion of Map.Entry objects. Then this collection is converted to the target type as described in Arrays
and Collections on page 1472 and Map.Entry on page 1472.

Note that due to the rules for converting a Map.Entry into a scalar it is possible that the target Array
or Collection may contain elements that were keys from the map, values from the map, or a mixture
of the two. To be certain that only keys or values from the map will be used then it is recommended
to first convert the map-like structure to a map, and then to convert the keySet or values from that
Map into the required target type.

For example:

 Map<Integer,String> map = Map.of(1, "hi",
 2, null,
 3, "ho");

 Converter c = Converters.standardConverter();

 List<String> result;

 // This result will be ["hi", "2", "ho"]
 result = c.convert(map).to(new TypeReference<List<String>>(){})

 // This result will be ["1", "2", "3"]
 result = c.convert(map.keySet()).to(new TypeReference<List<String>>(){})

 // This result will be ["hi", null, "ho"]
 result = c.convert(map.values()).to(new TypeReference<List<String>>(){})

707.4.4.4 Converting to a map-like structure

Conversions from one map-like structure to another map-like structure are supported. For example,
conversions between a map and an annotation, between a DTO and a Java Bean or between one in-
terface and another interface are all supported.

707.4.4.4.1 Key Mapping

When converting to or from a Java type, the key is derived from the method or field name. Certain
common property name characters, such as full stop ('.' \u002E) and hyphen-minus (' - ' \u002D) are
not valid in Java identifiers. So the name of a method must be converted to its corresponding key
name as follows:

• A single dollar sign ('$ ' \u0024) is removed unless it is followed by:
• A low line ('_ ' \u005F) and a dollar sign in which case the three consecutive characters ("$_

$") are converted to a single hyphen-minus (' - ' \u002D).
• Another dollar sign in which case the two consecutive dollar signs ("$$") are converted to a

single dollar sign.

Conversions Converter Specification Version 1.0

Page 1476 OSGi Compendium Release 8

• A single low line ('_ ' \u005F) is converted into a full stop ('.' \u002E) unless is it followed by an-
other low line in which case the two consecutive low lines ("__") are converted to a single low
line.

• All other characters are unchanged.
• If the type that declares the method also declares a public static final PREFIX_ field whose value is

a compile-time constant Str ing , then the key name is prefixed with the value of the PREFIX_ field.
PREFIX_ fields in super-classes or super-interfaces are ignored.

Table 707.5 contains some name mapping examples.

Table 707.5 Component Property Name Mapping Examples

Component Property Type Method Name Component Property Name
myProperty143 myProperty143
$new new
my$$prop my$prop
dot_prop dot.prop
_secret .secret
another__prop another_prop
three___prop three_.prop
four_$__prop four._prop
five_$_prop five. .prop
six$_$prop six-prop
seven$$_$prop seven$.prop

Below is an example of using the PREFIX_ constant in an annotation. The example receives an un-
typed Dictionary in the updated() callback with configuration information. Each key in the dictio-
nary is prefixed with the PREFIX_ . The annotation can be used to read the configuration using typed
methods with short names.

 public @interface MyAnnotation {
 static final String PREFIX_ = "com.acme.config.";

 long timeout() default 1000L;
 String tempdir() default "/tmp";
 int retries() default 10;
 }

 public void updated(Dictionary dict) {
 // dict contains:
 // "com.acme.config.timeout" = "500"
 // "com.acme.config.tempdir" = "/temp"

 MyAnnotation cfg = converter.convert(dict).to(MyAnnotation.class);

 long configuredTimeout = cfg.timeout(); // 500
 int configuredRetries = cfg.retries(); // 10

 // ...
 }

However, if the type is a single-element annotation, see 9.7.3 in [1] The Java Language Specification, Java
SE 8 Edition, then the key name for the value method is derived from the name of the component
property type rather than the name of the method. In this case, the simple name of the component

Converter Specification Version 1.0 Conversions

OSGi Compendium Release 8 Page 1477

property type, that is, the name of the class without any package name or outer class name, if the
component property type is an inner class, must be converted to the value method's property name
as follows:

• When a lower case character is followed by an upper case character, a full stop ('.' \u002E) is in-
serted between them.

• Each uppercase character is converted to lower case.
• All other characters are unchanged.
• If the annotation type declares a PREFIX_ field whose value is a compile-time constant Str ing ,

then the id is prefixed with the value of the PREFIX_ field.

Table 707.6 contains some mapping examples for the value method.

Table 707.6 Single-Element Annotation Mapping Examples for value Method

Type Name value Method Component Property Name
ServiceRanking service.ranking
Some_Name some_name
OSGiProperty osgi .property

707.4.4.4.2 Converting to a Map

When converting to a Map a separate instance is returned that can be owned by the caller. By de-
fault the result is created eagerly and populated with converted content.

When converting to a java.ut i l .Map the converter can produce a live view over the backing ob-
ject that changes when the backing object changes. The live view can be enabled by specifying the
view() modifier.

In all cases the object returned is a separate instance that can be owned by the client. When the
client modifies the returned object a live view will stop reflecting changes to the backing object.

Table 707.7 Map target creation

Target Method
Map interface A mutable implementation is created. For example, if the target

type is ConcurrentNavigableMap then the implementation can
create a ConcurrentSkipListMap .

Map concrete type A new instance is created by calling Class.newInstance()
on the provided type. For example if the target type is
HashMap then the converter creates a target object by calling
HashMap.class.newInstance() . The converter may choose to use
a call a well-known constructor to optimize the creation of the
map.

java.ut i l .Map with view() modi-
fier

A map view over the backing object is created, changes to the
backing object will be reflected in the map, unless the map is
modified by the client.

When converting from a map-like object to a Map or sub-type, each key-value pair in the source
map is converted to desired types of the target map using the generic information if available.
Map type information for the target type can be made available by using the to(TypeReference) or
to(Type) methods. If no type information is available, key-value pairs are used in the map as-is.

707.4.4.4.3 Dictionary

Converting between a map and a Dictionary is done by iterating over the source and inserting the
key value pairs in the target, converting them to the requested target type, if known. As with other
generic types, target type information for Dictionaries can be provided via a TypeReference .

Conversions Converter Specification Version 1.0

Page 1478 OSGi Compendium Release 8

707.4.4.4.4 Interface

Converting a map-like structure into an interface can be a useful way to give a map of untyped data
a typed API. The converter synthesizes an interface instance to represent the conversion.

Note that converting to annotations provides similar functionality with the added benefit of being
able to specify default values in the annotation code.

707.4.4.4.4.1 Converting to an Interface

When converting into an interface the converter will create a dynamic proxy to implement the in-
terface. The name of the method returning the value should match the key of the map entry, taking
into account the mapping rules specified in Key Mapping on page 1475. The key of the map may
need to be converted into a Str ing first.

Conversion is done on demand: only when the method on the interface is actually invoked. This
avoids conversion errors on methods for which the information is missing or cannot be converted,
but which the caller does not require.

Note that the converter will not copy the source map when converting to an interface allowing
changes to the source map to be reflected live to the proxy. The proxy cannot cache the conversions.

Interfaces can provide methods for default values by providing a single-argument method override
in addition to the no-parameter method matching the key name. If the type of the default does not
match the target type it is converted first. For example:

interface Config {
 int my_value(); // no default
 int my_value(int defVal);
 int my_value(String defVal); // String value is automatically converted to int
 boolean my_other_value();
}

// Usage
Map<String, Object> myMap = new HashMap<>(); // an example map
myMap.put("my.other.value", "true");
Config cfg = converter.convert(myMap).to(Config.class);
int val = cfg.my_value(17); // if not set then use 17
boolean val2 = cfg.my_other_value(); // val2=true

Default values are used when the key is not present in the map for the method. If a key is present
with a nul l value, then nul l is taken as the value and converted to the target type.

If no default is specified and a requested value is not present in the map, a ConversionException is
thrown.

707.4.4.4.4.2 Converting from an Interface

An interface can also be the source of a conversion to another map-like type. The name of each
method without parameters is taken as key, taking into account the Key Mapping on page 1475.
The method is invoked using reflection to produce the associated value. Default methods must also
be handled by the converter.

Whether a conversion source object is an interface is determined dynamically. When an object im-
plements multiple interfaces by default the first interface from these that has no-parameter meth-
ods is taken as the source type. To select a different interface use the sourceAs(Class) modifier:

Map m = converter.convert(myMultiInterface).
 sourceAs(MyInterfaceB.class).to(Map.class);

Converter Specification Version 1.0 Conversions

OSGi Compendium Release 8 Page 1479

If the source object also has a getPropert ies() method as described in Types with getProperties() on
page 1480, this getProperties() method is used to obtain the map view by default. This behavior
can be overridden by using the sourceAs(Class) modifier.

707.4.4.4.5 Annotation

Conversion to and from annotations behaves similar to interface conversion with the added capabil-
ity of specifying a default in the annotation definition.

When converting to an annotation type, the converter will return an instance of the requested an-
notation class. As with interfaces, values are only obtained from the conversion source when the an-
notation method is actually called. If the requested value is not available, the default as specified in
the annotation class is used. If no default is specified a ConversionException is thrown.

Similar to interfaces, conversions to and from annotations also follow the Key Mapping on page
1475 for annotation element names. Below a few examples of conversions to an annotation:

@interface MyAnnotation {
 String[] args() default {"arg1", "arg2"};
}

// Will set sa={"args1", "arg2"}
String[] sa = converter.convert(new HashMap()).to(MyAnnotation.class).args();

// Will set a={"x", "y", "z"}
Map m = Collections.singletonMap("args", new String [] {"x", "y", "z"});
String[] a = converter.convert(m).to(MyAnnotation.class).args();

// Will set a1={}
Map m1 = Collections.singletonMap("args", null)
String[] a1 = converter.convert(m1).to(MyAnnotation.class).args();

// Will set a2={""}
Map m2 = Collections.singletonMap("args", "")
String[] a2 = converter.convert(m2).to(MyAnnotation.class).args();

// Will set a3={","}
Map m3 = Collections.singletonMap("args", ",")
String[] a3 = converter.convert(m3).to(MyAnnotation.class).args();

707.4.4.4.5.1 Marker annotations

If an annotation is a marker annotation, see 9.7.2 in [1] The Java Language Specification, Java SE 8 Edition,
then the property name is derived from the name of the annotation, as described for single-element
annotations in Key Mapping on page 1475, and the value of the property is Boolean.TRUE .

When converting to a marker annotation the converter checks that the source has key and val-
ue that are consistent with the marker annotation. If they are not, for example if the value is not
present or does not convert to Boolean.TRUE , then a conversion will result in a Conversion Excep-
tion.

707.4.4.4.6 Java Beans

Java Beans are concrete (non-abstract) classes that follow the Java Bean naming convention. They
provide public getters and setters to access their properties and have a public no-parameter con-
structor. When converting from a Java Bean introspection is used to find the read accessors. A read
accessor must have no arguments and a non-void return value. The method name must start with
get followed by a capitalized property name, for example getSize() provides access to the property

Conversions Converter Specification Version 1.0

Page 1480 OSGi Compendium Release 8

size . For boolean/Boolean properties a prefix of is is also permitted. Properties names follow the Key
Mapping on page 1475.

For the converter to consider an object as a Java Bean the sourceAsBean() or targetAsBean() modifi-
er needs to be invoked, for example:

 Map m = converter.convert(myBean).sourceAsBean().to(Map.class);

When converting to a Java Bean, the bean is constructed eagerly. All available properties are set in
the bean using the bean's write accessors, that is, public setters methods with a single argument. All
methods of the bean class itself and its super classes are considered. When a property cannot be con-
verted this will cause a ConversionException . If a property is missing in the source, the property
will not be set in the bean.

Note: access via indexed bean properties is not supported.

Note: the getClass() method of the java. lang.Object class is not considered an accessor.

707.4.4.4.7 DTOs

DTOs are classes with public non-static fields and no methods other than the ones provided by the
java. lang.Object c lass . OSGi DTOs extend the org.osgi .dto.DTO class, however objects following
the DTO rules that do not extend the DTO class are also treated as DTOs by the converter. DTOs may
have static fields, or non-public instance fields. These are ignored by the converter.

When converting from a DTO to another map-like structure each public instance field is consid-
ered. The field name is taken as the key for the map entry, taking into account Key Mapping on page
1475, the field value is taken as the value for the map entry.

When converting to a DTO, the converter attempts to find fields that match the key of each entry in
the source map and then converts the value to the field type before assigning it. The key of the map
entries may need to be converted into a String first. Keys are mapped according to Key Mapping on
page 1475.

The DTO is constructed using its no-parameter constructor and each public field is filled with data
from the source eagerly. Fields present in the DTO but missing in the source object not be set.

The converter only considers a type to be a DTO type if it declares no methods. However, if a type
needs to be treated as a DTO that has methods, the converter can be instructed to do this using the
sourceAsDTO() and targetAsDTO() modifiers.

707.4.4.4.8 Types with getProperties()

The converter uses reflection to find a public java.ut i l .Map getPropert ies() or java.ut i l .Dict ionary
getPropert ies() method on the source type to obtain a map view over the source object. This map
view is used to convert the source object to a map-like structure.

If the source object both implements an interface and also has a public getPropert ies() method, the
converter uses the getPropert ies() method to obtain the map view. This getPropert ies() may or may
not be part of an implemented interface.

Note: this mechanism can only be used to convert to another type. The reverse is not supported

707.4.4.4.9 Specifying target types

The converter always produces an instance of the target type as specified with the to(Class) ,
to(TypeReference) or to(Type) method. In some cases the converter needs to be instructed how to
treat this target object. For example the desired target type might extend a DTO class adding some
methods and behavior to the DTO. As this target class now has methods, the converter will not rec-
ognize it as a DTO. The targetAs(Class) , targetAsBean() and targetAsDTO() methods can be used
here to instruct the converter to treat the target object as certain type of object to guide the conver-
sion.

Converter Specification Version 1.0 Repeated or Deferred Conversions

OSGi Compendium Release 8 Page 1481

For example:

 MyExtendedDTO med = converter.convert(someMap).
 targetAsDTO().to(MyExtendedDTO.class)

In this example the converter will return a MyExtendedDTO instance but it will treat is as a MyDTO
type.

707.5 Repeated or Deferred Conversions
In certain situations the same conversion needs to be performed multiple times, on different source
objects. Or maybe the conversion needs to be performed asynchronously as part of a async stream
processing pipeline. For such cases the Converter can produce a Function, which will perform the
conversion once applied. The function can be invoked multiple times with different source objects.
The Converter can produce this function through the function() method, which provides an API
similar to the convert(Object) method, with the difference that instead of returning the conversion,
once to() is called, a Function that can perform the conversion on apply(T) is returned.

The following example sets up a Function that can perform conversions to Integer objects. A default
value of 999 is specified for the conversion:

 Converter c = Converters.standardConverter();

 // Obtain a function for the conversion
 Function<Object, Integer> cf = c.function().defaultValue(999).to(Integer.class);

 // Use the converter multiple times:
 Integer i1 = cf.apply("123"); // i1 = 123
 Integer i2 = cf.apply(""); // i2 = 999

The Function returned by the converter is thread safe and can be used concurrently or asynchro-
nously in other threads.

707.6 Customizing converters
The Standard Converter applies the conversion rules described in this specification. While this is
useful for many applications, in some cases deviations from the specified rules may be necessary.
This can be done by creating a customized converter. Customized converters are created based on an
existing converter with additional rules specified that override the existing converter's behavior. A
customized converter is created through a ConverterBui lder . Customized converters implement the
converter interface and as such can be used to create further customized converters. Converters are
immutable, once created they cannot be modified, so they can be freely shared without the risk of
modification to the converter's behavior.

For example converting a Date to a String may require a specific format. The default Date to Str ing
conversion produces a String in the format yyyy-MM-ddTHH:mm:ss.SSSZ . If we want to produce a
String in the format yyMMddHHmmssZ instead a custom converter can be applied:

SimpleDateFormat sdf = new SimpleDateFormat("yyMMddHHmmssZ") {
 @Override
 public synchronized StringBuffer format(Date date, StringBuffer toAppendTo,
 FieldPosition pos) {
 // Make the method synchronized to support multi threaded access
 return super.format(date, toAppendTo, pos);

Conversion failures Converter Specification Version 1.0

Page 1482 OSGi Compendium Release 8

 }
};
ConverterBuilder cb = Converters.newConverterBuilder();
cb.rule(new TypeRule<>(Date.class, String.class, sdf::format));
Converter c = cb.build();

String s = c.convert(new Date()).to(String.class);
// s = "160923102853+0100" or similar

Custom conversions are also applied to embedded conversions that are part of a map or other en-
closing object:

class MyBean {
 //... fields ommitted
 boolean getEnabled() { /* ... */ }
 void setEnabled(boolean e) { /* ... */ }
 Date getStartDate() { /* ... */ }
 void setStartDate(Date d) { /* ... */ }
}

MyBean mb = new MyBean();
mb.setStartDate(new Date());
mb.setEnabled(true);

Map<String, String> m = c.convert(mb).sourceAsBean().
 to(new TypeReference<Map<String, String>>(){});
String en = m.get("enabled"); // en = "true"
String sd = m.get("startDate"); // sd = "160923102853+0100" or similar

A converter rule can return CANNOT_HANDLE to indicate that it cannot handle the conversion, in
which case next applicable rule is handed the conversion. If none of the registered rules for the cur-
rent converter can handle the conversion, the parent converter object is asked to convert the value.
Since custom converters can be the basis for further custom converters, a chain of custom convert-
ers can be created where a custom converter rule can either decide to handle the conversion, or it
can delegate back to the next converter in the chain by returning CANNOT_HANDLE if it wishes to
do so.

707.6.1 Catch-all rules
It is also possible to register converter rules which are invoked for every conversion with the
rule(ConverterFunction) method. When multiple rules are registered, they are evaluated in the or-
der of registration, until a rule indicates that it can handle a conversion. A rule can indicate that it
cannot handle the conversion by returning the CANNOT_HANDLE constant. Rules targeting specific
types are evaluated before catch-all rules.

707.7 Conversion failures
Not all conversions can be performed by the standard converter. It cannot convert text such as
'lorem ipsum' into a long value. Or the number pi into a map. When a conversion fails, the converter
will throw a ConversionException .

If meaningful conversions exist between types not supported by the standard converter, a cus-
tomized converter can be used, see Customizing converters on page 1481.

Some applications require different behavior for error scenarios. For example they can use an emp-
ty value such as 0 or "" instead of the exception, or they might require a different exception to be

Converter Specification Version 1.0 Security

OSGi Compendium Release 8 Page 1483

thrown. For these scenarios a custom error handler can be registered. The error handler is only in-
voked in cases where otherwise a ConversionException would be thrown. The error handler can re-
turn a different value instead or throw another exception.

An error handler is registered by creating a custom converter and providing it with an error handler
via the errorHandler(ConverterFunction) method. When multiple error handlers are registered for
a given converter they are invoked in the order in which they were registered until an error handler
either throws an exception or returns a value other than CANNOT_HANDLE .

707.8 Security
An implementation of this specification will require the use of Java Reflection APIs. Therefore it
should have the appropriate permissions to perform these operations when running under the Java
Security model.

707.9 org.osgi.util.converter

Converter Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .ut i l .converter ; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .ut i l .converter ; vers ion="[1.0,1.1)"

707.9.1 Summary

• ConversionException - This Runtime Exception is thrown when an object is requested to be con-
verted but the conversion cannot be done.

• Converter - The Converter service is used to start a conversion.
• ConverterBui lder - A builder to create a new converter with modified behavior based on an ex-

isting converter.
• ConverterFunction - An functional interface with a convert method that is passed the original

object and the target type to perform a custom conversion.
• Converters - Factory class to obtain the standard converter or a new converter builder.
• Convert ing - This interface is used to specify the target that an object should be converted to.
• Functioning - This interface is used to specify the target function to perform conversions.
• Rule - A rule implementation that works by capturing the type arguments via subclassing.
• Specify ing - This is the base interface for the Converting and Functioning interfaces and defines

the common modifiers that can be applied to these.
• TargetRule - Interface for custom conversion rules.
• TypeReference - An object does not carry any runtime information about its generic type.
• TypeRule - Rule implementation that works by passing in type arguments rather than subclass-

ing.

org.osgi.util.converter Converter Specification Version 1.0

Page 1484 OSGi Compendium Release 8

707.9.2 public class ConversionException
extends RuntimeException
This Runtime Exception is thrown when an object is requested to be converted but the conversion
cannot be done. For example when the String "test" is to be converted into a Long.

707.9.2.1 public ConversionException(String message)

message The message for this exception.

□ Create a Conversion Exception with a message.

707.9.2.2 public ConversionException(String message, Throwable cause)

message The message for this exception.

cause The causing exception.

□ Create a Conversion Exception with a message and a nested cause.

707.9.3 public interface Converter
The Converter service is used to start a conversion. The service is obtained from the service registry.
The conversion is then completed via the Converting interface that has methods to specify the tar-
get type.

Concurrency Thread-safe

Provider Type Consumers of this API must not implement this type

707.9.3.1 public Converting convert(Object obj)

obj The object that should be converted.

□ Start a conversion for the given object.

Returns A Converting object to complete the conversion.

707.9.3.2 public Functioning function()

□ Start defining a function that can perform given conversions.

Returns A Functioning object to complete the definition.

707.9.3.3 public ConverterBuilder newConverterBuilder()

□ Obtain a builder to create a modified converter based on this converter. For more details see the Con-
verterBuilder interface.

Returns A new Converter Builder.

707.9.4 public interface ConverterBuilder
A builder to create a new converter with modified behavior based on an existing converter. The
modified behavior is specified by providing rules and/or conversion functions. If multiple rules
match they will be visited in sequence of registration. If a rule's function returns nul l the next rule
found will be visited. If none of the rules can handle the conversion, the original converter will be
used to perform the conversion.

Provider Type Consumers of this API must not implement this type

707.9.4.1 public Converter build()

□ Build the specified converter. Each time this method is called a new custom converter is produced
based on the rules registered with the builder.

Returns A new converter with the rules provided to the builder.

Converter Specification Version 1.0 org.osgi.util.converter

OSGi Compendium Release 8 Page 1485

707.9.4.2 public ConverterBuilder errorHandler(ConverterFunction func)

func The function to be used to handle errors.

□ Register a custom error handler. The custom error handler will be called when the conversion
would otherwise throw an exception. The error handler can either throw a different exception or re-
turn a value to be used for the failed conversion.

Returns This converter builder for further building.

707.9.4.3 public ConverterBuilder rule(Type type, ConverterFunction func)

type The type that this rule will produce.

func The function that will handle the conversion.

□ Register a conversion rule for this converter. Note that only the target type is specified, so the rule
will be visited for every conversion to the target type.

Returns This converter builder for further building.

707.9.4.4 public ConverterBuilder rule(TargetRule rule)

rule A rule implementation.

□ Register a conversion rule for this converter.

Returns This converter builder for further building.

707.9.4.5 public ConverterBuilder rule(ConverterFunction func)

func The function that will handle the conversion.

□ Register a catch-all rule, will be called of no other rule matches.

Returns This converter builder for further building.

707.9.5 public interface ConverterFunction
An functional interface with a convert method that is passed the original object and the target type
to perform a custom conversion.

This interface can also be used to register a custom error handler.

707.9.5.1 public static final Object CANNOT_HANDLE

Special object to indicate that a custom converter rule or error handler cannot handle the conver-
sion.

707.9.5.2 public Object apply(Object obj, Type targetType) throws Exception

obj The object to be converted. This object will never be nul l as the convert function will not be invoked
for null values.

targetType The target type.

□ Convert the object into the target type.

Returns The conversion result or CANNOT_HANDLE to indicate that the convert function cannot handle
this conversion. In this case the next matching rule or parent converter will be given a opportunity
to convert.

Throws Exception– the operation can throw an exception if the conversion can not be performed due to in-
compatible types.

707.9.6 public class Converters
Factory class to obtain the standard converter or a new converter builder.

org.osgi.util.converter Converter Specification Version 1.0

Page 1486 OSGi Compendium Release 8

Concurrency Thread-safe

707.9.6.1 public static ConverterBuilder newConverterBuilder()

□ Obtain a converter builder based on the standard converter.

Returns A new converter builder.

707.9.6.2 public static Converter standardConverter()

□ Obtain the standard converter.

Returns The standard converter.

707.9.7 public interface Converting
extends Specifying<Converting>
This interface is used to specify the target that an object should be converted to. A Converting in-
stance can be obtained via the Converter.

Concurrency Not Thread-safe

Provider Type Consumers of this API must not implement this type

707.9.7.1 public T to(Class<T> cls)

Type Parameters <T>

<T> The type to convert to.

cls The class to convert to.

□ Specify the target object type for the conversion as a class object.

Returns The converted object.

707.9.7.2 public T to(Type type)

Type Parameters <T>

<T> The type to convert to.

type A Type object to represent the target type to be converted to.

□ Specify the target object type as a Java Reflection Type object.

Returns The converted object.

707.9.7.3 public T to(TypeReference<T> ref)

Type Parameters <T>

<T> The type to convert to.

ref A type reference to the object being converted to.

□ Specify the target object type as a TypeReference. If the target class carries generics information a
TypeReference should be used as this preserves the generic information whereas a Class object has
this information erased. Example use:

 List<String> result = converter.convert(Arrays.asList(1, 2, 3))
 .to(new TypeReference<List<String>>() {
 });

Returns The converted object.

Converter Specification Version 1.0 org.osgi.util.converter

OSGi Compendium Release 8 Page 1487

707.9.8 public interface Functioning
extends Specifying<Functioning>
This interface is used to specify the target function to perform conversions. This function can be
used multiple times. A Functioning instance can be obtained via the Converter.

Concurrency Not Thread-safe

Provider Type Consumers of this API must not implement this type

707.9.8.1 public Function<Object, T> to(Class<T> cls)

Type Parameters <T>

<T> The type to convert to.

cls The class to convert to.

□ Specify the target object type for the conversion as a class object.

Returns A function that can perform the conversion.

707.9.8.2 public Function<Object, T> to(Type type)

Type Parameters <T>

<T> The type to convert to.

type A Type object to represent the target type to be converted to.

□ Specify the target object type as a Java Reflection Type object.

Returns A function that can perform the conversion.

707.9.8.3 public Function<Object, T> to(TypeReference<T> ref)

Type Parameters <T>

<T> The type to convert to.

ref A type reference to the object being converted to.

□ Specify the target object type as a TypeReference. If the target class carries generics information a
TypeReference should be used as this preserves the generic information whereas a Class object has
this information erased. Example use:

 List<String> result = converter.function()
 .to(new TypeReference<List<String>>() {
 });

Returns A function that can perform the conversion.

707.9.9 public abstract class Rule<F, T>
implements TargetRule

<F> The type to convert from.

<T> The type to convert to.

A rule implementation that works by capturing the type arguments via subclassing. The rule sup-
ports specifying both from and to types. Filtering on the from by the Rule implementation. Filtering
on the to is done by the converter customization mechanism.

707.9.9.1 public Rule(Function<F, T> func)

func The conversion function to use.

org.osgi.util.converter Converter Specification Version 1.0

Page 1488 OSGi Compendium Release 8

□ Create an instance with a conversion function.

707.9.9.2 public ConverterFunction getFunction()

□ The function to perform the conversion.

Returns The function.

707.9.9.3 public Type getTargetType()

□ The target type of this rule. The conversion function is invoked for each conversion to the target
type.

Returns The target type.

707.9.10 public interface Specifying<T extends Specifying<T>>
<T> Either Converting or Specifying.

This is the base interface for the Converting and Functioning interfaces and defines the common
modifiers that can be applied to these.

Concurrency Not Thread-safe

Provider Type Consumers of this API must not implement this type

707.9.10.1 public T extends Specifying<T> defaultValue(Object defVal)

defVal The default value.

□ The default value to use when the object cannot be converted or in case of conversion from a nul l
value.

Returns The current Convert ing object so that additional calls can be chained.

707.9.10.2 public T extends Specifying<T> keysIgnoreCase()

□ When converting between map-like types use case-insensitive mapping of keys.

Returns The current Convert ing object so that additional calls can be chained.

707.9.10.3 public T extends Specifying<T> sourceAs(Class<?> cls)

cls The class to treat the object as.

□ Treat the source object as the specified class. This can be used to disambiguate a type if it imple-
ments multiple interfaces or extends multiple classes.

Returns The current Convert ing object so that additional calls can be chained.

707.9.10.4 public T extends Specifying<T> sourceAsBean()

□ Treat the source object as a JavaBean. By default objects will not be treated as JavaBeans, this has to
be specified using this method.

Returns The current Convert ing object so that additional calls can be chained.

707.9.10.5 public T extends Specifying<T> sourceAsDTO()

□ Treat the source object as a DTO even if the source object has methods or is otherwise not recog-
nized as a DTO.

Returns The current Convert ing object so that additional calls can be chained.

707.9.10.6 public T extends Specifying<T> targetAs(Class<?> cls)

cls The class to treat the object as.

Converter Specification Version 1.0 org.osgi.util.converter

OSGi Compendium Release 8 Page 1489

□ Treat the target object as the specified class. This can be used to disambiguate a type if it implements
multiple interfaces or extends multiple classes.

Returns The current Convert ing object so that additional calls can be chained.

707.9.10.7 public T extends Specifying<T> targetAsBean()

□ Treat the target object as a JavaBean. By default objects will not be treated as JavaBeans, this has to be
specified using this method.

Returns The current Convert ing object so that additional calls can be chained.

707.9.10.8 public T extends Specifying<T> targetAsDTO()

□ Treat the target object as a DTO even if it has methods or is otherwise not recognized as a DTO.

Returns The current Convert ing object so that additional calls can be chained.

707.9.10.9 public T extends Specifying<T> view()

□ Return a live view over the backing object that reflects any changes to the original object. This is on-
ly possible with conversions to java.util.Map, java.util.Collection, java.util.List and java.util.Set. The
live view object will cease to be live as soon as modifications are made to it. Note that conversions
to an interface or annotation will always produce a live view that cannot be modified. This modifier
has no effect with conversions to other types.

Returns The current Convert ing object so that additional calls can be chained.

707.9.11 public interface TargetRule
Interface for custom conversion rules.

707.9.11.1 public ConverterFunction getFunction()

□ The function to perform the conversion.

Returns The function.

707.9.11.2 public Type getTargetType()

□ The target type of this rule. The conversion function is invoked for each conversion to the target
type.

Returns The target type.

707.9.12 public class TypeReference<T>
<T> The target type for the conversion.

An object does not carry any runtime information about its generic type. However sometimes it is
necessary to specify a generic type, that is the purpose of this class. It allows you to specify an gener-
ic type by defining a type T, then subclassing it. The subclass will have a reference to the super class
that contains this generic information. Through reflection, we pick this reference up and return it
with the getType() call.

 List<String> result = converter.convert(Arrays.asList(1, 2, 3))
 .to(new TypeReference<List<String>>() {
 });

Concurrency Immutable

707.9.12.1 protected TypeReference()

□ A TypeReference cannot be directly instantiated. To use it, it has to be extended, typically as an
anonymous inner class.

References Converter Specification Version 1.0

Page 1490 OSGi Compendium Release 8

707.9.12.2 public Type getType()

□ Return the actual type of this Type Reference

Returns the type of this reference.

707.9.13 public class TypeRule<F, T>
implements TargetRule

<F> The type to convert from.

<T> The type to convert to.

Rule implementation that works by passing in type arguments rather than subclassing. The rule
supports specifying both from and to types. Filtering on the from by the Rule implementation. Filter-
ing on the to is done by the converter customization mechanism.

707.9.13.1 public TypeRule(Type from, Type to, Function<F, T> func)

from The type to convert from.

to The type to convert to.

func The conversion function to use.

□ Create an instance based on source, target types and a conversion function.

707.9.13.2 public ConverterFunction getFunction()

□ The function to perform the conversion.

Returns The function.

707.9.13.3 public Type getTargetType()

□ The target type of this rule. The conversion function is invoked for each conversion to the target
type.

Returns The target type.

707.10 References

[1] The Java Language Specification, Java SE 8 Edition
https://docs.oracle.com/javase/specs/jls/se8/html/index.html

https://docs.oracle.com/javase/specs/jls/se8/html/index.html

OSGi Compendium Release 8

OSGi Compendium Release 8 Page 1491

OSGi Compendium Release 8

Page 1492 OSGi Compendium Release 8

End Of Document

	OSGi Compendium
	Table of Contents
	Chapter 1. Introduction
	1.1. Reader Level
	1.2. Version Information
	1.2.1. OSGi Core Release 8
	1.2.2. Component Versions
	1.2.3. Notes

	1.3. References
	1.4. Changes

	Chapter 100. Remote Services
	100.1. The Fallacies
	100.2. Remote Service Properties
	100.2.1. Registering a Service for Export
	100.2.2. Getting an Imported Service
	100.2.3. On Demand Import

	100.3. Intents
	100.3.1. Basic Remote Services: osgi.basic
	100.3.1.1. Minimum Supported Service Signature
	100.3.1.2. Remote Invocation Timeout

	100.3.2. Asynchronous Remote Services: osgi.async
	100.3.2.1. Supported Return Types
	100.3.2.2. Asynchronous Failures

	100.3.3. Confidential Remote Services: osgi.confidential
	100.3.4. Private Remote Services: osgi.private

	100.4. General Usage
	100.4.1. Call by Value
	100.4.2. Data Fencing
	100.4.3. Remote Services Life Cycle
	100.4.4. Runtime
	100.4.5. Exceptions

	100.5. Configuration Types
	100.5.1. Configuration Type Properties
	100.5.2. Dependencies

	100.6. Security
	100.6.1. Limiting Exports and Imports

	100.7. References

	Chapter 102. Http Service Specification
	102.1. Introduction
	102.1.1. Entities

	102.2. Registering Servlets
	102.3. Registering Resources
	102.4. Mapping HTTP Requests to Servlet and Resource Registrations
	102.5. The Default Http Context Object
	102.6. Multipurpose Internet Mail Extension (MIME) Types
	102.7. Authentication
	102.8. Security
	102.8.1. Accessing Resources with the Default Http Context
	102.8.2. Accessing Other Types of Resources
	102.8.3. Servlet and HttpContext objects

	102.9. Configuration Properties
	102.10. org.osgi.service.http
	102.10.1. Summary
	102.10.2. public interface HttpContext
	102.10.2.1. public static final String AUTHENTICATION_TYPE = "org.osgi.service.http.authentication.type"
	102.10.2.2. public static final String AUTHORIZATION = "org.osgi.service.useradmin.authorization"
	102.10.2.3. public static final String REMOTE_USER = "org.osgi.service.http.authentication.remote.user"
	102.10.2.4. public String getMimeType(String name)
	102.10.2.5. public URL getResource(String name)
	102.10.2.6. public boolean handleSecurity(HttpServletRequest request, HttpServletResponse response) throws IOException

	102.10.3. public interface HttpService
	102.10.3.1. public HttpContext createDefaultHttpContext()
	102.10.3.2. public void registerResources(String alias, String name, HttpContext context) throws NamespaceException
	102.10.3.3. public void registerServlet(String alias, Servlet servlet, Dictionary<?, ?> initparams, HttpContext context) throws ServletException, NamespaceException
	102.10.3.4. public void unregister(String alias)

	102.10.4. public class NamespaceException extends Exception
	102.10.4.1. public NamespaceException(String message)
	102.10.4.2. public NamespaceException(String message, Throwable cause)
	102.10.4.3. public Throwable getCause()
	102.10.4.4. public Throwable getException()
	102.10.4.5. public Throwable initCause(Throwable cause)

	102.11. References

	Chapter 103. Device Access Specification
	103.1. Introduction
	103.1.1. Essentials
	103.1.2. Operation
	103.1.3. Entities

	103.2. Device Services
	103.2.1. Device Service Registration
	103.2.2. Device Service Attachment
	103.2.2.1. Idle Device Service
	103.2.2.2. Device Service Unregistration

	103.3. Device Category Specifications
	103.3.1. Device Category Guidelines
	103.3.2. Sample Device Category Specification
	103.3.3. Match Example

	103.4. Driver Services
	103.4.1. Driver Bundles
	103.4.2. Driver Taxonomy
	103.4.2.1. Base Drivers
	103.4.2.2. Refining Drivers
	103.4.2.3. Network Drivers
	103.4.2.4. Composite Drivers
	103.4.2.5. Referring Drivers
	103.4.2.6. Bridging Drivers
	103.4.2.7. Multiplexing Drivers
	103.4.2.8. Pure Consuming Drivers
	103.4.2.9. Other Driver Types

	103.4.3. Driver Service Registration
	103.4.4. Driver Service Unregistration
	103.4.5. Driver Service Methods
	103.4.6. Idle Driver Bundles

	103.5. Driver Locator Service
	103.5.1. The DriverLocator Interface
	103.5.2. A Driver Example

	103.6. The Driver Selector Service
	103.7. Device Manager
	103.7.1. Device Manager Startup
	103.7.2. The Device Attachment Algorithm
	103.7.3. Legend
	103.7.4. Optimizations
	103.7.5. Driver Bundle Reclamation
	103.7.6. Handling Driver Bundle Updates
	103.7.7. Simultaneous Device Service and Driver Service Registration

	103.8. Security
	103.9. org.osgi.service.device
	103.9.1. Summary
	103.9.2. public interface Constants
	103.9.2.1. public static final String DEVICE_CATEGORY = "DEVICE_CATEGORY"
	103.9.2.2. public static final String DEVICE_DESCRIPTION = "DEVICE_DESCRIPTION"
	103.9.2.3. public static final String DEVICE_SERIAL = "DEVICE_SERIAL"
	103.9.2.4. public static final String DRIVER_ID = "DRIVER_ID"

	103.9.3. public interface Device
	103.9.3.1. public static final int MATCH_NONE = 0
	103.9.3.2. public void noDriverFound()

	103.9.4. public interface Driver
	103.9.4.1. public String attach(ServiceReference<?> reference) throws Exception
	103.9.4.2. public int match(ServiceReference<?> reference) throws Exception

	103.9.5. public interface DriverLocator
	103.9.5.1. public String[] findDrivers(Dictionary<String, ?> props)
	103.9.5.2. public InputStream loadDriver(String id) throws IOException

	103.9.6. public interface DriverSelector
	103.9.6.1. public static final int SELECT_NONE = -1
	103.9.6.2. public int select(ServiceReference<?> reference, Match[] matches)

	103.9.7. public interface Match
	103.9.7.1. public ServiceReference<?> getDriver()
	103.9.7.2. public int getMatchValue()

	103.10. References

	Chapter 104. Configuration Admin Service Specification
	104.1. Introduction
	104.1.1. Essentials
	104.1.2. Entities
	104.1.3. Synopsis

	104.2. Configuration Targets
	104.3. The Persistent Identity
	104.3.1. PID Syntax
	104.3.1.1. Local Bundle PIDs
	104.3.1.2. Software PIDs
	104.3.1.3. Devices

	104.3.2. Targeted PIDs
	104.3.3. Extenders and Targeted PIDs

	104.4. The Configuration Object
	104.4.1. Location Binding
	104.4.2. Dynamic Binding
	104.4.3. Configuration Properties
	104.4.4. Property Propagation
	104.4.5. Automatic Properties
	104.4.6. Equality

	104.5. Managed Service
	104.5.1. Singletons
	104.5.2. Networks
	104.5.3. Configuring Managed Services
	104.5.4. Race Conditions
	104.5.5. Examples of Managed Service
	104.5.5.1. Configuring A Console Bundle

	104.5.6. Deletion

	104.6. Managed Service Factory
	104.6.1. When to Use a Managed Service Factory
	104.6.1.1. Example Email Fetcher
	104.6.1.2. Example Temperature Conversion Service
	104.6.1.3. Serial Ports

	104.6.2. Registration
	104.6.3. Deletion
	104.6.4. Managed Service Factory Example
	104.6.5. Multiple Consoles Example

	104.7. Configuration Admin Service
	104.7.1. Creating a Managed Service Configuration Object
	104.7.2. Creating a Managed Service Factory Configuration Object
	104.7.3. Accessing Existing Configurations
	104.7.4. Updating a Configuration
	104.7.5. Using Multi-Locations
	104.7.6. Regions
	104.7.7. Deletion
	104.7.8. Updating a Bundle's Own Configuration
	104.7.9. Configuration Attributes

	104.8. Configuration Events
	104.8.1. Event Admin Service and Configuration Change Events

	104.9. Configuration Plugin
	104.9.1. Limiting The Targets
	104.9.2. Example of Property Expansion
	104.9.3. Configuration Data Modifications
	104.9.4. Forcing a Callback
	104.9.5. Calling Order
	104.9.6. Manual Invocation

	104.10. Meta Typing
	104.11. Coordinator Support
	104.12. Capabilities
	104.12.1. osgi.implementation Capability
	104.12.2. osgi.service Capability

	104.13. Security
	104.13.1. Configuration Permission
	104.13.2. Permissions Summary
	104.13.3. Configuration and Permission Administration

	104.14. org.osgi.service.cm
	104.14.1. Summary
	104.14.2. Permissions
	104.14.2.1. Configuration
	104.14.2.2. ConfigurationAdmin
	104.14.2.3. ManagedService
	104.14.2.4. ManagedServiceFactory

	104.14.3. public interface Configuration
	104.14.3.1. public void addAttributes(Configuration.ConfigurationAttribute... attrs) throws IOException
	104.14.3.2. public void delete() throws IOException
	104.14.3.3. public boolean equals(Object other)
	104.14.3.4. public Set<Configuration.ConfigurationAttribute> getAttributes()
	104.14.3.5. public String getBundleLocation()
	104.14.3.6. public long getChangeCount()
	104.14.3.7. public String getFactoryPid()
	104.14.3.8. public String getPid()
	104.14.3.9. public Dictionary<String, Object> getProcessedProperties(ServiceReference<?> reference)
	104.14.3.10. public Dictionary<String, Object> getProperties()
	104.14.3.11. public int hashCode()
	104.14.3.12. public void removeAttributes(Configuration.ConfigurationAttribute... attrs) throws IOException
	104.14.3.13. public void setBundleLocation(String location)
	104.14.3.14. public void update(Dictionary<String, ?> properties) throws IOException
	104.14.3.15. public void update() throws IOException
	104.14.3.16. public boolean updateIfDifferent(Dictionary<String, ?> properties) throws IOException

	104.14.4. enum Configuration.ConfigurationAttribute
	104.14.4.1. READ_ONLY
	104.14.4.2. public static Configuration.ConfigurationAttribute valueOf(String name)
	104.14.4.3. public static Configuration.ConfigurationAttribute[] values()

	104.14.5. public interface ConfigurationAdmin
	104.14.5.1. public static final String SERVICE_BUNDLELOCATION = "service.bundleLocation"
	104.14.5.2. public static final String SERVICE_FACTORYPID = "service.factoryPid"
	104.14.5.3. public Configuration createFactoryConfiguration(String factoryPid) throws IOException
	104.14.5.4. public Configuration createFactoryConfiguration(String factoryPid, String location) throws IOException
	104.14.5.5. public Configuration getConfiguration(String pid, String location) throws IOException
	104.14.5.6. public Configuration getConfiguration(String pid) throws IOException
	104.14.5.7. public Configuration getFactoryConfiguration(String factoryPid, String name, String location) throws IOException
	104.14.5.8. public Configuration getFactoryConfiguration(String factoryPid, String name) throws IOException
	104.14.5.9. public Configuration[] listConfigurations(String filter) throws IOException, InvalidSyntaxException

	104.14.6. public final class ConfigurationConstants
	104.14.6.1. public static final String CONFIGURATION_ADMIN_IMPLEMENTATION = "osgi.cm"
	104.14.6.2. public static final String CONFIGURATION_ADMIN_SPECIFICATION_VERSION = "1.6"

	104.14.7. public class ConfigurationEvent
	104.14.7.1. public static final int CM_DELETED = 2
	104.14.7.2. public static final int CM_LOCATION_CHANGED = 3
	104.14.7.3. public static final int CM_UPDATED = 1
	104.14.7.4. public ConfigurationEvent(ServiceReference<ConfigurationAdmin> reference, int type, String factoryPid, String pid)
	104.14.7.5. public String getFactoryPid()
	104.14.7.6. public String getPid()
	104.14.7.7. public ServiceReference<ConfigurationAdmin> getReference()
	104.14.7.8. public int getType()

	104.14.8. public class ConfigurationException extends Exception
	104.14.8.1. public ConfigurationException(String property, String reason)
	104.14.8.2. public ConfigurationException(String property, String reason, Throwable cause)
	104.14.8.3. public Throwable getCause()
	104.14.8.4. public String getProperty()
	104.14.8.5. public String getReason()
	104.14.8.6. public Throwable initCause(Throwable cause)

	104.14.9. public interface ConfigurationListener
	104.14.9.1. public void configurationEvent(ConfigurationEvent event)

	104.14.10. public final class ConfigurationPermission extends BasicPermission
	104.14.10.1. public static final String ATTRIBUTE = "attribute"
	104.14.10.2. public static final String CONFIGURE = "configure"
	104.14.10.3. public static final String TARGET = "target"
	104.14.10.4. public ConfigurationPermission(String name, String actions)
	104.14.10.5. public boolean equals(Object obj)
	104.14.10.6. public String getActions()
	104.14.10.7. public int hashCode()
	104.14.10.8. public boolean implies(Permission p)
	104.14.10.9. public PermissionCollection newPermissionCollection()

	104.14.11. public interface ConfigurationPlugin
	104.14.11.1. public static final String CM_RANKING = "service.cmRanking"
	104.14.11.2. public static final String CM_TARGET = "cm.target"
	104.14.11.3. public void modifyConfiguration(ServiceReference<?> reference, Dictionary<String, Object> properties)

	104.14.12. public interface ManagedService
	104.14.12.1. public void updated(Dictionary<String, ?> properties) throws ConfigurationException

	104.14.13. public interface ManagedServiceFactory
	104.14.13.1. public void deleted(String pid)
	104.14.13.2. public String getName()
	104.14.13.3. public void updated(String pid, Dictionary<String, ?> properties) throws ConfigurationException

	104.14.14. public class ReadOnlyConfigurationException extends RuntimeException
	104.14.14.1. public ReadOnlyConfigurationException(String reason)

	104.14.15. public interface SynchronousConfigurationListener extends ConfigurationListener

	104.15. org.osgi.service.cm.annotations
	104.15.1. Summary
	104.15.2. @RequireConfigurationAdmin

	Chapter 105. Metatype Service Specification
	105.1. Introduction
	105.1.1. Essentials
	105.1.2. Entities
	105.1.3. Operation

	105.2. Attributes Model
	105.3. Object Class Definition
	105.4. Attribute Definition
	105.5. Meta Type Service
	105.6. Meta Type Provider Service
	105.7. Using the Meta Type Resources
	105.7.1. XML Schema of a Meta Type Resource
	105.7.2. Designate Element
	105.7.3. Example Metadata File
	105.7.4. Object Element

	105.8. Meta Type Resource XML Schema
	105.9. Meta Type Annotations
	105.9.1. ObjectClassDefinition Annotation
	105.9.2. AttributeDefinition Annotation
	105.9.3. Designate Annotation

	105.10. Limitations
	105.11. Related Standards
	105.12. Capabilities
	105.13. Security Considerations
	105.14. org.osgi.service.metatype
	105.14.1. Summary
	105.14.2. public interface AttributeDefinition
	105.14.2.1. public static final int BIGDECIMAL = 10
	105.14.2.2. public static final int BIGINTEGER = 9
	105.14.2.3. public static final int BOOLEAN = 11
	105.14.2.4. public static final int BYTE = 6
	105.14.2.5. public static final int CHARACTER = 5
	105.14.2.6. public static final int DOUBLE = 7
	105.14.2.7. public static final int FLOAT = 8
	105.14.2.8. public static final int INTEGER = 3
	105.14.2.9. public static final int LONG = 2
	105.14.2.10. public static final int PASSWORD = 12
	105.14.2.11. public static final int SHORT = 4
	105.14.2.12. public static final int STRING = 1
	105.14.2.13. public int getCardinality()
	105.14.2.14. public String[] getDefaultValue()
	105.14.2.15. public String getDescription()
	105.14.2.16. public String getID()
	105.14.2.17. public String getName()
	105.14.2.18. public String[] getOptionLabels()
	105.14.2.19. public String[] getOptionValues()
	105.14.2.20. public int getType()
	105.14.2.21. public String validate(String value)

	105.14.3. public interface MetaTypeInformation extends MetaTypeProvider
	105.14.3.1. public Bundle getBundle()
	105.14.3.2. public String[] getFactoryPids()
	105.14.3.3. public String[] getPids()

	105.14.4. public interface MetaTypeProvider
	105.14.4.1. public static final String METATYPE_FACTORY_PID = "metatype.factory.pid"
	105.14.4.2. public static final String METATYPE_PID = "metatype.pid"
	105.14.4.3. public String[] getLocales()
	105.14.4.4. public ObjectClassDefinition getObjectClassDefinition(String id, String locale)

	105.14.5. public interface MetaTypeService
	105.14.5.1. public static final String METATYPE_CAPABILITY_NAME = "osgi.metatype"
	105.14.5.2. public static final String METATYPE_DOCUMENTS_LOCATION = "OSGI-INF/metatype"
	105.14.5.3. public static final String METATYPE_SPECIFICATION_VERSION = "1.4"
	105.14.5.4. public MetaTypeInformation getMetaTypeInformation(Bundle bundle)

