

Copyright 2008-2014 © OSGi Alliance All Rights Reserved 1

!

!!

Introduction	 3

Abstraction 	 4

The Customer 	 4

The Service Provider 	 5

Requirements & Capabilities	 6

Communicating Change - The Role of Semantic
Versioning	 8

Turtles - All the Way Down	 9

To be Agile?	 11

OSGi and Modular Systems	 12

OSGi Enabling Agile Processes	 16

Scrum	 16

Kanban	 17

The Agile Maturity Model	 18

Agility & CI - An OSGi Use Case	 22

Conclusion 	 26

The Author	 27

The OSGi Alliance 	 28

!2Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

!
Introduction !
Agile development methodologies are increasingly popular. Yet while the social and
process aspects of “agile” are discussed at length and practiced by an increasing
number of organizations, there is much less appreciation of the fundamental
importance of a modular code base . Many organizations invest heavily in agile 1

processes without ever considering the structure of their applications. For this reason,
many agile initiatives fail to fully deliver the expected business benefits.
!
This oversight is especially surprising if one considers that, from the scientific
perspective, “agility” is an emergent characteristic: meaning a property that results 2

from underlying structure of the entity. For an entity to be “agile” it must have a high
degree of structural modularity.
3

!
Hence the agility question needs be recast from “How do I build agile business
systems?" to “How do I build highly modular business systems?”
!
This paper investigates the relationship between structural modularity and agility and
explains how OSGi™, the open industry standard for Java modularity, provides the
necessary foundation upon which the next generation of highly agile business system
should be built.
!
!

!3Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

 The exception to the rule being Kirk Knoernschild1

 The study of Complex Adaptive System2

 Diversity & Complexity - Scott Page. ISBN-13: 978-06911376743

Abstraction !
Business managers and application developers face many of the same fundamental
challenges. Whether the entity is a business unit, or a software application serving that
business unit, the entity must be cost-effective to create and to subsequently maintain.
If the entity is to endure, it must be able to adapt to unforeseen changes in a cost-
effective manner.
!
The Customer
From an external perspective, as a consumer we are interested in the service(s) offered
by the entity and, if several equivalent services are available, how their properties
compare. Is a service reliable? Is it a green/ethical service? Is the service
geographically local to me, and/or in the correct jurisdiction? Is it competitively priced?

!!
Figure 1: A consumer of a service. !!

As a consumer, as long as the selected service honors its description, I have no
interest in the internal implementation details.
!
As the consumer of a service I am interested in the advertised capabilities of a service.
Do these capabilities meet my requirements?

!
!4Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

The Service Provider
As the service provider (a business unit or an application), the internal implementation
details are fundamental.
!
Let us consider a modern application. Today, an application is no longer a single block
of monolithic code deployed to a single large computer, but rather a set of small,
interconnected software components that may span many physical or virtual
computing resources, (the reason for this shift will become increasingly apparent as the
reader continues). To meet service availability targets, this structure must be
maintained. To meet new business objectives, the structure needs to be adapted. To
achieve each of these, the structure must be understood.
!
This graph of interconnected software components is similar to the classic business
organizational chart.

!!
Figure 2: The service provider/system maintainer !

Org charts allow us to quickly gain a basic understanding of the structure of a business
unit. For example, from Figure 2 we can deduce that:

• The entity is composed of 15 components.

• We know the names of the components.

!5Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

• We also know the dependencies that exist between these components, though we
don’t know why those dependencies exist.

• While we do not know the responsibilities of the individual components, from the
degree of inter-connectedness, we can infer relative importance. For example,
component Tom is probably more critical than Dick.
!

Note that while we are responsible for the management and maintenance of this entity
(the business unit or the application), it is unlikely that we created many, or indeed any,
of the individual components used. Just as our customer is primarily interested in the
capabilities of the service we offer, with no understanding of the implementation, we
likewise have little or no understanding of the internal construction of the components
we use. We simply require their capabilities.
!
Requirements & Capabilities
While we know dependencies exist, we have no idea as to why those specific
dependencies exist. Also, if nodes are changed, how might this change affect those
dependencies, the overall structure, and the resultant service to our customers?

