
OSGi Service Platform
Service Compendium
The OSGi Alliance

Release 4
August 2005

Copyright © 2005, 2000 OSGi Alliance
All Rights Reserved

OSGi Specification License, Version 1.0

The OSGi Alliance (“OSGi Alliance”) hereby grants you a fully-paid, non-exclusive,
non-transferable, worldwide, limited license (without the right to sublicense), under
the OSGi Alliance's applicable intellectual property rights to view, download, and
reproduce the OSGi Specification (“Specification”) which follows this License
Agreement (“Agreement”). You are not authorized to create any derivative work of the
Specification. The OSGi Alliance also grants you a perpetual, non-exclusive,
worldwide, fully paid-up, royalty free, limited license (without the right to sublicense)
under any applicable copyrights, to create and/or distribute an implementation of the
Specification that: (i) fully implements the Specification including all its required
interfaces and functionality; (ii) does not modify, subset, superset or otherwise extend
the OSGi Name Space, or include any public or protected packages, classes, Java
interfaces, fields or methods within the OSGi Name Space other than those required
and authorized by the Specification. An implementation that does not satisfy
limitations (i)-(ii) is not considered an implementation of the Specification, does not
receive the benefits of this license, and must not be described as an implementation of
the Specification. An implementation of the Specification must not claim to be a
compliant implementation of the Specification unless it passes the OSGi Alliance
Compliance Tests for the Specification in accordance with OSGi Alliance processes.
“OSGi Name Space” shall mean the public class or interface declarations whose names
begin with “org.osgi” or any recognized successors or replacements thereof.

THE SPECIFICATION IS PROVIDED “AS IS,” AND THE OSGi ALLIANCE, ITS
MEMBERS AND ANY OTHER AUTHORS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE SPECIFICATION
ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH
CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS. THE OSGi ALLIANCE, ITS MEMBERS AND ANY
OTHER AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
SPECIFICATION OR THE PERFORMANCE OR IMPLEMENTATION OF THE
CONTENTS THEREOF.

The name and trademarks of the OSGi Alliance or any other Authors may NOT be used
in any manner, including advertising or publicity pertaining to the Specification or its
contents without specific, written prior permission. Title to copyright in the
Specification will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Trademarks
OSGi™ is a trademark, registered trademark, or service mark of the OSGi
Alliance in the US and other countries. Java is a trademark, registered trade-
mark, or service mark of Sun Microsystems, Inc. in the US and other coun-
tries. All other trademarks, registered trademarks, or service marks used in
this document are the property of their respective owners and are hereby
recognized.

Feedback
This specification can be downloaded from the OSGi web site:

http://www.osgi.org

Comments about this specification can be mailed to:

speccomments@mail.osgi.org
i-432 OSGi Service Platform Release 4

OSGi Member Companies
Alpine Electronics Europe Gmbh, Aplix Corporation, Belgacom, BMW
Group, Cablevision Systems, Computer Associates, Deutsche Telekom AG,
Echelon Corporation, Electricité de France (EDF), Ericsson Mobile Platforms
AB, Esmertec, Espial Group, Inc., ETRI Electronics and Telecommunications
Research Institute, France Telecom, Gatespace Telematics AB, Gemplus,
Harman/Becker Automotive Systems GmbH, Hitachi, Ltd., IBM
Corporation, Industrial Technology Research Institute, Insignia Solutions,
Intel Corporation, KDDI R&D Laboratories, Inc., KT Corporation,
Mitsubishi Electric Corporation, Motorola, Inc., NEC Corporation, Nokia
Corporation, NTT, Oracle Corporation, Panasonic Technologies, Inc., Philips
Consumer Electronics, ProSyst Software GmbH, Robert Bosch Gmbh,
Samsung Electronics Co., Ltd., SavaJe Technologies, Inc., Sharp Corporation,
Siemens AG, Sun Microsystems, Inc., Telcordia Technologies, Inc.,
Telefonica I+D, TeliaSonera, Toshiba Corporation, Vodafone Group Services
Limited
OSGi Service Platform Release 4 ii-432

OSGi Board of Directors and Officers

Director,
VP Americas

Dan Bandera Program Director, WebSphere Standards,
IBM Corporation

Director,
President

John R. Barr Director, Standards Realization, Corporate
Offices,
Motorola, Inc.

Director Hans-Werner Bitzer Head of Section Smart Home Solutions,
Deutsche Telekom AG

Director Jon Bostrom Chief Java Architect,
Nokia Corporation

CTO, CPEG chair,
OSGi Fellow

BJ Hargrave Senior Software Engineer,
IBM Corporation

Executive Director Deepak Kamlani CEO, Founder,
Global Inventures, Inc.

Director Ryutaro Kawamura Senior Manager,
NTT

Director Chung-Kon Ko Vice President,
Samsung Electronics Co., Ltd.

Technical Director,
Editor, OSGi Fellow

Peter Kriens Managing Director,
aQute

Director Andre Kruetzfeldt Principal Architect,
Sun Microsystems, Inc.

Director,
Treasurer

Jeff Lund Vice President, Business Development & Corpo-
rate Marketing,
Echelon Corporation

Director, VP Europe,
Middle East and Africa

Daniel Meirsman Principal Technology Strategist,
Philips Consumer Electronics

Director Hans-Ulrich Michel Project Manager Information, Communication
and Telematics,
BMW

Director,
Secretary

Stan Moyer Executive Director, Strategic Research Program,
Telcordia Technologies, Inc.

Director Olivier Pavé Software Architect,

Siemens AG

Director,
VP Marketing

Susan Schwarze Marketing Director,
ProSyst Software GmbH

VP Asia Pacific Jae Gun (JG) Wee Korea Rep. Director of Echelon APJ,
Echelon Corporation
iii-432 OSGi Service Platform Release 4

Table Of Contents

1 Introduction 1
1.1 Reader Level .. 1

1.2 Version Information .. 1

1.3 References ... 2

101 Log Service Specification 3
101.1 Introduction ... 3

101.2 The Log Service Interface .. 4

101.3 Log Level and Error Severity ... 5

101.4 Log Reader Service .. 6

101.5 Log Entry Interface .. 6

101.6 Mapping of Events ... 7

101.7 Security ... 8

101.8 Changes ... 9

101.9 org.osgi.service.log ... 9

102 Http Service Specification 15
102.1 Introduction ... 15

102.2 Registering Servlets .. 16

102.3 Registering Resources ... 18

102.4 Mapping HTTP Requests to Servlet and Resource Registrations 20

102.5 The Default Http Context Object ... 21

102.6 Multipurpose Internet Mail Extension (MIME) Types ... 22

102.7 Authentication ... 23

102.8 Security ... 25

102.9 Configuration Properties ... 26

102.10 Changes ... 26

102.11 org.osgi.service.http ... 26

102.12 References ... 32

103 Device Access Specification 33
103.1 Introduction ... 33

103.2 Device Services ... 35

103.3 Device Category Specifications .. 38

103.4 Driver Services .. 40

103.5 Driver Locator Service ... 47

103.6 The Driver Selector Service .. 49

103.7 Device Manager .. 50

103.8 Security ... 56
OSGi Service Platform Release 4 iv-432

103.9 Changes ... 56

103.10 org.osgi.service.device .. 57

103.11 References ... 61

104 Configuration Admin Service Specification 63
104.1 Introduction ... 63

104.2 Configuration Targets ...66

104.3 The Persistent Identity .. 67

104.4 The Configuration Object ...68

104.5 Managed Service ... 71

104.6 Managed Service Factory .. 75

104.7 Configuration Admin Service ..80

104.8 Configuration Events ... 82

104.9 Configuration Plugin .. 83

104.10 Remote Management ..86

104.11 Meta Typing ... 87

104.12 Security ..88

104.13 Configurable Service ...90

104.14 Changes ... 91

104.15 org.osgi.service.cm .. 91

104.16 References ... 107

106 Preferences Service Specification 109
106.1 Introduction ... 109

106.2 Preferences Interface .. 111

106.3 Concurrency .. 114

106.4 PreferencesService Interface ... 115

106.5 Cleanup .. 115

106.6 Changes ... 116

106.7 org.osgi.service.prefs .. 116

106.8 References ... 127

105 Metatype Service Specification 129
105.1 Introduction ... 129

105.2 Attributes Model ... 132

105.3 Object Class Definition ... 132

105.4 Attribute Definition ... 133

105.5 Meta Type Service ... 133

105.6 Using the Meta Type Resources .. 135

105.7 Object .. 141

105.8 XML Schema .. 141

105.9 Limitations ... 142
v-432 OSGi Service Platform Release 4

105.10 Related Standards ... 143

105.11 Security Considerations .. 143

105.12 Changes ... 143

105.13 org.osgi.service.metatype ... 143

105.14 References ... 150

108 Wire Admin Service Specification 151
108.1 Introduction ..151

108.2 Producer Service ... 154

108.3 Consumer Service ... 157

108.4 Implementation issues .. 159

108.5 Wire Properties .. 160

108.6 Composite objects .. 161

108.7 Wire Flow Control ... 165

108.8 Flavors ... 169

108.9 Converters ... 169

108.10 Wire Admin Service Implementation .. 169

108.11 Wire Admin Listener Service Events ... 170

108.12 Connecting External Entities ... 172

108.13 Related Standards ... 173

108.14 Security ... 174

108.15 Changes ... 174

108.16 org.osgi.service.wireadmin ... 174

108.17 References ... 193

107 User Admin Service Specification 195
107.1 Introduction ... 195

107.2 Authentication ... 198

107.3 Authorization ..200

107.4 Repository Maintenance ... 203

107.5 User Admin Events .. 203

107.6 Security ... 204

107.7 Relation to JAAS .. 205

107.8 Changes ... 206

107.9 org.osgi.service.useradmin ... 206

107.10 References ... 217

109 IO Connector Service Specification 219
109.1 Introduction ... 219

109.2 The Connector Framework ... 220

109.3 Connector Service ... 222

109.4 Providing New Schemes .. 223
OSGi Service Platform Release 4 vi-432

109.5 Execution Environment ... 224

109.6 Security .. 224

109.7 org.osgi.service.io ... 225

109.8 References ... 228

110 Initial Provisioning 229
110.1 Introduction ... 229

110.2 Procedure ...230

110.3 Special Configurations .. 233

110.4 The Provisioning Service ... 234

110.5 Management Agent Environment ... 235

110.6 Mapping To File Scheme ... 235

110.7 Mapping To HTTP(S) Scheme ... 236

110.8 Mapping To RSH Scheme .. 238

110.9 Exception Handling .. 242

110.10 Security .. 243

110.11 Changes ...244

110.12 org.osgi.service.provisioning ...244

110.13 References ... 247

111 UPnP™ Device Service Specification 249
111.1 Introduction ...249

111.2 UPnP Specifications ... 251

111.3 UPnP Device ... 253

111.4 Device Category .. 255

111.5 UPnPService ... 255

111.6 Working With a UPnP Device .. 255

111.7 Implementing a UPnP Device .. 256

111.8 Event API .. 257

111.9 UPnP Events and Event Admin service .. 258

111.10 Localization ... 258

111.11 Dates and Times .. 258

111.12 UPnP Exception .. 259

111.13 Configuration ... 259

111.14 Networking considerations ... 259

111.15 Security ..260

111.16 Changes ...260

111.17 org.osgi.service.upnp ..260

111.18 References ... 275

112 Declarative Services Specification 277
112.1 Introduction ... 277
vii-432 OSGi Service Platform Release 4

112.2 Components .. 280

112.3 References to Services .. 283

112.4 Component Description .. 289

112.5 Component Life Cycle ... 294

112.6 Component Properties .. 301

112.7 Deployment ... 302

112.8 Service Component Runtime .. 303

112.9 Security ... 304

112.10 Component Description Schema .. 304

112.11 org.osgi.service.component .. 306

112.12 References ..311

113 Event Admin Service Specification 313
113.1 Introduction ... 313

113.2 Event Admin Architecture ... 315

113.3 The Event ... 315

113.4 Event Handler .. 316

113.5 Event Publisher .. 317

113.6 Specific Events .. 318

113.7 Event Admin Service ... 322

113.8 Reliability ... 323

113.9 Inter-operability with Native Applications ... 324

113.10 Security ... 324

113.11 org.osgi.service.event ... 325

701 Service Tracker Specification 333
701.1 Introduction ... 333

701.2 Service Tracker Class .. 334

701.3 Using a Service Tracker ... 335

701.4 Customizing the Service Tracker class ... 336

701.5 Customizing Example .. 336

701.6 Security ... 337

701.7 Changes ... 337

701.8 org.osgi.util.tracker ... 337

702 XML Parser Service Specification 345
702.1 Introduction ... 345

702.2 JAXP ... 346

702.3 XML Parser service .. 347

702.4 Properties .. 347

702.5 Getting a Parser Factory .. 348

702.6 Adapting a JAXP Parser to OSGi .. 348
OSGi Service Platform Release 4 viii-432

702.7 Usage of JAXP .. 350

702.8 Security .. 351

702.9 org.osgi.util.xml ... 351

702.10 References ... 354

703 Position Specification 355
703.1 Introduction ... 355

703.2 Positioning ... 356

703.3 Units .. 356

703.4 Optimizations .. 356

703.5 Errors ... 356

703.6 Using Position With Wire Admin ... 357

703.7 Related Standards .. 357

703.8 Security .. 357

703.9 org.osgi.util.position ... 357

703.10 References ... 358

704 Measurement and State Specification 359
704.1 Introduction ... 359

704.2 Measurement Object ... 361

704.3 Error Calculations .. 362

704.4 Constructing and Comparing Measurements ... 362

704.5 Unit Object .. 364

704.6 State Object .. 366

704.7 Related Standards .. 366

704.8 Security Considerations .. 366

704.9 org.osgi.util.measurement .. 366

704.10 References ... 375

999 Execution Environment Specification 377
999.1 Introduction ... 377

999.2 About Execution Environments ... 378

999.3 OSGi Defined Execution Environments .. 378

999.4 Changes ...428

999.5 References ...429
ix-432 OSGi Service Platform Release 4

Introduction Reader Level
1 Introduction
This compendium contains the specifications of all OSGi services.

1.1 Reader Level
This specification is written for the following audiences:

• Application developers
• Framework and system service developers (system developers)
• Architects

This specification assumes that the reader has at least one year of practical
experience in writing Java programs. Experience with embedded systems
and server-environments is a plus. Application developers must be aware
that the OSGi environment is significantly more dynamic than traditional
desktop or server environments.

System developers require a very deep understanding of Java. At least three
years of Java coding experience in a system environment is recommended. A
Framework implementation will use areas of Java that are not normally
encountered in traditional applications. Detailed understanding is required
of class loaders, garbage collection, Java 2 security, and Java native library
loading.

Architects should focus on the introduction of each subject. This introduc-
tion contains a general overview of the subject, the requirements that influ-
enced its design, and a short description of its operation as well as the
entities that are used. The introductory sections require knowledge of Java
concepts like classes and interfaces, but should not require coding experi-
ence.

Most of these specifications are equally applicable to application developers
and system developers.

1.2 Version Information
This document specifies OSGi Service Platform Release 4. This specification
is backward compatible to releases 3.

Components in this specification have their own specification version,
independent of the OSGi Service Platform, Release 4 specification. The fol-
lowing table summarizes the packages and specification versions for the dif-
ferent subjects.

Table 1 Packages and versions

Item Package Version

101 Log Service Spec if ication org.osgi .service. log Version 1 .3
102 Http Service Speci f ication org.osgi .service.http Version 1 .2
103 Device Access Speci f icat ion org.osgi .service.dev ice Version 1 .1
OSGi Service Platform Release 4 1-432

References Introduction
When a component is represented in a bundle, a version attribute is needed
in the declaration of the Import-Package or Export-Package manifest head-
ers.

1.3 References
[1] Bradner, S., Key words for use in RFCs to Indicate Requirement Levels

http://www.ietf.org/rfc/rfc2119.txt, March 1997.

[2] OSGi Service Gateway Specification 1.0
http://www.osgi.org/resources/spec_download.asp

[3] OSGi Service Platform, Release 2, October 2001
http://www.osgi.org/resources/spec_download.asp

[4] OSGi Service Platform, Release 3, March 2003
http://www.osgi.org/resources/spec_download.asp

104 Configuration Admin Service Spec i f i-
cation

org.osgi .service .cm Version 1 .2

105 Metatype Service Spec if ication org.osgi .service.metatype Version 1 .1
106 Preferences Serv ice Spec i f icat ion org.osgi .service.prefs Version 1 .1
107 User Admin Serv ice Speci f icat ion org.osgi .service.useradmin Version 1 .1
108 Wire Admin Service Speci f ication org.osgi .service.wireadmin Version 1 .0
109 IO Connector Service Speci f ication org.osgi .service. io Version 1 .0
110 Init ia l Provis ioning org.osgi .serv ice .provis ion ing Version 1 .1
111 UPnP™ Device Service Speci f icat ion org.osgi .service.upnp Version 1 .1
112 Declarative Services Speci f ication org.osgi .service .component Version 1 .0
113 Event Admin Service Speci f ication org.osgi .service .event Version 1 .0
701 Service Tracker Spec if ication org.osgi .ut i l .tracker Version 1 .3
702 XML Parser Serv ice Speci f icat ion org.osgi .ut i l .xml Version 1 .0
703 Posit ion Spec if ication org.osgi .ut i l .pos it ion Version 1 .0
704 Measurement and State Speci f ication org.osgi .ut i l .measurement Version 1 .0
999 Execut ion Environment Speci f ication Version 1 .1

Table 1 Packages and versions

Item Package Version
2-432 OSGi Service Platform Release 4

Log Service Specification Version 1.3 Introduction
101 Log Service
Specification
Version 1.3

101.1 Introduction
The Log Service provides a general purpose message logger for the OSGi Ser-
vice Platform. It consists of two services, one for logging information and
another for retrieving current or previously recorded log information.

This specification defines the methods and semantics of interfaces which
bundle developers can use to log entries and to retrieve log entries.

Bundles can use the Log Service to log information for the Operator. Other
bundles, oriented toward management of the environment, can use the Log
Reader Service to retrieve Log Entry objects that were recorded recently or to
receive Log Entry objects as they are logged by other bundles.

101.1.1 Entities
• LogService – The service interface that allows a bundle to log infor-

mation, including a message, a level, an exception, a ServiceReference
object, and a Bundle object.

• LogEntry - An interface that allows access to a log entry in the log. It
includes all the information that can be logged through the Log Service
and a time stamp.

• LogReaderService - A service interface that allows access to a list of recent
LogEntry objects, and allows the registration of a LogListener object that
receives LogEntry objects as they are created.

• LogListener - The interface for the listener to LogEntry objects. Must be
registered with the Log Reader Service.
OSGi Service Platform Release 4 3-432

The Log Service Interface Log Service Specification Version 1.3
Figure 1 Log Service Class Diagram org.osgi.service.log package

101.2 The Log Service Interface
The LogService interface allows bundle developers to log messages that can
be distributed to other bundles, which in turn can forward the logged
entries to a file system, remote system, or some other destination.

The LogService interface allows the bundle developer to:

• Specify a message and/or exception to be logged.
• Supply a log level representing the severity of the message being logged.

This should be one of the levels defined in the LogService interface but it
may be any integer that is interpreted in a user-defined way.

• Specify the Service associated with the log requests.

By obtaining a LogService object from the Framework service registry, a
bundle can start logging messages to the LogService object by calling one of
the LogService methods. A Log Service object can log any message, but it is
primarily intended for reporting events and error conditions.

The LogService interface defines these methods for logging messages:

• log(int, Str ing) – This method logs a simple message at a given log level.
• log(int, Str ing , Throwable) – This method logs a message with an

exception at a given log level.
• log(Serv iceReference, int , St r ing) – This method logs a message asso-

ciated with a specific service.
• log(Serv iceReference, int , St r ing , Throwable) – This method logs a

message with an exception associated with a specific service.

While it is possible for a bundle to call one of the log methods without pro-
viding a ServiceReference object, it is recommended that the caller supply
the ServiceReference argument whenever appropriate, because it provides
important context information to the operator in the event of problems.

<<interface>>
LogService

<<interface>>
LogReader
Service

<<interface>>
LogEntry

<<interface>>
LogListener

a Log Reader
Service impl.

LogEntry impl

a Log user bundle

a Log Service
impl

a Log reader user

Log a
message

Store a message in the log for retrieval

message log

send new log entry

retrieve log

1 1

1

0..n (impl dependent maximum)

1

0..n

LogEntry has references to
ServiceReference,
Throwable and Bundle

or register
listener

Bundle using
Log Service

Bundle using
Log Reader
Service

Log implementation bundle
4-432 OSGi Service Platform Release 4

Log Service Specification Version 1.3 Log Level and Error Severity
The following example demonstrates the use of a log method to write a mes-
sage into the log.

logService.log(
myServiceReference,
LogService.LOG_INFO,
"myService is up and running"

);

In the example, the myServiceReference parameter identifies the service
associated with the log request. The specified level, LogService.LOG_INFO ,
indicates that this message is informational.

The following example code records error conditions as log messages.

try {
FileInputStream fis = new FileInputStream("myFile");
int b;
while ((b = fis.read()) != -1) {

...
}
fis.close();

}
catch (IOException exception) {

logService.log(
myServiceReference,
LogService.LOG_ERROR,
"Cannot access file",
exception);

}

Notice that in addition to the error message, the exception itself is also
logged. Providing this information can significantly simplify problem deter-
mination by the Operator.

101.3 Log Level and Error Severity
The log methods expect a log level indicating error severity, which can be
used to filter log messages when they are retrieved. The severity levels are
defined in the LogService interface.

Callers must supply the log levels that they deem appropriate when making
log requests. The following table lists the log levels.

Table 2 Log Levels
Level Descriptions
LOG_DEBUG Used for problem determination and may be irrelevant to anyone but the

bundle developer.
LOG_ERROR Indicates the bundle or service may not be functional. Action should be

taken to correct this situation.
LOG_INFO May be the result of any change in the bundle or service and does not indi-

cate a problem.
LOG_WARNING Indicates a bundle or service is still functioning but may experience prob-

lems in the future because of the warning condition.
OSGi Service Platform Release 4 5-432

Log Reader Service Log Service Specification Version 1.3
101.4 Log Reader Service
The Log Reader Service maintains a list of LogEntry objects called the log.
The Log Reader Service is a service that bundle developers can use to
retrieve information contained in this log, and receive notifications about
LogEntry objects when they are created through the Log Service.

The size of the log is implementation-specific, and it determines how far
into the past the log entries go. Additionally, some log entries may not be
recorded in the log in order to save space. In particular, LOG_DEBUG log
entries may not be recorded. Note that this rule is implementation-depen-
dent. Some implementations may allow a configurable policy to ignore cer-
tain LogEntry object types.

The LogReaderService interface defines these methods for retrieving log
entries.

• getLog() – This method retrieves past log entries as an enumeration with
the most recent entry first.

• addLogListener(LogL is tener) – This method is used to subscribe to the
Log Reader Service in order to receive log messages as they occur. Unlike
the previously recorded log entries, all log messages must be sent to sub-
scribers of the Log Reader Service as they are recorded.
A subscriber to the Log Reader Service must implement the LogListener
interface.
After a subscription to the Log Reader Service has been started, the sub-
scriber's LogL is tener. logged method must be called with a Log Entry
object for the message each time a message is logged.

The LogListener interface defines the following method:

• logged(LogEntry) – This method is called for each Log Entry object
created. A Log Reader Service implementation must not filter entries to
the LogLis tener interface as it is allowed to do for its log. A LogListener
object should see all LogEntry objects that are created.

The delivery of LogEntry objects to the LogListener object should be done
asynchronously.

101.5 Log Entry Interface
The LogEntry interface abstracts a log entry. It is a record of the information
that was passed when an event was logged, and consists of a superset of
information which can be passed through the LogService methods. The
LogEntry interface defines these methods to retrieve information related to
Log Entry objects:

• getBundle() – This method returns the Bundle object related to a Log-
Entry object.

• getException() – This method returns the exception related to a Log-
Entry object. In some implementations, the returned exception may not
be the original exception. To avoid references to a bundle defined
exception class, thus preventing an uninstalled bundle from being
garbage collected, the Log Service may return an exception object of an
6-432 OSGi Service Platform Release 4

Log Service Specification Version 1.3 Mapping of Events
implementation defined Throwable subclass. This object will attempt to
return as much information as possible, such as the message and stack
trace, from the original exception object .

• getLevel() – This method returns the severity level related to a Log Entry
object.

• getMessage() – This method returns the message related to a Log Entry
object.

• getServiceReference() –This method returns the ServiceReference
object of the service related to a Log Entry object.

• getTime() – This method returns the time that the log entry was created.

101.6 Mapping of Events
Implementations of a Log Service must log Framework-generated events
and map the information to LogEntry objects in a consistent way. Frame-
work events must be treated exactly the same as other logged events and dis-
tributed to all LogListener objects that are associated with the Log Reader
Service. The following sections define the mapping for the three different
event types: Bundle, Service, and Framework.

101.6.1 Bundle Events Mapping
A Bundle Event is mapped to a LogEntry object according to Table 3, “Map-
ping of Bundle Events to Log Entries,” on page 7.

101.6.2 Service Events Mapping
A Service Event is mapped to a LogEntry object according to Table 4, “Map-
ping of Service Events to Log Entries,” on page 8.

101.6.3 Framework Events Mapping
A Framework Event is mapped to a LogEntry object according to Table 5,
“Mapping of Framework Event to Log Entries,” on page 8.

Table 3 Mapping of Bundle Events to Log Entries
Log Entry method Information about Bundle Event
getLevel() LOG_INFO
getBundle() Identifies the bundle to which the event happened. In other words, it

identifies the bundle that was installed, started, stopped, updated, or
uninstalled. This identification is obtained by calling getBundle()
on the BundleEvent object.

getException() nu ll
getServiceReference() nu ll
getMessage() The message depends on the event type:

• INSTALLED – "BundleEvent INSTALLED"
• STARTED – "BundleEvent STARTED"
• STOPPED – "BundleEvent STOPPED"
• UPDATED – "BundleEvent UPDATED"
• UNINSTALLED – "BundleEvent UNINSTALLED"
• RESOLVED – "BundleEvent RESOLVED"
• UNRESOLVED – "BundleEvent UNRESOLVED"
OSGi Service Platform Release 4 7-432

Security Log Service Specification Version 1.3
101.7 Security
The Log Service should only be implemented by trusted bundles. This bun-
dle requires ServicePermiss ion[LogService |LogReaderService , REGISTER] .
Virtually all bundles should get ServicePermission[LogService, GET] . The
ServicePermission[LogReaderService, GET] should only be assigned to
trusted bundles.

Table 4 Mapping of Service Events to Log Entries
Log Entry method Information about Service Event
getLevel() LOG_INFO , except for the ServiceEvent .MODIFIED event. This

event can happen frequently and contains relatively little informa-
tion. It must be logged with a level of LOG_DEBUG .

getBundle() Identifies the bundle that registered the service associated with
this event. It is obtained by calling
getServ iceReference() .getBundle() on the ServiceEvent object.

getException() nul l
getServiceReference() Identifies a reference to the service associated with the event. It is

obtained by calling getServiceReference() on the Serv iceEvent
object.

getMessage() This message depends on the actual event type. The messages are
mapped as follows:

• REGISTERED – "ServiceEvent REGISTERED"
• MODIFIED – "ServiceEvent MODIFIED"
• UNREGISTERING – "ServiceEvent UNREGISTERING"

Table 5 Mapping of Framework Event to Log Entries
Log Entry method Information about Framework Event
getLevel() LOG_INFO , except for the FrameworkEvent.ERROR event. This event

represents an error and is logged with a level of LOG_ERROR.
getBundle() Identifies the bundle associated with the event. This may be the sys-

tem bundle. It is obtained by calling getBundle() on the
FrameworkEvent object.

getException() Identifies the exception associated with the error. This will be null
for event types other than ERROR. It is obtained by calling
getThrowable() on the FrameworkEvent object.

getServiceReference() nul l
getMessage() This message depends on the actual event type. The messages are

mapped as follows:

• STARTED – "FrameworkEvent STARTED"
• ERROR – "FrameworkEvent ERROR"
• PACKAGES_REFRESHED – "FrameworkEvent PACKAGES

REFRESHED"
• STARTLEVEL_CHANGED – "FrameworkEvent STARTLEVEL

CHANGED"
• WARNING – "FrameworkEvent WARNING"
• INFO – "FrameworkEvent INFO"
8-432 OSGi Service Platform Release 4

Log Service Specification Version 1.3 Changes
101.8 Changes
 The following clarifications were made.

• New Framework Event type strings are defined.
• New Bundle Event type strings are defined.

101.9 org.osgi.service.log
The OSGi Log Service Package. Specification Version 1.3.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.log; version=1.3

101.9.1 Summary
• LogEntry - Provides methods to access the information contained in an

individual Log Service log entry. [p.9]
• LogListener - Subscribes to LogEntry objects from the LogReaderService.

[p.10]
• LogReaderService - Provides methods to retrieve LogEntry objects from

the log. [p.10]
• LogService - Provides methods for bundles to write messages to the log.

[p.11]
LogEntry

101.9.2 public interface LogEntry
Provides methods to access the information contained in an individual Log
Service log entry.

A LogEntry object may be acquired from the LogReaderService.getLog
method or by registering a LogListener object.

See Also LogReaderService.getLog[p.11] , LogListener[p.10]
getBundle()

101.9.2.1 public Bundle getBundle()

Returns the bundle that created this LogEntry object.

Returns The bundle that created this LogEntry object; null if no bundle is associated
with this LogEntry object.
getException()

101.9.2.2 public Throwable getException()

Returns the exception object associated with this LogEntry object.

In some implementations, the returned exception may not be the original
exception. To avoid references to a bundle defined exception class, thus pre-
venting an uninstalled bundle from being garbage collected, the Log Service
may return an exception object of an implementation defined Throwable
subclass. The returned object will attempt to provide as much information
as possible from the original exception object such as the message and stack
trace.

Returns Throwable object of the exception associated with this LogEntry;null if no
exception is associated with this LogEntry object.
getLevel()
OSGi Service Platform Release 4 9-432

org.osgi.service.log Log Service Specification Version 1.3
101.9.2.3 public int getLevel()

Returns the severity level of this LogEntry object.

This is one of the severity levels defined by the LogService interface.

Returns Severity level of this LogEntry object.

See Also LogService.LOG_ERROR[p.12] , LogService.LOG_WARNING[p.12] ,
LogService.LOG_INFO[p.12] , LogService.LOG_DEBUG[p.12]
getMessage()

101.9.2.4 public String getMessage()

Returns the human readable message associated with this LogEntry object.

Returns String containing the message associated with this LogEntry object.
getServiceReference()

101.9.2.5 public ServiceReference getServiceReference()

Returns the ServiceReference object for the service associated with this
LogEntry object.

Returns ServiceReference object for the service associated with this LogEntry object;
null if no ServiceReference object was provided.
getTime()

101.9.2.6 public long getTime()

Returns the value of currentTimeMillis() at the time this LogEntry object
was created.

Returns The system time in milliseconds when this LogEntry object was created.

See Also System.currentTimeMillis()
LogListener

101.9.3 public interface LogListener
extends EventListener
Subscribes to LogEntry objects from the LogReaderService.

A LogListener object may be registered with the Log Reader Service using
the LogReaderService.addLogListener method. After the listener is regis-
tered, the logged method will be called for each LogEntry object created. The
LogListener object may be unregistered by calling the LogReaderSer-
vice.removeLogListener method.

See Also LogReaderService[p.10] , LogEntry[p.9] ,
LogReaderService.addLogListener(LogListener)[p.11] ,
LogReaderService.removeLogListener(LogListener)[p.11]
logged(LogEntry)

101.9.3.1 public void logged(LogEntry entry)

entry A LogEntry object containing log information.

Listener method called for each LogEntry object created.

As with all event listeners, this method should return to its caller as soon as
possible.

See Also LogEntry[p.9]
LogReaderService

101.9.4 public interface LogReaderService
Provides methods to retrieve LogEntry objects from the log.

There are two ways to retrieve LogEntry objects:
10-432 OSGi Service Platform Release 4

Log Service Specification Version 1.3 org.osgi.service.log
• The primary way to retrieve LogEntry objects is to register a LogListener
object whose LogListener.logged method will be called for each entry
added to the log.

• To retrieve past LogEntry objects, the getLog method can be called which
will return an Enumeration of all LogEntry objects in the log.

See Also LogEntry[p.9] , LogListener[p.10] , LogListener.logged(LogEntry)[p.10]
addLogListener(LogListener)

101.9.4.1 public void addLogListener(LogListener listener)

listener A LogListener object to register; the LogListener object is used to receive Lo-
gEntry objects.

Subscribes to LogEntry objects.

This method registers a LogListener object with the Log Reader Service. The
LogListener.logged(LogEntry) method will be called for each LogEntry
object placed into the log.

When a bundle which registers a LogListener object is stopped or otherwise
releases the Log Reader Service, the Log Reader Service must remove all of
the bundle’s listeners.

If this Log Reader Service’s list of listeners already contains a listener l such
that (l==listener), this method does nothing.

See Also LogListener[p.10] , LogEntry[p.9] , LogListener.logged(LogEntry)[p.10]
getLog()

101.9.4.2 public Enumeration getLog()

Returns an Enumeration of all LogEntry objects in the log.

Each element of the enumeration is a LogEntry object, ordered with the
most recent entry first. Whether the enumeration is of all LogEntry objects
since the Log Service was started or some recent past is implementation-spe-
cific. Also implementation-specific is whether informational and debug
LogEntry objects are included in the enumeration.

Returns An Enumeration of all LogEntry objects in the log.
removeLogListener(LogListener)

101.9.4.3 public void removeLogListener(LogListener listener)

listener A LogListener object to unregister.

Unsubscribes to LogEntry objects.

This method unregisters a LogListener object from the Log Reader Service.

If listener is not contained in this Log Reader Service’s list of listeners, this
method does nothing.

See Also LogListener[p.10]
LogService

101.9.5 public interface LogService
Provides methods for bundles to write messages to the log.

LogService methods are provided to log messages; optionally with a Service-
Reference object or an exception.

Bundles must log messages in the OSGi environment with a severity level
according to the following hierarchy:

1 LOG_ERROR [p.12]
OSGi Service Platform Release 4 11-432

org.osgi.service.log Log Service Specification Version 1.3
2 LOG_WARNING [p.12]
3 LOG_INFO [p.12]
4 LOG_DEBUG [p.12]
LOG_DEBUG

101.9.5.1 public static final int LOG_DEBUG = 4

A debugging message (Value 4).

This log entry is used for problem determination and may be irrelevant to
anyone but the bundle developer.
LOG_ERROR

101.9.5.2 public static final int LOG_ERROR = 1

An error message (Value 1).

This log entry indicates the bundle or service may not be functional.
LOG_INFO

101.9.5.3 public static final int LOG_INFO = 3

An informational message (Value 3).

This log entry may be the result of any change in the bundle or service and
does not indicate a problem.
LOG_WARNING

101.9.5.4 public static final int LOG_WARNING = 2

A warning message (Value 2).

This log entry indicates a bundle or service is still functioning but may expe-
rience problems in the future because of the warning condition.
log(int,String)

101.9.5.5 public void log(int level, String message)

level The severity of the message. This should be one of the defined log levels but
may be any integer that is interpreted in a user defined way.

message Human readable string describing the condition or null.

Logs a message.

The ServiceReference field and the Throwable field of the LogEntry object
will be set to null.

See Also LOG_ERROR[p.12] , LOG_WARNING[p.12] , LOG_INFO[p.12] , LOG_DEBUG[p.12]
log(int,String,Throwable)

101.9.5.6 public void log(int level, String message, Throwable exception)

level The severity of the message. This should be one of the defined log levels but
may be any integer that is interpreted in a user defined way.

message The human readable string describing the condition or null.

exception The exception that reflects the condition or null.

Logs a message with an exception.

The ServiceReference field of the LogEntry object will be set to null.

See Also LOG_ERROR[p.12] , LOG_WARNING[p.12] , LOG_INFO[p.12] , LOG_DEBUG[p.12]
log(ServiceReference,int,String)

101.9.5.7 public void log(ServiceReference sr, int level, String message)

sr The ServiceReference object of the service that this message is associated
with or null.
12-432 OSGi Service Platform Release 4

Log Service Specification Version 1.3 org.osgi.service.log
level The severity of the message. This should be one of the defined log levels but
may be any integer that is interpreted in a user defined way.

message Human readable string describing the condition or null.

Logs a message associated with a specific ServiceReference object.

The Throwable field of the LogEntry will be set to null.

See Also LOG_ERROR[p.12] , LOG_WARNING[p.12] , LOG_INFO[p.12] , LOG_DEBUG[p.12]
log(ServiceReference,int,String,Throwable)

101.9.5.8 public void log(ServiceReference sr, int level, String message, Throwable
exception)

sr The ServiceReference object of the service that this message is associated
with.

level The severity of the message. This should be one of the defined log levels but
may be any integer that is interpreted in a user defined way.

message Human readable string describing the condition or null.

exception The exception that reflects the condition or null.

Logs a message with an exception associated and a ServiceReference object.

See Also LOG_ERROR[p.12] , LOG_WARNING[p.12] , LOG_INFO[p.12] , LOG_DEBUG[p.12]
OSGi Service Platform Release 4 13-432

org.osgi.service.log Log Service Specification Version 1.3
14-432 OSGi Service Platform Release 4

Http Service Specification Version 1.2 Introduction
102 Http Service
Specification
Version 1.2

102.1 Introduction
An OSGi Service Platform normally provides users with access to services
on the Internet and other networks. This access allows users to remotely
retrieve information from, and send control to, services in an OSGi Service
Platform using a standard web browser.

Bundle developers typically need to develop communication and user inter-
face solutions for standard technologies such as HTTP, HTML, XML, and
servlets.

The Http Service supports two standard techniques for this purpose:

• Registering servlets – A servlet is a Java object which implements the Java
Servlet API. Registering a servlet in the Framework gives it control over
some part of the Http Service URI name-space.

• Registering resources – Registering a resource allows HTML files, image
files, and other static resources to be made visible in the Http Service URI
name-space by the requesting bundle.

Implementations of the Http Service can be based on:

• [5] HTTP 1.0 Specification RFC-1945
• [6] HTTP 1.1 Specification RFC-2616

Alternatively, implementations of this service can support other protocols
if these protocols can conform to the semantics of the javax .servlet API.
This additional support is necessary because the Http Service is closely
related to [7] Java Servlet Technology. Http Service implementations must
support at least version 2.1 of the Java Servlet API.

102.1.1 Entities
This specification defines the following interfaces which a bundle devel-
oper can implement collectively as an Http Service or use individually:

• HttpContext – Allows bundles to provide information for a servlet or
resource registration.

• HttpService – Allows other bundles in the Framework to dynamically
register and unregister resources and servlets into the Http Service URI
name-space.

• NamespaceException – Is thrown to indicate an error with the caller's
request to register a servlet or resource into the Http Service URI name-
space.
OSGi Service Platform Release 4 15-432

Registering Servlets Http Service Specification Version 1.2
Figure 2 Http Service Overview Diagram

102.2 Registering Servlets
javax .servlet.Servlet objects can be registered with the Http Service by
using the HttpService interface. For this purpose, the HttpServ ice interface
defines the method reg isterServlet(Str ing, javax.servlet.Servlet,Dict io-
nary,HttpContext) .

For example, if the Http Service implementation is listening to port 80 on
the machine www.acme.com and the Servlet object is registered with the
name "/servlet" , then the Servlet object’s service method is called when the
following URL is used from a web browser:

http://www.acme.com/servlet?name=bugs

All Serv let objects and resource registrations share the same name-space. If
an attempt is made to register a resource or Serv let object under the same
name as a currently registered resource or Servlet object, a
NamespaceException is thrown. See Mapping HTTP Requests to Servlet and
Resource Registrations on page 20 for more information about the handling of
the Http Service name-space.

Each Servlet registration must be accompanied with an HttpContext object.
This object provides the handling of resources, media typing, and a method
to handle authentication of remote requests. See Authentication on page 23.

For convenience, a default HttpContext object is provided by the Http Ser-
vice and can be obtained with createDefaultHttpContext() . Passing a nul l
parameter to the registration method achieves the same effect.

<<interface>>
HttpService

javax.servlet.
Servlet

javax.servlet.http
HttpServlet
Request

javax.servlet.http
HttpServlet
Response

an Http service
implementation

<<interface>>
HttpContext

servlet
registration

resource
registration

implementation of
Servlet

implementation of
HttpContext

default impl. of
HttpContext

Bundles main
code

1

0..n1

1

1

1

register servlet
or resources

request
resource

service
request

Name-space
alias

Bundle implementing
Http Service

Bundle using
Http Service

Namespace
Exception
16-432 OSGi Service Platform Release 4

Http Service Specification Version 1.2 Registering Servlets
Servlet objects require a ServletContext object. This object provides a num-
ber of functions to access the Http Service Java Servlet environment. It is
created by the implementation of the Http Service for each unique
HttpContext object with which a Servlet object is registered. Thus, Servlet
objects registered with the same HttpContext object must also share the
same ServletContext object.

Servlet objects are initialized by the Http Service when they are registered
and bound to that specific Http Service. The initialization is done by calling
the Servlet object’s Servlet. in i t(Serv letConf ig) method. The ServletConf ig
parameter provides access to the initialization parameters specified when
the Servlet object was registered.

Therefore, the same Servlet instance must not be reused for registration
with another Http Service, nor can it be registered under multiple names.
Unique instances are required for each registration.

The following example code demonstrates the use of the reg isterServlet
method:

Hashtable initparams = new Hashtable();
initparams.put("name", "value");

Servlet myServlet = new HttpServlet() {
String name = "<not set>";

public void init(ServletConfig config) {
this.name = (String)

config.getInitParameter("name");
}

public void doGet(
HttpServletRequest req,
HttpServletResponse rsp

) throws IOException {
rsp.setContentType("text/plain");
req.getWriter().println(this.name);

}
};

getHttpService().registerServlet(
"/servletAlias",
myServlet,
initparams,
null // use default context

);
// myServlet has been registered
// and its init method has been called. Remote
// requests are now handled and forwarded to
// the servlet.
...
getHttpService().unregister("/servletAlias");
// myServlet has been unregistered and its
// destroy method has been called
OSGi Service Platform Release 4 17-432

Registering Resources Http Service Specification Version 1.2
This example registers the servlet, myServlet , at alias: /serv letAl ias . Future
requests for http:/ /www.acme.com/servletA l ias maps to the servlet,
myServlet , whose service method is called to process the request. (The
service method is called in the HttpServlet base class and dispatched to a
doGet , doPut , doPost , doOptions , doTrace, or doDelete call depending on
the HTTP request method used.)

102.3 Registering Resources
A resource is a file containing images, static HTML pages, sounds, movies,
applets, etc. Resources do not require any handling from the bundle. They
are transferred directly from their source--usually the JAR file that contains
the code for the bundle--to the requestor using HTTP.

Resources could be handled by Servlet objects as explained in Registering
Servlets on page 16. Transferring a resource over HTTP, however, would
require very similar Servlet objects for each bundle. To prevent this redun-
dancy, resources can be registered directly with the Http Service via the
HttpServ ice interface. This HttpService interface defines the registerRe-
sources(Str ing,Str ing,HttpContext)method for registering a resource into
the Http Service URI name-space.