	105.14.6. public interface ObjectClassDefinition
	105.14.6.1. public static final int ALL = -1
	105.14.6.2. public static final int OPTIONAL = 2
	105.14.6.3. public static final int REQUIRED = 1
	105.14.6.4. public AttributeDefinition[] getAttributeDefinitions(int filter)
	105.14.6.5. public String getDescription()
	105.14.6.6. public InputStream getIcon(int size) throws IOException
	105.14.6.7. public String getID()
	105.14.6.8. public String getName()

	105.15. org.osgi.service.metatype.annotations
	105.15.1. Summary
	105.15.2. @AttributeDefinition
	105.15.2.1. String name default ""
	105.15.2.2. String description default ""
	105.15.2.3. AttributeType type default STRING
	105.15.2.4. int cardinality default 0
	105.15.2.5. String min default ""
	105.15.2.6. String max default ""
	105.15.2.7. String[] defaultValue default {}
	105.15.2.8. boolean required default true
	105.15.2.9. Option[] options default {}

	105.15.3. enum AttributeType
	105.15.3.1. STRING
	105.15.3.2. LONG
	105.15.3.3. INTEGER
	105.15.3.4. SHORT
	105.15.3.5. CHARACTER
	105.15.3.6. BYTE
	105.15.3.7. DOUBLE
	105.15.3.8. FLOAT
	105.15.3.9. BOOLEAN
	105.15.3.10. PASSWORD
	105.15.3.11. public String toString()
	105.15.3.12. public static AttributeType valueOf(String name)
	105.15.3.13. public static AttributeType[] values()

	105.15.4. @Designate
	105.15.4.1. Class<?> ocd
	105.15.4.2. boolean factory default false

	105.15.5. @Icon
	105.15.5.1. String resource
	105.15.5.2. int size

	105.15.6. @ObjectClassDefinition
	105.15.6.1. String id default ""
	105.15.6.2. String name default ""
	105.15.6.3. String description default ""
	105.15.6.4. String localization default ""
	105.15.6.5. String[] pid default {}
	105.15.6.6. String[] factoryPid default {}
	105.15.6.7. Icon[] icon default {}

	105.15.7. @Option
	105.15.7.1. String label default ""
	105.15.7.2. String value

	105.15.8. @RequireMetaTypeExtender
	105.15.9. @RequireMetaTypeImplementation

	105.16. References

	Chapter 106. PreferencesService Specification
	106.1. Introduction
	106.1.1. Essentials
	106.1.2. Entities
	106.1.3. Operation

	106.2. Preferences Interface
	106.2.1. Hierarchies
	106.2.2. Naming
	106.2.3. Tree Traversal Methods
	106.2.4. Properties
	106.2.5. Storing and Retrieving Properties
	106.2.6. Defaults

	106.3. Concurrency
	106.4. PreferencesService Interface
	106.5. Cleanup
	106.6. org.osgi.service.prefs
	106.6.1. Summary
	106.6.2. public class BackingStoreException extends Exception
	106.6.2.1. public BackingStoreException(String message)
	106.6.2.2. public BackingStoreException(String message, Throwable cause)
	106.6.2.3. public Throwable getCause()
	106.6.2.4. public Throwable initCause(Throwable cause)

	106.6.3. public interface Preferences
	106.6.3.1. public String absolutePath()
	106.6.3.2. public String[] childrenNames() throws BackingStoreException
	106.6.3.3. public void clear() throws BackingStoreException
	106.6.3.4. public void flush() throws BackingStoreException
	106.6.3.5. public String get(String key, String def)
	106.6.3.6. public boolean getBoolean(String key, boolean def)
	106.6.3.7. public byte[] getByteArray(String key, byte[] def)
	106.6.3.8. public double getDouble(String key, double def)
	106.6.3.9. public float getFloat(String key, float def)
	106.6.3.10. public int getInt(String key, int def)
	106.6.3.11. public long getLong(String key, long def)
	106.6.3.12. public String[] keys() throws BackingStoreException
	106.6.3.13. public String name()
	106.6.3.14. public Preferences node(String pathName)
	106.6.3.15. public boolean nodeExists(String pathName) throws BackingStoreException
	106.6.3.16. public Preferences parent()
	106.6.3.17. public void put(String key, String value)
	106.6.3.18. public void putBoolean(String key, boolean value)
	106.6.3.19. public void putByteArray(String key, byte[] value)
	106.6.3.20. public void putDouble(String key, double value)
	106.6.3.21. public void putFloat(String key, float value)
	106.6.3.22. public void putInt(String key, int value)
	106.6.3.23. public void putLong(String key, long value)
	106.6.3.24. public void remove(String key)
	106.6.3.25. public void removeNode() throws BackingStoreException
	106.6.3.26. public void sync() throws BackingStoreException

	106.6.4. public interface PreferencesService
	106.6.4.1. public Preferences getSystemPreferences()
	106.6.4.2. public Preferences getUserPreferences(String name)
	106.6.4.3. public String[] getUsers()

	106.7. References

	Chapter 107. User Admin Service Specification
	107.1. Introduction
	107.1.1. Essentials
	107.1.2. Entities
	107.1.3. Operation

	107.2. Authentication
	107.2.1. Repository
	107.2.2. Basic Authentication
	107.2.3. Certificates

	107.3. Authorization
	107.3.1. The Authorization Object
	107.3.2. Authorization Example

	107.4. Repository Maintenance
	107.5. User Admin Events
	107.5.1. Event Admin and User Admin Change Events

	107.6. Security
	107.6.1. User Admin Permission

	107.7. Relation to JAAS
	107.7.1. JDK 1.3 Dependencies
	107.7.2. Existing OSGi Mechanism
	107.7.3. Future Road Map

	107.8. org.osgi.service.useradmin
	107.8.1. Summary
	107.8.2. public interface Authorization
	107.8.2.1. public String getName()
	107.8.2.2. public String[] getRoles()
	107.8.2.3. public boolean hasRole(String name)

	107.8.3. public interface Group extends User
	107.8.3.1. public boolean addMember(Role role)
	107.8.3.2. public boolean addRequiredMember(Role role)
	107.8.3.3. public Role[] getMembers()
	107.8.3.4. public Role[] getRequiredMembers()
	107.8.3.5. public boolean removeMember(Role role)

	107.8.4. public interface Role
	107.8.4.1. public static final int GROUP = 2
	107.8.4.2. public static final int ROLE = 0
	107.8.4.3. public static final int USER = 1
	107.8.4.4. public static final String USER_ANYONE = "user.anyone"
	107.8.4.5. public String getName()
	107.8.4.6. public Dictionary<String, Object> getProperties()
	107.8.4.7. public int getType()

	107.8.5. public interface User extends Role
	107.8.5.1. public Dictionary<String, Object> getCredentials()
	107.8.5.2. public boolean hasCredential(String key, Object value)

	107.8.6. public interface UserAdmin
	107.8.6.1. public Role createRole(String name, int type)
	107.8.6.2. public Authorization getAuthorization(User user)
	107.8.6.3. public Role getRole(String name)
	107.8.6.4. public Role[] getRoles(String filter) throws InvalidSyntaxException
	107.8.6.5. public User getUser(String key, String value)
	107.8.6.6. public boolean removeRole(String name)

	107.8.7. public class UserAdminEvent
	107.8.7.1. public static final int ROLE_CHANGED = 2
	107.8.7.2. public static final int ROLE_CREATED = 1
	107.8.7.3. public static final int ROLE_REMOVED = 4
	107.8.7.4. public UserAdminEvent(ServiceReference<UserAdmin> ref, int type, Role role)
	107.8.7.5. public Role getRole()
	107.8.7.6. public ServiceReference<UserAdmin> getServiceReference()
	107.8.7.7. public int getType()

	107.8.8. public interface UserAdminListener
	107.8.8.1. public void roleChanged(UserAdminEvent event)

	107.8.9. public final class UserAdminPermission extends BasicPermission
	107.8.9.1. public static final String ADMIN = "admin"
	107.8.9.2. public static final String CHANGE_CREDENTIAL = "changeCredential"
	107.8.9.3. public static final String CHANGE_PROPERTY = "changeProperty"
	107.8.9.4. public static final String GET_CREDENTIAL = "getCredential"
	107.8.9.5. public UserAdminPermission(String name, String actions)
	107.8.9.6. public boolean equals(Object obj)
	107.8.9.7. public String getActions()
	107.8.9.8. public int hashCode()
	107.8.9.9. public boolean implies(Permission p)
	107.8.9.10. public PermissionCollection newPermissionCollection()
	107.8.9.11. public String toString()

	107.9. References

	Chapter 108. Wire Admin Service Specification
	108.1. Introduction
	108.1.1. Wire Admin Service Essentials
	108.1.2. Wire Admin Service Entities
	108.1.3. Operation Summary

	108.2. Producer Service
	108.2.1. Producer Properties
	108.2.2. Connections
	108.2.3. Producer Example
	108.2.4. Push and Pull
	108.2.5. Producers and Flavors

	108.3. Consumer Service
	108.3.1. Consumer Properties
	108.3.2. Connections
	108.3.3. Consumer Example
	108.3.4. Polling or Receiving a Value
	108.3.5. Consumers and Flavors

	108.4. Implementation issues
	108.5. Wire Properties
	108.5.1. Display Service Example

	108.6. Composite objects
	108.6.1. Identification
	108.6.2. Scope
	108.6.3. Access Control
	108.6.4. Composites and Flavors
	108.6.5. Scope name syntax

	108.7. Wire Flow Control
	108.7.1. Filtering by Time
	108.7.2. Filtering by Change
	108.7.3. Hysteresis

	108.8. Flavors
	108.9. Converters
	108.10. Wire Admin Service Implementation
	108.11. Wire Admin Listener Service Events
	108.11.1. Event Admin Service Events

	108.12. Connecting External Entities
	108.13. Related Standards
	108.13.1. Java Beans

	108.14. Security
	108.14.1. Separation of Consumer and Producer Services
	108.14.2. Using Wire Admin Service
	108.14.3. Wire Permission

	108.15. org.osgi.service.wireadmin
	108.15.1. Summary
	108.15.2. public class BasicEnvelope implements Envelope
	108.15.2.1. public BasicEnvelope(Object value, Object identification, String scope)
	108.15.2.2. public Object getIdentification()
	108.15.2.3. public String getScope()
	108.15.2.4. public Object getValue()

	108.15.3. public interface Consumer
	108.15.3.1. public void producersConnected(Wire[] wires)
	108.15.3.2. public void updated(Wire wire, Object value)

	108.15.4. public interface Envelope
	108.15.4.1. public Object getIdentification()
	108.15.4.2. public String getScope()
	108.15.4.3. public Object getValue()

	108.15.5. public interface Producer
	108.15.5.1. public void consumersConnected(Wire[] wires)
	108.15.5.2. public Object polled(Wire wire)

	108.15.6. public interface Wire
	108.15.6.1. public Class<?>[] getFlavors()
	108.15.6.2. public Object getLastValue()
	108.15.6.3. public Dictionary<String, Object> getProperties()
	108.15.6.4. public String[] getScope()
	108.15.6.5. public boolean hasScope(String name)
	108.15.6.6. public boolean isConnected()
	108.15.6.7. public boolean isValid()
	108.15.6.8. public Object poll()
	108.15.6.9. public void update(Object value)

	108.15.7. public interface WireAdmin
	108.15.7.1. public Wire createWire(String producerPID, String consumerPID, Dictionary<String, ?> properties)
	108.15.7.2. public void deleteWire(Wire wire)
	108.15.7.3. public Wire[] getWires(String filter) throws InvalidSyntaxException
	108.15.7.4. public void updateWire(Wire wire, Dictionary<String, ?> properties)

	108.15.8. public class WireAdminEvent
	108.15.8.1. public static final int CONSUMER_EXCEPTION = 2
	108.15.8.2. public static final int PRODUCER_EXCEPTION = 1
	108.15.8.3. public static final int WIRE_CONNECTED = 32
	108.15.8.4. public static final int WIRE_CREATED = 4
	108.15.8.5. public static final int WIRE_DELETED = 16
	108.15.8.6. public static final int WIRE_DISCONNECTED = 64
	108.15.8.7. public static final int WIRE_TRACE = 128
	108.15.8.8. public static final int WIRE_UPDATED = 8
	108.15.8.9. public WireAdminEvent(ServiceReference<WireAdmin> reference, int type, Wire wire, Throwable exception)
	108.15.8.10. public ServiceReference<WireAdmin> getServiceReference()
	108.15.8.11. public Throwable getThrowable()
	108.15.8.12. public int getType()
	108.15.8.13. public Wire getWire()

	108.15.9. public interface WireAdminListener
	108.15.9.1. public void wireAdminEvent(WireAdminEvent event)

	108.15.10. public interface WireConstants
	108.15.10.1. public static final String WIREADMIN_CONSUMER_COMPOSITE = "wireadmin.consumer.composite"
	108.15.10.2. public static final String WIREADMIN_CONSUMER_FLAVORS = "wireadmin.consumer.flavors"
	108.15.10.3. public static final String WIREADMIN_CONSUMER_PID = "wireadmin.consumer.pid"
	108.15.10.4. public static final String WIREADMIN_CONSUMER_SCOPE = "wireadmin.consumer.scope"
	108.15.10.5. public static final String WIREADMIN_EVENTS = "wireadmin.events"
	108.15.10.6. public static final String WIREADMIN_FILTER = "wireadmin.filter"
	108.15.10.7. public static final String WIREADMIN_PID = "wireadmin.pid"
	108.15.10.8. public static final String WIREADMIN_PRODUCER_COMPOSITE = "wireadmin.producer.composite"
	108.15.10.9. public static final String WIREADMIN_PRODUCER_FILTERS = "wireadmin.producer.filters"
	108.15.10.10. public static final String WIREADMIN_PRODUCER_FLAVORS = "wireadmin.producer.flavors"
	108.15.10.11. public static final String WIREADMIN_PRODUCER_PID = "wireadmin.producer.pid"
	108.15.10.12. public static final String WIREADMIN_PRODUCER_SCOPE = "wireadmin.producer.scope"
	108.15.10.13. public static final String[] WIREADMIN_SCOPE_ALL
	108.15.10.14. public static final String WIREVALUE_CURRENT = "wirevalue.current"
	108.15.10.15. public static final String WIREVALUE_DELTA_ABSOLUTE = "wirevalue.delta.absolute"
	108.15.10.16. public static final String WIREVALUE_DELTA_RELATIVE = "wirevalue.delta.relative"
	108.15.10.17. public static final String WIREVALUE_ELAPSED = "wirevalue.elapsed"
	108.15.10.18. public static final String WIREVALUE_PREVIOUS = "wirevalue.previous"

	108.15.11. public final class WirePermission extends BasicPermission
	108.15.11.1. public static final String CONSUME = "consume"
	108.15.11.2. public static final String PRODUCE = "produce"
	108.15.11.3. public WirePermission(String name, String actions)
	108.15.11.4. public boolean equals(Object obj)
	108.15.11.5. public String getActions()
	108.15.11.6. public int hashCode()
	108.15.11.7. public boolean implies(Permission p)
	108.15.11.8. public PermissionCollection newPermissionCollection()
	108.15.11.9. public String toString()

	108.16. References

	Chapter 111. Device Service Specification for UPnP™ Technology
	111.1. Introduction
	111.1.1. Essentials
	111.1.2. Entities
	111.1.3. Operation Summary

	111.2. UPnP Specifications
	111.2.1. UPnP Base Driver

	111.3. UPnP Device
	111.3.1. Root Device
	111.3.2. Exported Versus Imported Devices
	111.3.3. Icons

	111.4. Device Category
	111.5. UPnPService
	111.5.1. State Variables

	111.6. Working With a UPnP Device
	111.7. Implementing a UPnP Device
	111.8. Event API
	111.8.1. Initial Event Delivery

	111.9. UPnP Events and Event Admin service
	111.10. Localization
	111.11. Dates and Times
	111.12. UPnP Exception
	111.13. Configuration
	111.14. Networking considerations
	111.14.1. The UPnP Multicasts

	111.15. Security
	111.16. org.osgi.service.upnp
	111.16.1. Summary
	111.16.2. public interface UPnPAction
	111.16.2.1. public String[] getInputArgumentNames()
	111.16.2.2. public String getName()
	111.16.2.3. public String[] getOutputArgumentNames()
	111.16.2.4. public String getReturnArgumentName()
	111.16.2.5. public UPnPStateVariable getStateVariable(String argumentName)
	111.16.2.6. public Dictionary<String, Object> invoke(Dictionary<String, Object> args) throws Exception

	111.16.3. public interface UPnPDevice
	111.16.3.1. public static final String CHILDREN_UDN = "UPnP.device.childrenUDN"
	111.16.3.2. public static final String DEVICE_CATEGORY = "UPnP"
	111.16.3.3. public static final String FRIENDLY_NAME = "UPnP.device.friendlyName"
	111.16.3.4. public static final String ID = "UPnP.device.UDN"
	111.16.3.5. public static final String MANUFACTURER = "UPnP.device.manufacturer"
	111.16.3.6. public static final String MANUFACTURER_URL = "UPnP.device.manufacturerURL"
	111.16.3.7. public static final int MATCH_GENERIC = 1
	111.16.3.8. public static final int MATCH_MANUFACTURER_MODEL = 7
	111.16.3.9. public static final int MATCH_MANUFACTURER_MODEL_REVISION = 15
	111.16.3.10. public static final int MATCH_MANUFACTURER_MODEL_REVISION_SERIAL = 31
	111.16.3.11. public static final int MATCH_TYPE = 3
	111.16.3.12. public static final String MODEL_DESCRIPTION = "UPnP.device.modelDescription"
	111.16.3.13. public static final String MODEL_NAME = "UPnP.device.modelName"
	111.16.3.14. public static final String MODEL_NUMBER = "UPnP.device.modelNumber"
	111.16.3.15. public static final String MODEL_URL = "UPnP.device.modelURL"
	111.16.3.16. public static final String PARENT_UDN = "UPnP.device.parentUDN"
	111.16.3.17. public static final String PRESENTATION_URL = "UPnP.presentationURL"
	111.16.3.18. public static final String SERIAL_NUMBER = "UPnP.device.serialNumber"
	111.16.3.19. public static final String TYPE = "UPnP.device.type"
	111.16.3.20. public static final String UDN = "UPnP.device.UDN"
	111.16.3.21. public static final String UPC = "UPnP.device.UPC"
	111.16.3.22. public static final String UPNP_EXPORT = "UPnP.export"
	111.16.3.23. public Dictionary<String, Object> getDescriptions(String locale)
	111.16.3.24. public UPnPIcon[] getIcons(String locale)
	111.16.3.25. public UPnPService getService(String serviceId)
	111.16.3.26. public UPnPService[] getServices()

	111.16.4. public interface UPnPEventListener
	111.16.4.1. public static final String UPNP_FILTER = "upnp.filter"
	111.16.4.2. public void notifyUPnPEvent(String deviceId, String serviceId, Dictionary<String, Object> events)

	111.16.5. public class UPnPException extends Exception
	111.16.5.1. public static final int DEVICE_INTERNAL_ERROR = 501
	111.16.5.2. public static final int INVALID_ACTION = 401
	111.16.5.3. public static final int INVALID_ARGS = 402
	111.16.5.4. public static final int INVALID_SEQUENCE_NUMBER = 403
	111.16.5.5. public static final int INVALID_VARIABLE = 404
	111.16.5.6. public UPnPException(int errorCode, String errorDescription)
	111.16.5.7. public UPnPException(int errorCode, String errorDescription, Throwable errorCause)
	111.16.5.8. public int getUPnPError_Code()
	111.16.5.9. public int getUPnPErrorCode()

	111.16.6. public interface UPnPIcon
	111.16.6.1. public int getDepth()
	111.16.6.2. public int getHeight()
	111.16.6.3. public InputStream getInputStream() throws IOException
	111.16.6.4. public String getMimeType()
	111.16.6.5. public int getSize()
	111.16.6.6. public int getWidth()

	111.16.7. public interface UPnPLocalStateVariable extends UPnPStateVariable
	111.16.7.1. public Object getCurrentValue()

	111.16.8. public interface UPnPService
	111.16.8.1. public static final String ID = "UPnP.service.id"
	111.16.8.2. public static final String TYPE = "UPnP.service.type"
	111.16.8.3. public UPnPAction getAction(String name)
	111.16.8.4. public UPnPAction[] getActions()
	111.16.8.5. public String getId()
	111.16.8.6. public UPnPStateVariable getStateVariable(String name)
	111.16.8.7. public UPnPStateVariable[] getStateVariables()
	111.16.8.8. public String getType()
	111.16.8.9. public String getVersion()

	111.16.9. public interface UPnPStateVariable
	111.16.9.1. public static final String TYPE_BIN_BASE64 = "bin.base64"
	111.16.9.2. public static final String TYPE_BIN_HEX = "bin.hex"
	111.16.9.3. public static final String TYPE_BOOLEAN = "boolean"
	111.16.9.4. public static final String TYPE_CHAR = "char"
	111.16.9.5. public static final String TYPE_DATE = "date"
	111.16.9.6. public static final String TYPE_DATETIME = "dateTime"
	111.16.9.7. public static final String TYPE_DATETIME_TZ = "dateTime.tz"
	111.16.9.8. public static final String TYPE_FIXED_14_4 = "fixed.14.4"
	111.16.9.9. public static final String TYPE_FLOAT = "float"
	111.16.9.10. public static final String TYPE_I1 = "i1"
	111.16.9.11. public static final String TYPE_I2 = "i2"
	111.16.9.12. public static final String TYPE_I4 = "i4"
	111.16.9.13. public static final String TYPE_INT = "int"
	111.16.9.14. public static final String TYPE_NUMBER = "number"
	111.16.9.15. public static final String TYPE_R4 = "r4"
	111.16.9.16. public static final String TYPE_R8 = "r8"
	111.16.9.17. public static final String TYPE_STRING = "string"
	111.16.9.18. public static final String TYPE_TIME = "time"
	111.16.9.19. public static final String TYPE_TIME_TZ = "time.tz"
	111.16.9.20. public static final String TYPE_UI1 = "ui1"
	111.16.9.21. public static final String TYPE_UI2 = "ui2"
	111.16.9.22. public static final String TYPE_UI4 = "ui4"
	111.16.9.23. public static final String TYPE_URI = "uri"
	111.16.9.24. public static final String TYPE_UUID = "uuid"
	111.16.9.25. public String[] getAllowedValues()
	111.16.9.26. public Object getDefaultValue()
	111.16.9.27. public Class<?> getJavaDataType()
	111.16.9.28. public Number getMaximum()
	111.16.9.29. public Number getMinimum()
	111.16.9.30. public String getName()
	111.16.9.31. public Number getStep()
	111.16.9.32. public String getUPnPDataType()
	111.16.9.33. public boolean sendsEvents()

	111.17. References

	Chapter 112. Declarative Services Specification
	112.1. Introduction
	112.1.1. Essentials
	112.1.2. Entities
	112.1.3. Synopsis
	112.1.4. Readers

	112.2. Components
	112.2.1. Declaring a Component
	112.2.2. Immediate Component
	112.2.3. Delayed Component
	112.2.4. Factory Component

	112.3. References to Services
	112.3.1. Accessing Services
	112.3.2. Method Injection
	112.3.3. Field Injection
	112.3.4. Constructor Injection
	112.3.5. Reference Cardinality
	112.3.6. Reference Scope
	112.3.7. Reference Policy
	112.3.7.1. Static Reference Policy
	112.3.7.2. Dynamic Reference Policy

	112.3.8. Reference Policy Option
	112.3.9. Reference Field Option
	112.3.9.1. Replace Field Option
	112.3.9.2. Update Field Option

	112.3.10. Selecting Target Services
	112.3.10.1. Any Service Type

	112.3.11. Circular References
	112.3.12. Logger Support
	112.3.13. Satisfying Condition

	112.4. Component Description
	112.4.1. Annotations
	112.4.2. Service Component Header
	112.4.3. XML Document
	112.4.4. Component Element
	112.4.5. Implementation Element
	112.4.6. Property and Properties Elements
	112.4.7. Service Element
	112.4.8. Reference Element
	112.4.9. Factory Property and Factory Properties Elements

	112.5. Component Life Cycle
	112.5.1. Enabled
	112.5.2. Satisfied
	112.5.3. Immediate Component
	112.5.4. Delayed Component
	112.5.5. Factory Component
	112.5.6. Activation
	112.5.7. Bound Services
	112.5.8. Component Context
	112.5.9. Activation Objects
	112.5.10. Binding Services
	112.5.11. Activate Method
	112.5.12. Bound Service Replacement
	112.5.13. Updated
	112.5.14. Modification
	112.5.15. Modified Method
	112.5.16. Deactivation
	112.5.17. Deactivate Method
	112.5.18. Unbinding
	112.5.19. Life Cycle Example

	112.6. Component Properties
	112.6.1. Service Properties
	112.6.2. Reference Properties
	112.6.2.1. Target Property
	112.6.2.2. Minimum Cardinality Property

	112.7. Deployment
	112.7.1. Configuration Changes
	112.7.1.1. Ignore Configuration Policy
	112.7.1.2. Require Configuration Policy
	112.7.1.3. Optional Configuration Policy
	112.7.1.4. Configuration Change Actions
	112.7.1.5. Coordinator Support

	112.8. Annotations
	112.8.1. Component Annotations
	112.8.2. Component Property Types
	112.8.2.1. Component Property Mapping
	112.8.2.2. Coercing Component Property Values
	112.8.2.3. Standard Component Property Types

	112.8.3. Ordering of Generated Component Properties

	112.9. Service Component Runtime
	112.9.1. Relationship to OSGi Framework
	112.9.2. Starting and Stopping SCR
	112.9.3. Logging Messages
	112.9.4. Locating Component Methods and Fields
	112.9.5. Bundle Activator Interaction
	112.9.6. Introspection
	112.9.7. Capabilities
	112.9.8. Locating the True Condition Service

	112.10. Security
	112.10.1. Service Permissions
	112.10.2. Required Admin Permission
	112.10.3. Using hasPermission
	112.10.4. Configuration Multi-Locations and Regions

	112.11. Component Description Schema
	112.12. org.osgi.service.component
	112.12.1. Summary
	112.12.2. public final class AnyService
	112.12.3. public interface ComponentConstants
	112.12.3.1. public static final String COMPONENT_CAPABILITY_NAME = "osgi.component"
	112.12.3.2. public static final String COMPONENT_FACTORY = "component.factory"
	112.12.3.3. public static final String COMPONENT_ID = "component.id"
	112.12.3.4. public static final String COMPONENT_NAME = "component.name"
	112.12.3.5. public static final String COMPONENT_SPECIFICATION_VERSION = "1.5"
	112.12.3.6. public static final int DEACTIVATION_REASON_BUNDLE_STOPPED = 6
	112.12.3.7. public static final int DEACTIVATION_REASON_CONFIGURATION_DELETED = 4
	112.12.3.8. public static final int DEACTIVATION_REASON_CONFIGURATION_MODIFIED = 3
	112.12.3.9. public static final int DEACTIVATION_REASON_DISABLED = 1
	112.12.3.10. public static final int DEACTIVATION_REASON_DISPOSED = 5
	112.12.3.11. public static final int DEACTIVATION_REASON_REFERENCE = 2
	112.12.3.12. public static final int DEACTIVATION_REASON_UNSPECIFIED = 0
	112.12.3.13. public static final String REFERENCE_NAME_SATISFYING_CONDITION = "osgi.ds.satisfying.condition"
	112.12.3.14. public static final String REFERENCE_TARGET_SUFFIX = ".target"
	112.12.3.15. public static final String SERVICE_COMPONENT = "Service-Component"

	112.12.4. public interface ComponentContext
	112.12.4.1. public void disableComponent(String name)
	112.12.4.2. public void enableComponent(String name)
	112.12.4.3. public BundleContext getBundleContext()
	112.12.4.4. public ComponentInstance<S> getComponentInstance()
	112.12.4.5. public Dictionary<String, Object> getProperties()
	112.12.4.6. public ServiceReference<?> getServiceReference()
	112.12.4.7. public Bundle getUsingBundle()
	112.12.4.8. public S locateService(String name)
	112.12.4.9. public S locateService(String name, ServiceReference<S> reference)
	112.12.4.10. public Object[] locateServices(String name)

	112.12.5. public class ComponentException extends RuntimeException
	112.12.5.1. public ComponentException(String message, Throwable cause)
	112.12.5.2. public ComponentException(String message)
	112.12.5.3. public ComponentException(Throwable cause)
	112.12.5.4. public Throwable getCause()
	112.12.5.5. public Throwable initCause(Throwable cause)

	112.12.6. public interface ComponentFactory<S>
	112.12.6.1. public ComponentInstance<S> newInstance(Dictionary<String, ?> properties)

	112.12.7. public interface ComponentInstance<S>
	112.12.7.1. public void dispose()
	112.12.7.2. public S getInstance()

	112.12.8. public interface ComponentServiceObjects<S>
	112.12.8.1. public S getService()
	112.12.8.2. public ServiceReference<S> getServiceReference()
	112.12.8.3. public void ungetService(S service)

	112.13. org.osgi.service.component.annotations
	112.13.1. Summary
	112.13.2. @Activate
	112.13.3. enum CollectionType
	112.13.3.1. SERVICE
	112.13.3.2. REFERENCE
	112.13.3.3. SERVICEOBJECTS
	112.13.3.4. PROPERTIES
	112.13.3.5. TUPLE
	112.13.3.6. public String toString()
	112.13.3.7. public static CollectionType valueOf(String name)
	112.13.3.8. public static CollectionType[] values()

	112.13.4. @Component
	112.13.4.1. String name default ""
	112.13.4.2. Class<?>[] service default {}
	112.13.4.3. String factory default ""
	112.13.4.4. boolean servicefactory default false
	112.13.4.5. boolean enabled default true
	112.13.4.6. boolean immediate default false
	112.13.4.7. String[] property default {}
	112.13.4.8. String[] properties default {}
	112.13.4.9. String xmlns default ""
	112.13.4.10. ConfigurationPolicy configurationPolicy default OPTIONAL
	112.13.4.11. String[] configurationPid default "$"
	112.13.4.12. ServiceScope scope default DEFAULT
	112.13.4.13. Reference[] reference default {}
	112.13.4.14. String[] factoryProperty default {}
	112.13.4.15. String[] factoryProperties default {}
	112.13.4.16. String NAME = "$"

	112.13.5. @ComponentPropertyType
	112.13.6. enum ConfigurationPolicy
	112.13.6.1. OPTIONAL
	112.13.6.2. REQUIRE
	112.13.6.3. IGNORE
	112.13.6.4. public String toString()
	112.13.6.5. public static ConfigurationPolicy valueOf(String name)
	112.13.6.6. public static ConfigurationPolicy[] values()

	112.13.7. @Deactivate
	112.13.8. enum FieldOption
	112.13.8.1. UPDATE
	112.13.8.2. REPLACE
	112.13.8.3. public String toString()
	112.13.8.4. public static FieldOption valueOf(String name)
	112.13.8.5. public static FieldOption[] values()

	112.13.9. @Modified
	112.13.10. @Reference
	112.13.10.1. String name default ""
	112.13.10.2. Class<?> service default Object.class
	112.13.10.3. ReferenceCardinality cardinality default MANDATORY
	112.13.10.4. ReferencePolicy policy default STATIC
	112.13.10.5. String target default ""
	112.13.10.6. ReferencePolicyOption policyOption default RELUCTANT
	112.13.10.7. ReferenceScope scope default BUNDLE
	112.13.10.8. String bind default ""
	112.13.10.9. String updated default ""
	112.13.10.10. String unbind default ""
	112.13.10.11. String field default ""
	112.13.10.12. FieldOption fieldOption default REPLACE
	112.13.10.13. int parameter default 0
	112.13.10.14. CollectionType collectionType default SERVICE

	112.13.11. enum ReferenceCardinality
	112.13.11.1. OPTIONAL
	112.13.11.2. MANDATORY
	112.13.11.3. MULTIPLE
	112.13.11.4. AT_LEAST_ONE
	112.13.11.5. public String toString()
	112.13.11.6. public static ReferenceCardinality valueOf(String name)
	112.13.11.7. public static ReferenceCardinality[] values()

	112.13.12. enum ReferencePolicy
	112.13.12.1. STATIC
	112.13.12.2. DYNAMIC
	112.13.12.3. public String toString()
	112.13.12.4. public static ReferencePolicy valueOf(String name)
	112.13.12.5. public static ReferencePolicy[] values()

	112.13.13. enum ReferencePolicyOption
	112.13.13.1. RELUCTANT
	112.13.13.2. GREEDY
	112.13.13.3. public String toString()
	112.13.13.4. public static ReferencePolicyOption valueOf(String name)
	112.13.13.5. public static ReferencePolicyOption[] values()

	112.13.14. enum ReferenceScope
	112.13.14.1. BUNDLE
	112.13.14.2. PROTOTYPE
	112.13.14.3. PROTOTYPE_REQUIRED
	112.13.14.4. public String toString()
	112.13.14.5. public static ReferenceScope valueOf(String name)
	112.13.14.6. public static ReferenceScope[] values()

	112.13.15. @RequireServiceComponentRuntime
	112.13.16. enum ServiceScope
	112.13.16.1. SINGLETON
	112.13.16.2. BUNDLE
	112.13.16.3. PROTOTYPE
	112.13.16.4. DEFAULT
	112.13.16.5. public String toString()
	112.13.16.6. public static ServiceScope valueOf(String name)
	112.13.16.7. public static ServiceScope[] values()

	112.14. org.osgi.service.component.runtime
	112.14.1. Summary
	112.14.2. public interface ServiceComponentRuntime
	112.14.2.1. public Promise<Void> disableComponent(ComponentDescriptionDTO description)
	112.14.2.2. public Promise<Void> enableComponent(ComponentDescriptionDTO description)
	112.14.2.3. public Collection<ComponentConfigurationDTO> getComponentConfigurationDTOs(ComponentDescriptionDTO description)
	112.14.2.4. public ComponentDescriptionDTO getComponentDescriptionDTO(Bundle bundle, String name)
	112.14.2.5. public Collection<ComponentDescriptionDTO> getComponentDescriptionDTOs(Bundle... bundles)
	112.14.2.6. public boolean isComponentEnabled(ComponentDescriptionDTO description)

	112.15. org.osgi.service.component.runtime.dto
	112.15.1. Summary
	112.15.2. public class ComponentConfigurationDTO extends DTO
	112.15.2.1. public static final int ACTIVE = 8
	112.15.2.2. public ComponentDescriptionDTO description
	112.15.2.3. public static final int FAILED_ACTIVATION = 16
	112.15.2.4. public String failure
	112.15.2.5. public long id
	112.15.2.6. public Map<String, Object> properties
	112.15.2.7. public static final int SATISFIED = 4
	112.15.2.8. public SatisfiedReferenceDTO[] satisfiedReferences
	112.15.2.9. public ServiceReferenceDTO service
	112.15.2.10. public int state
	112.15.2.11. public static final int UNSATISFIED_CONFIGURATION = 1
	112.15.2.12. public static final int UNSATISFIED_REFERENCE = 2
	112.15.2.13. public UnsatisfiedReferenceDTO[] unsatisfiedReferences
	112.15.2.14. public ComponentConfigurationDTO()

	112.15.3. public class ComponentDescriptionDTO extends DTO
	112.15.3.1. public String activate
	112.15.3.2. public String[] activationFields
	112.15.3.3. public BundleDTO bundle
	112.15.3.4. public String[] configurationPid
	112.15.3.5. public String configurationPolicy
	112.15.3.6. public String deactivate
	112.15.3.7. public boolean defaultEnabled
	112.15.3.8. public String factory
	112.15.3.9. public Map<String, Object> factoryProperties
	112.15.3.10. public boolean immediate
	112.15.3.11. public String implementationClass
	112.15.3.12. public int init
	112.15.3.13. public String modified
	112.15.3.14. public String name
	112.15.3.15. public Map<String, Object> properties
	112.15.3.16. public ReferenceDTO[] references
	112.15.3.17. public String scope
	112.15.3.18. public String[] serviceInterfaces
	112.15.3.19. public ComponentDescriptionDTO()

	112.15.4. public class ReferenceDTO extends DTO
	112.15.4.1. public String bind
	112.15.4.2. public String cardinality
	112.15.4.3. public String collectionType
	112.15.4.4. public String field
	112.15.4.5. public String fieldOption
	112.15.4.6. public String interfaceName
	112.15.4.7. public String name
	112.15.4.8. public Integer parameter
	112.15.4.9. public String policy
	112.15.4.10. public String policyOption
	112.15.4.11. public String scope
	112.15.4.12. public String target
	112.15.4.13. public String unbind
	112.15.4.14. public String updated
	112.15.4.15. public ReferenceDTO()

	112.15.5. public class SatisfiedReferenceDTO extends DTO
	112.15.5.1. public ServiceReferenceDTO[] boundServices
	112.15.5.2. public String name
	112.15.5.3. public String target
	112.15.5.4. public SatisfiedReferenceDTO()

	112.15.6. public class UnsatisfiedReferenceDTO extends DTO
	112.15.6.1. public String name
	112.15.6.2. public String target
	112.15.6.3. public ServiceReferenceDTO[] targetServices
	112.15.6.4. public UnsatisfiedReferenceDTO()

	112.16. org.osgi.service.component.propertytypes
	112.16.1. Summary
	112.16.2. @ExportedService
	112.16.2.1. Class<?>[] service_exported_interfaces
	112.16.2.2. String[] service_exported_configs default {}
	112.16.2.3. String[] service_exported_intents default {}
	112.16.2.4. String[] service_exported_intents_extra default {}
	112.16.2.5. String[] service_intents default {}

	112.16.3. @SatisfyingConditionTarget
	112.16.3.1. String value default "(osgi.condition.id=true)"
	112.16.3.2. String PREFIX_ = "osgi.ds."

	112.16.4. @ServiceDescription
	112.16.4.1. String value

	112.16.5. @ServiceRanking
	112.16.5.1. int value

	112.16.6. @ServiceVendor
	112.16.6.1. String value

	112.17. References
	112.18. Changes

	Chapter 113. Event Admin Service Specification
	113.1. Introduction
	113.1.1. Essentials
	113.1.2. Entities
	113.1.3. Synopsis
	113.1.4. What To Read

	113.2. Event Admin Architecture
	113.3. The Event
	113.3.1. Topics
	113.3.2. Properties
	113.3.3. High Performance

	113.4. Event Handler
	113.4.1. Ordering

	113.5. Event Publisher
	113.6. Specific Events
	113.6.1. General Conventions
	113.6.2. OSGi Events
	113.6.3. Framework Event
	113.6.4. Bundle Event
	113.6.5. Service Event
	113.6.6. Other Event Sources

	113.7. Event Admin Service
	113.7.1. Synchronous Event Delivery
	113.7.2. Asynchronous Event Delivery
	113.7.3. Order of Event Delivery

	113.8. Reliability
	113.8.1. Exceptions in callbacks
	113.8.2. Dealing with Stalled Handlers

	113.9. Interoperability with Native Applications
	113.10. Capabilities
	113.10.1. osgi.implementation Capability
	113.10.2. osgi.service Capability

	113.11. Security
	113.11.1. Topic Permission
	113.11.2. Required Permissions
	113.11.3. Security Context During Event Callbacks

	113.12. org.osgi.service.event
	113.12.1. Summary
	113.12.2. public class Event
	113.12.2.1. public Event(String topic, Map<String, ?> properties)
	113.12.2.2. public Event(String topic, Dictionary<String, ?> properties)
	113.12.2.3. public final boolean containsProperty(String name)
	113.12.2.4. public boolean equals(Object object)
	113.12.2.5. public final Object getProperty(String name)
	113.12.2.6. public final String[] getPropertyNames()
	113.12.2.7. public final String getTopic()
	113.12.2.8. public int hashCode()
	113.12.2.9. public final boolean matches(Filter filter)
	113.12.2.10. public String toString()

	113.12.3. public interface EventAdmin
	113.12.3.1. public void postEvent(Event event)
	113.12.3.2. public void sendEvent(Event event)

	113.12.4. public interface EventConstants
	113.12.4.1. public static final String BUNDLE = "bundle"
	113.12.4.2. public static final String BUNDLE_ID = "bundle.id"
	113.12.4.3. public static final String BUNDLE_SIGNER = "bundle.signer"
	113.12.4.4. public static final String BUNDLE_SYMBOLICNAME = "bundle.symbolicName"
	113.12.4.5. public static final String BUNDLE_VERSION = "bundle.version"
	113.12.4.6. public static final String DELIVERY_ASYNC_ORDERED = "async.ordered"
	113.12.4.7. public static final String DELIVERY_ASYNC_UNORDERED = "async.unordered"
	113.12.4.8. public static final String EVENT = "event"
	113.12.4.9. public static final String EVENT_ADMIN_IMPLEMENTATION = "osgi.event"
	113.12.4.10. public static final String EVENT_ADMIN_SPECIFICATION_VERSION = "1.4"
	113.12.4.11. public static final String EVENT_DELIVERY = "event.delivery"
	113.12.4.12. public static final String EVENT_FILTER = "event.filter"
	113.12.4.13. public static final String EVENT_TOPIC = "event.topics"
	113.12.4.14. public static final String EXCEPTION = "exception"
	113.12.4.15. public static final String EXCEPTION_CLASS = "exception.class"
	113.12.4.16. public static final String EXCEPTION_MESSAGE = "exception.message"
	113.12.4.17. public static final String EXECPTION_CLASS = "exception.class"
	113.12.4.18. public static final String MESSAGE = "message"
	113.12.4.19. public static final String SERVICE = "service"
	113.12.4.20. public static final String SERVICE_ID = "service.id"
	113.12.4.21. public static final String SERVICE_OBJECTCLASS = "service.objectClass"
	113.12.4.22. public static final String SERVICE_PID = "service.pid"
	113.12.4.23. public static final String TIMESTAMP = "timestamp"

	113.12.5. public interface EventHandler
	113.12.5.1. public void handleEvent(Event event)

	113.12.6. public class EventProperties implements Map<String, Object>
	113.12.6.1. public EventProperties(Map<String, ?> properties)
	113.12.6.2. public void clear()
	113.12.6.3. public boolean containsKey(Object name)
	113.12.6.4. public boolean containsValue(Object value)
	113.12.6.5. public Set<Map.Entry<String, Object>> entrySet()
	113.12.6.6. public boolean equals(Object object)
	113.12.6.7. public Object get(Object name)
	113.12.6.8. public int hashCode()
	113.12.6.9. public boolean isEmpty()
	113.12.6.10. public Set<String> keySet()
	113.12.6.11. public Object put(String key, Object value)
	113.12.6.12. public void putAll(Map<? extends String, ? extends Object> map)
	113.12.6.13. public Object remove(Object key)
	113.12.6.14. public int size()
	113.12.6.15. public String toString()
	113.12.6.16. public Collection<Object> values()

	113.12.7. public final class TopicPermission extends Permission
	113.12.7.1. public static final String PUBLISH = "publish"
	113.12.7.2. public static final String SUBSCRIBE = "subscribe"
	113.12.7.3. public TopicPermission(String name, String actions)
	113.12.7.4. public boolean equals(Object obj)
	113.12.7.5. public String getActions()
	113.12.7.6. public int hashCode()
	113.12.7.7. public boolean implies(Permission p)
	113.12.7.8. public PermissionCollection newPermissionCollection()

	113.13. org.osgi.service.event.annotations
	113.13.1. Summary
	113.13.2. @RequireEventAdmin

	113.14. org.osgi.service.event.propertytypes
	113.14.1. Summary
	113.14.2. @EventDelivery
	113.14.2.1. String[] value

	113.14.3. @EventFilter
	113.14.3.1. String value

	113.14.4. @EventTopics
	113.14.4.1. String[] value

	Chapter 117. Dmt Admin Service Specification
	117.1. Introduction
	117.1.1. Entities

	117.2. The Device Management Model
	117.2.1. Tree Terminology
	117.2.2. Actors

	117.3. The DMT Admin Service
	117.4. Manipulating the DMT
	117.4.1. The DMT Addressing URI
	117.4.2. Locking and Sessions
	117.4.3. Associating a Principal
	117.4.4. Relative Addressing
	117.4.5. Creating Nodes
	117.4.6. Node Properties
	117.4.7. Setting and Getting Data
	117.4.8. Complex Values
	117.4.9. Nodes and Types
	117.4.10. Deleting Nodes
	117.4.11. Copying Nodes
	117.4.12. Renaming Nodes
	117.4.13. Execute
	117.4.14. Closing

	117.5. Meta Data
	117.5.1. Operations
	117.5.2. Scope
	117.5.3. Description and Default
	117.5.4. Validation
	117.5.5. Data Types
	117.5.6. Cardinality
	117.5.7. Matching
	117.5.8. Numeric Ranges
	117.5.9. Name Validation
	117.5.10. User Extensions

	117.6. Plugins
	117.6.1. Data Sessions
	117.6.2. URIs and Plugins
	117.6.3. Associating a sub-tree
	117.6.4. Synchronization with Dmt Admin Service
	117.6.5. Plugin Meta Data
	117.6.6. Plugins and Transactions
	117.6.7. Side Effects
	117.6.8. Copying
	117.6.9. Scaffold Nodes

	117.7. Sharing the DMT
	117.7.1. Mount Points
	117.7.2. Parent Plugin
	117.7.3. Shared Mount Points
	117.7.4. Mount Points are Excluded
	117.7.5. Mapping a Plugin
	117.7.6. Mount Plugins

	117.8. Access Control Lists
	117.8.1. Global Permissions
	117.8.2. Ghost ACLs

	117.9. Notifications
	117.9.1. Routing Alerts

	117.10. Exceptions
	117.11. Events
	117.11.1. Event Admin
	117.11.2. Dmt Event Listeners
	117.11.3. Atomic Sessions and Events
	117.11.4. Event Types
	117.11.5. General Event Properties
	117.11.6. Session Event Properties
	117.11.7. Life Cycle Event Properties
	117.11.8. Example Event Delivery

	117.12. OSGi Object Modeling
	117.12.1. Object Models
	117.12.2. Protocol Mapping
	117.12.3. Hierarchy
	117.12.4. General Restriction Guidelines
	117.12.5. DDF
	117.12.6. Types
	117.12.7. Primitives
	117.12.8. Structured Nodes
	117.12.9. LIST Nodes
	117.12.9.1. Complex Collections

	117.12.10. MAP Nodes
	117.12.10.1. Complex Value

	117.12.11. Instance Id
	117.12.12. Conversions
	117.12.13. Extensions

	117.13. Security
	117.13.1. Principals
	117.13.2. Operational Permissions
	117.13.3. Protocol Adapters
	117.13.4. Local Manager
	117.13.5. Plugin Security
	117.13.6. Events and Permissions
	117.13.7. Dmt Principal Permission
	117.13.8. Dmt Permission
	117.13.9. Alert Permission
	117.13.10. Security Summary
	117.13.10.1. Dmt Admin Service and Notification Service
	117.13.10.2. Dmt Event Listener Service
	117.13.10.3. Data and Exec Plugin
	117.13.10.4. Local Manager
	117.13.10.5. Protocol Adapter

	117.14. org.osgi.service.dmt
	117.14.1. Summary
	117.14.2. public final class Acl
	117.14.2.1. public static final int ADD = 2
	117.14.2.2. public static final int ALL_PERMISSION = 31
	117.14.2.3. public static final int DELETE = 8
	117.14.2.4. public static final int EXEC = 16
	117.14.2.5. public static final int GET = 1
	117.14.2.6. public static final int REPLACE = 4
	117.14.2.7. public Acl(String acl)
	117.14.2.8. public Acl(String[] principals, int[] permissions)
	117.14.2.9. public synchronized Acl addPermission(String principal, int permissions)
	117.14.2.10. public synchronized Acl deletePermission(String principal, int permissions)
	117.14.2.11. public boolean equals(Object obj)
	117.14.2.12. public synchronized int getPermissions(String principal)
	117.14.2.13. public String[] getPrincipals()
	117.14.2.14. public int hashCode()
	117.14.2.15. public synchronized boolean isPermitted(String principal, int permissions)
	117.14.2.16. public synchronized Acl setPermission(String principal, int permissions)
	117.14.2.17. public synchronized String toString()

	117.14.3. public interface DmtAdmin
	117.14.3.1. public DmtSession getSession(String subtreeUri) throws DmtException
	117.14.3.2. public DmtSession getSession(String subtreeUri, int lockMode) throws DmtException
	117.14.3.3. public DmtSession getSession(String principal, String subtreeUri, int lockMode) throws DmtException