!
Figure 3: How do we track structural change over time? The earlier system functioned

correctly; the later system - with an upgraded component - fails. Why is this?

!6Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

!
With respect to managing change, one might initially resort to versioning the node
names. Changes in the structure would be indicated by version change on the affected
nodes.
!
However as shown in Figure 3, versioned names, while indicating change, fail to
communicate the impact of change, to explain why Susan 1.0 can work with Tom
2.1, but Susan 2.0 cannot!
!
It is only when we look at the capabilities and requirements of the nodes participating
in the graph that we understand the problem.

!
Figure 4: An organizational structure: effectiveness of versioned names, capabilities/

requirements and the use of semantic versioning.

!7Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

!
Now we understand that Tom 2.1 requires a Manager capability. This capability was
initially provided by Susan 1.0. However, at the later point in time, Susan 2.0,
having reflected upon her career, decided to re-train. Susan 2.0 no longer advertises
a Manager capability, but instead advertises a Plumber 1.0 capability.

!
Once dependencies are expressed in terms of requirements and capabilities, then
flexible substitution is possible. A node in the graph may be replaced by any other
node whose capabilities satisfy the requirements of its neighbors.

!
Communicating Change - The Role of Semantic Versioning
Hence capabilities and requirements provide the mechanism via which we understand
structural dependencies. However, we are still left with the problem of understanding
the level of impact caused by a degree of change; i.e. the Tom, Susan scenario just
discussed. Via simple versioning we can see that changes have occurred; however, we
do not understand the consequences of these changes.
!
• If an employee is promoted and/or re-trained (capabilities enhanced), are the

dependencies shown in the org chart still valid?

• If we re-factor a software component (changing/not changing, internal

implementation and/or a public interface), to what degree are the dependencies still
valid?
!

If, however, semantic versioning is used (see http://www.osgi.org/wiki/uploads/Links/
SemanticVersioning.pdf), the impact of a change can be communicated; the
importance of this is increasingly being realized by the industry. For example, the
Apache Maven project has recently (2013) discussed adoption of version ranges for
artifact names. (While a welcome improvement, the concept is still flawed as the 4

dependencies are still described in terms of the entities� names.)

!
Semantic versioning achieves this in a completely generic manner via the following
mechanism:
!
• Advertised capabilities are versioned with a major.minor.micro versioning

scheme.

!8Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

 http://maven.apache.org/enforcer/enforcer-rules/versionRanges.html4

http://maven.apache.org/enforcer/enforcer-rules/versionRanges.html
http://www.osgi.org/wiki/upl

• We then collectively agree that - minor or micro version changes represent non-

breaking changes for third parties; e.g. 2.7.1 ➞ 2.8.7. In contrast, major

version changes; e.g. 2.7.1. ➞ 3.0.0., represent breaking changes, which

may affect the users of our component.

• The interpretation of micro, minor and major are domain and context specific.

• Requirements are now specified in terms of a range of acceptable capabilities.

Square brackets (‘[’ and ‘]’) are used to indicate inclusive and parentheses (‘(’
and ‘)’) to indicate exclusive. Hence a range [2.7.1, 3.0.0) means any
Capability with version at or above 2.7.1 is acceptable up to, but not including,
3.0.0.

!
If these semantic versioning rules are now used with the previous organization chart,
we can immediately deduce that:
!
• If Joe is substituted for Helen, Tom’s Requirements are still met.
• However Harry, while having a Manager Capability, cannot meet Tom’s Requirements

as Harry’s 1.7 skill set is outside of the acceptable range specified by Tom i.e.
[2,3).
!
Semantic versioning used with requirements and capabilities provides sufficient
information to enable substitution of components while ensuring that structural
dependencies continue to be met: our simple system, whether a business unit or an
application is agile, maintainable and evolvable!
!
Turtles - All the Way Down
What happens as the size and sophistication of our business unit or service provider
increases? The number of constituent components and the inter-dependencies
between these components also increases. Usually, if left unchecked, the number of
inter-dependencies increases much more rapidly than the number of components. The
structure becomes increasingly complex.
!
Those of you who have already noticed the degree of self-similarity arising in the 5

previous example may already have guessed the appropriate response to this situation.