The first parameter is the external alias under which the resource is regis-
tered with the Http Service. The second parameter is an internal prefix to
map this resource to the bundle’s name-space. When a request is received,
the HttpService object must remove the external alias from the URI, replace
it with the internal prefix, and call the getResource(Str ing) method with
this new name on the associated HttpContext object. The HttpContext
object is further used to get the MIME type of the resource and to authenti-
cate the request.

Resources are returned as a java .net.URL object. The Http Service must read
from this URL object and transfer the content to the initiator of the HTTP
request.

This return type was chosen because it matches the return type of the
java. lang.Class.getResource(Str ing resource) method. This method can
retrieve resources directly from the same place as the one from which the
class was loaded – often a package directory in the JAR file of the bundle.
This method makes it very convenient to retrieve resources from the bundle
that are contained in the package.

The following example code demonstrates the use of the reg is ter
Resources method:

package com.acme;
...
HttpContext context = new HttpContext() {

public boolean handleSecurity(
HttpServletRequest request,

 HttpServletResponse response
) throws IOException {

return true;
18-432 OSGi Service Platform Release 4

Http Service Specification Version 1.2 Registering Resources
}

public URL getResource(String name) {
return getClass().getResource(name);

}

public String getMimeType(String name) {
return null;

}
};

getHttpService().registerResources (
"/files",
"www",
context

);
...
getHttpService().unregister("/files");

This example registers the alias /files on the Http Service. Requests for
resources below this name-space are transferred to the HttpContext object
with an internal name of www/<name> . This example uses the Class.get
Resource(Str ing) method. Because the internal name does not start with a
"/", it must map to a resource in the "com/acme/www" directory of the JAR
file. If the internal name did start with a "/", the package name would not
have to be prefixed and the JAR file would be searched from the root. Con-
sult the java. lang.C lass.getResource(Str ing) method for more information.

In the example, a request for http ://www.acme.com/f i les/myf i le .html must
map to the name "com/acme/www/myf i le .html" which is in the bundle’s
JAR file.

More sophisticated implementations of the getResource(Str ing) method
could filter the input name, restricting the resources that may be returned
or map the input name onto the file system (if the security implications of
this action are acceptable).

Alternatively, the resource registration could have used a default
HttpContext object, as demonstrated in the following call to
reg isterResources :

getHttpService().registerResources(
"/files",
"/com/acme/www",
null

);

In this case, the Http Service implementation would call the
createDefau ltHttpContext() method and use its return value as the
HttpContext argument for the registerResources method. The default
implementation must map the resource request to the bundle’s resource,
using
OSGi Service Platform Release 4 19-432

Mapping HTTP Requests to Servlet and Resource Registrations Http Service Specifica-
Bundle .getResource(Str ing) . In the case of the previous example, however,
the internal name must now specify the full path to the directory contain-
ing the resource files in the JAR file. No automatic prefixing of the package
name is done.

The getMime(String) implementation of the default HttpContext object
should return a reasonable mapping. Its handleSecuri ty(HttpServ let
Request ,HttpServletResponse) may implement an authentication mecha-
nism that is implementation-dependent.

102.4 Mapping HTTP Requests to Servlet
and Resource Registrations
When an HTTP request comes in from a client, the Http Service checks to
see if the requested URI matches any registered aliases. A URI matches only
if the path part of the URI is exactly the same string. Matching is case sensi-
tive.

If it does match, a matching registration takes place, which is processed as
follows:

1. If the registration corresponds to a servlet, the authorization is verified
by calling the handleSecuri ty method of the associated HttpContext
object. See Authentication on page 23. If the request is authorized, the serv-
let must be called by its service method to complete the HTTP request.

2. If the registration corresponds to a resource, the authorization is verified
by calling the handleSecuri ty method of the associated HttpContext
object. See Authentication on page 23. If the request is authorized, a target
resource name is constructed from the requested URI by substituting the
alias from the registration with the internal name from the registration
if the alias is not "/". If the alias is "/", then the target resource name is con-
structed by prefixing the requested URI with the internal name. An inter-
nal name of "/" is considered to have the value of the empty string ("")
during this process.

3. The target resource name must be passed to the getResource method of
the associated HttpContext object.

4. If the returned URL object is not null , the Http Service must return the
contents of the URL to the client completing the HTTP request. The trans-
lated target name, as opposed to the original requested URI, must also be
used as the argument to HttpContext .getMimeType .

5. If the returned URL object is nul l , the Http Service continues as if there
was no match.

6. If there is no match, the Http Service must attempt to match sub-strings
of the requested URI to registered aliases. The sub-strings of the
requested URI are selected by removing the last "/ " and everything to the
right of the last "/".
20-432 OSGi Service Platform Release 4

Http Service Specification Version 1.2 The Default Http Context Object
The Http Service must repeat this process until either a match is found or
the sub-string is an empty string. If the sub-string is empty and the alias " /"
is registered, the request is considered to match the alias " /" . Otherwise, the
Http Service must return HttpServletResponse.SC_NOT_FOUND(404) to
the client.

For example, an HTTP request comes in with a request URI of "/ fudd/bugs/
foo.txt" , and the only registered alias is "/fudd". A search for " /fudd/bugs/
foo.txt" will not match an alias. Therefore, the Http Service will search for
the alias "/fudd/bugs" and the alias "/ fudd" . The latter search will result in a
match and the matched alias registration must be used.

Registrations for identical aliases are not allowed. If a bundle registers the
alias "/fudd" , and another bundle tries to register the exactly the same alias,
the second caller must receive a NamespaceException and its resource or
servlet must not be registered. It could, however, register a similar alias – for
example, "/ fudd/bugs", as long as no other registration for this alias already
exists.

The following table shows some examples of the usage of the name-space.

102.5 The Default Http Context Object
The HttpContext object in the first example demonstrates simple imple-
mentations of the HttpContext interface methods. Alternatively, the exam-
ple could have used a default HttpContext object, as demonstrated in the
following call to reg isterServlet :

getHttpService().registerServlet(
"/servletAlias",
myServlet,
initparams,
null

);

In this case, the Http Service implementation must call createDefau lt
HttpContext and use the return value as the HttpContext argument.

Table 6 Examples of Name-space Mapping

Alias Internal Name URI getResource Parameter

/ (empty str ing) /fudd/bugs /fudd/bugs
/ / /fudd/bugs /fudd/bugs
/ /tmp /fudd/bugs /tmp/bugs
/fudd (empty str ing) /fudd/bugs /bugs
/fudd / /fudd/bugs /bugs
/fudd /tmp /fudd/bugs /tmp/bugs
/fudd tmp /fudd/bugs/x .g i f tmp/bugs/x.g i f
/fudd/bugs/x.g i f tmp/y.gi f /fudd/bugs/x .g i f tmp/y.g if
OSGi Service Platform Release 4 21-432

Multipurpose Internet Mail Extension (MIME) Types Http Service Specification Version
If the default HttpContext object, and thus the ServletContext object, is to
be shared by multiple servlet registrations, the previous servlet registration
example code needs to be changed to use the same default HttpContext
object. This change is demonstrated in the next example:

HttpContext defaultContext =
getHttpService().createDefaultHttpContext();

getHttpService().registerServlet(
"/servletAlias",
myServlet,
initparams,
defaultContext

);

// defaultContext can be reused
// for further servlet registrations

102.6 Multipurpose Internet Mail Extension
(MIME) Types
MIME defines an extensive set of headers and procedures to encode binary
messages in US-ASCII mails. For an overview of all the related RFCs, consult
[8] MIME Multipurpose Internet Mail Extension.

An important aspect of this extension is the type (file format) mechanism of
the binary messages. The type is defined by a string containing a general cat-
egory (text, application, image, audio and video, multipart, and message) fol-
lowed by a "/" and a specific media type, as in the example, " text/html" for
HTML formatted text files. A MIME type string can be followed by addi-
tional specifiers by separating key=value pairs with a ’;’. These specifiers can
be used, for example, to define character sets as follows:

text/plan ; charset=iso-8859-1

The Internet Assigned Number Authority (IANA) maintains a set of defined
MIME media types. This list can be found at [9] Assigned MIME Media Types.
MIME media types are extendable, and when any part of the type starts with
the prefix "x-" , it is assumed to be vendor-specific and can be used for test-
ing. New types can be registered as described in [10] Registration Procedures
for new MIME media types.

HTTP bases its media typing on the MIME RFCs. The "Content-Type" header
should contain a MIME media type so that the browser can recognize the
type and format the content correctly.

The source of the data must define the MIME media type for each transfer.
Most operating systems do not support types for files, but use conventions
based on file names, such as the last part of the file name after the last ".".
This extension is then mapped to a media type.

Implementations of the Http Service should have a reasonable default of
mapping common extensions to media types based on file extensions.
22-432 OSGi Service Platform Release 4

Http Service Specification Version 1.2 Authentication
Only the bundle developer, however, knows exactly which files have what
media type. The HttpContext interface can therefore be used to map this
knowledge to the media type. The HttpContext class has the following
method for this: getMimeT ype(String) .

The implementation of this method should inspect the file name and use its
internal knowledge to map this name to a MIME media type.

Simple implementations can extract the extension and look up this exten-
sion in a table.

Returning nul l from this method allows the Http Service implementation to
use its default mapping mechanism.

102.7 Authentication
The Http Service has separated the authentication and authorization of a
request from the execution of the request. This separation allows bundles to
use available Serv let sub-classes while still providing bundle specific
authentication and authorization of the requests.

Prior to servicing each incoming request, the Http Service calls the
handleSecur ity(javax .serv let.http.HttpServletRequest , javax .serv-
let .http.HttpServletResponse) method on the HttpContext object that is
associated with the request URI. This method controls whether the request
is processed in the normal manner or an authentication error is returned.

If an implementation wants to authenticate the request, it can use the
authentication mechanisms of HTTP. See [11] RFC 2617: HTTP Authentica-
tion: Basic and Digest Access Authentication. These mechanisms normally inter-
pret the headers and decide if the user identity is available, and if it is,
whether that user has authenticated itself correctly.

There are many different ways of authenticating users, and the
handleSecur ity method on the HttpContext object can use whatever
method it requires. If the method returns t rue , the request must continue to
be processed using the potentially modified HttpServ letRequest and
HttpServletResponse objects. If the method returns fa lse , the request must
not be processed.

Table 7 Sample Extension to MIME Media Mapping

Extension MIME media type Description

. jpg . jpeg image/jpeg JPEG Files

.g i f image/g i f GIF Files

.css text/css Cascading Style Sheet Files

. t xt text/pla in Text Files

.wml text/vnd.wap.wml Wireless Access Protocol (WAP) Mark Language

.h tm .html text/html Hyper Text Markup Language

.wbmp image/vnd.wap.wbmp Bitmaps for WAP
OSGi Service Platform Release 4 23-432

Authentication Http Service Specification Version 1.2
A common standard for HTTP is the basic authentication scheme that is not
secure when used with HTTP. Basic authentication passes the password in
base 64 encoded strings that are trivial to decode into clear text. Secure
transport protocols like HTTPS use SSL to hide this information. With these
protocols basic authentication is secure.

Using basic authentication requires the following steps:

1. If no Author izat ion header is set in the request, the method should set
the WWW-Authenticate header in the response. This header indicates
the desired authentication mechanism and the realm. For example,
WWW-Authent icate: Basic realm="ACME".
The header should be set with the response object that is given as a
parameter to the handleSecur ity method. The handleSecuri ty method
should set the status to HttpServletResponse.SC_UNAUTHORIZED
(401) and return fa lse .

2. Secure connections can be verified with the
ServletRequest .getScheme() method. This method returns, for exam-
ple, "https" for an SSL connection; the handleSecur ity method can use
this and other information to decide if the connection’s security level is
acceptable. If not, the handleSecur i ty method should set the status to
HttpServletResponse.SC_FORBIDDEN (403) and return fa lse .

3. Next, the request must be authenticated. When basic authentication is
used, the Authorization header is available in the request and should be
parsed to find the user and password. See [11] RFC 2617: HTTP Authentica-
tion: Basic and Digest Access Authentication for more information.
If the user cannot be authenticated, the status of the response object
should be set to HttpServletResponse.SC_UNAUTHORIZED (401) and
return fa lse .

4. The authentication mechanism that is actually used and the identity of
the authenticated user can be of interest to the Servlet object. Therefore,
the implementation of the handleSecuri ty method should set this infor-
mation in the request object using the ServletRequest .setAttr ibute
method. This specification has defined a number of OSGi-specific
attribute names for this purpose:
• AUTHENTICATION_TYPE - Specifies the scheme used in authentica-

tion. A Servlet may retrieve the value of this attribute by calling the
HttpServ letRequest.getAuthType method. This attribute name is
org .osg i .serv ice .http.authenticat ion.type .

• REMOTE_USER - Specifies the name of the authenticated user. A Serv-
let may retrieve the value of this attribute by calling the
HttpServ letRequest.getRemoteUser method. This attribute name is
org .osgi .service .http.authent ication .remote.user.

• AUTHORIZATION - If a User Admin service is available in the environ-
ment, then the handleSecuri ty method should set this attribute with
the Author ization object obtained from the User Admin service. Such
an object encapsulates the authentication of its remote user. A Servlet
may retrieve the value of this attribute by calling
Serv letRequest.getAttr ibute(HttpContext.AUTHORIZATION) . This
header name is org .osg i .service.useradmin.author izat ion .
24-432 OSGi Service Platform Release 4

Http Service Specification Version 1.2 Security
5. Once the request is authenticated and any attributes are set, the
handleSecuri ty method should return true . This return indicates to the
Http Service that the request is authorized and processing may continue.
If the request is for a Servlet, the Http Service must then call the service
method on the Serv let object.

102.8 Security
This section only applies when executing in an OSGi environment which is
enforcing Java permissions.

102.8.1 Accessing Resources in Bundles
The Http Service must be granted AdminPermiss ion[*,RESOURCE] so that
bundles may use a default HttpContext object. This is necessary because the
implementation of the default HttpContext object must call
Bundle.getResource to access the resources of a bundle and this method
requires the caller to have AdminPermiss ion[bundle,RESOURCE] .

Any bundle may access resources in its own bundle by calling
Class .getResource . This operation is privileged. The resulting URL object
may then be passed to the Http Service as the result of a
HttpContext .getResource call. No further permission checks are performed
when accessing bundle resource URL objects, so the Http Service does not
need to be granted any additional permissions.

102.8.2 Accessing Other Types of Resources
In order to access resources that were not registered using the default
HttpContext object, the Http Service must be granted sufficient privileges
to access these resources. For example, if the getResource method of the reg-
istered HttpContext object returns a file URL, the Http Service requires the
corresponding F ilePermiss ion to read the file. Similarly, if the getResource
method of the registered HttpContext object returns an HTTP URL, the Http
Service requires the corresponding SocketPermission to connect to the
resource.

Therefore, in most cases, the Http Service should be a privileged service that
is granted sufficient permission to serve any bundle's resources, no matter
where these resources are located. Therefore, the Http Service must capture
the AccessControlContext object of the bundle registering resources or a
servlet, and then use the captured AccessContro lContext object when
accessing resources returned by the registered HttpContext object. This sit-
uation prevents a bundle from registering resources that it does not have
permission to access.

Therefore, the Http Service should follow a scheme like the following exam-
ple. When a resource or servlet is registered, it should capture the context.

AccessControlContext acc =
AccessController.getContext();
OSGi Service Platform Release 4 25-432

Configuration Properties Http Service Specification Version 1.2
When a URL returned by the getResource method of the associated
HttpContext object is called, the Http Service must call the getResource
method in a doPr iv i leged construct using the AccessControlContext object
of the registering bundle:

AccessController.doPrivileged(
new PrivilegedExceptionAction() {

public Object run() throws Exception {
...
}

}, acc);

The Http Service must only use the captured AccessControlContext when
accessing resource URL objects. Servlet and HttpContext objects must use a
doPriv i leged construct in their implementations when performing privi-
leged operations.

102.9 Configuration Properties
If the Http Service does not have its port values configured through some
other means, the Http Service implementation should use the following
properties to determine the port values upon which to listen.

The following OSGi environment properties are used to specify default
HTTP ports:

• org.osgi .service .http.port – This property specifies the port used for
servlets and resources accessible via HTTP. The default value for this
property is 80.

• org.osgi .service .http.port .secure – This property specifies the port used
for servlets and resources accessible via HTTPS. The default value for this
property is 443.

102.10 Changes
• NamespaceException has been updated to support the Java 1.4 nested

exception methods.
• AdminPermission references were updated to specify the RESOURCE

action.

102.11 org.osgi.service.http
The OSGi Http Service Package. Specification Version 1.2.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.http; version=1.2

102.11.1 Summary
• HttpContext - This interface defines methods that the Http Service may

call to get information about a registration. [p.27]
26-432 OSGi Service Platform Release 4

Http Service Specification Version 1.2 org.osgi.service.http
• HttpService - The Http Service allows other bundles in the OSGi envi-
ronment to dynamically register resources and servlets into the URI
namespace of Http Service. [p.29]

• NamespaceException - A NamespaceException is thrown to indicate an
error with the caller’s request to register a servlet or resources into the
URI namespace of the Http Service. [p.31]

HttpContext

102.11.2 public interface HttpContext
This interface defines methods that the Http Service may call to get infor-
mation about a registration.

Servlets and resources may be registered with an HttpContext object; if no
HttpContext object is specified, a default HttpContext object is used. Serv-
lets that are registered using the same HttpContext object will share the
same ServletContext object.

This interface is implemented by users of the HttpService.
AUTHENTICATION_TYPE

102.11.2.1 public static final String AUTHENTICATION_TYPE =
“org.osgi.service.http.authentication.type”

HttpServletRequest attribute specifying the scheme used in authentication.
The value of the attribute can be retrieved by HttpServletRequest.getAuth-
Type. This attribute name is org.osgi.service.http.authentication.type.

Since 1.1
AUTHORIZATION

102.11.2.2 public static final String AUTHORIZATION =
“org.osgi.service.useradmin.authorization”

HttpServletRequest attribute specifying the Authorization object obtained
from the org.osgi.service.useradmin.UserAdmin service. The value of the
attribute can be retrieved by HttpServletRequest.getAttribute(HttpCon-
text.AUTHORIZATION). This attribute name is org.osgi.service.userad-
min.authorization.

Since 1.1
REMOTE_USER

102.11.2.3 public static final String REMOTE_USER =
“org.osgi.service.http.authentication.remote.user”

HttpServletRequest attribute specifying the name of the authenticated user.
The value of the attribute can be retrieved by HttpServletRequest.getRemo-
teUser. This attribute name is org.osgi.service.http.authentica-
tion.remote.user.

Since 1.1
getMimeType(String)

102.11.2.4 public String getMimeType(String name)

name determine the MIME type for this name.

Maps a name to a MIME type. Called by the Http Service to determine the
MIME type for the name. For servlet registrations, the Http Service will call
this method to support the ServletContext method getMimeType. For
resource registrations, the Http Service will call this method to determine
the MIME type for the Content-Type header in the response.
OSGi Service Platform Release 4 27-432

org.osgi.service.http Http Service Specification Version 1.2
Returns MIME type (e.g. text/html) of the name or null to indicate that the Http Serv-
ice should determine the MIME type itself.
getResource(String)

102.11.2.5 public URL getResource(String name)

name the name of the requested resource

Maps a resource name to a URL.

Called by the Http Service to map a resource name to a URL. For servlet reg-
istrations, Http Service will call this method to support the ServletContext
methods getResource and getResourceAsStream. For resource registrations,
Http Service will call this method to locate the named resource. The context
can control from where resources come. For example, the resource can be
mapped to a file in the bundle’s persistent storage area via bundleCon-
text.getDataFile(name).toURL() or to a resource in the context’s bundle via
getClass().getResource(name)

Returns URL that Http Service can use to read the resource or null if the resource does
not exist.
handleSecurity(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)

102.11.2.6 public boolean handleSecurity(HttpServletRequest request,
HttpServletResponse response) throws IOException

request the HTTP request

response the HTTP response

Handles security for the specified request.

The Http Service calls this method prior to servicing the specified request.
This method controls whether the request is processed in the normal man-
ner or an error is returned.

If the request requires authentication and the Authorization header in the
request is missing or not acceptable, then this method should set the
WWW-Authenticate header in the response object, set the status in the
response object to Unauthorized(401) and return false. See also RFC 2617:
HTTP Authentication: Basic and Digest Access Authentication (available at http:/
/www.ietf.org/rfc/rfc2617.txt).

If the request requires a secure connection and the getScheme method in
the request does not return ‘https’ or some other acceptable secure protocol,
then this method should set the status in the response object to Forbid-
den(403) and return false.

When this method returns false, the Http Service will send the response
back to the client, thereby completing the request. When this method
returns true, the Http Service will proceed with servicing the request.

If the specified request has been authenticated, this method must set the
AUTHENTICATION_TYPE [p.27] request attribute to the type of authentica-
tion used, and the REMOTE_USER [p.27] request attribute to the remote user
(request attributes are set using the setAttribute method on the request). If
this method does not perform any authentication, it must not set these
attributes.
28-432 OSGi Service Platform Release 4

Http Service Specification Version 1.2 org.osgi.service.http
If the authenticated user is also authorized to access certain resources, this
method must set the AUTHORIZATION [p.27] request attribute to the Autho-
rization object obtained from the org.osgi.service.useradmin.UserAdmin
service.

The servlet responsible for servicing the specified request determines the
authentication type and remote user by calling the getAuthType and
getRemoteUser methods, respectively, on the request.

Returns true if the request should be serviced, false if the request should not be serv-
iced and Http Service will send the response back to the client.

Throws IOException – may be thrown by this method. If this occurs, the Http Serv-
ice will terminate the request and close the socket.
HttpService

102.11.3 public interface HttpService
The Http Service allows other bundles in the OSGi environment to dynami-
cally register resources and servlets into the URI namespace of Http Service.
A bundle may later unregister its resources or servlets.

See Also HttpContext[p.27]
createDefaultHttpContext()

102.11.3.1 public HttpContext createDefaultHttpContext()

Creates a default HttpContext for registering servlets or resources with the
HttpService, a new HttpContext object is created each time this method is
called.

The behavior of the methods on the default HttpContext is defined as fol-
lows:

• getMimeType- Does not define any customized MIME types for the
Content-Type header in the response, and always returns null.

• handleSecurity- Performs implementation-defined authentication on
the request.

• getResource- Assumes the named resource is in the context bundle; this
method calls the context bundle’s Bundle.getResource method, and
returns the appropriate URL to access the resource. On a Java runtime
environment that supports permissions, the Http Service needs to be
granted org.osgi.framework.AdminPermission[*,RESOURCE].

Returns a default HttpContext object.

Since 1.1
registerResources(String,String,HttpContext)

102.11.3.2 public void registerResources(String alias, String name, HttpContext
context) throws NamespaceException

alias name in the URI namespace at which the resources are registered

name the base name of the resources that will be registered

context the HttpContext object for the registered resources, or null if a default Http-
Context is to be created and used.

Registers resources into the URI namespace.
OSGi Service Platform Release 4 29-432

org.osgi.service.http Http Service Specification Version 1.2
The alias is the name in the URI namespace of the Http Service at which the
registration will be mapped. An alias must begin with slash (’/’) and must
not end with slash (’/’), with the exception that an alias of the form “/” is
used to denote the root alias. The name parameter must also not end with
slash (’/’). See the specification text for details on how HTTP requests are
mapped to servlet and resource registrations.

For example, suppose the resource name /tmp is registered to the alias /files.
A request for /files/foo.txt will map to the resource name /tmp/foo.txt.

httpservice.registerResources(”/files”, “/tmp”, context);

The Http Service will call the HttpContext argument to map resource
names to URLs and MIME types and to handle security for requests. If the
HttpContext argument is null, a default HttpContext is used (see
createDefaultHttpContext [p.29]).

Throws NamespaceException – if the registration fails because the alias is already in
use.

IllegalArgumentException – if any of the parameters are invalid
registerServlet(String,javax.servlet.Servlet,Dictionary,HttpContext)

102.11.3.3 public void registerServlet(String alias, Servlet servlet, Dictionary
initparams, HttpContext context) throws ServletException,
NamespaceException

alias name in the URI namespace at which the servlet is registered

servlet the servlet object to register

initparams initialization arguments for the servlet or null if there are none. This argu-
ment is used by the servlet’s ServletConfig object.

context the HttpContext object for the registered servlet, or null if a default HttpCon-
text is to be created and used.

Registers a servlet into the URI namespace.

The alias is the name in the URI namespace of the Http Service at which the
registration will be mapped.

An alias must begin with slash (’/’) and must not end with slash (’/’), with the
exception that an alias of the form “/” is used to denote the root alias. See the
specification text for details on how HTTP requests are mapped to servlet
and resource registrations.

The Http Service will call the servlet’s init method before returning.

httpService.registerServlet(”/myservlet”, servlet, initpar-
ams, context);

Servlets registered with the same HttpContext object will share the same
ServletContext. The Http Service will call the context argument to support
the ServletContext methods getResource,getResourceAsStream and getMi-
meType, and to handle security for requests. If the context argument is null,
a default HttpContext object is used (see createDefaultHttpContext [p.29]).

Throws NamespaceException – if the registration fails because the alias is already in
use.
30-432 OSGi Service Platform Release 4

Http Service Specification Version 1.2 org.osgi.service.http
javax.servlet.ServletException – if the servlet’s init method throws an
exception, or the given servlet object has already been registered at a differ-
ent alias.

IllegalArgumentException – if any of the arguments are invalid
unregister(String)

102.11.3.4 public void unregister(String alias)

alias name in the URI name-space of the registration to unregister

Unregisters a previous registration done by registerServlet or registerRe-
sources methods.

After this call, the registered alias in the URI name-space will no longer be
available. If the registration was for a servlet, the Http Service must call the
destroy method of the servlet before returning.

If the bundle which performed the registration is stopped or otherwise
“unget”s the Http Service without calling unregister [p.31] then Http Service
must automatically unregister the registration. However, if the registration
was for a servlet, the destroy method of the servlet will not be called in this
case since the bundle may be stopped. unregister [p.31] must be explicitly
called to cause the destroy method of the servlet to be called. This can be
done in the BundleActivator.stop method of the bundle registering the serv-
let.

Throws IllegalArgumentException – if there is no registration for the alias or the
calling bundle was not the bundle which registered the alias.
NamespaceException

102.11.4 public class NamespaceException
extends Exception
A NamespaceException is thrown to indicate an error with the caller’s
request to register a servlet or resources into the URI namespace of the Http
Service. This exception indicates that the requested alias already is in use.
NamespaceException(String)

102.11.4.1 public NamespaceException(String message)

message the detail message

Construct a NamespaceException object with a detail message.
NamespaceException(String,Throwable)

102.11.4.2 public NamespaceException(String message, Throwable cause)

message The detail message.

cause The nested exception.

Construct a NamespaceException object with a detail message and a nested
exception.
getCause()

102.11.4.3 public Throwable getCause()

Returns the cause of this exception or null if no cause was specified when
this exception was created.

Returns The cause of this exception or null if no cause was specified.

Since 1.2
getException()
OSGi Service Platform Release 4 31-432

References Http Service Specification Version 1.2
102.11.4.4 public Throwable getException()

Returns the nested exception.

This method predates the general purpose exception chaining mechanism.
The getCause() [p.31] method is now the preferred means of obtaining this
information.

Returns the nested exception or null if there is no nested exception.
initCause(Throwable)

102.11.4.5 public Throwable initCause(Throwable cause)

cause Cause of the exception.

The cause of this exception can only be set when constructed.

Returns This object.

Throws IllegalStateException – This method will always throw an IllegalState-
Exception since the cause of this exception can only be set when constructed.

Since 1.2

102.12 References
[5] HTTP 1.0 Specification RFC-1945

htpp://www.ietf.org/rfc/rfc1945.txt, May 1996

[6] HTTP 1.1 Specification RFC-2616
http://www.ietf.org/rfc/rfc2616.txt, June 1999

[7] Java Servlet Technology
http://java.sun.com/products/servlet/index.html

[8] MIME Multipurpose Internet Mail Extension
http://www.nacs.uci.edu/indiv/ehood/MIME/MIME.html

[9] Assigned MIME Media Types
http://www.iana.org/assignments/media-types

[10] Registration Procedures for new MIME media types
http://www.ietf.org/rfc/rfc2048.txt

[11] RFC 2617: HTTP Authentication: Basic and Digest Access Authentication
http://www.ietf.org/rfc/rfc2617.txt
32-432 OSGi Service Platform Release 4

Device Access Specification Version 1.1 Introduction
103 Device Access
Specification
Version 1.1

103.1 Introduction
A Service Platform is a meeting point for services and devices from many
different vendors: a meeting point where users add and cancel service sub-
scriptions, newly installed services find their corresponding input and out-
put devices, and device drivers connect to their hardware.

In an OSGi Service Platform, these activities will dynamically take place
while the Framework is running. Technologies such as USB and IEEE 1394
explicitly support plugging and unplugging devices at any time, and wire-
less technologies are even more dynamic.

This flexibility makes it hard to configure all aspects of an OSGi Service Plat-
form, particularly those relating to devices. When all of the possible services
and device requirements are factored in, each OSGi Service Platform will be
unique. Therefore, automated mechanisms are needed that can be extended
and customized, in order to minimize the configuration needs of the OSGi
environment.

The Device Access specification supports the coordination of automatic
detection and attachment of existing devices on an OSGi Service Platform,
facilitates hot-plugging and -unplugging of new devices, and downloads and
installs device drivers on demand.

This specification, however, deliberately does not prescribe any particular
device or network technology, and mentioned technologies are used as
examples only. Nor does it specify a particular device discovery method.
Rather, this specification focuses on the attachment of devices supplied by
different vendors. It emphasizes the development of standardized device
interfaces to be defined in device categories, although no such device cate-
gories are defined in this specification.

103.1.1 Essentials
• Embedded Devices – OSGi bundles will likely run in embedded devices.

This environment implies limited possibility for user interaction, and
low-end devices will probably have resource limitations.

• Remote Administration – OSGi environments must support adminis-
tration by a remote service provider.

• Vendor Neutrality – OSGi-compliant driver bundles will be supplied by
different vendors; each driver bundle must be well-defined, documented,
and replaceable.
OSGi Service Platform Release 4 33-432

Introduction Device Access Specification Version 1.1
• Continuous Operation – OSGi environments will be running for extended
periods without being restarted, possibly continuously, requiring stable
operation and stable resource consumption.

• Dynamic Updates – As much as possible, driver bundles must be individ-
ually replaceable without affecting unrelated bundles. In particular, the
process of updating a bundle should not require a restart of the whole
OSGi Service Platform or disrupt operation of connected devices.

A number of requirements must be satisfied by Device Access implementa-
tions in order for them to be OSGi-compliant. Implementations must sup-
port the following capabilities:

• Hot-Plugging – Plugging and unplugging of devices at any time if the
underlying hardware and drivers allow it.

• Legacy Systems – Device technologies which do not implement the auto-
matic detection of plugged and unplugged devices.

• Dynamic Device Driver Loading – Loading new driver bundles on demand
with no prior device-specific knowledge of the Device service.

• Multiple Device Representations – Devices to be accessed from multiple
levels of abstraction.

• Deep Trees – Connections of devices in a tree of mixed network technol-
ogies of arbitrary depth.

• Topology Independence – Separation of the interfaces of a device from
where and how it is attached.

• Complex Devices – Multifunction devices and devices that have multiple
configurations.

103.1.2 Operation
This specification defines the behavior of a device manager (which is not a
service as might be expected). This device manager detects registration of
Device services and is responsible for associating these devices with an
appropriate Driver service. These tasks are done with the help of Driver
Locator services and the Driver Selector service that allow a device manager
to find a Driver bundle and install it.

103.1.3 Entities
The main entities of the Device Access specification are:

• Device Manager – The bundle that controls the initiation of the
attachment process behind the scenes.

• Device Category – Defines how a Driver service and a Device service can
cooperate.

• Driver – Competes for attaching Device services of its recognized device
category. See Driver Services on page 40.

• Device – A representation of a physical device or other entity that can be
attached by a Driver service. See Device Services on page 35.

• DriverLocator – Assists in locating bundles that provide a Driver service.
See Driver Locator Service on page 47.

• DriverSelector – Assists in selecting which Driver service is best suited to
a Device service. See The Driver Selector Service on page 49.

Figure 3 show the classes and their relationships.
34-432 OSGi Service Platform Release 4

Device Access Specification Version 1.1 Device Services
Figure 3 Device Access Class Overview

103.2 Device Services
A Device service represents some form of a device. It can represent a hard-
ware device, but that is not a requirement. Device services differ widely:
some represent individual physical devices and others represent complete
networks. Several Device services can even simultaneously represent the
same physical device at different levels of abstraction. For example:

• A USB network.
• A device attached on the USB network.
• The same device recognized as a USB to Ethernet bridge.
• A device discovered on the Ethernet using Salutation.
• The same device recognized as a simple printer.
• The same printer refined to a PostScript printer.

A device can also be represented in different ways. For example, a USB
mouse can be considered as:

• A USB device which delivers information over the USB bus.
• A mouse device which delivers x and y coordinates and information

about the state of its buttons.

Device Manager
impl

Device
or Device_
Category set

<<interface>>
Driver
Locator

<<interface>>
Driver
Selector

a Driver impl

<<interface>>
Driver

a Driver
Locator impl

<<interface>>
Match

a Driver
Selector impl

a Device impl
0..n1

1

1

1

0..n

listens to all
device registrations

collects all drivers
and matches them
to devices

0..n

1

attaches device and
possible refines 0..n

0,1

0..n

1 1

0,1

 driver located by

associates
driver with

match value
for device

refines or uses external

best driver

device driver
bundle

Driver Selector
bundle

Driver Locator
bundle

device manager

downloads
a bundle1

1

(provided by application or
vendor specific)

(provided by vendor)

(provided by operator)

selected by
OSGi Service Platform Release 4 35-432

Device Services Device Access Specification Version 1.1
Each representation has specific implications:

• That a particular device is a mouse is irrelevant to an application which
provides management of USB devices.

• That a mouse is attached to a USB bus or a serial port would be inconse-
quential to applications that respond to mouse-like input.

Device services must belong to a defined device category, or else they can
implement a generic service which models a particular device, independent
of its underlying technology. Examples of this type of implementation
could be Sensor or Actuator services.

A device category specifies the methods for communicating with a Device
service, and enables interoperability between bundles that are based on the
same underlying technology. Generic Device services will allow interopera-
bility between bundles that are not coupled to specific device technologies.

For example, a device category is required for the USB, so that Driver bun-
dles can be written that communicate to the devices that are attached to the
USB. If a printer is attached, it should also be available as a generic Printer
service defined in a Printer service specification, indistinguishable from a
Printer service attached to a parallel port. Generic categories, such as a
Printer service, should also be described in a Device Category.

It is expected that most Device service objects will actually represent a phys-
ical device in some form, but that is not a requirement of this specification.
A Device service is represented as a normal service in the OSGi Framework
and all coordination and activities are performed upon Framework services.
This specification does not limit a bundle developer from using Framework
mechanisms for services that are not related to physical devices.

103.2.1 Device Service Registration
A Device service is defined as a normal service registered with the Frame-
work that either:

• Registers a service object under the interface org.osgi .service .Device
with the Framework, or

• Sets the DEVICE_CATEGORY property in the registration. The value of
DEVICE_CATEGORY is an array of Str ing objects of all the device cate-
gories that the device belongs to. These strings are defined in the asso-
ciated device category.

If this document mentions a Device service, it is meant to refer to services
registered with the name org.osgi .serv ice .device .Device or services regis-
tered with the DEVICE_CATEGORY property set.

When a Device service is registered, additional properties may be set that
describe the device to the device manager and potentially to the end users.
The following properties have their semantics defined in this specification:

• DEVICE_CATEGORY – A marker property indicating that this service
must be regarded as a Device service by the device manager. Its value is
of type Str ing[] , and its meaning is defined in the associated device cat-
egory specification.

• DEVICE_DESCRIPTION – Describes the device to an end user. Its value is
of type Str ing .
36-432 OSGi Service Platform Release 4

Device Access Specification Version 1.1 Device Services
• DEVICE_SER IAL – A unique serial number for this device. If the device
hardware contains a serial number, the driver bundle is encouraged to
specify it as this property. Different Device services representing the
same physical hardware at different abstraction levels should set the
same DEVICE_SERIAL, thus simplifying identification. Its value is of type
Str ing .

• service .pid – Service Persistent ID (PID), defined in
org .osg i. framework.Constants . Device services should set this property.
It must be unique among all registered services. Even different
abstraction levels of the same device must use different PIDs. The service
PIDs must be reproducible, so that every time the same hardware is
plugged in, the same PIDs are used.

103.2.2 Device Service Attachment
When a Device service is registered with the Framework, the device man-
ager is responsible for finding a suitable Driver service and instructing it to
attach to the newly registered Device service. The Device service itself is pas-
sive: it only registers a Device service with the Framework and then waits
until it is called.

The actual communication with the underlying physical device is not
defined in the Device interface because it differs significantly between dif-
ferent types of devices. The Driver service is responsible for attaching the
device in a device type-specific manner. The rules and interfaces for this pro-
cess must be defined in the appropriate device category.

If the device manager is unable to find a suitable Driver service, the Device
service remains unattached. In that case, if the service object implements
the Device interface, it must receive a call to the noDr iverFound() method.
The Device service can wait until a new driver is installed, or it can unregis-
ter and attempt to register again with different properties that describe a
more generic device or try a different configuration.

103.2.2.1 Idle Device Service

The main purpose of the device manager is to try to attach drivers to idle
devices. For this purpose, a Device service is considered idle if no bundle that
itself has registered a Driver service is using the Device service.

103.2.2.2 Device Service Unregistration

When a Device service is unregistered, no immediate action is required by
the device manager. The normal service of unregistering events, provided by
the Framework, takes care of propagating the unregistration information to
affected drivers. Drivers must take the appropriate action to release this
Device service and perform any necessary cleanup, as described in their
device category specification.

The device manager may, however, take a device unregistration as an indi-
cation that driver bundles may have become idle and are thus eligible for
removal. It is therefore important for Device services to unregister their ser-
vice object when the underlying entity becomes unavailable.
OSGi Service Platform Release 4 37-432

Device Category Specifications Device Access Specification Version 1.1
103.3 Device Category Specifications
A device category specifies the rules and interfaces needed for the communi-
cation between a Device service and a Driver service. Only Device services
and Driver services of the same device category can communicate and coop-
erate.

The Device Access service specification is limited to the attachment of
Device services by Driver services, and does not enumerate different device
categories.

Other specifications must specify a number of device categories before this
specification can be made operational. Without a set of defined device cate-
gories, no interoperability can be achieved.

Device categories are related to a specific device technology, such as USB,
IEEE 1394, JINI, UPnP, Salutation, CEBus, Lonworks, and others. The pur-
pose of a device category specification is to make all Device services of that
category conform to an agreed interface, so that, for example, a USB Driver
service of vendor A can control Device services from vendor B attached to a
USB bus.

This specification is limited to defining the guidelines for device category
definitions only. Device categories may be defined by the OSGi organization
or by external specification bodies – for example, when these bodies are
associated with a specific device technology.

103.3.1 Device Category Guidelines
A device category definition comprises the following elements:

• An interface that all devices belonging to this category must implement.
This interface should lay out the rules of how to communicate with the
underlying device. The specification body may define its own device
interfaces (or classes) or leverage existing ones. For example, a serial port
device category could use the javax.comm.Seria lPort interface which is
defined in [12] Java Communications API.
When registering a device belonging to this category with the Frame-
work, the interface or class name for this category must be included in
the registration.

• A set of service registration properties, their data types, and semantics,
each of which must be declared as either MANDATORY or OPTIONAL for
this device category.

• A range of match values specific to this device category. Matching is
explained later in The Device Attachment Algorithm on page 51.

103.3.2 Sample Device Category Specification
The following is a partial example of a fictitious device category:

public interface /* com.acme.widget.*/ WidgetDevice {
int MATCH_SERIAL = 10;
int MATCH_VERSION = 8;
int MATCH_MODEL = 6;
int MATCH_MAKE = 4;
int MATCH_CLASS = 2;
38-432 OSGi Service Platform Release 4

Device Access Specification Version 1.1 Device Category Specifications
void sendPacket(byte [] data);
byte [] receivePacket(long timeout);

}

Devices in this category must implement the interface
com.acme.widget.WidgetDev ice to receive attachments from Driver ser-
vices in this category.

Device properties for this fictitious category are defined in table Table 8.

103.3.3 Match Example
Driver services and Device services are connected via a matching process
that is explained in The Device Attachment Algorithm on page 51. The Driver
service plays a pivotal role in this matching process. It must inspect the
Device service (from its ServiceReference object) that has just been regis-
tered and decide if it potentially could cooperate with this Device service.

It must be able to answer a value indicating the quality of the match. The
scale of this match value must be defined in the device category so as to
allow Driver services to match on a fair basis. The scale must start at least at
1 and go upwards.

Driver services for this sample device category must return one of the match
codes defined in the com.acme.widget.WidgetDev ice interface or
Device.MATCH_NONE if the Device service is not recognized. The device
category must define the exact rules for the match codes in the device cate-
gory specification. In this example, a small range from 2 to 10
(MATCH_NONE is 0) is defined for WidgetDevice devices. They are named
in the WidgetDevice interface for convenience and have the following
semantics.

A Driver service should use the constants to return when it decides how
closely the Device service matches its suitability. For example, if it matches
the exact serial number, it should return MATCH_SERIAL .

Table 8 Example Device Category Properties, M=Mandatory, O=Optional

Property name M/O Type Value

DEVICE_CATEGORY M Str ing[] {"Widget"}
com.acme.class M Str ing A class description of this device. For

example "audio", "v ideo", "serial", etc. An
actual device category specification
should contain an exhaustive list and
define a process to add new classes.

com.acme.model M Str ing A definition of the model. This is usually
vendor specific. For example "Mouse".

com.acme.manufacturer M Str ing Manufacturer of this device, for example
"ACME Widget Division".

com.acme.revis ion O Str ing Revision number. For example, "42".
com.acme.seria l O Str ing A serial number. For example

"SN6751293-12-2112/A".
OSGi Service Platform Release 4 39-432

Driver Services Device Access Specification Version 1.1
103.4 Driver Services
A Driver service is responsible for attaching to suitable Device services
under control of the device manager. Before it can attach a Device service,
however, it must compete with other Driver services for control.

If a Driver service wins the competition, it must attach the device in a device
category-specific way. After that, it can perform its intended functionality.
This functionality is not defined here nor in the device category; this specifi-
cation only describes the behavior of the Device service, not how the Driver
service uses it to implement its intended functionality. A Driver service may
register one or more new Device services of another device category or a
generic service which models a more refined form of the device.

Both refined Device services as well as generic services should be defined in
a Device Category. See Device Category Specifications on page 38.

103.4.1 Driver Bundles
A Driver service is, like all services, implemented in a bundle, and is recog-
nized by the device manager by registering one or more Driver service
objects with the Framework.

Such bundles containing one or more Driver services are called driver bun-
dles. The device manager must be aware of the fact that the cardinality of the
relationship between bundles and Driver services is 1:1...*.

A driver bundle must register at least one Driver service in its
BundleActivator. start implementation.