	117.14.4. public class DmtConstants
	117.14.4.1. public static final String DDF_LIST = "org.osgi/1.0/LIST"
	117.14.4.2. public static final String DDF_MAP = "org.osgi/1.0/MAP"
	117.14.4.3. public static final String DDF_SCAFFOLD = "org.osgi/1.0/SCAFFOLD"
	117.14.4.4. public static final String EVENT_PROPERTY_NEW_NODES = "newnodes"
	117.14.4.5. public static final String EVENT_PROPERTY_NODES = "nodes"
	117.14.4.6. public static final String EVENT_PROPERTY_SESSION_ID = "session.id"
	117.14.4.7. public static final String EVENT_TOPIC_ADDED = "org/osgi/service/dmt/DmtEvent/ADDED"
	117.14.4.8. public static final String EVENT_TOPIC_COPIED = "org/osgi/service/dmt/DmtEvent/COPIED"
	117.14.4.9. public static final String EVENT_TOPIC_DELETED = "org/osgi/service/dmt/DmtEvent/DELETED"
	117.14.4.10. public static final String EVENT_TOPIC_RENAMED = "org/osgi/service/dmt/DmtEvent/RENAMED"
	117.14.4.11. public static final String EVENT_TOPIC_REPLACED = "org/osgi/service/dmt/DmtEvent/REPLACED"
	117.14.4.12. public static final String EVENT_TOPIC_SESSION_CLOSED = "org/osgi/service/dmt/DmtEvent/SESSION_CLOSED"
	117.14.4.13. public static final String EVENT_TOPIC_SESSION_OPENED = "org/osgi/service/dmt/DmtEvent/SESSION_OPENED"

	117.14.5. public final class DmtData
	117.14.5.1. public static final DmtData FALSE_VALUE
	117.14.5.2. public static final int FORMAT_BASE64 = 128
	117.14.5.3. public static final int FORMAT_BINARY = 64
	117.14.5.4. public static final int FORMAT_BOOLEAN = 8
	117.14.5.5. public static final int FORMAT_DATE = 16
	117.14.5.6. public static final int FORMAT_DATE_TIME = 16384
	117.14.5.7. public static final int FORMAT_FLOAT = 2
	117.14.5.8. public static final int FORMAT_INTEGER = 1
	117.14.5.9. public static final int FORMAT_LONG = 8192
	117.14.5.10. public static final int FORMAT_NODE = 1024
	117.14.5.11. public static final int FORMAT_NULL = 512
	117.14.5.12. public static final int FORMAT_RAW_BINARY = 4096
	117.14.5.13. public static final int FORMAT_RAW_STRING = 2048
	117.14.5.14. public static final int FORMAT_STRING = 4
	117.14.5.15. public static final int FORMAT_TIME = 32
	117.14.5.16. public static final int FORMAT_XML = 256
	117.14.5.17. public static final DmtData NULL_VALUE
	117.14.5.18. public static final DmtData TRUE_VALUE
	117.14.5.19. public DmtData(String string)
	117.14.5.20. public DmtData(Date date)
	117.14.5.21. public DmtData(Object complex)
	117.14.5.22. public DmtData(String value, int format)
	117.14.5.23. public DmtData(int integer)
	117.14.5.24. public DmtData(float flt)
	117.14.5.25. public DmtData(long lng)
	117.14.5.26. public DmtData(boolean bool)
	117.14.5.27. public DmtData(byte[] bytes)
	117.14.5.28. public DmtData(byte[] bytes, boolean base64)
	117.14.5.29. public DmtData(byte[] bytes, int format)
	117.14.5.30. public DmtData(String formatName, String data)
	117.14.5.31. public DmtData(String formatName, byte[] data)
	117.14.5.32. public boolean equals(Object obj)
	117.14.5.33. public byte[] getBase64()
	117.14.5.34. public byte[] getBinary()
	117.14.5.35. public boolean getBoolean()
	117.14.5.36. public String getDate()
	117.14.5.37. public Date getDateTime()
	117.14.5.38. public float getFloat()
	117.14.5.39. public int getFormat()
	117.14.5.40. public String getFormatName()
	117.14.5.41. public int getInt()
	117.14.5.42. public long getLong()
	117.14.5.43. public Object getNode()
	117.14.5.44. public byte[] getRawBinary()
	117.14.5.45. public String getRawString()
	117.14.5.46. public int getSize()
	117.14.5.47. public String getString()
	117.14.5.48. public String getTime()
	117.14.5.49. public String getXml()
	117.14.5.50. public int hashCode()
	117.14.5.51. public String toString()

	117.14.6. public interface DmtEvent
	117.14.6.1. public static final int ADDED = 1
	117.14.6.2. public static final int COPIED = 2
	117.14.6.3. public static final int DELETED = 4
	117.14.6.4. public static final int RENAMED = 8
	117.14.6.5. public static final int REPLACED = 16
	117.14.6.6. public static final int SESSION_CLOSED = 64
	117.14.6.7. public static final int SESSION_OPENED = 32
	117.14.6.8. public String[] getNewNodes()
	117.14.6.9. public String[] getNodes()
	117.14.6.10. public Object getProperty(String key)
	117.14.6.11. public String[] getPropertyNames()
	117.14.6.12. public int getSessionId()
	117.14.6.13. public int getType()

	117.14.7. public interface DmtEventListener
	117.14.7.1. public static final String FILTER_EVENT = "osgi.filter.event"
	117.14.7.2. public static final String FILTER_PRINCIPAL = "osgi.filter.principal"
	117.14.7.3. public static final String FILTER_SUBTREE = "osgi.filter.subtree"
	117.14.7.4. public void changeOccurred(DmtEvent event)

	117.14.8. public class DmtException extends Exception
	117.14.8.1. public static final int ALERT_NOT_ROUTED = 5
	117.14.8.2. public static final int COMMAND_FAILED = 500
	117.14.8.3. public static final int COMMAND_NOT_ALLOWED = 405
	117.14.8.4. public static final int CONCURRENT_ACCESS = 4
	117.14.8.5. public static final int DATA_STORE_FAILURE = 510
	117.14.8.6. public static final int FEATURE_NOT_SUPPORTED = 406
	117.14.8.7. public static final int INVALID_URI = 3
	117.14.8.8. public static final int LIMIT_EXCEEDED = 413
	117.14.8.9. public static final int METADATA_MISMATCH = 2
	117.14.8.10. public static final int NODE_ALREADY_EXISTS = 418
	117.14.8.11. public static final int NODE_NOT_FOUND = 404
	117.14.8.12. public static final int PERMISSION_DENIED = 425
	117.14.8.13. public static final int REMOTE_ERROR = 1
	117.14.8.14. public static final int ROLLBACK_FAILED = 516
	117.14.8.15. public static final int SESSION_CREATION_TIMEOUT = 7
	117.14.8.16. public static final int TRANSACTION_ERROR = 6
	117.14.8.17. public static final int UNAUTHORIZED = 401
	117.14.8.18. public static final int URI_TOO_LONG = 414
	117.14.8.19. public DmtException(String uri, int code, String message)
	117.14.8.20. public DmtException(String uri, int code, String message, Throwable cause)
	117.14.8.21. public DmtException(String uri, int code, String message, Vector<? extends Throwable> causes, boolean fatal)
	117.14.8.22. public DmtException(String[] path, int code, String message)
	117.14.8.23. public DmtException(String[] path, int code, String message, Throwable cause)
	117.14.8.24. public DmtException(String[] path, int code, String message, Vector<? extends Throwable> causes, boolean fatal)
	117.14.8.25. public Throwable getCause()
	117.14.8.26. public Throwable[] getCauses()
	117.14.8.27. public int getCode()
	117.14.8.28. public String getMessage()
	117.14.8.29. public String getURI()
	117.14.8.30. public boolean isFatal()
	117.14.8.31. public void printStackTrace(PrintStream s)

	117.14.9. public class DmtIllegalStateException extends RuntimeException
	117.14.9.1. public DmtIllegalStateException()
	117.14.9.2. public DmtIllegalStateException(String message)
	117.14.9.3. public DmtIllegalStateException(Throwable cause)
	117.14.9.4. public DmtIllegalStateException(String message, Throwable cause)

	117.14.10. public interface DmtSession
	117.14.10.1. public static final int LOCK_TYPE_ATOMIC = 2
	117.14.10.2. public static final int LOCK_TYPE_EXCLUSIVE = 1
	117.14.10.3. public static final int LOCK_TYPE_SHARED = 0
	117.14.10.4. public static final int STATE_CLOSED = 1
	117.14.10.5. public static final int STATE_INVALID = 2
	117.14.10.6. public static final int STATE_OPEN = 0
	117.14.10.7. public void close() throws DmtException
	117.14.10.8. public void commit() throws DmtException
	117.14.10.9. public void copy(String nodeUri, String newNodeUri, boolean recursive) throws DmtException
	117.14.10.10. public void createInteriorNode(String nodeUri) throws DmtException
	117.14.10.11. public void createInteriorNode(String nodeUri, String type) throws DmtException
	117.14.10.12. public void createLeafNode(String nodeUri) throws DmtException
	117.14.10.13. public void createLeafNode(String nodeUri, DmtData value) throws DmtException
	117.14.10.14. public void createLeafNode(String nodeUri, DmtData value, String mimeType) throws DmtException
	117.14.10.15. public void deleteNode(String nodeUri) throws DmtException
	117.14.10.16. public void execute(String nodeUri, String data) throws DmtException
	117.14.10.17. public void execute(String nodeUri, String correlator, String data) throws DmtException
	117.14.10.18. public String[] getChildNodeNames(String nodeUri) throws DmtException
	117.14.10.19. public Acl getEffectiveNodeAcl(String nodeUri) throws DmtException
	117.14.10.20. public int getLockType()
	117.14.10.21. public MetaNode getMetaNode(String nodeUri) throws DmtException
	117.14.10.22. public Acl getNodeAcl(String nodeUri) throws DmtException
	117.14.10.23. public int getNodeSize(String nodeUri) throws DmtException
	117.14.10.24. public Date getNodeTimestamp(String nodeUri) throws DmtException
	117.14.10.25. public String getNodeTitle(String nodeUri) throws DmtException
	117.14.10.26. public String getNodeType(String nodeUri) throws DmtException
	117.14.10.27. public DmtData getNodeValue(String nodeUri) throws DmtException
	117.14.10.28. public int getNodeVersion(String nodeUri) throws DmtException
	117.14.10.29. public String getPrincipal()
	117.14.10.30. public String getRootUri()
	117.14.10.31. public int getSessionId()
	117.14.10.32. public int getState()
	117.14.10.33. public boolean isLeafNode(String nodeUri) throws DmtException
	117.14.10.34. public boolean isNodeUri(String nodeUri)
	117.14.10.35. public void renameNode(String nodeUri, String newName) throws DmtException
	117.14.10.36. public void rollback() throws DmtException
	117.14.10.37. public void setDefaultNodeValue(String nodeUri) throws DmtException
	117.14.10.38. public void setNodeAcl(String nodeUri, Acl acl) throws DmtException
	117.14.10.39. public void setNodeTitle(String nodeUri, String title) throws DmtException
	117.14.10.40. public void setNodeType(String nodeUri, String type) throws DmtException
	117.14.10.41. public void setNodeValue(String nodeUri, DmtData data) throws DmtException

	117.14.11. public interface MetaNode
	117.14.11.1. public static final int AUTOMATIC = 2
	117.14.11.2. public static final int CMD_ADD = 0
	117.14.11.3. public static final int CMD_DELETE = 1
	117.14.11.4. public static final int CMD_EXECUTE = 2
	117.14.11.5. public static final int CMD_GET = 4
	117.14.11.6. public static final int CMD_REPLACE = 3
	117.14.11.7. public static final int DYNAMIC = 1
	117.14.11.8. public static final int PERMANENT = 0
	117.14.11.9. public boolean can(int operation)
	117.14.11.10. public DmtData getDefault()
	117.14.11.11. public String getDescription()
	117.14.11.12. public Object getExtensionProperty(String key)
	117.14.11.13. public String[] getExtensionPropertyKeys()
	117.14.11.14. public int getFormat()
	117.14.11.15. public double getMax()
	117.14.11.16. public int getMaxOccurrence()
	117.14.11.17. public String[] getMimeTypes()
	117.14.11.18. public double getMin()
	117.14.11.19. public String[] getRawFormatNames()
	117.14.11.20. public int getScope()
	117.14.11.21. public String[] getValidNames()
	117.14.11.22. public DmtData[] getValidValues()
	117.14.11.23. public boolean isLeaf()
	117.14.11.24. public boolean isValidName(String name)
	117.14.11.25. public boolean isValidValue(DmtData value)
	117.14.11.26. public boolean isZeroOccurrenceAllowed()

	117.14.12. public final class Uri
	117.14.12.1. public static final String PATH_SEPARATOR = "/"
	117.14.12.2. public static final char PATH_SEPARATOR_CHAR = 47
	117.14.12.3. public static final String ROOT_NODE = "."
	117.14.12.4. public static final char ROOT_NODE_CHAR = 46
	117.14.12.5. public static String decode(String nodeName)
	117.14.12.6. public static String encode(String nodeName)
	117.14.12.7. public static boolean isAbsoluteUri(String uri)
	117.14.12.8. public static boolean isValidUri(String uri)
	117.14.12.9. public static String mangle(String nodeName)
	117.14.12.10. public static String[] toPath(String uri)
	117.14.12.11. public static String toUri(String[] path)

	117.15. org.osgi.service.dmt.spi
	117.15.1. Summary
	117.15.2. public interface DataPlugin
	117.15.2.1. public static final String DATA_ROOT_URIS = "dataRootURIs"
	117.15.2.2. public static final String MOUNT_POINTS = "mountPoints"
	117.15.2.3. public TransactionalDataSession openAtomicSession(String[] sessionRoot, DmtSession session) throws DmtException
	117.15.2.4. public ReadableDataSession openReadOnlySession(String[] sessionRoot, DmtSession session) throws DmtException
	117.15.2.5. public ReadWriteDataSession openReadWriteSession(String[] sessionRoot, DmtSession session) throws DmtException

	117.15.3. public interface ExecPlugin
	117.15.3.1. public static final String EXEC_ROOT_URIS = "execRootURIs"
	117.15.3.2. public static final String MOUNT_POINTS = "mountPoints"
	117.15.3.3. public void execute(DmtSession session, String[] nodePath, String correlator, String data) throws DmtException

	117.15.4. public interface MountPlugin
	117.15.4.1. public void mountPointAdded(MountPoint mountPoint)
	117.15.4.2. public void mountPointRemoved(MountPoint mountPoint)

	117.15.5. public interface MountPoint
	117.15.5.1. public boolean equals(Object other)
	117.15.5.2. public String[] getMountPath()
	117.15.5.3. public int hashCode()
	117.15.5.4. public void postEvent(String topic, String[] relativeURIs, Dictionary<String, ?> properties)
	117.15.5.5. public void postEvent(String topic, String[] relativeURIs, String[] newRelativeURIs, Dictionary<String, ?> properties)

	117.15.6. public interface ReadableDataSession
	117.15.6.1. public void close() throws DmtException
	117.15.6.2. public String[] getChildNodeNames(String[] nodePath) throws DmtException
	117.15.6.3. public MetaNode getMetaNode(String[] nodePath) throws DmtException
	117.15.6.4. public int getNodeSize(String[] nodePath) throws DmtException
	117.15.6.5. public Date getNodeTimestamp(String[] nodePath) throws DmtException
	117.15.6.6. public String getNodeTitle(String[] nodePath) throws DmtException
	117.15.6.7. public String getNodeType(String[] nodePath) throws DmtException
	117.15.6.8. public DmtData getNodeValue(String[] nodePath) throws DmtException
	117.15.6.9. public int getNodeVersion(String[] nodePath) throws DmtException
	117.15.6.10. public boolean isLeafNode(String[] nodePath) throws DmtException
	117.15.6.11. public boolean isNodeUri(String[] nodePath)
	117.15.6.12. public void nodeChanged(String[] nodePath) throws DmtException

	117.15.7. public interface ReadWriteDataSession extends ReadableDataSession
	117.15.7.1. public void copy(String[] nodePath, String[] newNodePath, boolean recursive) throws DmtException
	117.15.7.2. public void createInteriorNode(String[] nodePath, String type) throws DmtException
	117.15.7.3. public void createLeafNode(String[] nodePath, DmtData value, String mimeType) throws DmtException
	117.15.7.4. public void deleteNode(String[] nodePath) throws DmtException
	117.15.7.5. public void renameNode(String[] nodePath, String newName) throws DmtException
	117.15.7.6. public void setNodeTitle(String[] nodePath, String title) throws DmtException
	117.15.7.7. public void setNodeType(String[] nodePath, String type) throws DmtException
	117.15.7.8. public void setNodeValue(String[] nodePath, DmtData data) throws DmtException

	117.15.8. public interface TransactionalDataSession extends ReadWriteDataSession
	117.15.8.1. public void commit() throws DmtException
	117.15.8.2. public void rollback() throws DmtException

	117.16. org.osgi.service.dmt.notification
	117.16.1. Summary
	117.16.2. public class AlertItem
	117.16.2.1. public AlertItem(String source, String type, String mark, DmtData data)
	117.16.2.2. public AlertItem(String[] source, String type, String mark, DmtData data)
	117.16.2.3. public DmtData getData()
	117.16.2.4. public String getMark()
	117.16.2.5. public String getSource()
	117.16.2.6. public String getType()
	117.16.2.7. public String toString()

	117.16.3. public interface NotificationService
	117.16.3.1. public void sendNotification(String principal, int code, String correlator, AlertItem[] items) throws DmtException

	117.17. org.osgi.service.dmt.notification.spi
	117.17.1. Summary
	117.17.2. public interface RemoteAlertSender
	117.17.2.1. public void sendAlert(String principal, int code, String correlator, AlertItem[] items) throws Exception

	117.18. org.osgi.service.dmt.security
	117.18.1. Summary
	117.18.2. public class AlertPermission extends Permission
	117.18.2.1. public AlertPermission(String target)
	117.18.2.2. public AlertPermission(String target, String actions)
	117.18.2.3. public boolean equals(Object obj)
	117.18.2.4. public String getActions()
	117.18.2.5. public int hashCode()
	117.18.2.6. public boolean implies(Permission p)
	117.18.2.7. public PermissionCollection newPermissionCollection()

	117.18.3. public class DmtPermission extends Permission
	117.18.3.1. public static final String ADD = "Add"
	117.18.3.2. public static final String DELETE = "Delete"
	117.18.3.3. public static final String EXEC = "Exec"
	117.18.3.4. public static final String GET = "Get"
	117.18.3.5. public static final String REPLACE = "Replace"
	117.18.3.6. public DmtPermission(String dmtUri, String actions)
	117.18.3.7. public boolean equals(Object obj)
	117.18.3.8. public String getActions()
	117.18.3.9. public int hashCode()
	117.18.3.10. public boolean implies(Permission p)
	117.18.3.11. public PermissionCollection newPermissionCollection()

	117.18.4. public class DmtPrincipalPermission extends Permission
	117.18.4.1. public DmtPrincipalPermission(String target)
	117.18.4.2. public DmtPrincipalPermission(String target, String actions)
	117.18.4.3. public boolean equals(Object obj)
	117.18.4.4. public String getActions()
	117.18.4.5. public int hashCode()
	117.18.4.6. public boolean implies(Permission p)
	117.18.4.7. public PermissionCollection newPermissionCollection()

	117.19. References

	Chapter 122. Remote Service Admin Service Specification
	122.1. Introduction
	122.1.1. Essentials
	122.1.2. Entities
	122.1.3. Synopsis
	122.1.3.1. Endpoint Listener Services

	122.2. Actors
	122.3. Topology Managers
	122.3.1. Multiple Topology Managers
	122.3.2. Example Use Cases
	122.3.2.1. Promiscuous Policy
	122.3.2.2. Fail Over

	122.4. Endpoint Description
	122.4.1. Validity
	122.4.2. Mutability
	122.4.3. Endpoint Id
	122.4.4. Framework UUID
	122.4.5. Resource Containment

	122.5. Remote Service Admin
	122.5.1. Exporting
	122.5.2. Importing
	122.5.3. Updates
	122.5.4. Reflection
	122.5.5. Registration Life Cycle
	122.5.6. Invalid Registrations
	122.5.7. Proxying

	122.6. Discovery
	122.6.1. Scope and Filters
	122.6.2. Endpoint Event Listener Interface
	122.6.3. Endpoint Listener Interface
	122.6.4. Endpoint Event Listener and Endpoint Listener Implementations
	122.6.5. Endpoint Description Providers
	122.6.6. On Demand

	122.7. Events
	122.7.1. Event Admin Mapping

	122.8. Endpoint Description Extender Format
	122.8.1. XML Schema

	122.9. Capability Namespaces
	122.9.1. Local Discovery Extender
	122.9.2. Discovery Provider Capability
	122.9.3. Distribution Provider Capability
	122.9.4. Topology Manager Capability
	122.9.5. Service Capability

	122.10. Advice to implementations
	122.10.1. Notifying listeners
	122.10.2. Receiving Endpoint lifecycle notifications

	122.11. Security
	122.11.1. Import and Export Registrations
	122.11.2. Endpoint Permission

	122.12. org.osgi.service.remoteserviceadmin
	122.12.1. Summary
	122.12.2. public class EndpointDescription
	122.12.2.1. public EndpointDescription(Map<String, ?> properties)
	122.12.2.2. public EndpointDescription(ServiceReference<?> reference, Map<String, ?> properties)
	122.12.2.3. public boolean equals(Object other)
	122.12.2.4. public List<String> getConfigurationTypes()
	122.12.2.5. public String getFrameworkUUID()
	122.12.2.6. public String getId()
	122.12.2.7. public List<String> getIntents()
	122.12.2.8. public List<String> getInterfaces()
	122.12.2.9. public Version getPackageVersion(String packageName)
	122.12.2.10. public Map<String, Object> getProperties()
	122.12.2.11. public long getServiceId()
	122.12.2.12. public int hashCode()
	122.12.2.13. public boolean isSameService(EndpointDescription other)
	122.12.2.14. public boolean matches(String filter)
	122.12.2.15. public String toString()

	122.12.3. public class EndpointEvent
	122.12.3.1. public static final int ADDED = 1
	122.12.3.2. public static final int MODIFIED = 4
	122.12.3.3. public static final int MODIFIED_ENDMATCH = 8
	122.12.3.4. public static final int REMOVED = 2
	122.12.3.5. public EndpointEvent(int type, EndpointDescription endpoint)
	122.12.3.6. public EndpointDescription getEndpoint()
	122.12.3.7. public int getType()

	122.12.4. public interface EndpointEventListener
	122.12.4.1. public static final String ENDPOINT_LISTENER_SCOPE = "endpoint.listener.scope"
	122.12.4.2. public void endpointChanged(EndpointEvent event, String filter)

	122.12.5. public interface EndpointListener
	122.12.5.1. public static final String ENDPOINT_LISTENER_SCOPE = "endpoint.listener.scope"
	122.12.5.2. public void endpointAdded(EndpointDescription endpoint, String matchedFilter)
	122.12.5.3. public void endpointRemoved(EndpointDescription endpoint, String matchedFilter)

	122.12.6. public final class EndpointPermission extends Permission
	122.12.6.1. public static final String EXPORT = "export"
	122.12.6.2. public static final String IMPORT = "import"
	122.12.6.3. public static final String READ = "read"
	122.12.6.4. public EndpointPermission(String filterString, String actions)
	122.12.6.5. public EndpointPermission(EndpointDescription endpoint, String localFrameworkUUID, String actions)
	122.12.6.6. public boolean equals(Object obj)
	122.12.6.7. public String getActions()
	122.12.6.8. public int hashCode()
	122.12.6.9. public boolean implies(Permission p)
	122.12.6.10. public PermissionCollection newPermissionCollection()

	122.12.7. public interface ExportReference
	122.12.7.1. public EndpointDescription getExportedEndpoint()
	122.12.7.2. public ServiceReference<?> getExportedService()

	122.12.8. public interface ExportRegistration
	122.12.8.1. public void close()
	122.12.8.2. public Throwable getException()
	122.12.8.3. public ExportReference getExportReference()
	122.12.8.4. public EndpointDescription update(Map<String, ?> properties)

	122.12.9. public interface ImportReference
	122.12.9.1. public EndpointDescription getImportedEndpoint()
	122.12.9.2. public ServiceReference<?> getImportedService()

	122.12.10. public interface ImportRegistration
	122.12.10.1. public void close()
	122.12.10.2. public Throwable getException()
	122.12.10.3. public ImportReference getImportReference()
	122.12.10.4. public boolean update(EndpointDescription endpoint)

	122.12.11. public class RemoteConstants
	122.12.11.1. public static final String ENDPOINT_FRAMEWORK_UUID = "endpoint.framework.uuid"
	122.12.11.2. public static final String ENDPOINT_ID = "endpoint.id"
	122.12.11.3. public static final String ENDPOINT_PACKAGE_VERSION_ = "endpoint.package.version."
	122.12.11.4. public static final String ENDPOINT_SERVICE_ID = "endpoint.service.id"
	122.12.11.5. public static final String REMOTE_CONFIGS_SUPPORTED = "remote.configs.supported"
	122.12.11.6. public static final String REMOTE_INTENTS_SUPPORTED = "remote.intents.supported"
	122.12.11.7. public static final String SERVICE_EXPORTED_CONFIGS = "service.exported.configs"
	122.12.11.8. public static final String SERVICE_EXPORTED_INTENTS = "service.exported.intents"
	122.12.11.9. public static final String SERVICE_EXPORTED_INTENTS_EXTRA = "service.exported.intents.extra"
	122.12.11.10. public static final String SERVICE_EXPORTED_INTERFACES = "service.exported.interfaces"
	122.12.11.11. public static final String SERVICE_IMPORTED = "service.imported"
	122.12.11.12. public static final String SERVICE_IMPORTED_CONFIGS = "service.imported.configs"
	122.12.11.13. public static final String SERVICE_INTENTS = "service.intents"

	122.12.12. public interface RemoteServiceAdmin
	122.12.12.1. public Collection<ExportRegistration> exportService(ServiceReference<?> reference, Map<String, ?> properties)
	122.12.12.2. public Collection<ExportReference> getExportedServices()
	122.12.12.3. public Collection<ImportReference> getImportedEndpoints()
	122.12.12.4. public ImportRegistration importService(EndpointDescription endpoint)

	122.12.13. public class RemoteServiceAdminEvent
	122.12.13.1. public static final int EXPORT_ERROR = 6
	122.12.13.2. public static final int EXPORT_REGISTRATION = 2
	122.12.13.3. public static final int EXPORT_UNREGISTRATION = 3
	122.12.13.4. public static final int EXPORT_UPDATE = 10
	122.12.13.5. public static final int EXPORT_WARNING = 7
	122.12.13.6. public static final int IMPORT_ERROR = 5
	122.12.13.7. public static final int IMPORT_REGISTRATION = 1
	122.12.13.8. public static final int IMPORT_UNREGISTRATION = 4
	122.12.13.9. public static final int IMPORT_UPDATE = 9
	122.12.13.10. public static final int IMPORT_WARNING = 8
	122.12.13.11. public RemoteServiceAdminEvent(int type, Bundle source, ExportReference exportReference, Throwable exception)
	122.12.13.12. public RemoteServiceAdminEvent(int type, Bundle source, ImportReference importReference, Throwable exception)
	122.12.13.13. public Throwable getException()
	122.12.13.14. public ExportReference getExportReference()
	122.12.13.15. public ImportReference getImportReference()
	122.12.13.16. public Bundle getSource()
	122.12.13.17. public int getType()

	122.12.14. public interface RemoteServiceAdminListener
	122.12.14.1. public void remoteAdminEvent(RemoteServiceAdminEvent event)

	122.13. org.osgi.service.remoteserviceadmin.namespace
	122.13.1. Summary
	122.13.2. public final class DiscoveryNamespace extends Namespace
	122.13.2.1. public static final String CAPABILITY_PROTOCOLS_ATTRIBUTE = "protocols"
	122.13.2.2. public static final String DISCOVERY_NAMESPACE = "osgi.remoteserviceadmin.discovery"

	122.13.3. public final class DistributionNamespace extends Namespace
	122.13.3.1. public static final String CAPABILITY_CONFIGS_ATTRIBUTE = "configs"
	122.13.3.2. public static final String DISTRIBUTION_NAMESPACE = "osgi.remoteserviceadmin.distribution"

	122.13.4. public final class TopologyNamespace extends Namespace
	122.13.4.1. public static final String CAPABILITY_POLICY_ATTRIBUTE = "policy"
	122.13.4.2. public static final String FAIL_OVER_POLICY = "fail-over"
	122.13.4.3. public static final String PROMISCUOUS_POLICY = "promiscuous"
	122.13.4.4. public static final String TOPOLOGY_NAMESPACE = "osgi.remoteserviceadmin.topology"

	122.14. References

	Chapter 123. JTA Transaction Services Specification
	123.1. Introduction
	123.1.1. Essentials
	123.1.2. Entities
	123.1.3. Dependencies
	123.1.4. Synopsis

	123.2. JTA Overview
	123.2.1. Global and Local Transactions
	123.2.2. Durable Resource
	123.2.3. Volatile Resource
	123.2.4. Threading

	123.3. Application
	123.3.1. No Enlistment
	123.3.2. Application Bundle Enlistment
	123.3.3. Container Managed Enlistment

	123.4. Resource Managers
	123.5. The JTA Provider
	123.5.1. User Transaction
	123.5.2. Transaction Manager
	123.5.3. Transaction Synchronization Service

	123.6. Life Cycle
	123.6.1. JTA Provider
	123.6.2. Application Bundles
	123.6.3. Error Handling

	123.7. Security
	123.8. References

	Chapter 125. Data Service Specification for JDBC™ Technology
	125.1. Introduction
	125.1.1. Essentials
	125.1.2. Entities
	125.1.3. Dependencies
	125.1.4. Synopsis

	125.2. Database Driver
	125.2.1. Life Cycle
	125.2.2. Package Dependencies

	125.3. Applications
	125.3.1. Selecting the Data Source Factory Service
	125.3.2. Using Database Drivers
	125.3.3. Using JDBC in OSGi and Containers

	125.4. Security
	125.5. org.osgi.service.jdbc
	125.5.1. Summary
	125.5.2. public interface DataSourceFactory
	125.5.2.1. public static final String JDBC_DATABASE_NAME = "databaseName"
	125.5.2.2. public static final String JDBC_DATASOURCE_NAME = "dataSourceName"
	125.5.2.3. public static final String JDBC_DESCRIPTION = "description"
	125.5.2.4. public static final String JDBC_INITIAL_POOL_SIZE = "initialPoolSize"
	125.5.2.5. public static final String JDBC_MAX_IDLE_TIME = "maxIdleTime"
	125.5.2.6. public static final String JDBC_MAX_POOL_SIZE = "maxPoolSize"
	125.5.2.7. public static final String JDBC_MAX_STATEMENTS = "maxStatements"
	125.5.2.8. public static final String JDBC_MIN_POOL_SIZE = "minPoolSize"
	125.5.2.9. public static final String JDBC_NETWORK_PROTOCOL = "networkProtocol"
	125.5.2.10. public static final String JDBC_PASSWORD = "password"
	125.5.2.11. public static final String JDBC_PORT_NUMBER = "portNumber"
	125.5.2.12. public static final String JDBC_PROPERTY_CYCLE = "propertyCycle"
	125.5.2.13. public static final String JDBC_ROLE_NAME = "roleName"
	125.5.2.14. public static final String JDBC_SERVER_NAME = "serverName"
	125.5.2.15. public static final String JDBC_URL = "url"
	125.5.2.16. public static final String JDBC_USER = "user"
	125.5.2.17. public static final String OSGI_JDBC_DRIVER_CLASS = "osgi.jdbc.driver.class"
	125.5.2.18. public static final String OSGI_JDBC_DRIVER_NAME = "osgi.jdbc.driver.name"
	125.5.2.19. public static final String OSGI_JDBC_DRIVER_VERSION = "osgi.jdbc.driver.version"
	125.5.2.20. public ConnectionPoolDataSource createConnectionPoolDataSource(Properties props) throws SQLException
	125.5.2.21. public DataSource createDataSource(Properties props) throws SQLException
	125.5.2.22. public Driver createDriver(Properties props) throws SQLException
	125.5.2.23. public XADataSource createXADataSource(Properties props) throws SQLException

	125.6. References

	Chapter 126. JNDI Services Specification
	126.1. Introduction
	126.1.1. Essentials
	126.1.2. Entities
	126.1.3. Dependencies
	126.1.4. Synopsis

	126.2. JNDI Overview
	126.2.1. Context and Dir Context
	126.2.2. Initial Context
	126.2.3. URL Context Factory
	126.2.4. Object and Reference Conversion
	126.2.5. Environment
	126.2.6. Naming Manager Singletons
	126.2.7. Built-In JNDI Providers

	126.3. JNDI Context Manager Service
	126.3.1. Environment and Bundles
	126.3.2. Context Creation
	126.3.2.1. Implementation Class Present in Environment
	126.3.2.2. No Implementation Class Specified

	126.3.3. Rebinding
	126.3.4. Life Cycle and Dynamism

	126.4. JNDI Provider Admin service
	126.5. JNDI Providers
	126.5.1. Initial Context Factory Builder Provider
	126.5.2. Initial Context Factory Provider
	126.5.3. Object Factory Builder Provider
	126.5.4. Object Factory Provider
	126.5.5. URL Context Provider
	126.5.6. JRE Context Providers

	126.6. OSGi URL Scheme
	126.6.1. Service Proxies
	126.6.2. Services and State

	126.7. Traditional Client Model
	126.7.1. New Initial Context
	126.7.2. Static Conversion
	126.7.3. Caller's Bundle Context
	126.7.4. Life Cycle Mismatch

	126.8. Security
	126.8.1. JNDI Implementation
	126.8.2. JNDI Clients
	126.8.3. OSGi URL namespace

	126.9. org.osgi.service.jndi
	126.9.1. Summary
	126.9.2. public class JNDIConstants
	126.9.2.1. public static final String BUNDLE_CONTEXT = "osgi.service.jndi.bundleContext"
	126.9.2.2. public static final String JNDI_SERVICENAME = "osgi.jndi.service.name"
	126.9.2.3. public static final String JNDI_URLSCHEME = "osgi.jndi.url.scheme"

	126.9.3. public interface JNDIContextManager
	126.9.3.1. public Context newInitialContext() throws NamingException
	126.9.3.2. public Context newInitialContext(Map<String, ?> environment) throws NamingException
	126.9.3.3. public DirContext newInitialDirContext() throws NamingException
	126.9.3.4. public DirContext newInitialDirContext(Map<String, ?> environment) throws NamingException

	126.9.4. public interface JNDIProviderAdmin
	126.9.4.1. public Object getObjectInstance(Object refInfo, Name name, Context context, Map<String, ?> environment) throws Exception
	126.9.4.2. public Object getObjectInstance(Object refInfo, Name name, Context context, Map<String, ?> environment, Attributes attributes) throws Exception

	126.10. References

	Chapter 127. JPA Service Specification
	127.1. Introduction
	127.1.1. Essentials
	127.1.2. Entities
	127.1.3. Dependencies
	127.1.4. Synopsis

	127.2. JPA Overview
	127.2.1. Persistence
	127.2.2. JPA Provider
	127.2.3. Managed and Unmanaged
	127.2.4. JDBC Access in JPA

	127.3. Bundles with Persistence
	127.3.1. Services
	127.3.2. Persistence Bundle
	127.3.3. Client Bundles
	127.3.4. Custom Configured Entity Manager
	127.3.4.1. Supported configuration properties

	127.4. Extending a Persistence Bundle
	127.4.1. Class Space Consistency
	127.4.2. Meta Persistence Header
	127.4.3. Processing
	127.4.4. Ready Phase
	127.4.5. Service Registrations
	127.4.6. Registering the Entity Manager Factory Builder Service
	127.4.7. Registering the Entity Manager Factory
	127.4.8. Stopping
	127.4.9. Entity Manager Factory Life Cycle

	127.5. JPA Provider
	127.5.1. Managed Model
	127.5.2. Database Access
	127.5.3. Data Source Factory Service Matching
	127.5.4. Rebinding
	127.5.5. Enhancing Entity Classes
	127.5.6. Class Loading
	127.5.7. Validation

	127.6. Static Access
	127.6.1. Access

	127.7. Capabilities
	127.7.1. The Extender Capability
	127.7.2. The JPA Contract Capability
	127.7.3. Service capabilities

	127.8. Security
	127.8.1. Service Permissions
	127.8.2. Required Admin Permission

	127.9. org.osgi.service.jpa
	127.9.1. Summary
	127.9.2. public interface EntityManagerFactoryBuilder
	127.9.2.1. public static final String JPA_CAPABILITY_NAME = "osgi.jpa"
	127.9.2.2. public static final String JPA_SPECIFICATION_VERSION = "1.1"
	127.9.2.3. public static final String JPA_UNIT_NAME = "osgi.unit.name"
	127.9.2.4. public static final String JPA_UNIT_PROVIDER = "osgi.unit.provider"
	127.9.2.5. public static final String JPA_UNIT_VERSION = "osgi.unit.version"
	127.9.2.6. public EntityManagerFactory createEntityManagerFactory(Map<String, Object> props)
	127.9.2.7. public Bundle getPersistenceProviderBundle()
	127.9.2.8. public String getPersistenceProviderName()

	127.10. org.osgi.service.jpa.annotations
	127.10.1. Summary
	127.10.2. @RequireJPAExtender

	127.11. References

	Chapter 128. Web Applications Specification
	128.1. Introduction
	128.1.1. Essentials
	128.1.2. Entities
	128.1.3. Dependencies
	128.1.4. Synopsis

	128.2. Web Container
	128.3. Web Application Bundle
	128.3.1. WAB Definition
	128.3.2. Starting the Web Application Bundle
	128.3.3. Failure
	128.3.4. Publishing the Servlet Context
	128.3.5. Static Content
	128.3.6. Dynamic Content
	128.3.7. Content Serving Example
	128.3.8. Stopping the Web Application Bundle
	128.3.9. Uninstalling the Web Application Bundle
	128.3.10. Stopping of the Web Extender

	128.4. Web URL Handler
	128.4.1. URL Scheme
	128.4.2. URL Parsing
	128.4.3. URL Parameters
	128.4.4. WAB Modification
	128.4.5. WAR Manifest Processing
	128.4.6. Signed WAR files

	128.5. Events
	128.6. Interacting with the OSGi Environment
	128.6.1. Bundle Context Access
	128.6.2. Other Component Models
	128.6.3. Resource Lookup
	128.6.4. Resource Injection and Annotations
	128.6.5. Java Server Pages Support
	128.6.6. Compilation

	128.7. Security
	128.8. References

	Chapter 130. Coordinator Service Specification
	130.1. Introduction
	130.1.1. Essentials
	130.1.2. Entities

	130.2. Usage
	130.2.1. Synopsis
	130.2.2. Explicit Coordination
	130.2.3. Multi Threading
	130.2.4. Implicit Coordinations
	130.2.5. Partial Ending
	130.2.6. Locking
	130.2.7. Failing
	130.2.8. Time-out
	130.2.9. Joining
	130.2.10. Variables
	130.2.11. Optimizing Example
	130.2.12. Security Example

	130.3. Coordinator Service
	130.3.1. Coordination Creation
	130.3.2. Adding Participants
	130.3.3. Active
	130.3.4. Explicit and Implicit Models
	130.3.5. Termination
	130.3.6. Ending
	130.3.7. Failing, TIMEOUT, ORPHANED, and RELEASED
	130.3.8. Nesting Implicit Coordinations
	130.3.9. Time-outs
	130.3.10. Released
	130.3.11. Coordinator Convenience Methods
	130.3.12. Administrative Access
	130.3.13. Summary

	130.4. Security
	130.5. org.osgi.service.coordinator
	130.5.1. Summary
	130.5.2. public interface Coordination
	130.5.2.1. public static final Exception ORPHANED
	130.5.2.2. public static final Exception RELEASED
	130.5.2.3. public static final Exception TIMEOUT
	130.5.2.4. public void addParticipant(Participant participant)
	130.5.2.5. public void end()
	130.5.2.6. public long extendTimeout(long timeMillis)
	130.5.2.7. public boolean fail(Throwable cause)
	130.5.2.8. public Bundle getBundle()
	130.5.2.9. public Coordination getEnclosingCoordination()
	130.5.2.10. public Throwable getFailure()
	130.5.2.11. public long getId()
	130.5.2.12. public String getName()
	130.5.2.13. public List<Participant> getParticipants()
	130.5.2.14. public Thread getThread()
	130.5.2.15. public Map<Class<?>, Object> getVariables()
	130.5.2.16. public boolean isTerminated()
	130.5.2.17. public void join(long timeMillis) throws InterruptedException
	130.5.2.18. public Coordination push()

	130.5.3. public class CoordinationException extends RuntimeException
	130.5.3.1. public static final int ALREADY_ENDED = 4
	130.5.3.2. public static final int ALREADY_PUSHED = 5
	130.5.3.3. public static final int DEADLOCK_DETECTED = 1
	130.5.3.4. public static final int FAILED = 2
	130.5.3.5. public static final int LOCK_INTERRUPTED = 6
	130.5.3.6. public static final int PARTIALLY_ENDED = 3
	130.5.3.7. public static final int UNKNOWN = 0
	130.5.3.8. public static final int WRONG_THREAD = 7
	130.5.3.9. public CoordinationException(String message, Coordination coordination, int type, Throwable cause)
	130.5.3.10. public CoordinationException(String message, Coordination coordination, int type)
	130.5.3.11. public long getId()
	130.5.3.12. public String getName()
	130.5.3.13. public int getType()

	130.5.4. public final class CoordinationPermission extends BasicPermission
	130.5.4.1. public static final String ADMIN = "admin"
	130.5.4.2. public static final String INITIATE = "initiate"
	130.5.4.3. public static final String PARTICIPATE = "participate"
	130.5.4.4. public CoordinationPermission(String filter, String actions)
	130.5.4.5. public CoordinationPermission(String coordinationName, Bundle coordinationBundle, String actions)
	130.5.4.6. public boolean equals(Object obj)
	130.5.4.7. public String getActions()
	130.5.4.8. public int hashCode()
	130.5.4.9. public boolean implies(Permission p)
	130.5.4.10. public PermissionCollection newPermissionCollection()

	130.5.5. public interface Coordinator
	130.5.5.1. public boolean addParticipant(Participant participant)
	130.5.5.2. public Coordination begin(String name, long timeMillis)
	130.5.5.3. public Coordination create(String name, long timeMillis)
	130.5.5.4. public boolean fail(Throwable cause)
	130.5.5.5. public Coordination getCoordination(long id)
	130.5.5.6. public Collection<Coordination> getCoordinations()
	130.5.5.7. public Coordination peek()
	130.5.5.8. public Coordination pop()

	130.5.6. public interface Participant
	130.5.6.1. public void ended(Coordination coordination) throws Exception
	130.5.6.2. public void failed(Coordination coordination) throws Exception

	Chapter 131. TR069 Connector Service Specification
	131.1. Introduction
	131.1.1. Essentials
	131.1.2. Entities
	131.1.3. Synopsis

	131.2. TR-069 Protocol Primer
	131.2.1. Architecture
	131.2.2. Object Model
	131.2.3. Parameter Names
	131.2.4. Parameter Type
	131.2.5. Parameter Attributes
	131.2.6. Objects and Tables
	131.2.7. RPCs
	131.2.8. Authentication
	131.2.9. Sessions and Transactions
	131.2.10. Events and Notifications
	131.2.11. Errors

	131.3. TR069 Connector
	131.3.1. Role
	131.3.2. Obtaining a TR069 Connector
	131.3.3. Supported RPCs
	131.3.4. Name Escaping
	131.3.5. Root
	131.3.6. DMT Traversal
	131.3.7. Synthetic Nodes
	131.3.7.1. Alias
	131.3.7.2. Number Of Entries

	131.3.8. Lazy and Sessions
	131.3.9. Data Types
	131.3.10. DMT to TR-069 Conversion
	131.3.10.1. Date
	131.3.10.2. Binary
	131.3.10.3. Number
	131.3.10.4. List

	131.3.11. TR-069 to Dmt Data Conversion
	131.3.11.1. Date
	131.3.11.2. Num
	131.3.11.3. Bool
	131.3.11.4. Binary
	131.3.11.5. List

	131.4. RPCs
	131.4.1. Get Parameter Values
	131.4.2. Set Parameter Values
	131.4.3. Get Parameter Names
	131.4.4. Add Object
	131.4.5. Delete Object

	131.5. Error and Fault Codes
	131.6. Managing the RMT
	131.7. Native TR-069 Object Models
	131.8. org.osgi.service.tr069todmt
	131.8.1. Summary
	131.8.2. public interface ParameterInfo
	131.8.2.1. public ParameterValue getParameterValue() throws TR069Exception
	131.8.2.2. public String getPath()
	131.8.2.3. public boolean isParameter()
	131.8.2.4. public boolean isWriteable()

	131.8.3. public interface ParameterValue
	131.8.3.1. public String getPath()
	131.8.3.2. public int getType()
	131.8.3.3. public String getValue()

	131.8.4. public interface TR069Connector
	131.8.4.1. public static final String PREFIX = "application/x-tr-069-"
	131.8.4.2. public static final int TR069_BASE64 = 64
	131.8.4.3. public static final int TR069_BOOLEAN = 32
	131.8.4.4. public static final int TR069_DATETIME = 256
	131.8.4.5. public static final int TR069_DEFAULT = 0
	131.8.4.6. public static final int TR069_HEXBINARY = 128
	131.8.4.7. public static final int TR069_INT = 1
	131.8.4.8. public static final int TR069_LONG = 4
	131.8.4.9. public static final String TR069_MIME_BASE64 = "application/x-tr-069-base64"
	131.8.4.10. public static final String TR069_MIME_BOOLEAN = "application/x-tr-069-boolean"
	131.8.4.11. public static final String TR069_MIME_DATETIME = "application/x-tr-069-dateTime"
	131.8.4.12. public static final String TR069_MIME_DEFAULT = "application/x-tr-069-default"
	131.8.4.13. public static final String TR069_MIME_EAGER = "application/x-tr-069-eager"
	131.8.4.14. public static final String TR069_MIME_HEXBINARY = "application/x-tr-069-hexBinary"
	131.8.4.15. public static final String TR069_MIME_INT = "application/x-tr-069-int"
	131.8.4.16. public static final String TR069_MIME_LONG = "application/x-tr-069-long"
	131.8.4.17. public static final String TR069_MIME_STRING = "application/x-tr-069-string"
	131.8.4.18. public static final String TR069_MIME_STRING_LIST = "application/x-tr-069-string-list"
	131.8.4.19. public static final String TR069_MIME_UNSIGNED_INT = "application/x-tr-069-unsignedInt"
	131.8.4.20. public static final String TR069_MIME_UNSIGNED_LONG = "application/x-tr-069-unsignedLong"
	131.8.4.21. public static final int TR069_STRING = 16
	131.8.4.22. public static final int TR069_UNSIGNED_INT = 2
	131.8.4.23. public static final int TR069_UNSIGNED_LONG = 8
	131.8.4.24. public String addObject(String path) throws TR069Exception
	131.8.4.25. public void close()
	131.8.4.26. public void deleteObject(String objectPath) throws TR069Exception
	131.8.4.27. public Collection<ParameterInfo> getParameterNames(String objectOrTablePath, boolean nextLevel) throws TR069Exception
	131.8.4.28. public ParameterValue getParameterValue(String parameterPath) throws TR069Exception
	131.8.4.29. public void setParameterValue(String parameterPath, String value, int type) throws TR069Exception
	131.8.4.30. public String toPath(String uri) throws TR069Exception
	131.8.4.31. public String toURI(String name, boolean create) throws TR069Exception

	131.8.5. public interface TR069ConnectorFactory
	131.8.5.1. public TR069Connector create(DmtSession session)

	131.8.6. public class TR069Exception extends RuntimeException
	131.8.6.1. public static final int INTERNAL_ERROR = 9002
	131.8.6.2. public static final int INVALID_ARGUMENTS = 9003
	131.8.6.3. public static final int INVALID_PARAMETER_NAME = 9005
	131.8.6.4. public static final int INVALID_PARAMETER_TYPE = 9006
	131.8.6.5. public static final int INVALID_PARAMETER_VALUE = 9007
	131.8.6.6. public static final int METHOD_NOT_SUPPORTED = 9000
	131.8.6.7. public static final int NON_WRITABLE_PARAMETER = 9008
	131.8.6.8. public static final int NOTIFICATION_REJECTED = 9009
	131.8.6.9. public static final int REQUEST_DENIED = 9001
	131.8.6.10. public static final int RESOURCES_EXCEEDED = 9004
	131.8.6.11. public TR069Exception(String message)
	131.8.6.12. public TR069Exception(String message, int faultCode, DmtException e)
	131.8.6.13. public TR069Exception(String message, int faultCode)
	131.8.6.14. public TR069Exception(DmtException e)
	131.8.6.15. public DmtException getDmtException()
	131.8.6.16. public int getFaultCode()

	131.9. References

	Chapter 132. Repository Service Specification
	132.1. Introduction
	132.1.1. Essentials
	132.1.2. Entities
	132.1.3. Synopsis

	132.2. Using a Repository
	132.2.1. Combining Requirements

	132.3. Repository
	132.3.1. Repository Content

	132.4. osgi.content Namespace
	132.5. XML Repository Format
	132.5.1. Repository Element
	132.5.2. Referral Element
	132.5.3. Resource Element
	132.5.4. Capability Element
	132.5.5. Requirement Element
	132.5.6. Attribute Element
	132.5.7. Directive Element
	132.5.8. Sample XML File

	132.6. XML Repository Schema
	132.7. Capabilities
	132.7.1. osgi.implementation Capability
	132.7.2. osgi.service Capability