!9Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

 http://en.wikipedia.org/wiki/Self-similarity5

http://en.wikipedia.org/wiki/Self-similarity

To make the larger system manageable we introduce a new level of structural
abstraction.

!
Figure 5: An agile hierarchy: Each layer only exposes necessary information. Each layer is

composite with the dependencies between the participating components expressed in
terms of their requirements and capabilities. !

As shown in figure 5, it is possible for an individual to be a consumer at one level of a
structural hierarchy while being a maintainer at the next logical layer above.
!
For enterprise software, this process started in the mid to late 1990s as organizations
started to adopt coarse-grain modularity as embodied by Service Oriented
Architectures (SOA) and Enterprise Service Buses (ESBs). These approaches allowed
legacy business applications to be loosely coupled, interacting via well-defined service
interfaces or message types. SOA advocates promised more “agile” IT environments
as business systems would be easier to upgrade and/or replace.

!10Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

!
However, the core applications never actually changed; the existing application
interfaces simply exposed as SOA Services, and/or message Consumers/Publishers.
As the degree of modularity introduced was only one level deep, each post-SOA
application was as internally inflexible as its pre-SOA predecessor.
!
Hence, with hindsight it should not be surprising that SOA - by itself - failed to deliver
the promised cost savings and business agility. Yet, while not an end in itself, 6

traditional SOA is a valuable step on the journey towards modular systems.
!
To be Agile?
Agile systems need to exhibit the following characteristics:

• A hierarchical structure: Each layer in the hierarchy composed from components from

the underlying layer.

• Abstraction: For each layer, the behavior of participating components is exposed via

stated requirements and capabilities relevant to that layer.

• Isolation: Strong isolation ensures that the internal composition of each participating

component is masked at each layer.

• Self-Describing: Within each layer the relationship between the participating

components is self-describing; i.e. dependencies are described in terms of published
requirements and capabilities.

• Impact of Change: Via semantic versioning the impact of a change on dependencies
can be expressed.
!

Systems built upon these principles are:

• Understandable: The system’s structure may be understood at each layer in the

structural hierarchy.

• Changeable: At each layer in the hierarchy, structural modularity ensures that

changes remain localized to the affected components; the boundaries created by
strong structural modularity shield the rest of the system from these changes.

• Evolvable: Within each layer components may be substituted; therefore, the system
supports diversity and is evolvable.
!

The conclusion is as simple as it is profound. Systems achieve agility through
structural modularity.
!

!11Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

 http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services.html6

http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services.html

OSGi and Modular Systems !
Most developers appreciate that applications should be modular. Indeed logical
modularity in the form of “Design Patterns” was rapidly embraced in the early years of
object-oriented programming (see http://en.wikipedia.org/wiki/Design_Patterns).
However, it has taken the industry much longer to appreciate the importance of
structural modularity and its fundamental relationship to application maintainability and
agility.
!
Today it is not unusual for an agile Java development team to break large Java artifacts
(JARs) into a number of smaller ones. As these, in turn, grow in size, they are again
broken down into yet smaller units. The development team understands that its agile
objectives cannot be achieved with a large, monolithic code-base.
!
While the dependencies and the impact of change are understood by the development
team that created the application, this structural information is not explicitly associated
with the software artifacts. Should members from that development team leave,
knowledge concerning application structure is lost. This exposes the organization to
significant long-term governance problems, increased operational risk and spiraling
maintenance costs. Also, for a third party (e.g. a different team within the same
organization), the application may as well have remained a monolithic code-base since
the components can only be understood by cracking open each Java JAR and reading
code. All the components must be analyzed this way as the dependencies between
them cannot be inferred in any other way!
!
The use of Maven helps the situation somewhat. Maven expresses dependencies
between Java JARs in terms of component names (Project Object Model - POM). This
enables a Maven based application to be simply assembled by a third party that didn’t
create the original code. However, as we already know from the initial examples, the
value of name based dependencies, is limited. As the dependencies between the
components are not expressed in terms of requirements and capabilities, third parties
are unable to deduce why the dependencies exist and what might be substitutable.
The application can be assembled, but it cannot be changed. As no metadata exists
that adequately describes the inter-relationship between the components, the resultant
business system remains intrinsically fragile.
!