103.4.2 Driver Taxonomy
Device Drivers may belong to one of the following categories:

• Base Drivers (Discovery, Pure Discovery and Normal)
• Refining Drivers
• Network Drivers
• Composite Drivers
• Referring Drivers
• Bridging Drivers
• Multiplexing Drivers
• Pure Consuming Drivers

Table 9 Sample Device Category Match Scale

Match name Value Description

MATCH_SERIAL 10 An exact match, including the serial number.
MATCH_VERSION 8 Matches the right class, make model, and version.
MATCH_MODEL 6 Matches the right class and make model.
MATCH_MAKE 4 Matches the make.
MATCH_CLASS 2 Only matches the class.
40-432 OSGi Service Platform Release 4

Device Access Specification Version 1.1 Driver Services
This list is not definitive, and a Driver service is not required to fit into one
of these categories. The purpose of this taxonomy is to show the different
topologies that have been considered for the Device Access service specifica-
tion.

Figure 4 Legend for Device Driver Services Taxonomy

103.4.2.1 Base Drivers

The first category of device drivers are called base drivers because they pro-
vide the lowest-level representation of a physical device. The distinguishing
factor is that they are not registered as Driver services because they do not
have to compete for access to their underlying technology.

Figure 5 Base Driver Types

Base drivers discover physical devices using code not specified here (for
example, through notifications from a device driver in native code) and
then register corresponding Device services.

When the hardware supports a discovery mechanism and reports a physical
device, a Device service is then registered. Drivers supporting a discovery
mechanism are called discovery base drivers.

An example of a discovery base driver is a USB driver. Discovered USB
devices are registered with the Framework as a generic USB Device service.
The USB specification (see [13] USB Specification) defines a tightly integrated
discovery method. Further, devices are individually addressed; no provision
exists for broadcasting a message to all devices attached to the USB bus.
Therefore, there is no reason to expose the USB network itself; instead, a dis-
covery base driver can register the individual devices as they are discovered.

Not all technologies support a discovery mechanism. For example, most
serial ports do not support detection, and it is often not even possible to
detect whether a device is attached to a serial port.

bold

plain

Device service

Hardware

Driver

Association

Key part

Illustrative

Network

Parallel port service

Physical

Base driver

Printer service

JINI, Salutation,

Pure Discovery

hardware SLP, UPnP

Printer service

Hardware with

 Discovery
 Base driver

discovery: USB,
IEEE 1394,

Base driver
OSGi Service Platform Release 4 41-432

Driver Services Device Access Specification Version 1.1
Although each driver bundle should perform discovery on its own, a driver
for a non-discoverable serial port requires external help – either through a
user interface or by allowing the Configuration Admin service to configure
it.

It is possible for the driver bundle to combine automatic discovery of Plug
and Play-compliant devices with manual configuration when non-compli-
ant devices are plugged in.

103.4.2.2 Refining Drivers

The second category of device drivers are called refining drivers. Refining
drivers provide a refined view of a physical device that is already repre-
sented by another Device service registered with the Framework. Refining
drivers register a Driver service with the Framework. This Driver service is
used by the device manager to attach the refining driver to a less refined
Device service that is registered as a result of events within the Framework
itself.

Figure 6 Refining Driver Diagram

An example of a refining driver is a mouse driver, which is attached to the
generic USB Device service representing a physical mouse. It then registers a
new Device service which represents it as a Mouse service, defined else-
where.

The majority of drivers fall into the refining driver type.

103.4.2.3 Network Drivers

An Internet Protocol (IP) capable network such as Ethernet supports indi-
vidually addressable devices and allows broadcasts, but does not define an
intrinsic discovery protocol. In this case, the entire network should be
exposed as a single Device service.

Mouse service

USB Device

Base driver

Refining driver
42-432 OSGi Service Platform Release 4

Device Access Specification Version 1.1 Driver Services
Figure 7 Network Driver diagram

103.4.2.4 Composite Drivers

Complex devices can often be broken down into several parts. Drivers that
attach to a single service and then register multiple Device services are
called composite drivers. For example, a USB speaker containing software-
accessible buttons can be registered by its driver as two separate Device ser-
vices: an Audio Device service and a Button Device service.

Figure 8 Composite Driver structure

This approach can greatly reduce the number of interfaces needed, as well as
enhance reusability.

103.4.2.5 Referring Drivers

A referring driver is actually not a driver in the sense that it controls Device
services. Instead, it acts as an intermediary to help locate the correct driver
bundle. This process is explained in detail in The Device Attachment Algorithm
on page 51.

A referring driver implements the call to the attach method to inspect the
Device service, and decides which Driver bundle would be able to attach to
the device. This process can actually involve connecting to the physical
device and communicating with it. The attach method then returns a String
object that indicates the DRIVER_ID of another driver bundle. This process is
called a referral.

IP Network driver

drivers and other services
that use the network service

network

Associated with

to discover devices

(also for other
devices)

Audio Device

USB Device

Physical USB bus

Base driver

Composite driver

Button Device
OSGi Service Platform Release 4 43-432

Driver Services Device Access Specification Version 1.1
For example, a vendor ACME can implement one driver bundle that special-
izes in recognizing all of the devices the vendor produces. The referring
driver bundle does not contain code to control the device – it contains only
sufficient logic to recognize the assortment of devices. This referring driver
can be small, yet can still identify a large product line. This approach can
drastically reduce the amount of downloading and matching needed to find
the correct driver bundle.

103.4.2.6 Bridging Drivers

A bridging driver registers a Device service from one device category but
attaches it to a Device service from another device category.

Figure 9 Bridging Driver Structure

For example, USB to Ethernet bridges exist that allow connection to an
Ethernet network through a USB device. In this case, the top level of the USB
part of the Device service stack would be an Ethernet Device service. But the
same Ethernet Device service can also be the bottom layer of an Ethernet
layer of the Device service stack. A few layers up, a bridge could connect into
yet another network.

The stacking depth of Device services has no limit, and the same drivers
could in fact appear at different levels in the same Device service stack. The
graph of drivers-to-Device services roughly mirrors the hardware connec-
tions.

103.4.2.7 Multiplexing Drivers

A multiplexing driver attaches a number of Device services and aggregates
them in a new Device service.

Figure 10 Multiplexing Driver Structure

Ethernet Device

USB device

Bridging driver

Ethernet device drivers

 USB Mouse

Multiplexing Driver

Cursor Position

 Remote
Control

Graphic Tablet

USB Network Serial Port
44-432 OSGi Service Platform Release 4

Device Access Specification Version 1.1 Driver Services
For example, assume that a system has a mouse on USB, a graphic tablet on a
serial port, and a remote control facility. Each of these would be registered as
a service with the Framework. A multiplexing driver can attach all three,
and can merge the different positions in a central Cursor Position service.

103.4.2.8 Pure Consuming Drivers

A pure consuming driver bundle will attach to devices without registering a
refined version.

Figure 11 Pure Consuming Driver Structure

For example, one driver bundle could decide to handle all serial ports
through javax .comm instead of registering them as services. When a USB
serial port is plugged in, one or more Driver services are attached, resulting
in a Device service stack with a Serial Port Device service. A pure consuming
driver may then attach to the Serial Port Device service and register a new
serial port with the javax .comm.* registry instead of the Framework service
registry. This registration effectively transfers the device from the OSGi
environment into another environment.

103.4.2.9 Other Driver Types

It should be noted that any bundle installed in the OSGi environment may
get and use a Device service without having to register a Driver service.

The following functionality is offered to those bundles that do register a
Driver service and conform to the this specification:

• The bundles can be installed and uninstalled on demand.
• Attachment to the Device service is only initiated after the winning the

competition with other drivers.

103.4.3 Driver Service Registration
Drivers are recognized by registering a Driver service with the Framework.
This event makes the device manager aware of the existence of the Driver
service. A Driver service registration must have a DRIVER_ID property
whose value is a Str ing object, uniquely identifying the driver to the device
manager. The device manager must use the DRIVER_ ID to prevent the instal-
lation of duplicate copies of the same driver bundle.

Therefore, this DRIVER_ID must:

• Depend only on the specific behavior of the driver, and thus be inde-
pendent of unrelated aspects like its location or mechanism of down-
loading.

• Start with the reversed form of the domain name of the company that
implements it: for example, com.acme.widget.1 .1 .

Pure Consuming Driver

USB Serial Port

USB Base Driver

USB Network
OSGi Service Platform Release 4 45-432

Driver Services Device Access Specification Version 1.1
• Differ from the DRIVER_ID of drivers with different behavior. Thus, it
must also be different for each revision of the same driver bundle so they
may be distinguished.

When a new Driver service is registered, the Device Attachment Algorithm
must be applied to each idle Device service. This requirement gives the new
Driver service a chance to compete with other Driver services for attaching
to idle devices. The techniques outlined in Optimizations on page 54 can pro-
vide significant shortcuts for this situation.

As a result, the Driver service object can receive match and attach requests
before the method which registered the service has returned.

This specification does not define any method for new Driver services to
steal already attached devices. Once a Device service has been attached by a
Driver service, it can only be released by the Driver service itself.

103.4.4 Driver Service Unregistration
When a Driver service is unregistered, it must release all Device services to
which it is attached. Thus, all its attached Device services become idle. The
device manager must gather all of these idle Device services and try to re-
attach them. This condition gives other Driver services a chance to take over
the refinement of devices after the unregistering driver. The techniques out-
lined in Optimizations on page 54 can provide significant shortcuts for this
situation.

A Driver service that is installed by the device manager must remain regis-
tered as long as the driver bundle is active. Therefore, a Driver service
should only be unregistered if the driver bundle is stopping, an occurrence
which may precede its being uninstalled or updated. Driver services should
thus not unregister in an attempt to minimize resource consumption. Such
optimizations can easily introduce race conditions with the device man-
ager.

103.4.5 Driver Service Methods
The Driver interface consists of the following methods:

• match(ServiceReference) – This method is called by the device manager
to find out how well this Driver service matches the Device service as
indicated by the Serv iceReference argument. The value returned here is
specific for a device category. If this Device service is of another device
category, the value Device.MATCH_NONE must be returned. Higher
values indicate a better match. For the exact matching algorithm, see The
Device Attachment Algorithm on page 51.
Driver match values and referrals must be deterministic, in that repeated
calls for the same Device service must return the same results so that
results can be cached by the device manager.

• attach(ServiceReference) – If the device manager decides that a Driver
service should be attached to a Device service, it must call this method
on the Driver service object. Once this method is called, the Device
service is regarded as attached to that Driver service, and no other Driver
service must be called to attach to the Device service. The Device service
must remain owned by the Driver service until the Driver bundle is
stopped. No unattach method exists.
46-432 OSGi Service Platform Release 4

Device Access Specification Version 1.1 Driver Locator Service
The attach method should return null when the Device service is cor-
rectly attached. A referring driver (see Referring Drivers on page 43) can
return a Str ing object that specifies the DRIVER_ID of a driver that can
handle this Device service. In this case, the Device service is not attached
and the device manager must attempt to install a Driver service with the
same DRIVER_ID via a Driver Locator service. The attach method must be
deterministic as described in the previous method.

103.4.6 Idle Driver Bundles
An idle Driver bundle is a bundle with a registered Driver service, and is not
attached to any Device service. Idle Driver bundles are consuming resources
in the OSGi Service Platform. The device manager should uninstall bundles
that it has installed and which are idle.

103.5 Driver Locator Service
The device manager must automatically install Driver bundles, which are
obtained from Driver Locator services, when new Device services are regis-
tered.

A Driver Locator service encapsulates the knowledge of how to fetch the
Driver bundles needed for a specific Device service. This selection is made
on the properties that are registered with a device: for example,
DEVICE_CATEGORY and any other properties registered with the Device
service registration.

The purpose of the Driver Locator service is to separate the mechanism from
the policy. The decision to install a new bundle is made by the device man-
ager (the mechanism), but a Driver Locator service decides which bundle to
install and from where the bundle is downloaded (the policy).

Installing bundles has many consequences for the security of the system,
and this process is also sensitive to network setup and other configuration
details. Using Driver Locator services allows the Operator to choose a strat-
egy that best fits its needs.

Driver services are identified by the DRIVER_ID property. Driver Locator ser-
vices use this particular ID to identify the bundles that can be installed.
Driver ID properties have uniqueness requirements as specified in Device
Service Registration on page 36. This uniqueness allows the device manager
to maintain a list of Driver services and prevent unnecessary installs.

An OSGi Service Platform can have several different Driver Locator services
installed. The device manager must consult all of them and use the com-
bined result set, after pruning duplicates based on the DRIVER_ID values.

103.5.1 The DriverLocator Interface
The DriverLocator interface allows suitable driver bundles to be located,
downloaded, and installed on demand, even when completely unknown
devices are detected.

It has the following methods:
OSGi Service Platform Release 4 47-432

Driver Locator Service Device Access Specification Version 1.1
• f indDr ivers (Dict ionary) – This method returns an array of driver IDs that
potentially match a service described by the properties in the Dict ionary
object. A driver ID is the Str ing object that is registered by a Driver
service under the DRIVER_ID property.

• loadDr iver(Str ing) – This method returns an InputStream object that
can be used to download the bundle containing the Driver service as
specified by the driver ID argument. If the Driver Locator service cannot
download such a bundle, it should return nul l . Once this bundle is down-
loaded and installed in the Framework, it must register a Driver service
with the DRIVER_ID property set to the value of the Str ing argument.

103.5.2 A Driver Example
The following example shows a very minimal Driver service implementa-
tion. It consists of two classes. The first class is SerialWidget . This class
tracks a single WidgetDevice from Sample Device Category Specification on
page 38. It registers a javax .comm.Ser ia lPort service, which is a general
serial port specification that could also be implemented from other device
categories like USB, a COM port, etc. It is created when the
Seria lWidgetDriver object is requested to attach a WidgetDevice by the
device manager. It registers a new javax .comm.Seria lPort service in its con-
structor.

The org .osg i .uti l . tracker.ServiceTracker is extended to handle the Frame-
work events that are needed to simplify tracking this service. The
removedService method of this class is overridden to unregister the
SerialPort when the underlying WidgetDevice is unregistered.

package com.acme.widget;
import org.osgi.service.device.*;
import org.osgi.framework.*;
import org.osgi.util.tracker.*;

class SerialWidget extends ServiceTracker
implements javax.comm.SerialPort,

org.osgi.service.device.Constants {
ServiceRegistration registration;

SerialWidget(BundleContext c, ServiceReference r) {
super(c, r, null);
open();

}

public Object addingService(ServiceReference ref) {
WidgetDevice dev = (WidgetDevice)

context.getService(ref);
registration = context.registerService(

javax.comm.SerialPort.class.getName(),
this,
null);

return dev;
}

public void removedService(ServiceReference ref,
48-432 OSGi Service Platform Release 4

Device Access Specification Version 1.1 The Driver Selector Service
Object service) {
registration.unregister();
context.ungetService(ref);

}
... methods for javax.comm.SerialPort that are
... converted to underlying WidgetDevice

}

A Seria lWidgetDriverobject is registered with the Framework in the Bundle
Activator start method under the Driver interface. The device manager must
call the match method for each idle Device service that is registered. If it is
chosen by the device manager to control this Device service, a new
Ser ia lWidget is created that offers serial port functionality to other bundles.

public class SerialWidgetDriver implements Driver {
BundleContext context;

String spec =
 "(&"

+" (objectclass=com.acme.widget.WidgetDevice)"
+" (DEVICE_CATEGORY=WidgetDevice)"
+" (com.acme.class=Serial)"
+ ")";

Filter filter;

SerialWidgetDriver(BundleContext context)
throws Exception {
this.context = context;
filter = context.createFilter(spec);

}
public int match(ServiceReference d) {

if (filter.match(d))
return WidgetDevice.MATCH_CLASS;

else
return Device.MATCH_NONE;

}
public synchronized String attach(ServiceReference r){

new SerialWidget(context, r);
}

}

103.6 The Driver Selector Service
The purpose of the Driver Selector service is to customize the selection of
the best Driver service from a set of suitable Driver bundles. The device
manager has a default algorithm as described in The Device Attachment Algo-
rithm on page 51. When this algorithm is not sufficient and requires custom-
izing by the operator, a bundle providing a Driver Selector service can be
installed in the Framework. This service must be used by the device man-
ager as the final arbiter when selecting the best match for a Device service.
OSGi Service Platform Release 4 49-432

Device Manager Device Access Specification Version 1.1
The Driver Selector service is a singleton; only one such service is recog-
nized by the device manager. The Framework method
BundleContext .getServ iceReference must be used to obtain a Driver Selec-
tor service. In the erroneous case that multiple Driver Selector services are
registered, the service.ranking property will thus define which service is
actually used.

A device manager implementation must invoke the method se lect(Ser-
viceReference,Match[]) . This method receives a Service Reference to the
Device service and an array of Match objects. Each Match object contains a
link to the ServiceReference object of a Driver service and the result of the
match value returned from a previous call to Driver .match . The Driver
Selector service should inspect the array of Match objects and use some
means to decide which Driver service is best suited. The index of the best
match should be returned. If none of the Match objects describe a possible
Driver service, the implementation must return
DriverSelector.SELECT_NONE (-1) .

103.7 Device Manager
Device Access is controlled by the device manager in the background. The
device manager is responsible for initiating all actions in response to the
registration, modification, and unregistration of Device services and Driver
services, using Driver Locator services and a Driver Selector service as help-
ers.

The device manager detects the registration of Device services and coordi-
nates their attachment with a suitable Driver service. Potential Driver ser-
vices do not have to be active in the Framework to be eligible. The device
manager must use Driver Locator services to find bundles that might be
suitable for the detected Device service and that are not currently installed.
This selection is done via a DRIVER_ID property that is unique for each
Driver service.

The device manager must install and start these bundles with the help of a
Driver Locator service. This activity must result in the registration of one or
more Driver services. All available Driver services, installed by the device
manager and also others, then participate in a bidding process. The Driver
service can inspect the Device service through its ServiceReference object
to find out how well this Driver service matches the Device service.

If a Driver Selector service is available in the Framework service registry, it
is used to decide which of the eligible Driver services is the best match.

If no Driver Selector service is available, the highest bidder must win, with
tie breaks defined on the service .ranking and service. id properties. The
selected Driver service is then asked to attach the Device service.

If no Driver service is suitable, the Device service remains idle. When new
Driver bundles are installed, these idle Device services must be reattached.
50-432 OSGi Service Platform Release 4

Device Access Specification Version 1.1 Device Manager
The device manager must reattach a Device service if, at a later time, a
Driver service is unregistered due to an uninstallation or update. At the
same time, however, it should prevent superfluous and non-optimal reat-
tachments. The device manager should also garbage-collect driver bundles
it installed which are no longer used.

The device manager is a singleton. Only one device manager may exist, and
it must have no public interface.

103.7.1 Device Manager Startup
To prevent race conditions during Framework startup, the device manager
must monitor the state of Device services and Driver services immediately
when it is started. The device manager must not, however, begin attaching
Device services until the Framework has been fully started, to prevent
superfluous or non-optimal attachments.

The Framework has completed starting when the
FrameworkEvent .STARTED event has been published. Publication of that
event indicates that Framework has finished all its initialization and all
bundles are started. If the device manager is started after the Framework has
been initialized, it should detect the state of the Framework by examining
the state of the system bundle.

103.7.2 The Device Attachment Algorithm
A key responsibility of the device manager is to attach refining drivers to
idle devices. The following diagram illustrates the device attachment algo-
rithm.
OSGi Service Platform Release 4 51-432

Device Manager Device Access Specification Version 1.1
Figure 12 Device Attachment Algorithm

Idle Device

For each DriverLocator

findDriversA

For each DRIVER ID

Try to loadBFor each Driver not excluded

C match

Nothing?

Selector?

Try selector
D

Attach completed Nothing attached

Default selection

Attach

Cleanup

Try to load

Add the driver to
the exclusion list

Device?

noDriverFound

Cleanup

E

F

K

I

K

G

H

52-432 OSGi Service Platform Release 4

Device Access Specification Version 1.1 Device Manager
103.7.3 Legend
Table 10 Driver attachment algorithm

Step Description

A DriverLocator. f indDrivers is called for each registered Driver Locator ser-
vice, passing the properties of the newly detected Device service. Each
method call returns zero or more DRIVER_ID values (identifiers of particular
driver bundles).

If the f indDr ivers method throws an exception, it is ignored, and processing
continues with the next Driver Locator service. See Optimizations on page 54
for further guidance on handling exceptions.

B For each found DRIVER_ID that does not correspond to an already registered
Driver service, the device manager calls DriverLocator. loadDr iver to return
an InputStream containing the driver bundle. Each call to loadDriver is
directed to one of the Driver Locator services that mentioned the DRIVER_ID
in step A. If the loadDr iver method fails, the other Driver Locator objects are
tried. If they all fail, the driver bundle is ignored.

If this method succeeds, the device manager installs and starts the driver
bundle. Driver bundles must register their Driver services synchronously
during bundle activation.

C For each Driver service, except those on the exclusion list, call its
Driver .match method, passing the ServiceReference object to the Device
service.

Collect all successful matches – that is, those whose return values are greater
than Device.MATCH_NONE – in a list of active matches. A match call that
throws an exception is considered unsuccessful and is not added to the list.

D If there is a Driver Selector service, the device manager calls the
DriverSelector .select method, passing the array of active Match objects.

If the Driver Selector service returns the index of one of the Match objects
from the array, its associated Driver service is selected for attaching the
Device service. If the Driver Selector service returns
DriverSelector .SELECT_NONE , no Driver service must be considered for
attaching the Device service.

If the Driver Selector service throws an exception or returns an invalid
result, the default selection algorithm is used.

Only one Driver Selector service is used, even if there is more than one regis-
tered in the Framework. See The Driver Selector Service on page 49.

E The winner is the one with the highest match value. Tie breakers are respec-
tively:

• Highest service.ranking property.
• Lowest service . id property.
OSGi Service Platform Release 4 53-432

Device Manager Device Access Specification Version 1.1
103.7.4 Optimizations
Optimizations are explicitly allowed and even recommended for an imple-
mentation of a device manager. Implementations may use the following
assumptions:

• Driver match values and referrals must be deterministic, in that repeated
calls for the same Device service must return the same results.

• The device manager may cache match values and referrals. Therefore,
optimizations in the device attachment algorithm based on this
assumption are allowed.

• The device manager may delay loading a driver bundle until it is needed.
For example, a delay could occur when that DRIVER_ID ’s match values
are cached.

• The results of calls to DriverLocator and DriverSelector methods are not
required to be deterministic, and must not be cached by the device
manager.

F The selected Driver service’s attach method is called. If the attach method
returns null , the Device service has been successfully attached. If the attach
method returns a Str ing object, it is interpreted as a referral to another
Driver service and processing continues at G. See Referring Drivers on page
43.

If an exception is thrown, the Driver service has failed, and the algorithm
proceeds to try another Driver service after excluding this one from further
consideration at Step H.

G The device manager attempts to load the referred driver bundle in a manner
similar to Step B, except that it is unknown which Driver Locator service to
use. Therefore, the loadDr iver method must be called on each Driver Locator
service until one succeeds (or they all fail). If one succeeds, the device man-
ager installs and starts the driver bundle. The driver bundle must register a
Driver service during its activation which must be added to the list of Driver
services in this algorithm.

H The referring driver bundle is added to the exclusion list. Because each new
referral adds an entry to the exclusion list, which in turn disqualifies another
driver from further matching, the algorithm cannot loop indefinitely. This
list is maintained for the duration of this algorithm. The next time a new
Device service is processed, the exclusion list starts out empty.

I If no Driver service attached the Device service, the Device service is checked
to see whether it implements the Device interface. If so, the noDriverFound
method is called. Note that this action may cause the Device service to
unregister and possibly a new Device service (or services) to be registered in
its place. Each new Device service registration must restart the algorithm
from the beginning.

K Whether an attachment was successful or not, the algorithm may have
installed a number of driver bundles. The device manager should remove
any idle driver bundles that it installed.

Table 10 Driver attachment algorithm

Step Description
54-432 OSGi Service Platform Release 4

Device Access Specification Version 1.1 Device Manager
• Thrown exceptions must not be cached. Exceptions are considered tran-
sient failures, and the device manager must always retry a method call
even if it has thrown an exception on a previous invocation with the
same arguments.

103.7.5 Driver Bundle Reclamation
The device manager may remove driver bundles it has installed at any time,
provided that all the Driver services in that bundle are idle. This recom-
mended practice prevents unused driver bundles from accumulating over
time. Removing driver bundles too soon, however, may cause unnecessary
installs and associated delays when driver bundles are needed again.

If a device manager implements driver bundle reclamation, the specified
matching algorithm is not guaranteed to terminate unless the device man-
ager takes reclamation into account.

For example, assume that a new Device service triggers the attachment algo-
rithm. A driver bundle recommended by a Driver Locator service is loaded.
It does not match, so the Device service remains idle. The device manager is
eager to reclaim space, and unloads the driver bundle. The disappearance of
the Driver service causes the device manager to reattach idle devices.
Because it has not kept a record of its previous activities, it tries to reattach
the same device, which closes the loop.

On systems where the device manager implements driver bundle reclama-
tion, all refining drivers should be loaded through Driver Locator services.
This recommendation is intended to prevent the device manager from erro-
neously uninstalling pre-installed driver bundles that cannot later be rein-
stalled when needed.

The device manager can be updated or restarted. It cannot, however, rely on
previously stored information to determine which driver bundles were pre-
installed and which were dynamically installed and thus are eligible for
removal. The device manager may persistently store cachable information
for optimization, but must be able to cold start without any persistent infor-
mation and still be able to manage an existing connection state, satisfying
all of the requirements in this specification.

103.7.6 Handling Driver Bundle Updates
It is not straightforward to determine whether a driver bundle is being
updated when the UNREGISTER event for a Driver service is received. In
order to facilitate this distinction, the device manager should wait for a
period of time after the unregistration for one of the following events to
occur:

• A BundleEvent .UNINSTALLED event for the driver bundle.
• A Serv iceEvent.REGISTERED event for another Driver service registered

by the driver bundle.

If the driver bundle is uninstalled, or if neither of the above events are
received within the allotted time period, the driver is assumed to be inac-
tive. The appropriate waiting period is implementation-dependent and will
vary for different installations. As a general rule, this period should be long
enough to allow a driver to be stopped, updated, and restarted under normal
OSGi Service Platform Release 4 55-432

Security Device Access Specification Version 1.1
conditions, and short enough not to cause unnecessary delays in reattaching
devices. The actual time should be configurable.

103.7.7 Simultaneous Device Service and Driver Service
Registration
The device attachment algorithm may discover new driver bundles that
were installed outside its direct control, which requires executing the device
attachment algorithm recursively. Howerver, in this case, the appearance of
the new driver bundles should be queued until completion of the current
device attachment algorithm.

Only one device attachment algorithm may be in progress at any moment
in time.

The following example sequence illustrates this process when a Driver ser-
vice is registered:

• Collect the set of all idle devices.
• Apply the device attachment algorithm to each device in the set.
• If no Driver services were registered during the execution of the device

attachment algorithm, processing terminates.
• Otherwise, restart this process.

103.8 Security
The device manager is the only privileged bundle in the Device Access spec-
ification and requires the org.osg i. framework.AdminPermiss ion with the
LIFECYCLE action to install and uninstall driver bundles.

The device manager itself should be free from any knowledge of policies and
should not actively set bundle permissions. Rather, if permissions must be
set, it is up to the Management Agent to listen to synchronous bundle
events and set the appropriate permissions.

Driver Locator services can trigger the download of any bundle, because
they deliver the content of a bundle to the privileged device manager and
could potentially insert a Trojan horse into the environment. Therefore,
Driver Locator bundles need the ServicePermiss ion[DriverLocator,
REGISTER] to register Driver Locator services, and the operator should exer-
cise prudence in assigning this ServicePermission .

Bundles with Driver Selector services only require
ServicePermission[DriverSelector, REGISTER] to register the
DriverSelector service. The Driver Selector service can play a crucial role in
the selection of a suitable Driver service, but it has no means to define a spe-
cific bundle itself.

103.9 Changes
The Device Access specification has not increased its version number
because no API change has been necessary. The only change to this specifi-
cation has been an update to reference the LIFECYCLE action of
AdminPermission .
56-432 OSGi Service Platform Release 4

Device Access Specification Version 1.1 org.osgi.service.device
103.10 org.osgi.service.device
The OSGi Device Access Package. Specification Version 1.1.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.device; version=1.1

103.10.1 Summary
• Constants - This interface defines standard names for property keys asso-

ciated with Device [p.58] and Driver [p.58] services. [p.57]
• Device - Interface for identifying device services.[p.58]
• Driver - A Driver service object must be registered by each Driver bundle

wishing to attach to Device services provided by other drivers. [p.58]
• DriverLocator - A Driver Locator service can find and load device driver

bundles given a property set. [p.59]
• DriverSelector - When the device manager detects a new Device service,

it calls all registered Driver services to determine if anyone matches the
Device service. [p.60]

• Match - Instances of Match are used in the DriverSelector.select [p.60]
method to identify Driver services matching a Device service. [p.60]

Constants

103.10.2 public interface Constants
This interface defines standard names for property keys associated with
Device [p.58] and Driver [p.58] services.

The values associated with these keys are of type java.lang.String, unless
otherwise stated.

See Also Device[p.58] , Driver[p.58]

Since 1.1
DEVICE_CATEGORY

103.10.2.1 public static final String DEVICE_CATEGORY = “DEVICE_CATEGORY”

Property (named “DEVICE_CATEGORY”) containing a human readable
description of the device categories implemented by a device. This property
is of type String[]

Services registered with this property will be treated as devices and discov-
ered by the device manager
DEVICE_DESCRIPTION

103.10.2.2 public static final String DEVICE_DESCRIPTION =
“DEVICE_DESCRIPTION”

Property (named “DEVICE_DESCRIPTION”) containing a human readable
string describing the actual hardware device.
DEVICE_SERIAL

103.10.2.3 public static final String DEVICE_SERIAL = “DEVICE_SERIAL”

Property (named “DEVICE_SERIAL”) specifying a device’s serial number.
DRIVER_ID

103.10.2.4 public static final String DRIVER_ID = “DRIVER_ID”

Property (named “DRIVER_ID”) identifying a driver.
OSGi Service Platform Release 4 57-432

org.osgi.service.device Device Access Specification Version 1.1
A DRIVER_ID should start with the reversed domain name of the company
that implemented the driver (e.g., com.acme), and must meet the following
requirements:

• It must be independent of the location from where it is obtained.
• It must be independent of the DriverLocator [p.59] service that down-

loaded it.
• It must be unique.
• It must be different for different revisions of the same driver.

This property is mandatory, i.e., every Driver service must be registered with
it.
Device

103.10.3 public interface Device
Interface for identifying device services.

A service must implement this interface or use the
Constants.DEVICE_CATEGORY [p.57] registration property to indicate that
it is a device. Any services implementing this interface or registered with
the DEVICE_CATEGORY property will be discovered by the device man-
ager.

Device services implementing this interface give the device manager the
opportunity to indicate to the device that no drivers were found that could
(further) refine it. In this case, the device manager calls the
noDr iverFound [p.58] method on the Device object.

Specialized device implementations will extend this interface by adding
methods appropriate to their device category to it.

See Also Driver[p.58]
MATCH_NONE

103.10.3.1 public static final int MATCH_NONE = 0

Return value from Driver.match [p.59] indicating that the driver cannot
refine the device presented to it by the device manager. The value is zero.
noDriverFound()

103.10.3.2 public void noDriverFound()

Indicates to this Device object that the device manager has failed to attach
any drivers to it.

If this Device object can be configured differently, the driver that registered
this Device object may unregister it and register a different Device service
instead.
Driver

103.10.4 public interface Driver
A Driver service object must be registered by each Driver bundle wishing to
attach to Device services provided by other drivers. For each newly discov-
ered Device [p.58] object, the device manager enters a bidding phase. The
Driver object whose match [p.59] method bids the highest for a particular
Device object will be instructed by the device manager to attach to the
Device object.

See Also Device[p.58] , DriverLocator[p.59]
attach(ServiceReference)
58-432 OSGi Service Platform Release 4

Device Access Specification Version 1.1 org.osgi.service.device
103.10.4.1 public String attach(ServiceReference reference) throws Exception

reference the ServiceReference object of the device to attach to

Attaches this Driver service to the Device service represented by the given
ServiceReference object.

A return value of null indicates that this Driver service has successfully
attached to the given Device service. If this Driver service is unable to attach
to the given Device service, but knows of a more suitable Driver service, it
must return the DRIVER_ID of that Driver service. This allows for the
implementation of referring drivers whose only purpose is to refer to other
drivers capable of handling a given Device service.

After having attached to the Device service, this driver may register the
underlying device as a new service exposing driver-specific functionality.

This method is called by the device manager.

Returns null if this Driver service has successfully attached to the given Device serv-
ice, or the DRIVER_ID of a more suitable driver

Throws Exception – if the driver cannot attach to the given device and does not
know of a more suitable driver
match(ServiceReference)

103.10.4.2 public int match(ServiceReference reference) throws Exception

reference the ServiceReference object of the device to match

Checks whether this Driver service can be attached to the Device service.
The Device service is represented by the given Serv iceReference and
returns a value indicating how well this driver can support the given Device
service, or Device.MATCH_NONE [p.58] if it cannot support the given Device
service at all.

The return value must be one of the possible match values defined in the
device category definition for the given Device service, or
Device.MATCH_NONE if the category of the Device service is not recog-
nized.

In order to make its decision, this Driver service may examine the properties
associated with the given Device service, or may get the referenced service
object (representing the actual physical device) to talk to it, as long as it
ungets the service and returns the physical device to a normal state before
this method returns.

A Driver service must always return the same match code whenever it is
presented with the same Device service.

The match function is called by the device manager during the matching
process.

Returns value indicating how well this driver can support the given Device service,
or Device.MATCH_NONE if it cannot support the Device service at all

Throws Exception – if this Driver service cannot examine the Device service
DriverLocator

103.10.5 public interface DriverLocator
A Driver Locator service can find and load device driver bundles given a
property set. Each driver is represented by a unique DRIVER_ID.
OSGi Service Platform Release 4 59-432

org.osgi.service.device Device Access Specification Version 1.1
Driver Locator services provide the mechanism for dynamically download-
ing new device driver bundles into an OSGi environment. They are supplied
by providers and encapsulate all provider-specific details related to the loca-
tion and acquisition of driver bundles.

See Also Driver[p.58]
findDrivers(Dictionary)

103.10.5.1 public String[] findDrivers(Dictionary props)

props the properties of the device for which a driver is sought

Returns an array of DRIVER_ID strings of drivers capable of attaching to a
device with the given properties.

The property keys in the specified Dictionary objects are case-insensitive.

Returns array of driver DRIVER_ID strings of drivers capable of attaching to a Device
service with the given properties, or null if this Driver Locator service does
not know of any such drivers
loadDriver(String)

103.10.5.2 public InputStream loadDriver(String id) throws IOException

id the DRIVER_ID of the driver that needs to be installed.

Get an InputStream from which the driver bundle providing a driver with
the giving DRIVER_ID can be installed.

Returns An InputStream object from which the driver bundle can be installed or null
if the driver with the given ID cannot be located

Throws IOException – the input stream for the bundle cannot be created
DriverSelector

103.10.6 public interface DriverSelector
When the device manager detects a new Device service, it calls all registered
Driver services to determine if anyone matches the Device service. If at least
one Driver service matches, the device manager must choose one. If there is
a Driver Selector service registered with the Framework, the device manager
will ask it to make the selection. If there is no Driver Selector service, or if it
returns an invalid result, or throws an Exception, the device manager uses
the default selection strategy.

Since 1.1
SELECT_NONE

103.10.6.1 public static final int SELECT_NONE = -1

Return value from DriverSelector.select, if no Driver service should be
attached to the Device service. The value is -1.
select(ServiceReference,Match[])

103.10.6.2 public int select(ServiceReference reference, Match[] matches)

reference the ServiceReference object of the Device service.

matches the array of all non-zero matches.

Select one of the matching Driver services. The device manager calls this
method if there is at least one driver bidding for a device. Only Driver ser-
vices that have responded with nonzero (not Device.MATCH_NONE [p.58])
match values will be included in the list.

Returns index into the array of Match objects, or SELECT_NONE if no Driver service
should be attached
Match
60-432 OSGi Service Platform Release 4

Device Access Specification Version 1.1 References
103.10.7 public interface Match
Instances of Match are used in the DriverSelector .se lect [p.60] method to
identify Driver services matching a Device service.

See Also DriverSelector[p.60]

Since 1.1
getDriver()

103.10.7.1 public ServiceReference getDriver()

Return the reference to a Driver service.

Returns ServiceReference object to a Driver service.
getMatchValue()

103.10.7.2 public int getMatchValue()

Return the match value of this object.

Returns the match value returned by this Driver service.

103.11 References
[12] Java Communications API

http://java.sun.com/products/javacomm

[13] USB Specification
http://www.usb.org

[14] Universal Plug and Play
http://www.upnp.org

[15] Jini, Service Discovery and Usage
http://www.jini.org/resources/
OSGi Service Platform Release 4 61-432

References Device Access Specification Version 1.1
62-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Introduction
104 Configuration Admin
Service Specification
Version 1.2

104.1 Introduction
The Configuration Admin service is an important aspect of the deployment
of an OSGi Service Platform. It allows an Operator to set the configuration
information of deployed bundles.

Configuration is the process of defining the configuration data of bundles
and assuring that those bundles receive that data when they are active in the
OSGi Service Platform.

Figure 13 Configuration Admin Service Overview

104.1.1 Essentials
The following requirements and patterns are associated with the Configura-
tion Admin service specification:

• Local Configuration – The Configuration Admin service must support
bundles that have their own user interface to change their configura-
tions.

• Reflection – The Configuration Admin service must be able to deduce the
names and types of the needed configuration data.

• Legacy – The Configuration Admin service must support configuration
data of existing entities (such as devices).

• Object Oriented – The Configuration Admin service must support the cre-
ation and deletion of instances of configuration information so that a
bundle can create the appropriate number of services under the control
of the Configuration Admin service.

port=?
secure=?

port= 80
secure= true

bundle
developer

writes
a bundle

bundle is
deployed

configuration

Configuration
Admin

data
OSGi Service Platform Release 4 63-432

Introduction Configuration Admin Service Specification Version 1.2
• Embedded Devices – The Configuration Admin service must be deployable
on a wide range of platforms. This requirement means that the interface
should not assume file storage on the platform. The choice to use file
storage should be left to the implementation of the Configuration
Admin service.

• Remote versus Local Management – The Configuration Admin service must
allow for a remotely managed OSGi Service Platform, and must not
assume that configuration information is stored locally. Nor should it
assume that the Configuration Admin service is always done remotely.
Both implementation approaches should be viable.

• Availability – The OSGi environment is a dynamic environment that
must run continuously (24/7/365). Configuration updates must happen
dynamically and should not require restarting of the system or bundles.

• Immediate Response – Changes in configuration should be reflected imme-
diately.

• Execution Environment – The Configuration Admin service will not
require more than an environment that fulfills the minimal execution
requirements.

• Communications – The Configuration Admin service should not assume
“always-on” connectivity, so the API is also applicable for mobile applica-
tions in cars, phones, or boats.

• Extendability – The Configuration Admin service should expose the
process of configuration to other bundles. This exposure should at a
minimum encompass initiating an update, removing certain configu-
ration properties, adding properties, and modifying the value of prop-
erties potentially based on existing property or service values.

• Complexity Trade-offs – Bundles in need of configuration data should
have a simple way of obtaining it. Most bundles have this need and the
code to accept this data. Additionally, updates should be simple from the
perspective of the receiver.
Trade-offs in simplicity should be made at the expense of the bundle
implementing the Configuration Admin service and in favor of bundles
that need configuration information. The reason for this choice is that
normal bundles will outnumber Configuration Admin bundles.

104.1.2 Operation
This specification is based on the concept of a Configuration Admin service
that manages the configuration of an OSGi Service Platform. It maintains a
database of Configurat ion objects, locally or remote. This service monitors
the service registry and provides configuration information to services that
are registered with a serv ice .pid property, the Persistent IDentity (PID), and
implement one of the following interfaces:

• Managed Service – A service registered with this interface receives its con-
figuration dictionary from the database or receives null when no such con-
figuration exists or when an existing configuration has never been
updated.

• Managed Service Factory – Services registered with this interface receive
several configuration dictionaries when registered. The database con-
tains zero or more configuration dictionaries for this service. Each con-
figuration dictionary is given sequentially to the service.
64-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Introduction
The database can be manipulated either by the Management Agent or bun-
dles that configure themselves.

Other parties can provide Configuration Plugin services. Such services par-
ticipate in the configuration process. They can inspect the configuration
dictionary and modify it before it reaches the target service.

104.1.3 Entities
• Configuration information – The information needed by a bundle before it

can provide its intended functionality.
• Configuration dictionary – The configuration information when it is

passed to the target service. It consists of a Dictionary object with a
number of properties and identifiers.

• Configuring Bundle – A bundle that modifies the configuration infor-
mation through the Configuration Admin service. This bundle is either a
management bundle or the bundle for which the configuration infor-
mation is intended.

• Configuration Target – The target (bundle or service) that will receive the
configuration information. For services, there are two types of targets:
ManagedServ iceFactory or ManagedService objects.

• Configuration Admin Service – This service is responsible for supplying
configuration target bundles with their configuration information. It
maintains a database with configuration information, keyed on the
service .pid of configuration target services. These services receive their
configuration dictionary or dictionaries when they are registered with
the Framework. Configurations can be modified or extended using Con-
figuration Plugin services before they reach the target bundle.

• Managed Service – A Managed Service represents a client of the Configu-
ration Admin service, and is thus a configuration target. Bundles should
register a Managed Service to receive the configuration data from the
Configuration Admin service. A Managed Service adds a unique
service .pid service registration property as a primary key for the config-
uration information.

• Managed Service Factory – A Managed Service Factory can receive a
number of configuration dictionaries from the Configuration Admin
service, and is thus also a configuration target service. It should register
with a service .p id and receives zero or more configuration dictionaries.
Each dictionary has its own PID.

• Configuration Object – Implements the Configurat ion interface and con-
tains the configuration dictionary for a Managed Service or one of the
configuration dictionaries for a Managed Service Factory. These objects
are manipulated by configuring bundles.

• Configuration Plugin Services – Configuration Plugin services are called
before the configuration dictionary is given to the configuration targets.
The plug-in can modify the configuration dictionary, which is passed to
the Configuration Target.
OSGi Service Platform Release 4 65-432

Configuration Targets Configuration Admin Service Specification Version 1.2
Figure 14 Configuration Admin Class Diagram org.osgi.service.cm

104.2 Configuration Targets
One of the more complicated aspects of this specification is the subtle dis-
tinction between the ManagedService and ManagedServiceFactory classes.

Both receive configuration information from the Configuration Admin ser-
vice and are treated similarly in most respects. Therefore, this specification
refers to configuration targets when the distinction is irrelevant.

The difference between these types is related to the cardinality of the config-
uration dictionary. A Managed Service is used when an existing entity needs
a configuration dictionary. Thus, a one-to-one relationship always exists
between the configuration dictionary and the entity.