	132.8. Security
	132.8.1. External Access
	132.8.2. Permissions

	132.9. org.osgi.service.repository
	132.9.1. Summary
	132.9.2. public interface AndExpression extends RequirementExpression
	132.9.2.1. public List<RequirementExpression> getRequirementExpressions()

	132.9.3. public final class ContentNamespace extends Namespace
	132.9.3.1. public static final String CAPABILITY_MIME_ATTRIBUTE = "mime"
	132.9.3.2. public static final String CAPABILITY_SIZE_ATTRIBUTE = "size"
	132.9.3.3. public static final String CAPABILITY_URL_ATTRIBUTE = "url"
	132.9.3.4. public static final String CONTENT_NAMESPACE = "osgi.content"

	132.9.4. public interface ExpressionCombiner
	132.9.4.1. public AndExpression and(RequirementExpression expr1, RequirementExpression expr2)
	132.9.4.2. public AndExpression and(RequirementExpression expr1, RequirementExpression expr2, RequirementExpression... moreExprs)
	132.9.4.3. public IdentityExpression identity(Requirement req)
	132.9.4.4. public NotExpression not(RequirementExpression expr)
	132.9.4.5. public OrExpression or(RequirementExpression expr1, RequirementExpression expr2)
	132.9.4.6. public OrExpression or(RequirementExpression expr1, RequirementExpression expr2, RequirementExpression... moreExprs)

	132.9.5. public interface IdentityExpression extends RequirementExpression
	132.9.5.1. public Requirement getRequirement()

	132.9.6. public interface NotExpression extends RequirementExpression
	132.9.6.1. public RequirementExpression getRequirementExpression()

	132.9.7. public interface OrExpression extends RequirementExpression
	132.9.7.1. public List<RequirementExpression> getRequirementExpressions()

	132.9.8. public interface Repository
	132.9.8.1. public static final String URL = "repository.url"
	132.9.8.2. public Map<Requirement, Collection<Capability>> findProviders(Collection<? extends Requirement> requirements)
	132.9.8.3. public Promise<Collection<Resource>> findProviders(RequirementExpression expression)
	132.9.8.4. public ExpressionCombiner getExpressionCombiner()
	132.9.8.5. public RequirementBuilder newRequirementBuilder(String namespace)

	132.9.9. public interface RepositoryContent
	132.9.9.1. public InputStream getContent()

	132.9.10. public interface RequirementBuilder
	132.9.10.1. public RequirementBuilder addAttribute(String name, Object value)
	132.9.10.2. public RequirementBuilder addDirective(String name, String value)
	132.9.10.3. public Requirement build()
	132.9.10.4. public IdentityExpression buildExpression()
	132.9.10.5. public RequirementBuilder setAttributes(Map<String, Object> attributes)
	132.9.10.6. public RequirementBuilder setDirectives(Map<String, String> directives)
	132.9.10.7. public RequirementBuilder setResource(Resource resource)

	132.9.11. public interface RequirementExpression

	132.10. References

	Chapter 133. Service Loader Mediator Specification
	133.1. Introduction
	133.1.1. Essentials
	133.1.2. Entities
	133.1.3. Synopsis

	133.2. Java Service Loader API
	133.3. Consumers
	133.3.1. Processing
	133.3.2. Opting In
	133.3.3. Restricting Visibility
	133.3.4. Life Cycle Impedance Mismatch
	133.3.5. Consumer Example

	133.4. Service Provider Bundles
	133.4.1. Advertising
	133.4.2. Publishing the Service Providers
	133.4.3. OSGi Services
	133.4.4. Service Provider Example

	133.5. Service Loader Mediator
	133.5.1. Registering Services
	133.5.2. OSGi Service Factory
	133.5.3. Service Loader and Modularity
	133.5.4. Processing Consumers
	133.5.5. Visibility
	133.5.6. Life Cycle

	133.6. osgi.serviceloader Namespace
	133.7. Use of the osgi.extender Namespace
	133.8. Security
	133.8.1. Mediator
	133.8.2. Consumers
	133.8.3. Service Providers

	133.9. org.osgi.service.serviceloader
	133.9.1. Summary
	133.9.2. public final class ServiceLoaderNamespace extends Namespace
	133.9.2.1. public static final String CAPABILITY_REGISTER_DIRECTIVE = "register"
	133.9.2.2. public static final String SERVICELOADER_NAMESPACE = "osgi.serviceloader"

	133.10. References

	Chapter 135. Common Namespaces Specification
	135.1. Introduction
	135.1.1. Versioning

	135.2. osgi.extender Namespace
	135.2.1. Extenders and Framework Hooks

	135.3. osgi.contract Namespace
	135.3.1. Versioning

	135.4. osgi.service Namespace
	135.4.1. Versioning

	135.5. osgi.implementation Namespace
	135.6. osgi.unresolvable Namespace
	135.7. org.osgi.namespace.contract
	135.7.1. Summary
	135.7.2. public final class ContractNamespace extends Namespace
	135.7.2.1. public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"
	135.7.2.2. public static final String CONTRACT_NAMESPACE = "osgi.contract"

	135.8. org.osgi.namespace.extender
	135.8.1. Summary
	135.8.2. public final class ExtenderNamespace extends Namespace
	135.8.2.1. public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"
	135.8.2.2. public static final String EXTENDER_NAMESPACE = "osgi.extender"

	135.9. org.osgi.namespace.service
	135.9.1. Summary
	135.9.2. public final class ServiceNamespace extends Namespace
	135.9.2.1. public static final String CAPABILITY_OBJECTCLASS_ATTRIBUTE = "objectClass"
	135.9.2.2. public static final String SERVICE_NAMESPACE = "osgi.service"

	135.10. org.osgi.namespace.implementation
	135.10.1. Summary
	135.10.2. public final class ImplementationNamespace extends Namespace
	135.10.2.1. public static final String CAPABILITY_VERSION_ATTRIBUTE = "version"
	135.10.2.2. public static final String IMPLEMENTATION_NAMESPACE = "osgi.implementation"

	135.11. org.osgi.namespace.unresolvable
	135.11.1. Summary
	135.11.2. public final class UnresolvableNamespace extends Namespace
	135.11.2.1. public static final String UNRESOLVABLE_FILTER = "(&(must.not.resolve=*)(!(must.not.resolve=*)))"
	135.11.2.2. public static final String UNRESOLVABLE_NAMESPACE = "osgi.unresolvable"

	135.12. References

	Chapter 137. REST Management Service Specification
	137.1. Introduction
	137.1.1. Essentials
	137.1.2. Entities
	137.1.3. Synopsis

	137.2. Interacting with the REST Management Service
	137.2.1. Resource Identifier Overview
	137.2.2. Filtering Results
	137.2.3. Content Type Matching

	137.3. Resources
	137.3.1. Framework Startlevel Resource
	137.3.1.1. GET
	137.3.1.2. PUT

	137.3.2. Bundles Resource
	137.3.2.1. GET
	137.3.2.2. POST with Location String
	137.3.2.3. POST with Bundle

	137.3.3. Bundles Representations Resource
	137.3.3.1. GET of the Representations

	137.3.4. Bundle Resource
	137.3.4.1. GET
	137.3.4.2. PUT with Location String
	137.3.4.3. PUT with Bundle
	137.3.4.4. DELETE

	137.3.5. Bundle State Resource
	137.3.5.1. GET
	137.3.5.2. PUT

	137.3.6. Bundle Header Resource
	137.3.6.1. GET

	137.3.7. Bundle Startlevel Resource
	137.3.7.1. GET
	137.3.7.2. PUT

	137.3.8. Services Resource
	137.3.8.1. GET

	137.3.9. Services Representations Resource
	137.3.9.1. GET of the Representations

	137.3.10. Service Resource
	137.3.10.1. GET

	137.4. Representations
	137.4.1. Bundle Representation
	137.4.1.1. JSON
	137.4.1.2. XML

	137.4.2. Bundles Representations
	137.4.2.1. Bundle List Representation
	137.4.2.1.1. JSON
	137.4.2.1.2. XML

	137.4.2.2. Bundle Representations List Representation
	137.4.2.2.1. JSON
	137.4.2.2.2. XML

	137.4.3. Bundle State Representation
	137.4.3.1. JSON
	137.4.3.2. XML

	137.4.4. Bundle Header Representation
	137.4.4.1. JSON
	137.4.4.2. XML

	137.4.5. Framework Startlevel Representation
	137.4.5.1. JSON
	137.4.5.2. XML

	137.4.6. Bundle Startlevel Representation
	137.4.6.1. JSON
	137.4.6.2. XML

	137.4.7. Service Representation
	137.4.7.1. JSON
	137.4.7.2. XML

	137.4.8. Services Representations
	137.4.8.1. Service List Representation
	137.4.8.1.1. JSON
	137.4.8.1.2. XML

	137.4.8.2. Service Representations List Representation
	137.4.8.2.1. JSON
	137.4.8.2.2. XML

	137.4.9. Bundle Exception Representation
	137.4.9.1. JSON
	137.4.9.2. XML

	137.5. Clients
	137.5.1. Java Client
	137.5.2. JavaScript Client

	137.6. Extending the REST Management Service
	137.6.1. Extensions Resource
	137.6.1.1. GET

	137.6.2. Extensions Representation
	137.6.2.1. JSON
	137.6.2.2. XML

	137.7. XML Schema
	137.8. Capabilities
	137.8.1. osgi.implementation Capability
	137.8.2. osgi.service Capability

	137.9. Security
	137.10. org.osgi.service.rest
	137.10.1. Summary
	137.10.2. public interface RestApiExtension
	137.10.2.1. public static final String NAME = "org.osgi.rest.name"
	137.10.2.2. public static final String SERVICE = "org.osgi.rest.service"
	137.10.2.3. public static final String URI_PATH = "org.osgi.rest.uri.path"

	137.11. org.osgi.service.rest.client
	137.11.1. Summary
	137.11.2. public interface RestClient
	137.11.2.1. public BundleDTO getBundle(long id) throws Exception
	137.11.2.2. public BundleDTO getBundle(String bundlePath) throws Exception
	137.11.2.3. public Map<String, String> getBundleHeaders(long id) throws Exception
	137.11.2.4. public Map<String, String> getBundleHeaders(String bundlePath) throws Exception
	137.11.2.5. public Collection<String> getBundlePaths() throws Exception
	137.11.2.6. public Collection<BundleDTO> getBundles() throws Exception
	137.11.2.7. public BundleStartLevelDTO getBundleStartLevel(long id) throws Exception
	137.11.2.8. public BundleStartLevelDTO getBundleStartLevel(String bundlePath) throws Exception
	137.11.2.9. public int getBundleState(long id) throws Exception
	137.11.2.10. public int getBundleState(String bundlePath) throws Exception
	137.11.2.11. public FrameworkStartLevelDTO getFrameworkStartLevel() throws Exception
	137.11.2.12. public Collection<String> getServicePaths() throws Exception
	137.11.2.13. public Collection<String> getServicePaths(String filter) throws Exception
	137.11.2.14. public ServiceReferenceDTO getServiceReference(long id) throws Exception
	137.11.2.15. public ServiceReferenceDTO getServiceReference(String servicePath) throws Exception
	137.11.2.16. public Collection<ServiceReferenceDTO> getServiceReferences() throws Exception
	137.11.2.17. public Collection<ServiceReferenceDTO> getServiceReferences(String filter) throws Exception
	137.11.2.18. public BundleDTO installBundle(String location) throws Exception
	137.11.2.19. public BundleDTO installBundle(String location, InputStream in) throws Exception
	137.11.2.20. public void setBundleStartLevel(long id, int startLevel) throws Exception
	137.11.2.21. public void setBundleStartLevel(String bundlePath, int startLevel) throws Exception
	137.11.2.22. public void setFrameworkStartLevel(FrameworkStartLevelDTO startLevel) throws Exception
	137.11.2.23. public void startBundle(long id) throws Exception
	137.11.2.24. public void startBundle(String bundlePath) throws Exception
	137.11.2.25. public void startBundle(long id, int options) throws Exception
	137.11.2.26. public void startBundle(String bundlePath, int options) throws Exception
	137.11.2.27. public void stopBundle(long id) throws Exception
	137.11.2.28. public void stopBundle(String bundlePath) throws Exception
	137.11.2.29. public void stopBundle(long id, int options) throws Exception
	137.11.2.30. public void stopBundle(String bundlePath, int options) throws Exception
	137.11.2.31. public BundleDTO uninstallBundle(long id) throws Exception
	137.11.2.32. public BundleDTO uninstallBundle(String bundlePath) throws Exception
	137.11.2.33. public BundleDTO updateBundle(long id) throws Exception
	137.11.2.34. public BundleDTO updateBundle(long id, String url) throws Exception
	137.11.2.35. public BundleDTO updateBundle(long id, InputStream in) throws Exception

	137.11.3. public interface RestClientFactory
	137.11.3.1. public RestClient createRestClient(URI uri)

	137.12. JavaScript Client API
	137.12.1. Summary
	137.12.2. interface OSGiRestClient
	137.12.2.1. void getBundle((DOMString or long long) bundle, OSGiRestCallback cb)
	137.12.2.2. void getBundleHeader((DOMString or long long) bundle, OSGiRestCallback cb)
	137.12.2.3. void getBundleRepresentations(OSGiRestCallback cb)
	137.12.2.4. void getBundles(OSGiRestCallback cb)
	137.12.2.5. void getBundleStartLevel((DOMString or long long) bundle, OSGiRestCallback cb)
	137.12.2.6. void getBundleState((DOMString or long long) bundle, OSGiRestCallback cb)
	137.12.2.7. void getFrameworkStartLevel(OSGiRestCallback cb)
	137.12.2.8. void getService((DOMString or long long) service, OSGiRestCallback cb)
	137.12.2.9. void getServiceRepresentations(OSGiRestCallback cb)
	137.12.2.10. void getServices(OSGiRestCallback cb)
	137.12.2.11. void installBundle((DOMString or ArrayBuffer) bundle, OSGiRestCallback cb)
	137.12.2.12. void setBundleStartLevel((DOMString or long long) bundle, dictionary bsl, OSGiRestCallback cb)
	137.12.2.13. void setBundleState((DOMString or long long) bundle, dictionary state, OSGiRestCallback cb)
	137.12.2.14. void setFrameworkStartLevel(dictionary fwsl, OSGiRestCallback cb)
	137.12.2.15. void startBundle((DOMString or long long) bundle, long options, OSGiRestCallback cb)
	137.12.2.16. void stopBundle((DOMString or long long) bundle, long options, OSGiRestCallback cb)
	137.12.2.17. void uninstallBundle((DOMString or long long) bundle, OSGiRestCallback cb)
	137.12.2.18. void updateBundle((DOMString or long long) bundle, (DOMString or ArrayBuffer) updated, OSGiRestCallback cb)

	137.12.3. callback interface OSGiRestCallback
	137.12.3.1. void success(object response)
	137.12.3.2. void failure(short httpCode, object response)

	137.13. References

	Chapter 138. Asynchronous Service Specification
	138.1. Introduction
	138.1.1. Essentials
	138.1.2. Entities

	138.2. Usage
	138.2.1. Synopsis
	138.2.2. Making Async Invocations
	138.2.3. Async Invocations of Void Methods
	138.2.4. Fire and Forget Calls
	138.2.5. Multi Threading

	138.3. Async Service
	138.3.1. Using the Async Service
	138.3.2. Asynchronous Failures
	138.3.3. Thread Safety and Instance Sharing
	138.3.4. Service Object Lifecycle Management

	138.4. The Async Mediator
	138.4.1. Building the Mediator Object
	138.4.2. Async Mediator Behaviors
	138.4.3. Thread Safety and Instance Sharing

	138.5. Fire and Forget Invocations
	138.6. Delegating to Asynchronous Implementations
	138.6.1. Obtaining a Promise from an Async Delegate
	138.6.2. Delegating Fire and Forget Calls to an Async Delegate
	138.6.3. Lifecycle for Service Objects When Delegating

	138.7. Capabilities
	138.8. Security
	138.9. org.osgi.service.async
	138.9.1. Summary
	138.9.2. public interface Async
	138.9.2.1. public Promise<R> call(R r)
	138.9.2.2. public Promise<?> call()
	138.9.2.3. public Promise<Void> execute()
	138.9.2.4. public T mediate(T target, Class<T> iface)
	138.9.2.5. public T mediate(ServiceReference<? extends T> target, Class<T> iface)

	138.10. org.osgi.service.async.delegate
	138.10.1. Summary
	138.10.2. public interface AsyncDelegate
	138.10.2.1. public Promise<?> async(Method m, Object[] args) throws Exception
	138.10.2.2. public boolean execute(Method m, Object[] args) throws Exception

	Chapter 139. Device Service Specification for EnOcean™ Technology
	139.1. Introduction
	139.2. Essentials
	139.3. Entities
	139.4. Operation Summary
	139.5. EnOcean Base Driver
	139.6. EnOcean Host
	139.7. EnOcean Device
	139.7.1. Generics
	139.7.2. Import Situation
	139.7.3. Export Situation
	139.7.4. Interface

	139.8. EnOcean Messages
	139.8.1. Mode of operation
	139.8.2. Identification
	139.8.3. Interface

	139.9. EnOcean Message Description
	139.10. EnOcean Channel
	139.11. EnOcean Channel Description
	139.11.1. EnOcean Data Channel Description
	139.11.2. EnOcean Flag Channel Description
	139.11.3. EnOcean Enumerated Channel Description

	139.12. EnOcean Remote Management
	139.12.1. EnOcean RPC
	139.12.2. EnOcean Handler

	139.13. Working With an EnOcean Device
	139.13.1. Service Tracking

	139.14. Event API
	139.14.1. MESSAGE_RECEIVED
	139.14.2. RPC_BROADCAST

	139.15. EnOcean Exceptions
	139.16. Security
	139.17. org.osgi.service.enocean
	139.17.1. Summary
	139.17.2. public interface EnOceanChannel
	139.17.2.1. public String getChannelId()
	139.17.2.2. public int getOffset()
	139.17.2.3. public byte[] getRawValue()
	139.17.2.4. public int getSize()
	139.17.2.5. public void setRawValue(byte[] rawValue)

	139.17.3. public interface EnOceanDevice
	139.17.3.1. public static final String CHIP_ID = "enocean.device.chip_id"
	139.17.3.2. public static final String DEVICE_CATEGORY = "EnOcean"
	139.17.3.3. public static final String ENOCEAN_EXPORT = "enocean.device.export"
	139.17.3.4. public static final String FUNC = "enocean.device.profile.func"
	139.17.3.5. public static final String MANUFACTURER = "enocean.device.manufacturer"
	139.17.3.6. public static final String RORG = "enocean.device.profile.rorg"
	139.17.3.7. public static final String SECURITY_LEVEL_FORMAT = "enocean.device.security_level_format"
	139.17.3.8. public static final String TYPE = "enocean.device.profile.type"
	139.17.3.9. public int getChipId()
	139.17.3.10. public byte[] getEncryptionKey()
	139.17.3.11. public int getFunc()
	139.17.3.12. public int[] getLearnedDevices()
	139.17.3.13. public int getManufacturer()
	139.17.3.14. public int getRollingCode()
	139.17.3.15. public int getRorg()
	139.17.3.16. public Map<Integer, Integer> getRPCs()
	139.17.3.17. public int getSecurityLevelFormat()
	139.17.3.18. public int getType()
	139.17.3.19. public void invoke(EnOceanRPC rpc, EnOceanHandler handler)
	139.17.3.20. public void remove()
	139.17.3.21. public void setEncryptionKey(byte[] key)
	139.17.3.22. public void setFunc(int func)
	139.17.3.23. public void setLearningMode(boolean learnMode)
	139.17.3.24. public void setRollingCode(int rollingCode)
	139.17.3.25. public void setType(int type)

	139.17.4. public final class EnOceanEvent
	139.17.4.1. public static final String PROPERTY_EXPORTED = "enocean.message.is_exported"
	139.17.4.2. public static final String PROPERTY_MESSAGE = "enocean.message"
	139.17.4.3. public static final String PROPERTY_RPC = "enocean.rpc"
	139.17.4.4. public static final String TOPIC_MSG_RECEIVED = "org/osgi/service/enocean/EnOceanEvent/MESSAGE_RECEIVED"
	139.17.4.5. public static final String TOPIC_RPC_BROADCAST = "org/osgi/service/enocean/EnOceanEvent/RPC_BROADCAST"

	139.17.5. public class EnOceanException extends Exception
	139.17.5.1. public static final short ESP_RET_NOT_SUPPORTED = 2
	139.17.5.2. public static final short ESP_RET_OPERATION_DENIED = 4
	139.17.5.3. public static final short ESP_RET_WRONG_PARAM = 3
	139.17.5.4. public static final short ESP_UNEXPECTED_FAILURE = 1
	139.17.5.5. public static final short INVALID_TELEGRAM = 240
	139.17.5.6. public static final short SUCCESS = 0
	139.17.5.7. public EnOceanException(String errordesc)
	139.17.5.8. public EnOceanException(int errorCode, String errorDesc)
	139.17.5.9. public EnOceanException(int errorCode)
	139.17.5.10. public int errorCode()

	139.17.6. public interface EnOceanHandler
	139.17.6.1. public void notifyResponse(EnOceanRPC original, byte[] payload)

	139.17.7. public interface EnOceanHost
	139.17.7.1. public static final Object HOST_ID
	139.17.7.2. public static final int REPEATER_LEVEL_OFF = 0
	139.17.7.3. public static final int REPEATER_LEVEL_ONE = 1
	139.17.7.4. public static final int REPEATER_LEVEL_TWO = 2
	139.17.7.5. public String apiVersion() throws EnOceanException
	139.17.7.6. public String appVersion() throws EnOceanException
	139.17.7.7. public int getBaseID() throws EnOceanException
	139.17.7.8. public int getChipId(String servicePID) throws EnOceanException
	139.17.7.9. public int getRepeaterLevel() throws EnOceanException
	139.17.7.10. public void reset() throws EnOceanException
	139.17.7.11. public void setBaseID(int baseID) throws EnOceanException
	139.17.7.12. public void setRepeaterLevel(int level) throws EnOceanException

	139.17.8. public interface EnOceanMessage
	139.17.8.1. public byte[] getBytes()
	139.17.8.2. public int getDbm()
	139.17.8.3. public int getDestinationId()
	139.17.8.4. public int getFunc()
	139.17.8.5. public byte[] getPayloadBytes()
	139.17.8.6. public int getRorg()
	139.17.8.7. public int getSecurityLevelFormat()
	139.17.8.8. public int getSenderId()
	139.17.8.9. public int getStatus()
	139.17.8.10. public int getSubTelNum()
	139.17.8.11. public int getType()

	139.17.9. public interface EnOceanRPC
	139.17.9.1. public static final String FUNCTION_ID = "enocean.rpc.function_id"
	139.17.9.2. public static final String MANUFACTURER_ID = "enocean.rpc.manufacturer_id"
	139.17.9.3. public int getFunctionId()
	139.17.9.4. public int getManufacturerId()
	139.17.9.5. public String getName()
	139.17.9.6. public byte[] getPayload()
	139.17.9.7. public int getSenderId()
	139.17.9.8. public void setSenderId(int chipId)

	139.18. org.osgi.service.enocean.descriptions
	139.18.1. Summary
	139.18.2. public interface EnOceanChannelDescription
	139.18.2.1. public static final String CHANNEL_ID = "enocean.channel.description.channel_id"
	139.18.2.2. public static final String TYPE_DATA = "enocean.channel.description.data"
	139.18.2.3. public static final String TYPE_ENUM = "enocean.channel.description.enum"
	139.18.2.4. public static final String TYPE_FLAG = "enocean.channel.description.flag"
	139.18.2.5. public static final String TYPE_RAW = "enocean.channel.description.raw"
	139.18.2.6. public Object deserialize(byte[] bytes)
	139.18.2.7. public String getType()
	139.18.2.8. public byte[] serialize(Object obj)

	139.18.3. public interface EnOceanChannelDescriptionSet
	139.18.3.1. public EnOceanChannelDescription getChannelDescription(String channelId)

	139.18.4. public interface EnOceanChannelEnumValue
	139.18.4.1. public String getDescription()
	139.18.4.2. public int getStart()
	139.18.4.3. public int getStop()

	139.18.5. public interface EnOceanDataChannelDescription extends EnOceanChannelDescription
	139.18.5.1. public int getDomainStart()
	139.18.5.2. public int getDomainStop()
	139.18.5.3. public double getRangeStart()
	139.18.5.4. public double getRangeStop()
	139.18.5.5. public String getUnit()

	139.18.6. public interface EnOceanEnumChannelDescription extends EnOceanChannelDescription
	139.18.6.1. public EnOceanChannelEnumValue[] getPossibleValues()

	139.18.7. public interface EnOceanFlagChannelDescription extends EnOceanChannelDescription
	139.18.8. public interface EnOceanMessageDescription
	139.18.8.1. public EnOceanChannel[] deserialize(byte[] bytes)
	139.18.8.2. public String getMessageDescription()
	139.18.8.3. public byte[] serialize(EnOceanChannel[] channels)

	139.18.9. public interface EnOceanMessageDescriptionSet
	139.18.9.1. public EnOceanMessageDescription getMessageDescription(int rorg, int func, int type, int extra)

	139.19. References

	Chapter 140. Http Whiteboard Specification
	140.1. Introduction
	140.1.1. Entities

	140.2. The Servlet Context
	140.2.1. String getMimeType(String)
	140.2.2. String getRealPath(String)
	140.2.3. URL getResource(String)
	140.2.4. Set<String> getResourcePaths(String)
	140.2.5. Security Handling
	140.2.6. Behavior of the Servlet Context
	140.2.7. Relation to the Servlet Container

	140.3. Common Whiteboard Properties
	140.4. Registering Servlets
	140.4.1. Multipart File Upload
	140.4.2. Error Pages
	140.4.3. Asynchronous Request Handling
	140.4.4. Annotations

	140.5. Registering Servlet Filters
	140.5.1. Servlet Pre-Processors

	140.6. Registering Resources
	140.6.1. Overlapping Resource and Servlet Registrations

	140.7. Registering Listeners
	140.8. Life Cycle
	140.8.1. Whiteboard Service Dynamics and Active Requests

	140.9. The Http Service Runtime Service
	140.10. Integration with Http Service Contexts
	140.11. Configuration Properties
	140.12. Capabilities
	140.12.1. osgi.implementation Capability
	140.12.2. osgi.contract Capability
	140.12.3. osgi.service Capability

	140.13. Security
	140.13.1. Service Permissions
	140.13.2. Introspection
	140.13.3. Accessing Resources with the Default Servlet Context Helper Implementation
	140.13.4. Accessing Other Types of Resources
	140.13.5. Calling Http Whiteboard Services
	140.13.6. Multipart Upload

	140.14. org.osgi.service.http.context
	140.14.1. Summary
	140.14.2. public abstract class ServletContextHelper
	140.14.2.1. public static final String AUTHENTICATION_TYPE = "org.osgi.service.http.authentication.type"
	140.14.2.2. public static final String AUTHORIZATION = "org.osgi.service.useradmin.authorization"
	140.14.2.3. public static final String REMOTE_USER = "org.osgi.service.http.authentication.remote.user"
	140.14.2.4. public ServletContextHelper()
	140.14.2.5. public ServletContextHelper(Bundle bundle)
	140.14.2.6. public void finishSecurity(HttpServletRequest request, HttpServletResponse response)
	140.14.2.7. public String getMimeType(String name)
	140.14.2.8. public String getRealPath(String path)
	140.14.2.9. public URL getResource(String name)
	140.14.2.10. public Set<String> getResourcePaths(String path)
	140.14.2.11. public boolean handleSecurity(HttpServletRequest request, HttpServletResponse response) throws IOException

	140.15. org.osgi.service.http.runtime
	140.15.1. Summary
	140.15.2. public interface HttpServiceRuntime
	140.15.2.1. public RequestInfoDTO calculateRequestInfoDTO(String path)
	140.15.2.2. public RuntimeDTO getRuntimeDTO()

	140.15.3. public final class HttpServiceRuntimeConstants
	140.15.3.1. public static final String HTTP_SERVICE_ENDPOINT = "osgi.http.endpoint"
	140.15.3.2. public static final String HTTP_SERVICE_ID = "osgi.http.service.id"

	140.16. org.osgi.service.http.runtime.dto
	140.16.1. Summary
	140.16.2. public abstract class BaseServletDTO extends DTO
	140.16.2.1. public boolean asyncSupported
	140.16.2.2. public Map<String, String> initParams
	140.16.2.3. public String name
	140.16.2.4. public long serviceId
	140.16.2.5. public long servletContextId
	140.16.2.6. public String servletInfo
	140.16.2.7. public BaseServletDTO()

	140.16.3. public final class DTOConstants
	140.16.3.1. public static final int FAILURE_REASON_EXCEPTION_ON_INIT = 4
	140.16.3.2. public static final int FAILURE_REASON_NO_SERVLET_CONTEXT_MATCHING = 1
	140.16.3.3. public static final int FAILURE_REASON_SERVICE_IN_USE = 7
	140.16.3.4. public static final int FAILURE_REASON_SERVICE_NOT_GETTABLE = 5
	140.16.3.5. public static final int FAILURE_REASON_SERVLET_CONTEXT_FAILURE = 2
	140.16.3.6. public static final int FAILURE_REASON_SERVLET_READ_FROM_DEFAULT_DENIED = 10
	140.16.3.7. public static final int FAILURE_REASON_SERVLET_WRITE_TO_LOCATION_DENIED = 8
	140.16.3.8. public static final int FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE = 3
	140.16.3.9. public static final int FAILURE_REASON_UNKNOWN = 0
	140.16.3.10. public static final int FAILURE_REASON_VALIDATION_FAILED = 6
	140.16.3.11. public static final int FAILURE_REASON_WHITEBOARD_WRITE_TO_DEFAULT_DENIED = 9
	140.16.3.12. public static final int FAILURE_REASON_WHITEBOARD_WRITE_TO_LOCATION_DENIED = 11

	140.16.4. public class ErrorPageDTO extends BaseServletDTO
	140.16.4.1. public long[] errorCodes
	140.16.4.2. public String[] exceptions
	140.16.4.3. public ErrorPageDTO()

	140.16.5. public class FailedErrorPageDTO extends ErrorPageDTO
	140.16.5.1. public int failureReason
	140.16.5.2. public FailedErrorPageDTO()

	140.16.6. public class FailedFilterDTO extends FilterDTO
	140.16.6.1. public int failureReason
	140.16.6.2. public FailedFilterDTO()

	140.16.7. public class FailedListenerDTO extends ListenerDTO
	140.16.7.1. public int failureReason
	140.16.7.2. public FailedListenerDTO()

	140.16.8. public class FailedPreprocessorDTO extends PreprocessorDTO
	140.16.8.1. public int failureReason
	140.16.8.2. public FailedPreprocessorDTO()

	140.16.9. public class FailedResourceDTO extends ResourceDTO
	140.16.9.1. public int failureReason
	140.16.9.2. public FailedResourceDTO()

	140.16.10. public class FailedServletContextDTO extends ServletContextDTO
	140.16.10.1. public int failureReason
	140.16.10.2. public FailedServletContextDTO()

	140.16.11. public class FailedServletDTO extends ServletDTO
	140.16.11.1. public int failureReason
	140.16.11.2. public FailedServletDTO()

	140.16.12. public class FilterDTO extends DTO
	140.16.12.1. public boolean asyncSupported
	140.16.12.2. public String[] dispatcher
	140.16.12.3. public Map<String, String> initParams
	140.16.12.4. public String name
	140.16.12.5. public String[] patterns
	140.16.12.6. public String[] regexs
	140.16.12.7. public long serviceId
	140.16.12.8. public long servletContextId
	140.16.12.9. public String[] servletNames
	140.16.12.10. public FilterDTO()

	140.16.13. public class ListenerDTO extends DTO
	140.16.13.1. public long serviceId
	140.16.13.2. public long servletContextId
	140.16.13.3. public String[] types
	140.16.13.4. public ListenerDTO()

	140.16.14. public class PreprocessorDTO extends DTO
	140.16.14.1. public Map<String, String> initParams
	140.16.14.2. public long serviceId
	140.16.14.3. public PreprocessorDTO()

	140.16.15. public class RequestInfoDTO extends DTO
	140.16.15.1. public FilterDTO[] filterDTOs
	140.16.15.2. public String path
	140.16.15.3. public ResourceDTO resourceDTO
	140.16.15.4. public long servletContextId
	140.16.15.5. public ServletDTO servletDTO
	140.16.15.6. public RequestInfoDTO()

	140.16.16. public class ResourceDTO extends DTO
	140.16.16.1. public String[] patterns
	140.16.16.2. public String prefix
	140.16.16.3. public long serviceId
	140.16.16.4. public long servletContextId
	140.16.16.5. public ResourceDTO()

	140.16.17. public class RuntimeDTO extends DTO
	140.16.17.1. public FailedErrorPageDTO[] failedErrorPageDTOs
	140.16.17.2. public FailedFilterDTO[] failedFilterDTOs
	140.16.17.3. public FailedListenerDTO[] failedListenerDTOs
	140.16.17.4. public FailedPreprocessorDTO[] failedPreprocessorDTOs
	140.16.17.5. public FailedResourceDTO[] failedResourceDTOs
	140.16.17.6. public FailedServletContextDTO[] failedServletContextDTOs
	140.16.17.7. public FailedServletDTO[] failedServletDTOs
	140.16.17.8. public PreprocessorDTO[] preprocessorDTOs
	140.16.17.9. public ServiceReferenceDTO serviceDTO
	140.16.17.10. public ServletContextDTO[] servletContextDTOs
	140.16.17.11. public RuntimeDTO()

	140.16.18. public class ServletContextDTO extends DTO
	140.16.18.1. public Map<String, Object> attributes
	140.16.18.2. public String contextPath
	140.16.18.3. public ErrorPageDTO[] errorPageDTOs
	140.16.18.4. public FilterDTO[] filterDTOs
	140.16.18.5. public Map<String, String> initParams
	140.16.18.6. public ListenerDTO[] listenerDTOs
	140.16.18.7. public String name
	140.16.18.8. public ResourceDTO[] resourceDTOs
	140.16.18.9. public long serviceId
	140.16.18.10. public ServletDTO[] servletDTOs
	140.16.18.11. public ServletContextDTO()

	140.16.19. public class ServletDTO extends BaseServletDTO
	140.16.19.1. public boolean multipartEnabled
	140.16.19.2. public int multipartFileSizeThreshold
	140.16.19.3. public String multipartLocation
	140.16.19.4. public long multipartMaxFileSize
	140.16.19.5. public long multipartMaxRequestSize
	140.16.19.6. public String[] patterns
	140.16.19.7. public ServletDTO()

	140.17. org.osgi.service.http.whiteboard
	140.17.1. Summary
	140.17.2. public final class HttpWhiteboardConstants
	140.17.2.1. public static final String DISPATCHER_ASYNC = "ASYNC"
	140.17.2.2. public static final String DISPATCHER_ERROR = "ERROR"
	140.17.2.3. public static final String DISPATCHER_FORWARD = "FORWARD"
	140.17.2.4. public static final String DISPATCHER_INCLUDE = "INCLUDE"
	140.17.2.5. public static final String DISPATCHER_REQUEST = "REQUEST"
	140.17.2.6. public static final String HTTP_SERVICE_CONTEXT_FILTER = "(osgi.http.whiteboard.context.httpservice=*)"
	140.17.2.7. public static final String HTTP_SERVICE_CONTEXT_PROPERTY = "osgi.http.whiteboard.context.httpservice"
	140.17.2.8. public static final String HTTP_WHITEBOARD_CONTEXT_INIT_PARAM_PREFIX = "context.init."
	140.17.2.9. public static final String HTTP_WHITEBOARD_CONTEXT_NAME = "osgi.http.whiteboard.context.name"
	140.17.2.10. public static final String HTTP_WHITEBOARD_CONTEXT_PATH = "osgi.http.whiteboard.context.path"
	140.17.2.11. public static final String HTTP_WHITEBOARD_CONTEXT_SELECT = "osgi.http.whiteboard.context.select"
	140.17.2.12. public static final String HTTP_WHITEBOARD_DEFAULT_CONTEXT_NAME = "default"
	140.17.2.13. public static final String HTTP_WHITEBOARD_FILTER_ASYNC_SUPPORTED = "osgi.http.whiteboard.filter.asyncSupported"
	140.17.2.14. public static final String HTTP_WHITEBOARD_FILTER_DISPATCHER = "osgi.http.whiteboard.filter.dispatcher"
	140.17.2.15. public static final String HTTP_WHITEBOARD_FILTER_INIT_PARAM_PREFIX = "filter.init."
	140.17.2.16. public static final String HTTP_WHITEBOARD_FILTER_NAME = "osgi.http.whiteboard.filter.name"
	140.17.2.17. public static final String HTTP_WHITEBOARD_FILTER_PATTERN = "osgi.http.whiteboard.filter.pattern"
	140.17.2.18. public static final String HTTP_WHITEBOARD_FILTER_REGEX = "osgi.http.whiteboard.filter.regex"
	140.17.2.19. public static final String HTTP_WHITEBOARD_FILTER_SERVLET = "osgi.http.whiteboard.filter.servlet"
	140.17.2.20. public static final String HTTP_WHITEBOARD_IMPLEMENTATION = "osgi.http"
	140.17.2.21. public static final String HTTP_WHITEBOARD_LISTENER = "osgi.http.whiteboard.listener"
	140.17.2.22. public static final String HTTP_WHITEBOARD_PREPROCESSOR_INIT_PARAM_PREFIX = "preprocessor.init."
	140.17.2.23. public static final String HTTP_WHITEBOARD_RESOURCE_PATTERN = "osgi.http.whiteboard.resource.pattern"
	140.17.2.24. public static final String HTTP_WHITEBOARD_RESOURCE_PREFIX = "osgi.http.whiteboard.resource.prefix"
	140.17.2.25. public static final String HTTP_WHITEBOARD_SERVLET_ASYNC_SUPPORTED = "osgi.http.whiteboard.servlet.asyncSupported"
	140.17.2.26. public static final String HTTP_WHITEBOARD_SERVLET_ERROR_PAGE = "osgi.http.whiteboard.servlet.errorPage"
	140.17.2.27. public static final String HTTP_WHITEBOARD_SERVLET_INIT_PARAM_PREFIX = "servlet.init."
	140.17.2.28. public static final String HTTP_WHITEBOARD_SERVLET_MULTIPART_ENABLED = "osgi.http.whiteboard.servlet.multipart.enabled"
	140.17.2.29. public static final String HTTP_WHITEBOARD_SERVLET_MULTIPART_FILESIZETHRESHOLD = "osgi.http.whiteboard.servlet.multipart.fileSizeThreshold"
	140.17.2.30. public static final String HTTP_WHITEBOARD_SERVLET_MULTIPART_LOCATION = "osgi.http.whiteboard.servlet.multipart.location"
	140.17.2.31. public static final String HTTP_WHITEBOARD_SERVLET_MULTIPART_MAXFILESIZE = "osgi.http.whiteboard.servlet.multipart.maxFileSize"
	140.17.2.32. public static final String HTTP_WHITEBOARD_SERVLET_MULTIPART_MAXREQUESTSIZE = "osgi.http.whiteboard.servlet.multipart.maxRequestSize"
	140.17.2.33. public static final String HTTP_WHITEBOARD_SERVLET_NAME = "osgi.http.whiteboard.servlet.name"
	140.17.2.34. public static final String HTTP_WHITEBOARD_SERVLET_PATTERN = "osgi.http.whiteboard.servlet.pattern"
	140.17.2.35. public static final String HTTP_WHITEBOARD_SPECIFICATION_VERSION = "1.1"
	140.17.2.36. public static final String HTTP_WHITEBOARD_TARGET = "osgi.http.whiteboard.target"

	140.17.3. public interface Preprocessor extends Filter

	140.18. org.osgi.service.http.whiteboard.annotations
	140.18.1. Summary
	140.18.2. @RequireHttpWhiteboard

	140.19. org.osgi.service.http.whiteboard.propertytypes
	140.19.1. Summary
	140.19.2. @HttpWhiteboardContext
	140.19.2.1. String name
	140.19.2.2. String path
	140.19.2.3. String PREFIX_ = "osgi.http.whiteboard.context."

	140.19.3. @HttpWhiteboardContextSelect
	140.19.3.1. String value
	140.19.3.2. String PREFIX_ = "osgi."

	140.19.4. @HttpWhiteboardFilterAsyncSupported
	140.19.4.1. boolean asyncSupported default true
	140.19.4.2. String PREFIX_ = "osgi.http.whiteboard.filter."

	140.19.5. @HttpWhiteboardFilterDispatcher
	140.19.5.1. DispatcherType[] value default javax.servlet.DispatcherType.REQUEST
	140.19.5.2. String PREFIX_ = "osgi."

	140.19.6. @HttpWhiteboardFilterName
	140.19.6.1. String value
	140.19.6.2. String PREFIX_ = "osgi."

	140.19.7. @HttpWhiteboardFilterPattern
	140.19.7.1. String[] value
	140.19.7.2. String PREFIX_ = "osgi."

	140.19.8. @HttpWhiteboardFilterRegex
	140.19.8.1. String[] value
	140.19.8.2. String PREFIX_ = "osgi."

	140.19.9. @HttpWhiteboardFilterServlet
	140.19.9.1. String[] value
	140.19.9.2. String PREFIX_ = "osgi."

	140.19.10. @HttpWhiteboardListener
	140.19.10.1. String PREFIX_ = "osgi."

	140.19.11. @HttpWhiteboardResource
	140.19.11.1. String[] pattern
	140.19.11.2. String prefix
	140.19.11.3. String PREFIX_ = "osgi.http.whiteboard.resource."

	140.19.12. @HttpWhiteboardServletAsyncSupported
	140.19.12.1. boolean asyncSupported default true
	140.19.12.2. String PREFIX_ = "osgi.http.whiteboard.servlet."

	140.19.13. @HttpWhiteboardServletErrorPage
	140.19.13.1. String[] errorPage
	140.19.13.2. String PREFIX_ = "osgi.http.whiteboard.servlet."

	140.19.14. @HttpWhiteboardServletMultipart
	140.19.14.1. boolean enabled default true
	140.19.14.2. int fileSizeThreshold default 0
	140.19.14.3. String location default ""
	140.19.14.4. long maxFileSize default -1L
	140.19.14.5. long maxRequestSize default -1L
	140.19.14.6. String PREFIX_ = "osgi.http.whiteboard.servlet.multipart."

	140.19.15. @HttpWhiteboardServletName
	140.19.15.1. String value
	140.19.15.2. String PREFIX_ = "osgi."

	140.19.16. @HttpWhiteboardServletPattern
	140.19.16.1. String[] value
	140.19.16.2. String PREFIX_ = "osgi."

	140.19.17. @HttpWhiteboardTarget
	140.19.17.1. String value
	140.19.17.2. String PREFIX_ = "osgi."