!12Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

http://en.wikipedia.org/wiki/Design_Patterns

Aware of these issues, Kirk Knoernschild explores the relationship between agility and
structural modularity in his book “Java Application Architecture” and identifies the 7

problem of the “missing middle.” Knoernschild concludes that essential structural
layers are missing in the architecture of traditional Java applications. At the coarse-
grained end of the modularity spectrum we have traditional services, whereas at the
fine-grained end of the modularity spectrum we have Java packages and classes.
However, there is a void in the center.

!
Figure 6: Structural hierarchy: The Missing Middle !!

!13Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

 http://techdistrict.kirkk.com7

http://techdistrict

Based on open industry standards created by the OSGi Alliance, OSGi directly address
this issue by providing Java with the required modularity framework.
!
• OSGi bundles express dependencies in terms of Java package requirements and

capabilities. Hence it is immediately apparent to a third party, whether a particular
OSGi bundle can be substituted with a potential alternative.

• OSGi bundles use semantic versioning. Hence it is immediately apparent to a third
party whether a change to an OSGi bundle is potentially a breaking change to those
using it.
!

With enforced isolation, dependencies expressed via requirements, capabilities and
semantic versioning, OSGi bundles’ are the natural choice for enabling Java code re-
use. OSGi bundles are also essential elements in an application’s composition
hierarchy (unit of composition) and provide the basis for a natural unit of deployment,
update and patch (unit of deployment).
!
One structural layer up, OSGi also provides µServices. These are lightweight services
that are able to dynamically find and bind to each other at runtime. OSGi services may
be co-located within the same JVM, or via use of an implementation of OSGi’s remote
service specification, distributed across JVMs separated by an IP network. Coarse-
grained business applications may then be composed from a number of finer grained,
co-located or distributed OSGi µServices (Unit of Intra/Inter Process Re-Use), so
completing OSGi’s “Agile - All the Way Down!” story.  

!14Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

 !
Figure 7: Structural hierarchy: OSGi services and bundles !!

Knoernschild concludes that:
!
“Not only does OSGi help us enforce structural modularity, it provides the necessary
metadata to ensure that the Modular Structures we create are also Agile Structures.” 8

!!!!
!

!15Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

 k Knoernschild -Java Application Architecture8

OSGi Enabling Agile Processes !
As explained by Taleb in AntiFragile,” predictive and prescriptive processes stand a 9

high chance of failure as the large number of rigid interdependencies mean that Black
Swan events, which are by their nature unpredictable, are much more likely.
!
The “Agile Movement” is fundamentally an acknowledgement of, and response to, 10

this issue; and focuses upon the organizational processes required to achieve agile
development. A diverse spectrum of complementary lean and agile methodologies now
exist; the two most popular are known as Scrum and Kanban.
11

!
However, as is hopefully now apparent, the very same arguments apply to rigid
monolithic software! Structural modularity is the foundation upon which application
agility is realized, and the value of OSGi in enabling popular agile processes will be the
subject of this section.
!
Scrum
“Customers frequently change their minds” !
At its core, Scrum is a pragmatic methodology that acknowledges that things change
in unforeseen and unforeseeable ways. Scrum acknowledges the existence of
requirement churn, and adopts an empirical approach to software delivery, accepting 12

that the problem cannot be fully understood or even defined up front. Scrum’s focus is
instead on maximizing the team’s ability to deliver quickly and respond to emerging
requirements.
!
Scrum is an iterative and incremental process, with the “sprint” being the basic unit of
development. Each sprint is a “time-boxed" effort, meaning that it is restricted to a 13

specific duration. The duration is fixed in advance for each sprint and is normally
between one week and one month. The tasks and estimated commitment for a sprint