<<interface>>
Configuration
Admin

<<interface>>
Configuration

<<interface>>
Managed
Service

<<interface>>
Man. Service
Factory

<<interface>>
Configuration
Plugin

Configuration
Adm. Impl.

config. objects

a Managed
Service Factory
Impl

a Managed
Service Impl

a configured
instance of some
type

Plugin Impl

Factory
configuration
impl

Managed Service
configuration
impl

a cnfg application
(e.g. remote
management)

config information

send

set configuration
properties via

1

0..n

Modify

1

configuration

1

0..n

1

0..n

0..n

1

10..n

0..n

1

send
configuration

for some object

config
information

information

bundle using
ManagedService

bundle
configuring

bundle using
ManagedService

Factory

Configuration Admin implementation
bundle

plugin bundle

Config.
Exception

properties
66-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 The Persistent Identity
A Managed Service Factory is used when part of the configuration is to
define how many instances are required. A management bundle can create,
modify, and delete any number of instances for a Managed Service Factory
through the Configuration Admin service. Each instance is configured by a
single Configuration object. Therefore, a Managed Service Factory can have
multiple associated Conf igurat ion objects.

Figure 15 Differentiation of ManagedService and ManagedServiceFactory Classes

To summarize:

• A Managed Service must receive a single configuration dictionary when it
is registered or when its configuration is modified.

• A Managed Service Factory must receive from zero to n configuration dic-
tionaries when it registers, depending on the current configuration. The
Managed Service Factory is informed of configuration dictionary
changes: modifications, creations, and deletions.

104.3 The Persistent Identity
A crucial concept in the Configuration Admin service specification is the
Persistent IDentity (PID) as defined in the Framework’s service layer. Its pur-
pose is to act as a primary key for objects that need a configuration dictio-
nary. The name of the service property for PID is defined in the Framework
in org .osgi . f ramework.Constants.SERVICE.PID .

The Configuration Admin service requires the use of PIDs with Managed
Service and Managed Service Factory registrations because it associates its
configuration data with PIDs.

PIDs must be unique for each service. A bundle must not register multiple
configuration target services with the same PID. If that should occur, the
Configuration Admin service must:

• Send the appropriate configuration data to all services registered under
that PID from that bundle only.

• Report an error in the log.
• Ignore duplicate PIDs from other bundles and report them to the log.

104.3.1 PID Syntax
PIDs are intended for use by other bundles, not by people, but sometimes
the user is confronted with a PID. For example, when installing an alarm
system, the user needs to identify the different components to a wiring
application. This type of application exposes the PID to end users.

Framework Service

ManagedService ManagedServiceFactory

Management layer

Service layer

Registry
OSGi Service Platform Release 4 67-432

The Configuration Object Configuration Admin Service Specification Version 1.2
PIDs should follow the symbolic-name syntax, which uses a very restricted
character set. The following sections, define some schemes for common
cases. These schemes are not required, but bundle developers are urged to
use them to achieve consistency.

104.3.1.1 Local Bundle PIDs

As a convention, descriptions starting with the bundle identity and a dot (.)
are reserved for a bundle. As an example, a PID of "65 .536" would belong to
the bundle with a bundle identity of 65.

104.3.1.2 Software PIDs

Configuration target services that are singletons can use a Java package
name they own as the PID (the reverse domain name scheme) as long as
they do not use characters outside the basic ASCII set. As an example, the
PID named com.acme.watchdog would represent a Watchdog service from
the ACME company.

104.3.1.3 Devices

Devices are usually organized on buses or networks. The identity of a device,
such as a unique serial number or an address, is a good component of a PID.
The format of the serial number should be the same as that printed on the
housing or box, to aid in recognition.

104.4 The Configuration Object
A Conf igurat ion object contains the configuration dictionary, which is a set
of properties that configure an aspect of a bundle. A bundle can receive
Configurat ion objects by registering a configuration target service with a
PID service property. See The Persistent Identity on page 67 for more informa-
tion about PIDs.

Table 11 Schemes for Device-Oriented PID Names

Bus Example Format Description

USB USB.0123-0002-
9909873

idVendor (hex 4)
idProduct (hex 4)
iSer ia lNumber (dec i-
mal)

Universal Ser ia l Bus.
Use the s tandard
device descr iptor.

IP IP.172.16.28.21 IP nr (dotted decimal) Internet Protocol
802 802-00:60:97:00:9A:56 MAC address with: sep-

arators
IEEE 802 MAC address
(Token Ring, Ethernet,
. . .)

ONE ONE.06-00000021E461 Family (hex 2) and
ser ia l number inc lud-
ing CRC (hex 6)

1-wire bus of Dal las
Semiconductor

COM COM.krups-brewer-
12323

ser ia l number or type
name of device

Ser ia l ports
68-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 The Configuration Object
During registration, the Configuration Admin service must detect these
configuration target services and hand over their configuration dictionary
via a callback. If this configuration dictionary is subsequently modified, the
modified dictionary is handed over to the configuration target again with
the same callback.

The Conf igurat ion object is primarily a set of properties that can be updated
by a Management Agent, user interfaces on the OSGi Service Platform, or
other applications. Configuration changes are first made persistent, and
then passed to the target service via a call to the updated method in the
ManagedServiceFactory or ManagedService class.

A Configuration object must be uniquely bound to a Managed Service or
Managed Service Factory. This implies that a bundle must not register a
Managed Service Factory with a PID that is the same as the PID given to a
Managed Service.

104.4.1 Location Binding
When a Configuration object is created by either getConf iguration or
createFactoryConfiguration , it becomes bound to the location of the calling
bundle. This location is obtained with the associated bundle’s getLocation
method.

Location binding is a security feature that assures that only management
bundles can modify configuration data, and other bundles can only modify
their own configuration data. A SecurityExcept ion is thrown if a bundle
other than a Management Agent bundle attempts to modify the configura-
tion information of another bundle.

If a Managed Service is registered with a PID that is already bound to
another location, the normal callback to ManagedService.updated must
not take place.

The two argument versions of getConfiguration and
createFactoryConfiguration take a location Str ing as their second argu-
ment. These methods require the correct permission, and they create
Configurat ion objects bound to the specified location, instead of the loca-
tion of the calling bundle. These methods are intended for management
bundles.

The creation of a Conf igurat ion object does not in itself initiate a callback to
the target.

A null location parameter may be used to create Conf igurat ion objects that
are not bound. In this case, the objects become bound to a specific location
the first time that they are used by a bundle. When this dynamically bound
bundle is subsequently uninstalled, the Configurat ion object’s bundle loca-
tion must be set to nul l again so it can be bound again later.

A management bundle may create a Configurat ion object before the associ-
ated Managed Service is registered. It may use a nul l location to avoid any
dependency on the actual location of the bundle which registers this ser-
vice. When the Managed Service is registered later, the Conf igurat ion object
must be bound to the location of the registering bundle, and its configura-
tion dictionary must then be passed to ManagedService.updated .
OSGi Service Platform Release 4 69-432

The Configuration Object Configuration Admin Service Specification Version 1.2
104.4.2 Configuration Properties
A configuration dictionary contains a set of properties in a Dictionary
object. The value of the property may be of the following types:

type ::= simple | vector | arrays

simple ::= String | Integer | Long | Float | Double
| Byte | Short | Character | Boolean

primitive ::= long | int | short | char | byte | double
 | float | boolean

arrays ::= primitive ‘[]’ | simple ‘[]’

vector ::= Vector of simple

The name or key of a property must always be a String object, and is not case
sensitive during look up, but must preserve the original case. The format of
a property name must be:

property-name ::= symbolic-name // See 1.4.2

Properties can be used in other subsystems that have restrictions on the
character set that can be used. The symbol ic-name production uses a very
minimal character set.

Bundles must not use nested vectors or arrays, nor must they use mixed
types. Using mixed types or nesting makes it impossible to use the meta typ-
ing specification. See Metatype Service Specification on page 129.

104.4.3 Property Propagation
An implementation of a Managed Service should copy all the properties of
the Dictionary object argument in updated(Dict ionary) , known or
unknown, into its service registration properties using
ServiceRegist rat ion.setPropert ies .

This propagation allows the development of applications that leverage the
Framework service registry more extensively, so compliance with this
mechanism is advised.

A configuration target service may ignore any configuration properties it
does not recognize, or it may change the values of the configuration proper-
ties before these properties are registered. Configuration properties in the
Framework service registry are not strictly related to the configuration
information.

Bundles that cooperate with the propagation of configuration properties
can participate in horizontal applications. For example, an application that
maintains physical location information in the Framework service registry
could find out where a particular device is located in the house or car. This
service could use a property dedicated to the physical location and provide
functions that leverage this property, such as a graphic user interface that
displays these locations.
70-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Managed Service
104.4.4 Automatic Properties
The Configuration Admin service must automatically add a number of
properties to the configuration dictionary. If these properties are also set by
a configuring bundle or a plug-in, they must always be overridden before
they are given to the target service. See Configuration Plugin on page 83,
Therefore, the receiving bundle or plug-in can assume that the following
properties are defined by the Configuration Admin service and not by the
configuring bundle:

• service .pid – Set to the PID of the associated Configurat ion object.
• service. factoryPid – Only set for a Managed Service Factory. It is then set

to the PID of the associated Managed Service Factory.
• service.bundleLocation – Set to the location of the bundle that can use

this Configurat ion object. This property can only be used for searching,
it may not appear in the configuration dictionary returned from the
getPropert ies method due to security reasons, nor may it be used when
the target is updated.

Constants for some of these properties can be found in
org .osgi . f ramework.Constants . These system properties are all of type
Str ing .

104.4.5 Equality
Two different Configurat ion objects can actually represent the same under-
lying configuration. This means that a Conf igurat ion object must imple-
ment the equa ls and hashCode methods in such a way that two
Configurat ion objects are equal when their PID is equal.

104.5 Managed Service
A Managed Service is used by a bundle that needs one configuration dictio-
nary and is thus associated with one Conf igurat ion object in the Configura-
tion Admin service.

A bundle can register any number of ManagedService objects, but each
must be identified with its own PID.

A bundle should use a Managed Service when it needs configuration infor-
mation for the following:

• A Singleton – A single entity in the bundle that needs to be configured.
• Externally Detected Devices – Each device that is detected causes a regis-

tration of an associated ManagedService object. The PID of this object is
related to the identity of the device, such as the address or serial number.

104.5.1 Singletons
When an object must be instantiated only once, it is called a singleton. A
singleton requires a single configuration dictionary. Bundles may imple-
ment several different types of singletons if necessary.
OSGi Service Platform Release 4 71-432

Managed Service Configuration Admin Service Specification Version 1.2
For example, a Watchdog service could watch the registry for the status and
presence of services in the Framework service registry. Only one instance of
a Watchdog service is needed, so only a single configuration dictionary is
required that contains the polling time and the list of services to watch.

104.5.2 Networks
When a device in the external world needs to be represented in the OSGi
Environment, it must be detected in some manner. The Configuration
Admin service cannot know the identity and the number of instances of the
device without assistance. When a device is detected, it still needs configu-
ration information in order to play a useful role.

For example, a 1-Wire network can automatically detect devices that are
attached and removed. When it detects a temperature sensor, it could regis-
ter a Sensor service with the Framework service registry. This Sensor service
needs configuration information specifically for that sensor, such as which
lamps should be turned on, at what temperature the sensor is triggered,
what timer should be started, in what zone it resides, and so on. One bundle
could potentially have hundreds of these sensors and actuators, and each
needs its own configuration information.

Each of these Sensor services should be registered as a Managed Service with
a PID related to the physical sensor (such as the address) to receive configu-
ration information.

Other examples are services discovered on networks with protocols like Jini,
UPnP, and Salutation. They can usually be represented in the Framework
service registry. A network printer, for example, could be detected via UPnP.
Once in the service registry, these services usually require local configura-
tion information. A Printer service needs to be configured for its local role:
location, access list, and so on.

This information needs to be available in the Framework service registry
whenever that particular Printer service is registered. Therefore, the Config-
uration Admin service must remember the configuration information for
this Printer service.

This type of service should register with the Framework as a Managed Ser-
vice in order to receive appropriate configuration information.

104.5.3 Configuring Managed Services
A bundle that needs configuration information should register one or more
ManagedService objects with a PID service property. If it has a default set of
properties for its configuration, it may include them as service properties of
the Managed Service. These properties may be used as a configuration tem-
plate when a Configurat ion object is created for the first time. A Managed
Service optionally implements the MetaTypeProvider interface to provide
information about the property types. See Meta Typing on page 87.

When this registration is detected by the Configuration Admin service, the
following steps must occur:

• The configuration stored for the registered PID must be retrieved. If there
is a Configurat ion object for this PID, it is sent to the Managed Service
with updated(Dict ionary) .
72-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Managed Service
• If a Managed Service is registered and no configuration information is
available, the Configuration Admin service must call
updated(Dictionary) with a null parameter.

• If the Configuration Admin service starts after a Managed Service is regis-
tered, it must call updated(Dictionary) on this service as soon as pos-
sible. For this reason, a Managed Service must always get a callback
when it registers and the Configuration Admin service is started.

• A Configuration Event CM_UPDATED is send asynchronously out to all
registered Configuration Listener services.

The updated(Dictionary) callback from the Configuration Admin service to
the Managed Service must take place asynchronously. This requirement
allows the Managed Service to finish its initialization in a synchronized
method without interference from the Configuration Admin service call-
back.

Care should be taken not to cause deadlocks by calling the Framework
within a synchronized method.

Figure 16 Managed Service Configuration Action Diagram

The updated method may throw a ConfigurationException . This object
must describe the problem and what property caused the exception.

104.5.4 Race Conditions
When a Managed Service is registered, the default properties may be visible
in the service registry for a short period before they are replaced by the prop-
erties of the actual configuration dictionary. Care should be taken that this
visibility does not cause race conditions for other bundles.

In cases where race conditions could be harmful, the Managed Service must
be split into two pieces: an object performing the actual service and a Man-
aged Service. First, the Managed Service is registered, the configuration is
received, and the actual service object is registered. In such cases, the use of a
Managed Service Factory that performs this function should be considered.

104.5.5 Examples of Managed Service
Figure 17 shows a Managed Service configuration example. Two services are
registered under the ManagedService interface, each with a different PID.

Client Bundle Framework Admin

new

registerService()
send registered event

updated()

Configuration

get for PID

Implementor of
Managed Service

set the
configuration

get pid from props Must be on another thread
OSGi Service Platform Release 4 73-432

Managed Service Configuration Admin Service Specification Version 1.2
Figure 17 PIDs and External Associations

The Configuration Admin service has a database containing a configuration
record for each PID. When the Managed Service with service .pid =
com.acme.fudd is registered, the Configuration Admin service will retrieve
the properties name=Elmer and size=42 from its database. The properties
are stored in a Dict ionary object and then given to the Managed Service with
the updated(Dict ionary) method.

104.5.5.1 Configuring A Console Bundle

In this example, a bundle can run a single debugging console over a Telnet
connection. It is a singleton, so it uses a ManagedService object to get its
configuration information: the port and the network name on which it
should register.

class SampleManagedService implements ManagedService {
Dictionary properties;
ServiceRegistration registration;
Console console;

public synchronized void start(
BundleContext context) throws Exception {
properties = new Hashtable();
properties.put(Constants.SERVICE_PID,

"com.acme.console");
properties.put("port", new Integer(2011));

registration = context.registerService(
ManagedService.class.getName(),
this,
properties

);
}

public synchronized void updated(Dictionary np) {
if (np != null) {

properties = np;
properties.put(

Configuration
Admin Impl

16.1

com.

name=Erica

name=Elmer

database com.acme.fudd

4.102 name=Christer
size=2

Managed Service

size=8

acme.fudd size=42

PID configuration

= service

pid=4.102

OSGi
Service
Registry

no associated PID registered

events
74-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Managed Service Factory
Constants.SERVICE_PID, "com.acme.console");
}

if (console == null)
console = new Console();

int port = ((Integer)properties.get("port"))
.intValue();

String network = (String) properties.get("network");
console.setPort(port, network);
registration.setProperties(properties);

}
... further methods

}

104.5.6 Deletion
When a Configuration object for a Managed Service is deleted, the Configu-
ration Admin service must call updated(Dict ionary) with a nul l argument
on a thread that is different from that on which the Conf igurat ion.delete
was executed. This deletion must send out a Configuration Event
CM_DELETED to any registered Configuration Listener services after the
updated method is called with a nul l .

104.6 Managed Service Factory
A Managed Service Factory is used when configuration information is
needed for a service that can be instantiated multiple times. When a Man-
aged Service Factory is registered with the Framework, the Configuration
Admin service consults its database and calls updated(String,Dict ionary)
for each associated Conf igurat ion object. It passes the identifier of the
instance, which can be used as a PID, as well as a Dictionary object with the
configuration properties.

A Managed Service Factory is useful when the bundle can provide function-
ality a number of times, each time with different configuration dictionaries.
In this situation, the Managed Service Factory acts like a class and the Con-
figuration Admin service can use this Managed Service Factory to instantiate
instances for that class.

In the next section, the word factory refers to this concept of creating
instances of a function defined by a bundle that registers a Managed Service
Factory.

104.6.1 When to Use a Managed Service Factory
A Managed Service Factory should be used when a bundle does not have an
internal or external entity associated with the configuration information
but can potentially be instantiated multiple times.
OSGi Service Platform Release 4 75-432

Managed Service Factory Configuration Admin Service Specification Version 1.2
104.6.1.1 Example Email Fetcher

An email fetcher program displays the number of emails that a user has – a
function likely to be required for different users. This function could be
viewed as a class that needs to be instantiated for each user. Each instance
requires different parameters, including password, host, protocol, user id,
and so on.

An implementation of the Email Fetcher service should register a
ManagedServiceFactory object. In this way, the Configuration Admin ser-
vice can define the configuration information for each user separately. The
Email Fetcher service will only receive a configuration dictionary for each
required instance (user).

104.6.1.2 Example Temperature Conversion Service

Assume a bundle has the code to implement a conversion service that
receives a temperature and, depending on settings, can turn an actuator on
and off. This service would need to be instantiated many times depending
on where it is needed. Each instance would require its own configuration
information for the following:

• Upper value
• Lower value
• Switch Identification
• ...

Such a conversion service should register a service object under a
ManagedServiceFactory interface. A configuration program can then use
this Managed Service Factory to create instances as needed. For example,
this program could use a Graphic User Interface (GUI) to create such a com-
ponent and configure it.

104.6.1.3 Serial Ports

Serial ports cannot always be used by the OSGi Device Access specification
implementations. Some environments have no means to identify available
serial ports, and a device on a serial port cannot always provide information
about its type.

Therefore, each serial port requires a description of the device that is con-
nected. The bundle managing the serial ports would need to instantiate a
number of serial ports under the control of the Configuration Admin ser-
vice, with the appropriate DEVICE_CATEGORY property to allow it to partic-
ipate in the Device Access implementation.

If the bundle cannot detect the available serial ports automatically, it should
register a Managed Service Factory. The Configuration Admin service can
then, with the help of a configuration program, define configuration infor-
mation for each available serial port.

104.6.2 Registration
Similar to the Managed Service configuration dictionary, the configuration
dictionary for a Managed Service Factory is identified by a PID. The Man-
aged Service Factory, however, also has a factory PID, which is the PID of the
associated Managed Service Factory. It is used to group all Managed Service
Factory configuration dictionaries together.
76-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Managed Service Factory
When a Configuration object for a Managed Service Factory is created
(Configurat ionAdmin.createFactoryConf igurat ion), a new unique PID is
created for this object by the Configuration Admin service. The scheme used
for this PID is defined by the Configuration Admin service and is unrelated
to the factory PID.

When the Configuration Admin service detects the registration of a Man-
aged Service Factory, it must find all configuration dictionaries for this fac-
tory and must then sequentially call
ManagedServiceFactory.updated(Str ing,Dict ionary) for each configura-
tion dictionary. The first argument is the PID of the Conf igurat ion object
(the one created by the Configuration Admin service) and the second argu-
ment contains the configuration properties.

The Managed Service Factory should then create any artifacts associated
with that factory. Using the PID given in the Conf igurat ion object, the bun-
dle may register new services (other than a Managed Service) with the
Framework, but this is not required. This may be necessary when the PID is
useful in contexts other than the Configuration Admin service.

The receiver must not register a Managed Service with this PID because this
would force two Configuration objects to have the same PID. If a bundle
attempts to do this, the Configuration Admin service should log an error
and must ignore the registration of the Managed Service.

The Configuration Admin service must guarantee that no race conditions
exist between initialization, updates, and deletions.

Figure 18 Managed Service Factory Action Diagram

A Managed Service Factory has only one update method: updated(String,
Dictionary) . This method can be called any number of times as Configura-
tion objects are created or updated.

The Managed Service Factory must detect whether a PID is being used for
the first time, in which case it should create a new instance, or a subsequent
time, in which case it should update an existing instance.

The Configuration Admin service must call updated(Str ing ,Dict ionary) on
a thread that is different from the one that executed the registration. This
requirement allows an implementation of a Managed Service Factory to use
a synchronized method to assure that the callbacks do not interfere with the
Managed Service Factory registration.

Client bundle Framework Admin

new

registerService()
send registered event

updated()

Configuration

get all for factory

implementor of
ManagedServiceFactory

set the
configuration

get pid

for each found pidfor a new
instance

MUST be on another thread
OSGi Service Platform Release 4 77-432

Managed Service Factory Configuration Admin Service Specification Version 1.2
The updated(Str ing ,Dict ionary) method may throw a ConfigurationExcep-
tion object. This object describes the problem and what property caused the
problem. These exceptions should be logged by a Configuration Admin ser-
vice.

104.6.3 Deletion
If a configuring bundle deletes an instance of a Managed Service Factory, the
deleted(Str ing) method is called. The argument is the PID for this instance.
The implementation of the Managed Service Factory must remove all infor-
mation and stop any behavior associated with that PID. If a service was reg-
istered for this PID, it should be unregistered.

Deletion will asynchronously send out a Configuration Event CM_DELETED
to all registered Configuration Listener services.

104.6.4 Managed Service Factory Example
Figure 19 highlights the differences between a Managed Service and a Man-
aged Service Factory. It shows how a Managed Service Factory implementa-
tion receives configuration information that was created before it was
registered.

• A bundle implements an EMail Fetcher service. It registers a
ManagedServiceFactory object with PID=com.acme.emai l .

• The Configuration Admin service notices the registration and consults
its database. It finds three Conf igurat ion objects for which the factory
PID is equal to com.acme.emai l . It must call updated(Str ing,Dict ionary)
for each of these Configurat ion objects on the newly registered
ManagedServiceFactory object.

• For each configuration dictionary received, the factory should create a
new instance of a EMai lFetcher object, one for er ica (PID=16.1), one for
anna (PID=16.3), and one for elmer (PID=16.2).

• The EMai lFetcher objects are registered under the Topic interface so
their results can be viewed by an online display.
If the EMai lFetcher object is registered, it may safely use the PID of the
Configurat ion object because the Configuration Admin service must
guarantee its suitability for this purpose.
78-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Managed Service Factory
Figure 19 Managed Service Factory Example

104.6.5 Multiple Consoles Example
This example illustrates how multiple consoles, each of which has its own
port and interface can run simultaneously. This approach is very similar to
the example for the Managed Service, but highlights the difference by
allowing multiple consoles to be created.

class ExampleFactory implements ManagedServiceFactory {
Hashtable consoles = new Hashtable();
BundleContext context;
public void start(BundleContext context)

throws Exception {
this.context = context;
Hashtable local = new Hashtable();
local.put(Constants.SERVICE_PID,"com.acme.console");
context.registerService(

ManagedServiceFactory.class.getName(),
this,
local);

}

public void updated(String pid, Dictionary config){
Console console = (Console) consoles.get(pid);
if (console == null) {

console = new Console(context);
consoles.put(pid, console);

}

int port = getInt(config, "port", 2011);
String network = getString(

config,
"network",
null /*all*/

Configuration
Admin

MailFetchFactory
pid=
com.acme.email

pid=16.1
name=erica

OSGi Service
registration
events

pid=16.1

pid=16.2
name=erica

name=elmer

Associations

pid=16.3
name=anna

pid=16.2
name=peter

pid=16.3
name=anna

creates instances
at the request of
the Config. Admin

Topic

Managed Service

factory pid
= com.acme

Registry

Factory

factory pid
= eric.mf

.email
OSGi Service Platform Release 4 79-432

Configuration Admin Service Configuration Admin Service Specification Version 1.2
);
console.setPort(port, network);

}

public void deleted(String pid) {
Console console = (Console) consoles.get(pid);
if (console != null) {

consoles.remove(pid);
console.close();

}
}

}

104.7 Configuration Admin Service
The Configurat ionAdmin interface provides methods to maintain configura-
tion data in an OSGi environment. This configuration information is
defined by a number of Configuration objects associated with specific con-
figuration targets. Configuration objects can be created, listed, modified,
and deleted through this interface. Either a remote management system or
the bundles configuring their own configuration information may perform
these operations.

The Conf igurat ionAdmin interface has methods for creating and accessing
Configurat ion objects for a Managed Service, as well as methods for manag-
ing new Configurat ion objects for a Managed Service Factory.

104.7.1 Creating a Managed Service Configuration Object
A bundle can create a new Managed Service Conf igurat ion object with
Configurat ionAdmin.getConf igurat ion . No create method is offered
because doing so could introduce race conditions between different bundles
trying to create a Configurat ion object for the same Managed Service. The
getConf iguration method must atomically create and persistently store an
object if it does not yet exist.

Two variants of this method are:

• getConfigurat ion(Str ing) – This method is used by a bundle with a given
location to configure its own ManagedService objects. The argument
specifies the PID of the targeted service.

• getConfigurat ion(Str ing,Str ing) – This method is used by a man-
agement bundle to configure another bundle. Therefore, this man-
agement bundle needs the right permission. The first argument is the
PID and the second argument is the location identifier of the targeted
ManagedService object.

All Conf igurat ion objects have a method, getFactoryPid() , which in this
case must return nul l because the Conf igurat ion object is associated with a
Managed Service.

Creating a new Configuration object must not initiate a callback to the Man-
aged Service updated method.
80-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Configuration Admin Service
104.7.2 Creating a Managed Service Factory Configuration
Object
The Conf igurat ionAdmin class provides two methods to create a new
instance of a Managed Service Factory:

• createFactoryConfigurat ion(Str ing) – This method is used by a bundle
with a given location to configure its own ManagedServiceFactory
objects. The argument specifies the PID of the targeted
ManagedServ iceFactory object. This factory PID can be obtained from
the returned Configurat ion object with the getFactoryP id() method.

• createFactoryConfigurat ion(Str ing,Str ing)– This method is used by a
management bundle to configure another bundle’s
ManagedServ iceFactory object. The first argument is the location iden-
tifier and the second is the PID of the targeted ManagedServiceFactory
object. The factory PID can be obtained from the returned Conf igurat ion
object with getFactoryPid method.

Creating a new factory configuration must not initiate a callback to the Man-
aged Service Factory updated method until the properties are set in the
Configurat ion object with the update method.

104.7.3 Accessing Existing Configurations
The existing set of Configurat ion objects can be listed with l is tConfigura-
t ions(Str ing) . The argument is a Str ing object with a filter expression. This
filter expression has the same syntax as the Framework Fi l ter class. For
example:

(&(size=42)(service.factoryPid=*osgi*))

The filter function must use the properties of the Conf igurat ion objects and
only return the ones that match the filter expression.

A single Conf igurat ion object is identified with a PID and can be obtained
with getConfiguration(Str ing) .

If the caller has the right permission, then all Configuration objects are eli-
gible for search. In other cases, only Conf igurat ion objects bound to the call-
ing bundle’s location must be returned.

nul l is returned in both cases when an appropriate Conf igurat ion object can-
not be found.

104.7.3.1 Updating a Configuration

The process of updating a Conf igurat ion object is the same for Managed Ser-
vices and Managed Service Factories. First, l i stConfigurat ions(Str ing) or
getConfiguration(Str ing) should be used to get a Conf igurat ion object. The
properties can be obtained with Conf igurat ion .getProperties . When no
update has occurred since this object was created, getPropert ies returns
nul l .
OSGi Service Platform Release 4 81-432

Configuration Events Configuration Admin Service Specification Version 1.2
New properties can be set by calling Configuration.update . The Configura-
tion Admin service must first store the configuration information and then
call a configuration target’s updated method: either the
ManagedService .updated or ManagedServiceFactory.updated method. If
this target service is not registered, the fresh configuration information
must be given to the target when the configuration target service registers.

The update method calls in Conf igurat ion objects are not executed synchro-
nously with the related target service updated method. This method must
be called asynchronously. The Configuration Admin service, however, must
have updated the persistent storage before the update method returns.

The update method must also asynchronously send out a Configuration
Event CM_UPDATED to all registered Configuration Listeners.

104.7.4 Deletion
A Configurat ion object that is no longer needed can be deleted with
Configurat ion.delete , which removes the Configurat ion object from the
database. The database must be updated before the target service updated
method is called.

If the target service is a Managed Service Factory, the factory is informed of
the deleted Conf igurat ion object by a call to
ManagedServiceFactory.deleted . It should then remove the associated
instance. The ManagedServiceFactory.deleted call must be done asynchro-
nously with respect to Conf igurat ion.delete .

When a Conf igurat ion object of a Managed Service is deleted,
ManagedService .updated is called with nul l for the propert ies argument.
This method may be used for clean-up, to revert to default values, or to
unregister a service.

The update method must also asynchronously send out a Configuration
Event CM_DELETED to all registered Configuration Listeners.

104.7.5 Updating a Bundle’s Own Configuration
The Configuration Admin service specification does not distinguish
between updates via a Management Agent and a bundle updating its own
configuration information (as defined by its location). Even if a bundle
updates its own configuration information, the Configuration Admin ser-
vice must callback the associated target service updated method.

As a rule, to update its own configuration, a bundle’s user interface should
only update the configuration information and never its internal structures
directly. This rule has the advantage that the events, from the bundle imple-
mentation’s perspective, appear similar for internal updates, remote man-
agement updates, and initialization.

104.8 Configuration Events
Configuration Admin can update interested parties of changes in its reposi-
tory. The model is based on the white board pattern where a Configuration
Listener service is registered with the service registry. The Configuration
Listener service will receive Configurat ionEvent objects if important
82-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Configuration Plugin
changes take place. The Configuration Admin service must call the Config-
urationListener. configurat ionEvent(Configurat ionEvent) method with
such an event. This method should be called asynchronously, and on
another thread, than the call that caused the event. Configuration Events
must be delivered in order for each listener as they are generated. That is,
events can be delivered on multiple threads but this must not re-order the
events for a specific listener.

The Configurat ionEvent object carries a factory PID (getFactoryPid()) and a
PID (getPid()). If the factory PID is nul l , the event is related to a Managed
Service Conf igurat ion object, else the event is related to a Managed Service
Factory Conf igurat ion object.

The Conf igurat ionEvent object can deliver the following events from the
getType() method:

• CM_DELETED – The Conf igurat ion object is deleted.
• CM_UPDATED – The Conf igurat ion object is updated or created.

The Configuration Event also carries the ServiceReference object of the
Configuration Admin service that generated the event.

104.8.1 Event Admin Service and Configuration Change Events
Configuration events are delivered asynchronously. The topic of a configu-
ration event must be:

org/osgi/service/cm/ConfigurationEvent/<event type>

Event type can be any of the following:

CM_UPDATED
CM_DELETED

The properties of a configuration event are:

• cm.factoryPid – (Str ing) The factory PID of the associated Configurat ion
object, if the target is a Managed Service Factory. Otherwise not set.

• cm.pid – (Str ing) The PID of the associated Conf igurat ion object.
• service – (ServiceReference) The Service Reference of the Configuration

Admin service.
• service. id – (Long) The Configuration Admin service's ID.
• service .ob jectClass – (String[]) The Configuration Admin service's

object class (which must include
org .osg i. service .cm.ConfigurationAdmin)

• service .pid – (Str ing) The Configuration Admin service's persistent
identity

104.9 Configuration Plugin
The Configuration Admin service allows third-party applications to partici-
pate in the configuration process. Bundles that register a service object
under a Conf igurat ionPlug in interface can process the configuration dictio-
nary just before it reaches the configuration target service.
OSGi Service Platform Release 4 83-432

Configuration Plugin Configuration Admin Service Specification Version 1.2
Plug-ins allow sufficiently privileged bundles to intercept configuration dic-
tionaries just before they must be passed to the intended Managed Service or
Managed Service Factory but after the properties are stored. The changes the
plug-in makes are dynamic and must not be stored. The plug-in must only
be called when an update takes place while it is registered.

The ConfigurationPlug in interface has only one method: modifyConfigura-
t ion(ServiceReference,Dict ionary) . This method inspects or modifies con-
figuration data.

All plug-ins in the service registry must be traversed and called before the
properties are passed to the configuration target service. Each Configuration
Plugin object gets a chance to inspect the existing data, look at the target
object, which can be a ManagedService object or a ManagedServiceFactory
object, and modify the properties of the configuration dictionary. The
changes made by a plug-in must be visible to plugins that are called later.

Configurat ionPlugin objects should not modify properties that belong to
the configuration properties of the target service unless the implications are
understood. This functionality is mainly intended to provide functions that
leverage the Framework service registry. The changes made by the plugin
should normally not be validated. However, the Configuration Admin must
ignore changes to the automatic properties as described in Automatic Proper-
ties on page 71.

For example, a Configuration Plugin service may add a physical location
property to a service. This property can be leveraged by applications that
want to know where a service is physically located. This scenario could be
carried out without any further support of the service itself, except for the
general requirement that the service should propagate the properties it
receives from the Configuration Admin service to the service registry.

Figure 20 Order of Configuration Plugin Services

104.9.1 Limiting The Targets
A Configurat ionPlug in object may optionally specify a cm.target registra-
tion property. This value is the PID of the configuration target whose config-
uration updates the Conf igurat ionPlugin object wants to intercept.

The ConfigurationPlug in object must then only be called with updates for
the configuration target service with the specified PID. Omitting the
cm.target registration property means that it is called for all configuration
updates.

a Configuration
Admin

Configuration
Plugin B

Configuration
Plugin A

Configuration
Plugin C

a Managed
Service

update() modifyConfiguration()
1 2 3

updated()

updated-
Factory()

4

Any time when B needs to change a property

a Configuration
object
84-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Configuration Plugin
104.9.2 Example of Property Expansion
Consider a Managed Service that has a configuration property service.to
with the value (objectclass=com.acme.A larm). When the Configuration
Admin service sets this property on the target service, a
Configurat ionPlug in object may replace the
(objectclass=com.acme.Alarm) filter with an array of existing alarm sys-
tems' PIDs as follows:

ID "service.to=[32434,232,12421,1212]"

A new Alarm Service with service.pid=343 is registered, requiring that the
list of the target service be updated. The bundle which registered the Config-
uration Plugin service, therefore, wants to set the to registration property on
the target service. It does not do this by calling ManagedService .updated
directly for several reasons:

• In a securely configured system, it should not have the permission to
make this call or even obtain the target service.

• It could get into race conditions with the Configuration Admin service if
it had the permissions in the previous bullet. Both services would
compete for access simultaneously.

Instead, it must get the Conf igurat ion object from the Configuration Admin
service and call the update method on it.

The Configuration Admin service must schedule a new update cycle on
another thread, and sometime in the future must call
Configurat ionPlug in .modifyProperties . The Conf igurat ionPlug in object
could then set the service .to property to [32434,232,12421,1212, 343] .
After that, the Configuration Admin service must call updated on the target
service with the new service .to list.

104.9.3 Configuration Data Modifications
Modifications to the configuration dictionary are still under the control of
the Configuration Admin service, which must determine whether to accept
the changes, hide critical variables, or deny the changes for other reasons.

The Conf igurat ionPlugin interface must also allow plugins to detect config-
uration updates to the service via the callback. This ability allows them to
synchronize the configuration updates with transient information.

104.9.4 Forcing a Callback
If a bundle needs to force a Configuration Plugin service to be called again, it
must fetch the appropriate Configuration object from the Configuration
Admin service and call the update() method (the no parameter version) on
this object. This call forces an update with the current configuration dictio-
nary so that all applicable plug-ins get called again.
OSGi Service Platform Release 4 85-432

Remote Management Configuration Admin Service Specification Version 1.2
104.9.5 Calling Order
The order in which the Conf igurat ionPlugin objects are called must depend
on the service.cmRanking configuration property of the
Configurat ionPlugin object. Table 12 shows the usage of the
service.cmRanking property for the order of calling the Configuration Plu-
gin services.

104.10 Remote Management
This specification does not attempt to define a remote management inter-
face for the Framework. The purpose of this specification is to define a mini-
mal interface for bundles that is complete enough for testing.

The Configuration Admin service is a primary aspect of remote manage-
ment, however, and this specification must be compatible with common
remote management standards. This section discusses some of the issues of
using this specification with [16] DMTF Common Information Model (CIM)
and [17] Simple Network Management Protocol (SNMP), the most likely candi-
dates for remote management today.

These discussions are not complete, comprehensive, or normative. They are
intended to point the bundle developer in relevant directions. Further speci-
fications are needed to make a more concrete mapping.

104.10.1 Common Information Model
Common Information Model (CIM) defines the managed objects in [19]
Interface Definition Language (IDL) language, which was developed for the
Common Object Request Broker Architecture (CORBA).

The data types and the data values have a syntax. Additionally, these syn-
taxes can be mapped to XML. Unfortunately, this XML mapping is very dif-
ferent from the very applicable [18] XSchema XML data type definition
language. The Framework service registry property types are a proper subset
of the CIM data types.

In this specification, a Managed Service Factory maps to a CIM class defini-
tion. The primitives create , delete , and set are supported in this specifica-
tion via the ManagedServiceFactory interface. The possible data types in
CIM are richer than those the Framework supports and should thus be lim-
ited to cases when CIM classes for bundles are defined.

Table 12 service.cmRanking Usage For Ordering

service.cmRanking value Description

< 0 The Configuration Plugin service should not modify
properties and must be called before any modifica-
tions are made.

> 0 && <= 1000 The Configuration Plugin service modifies the config-
uration data. The calling order should be based on the
value of the service.cmRanking property.

> 1000 The Configuration Plugin service should not modify
data and is called after all modifications are made.
86-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Meta Typing
An important conceptual difference between this specification and CIM is
the naming of properties. CIM properties are defined within the scope of a
class. In this specification, properties are primarily defined within the scope
of the Managed Service Factory, but are then placed in the registry, where
they have global scope. This mechanism is similar to [20] Lightweight Direc-
tory Access Protocol, in which the semantics of the properties are defined glo-
bally and a class is a collection of globally defined properties.

This specification does not address the non-Configuration Admin service
primitives such as notifications and method calls.

104.10.2 Simple Network Management Protocol
The Simple Network Management Protocol (SNMP) defines the data model
in ASN.1. SNMP is a rich data typing language that supports many types
that are difficult to map to the data types supported in this specification. A
large overlap exists, however, and it should be possible to design a data type
that is applicable in this context.

The PID of a Managed Service should map to the SNMP Object IDentifier
(OID). Managed Service Factories are mapped to tables in SNMP, although
this mapping creates an obvious restriction in data types because tables can
only contain scalar values. Therefore, the property values of the
Configurat ion object would have to be limited to scalar values.

Similar scope issues as seen in CIM arise for SNMP because properties have
a global scope in the service registry.

SNMP does not support the concept of method calls or function calls. All
information is conveyed as the setting of values. The SNMP paradigm maps
closely to this specification.

This specification does not address non-Configuration Admin primitives
such as traps.

104.11 Meta Typing
This section discusses how the Metatype specification is used in the context
of a Configuration Admin service.

When a Managed Service or Managed Service Factory is registered, the ser-
vice object may also implement the MetaTypeProvider interface.

If the Managed Service or Managed Service Factory object implements the
MetaTypeProvider interface, a management bundle may assume that the
associated ObjectClassDefin it ion object can be used to configure the ser-
vice.

The ObjectClassDef in it ion and Attr ibuteDefin it ion objects contain suffi-
cient information to automatically build simple user interfaces. They can
also be used to augment dedicated interfaces with accurate validations.

When the Metatype specification is used, care should be taken to match the
capabilities of the metatype package to the capabilities of the Configuration
Admin service specification. Specifically:
OSGi Service Platform Release 4 87-432

Security Configuration Admin Service Specification Version 1.2
• The metatype specification must describe nested arrays and vectors or
arrays/vectors of mixed type.

This specification does not address how the metatype is made available to a
management system due to the many open issues regarding remote man-
agement.

104.12 Security

104.12.1 Configuration Permission
The Configuration Permission provides a bundle with the authority to con-
figure other bundles. All bundles implicitly have the permission to manage
configurations that are bound to their own location.

The Configure Permission has only a single action and the target must
always be * . The action is:

• CONFIGURE – This action grants a bundle the authority to manage con-
figurations for any other bundle.

The * wildcard for the actions parameter is supported.

104.12.2 Permissions Summary
Configuration Admin service security is implemented using Service Permis-
sion and Configuration Permission. The following table summarizes the
permissions needed by the Configuration Admin bundle itself, as well as the
typical permissions needed by the bundles with which it interacts.

Configuration Admin:

ServicePermission[..ConfigurationAdmin, REGISTER]
ServicePermission[..ManagedService, GET]
ServicePermission[..ManagedServiceFactory, GET]
ServicePermission[..ConfigurationPlugin, GET]
ConfigurationPermission[*, CONFIGURE]
AdminPermission[*, METADATA]

Managed Service:

ServicePermission[..ConfigurationAdmin, GET]
ServicePermission[..ManagedService, REGISTER]

Managed Service Factory:

ServicePermission[..ConfigurationAdmin, GET]
ServicePermission[..ManagedServiceFactory, REGISTER]

Configuration Plugin:

ServicePermission[..ConfigurationPlugin, REGISTER]

Configuration Listener:

ServicePermission[..ConfigurationListener, REGISTER]
88-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Security
The Configuration Admin service must have ServicePermission[
Configurat ionAdmin, REGISTER] . It will also be the only bundle that needs
the ServicePermiss ion[ManagedService | ManagedServiceFactory
|Configur at ionPlug in, GET] . No other bundle should be allowed to have
GET permission for these interfaces. The Configuration Admin bundle must
also hold ConfigurationPermission[*,CONFIGURE] .

Bundles that can be configured must have the
ServicePermission[ManagedServ ice | ManagedServiceFactory,
REGISTER] . Bundles registering Conf igurat ionPlug in objects must have
ServicePermiss ion[Conf igurationPlug in, REGISTER] . The Configuration
Admin service must trust all services registered with the
Configurat ionPlug in interface. Only the Configuration Admin service
should have Serv icePermiss ion[Conf igur at ionPlug in , GET] .

If a Managed Service or Managed Service Factory is implemented by an
object that is also registered under another interface, it is possible, although
inappropriate, for a bundle other than the Configuration Admin service
implementation to call the updated method. Security-aware bundles can
avoid this problem by having their updated methods check that the caller
has Conf igurat ionPermission[*,CONFIGURE] .

Bundles that want to change their own configuration need
ServicePermission[Conf igurat ionAdmin, GET] . A bundle with
Configurat ionPermiss ion[*,CONFIGURE]is allowed to access and modify
any Conf igurat ion object.

Pre-configuration of bundles requires Conf igurat ionPermiss ion[*,
CONFIGURE] because the methods that specify a location require this per-
mission.