	140.20. References

	Chapter 141. Device Abstraction Layer Specification
	141.1. Introduction
	141.1.1. Entities

	141.2. Device Category
	141.3. Device Service
	141.3.1. Device Service Properties
	141.3.2. Device Registration
	141.3.3. Reference Devices
	141.3.4. Device Status Transitions
	141.3.4.1. Removed
	141.3.4.2. Offline
	141.3.4.3. Online
	141.3.4.4. Processing
	141.3.4.5. Not Initialized
	141.3.4.6. Not Configured

	141.4. Function Service
	141.4.1. Function Service Properties
	141.4.2. Function Registration
	141.4.3. Function Interface
	141.4.4. Function Operations
	141.4.5. Function Properties
	141.4.6. Function Property Events

	141.5. Security
	141.5.1. Device Permission
	141.5.2. Required Permissions

	141.6. org.osgi.service.dal
	141.6.1. Summary
	141.6.2. public interface Device
	141.6.2.1. public static final String DEVICE_CATEGORY = "DAL"
	141.6.2.2. public static final String SERVICE_DESCRIPTION = "dal.device.description"
	141.6.2.3. public static final String SERVICE_DRIVER = "dal.device.driver"
	141.6.2.4. public static final String SERVICE_FIRMWARE_VENDOR = "dal.device.firmware.vendor"
	141.6.2.5. public static final String SERVICE_FIRMWARE_VERSION = "dal.device.firmware.version"
	141.6.2.6. public static final String SERVICE_HARDWARE_VENDOR = "dal.device.hardware.vendor"
	141.6.2.7. public static final String SERVICE_HARDWARE_VERSION = "dal.device.hardware.version"
	141.6.2.8. public static final String SERVICE_MODEL = "dal.device.model"
	141.6.2.9. public static final String SERVICE_NAME = "dal.device.name"
	141.6.2.10. public static final String SERVICE_REFERENCE_UIDS = "dal.device.reference.UIDs"
	141.6.2.11. public static final String SERVICE_SERIAL_NUMBER = "dal.device.serial.number"
	141.6.2.12. public static final String SERVICE_STATUS = "dal.device.status"
	141.6.2.13. public static final String SERVICE_STATUS_DETAIL = "dal.device.status.detail"
	141.6.2.14. public static final String SERVICE_TYPES = "dal.device.types"
	141.6.2.15. public static final String SERVICE_UID = "dal.device.UID"
	141.6.2.16. public static final Integer STATUS_DETAIL_BROKEN
	141.6.2.17. public static final Integer STATUS_DETAIL_COMMUNICATION_ERROR
	141.6.2.18. public static final Integer STATUS_DETAIL_CONFIGURATION_ERROR
	141.6.2.19. public static final Integer STATUS_DETAIL_CONFIGURATION_UNAPPLIED
	141.6.2.20. public static final Integer STATUS_DETAIL_CONNECTING
	141.6.2.21. public static final Integer STATUS_DETAIL_DATA_INSUFFICIENT
	141.6.2.22. public static final Integer STATUS_DETAIL_DUTY_CYCLE
	141.6.2.23. public static final Integer STATUS_DETAIL_FIRMWARE_UPDATING
	141.6.2.24. public static final Integer STATUS_DETAIL_INACCESSIBLE
	141.6.2.25. public static final Integer STATUS_DETAIL_INITIALIZING
	141.6.2.26. public static final Integer STATUS_DETAIL_REMOVING
	141.6.2.27. public static final Integer STATUS_NOT_CONFIGURED
	141.6.2.28. public static final Integer STATUS_NOT_INITIALIZED
	141.6.2.29. public static final Integer STATUS_OFFLINE
	141.6.2.30. public static final Integer STATUS_ONLINE
	141.6.2.31. public static final Integer STATUS_PROCESSING
	141.6.2.32. public static final Integer STATUS_REMOVED
	141.6.2.33. public Object getServiceProperty(String propKey)
	141.6.2.34. public String[] getServicePropertyKeys()
	141.6.2.35. public void remove() throws DeviceException

	141.6.3. public class DeviceException extends IOException
	141.6.3.1. public static final int COMMUNICATION_ERROR = 1
	141.6.3.2. public static final int NO_DATA = 4
	141.6.3.3. public static final int NOT_INITIALIZED = 3
	141.6.3.4. public static final int TIMEOUT = 2
	141.6.3.5. public static final int UNKNOWN = 0
	141.6.3.6. public DeviceException()
	141.6.3.7. public DeviceException(String message)
	141.6.3.8. public DeviceException(String message, Throwable cause)
	141.6.3.9. public DeviceException(String message, Throwable cause, int code)
	141.6.3.10. public int getCode()

	141.6.4. public class DevicePermission extends BasicPermission
	141.6.4.1. public static final String REMOVE = "remove"
	141.6.4.2. public DevicePermission(String filter, String action)
	141.6.4.3. public DevicePermission(Device device, String action)
	141.6.4.4. public boolean equals(Object obj)
	141.6.4.5. public String getActions()
	141.6.4.6. public int hashCode()
	141.6.4.7. public boolean implies(Permission p)
	141.6.4.8. public PermissionCollection newPermissionCollection()

	141.6.5. public interface Function
	141.6.5.1. public static final String SERVICE_DESCRIPTION = "dal.function.description"
	141.6.5.2. public static final String SERVICE_DEVICE_UID = "dal.function.device.UID"
	141.6.5.3. public static final String SERVICE_OPERATION_NAMES = "dal.function.operation.names"
	141.6.5.4. public static final String SERVICE_PROPERTY_NAMES = "dal.function.property.names"
	141.6.5.5. public static final String SERVICE_REFERENCE_UIDS = "dal.function.reference.UIDs"
	141.6.5.6. public static final String SERVICE_TYPE = "dal.function.type"
	141.6.5.7. public static final String SERVICE_UID = "dal.function.UID"
	141.6.5.8. public static final String SERVICE_VERSION = "dal.function.version"
	141.6.5.9. public OperationMetadata getOperationMetadata(String operationName)
	141.6.5.10. public PropertyMetadata getPropertyMetadata(String propertyName)
	141.6.5.11. public Object getServiceProperty(String propKey)
	141.6.5.12. public String[] getServicePropertyKeys()

	141.6.6. public abstract class FunctionData implements Comparable<Object>
	141.6.6.1. public static final String DESCRIPTION = "description"
	141.6.6.2. public static final String FIELD_METADATA = "metadata"
	141.6.6.3. public static final String FIELD_TIMESTAMP = "timestamp"
	141.6.6.4. public FunctionData(Map<String, ?> fields)
	141.6.6.5. public FunctionData(long timestamp, Map<String, ?> metadata)
	141.6.6.6. public int compareTo(Object o)
	141.6.6.7. public boolean equals(Object other)
	141.6.6.8. public Map<String, ?> getMetadata()
	141.6.6.9. public long getTimestamp()
	141.6.6.10. public int hashCode()

	141.6.7. public class FunctionEvent extends Event
	141.6.7.1. public static final String EVENT_CLASS = "org/osgi/service/dal/FunctionEvent/"
	141.6.7.2. public static final String EVENT_PACKAGE = "org/osgi/service/dal/"
	141.6.7.3. public static final String FUNCTION_UID = "dal.function.UID"
	141.6.7.4. public static final String PROPERTY_NAME = "dal.function.property.name"
	141.6.7.5. public static final String PROPERTY_VALUE = "dal.function.property.value"
	141.6.7.6. public static final String TOPIC_PROPERTY_CHANGED = "org/osgi/service/dal/FunctionEvent/PROPERTY_CHANGED"
	141.6.7.7. public FunctionEvent(String topic, Dictionary<String, ?> properties)
	141.6.7.8. public FunctionEvent(String topic, Map<String, ?> properties)
	141.6.7.9. public FunctionEvent(String topic, String functionUID, String propName, FunctionData propValue)
	141.6.7.10. public String getFunctionPropertyName()
	141.6.7.11. public FunctionData getFunctionPropertyValue()
	141.6.7.12. public String getFunctionUID()

	141.6.8. public interface OperationMetadata
	141.6.8.1. public static final String DESCRIPTION = "description"
	141.6.8.2. public Map<String, ?> getMetadata()
	141.6.8.3. public PropertyMetadata[] getParametersMetadata()
	141.6.8.4. public PropertyMetadata getReturnValueMetadata()

	141.6.9. public interface PropertyMetadata
	141.6.9.1. public static final String ACCESS = "access"
	141.6.9.2. public static final int ACCESS_EVENTABLE = 4
	141.6.9.3. public static final int ACCESS_READABLE = 1
	141.6.9.4. public static final int ACCESS_WRITABLE = 2
	141.6.9.5. public static final String DESCRIPTION = "description"
	141.6.9.6. public static final String UNITS = "units"
	141.6.9.7. public FunctionData[] getEnumValues(String unit)
	141.6.9.8. public FunctionData getMaxValue(String unit)
	141.6.9.9. public Map<String, ?> getMetadata(String unit)
	141.6.9.10. public FunctionData getMinValue(String unit)
	141.6.9.11. public FunctionData getStep(String unit)

	141.6.10. public final class SIUnits
	141.6.10.1. public static final String AMPERE = "A"
	141.6.10.2. public static final String AMPERE_PER_METER = "A/m"
	141.6.10.3. public static final String AMPERE_PER_SQUARE_METER = "A/m\u00b2"
	141.6.10.4. public static final String ANGSTROM = "\u212b"
	141.6.10.5. public static final String BAR = "bar"
	141.6.10.6. public static final String BARN = "b"
	141.6.10.7. public static final String BECQUEREL = "Bq"
	141.6.10.8. public static final String BEL = "B"
	141.6.10.9. public static final String CANDELA = "cd"
	141.6.10.10. public static final String CANDELA_PER_SQUARE_METER = "cd/m\u00b2"
	141.6.10.11. public static final String COULOMB = "C"
	141.6.10.12. public static final String COULOMB_PER_CUBIC_METER = "C/m\u00b3"
	141.6.10.13. public static final String COULOMB_PER_KILOGRAM = "C/kg"
	141.6.10.14. public static final String COULOMB_PER_SQUARE_METER = "C/m\u00b2"
	141.6.10.15. public static final String CUBIC_METER = "m\u00b3"
	141.6.10.16. public static final String CUBIC_METER_PER_KILOGRAM = "m\u00b3/kg"
	141.6.10.17. public static final String DAY = "d"
	141.6.10.18. public static final String DECIBEL = "dB"
	141.6.10.19. public static final String DEGREE = "\u00b0"
	141.6.10.20. public static final String DEGREE_CELSIUS = "\u2103"
	141.6.10.21. public static final String DYNE = "dyn"
	141.6.10.22. public static final String ERG = "erg"
	141.6.10.23. public static final String FARAD = "F"
	141.6.10.24. public static final String FARAD_PER_METER = "F/m"
	141.6.10.25. public static final String GAL = "Gal"
	141.6.10.26. public static final String GAUSS = "G"
	141.6.10.27. public static final String GRAY = "Gy"
	141.6.10.28. public static final String GRAY_PER_SECOND = "Gy/s"
	141.6.10.29. public static final String HECTARE = "ha"
	141.6.10.30. public static final String HENRY = "H"
	141.6.10.31. public static final String HENRY_PER_METER = "H/m"
	141.6.10.32. public static final String HERTZ = "Hz"
	141.6.10.33. public static final String HOUR = "h"
	141.6.10.34. public static final String JOULE = "J"
	141.6.10.35. public static final String JOULE_PER_CUBIC_METER = "J/m\u00b3"
	141.6.10.36. public static final String JOULE_PER_KELVIN = "J/\u212a"
	141.6.10.37. public static final String JOULE_PER_KILOGRAM = "J/kg"
	141.6.10.38. public static final String JOULE_PER_KILOGRAM_KELVIN = "J/(kg \u212a)"
	141.6.10.39. public static final String JOULE_PER_MOLE = "J/mol"
	141.6.10.40. public static final String JOULE_PER_MOLE_KELVIN = "J/(mol \u212a)"
	141.6.10.41. public static final String KATAL = "kat"
	141.6.10.42. public static final String KATAL_PER_CUBIC_METER = "kat/m\u00b3"
	141.6.10.43. public static final String KELVIN = "\u212a"
	141.6.10.44. public static final String KILOGRAM = "kg"
	141.6.10.45. public static final String KILOGRAM_PER_CUBIC_METER = "kg/m\u00b3"
	141.6.10.46. public static final String KILOGRAM_PER_SQUARE_METER = "kg/m\u00b2"
	141.6.10.47. public static final String KNOT = "kn"
	141.6.10.48. public static final String LITER = "l"
	141.6.10.49. public static final String LUMEN = "lm"
	141.6.10.50. public static final String LUX = "lx"
	141.6.10.51. public static final String MAXWELL = "Mx"
	141.6.10.52. public static final String METER = "m"
	141.6.10.53. public static final String METER_PER_SECOND = "m/s"
	141.6.10.54. public static final String METER_PER_SECOND_SQUARED = "m/s\u00b2"
	141.6.10.55. public static final String MILLIMETER_OF_MERCURY = "mmHg"
	141.6.10.56. public static final String MOLE = "mol"
	141.6.10.57. public static final String MOLE_PER_CUBIC_METER = "mol/m\u00b3"
	141.6.10.58. public static final String NAUTICAL_MILE = "M"
	141.6.10.59. public static final String NEPER = "Np"
	141.6.10.60. public static final String NEWTON = "N"
	141.6.10.61. public static final String NEWTON_METER = "N m"
	141.6.10.62. public static final String NEWTON_PER_METER = "N/m"
	141.6.10.63. public static final String OERSTED = "Oe"
	141.6.10.64. public static final String OHM = "\u2126"
	141.6.10.65. public static final String PASCAL = "Pa"
	141.6.10.66. public static final String PASCAL_SECOND = "Pa s"
	141.6.10.67. public static final String PHOT = "ph"
	141.6.10.68. public static final String PLANE_ANGLE_MINUTE = "\u2032"
	141.6.10.69. public static final String PLANE_ANGLE_SECOND = "\u2033"
	141.6.10.70. public static final String POISE = "P"
	141.6.10.71. public static final String PREFIX_ATTO = "a"
	141.6.10.72. public static final String PREFIX_CENTI = "c"
	141.6.10.73. public static final String PREFIX_DECA = "da"
	141.6.10.74. public static final String PREFIX_DECI = "d"
	141.6.10.75. public static final String PREFIX_EXA = "E"
	141.6.10.76. public static final String PREFIX_FEMTO = "f"
	141.6.10.77. public static final String PREFIX_GIGA = "G"
	141.6.10.78. public static final String PREFIX_HECTO = "h"
	141.6.10.79. public static final String PREFIX_KILO = "k"
	141.6.10.80. public static final String PREFIX_MEGA = "M"
	141.6.10.81. public static final String PREFIX_MICRO = "\u00b5"
	141.6.10.82. public static final String PREFIX_MILLI = "m"
	141.6.10.83. public static final String PREFIX_NANO = "n"
	141.6.10.84. public static final String PREFIX_PICO = "p"
	141.6.10.85. public static final String PREFIX_YOCTO = "y"
	141.6.10.86. public static final String PREFIX_YOTTA = "Y"
	141.6.10.87. public static final String PREFIX_ZEPTO = "z"
	141.6.10.88. public static final String PREFIX_ZETTA = "Z"
	141.6.10.89. public static final String RADIAN = "rad"
	141.6.10.90. public static final String RADIAN_PER_SECOND = "rad/s"
	141.6.10.91. public static final String RADIAN_PER_SECOND_SQUARED = "rad/s\u00b2"
	141.6.10.92. public static final String RECIPROCAL_METER = "m\u207b\u00b9"
	141.6.10.93. public static final String SECOND = "s"
	141.6.10.94. public static final String SIEMENS = "S"
	141.6.10.95. public static final String SIEVERT = "Sv"
	141.6.10.96. public static final String SQUARE_METER = "m\u00b2"
	141.6.10.97. public static final String STERADIAN = "sr"
	141.6.10.98. public static final String STILB = "sb"
	141.6.10.99. public static final String STOKES = "St"
	141.6.10.100. public static final String TESLA = "T"
	141.6.10.101. public static final String TIME_MINUTE = "min"
	141.6.10.102. public static final String TONNE = "t"
	141.6.10.103. public static final String VOLT = "V"
	141.6.10.104. public static final String VOLT_PER_METER = "V/m"
	141.6.10.105. public static final String WATT = "W"
	141.6.10.106. public static final String WATT_PER_METER_KELVIN = "W/(m \u212a)"
	141.6.10.107. public static final String WATT_PER_SQUARE_METER = "W/m\u00b2"
	141.6.10.108. public static final String WATT_PER_SQUARE_METER_STERADIAN = "W/(m\u00b2 sr)"
	141.6.10.109. public static final String WATT_PER_STERADIAN = "W/sr"
	141.6.10.110. public static final String WEBER = "Wb"

	141.7. References

	Chapter 142. Device Abstraction Layer Functions Specification
	142.1. Introduction
	142.2. Functions
	142.2.1. BooleanControl
	142.2.2. BooleanSensor
	142.2.3. MultiLevelControl
	142.2.4. MultiLevelSensor
	142.2.5. Meter
	142.2.6. Alarm
	142.2.7. Keypad
	142.2.8. WakeUp

	142.3. Functions Data
	142.3.1. BooleanData
	142.3.2. LevelData
	142.3.3. AlarmData
	142.3.4. KeypadData

	142.4. org.osgi.service.dal.functions
	142.4.1. Summary
	142.4.2. public interface Alarm extends Function
	142.4.2.1. public static final String PROPERTY_ALARM = "alarm"

	142.4.3. public interface BooleanControl extends Function
	142.4.3.1. public static final String OPERATION_INVERSE = "inverse"
	142.4.3.2. public static final String OPERATION_SET_FALSE = "setFalse"
	142.4.3.3. public static final String OPERATION_SET_TRUE = "setTrue"
	142.4.3.4. public static final String PROPERTY_DATA = "data"
	142.4.3.5. public BooleanData getData() throws DeviceException
	142.4.3.6. public void inverse() throws DeviceException
	142.4.3.7. public void setData(boolean data) throws DeviceException
	142.4.3.8. public void setFalse() throws DeviceException
	142.4.3.9. public void setTrue() throws DeviceException

	142.4.4. public interface BooleanSensor extends Function
	142.4.4.1. public static final String PROPERTY_DATA = "data"
	142.4.4.2. public BooleanData getData() throws DeviceException

	142.4.5. public interface Keypad extends Function
	142.4.5.1. public static final String PROPERTY_KEY = "key"

	142.4.6. public interface Meter extends Function
	142.4.6.1. public static final String FLOW_IN = "in"
	142.4.6.2. public static final String FLOW_OUT = "out"
	142.4.6.3. public static final String PROPERTY_CURRENT = "current"
	142.4.6.4. public static final String PROPERTY_TOTAL = "total"
	142.4.6.5. public static final String SERVICE_FLOW = "dal.meter.flow"
	142.4.6.6. public LevelData getCurrent() throws DeviceException
	142.4.6.7. public LevelData getTotal() throws DeviceException

	142.4.7. public interface MultiLevelControl extends Function
	142.4.7.1. public static final String PROPERTY_DATA = "data"
	142.4.7.2. public LevelData getData() throws DeviceException
	142.4.7.3. public void setData(BigDecimal level, String unit) throws DeviceException

	142.4.8. public interface MultiLevelSensor extends Function
	142.4.8.1. public static final String PROPERTY_DATA = "data"
	142.4.8.2. public LevelData getData() throws DeviceException

	142.4.9. public interface Types
	142.4.9.1. public static final String COLD = "cold"
	142.4.9.2. public static final String CONTACT = "contact"
	142.4.9.3. public static final String DOOR = "door"
	142.4.9.4. public static final String FIRE = "fire"
	142.4.9.5. public static final String FLOW = "flow"
	142.4.9.6. public static final String GAS = "gas"
	142.4.9.7. public static final String HEAT = "heat"
	142.4.9.8. public static final String HUMIDITY = "humidity"
	142.4.9.9. public static final String LIGHT = "light"
	142.4.9.10. public static final String LIQUID = "liquid"
	142.4.9.11. public static final String MOTION = "motion"
	142.4.9.12. public static final String NOISINESS = "noisiness"
	142.4.9.13. public static final String OCCUPANCY = "occupancy"
	142.4.9.14. public static final String POWER = "power"
	142.4.9.15. public static final String PRESSURE = "pressure"
	142.4.9.16. public static final String RAIN = "rain"
	142.4.9.17. public static final String SMOKE = "smoke"
	142.4.9.18. public static final String TEMPERATURE = "temperature"
	142.4.9.19. public static final String WATER = "water"
	142.4.9.20. public static final String WINDOW = "window"

	142.4.10. public interface WakeUp extends Function
	142.4.10.1. public static final String PROPERTY_AWAKE = "awake"
	142.4.10.2. public static final String PROPERTY_WAKE_UP_INTERVAL = "wakeUpInterval"
	142.4.10.3. public LevelData getWakeUpInterval() throws DeviceException
	142.4.10.4. public void setWakeUpInterval(BigDecimal interval, String unit) throws DeviceException

	142.5. org.osgi.service.dal.functions.data
	142.5.1. Summary
	142.5.2. public class AlarmData extends FunctionData
	142.5.2.1. public static final String FIELD_SEVERITY = "severity"
	142.5.2.2. public static final String FIELD_TYPE = "type"
	142.5.2.3. public static final int SEVERITY_CRITICAL = 3
	142.5.2.4. public static final int SEVERITY_MAJOR = 2
	142.5.2.5. public static final int SEVERITY_MINOR = 1
	142.5.2.6. public static final int SEVERITY_UNDEFINED = 0
	142.5.2.7. public static final int TYPE_ACCESS_CONTROL = 1
	142.5.2.8. public static final int TYPE_BURGLAR = 2
	142.5.2.9. public static final int TYPE_COLD = 3
	142.5.2.10. public static final int TYPE_GAS_CO = 4
	142.5.2.11. public static final int TYPE_GAS_CO2 = 5
	142.5.2.12. public static final int TYPE_HARDWARE_FAIL = 7
	142.5.2.13. public static final int TYPE_HEAT = 6
	142.5.2.14. public static final int TYPE_POWER_FAIL = 8
	142.5.2.15. public static final int TYPE_SMOKE = 9
	142.5.2.16. public static final int TYPE_SOFTWARE_FAIL = 10
	142.5.2.17. public static final int TYPE_TAMPER = 11
	142.5.2.18. public static final int TYPE_UNDEFINED = 0
	142.5.2.19. public static final int TYPE_WATER = 12
	142.5.2.20. public AlarmData(Map<String, ?> fields)
	142.5.2.21. public AlarmData(long timestamp, Map<String, ?> metadata, int severity, int type)
	142.5.2.22. public int compareTo(Object o)
	142.5.2.23. public boolean equals(Object o)
	142.5.2.24. public int getSeverity()
	142.5.2.25. public int getType()
	142.5.2.26. public int hashCode()
	142.5.2.27. public String toString()

	142.5.3. public class BooleanData extends FunctionData
	142.5.3.1. public static final String FIELD_VALUE = "value"
	142.5.3.2. public BooleanData(Map<String, ?> fields)
	142.5.3.3. public BooleanData(long timestamp, Map<String, ?> metadata, boolean value)
	142.5.3.4. public int compareTo(Object o)
	142.5.3.5. public boolean equals(Object o)
	142.5.3.6. public boolean getValue()
	142.5.3.7. public int hashCode()
	142.5.3.8. public String toString()

	142.5.4. public class KeypadData extends FunctionData
	142.5.4.1. public static final String FIELD_KEY_CODE = "keyCode"
	142.5.4.2. public static final String FIELD_KEY_NAME = "keyName"
	142.5.4.3. public static final String FIELD_SUB_TYPE = "subType"
	142.5.4.4. public static final String FIELD_TYPE = "type"
	142.5.4.5. public static final int SUB_TYPE_PRESSED_DOUBLE = 3
	142.5.4.6. public static final int SUB_TYPE_PRESSED_DOUBLE_LONG = 4
	142.5.4.7. public static final int SUB_TYPE_PRESSED_LONG = 2
	142.5.4.8. public static final int SUB_TYPE_PRESSED_NORMAL = 1
	142.5.4.9. public static final int TYPE_PRESSED = 0
	142.5.4.10. public static final int TYPE_RELEASED = 1
	142.5.4.11. public KeypadData(Map<String, ?> fields)
	142.5.4.12. public KeypadData(long timestamp, Map<String, Object> metadata, int type, int subType, int keyCode, String keyName)
	142.5.4.13. public int compareTo(Object o)
	142.5.4.14. public boolean equals(Object o)
	142.5.4.15. public int getKeyCode()
	142.5.4.16. public String getKeyName()
	142.5.4.17. public int getSubType()
	142.5.4.18. public int getType()
	142.5.4.19. public int hashCode()
	142.5.4.20. public String toString()

	142.5.5. public class LevelData extends FunctionData
	142.5.5.1. public static final String FIELD_LEVEL = "level"
	142.5.5.2. public static final String FIELD_UNIT = "unit"
	142.5.5.3. public LevelData(Map<String, ?> fields)
	142.5.5.4. public LevelData(long timestamp, Map<String, Object> metadata, BigDecimal level, String unit)
	142.5.5.5. public int compareTo(Object o)
	142.5.5.6. public boolean equals(Object o)
	142.5.5.7. public BigDecimal getLevel()
	142.5.5.8. public String getUnit()
	142.5.5.9. public int hashCode()
	142.5.5.10. public String toString()

	Chapter 143. Network Interface Information Service Specification
	143.1. Introduction
	143.1.1. Entities

	143.2. NetworkAdapter Service
	143.2.1. Network Interface Type

	143.3. NetworkAddress Service
	143.3.1. IP Address Version
	143.3.2. IP address scope

	143.4. A Controller Example
	143.5. Security
	143.6. org.osgi.service.networkadapter
	143.6.1. Summary
	143.6.2. public interface NetworkAdapter
	143.6.2.1. public static final byte[] EMPTY_BYTE_ARRAY
	143.6.2.2. public static final String EMPTY_STRING = ""
	143.6.2.3. public static final String[] EMPTY_STRING_ARRAY
	143.6.2.4. public static final String LAN = "LAN"
	143.6.2.5. public static final String NETWORKADAPTER_DISPLAYNAME = "networkAdapter.displayName"
	143.6.2.6. public static final String NETWORKADAPTER_HARDWAREADDRESS = "networkAdapter.hardwareAddress"
	143.6.2.7. public static final String NETWORKADAPTER_IS_LOOPBACK = "networkAdapter.isLoopback"
	143.6.2.8. public static final String NETWORKADAPTER_IS_POINTTOPOINT = "networkAdapter.isPointToPoint"
	143.6.2.9. public static final String NETWORKADAPTER_IS_UP = "networkAdapter.isUp"
	143.6.2.10. public static final String NETWORKADAPTER_IS_VIRTUAL = "networkAdapter.isVirtual"
	143.6.2.11. public static final String NETWORKADAPTER_NAME = "networkAdapter.name"
	143.6.2.12. public static final String NETWORKADAPTER_PARENT = "networkAdapter.parent"
	143.6.2.13. public static final String NETWORKADAPTER_SUBINTERFACE = "networkAdapter.subInterface"
	143.6.2.14. public static final String NETWORKADAPTER_SUPPORTS_MULTICAST = "networkAdapter.supportsMulticast"
	143.6.2.15. public static final String NETWORKADAPTER_TYPE = "networkAdapter.type"
	143.6.2.16. public static final String WAN = "WAN"
	143.6.2.17. public String getDisplayName()
	143.6.2.18. public byte[] getHardwareAddress()
	143.6.2.19. public int getMTU() throws SocketException
	143.6.2.20. public String getName()
	143.6.2.21. public String getNetworkAdapterType()
	143.6.2.22. public boolean isLoopback() throws SocketException
	143.6.2.23. public boolean isPointToPoint() throws SocketException
	143.6.2.24. public boolean isUp() throws SocketException
	143.6.2.25. public boolean isVirtual()
	143.6.2.26. public boolean supportsMulticast() throws SocketException

	143.6.3. public interface NetworkAddress
	143.6.3.1. public static final Integer EMPTY_INTEGER
	143.6.3.2. public static final String IPADDRESS = "ipAddress"
	143.6.3.3. public static final String IPADDRESS_SCOPE = "ipAddress.scope"
	143.6.3.4. public static final String IPADDRESS_SCOPE_GLOBAL = "GLOBAL"
	143.6.3.5. public static final String IPADDRESS_SCOPE_HOST = "HOST"
	143.6.3.6. public static final String IPADDRESS_SCOPE_LINKED_SCOPED_UNICAST = "LINKED_SCOPED_UNICAST"
	143.6.3.7. public static final String IPADDRESS_SCOPE_LINKLOCAL = "LINKLOCAL"
	143.6.3.8. public static final String IPADDRESS_SCOPE_LOOPBACK = "LOOPBACK"
	143.6.3.9. public static final String IPADDRESS_SCOPE_PRIVATE_USE = "PRIVATE_USE"
	143.6.3.10. public static final String IPADDRESS_SCOPE_SHARED = "SHARED"
	143.6.3.11. public static final String IPADDRESS_SCOPE_UNIQUE_LOCAL = "UNIQUE_LOCAL"
	143.6.3.12. public static final String IPADDRESS_SCOPE_UNSPECIFIED = "UNSPECIFIED"
	143.6.3.13. public static final String IPADDRESS_VERSION = "ipAddress.version"
	143.6.3.14. public static final String IPADDRESS_VERSION_4 = "IPV4"
	143.6.3.15. public static final String IPADDRESS_VERSION_6 = "IPV6"
	143.6.3.16. public static final String NETWORKADAPTER_PID = "networkAdapter.pid"
	143.6.3.17. public static final String NETWORKADAPTER_TYPE = "networkAdapter.type"
	143.6.3.18. public static final String SUBNETMASK_LENGTH = "subnetmask.length"
	143.6.3.19. public InetAddress getInetAddress()
	143.6.3.20. public String getIpAddress()
	143.6.3.21. public String getIpAddressScope()
	143.6.3.22. public String getIpAddressVersion()
	143.6.3.23. public String getNetworkAdapterPid()
	143.6.3.24. public String getNetworkAdapterType()
	143.6.3.25. public int getSubnetMaskLength()

	143.7. References

	Chapter 144. Resource Monitoring Specification
	144.1. Introduction
	144.2. Essentials
	144.3. Entities
	144.4. Operation Summary
	144.5. Resource Context
	144.6. System Resource Context
	144.7. Framework Resource Context
	144.8. Resource Monitor
	144.9. Resource Monitor Factory
	144.10. CPU Monitor
	144.11. Memory Monitor
	144.12. Socket Monitor
	144.13. Disk Storage Monitor
	144.14. Thread Monitor
	144.15. Resource Listener
	144.16. Resource Event
	144.17. Resource Context Listener
	144.18. Resource Context Event
	144.19. Resource Monitoring Service
	144.20. Resource Monitoring Client
	144.21. Security
	144.22. org.osgi.service.resourcemonitoring
	144.22.1. Summary
	144.22.2. public interface ResourceContext
	144.22.2.1. public void addBundle(long bundleId) throws ResourceContextException
	144.22.2.2. public void addResourceMonitor(ResourceMonitor<?> resourceMonitor) throws ResourceContextException
	144.22.2.3. public boolean equals(Object resourceContext)
	144.22.2.4. public long[] getBundleIds()
	144.22.2.5. public ResourceMonitor<?> getMonitor(String resourceType) throws ResourceContextException
	144.22.2.6. public ResourceMonitor<?>[] getMonitors() throws ResourceContextException
	144.22.2.7. public String getName()
	144.22.2.8. public int hashCode()
	144.22.2.9. public void removeBundle(long bundleId) throws ResourceContextException
	144.22.2.10. public void removeBundle(long bundleId, ResourceContext destination) throws ResourceContextException
	144.22.2.11. public void removeContext(ResourceContext destination) throws ResourceContextException
	144.22.2.12. public void removeResourceMonitor(ResourceMonitor<?> resourceMonitor) throws ResourceContextException

	144.22.3. public class ResourceContextEvent
	144.22.3.1. public static final int BUNDLE_ADDED = 2
	144.22.3.2. public static final int BUNDLE_REMOVED = 3
	144.22.3.3. public static final int RESOURCE_CONTEXT_CREATED = 0
	144.22.3.4. public static final int RESOURCE_CONTEXT_REMOVED = 1
	144.22.3.5. public ResourceContextEvent(int pType, ResourceContext pResourceContext)
	144.22.3.6. public ResourceContextEvent(int pType, ResourceContext pResourceContext, long pBundleId)
	144.22.3.7. public boolean equals(Object var0)
	144.22.3.8. public long getBundleId()
	144.22.3.9. public ResourceContext getContext()
	144.22.3.10. public int getType()
	144.22.3.11. public int hashCode()
	144.22.3.12. public String toString()

	144.22.4. public class ResourceContextException extends Exception
	144.22.4.1. public ResourceContextException(String msg)
	144.22.4.2. public ResourceContextException(String msg, Throwable t)

	144.22.5. public interface ResourceContextListener
	144.22.5.1. public static final String RESOURCE_CONTEXT = "resource.context"
	144.22.5.2. public void notify(ResourceContextEvent event)

	144.22.6. public class ResourceEvent<T>
	144.22.6.1. public static final int ERROR = 2
	144.22.6.2. public static final int NORMAL = 0
	144.22.6.3. public static final int WARNING = 1
	144.22.6.4. public ResourceEvent(int pType, ResourceContext pContext, boolean pIsUpperThreshold, Comparable<T> pValue)
	144.22.6.5. public boolean equals(Object var0)
	144.22.6.6. public ResourceContext getContext()
	144.22.6.7. public int getType()
	144.22.6.8. public Comparable<T> getValue()
	144.22.6.9. public int hashCode()
	144.22.6.10. public boolean isUpperThreshold()
	144.22.6.11. public String toString()

	144.22.7. public interface ResourceListener<T>
	144.22.7.1. public static final String LOWER_ERROR_THRESHOLD = "lower.error.threshold"
	144.22.7.2. public static final String LOWER_WARNING_THRESHOLD = "lower.warning.threshold"
	144.22.7.3. public static final String RESOURCE_CONTEXT = "resource.context"
	144.22.7.4. public static final String RESOURCE_TYPE = "resource.type"
	144.22.7.5. public static final String UPPER_ERROR_THRESHOLD = "upper.error.threshold"
	144.22.7.6. public static final String UPPER_WARNING_THRESHOLD = "upper.warning.threshold"
	144.22.7.7. public Comparable<T> getLowerErrorThreshold()
	144.22.7.8. public Comparable<T> getLowerWarningThreshold()
	144.22.7.9. public Comparable<T> getUpperErrorThreshold()
	144.22.7.10. public Comparable<T> getUpperWarningThreshold()
	144.22.7.11. public void notify(ResourceEvent<T> event)

	144.22.8. public interface ResourceMonitor<T>
	144.22.8.1. public void delete() throws ResourceMonitorException
	144.22.8.2. public void disable() throws ResourceMonitorException
	144.22.8.3. public void enable() throws ResourceMonitorException
	144.22.8.4. public boolean equals(Object resourceMonitor)
	144.22.8.5. public ResourceContext getContext()
	144.22.8.6. public long getMonitoredPeriod()
	144.22.8.7. public String getResourceType()
	144.22.8.8. public long getSamplingPeriod()
	144.22.8.9. public Comparable<T> getUsage() throws ResourceMonitorException
	144.22.8.10. public int hashCode()
	144.22.8.11. public boolean isDeleted()
	144.22.8.12. public boolean isEnabled()

	144.22.9. public class ResourceMonitorException extends Exception
	144.22.9.1. public ResourceMonitorException(String msg)
	144.22.9.2. public ResourceMonitorException(String msg, Throwable t)

	144.22.10. public interface ResourceMonitorFactory<T>
	144.22.10.1. public static final String RESOURCE_TYPE_PROPERTY = "org.osgi.resourcemonitoring.ResourceType"
	144.22.10.2. public ResourceMonitor<T> createResourceMonitor(ResourceContext resourceContext) throws ResourceMonitorException
	144.22.10.3. public String getType()

	144.22.11. public interface ResourceMonitoringService
	144.22.11.1. public static final String FRAMEWORK_CONTEXT_NAME = "framework"
	144.22.11.2. public static final String RES_TYPE_CPU = "resource.type.cpu"
	144.22.11.3. public static final String RES_TYPE_DISK_STORAGE = "resource.type.disk.storage"
	144.22.11.4. public static final String RES_TYPE_MEMORY = "resource.type.memory"
	144.22.11.5. public static final String RES_TYPE_SOCKET = "resource.type.socket"
	144.22.11.6. public static final String RES_TYPE_THREADS = "resource.type.threads"
	144.22.11.7. public static final String SYSTEM_CONTEXT_NAME = "system"
	144.22.11.8. public ResourceContext createContext(String name, ResourceContext template)
	144.22.11.9. public ResourceContext getContext(String name)
	144.22.11.10. public ResourceContext getContext(long bundleId)
	144.22.11.11. public String[] getSupportedTypes()
	144.22.11.12. public ResourceContext[] listContext()

	144.23. org.osgi.service.resourcemonitoring.monitor
	144.23.1. Summary
	144.23.2. public interface CPUMonitor extends ResourceMonitor<Long>
	144.23.2.1. public long getCPUUsage()

	144.23.3. public interface DiskStorageMonitor extends ResourceMonitor<Long>
	144.23.3.1. public long getUsedDiskStorage()

	144.23.4. public interface MemoryMonitor extends ResourceMonitor<Long>
	144.23.4.1. public long getMemoryUsage()

	144.23.5. public interface SocketMonitor extends ResourceMonitor<Long>
	144.23.5.1. public long getSocketUsage()

	144.23.6. public interface ThreadMonitor extends ResourceMonitor<Integer>
	144.23.6.1. public int getAliveThreads()

	144.24. References

	Chapter 145. USB Information Device Category Specification
	145.1. Introduction
	145.1.1. Entities

	145.2. USBInfoDevice Service
	145.2.1. Device Access Category
	145.2.2. Service Properties based upon USB Specification
	145.2.3. Additional Service Properties
	145.2.4. Match scale

	145.3. Security
	145.4. org.osgi.service.usbinfo
	145.4.1. Summary
	145.4.2. public interface USBInfoDevice
	145.4.2.1. public static final String DEVICE_CATEGORY = "USBInfo"
	145.4.2.2. public static final int MATCH_CLASS = 10
	145.4.2.3. public static final int MATCH_MODEL = 40
	145.4.2.4. public static final int MATCH_PROTOCOL = 30
	145.4.2.5. public static final int MATCH_SUBCLASS = 20
	145.4.2.6. public static final int MATCH_VERSION = 50
	145.4.2.7. public static final String USB_ADDRESS = "usbinfo.address"
	145.4.2.8. public static final String USB_BALTERNATESETTING = "usbinfo.bAlternateSetting"
	145.4.2.9. public static final String USB_BCDDEVICE = "usbinfo.bcdDevice"
	145.4.2.10. public static final String USB_BCDUSB = "usbinfo.bcdUSB"
	145.4.2.11. public static final String USB_BDEVICECLASS = "usbinfo.bDeviceClass"
	145.4.2.12. public static final String USB_BDEVICEPROTOCOL = "usbinfo.bDeviceProtocol"
	145.4.2.13. public static final String USB_BDEVICESUBCLASS = "usbinfo.bDeviceSubClass"
	145.4.2.14. public static final String USB_BINTERFACECLASS = "usbinfo.bInterfaceClass"
	145.4.2.15. public static final String USB_BINTERFACENUMBER = "usbinfo.bInterfaceNumber"
	145.4.2.16. public static final String USB_BINTERFACEPROTOCOL = "usbinfo.bInterfaceProtocol"
	145.4.2.17. public static final String USB_BINTERFACESUBCLASS = "usbinfo.bInterfaceSubClass"
	145.4.2.18. public static final String USB_BMAXPACKETSIZE0 = "usbinfo.bMaxPacketSize0"
	145.4.2.19. public static final String USB_BNUMCONFIGURATIONS = "usbinfo.bNumConfigurations"
	145.4.2.20. public static final String USB_BNUMENDPOINTS = "usbinfo.bNumEndpoints"
	145.4.2.21. public static final String USB_BUS = "usbinfo.bus"
	145.4.2.22. public static final String USB_IDPRODUCT = "usbinfo.idProduct"
	145.4.2.23. public static final String USB_IDVENDOR = "usbinfo.idVendor"
	145.4.2.24. public static final String USB_INTERFACE = "usbinfo.Interface"
	145.4.2.25. public static final String USB_MANUFACTURER = "usbinfo.Manufacturer"
	145.4.2.26. public static final String USB_PRODUCT = "usbinfo.Product"
	145.4.2.27. public static final String USB_SERIALNUMBER = "usbinfo.SerialNumber"

	145.5. References

	Chapter 146. Serial Device Service Specification
	146.1. Introduction
	146.1.1. Entities

	146.2. SerialDevice Service
	146.3. SerialEventListener Service
	146.4. USB Serial Example
	146.5. Security
	146.6. org.osgi.service.serial
	146.6.1. Summary
	146.6.2. public final class SerialConstants
	146.6.2.1. public static final int BAUD_115200 = 115200
	146.6.2.2. public static final int BAUD_14400 = 14400
	146.6.2.3. public static final int BAUD_19200 = 19200
	146.6.2.4. public static final int BAUD_38400 = 38400
	146.6.2.5. public static final int BAUD_57600 = 57600
	146.6.2.6. public static final int BAUD_9600 = 9600
	146.6.2.7. public static final int BAUD_AUTO = -1
	146.6.2.8. public static final int DATABITS_5 = 5
	146.6.2.9. public static final int DATABITS_6 = 6
	146.6.2.10. public static final int DATABITS_7 = 7
	146.6.2.11. public static final int DATABITS_8 = 8
	146.6.2.12. public static final int FLOWCONTROL_NONE = 0
	146.6.2.13. public static final int FLOWCONTROL_RTSCTS_IN = 1
	146.6.2.14. public static final int FLOWCONTROL_RTSCTS_OUT = 2
	146.6.2.15. public static final int FLOWCONTROL_XONXOFF_IN = 4
	146.6.2.16. public static final int FLOWCONTROL_XONXOFF_OUT = 8
	146.6.2.17. public static final int PARITY_EVEN = 2
	146.6.2.18. public static final int PARITY_MARK = 3
	146.6.2.19. public static final int PARITY_NONE = 0
	146.6.2.20. public static final int PARITY_ODD = 1
	146.6.2.21. public static final int PARITY_SPACE = 4
	146.6.2.22. public static final int STOPBITS_1 = 1
	146.6.2.23. public static final int STOPBITS_1_5 = 3
	146.6.2.24. public static final int STOPBITS_2 = 2

	146.6.3. public interface SerialDevice
	146.6.3.1. public static final String DEVICE_CATEGORY = "Serial"
	146.6.3.2. public static final String SERIAL_COMPORT = "serial.comport"
	146.6.3.3. public SerialPortConfiguration getConfiguration()
	146.6.3.4. public InputStream getInputStream() throws IOException
	146.6.3.5. public OutputStream getOutputStream() throws IOException
	146.6.3.6. public boolean isCTS()
	146.6.3.7. public boolean isDSR()
	146.6.3.8. public boolean isDTR()
	146.6.3.9. public boolean isRTS()
	146.6.3.10. public void setConfiguration(SerialPortConfiguration configuration) throws SerialDeviceException
	146.6.3.11. public void setDTR(boolean dtr) throws SerialDeviceException
	146.6.3.12. public void setRTS(boolean rts) throws SerialDeviceException

	146.6.4. public class SerialDeviceException extends Exception
	146.6.4.1. public static final int PORT_IN_USE = 1
	146.6.4.2. public static final int UNKNOWN = 0
	146.6.4.3. public static final int UNSUPPORTED_OPERATION = 2
	146.6.4.4. public SerialDeviceException(int type, String message)
	146.6.4.5. public int getType()

	146.6.5. public interface SerialEvent
	146.6.5.1. public static final int DATA_AVAILABLE = 1
	146.6.5.2. public String getComPort()
	146.6.5.3. public int getType()

	146.6.6. public interface SerialEventListener
	146.6.6.1. public static final String SERIAL_COMPORT = "serial.comport"
	146.6.6.2. public void notifyEvent(SerialEvent event)

	146.6.7. public class SerialPortConfiguration
	146.6.7.1. public SerialPortConfiguration(int baudRate, int dataBits, int flowControl, int parity, int stopBits)
	146.6.7.2. public SerialPortConfiguration(int baudRate)
	146.6.7.3. public SerialPortConfiguration()
	146.6.7.4. public int getBaudRate()
	146.6.7.5. public int getDataBits()
	146.6.7.6. public int getFlowControl()
	146.6.7.7. public int getParity()
	146.6.7.8. public int getStopBits()

	Chapter 147. Transaction Control Service Specification
	147.1. Introduction
	147.1.1. Essentials
	147.1.2. Entities

	147.2. Usage
	147.2.1. Synopsis
	147.2.2. Running Scoped Work
	147.2.3. Accessing Scoped Resources
	147.2.4. Exception Management
	147.2.4.1. Handling Exceptions
	147.2.4.2. Avoiding Transaction Rollback

	147.2.5. Multi Threading

	147.3. Transaction Control Service
	147.3.1. Scope Life Cycle
	147.3.2. Scopes and Exception Management
	147.3.2.1. Client Exceptions
	147.3.2.2. Rethrowing Client Exceptions
	147.3.2.3. Exceptions Generated by the Transaction Control Service

	147.3.3. Transaction Scope lifecycle
	147.3.3.1. Triggering Rollback in Transaction Scopes
	147.3.3.2. Avoiding Rollback
	147.3.3.3. Rollback in inherited transactions
	147.3.3.4. Read Only transactions
	147.3.3.4.1. Determining whether a Transaction is read only
	147.3.3.4.2. Writing to resources using in a read only transaction
	147.3.3.4.3. Changing the read state in nested transactions

	147.4. The TransactionContext
	147.4.1. Transaction Lifecycle callbacks
	147.4.1.1. Pre-completion Callbacks
	147.4.1.2. Post-completion Callbacks

	147.4.2. Scoped variables
	147.4.3. Transaction Key
	147.4.4. The Transaction Status
	147.4.5. Local Transaction scopes
	147.4.5.1. The Local Transaction Lifecycle
	147.4.5.2. Local Transaction Support Service Properties

	147.4.6. XA Transaction scopes
	147.4.6.1. The XA Transaction Lifecycle
	147.4.6.2. XA Transaction Support Service Properties

	147.5. Resource Providers
	147.5.1. Generic Resource Providers
	147.5.1.1. The Basic Resource Lifecycle
	147.5.1.2. Unscoped Resource Access
	147.5.1.3. Closing, Flushing and Committing Resources
	147.5.1.4. Releasing Resource Providers

	147.5.2. JDBC Resource Providers
	147.5.2.1. JDBC and Transaction Scopes
	147.5.2.2. JDBC and No Transaction Scopes
	147.5.2.3. Closing the JDBC connection
	147.5.2.4. The JDBCConnectionProviderFactory
	147.5.2.4.1. JDBCConnectionProvider Configuration
	147.5.2.4.2. Creating a JDBCConnectionProvider Using a DataSourceFactory
	147.5.2.4.3. Creating a JDBCConnectionProvider Using a DataSource
	147.5.2.4.4. Creating a JDBCConnectionProvider Using an XADataSource
	147.5.2.4.5. Creating a JDBCConnectionProvider Using a Driver
	147.5.2.4.6. Releasing a JDBCConnectionProvider

	147.5.2.5. JDBCResourceProvider Examples

	147.5.3. JPA
	147.5.3.1. JPA and Transaction Scopes
	147.5.3.2. JPA and No Transaction Scopes
	147.5.3.3. RESOURCE_LOCAL and JTA EntityManagerFactory instances
	147.5.3.4. The JPAEntityManagerProvider Factory
	147.5.3.4.1. Creating a JPAEntityManagerProvider Using an EntityManagerFactoryBuilder
	147.5.3.4.2. Creating a JPAEntityManagerProvider Using an EntityManagerFactory
	147.5.3.4.3. Releasing a JPAEntityManagerProvider

	147.5.4. Connection Pooling
	147.5.4.1. Pooling in OSGi

	147.6. Transaction Recovery
	147.6.1. Enlisting a Recoverable Resource in a Transaction
	147.6.2. Providing an XAResource for Recovery
	147.6.3. Identifying implementations which support recovery

	147.7. Capabilities
	147.8. Security
	147.9. org.osgi.service.transaction.control
	147.9.1. Summary
	147.9.2. public interface LocalResource
	147.9.2.1. public void commit() throws TransactionException
	147.9.2.2. public void rollback() throws TransactionException

	147.9.3. public interface ResourceProvider<T>
	147.9.3.1. public T getResource(TransactionControl txControl) throws TransactionException

	147.9.4. public class ScopedWorkException extends RuntimeException
	147.9.4.1. public ScopedWorkException(String message, Throwable cause, TransactionContext context)
	147.9.4.2. public T extends Throwable as(Class<T> throwable) throws T
	147.9.4.3. public RuntimeException asOneOf(Class<A> a, Class b) throws A, B
	147.9.4.4. public RuntimeException asOneOf(Class<A> a, Class b, Class<C> c) throws A, B, C
	147.9.4.5. public RuntimeException asOneOf(Class<A> a, Class b, Class<C> c, Class<D> d) throws A, B, C, D
	147.9.4.6. public RuntimeException asRuntimeException()
	147.9.4.7. public TransactionContext ongoingContext()

	147.9.5. public abstract class TransactionBuilder implements TransactionStarter
	147.9.5.1. protected final List<Class<? extends Throwable>> noRollbackFor
	147.9.5.2. protected final List<Class<? extends Throwable>> rollbackFor
	147.9.5.3. public TransactionBuilder()
	147.9.5.4. public final TransactionBuilder noRollbackFor(Class<? extends Throwable> t, Class<? extends Throwable>... throwables)
	147.9.5.5. public abstract TransactionBuilder readOnly()
	147.9.5.6. public final TransactionBuilder rollbackFor(Class<? extends Throwable> t, Class<? extends Throwable>... throwables)

	147.9.6. public interface TransactionContext
	147.9.6.1. public boolean getRollbackOnly() throws IllegalStateException
	147.9.6.2. public Object getScopedValue(Object key)
	147.9.6.3. public Object getTransactionKey()
	147.9.6.4. public TransactionStatus getTransactionStatus()
	147.9.6.5. public boolean isReadOnly()
	147.9.6.6. public void postCompletion(Consumer<TransactionStatus> job) throws IllegalStateException
	147.9.6.7. public void preCompletion(Runnable job) throws IllegalStateException
	147.9.6.8. public void putScopedValue(Object key, Object value)
	147.9.6.9. public void registerLocalResource(LocalResource resource) throws IllegalStateException
	147.9.6.10. public void registerXAResource(XAResource resource, String recoveryId) throws IllegalStateException
	147.9.6.11. public void setRollbackOnly() throws IllegalStateException
	147.9.6.12. public boolean supportsLocal()
	147.9.6.13. public boolean supportsXA()

	147.9.7. public interface TransactionControl extends TransactionStarter
	147.9.7.1. public boolean activeScope()
	147.9.7.2. public boolean activeTransaction()
	147.9.7.3. public TransactionBuilder build()
	147.9.7.4. public TransactionContext getCurrentContext()
	147.9.7.5. public boolean getRollbackOnly() throws IllegalStateException
	147.9.7.6. public void ignoreException(Throwable t) throws IllegalStateException
	147.9.7.7. public void setRollbackOnly() throws IllegalStateException

	147.9.8. public class TransactionException extends RuntimeException
	147.9.8.1. public TransactionException(String message)
	147.9.8.2. public TransactionException(String message, Throwable cause)

	147.9.9. public class TransactionRolledBackException extends TransactionException
	147.9.9.1. public TransactionRolledBackException(String message)
	147.9.9.2. public TransactionRolledBackException(String message, Throwable cause)

	147.9.10. public interface TransactionStarter
	147.9.10.1. public T notSupported(Callable<T> work) throws TransactionException, ScopedWorkException
	147.9.10.2. public T required(Callable<T> work) throws TransactionException, TransactionRolledBackException, ScopedWorkException
	147.9.10.3. public T requiresNew(Callable<T> work) throws TransactionException, TransactionRolledBackException, ScopedWorkException
	147.9.10.4. public T supports(Callable<T> work) throws TransactionException, ScopedWorkException

	147.9.11. enum TransactionStatus
	147.9.11.1. NO_TRANSACTION
	147.9.11.2. ACTIVE
	147.9.11.3. MARKED_ROLLBACK
	147.9.11.4. PREPARING
	147.9.11.5. PREPARED
	147.9.11.6. COMMITTING
	147.9.11.7. COMMITTED
	147.9.11.8. ROLLING_BACK
	147.9.11.9. ROLLED_BACK
	147.9.11.10. public static TransactionStatus valueOf(String name)
	147.9.11.11. public static TransactionStatus[] values()

	147.10. org.osgi.service.transaction.control.jdbc
	147.10.1. Summary
	147.10.2. public interface JDBCConnectionProvider extends ResourceProvider<Connection>
	147.10.3. public interface JDBCConnectionProviderFactory
	147.10.3.1. public static final String CONNECTION_LIFETIME = "osgi.connection.lifetime"
	147.10.3.2. public static final String CONNECTION_POOLING_ENABLED = "osgi.connection.pooling.enabled"
	147.10.3.3. public static final String CONNECTION_TIMEOUT = "osgi.connection.timeout"
	147.10.3.4. public static final String IDLE_TIMEOUT = "osgi.idle.timeout"
	147.10.3.5. public static final String LOCAL_ENLISTMENT_ENABLED = "osgi.local.enabled"
	147.10.3.6. public static final String MAX_CONNECTIONS = "osgi.connection.max"
	147.10.3.7. public static final String MIN_CONNECTIONS = "osgi.connection.min"
	147.10.3.8. public static final String OSGI_RECOVERY_IDENTIFIER = "osgi.recovery.identifier"
	147.10.3.9. public static final String USE_DRIVER = "osgi.use.driver"
	147.10.3.10. public static final String XA_ENLISTMENT_ENABLED = "osgi.xa.enabled"
	147.10.3.11. public static final String XA_RECOVERY_ENABLED = "osgi.recovery.enabled"
	147.10.3.12. public JDBCConnectionProvider getProviderFor(DataSourceFactory dsf, Properties jdbcProperties, Map<String, Object> resourceProviderProperties)
	147.10.3.13. public JDBCConnectionProvider getProviderFor(DataSource ds, Map<String, Object> resourceProviderProperties)
	147.10.3.14. public JDBCConnectionProvider getProviderFor(Driver driver, Properties jdbcProperties, Map<String, Object> resourceProviderProperties)
	147.10.3.15. public JDBCConnectionProvider getProviderFor(XADataSource ds, Map<String, Object> resourceProviderProperties)
	147.10.3.16. public void releaseProvider(JDBCConnectionProvider provider)