!16Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

 AntiFragile: How to live in a World we don’t Understand - Nassim Taleb. ISBN-13: 978-18461415609

 http://www.agilemanifesto.org10

 http://en.wikipedia.org/wiki/Lean_software_development11

 http://en.wikipedia.org/wiki/Empirical12

 http://en.wikipedia.org/wiki/Timeboxing13

http://www.agilemanifesto.org
http://en.wikipedia.org/wiki/Lean_software_development
http://en.wikipedia.org/wiki/Empirical
http://en.wikipedia.org/wiki/Timeboxing

are identified in a planning meeting. A review, or retrospective, meeting follows the
sprint to review progress and identify lessons for the next sprint.
!
During each sprint, the team creates finished portions of a product. The set of features
that go into a sprint come from the product backlog, which is an ordered list of
requirements.
!
Scrum attempts to encourage the creation of self-organizing teams, typically by co-
location of all team members, and verbal communication between all team members.
!
It is hopefully self-evident that applying Scrum to a large monolithic code base is
difficult. Conversely, as will be shown, Scrum concepts map well to a highly modular
code base comprised of many self-describing, strongly isolated OSGi bundles.
!
Kanban
Kanban originates from the Japanese word "signboard" and traces back to Toyota, the
Japanese automobile manufacturer, in the late 1940s. Kanban encourages teams to 14

have a shared understanding of work, workflow, process, and risk, enabling the team
to build a shared comprehension of problems and suggest improvements, which can
be agreed by consensus.
!
Kanban places an emphasis on “work in progress:”
!
1. Work-In-Progress (WIP) should be limited at each step of a multi-stage workflow.

Work items are “pulled” to the next stage only when there is sufficient capacity
within the local WIP limit.

2. The flow of work through each stage of the workflow is monitored, measured and
reported. By actively managing flow, the positive or negative impact of continuous,
incremental and evolutionary changes to a system can be evaluated.  !

Kanban encourages small, continuous, incremental and evolutionary changes.
!
Kanban concepts map naturally to a highly modular code base comprised of many
self-describing, strongly isolated artifacts; specifically, the Kanban WIP process idea
maps directly to the subset of OSGi bundles that are being actively worked upon.
Hence, Kanban pull-based flow rates can be mapped to OSGi bundles’ change/release

!17Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

 http://en.wikipedia.org/wiki/Kanban14

http://en.wikipedia.org/wiki/Kanban

rates. And as the degree of structural modularity increases, as the OSGi bundles
become more fine-grain, the Kanban pull -based flow rates naturally increase, with
each smaller OSGi bundle spending correspondingly less time in a WIP state.
!
The Agile Maturity Model
Fashioned after the Capability Maturity Model, which allows organizations or projects 15

to measure their improvements on a software development process, the Modularity
Maturity Model is an attempt to describe how far along the modularity path an 16

organization or project might be. As is now argued, this, in turn, will directly dictate the
level of agility that might be reasonably expected.
!
Keeping in step with the Capability Maturity Model we refer to the following six levels.
!
Level 1: Ad Hoc - No formal modularity exists. Dependencies are unknown.
Applications have no, or limited, structure. Agile processes are likely to fail as
application code bases are monolithic and highly coupled. Testing is challenging as
changes propagate unchecked, causing unintentional side effects. Governance and
change management are costly and acknowledged to be high-level operational risks.

 !
Level 2: Modules - Named modules are used with explicit versioning. Dependencies
are expressed in terms of module identity (including version). Maven, Ivy and RPM are
examples of modularity solutions where dependencies are managed by versioned
identities. Artifact repositories are used; however, their value is compromised as the
artifacts are not self-describing. Agile processes are possible and do deliver some
business benefit. However, the ability to realize Continuous Integration (CI) is limited by
ill-defined dependencies. Governance and change management are not addressed.
Testing is still failure-prone. Indeed, the testing process is now the dominant bottleneck
in the agile release process. Governance and change management remain costly and
continue to be high-level operational risks.
!
Level 3: Modularity - Module dependencies are now expressed via contracts (i.e.
capabilities and requirements). Dependency resolution becomes the basis of software
construction. Dependencies are semantically versioned, enabling the impact of change
to be communicated. By enforcing strong isolation and defining dependencies in terms
of capabilities and requirements, modularity enables many small development teams to

!18Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

 http://en.wikipedia.org/wiki/Capability_Maturity_Model15

 An initial version of a Modularity Maturity Model; this proposed by Dr Graham Charters at the OSGi Community 16