104.12.3 Forging PIDs
A risk exists of an unauthorized bundle forging a PID in order to obtain and
possibly modify the configuration information of another bundle. To miti-
gate this risk, Conf igurat ion objects are generally bound to a specific bundle
location, and are not passed to any Managed Service or Managed Service
Factory registered by a different bundle.

Bundles with the required permission can create Configuration objects that
are not bound. In other words, they have their location set to null . This can
be useful for pre-configuring bundles before they are installed without hav-
ing to know their actual locations.

In this scenario, the Conf igurat ion object must become bound to the first
bundle that registers a Managed Service (or Managed Service Factory) with
the right PID.

A bundle could still possibly obtain another bundle’s configuration by regis-
tering a Managed Service with the right PID before the victim bundle does
so. This situation can be regarded as a denial-of-service attack, because the
victim bundle would never receive its configuration information. Such an
attack can be avoided by always binding Configurat ion objects to the right
locations. It can also be detected by the Configuration Admin service when
the victim bundle registers the correct PID and two equal PIDs are then reg-
istered. This violation of this specification should be logged.
OSGi Service Platform Release 4 89-432

Configurable Service Configuration Admin Service Specification Version 1.2
104.12.4 Configuration and Permission Administration
Configuration information has a direct influence on the permissions
needed by a bundle. For example, when the Configuration Admin Bundle
orders a bundle to use port 2011 for a console, that bundle also needs per-
mission for listening to incoming connections on that port.

Both a simple and a complex solution exist for this situation.

The simple solution for this situation provides the bundle with a set of per-
missions that do not define specific values but allow a range of values. For
example, a bundle could listen to ports above 1024 freely. All these ports
could then be used for configuration.

The other solution is more complicated. In an environment where there is
very strong security, the bundle would only be allowed access to a specific
port. This situation requires an atomic update of both the configuration
data and the permissions. If this update was not atomic, a potential security
hole would exist during the period of time that the set of permissions did
not match the configuration.

The following scenario can be used to update a configuration and the secu-
rity permissions:

1 Stop the bundle.
2 Update the appropriate Conf igurat ion object via the Configuration

Admin service.
3 Update the permissions in the Framework.
4 Start the bundle.

This scenario would achieve atomicity from the point of view of the bundle.

104.13 Configurable Service
Both the Configuration Admin service and the
org .osg i . f ramework.Conf igurable interface address configuration manage-
ment issues. It is the intention of this specification to replace the Frame-
work interface for configuration management.

The Framework Configurable mechanism works as follows. A registered ser-
vice object implements the Conf igurab le interface to allow a management
bundle to configure that service. The Conf igurab le interface has only one
method: getConf igurat ionObject() . This method returns a Java Bean. Beans
can be examined and modified with the java.ref lect or java .bean packages.

This scheme has the following disadvantages:

• No factory – Only registered services can be configured, unlike the
Managed Service Factory that configures any number of services.

• Atomicity – The beans or reflection API can only modify one property at a
time and there is no way to tell the bean that no more modifications to
the properties will follow. This limitation complicates updates of config-
urations that have dependencies between properties.
This specification passes a Dict ionary object that sets all the configura-
tion properties atomically.
90-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Changes
• Profile – The Java beans API is linked to many packages that are not likely
to be present in OSGi environments. The reflection API may be present
but is not simple to use.
This specification has no required libraries.

• User Interface support – UI support in beans is very rudimentary when no
AWT is present.
The associated Metatyping specification does not require any external
libraries, and has extensive support for UIs including localization.

104.14 Changes
• Added a Configuration Listener service that receives the Configuration

Admin key events. See Configuration Events on page 82.
• Added a new ConfigurationPermission class which replaces the use of

Admin Permission. So bundles which run with this version of Configu-
ration Admin must be deployed with the necessary Configuration Per-
missions rather than Admin Permission. See Configuration Permission on
page 88.

• The PID is now defined in the Core specification as well
• A property name is now defined as a unique-name .
• Event Admin mapping added.

104.15 org.osgi.service.cm
The OSGi Configuration Admin service Package. Specification Version 1.2

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.cm; version=1.2

104.15.1 Summary
• Configuration - The configuration information for a ManagedService or

ManagedServiceFactory object. [p.91]
• ConfigurationAdmin - Service for administering configuration data.

[p.94]
• ConfigurationEvent - A Configuration Event. [p.97]
• ConfigurationException - An Exception class to inform the Configu-

ration Admin service of problems with configuration data. [p.99]
• ConfigurationListener - Listener for Configuration Events. [p.100]
• ConfigurationPermission - Indicates a bundle’s authority to configure

bundles. [p.100]
• ConfigurationPlugin - A service interface for processing configuration

dictionary before the update. [p.101]
• ManagedService - A service that can receive configuration data from a

Configuration Admin service. [p.103]
• ManagedServiceFactory - Manage multiple service instances. [p.104]
Configuration
OSGi Service Platform Release 4 91-432

org.osgi.service.cm Configuration Admin Service Specification Version 1.2
104.15.2 public interface Configuration
The configuration information for a ManagedService or ManagedService-
Factory object. The Configuration Admin service uses this interface to repre-
sent the configuration information for a ManagedService or for a service
instance of a ManagedServiceFactory.

A Configuration object contains a configuration dictionary and allows the
properties to be updated via this object. Bundles wishing to receive configu-
ration dictionaries do not need to use this class - they register a ManagedSer-
vice or ManagedServiceFactory. Only administrative bundles, and bundles
wishing to update their own configurations need to use this class.

The properties handled in this configuration have case insensitive String
objects as keys. However, case is preserved from the last set key/value.

A configuration can be bound to a bundle location (Bundle.getLocation()).
The purpose of binding a Configuration object to a location is to make it
impossible for another bundle to forge a PID that would match this configu-
ration. When a configuration is bound to a specific location, and a bundle
with a different location registers a corresponding ManagedService object or
ManagedServiceFactory object, then the configuration is not passed to the
updated method of that object.

If a configuration’s location is null, it is not yet bound to a location. It will
become bound to the location of the first bundle that registers a Managed-
Service or ManagedServiceFactory object with the corresponding PID.

The same Configuration object is used for configuring both a Managed Ser-
vice Factory and a Managed Service. When it is important to differentiate
between these two the term “factory configuration” is used.
delete()

104.15.2.1 public void delete() throws IOException

Delete this Configuration object. Removes this configuration object from
the persistent store. Notify asynchronously the corresponding Managed Ser-
vice or Managed Service Factory. A ManagedService object is notified by a
call to its updated method with a null properties argument. A ManagedSer-
viceFactory object is notified by a call to its deleted method.

Also intiates an asynchronous call to all ConfigurationListeners with a Con-
figurationEvent.CM_DELETED event.

Throws IOException – If delete fails

IllegalStateException – if this configuration has been deleted
equals(Object)

104.15.2.2 public boolean equals(Object other)

other Configuration object to compare against

Equality is defined to have equal PIDs Two Configuration objects are equal
when their PIDs are equal.

Returns true if equal, false if not a Configuration object or one with a different PID.
getBundleLocation()

104.15.2.3 public String getBundleLocation()

Get the bundle location. Returns the bundle location to which this configu-
ration is bound, or null if it is not yet bound to a bundle location.
92-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 org.osgi.service.cm
Returns location to which this configuration is bound, or null.

Throws IllegalStateException – If this Configuration object has been deleted.

SecurityException – If the caller does not have ConfigurationPermis-
sion[*,CONFIGURE].
getFactoryPid()

104.15.2.4 public String getFactoryPid()

For a factory configuration return the PID of the corresponding Managed
Service Factory, else return null.

Returns factory PID or null

Throws IllegalStateException – if this configuration has been deleted
getPid()

104.15.2.5 public String getPid()

Get the PID for this Configuration object.

Returns the PID for this Configuration object.

Throws IllegalStateException – if this configuration has been deleted
getProperties()

104.15.2.6 public Dictionary getProperties()

Return the properties of this Configuration object. The Dictionary object
returned is a private copy for the caller and may be changed without influ-
encing the stored configuration. The keys in the returned dictionary are case
insensitive and are always of type String.

If called just after the configuration is created and before update has been
called, this method returns null.

Returns A private copy of the properties for the caller or null. These properties must
not contain the “service.bundleLocation” property. The value of this proper-
ty may be obtained from the getBundleLocation method.

Throws IllegalStateException – if this configuration has been deleted
hashCode()

104.15.2.7 public int hashCode()

Hash code is based on PID. The hashcode for two Configuration objects
must be the same when the Configuration PID’s are the same.

Returns hash code for this Configuration object
setBundleLocation(String)

104.15.2.8 public void setBundleLocation(String bundleLocation)

bundleLocation a bundle location or null

Bind this Configuration object to the specified bundle location. If the
bundleLocation parameter is null then the Configuration object will not be
bound to a location. It will be set to the bundle’s location before the first
time a Managed Service/Managed Service Factory receives this Configura-
tion object via the updated method and before any plugins are called. The
bundle location will be set persistently.

Throws IllegalStateException – If this configuration has been deleted.

SecurityException – If the caller does not have ConfigurationPermis-
sion[*,CONFIGURE].
update(Dictionary)

104.15.2.9 public void update(Dictionary properties) throws IOException

properties the new set of properties for this configuration
OSGi Service Platform Release 4 93-432

org.osgi.service.cm Configuration Admin Service Specification Version 1.2
Update the properties of this Configuration object. Stores the properties in
persistent storage after adding or overwriting the following properties:

• “service.pid” : is set to be the PID of this configuration.
• “service.factoryPid” : if this is a factory configuration it is set to the

factory PID else it is not set.

These system properties are all of type String.

If the corresponding Managed Service/Managed Service Factory is regis-
tered, its updated method must be called asynchronously. Else, this callback
is delayed until aforementioned registration occurs.

Also intiates an asynchronous call to all ConfigurationListeners with a Con-
figurationEvent.CM_UPDATED event.

Throws IOException – if update cannot be made persistent

IllegalArgumentException – if the Dictionary object contains invalid con-
figuration types or contains case variants of the same key name.

IllegalStateException – if this configuration has been deleted
update()

104.15.2.10 public void update() throws IOException

Update the Configuration object with the current properties. Initiate the
updated callback to the Managed Service or Managed Service Factory with
the current properties asynchronously.

This is the only way for a bundle that uses a Configuration Plugin service to
initate a callback. For example, when that bundle detects a change that
requires an update of the Managed Service or Managed Service Factory via
its ConfigurationPlugin object.

Throws IOException – if update cannot access the properties in persistent storage

IllegalStateException – if this configuration has been deleted

See Also ConfigurationPlugin[p.101]
ConfigurationAdmin

104.15.3 public interface ConfigurationAdmin
Service for administering configuration data.

The main purpose of this interface is to store bundle configuration data per-
sistently. This information is represented in Configuration objects. The
actual configuration data is a Dictionary of properties inside a Configura-
tion object.

There are two principally different ways to manage configurations. First
there is the concept of a Managed Service, where configuration data is
uniquely associated with an object registered with the service registry.

Next, there is the concept of a factory where the Configuration Admin ser-
vice will maintain 0 or more Configuration objects for a Managed Service
Factory that is registered with the Framework.

The first concept is intended for configuration data about “things/services”
whose existence is defined externally, e.g. a specific printer. Factories are
intended for “things/services” that can be created any number of times, e.g. a
configuration for a DHCP server for different networks.
94-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 org.osgi.service.cm
Bundles that require configuration should register a Managed Service or a
Managed Service Factory in the service registry. A registration property
named service.pid (persistent identifier or PID) must be used to identify this
Managed Service or Managed Service Factory to the Configuration Admin
service.

When the ConfigurationAdmin detects the registration of a Managed Ser-
vice, it checks its persistent storage for a configuration object whose PID
matches the PID registration property (service.pid) of the Managed Service.
If found, it calls ManagedService .updated [p.104] method with the new
properties. The implementation of a Configuration Admin service must run
these call-backs asynchronously to allow proper synchronization.

When the Configuration Admin service detects a Managed Service Factory
registration, it checks its storage for configuration objects whose factoryPid
matches the PID of the Managed Service Factory. For each such Configura-
tion objects, it calls the ManagedServiceFactory.updated method asynchro-
nously with the new properties. The calls to the updated method of a
ManagedServiceFactory must be executed sequentially and not overlap in
time.

In general, bundles having permission to use the Configuration Admin ser-
vice can only access and modify their own configuration information.
Accessing or modifying the configuration of another bundle requires Con-
figurationPermission[*,CONFIGURE].

Configuration objects can be bound to a specified bundle location. In this
case, if a matching Managed Service or Managed Service Factory is regis-
tered by a bundle with a different location, then the Configuration Admin
service must not do the normal callback, and it should log an error. In the
case where a Configuration object is not bound, its location field is null, the
Configuration Admin service will bind it to the location of the bundle that
registers the first Managed Service or Managed Service Factory that has a
corresponding PID property. When a Configuration object is bound to a
bundle location in this manner, the Confguration Admin service must
detect if the bundle corresponding to the location is uninstalled. If this
occurs, the Configuration object is unbound, that is its location field is set
back to null.

The method descriptions of this class refer to a concept of “the calling bun-
dle”. This is a loose way of referring to the bundle which obtained the Con-
figuration Admin service from the service registry. Implementations of
ConfigurationAdmin must use a org .osg i. framework.ServiceFactoryto sup-
port this concept.
SERVICE_BUNDLELOCATION

104.15.3.1 public static final String SERVICE_BUNDLELOCATION =
“service.bundleLocation”

Service property naming the location of the bundle that is associated with a
a Configuration object. This property can be searched for but must not
appear in the configuration dictionary for security reason. The property’s
value is of type String.

Since 1.1
SERVICE_FACTORYPID
OSGi Service Platform Release 4 95-432

org.osgi.service.cm Configuration Admin Service Specification Version 1.2
104.15.3.2 public static final String SERVICE_FACTORYPID = “service.factoryPid”

Service property naming the Factory PID in the configuration dictionary.
The property’s value is of type String.

Since 1.1
createFactoryConfiguration(String)

104.15.3.3 public Configuration createFactoryConfiguration(String factoryPid)
throws IOException

factoryPid PID of factory (not null).

Create a new factory Configuration object with a new PID. The properties of
the new Configuration object are null until the first time that its
Conf igurat ion.update(Dict ionary) [p.93] method is called.

It is not required that the factoryPid maps to a registered Managed Service
Factory.

The Configuration object is bound to the location of the calling bundle.

Returns A new Configuration object.

Throws IOException – if access to persistent storage fails.

SecurityException – if caller does not have ConfigurationPermission[*,
CONFIGURE] and factoryPid is bound to another bundle.
createFactoryConfiguration(String,String)

104.15.3.4 public Configuration createFactoryConfiguration(String factoryPid,
String location) throws IOException

factoryPid PID of factory (not null).

location A bundle location string, or null.

Create a new factory Configuration object with a new PID. The properties of
the new Configuration object are null until the first time that its
Conf igurat ion.update(Dict ionary) [p.93] method is called.

It is not required that the factoryPid maps to a registered Managed Service
Factory.

The Configuration is bound to the location specified. If this location is null
it will be bound to the location of the first bundle that registers a Managed
Service Factory with a corresponding PID.

Returns a new Configuration object.

Throws IOException – if access to persistent storage fails.

SecurityException – if caller does not have ConfigurationPermission[*,
CONFIGURE].
getConfiguration(String,String)

104.15.3.5 public Configuration getConfiguration(String pid, String location)
throws IOException

pid Persistent identifier.

location The bundle location string, or null.

Get an existing Configuration object from the persistent store, or create a
new Configuration object.

If a Configuration with this PID already exists in Configuration Admin ser-
vice return it. The location parameter is ignored in this case.
96-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 org.osgi.service.cm
Else, return a new Configuration object. This new object is bound to the
location and the properties are set to null. If the location parameter is null, it
will be set when a Managed Service with the corresponding PID is registered
for the first time.

Returns An existing or new Configuration object.

Throws IOException – if access to persistent storage fails.

SecurityException – if the caller does not have ConfigurationPermis-
sion[*,CONFIGURE].
getConfiguration(String)

104.15.3.6 public Configuration getConfiguration(String pid) throws IOException

pid persistent identifier.

Get an existing or new Configuration object from the persistent store. If the
Configuration object for this PID does not exist, create a new Configuration
object for that PID, where properties are null. Bind its location to the calling
bundle’s location.

Otherwise, if the location of the existing Configuration object is null, set it
to the calling bundle’s location.

Returns an existing or new Configuration matching the PID.

Throws IOException – if access to persistent storage fails.

SecurityException – if the Configuration object is bound to a location dif-
ferent from that of the calling bundle and it has no ConfigurationPermis-
sion[*,CONFIGURE].
listConfigurations(String)

104.15.3.7 public Configuration[] listConfigurations(String filter) throws
IOException, InvalidSyntaxException

filter a Filter object, or null to retrieve all Configuration objects.

List the current Configuration objects which match the filter.

Only Configuration objects with non- null properties are considered cur-
rent. That is, Configuration.getProperties() is guaranteed not to return null
for each of the returned Configuration objects.

Normally only Configuration objects that are bound to the location of the
calling bundle are returned, or all if the caller has ConfigurationPermis-
sion[*,CONFIGURE].

The syntax of the filter string is as defined in the Filter class. The filter can
test any configuration parameters including the following system proper-
ties:

• service.pid-String- the PID under which this is registered
• service.factoryPid-String- the factory if applicable
• service.bundleLocation-String- the bundle location

The filter can also be null, meaning that all Configuration objects should be
returned.

Returns all matching Configuration objects, or null if there aren’t any

Throws IOException – if access to persistent storage fails

InvalidSyntaxException – if the filter string is invalid
ConfigurationEvent
OSGi Service Platform Release 4 97-432

org.osgi.service.cm Configuration Admin Service Specification Version 1.2
104.15.4 public class ConfigurationEvent
A Configuration Event.

ConfigurationEvent objects are delivered to all registered ConfigurationLis-
tener service objects. ConfigurationEvents must be asynchronously deliv-
ered in chronological order with respect to each listener.

A type code is used to identify the type of event. The following event types
are defined:

• CM_UPDATED [p.98]
• CM_DELETED [p.98]

Security Considerations. ConfigurationEvent objects do not provide Config-
uration objects, so no sensitive configuration information is available from
the event. If the listener wants to locate the Configuration object for the
specified pid, it must use ConfigurationAdmin.

See Also ConfigurationListener[p.100]

Since 1.2
CM_DELETED

104.15.4.1 public static final int CM_DELETED = 2

A Configuration has been deleted.

This ConfigurationEvent type that indicates that a Configuration object has
been deleted. An event is fired when a call to Configuration.delete success-
fully deletes a configuration.

The value of CM_DELETED is 2.
CM_UPDATED

104.15.4.2 public static final int CM_UPDATED = 1

A Configuration has been updated.

This ConfigurationEvent type that indicates that a Configuration object has
been updated with new properties. An event is fired when a call to Configu-
ration.update successfully changes a configuration.

The value of CM_UPDATED is 1.
ConfigurationEvent(ServiceReference,int,String,String)

104.15.4.3 public ConfigurationEvent(ServiceReference reference, int type, String
factoryPid, String pid)

reference The ServiceReference object of the Configuration Admin service that created
this event.

type The event type. See getType [p.99] .

factoryPid The factory pid of the associated configuration if the target of the configura-
tion is a ManagedServiceFactory. Otherwise null if the target of the configu-
ration is a ManagedService.

pid The pid of the associated configuration.

Constructs a ConfigurationEvent object from the given ServiceReference
object, event type, and pids.
getFactoryPid()

104.15.4.4 public String getFactoryPid()

Returns the factory pid of the associated configuration.
98-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 org.osgi.service.cm
Returns Returns the factory pid of the associated configuration if the target of the
configuration is a ManagedServiceFactory. Otherwise null if the target of the
configuration is a ManagedService.
getPid()

104.15.4.5 public String getPid()

Returns the pid of the associated configuration.

Returns Returns the pid of the associated configuration.
getReference()

104.15.4.6 public ServiceReference getReference()

Return the ServiceReference object of the Configuration Admin service that
created this event.

Returns The ServiceReference object for the Configuration Admin service that creat-
ed this event.
getType()

104.15.4.7 public int getType()

Return the type of this event.

The type values are:

• CM_UPDATED [p.98]
• CM_DELETED [p.98]

Returns The type of this event.
ConfigurationException

104.15.5 public class ConfigurationException
extends Exception
An Exception class to inform the Configuration Admin service of problems
with configuration data.
ConfigurationException(String,String)

104.15.5.1 public ConfigurationException(String property, String reason)

property name of the property that caused the problem, null if no specific property
was the cause

reason reason for failure

Create a ConfigurationException object.
ConfigurationException(String,String,Throwable)

104.15.5.2 public ConfigurationException(String property, String reason,
Throwable cause)

property name of the property that caused the problem, null if no specific property
was the cause

reason reason for failure

cause The cause of this exception.

Create a ConfigurationException object.

Since 1.2
getCause()

104.15.5.3 public Throwable getCause()

Returns the cause of this exception or null if no cause was specified when
this exception was created.

Returns The cause of this exception or null if no cause was specified.
OSGi Service Platform Release 4 99-432

org.osgi.service.cm Configuration Admin Service Specification Version 1.2
Since 1.2
getProperty()

104.15.5.4 public String getProperty()

Return the property name that caused the failure or null.

Returns name of property or null if no specific property caused the problem
getReason()

104.15.5.5 public String getReason()

Return the reason for this exception.

Returns reason of the failure
initCause(Throwable)

104.15.5.6 public Throwable initCause(Throwable cause)

cause Cause of the exception.

The cause of this exception can only be set when constructed.

Returns This object.

Throws IllegalStateException – This method will always throw an IllegalState-
Exception since the cause of this exception can only be set when constructed.

Since 1.2
ConfigurationListener

104.15.6 public interface ConfigurationListener
Listener for Configuration Events. When a ConfigurationEvent is fired, it is
asynchronously delivered to a ConfigurationListener.

ConfigurationListener objects are registered with the Framework service
registry and are notified with a ConfigurationEvent object when an event is
fired.

ConfigurationListener objects can inspect the received ConfigurationEvent
object to determine its type, the pid of the Configuration object with which
it is associated, and the Configuration Admin service that fired the event.

Security Considerations. Bundles wishing to monitor configuration events
will require ServicePermission[ConfigurationListener,REGISTER] to register
a ConfigurationListener service.

Since 1.2
configurationEvent(ConfigurationEvent)

104.15.6.1 public void configurationEvent(ConfigurationEvent event)

event The ConfigurationEvent.

Receives notification of a Configuration that has changed.
ConfigurationPermission

104.15.7 public final class ConfigurationPermission
extends BasicPermission
Indicates a bundle’s authority to configure bundles. This permission has
only a single action: CONFIGURE.

Since 1.2
CONFIGURE

104.15.7.1 public static final String CONFIGURE = “configure”

The action string configure.
ConfigurationPermission(String,String)
100-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 org.osgi.service.cm
104.15.7.2 public ConfigurationPermission(String name, String actions)

name Name must be “*”.

actions configure (canonical order).

Create a new ConfigurationPermission.
equals(Object)

104.15.7.3 public boolean equals(Object obj)

obj The object being compared for equality with this object.

Determines the equality of two ConfigurationPermission objects.

Two ConfigurationPermission objects are equal.

Returns true if obj is equivalent to this ConfigurationPermission; false otherwise.
getActions()

104.15.7.4 public String getActions()

Returns the canonical string representation of the ConfigurationPermission
actions.

Always returns present ConfigurationPermission actions in the following
order: CONFIGURE

Returns Canonical string representation of the ConfigurationPermission actions.
hashCode()

104.15.7.5 public int hashCode()

Returns the hash code value for this object.

Returns Hash code value for this object.
implies(Permission)

104.15.7.6 public boolean implies(Permission p)

p The target permission to check.

Determines if a ConfigurationPermission object “implies” the specified per-
mission.

Returns true if the specified permission is implied by this object; false otherwise.
newPermissionCollection()

104.15.7.7 public PermissionCollection newPermissionCollection()

Returns a new PermissionCollection object suitable for storing Configura-
tionPermissions.

Returns A new PermissionCollection object.
ConfigurationPlugin

104.15.8 public interface ConfigurationPlugin
A service interface for processing configuration dictionary before the
update.

A bundle registers a ConfigurationPlugin object in order to process configu-
ration updates before they reach the Managed Service or Managed Service
Factory. The Configuration Admin service will detect registrations of Con-
figuration Plugin services and must call these services every time before it
calls the ManagedService or ManagedServiceFactoryupdated method. The
Configuration Plugin service thus has the opportunity to view and modify
the properties before they are passed to the ManagedS ervice or Managed
Service Factory.
OSGi Service Platform Release 4 101-432

org.osgi.service.cm Configuration Admin Service Specification Version 1.2
Configuration Plugin (plugin) services have full read/write access to all con-
figuration information. Therefore, bundles using this facility should be
trusted. Access to this facility should be limited with ServicePermis-
sion[ConfigurationPlugin,REGISTER]. Implementations of a Configuration
Plugin service should assure that they only act on appropriate configura-
tions.

The Integerservice.cmRanking registration property may be specified. Not
specifying this registration property, or setting it to something other than
an Integer, is the same as setting it to the Integer zero. The service.cmRank-
ing property determines the order in which plugins are invoked. Lower
ranked plugins are called before higher ranked ones. In the event of more
than one plugin having the same value of service.cmRanking, then the Con-
figuration Admin service arbitrarily chooses the order in which they are
called.

By convention, plugins with service.cmRanking< 0 or service.cmRanking
>1000 should not make modifications to the properties.

The Configuration Admin service has the right to hide properties from plu-
gins, or to ignore some or all the changes that they make. This might be
done for security reasons. Any such behavior is entirely implementation
defined.

A plugin may optionally specify a cm.target registration property whose
value is the PID of the Managed Service or Managed Service Factory whose
configuration updates the plugin is intended to intercept. The plugin will
then only be called with configuration updates that are targetted at the
Managed Service or Managed Service Factory with the specified PID. Omit-
ting the cm.target registration property means that the plugin is called for
all configuration updates.
CM_RANKING

104.15.8.1 public static final String CM_RANKING = “service.cmRanking”

A service property to specify the order in which plugins are invoked. This
property contains an Integer ranking of the plugin. Not specifying this regis-
tration property, or setting it to something other than an Integer, is the same
as setting it to the Integer zero. This property determines the order in which
plugins are invoked. Lower ranked plugins are called before higher ranked
ones.

Since 1.2
CM_TARGET

104.15.8.2 public static final String CM_TARGET = “cm.target”

A service property to limit the Managed Service or Managed Service Factory
configuration dictionaries a Configuration Plugin service receives. This
property contains a String[] of PIDs. A Configuration Admin service must
call a Configuration Plugin service only when this property is not set, or the
target service’s PID is listed in this property.
modifyConfiguration(ServiceReference,Dictionary)

104.15.8.3 public void modifyConfiguration(ServiceReference reference, Dictionary
properties)

reference reference to the Managed Service or Managed Service Factory
102-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 org.osgi.service.cm
properties The configuration properties. This argument must not contain the “serv-
ice.bundleLocation” property. The value of this property may be obtained
from the Configuration.getBundleLocation method.

View and possibly modify the a set of configuration properties before they
are sent to the Managed Service or the Managed Service Factory. The Config-
uration Plugin services are called in increasing order of their ser-
vice.cmRanking property. If this property is undefined or is a non- Integer
type, 0 is used.

This method should not modify the properties unless the service.cmRank-
ing of this plugin is in the range 0 <= service.cmRanking <= 1000.

If this method throws any Exception, the Configuration Admin service
must catch it and should log it.
ManagedService

104.15.9 public interface ManagedService
A service that can receive configuration data from a Configuration Admin
service.

A Managed Service is a service that needs configuration data. Such an object
should be registered with the Framework registry with the service.pid prop-
erty set to some unique identitifier called a PID.

If the Configuration Admin service has a Configuration object correspond-
ing to this PID, it will callback the updated() method of the ManagedService
object, passing the properties of that Configuration object.

If it has no such Configuration object, then it calls back with a null proper-
ties argument. Registering a Managed Service will always result in a call-
back to the updated() method provided the Configuration Admin service is,
or becomes active. This callback must always be done asynchronously.

Else, every time that either of the updated() methods is called on that Con-
figuration object, the ManagedService.updated() method with the new
properties is called. If the delete() method is called on that Configuration
object, ManagedService.updated() is called with a null for the properties
parameter. All these callbacks must be done asynchronously.

The following example shows the code of a serial port that will create a port
depending on configuration information.

class SerialPort implements ManagedService {

ServiceRegistration registration;
Hashtable configuration;
CommPortIdentifier id;

synchronized void open(CommPortIdentifier id,
BundleContext context) {

this.id = id;
registration = context.registerService(

ManagedService.class.getName(),
this,
getDefaults()
OSGi Service Platform Release 4 103-432

org.osgi.service.cm Configuration Admin Service Specification Version 1.2
);
}

Hashtable getDefaults() {
Hashtable defaults = new Hashtable();
defaults.put(“port”, id.getName());
defaults.put(“product”, “unknown”);
defaults.put(“baud”, “9600”);
defaults.put(Constants.SERVICE_PID,

“com.acme.serialport.” + id.getName());
return defaults;

}

public synchronized void updated(
Dictionary configuration) {
if (configuration ==

null
)

registration.setProperties(getDefaults());
else {

setSpeed(configuration.get(”baud”));
registration.setProperties(configuration);

}
}
...

}

As a convention, it is recommended that when a Managed Service is
updated, it should copy all the properties it does not recognize into the ser-
vice registration properties. This will allow the Configuration Admin ser-
vice to set properties on services which can then be used by other
applications.
updated(Dictionary)

104.15.9.1 public void updated(Dictionary properties) throws
ConfigurationException

properties A copy of the Configuration properties, or null. This argument must not con-
tain the “service.bundleLocation” property. The value of this property may
be obtained from the Configuration.getBundleLocation method.

Update the configuration for a Managed Service.

When the implementation of updated(Dictionary) detects any kind of error
in the configuration properties, it should create a new ConfigurationExcep-
tion which describes the problem. This can allow a management system to
provide useful information to a human administrator.

If this method throws any other Exception, the Configuration Admin ser-
vice must catch it and should log it.

The Configuration Admin service must call this method asynchronously
which initiated the callback. This implies that implementors of Managed
Service can be assured that the callback will not take place during registra-
tion when they execute the registration in a synchronized method.

Throws ConfigurationException – when the update fails
ManagedServiceFactory
104-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 org.osgi.service.cm
104.15.10 public interface ManagedServiceFactory
Manage multiple service instances. Bundles registering this interface are
giving the Configuration Admin service the ability to create and configure a
number of instances of a service that the implementing bundle can provide.
For example, a bundle implementing a DHCP server could be instantiated
multiple times for different interfaces using a factory.

Each of these service instances is represented, in the persistent storage of the
Configuration Admin service, by a factory Configuration object that has a
PID. When such a Configuration is updated, the Configuration Admin ser-
vice calls the ManagedServiceFactory updated method with the new proper-
ties. When updated is called with a new PID, the Managed Service Factory
should create a new factory instance based on these configuration proper-
ties. When called with a PID that it has seen before, it should update that
existing service instance with the new configuration information.

In general it is expected that the implementation of this interface will main-
tain a data structure that maps PIDs to the factory instances that it has cre-
ated. The semantics of a factory instance are defined by the Managed Service
Factory. However, if the factory instance is registered as a service object with
the service registry, its PID should match the PID of the corresponding Con-
figuration object (but it should not be registered as a Managed Service!).

An example that demonstrates the use of a factory. It will create serial ports
under command of the Configuration Admin service.

class SerialPortFactory
implements ManagedServiceFactory {
ServiceRegistration registration;
Hashtable ports;
void start(BundleContext context) {

Hashtable properties = new Hashtable();
properties.put(Constants.SERVICE_PID,

“com.acme.serialportfactory”);
registration = context.registerService(

ManagedServiceFactory.class.getName(),
this,
properties

);
}
public void updated(String pid,

Dictionary properties) {
String portName = (String) properties.get(”port”);
SerialPortService port =

(SerialPort) ports.get(pid);
if (port == null) {

port = new SerialPortService();
ports.put(pid, port);
port.open();

}
if (port.getPortName().equals(portName))

return;
port.setPortName(portName);
OSGi Service Platform Release 4 105-432

org.osgi.service.cm Configuration Admin Service Specification Version 1.2
}
public void deleted(String pid) {

SerialPortService port =
(SerialPort) ports.get(pid);

port.close();
ports.remove(pid);

}
...

}
deleted(String)

104.15.10.1 public void deleted(String pid)

pid the PID of the service to be removed

Remove a factory instance. Remove the factory instance associated with the
PID. If the instance was registered with the service registry, it should be
unregistered.

If this method throws any Exception, the Configuration Admin service
must catch it and should log it.

The Configuration Admin service must call this method asynchronously.
getName()

104.15.10.2 public String getName()

Return a descriptive name of this factory.

Returns the name for the factory, which might be localized
updated(String,Dictionary)

104.15.10.3 public void updated(String pid, Dictionary properties) throws
ConfigurationException

pid The PID for this configuration.

properties A copy of the configuration properties. This argument must not contain the
service.bundleLocation” property. The value of this property may be ob-
tained from the Configuration.getBundleLocation method.

Create a new instance, or update the configuration of an existing instance. If
the PID of the Configuration object is new for the Managed Service Factory,
then create a new factory instance, using the configuration properties pro-
vided. Else, update the service instance with the provided properties.

If the factory instance is registered with the Framework, then the configura-
tion properties should be copied to its registry properties. This is not manda-
tory and security sensitive properties should obviously not be copied.

If this method throws any Exception, the Configuration Admin service
must catch it and should log it.

When the implementation of updated detects any kind of error in the con-
figuration properties, it should create a new Configurat ionExcept ion [p.99]
which describes the problem.

The Configuration Admin service must call this method asynchronously.
This implies that implementors of the ManagedServiceFactory class can be
assured that the callback will not take place during registration when they
execute the registration in a synchronized method.

Throws ConfigurationException – when the configuration properties are invalid.
106-432 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 References
104.16 References
[16] DMTF Common Information Model

http://www.dmtf.org

[17] Simple Network Management Protocol
RFCs http://directory.google.com/Top/Computers/Internet/Protocols/
SNMP/RFCs

[18] XSchema
http://www.w3.org/TR/xmlschema-0/

[19] Interface Definition Language
http://www.omg.org

[20] Lightweight Directory Access Protocol
http://directory.google.com/Top/Computers/Software/Internet/Servers/
Directory/LDAP

[21] Understanding and Deploying LDAP Directory services
Timothy Howes et. al. ISBN 1-57870-070-1, MacMillan Technical
publishing.
OSGi Service Platform Release 4 107-432

References Configuration Admin Service Specification Version 1.2
108-432 OSGi Service Platform Release 4

Preferences Service Specification Version 1.1 Introduction
106 Preferences Service
Specification
Version 1.1

106.1 Introduction
Many bundles need to save some data persistently--in other words, the data
is required to survive the stopping and restarting of the bundle, Framework
and OSGi Service Platform. In some cases, the data is specific to a particular
user. For example, imagine a bundle that implements some kind of game.
User specific persistent data could include things like the user’s preferred
difficulty level for playing the game. Some data is not specific to a user,
which we call system data. An example would be a table of high scores for
the game.

Bundles which need to persist data in an OSGi environment can use the file
system via org.osgi . f ramework.BundleContext .getDataF i le . A file system,
however, can store only bytes and characters, and provides no direct support
for named values and different data types.

A popular class used to address this problem for Java applications is the
java.ut i l .Propert ies class. This class allows data to be stored as key/value
pairs, called properties. For example, a property could have a name
com.acme.fudd and a value of elmer . The Properties class has rudimentary
support for storage and retrieving with its load and store methods. The
Properties class, however, has the following limitations:

• Does not support a naming hierarchy.
• Only supports Str ing property values.
• Does not allow its content to be easily stored in a back-end system.
• Has no user name-space management.

Since the Properties class was introduced in Java 1.0, efforts have been
undertaken to replace it with a more sophisticated mechanism. One of these
efforts is this Preferences Service specification.

106.1.1 Essentials
The focus of this specification is simplicity, not reliable access to stored
data. This specification does not define a general database service with trans-
actions and atomicity guarantees. Instead, it is optimized to deliver the
stored information when needed, but it will return defaults, instead of
throwing an exception, when the back-end store is not available. This
approach may reduce the reliability of the data, but it makes the service eas-
ier to use, and allows for a variety of compact and efficient implementa-
tions.
OSGi Service Platform Release 4 109-432

Introduction Preferences Service Specification Version 1.1
This API is made easier to use by the fact that many bundles can be written
to ignore any problems that the Preferences Service may have in accessing
the back-end store, if there is one. These bundles will mostly or exclusively
use the methods of the Preferences interface which are not declared to
throw a BackingStoreException .

This service only supports the storage of scalar values and byte arrays. It is not
intended for storing large data objects like documents or images. No stan-
dard limits are placed on the size of data objects which can be stored, but
implementations are expected to be optimized for the handling of small
objects.

A hierarchical naming model is supported, in contrast to the flat model of
the Properties class. A hierarchical model maps naturally to many comput-
ing problems. For example, maintaining information about the positions of
adjustable seats in a car requires information for each seat. In a hierarchy,
this information can be modeled as a node per seat.

A potential benefit of the Preferences Service is that it allows user specific
preferences data to be kept in a well defined place, so that a user manage-
ment system could locate it. This benefit could be useful for such operations
as cleaning up files when a user is removed from the system, or to allow a
user's preferences to be cloned for a new user.

The Preferences Service does not provide a mechanism to allow one bundle
to access the preferences data of another. If a bundle wishes to allow another
bundle to access its preferences data, it can pass a Preferences or Preferen-
cesService object to that bundle.

The Preferences Service is not intended to provide configuration manage-
ment functionality. For information regarding Configuration Management,
refer to the Configuration Admin Service Specification on page 63.

106.1.2 Entities
The PreferencesServ ice is a relatively simple service. It provides access to
the different roots of Preferences trees. A single system root node and any
number of user root nodes are supported. Each node of such a tree is an
object that implements the Preferences interface.

This Preferences interface provides methods for traversing the tree, as well
as methods for accessing the properties of the node. This interface also con-
tains the methods to flush data into persistent storage, and to synchronize
the in-memory data cache with the persistent storage.

All nodes except root nodes have a parent. Nodes can have multiple chil-
dren.
110-432 OSGi Service Platform Release 4

Preferences Service Specification Version 1.1 Preferences Interface
Figure 21 Preferences Class Diagram

106.1.3 Operation
The purpose of the Preferences Service specification is to allow bundles to
store and retrieve properties stored in a tree of nodes, where each node
implements the Preferences interface. The PreferencesService interface
allows a bundle to create or obtain a Preferences tree for system properties,
as well as a Preferences tree for each user of the bundle.

This specification allows for implementations where the data is stored
locally on the service platform or remotely on a back-end system.

106.2 Preferences Interface
Preferences is an interface that defines the methods to manipulate a node
and the tree to which it belongs. A Preferences object contains:

• A set of properties in the form of key/value pairs.
• A parent node.
• A number of child nodes.

106.2.1 Hierarchies
A valid Preferences object always belongs to a tree. A tree is identified by its
root node. In such a tree, a Preferences object always has a single parent,
except for a root node which has a null parent.

The root node of a tree can be found by recursively calling the parent()
method of a node until nul l is returned. The nodes that are traversed this
way are called the ancestors of a node.

Preferences Node
implementation

<<interface>>
Preferences
Service

<<interface>>
Preferences

Preferences
Service
implementation

a bundle

root system node

root user nodes

1

1

1

0..n

0..n 1nodes

user name

node name

Bundle
Preferences

BackingStore
Exception

parent

0..n

1

1:n bundle - service
OSGi Service Platform Release 4 111-432

Preferences Interface Preferences Service Specification Version 1.1
Each Preferences object has a private name-space for child nodes. Each child
node has a name that must be unique among its siblings. Child nodes are
created by getting a child node with the node(Str ing) method. The Str ing
argument of this call contains a path name. Path names are explained in the
next section.

Child nodes can have child nodes recursively. These objects are called the
descendants of a node.

Descendants are automatically created when they are obtained from a
Preferences object, including any intermediate nodes that are necessary for
the given path. If this automatic creation is not desired, the nodeEx-
is ts(Str ing) method can be used to determine if a node already exists.

Figure 22 Categorization of nodes in a tree

106.2.2 Naming
Each node has a name relative to its parent. A name may consist of Unicode
characters except for the forward slash ("/"). There are no special names, like
" . . " or " . " .

Empty names are reserved for root nodes. Node names that are directly cre-
ated by a bundle must always contain at least one character.

Preferences node names and property keys are case sensitive: for example,
"org.osgi" and "oRg.oSgI" are two distinct names.

The Preferences Service supports different roots, so there is no absolute root
for the Preferences Service. This concept is similar to the Windows Registry
that also supports a number of roots.

A path consists of one or more node names, separated by a slash ("/ "). Paths
beginning with a " /" are called absolute paths while other paths are called
relative paths. Paths cannot end with a "/ " except for the special case of the
root node which has absolute path "/" .

Path names are always associated with a specific node; this node is called the
current node in the following descriptions. Paths identify nodes as follows.

• Absolute path – The first "/" is removed from the path, and the remainder
of the path is interpreted as a relative path from the tree’s root node.

• Relative path –
• If the path is the empty string, it identifies the current node.
• If the path is a name (does not contain a " /"), then it identifies the

child node with that name.

root

parent

current

children

ancestors

descendants

tree
112-432 OSGi Service Platform Release 4

Preferences Service Specification Version 1.1 Preferences Interface
• Otherwise, the first name from the path identifies a child of the cur-
rent node. The name and slash are then removed from the path, and
the remainder of the path is interpreted as a relative path from the
child node.

106.2.3 Tree Traversal Methods
A tree can be traversed and modified with the following methods:

• chi ldrenNames()– Returns the names of the child nodes.
• parent() – Returns the parent node.
• removeNode() – Removes this node and all its descendants.
• node(St ring) – Returns a Preferences object, which is created if it does

not already exist. The parameter is an absolute or relative path.
• nodeExists(Str ing) – Returns true if the Preferences object identified by

the path parameter exists.

106.2.4 Properties
Each Preferences node has a set of key/value pairs called properties. These
properties consist of:

• Key – A key is a String object and case sensitive.
• The name-space of these keys is separate from that of the child nodes. A

Preferences node could have both a child node named fudd and a
property named fudd .

• Value – A value can always be stored and retrieved as a Str ing object.
Therefore, it must be possible to encode/decode all values into/from
Str ing objects (though it is not required to store them as such, an imple-
mentation is free to store and retrieve the value in any possible way as
long as the String semantics are maintained). A number of methods are
available to store and retrieve values as primitive types. These methods
are provided both for the convenience of the user of the Preferences
interface, and to allow an implementation the option of storing the
values in a more compact form.

All the keys that are defined in a Preferences object can be obtained with
the keys() method. The clear() method can be used to clear all properties
from a Preferences object. A single property can be removed with the
remove(String) method.

106.2.5 Storing and Retrieving Properties
The Preferences interface has a number of methods for storing and retriev-
ing property values based on their key. All the put* methods take as param-
eters a key and a value. All the get* methods take as parameters a key and a
default value.