	147.11. org.osgi.service.transaction.control.jpa
	147.11.1. Summary
	147.11.2. public interface JPAEntityManagerProvider extends ResourceProvider<EntityManager>
	147.11.3. public interface JPAEntityManagerProviderFactory
	147.11.3.1. public static final String CONNECTION_LIFETIME = "osgi.connection.lifetime"
	147.11.3.2. public static final String CONNECTION_POOLING_ENABLED = "osgi.connection.pooling.enabled"
	147.11.3.3. public static final String CONNECTION_TIMEOUT = "osgi.connection.timeout"
	147.11.3.4. public static final String IDLE_TIMEOUT = "osgi.idle.timeout"
	147.11.3.5. public static final String LOCAL_ENLISTMENT_ENABLED = "osgi.local.enabled"
	147.11.3.6. public static final String MAX_CONNECTIONS = "osgi.connection.max"
	147.11.3.7. public static final String MIN_CONNECTIONS = "osgi.connection.min"
	147.11.3.8. public static final String OSGI_RECOVERY_IDENTIFIER = "osgi.recovery.identifier"
	147.11.3.9. public static final String PRE_ENLISTED_DB_CONNECTION = "osgi.jdbc.enlisted"
	147.11.3.10. public static final String TRANSACTIONAL_DB_CONNECTION = "osgi.jdbc.provider"
	147.11.3.11. public static final String XA_ENLISTMENT_ENABLED = "osgi.xa.enabled"
	147.11.3.12. public static final String XA_RECOVERY_ENABLED = "osgi.recovery.enabled"
	147.11.3.13. public JPAEntityManagerProvider getProviderFor(EntityManagerFactoryBuilder emfb, Map<String, Object> jpaProperties, Map<String, Object> resourceProviderProperties)
	147.11.3.14. public JPAEntityManagerProvider getProviderFor(EntityManagerFactory emf, Map<String, Object> resourceProviderProperties)
	147.11.3.15. public void releaseProvider(JPAEntityManagerProvider provider)

	147.12. org.osgi.service.transaction.control.recovery
	147.12.1. Summary
	147.12.2. public interface RecoverableXAResource
	147.12.2.1. public static final String OSGI_RECOVERY_ENABLED = "osgi.recovery.enabled"
	147.12.2.2. public String getId()
	147.12.2.3. public XAResource getXAResource() throws Exception
	147.12.2.4. public void releaseXAResource(XAResource xaRes)

	Chapter 148. Cluster Information Specification
	148.1. Introduction
	148.1.1. Essentials
	148.1.2. Entities

	148.2. OSGi frameworks in a cluster
	148.3. Node Status Service
	148.4. Framework Node Status Service
	148.5. Application-specific Node Status metadata
	148.6. Security
	148.6.1. Cluster Tag Permission
	148.6.2. Required Permissions
	148.6.3. Remote service visibility in a cluster

	148.7. org.osgi.service.clusterinfo
	148.7.1. Summary
	148.7.2. public final class ClusterTagPermission extends Permission
	148.7.2.1. public static final String ADD = "add"
	148.7.2.2. public ClusterTagPermission(String tag, String actions)
	148.7.2.3. public boolean equals(Object obj)
	148.7.2.4. public String getActions()
	148.7.2.5. public int hashCode()
	148.7.2.6. public boolean implies(Permission p)
	148.7.2.7. public PermissionCollection newPermissionCollection()

	148.7.3. public interface FrameworkManager
	148.7.3.1. public BundleDTO getBundle(long id) throws Exception
	148.7.3.2. public Map<String, String> getBundleHeaders(long id) throws Exception
	148.7.3.3. public Collection<BundleDTO> getBundles() throws Exception
	148.7.3.4. public BundleStartLevelDTO getBundleStartLevel(long id) throws Exception
	148.7.3.5. public int getBundleState(long id) throws Exception
	148.7.3.6. public FrameworkStartLevelDTO getFrameworkStartLevel() throws Exception
	148.7.3.7. public ServiceReferenceDTO getServiceReference(long id) throws Exception
	148.7.3.8. public Collection<ServiceReferenceDTO> getServiceReferences() throws Exception
	148.7.3.9. public Collection<ServiceReferenceDTO> getServiceReferences(String filter) throws Exception
	148.7.3.10. public BundleDTO installBundle(String location) throws Exception
	148.7.3.11. public void setBundleStartLevel(long id, int startLevel) throws Exception
	148.7.3.12. public void setFrameworkStartLevel(FrameworkStartLevelDTO startLevel) throws Exception
	148.7.3.13. public void startBundle(long id) throws Exception
	148.7.3.14. public void startBundle(long id, int options) throws Exception
	148.7.3.15. public void stopBundle(long id) throws Exception
	148.7.3.16. public void stopBundle(long id, int options) throws Exception
	148.7.3.17. public BundleDTO uninstallBundle(long id) throws Exception
	148.7.3.18. public BundleDTO updateBundle(long id) throws Exception
	148.7.3.19. public BundleDTO updateBundle(long id, String url) throws Exception

	148.7.4. public interface FrameworkNodeStatus extends NodeStatus, FrameworkManager
	148.7.5. public interface NodeStatus
	148.7.5.1. public Map<String, Object> getMetrics(String... names)

	148.8. org.osgi.service.clusterinfo.dto
	148.8.1. Summary
	148.8.2. public class FrameworkNodeStatusDTO extends NodeStatusDTO
	148.8.2.1. public String java_runtime_version
	148.8.2.2. public String java_specification_version
	148.8.2.3. public String java_version
	148.8.2.4. public String java_vm_version
	148.8.2.5. public String org_osgi_framework_os_name
	148.8.2.6. public String org_osgi_framework_processor
	148.8.2.7. public String org_osgi_framework_version
	148.8.2.8. public FrameworkNodeStatusDTO()

	148.8.3. public class NodeStatusDTO extends DTO
	148.8.3.1. public String cluster
	148.8.3.2. public String country
	148.8.3.3. public String[] endpoints
	148.8.3.4. public String id
	148.8.3.5. public String location
	148.8.3.6. public String parentid
	148.8.3.7. public static final String PREFIX_ = "osgi.clusterinfo."
	148.8.3.8. public String[] privateEndpoints
	148.8.3.9. public String region
	148.8.3.10. public String[] tags
	148.8.3.11. public String vendor
	148.8.3.12. public String version
	148.8.3.13. public String zone
	148.8.3.14. public NodeStatusDTO()

	Chapter 149. Device Service Specification for ZigBee™ Technology
	149.1. Introduction
	149.2. Essentials
	149.3. Entities
	149.4. Operation Summary
	149.5. ZigBee Base Driver
	149.6. ZigBee Node
	149.7. ZigBee Endpoint
	149.8. ZigBee Device Description
	149.9. ZigBee Device Description Set
	149.10. ZCL Cluster
	149.11. ZCL Cluster Description
	149.12. ZCL Global Cluster Description
	149.13. ZigBee Command Description
	149.14. ZigBee Attribute
	149.15. ZigBee Attribute Description
	149.16. ZCL Data Type Description
	149.17. ZCL Simple Type Description
	149.18. Promise and Response Stream objects
	149.19. ZigBee Data Types
	149.20. Implementing a ZigBee Endpoint
	149.21. Event API
	149.22. Monitoring Events and Sending Commands
	149.23. ZCL Exception
	149.24. ZDP Exception
	149.25. APS Exception
	149.26. ZigBee Exception
	149.27. ZCL Frame
	149.28. ZigBee Group
	149.29. ZigBee Networking
	149.29.1. Logical node type
	149.29.2. Network selection
	149.29.3. Network coordination
	149.29.4. Networking considerations

	149.30. Security
	149.30.1. Security management
	149.30.2. Conditional permission

	149.31. org.osgi.service.zigbee
	149.31.1. Summary
	149.31.2. public class APSException extends ZigBeeException
	149.31.2.1. public static final int ASDU_TOO_LONG = 65
	149.31.2.2. public static final int DEFRAG_DEFERRED = 66
	149.31.2.3. public static final int DEFRAG_UNSUPPORTED = 67
	149.31.2.4. public static final int ILLEGAL_REQUEST = 68
	149.31.2.5. public static final int INVALID_BINDING = 69
	149.31.2.6. public static final int INVALID_GROUP = 70
	149.31.2.7. public static final int INVALID_PARAMETER = 71
	149.31.2.8. public static final int NO_ACK = 72
	149.31.2.9. public static final int NO_BOUND_DEVICE = 73
	149.31.2.10. public static final int NO_SHORT_ADDRESS = 74
	149.31.2.11. public static final int NOT_SUPPORTED = 75
	149.31.2.12. public static final int SECURED_LINK_KEY = 76
	149.31.2.13. public static final int SECURED_NWK_KEY = 77
	149.31.2.14. public static final int SECURITY_FAIL = 78
	149.31.2.15. public static final int SUCCESS = 0
	149.31.2.16. public static final int TABLE_FULL = 79
	149.31.2.17. public static final int UNSECURED = 80
	149.31.2.18. public static final int UNSUPPORTED_ATTRIBUTE = 81
	149.31.2.19. public APSException(String errorDesc)
	149.31.2.20. public APSException(int errorCode, String errorDesc)
	149.31.2.21. public APSException(int errorCode, int zigBeeErrorCode, String errorDesc)

	149.31.3. public interface ZCLAttribute extends ZCLAttributeInfo
	149.31.3.1. public static final String ID = "zigbee.attribute.id"
	149.31.3.2. public Promise<Object> getValue()
	149.31.3.3. public Promise<Void> setValue(Object value)

	149.31.4. public interface ZCLAttributeInfo
	149.31.4.1. public static final String ID = "zigbee.attribute.id"
	149.31.4.2. public ZCLDataTypeDescription getDataType()
	149.31.4.3. public int getId()
	149.31.4.4. public int getManufacturerCode()
	149.31.4.5. public boolean isManufacturerSpecific()

	149.31.5. public interface ZCLCluster
	149.31.5.1. public static final String DOMAIN = "zigbee.cluster.domain"
	149.31.5.2. public static final String ID = "zigbee.cluster.id"
	149.31.5.3. public static final String NAME = "zigbee.cluster.name"
	149.31.5.4. public Promise<ZCLAttribute> getAttribute(int attributeId)
	149.31.5.5. public Promise<ZCLAttribute> getAttribute(int attributeId, int code)
	149.31.5.6. public Promise<ZCLAttribute> getAttributes()
	149.31.5.7. public Promise<ZCLAttribute> getAttributes(int code)
	149.31.5.8. public Promise<short> getCommandIds()
	149.31.5.9. public int getId()
	149.31.5.10. public Promise<ZCLFrame> invoke(ZCLFrame frame)
	149.31.5.11. public Promise<ZCLFrame> invoke(ZCLFrame frame, String exportedServicePID)
	149.31.5.12. public Promise<Map<Integer, ZCLReadStatusRecord>> readAttributes(ZCLAttributeInfo[] attributes)
	149.31.5.13. public Promise<Map<Integer, Integer>> writeAttributes(boolean undivided, Map<? extends ZCLAttributeInfo, ?> attributesAndValues)

	149.31.6. public interface ZCLCommandResponse
	149.31.6.1. public Promise<ZCLFrame> getResponse()
	149.31.6.2. public boolean isEnd()

	149.31.7. public interface ZCLCommandResponseStream
	149.31.7.1. public void close()
	149.31.7.2. public void forEach(Predicate<? super ZCLCommandResponse> handler)

	149.31.8. public interface ZCLEventListener
	149.31.8.1. public static final String ATTRIBUTE_DATA_TYPE = "zigbee.attribute.datatype"
	149.31.8.2. public static final String MAX_REPORT_INTERVAL = "zigbee.attribute.max.report.interval"
	149.31.8.3. public static final String MIN_REPORT_INTERVAL = "zigbee.attribute.min.report.interval"
	149.31.8.4. public static final String REPORTABLE_CHANGE = "zigbee.attribute.reportable.change"
	149.31.8.5. public void notifyEvent(ZigBeeEvent event)
	149.31.8.6. public void notifyTimeOut(int timeout)
	149.31.8.7. public void onFailure(ZCLException e)

	149.31.9. public class ZCLException extends ZigBeeException
	149.31.9.1. public static final int CALIBRATION_ERROR = 18
	149.31.9.2. public static final int CLUSTER_COMMAND_NOT_SUPPORTED = 3
	149.31.9.3. public static final int DUPLICATE_EXISTS = 12
	149.31.9.4. public static final int FAILURE = 1
	149.31.9.5. public static final int GENERAL_COMMAND_NOT_SUPPORTED = 4
	149.31.9.6. public static final int HARDWARE_FAILURE = 16
	149.31.9.7. public static final int INSUFFICIENT_SPACE = 11
	149.31.9.8. public static final int INVALID_DATA_TYPE = 15
	149.31.9.9. public static final int INVALID_FIELD = 7
	149.31.9.10. public static final int INVALID_VALUE = 9
	149.31.9.11. public static final int MALFORMED_COMMAND = 2
	149.31.9.12. public static final int MANUF_CLUSTER_COMMAND_NOT_SUPPORTED = 5
	149.31.9.13. public static final int MANUF_GENERAL_COMMAND_NOT_SUPPORTED = 6
	149.31.9.14. public static final int NOT_FOUND = 13
	149.31.9.15. public static final int READ_ONLY = 10
	149.31.9.16. public static final int SOFTWARE_FAILURE = 17
	149.31.9.17. public static final int SUCCESS = 0
	149.31.9.18. public static final int UNREPORTABLE_TYPE = 14
	149.31.9.19. public static final int UNSUPPORTED_ATTRIBUTE = 8
	149.31.9.20. public ZCLException(String errorDesc)
	149.31.9.21. public ZCLException(int errorCode, String errorDesc)
	149.31.9.22. public ZCLException(int errorCode, int zigBeeErrorCode, String errorDesc)

	149.31.10. public interface ZCLFrame
	149.31.10.1. public byte[] getBytes()
	149.31.10.2. public int getBytes(byte[] buffer)
	149.31.10.3. public ZigBeeDataInput getDataInput()
	149.31.10.4. public ZCLHeader getHeader()
	149.31.10.5. public int getSize()

	149.31.11. public interface ZCLHeader
	149.31.11.1. public short getCommandId()
	149.31.11.2. public short getFrameControlField()
	149.31.11.3. public int getManufacturerCode()
	149.31.11.4. public byte getSequenceNumber()
	149.31.11.5. public boolean isClientServerDirection()
	149.31.11.6. public boolean isClusterSpecificCommand()
	149.31.11.7. public boolean isDefaultResponseDisabled()
	149.31.11.8. public boolean isManufacturerSpecific()

	149.31.12. public interface ZCLReadStatusRecord
	149.31.12.1. public ZCLAttributeInfo getAttributeInfo()
	149.31.12.2. public ZigBeeException getFailure()
	149.31.12.3. public Object getValue()

	149.31.13. public class ZDPException extends ZigBeeException
	149.31.13.1. public static final int DEVICE_NOT_FOUND = 34
	149.31.13.2. public static final int INSUFFICIENT_SPACE = 42
	149.31.13.3. public static final int INV_REQUESTTYPE = 33
	149.31.13.4. public static final int INVALID_EP = 35
	149.31.13.5. public static final int NO_DESCRIPTOR = 41
	149.31.13.6. public static final int NO_ENTRY = 40
	149.31.13.7. public static final int NO_MATCH = 39
	149.31.13.8. public static final int NOT_ACTIVE = 36
	149.31.13.9. public static final int NOT_AUTHORIZED = 45
	149.31.13.10. public static final int NOT_PERMITTED = 43
	149.31.13.11. public static final int NOT_SUPPORTED = 37
	149.31.13.12. public static final int SUCCESS = 0
	149.31.13.13. public static final int TABLE_FULL = 44
	149.31.13.14. public static final int TIMEOUT = 38
	149.31.13.15. public ZDPException(String errorDesc)
	149.31.13.16. public ZDPException(int errorCode, String errorDesc)
	149.31.13.17. public ZDPException(int errorCode, int zigBeeErrorCode, String errorDesc)

	149.31.14. public interface ZDPFrame
	149.31.14.1. public ZigBeeDataInput getDataInput()
	149.31.14.2. public byte[] getPayload()

	149.31.15. public interface ZDPResponse
	149.31.15.1. public int getClusterId()
	149.31.15.2. public ZDPFrame getFrame()

	149.31.16. public interface ZigBeeDataInput
	149.31.16.1. public byte readByte() throws IOException
	149.31.16.2. public byte[] readBytes(int len) throws IOException
	149.31.16.3. public double readDouble() throws IOException
	149.31.16.4. public float readFloat(int size) throws IOException
	149.31.16.5. public int readInt(int size) throws IOException
	149.31.16.6. public long readLong(int size) throws IOException

	149.31.17. public interface ZigBeeDataOutput
	149.31.17.1. public void writeByte(byte value)
	149.31.17.2. public void writeBytes(byte[] bytes, int length) throws IOException
	149.31.17.3. public void writeDouble(double value) throws IOException
	149.31.17.4. public void writeFloat(float value, int size) throws IOException
	149.31.17.5. public void writeInt(int value, int size) throws IOException
	149.31.17.6. public void writeLong(long value, int size) throws IOException

	149.31.18. public class ZigBeeDataTypes
	149.31.18.1. public static final short ARRAY = 16
	149.31.18.2. public static final short ATTRIBUTE_ID = 6
	149.31.18.3. public static final short BACNET_OID = 7
	149.31.18.4. public static final short BAG = 19
	149.31.18.5. public static final short BITMAP_16 = 89
	149.31.18.6. public static final short BITMAP_24 = 90
	149.31.18.7. public static final short BITMAP_32 = 91
	149.31.18.8. public static final short BITMAP_40 = 92
	149.31.18.9. public static final short BITMAP_48 = 93
	149.31.18.10. public static final short BITMAP_56 = 94
	149.31.18.11. public static final short BITMAP_64 = 95
	149.31.18.12. public static final short BITMAP_8 = 88
	149.31.18.13. public static final short BOOLEAN = 1
	149.31.18.14. public static final short CHARACTER_STRING = 121
	149.31.18.15. public static final short CLUSTER_ID = 5
	149.31.18.16. public static final short DATE = 3
	149.31.18.17. public static final short ENUMERATION_16 = 113
	149.31.18.18. public static final short ENUMERATION_8 = 112
	149.31.18.19. public static final short FLOATING_DOUBLE = 250
	149.31.18.20. public static final short FLOATING_SEMI = 248
	149.31.18.21. public static final short FLOATING_SINGLE = 249
	149.31.18.22. public static final short GENERAL_DATA_16 = 81
	149.31.18.23. public static final short GENERAL_DATA_24 = 82
	149.31.18.24. public static final short GENERAL_DATA_32 = 83
	149.31.18.25. public static final short GENERAL_DATA_40 = 84
	149.31.18.26. public static final short GENERAL_DATA_48 = 85
	149.31.18.27. public static final short GENERAL_DATA_56 = 86
	149.31.18.28. public static final short GENERAL_DATA_64 = 87
	149.31.18.29. public static final short GENERAL_DATA_8 = 80
	149.31.18.30. public static final short IEEE_ADDRESS = 8
	149.31.18.31. public static final short LONG_CHARACTER_STRING = 123
	149.31.18.32. public static final short LONG_OCTET_STRING = 122
	149.31.18.33. public static final short NO_DATA = 0
	149.31.18.34. public static final short OCTET_STRING = 120
	149.31.18.35. public static final short SECURITY_KEY_128 = 9
	149.31.18.36. public static final short SET = 18
	149.31.18.37. public static final short SIGNED_INTEGER_16 = 225
	149.31.18.38. public static final short SIGNED_INTEGER_24 = 226
	149.31.18.39. public static final short SIGNED_INTEGER_32 = 227
	149.31.18.40. public static final short SIGNED_INTEGER_40 = 228
	149.31.18.41. public static final short SIGNED_INTEGER_48 = 229
	149.31.18.42. public static final short SIGNED_INTEGER_56 = 230
	149.31.18.43. public static final short SIGNED_INTEGER_64 = 231
	149.31.18.44. public static final short SIGNED_INTEGER_8 = 224
	149.31.18.45. public static final short STRUCTURE = 17
	149.31.18.46. public static final short TIME_OF_DAY = 2
	149.31.18.47. public static final short UNKNOWN = 255
	149.31.18.48. public static final short UNSIGNED_INTEGER_16 = 97
	149.31.18.49. public static final short UNSIGNED_INTEGER_24 = 98
	149.31.18.50. public static final short UNSIGNED_INTEGER_32 = 99
	149.31.18.51. public static final short UNSIGNED_INTEGER_40 = 100
	149.31.18.52. public static final short UNSIGNED_INTEGER_48 = 101
	149.31.18.53. public static final short UNSIGNED_INTEGER_56 = 102
	149.31.18.54. public static final short UNSIGNED_INTEGER_64 = 103
	149.31.18.55. public static final short UNSIGNED_INTEGER_8 = 96
	149.31.18.56. public static final short UTC_TIME = 4

	149.31.19. public interface ZigBeeEndpoint
	149.31.19.1. public static final String DEVICE_CATEGORY = "ZigBee"
	149.31.19.2. public static final String DEVICE_ID = "zigbee.device.id"
	149.31.19.3. public static final String DEVICE_VERSION = "zigbee.device.version"
	149.31.19.4. public static final String ENDPOINT_ID = "zigbee.endpoint.id"
	149.31.19.5. public static final String HOST_PID = "zigbee.endpoint.host.pid"
	149.31.19.6. public static final String INPUT_CLUSTERS = "zigbee.endpoint.clusters.input"
	149.31.19.7. public static final String OUTPUT_CLUSTERS = "zigbee.endpoint.clusters.output"
	149.31.19.8. public static final String PROFILE_ID = "zigbee.device.profile.id"
	149.31.19.9. public static final String ZIGBEE_EXPORT = "zigbee.export"
	149.31.19.10. public Promise<Void> bind(String servicePid, int clusterId)
	149.31.19.11. public Promise<List<String>> getBoundEndPoints(int clusterId)
	149.31.19.12. public ZCLCluster getClientCluster(int clientClusterId)
	149.31.19.13. public ZCLCluster[] getClientClusters()
	149.31.19.14. public short getId()
	149.31.19.15. public BigInteger getNodeAddress()
	149.31.19.16. public ZCLCluster getServerCluster(int serverClusterId)
	149.31.19.17. public ZCLCluster[] getServerClusters()
	149.31.19.18. public Promise<ZigBeeSimpleDescriptor> getSimpleDescriptor()
	149.31.19.19. public void notExported(ZigBeeException e)
	149.31.19.20. public Promise<Void> unbind(String servicePid, int clusterId)

	149.31.20. public interface ZigBeeEvent
	149.31.20.1. public int getAttributeId()
	149.31.20.2. public int getClusterId()
	149.31.20.3. public short getEndpointId()
	149.31.20.4. public BigInteger getIEEEAddress()
	149.31.20.5. public Object getValue()

	149.31.21. public class ZigBeeException extends RuntimeException
	149.31.21.1. protected final int errorCode
	149.31.21.2. public static final int OSGI_EXISTING_ID = 48
	149.31.21.3. public static final int OSGI_MULTIPLE_HOSTS = 49
	149.31.21.4. public static final int TIMEOUT = 50
	149.31.21.5. public static final int UNKNOWN_ERROR = -1
	149.31.21.6. protected final int zigBeeErrorCode
	149.31.21.7. public ZigBeeException(String errorDesc)
	149.31.21.8. public ZigBeeException(int errorCode, String errorDesc)
	149.31.21.9. public ZigBeeException(int errorCode, int zigBeeErrorCode, String errorDesc)
	149.31.21.10. public int getErrorCode()
	149.31.21.11. public int getZigBeeErrorCode()
	149.31.21.12. public boolean hasZigBeeErrorCode()

	149.31.22. public interface ZigBeeGroup
	149.31.22.1. public static final String ID = "zigbee.group.id"
	149.31.22.2. public int getGroupAddress()
	149.31.22.3. public ZCLCommandResponseStream groupcast(int clusterId, ZCLFrame frame)
	149.31.22.4. public ZCLCommandResponseStream groupcast(int clusterId, ZCLFrame frame, String exportedServicePID)
	149.31.22.5. public Promise<Void> joinGroup(String pid)
	149.31.22.6. public Promise<Void> leaveGroup(String pid)

	149.31.23. public interface ZigBeeHost extends ZigBeeNode
	149.31.23.1. public static final short UNLIMITED_BROADCAST_RADIUS = 255
	149.31.23.2. public ZCLCommandResponseStream broadcast(int clusterID, ZCLFrame frame)
	149.31.23.3. public ZCLCommandResponseStream broadcast(int clusterID, ZCLFrame frame, String exportedServicePID)
	149.31.23.4. public void createGroupService(int groupAddress) throws Exception
	149.31.23.5. public short getBroadcastRadius()
	149.31.23.6. public int getChannel() throws Exception
	149.31.23.7. public int getChannelMask() throws Exception
	149.31.23.8. public long getCommunicationTimeout()
	149.31.23.9. public String getPreconfiguredLinkKey() throws Exception
	149.31.23.10. public int getSecurityLevel() throws Exception
	149.31.23.11. public boolean isStarted()
	149.31.23.12. public void permitJoin(short duration) throws Exception
	149.31.23.13. public Promise<Boolean> refreshNetwork() throws Exception
	149.31.23.14. public void setBroadcastRadius(short broadcastRadius)
	149.31.23.15. public void setChannelMask(int mask) throws IOException
	149.31.23.16. public void setCommunicationTimeout(long timeout)
	149.31.23.17. public void setExtendedPanId(BigInteger extendedPanId)
	149.31.23.18. public void setLogicalType(short logicalNodeType) throws Exception
	149.31.23.19. public void setPanId(int panId)
	149.31.23.20. public void start() throws Exception
	149.31.23.21. public void stop() throws Exception
	149.31.23.22. public void updateNetworkChannel(byte channel) throws IOException

	149.31.24. public interface ZigBeeLinkQuality
	149.31.24.1. public static final int CHILD_NEIGHBOR = 241
	149.31.24.2. public static final int OTHERS_NEIGHBOR = 243
	149.31.24.3. public static final int PARENT_NEIGHBOR = 240
	149.31.24.4. public static final int PREVIOUS_CHILD_NEIGHBOR = 244
	149.31.24.5. public static final int SIBLING_NEIGHBOR = 242
	149.31.24.6. public int getDepth()
	149.31.24.7. public int getLQI()
	149.31.24.8. public String getNeighbor()
	149.31.24.9. public int getRelationship()

	149.31.25. public interface ZigBeeNode
	149.31.25.1. public static final short COORDINATOR = 2
	149.31.25.2. public static final String EXTENDED_PAN_ID = "zigbee.node.extended.pan.id"
	149.31.25.3. public static final String IEEE_ADDRESS = "zigbee.node.ieee.address"
	149.31.25.4. public static final String LOGICAL_TYPE = "zigbee.node.description.node.type"
	149.31.25.5. public static final String MANUFACTURER_CODE = "zigbee.node.description.manufacturer.code"
	149.31.25.6. public static final String PAN_ID = "zigbee.node.pan.id"
	149.31.25.7. public static final String POWER_SOURCE = "zigbee.node.power.source"
	149.31.25.8. public static final String RECEIVER_ON_WHEN_IDLE = "zigbee.node.receiver.on.when.idle"
	149.31.25.9. public static final short ROUTER = 3
	149.31.25.10. public static final short ZED = 1
	149.31.25.11. public ZCLCommandResponseStream broadcast(int clusterID, ZCLFrame frame)
	149.31.25.12. public ZCLCommandResponseStream broadcast(int clusterID, ZCLFrame frame, String exportedServicePID)
	149.31.25.13. public Promise<ZigBeeComplexDescriptor> getComplexDescriptor()
	149.31.25.14. public ZigBeeEndpoint[] getEndpoints()
	149.31.25.15. public BigInteger getExtendedPanId()
	149.31.25.16. public String getHostPid()
	149.31.25.17. public BigInteger getIEEEAddress()
	149.31.25.18. public Promise<Map<String, ZigBeeLinkQuality>> getLinksQuality()
	149.31.25.19. public int getNetworkAddress()
	149.31.25.20. public Promise<ZigBeeNodeDescriptor> getNodeDescriptor()
	149.31.25.21. public int getPanId()
	149.31.25.22. public Promise<ZigBeePowerDescriptor> getPowerDescriptor()
	149.31.25.23. public Promise<Map<String, ZigBeeRoute>> getRoutingTable()
	149.31.25.24. public Promise<String> getUserDescription()
	149.31.25.25. public Promise<ZDPFrame> invoke(int clusterIdReq, int expectedClusterIdRsp, ZDPFrame message)
	149.31.25.26. public Promise<ZDPFrame> invoke(int clusterIdReq, ZDPFrame message)
	149.31.25.27. public Promise<Void> leave()
	149.31.25.28. public Promise<Void> leave(boolean rejoin, boolean removeChildren)
	149.31.25.29. public Promise<Void> setUserDescription(String userDescription)

	149.31.26. public interface ZigBeeRoute
	149.31.26.1. public static final int ACTIVE = 240
	149.31.26.2. public static final int DISCOVERY_FAILED = 242
	149.31.26.3. public static final int DISCOVERY_UNDERWAY = 241
	149.31.26.4. public static final int INACTIVE = 243
	149.31.26.5. public static final int VALIDATION_UNDERWAY = 244
	149.31.26.6. public String getDestination()
	149.31.26.7. public String getNextHop()
	149.31.26.8. public int getStatus()

	149.32. org.osgi.service.zigbee.descriptions
	149.32.1. Summary
	149.32.2. public interface ZCLAttributeDescription extends ZCLAttributeInfo
	149.32.2.1. public Object getDefaultValue()
	149.32.2.2. public String getName()
	149.32.2.3. public String getShortDescription()
	149.32.2.4. public boolean isMandatory()
	149.32.2.5. public boolean isPartOfAScene()
	149.32.2.6. public boolean isReadOnly()
	149.32.2.7. public boolean isReportable()

	149.32.3. public interface ZCLClusterDescription
	149.32.3.1. public ZCLAttributeDescription[] getAttributeDescriptions()
	149.32.3.2. public ZCLCommandDescription[] getGeneratedCommandDescriptions()
	149.32.3.3. public ZCLGlobalClusterDescription getGlobalClusterDescription()
	149.32.3.4. public int getId()
	149.32.3.5. public ZCLCommandDescription[] getReceivedCommandDescriptions()

	149.32.4. public interface ZCLCommandDescription
	149.32.4.1. public short getId()
	149.32.4.2. public int getManufacturerCode()
	149.32.4.3. public String getName()
	149.32.4.4. public ZCLParameterDescription[] getParameterDescriptions()
	149.32.4.5. public String getShortDescription()
	149.32.4.6. public boolean isClientServerDirection()
	149.32.4.7. public boolean isClusterSpecificCommand()
	149.32.4.8. public boolean isMandatory()
	149.32.4.9. public boolean isManufacturerSpecific()

	149.32.5. public interface ZCLDataTypeDescription
	149.32.5.1. public short getId()
	149.32.5.2. public Class<?> getJavaDataType()
	149.32.5.3. public String getName()
	149.32.5.4. public boolean isAnalog()

	149.32.6. public interface ZCLGlobalClusterDescription
	149.32.6.1. public ZCLClusterDescription getClientClusterDescription()
	149.32.6.2. public String getClusterDescription()
	149.32.6.3. public String getClusterFunctionalDomain()
	149.32.6.4. public int getClusterId()
	149.32.6.5. public String getClusterName()
	149.32.6.6. public ZCLClusterDescription getServerClusterDescription()

	149.32.7. public interface ZCLParameterDescription
	149.32.7.1. public ZCLDataTypeDescription getDataTypeDescription()

	149.32.8. public interface ZCLSimpleTypeDescription extends ZCLDataTypeDescription
	149.32.8.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.32.8.2. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.32.9. public interface ZigBeeDeviceDescription
	149.32.9.1. public ZCLClusterDescription[] getClientClustersDescriptions()
	149.32.9.2. public int getId()
	149.32.9.3. public String getName()
	149.32.9.4. public int getProfileId()
	149.32.9.5. public ZCLClusterDescription[] getServerClustersDescriptions()
	149.32.9.6. public Integer getVersion()

	149.32.10. public interface ZigBeeDeviceDescriptionSet
	149.32.10.1. public static final String DEVICES = "zigbee.profile.devices"
	149.32.10.2. public static final String PROFILE_NAME = "zigbee.profile.name"
	149.32.10.3. public static final String VERSION = "zigbee.profile.version"
	149.32.10.4. public ZigBeeDeviceDescription getDeviceSpecification(int deviceId, short version)

	149.33. org.osgi.service.zigbee.descriptors
	149.33.1. Summary
	149.33.2. public interface ZigBeeComplexDescriptor
	149.33.2.1. public String getCharacterSetIdentifier()
	149.33.2.2. public String getDeviceURL()
	149.33.2.3. public byte[] getIcon()
	149.33.2.4. public String getIconURL()
	149.33.2.5. public String getLanguageCode()
	149.33.2.6. public String getManufacturerName()
	149.33.2.7. public String getModelName()
	149.33.2.8. public String getSerialNumber()

	149.33.3. public interface ZigBeeFrequencyBand
	149.33.3.1. public boolean is2400()
	149.33.3.2. public boolean is868()
	149.33.3.3. public boolean is915()

	149.33.4. public interface ZigBeeMacCapabiliyFlags
	149.33.4.1. public boolean isAddressAllocate()
	149.33.4.2. public boolean isAlternatePANCoordinator()
	149.33.4.3. public boolean isFullFunctionDevice()
	149.33.4.4. public boolean isMainsPower()
	149.33.4.5. public boolean isReceiverOnWhenIdle()
	149.33.4.6. public boolean isSecurityCapable()

	149.33.5. public interface ZigBeeNodeDescriptor
	149.33.5.1. public ZigBeeFrequencyBand getFrequencyBand()
	149.33.5.2. public short getLogicalType()
	149.33.5.3. public ZigBeeMacCapabiliyFlags getMacCapabilityFlags()
	149.33.5.4. public int getManufacturerCode()
	149.33.5.5. public int getMaxBufferSize()
	149.33.5.6. public int getMaxIncomingTransferSize()
	149.33.5.7. public int getMaxOutgoingTransferSize()
	149.33.5.8. public ZigBeeServerMask getServerMask()
	149.33.5.9. public boolean isComplexDescriptorAvailable()
	149.33.5.10. public boolean isExtendedActiveEndpointListAvailable()
	149.33.5.11. public boolean isExtendedSimpleDescriptorListAvailable()
	149.33.5.12. public boolean isUserDescriptorAvailable()

	149.33.6. public interface ZigBeePowerDescriptor
	149.33.6.1. public static final short CRITICAL_LEVEL = 0
	149.33.6.2. public static final short FULL_LEVEL = 3
	149.33.6.3. public static final short LOW_LEVEL = 1
	149.33.6.4. public static final short MIDDLE_LEVEL = 2
	149.33.6.5. public short getCurrentPowerMode()
	149.33.6.6. public short getCurrentPowerSource()
	149.33.6.7. public short getCurrentPowerSourceLevel()
	149.33.6.8. public boolean isConstantMainsPowerAvailable()
	149.33.6.9. public boolean isDisposableBattery()
	149.33.6.10. public boolean isDisposableBatteryAvailable()
	149.33.6.11. public boolean isMainsPower()
	149.33.6.12. public boolean isOnWhenStimulated()
	149.33.6.13. public boolean isPeriodicallyOn()
	149.33.6.14. public boolean isRechargableBattery()
	149.33.6.15. public boolean isRechargableBatteryAvailable()
	149.33.6.16. public boolean isSyncronizedWithOnIdle()

	149.33.7. public interface ZigBeeServerMask
	149.33.7.1. public boolean isBackupBindingTableCache()
	149.33.7.2. public boolean isBackupDiscoveryCache()
	149.33.7.3. public boolean isBackupTrustCenter()
	149.33.7.4. public boolean isNetworkManager()
	149.33.7.5. public boolean isPrimaryBindingTableCache()
	149.33.7.6. public boolean isPrimaryDiscoveryCache()
	149.33.7.7. public boolean isPrimaryTrustCenter()

	149.33.8. public interface ZigBeeSimpleDescriptor
	149.33.8.1. public int getApplicationDeviceId()
	149.33.8.2. public byte getApplicationDeviceVersion()
	149.33.8.3. public int getApplicationProfileId()
	149.33.8.4. public short getEndpoint()
	149.33.8.5. public int[] getInputClusters()
	149.33.8.6. public int[] getOutputClusters()
	149.33.8.7. public boolean providesInputCluster(int clusterId)
	149.33.8.8. public boolean providesOutputCluster(int clusterId)

	149.34. org.osgi.service.zigbee.types
	149.34.1. Summary
	149.34.2. public class ZigBeeArray implements ZCLDataTypeDescription
	149.34.2.1. public short getId()
	149.34.2.2. public static ZigBeeArray getInstance()
	149.34.2.3. public Class<?> getJavaDataType()
	149.34.2.4. public String getName()
	149.34.2.5. public boolean isAnalog()

	149.34.3. public class ZigBeeAttributeID implements ZCLSimpleTypeDescription
	149.34.3.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.3.2. public short getId()
	149.34.3.3. public static ZigBeeAttributeID getInstance()
	149.34.3.4. public Class<?> getJavaDataType()
	149.34.3.5. public String getName()
	149.34.3.6. public boolean isAnalog()
	149.34.3.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.4. public class ZigBeeBACnet implements ZCLSimpleTypeDescription
	149.34.4.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.4.2. public short getId()
	149.34.4.3. public static ZigBeeBACnet getInstance()
	149.34.4.4. public Class<?> getJavaDataType()
	149.34.4.5. public String getName()
	149.34.4.6. public boolean isAnalog()
	149.34.4.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.5. public class ZigBeeBag implements ZCLDataTypeDescription
	149.34.5.1. public short getId()
	149.34.5.2. public static ZigBeeBag getInstance()
	149.34.5.3. public Class<?> getJavaDataType()
	149.34.5.4. public String getName()
	149.34.5.5. public boolean isAnalog()

	149.34.6. public class ZigBeeBitmap16 implements ZCLSimpleTypeDescription
	149.34.6.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.6.2. public short getId()
	149.34.6.3. public static ZigBeeBitmap16 getInstance()
	149.34.6.4. public Class<?> getJavaDataType()
	149.34.6.5. public String getName()
	149.34.6.6. public boolean isAnalog()
	149.34.6.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.7. public class ZigBeeBitmap24 implements ZCLSimpleTypeDescription
	149.34.7.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.7.2. public short getId()
	149.34.7.3. public static ZigBeeBitmap24 getInstance()
	149.34.7.4. public Class<?> getJavaDataType()
	149.34.7.5. public String getName()
	149.34.7.6. public boolean isAnalog()
	149.34.7.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.8. public class ZigBeeBitmap32 implements ZCLSimpleTypeDescription
	149.34.8.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.8.2. public short getId()
	149.34.8.3. public static ZigBeeBitmap32 getInstance()
	149.34.8.4. public Class<?> getJavaDataType()
	149.34.8.5. public String getName()
	149.34.8.6. public boolean isAnalog()
	149.34.8.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.9. public class ZigBeeBitmap40 implements ZCLSimpleTypeDescription
	149.34.9.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.9.2. public short getId()
	149.34.9.3. public static ZigBeeBitmap40 getInstance()
	149.34.9.4. public Class<?> getJavaDataType()
	149.34.9.5. public String getName()
	149.34.9.6. public boolean isAnalog()
	149.34.9.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.10. public class ZigBeeBitmap48 implements ZCLSimpleTypeDescription
	149.34.10.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.10.2. public short getId()
	149.34.10.3. public static ZigBeeBitmap48 getInstance()
	149.34.10.4. public Class<?> getJavaDataType()
	149.34.10.5. public String getName()
	149.34.10.6. public boolean isAnalog()
	149.34.10.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.11. public class ZigBeeBitmap56 implements ZCLSimpleTypeDescription
	149.34.11.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.11.2. public short getId()
	149.34.11.3. public static ZigBeeBitmap56 getInstance()
	149.34.11.4. public Class<?> getJavaDataType()
	149.34.11.5. public String getName()
	149.34.11.6. public boolean isAnalog()
	149.34.11.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.12. public class ZigBeeBitmap64 implements ZCLSimpleTypeDescription
	149.34.12.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.12.2. public short getId()
	149.34.12.3. public static ZigBeeBitmap64 getInstance()
	149.34.12.4. public Class<?> getJavaDataType()
	149.34.12.5. public String getName()
	149.34.12.6. public boolean isAnalog()
	149.34.12.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.13. public class ZigBeeBitmap8 implements ZCLSimpleTypeDescription
	149.34.13.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.13.2. public short getId()
	149.34.13.3. public static ZigBeeBitmap8 getInstance()
	149.34.13.4. public Class<?> getJavaDataType()
	149.34.13.5. public String getName()
	149.34.13.6. public boolean isAnalog()
	149.34.13.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.14. public class ZigBeeBoolean implements ZCLSimpleTypeDescription
	149.34.14.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.14.2. public short getId()
	149.34.14.3. public static ZigBeeBoolean getInstance()
	149.34.14.4. public Class<?> getJavaDataType()
	149.34.14.5. public String getName()
	149.34.14.6. public boolean isAnalog()
	149.34.14.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.15. public class ZigBeeCharacterString implements ZCLSimpleTypeDescription
	149.34.15.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.15.2. public short getId()
	149.34.15.3. public static ZigBeeCharacterString getInstance()
	149.34.15.4. public Class<?> getJavaDataType()
	149.34.15.5. public String getName()
	149.34.15.6. public boolean isAnalog()
	149.34.15.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.16. public class ZigBeeClusterID implements ZCLSimpleTypeDescription
	149.34.16.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.16.2. public short getId()
	149.34.16.3. public static ZigBeeClusterID getInstance()
	149.34.16.4. public Class<?> getJavaDataType()
	149.34.16.5. public String getName()
	149.34.16.6. public boolean isAnalog()
	149.34.16.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.17. public class ZigBeeDate implements ZCLSimpleTypeDescription
	149.34.17.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.17.2. public short getId()
	149.34.17.3. public static ZigBeeDate getInstance()
	149.34.17.4. public Class<?> getJavaDataType()
	149.34.17.5. public String getName()
	149.34.17.6. public boolean isAnalog()
	149.34.17.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.18. public class ZigBeeEnumeration16 implements ZCLSimpleTypeDescription
	149.34.18.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.18.2. public short getId()
	149.34.18.3. public static ZigBeeEnumeration16 getInstance()
	149.34.18.4. public Class<?> getJavaDataType()
	149.34.18.5. public String getName()
	149.34.18.6. public boolean isAnalog()
	149.34.18.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.19. public class ZigBeeEnumeration8 implements ZCLSimpleTypeDescription
	149.34.19.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.19.2. public short getId()
	149.34.19.3. public static ZigBeeEnumeration8 getInstance()
	149.34.19.4. public Class<?> getJavaDataType()
	149.34.19.5. public String getName()
	149.34.19.6. public boolean isAnalog()
	149.34.19.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.20. public class ZigBeeFloatingDouble implements ZCLSimpleTypeDescription
	149.34.20.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.20.2. public short getId()
	149.34.20.3. public static ZigBeeFloatingDouble getInstance()
	149.34.20.4. public Class<?> getJavaDataType()
	149.34.20.5. public String getName()
	149.34.20.6. public boolean isAnalog()
	149.34.20.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.21. public class ZigBeeFloatingSemi implements ZCLSimpleTypeDescription
	149.34.21.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.21.2. public short getId()
	149.34.21.3. public static ZigBeeFloatingSemi getInstance()
	149.34.21.4. public Class<?> getJavaDataType()
	149.34.21.5. public String getName()
	149.34.21.6. public boolean isAnalog()
	149.34.21.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.22. public class ZigBeeFloatingSingle implements ZCLSimpleTypeDescription
	149.34.22.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.22.2. public short getId()
	149.34.22.3. public static ZigBeeFloatingSingle getInstance()
	149.34.22.4. public Class<?> getJavaDataType()
	149.34.22.5. public String getName()
	149.34.22.6. public boolean isAnalog()
	149.34.22.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.23. public class ZigBeeGeneralData16 implements ZCLSimpleTypeDescription
	149.34.23.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.23.2. public short getId()
	149.34.23.3. public static ZigBeeGeneralData16 getInstance()
	149.34.23.4. public Class<?> getJavaDataType()
	149.34.23.5. public String getName()
	149.34.23.6. public boolean isAnalog()
	149.34.23.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.24. public class ZigBeeGeneralData24 implements ZCLSimpleTypeDescription
	149.34.24.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.24.2. public short getId()
	149.34.24.3. public static ZigBeeGeneralData24 getInstance()
	149.34.24.4. public Class<?> getJavaDataType()
	149.34.24.5. public String getName()
	149.34.24.6. public boolean isAnalog()
	149.34.24.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.25. public class ZigBeeGeneralData32 implements ZCLSimpleTypeDescription
	149.34.25.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.25.2. public short getId()
	149.34.25.3. public static ZigBeeGeneralData32 getInstance()
	149.34.25.4. public Class<?> getJavaDataType()
	149.34.25.5. public String getName()
	149.34.25.6. public boolean isAnalog()
	149.34.25.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.26. public class ZigBeeGeneralData40 implements ZCLSimpleTypeDescription
	149.34.26.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.26.2. public short getId()
	149.34.26.3. public static ZigBeeGeneralData40 getInstance()
	149.34.26.4. public Class<?> getJavaDataType()
	149.34.26.5. public String getName()
	149.34.26.6. public boolean isAnalog()
	149.34.26.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.27. public class ZigBeeGeneralData48 implements ZCLSimpleTypeDescription
	149.34.27.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.27.2. public short getId()
	149.34.27.3. public static ZigBeeGeneralData48 getInstance()
	149.34.27.4. public Class<?> getJavaDataType()
	149.34.27.5. public String getName()
	149.34.27.6. public boolean isAnalog()
	149.34.27.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.28. public class ZigBeeGeneralData56 implements ZCLSimpleTypeDescription
	149.34.28.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.28.2. public short getId()
	149.34.28.3. public static ZigBeeGeneralData56 getInstance()
	149.34.28.4. public Class<?> getJavaDataType()
	149.34.28.5. public String getName()
	149.34.28.6. public boolean isAnalog()
	149.34.28.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.29. public class ZigBeeGeneralData64 implements ZCLSimpleTypeDescription
	149.34.29.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.29.2. public short getId()
	149.34.29.3. public static ZigBeeGeneralData64 getInstance()
	149.34.29.4. public Class<?> getJavaDataType()
	149.34.29.5. public String getName()
	149.34.29.6. public boolean isAnalog()
	149.34.29.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.30. public class ZigBeeGeneralData8 implements ZCLSimpleTypeDescription
	149.34.30.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.30.2. public short getId()
	149.34.30.3. public static ZigBeeGeneralData8 getInstance()
	149.34.30.4. public Class<?> getJavaDataType()
	149.34.30.5. public String getName()
	149.34.30.6. public boolean isAnalog()
	149.34.30.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.31. public class ZigBeeIEEE_ADDRESS implements ZCLSimpleTypeDescription
	149.34.31.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.31.2. public short getId()
	149.34.31.3. public static ZigBeeIEEE_ADDRESS getInstance()
	149.34.31.4. public Class<?> getJavaDataType()
	149.34.31.5. public String getName()
	149.34.31.6. public boolean isAnalog()
	149.34.31.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.32. public class ZigBeeLongCharacterString implements ZCLSimpleTypeDescription
	149.34.32.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.32.2. public short getId()
	149.34.32.3. public static ZigBeeLongCharacterString getInstance()
	149.34.32.4. public Class<?> getJavaDataType()
	149.34.32.5. public String getName()
	149.34.32.6. public boolean isAnalog()
	149.34.32.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.33. public class ZigBeeLongOctetString implements ZCLSimpleTypeDescription
	149.34.33.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.33.2. public short getId()
	149.34.33.3. public static ZigBeeLongOctetString getInstance()
	149.34.33.4. public Class<?> getJavaDataType()
	149.34.33.5. public String getName()
	149.34.33.6. public boolean isAnalog()
	149.34.33.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.34. public class ZigBeeOctetString implements ZCLSimpleTypeDescription
	149.34.34.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.34.2. public short getId()
	149.34.34.3. public static ZigBeeOctetString getInstance()
	149.34.34.4. public Class<?> getJavaDataType()
	149.34.34.5. public String getName()
	149.34.34.6. public boolean isAnalog()
	149.34.34.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.35. public class ZigBeeSecurityKey128 implements ZCLSimpleTypeDescription
	149.34.35.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.35.2. public short getId()
	149.34.35.3. public static ZigBeeSecurityKey128 getInstance()
	149.34.35.4. public Class<?> getJavaDataType()
	149.34.35.5. public String getName()
	149.34.35.6. public boolean isAnalog()
	149.34.35.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.36. public class ZigBeeSet implements ZCLDataTypeDescription
	149.34.36.1. public short getId()
	149.34.36.2. public static ZigBeeSet getInstance()
	149.34.36.3. public Class<?> getJavaDataType()
	149.34.36.4. public String getName()
	149.34.36.5. public boolean isAnalog()