Event 2011. The version in this paper has been adapted to emphasize Agility aspects.

http://en.wikipedia.org/wiki/Capability_Maturity_Model

efficiently work independently and in parallel. The efficiency of Scrum and Kanban
management processes correspondingly increases. Sprints are now associated with
one or more well-defined structural entities; i.e. the development or refactoring of OSGi
bundles. Semantic versioning enables the impact of refactoring to be contained and
efficiently communicated across team boundaries. Via strong modularity and isolation,
parallel teams can safely sprint on different structural areas of the same application.
Strong isolation and semantic versioning enable efficient/robust unit testing.
Governance and change management are now demonstrably much lower operational
risks.
!
Level 4: Services - Services-based collaboration hides the construction details of
services from the users of those services, so allowing clients to be decoupled from the
implementations of the providers. Services lay the foundation for runtime loose
coupling. The dynamic find and bind behaviors in the OSGi service model directly
enable loose coupling by enabling the dynamic formation of composite applications. All
local and distributed service dependencies are automatically managed. The change of
perspective from code to OSGi µServices increases developer and business agility yet
further: new business systems being rapidly composed from the appropriate set of pre-
existing OSGi µServices.
!
Level 5: Devolution - Artifact ownership is devolved to modularity-aware repositories,
which encourage collaboration and enable governance. Assets may be selected on
their stated capabilities. Advantages include:
!
• Greater awareness of existing modules
• Reduced duplication and increased quality
• Collaboration and empowerment
• Quality and operational control !
As software artifacts are described in terms of a coherent set of requirements and
capabilities, developers can communicate changes (breaking and non-breaking) to
third parties through the use of semantic versioning. Devolution allows development
teams to rapidly find third-party artifacts that meet their requirements. From a business
perspective, devolution enables significant flexibility with respect to how artifacts are
created, allowing distributed parties to interact in a more effective and efficient manner.
Artifacts may be produced by other teams within the same organization or consumed
from external third parties. The Devolution stage promotes code re-use and increases
the effectiveness of offshoring/near shoring or the use of third-party, OSS or crowd-

!19Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

sourced software components. This, in turn, directly leads to significant and sustained
reductions in operational cost. !
Level 6: Dynamism - This final level builds upon Modularity, Services and Devolution,
and is the culmination of the organization’s modularity/agility journey.
!
Business applications are rapidly assembled from modular components. As strong
structural modularity is enforced (i.e. isolation enforced by the OSGi bundle boundary),
components may be efficiently and effectively created and maintained by a number of
alternate providers (onshore, nearshore, offshore, OSS, third party).

!
• As each application is self-describing, even the most sophisticated of business

systems is simple to understand, to maintain and to enhance.
• As semantic versioning is used, the impact of change is efficiently communicated to

all interested parties, including governance and change control processes.
• Software fixes may be rapidly deployed into production.
• The capabilities of existing applications may be rapidly extended.

• As the dynamic assembly process is aware of the capabilities of the hosting runtime

environment, application structure and
behavior may automatically adapt to
location, allowing transparent
deployment and optimization for
public cloud or traditional private data
center environments.

!
An organization’s modularization
migration strategy will be defined by
the approach taken to traversing
these modularity levels. Most
organizations will have already moved
from an initial Ad Hoc phase to
Modules. Meanwhile organizations
that value a high degree of agility will
wish to reach the Dynamism
endpoint as soon as possible.

!20Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

Figure 8: Modularity Maturity Model

As shown, each organization may traverse from Modules to Dynamism via several
paths, adapting migration strategy as necessary.
!
• To achieve maximum benefit as soon as possible, an organization may choose to

move directly to Modularity by refactoring the existing code base into OSGi
bundles. The benefits of Devolution and Services naturally follow. This is also the
obvious strategy for new greenfield applications.

• For legacy applications, an alternative may be to pursue a Services first approach;
first expressing coarse-grained software components as OSGi services; then driving
code level modularity (i.e. OSGi bundles) on a service by service basis. This approach
may be easier to initiate within large organizations with extensive legacy
environments.