• put(Str ing,Str ing) , get(Str ing,Str ing)
• putBoolean(Str ing,boo lean) , getBoolean(Str ing,boolean)
• putInt(St r ing, int) , getInt (St r ing, int)
• putLong(Str ing, long) , getLong(Str ing, long)
• putF loat(Str ing,f loat) , getFloat(Str ing,f loat)
• putDouble(Str ing,double) , getDouble(Str ing,double)
• putByteArray(Str ing,byte[]) , getByteArray(Str ing,byte[])
OSGi Service Platform Release 4 113-432

Concurrency Preferences Service Specification Version 1.1
The methods act as if all the values are stored as Str ing objects, even though
implementations may use different representations for the different types.
For example, a property can be written as a Str ing object and read back as a
f loat , providing that the string can be parsed as a valid Java f loat object. In
the event of a parsing error, the get* methods do not raise exceptions, but
instead return their default parameters.

106.2.6 Defaults
All get* methods take a default value as a parameter. The reasons for having
such a default are:

• When a property for a Preferences object has not been set, the default is
returned instead. In most cases, the bundle developer does not have to
distinguish whether or not a property exists.

• A best effort strategy has been a specific design choice for this specifi-
cation. The bundle developer should not have to react when the back-
end store is not available. In those cases, the default value is returned
without further notice.
Bundle developers who want to assure that the back-end store is avail-
able should call the f lush or sync method. Either of these methods will
throw a BackingStoreException if the back-end store is not available.

106.3 Concurrency
This specification specifically allows an implementation to modify
Preferences objects in a back-end store. If the back-end store is shared by
multiple processes, concurrent updates may cause differences between the
back-end store and the in-memory Preferences objects.

Bundle developers can partly control this concurrency with the f lush() and
sync() method. Both methods operate on a Preferences object.

The f lush method performs the following actions:

• Stores (makes persistent) any ancestors (including the current node) that
do not exist in the persistent store.

• Stores any properties which have been modified in this node since the
last time it was flushed.

• Removes from the persistent store any child nodes that were removed
from this object since the last time it was flushed.

• Flushes all existing child nodes.

The sync method will first flush, and then ensure that any changes that
have been made to the current node and its descendents in the back-end
store (by some other process) take effect. For example, it could fetch all the
descendants into a local cache, or it could clear all the descendants from the
cache so that they will be read from the back-end store as required.

If either method fails, a BackingStoreExcept ion is thrown.
114-432 OSGi Service Platform Release 4

Preferences Service Specification Version 1.1 PreferencesService Interface
The f lush or sync methods provide no atomicity guarantee. When updates
to the same back-end store are done concurrently by two different processes,
the result may be that changes made by different processes are intermin-
gled. To avoid this problem, implementations may simply provide a dedi-
cated section (or name-space) in the back-end store for each OSGi
environment, so that clashes do not arise, in which case there is no reason
for bundle programmers to ever call sync .

In cases where sync is used, the bundle programmer needs to take into
account that changes from different processes may become intermingled,
and the level of granularity that can be assumed is the individual property
level. Hence, for example, if two properties need to be kept in lockstep, so
that one should not be changed without a corresponding change to the
other, consider combining them into a single property, which would then
need to be parsed into its two constituent parts.

106.4 PreferencesService Interface
The PreferencesService is obtained from the Framework’s service registry
in the normal way. Its purpose is to provide access to Preferences root nodes.

A Preferences Service maintains a system root and a number of user roots.
User roots are automatically created, if necessary, when they are requested.
Roots are maintained on a per bundle basis. For example, a user root called
elmer in one bundle is distinct from a user root with the same name in
another bundle. Also, each bundle has its own system root. Implementa-
tions should use a ServiceFactory service object to create a separate
PreferencesService object for each bundle.

The precise description of user and system will vary from one bundle to
another. The Preference Service only provides a mechanism, the bundle
may use this mechanism in any desired way.

The PreferencesService interface has the following methods to access the
system root and user roots:

• getSystemPreferences() – Return a Preferences object that is the root of
the system preferences tree.

• getUserPreferences(Str ing) – Return a Preferences object associated
with the user name that is given as argument. If the user does not exist, a
new root is created atomically.

• getUsers() – Return an array of the names of all the users for whom a
Preferences tree exists.

106.5 Cleanup
The Preferences Service must listen for bundle uninstall events, and remove
all the preferences data for the bundle that is being uninstalled.

It also must handle the possibility of a bundle getting uninstalled while the
Preferences Service is stopped. Therefore, it must check on startup whether
preferences data exists for any bundle which is not currently installed. If it
does, that data must be removed.
OSGi Service Platform Release 4 115-432

Changes Preferences Service Specification Version 1.1
106.6 Changes
• Root nodes can be removed with Preferences.removeNode . This allows

a user root node to be removed when a user has been removed.
• BackingStoreException has been updated to support the Java 1.4 nested

exception methods.

106.7 org.osgi.service.prefs
The OSGi Preferences Service Package. Specification Version 1.1.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.prefs; version=1.1

106.7.1 Summary
• BackingStoreException - Thrown to indicate that a preferences operation

could not complete because of a failure in the backing store, or a failure
to contact the backing store. [p.116]

• Preferences - A node in a hierarchical collection of preference data.
[p.117]

• PreferencesService - The Preferences Service. [p.127]
BackingStoreException

106.7.2 public class BackingStoreException
extends Exception
Thrown to indicate that a preferences operation could not complete because
of a failure in the backing store, or a failure to contact the backing store.
BackingStoreException(String)

106.7.2.1 public BackingStoreException(String s)

s The detail message.

Constructs a BackingStoreException with the specified detail message.
BackingStoreException(String,Throwable)

106.7.2.2 public BackingStoreException(String s, Throwable cause)

s The detail message.

cause The cause of the exception. May be null.

Constructs a BackingStoreException with the specified detail message.

Since 1.1
getCause()

106.7.2.3 public Throwable getCause()

Returns the cause of this exception or null if no cause was specified when
this exception was created.

Returns The cause of this exception or null if no cause was specified.

Since 1.1
initCause(Throwable)

106.7.2.4 public Throwable initCause(Throwable cause)

cause Cause of the exception.
116-432 OSGi Service Platform Release 4

Preferences Service Specification Version 1.1 org.osgi.service.prefs
The cause of this exception can only be set when constructed.

Returns This object.

Throws IllegalStateException – This method will always throw an IllegalState-
Exception since the cause of this exception can only be set when constructed.

Since 1.1
Preferences

106.7.3 public interface Preferences
A node in a hierarchical collection of preference data.

This interface allows applications to store and retrieve user and system pref-
erence data. This data is stored persistently in an implementation-depen-
dent backing store. Typical implementations include flat files, OS-specific
registries, directory servers and SQL databases.

For each bundle, there is a separate tree of nodes for each user, and one for
system preferences. The precise description of “user” and “system” will vary
from one bundle to another. Typical information stored in the user prefer-
ence tree might include font choice, and color choice for a bundle which
interacts with the user via a servlet. Typical information stored in the sys-
tem preference tree might include installation data, or things like high score
information for a game program.

Nodes in a preference tree are named in a similar fashion to directories in a
hierarchical file system. Every node in a preference tree has a node name
(which is not necessarily unique), a unique absolute path name , and a path
name relative to each ancestor including itself.

The root node has a node name of the empty String object (””). Every other
node has an arbitrary node name, specified at the time it is created. The only
restrictions on this name are that it cannot be the empty string, and it can-
not contain the slash character (’/’).

The root node has an absolute path name of “/”. Children of the root node
have absolute path names of “/” + <node name> . All other nodes have abso-
lute path names of <parent’s absolute path name> + “/” + <node name> . Note
that all absolute path names begin with the slash character.

A node n ‘s path name relative to its ancestor a is simply the string that
must be appended to a ‘s absolute path name in order to form n ‘s absolute
path name, with the initial slash character (if present) removed. Note that:

• No relative path names begin with the slash character.
• Every node’s path name relative to itself is the empty string.
• Every node’s path name relative to its parent is its node name (except for

the root node, which does not have a parent).
• Every node’s path name relative to the root is its absolute path name

with the initial slash character removed.

Note finally that:

• No path name contains multiple consecutive slash characters.
• No path name with the exception of the root’s absolute path name end in

the slash character.
• Any string that conforms to these two rules is a valid path name.
OSGi Service Platform Release 4 117-432

org.osgi.service.prefs Preferences Service Specification Version 1.1
Each Preference node has zero or more properties associated with it, where a
property consists of a name and a value. The bundle writer is free to choose
any appropriate names for properties. Their values can be of type String,
long,int,boolean, byte[],float, or double but they can always be accessed as if
they were String objects.

All node name and property name comparisons are case-sensitive.

All of the methods that modify preference data are permitted to operate
asynchronously; they may return immediately, and changes will eventually
propagate to the persistent backing store, with an implementation-depen-
dent delay. The flush method may be used to synchronously force updates
to the backing store.

Implementations must automatically attempt to flush to the backing store
any pending updates for a bundle’s preferences when the bundle is stopped
or otherwise ungets the Preferences Service.

The methods in this class may be invoked concurrently by multiple threads
in a single Java Virtual Machine (JVM) without the need for external syn-
chronization, and the results will be equivalent to some serial execution. If
this class is used concurrently by multiple JVMs that store their preference
data in the same backing store, the data store will not be corrupted, but no
other guarantees are made concerning the consistency of the preference
data.
absolutePath()

106.7.3.1 public String absolutePath()

Returns this node’s absolute path name. Note that:

• Root node - The path name of the root node is “/”.
• Slash at end - Path names other than that of the root node may not end in

slash (‘/’).
• Unusual names -“.” and “..” have no special significance in path names.
• Illegal names - The only illegal path names are those that contain mul-

tiple consecutive slashes, or that end in slash and are not the root.

Returns this node’s absolute path name.
childrenNames()

106.7.3.2 public String[] childrenNames() throws BackingStoreException

Returns the names of the children of this node. (The returned array will be
of size zero if this node has no children and not null!)

Returns the names of the children of this node.

Throws BackingStoreException – if this operation cannot be completed due to a
failure in the backing store, or inability to communicate with it.

IllegalStateException – if this node (or an ancestor) has been removed
with the removeNode() [p.126] method.
clear()

106.7.3.3 public void clear() throws BackingStoreException

Removes all of the properties (key-value associations) in this node. This call
has no effect on any descendants of this node.

Throws BackingStoreException – if this operation cannot be completed due to a
failure in the backing store, or inability to communicate with it.
118-432 OSGi Service Platform Release 4

Preferences Service Specification Version 1.1 org.osgi.service.prefs
IllegalStateException – if this node (or an ancestor) has been removed
with the removeNode() [p.126] method.

See Also remove(String)[p.126]
flush()

106.7.3.4 public void flush() throws BackingStoreException

Forces any changes in the contents of this node and its descendants to the
persistent store.

Once this method returns successfully, it is safe to assume that all changes
made in the subtree rooted at this node prior to the method invocation have
become permanent.

Implementations are free to flush changes into the persistent store at any
time. They do not need to wait for this method to be called.

When a flush occurs on a newly created node, it is made persistent, as are
any ancestors (and descendants) that have yet to be made persistent. Note
however that any properties value changes in ancestors are not guaranteed
to be made persistent.

Throws BackingStoreException – if this operation cannot be completed due to a
failure in the backing store, or inability to communicate with it.

IllegalStateException – if this node (or an ancestor) has been removed
with the removeNode() [p.126] method.

See Also sync()[p.126]
get(String,String)

106.7.3.5 public String get(String key, String def)

key key whose associated value is to be returned.

def the value to be returned in the event that this node has no value associated
with key or the backing store is inaccessible.

Returns the value associated with the specified key in this node. Returns the
specified default if there is no value associated with the key, or the backing
store is inaccessible.

Returns the value associated with key, or def if no value is associated with key.

Throws IllegalStateException – if this node (or an ancestor) has been removed
with the removeNode() [p.126] method.

NullPointerException – if key is null. (A null default is permitted.)
getBoolean(String,boolean)

106.7.3.6 public boolean getBoolean(String key, boolean def)

key key whose associated value is to be returned as a boolean.

def the value to be returned in the event that this node has no value associated
with key or the associated value cannot be interpreted as a boolean or the
backing store is inaccessible.

Returns the boolean value represented by the String object associated with
the specified key in this node. Valid strings are “true”, which represents true,
and “false”, which represents false. Case is ignored, so, for example, “TRUE”
and “False” are also valid. This method is intended for use in conjunction
with the putBoolean [p.124] method.
OSGi Service Platform Release 4 119-432

org.osgi.service.prefs Preferences Service Specification Version 1.1
Returns the specified default if there is no value associated with the key, the
backing store is inaccessible, or if the associated value is something other
than “true” or “false”, ignoring case.

Returns the boolean value represented by the String object associated with key in this
node, or null if the associated value does not exist or cannot be interpreted as
a boolean.

Throws NullPointerException – if key is null.

IllegalStateException – if this node (or an ancestor) has been removed
with the removeNode() [p.126] method.

See Also get(String,String)[p.119] , putBoolean(String,boolean)[p.124]
getByteArray(String,byte[])

106.7.3.7 public byte[] getByteArray(String key, byte[] def)

key key whose associated value is to be returned as a byte[] object.

def the value to be returned in the event that this node has no value associated
with key or the associated value cannot be interpreted as a byte[] type, or the
backing store is inaccessible.

Returns the byte[] value represented by the String object associated with the
specified key in this node. Valid String objects are Base64 encoded binary
data, as defined in RFC 2045 (http://www.ietf.org/rfc/rfc2045.txt) , Section
6.8, with one minor change: the string must consist solely of characters from
the Base64 Alphabet ; no newline characters or extraneous characters are per-
mitted. This method is intended for use in conjunction with the
putByteArray [p.124] method.

Returns the specified default if there is no value associated with the key, the
backing store is inaccessible, or if the associated value is not a valid Base64
encoded byte array (as defined above).

Returns the byte[] value represented by the String object associated with key in this
node, or def if the associated value does not exist or cannot be interpreted as
a byte[].

Throws NullPointerException – if key is null. (A null value for defis permitted.)

IllegalStateException – if this node (or an ancestor) has been removed
with the removeNode() [p.126] method.

See Also get(String,String)[p.119] , putByteArray(String,byte[])[p.124]
getDouble(String,double)

106.7.3.8 public double getDouble(String key, double def)

key key whose associated value is to be returned as a double value.

def the value to be returned in the event that this node has no value associated
with key or the associated value cannot be interpreted as a double type or the
backing store is inaccessible.

Returns the double value represented by the String object associated with
the specified key in this node. The String object is converted to a double
value as by Double.parseDouble(String). Returns the specified default if
there is no value associated with the key, the backing store is inaccessible, or
if Double.parseDouble(String) would throw a NumberFormatException if
the associated value were passed. This method is intended for use in con-
junction with the putDouble [p.124] method.
120-432 OSGi Service Platform Release 4

Preferences Service Specification Version 1.1 org.osgi.service.prefs
Returns the double value represented by the String object associated with key in this
node, or def if the associated value does not exist or cannot be interpreted as
a double type.

Throws IllegalStateException – if this node (or an ancestor) has been removed
with the the removeNode() [p.126] method.

NullPointerException – if key is null.

See Also putDouble(String,double)[p.124] , get(String,String)[p.119]
getFloat(String,float)

106.7.3.9 public float getFloat(String key, float def)

key key whose associated value is to be returned as a float value.

def the value to be returned in the event that this node has no value associated
with key or the associated value cannot be interpreted as a float type or the
backing store is inaccessible.

Returns the float value represented by the String object associated with the
specified key in this node. The String object is converted to a float value as
by Float.parseFloat(String). Returns the specified default if there is no value
associated with the key, the backing store is inaccessible, or if Float.parse-
Float(String) would throw a NumberFormatException if the associated
value were passed. This method is intended for use in conjunction with the
putFloat [p.125] method.

Returns the float value represented by the string associated with key in this node, or
def if the associated value does not exist or cannot be interpreted as a float
type.

Throws IllegalStateException – if this node (or an ancestor) has been removed
with the removeNode() [p.126] method.

NullPointerException – if key is null.

See Also putFloat(String,float)[p.125] , get(String,String)[p.119]
getInt(String,int)

106.7.3.10 public int getInt(String key, int def)

key key whose associated value is to be returned as an int.

def the value to be returned in the event that this node has no value associated
with key or the associated value cannot be interpreted as an int or the back-
ing store is inaccessible.

Returns the int value represented by the String object associated with the
specified key in this node. The String object is converted to an int as by Inte-
ger.parseInt(String). Returns the specified default if there is no value associ-
ated with the key, the backing store is inaccessible, or if
Integer.parseInt(String) would throw a NumberFormatException if the
associated value were passed. This method is intended for use in conjunc-
tion with the put Int [p.125] method.

Returns the int value represented by the String object associated with key in this
node, or def if the associated value does not exist or cannot be interpreted as
an int type.

Throws NullPointerException – if key is null.

IllegalStateException – if this node (or an ancestor) has been removed
with the removeNode() [p.126] method.
OSGi Service Platform Release 4 121-432

org.osgi.service.prefs Preferences Service Specification Version 1.1
See Also putInt(String,int)[p.125] , get(String,String)[p.119]
getLong(String,long)

106.7.3.11 public long getLong(String key, long def)

key key whose associated value is to be returned as a long value.

def the value to be returned in the event that this node has no value associated
with key or the associated value cannot be interpreted as a long type or the
backing store is inaccessible.

Returns the long value represented by the String object associated with the
specified key in this node. The String object is converted to a long as by
Long.parseLong(String). Returns the specified default if there is no value
associated with the key, the backing store is inaccessible, or if
Long.parseLong(String) would throw a NumberFormatException if the
associated value were passed. This method is intended for use in conjunc-
tion with the putLong [p.126] method.

Returns the long value represented by the String object associated with key in this
node, or def if the associated value does not exist or cannot be interpreted as
a long type.

Throws NullPointerException – if key is null.

IllegalStateException – if this node (or an ancestor) has been removed
with the removeNode() [p.126] method.

See Also putLong(String,long)[p.126] , get(String,String)[p.119]
keys()

106.7.3.12 public String[] keys() throws BackingStoreException

Returns all of the keys that have an associated value in this node. (The
returned array will be of size zero if this node has no preferences and not
null!)

Returns an array of the keys that have an associated value in this node.

Throws BackingStoreException – if this operation cannot be completed due to a
failure in the backing store, or inability to communicate with it.

IllegalStateException – if this node (or an ancestor) has been removed
with the removeNode() [p.126] method.
name()

106.7.3.13 public String name()

Returns this node’s name, relative to its parent.

Returns this node’s name, relative to its parent.
node(String)

106.7.3.14 public Preferences node(String pathName)

pathName the path name of the Preferences object to return.

Returns a named Preferences object (node), creating it and any of its ances-
tors if they do not already exist. Accepts a relative or absolute pathname.
Absolute pathnames (which begin with ‘/’) are interpreted relative to the
root of this node. Relative pathnames (which begin with any character other
than ‘/’) are interpreted relative to this node itself. The empty string (“”) is a
valid relative pathname, referring to this node itself.
122-432 OSGi Service Platform Release 4

Preferences Service Specification Version 1.1 org.osgi.service.prefs
If the returned node did not exist prior to this call, this node and any ances-
tors that were created by this call are not guaranteed to become persistent
until the flush method is called on the returned node (or one of its descen-
dants).

Returns the specified Preferences object.

Throws IllegalArgumentException – if the path name is invalid.

IllegalStateException – if this node (or an ancestor) has been removed
with the removeNode() [p.126] method.

NullPointerException – if path name is null.

See Also flush()[p.119]
nodeExists(String)

106.7.3.15 public boolean nodeExists(String pathName) throws
BackingStoreException

pathName the path name of the node whose existence is to be checked.

Returns true if the named node exists. Accepts a relative or absolute path-
name. Absolute pathnames (which begin with ‘/’) are interpreted relative to
the root of this node. Relative pathnames (which begin with any character
other than ‘/’) are interpreted relative to this node itself. The pathname “” is
valid, and refers to this node itself.

If this node (or an ancestor) has already been removed with the
removeNode() [p.126] method, it is legal to invoke this method, but only
with the pathname “”; the invocation will return false. Thus, the idiom
p.nodeExists(””) may be used to test whether p has been removed.

Returns true if the specified node exists.

Throws BackingStoreException – if this operation cannot be completed due to a
failure in the backing store, or inability to communicate with it.

IllegalStateException – if this node (or an ancestor) has been removed
with the removeNode() [p.126] method and pathname is not the empty
string (“”).

IllegalArgumentException – if the path name is invalid (i.e., it contains
multiple consecutive slash characters, or ends with a slash character and is
more than one character long).
parent()

106.7.3.16 public Preferences parent()

Returns the parent of this node, or null if this is the root.

Returns the parent of this node.

Throws IllegalStateException – if this node (or an ancestor) has been removed
with the removeNode() [p.126] method.
put(String,String)

106.7.3.17 public void put(String key, String value)

key key with which the specified value is to be associated.

value value to be associated with the specified key.

Associates the specified value with the specified key in this node.

Throws NullPointerException – if key or value is null.
OSGi Service Platform Release 4 123-432

org.osgi.service.prefs Preferences Service Specification Version 1.1
IllegalStateException – if this node (or an ancestor) has been removed
with the removeNode() [p.126] method.
putBoolean(String,boolean)

106.7.3.18 public void putBoolean(String key, boolean value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key.

Associates a String object representing the specified boolean value with the
specified key in this node. The associated string is “true” if the value is true,
and “false” if it is false. This method is intended for use in conjunction with
the getBoolean [p.119] method.

Implementor’s note: it is not necessary that the value be represented by a
string in the backing store. If the backing store supports boolean values, it is
not unreasonable to use them. This implementation detail is not visible
through the Preferences API, which allows the value to be read as a boolean
(with getBoolean) or a String (with get) type.

Throws NullPointerException – if key is null.

IllegalStateException – if this node (or an ancestor) has been removed
with the removeNode() [p.126] method.

See Also getBoolean(String,boolean)[p.119] , get(String,String)[p.119]
putByteArray(String,byte[])

106.7.3.19 public void putByteArray(String key, byte[] value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key.

Associates a String object representing the specified byte[] with the specified
key in this node. The associated String object the Base64 encoding of the
byte[], as defined in RFC 2045 (http://www.ietf.org/rfc/rfc2045.txt) , Section
6.8, with one minor change: the string will consist solely of characters from
the Base64 Alphabet ; it will not contain any newline characters. This
method is intended for use in conjunction with the getByteArray [p.120]
method.

Implementor’s note: it is not necessary that the value be represented by a
String type in the backing store. If the backing store supports byte[] values, it
is not unreasonable to use them. This implementation detail is not visible
through the Preferences API, which allows the value to be read as an a byte[]
object (with getByteArray) or a String object (with get).

Throws NullPointerException – if key or value is null.

IllegalStateException – if this node (or an ancestor) has been removed
with the removeNode() [p.126] method.

See Also getByteArray(String,byte[])[p.120] , get(String,String)[p.119]
putDouble(String,double)

106.7.3.20 public void putDouble(String key, double value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key.
124-432 OSGi Service Platform Release 4

Preferences Service Specification Version 1.1 org.osgi.service.prefs
Associates a String object representing the specified double value with the
specified key in this node. The associated String object is the one that would
be returned if the double value were passed to Double.toString(double).
This method is intended for use in conjunction with the getDouble [p.120]
method

Implementor’s note: it is not necessary that the value be represented by a
string in the backing store. If the backing store supports double values, it is
not unreasonable to use them. This implementation detail is not visible
through the Preferences API, which allows the value to be read as a double
(with getDouble) or a String (with get) type.

Throws NullPointerException – if key is null.

IllegalStateException – if this node (or an ancestor) has been removed
with the removeNode() [p.126] method.

See Also getDouble(String,double)[p.120]
putFloat(String,float)

106.7.3.21 public void putFloat(String key, float value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key.

Associates a String object representing the specified float value with the
specified key in this node. The associated String object is the one that would
be returned if the float value were passed to Float.toString(float). This
method is intended for use in conjunction with the getF loat [p.121] method.

Implementor’s note: it is not necessary that the value be represented by a
string in the backing store. If the backing store supports float values, it is not
unreasonable to use them. This implementation detail is not visible
through the Preferences API, which allows the value to be read as a float
(with getFloat) or a String (with get) type.

Throws NullPointerException – if key is null.

IllegalStateException – if this node (or an ancestor) has been removed
with the removeNode() [p.126] method.

See Also getFloat(String,float)[p.121]
putInt(String,int)

106.7.3.22 public void putInt(String key, int value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key.

Associates a String object representing the specified int value with the spec-
ified key in this node. The associated string is the one that would be
returned if the int value were passed to Integer.toString(int). This method is
intended for use in conjunction with getInt [p.121] method.

Implementor’s note: it is not necessary that the property value be repre-
sented by a String object in the backing store. If the backing store supports
integer values, it is not unreasonable to use them. This implementation
detail is not visible through the Preferences API, which allows the value to
be read as an int (with getInt or a String (with get) type.

Throws NullPointerException – if key is null.
OSGi Service Platform Release 4 125-432

org.osgi.service.prefs Preferences Service Specification Version 1.1
IllegalStateException – if this node (or an ancestor) has been removed
with the removeNode() [p.126] method.

See Also getInt(String,int)[p.121]
putLong(String,long)

106.7.3.23 public void putLong(String key, long value)

key key with which the string form of value is to be associated.

value value whose string form is to be associated with key.

Associates a String object representing the specified long value with the
specified key in this node. The associated String object is the one that would
be returned if the long value were passed to Long.toString(long). This
method is intended for use in conjunction with the getLong [p.122] method.

Implementor’s note: it is not necessary that the value be represented by a
String type in the backing store. If the backing store supports long values, it
is not unreasonable to use them. This implementation detail is not visible
through the Preferences API, which allows the value to be read as a long
(with getLong or a String (with get) type.

Throws NullPointerException – if key is null.

IllegalStateException – if this node (or an ancestor) has been removed
with the removeNode() [p.126] method.

See Also getLong(String,long)[p.122]
remove(String)

106.7.3.24 public void remove(String key)

key key whose mapping is to be removed from this node.

Removes the value associated with the specified key in this node, if any.

Throws IllegalStateException – if this node (or an ancestor) has been removed
with the removeNode() [p.126] method.

See Also get(String,String)[p.119]
removeNode()

106.7.3.25 public void removeNode() throws BackingStoreException

Removes this node and all of its descendants, invalidating any properties
contained in the removed nodes. Once a node has been removed, attempting
any method other than name(),absolutePath() or nodeExists(””) on the cor-
responding Preferences instance will fail with an IllegalStateException.
(The methods defined on Object can still be invoked on a node after it has
been removed; they will not throw IllegalStateException.)

The removal is not guaranteed to be persistent until the flush method is
called on the parent of this node.

Throws IllegalStateException – if this node (or an ancestor) has already been re-
moved with the removeNode()[p.126] method.

BackingStoreException – if this operation cannot be completed due to a
failure in the backing store, or inability to communicate with it.

See Also flush()[p.119]
sync()
126-432 OSGi Service Platform Release 4

Preferences Service Specification Version 1.1 References
106.7.3.26 public void sync() throws BackingStoreException

Ensures that future reads from this node and its descendants reflect any
changes that were committed to the persistent store (from any VM) prior to
the sync invocation. As a side-effect, forces any changes in the contents of
this node and its descendants to the persistent store, as if the flush method
had been invoked on this node.

Throws BackingStoreException – if this operation cannot be completed due to a
failure in the backing store, or inability to communicate with it.

IllegalStateException – if this node (or an ancestor) has been removed
with the removeNode() [p.126] method.

See Also flush()[p.119]
PreferencesService

106.7.4 public interface PreferencesService
The Preferences Service.

Each bundle using this service has its own set of preference trees: one for
system preferences, and one for each user.

A PreferencesService object is specific to the bundle which obtained it from
the service registry. If a bundle wishes to allow another bundle to access its
preferences, it should pass its PreferencesService object to that bundle.
getSystemPreferences()

106.7.4.1 public Preferences getSystemPreferences()

Returns the root system node for the calling bundle.

Returns The root system node for the calling bundle.
getUserPreferences(String)

106.7.4.2 public Preferences getUserPreferences(String name)

name The user for which to return the preference root node.

Returns the root node for the specified user and the calling bundle.

Returns The root node for the specified user and the calling bundle.
getUsers()

106.7.4.3 public String[] getUsers()

Returns the names of users for which node trees exist.

Returns The names of users for which node trees exist.

106.8 References
[22] JSR 10 Preferences API

http://www.jcp.org/jsr/detail/10.jsp

[23] RFC 2045 Base 64 encoding
http://www.ietf.org/rfc/rfc2045.txt
OSGi Service Platform Release 4 127-432

References Preferences Service Specification Version 1.1
128-432 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 Introduction
105 Metatype Service
Specification
Version 1.1

105.1 Introduction
The Metatype specification defines interfaces that allow bundle developers
to describe attribute types in a computer readable form using so-called meta-
data.

The purpose of this specification is to allow services to specify the type
information of data that they can use as arguments. The data is based on
attributes, which are key/value pairs like properties.

A designer in a type-safe language like Java is often confronted with the
choice of using the language constructs to exchange data or using a tech-
nique based on attributes/properties that are based on key/value pairs.
Attributes provide an escape from the rigid type-safety requirements of
modern programming languages.

Type-safety works very well for software development environments in
which multiple programmers work together on large applications or sys-
tems, but often lacks the flexibility needed to receive structured data from
the outside world.

The attribute paradigm has several characteristics that make this approach
suitable when data needs to be communicated between different entities
which “speak” different languages. Attributes are uncomplicated, resilient
to change, and allow the receiver to dynamically adapt to different types of
data.

As an example, the OSGi Service Platform Specifications define several
attribute types which are used in a Framework implementation, but which
are also used and referenced by other OSGi specifications such as the Config-
uration Admin Service Specification on page 63. A Configuration Admin ser-
vice implementation deploys attributes (key/value pairs) as configuration
properties.

The Meta Type Service provides a unified access point to the Meta Type
information that is associated with bundles. This Meta Type information
can be defined by an XML resource in a bundle (OSGI-INF/metatype direc-
tories must be scanned for any XML resources), or it can be obtained from
Managed Service or Managed Service Factory services that are implemented
by a bundle.
OSGi Service Platform Release 4 129-432

Introduction Metatype Service Specification Version 1.1
105.1.1 Essentials
• Conceptual model – The specification must have a conceptual model for

how classes and attributes are organized.
• Standards – The specification should be aligned with appropriate stan-

dards, and explained in situations where the specification is not aligned
with, or cannot be mapped to, standards.

• Remote Management – Remote management should be taken into
account.

• Size – Minimal overhead in size for a bundle using this specification is
required.

• Localization – It must be possible to use this specification with different
languages at the same time. This ability allows servlets to serve infor-
mation in the language selected in the browser.

• Type information – The definition of an attribution should contain the
name (if it is required), the cardinality, a label, a description, labels for
enumerated values, and the Java class that should be used for the values.

• Validation – It should be possible to validate the values of the attributes.

105.1.2 Entities
• Meta Type Service – A service that provides a unified access point for meta

type information.
• Attribute – A key/value pair.
• PID – A unique persistent ID, defined in configuration management.
• Attribute Definition – Defines a description, name, help text, and type

information of an attribute.
• Object Class Definition – Defines the type of a datum. It contains a

description and name of the type plus a set of Attr ibuteDef in i t ion
objects.

• Meta Type Provider – Provides access to the object classes that are
available for this object. Access uses the PID and a locale to find the best
ObjectClassDefin it ion object.

• Meta Type Information – Provides meta type information for a bundle.
130-432 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 Introduction
Figure 23 Class Diagram Meta Typing Service, org.osgi.service.metatyping

105.1.3 Operation
The Meta Type service defines a rich dynamic typing system for properties.
The purpose of the type system is to allow reasonable User Interfaces to be
constructed dynamically.

The type information is normally carried by the bundles themselves. Either
by implementing the MetaTypeProvider interface or by carrying one or
more XML resources in that define a number of Meta Types in the OSGI-
INF/metatype directories. Additionally, a Meta Type service could have
other sources.

The Meta Type Service provides unified access to Meta Types that are car-
ried by the resident bundles. The Meta Type Service collects this informa-
tion from the bundles and provides uniform access to it. A client can
requests the Meta Type Information associated with a particular bundle.
The MetaTypeInformat ion object provides a list of ObjectClassDefin it ion
objects for a bundle. These objects define all the information for a specific
object class. An object class is a some descriptive information and a set of
named attributes (which are key/value pairs).

Access to Object Class Definitions is qualified by a locale and a Persistent
IDentity (PID). This specification does not specify what the PID means. One
application is OSGi Configuration Management where a PID is used by the
Managed Service and Managed Service Factory services. In general, a PID
should be regarded as the name of a variable where an Object Class Defini-
tion defines its type.

<<interface>>
ObjectClass
Definition

<<interface>>
MetaType
Provider

<<interface>>
Attribute
Definition

<<interface>>
MetaType
Information

Meta Type
Provider Impl

Any bundle

Meta Type
Information Impl

<<interface>>
MetaType
Service

Meta Type Client

Meta Type
Service Impl
Meta Type
Service Impl

PID & locale

0..n 1

Metatype
xml resource retrieve

from

Meta Type
Provider Impl

Meta Type
Provider Impl

Object Class
Definition Impl

Attribute
Definition Impl

0..n 1..n 0..n 1 bundle
OSGi Service Platform Release 4 131-432

Attributes Model Metatype Service Specification Version 1.1
105.2 Attributes Model
The Framework uses the LDAP filter syntax for searching the Framework
registry. The usage of the attributes in this specification and the Framework
specification closely resemble the LDAP attribute model. Therefore, the
names used in this specification have been aligned with LDAP. Conse-
quently, the interfaces which are defined by this Specification are:

• Attr ibuteDefin it ion
• ObjectClassDefin it ion
• MetaTypeProvider

These names correspond to the LDAP attribute model. For further informa-
tion on ASN.1-defined attributes and X.500 object classes and attributes, see
[25] Understanding and Deploying LDAP Directory services.

The LDAP attribute model assumes a global name-space for attributes, and
object classes consist of a number of attributes. So, if an object class inherits
the same attribute from different parents, only one copy of the attribute
must become part of the object class definition. This name-space implies
that a given attribute, for example cn , should always be the common name
and the type must always be a Str ing . An attribute cn cannot be an Integer
in another object class definition. In this respect, the OSGi approach
towards attribute definitions is comparable with the LDAP attribute model.

105.3 Object Class Definition
The ObjectClassDef in it ion interface is used to group the attributes which
are defined in Attr ibuteDef in it ion objects.

An ObjectClassDef in it ion object contains the information about the over-
all set of attributes and has the following elements:

• A name which can be returned in different locales.
• A global name-space in the registry, which is the same condition as

LDAP/X.500 object classes. In these standards the OSI Object Identifier
(OID) is used to uniquely identify object classes. If such an OID exists,
(which can be requested at several standard organizations, and many
companies already have a node in the tree) it can be returned here. Oth-
erwise, a unique id should be returned. This id can be a Java class name
(reverse domain name) or can be generated with a GUID algorithm. All
LDAP-defined object classes already have an associated OID. It is strongly
advised to define the object classes from existing LDAP schemes which
provide many preexisting OIDs. Many such schemes exist ranging from
postal addresses to DHCP parameters.

• A human-readable description of the class.
• A list of attribute definitions which can be filtered as required, or

optional. Note that in X.500 the mandatory or required status of an
attribute is part of the object class definition and not of the attribute defi-
nition.

• An icon, in different sizes.
132-432 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 Attribute Definition
105.4 Attribute Definition
The Attr ibuteDef in i t ion interface provides the means to describe the data
type of attributes.

The Attr ibuteDef in i t ion interface defines the following elements:

• Defined names (final ints) for the data types as restricted in the
Framework for the attributes, called the syntax in OSI terms, which can
be obtained with the getType() method.

• Attr ibuteDefin it ion objects should use and ID that is similar to the OID
as described in the ID field for ObjectClassDef in it ion .

• A localized name intended to be used in user interfaces.
• A localized description that defines the semantics of the attribute and

possible constraints, which should be usable for tooltips.
• An indication if this attribute should be stored as a unique value, a

Vector , or an array of values, as well as the maximum cardinality of the
type.

• The data type, as limited by the Framework service registry attribute
types.

• A validation function to verify if a possible value is correct.
• A list of values and a list of localized labels. Intended for popup menus in

GUIs, allowing the user to choose from a set.
• A default value. The return type of this is a String[] . For cardinality =

zero, this return type must be an array of one String object. For other car-
dinalities, the array must not contain more than the absolute value of
cardinality Str ing objects. In that case, it may contain 0 objects.

105.5 Meta Type Service
The Meta Type Service provides unified access to Meta Type information
that is associated with a Bundle. It can get this information through the fol-
lowing means:

• Meta Type Resource – A bundle can provide one ore more XML resources
that are contained in its JAR file. These resources contain and XML defi-
nition of meta types as well as to what PIDs these Meta Types apply.
These XML resources must reside in the OSGI-INF/metatype directories
of the bundle (including any fragments).

• ManagedService[Factory] objects – As defined in the configuration man-
agement specification, ManagedService and ManagedServiceFactory
service objects can optionally implement the MetaTypeProvider
interface. The Meta Type Service will only search for MetaTypeProvider
objects if no meta type resources are found in the bundle.
OSGi Service Platform Release 4 133-432

Meta Type Service Metatype Service Specification Version 1.1
Figure 24 Sources for Meta Types

This model is depicted in Figure 24.

The Meta Type Service can therefore be used to retrieve meta type informa-
tion for bundles which contain Meta Type resources or which provide their
own MetaTypeProvider objects. The MetaTypeService interface has a single
method:

• getMetaTypeInformation(Bundle) – Given a bundle, it must return the
Meta Type Information for that bundle, even if there is no meta type
information available at the moment of the call.

The returned MetaTypeInformation object maintains a map of PID to
ObjectClassDef in it ion objects. The map is keyed by locale and PID. The list
of maintained PIDs is available from the MetaTypeIn format ion object with
the following methods:

• getPids() – PIDs for which Meta Types are available. In the Configu-
ration Admin service

• getFactoryPids() – PIDs associated with Managed Service Factory ser-
vices.

The MetaTypeIn format ion interface extends the MetaTypeProv ider inter-
face. The MetaTypeProvider interface is used to access meta type informa-
tion.It supports locale dependent information so that the text used in
Attr ibuteDef in it ion and ObjectClassDef in it ion objects can be adapted to
different locales.

Which locales are supported by the MetaTypeProvider object are defined by
the implementer or the meta type resources.The list of available locales can
be obtained from the MetaTypeProvider object.

The MetaTypeProvider interface provides the following methods:

• getObjectClassDefin it ion(Str ing,Str ing) – Get access to an ObjectClass-
Definition object for the given PID. The second parameter defines the
locale.

• getLocales() – List the locales.that are available.

Locale objects are represented in Str ing objects because not all profiles sup-
port Locale. The String holds the standard Locale presentation of:

locale = language (’_’ country (’_’ variation?))?
language ::= < defined by ISO 3166 >
country ::= < defined by ISO 639 >

<<service>>
MetaType
Service

<<service>>
Managed
Service

<<service>>
Managed Service
Factory

OSGI-INF/metatype
xml resource

... alternative
meta type
sources
134-432 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 Using the Meta Type Resources
For example, en , nl_BE , en_CA_posix are valid locales. The use of nul l for
locale indicates that java.uti l .Loca le .getDefault() must be used.

The Meta Type Service implementation class is the main class. It registers
the org.osgi.service.metatype.MetaTypeService service and has a method to
get a MetaTypeInformat ion object for a bundle.

Following is some sample code demonstrating how to print out all the
Object Class Definitions and Attribute Definitions contained in a bundle:

void printMetaTypes(MetaTypeService mts, Bundle b) {
MetaTypeInformation mti =

mts.getMetaTypeInformation(b);
String [] pids = mti.getPids();
String [] factoryPids = mti.getFactoryPids();
String [] locales = mti.getLocales();

for (int locale = 0; locales.length; locale++) {
System.out.println("Locale " + locales[locale]);
for (int i=0; i< pids.length; i++) {

 ObjectClassDefinition ocd =
mti.getObjectClassDefinition(pids[i], null);

 AttributeDefinitions[] ads =
ocd.getAttributeDefinitions(ALL);

 for (int j=0; j< ads.length; j++) {
 System.out.println("OCD="+ocd.getName()

+ "AD="+ads[j].getName());
 }

}
}

}

105.6 Using the Meta Type Resources
A bundle that wants to provide meta type resources must place these
resources in the OSGI- INF/metatype , the name of the resource must be a
valid JAR path. All resources in that directory must be meta type docu-
ments. Fragments can contain additional meta type resources in the same
directory and they must be taken into account when the meta type
resources are searched.

The meta type resources must be encoded in UTF-8.

The MetaType Service must support localization of the

• name
• icon
• description
• label attributes

The localization mechanism must be identical using the same mechanism
as described in the Core module layer, section Localization on page 64, using
the same property resource. However, it is possible to override the property
resource in the meta type definition resources with the loca lizat ion
attribute of the MetaData element.
OSGi Service Platform Release 4 135-432

Using the Meta Type Resources Metatype Service Specification Version 1.1
The Meta Type Service must examine the bundle and its fragments to locate
all localization resources for the localization base name. From that list, the
Meta Type Service derives the list of locales which are available for the meta
type information. This list can then be returned by
MetaTypeInformation.getLocales method. This list can change at any time
because the bundle could be refreshed. Clients should be prepared that this
list changes after they received it.

105.6.1 XML Schema of a Meta Type Resource
This section describes the schema of the meta type resource. This schema is
not intended to be used during runtime for validating meta type resources.
The schema is intended to be used by tools and external management sys-
tems.

The XML name space for meta type documents must be:

http://www.osgi.org/xmlns/metatype/v1.0.0

The name space abbreviation should be metatype . I.e. the following header
should be:

<metatype:MetaData
xmlns:metatype=

"http://www.osgi.org/xmlns/metatype/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
>

The file can be found in the osgi.jar file that can be downloaded from the
www.osgi.org web site.

Figure 25 XML Schema Instance Structure (Type name = Element name)

The element structure of the XML file is:

MetaData

OCD

AD

Designate

Option

Icon

1

*
Object

Attribute

1

*

1 *

1 *

1

1

1

1..n

1

0..n

1

1..n

1

*

Value

1

0..n
136-432 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 Using the Meta Type Resources

n

.

t

D
g
.

st
MetaData ::= OCD* Designate*

OCD ::= AD+ Icon ?
AD ::= Option*

Designate ::= Object
Object ::= Attribute *

Attribute ::= Value *

The different elements are described in Table 13.

Table 13 XML Schema for Meta Type resources
Attribute Deflt Type Method Description

MetaData Top Element

local ization str ing Points to the Properties file that can
localize this XML. See Localization on
page 64 of the Core book.

OCD Object Class Definition

name <> str ing getName() A human readable name that can be
localized.

descr iption getDescript ion() A human readable description of the
Object Class Definition that can be
localized.

id <> get ID() A unique id, can not be localized.