	149.34.37. public class ZigBeeSignedInteger16 implements ZCLSimpleTypeDescription
	149.34.37.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.37.2. public short getId()
	149.34.37.3. public static ZigBeeSignedInteger16 getInstance()
	149.34.37.4. public Class<?> getJavaDataType()
	149.34.37.5. public String getName()
	149.34.37.6. public boolean isAnalog()
	149.34.37.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.38. public class ZigBeeSignedInteger24 implements ZCLSimpleTypeDescription
	149.34.38.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.38.2. public short getId()
	149.34.38.3. public static ZigBeeSignedInteger24 getInstance()
	149.34.38.4. public Class<?> getJavaDataType()
	149.34.38.5. public String getName()
	149.34.38.6. public boolean isAnalog()
	149.34.38.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.39. public class ZigBeeSignedInteger32 implements ZCLSimpleTypeDescription
	149.34.39.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.39.2. public short getId()
	149.34.39.3. public static ZigBeeSignedInteger32 getInstance()
	149.34.39.4. public Class<?> getJavaDataType()
	149.34.39.5. public String getName()
	149.34.39.6. public boolean isAnalog()
	149.34.39.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.40. public class ZigBeeSignedInteger40 implements ZCLSimpleTypeDescription
	149.34.40.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.40.2. public short getId()
	149.34.40.3. public static ZigBeeSignedInteger40 getInstance()
	149.34.40.4. public Class<?> getJavaDataType()
	149.34.40.5. public String getName()
	149.34.40.6. public boolean isAnalog()
	149.34.40.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.41. public class ZigBeeSignedInteger48 implements ZCLSimpleTypeDescription
	149.34.41.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.41.2. public short getId()
	149.34.41.3. public static ZigBeeSignedInteger48 getInstance()
	149.34.41.4. public Class<?> getJavaDataType()
	149.34.41.5. public String getName()
	149.34.41.6. public boolean isAnalog()
	149.34.41.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.42. public class ZigBeeSignedInteger56 implements ZCLSimpleTypeDescription
	149.34.42.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.42.2. public short getId()
	149.34.42.3. public static ZigBeeSignedInteger56 getInstance()
	149.34.42.4. public Class<?> getJavaDataType()
	149.34.42.5. public String getName()
	149.34.42.6. public boolean isAnalog()
	149.34.42.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.43. public class ZigBeeSignedInteger64 implements ZCLSimpleTypeDescription
	149.34.43.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.43.2. public short getId()
	149.34.43.3. public static ZigBeeSignedInteger64 getInstance()
	149.34.43.4. public Class<?> getJavaDataType()
	149.34.43.5. public String getName()
	149.34.43.6. public boolean isAnalog()
	149.34.43.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.44. public class ZigBeeSignedInteger8 implements ZCLSimpleTypeDescription
	149.34.44.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.44.2. public short getId()
	149.34.44.3. public static ZigBeeSignedInteger8 getInstance()
	149.34.44.4. public Class<?> getJavaDataType()
	149.34.44.5. public String getName()
	149.34.44.6. public boolean isAnalog()
	149.34.44.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.45. public class ZigBeeStructure implements ZCLDataTypeDescription
	149.34.45.1. public short getId()
	149.34.45.2. public static ZigBeeStructure getInstance()
	149.34.45.3. public Class<?> getJavaDataType()
	149.34.45.4. public String getName()
	149.34.45.5. public boolean isAnalog()

	149.34.46. public class ZigBeeTimeOfDay implements ZCLSimpleTypeDescription
	149.34.46.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.46.2. public short getId()
	149.34.46.3. public static ZigBeeTimeOfDay getInstance()
	149.34.46.4. public Class<?> getJavaDataType()
	149.34.46.5. public String getName()
	149.34.46.6. public boolean isAnalog()
	149.34.46.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.47. public class ZigBeeUnsignedInteger16 implements ZCLSimpleTypeDescription
	149.34.47.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.47.2. public short getId()
	149.34.47.3. public static ZigBeeUnsignedInteger16 getInstance()
	149.34.47.4. public Class<?> getJavaDataType()
	149.34.47.5. public String getName()
	149.34.47.6. public boolean isAnalog()
	149.34.47.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.48. public class ZigBeeUnsignedInteger24 implements ZCLSimpleTypeDescription
	149.34.48.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.48.2. public short getId()
	149.34.48.3. public static ZigBeeUnsignedInteger24 getInstance()
	149.34.48.4. public Class<?> getJavaDataType()
	149.34.48.5. public String getName()
	149.34.48.6. public boolean isAnalog()
	149.34.48.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.49. public class ZigBeeUnsignedInteger32 implements ZCLSimpleTypeDescription
	149.34.49.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.49.2. public short getId()
	149.34.49.3. public static ZigBeeUnsignedInteger32 getInstance()
	149.34.49.4. public Class<?> getJavaDataType()
	149.34.49.5. public String getName()
	149.34.49.6. public boolean isAnalog()
	149.34.49.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.50. public class ZigBeeUnsignedInteger40 implements ZCLSimpleTypeDescription
	149.34.50.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.50.2. public short getId()
	149.34.50.3. public static ZigBeeUnsignedInteger40 getInstance()
	149.34.50.4. public Class<?> getJavaDataType()
	149.34.50.5. public String getName()
	149.34.50.6. public boolean isAnalog()
	149.34.50.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.51. public class ZigBeeUnsignedInteger48 implements ZCLSimpleTypeDescription
	149.34.51.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.51.2. public short getId()
	149.34.51.3. public static ZigBeeUnsignedInteger48 getInstance()
	149.34.51.4. public Class<?> getJavaDataType()
	149.34.51.5. public String getName()
	149.34.51.6. public boolean isAnalog()
	149.34.51.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.52. public class ZigBeeUnsignedInteger56 implements ZCLSimpleTypeDescription
	149.34.52.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.52.2. public short getId()
	149.34.52.3. public static ZigBeeUnsignedInteger56 getInstance()
	149.34.52.4. public Class<?> getJavaDataType()
	149.34.52.5. public String getName()
	149.34.52.6. public boolean isAnalog()
	149.34.52.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.53. public class ZigBeeUnsignedInteger64 implements ZCLSimpleTypeDescription
	149.34.53.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.53.2. public short getId()
	149.34.53.3. public static ZigBeeUnsignedInteger64 getInstance()
	149.34.53.4. public Class<?> getJavaDataType()
	149.34.53.5. public String getName()
	149.34.53.6. public boolean isAnalog()
	149.34.53.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.54. public class ZigBeeUnsignedInteger8 implements ZCLSimpleTypeDescription
	149.34.54.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.54.2. public short getId()
	149.34.54.3. public static ZigBeeUnsignedInteger8 getInstance()
	149.34.54.4. public Class<?> getJavaDataType()
	149.34.54.5. public String getName()
	149.34.54.6. public boolean isAnalog()
	149.34.54.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.34.55. public class ZigBeeUTCTime implements ZCLSimpleTypeDescription
	149.34.55.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.55.2. public short getId()
	149.34.55.3. public static ZigBeeUTCTime getInstance()
	149.34.55.4. public Class<?> getJavaDataType()
	149.34.55.5. public String getName()
	149.34.55.6. public boolean isAnalog()
	149.34.55.7. public void serialize(ZigBeeDataOutput os, Object value) throws IOException

	149.35. References

	Chapter 150. Configurator Specification
	150.1. Introduction
	150.2. Entities
	150.3. Configuration Resources
	150.3.1. Configuration Resource Format
	150.3.2. PIDs, Factory Configurations and Targeted PIDs
	150.3.3. Configuration Dictionary
	150.3.4. Data Types
	150.3.4.1. Binary Data

	150.3.5. Ranking
	150.3.6. Overwrite Policies

	150.4. Bundle Configuration Resources
	150.5. Initial Configurations
	150.6. Life Cycle
	150.7. Grouping and Coordinations
	150.8. Security
	150.8.1. Configuration Permission
	150.8.2. Service Permission
	150.8.3. Configuration Admin Service
	150.8.4. File Permission

	150.9. Capabilities
	150.9.1. osgi.extender Capability

	150.10. osgi.configuration Namespace
	150.11. Configuration Resources in a Repository
	150.12. org.osgi.service.configurator
	150.12.1. Summary
	150.12.2. public final class ConfiguratorConstants
	150.12.2.1. public static final String CONFIGURATOR_BINARIES = "configurator.binaries"
	150.12.2.2. public static final String CONFIGURATOR_EXTENDER_NAME = "osgi.configurator"
	150.12.2.3. public static final String CONFIGURATOR_INITIAL = "configurator.initial"
	150.12.2.4. public static final String CONFIGURATOR_SPECIFICATION_VERSION = "1.0"
	150.12.2.5. public static final String POLICY_DEFAULT = "default"
	150.12.2.6. public static final String POLICY_FORCE = "force"
	150.12.2.7. public static final String PROPERTY_POLICY = ":configurator:policy"
	150.12.2.8. public static final String PROPERTY_PREFIX = ":configurator:"
	150.12.2.9. public static final String PROPERTY_RANKING = ":configurator:ranking"
	150.12.2.10. public static final String PROPERTY_RESOURCE_VERSION = ":configurator:resource-version"
	150.12.2.11. public static final String PROPERTY_SYMBOLIC_NAME = ":configurator:symbolic-name"
	150.12.2.12. public static final String PROPERTY_VERSION = ":configurator:version"

	150.13. org.osgi.service.configurator.annotations
	150.13.1. Summary
	150.13.2. @RequireConfigurator
	150.13.2.1. String[] value default {}

	150.14. org.osgi.service.configurator.namespace
	150.14.1. Summary
	150.14.2. public final class ConfigurationNamespace extends Namespace
	150.14.2.1. public static final String CONFIGURATION_NAMESPACE = "osgi.configuration"
	150.14.2.2. public static final String FACTORY_PID_ATTRIBUTE = "service.factoryPid"
	150.14.2.3. public static final String SERVICE_PID_ATTRIBUTE = "service.pid"

	150.15. References

	Chapter 151. JAX-RS Whiteboard Specification
	151.1. Introduction
	151.1.1. Entities

	151.2. The JAX-RS Whiteboard
	151.2.1. The JAX-RS Service Runtime Service
	151.2.2. Inspecting the Runtime DTOs
	151.2.2.1. DTO properties
	151.2.2.2. Failure DTOs

	151.2.3. Relation to the Servlet Container
	151.2.4. Isolation between JAX-RS Whiteboards

	151.3. Common Whiteboard Properties
	151.4. Registering JAX-RS Resources
	151.4.1. JAX-RS Resource mapping
	151.4.1.1. Clashing resource mappings

	151.4.2. JAX-RS Whiteboard Resource Lifecycle
	151.4.2.1. Resource Context Injection
	151.4.2.2. Request-Scoped Resources
	151.4.2.3. Asynchronous Responses

	151.4.3. Resource Service Properties
	151.4.4. A JAX-RS Whiteboard Resource Example

	151.5. Registering JAX-RS Extensions
	151.5.1. Name Binding and JAX-RS Extensions
	151.5.2. Extension ordering
	151.5.3. Extension dependencies
	151.5.4. Built in extensions
	151.5.5. JAX-RS Whiteboard Extension Lifecycle
	151.5.6. Extension Service Properties
	151.5.7. A JAX-RS Whiteboard Extension Example

	151.6. Registering JAX-RS Applications
	151.6.1. Application shadowing
	151.6.2. Application Extension Dependencies
	151.6.3. Application Service Properties
	151.6.4. Accessing the Application service properties
	151.6.5. A JAX-RS Whiteboard Application Example

	151.7. Advertising JAX-RS Endpoints
	151.8. Whiteboard Error Handling
	151.9. The JAX-RS Client API
	151.9.1. Client Filters, Interceptors, Readers and Writers
	151.9.2. Reactive Clients
	151.9.3. Consuming Server Sent Events

	151.10. Portability and Interoperability
	151.10.1. Media Type support
	151.10.1.1. Media Type names, wildcards and suffixes
	151.10.1.2. Media Type Selection Example

	151.11. Capabilities
	151.11.1. osgi.implementation Capability
	151.11.2. osgi.contract Capability
	151.11.3. osgi.service Capability

	151.12. Security
	151.12.1. Service Permissions
	151.12.2. Runtime Introspection
	151.12.3. Calling JAX-RS Whiteboard Services

	151.13. org.osgi.service.jaxrs.client
	151.13.1. Summary
	151.13.2. public interface PromiseRxInvoker extends RxInvoker<Promise>
	151.13.2.1. public Promise<Response> delete()
	151.13.2.2. public Promise<R> delete(Class<R> arg0)
	151.13.2.3. public Promise<R> delete(GenericType<R> arg0)
	151.13.2.4. public Promise<Response> get()
	151.13.2.5. public Promise<R> get(Class<R> arg0)
	151.13.2.6. public Promise<R> get(GenericType<R> arg0)
	151.13.2.7. public Promise<Response> head()
	151.13.2.8. public Promise<R> method(String arg0, Class<R> arg1)
	151.13.2.9. public Promise<R> method(String arg0, Entity<?> arg1, Class<R> arg2)
	151.13.2.10. public Promise<R> method(String arg0, Entity<?> arg1, GenericType<R> arg2)
	151.13.2.11. public Promise<Response> method(String arg0, Entity<?> arg1)
	151.13.2.12. public Promise<R> method(String arg0, GenericType<R> arg1)
	151.13.2.13. public Promise<Response> method(String arg0)
	151.13.2.14. public Promise<Response> options()
	151.13.2.15. public Promise<R> options(Class<R> arg0)
	151.13.2.16. public Promise<R> options(GenericType<R> arg0)
	151.13.2.17. public Promise<R> post(Entity<?> arg0, Class<R> arg1)
	151.13.2.18. public Promise<R> post(Entity<?> arg0, GenericType<R> arg1)
	151.13.2.19. public Promise<Response> post(Entity<?> arg0)
	151.13.2.20. public Promise<R> put(Entity<?> arg0, Class<R> arg1)
	151.13.2.21. public Promise<R> put(Entity<?> arg0, GenericType<R> arg1)
	151.13.2.22. public Promise<Response> put(Entity<?> arg0)
	151.13.2.23. public Promise<Response> trace()
	151.13.2.24. public Promise<R> trace(Class<R> arg0)
	151.13.2.25. public Promise<R> trace(GenericType<R> arg0)

	151.13.3. public interface SseEventSourceFactory
	151.13.3.1. public SseEventSource.Builder newBuilder(WebTarget target)
	151.13.3.2. public SseEventSource newSource(WebTarget target)

	151.14. org.osgi.service.jaxrs.runtime
	151.14.1. Summary
	151.14.2. public interface JaxrsEndpoint
	151.14.2.1. public static final String JAX_RS_BUNDLE_ID = "osgi.jaxrs.bundle.id"
	151.14.2.2. public static final String JAX_RS_BUNDLE_SYMBOLICNAME = "osgi.jaxrs.bundle.symbolicname"
	151.14.2.3. public static final String JAX_RS_BUNDLE_VERSION = "osgi.jaxrs.bundle.version"
	151.14.2.4. public static final String JAX_RS_SERVICE_ID = "osgi.jaxrs.service.id"
	151.14.2.5. public static final String JAX_RS_URI = "osgi.jaxrs.uri"

	151.14.3. public interface JaxrsServiceRuntime
	151.14.3.1. public RuntimeDTO getRuntimeDTO()

	151.14.4. public final class JaxrsServiceRuntimeConstants
	151.14.4.1. public static final String JAX_RS_SERVICE_ENDPOINT = "osgi.jaxrs.endpoint"

	151.15. org.osgi.service.jaxrs.runtime.dto
	151.15.1. Summary
	151.15.2. public class ApplicationDTO extends BaseApplicationDTO
	151.15.2.1. public ResourceMethodInfoDTO[] resourceMethods
	151.15.2.2. public ApplicationDTO()

	151.15.3. public abstract class BaseApplicationDTO extends BaseDTO
	151.15.3.1. public String base
	151.15.3.2. public ExtensionDTO[] extensionDTOs
	151.15.3.3. public ResourceDTO[] resourceDTOs
	151.15.3.4. public BaseApplicationDTO()

	151.15.4. public abstract class BaseDTO extends DTO
	151.15.4.1. public String name
	151.15.4.2. public long serviceId
	151.15.4.3. public BaseDTO()

	151.15.5. public abstract class BaseExtensionDTO extends BaseDTO
	151.15.5.1. public String[] extensionTypes
	151.15.5.2. public BaseExtensionDTO()

	151.15.6. public final class DTOConstants
	151.15.6.1. public static final int FAILURE_REASON_DUPLICATE_NAME = 6
	151.15.6.2. public static final int FAILURE_REASON_NOT_AN_EXTENSION_TYPE = 4
	151.15.6.3. public static final int FAILURE_REASON_REQUIRED_APPLICATION_UNAVAILABLE = 7
	151.15.6.4. public static final int FAILURE_REASON_REQUIRED_EXTENSIONS_UNAVAILABLE = 5
	151.15.6.5. public static final int FAILURE_REASON_SERVICE_NOT_GETTABLE = 2
	151.15.6.6. public static final int FAILURE_REASON_SHADOWED_BY_OTHER_SERVICE = 1
	151.15.6.7. public static final int FAILURE_REASON_UNKNOWN = 0
	151.15.6.8. public static final int FAILURE_REASON_VALIDATION_FAILED = 3

	151.15.7. public class ExtensionDTO extends BaseExtensionDTO
	151.15.7.1. public String[] consumes
	151.15.7.2. public ResourceDTO[] filteredByName
	151.15.7.3. public String[] nameBindings
	151.15.7.4. public String[] produces
	151.15.7.5. public ExtensionDTO()

	151.15.8. public class FailedApplicationDTO extends BaseApplicationDTO
	151.15.8.1. public int failureReason
	151.15.8.2. public FailedApplicationDTO()

	151.15.9. public class FailedExtensionDTO extends BaseExtensionDTO
	151.15.9.1. public int failureReason
	151.15.9.2. public FailedExtensionDTO()

	151.15.10. public class FailedResourceDTO extends BaseDTO
	151.15.10.1. public int failureReason
	151.15.10.2. public FailedResourceDTO()

	151.15.11. public class ResourceDTO extends BaseDTO
	151.15.11.1. public ResourceMethodInfoDTO[] resourceMethods
	151.15.11.2. public ResourceDTO()

	151.15.12. public class ResourceMethodInfoDTO extends DTO
	151.15.12.1. public String[] consumingMimeType
	151.15.12.2. public String method
	151.15.12.3. public String[] nameBindings
	151.15.12.4. public String path
	151.15.12.5. public String[] producingMimeType
	151.15.12.6. public ResourceMethodInfoDTO()

	151.15.13. public class RuntimeDTO extends DTO
	151.15.13.1. public ApplicationDTO[] applicationDTOs
	151.15.13.2. public ApplicationDTO defaultApplication
	151.15.13.3. public FailedApplicationDTO[] failedApplicationDTOs
	151.15.13.4. public FailedExtensionDTO[] failedExtensionDTOs
	151.15.13.5. public FailedResourceDTO[] failedResourceDTOs
	151.15.13.6. public ServiceReferenceDTO serviceDTO
	151.15.13.7. public RuntimeDTO()

	151.16. org.osgi.service.jaxrs.whiteboard
	151.16.1. Summary
	151.16.2. public final class JaxrsWhiteboardConstants
	151.16.2.1. public static final String JAX_RS_APPLICATION_BASE = "osgi.jaxrs.application.base"
	151.16.2.2. public static final String JAX_RS_APPLICATION_SELECT = "osgi.jaxrs.application.select"
	151.16.2.3. public static final String JAX_RS_APPLICATION_SERVICE_PROPERTIES = "osgi.jaxrs.application.serviceProperties"
	151.16.2.4. public static final String JAX_RS_DEFAULT_APPLICATION = ".default"
	151.16.2.5. public static final String JAX_RS_EXTENSION = "osgi.jaxrs.extension"
	151.16.2.6. public static final String JAX_RS_EXTENSION_SELECT = "osgi.jaxrs.extension.select"
	151.16.2.7. public static final String JAX_RS_MEDIA_TYPE = "osgi.jaxrs.media.type"
	151.16.2.8. public static final String JAX_RS_NAME = "osgi.jaxrs.name"
	151.16.2.9. public static final String JAX_RS_RESOURCE = "osgi.jaxrs.resource"
	151.16.2.10. public static final String JAX_RS_WHITEBOARD_IMPLEMENTATION = "osgi.jaxrs"
	151.16.2.11. public static final String JAX_RS_WHITEBOARD_SPECIFICATION_VERSION = "1.0"
	151.16.2.12. public static final String JAX_RS_WHITEBOARD_TARGET = "osgi.jaxrs.whiteboard.target"

	151.17. org.osgi.service.jaxrs.whiteboard.annotations
	151.17.1. Summary
	151.17.2. @RequireJaxrsWhiteboard

	151.18. org.osgi.service.jaxrs.whiteboard.propertytypes
	151.18.1. Summary
	151.18.2. @JaxrsApplicationBase
	151.18.2.1. String value
	151.18.2.2. String PREFIX_ = "osgi."

	151.18.3. @JaxrsApplicationSelect
	151.18.3.1. String value
	151.18.3.2. String PREFIX_ = "osgi."

	151.18.4. @JaxrsExtension
	151.18.4.1. String PREFIX_ = "osgi."

	151.18.5. @JaxrsExtensionSelect
	151.18.5.1. String[] value
	151.18.5.2. String PREFIX_ = "osgi."

	151.18.6. @JaxrsMediaType
	151.18.6.1. String[] value
	151.18.6.2. String PREFIX_ = "osgi."

	151.18.7. @JaxrsName
	151.18.7.1. String value
	151.18.7.2. String PREFIX_ = "osgi."

	151.18.8. @JaxrsResource
	151.18.8.1. String PREFIX_ = "osgi."

	151.18.9. @JaxrsWhiteboardTarget
	151.18.9.1. String value
	151.18.9.2. String PREFIX_ = "osgi."

	151.18.10. @JSONRequired
	151.18.10.1. String osgi_jaxrs_extension_select default "(osgi.jaxrs.media.type=application/json)"
	151.18.10.2. String FILTER = "(osgi.jaxrs.media.type=application/json)"

	151.19. References

	Chapter 152. CDI Integration Specification
	152.1. Introduction
	152.1.1. Essentials
	152.1.2. Entities
	152.1.3. Synopsis

	152.2. Components
	152.3. Component Scope
	152.3.1. Contexts
	152.3.1.1. When Contexts are Created

	152.4. Container Component
	152.4.1. Container Component Configuration
	152.4.2. Container Component Life Cycle

	152.5. Standard Definitions
	152.5.1. Annotation Inheritance
	152.5.2. Code Examples

	152.6. Single Component
	152.6.1. Single Component Naming
	152.6.2. Single Component Configuration

	152.7. Factory Component
	152.7.1. Factory Component Naming
	152.7.2. Factory Component Configuration

	152.8. Component Properties
	152.8.1. Reference Properties
	152.8.1.1. Target Property
	152.8.1.2. Minimum Cardinality Property

	152.9. Bean Property Types
	152.9.1. Bean Property Type Mapping
	152.9.2. Coercing Bean Property Type Values
	152.9.3. Standard Bean Property Types

	152.10. Providing Services
	152.10.1. @Service applied to bean class
	152.10.2. @Service applied to type use
	152.10.3. @Service applied to Producers
	152.10.4. @Service Type Restrictions
	152.10.5. Service Properties
	152.10.5.1. Container component service properties

	152.10.6. Service Scope
	152.10.7. Container Component Services
	152.10.8. Single Component Services
	152.10.9. Factory Component Services

	152.11. Component Property Injection Points
	152.11.1. Coordinator Support

	152.12. Reference Injection Points
	152.12.1. Reference injection point types
	152.12.2. Reference Service scope
	152.12.3. Bean Service Objects
	152.12.4. Reference Greediness
	152.12.5. Service Type
	152.12.6. Any Service Type
	152.12.7. Target Filter
	152.12.7.1. Bean Property Types as target filters

	152.12.8. Reference Names
	152.12.9. Static References
	152.12.10. Static Optional References
	152.12.11. Static Multi-cardinality References
	152.12.12. Default Minimum Cardinality
	152.12.13. Dynamic References

	152.13. Interacting with Service Events
	152.14. CDI Component Runtime
	152.14.1. Relationship to the OSGi Framework
	152.14.2. Injecting the Bundle Context
	152.14.3. Starting and Stopping CCR
	152.14.4. Logging Messages
	152.14.5. Bundle Activator Interaction
	152.14.6. Introspection
	152.14.7. Logger Support
	152.14.8. Disabling Components
	152.14.9. Container Component and Service Cycles

	152.15. Capabilities
	152.16. Relationship to CDI features
	152.16.1. Bean Descriptors
	152.16.2. Bean Discovery
	152.16.2.1. Build tool support

	152.16.3. Portable Extensions
	152.16.3.1. Portable Extension Services and Beans
	152.16.3.2. Embedded Portable Extension

	152.16.4. Bean Manager
	152.16.5. Decorators and Interceptors

	152.17. Security
	152.17.1. Service Permissions
	152.17.2. Required Admin Permission
	152.17.3. Using hasPermission
	152.17.4. Configuration Multi-Locations and Regions

	152.18. org.osgi.service.cdi
	152.18.1. Summary
	152.18.2. public class CDIConstants
	152.18.2.1. public static final String CDI_CAPABILITY_NAME = "osgi.cdi"
	152.18.2.2. public static final String CDI_COMPONENT_NAME = "$"
	152.18.2.3. public static final String CDI_CONTAINER_ID = "container.id"
	152.18.2.4. public static final String CDI_CONTAINER_ID_PROPERTY = "osgi.cdi.container.id"
	152.18.2.5. public static final String CDI_EXTENSION_PROPERTY = "osgi.cdi.extension"
	152.18.2.6. public static final String CDI_SPECIFICATION_VERSION = "1.0"
	152.18.2.7. public static final String REQUIREMENT_BEANS_ATTRIBUTE = "beans"
	152.18.2.8. public static final String REQUIREMENT_DESCRIPTOR_ATTRIBUTE = "descriptor"

	152.18.3. enum ComponentType
	152.18.3.1. CONTAINER
	152.18.3.2. SINGLE
	152.18.3.3. FACTORY
	152.18.3.4. public static ComponentType valueOf(String name)
	152.18.3.5. public static ComponentType[] values()

	152.18.4. enum ConfigurationPolicy
	152.18.4.1. OPTIONAL
	152.18.4.2. REQUIRED
	152.18.4.3. public static ConfigurationPolicy valueOf(String name)
	152.18.4.4. public static ConfigurationPolicy[] values()

	152.18.5. enum MaximumCardinality
	152.18.5.1. ONE
	152.18.5.2. MANY
	152.18.5.3. public static MaximumCardinality fromInt(int value)
	152.18.5.4. public int toInt()
	152.18.5.5. public static MaximumCardinality valueOf(String name)
	152.18.5.6. public static MaximumCardinality[] values()

	152.18.6. enum ReferencePolicy
	152.18.6.1. STATIC
	152.18.6.2. DYNAMIC
	152.18.6.3. public static ReferencePolicy valueOf(String name)
	152.18.6.4. public static ReferencePolicy[] values()

	152.18.7. enum ReferencePolicyOption
	152.18.7.1. GREEDY
	152.18.7.2. RELUCTANT
	152.18.7.3. public static ReferencePolicyOption valueOf(String name)
	152.18.7.4. public static ReferencePolicyOption[] values()

	152.18.8. enum ServiceScope
	152.18.8.1. SINGLETON
	152.18.8.2. BUNDLE
	152.18.8.3. PROTOTYPE
	152.18.8.4. public static ServiceScope valueOf(String name)
	152.18.8.5. public static ServiceScope[] values()

	152.19. org.osgi.service.cdi.annotations
	152.19.1. Summary
	152.19.2. @Bean
	152.19.3. @BeanPropertyType
	152.19.4. public static final class BeanPropertyType.Literal extends AnnotationLiteral<BeanPropertyType> implements BeanPropertyType
	152.19.4.1. public static final BeanPropertyType INSTANCE
	152.19.4.2. public Literal()

	152.19.5. @Beans
	152.19.5.1. Class<?>[] value default {}

	152.19.6. @ComponentProperties
	152.19.7. public static final class ComponentProperties.Literal extends AnnotationLiteral<ComponentProperties> implements ComponentProperties
	152.19.7.1. public static final ComponentProperties INSTANCE
	152.19.7.2. public Literal()

	152.19.8. @ComponentScoped
	152.19.9. public static final class ComponentScoped.Literal extends AnnotationLiteral<ComponentScoped> implements ComponentScoped
	152.19.9.1. public static final ComponentScoped INSTANCE
	152.19.9.2. public Literal()

	152.19.10. @FactoryComponent
	152.19.10.1. String value default "$"

	152.19.11. public static final class FactoryComponent.Literal extends AnnotationLiteral<FactoryComponent> implements FactoryComponent
	152.19.11.1. public static final FactoryComponent.Literal of(String pid)
	152.19.11.2. public String value()

	152.19.12. @MinimumCardinality
	152.19.12.1. int value default 1

	152.19.13. public static final class MinimumCardinality.Literal extends AnnotationLiteral<MinimumCardinality> implements MinimumCardinality
	152.19.13.1. public static final MinimumCardinality.Literal of(int value)
	152.19.13.2. public int value()

	152.19.14. @PID
	152.19.14.1. String value default "$"
	152.19.14.2. ConfigurationPolicy policy default OPTIONAL

	152.19.15. public static final class PID.Literal extends AnnotationLiteral<PID> implements PID
	152.19.15.1. public static final PID.Literal of(String pid, ConfigurationPolicy policy)
	152.19.15.2. public ConfigurationPolicy policy()
	152.19.15.3. public String value()

	152.19.16. @PIDs
	152.19.16.1. PID[] value

	152.19.17. public static final class PIDs.Literal extends AnnotationLiteral<PIDs> implements PIDs
	152.19.17.1. public static PIDs of(PID[] pids)
	152.19.17.2. public PID[] value()

	152.19.18. @PrototypeRequired
	152.19.19. public static final class PrototypeRequired.Literal extends AnnotationLiteral<PrototypeRequired> implements PrototypeRequired
	152.19.19.1. public static final PrototypeRequired INSTANCE
	152.19.19.2. public Literal()

	152.19.20. @Reference
	152.19.20.1. Class<?> value default Object.class
	152.19.20.2. String target default ""

	152.19.21. public static final class Reference.Any
	152.19.21.1. public Any()

	152.19.22. public static final class Reference.Literal extends AnnotationLiteral<Reference> implements Reference
	152.19.22.1. public static final Reference.Literal of(Class<?> service, String target)
	152.19.22.2. public String target()
	152.19.22.3. public Class<?> value()

	152.19.23. @Reluctant
	152.19.24. public static final class Reluctant.Literal extends AnnotationLiteral<Reluctant> implements Reluctant
	152.19.24.1. public static final Reluctant INSTANCE
	152.19.24.2. public Literal()

	152.19.25. @RequireCDIExtender
	152.19.25.1. String[] descriptor default "META-INF/beans.xml"
	152.19.25.2. Class<?>[] beans default {}

	152.19.26. @RequireCDIImplementation
	152.19.27. @Service
	152.19.27.1. Class<?>[] value default {}

	152.19.28. public static final class Service.Literal extends AnnotationLiteral<Service> implements Service
	152.19.28.1. public static final Service.Literal of(Class<?>[] interfaces)
	152.19.28.2. public Class<?>[] value()

	152.19.29. @ServiceInstance
	152.19.29.1. ServiceScope value default SINGLETON

	152.19.30. public static final class ServiceInstance.Literal extends AnnotationLiteral<ServiceInstance> implements ServiceInstance
	152.19.30.1. public static ServiceInstance.Literal of(ServiceScope type)
	152.19.30.2. public ServiceScope value()

	152.19.31. @SingleComponent
	152.19.32. public static final class SingleComponent.Literal extends AnnotationLiteral<SingleComponent> implements SingleComponent
	152.19.32.1. public static final SingleComponent INSTANCE
	152.19.32.2. public Literal()

	152.20. org.osgi.service.cdi.propertytypes
	152.20.1. Summary
	152.20.2. public class BeanPropertyException extends RuntimeException
	152.20.2.1. public BeanPropertyException(String message)
	152.20.2.2. public BeanPropertyException(String message, Throwable cause)

	152.20.3. @ExportedService
	152.20.3.1. Class<?>[] service_exported_interfaces
	152.20.3.2. String[] service_exported_configs default {}
	152.20.3.3. String[] service_exported_intents default {}
	152.20.3.4. String[] service_exported_intents_extra default {}
	152.20.3.5. String[] service_intents default {}

	152.20.4. @ServiceDescription
	152.20.4.1. String value

	152.20.5. @ServiceRanking
	152.20.5.1. int value

	152.20.6. @ServiceVendor
	152.20.6.1. String value

	152.21. org.osgi.service.cdi.reference
	152.21.1. Summary
	152.21.2. public interface BeanServiceObjects<S>
	152.21.2.1. public S getService()
	152.21.2.2. public ServiceReference<S> getServiceReference()
	152.21.2.3. public void ungetService(S service)

	152.21.3. public interface BindBeanServiceObjects<S>
	152.21.3.1. public BindBeanServiceObjects<S> adding(Consumer<BeanServiceObjects<S>> action)
	152.21.3.2. public void bind()
	152.21.3.3. public BindBeanServiceObjects<S> modified(Consumer<BeanServiceObjects<S>> action)
	152.21.3.4. public BindBeanServiceObjects<S> removed(Consumer<BeanServiceObjects<S>> action)

	152.21.4. public interface BindService<S>
	152.21.4.1. public BindService<S> adding(Consumer<S> action)
	152.21.4.2. public BindService<S> adding(BiConsumer<S, Map<String, Object>> action)
	152.21.4.3. public void bind()
	152.21.4.4. public BindService<S> modified(Consumer<S> action)
	152.21.4.5. public BindService<S> modified(BiConsumer<S, Map<String, Object>> action)
	152.21.4.6. public BindService<S> removed(Consumer<S> action)
	152.21.4.7. public BindService<S> removed(BiConsumer<S, Map<String, Object>> action)

	152.21.5. public interface BindServiceReference<S>
	152.21.5.1. public BindServiceReference<S> adding(Consumer<ServiceReference<S>> action)
	152.21.5.2. public BindServiceReference<S> adding(BiConsumer<ServiceReference<S>, S> action)
	152.21.5.3. public void bind()
	152.21.5.4. public BindServiceReference<S> modified(Consumer<ServiceReference<S>> action)
	152.21.5.5. public BindServiceReference<S> modified(BiConsumer<ServiceReference<S>, S> action)
	152.21.5.6. public BindServiceReference<S> removed(Consumer<ServiceReference<S>> action)
	152.21.5.7. public BindServiceReference<S> removed(BiConsumer<ServiceReference<S>, S> action)

	152.22. org.osgi.service.cdi.runtime
	152.22.1. Summary
	152.22.2. public interface CDIComponentRuntime
	152.22.2.1. public Collection<ContainerDTO> getContainerDTOs(Bundle... bundles)
	152.22.2.2. public ContainerTemplateDTO getContainerTemplateDTO(Bundle bundle)

	152.23. org.osgi.service.cdi.runtime.dto
	152.23.1. Summary
	152.23.2. public class ActivationDTO extends DTO
	152.23.2.1. public List<String> errors
	152.23.2.2. public ServiceReferenceDTO service
	152.23.2.3. public ActivationTemplateDTO template
	152.23.2.4. public ActivationDTO()

	152.23.3. public class ComponentDTO extends DTO
	152.23.3.1. public boolean enabled
	152.23.3.2. public List<ComponentInstanceDTO> instances
	152.23.3.3. public ComponentTemplateDTO template
	152.23.3.4. public ComponentDTO()

	152.23.4. public class ComponentInstanceDTO extends DTO
	152.23.4.1. public List<ActivationDTO> activations
	152.23.4.2. public List<ConfigurationDTO> configurations
	152.23.4.3. public Map<String, Object> properties
	152.23.4.4. public List<ReferenceDTO> references
	152.23.4.5. public ComponentInstanceDTO()

	152.23.5. public class ConfigurationDTO extends DTO
	152.23.5.1. public Map<String, Object> properties
	152.23.5.2. public ConfigurationTemplateDTO template
	152.23.5.3. public ConfigurationDTO()

	152.23.6. public class ContainerDTO extends DTO
	152.23.6.1. public BundleDTO bundle
	152.23.6.2. public long changeCount
	152.23.6.3. public List<ComponentDTO> components
	152.23.6.4. public List<String> errors
	152.23.6.5. public List<ExtensionDTO> extensions
	152.23.6.6. public ContainerTemplateDTO template
	152.23.6.7. public ContainerDTO()

	152.23.7. public class ExtensionDTO extends DTO
	152.23.7.1. public ServiceReferenceDTO service
	152.23.7.2. public ExtensionTemplateDTO template
	152.23.7.3. public ExtensionDTO()

	152.23.8. public class ReferenceDTO extends DTO
	152.23.8.1. public List<ServiceReferenceDTO> matches
	152.23.8.2. public int minimumCardinality
	152.23.8.3. public String targetFilter
	152.23.8.4. public ReferenceTemplateDTO template
	152.23.8.5. public ReferenceDTO()

	152.24. org.osgi.service.cdi.runtime.dto.template
	152.24.1. Summary
	152.24.2. public class ActivationTemplateDTO extends DTO
	152.24.2.1. public Map<String, Object> properties
	152.24.2.2. public ServiceScope scope
	152.24.2.3. public List<String> serviceClasses
	152.24.2.4. public ActivationTemplateDTO()

	152.24.3. public class ComponentTemplateDTO extends DTO
	152.24.3.1. public List<ActivationTemplateDTO> activations
	152.24.3.2. public List<String> beans
	152.24.3.3. public List<ConfigurationTemplateDTO> configurations
	152.24.3.4. public String name
	152.24.3.5. public Map<String, Object> properties
	152.24.3.6. public List<ReferenceTemplateDTO> references
	152.24.3.7. public ComponentType type
	152.24.3.8. public ComponentTemplateDTO()

	152.24.4. public class ConfigurationTemplateDTO extends DTO
	152.24.4.1. public MaximumCardinality maximumCardinality
	152.24.4.2. public String pid
	152.24.4.3. public ConfigurationPolicy policy
	152.24.4.4. public ConfigurationTemplateDTO()

	152.24.5. public class ContainerTemplateDTO extends DTO
	152.24.5.1. public List<ComponentTemplateDTO> components
	152.24.5.2. public List<ExtensionTemplateDTO> extensions
	152.24.5.3. public String id
	152.24.5.4. public ContainerTemplateDTO()

	152.24.6. public class ExtensionTemplateDTO extends DTO
	152.24.6.1. public String serviceFilter
	152.24.6.2. public ExtensionTemplateDTO()

	152.24.7. public class ReferenceTemplateDTO extends DTO
	152.24.7.1. public MaximumCardinality maximumCardinality
	152.24.7.2. public int minimumCardinality
	152.24.7.3. public String name
	152.24.7.4. public ReferencePolicy policy
	152.24.7.5. public ReferencePolicyOption policyOption
	152.24.7.6. public String serviceType
	152.24.7.7. public String targetFilter
	152.24.7.8. public ReferenceTemplateDTO()

	152.25. References

	Chapter 153. Service Layer API for oneM2M™
	153.1. Introduction of oneM2M
	153.2. Application Portability Problem of oneM2M
	153.3. Introduction of Service Layer API for oneM2M
	153.4. Essentials
	153.5. Entities
	153.6. oneM2M ServiceLayer
	153.7. NotificationListener
	153.8. DTO
	153.9. Security
	153.10. org.osgi.service.onem2m
	153.10.1. Summary
	153.10.2. public interface NotificationListener
	153.10.2.1. public void notified(RequestPrimitiveDTO request)

	153.10.3. public class OneM2MException extends IOException
	153.10.3.1. public OneM2MException(String message, int errorCode)
	153.10.3.2. public int getErrorCode()

	153.10.4. public interface ServiceLayer
	153.10.4.1. public Promise<ResourceDTO> create(String uri, ResourceDTO resource)
	153.10.4.2. public Promise<Boolean> delete(String uri)
	153.10.4.3. public Promise<List<String>> discovery(String uri, FilterCriteriaDTO fc)
	153.10.4.4. public Promise<List<String>> discovery(String uri, FilterCriteriaDTO fc, RequestPrimitiveDTO.DesiredIdentifierResultType drt)
	153.10.4.5. public Promise<Boolean> notify(String uri, NotificationDTO notification)
	153.10.4.6. public Promise<ResponsePrimitiveDTO> request(RequestPrimitiveDTO request)
	153.10.4.7. public Promise<ResourceDTO> retrieve(String uri)
	153.10.4.8. public Promise<ResourceDTO> retrieve(String uri, List<String> targetAttributes)
	153.10.4.9. public Promise<ResourceDTO> update(String uri, ResourceDTO resource)

	153.11. org.osgi.service.onem2m.dto
	153.11.1. Summary
	153.11.2. public class AttributeDTO extends DTO
	153.11.2.1. public String name
	153.11.2.2. public Object value
	153.11.2.3. public AttributeDTO()

	153.11.3. public class ChildResourceRefDTO extends DTO
	153.11.3.1. public String name
	153.11.3.2. public String specializationID
	153.11.3.3. public Integer type
	153.11.3.4. public String uri
	153.11.3.5. public ChildResourceRefDTO()

	153.11.4. public final class Constants
	153.11.4.1. public static final int RT_accessControlPolicy = 1
	153.11.4.2. public static final int RT_accessControlPolicyAnnc = 10001
	153.11.4.3. public static final int RT_AE = 2
	153.11.4.4. public static final int RT_AEAnnc = 10002
	153.11.4.5. public static final int RT_AEContactList = 43
	153.11.4.6. public static final int RT_AEContactListPerCSE = 44
	153.11.4.7. public static final int RT_authorizationDecision = 35
	153.11.4.8. public static final int RT_authorizationInformation = 37
	153.11.4.9. public static final int RT_authorizationPolicy = 36
	153.11.4.10. public static final int RT_backgroundDataTransfer = 49
	153.11.4.11. public static final int RT_container = 3
	153.11.4.12. public static final int RT_containerAnnc = 10003
	153.11.4.13. public static final int RT_contentInstance = 4
	153.11.4.14. public static final int RT_contentInstanceAnnc = 10004
	153.11.4.15. public static final int RT_crossResourceSubscription = 48
	153.11.4.16. public static final int RT_CSEBase = 5
	153.11.4.17. public static final int RT_delivery = 6
	153.11.4.18. public static final int RT_dynamicAuthorizationConsultation = 34
	153.11.4.19. public static final int RT_dynamicAuthorizationConsultationAnnc = 10034
	153.11.4.20. public static final int RT_eventConfig = 7
	153.11.4.21. public static final int RT_execInstance = 8
	153.11.4.22. public static final int RT_flexContainer = 28
	153.11.4.23. public static final int RT_flexContainerAnnc = 10028
	153.11.4.24. public static final int RT_group = 9
	153.11.4.25. public static final int RT_groupAnnc = 10009
	153.11.4.26. public static final int RT_localMulticastGroup = 45
	153.11.4.27. public static final int RT_locationPolicy = 10
	153.11.4.28. public static final int RT_locationPolicyAnnc = 10010
	153.11.4.29. public static final int RT_m2mServiceSubscriptionProfile = 11
	153.11.4.30. public static final int RT_mgmtCmd = 12
	153.11.4.31. public static final int RT_mgmtObj = 13
	153.11.4.32. public static final int RT_mgmtObjAnnc = 10013
	153.11.4.33. public static final int RT_multimediaSession = 46
	153.11.4.34. public static final int RT_multimediaSessionAnnc = 10046
	153.11.4.35. public static final int RT_node = 14
	153.11.4.36. public static final int RT_nodeAnnc = 10014
	153.11.4.37. public static final int RT_notificationTargetMgmtPolicyRef = 25
	153.11.4.38. public static final int RT_notificationTargetPolicy = 26
	153.11.4.39. public static final int RT_ontology = 39
	153.11.4.40. public static final int RT_ontologyAnnc = 10039
	153.11.4.41. public static final int RT_ontologyRepository = 38
	153.11.4.42. public static final int RT_ontologyRepositoryAnnc = 10038
	153.11.4.43. public static final int RT_policyDeletionRules = 27
	153.11.4.44. public static final int RT_pollingChannel = 15
	153.11.4.45. public static final int RT_remoteCSE = 16
	153.11.4.46. public static final int RT_remoteCSEAnnc = 10016
	153.11.4.47. public static final int RT_request = 17
	153.11.4.48. public static final int RT_role = 31
	153.11.4.49. public static final int RT_schedule = 18
	153.11.4.50. public static final int RT_scheduleAnnc = 10018
	153.11.4.51. public static final int RT_semanticDescriptor = 24
	153.11.4.52. public static final int RT_semanticDescriptorAnnc = 10024
	153.11.4.53. public static final int RT_semanticMashupInstance = 41
	153.11.4.54. public static final int RT_semanticMashupInstanceAnnc = 10041
	153.11.4.55. public static final int RT_semanticMashupJobProfile = 40
	153.11.4.56. public static final int RT_semanticMashupJobProfileAnnc = 10040
	153.11.4.57. public static final int RT_semanticMashupResult = 42
	153.11.4.58. public static final int RT_semanticMashupResultAnnc = 10042
	153.11.4.59. public static final int RT_serviceSubscribedAppRule = 19
	153.11.4.60. public static final int RT_serviceSubscribedNode = 20
	153.11.4.61. public static final int RT_statsCollect = 21
	153.11.4.62. public static final int RT_statsConfig = 22
	153.11.4.63. public static final int RT_subscription = 23
	153.11.4.64. public static final int RT_timeSeries = 29
	153.11.4.65. public static final int RT_timeSeriesAnnc = 10029
	153.11.4.66. public static final int RT_timeSeriesInstance = 30
	153.11.4.67. public static final int RT_timeSeriesInstanceAnnc = 10030
	153.11.4.68. public static final int RT_token = 32
	153.11.4.69. public static final int RT_transaction = 51
	153.11.4.70. public static final int RT_transactionMgmt = 50
	153.11.4.71. public static final int RT_triggerRequest = 47

	153.11.5. public class DasInfoDTO extends DTO
	153.11.5.1. public GenericDTO dasRequest
	153.11.5.2. public String securedDasRequest
	153.11.5.3. public String uri
	153.11.5.4. public DasInfoDTO()

	153.11.6. public class FilterCriteriaDTO extends DTO
	153.11.6.1. public String applyRelativePath
	153.11.6.2. public List<AttributeDTO> attribute
	153.11.6.3. public List<AttributeDTO> childAttribute
	153.11.6.4. public List<String> childLabels
	153.11.6.5. public List<Integer> childResourceType
	153.11.6.6. public String contentFilterQuery
	153.11.6.7. public Integer contentFilterSyntax
	153.11.6.8. public List<String> contentType
	153.11.6.9. public String createdAfter
	153.11.6.10. public String createdBefore
	153.11.6.11. public String expireAfter
	153.11.6.12. public String expireBefore
	153.11.6.13. public FilterCriteriaDTO.FilterOperation filterOperation
	153.11.6.14. public FilterCriteriaDTO.FilterUsage filterUsage
	153.11.6.15. public List<String> labels
	153.11.6.16. public String labelsQuery
	153.11.6.17. public Integer level
	153.11.6.18. public Integer limit
	153.11.6.19. public String modifiedSince
	153.11.6.20. public Integer offset
	153.11.6.21. public List<AttributeDTO> parentAttribute
	153.11.6.22. public List<String> parentLabels
	153.11.6.23. public List<Integer> parentResourceType
	153.11.6.24. public List<Integer> resourceType
	153.11.6.25. public List<String> semanticsFilter
	153.11.6.26. public Integer sizeAbove
	153.11.6.27. public Integer sizeBelow
	153.11.6.28. public Integer stateTagBigger
	153.11.6.29. public Integer stateTagSmaller
	153.11.6.30. public String unmodifiedSince
	153.11.6.31. public FilterCriteriaDTO()

	153.11.7. enum FilterCriteriaDTO.FilterOperation
	153.11.7.1. AND
	153.11.7.2. OR
	153.11.7.3. public int getValue()
	153.11.7.4. public static FilterCriteriaDTO.FilterOperation valueOf(String name)
	153.11.7.5. public static FilterCriteriaDTO.FilterOperation[] values()

	153.11.8. enum FilterCriteriaDTO.FilterUsage
	153.11.8.1. DiscoveryCriteria
	153.11.8.2. ConditionalRetrival
	153.11.8.3. IPEOndemandDiscovery
	153.11.8.4. public int getValue()
	153.11.8.5. public static FilterCriteriaDTO.FilterUsage valueOf(String name)
	153.11.8.6. public static FilterCriteriaDTO.FilterUsage[] values()

	153.11.9. public class GenericDTO extends DTO
	153.11.9.1. public Map<String, Object> element
	153.11.9.2. public GenericDTO()

	153.11.10. public class IPEDiscoveryRequestDTO extends DTO
	153.11.10.1. public FilterCriteriaDTO filterCriteria
	153.11.10.2. public String originator
	153.11.10.3. public IPEDiscoveryRequestDTO()

	153.11.11. public class LocalTokenIdAssignmentDTO extends DTO
	153.11.11.1. public String localTokenID
	153.11.11.2. public String tokenID
	153.11.11.3. public LocalTokenIdAssignmentDTO()