• Finally, one might move first to limited Devolution by adopting OSGi metadata for
existing artifacts. Adoption of requirements and capabilities, and the use of semantic
versioning, will clarify the existing structure and impact of change to third parties.
While structural modularity has not increased, the move to Devolution positions
the organization for subsequent migration to the Modularity and Services levels.

!
It should be noted that the ability to pursue multiple alternative options is in itself a key
indicator of an increasingly agile environment!

!
As the level of structural modularity increases through adoption of OSGi, both Scrum
and Kanban processes become correspondingly more efficient and effective.

!
!

!21Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

Agility & CI - An OSGi Use Case !
The followin��	������	����
��case demonstrates a successful realization of these
principles.
!
Siemens Corporate Technology Research group is comprised of a number of engineers
with diverse skills spanning computer science, mathematics, physics, mechanical and
electrical engineering. The group provides solutions to Siemens business units based
on neural network and other machine learning algorithms. As Siemens’�business units
require working examples rather than paper concepts, Siemens Corporate Technology
Research are required to rapidly prototype potential solutions. The resultant business
solutions are composed from the repository of re-usable components.

 !!
Figure 9: Siemens’ Product Repository !

In a presentation entitled “Workflow for Development, Release and Versioning with
OSGi/Bndtools: Real World Challenges,” the Siemens team presented both the 17

business drivers and the resultant solution that met these objects via a highly agile
OSGi based continuous integration environment.

!22Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

 The 2012 OSGi community event (http://www.osgi.org/CommunityEvent2012/Schedule)17

http://www.osgi.org/CommunityEvent2012/Schedule

The Siemens’�team stated the following business objectives:

!
1. Build Repeatability: It must be possible to ensure that old versions of products can

always be rebuilt from exactly the same set of sources and dependencies, even
many years in the future. This would allow Siemens to continue supporting multiple
versions of released software that have gone out to different customers.

2. Reliable Versioning: Siemens required the ability to quickly and reliably assemble a
set of components (including their own software along with third party and open
source) and have a high degree of confidence that this assembly would work.

3. Full Traceability I: It must be possible to ensure that the released software artifacts
are always exactly the same artifacts that were tested by QA. Specifically, the
solution must avoid the necessity to rebuild in order to advance from the testing
state into the released state.

4. Full Traceability II: It must be possible to trace the artifact�s heritage back to its
original sources and dependencies.
!

To achieve rapid prototyping, Siemens required a repository of software components,
including a generic framework and an algorithm toolbox. OSGi was chosen as the
enabling modularity framework, this decision based upon the maturity of OSGi
technology, the open industry specifications that underpin OSGi implementations, and
the technology governance provided by the OSGI Alliance. Also, OSGi semantic
versioning, fully leveraged within semantic version aware development and build
processes, would be critical for achieving the stated business objectives.
!
The solution needed to work with standard developer tooling, i.e. Java with Eclipse,
have strong support for OSGi, support the concept of multiple repositories and provide
a basis for continuous integration (via Jenkins) to build, test and create deployable
artifacts.
!
For these reasons the Bndtools project was selected (see http://bndtools.org).
!
!
!
!!!!

!23Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

http://b

Figure 10: Siemens’ OSGi/Bndtools based continuous integration environment !

The resultant Bndtools based continuous integration solution is shown in Figure 10.
!
1. Via the Eclipse/Bndtools IDE Siemens’ developers maintain their own local

workspace and check results into their local SVN source repository; this SVN
repository contains only work in progress (WIP).

2. Siemens’ developers are able to include one or more read-only OSGi Bundle
Repositories (a.k.a. OBR) in their development environment. The primary repository
is the team’s Read-Only Development Repository, but repositories used by other
development teams, a repository containing standardized Siemens’ components
and approved third-party and/or OSS repositories, might be included.

3. At the point the WIP item is completed and ready for release to the local
development repository, Bndtools automatically calculates the correct semantic
version update based on the delta of changes in the current code base (N) with

!24Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

respect to the previous released version (N-1). The Jenkins build server builds and
releases the correct semantic-versioned artifact to the development repository.

4. Once released to the Read-Only Development Repository, the OSGi bundle is
available for use by all developers with access to that repository. While the bundle
remains unreleased, subsequent code updates can be applied, the bundle re-built
with the semantic version again calculated against the same N-1 baseline.