Designate An association between one PID and a
Object Class Definition. This element
designates a PID to be of a certain type.

pid <> str ing The PID that is associated with an OCD
This can be a reference to a factory PID
or a singleton PID depending on the
factoryPid attribute.

factoryPid str ing If the factoryPid attribute is set, this
Designate element defines a factory
configuration for the given factory, if i
is not set or empty, it designates a sin-
gleton configuration.

bundle str ing Mandatory location of the bundle that
implements the PID. This binds the PI
to the bundle. I.e. no other bundle usin
the same PID may use this designation

optional fa lse boolean If true , then this Designate element is
optional, errors during processing mu
be ignored.
OSGi Service Platform Release 4 137-432

Using the Meta Type Resources Metatype Service Specification Version 1.1

,

s.

-

-

ts

st

merge false boolean If the PID refers to an existing variable
then merge the properties with the
existing properties if this attribute is
true . Otherwise, replace the propertie

AD Attribute Definition

name str ing getName() A localizable name for the Attribute
Definition. descr ipt ion

description str ing getDescript ion() A localizable description for the
Attribute Definition.

id get ID() The unique ID of the Attribute Defini
tion.

type str ing getType() The type of an attribute is an enumera
tion of the different scalar types. The
string is mapped to one of the constan
on the AttributeDefinition interface.
Valid values, which are defined in the
Scalar type, are:

String ↔ STRING
Long ↔ LONG
Double ↔ DOUBLE
Float ↔ FLOAT
Integer ↔ INTEGER
Byte ↔ BYTE
Char ↔ CHARACTER
Boolean ↔ BOOLEAN
Short ↔ SHORT

card inal ity 0 getCardina li ty() The number of elements an instance
can take. Positive numbers describe an
array ([]) and negative numbers
describe a Vector object.

min str ing val idate(Str ing) A validation value. This value is not
directly available from the
Attr ibuteDef in it ion interface. How-
ever, the val idate(Str ing) method mu
verify this. The semantics of this field
depend on the type of this Attribute
Definition.

max str ing val idate(Str ing) A validation value. Similar to the min
field.

Table 13 XML Schema for Meta Type resources
Attribute Deflt Type Method Description
138-432 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 Using the Meta Type Resources

y

If

]

f-

e
 a

s
t)

s

d

lt
default str ing getDefaultValue() The default value. A default is an arra
of Str ing objects. The XML attribute
must contain a comma delimited list.
the comma must be represented, it
must be escaped with a back slash (’\’
\u005c). A back slash can be included
with two backslashes. White spaces
around the command and after/before
an XML element must be ignored. For
example:

dflt="a\,b,b\,c, c\\,d"
=> ["a,b", "b,c", "c\", "d"

required true boolean Required attributes

Option One option label/value for the options
in an AD .

label <> str ing getOptionLabels() The label

va lue <> str ing getOptionValues() The value

Icon An icon definition.

resource <> str ing get Icon(int) The resource is a URL. The base URL is
assumed to be the XML file with the de
inition. I.e. if the XML is a resource in
the JAR file, then this URL can referenc
another resource in that JAR file using
relative URL.

s ize <> str ing get Icon(int) The number of pixels of the icon, map
to the size parameter of the getIcon(in
method.

Object A definition of an instance.

ocdref <> str ing A reference to the id attribute of an
OCD element. I.e. this attribute define
the OCD type of this object.

Attr ibute A value for an attribute of an object.

adref <> str ing A reference to the id of the AD in the
OCD as referenced by the parent
Object .

content str ing The content of the attributes. If this is
an array, the content must be separate
by commas (’,’ \u002C). Commas must
be escaped as described at the default
attribute of the AD element. See defau
on page 139.

Table 13 XML Schema for Meta Type resources
Attribute Deflt Type Method Description
OSGi Service Platform Release 4 139-432

Using the Meta Type Resources Metatype Service Specification Version 1.1

105.6.2 Example Meta Data File
This example defines a meta type file for a Person record, based on ISO
attribute types. I.e. the ids that are used are derived from ISO attributes.

<?xml version="1.0" encoding="UTF-8"?>
<metatype:MetaData

xmlns:metatype=
"http://www.osgi.org/xmlns/metatype/v1.0.0"

>
<MetaData localization="person">
 <OCD name="%person" id="2.5.6.6"

description="%Person Record">
 <AD name="%sex" id="2.5.4.12" type="Integer">
 <Option label="%male" value="1"/>
 <Option label="%Female" value="0"/>
 </AD>
 <AD name="%sn" id="2.5.4.4" type="String"/>
 <AD name="%cn" id="2.5.4.3" type="String"/>
 <AD name="%seeAlso" id="2.5.4.34" type="String"
 cardinality="8" default="http://www.google.com,

http://www.yahoo.com"/>
 <AD name="%telNumber" id="2.5.4.20" type="String"/>
 </OCD>

 <Designate pid="com.acme.addressbook">
 <Object type="2.5.6.6"/>
 </Designate>
</MetaData>

Translations for this file must be stored in the same directory as this meta
type resource. The property files have the root name of person . The Dutch,
French and English translations could look like:

person_du_NL.properties:
person=Persoon
person record=Persoons beschrijving
cn=Naam
sn=Voornaam
seeAlso=Zie ook
telNumber=Tel. Nummer
sex=Geslacht
male=Mannelijk
female=Vrouwelijk

person_fr.properties

Value Holds a single value. This element can
be repeated multiple times under an
Attribute

Table 13 XML Schema for Meta Type resources
Attribute Deflt Type Method Description
140-432 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 Object
person=Person
person record=Description un person
cn=Nom
sn=Surnom
seeAlso=Reference
telNumber=Tel.
sex=Sexe
male=Homme
female=Femme

person_en_US.properties
person=Person
person record=Person Record
cn=Name
sn=Sur Name
seeAlso=See Also
telNumber=Tel.
sex=Sex
male=Male
female=Female

105.7 Object
The OCD element can be used to describe the possible contents of a
Dictionary object. In this case, the attribute name is the key. The Object ele-
ment can be used to assign a value to a Dictionary object. This section con-
tains a number of examples how values will be assigned from an Object
element.

105.8 XML Schema
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.osgi.org/xmlns/metatype/v1.0.0"
 xmlns:metatype="http://www.osgi.org/xmlns/metatype/v1.0.0">
 <complexType name="MetaData">
 <sequence>
 <element name="OCD" type="metatype:OCD" minOccurs="0" maxOccurs="unbounded"/>

<element name="Designate" type="metatype:Designate" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>

 <attribute name="localization" type="string" use="optional"/>
 </complexType>

 <complexType name="OCD">
 <sequence>
 <element name="AD" type="metatype:AD" minOccurs="1" maxOccurs="unbounded"/>
 <element name="Icon" type="metatype:Icon" minOccurs="0" maxOccurs="1"/>
 </sequence>
 <attribute name="name" type="string" use="required"/>
 <attribute name="description" type="string" use="optional"/>
 <attribute name="id" type="string" use="required"/>
 </complexType>

 <complexType name="AD">
 <sequence>
 <element name="Option" type="metatype:Option" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
OSGi Service Platform Release 4 141-432

Limitations Metatype Service Specification Version 1.1
 <attribute name="name" type="string" use="optional"/>
 <attribute name="description" type="string" use="optional"/>
 <attribute name="id" type="string" use="required"/>
 <attribute name="type" type="metatype:Scalar" use="required"/>
 <attribute name="cardinality" type="int" use="optional" default="0"/>
 <attribute name="min" type="string" use="optional"/>
 <attribute name="max" type="string" use="optional"/>
 <attribute name="default" type="string" use="optional"/>

 <attribute name="required" type="boolean" use="optional" default="true"/>
 </complexType>

 <complexType name="Object">
 <sequence>
 <element name="Attribute" type="metatype:Attribute" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="ocdref" type="string" use="required"/>
 </complexType>

 <complexType name="Attribute">
 <attribute name="adref" type="string" use="required"/>
 <attribute name="content" type="string" use="required"/>
 </complexType>

 <complexType name="Designate">
 <sequence>
 <element name="Object" type="metatype:Object" minOccurs="1" maxOccurs="1"/>
 </sequence>
 <attribute name="pid" type="string" use="required"/>
 <attribute name="factoryPid" type="string" use="optional" default=""/>
 <attribute name="bundle" type="string" use="required"/>

 <attribute name="optional" type="boolean" default="false" use="optional"/>
 <attribute name="merge" type="boolean" default="false" use="optional"/>

 </complexType>

 <simpleType name="Scalar">
 <restriction base="string">
 <enumeration value="String"/>
 <enumeration value="Long"/>
 <enumeration value="Double"/>
 <enumeration value="Float"/>
 <enumeration value="Integer"/>
 <enumeration value="Byte"/>
 <enumeration value="Char"/>
 <enumeration value="Boolean"/>
 <enumeration value="Short"/>
 </restriction>
 </simpleType>

 <complexType name="Option">
 <attribute name="label" type="string" use="required"/>
 <attribute name="value" type="string" use="required"/>
 </complexType>

 <complexType name="Icon">
 <attribute name="resource" type="string" use="required"/>
 <attribute name="size" type="positiveInteger" use="required"/>
 </complexType>

 <element name="MetaData" type="metatype:MetaData"/>
</schema>

105.9 Limitations
The OSGi MetaType specification is intended to be used for simple applica-
tions. It does not, therefore, support recursive data types, mixed types in
arrays/vectors, or nested arrays/vectors.
142-432 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 Related Standards
105.10 Related Standards
One of the primary goals of this specification is to make metatype informa-
tion available at run-time with minimal overhead. Many related standards
are applicable to metatypes; except for Java beans, however, all other
metatype standards are based on document formats (e.g. XML). In the OSGi
Service Platform, document format standards are deemed unsuitable due to
the overhead required in the execution environment (they require a parser
during run-time).

Another consideration is the applicability of these standards. Most of these
standards were developed for management systems on platforms where
resources are not necessarily a concern. In this case, a metatype standard is
normally used to describe the data structures needed to control some other
computer via a network. This other computer, however, does not require
the metatype information as it is implementing this information.

In some traditional cases, a management system uses the metatype informa-
tion to control objects in an OSGi Service Platform. Therefore, the concepts
and the syntax of the metatype information must be mappable to these pop-
ular standards. Clearly, then, these standards must be able to describe
objects in an OSGi Service Platform. This ability is usually not a problem,
because the metatype languages used by current management systems are
very powerful.

105.11 Security Considerations
Special security issues are not applicable for this specification.

105.12 Changes
The Metatype specification is significantly expanded by now actually pro-
viding a service. The following additions were made.

• The addition of a service that gathers Metatype information from
bundles through an XML file as well as the original MetatypeProvider
interface based on Managed Service and Managed Service Factory ser-
vices. See Meta Type Service on page 133.

• A standardized XML schema to define Metatypes as well as related
instances. See XML Schema on page 141.

105.13 org.osgi.service.metatype
The OSGi Metatype Package. Specification Version 1.1.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.metatype; version=1.1
OSGi Service Platform Release 4 143-432

org.osgi.service.metatype Metatype Service Specification Version 1.1
105.13.1 Summary
• AttributeDefinition - An interface to describe an attribute. [p.144]
• MetaTypeInformation - A MetaType Information object is created by the

MetaTypeService to return meta type information for a specific bundle.
[p.147]

• MetaTypeProvider - Provides access to metatypes. [p.147]
• MetaTypeService - The MetaType Service can be used to obtain meta

type information for a bundle. [p.148]
• ObjectClassDefinition - Description for the data type information of an

objectclass. [p.148]
AttributeDefinition

105.13.2 public interface AttributeDefinition
An interface to describe an attribute.

An AttributeDefinition object defines a description of the data type of a
property/attribute.
BIGDECIMAL

105.13.2.1 public static final int BIGDECIMAL = 10

The BIGDECIMAL (10) type. Attributes of this type should be stored as Big-
Decimal, Vector with BigDecimal or BigDecimal[] objects depending on get-
Cardinality().

Deprecated Since 1.1
BIGINTEGER

105.13.2.2 public static final int BIGINTEGER = 9

The BIGINTEGER (9) type. Attributes of this type should be stored as BigIn-
teger, Vector with BigInteger or BigInteger[] objects, depending on the get-
Cardinality() value.

Deprecated Since 1.1
BOOLEAN

105.13.2.3 public static final int BOOLEAN = 11

The BOOLEAN (11) type. Attributes of this type should be stored as Boolean,
Vector with Boolean or boolean[] objects depending on getCardinality().
BYTE

105.13.2.4 public static final int BYTE = 6

The BYTE (6) type. Attributes of this type should be stored as Byte, Vector
with Byte or byte[] objects, depending on the getCardinality() value.
CHARACTER

105.13.2.5 public static final int CHARACTER = 5

The CHARACTER (5) type. Attributes of this type should be stored as Char-
acter, Vector with Character or char[] objects, depending on the getCardinal-
ity() value.
DOUBLE

105.13.2.6 public static final int DOUBLE = 7

The DOUBLE (7) type. Attributes of this type should be stored as Double,
Vector with Double or double[] objects, depending on the getCardinality()
value.
FLOAT
144-432 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 org.osgi.service.metatype
105.13.2.7 public static final int FLOAT = 8

The FLOAT (8) type. Attributes of this type should be stored as Float, Vector
with Float or float[] objects, depending on the getCardinality() value.
INTEGER

105.13.2.8 public static final int INTEGER = 3

The INTEGER (3) type. Attributes of this type should be stored as Integer,
Vector with Integer or int[] objects, depending on the getCardinality() value.
LONG

105.13.2.9 public static final int LONG = 2

The LONG (2) type. Attributes of this type should be stored as Long, Vector
with Long or long[] objects, depending on the getCardinality() value.
SHORT

105.13.2.10 public static final int SHORT = 4

The SHORT (4) type. Attributes of this type should be stored as Short, Vector
with Short or short[] objects, depending on the getCardinality() value.
STRING

105.13.2.11 public static final int STRING = 1

The STRING (1) type.

Attributes of this type should be stored as String, Vector with String or
String[] objects, depending on the getCardinality() value.
getCardinality()

105.13.2.12 public int getCardinality()

Return the cardinality of this attribute. The OSGi environment handles
multi valued attributes in arrays ([]) or in Vector objects. The return value is
defined as follows:

x = Integer.MIN_VALUE no limit, but use Vector
x < 0 -x = max occurrences, store in

Vector
x > 0 x = max occurrences, store in

array []
x = Integer.MAX_VALUE no limit, but use array []
x = 0 1 occurrence required

Returns The cardinality of this attribute.
getDefaultValue()

105.13.2.13 public String[] getDefaultValue()

Return a default for this attribute. The object must be of the appropriate
type as defined by the cardinality and getType(). The return type is a list of
String objects that can be converted to the appropriate type. The cardinality
of the return array must follow the absolute cardinality of this type. E.g. if
the cardinality = 0, the array must contain 1 element. If the cardinality is 1, it
must contain 0 or 1 elements. If it is -5, it must contain from 0 to max 5 ele-
ments. Note that the special case of a 0 cardinality, meaning a single value,
does not allow arrays or vectors of 0 elements.

Returns Return a default value or null if no default exists.
getDescription()
OSGi Service Platform Release 4 145-432

org.osgi.service.metatype Metatype Service Specification Version 1.1
105.13.2.14 public String getDescription()

Return a description of this attribute. The description may be localized and
must describe the semantics of this type and any constraints.

Returns The localized description of the definition.
getID()

105.13.2.15 public String getID()

Unique identity for this attribute. Attributes share a global namespace in
the registry. E.g. an attribute cn or commonName must always be a String
and the semantics are always a name of some object. They share this aspect
with LDAP/X.500 attributes. In these standards the OSI Object Identifier
(OID) is used to uniquely identify an attribute. If such an OID exists, (which
can be requested at several standard organisations and many companies
already have a node in the tree) it can be returned here. Otherwise, a unique
id should be returned which can be a Java class name (reverse domain
name) or generated with a GUID algorithm. Note that all LDAP defined
attributes already have an OID. It is strongly advised to define the attributes
from existing LDAP schemes which will give the OID. Many such schemes
exist ranging from postal addresses to DHCP parameters.

Returns The id or oid
getName()

105.13.2.16 public String getName()

Get the name of the attribute. This name may be localized.

Returns The localized name of the definition.
getOptionLabels()

105.13.2.17 public String[] getOptionLabels()

Return a list of labels of option values.

The purpose of this method is to allow menus with localized labels. It is
associated with getOptionValues. The labels returned here are ordered in
the same way as the values in that method.

If the function returns null, there are no option labels available.

This list must be in the same sequence as the getOptionValues() method. I.e.
for each index i in getOptionLabels, i in getOptionValues() should be the
associated value.

For example, if an attribute can have the value male, female, unknown, this
list can return (for dutch) new String[] { “Man”, “Vrouw”, “Onbekend” }.

Returns A list values
getOptionValues()

105.13.2.18 public String[] getOptionValues()

Return a list of option values that this attribute can take.

If the function returns null, there are no option values available.

Each value must be acceptable to validate() (return “”) and must be a String
object that can be converted to the data type defined by getType() for this
attribute.

This list must be in the same sequence as getOptionLabels(). I.e. for each
index i in getOptionValues, i in getOptionLabels() should be the label.

For example, if an attribute can have the value male, female, unknown, this
list can return new String[] { “male”, “female”, “unknown” }.
146-432 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 org.osgi.service.metatype
Returns A list values
getType()

105.13.2.19 public int getType()

Return the type for this attribute.

Defined in the following constants which map to the appropriate Java type.
STRING,LONG,INTEGER, CHAR,BYTE,DOUBLE,FLOAT, BOOLEAN.

Returns The type for this attribute.
validate(String)

105.13.2.20 public String validate(String value)

value The value before turning it into the basic data type

Validate an attribute in String form. An attribute might be further con-
strained in value. This method will attempt to validate the attribute accord-
ing to these constraints. It can return three different values:

null No validation present
“” No problems detected
“...” A localized description of why the value is

wrong

Returns null, “”, or another string
MetaTypeInformation

105.13.3 public interface MetaTypeInformation
extends MetaTypeProvider
A MetaType Information object is created by the MetaTypeService to return
meta type information for a specific bundle.

Since 1.1
getBundle()

105.13.3.1 public Bundle getBundle()

Return the bundle for which this object provides meta type information.

Returns Bundle for which this object provides meta type information.
getFactoryPids()

105.13.3.2 public String[] getFactoryPids()

Return the Factory PIDs (for ManagedServiceFactories) for which Object-
ClassDefinition information is available.

Returns Array of Factory PIDs.
getPids()

105.13.3.3 public String[] getPids()

Return the PIDs (for ManagedServices) for which ObjectClassDefinition
information is available.

Returns Array of PIDs.
MetaTypeProvider

105.13.4 public interface MetaTypeProvider
Provides access to metatypes.
getLocales()

105.13.4.1 public String[] getLocales()

Return a list of available locales. The results must be names that consists of
language [_ country [_ variation]] as is customary in the Locale class.
OSGi Service Platform Release 4 147-432

org.osgi.service.metatype Metatype Service Specification Version 1.1
Returns An array of locale strings or null if there is no locale specific localization can
be found.
getObjectClassDefinition(String,String)

105.13.4.2 public ObjectClassDefinition getObjectClassDefinition(String id, String
locale)

id The ID of the requested object class. This can be a pid or factory pid returned
by getPids or getFactoryPids.

locale The locale of the definition or null for default locale.

Returns an object class definition for the specified id localized to the speci-
fied locale.

The locale parameter must be a name that consists of language[“_” country[
“_” variation]] as is customary in the Locale class. This Locale class is not
used because certain profiles do not contain it.

Returns A ObjectClassDefinition object.

Throws IllegalArgumentException – If the id or locale arguments are not valid
MetaTypeService

105.13.5 public interface MetaTypeService
The MetaType Service can be used to obtain meta type information for a
bundle. The MetaType Service will examine the specified bundle for meta
type documents to create the returned MetaTypeInformation object.

If the specified bundle does not contain any meta type documents, then a
MetaTypeInformation object will be returned that wrappers any Managed-
Service or ManagedServiceFactory services registered by the specified bun-
dle that implement MetaTypeProvider. Thus the MetaType Service can be
used to retrieve meta type information for bundles which contain a meta
type documents or which provide their own MetaTypeProvider objects.

Since 1.1
METATYPE_DOCUMENTS_LOCATION

105.13.5.1 public static final String METATYPE_DOCUMENTS_LOCATION = “OSGI-
INF/metatype”

Location of meta type documents. The MetaType Service will process each
entry in the meta type documents directory.
getMetaTypeInformation(Bundle)

105.13.5.2 public MetaTypeInformation getMetaTypeInformation(Bundle bundle)

bundle The bundle for which meta type information is requested.

Return the MetaType information for the specified bundle.

Returns A MetaTypeInformation object for the specified bundle.
ObjectClassDefinition

105.13.6 public interface ObjectClassDefinition
Description for the data type information of an objectclass.
ALL

105.13.6.1 public static final int ALL = -1

Argument for getAttributeDefinitions(int).

ALL indicates that all the definitions are returned. The value is -1.
OPTIONAL
148-432 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 org.osgi.service.metatype
105.13.6.2 public static final int OPTIONAL = 2

Argument for getAttributeDefinitions(int).

OPTIONAL indicates that only the optional definitions are returned. The
value is 2.
REQUIRED

105.13.6.3 public static final int REQUIRED = 1

Argument for getAttributeDefinitions(int).

REQUIRED indicates that only the required definitions are returned. The
value is 1.
getAttributeDefinitions(int)

105.13.6.4 public AttributeDefinition[] getAttributeDefinitions(int filter)

filter ALL,REQUIRED,OPTIONAL

Return the attribute definitions for this object class.

Return a set of attributes. The filter parameter can distinguish between ALL,
REQUIRED or the OPTIONAL attributes.

Returns An array of attribute definitions or null if no attributes are selected
getDescription()

105.13.6.5 public String getDescription()

Return a description of this object class. The description may be localized.

Returns The description of this object class.
getIcon(int)

105.13.6.6 public InputStream getIcon(int size) throws IOException

size Requested size of an icon, e.g. a 16x16 pixels icon then size = 16

Return an InputStream object that can be used to create an icon from.

Indicate the size and return an InputStream object containing an icon. The
returned icon maybe larger or smaller than the indicated size.

The icon may depend on the localization.

Returns An InputStream representing an icon or null

Throws IOException – If the InputStream cannot be returned.
getID()

105.13.6.7 public String getID()

Return the id of this object class.

ObjectDefintion objects share a global namespace in the registry. They share
this aspect with LDAP/X.500 attributes. In these standards the OSI Object
Identifier (OID) is used to uniquely identify object classes. If such an OID
exists, (which can be requested at several standard organisations and many
companies already have a node in the tree) it can be returned here. Other-
wise, a unique id should be returned which can be a java class name (reverse
domain name) or generated with a GUID algorithm. Note that all LDAP
defined object classes already have an OID associated. It is strongly advised
to define the object classes from existing LDAP schemes which will give the
OID for free. Many such schemes exist ranging from postal addresses to
DHCP parameters.

Returns The id of this object class.
getName()
OSGi Service Platform Release 4 149-432

References Metatype Service Specification Version 1.1
105.13.6.8 public String getName()

Return the name of this object class. The name may be localized.

Returns The name of this object class.

105.14 References
[24] LDAP.

Available at http://directory.google.com/Top/Computers/Software/Internet/
Servers/Directory/LDAP

[25] Understanding and Deploying LDAP Directory services
Timothy Howes et. al. ISBN 1-57870-070-1, MacMillan Technical
publishing.
150-432 OSGi Service Platform Release 4

Wire Admin Service Specification Version 1.0 Introduction
108 Wire Admin Service
Specification
Version 1.0

108.1 Introduction
The Wire Admin service is an administrative service that is used to control a
wiring topology in the OSGi Service Platform. It is intended to be used by
user interfaces or management programs that control the wiring of services
in an OSGi Service Platform.

The Wire Admin service plays a crucial role in minimizing the amount of
context-specific knowledge required by bundles when used in a large array
of configurations. The Wire Admin service fulfills this role by dynamically
wiring services together. Bundles participate in this wiring process by regis-
tering services that produce or consume data. The Wire Admin service wires
the services that produce data to services which consume data.

The purpose of wiring services together is to allow configurable cooperation
of bundles in an OSGi Service Platform. For example, a temperature sensor
can be connected to a heating module to provide a controlled system.

The Wire Admin service is a very important OSGi configuration service and
is designed to cooperate closely with the Configuration Admin service, as
defined in Configuration Admin Service Specification on page 63.

108.1.1 Wire Admin Service Essentials
• Topology Management – Provide a comprehensive mechanism to link

data-producing components with data-consuming components in an
OSGi environment.

• Configuration Management – Contains configuration data in order to
allow either party to adapt to the special needs of the wire.

• Data Type Handling – Facilitate the negotiation of the data type to be used
for data transfer between producers of data and consumers of data. Con-
sumers and producers must be able to handle multiple data types for
data exchanges using a preferred order.

• Composites – Support producers and consumers that can handle a large
number of data items.

• Security – Separate connected parties from each other. Each party must
not be required to hold the service object of the other party.

• Simplicity – The interfaces should be designed so that both parties, the
Producer and the Consumer services, should be easy to implement.
OSGi Service Platform Release 4 151-432

Introduction Wire Admin Service Specification Version 1.0
108.1.2 Wire Admin Service Entities
• Producer – A service object that generates information to be used by a

Consumer service.
• Consumer – A service object that receives information generated by a Pro-

ducer service.
• Wire – An object created by the Wire Admin service that defines an asso-

ciation between a Producer service and a Consumer service. Multiple
Wire objects can exist between the same Producer and Consumer pair.

• WireAdmin – The service that provides methods to create, update,
remove, and list Wire objects.

• WireAdminListener – A service that receives events from the Wire Admin
service when the Wire object is manipulated or used.

• WireAdminEvent – The event that is sent to a WireAdminListener object,
describing the details of what happened.

• Configuration Properties – Properties that are associated with a Wire object
and that contain identity and configuration information set by the
administrator of the Wire Admin service.

• PID – The Persistent IDentity as defined in the Configuration Admin
specification.

• Flavors – The different data types that can be used to exchange infor-
mation between Producer and Consumer services.

• Composite Producer/Consumer – A Producer/Consumer service that can
generate/accept different kinds of values.

• Envelope –An interface for objects that can identify a value that is trans-
ferred over the wire. Envelope objects contain also a scope name that is
used to verify access permissions.

• Scope – A set of names that categorizes the kind of values contained in
Envelope objects for security and selection purposes.

• Basic Envelope – A concrete implementation of the Envelope interface.
• WirePermission – A Permission sub-class that is used to verify if a Con-

sumer service or Producer service has permission for specific scope
names.

• Composite Identity – A name that is agreed between a composite Con-
sumer and Producer service to identify the kind of objects that they can
exchange.
152-432 OSGi Service Platform Release 4

Wire Admin Service Specification Version 1.0 Introduction
Figure 26 Class Diagram, org.osgi.service.wiring

108.1.3 Operation Summary
The Wire Admin service maintains a set of persistent Wire objects. A Wire
object contains a Persistent IDentity (PID) for a Consumer service and a PID
for a Producer service. (Wire objects can therefore be created when the Pro-
ducer or Consumer service is not registered.)

If both those Producer and Consumer services are registered with the Frame-
work, they are connected by the Wire Admin service. The Wire Admin ser-
vice calls a method on each service object and provides the list of Wire
objects to which they are connected.

up
da

te
d

0,1

0..*

poll

<<interface>>
Wire

<<interface>>
WireAdmin

<<interface>>
Consumer

1 maintains

<<interface>>
Producer

WireAdmin
Event

<<interface>>
WireAdmin
Listener

Wire Admin impl.

Producer impl. Consumer impl.WireAdmin
Listener impl.

Wire impl
(persistent)0..*

listens to

sends out events

Administrating UI

adm
inisters

0..*

0,10..*

1

<<interface>>
Envelope

Basic
Envelope

up
da

tepolled

scope
security check

Wire
Permission

verify scope

java.security.
Basic
Permission
OSGi Service Platform Release 4 153-432

Producer Service Wire Admin Service Specification Version 1.0
When a Producer service has new information, it should send this informa-
tion to each of the connected Wire objects. Each Wire object then must
check the filtering and security. If both filtering and security allow the
transfer, the Producer service should inform the associated Consumer ser-
vice with the new information. The Consumer services can also poll a Wire
object for an new value at any time.

When a Consumer or Producer service is unregistered from the OSGi Frame-
work, the other object in the association is informed that the Wire object is
no longer valid.

Administrative applications can use the Wire Admin service to create and
delete wires. These changes are immediately reflected in the current topol-
ogy and are broadcast to Wire Admin Listener services.

Figure 27 An Example Wiring Scheme in an OSGi Environment

108.2 Producer Service
A Producer is a service that can produce a sequence of data objects. For
example, a Producer service can produce, among others, the following type
of objects:

• Measurement objects that represent a sensor measurement such as tem-
perature, movement, or humidity.

• A Str ing object containing information for user consumption, such as
headlines.

• A Date object indicating the occurrence of a periodic event.
• Position information.
• Envelope objects containing status items which can be any type.

108.2.1 Producer Properties
A Producer service must be registered with the OSGi Framework under the
interface name org .osg i .service .wireadmin.Producer . The following service
properties must be set:

Producer

Consumer

Bundle

Wire object

Actuator

Sensor

External conn.

External source

converter
154-432 OSGi Service Platform Release 4

Wire Admin Service Specification Version 1.0 Producer Service
• service .pid – The value of this property, also known as the PID, defines
the Persistent IDentity of a service. A Producer service must always use
the same PID value whenever it is registered. The PID value allows the
Wire Admin service to consistently identify the Producer service and
create a persistent Wire object that links a Producer service to a Con-
sumer service. See [26] Design Patterns specification for the rules
regarding PIDs.

• wireadmin.producer. f lavors – The value of this property is an array of
Class objects (Class[]) that are the classes of the objects the service can
produce. See Flavors on page 169 for more information about the data
type negotiation between Producer and Consumer services.

• wireadmin.producer. f i lters – This property indicates to the Wire Admin
service that this Producer service performs its own update filtering,
meaning that the consumer can limit the number of update calls with a
filter expression. This does not modify the data; it only determines
whether an update via the wire occurs. If this property is not set, the
Wire object must filter according to the description in Composite objects
on page 161. This service registration property does not need to have a
specific value.

• wireadmin.producer.scope – Only for a composite Producer service, a
list of scope names that define the scope of this Producer service, as
explained in Scope on page 162.

• wireadmin.producer.compos ite – List the composite identities of Con-
sumer services with which this Producer service can interoperate. This
property is of type Str ing[] . A composite Consumer service can inter-
operate with a composite Producer service when there is at least one
name that occurs in both the Consumer service’s array and the Producer
service’s array for this property.

108.2.2 Connections
The Wire Admin service connects a Producer service and a Consumer ser-
vice by creating a Wire object. If the Consumer and Producer services that
are bound to a Wire object are registered with the Framework, the Wire
Admin service must call the consumersConnected(Wire[]) method on the
Producer service object. Every change in the Wire Admin service that affects
the Wire object to which a Producer service is connected must result in a
call to this method. This requirement ensures that the Producer object is
informed of its role in the wiring topology. If the Producer service has no
Wire objects attached when it is registered, the Wire Admin service must
always call consumersConnected(nul l) . This situation implies that a Pro-
ducer service can assume it always gets called back from the Wire Admin
service when it registers.

108.2.3 Producer Example
The following example shows a clock producer service that sends out a Date
object every second.

public class Clock extends Thread implements Producer {
Wire wires[];
BundleContext context;
boolean quit;
OSGi Service Platform Release 4 155-432

Producer Service Wire Admin Service Specification Version 1.0
Clock(BundleContext context) {
this.context = context;
start();

}
public synchronized void run() {

Hashtable p = new Hashtable();
p.put(org.osgi.service.wireadmin.WireConstants.

WIREADMIN_PRODUCER_FLAVORS,
 new Class[] { Date.class });

p.put(org.osgi.framework.Constants.SERVICE_PID,
 "com.acme.clock");

context.registerService(
Producer.class.getName(),this,p);

while(! quit)
try {

Date now = new Date();
for(int i=0; wires!=null && i<wires.length; i++)

wires[i].update(now);
wait(1000);

}
catch(InterruptedException ie) {

/* will recheck quit */
}

}
public void synchronized consumersConnected(Wire wires[])
{

this.wires = wires;
}
public Object polled(Wire wire) { return new Date(); }

 ...
}

108.2.4 Push and Pull
Communication between Consumer and Producer services can be initiated
in one of the following ways.

• The Producer service calls the update(Object) method on the Wire
object. The Wire object implementation must then call the
updated(Wire ,Object) method on the Consumer service, if the filtering
allows this.

• The Consumer service can call pol l ()on the Wire object. The Wire object
must then call pol led(Wire) on the Producer object. Update filtering
must not apply to polling.

108.2.5 Producers and Flavors
Consumer services can only understand specific data types, and are there-
fore restricted in what data they can process. The acceptable object classes,
the flavors, are communicated by the Consumer service to the Wire Admin
service using the Consumer service’s service registration properties. The
156-432 OSGi Service Platform Release 4

Wire Admin Service Specification Version 1.0 Consumer Service
method getF lavors() on the Wire object returns this list of classes. This list is
an ordered list in which the first class is the data type that is the most pre-
ferred data type supported by the Consumer service. The last class is the
least preferred data type. The Producer service must attempt to convert its
data into one of the data types according to the preferred order, or will
return nul l from the pol l method to the Consumer service if none of the
types are recognized.

Classes cannot be easily compared for equivalence. Sub-classes and inter-
faces allow classes to masquerade as other classes. The
Class . isAssignableFrom(Class) method verifies whether a class is type com-
patible, as in the following example:

Object polled(Wire wire) {
Class clazzes[] = wire.getFlavors();
for (int i=0; i<clazzes.length; i++) {

Class clazz = clazzes[i];
if (clazz.isAssignableFrom(Date.class))

return new Date();
if (clazz.isAssignableFrom(String.class))

return new Date().toString();
}
return null;

}

The order of the i f statements defines the preferences of the Producer object.
Preferred data types are checked first. This order normally works as
expected but in rare cases, sub-classes can change it. Normally, however,
that is not a problem.

108.3 Consumer Service
A Consumer service is a service that receives information from one or more
Producer services and is wired to Producer services by the Wire Admin ser-
vice. Typical Consumer services are as follows:

• The control of an actuator, such as a heating element, oven, or electric
shades

• A display
• A log
• A state controller such as an alarm system

108.3.1 Consumer Properties
A Consumer service must be registered with the OSGi Framework under the
interface name org .osg i .service .wireadmin.Consumer . The following ser-
vice properties must be set:

• service .pid – The value of this property, also known as the PID, defines
the Persistent IDentity of a service. A Consumer service must always use
the same PID value whenever it is registered. The PID value allows the
Wire Admin service to consistently identify the Consumer service and
create a persistent Wire object that links a Producer service to a Con-
OSGi Service Platform Release 4 157-432

Consumer Service Wire Admin Service Specification Version 1.0
sumer service. See the Configuration Admin specification for the rules
regarding PIDs.

• wireadmin .consumer. f lavors – The value of this property is an array of
Class objects (Class[]) that are the acceptable classes of the objects the
service can process. See Flavors on page 169 for more information about
the data type negotiation between Producer and Consumer services.

• wireadmin .consumer.scope – Only for a composite Consumer service, a
list of scope names that define the scope of this Consumer service, as
explained in Scope on page 162.

• wireadmin .consumer.composite – List the composite identities of Pro-
ducer services that this Consumer service can interoperate with. This
property is of type Str ing[] . A composite Consumer service can interop-
erate with a composite Producer service when at least one name occurs
in both the Consumer service’s array and the Producer service’s array for
this property.

108.3.2 Connections
When a Consumer service is registered and a Wire object exists that associ-
ates it to a registered Producer service, the producersConnected(Wire[])
method is called on the Consumer service.

Every change in the Wire Admin service that affects a Wire object to which
a Consumer service is connected must result in a call to the producersCon-
nected(Wire[]) method. This rule ensures that the Consumer object is
informed of its role in the wiring topology. If the Consumer service has no
Wire objects attached, the argument to the producersConnected(Wire[])
method must be nul l . This method must also be called when a Producer ser-
vice registers for the first time and no Wire objects are available.

108.3.3 Consumer Example
For example, a service can implement a Consumer service that logs all
objects that are sent to it in order to allow debugging of a wiring topology.

public class LogConsumer implements Consumer {
public LogConsumer(BundleContext context) {

Hashtable ht = new Hashtable();
ht.put(

Constants.SERVICE_PID, "com.acme.logconsumer");
ht.put(WireConstants.WIREADMIN_CONSUMER_FLAVORS,

new Class[] { Object.class });
context.registerService(Consumer.class.getName(),

this, ht);
}
public void updated(Wire wire, Object o) {

getLog().log(LogService.LOG_INFO, o.toString());
}
public void producersConnected(Wire [] wires) {}
LogService getLog() { ... }

}

158-432 OSGi Service Platform Release 4

Wire Admin Service Specification Version 1.0 Implementation issues
108.3.4 Polling or Receiving a Value
When the Producer service produces a new value, it calls the
update(Object) method on the Wire object, which in turn calls the
updated(Wire ,Object) method on the Consumer service object. When the
Consumer service needs a value immediately, it can call the pol l () method
on the Wire object which in turn calls the polled(Wire) method on the
Producer service.

If the pol l () method on the Wire object is called and the Producer is unregis-
tered, it must return a null value.

108.3.5 Consumers and Flavors
Producer objects send objects of different data types through Wire objects. A
Consumer service object should offer a list of preferred data types (classes)
in its service registration properties. The Producer service, however, can still
send a nul l object or an object that is not of the preferred types. Therefore,
the Consumer service must check the data type and take the appropriate
action. If an object type is incompatible, then a log message should be
logged to allow the operator to correct the situation.

The following example illustrates how a Consumer service can handle
objects of type Date , Measurement , and String .

void process(Object in) {
if (in instanceof Date)

processDate((Date) in);
else if (in instanceof Measurement)

processMeasurement((Measurement) in);
else if (in instanceof String)

processString((String) in);
else

processError(in);
}

108.4 Implementation issues
The Wire Admin service can call the consumersConnected or
producersConnected methods during the registration of the Consumer or
Producer service. Care should be taken in this method call so that no vari-
ables are used that are not yet set, such as the Serv iceRegistrat ion object
that is returned from the registration. The same is true for the updated or
pol led callback because setting the Wire objects on the Producer service
causes such a callback from the consumersConnected or
producersConnected method.

A Wire Admin service must call the producersConnected and
consumersConnected method asynchronously from the registrations,
meaning that the Consumer or Producer service can use synchronized to
restrict access to critical variables.

When the Wire Admin service is stopped, it must disconnect all connected
consumers and producers by calling producersConnected and
consumersConnected with a nul l for the wires parameter.
OSGi Service Platform Release 4 159-432

Wire Properties Wire Admin Service Specification Version 1.0
108.5 Wire Properties
A Wire object has a set of properties (a Dictionary object) that configure the
association between a Consumer service and a Producer service. The type
and usage of the keys, as well as the allowed types for the values are defined
in Configuration Properties on page 70.

The Wire properties are explained in Table 14.

The properties associated with a Wire object are not limited to the ones
defined in Table 14. The Dictionary object can also be used for configuring
both Consumer services and Producer services. Both services receive the
Wire object and can inspect the properties and adapt their behavior accord-
ingly.

108.5.1 Display Service Example
In the following example, the properties of a Wire object, which are set by
the Operator or User, are used to configure a Producer service that monitors
a user’s email account regularly and sends a message when the user has
received email. This WireMai l service is illustrated as follows:

public class WireMail extends Thread
implements Producer {
Wire wires[];
BundleContext context;
boolean quit;

public void start(BundleContext context) {
Hashtable ht = new Hashtable();
ht.put(Constants.SERVICE_PID, "com.acme.wiremail");
ht.put(WireConstants.WIREADMIN_PRODUCER_FLAVORS,

 new Class[] { Integer.class });
context.registerService(this,

Producer.class.getName(),
ht);

}

Table 14 Standard Wire Properties

Constant Description

WIREADMIN_PID The value of this property is a unique Persistent IDentity as
defined in chapter 104 Configuration Admin Service Specifica-
tion. This PID must be automatically created by the Wire
Admin service for each new Wire object.

WIREADMIN_PRODUCER_PID The value of the property is the PID of the Producer service.
WIREADMIN_CONSUMER_PID The value of this property is the PID of the Consumer ser-

vice.
WIREADMIN_FILTER The value of this property is an OSGi filter string that is used

to control the update of produced values.

This filter can contain a number of attributes as explained in
Wire Flow Control on page 165.
160-432 OSGi Service Platform Release 4

Wire Admin Service Specification Version 1.0 Composite objects
public synchronized void consumersConnected(
Wire wires[]) {
this.wires = wires;

}
public Object polled(Wire wire) {

Dictionary p = wire.getProperties();
// The password should be
// obtained from User Admin Service
int n = getNrMails(

p.get("userid"),
p.get("mailhost"));

return new Integer(n);
}
public synchronized void run() {

while (!quit)
try {

for (int i=0; wires != null && i<wires.length;i++)
wires[i].update(polled(wires[i]));

wait(150000);
}
catch(InterruptedException e) { break; }

}
...

}

108.6 Composite objects
A Producer and/or Consumer service for each information item is usually
the best solution. This solution is not feasible, however, when there are hun-
dreds or thousands of information items. Each registered Consumer or Pro-
ducer service carries the overhead of the registration, which may
overwhelm a Framework implementation on smaller platforms.

When the size of the platform is an issue, a Producer and a Consumer ser-
vice should abstract a larger number of information items. These Consumer
and Producer services are called composite.

Figure 28 Composite Producer Example

Composite Producer and Consumer services should register respectively the
WIREADMIN_PRODUCER_COMPOSITE and
WIREADMIN_CONSUMER_COMPOSITE composite identity property with
their service registration. These properties should contain a list of compos-
ite identities. These identities are not defined here, but are up to a mutual
agreement between the Consumer and Producer service. For example, a
composite identity could be MOST-1.5 or GSM-Phase2-Terminal . The

multiplexed
wire
OSGi Service Platform Release 4 161-432

Composite objects Wire Admin Service Specification Version 1.0
name may follow any scheme but will usually have some version informa-
tion embedded. The composite identity properties are used to match Con-
sumer and Producer services with each other during configuration of the
Wire Admin service. A Consumer and Producer service should interoperate
when at least one equal composite identity is listed in both the Producer and
Consumer composite identity service property.

Composite producers/consumers must identify the kind of objects that are
transferred over the Wire object, where kind refers to the intent of the object,
not the data type. For example, a Producer service can represent the status of
a door-lock and the status of a window as a boolean . If the status of the win-
dow is transferred as a boolean to the Consumer service, how would it know
that this boolean represents the window and not the door-lock?

To avoid this confusion, the Wire Admin service includes an Envelope
interface. The purpose of the Envelope interface is to associate a value object
with:

• An identification object
• A scope name

Figure 29 Envelope

108.6.1 Identification
The Envelope object’s identification object is used to identify the value car-
ried in the Envelope object. Each unique kind of value must have its own
unique identification object. For example, a left-front-window should have a
different identification object than a rear-window.

The identification is of type Object . Using the Object class allows Str ing
objects to be used, but also makes it possible to use more complex objects.
These objects can convey information in a way that is mutually agreed
between the Producer and Consumer service. For example, its type may dif-
fer depending on each kind of value so that the Visitor pattern, see [26] Design
Patterns, can be used. Or it may contain specific information that makes the
Envelope object easier to dispatch for the Consumer service.