	153.11.12. public class NotificationDTO extends DTO
	153.11.12.1. public Boolean aeReferenceIDChange
	153.11.12.2. public Boolean aeRegistrationPointChange
	153.11.12.3. public String creator
	153.11.12.4. public IPEDiscoveryRequestDTO ipeDiscoveryRequest
	153.11.12.5. public NotificationEventDTO notificationEvent
	153.11.12.6. public String notificationForwardingURI
	153.11.12.7. public String notificationTarget
	153.11.12.8. public Boolean subscriptionDeletion
	153.11.12.9. public String subscriptionReference
	153.11.12.10. public String trackingID1
	153.11.12.11. public String trackingID2
	153.11.12.12. public Boolean verificationRequest
	153.11.12.13. public NotificationDTO()

	153.11.13. public class NotificationEventDTO
	153.11.13.1. public NotificationEventDTO.NotificationEventType notificationEventType
	153.11.13.2. public Map<String, Object> operationMonitor
	153.11.13.3. public Object representation
	153.11.13.4. public NotificationEventDTO()

	153.11.14. enum NotificationEventDTO.NotificationEventType
	153.11.14.1. update_of_resource
	153.11.14.2. delete_of_resource
	153.11.14.3. create_of_direct_child_resource
	153.11.14.4. delete_of_direct_child_resouce
	153.11.14.5. retrieve_of_container_resource_with_no_child_resource
	153.11.14.6. public int getValue()
	153.11.14.7. public static NotificationEventDTO.NotificationEventType valueOf(String name)
	153.11.14.8. public static NotificationEventDTO.NotificationEventType[] values()

	153.11.15. public class PrimitiveContentDTO extends DTO
	153.11.15.1. public List<NotificationDTO> aggregatedNotification
	153.11.15.2. public List<ResponsePrimitiveDTO> aggregatedResponse
	153.11.15.3. public List<String> attributeList
	153.11.15.4. public List<ChildResourceRefDTO> childResourceRefList
	153.11.15.5. public String debugInfo
	153.11.15.6. public List<String> listOfURIs
	153.11.15.7. public NotificationDTO notification
	153.11.15.8. public String queryResult
	153.11.15.9. public RequestPrimitiveDTO requestPrimitive
	153.11.15.10. public ResourceDTO resource
	153.11.15.11. public ResourceWrapperDTO resourceWrapper
	153.11.15.12. public ResponsePrimitiveDTO responsePrimitive
	153.11.15.13. public SecurityInfoDTO securityInfo
	153.11.15.14. public String uri
	153.11.15.15. public PrimitiveContentDTO()

	153.11.16. enum ReleaseVersion
	153.11.16.1. R1_0
	153.11.16.2. R1_1
	153.11.16.3. R2_0
	153.11.16.4. R2A
	153.11.16.5. R3_0
	153.11.16.6. R4_0
	153.11.16.7. R5_0
	153.11.16.8. public static ReleaseVersion valueOf(String name)
	153.11.16.9. public static ReleaseVersion[] values()

	153.11.17. public class RequestPrimitiveDTO extends DTO
	153.11.17.1. public Boolean authorizationRelationshipIndicator
	153.11.17.2. public Boolean authorizationSignatureIndicator
	153.11.17.3. public List<String> authorizationSignatures
	153.11.17.4. public PrimitiveContentDTO content
	153.11.17.5. public Boolean deliveryAggregation
	153.11.17.6. public RequestPrimitiveDTO.DesiredIdentifierResultType desiredIdentifierResultType
	153.11.17.7. public Integer eventCategory
	153.11.17.8. public FilterCriteriaDTO filterCriteria
	153.11.17.9. public String from
	153.11.17.10. public String groupRequestIdentifier
	153.11.17.11. public List<String> groupRequestTargetMembers
	153.11.17.12. public List<String> localTokenIDs
	153.11.17.13. public RequestPrimitiveDTO.Operation operation
	153.11.17.14. public String operationExecutionTime
	153.11.17.15. public String originatingTimestamp
	153.11.17.16. public ReleaseVersion releaseVersionIndicator
	153.11.17.17. public String requestExpirationTimestamp
	153.11.17.18. public String requestIdentifier
	153.11.17.19. public Integer resourceType
	153.11.17.20. public ResponseTypeInfoDTO responseType
	153.11.17.21. public RequestPrimitiveDTO.ResultContent resultContent
	153.11.17.22. public String resultExpirationTimestamp
	153.11.17.23. public String resultPersistence
	153.11.17.24. public List<String> roleIDs
	153.11.17.25. public Boolean semanticQueryIndicator
	153.11.17.26. public String to
	153.11.17.27. public List<String> tokenIDs
	153.11.17.28. public Boolean tokenRequestIndicator
	153.11.17.29. public List<String> tokens
	153.11.17.30. public String vendorInformation
	153.11.17.31. public RequestPrimitiveDTO()

	153.11.18. enum RequestPrimitiveDTO.DesiredIdentifierResultType
	153.11.18.1. structured
	153.11.18.2. unstructured
	153.11.18.3. public int getValue()
	153.11.18.4. public static RequestPrimitiveDTO.DesiredIdentifierResultType valueOf(String name)
	153.11.18.5. public static RequestPrimitiveDTO.DesiredIdentifierResultType[] values()

	153.11.19. enum RequestPrimitiveDTO.Operation
	153.11.19.1. Create
	153.11.19.2. Retrieve
	153.11.19.3. Update
	153.11.19.4. Delete
	153.11.19.5. Notify
	153.11.19.6. public int getValue()
	153.11.19.7. public static RequestPrimitiveDTO.Operation valueOf(String name)
	153.11.19.8. public static RequestPrimitiveDTO.Operation[] values()

	153.11.20. enum RequestPrimitiveDTO.ResultContent
	153.11.20.1. nothing
	153.11.20.2. attributes
	153.11.20.3. hierarchicalAddress
	153.11.20.4. hierarchicalAddressAndAttributes
	153.11.20.5. attributesAndChildResources
	153.11.20.6. attributesAndChildResourceReferences
	153.11.20.7. childResourceReferences
	153.11.20.8. originalResource
	153.11.20.9. childResources
	153.11.20.10. public int getValue()
	153.11.20.11. public static RequestPrimitiveDTO.ResultContent valueOf(String name)
	153.11.20.12. public static RequestPrimitiveDTO.ResultContent[] values()

	153.11.21. public class ResourceDTO extends DTO
	153.11.21.1. public Map<String, Object> attribute
	153.11.21.2. public String creationTime
	153.11.21.3. public String lastModifiedTime
	153.11.21.4. public String parentID
	153.11.21.5. public String resourceID
	153.11.21.6. public String resourceName
	153.11.21.7. public Integer resourceType
	153.11.21.8. public ResourceDTO()

	153.11.22. public class ResourceWrapperDTO extends DTO
	153.11.22.1. public ResourceDTO resource
	153.11.22.2. public String uri
	153.11.22.3. public ResourceWrapperDTO()

	153.11.23. public class ResponsePrimitiveDTO extends DTO
	153.11.23.1. public List<LocalTokenIdAssignmentDTO> assignedTokenIdentifiers
	153.11.23.2. public Boolean AuthSignatureReqInfo
	153.11.23.3. public PrimitiveContentDTO content
	153.11.23.4. public Integer contentOffset
	153.11.23.5. public ResponsePrimitiveDTO.ContentStatus contentStatus
	153.11.23.6. public Integer eventCategory
	153.11.23.7. public String from
	153.11.23.8. public String originatingTimestamp
	153.11.23.9. public ReleaseVersion releaseVersionIndicator
	153.11.23.10. public String requestIdentifier
	153.11.23.11. public Integer responseStatusCode
	153.11.23.12. public String resultExpirationTimestamp
	153.11.23.13. public String to
	153.11.23.14. public List<DasInfoDTO> tokenReqInfo
	153.11.23.15. public String vendorInformation
	153.11.23.16. public ResponsePrimitiveDTO()

	153.11.24. enum ResponsePrimitiveDTO.ContentStatus
	153.11.24.1. PARTIAL_CONTENT
	153.11.24.2. FULL_CONTENT
	153.11.24.3. public static ResponsePrimitiveDTO.ContentStatus valueOf(String name)
	153.11.24.4. public static ResponsePrimitiveDTO.ContentStatus[] values()

	153.11.25. public class ResponseTypeInfoDTO extends DTO
	153.11.25.1. public List<String> notificationURI
	153.11.25.2. public ResponseTypeInfoDTO.ResponseType responseTypeValue
	153.11.25.3. public ResponseTypeInfoDTO()

	153.11.26. enum ResponseTypeInfoDTO.ResponseType
	153.11.26.1. nonBlockingRequestSynch
	153.11.26.2. nonBlockingRequestAsynch
	153.11.26.3. blockingRequest
	153.11.26.4. flexBlocking
	153.11.26.5. public int getValue()
	153.11.26.6. public static ResponseTypeInfoDTO.ResponseType valueOf(String name)
	153.11.26.7. public static ResponseTypeInfoDTO.ResponseType[] values()

	153.11.27. public class SecurityInfoDTO extends DTO
	153.11.27.1. public GenericDTO dasRequest
	153.11.27.2. public GenericDTO dasResponse
	153.11.27.3. public byte[] escertkeMessage
	153.11.27.4. public String esprimObject
	153.11.27.5. public GenericDTO esprimRandObject
	153.11.27.6. public SecurityInfoDTO.SecurityInfoType securityInfoType
	153.11.27.7. public SecurityInfoDTO()

	153.11.28. enum SecurityInfoDTO.SecurityInfoType
	153.11.28.1. DynamicAuthorizationRequest
	153.11.28.2. DynamicAuthorizationResponse
	153.11.28.3. ReceiverESPrimRandObjectRequest
	153.11.28.4. ReceiverESPrimRandObjectResponse
	153.11.28.5. ESPrimObject
	153.11.28.6. ESCertKEMessage
	153.11.28.7. DynamicAuthorizationRelationshipMappingRequest
	153.11.28.8. DynamicAuthorizationRelationshipMappingResponse
	153.11.28.9. public int getValue()
	153.11.28.10. public static SecurityInfoDTO.SecurityInfoType valueOf(String name)
	153.11.28.11. public static SecurityInfoDTO.SecurityInfoType[] values()

	153.12. References

	Chapter 154. Residential Device Management Tree Specification
	154.1. Introduction
	154.1.1. Essentials
	154.1.2. Entities

	154.2. The Residential Management Tree
	154.3. Managing Bundles
	154.3.1. Bundle Life Cycle Example
	154.3.2. Framework Restart
	154.3.3. Access to Wiring
	154.3.4. Wiring Example

	154.4. Filtering
	154.4.1. Example

	154.5. Log Access
	154.6. osgi.wiring.rmt.service Namespace
	154.7. Tree Summary
	154.7.1. Filter
	154.7.2. Framework
	154.7.3. Log

	154.8. org.osgi.dmt.residential
	154.8.1. $
	154.8.2. Bundle
	154.8.2.1. FRAGMENT = "FRAGMENT"
	154.8.2.2. INSTALLED = "INSTALLED"
	154.8.2.3. RESOLVED = "RESOLVED"
	154.8.2.4. STARTING = "STARTING"
	154.8.2.5. ACTIVE = "ACTIVE"
	154.8.2.6. STOPPING = "STOPPING"
	154.8.2.7. UNINSTALLED = "UNINSTALLED"

	154.8.3. Bundle.Certificate
	154.8.4. Bundle.Entry
	154.8.5. Filter
	154.8.6. Framework
	154.8.7. Wire
	154.8.8. Wire.Capability
	154.8.9. Wire.Requirement

	154.9. org.osgi.dmt.service.log
	154.9.1. Log
	154.9.2. LogEntry

	Chapter 155. TR-157 Amendment 3 Software Module Guidelines
	155.1. Management Agent
	155.2. Parameter Mapping
	155.3. References

	Chapter 157. Typed Event Service Specification
	157.1. Introduction
	157.1.1. Essentials
	157.1.2. Entities

	157.2. Events
	157.2.1. Type Safe Events
	157.2.1.1. Nested Data Structures

	157.2.2. Untyped Events
	157.2.3. Non Standard Type Safe Events
	157.2.4. Event Mutability and Thread Safety
	157.2.4.1. Typed Event Mutability
	157.2.4.2. Untyped Event Mutability

	157.3. Publishing Events
	157.3.1. Event Topics
	157.3.2. Automatically Generated Topics
	157.3.3. Thread Safety

	157.4. Receiving Events
	157.4.1. Receiving Typed Events
	157.4.2. Receiving Untyped Events
	157.4.3. Wildcard Topics
	157.4.4. Unhandled Events
	157.4.5. Filtering Events
	157.4.5.1. Nested Event Data
	157.4.5.2. Ignored Events

	157.4.6. Failing Event Handlers
	157.4.7. Event Handler Service Properties
	157.4.8. Error Handling

	157.5. The Typed Event Bus Service
	157.5.1. Error Handling

	157.6. Monitoring Events
	157.6.1. Event History

	157.7. Capabilities
	157.7.1. osgi.implementation Capability
	157.7.2. osgi.service Capability

	157.8. Security
	157.8.1. Topic Permission
	157.8.2. Required Permissions
	157.8.3. Security Context During Event Callbacks

	157.9. org.osgi.service.typedevent
	157.9.1. Summary
	157.9.2. public final class TopicPermission extends Permission
	157.9.2.1. public static final String PUBLISH = "publish"
	157.9.2.2. public static final String SUBSCRIBE = "subscribe"
	157.9.2.3. public TopicPermission(String name, String actions)
	157.9.2.4. public boolean equals(Object obj)
	157.9.2.5. public String getActions()
	157.9.2.6. public int hashCode()
	157.9.2.7. public boolean implies(Permission p)
	157.9.2.8. public PermissionCollection newPermissionCollection()

	157.9.3. public interface TypedEventBus
	157.9.3.1. public void deliver(Object event)
	157.9.3.2. public void deliver(String topic, Object event)
	157.9.3.3. public void deliverUntyped(String topic, Map<String, ?> event)

	157.9.4. public final class TypedEventConstants
	157.9.4.1. public static final String TYPED_EVENT_FILTER = "event.filter"
	157.9.4.2. public static final String TYPED_EVENT_IMPLEMENTATION = "osgi.typedevent"
	157.9.4.3. public static final String TYPED_EVENT_SPECIFICATION_VERSION = "1.0"
	157.9.4.4. public static final String TYPED_EVENT_TOPICS = "event.topics"
	157.9.4.5. public static final String TYPED_EVENT_TYPE = "event.type"

	157.9.5. public interface TypedEventHandler<T>
	157.9.5.1. public void notify(String topic, T event)

	157.9.6. public interface UnhandledEventHandler
	157.9.6.1. public void notifyUnhandled(String topic, Map<String, Object> event)

	157.9.7. public interface UntypedEventHandler
	157.9.7.1. public void notifyUntyped(String topic, Map<String, Object> event)

	157.10. org.osgi.service.typedevent.annotations
	157.10.1. Summary
	157.10.2. @RequireTypedEvent

	157.11. org.osgi.service.typedevent.monitor
	157.11.1. Summary
	157.11.2. public class MonitorEvent
	157.11.2.1. public Map<String, Object> eventData
	157.11.2.2. public Instant publicationTime
	157.11.2.3. public String topic
	157.11.2.4. public MonitorEvent()

	157.11.3. public interface TypedEventMonitor
	157.11.3.1. public PushStream<MonitorEvent> monitorEvents()
	157.11.3.2. public PushStream<MonitorEvent> monitorEvents(int history)
	157.11.3.3. public PushStream<MonitorEvent> monitorEvents(Instant history)

	157.12. org.osgi.service.typedevent.propertytypes
	157.12.1. Summary
	157.12.2. @EventFilter
	157.12.2.1. String value

	157.12.3. @EventTopics
	157.12.3.1. String[] value

	157.12.4. @EventType
	157.12.4.1. Class<?> value

	Chapter 158. Log Stream Provider Service Specification
	158.1. Introduction
	158.1.1. Entities

	158.2. Log Stream Provider
	158.3. Capabilities
	158.4. Security
	158.5. org.osgi.service.log.stream
	158.5.1. Summary
	158.5.2. public interface LogStreamProvider
	158.5.2.1. public PushStream<LogEntry> createStream(LogStreamProvider.Options... options)

	158.5.3. enum LogStreamProvider.Options
	158.5.3.1. HISTORY
	158.5.3.2. public static LogStreamProvider.Options valueOf(String name)
	158.5.3.3. public static LogStreamProvider.Options[] values()

	158.6. References
	158.7. Changes

	Chapter 159. Feature Service Specification
	159.1. Introduction
	159.1.1. Essentials
	159.1.2. Entities

	159.2. Feature
	159.2.1. Identifiers
	159.2.2. Feature Identifier
	159.2.2.1. Identifier type

	159.2.3. Attributes
	159.2.4. Using the Feature API

	159.3. Comments
	159.4. Bundles
	159.4.1. Bundle Metadata
	159.4.2. Using the Feature API

	159.5. Configurations
	159.6. Variables
	159.7. Extensions
	159.7.1. Text Extensions
	159.7.2. JSON Extensions
	159.7.3. Artifact list Extensions

	159.8. Framework Launching Properties
	159.9. Resource Versioning
	159.10. Capabilities
	159.10.1. osgi.service Capability

	159.11. org.osgi.service.feature
	159.11.1. Summary
	159.11.2. public interface BuilderFactory
	159.11.2.1. public FeatureArtifactBuilder newArtifactBuilder(ID id)
	159.11.2.2. public FeatureBundleBuilder newBundleBuilder(ID id)
	159.11.2.3. public FeatureConfigurationBuilder newConfigurationBuilder(String pid)
	159.11.2.4. public FeatureConfigurationBuilder newConfigurationBuilder(String factoryPid, String name)
	159.11.2.5. public FeatureExtensionBuilder newExtensionBuilder(String name, FeatureExtension.Type type, FeatureExtension.Kind kind)
	159.11.2.6. public FeatureBuilder newFeatureBuilder(ID id)

	159.11.3. public interface Feature
	159.11.3.1. public List<FeatureBundle> getBundles()
	159.11.3.2. public List<String> getCategories()
	159.11.3.3. public Map<String, FeatureConfiguration> getConfigurations()
	159.11.3.4. public Optional<String> getDescription()
	159.11.3.5. public Optional<String> getDocURL()
	159.11.3.6. public Map<String, FeatureExtension> getExtensions()
	159.11.3.7. public ID getID()
	159.11.3.8. public Optional<String> getLicense()
	159.11.3.9. public Optional<String> getName()
	159.11.3.10. public Optional<String> getSCM()
	159.11.3.11. public Map<String, Object> getVariables()
	159.11.3.12. public Optional<String> getVendor()
	159.11.3.13. public boolean isComplete()

	159.11.4. public interface FeatureArtifact
	159.11.4.1. public ID getID()
	159.11.4.2. public Map<String, Object> getMetadata()

	159.11.5. public interface FeatureArtifactBuilder
	159.11.5.1. public FeatureArtifactBuilder addMetadata(String key, Object value)
	159.11.5.2. public FeatureArtifactBuilder addMetadata(Map<String, Object> metadata)
	159.11.5.3. public FeatureArtifact build()

	159.11.6. public interface FeatureBuilder
	159.11.6.1. public FeatureBuilder addBundles(FeatureBundle... bundles)
	159.11.6.2. public FeatureBuilder addCategories(String... categories)
	159.11.6.3. public FeatureBuilder addConfigurations(FeatureConfiguration... configs)
	159.11.6.4. public FeatureBuilder addExtensions(FeatureExtension... extensions)
	159.11.6.5. public FeatureBuilder addVariable(String key, Object defaultValue)
	159.11.6.6. public FeatureBuilder addVariables(Map<String, Object> variables)
	159.11.6.7. public Feature build()
	159.11.6.8. public FeatureBuilder setComplete(boolean complete)
	159.11.6.9. public FeatureBuilder setDescription(String description)
	159.11.6.10. public FeatureBuilder setDocURL(String docURL)
	159.11.6.11. public FeatureBuilder setLicense(String license)
	159.11.6.12. public FeatureBuilder setName(String name)
	159.11.6.13. public FeatureBuilder setSCM(String scm)
	159.11.6.14. public FeatureBuilder setVendor(String vendor)

	159.11.7. public interface FeatureBundle
	159.11.7.1. public ID getID()
	159.11.7.2. public Map<String, Object> getMetadata()

	159.11.8. public interface FeatureBundleBuilder
	159.11.8.1. public FeatureBundleBuilder addMetadata(String key, Object value)
	159.11.8.2. public FeatureBundleBuilder addMetadata(Map<String, Object> metadata)
	159.11.8.3. public FeatureBundle build()

	159.11.9. public interface FeatureConfiguration
	159.11.9.1. public Optional<String> getFactoryPid()
	159.11.9.2. public String getPid()
	159.11.9.3. public Map<String, Object> getValues()

	159.11.10. public interface FeatureConfigurationBuilder
	159.11.10.1. public FeatureConfigurationBuilder addValue(String key, Object value)
	159.11.10.2. public FeatureConfigurationBuilder addValues(Map<String, Object> configValues)
	159.11.10.3. public FeatureConfiguration build()

	159.11.11. public final class FeatureConstants
	159.11.11.1. public static final String FEATURE_IMPLEMENTATION = "osgi.feature"
	159.11.11.2. public static final String FEATURE_SPECIFICATION_VERSION = "1.0"

	159.11.12. public interface FeatureExtension
	159.11.12.1. public List<FeatureArtifact> getArtifacts()
	159.11.12.2. public String getJSON()
	159.11.12.3. public FeatureExtension.Kind getKind()
	159.11.12.4. public String getName()
	159.11.12.5. public List<String> getText()
	159.11.12.6. public FeatureExtension.Type getType()

	159.11.13. enum FeatureExtension.Kind
	159.11.13.1. MANDATORY
	159.11.13.2. OPTIONAL
	159.11.13.3. TRANSIENT
	159.11.13.4. public static FeatureExtension.Kind valueOf(String name)
	159.11.13.5. public static FeatureExtension.Kind[] values()

	159.11.14. enum FeatureExtension.Type
	159.11.14.1. JSON
	159.11.14.2. TEXT
	159.11.14.3. ARTIFACTS
	159.11.14.4. public static FeatureExtension.Type valueOf(String name)
	159.11.14.5. public static FeatureExtension.Type[] values()

	159.11.15. public interface FeatureExtensionBuilder
	159.11.15.1. public FeatureExtensionBuilder addArtifact(FeatureArtifact artifact)
	159.11.15.2. public FeatureExtensionBuilder addText(String text)
	159.11.15.3. public FeatureExtension build()
	159.11.15.4. public FeatureExtensionBuilder setJSON(String json)

	159.11.16. public interface FeatureService
	159.11.16.1. public BuilderFactory getBuilderFactory()
	159.11.16.2. public ID getID(String groupId, String artifactId, String version)
	159.11.16.3. public ID getID(String groupId, String artifactId, String version, String type)
	159.11.16.4. public ID getID(String groupId, String artifactId, String version, String type, String classifier)
	159.11.16.5. public ID getIDfromMavenCoordinates(String coordinates)
	159.11.16.6. public Feature readFeature(Reader jsonReader) throws IOException
	159.11.16.7. public void writeFeature(Feature feature, Writer jsonWriter) throws IOException

	159.11.17. public interface ID
	159.11.17.1. public static final String FEATURE_ID_TYPE = "osgifeature"
	159.11.17.2. public String getArtifactId()
	159.11.17.3. public Optional<String> getClassifier()
	159.11.17.4. public String getGroupId()
	159.11.17.5. public Optional<String> getType()
	159.11.17.6. public String getVersion()
	159.11.17.7. public String toString()

	159.12. org.osgi.service.feature.annotation
	159.12.1. Summary
	159.12.2. @RequireFeatureService

	159.13. References

	Chapter 702. XML Parser Service Specification
	702.1. Introduction
	702.1.1. Essentials
	702.1.2. Entities
	702.1.3. Operations

	702.2. JAXP
	702.3. XML Parser service
	702.4. Properties
	702.5. Getting a Parser Factory
	702.6. Adapting a JAXP Parser to OSGi
	702.6.1. JAR Based Services
	702.6.2. XMLParserActivator
	702.6.3. Adapting an Existing JAXP Compatible Parser

	702.7. Usage of JAXP
	702.8. Security
	702.9. org.osgi.util.xml
	702.9.1. Summary
	702.9.2. public class XMLParserActivator implements BundleActivator, ServiceFactory<Object>
	702.9.2.1. public static final String DOMCLASSFILE = "/META-INF/services/javax.xml.parsers.DocumentBuilderFactory"
	702.9.2.2. public static final String DOMFACTORYNAME = "javax.xml.parsers.DocumentBuilderFactory"
	702.9.2.3. public static final String PARSER_NAMESPACEAWARE = "parser.namespaceAware"
	702.9.2.4. public static final String PARSER_VALIDATING = "parser.validating"
	702.9.2.5. public static final String SAXCLASSFILE = "/META-INF/services/javax.xml.parsers.SAXParserFactory"
	702.9.2.6. public static final String SAXFACTORYNAME = "javax.xml.parsers.SAXParserFactory"
	702.9.2.7. public XMLParserActivator()
	702.9.2.8. public Object getService(Bundle bundle, ServiceRegistration<Object> registration)
	702.9.2.9. public void setDOMProperties(DocumentBuilderFactory factory, Hashtable<String, Object> props)
	702.9.2.10. public void setSAXProperties(SAXParserFactory factory, Hashtable<String, Object> properties)
	702.9.2.11. public void start(BundleContext context) throws Exception
	702.9.2.12. public void stop(BundleContext context) throws Exception
	702.9.2.13. public void ungetService(Bundle bundle, ServiceRegistration<Object> registration, Object service)

	702.10. References

	Chapter 705. Promises Specification
	705.1. Introduction
	705.1.1. Essentials
	705.1.2. Entities

	705.2. Promise
	705.3. Deferred
	705.4. Callbacks
	705.4.1. Runnable
	705.4.2. Consumer
	705.4.3. Success and Failure

	705.5. Chaining Promises
	705.6. Monad
	705.7. Timing
	705.8. Functional Interfaces
	705.9. Utility Methods
	705.10. Security
	705.11. org.osgi.util.promise
	705.11.1. Summary
	705.11.2. public class Deferred<T>
	705.11.2.1. public Deferred()
	705.11.2.2. public void fail(Throwable failure)
	705.11.2.3. public Promise<T> getPromise()
	705.11.2.4. public void resolve(T value)
	705.11.2.5. public Promise<Void> resolveWith(Promise<? extends T> with)
	705.11.2.6. public Promise<Void> resolveWith(CompletionStage<? extends T> with)
	705.11.2.7. public String toString()

	705.11.3. public class FailedPromisesException extends RuntimeException
	705.11.3.1. public FailedPromisesException(Collection<Promise<?>> failed, Throwable cause)
	705.11.3.2. public Collection<Promise<?>> getFailedPromises()

	705.11.4. public interface Failure
	705.11.4.1. public void fail(Promise<?> resolved) throws Exception

	705.11.5. public interface Promise<T>
	705.11.5.1. public Promise<T> delay(long milliseconds)
	705.11.5.2. public Promise<T> fallbackTo(Promise<? extends T> fallback)
	705.11.5.3. public Promise<T> filter(Predicate<? super T> predicate)
	705.11.5.4. public Promise<R> flatMap(Function<? super T, Promise<? extends R>> mapper)
	705.11.5.5. public Throwable getFailure() throws InterruptedException
	705.11.5.6. public T getValue() throws InvocationTargetException, InterruptedException
	705.11.5.7. public boolean isDone()
	705.11.5.8. public Promise<R> map(Function<? super T, ? extends R> mapper)
	705.11.5.9. public Promise<T> onFailure(Consumer<? super Throwable> failure)
	705.11.5.10. public Promise<T> onResolve(Runnable callback)
	705.11.5.11. public Promise<T> onSuccess(Consumer<? super T> success)
	705.11.5.12. public Promise<T> recover(Function<Promise<?>, ? extends T> recovery)
	705.11.5.13. public Promise<T> recoverWith(Function<Promise<?>, Promise<? extends T>> recovery)
	705.11.5.14. public Promise<R> then(Success<? super T, ? extends R> success, Failure failure)
	705.11.5.15. public Promise<R> then(Success<? super T, ? extends R> success)
	705.11.5.16. public Promise<T> thenAccept(Consumer<? super T> consumer)
	705.11.5.17. public Promise<T> timeout(long milliseconds)
	705.11.5.18. public CompletionStage<T> toCompletionStage()

	705.11.6. public class PromiseFactory
	705.11.6.1. public PromiseFactory(Executor callbackExecutor)
	705.11.6.2. public PromiseFactory(Executor callbackExecutor, ScheduledExecutorService scheduledExecutor)
	705.11.6.3. public PromiseFactory(Executor callbackExecutor, ScheduledExecutorService scheduledExecutor, PromiseFactory.Option... options)
	705.11.6.4. public Promise<List<T>> all(Collection<Promise<S>> promises)
	705.11.6.5. public Deferred<T> deferred()
	705.11.6.6. public Executor executor()
	705.11.6.7. public Promise<T> failed(Throwable failure)
	705.11.6.8. public static Executor inlineExecutor()
	705.11.6.9. public Promise<T> resolved(T value)
	705.11.6.10. public Promise<T> resolvedWith(CompletionStage<? extends T> with)
	705.11.6.11. public Promise<T> resolvedWith(Promise<? extends T> with)
	705.11.6.12. public ScheduledExecutorService scheduledExecutor()
	705.11.6.13. public Promise<T> submit(Callable<? extends T> task)
	705.11.6.14. public Collector<Promise<S>, ?, Promise<List<T>>> toPromise()

	705.11.7. enum PromiseFactory.Option
	705.11.7.1. CALLBACKS_EXECUTOR_THREAD
	705.11.7.2. public static PromiseFactory.Option valueOf(String name)
	705.11.7.3. public static PromiseFactory.Option[] values()

	705.11.8. public class Promises
	705.11.8.1. public static Promise<List<T>> all(Collection<Promise<S>> promises)
	705.11.8.2. public static Promise<List<T>> all(Promise<? extends T>... promises)
	705.11.8.3. public static Promise<T> failed(Throwable failure)
	705.11.8.4. public static Promise<T> resolved(T value)

	705.11.9. public interface Success<T, R>
	705.11.9.1. public Promise<R> call(Promise<T> resolved) throws Exception

	705.11.10. public class TimeoutException extends Exception
	705.11.10.1. public TimeoutException()

	705.12. org.osgi.util.function
	705.12.1. Summary
	705.12.2. public interface Consumer<T>
	705.12.2.1. public void accept(T t) throws Exception
	705.12.2.2. public Consumer<T> andThen(Consumer<? super T> after)
	705.12.2.3. public static Consumer<T> asConsumer(Consumer<T> wrapped)
	705.12.2.4. public static Consumer<T> asJavaConsumer(Consumer<T> wrapped)
	705.12.2.5. public static Consumer<T> asJavaConsumerIgnoreException(Consumer<T> wrapped)

	705.12.3. public interface Function<T, R>
	705.12.3.1. public Function<T, S> andThen(Function<? super R, ? extends S> after)
	705.12.3.2. public R apply(T t) throws Exception
	705.12.3.3. public static Function<T, R> asFunction(Function<T, R> wrapped)
	705.12.3.4. public static Function<T, R> asJavaFunction(Function<T, R> wrapped)
	705.12.3.5. public static Function<T, R> asJavaFunctionOrElse(Function<T, R> wrapped, R orElse)
	705.12.3.6. public static Function<T, R> asJavaFunctionOrElseGet(Function<T, R> wrapped, Supplier<? extends R> orElseGet)
	705.12.3.7. public Function<S, R> compose(Function<? super S, ? extends T> before)

	705.12.4. public interface Predicate<T>
	705.12.4.1. public Predicate<T> and(Predicate<? super T> and)
	705.12.4.2. public static Predicate<T> asJavaPredicate(Predicate<T> wrapped)
	705.12.4.3. public static Predicate<T> asJavaPredicateOrElse(Predicate<T> wrapped, boolean orElse)
	705.12.4.4. public static Predicate<T> asJavaPredicateOrElseGet(Predicate<T> wrapped, BooleanSupplier orElseGet)
	705.12.4.5. public static Predicate<T> asPredicate(Predicate<T> wrapped)
	705.12.4.6. public Predicate<T> negate()
	705.12.4.7. public Predicate<T> or(Predicate<? super T> or)
	705.12.4.8. public boolean test(T t) throws Exception

	705.12.5. public interface Supplier<T>
	705.12.5.1. public static Supplier<T> asJavaSupplier(Supplier<T> wrapped)
	705.12.5.2. public static Supplier<T> asJavaSupplierOrElse(Supplier<T> wrapped, T orElse)
	705.12.5.3. public static Supplier<T> asJavaSupplierOrElseGet(Supplier<T> wrapped, Supplier<? extends T> orElseGet)
	705.12.5.4. public static Supplier<T> asSupplier(Supplier<T> wrapped)
	705.12.5.5. public T get() throws Exception

	705.13. References
	705.14. Changes

	Chapter 706. Push Stream Specification
	706.1. Introduction
	706.1.1. Essentials
	706.1.2. Entities

	706.2. Asynchronous Event Streams
	706.2.1. The Push Event
	706.2.2. The Push Event Source
	706.2.3. The Push Event Consumer
	706.2.4. Closing the Event Stream

	706.3. The Push Stream
	706.3.1. Simple Pipelines
	706.3.1.1. Mapping, Flat Mapping and Filtering
	706.3.1.1.1. Mapping
	706.3.1.1.2. Flat Mapping
	706.3.1.1.3. Filtering
	706.3.1.1.4. Asynchronous Mapping

	706.3.1.2. Stateless and Stateful Intermediate Operations
	706.3.1.3. Terminal Operations

	706.3.2. Buffering, Back pressure and Circuit Breakers
	706.3.2.1. Back pressure
	706.3.2.2. Buffering
	706.3.2.3. Buffering policies
	706.3.2.4. Building a Buffer or Push Stream
	706.3.2.5. Circuit Breakers

	706.3.3. Forking
	706.3.4. Coalescing and Windowing
	706.3.4.1. Coalescing
	706.3.4.2. Windowing

	706.3.5. Merging and Splitting
	706.3.5.1. Merging
	706.3.5.2. Splitting

	706.3.6. Time Limited Streams
	706.3.7. Closing Streams

	706.4. The Push Stream Provider
	706.4.1. Building Buffers
	706.4.2. Mapping between Java 8 Streams and Push Streams

	706.5. Simple Push Event Sources
	706.5.1. Optimizing Event Creation

	706.6. Security
	706.7. org.osgi.util.pushstream
	706.7.1. Summary
	706.7.2. public interface BufferBuilder<R, T, U extends BlockingQueue<PushEvent<? extends T>>>
	706.7.2.1. public R build()
	706.7.2.2. public BufferBuilder<R, T, U> withBuffer(U queue)
	706.7.2.3. public BufferBuilder<R, T, U> withExecutor(Executor executor)
	706.7.2.4. public BufferBuilder<R, T, U> withParallelism(int parallelism)
	706.7.2.5. public BufferBuilder<R, T, U> withPushbackPolicy(PushbackPolicy<T, U> pushbackPolicy)
	706.7.2.6. public BufferBuilder<R, T, U> withPushbackPolicy(PushbackPolicyOption pushbackPolicyOption, long time)
	706.7.2.7. public BufferBuilder<R, T, U> withQueuePolicy(QueuePolicy<T, U> queuePolicy)
	706.7.2.8. public BufferBuilder<R, T, U> withQueuePolicy(QueuePolicyOption queuePolicyOption)
	706.7.2.9. public BufferBuilder<R, T, U> withScheduler(ScheduledExecutorService scheduler)

	706.7.3. public interface PushbackPolicy<T, U extends BlockingQueue<PushEvent<? extends T>>>
	706.7.3.1. public long pushback(U queue) throws Exception

	706.7.4. enum PushbackPolicyOption
	706.7.4.1. FIXED
	706.7.4.2. ON_FULL_FIXED
	706.7.4.3. ON_FULL_EXPONENTIAL
	706.7.4.4. LINEAR
	706.7.4.5. public abstract PushbackPolicy<T, U> getPolicy(long value)
	706.7.4.6. public static PushbackPolicyOption valueOf(String name)
	706.7.4.7. public static PushbackPolicyOption[] values()

	706.7.5. public abstract class PushEvent<T>
	706.7.5.1. public static PushEvent<T> close()
	706.7.5.2. public static PushEvent<T> data(T payload)
	706.7.5.3. public static PushEvent<T> error(Throwable t)
	706.7.5.4. public T getData()
	706.7.5.5. public Throwable getFailure()
	706.7.5.6. public abstract PushEvent.EventType getType()
	706.7.5.7. public boolean isTerminal()
	706.7.5.8. public PushEvent<X> nodata()

	706.7.6. enum PushEvent.EventType
	706.7.6.1. DATA
	706.7.6.2. ERROR
	706.7.6.3. CLOSE
	706.7.6.4. public static PushEvent.EventType valueOf(String name)
	706.7.6.5. public static PushEvent.EventType[] values()

	706.7.7. public interface PushEventConsumer<T>
	706.7.7.1. public static final long ABORT = -1L
	706.7.7.2. public static final long CONTINUE = 0L
	706.7.7.3. public long accept(PushEvent<? extends T> event) throws Exception

	706.7.8. public interface PushEventSource<T>
	706.7.8.1. public AutoCloseable open(PushEventConsumer<? super T> aec) throws Exception

	706.7.9. public interface PushStream<T> extends AutoCloseable
	706.7.9.1. public PushStream<T> adjustBackPressure(LongUnaryOperator adjustment)
	706.7.9.2. public PushStream<T> adjustBackPressure(ToLongBiFunction<T, Long> adjustment)
	706.7.9.3. public Promise<Boolean> allMatch(Predicate<? super T> predicate)
	706.7.9.4. public Promise<Boolean> anyMatch(Predicate<? super T> predicate)
	706.7.9.5. public PushStream<R> asyncMap(int n, int delay, Function<? super T, Promise<? extends R>> mapper)
	706.7.9.6. public PushStream<T> buffer()
	706.7.9.7. public PushStreamBuilder<T, U> buildBuffer()
	706.7.9.8. public void close()
	706.7.9.9. public PushStream<R> coalesce(Function<? super T, Optional<R>> f)
	706.7.9.10. public PushStream<R> coalesce(int count, Function<Collection<T>, R> f)
	706.7.9.11. public PushStream<R> coalesce(IntSupplier count, Function<Collection<T>, R> f)
	706.7.9.12. public Promise<R> collect(Collector<? super T, A, R> collector)
	706.7.9.13. public Promise<Long> count()
	706.7.9.14. public PushStream<T> distinct()
	706.7.9.15. public PushStream<T> filter(Predicate<? super T> predicate)
	706.7.9.16. public Promise<Optional<T>> findAny()
	706.7.9.17. public Promise<Optional<T>> findFirst()
	706.7.9.18. public PushStream<R> flatMap(Function<? super T, ? extends PushStream<? extends R>> mapper)
	706.7.9.19. public Promise<Void> forEach(Consumer<? super T> action)
	706.7.9.20. public Promise<Long> forEachEvent(PushEventConsumer<? super T> action)
	706.7.9.21. public PushStream<T> fork(int n, int delay, Executor e)
	706.7.9.22. public PushStream<T> limit(long maxSize)
	706.7.9.23. public PushStream<T> limit(Duration maxTime)
	706.7.9.24. public PushStream<R> map(Function<? super T, ? extends R> mapper)
	706.7.9.25. public Promise<Optional<T>> max(Comparator<? super T> comparator)
	706.7.9.26. public PushStream<T> merge(PushEventSource<? extends T> source)
	706.7.9.27. public PushStream<T> merge(PushStream<? extends T> source)
	706.7.9.28. public Promise<Optional<T>> min(Comparator<? super T> comparator)
	706.7.9.29. public Promise<Boolean> noneMatch(Predicate<? super T> predicate)
	706.7.9.30. public PushStream<T> onClose(Runnable closeHandler)
	706.7.9.31. public PushStream<T> onError(Consumer<? super Throwable> errorHandler)
	706.7.9.32. public Promise<T> reduce(T identity, BinaryOperator<T> accumulator)
	706.7.9.33. public Promise<Optional<T>> reduce(BinaryOperator<T> accumulator)
	706.7.9.34. public Promise<U> reduce(U identity, BiFunction<U, ? super T, U> accumulator, BinaryOperator<U> combiner)
	706.7.9.35. public PushStream<T> sequential()
	706.7.9.36. public PushStream<T> skip(long n)
	706.7.9.37. public PushStream<T> sorted()
	706.7.9.38. public PushStream<T> sorted(Comparator<? super T> comparator)
	706.7.9.39. public PushStream<T>[] split(Predicate<? super T>... predicates)
	706.7.9.40. public PushStream<T> timeout(Duration idleTime)
	706.7.9.41. public Promise<Object> toArray()
	706.7.9.42. public Promise<A> toArray(IntFunction<A> generator)
	706.7.9.43. public PushStream<R> window(Duration d, Function<Collection<T>, R> f)
	706.7.9.44. public PushStream<R> window(Duration d, Executor executor, Function<Collection<T>, R> f)
	706.7.9.45. public PushStream<R> window(Supplier<Duration> timeSupplier, IntSupplier maxEvents, BiFunction<Long, Collection<T>, R> f)
	706.7.9.46. public PushStream<R> window(Supplier<Duration> timeSupplier, IntSupplier maxEvents, Executor executor, BiFunction<Long, Collection<T>, R> f)

	706.7.10. public interface PushStreamBuilder<T, U extends BlockingQueue<PushEvent<? extends T>>> extends BufferBuilder<PushStream<T>, T, U>
	706.7.10.1. public PushStreamBuilder<T, U> unbuffered()
	706.7.10.2. public PushStreamBuilder<T, U> withBuffer(U queue)
	706.7.10.3. public PushStreamBuilder<T, U> withExecutor(Executor executor)
	706.7.10.4. public PushStreamBuilder<T, U> withParallelism(int parallelism)
	706.7.10.5. public PushStreamBuilder<T, U> withPushbackPolicy(PushbackPolicy<T, U> pushbackPolicy)
	706.7.10.6. public PushStreamBuilder<T, U> withPushbackPolicy(PushbackPolicyOption pushbackPolicyOption, long time)
	706.7.10.7. public PushStreamBuilder<T, U> withQueuePolicy(QueuePolicy<T, U> queuePolicy)
	706.7.10.8. public PushStreamBuilder<T, U> withQueuePolicy(QueuePolicyOption queuePolicyOption)
	706.7.10.9. public PushStreamBuilder<T, U> withScheduler(ScheduledExecutorService scheduler)

	706.7.11. public final class PushStreamProvider
	706.7.11.1. public PushStreamProvider()
	706.7.11.2. public BufferBuilder<PushEventConsumer<T>, T, U> buildBufferedConsumer(PushEventConsumer<T> delegate)
	706.7.11.3. public BufferBuilder<PushEventSource<T>, T, U> buildEventSourceFromStream(PushStream<T> stream)
	706.7.11.4. public BufferBuilder<SimplePushEventSource<T>, T, U> buildSimpleEventSource(Class<T> type)
	706.7.11.5. public PushStreamBuilder<T, U> buildStream(PushEventSource<T> eventSource)
	706.7.11.6. public PushEventConsumer<T> createBufferedConsumer(PushEventConsumer<T> delegate)
	706.7.11.7. public PushEventSource<T> createEventSourceFromStream(PushStream<T> stream)
	706.7.11.8. public SimplePushEventSource<T> createSimpleEventSource(Class<T> type)
	706.7.11.9. public PushStream<T> createStream(PushEventSource<T> eventSource)
	706.7.11.10. public PushStream<T> streamOf(Stream<T> items)
	706.7.11.11. public PushStream<T> streamOf(Executor executor, ScheduledExecutorService scheduler, Stream<T> items)

	706.7.12. public interface QueuePolicy<T, U extends BlockingQueue<PushEvent<? extends T>>>
	706.7.12.1. public void doOffer(U queue, PushEvent<? extends T> event) throws Exception

	706.7.13. enum QueuePolicyOption
	706.7.13.1. DISCARD_OLDEST
	706.7.13.2. BLOCK
	706.7.13.3. FAIL
	706.7.13.4. public abstract QueuePolicy<T, U> getPolicy()
	706.7.13.5. public static QueuePolicyOption valueOf(String name)
	706.7.13.6. public static QueuePolicyOption[] values()

	706.7.14. public interface SimplePushEventSource<T> extends PushEventSource<T>, AutoCloseable
	706.7.14.1. public void close()
	706.7.14.2. public Promise<Void> connectPromise()
	706.7.14.3. public void endOfStream()
	706.7.14.4. public void error(Throwable t)
	706.7.14.5. public boolean isConnected()
	706.7.14.6. public void publish(T t)

	706.8. References

	Chapter 707. Converter Specification
	707.1. Introduction
	707.2. Entities
	707.3. Standard Converter
	707.4. Conversions
	707.4.1. Generics
	707.4.2. Scalars
	707.4.2.1. Direct conversion between scalars
	707.4.2.2. Conversion to String
	707.4.2.3. Conversion from String
	707.4.2.4. Date and Calendar
	707.4.2.5. Enums
	707.4.2.6. Map.Entry

	707.4.3. Arrays and Collections
	707.4.3.1. Converting from a scalar
	707.4.3.2. Converting to a scalar
	707.4.3.3. Converting to an Array or Collection
	707.4.3.4. Converting to maps

	707.4.4. Maps, Interfaces, Java Beans, DTOs and Annotations
	707.4.4.1. Converting from a scalar
	707.4.4.2. Converting to a scalar
	707.4.4.3. Converting to an Array or Collection
	707.4.4.4. Converting to a map-like structure
	707.4.4.4.1. Key Mapping
	707.4.4.4.2. Converting to a Map
	707.4.4.4.3. Dictionary
	707.4.4.4.4. Interface
	707.4.4.4.4.1. Converting to an Interface
	707.4.4.4.4.2. Converting from an Interface

	707.4.4.4.5. Annotation
	707.4.4.4.5.1. Marker annotations

	707.4.4.4.6. Java Beans
	707.4.4.4.7. DTOs
	707.4.4.4.8. Types with getProperties()
	707.4.4.4.9. Specifying target types

	707.5. Repeated or Deferred Conversions
	707.6. Customizing converters
	707.6.1. Catch-all rules

	707.7. Conversion failures
	707.8. Security
	707.9. org.osgi.util.converter
	707.9.1. Summary
	707.9.2. public class ConversionException extends RuntimeException
	707.9.2.1. public ConversionException(String message)
	707.9.2.2. public ConversionException(String message, Throwable cause)

	707.9.3. public interface Converter
	707.9.3.1. public Converting convert(Object obj)
	707.9.3.2. public Functioning function()
	707.9.3.3. public ConverterBuilder newConverterBuilder()

	707.9.4. public interface ConverterBuilder
	707.9.4.1. public Converter build()
	707.9.4.2. public ConverterBuilder errorHandler(ConverterFunction func)
	707.9.4.3. public ConverterBuilder rule(Type type, ConverterFunction func)
	707.9.4.4. public ConverterBuilder rule(TargetRule rule)
	707.9.4.5. public ConverterBuilder rule(ConverterFunction func)

	707.9.5. public interface ConverterFunction
	707.9.5.1. public static final Object CANNOT_HANDLE
	707.9.5.2. public Object apply(Object obj, Type targetType) throws Exception

	707.9.6. public class Converters
	707.9.6.1. public static ConverterBuilder newConverterBuilder()
	707.9.6.2. public static Converter standardConverter()

	707.9.7. public interface Converting extends Specifying<Converting>
	707.9.7.1. public T to(Class<T> cls)
	707.9.7.2. public T to(Type type)
	707.9.7.3. public T to(TypeReference<T> ref)

	707.9.8. public interface Functioning extends Specifying<Functioning>
	707.9.8.1. public Function<Object, T> to(Class<T> cls)
	707.9.8.2. public Function<Object, T> to(Type type)
	707.9.8.3. public Function<Object, T> to(TypeReference<T> ref)

	707.9.9. public abstract class Rule<F, T> implements TargetRule
	707.9.9.1. public Rule(Function<F, T> func)
	707.9.9.2. public ConverterFunction getFunction()
	707.9.9.3. public Type getTargetType()

	707.9.10. public interface Specifying<T extends Specifying<T>>
	707.9.10.1. public T extends Specifying<T> defaultValue(Object defVal)
	707.9.10.2. public T extends Specifying<T> keysIgnoreCase()
	707.9.10.3. public T extends Specifying<T> sourceAs(Class<?> cls)
	707.9.10.4. public T extends Specifying<T> sourceAsBean()
	707.9.10.5. public T extends Specifying<T> sourceAsDTO()
	707.9.10.6. public T extends Specifying<T> targetAs(Class<?> cls)
	707.9.10.7. public T extends Specifying<T> targetAsBean()
	707.9.10.8. public T extends Specifying<T> targetAsDTO()
	707.9.10.9. public T extends Specifying<T> view()

	707.9.11. public interface TargetRule
	707.9.11.1. public ConverterFunction getFunction()
	707.9.11.2. public Type getTargetType()

	707.9.12. public class TypeReference<T>
	707.9.12.1. protected TypeReference()
	707.9.12.2. public Type getType()

	707.9.13. public class TypeRule<F, T> implements TargetRule
	707.9.13.1. public TypeRule(Type from, Type to, Function<F, T> func)
	707.9.13.2. public ConverterFunction getFunction()
	707.9.13.3. public Type getTargetType()

	707.10. References