5. At the point the artifact is released from the development repository to QA, it now
defines the new baseline. All subsequent updates to the N+1 version of the OSGi
bundle are now baselined by Bndtools against the newly released version.
!

Bndtools’ sophisticated semantic versioning behaviors mean that appropriate semantic
version changes are automatically calculated, so conveying the nature of the change
and offloading this concern from the developer.
!
This strategy proved successful in delivering a highly agile development and
continuous integration environment for Siemens’ developers that also met the
business’ re-use and governance objectives.

!

!25Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

Conclusion !
Whether a senior manager responsible for building an agile business, or software
developer tasked with building an agile software solution, the fundamental challenge is
the same.
!
Agility can only be fully realized when the underlying entity - the organization or the
software product - has a high degree of structural modularity. If the entity is monolithic
and so change resistant, then no amount of agile process will address this. For
example, there would have been little point in implementing Kanban methodologies in
the pre-1900s Automobile Industry - before the innovation of the production line

which, in turn, was dependent upon a more fundamental innovation: the idea of
modular assembly.
!
The relationship between structural modularity and agility is fundamental. It is also no
accident that OSGi, the modularity system for Java, is designed the way it is. OSGi’s
design is a logical consequence of the challenges of building highly modular and
therefore achieving highly agile Java software systems. With OSGi™, Java developers
have a powerful ally; an ally that provides the foundation, based on open industry
specifications, upon which their organization’s IT agility goals can be fully realized.
!
In addition to creating open industry standards for the OSGi ecosystem, the OSGi
Alliance provides a number of services to help the community accelerate its adoption
of OSGi technology. Recent OSGi Alliance initiatives include the OSGi enRoute Project,
which demonstrates Java modularity best practices, and a soon-be-introduced OSGi
developer certification program to foster the growth of knowledge and skills to build
modular agile Java based systems.

!
!!
!

!26Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

The Author !
Richard Nicholson, CEO and Founder of Paremus (www.paremus.com) has been a
member of the OSGi Alliance Board since 2010, and served as President between
2011 and 2013. Paremus offered the industry’s first distributed OSGi Cloud runtime,
the Service Fabric, in 2005, and have been actively promoting the fundamental
importance of structural modularity in advanced distributed/Cloud based systems
since then. !
Paremus’ involvement with the OSGi Alliance started in 2006, with the submission of
RFP 75: RMI and Serialisation for OSGi, the foundations of what is now Remote
Services/Distributed OSGi. Further Paremus contributions have included RFP 103
Class Loading Improvements, RFP 133 OSGi & Cloud Computing, RFP 158 Distributed
Eventing, RFC 183 Cloud Ecosystems and OSGi, published specifications for the new
R5 Resolver and most recently new specifications for Java Promises and
Asynchronous Services. !
In addition, the Paremus team continues its involvement in OSGi industry activities
including leading the Bndtools initiative (http://bndtools.org) and contributing to the
Apache Aries and Felix projects.
!
Paremus provides a range of OSGi training and consulting services to help
organizations accelerate their adoption of OSGi and to assist with individual�s
preparation for the OSGi developer certification program, currently under development
by the Alliance. !
Richard's blog can be found at: http://blogs.paremus.com.
!!
!

!27Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

The OSGi Alliance
The OSGi Alliance is a worldwide consortium of technology innovators that advances a
proven and mature process to enable the componentization of applications into well-
defined software modules, and ensure interoperability of applications and services over
a broad variety of devices.
!
The Alliance provides specifications, reference implementations, test suites and
certification to foster a valuable cross-industry ecosystem. OSGi technology is
shipping in millions of units worldwide, and is deployed by Fortune Global 500
companies in enterprise, desktop, embedded home and telematics markets. Member
companies collaborate within an egalitarian, equitable and transparent environment
and promote adoption of OSGi technology through business benefits, user experiences
and forums.
!
For more information on the non-profit technology corporation, visit http://
www.osgi.org or contact help@osgi.org.

!28Copyright 2008-2014 ©	 OSGi Alliance 	 All Rights Reserved