108.6.2 Scope
The scope name is a Str ing object that categorizes the Envelope object. The
scope name is used to limit the kind of objects that can be exchanged
between composite Producer and Consumer services, depending on security
settings.

<<interface>>
Envelope

Basic
Envelope

Object Stringscopeidentification

Impl.
identification
object

name
162-432 OSGi Service Platform Release 4

Wire Admin Service Specification Version 1.0 Composite objects
The name-space for this scope should be mutually agreed between the Con-
sumer and Producer services a priori. For the Wire Admin service, the scope
name is an opaque string, though its syntax is specified in Scope name syntax
on page 165.

Both composite Producer and Consumer services must add a list of their
supported scope names to the service registration properties. This list is
called the scope of that service. A Consumer service must add this scope
property with the name of WIREADMIN_CONSUMER_SCOPE , a Producer
service must add this scope property with the name
WIREADMIN_PRODUCER_SCOPE . The type of this property must be a
Str ing[] object.

Not registering this property by the Consumer or the Producer service indi-
cates to the Wire Admin service that any Wire object connected to that ser-
vice must return nul l for the Wire.getScope() method. This case must be
interpreted by the Consumer or Producer service that no scope verification
is taking place. Secure Producer services should not produce values for this
Wire object and secure Consumer services should not accept values.

It is also allowed to register with a wildcard, indicating that all scope names
are supported. In that case, the WIREADMIN_SCOPE_ALL (which is Str ing[]
{ "*" }) should be registered as the scope of the service. The Wire object’s
scope is then fully defined by the other service connected to the Wire object.

The following example shows how a scope is registered.

static String [] scope = { "DoorLock", "DoorOpen", "VIN" };

public void start(BundleContext context) {
Dictionary properties = new Hashtable();
properties.put(

WireConstants.WIREADMIN_CONSUMER_SCOPE,
scope);

properties.put(WireConstants.WIREADMIN_CONSUMER_PID,
"com.acme.composite.consumer");

 properties.put(
 WireConstants.WIREADMIN_CONSUMER_COMPOSITE,
 new String[] { "OSGiSP-R3" });

context.registerService(Consumer.class.getName(),
new AcmeConsumer(),
properties);

}

Both a composite Consumer and Producer service must register a scope to
receive scope support from the Wire object. These two scopes must be con-
verted into a single Wire object’s scope and scope names in this list must be
checked for the appropriate permissions. This resulting scope is available
from the Wire.getScope() method.

If no scope is set by either the Producer or the Consumer service the result
must be nul l . In that case, the Producer or Consumer service must assume
that no security checking is in place. A secure Consumer or Producer service
should then refuse to operate with that Wire object.
OSGi Service Platform Release 4 163-432

Composite objects Wire Admin Service Specification Version 1.0
Otherwise, the resulting scope is the intersection of the Consumer and Pro-
ducer service scope where each name in the scope, called m , must be
implied by a WirePermiss ion[m,CONSUME] of the Consumer service, and
WirePermiss ion[m,PRODUCE] of the Producer service.

If either the Producer or Consumer service has registered a wildcard scope
then it must not restrict the list of the other service, except for the permis-
sion check. If both the Producer and Consumer service registered a wild-
card, the resulting list must be WIREADMIN_SCOPE_ALL (String[]{"*"}).

For example, the Consumer service has registered a scope of {A,B,C} and has
WirePermiss ion[*,CONSUME] . The Producer service has registered a scope
of {B,C ,E} and has WirePermiss ion[C|E, PRODUCE,] . The resulting scope is
then {C} . Table 15 shows this and more examples.

The Wire object’s scope must be calculated only once, when both the Pro-
ducer and Consumer service become connected. When a Producer or Con-
sumer service subsequently modifies its scope, the Wire object must not
modify the original scope. A Consumer and a Produce service can thus
assume that the scope does not change after the producersConnected
method or consumersConnected method has been called.

108.6.3 Access Control
When an Envelope object is used as argument in Wire.update(Object) then
the Wire object must verify that the Envelope object’s scope name is
included in the Wire object’s scope. If this is not the case, the update must be
ignored (the updated method on the Consumer service must not be called).

A composite Producer represents a number of values, which is different
from a normal Producer that can always return a single object from the poll
method. A composite Producer must therefore return an array of Envelope
objects (Envelope[]). This array must contain Envelope objects for all the
values that are in the Wire object’s scope. It is permitted to return all possi-
ble values for the Producer because the Wire object must remove all
Envelope objects that have a scope name not listed in the Wire object’s
scope.

Table 15 Examples of scope calculation. C=Consumer, P=Producer, p=WirePermis-
sion, s=scope

Cs Cp Ps Pp Wire Scope

null nul l nu ll
{A ,B,C} * nul l nu ll
nu ll {C,D,E} nu ll
{A ,B,C} B|C {A,B,C} A|B {B}
* * {A,B,C} A|B|C {A,B,C}
* * * * {*}
{A,B,C} A|B|C {A,B,C} X {}
{A,B,C} * {B,C,E} C|E {C}
164-432 OSGi Service Platform Release 4

Wire Admin Service Specification Version 1.0 Wire Flow Control
108.6.4 Composites and Flavors
Composite Producer and Consumer services must always use a flavor of the
Envelope class. The data types of the values must be associated with the
scope name or identification and mutually agreed between the Consumer
and Producer services.

Flavors and Envelope objects both represent categories of different values.
Flavors, however, are different Java classes that represent the same kind of
value. For example, the tire pressure of the left front wheel could be passed
as a Float , an Integer , or a Measurement object. Whatever data type is cho-
sen, it is still the tire pressure of the left front wheel. The Envelope object
represents the kind of object, for example the right front wheel tire pressure,
or the left rear wheel.

108.6.5 Scope name syntax
Scope names are normal Str ing objects and can, in principle, contain any
Unicode character. Scope names are used with the WirePermiss ion class
that extends java. secur ity .Bas icPermiss ion . The BasicPermission class
implements the impl ies method and performs the name matching. The
wildcard matching of this class is based on the concept of names where the
constituents of the name are separated with a period (’ . ’): for example,
org .osgi .service .http.port .

Scope names must therefore follow the rules for fully qualified Java class
names. For example, door . lock is a correct scope name while door-lock is
not.

108.7 Wire Flow Control
The WIREADMIN_FILTER property contains a filter expression (as defined in
the OSGi Framework F i lter class) that is used to limit the number of updates
to the Consumer service. This is necessary because information can arrive at
a much greater rate than can be processed by a Consumer service. For exam-
ple, a single CAN bus (the electronic control bus used in current cars) in a
car can easily deliver hundreds of measurements per second to an OSGi
based controller. Most of these measurements are not relevant to the OSGi
bundles, at least not all the time. For example, a bundle that maintains an
indicator for the presence of frost is only interested in measurements when
the outside temperature passes the 4 degrees Celsius mark.

Limiting the number of updates from a Producer service can make a signifi-
cant difference in performance (meaning that less hardware is needed). For
example, a vendor can implement the filter in native code and remove
unnecessary updates prior to processing in the Java Virtual Machine (JVM).
This is depicted in Figure 30 on page 166.
OSGi Service Platform Release 4 165-432

Wire Flow Control Wire Admin Service Specification Version 1.0
Figure 30 Filtering of Updates

The filter can use any combination of the following attributes in a filter to
implement many common filtering schemes:

Filter attributes can be used to implement many common filtering schemes
that limit the number of updates that are sent to a Consumer service. The
Wire Admin service specification requires that updates to a Consumer ser-
vice are always filtered if the WIREADMIN_FILTER Wire property is present.
Producer services that wish to perform the filtering themselves should regis-
ter with a service property WIREADMIN_PRODUCER_FILTERS . Filtering
must be performed by the Wire object for all other Producer services.

ControllerCAN bus

Filter

Actuator

Sensor

Filter from wire properties

Producer Consumer Bundle

Wire object

External connection

Native code

Table 16 Filter Attribute Names

Constant Description

WIREVALUE_CURRENT Current value of the data from the Producer
service.

WIREVALUE_PREVIOUS Previous data value that was reported to the
Consumer service.

WIREVALUE_DELTA_ABSOLUTE The actual positive difference between the pre-
vious data value and the current data value. For
example, if the previous data value was 3 and
the current data value is -0.5, then the absolute
delta is 3.5. This filter attribute is not set when
the current or previous value is not a number.

WIREVALUE_DELTA_RELATIVE The absolute (meaning always positive) rela-
tive change between the current and the previ-
ous data values, calculated with the following
formula: |previous-current|/ |current | . For
example, if the previous value was 3 and the
new value is 5, then the relative delta is |3-5 |/
|5 | = 0 .4. This filter attribute is not set when
the current or previous value is not a number.

WIREVALUE_ELAPSED The time in milliseconds between the last time
the Consumer .updated(Wire ,Object) returned
and the time the filter is evaluated.
166-432 OSGi Service Platform Release 4

Wire Admin Service Specification Version 1.0 Wire Flow Control
Filtering for composite Producer services is not supported. When a filter is
set on a Wire object, the Wire must still perform the filtering (which is lim-
ited to time filtering because an Envelope object is not a magnitude), but
this approach may lose relevant information because the objects are of a dif-
ferent kind. For example, an update of every 500 ms could miss all speed
updates because there is a wheel pressure update that resets the elapsed
time. Producer services should, however, still implement a filtering scheme
that could use proprietary attributes to filter on different kind of objects.

108.7.1 Filtering by Time
The simplest filter mechanism is based on time. The wirevalue.e lapsed
attribute contains the amount of milliseconds that have passed since the
last update to the associated Consumer service. The following example filter
expression illustrates how the updates can be limited to approximately 40
times per minute (once every 1500 ms).

(wirevalue.elapsed>=1500)

Figure 31 depicts this example graphically.

Figure 31 Elapsed Time Change

108.7.2 Filtering by Change
A Consumer service is often not interested in an update if the data value has
not changed. The following filter expression shows how a Consumer service
can limit the updates from a temperature sensor to be sent only when the
temperature has changed at least 1 °K.

(wirevalue.delta.absolute>=1)

Figure 32 depicts a band that is created by the absolute delta between the
previous data value and the current data value. The Consumer is only noti-
fied with the updated(Wire ,Object) method when a data value is outside of
this band.

temperature

t

elapsed

n n + 1

update
OSGi Service Platform Release 4 167-432

Wire Flow Control Wire Admin Service Specification Version 1.0
Figure 32 Absolute Delta

The delta may also be relative. For example, if a car is moving slowly, then
updates for the speed of the car are interesting even for small variations.
When a car is moving at a high rate of speed, updates are only interesting for
larger variations in speed. The following example shows how the updates
can be limited to data value changes of at least 10%.

(wirevalue.delta.relative>=0.1)

Figure 33 on page 168 depicts a relative band. Notice that the size of the
band is directly proportional to the size of the sample value.

Figure 33 Relative Delta (not on scale)

108.7.3 Hysteresis
A thermostat is a control device that usually has a hysteresis, which means
that a heater should be switched on below a certain specified low tempera-
ture and should be switched off at a specified high temperature, where high
> low. This is graphically depicted in Figure 34 on page 168. The specified
acceptable temperatures reduce the amount of start/stops of the heater.

Figure 34 Hysteresis

temperature

t

n + 1n

absolute delta band

update

n + 2

temperature

t

n + 1n

relative delta band

update

high

low

off

on

temperature
high

temperature
low
168-432 OSGi Service Platform Release 4

Wire Admin Service Specification Version 1.0 Flavors
A Consumer service that controls the heater is only interested in events at
the top and bottom of the hysteresis. If the specified high value is 250 °K and
the specified low value is 249 °K, the following filter illustrates this concept:

(|(&(wirevalue.previous<=250)(wirevalue.current>250))
(&(wirevalue.previous>=249)(wirevalue.current<249))

)

108.8 Flavors
Both Consumer and Producer services should register with a property
describing the classes of the data types they can consume or produce respec-
tively. The classes are the flavors that the service supports. The purpose of
flavors is to allow an administrative user interface bundle to connect Con-
sumer and Producer services. Bundles should only create a connection when
there is at least one class shared between the flavors from a Consumer ser-
vice and a Producer service. Producer services are responsible for selecting
the preferred object type from the list of the object types preferred by the
Consumer service. If the Producer service cannot convert its data to any of
the flavors listed by the Consumer service, nul l should be used instead.

108.9 Converters
A converter is a bundle that registers a Consumer and a Producer service
that are related and performs data conversions. Data values delivered to the
Consumer service are processed and transferred via the related Producer ser-
vice. The Producer service sends the converted data to other Consumer ser-
vices. This is shown in Figure 35.

Figure 35 Converter (for legend see Figure 27)

108.10 Wire Admin Service Implementation
The Wire Admin service is the administrative service that is used to control
the wiring topology in the OSGi Service Platform. It contains methods to
create or update wires, delete wires, and list existing wires. It is intended to
be used by user interfaces or management programs that control the wiring
topology of the OSGi Service Platform.

converter
OSGi Service Platform Release 4 169-432

Wire Admin Listener Service Events Wire Admin Service Specification Version 1.0
The createWire(Str ing,Str ing,Dict ionary) method is used to associate a Pro-
ducer service with a Consumer service. The method always creates and
returns a new object. It is therefore possible to create multiple, distinct wires
between a Producer and a Consumer service. The properties can be used to
create multiple associations between Producer and Consumer services in
that act in different ways.

The properties of a Wire object can be updated with the update(Object)
method. This method must update the properties in the Wire object and
must notify the associated Consumer and Producer services if they are regis-
tered. Wire objects that are no longer needed can be removed with the
deleteWire(Wire) method. All these methods are in the WireAdmin class
and not in the Wire class for security reasons. See Security on page 174.

The getWires(Str ing) method returns an array of Wire objects (or nul l). All
objects are returned when the filter argument is nul l . Specifying a filter
argument limits the returned objects. The filter uses the same syntax as the
Framework Filter specification. This filter is applied to the properties of the
Wire object and only Wire objects that match this filter are returned.

The following example shows how the getWires method can be used to
print the PIDs of Producer services that are wired to a specific Consumer ser-
vice.

String f = "(wireadmin.consumer.pid=com.acme.x)";
Wire [] wires = getWireAdmin().getWires(f);
for (int i=0; wires != null && i < wires.length; i++)

System.out.println(
wires[i].getProperties().get(

"wireadmin.producer.pid")
);

108.11 Wire Admin Listener Service Events
The Wire Admin service has an extensive list of events that it can deliver.
The events allow other bundles to track changes in the topology as they
happen. For example, a graphic user interface program can use the events to
show when Wire objects become connected, when these objects are deleted,
and when data flows over a Wire object.

A bundle that is interested in such events must register a
WireAdminListener service object with a special In teger property
WIREADMIN_EVENTS ("wireadmin.events"). This Integer object contains a
bitmap of all the events in which this Wire Admin Listener service is inter-
ested (events have associated constants that can be OR’d together). A Wire
Admin service must not deliver events to the Wire Admin Listener service
when that event type is not in the bitmap. If no such property is registered,
no events are delivered to the Wire Admin Listener service.

The WireAdminListener interface has only one method: wireAdmin-
Event(WireAdminEvent) . The argument is a WireAdminEvent object that
contains the event type and associated data.
170-432 OSGi Service Platform Release 4

Wire Admin Service Specification Version 1.0 Wire Admin Listener Service Events
A WireAdminEvent object can be sent asynchronously but must be ordered
for each Wire Admin Listener service. Wire Admin Listener services must
not assume that the state reflected by the event is still true when they
receive the event.

The following types are defined for a WireEvent object:

108.11.1 Event Admin Service Events
Wire admin events must be sent asynchronously to the Event Admin ser-
vice. The topic of a Wire Admin Event is one of the following:

org/osgi/service/wireadmin/WireAdminEvent/<event type>

The following event types are supported:

WIRE_CREATED
WIRE_CONNECTED
WIRE_UPDATED
WIRE_TRACE
WIRE_DISCONNECTED
WIRE_DELETED
PRODUCER_EXCEPTION
CONSUMER_EXCEPTION

The properties of a wire admin event are the following.

• event – (WireAdminEvent) The WireAdminEvent object broadcast by the
Wire Admin service.

If the getWire method returns a non null value:

• wire – (Wire) The Wire object returned by the getWire method.
• wire .f lavors – (String[]) The names of the classes returned by the Wire

getF lavors method.

Table 17 Events

Event type Description

WIRE_CREATED A new Wire object has been created.
WIRE_CONNECTED Both the Producer service and the Consumer service are regis-

tered but may not have executed their respective
connectedProducers/connectedConsumers methods.

WIRE_UPDATED The Wire object’s properties have been updated.
WIRE_TRACE The Producer service has called the Wire .update(Object)

method with a new value or the Producer service has returned
from the Producer .pol led(Wire) method.

WIRE_DISCONNECTED The Producer service or Consumer service have become unreg-
istered and the Wire object is no longer connected.

WIRE_DELETED The Wire object is deleted from the repository and is no longer
available from the getWires method.

CONSUMER_EXCEPTION The Consumer service generated an exception and the excep-
tion is included in the event.

PRODUCER_EXCEPTION The Producer service generated an exception in a callback and
the exception is included in the event.
OSGi Service Platform Release 4 171-432

Connecting External Entities Wire Admin Service Specification Version 1.0
• wire .scope – (String[]) The scope of the Wire object, as returned by its
getScope method.

• wire .connected – (Boolean) The result of the Wire i sConnected method.
• wire .val id – (Boolean) The result of the Wire isVal id method.

If the getThrowable method does not return null:

• exception – (Throwable) The Exception returned by the getThrowable
method.

• exception .class – (Str ing) The fully-qualified class name of the related
Exception.

• exception .message – (Str ing) The message of the related Exception
• service – (ServiceReference) The Service Reference of the Wire Admin

service.
• service. id – (Long) The service id of the WireAdmin service.
• service.objectClass – (String[]) The Wire Admin service's object class

(which must include org.osgi .service .wireadmin .WireAdmin)
• service .pid – (Str ing) The Wire Admin service's PID.

108.12 Connecting External Entities
The Wire Admin service can be used to control the topology of consumers
and producers that are services, as well as external entities. For example, a
video camera controlled over an IEEE 1394B bus can be registered as a Pro-
ducer service in the Framework’s service registry and a TV, also connected
to this bus, can be registered as a Consumer service. It would be very ineffi-
cient to stream the video data through the OSGi environment. Therefore,
the Wire Admin service can be used to supply the external addressing infor-
mation to the camera and the monitor to make a direct connection outside
the OSGi environment. The Wire Admin service provides a uniform mecha-
nism to connect both external entities and internal entities.

Figure 36 Connecting External Entities

A Consumer service and a Producer service associated with a Wire object
receive enough information to establish a direct link because the PIDs of
both services are in the Wire object’s properties. This situation, however,
does not guarantee compatibility between Producer and the Consumer ser-

camera

monitor

OSGi Service Platform

Wire defining
the connection

IEEE 1394B
172-432 OSGi Service Platform Release 4

Wire Admin Service Specification Version 1.0 Related Standards
vice. It is therefore recommended that flavors are used to ensure this com-
patibility. Producer services that participate in an external addressing
scheme, like IEEE 1394B, should have a flavor that reflects this address. In
this case, there should then for example be a IEEE 1394B address class. Con-
sumer services that participate in this external addressing scheme should
only accept data of this flavor.

The OSGi Device Access Specification on page 33, defines the concept of a
device category. This is a description of what classes and properties are used
in a specific device category: for example, a UPnP device category that
defines the interface that must be used to register for a UPnP device, among
other things.

Device category descriptions should include a section that addresses the
external wiring issue. This section should include what objects are send
over the wire to exchange addressing information.

108.13 Related Standards

108.13.1 Java Beans
The Wire Admin service leverages the component architecture that the
Framework service registry offers. Java Beans attempt to achieve similar
goals. Java Beans are classes that follow a number of recommendations that
allow them to be configured at run time. The techniques that are used by
Java Beans during configuration are serialization and the construction of
adapter classes.

Creating adapter classes in a resource constrained OSGi Service Platform
was considered too heavy weight. Also, the dynamic nature of the OSGi
environment, where services are registered and unregistered continuously,
creates a mismatch between the intended target area of Java Beans and the
OSGi Service Platform.

Also, Java Beans can freely communicate once they have a reference to each
other. This freedom makes it impossible to control the communication
between Java Beans.

This Wire Admin service specification was developed because it is light-
weight and leverages the unique characteristics of the OSGi Framework.
The concept of a Wire object that acts as an intermediate between the Pro-
ducer and Consumer service allows the implementation of a security policy
because both parties cannot communicate directly.
OSGi Service Platform Release 4 173-432

Security Wire Admin Service Specification Version 1.0
108.14 Security

108.14.1 Separation of Consumer and Producer Services
The Consumer and Producer service never directly communicate with each
other. All communication takes place through a Wire object. This allows a
Wire Admin service implementation to control the security aspects of creat-
ing a connection, and implies that the Wire Admin service must be a trusted
service in a secure environment. Only one bundle should have the
ServicePermission[WireAdmin, REGISTER] .

ServicePermission[Producer |Consumer, REGISTER] should not be
restricted. ServicePermission[Producer|Consumer,GET] must be limited to
trusted bundles (the Wire Admin service implementation) because a bundle
with this permission can call such services and access information that it
should not be able to access.

108.14.2 Using Wire Admin Service
This specification assumes that only a few applications require access to the
Wire Admin service. The WireAdmin interface contains all the security sen-
sitive methods that create, update, and remove Wire objects. (This is the rea-
son that the update and delete methods are on the WireAdmin interface and
not on the Wire interface). ServicePermission[WireAdmin,GET] should
therefore only be given to trusted bundles that can manage the topology.

108.14.3 Wire Permission
Composite Producer and Consumer services can be restricted in their use of
scope names. This restriction is managed with the WirePermiss ion class. A
WirePermiss ion consists of a scope name and the action CONSUME or
PRODUCE . The name used with the WirePermission may contain wild-cards
as specified in the java.securi ty .BasicPermission class.

108.15 Changes
• Event Admin mapping added.

108.16 org.osgi.service.wireadmin
The OSGi Wire Admin service Package. Specification Version 1.0.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.wireadmin; version=1.0

108.16.1 Summary
• BasicEnvelope - BasicEnvelope is an implementation of the

Envelope [p.176] interface [p.175]
• Consumer - Data Consumer, a service that can receive udpated values

from Producer [p.177] services. [p.175]
174-432 OSGi Service Platform Release 4

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin
• Envelope - Identifies a contained value. [p.176]
• Producer - Data Producer, a service that can generate values to be used by

Consumer [p.175] services. [p.177]
• Wire - A connection between a Producer service and a Consumer service.

[p.179]
• WireAdmin - Wire Administration service. [p.182]
• WireAdminEvent - A Wire Admin Event. [p.184]
• WireAdminListener - Listener for Wire Admin Events. [p.187]
• WireConstants - Defines standard names for Wire properties, wire filter

attributes, Consumer and Producer service properties. [p.188]
• WirePermission - Permission for the scope of a Wire object. [p.191]
BasicEnvelope

108.16.2 public class BasicEnvelope
implements Envelope
BasicEnvelope is an implementation of the Envelope [p.176] interface
BasicEnvelope(Object,Object,String)

108.16.2.1 public BasicEnvelope(Object value, Object identification, String scope)

value Content of this envelope, may be null.

identification Identifying object for this Envelope object, must not be null

scope Scope name for this object, must not be null

Constructor.

See Also Envelope[p.176]
getIdentification()

108.16.2.2 public Object getIdentification()

See Also org.osgi.service.wireadmin.Envelope.getIdentification()[p.177]
getScope()

108.16.2.3 public String getScope()

See Also org.osgi.service.wireadmin.Envelope.getScope()[p.177]
getValue()

108.16.2.4 public Object getValue()

See Also org.osgi.service.wireadmin.Envelope.getValue()[p.177]
Consumer

108.16.3 public interface Consumer
Data Consumer, a service that can receive udpated values from
Producer [p.177] services.

Service objects registered under the Consumer interface are expected to con-
sume values from a Producer service via a Wire object. A Consumer service
may poll the Producer service by calling the Wire.pol l [p.181] method. The
Consumer service will also receive an updated value when called at it’s
updated [p.176] method. The Producer service should have coerced the value
to be an instance of one of the types specified by the Wire.getFlavors [p.179]
method, or one of their subclasses.

Consumer service objects must register with a service.pid and a
WireConstants.WIREADMIN_CONSUMER_FLAVORS [p.188] property. It is
recommended that Consumer service objects also register with a ser-
vice.description property.
OSGi Service Platform Release 4 175-432

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0
If an Exception is thrown by any of the Consumer methods, a WireAdmin-
Event of type WireAdminEvent.CONSUMER_EXCEPTION [p.185] is broadcast
by the Wire Admin service.

Security Considerations - Data consuming bundles will require ServicePer-
mission[Consumer,REGISTER]. In general, only the Wire Admin service
bundle should have this permission. Thus only the Wire Admin service
may directly call a Consumer service. Care must be taken in the sharing of
Wire objects with other bundles.

Consumer services must be registered with their scope when they can
receive different types of objects from the Producer service. The Consumer
service should have WirePermission for each of these scope names.
producersConnected(W ire[])

108.16.3.1 public void producersConnected(Wire[] wires)

wires An array of the current and complete list of Wire objects to which this Con-
sumer service is connected. May be null if the Consumer service is not cur-
rently connected to any Wire objects.

Update the list of Wire objects to which this Consumer service is connected.

This method is called when the Consumer service is first registered and sub-
sequently whenever a Wire associated with this Consumer service becomes
connected, is modified or becomes disconnected.

The Wire Admin service must call this method asynchronously. This
implies that implementors of Consumer can be assured that the callback
will not take place during registration when they execute the registration in
a synchronized method.
updated(Wire,Object)

108.16.3.2 public void updated(Wire wire, Object value)

wire The Wire object which is delivering the updated value.

value The updated value. The value should be an instance of one of the types spec-
ified by the Wire.getFlavors [p.179] method.

Update the value. This Consumer service is called by the Wire object with
an updated value from the Producer service.

Note: This method may be called by a Wire object prior to this object being
notified that it is connected to that Wire object (via the
producersConnected [p.176] method).

When the Consumer service can receive Envelope objects, it must have reg-
istered all scope names together with the service object, and each of those
names must be permitted by the bundle’s WirePermission. If an Envelope
object is delivered with the updated method, then the Consumer service
should assume that the security check has been performed.
Envelope

108.16.4 public interface Envelope
Identifies a contained value. An Envelope object combines a status value, an
identification object and a scope name. The Envelope object allows the use
of standard Java types when a Producer service can produce more than one
kind of object. The Envelope object allows the Consumer service to recog-
nize the kind of object that is received. For example, a door lock could be
176-432 OSGi Service Platform Release 4

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin
represented by a Boolean object. If the Producer service would send such a
Boolean object, then the Consumer service would not know what door the
Boolean object represented. The Envelope object contains an identification
object so the Consumer service can discriminate between different kinds of
values. The identification object may be a simple String object, but it can
also be a domain specific object that is mutually agreed by the Producer and
the Consumer service. This object can then contain relevant information
that makes the identification easier.

The scope name of the envelope is used for security. The Wire object must
verify that any Envelope object send through the update method or coming
from the poll method has a scope name that matches the permissions of
both the Producer service and the Consumer service involved. The wiread-
min package also contains a class BasicEnvelope that implements the meth-
ods of this interface.

See Also WirePermission[p.191] , BasicEnvelope[p.175]
getIdentification()

108.16.4.1 public Object getIdentification()

Return the identification of this Envelope object. An identification may be
of any Java type. The type must be mutually agreed between the Consumer
and Producer services.

Returns an object which identifies the status item in the address space of the compos-
ite producer, must not be null.
getScope()

108.16.4.2 public String getScope()

Return the scope name of this Envelope object. Scope names are used to
restrict the communication between the Producer and Consumer services.
Only Envelopes objects with a scope name that is permitted for the Producer
and the Consumer services must be passed through a Wire object.

Returns the security scope for the status item, must not be null.
getValue()

108.16.4.3 public Object getValue()

Return the value associated with this Envelope object.

Returns the value of the status item, or null when no item is associated with this ob-
ject.
Producer

108.16.5 public interface Producer
Data Producer, a service that can generate values to be used by
Consumer [p.175] services.

Service objects registered under the Producer interface are expected to pro-
duce values (internally generated or from external sensors). The value can
be of different types. When delivering a value to a Wire object, the Producer
service should coerce the value to be an instance of one of the types speci-
fied by Wire.getF lavors [p.179] . The classes are specified in order of prefer-
ence.

When the data represented by the Producer object changes, this object
should send the updated value by calling the update method on each of
Wire objects passed in the most recent call to this object’s
consumersConnected [p.178] method. These Wire objects will pass the
value on to the associated Consumer service object.
OSGi Service Platform Release 4 177-432

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0
The Producer service may use the information in the Wire object’s proper-
ties to schedule the delivery of values to the Wire object.

Producer service objects must register with a service.pid and a
WireConstants.WIREADMIN_PRODUCER_FLAVORS [p.190] property. It is
recommended that a Producer service object also registers with a ser-
vice.description property. Producer service objects must register with a
WireConstants.WIREADMIN_PRODUCER_FILTERS [p.190] property if the
Producer service will be performing filtering instead of the Wire object.

If an exception is thrown by a Producer object method, a WireAdminEvent
of type WireAdminEvent .PRODUCER_EXCEPTION [p.185] is broadcast by the
Wire Admin service.

Security Considerations. Data producing bundles will require ServicePer-
mission[Producer,REGISTER] to register a Producer service. In general, only
the Wire Admin service should have ServicePermission[Producer,GET].
Thus only the Wire Admin service may directly call a Producer service. Care
must be taken in the sharing of Wire objects with other bundles.

Producer services must be registered with scope names when they can send
different types of objects (composite) to the Consumer service. The Producer
service should have WirePermission for each of these scope names.
consumersConnected(Wire[])

108.16.5.1 public void consumersConnected(Wire[] wires)

wires An array of the current and complete list of Wire objects to which this Pro-
ducer service is connected. May be null if the Producer is not currently con-
nected to any Wire objects.

Update the list of Wire objects to which this Producer object is connected.

This method is called when the Producer service is first registered and subse-
quently whenever a Wire associated with this Producer becomes connected,
is modified or becomes disconnected.

The Wire Admin service must call this method asynchronously. This
implies that implementors of a Producer service can be assured that the call-
back will not take place during registration when they execute the registra-
tion in a synchronized method.
polled(Wire)

108.16.5.2 public Object polled(Wire wire)

wire The Wire object which is polling this service.

Return the current value of this Producer object.

This method is called by a Wire object in response to the Consumer service
calling the Wire object’s poll method. The Producer should coerce the value
to be an instance of one of the types specified by Wire.getF lavors [p.179] .
The types are specified in order of of preference. The returned value should
be as new or newer than the last value furnished by this object.

Note: This method may be called by a Wire object prior to this object being
notified that it is connected to that Wire object (via the
consumersConnected [p.178] method).

If the Producer service returns an Envelope object that has an unpermitted
scope name, then the Wire object must ignore (or remove) the transfer.
178-432 OSGi Service Platform Release 4

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin
If the Wire object has a scope set, the return value must be an array of Enve-
lope objects (Envelope[]). The Wire object must have removed any Envelope
objects that have a scope name that is not in the Wire object’s scope.

Returns The current value of the Producer service or null if the value cannot be co-
erced into a compatible type. Or an array of Envelope objects.
Wire

108.16.6 public interface Wire
A connection between a Producer service and a Consumer service.

A Wire object connects a Producer service to a Consumer service. Both the
Producer and Consumer services are identified by their unique service.pid
values. The Producer and Consumer services may communicate with each
other via Wire objects that connect them. The Producer service may send
updated values to the Consumer service by calling the update [p.181]
method. The Consumer service may request an updated value from the Pro-
ducer service by calling the poll [p.181] method.

A Producer service and a Consumer service may be connected through mul-
tiple Wire objects.

Security Considerations. Wire objects are available to Producer and Con-
sumer services connected to a given Wire object and to bundles which can
access the WireAdmin service. A bundle must have ServicePermis-
sion[WireAdmin,GET] to get the WireAdmin service to access all Wire
objects. A bundle registering a Producer service or a Consumer service must
have the appropriate ServicePermission[Consumer|Producer,REGISTER] to
register the service and will be passed Wire objects when the service object’s
consumersConnected or producersConnected method is called.

Scope. Each Wire object can have a scope set with the setScope method. This
method should be called by a Consumer service when it assumes a Producer
service that is composite (supports multiple information items). The names
in the scope must be verified by the Wire object before it is used in commu-
nication. The semantics of the names depend on the Producer service and
must not be interpreted by the Wire Admin service.
getFlavors()

108.16.6.1 public Class[] getFlavors()

Return the list of data types understood by the Consumer service connected
to this Wire object. Note that subclasses of the classes in this list are accept-
able data types as well.

The list is the value of the
WireConstants.WIREADMIN_CONSUMER_FLAVORS [p.188] service property
of the Consumer service object connected to this object. If no such property
was registered or the type of the property value is not Class[], this method
must return null.

Returns An array containing the list of classes understood by the Consumer service
or null if the Wire is not connected, or the consumer did not register a
WireConstants.WIREADMIN_CONSUMER_FLAVORS [p.188] property or the
value of the property is not of type Class[].
getLastValue()

108.16.6.2 public Object getLastValue()

Return the last value sent through this Wire object.
OSGi Service Platform Release 4 179-432

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0
The returned value is the most recent, valid value passed to the
update [p.181] method or returned by the pol l[p.181] method of this object. If
filtering is performed by this Wire object, this methods returns the last
value provided by the Producer service. This value may be an Envelope[]
when the Producer service uses scoping. If the return value is an Envelope
object (or array), it must be verified that the Consumer service has the
proper WirePermission to see it.

Returns The last value passed though this Wire object or null if no valid values have
been passed or the Consumer service has no permission.
getProperties()

108.16.6.3 public Dictionary getProperties()

Return the wire properties for this Wire object.

Returns The properties for this Wire object. The returned Dictionary must be read on-
ly.
getScope()

108.16.6.4 public String[] getScope()

Return the calculated scope of this Wire object. The purpose of the Wire
object’s scope is to allow a Producer and/or Consumer service to produce/
consume different types over a single Wire object (this was deemed neces-
sary for efficiency reasons). Both the Consumer service and the Producer ser-
vice must set an array of scope names (their scope) with the service
registration property WIREADMIN_PRODUCER_SCOPE, or
WIREADMIN_CONSUMER_SCOPE when they can produce multiple types.
If a Producer service can produce different types, it should set this property
to the array of scope names it can produce, the Consumer service must set
the array of scope names it can consume. The scope of a Wire object is
defined as the intersection of permitted scope names of the Producer service
and Consumer service.

If neither the Consumer, or the Producer service registers scope names with
its service registration, then the Wire object’s scope must be null.

The Wire object’s scope must not change when a Producer or Consumer ser-
vices modifies its scope.

A scope name is permitted for a Producer service when the registering bun-
dle has WirePermission[name,PRODUCE], and for a Consumer service when
the registering bundle has WirePermission[name,CONSUME].

If either Consumer service or Producer service has not set a
WIREADMIN_*_SCOPE property, then the returned value must be null.

If the scope is set, the Wire object must enforce the scope names when Enve-
lope objects are used as a parameter to update or returned from the poll
method. The Wire object must then remove all Envelope objects with a
scope name that is not permitted.

Returns A list of permitted scope names or null if the Produce or Consumer service
has set no scope names.
hasScope(String)

108.16.6.5 public boolean hasScope(String name)

name The scope name

Return true if the given name is in this Wire object’s scope.

Returns true if the name is listed in the permitted scope names
180-432 OSGi Service Platform Release 4

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin
isConnected()

108.16.6.6 public boolean isConnected()

Return the connection state of this Wire object.

A Wire is connected after the Wire Admin service receives notification that
the Producer service and the Consumer service for this Wire object are both
registered. This method will return true prior to notifying the Producer and
Consumer services via calls to their respective consumersConnected and
producersConnected methods.

A WireAdminEvent of type WireAdminEvent .WIRE_CONNECTED [p.185]
must be broadcast by the Wire Admin service when the Wire becomes con-
nected.

A Wire object is disconnected when either the Consumer or Producer ser-
vice is unregistered or the Wire object is deleted.

A WireAdminEvent of type
WireAdminEvent .WIRE_DISCONNECTED [p.185] must be broadcast by the
Wire Admin service when the Wire becomes disconnected.

Returns true if both the Producer and Consumer for this Wire object are connected to
the Wire object; false otherwise.
isValid()

108.16.6.7 public boolean isValid()

Return the state of this Wire object.

A connected Wire must always be disconnected before becoming invalid.

Returns false if this Wire object is invalid because it has been deleted via
WireAdmin.deleteWire [p.183] ; true otherwise.
poll()

108.16.6.8 public Object poll()

Poll for an updated value.

This methods is normally called by the Consumer service to request an
updated value from the Producer service connected to this Wire object. This
Wire object will call the Producer .pol led [p.178] method to obtain an
updated value. If this Wire object is not connected, then the Producer ser-
vice must not be called.

If this Wire object has a scope, then this method must return an array of
Envelope objects. The objects returned must match the scope of this object.
The Wire object must remove all Envelope objects with a scope name that is
not in the Wire object’s scope. Thus, the list of objects returned must only
contain Envelope objects with a permitted scope name. If the array becomes
empty, null must be returned.

A WireAdminEvent of type WireAdminEvent .WIRE_TRACE [p.186] must be
broadcast by the Wire Admin service after the Producer service has been
successfully called.

Returns A value whose type should be one of the types returned by getF lavors [p.179]
,Envelope[], or null if the Wire object is not connected, the Producer service
threw an exception, or the Producer service returned a value which is not an
instance of one of the types returned by getF lavors [p.179] .
update(Object)
OSGi Service Platform Release 4 181-432

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0
108.16.6.9 public void update(Object value)

value The updated value. The value should be an instance of one of the types re-
turned by getFlavors [p.179] .

Update the value.

This methods is called by the Producer service to notify the Consumer ser-
vice connected to this Wire object of an updated value.

If the properties of this Wire object contain a
WireConstants.WIREADMIN_FILTER [p.189] property, then filtering is per-
formed. If the Producer service connected to this Wire object was registered
with the service property
WireConstants.WIREADMIN_PRODUCER_FILTERS [p.190] , the Producer ser-
vice will perform the filtering according to the rules specified for the filter.
Otherwise, this Wire object will perform the filtering of the value.

If no filtering is done, or the filter indicates the updated value should be
delivered to the Consumer service, then this Wire object must call the
Consumer.updated [p.176] method with the updated value. If this Wire
object is not connected, then the Consumer service must not be called and
the value is ignored.

If the value is an Envelope object, and the scope name is not permitted, then
the Wire object must ignore this call and not transfer the object to the Con-
sumer service.

A WireAdminEvent of type WireAdminEvent .WIRE_TRACE [p.186] must be
broadcast by the Wire Admin service after the Consumer service has been
successfully called.

See Also WireConstants.WIREADMIN_FILTER[p.189]
WireAdmin

108.16.7 public interface WireAdmin
Wire Administration service.

This service can be used to create Wire objects connecting a Producer ser-
vice and a Consumer service. Wire objects also have wire properties that
may be specified when a Wire object is created. The Producer and Consumer
services may use the Wire object’s properties to manage or control their
interaction. The use of Wire object’s properties by a Producer or Consumer
services is optional.

Security Considerations. A bundle must have ServicePermission[WireAd-
min,GET] to get the Wire Admin service to create, modify, find, and delete
Wire objects.
createWire(String,String,Dictionary)

108.16.7.1 public Wire createWire(String producerPID, String consumerPID,
Dictionary properties)

producerPID The service.pid of the Producer service to be connected to the Wire object.

consumerPID The service.pid of the Consumer service to be connected to the Wire object.

properties The Wire object’s properties. This argument may be null if the caller does not
wish to define any Wire object’s properties.
182-432 OSGi Service Platform Release 4

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin
Create a new Wire object that connects a Producer service to a Consumer
service. The Producer service and Consumer service do not have to be regis-
tered when the Wire object is created.

The Wire configuration data must be persistently stored. All Wire connec-
tions are reestablished when the WireAdmin service is registered. A Wire
can be permanently removed by using the deleteWire [p.183] method.

The Wire object’s properties must have case insensitive String objects as
keys (like the Framework). However, the case of the key must be preserved.

The WireAdmin service must automatically add the following Wire proper-
ties:

• WireConstants.WIREADMIN_PID [p.189] set to the value of the Wire
object’s persistent identity (PID). This value is generated by the Wire
Admin service when a Wire object is created.

• WireConstants.WIREADMIN_PRODUCER_PID [p.190] set to the value of
Producer service’s PID.

• WireConstants.WIREADMIN_CONSUMER_PID [p.188] set to the value of
Consumer service’s PID.

If the properties argument already contains any of these keys, then the sup-
plied values are replaced with the values assigned by the Wire Admin ser-
vice.

The Wire Admin service must broadcast a WireAdminEvent of type
WireAdminEvent .WIRE_CREATED [p.185] after the new Wire object becomes
available from getWires [p.183] .

Returns The Wire object for this connection.

Throws IllegalArgumentException – If properties contains invalid wire types or
case variants of the same key name.
deleteWire(Wire)

108.16.7.2 public void deleteWire(Wire wire)

wire The Wire object which is to be deleted.

Delete a Wire object.

The Wire object representing a connection between a Producer service and a
Consumer service must be removed. The persistently stored configuration
data for the Wire object must destroyed. The Wire object’s method
Wire. isVal id [p.181] will return false after it is deleted.

The Wire Admin service must broadcast a WireAdminEvent of type
WireAdminEvent .WIRE_DELETED [p.185] after the Wire object becomes
invalid.
getWires(String)

108.16.7.3 public Wire[] getWires(String filter) throws InvalidSyntaxException

filter Filter string to select Wire objects or null to select all Wire objects.

Return the Wire objects that match the given filter.

The list of available Wire objects is matched against the specified filter.Wire
objects which match the filter must be returned. These Wire objects are not
necessarily connected. The Wire Admin service should not return invalid
Wire objects, but it is possible that a Wire object is deleted after it was
placed in the list.
OSGi Service Platform Release 4 183-432

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0
The filter matches against the Wire object’s properties including
WireConstants.WIREADMIN_PRODUCER_PID [p.190] ,
WireConstants.WIREADMIN_CONSUMER_PID [p.188] and
WireConstants.WIREADMIN_PID [p.189] .

Returns An array of Wire objects which match the filter or null if no Wire objects
match the filter.

Throws InvalidSyntaxException – If the specified filter has an invalid syntax.

See Also org.osgi.framework.Filter
updateWire(Wire,Dictionary)

108.16.7.4 public void updateWire(Wire wire, Dictionary properties)

wire The Wire object which is to be updated.

properties The new Wire object’s properties or null if no properties are required.

Update the properties of a Wire object. The persistently stored configura-
tion data for the Wire object is updated with the new properties and then
the Consumer and Producer services will be called at the respective
Consumer.producersConnected [p.176] and
Producer.consumersConnected [p.178] methods.

The Wire Admin service must broadcast a WireAdminEvent of type
WireAdminEvent .WIRE_UPDATED [p.186] after the updated properties are
available from the Wire object.

Throws IllegalArgumentException – If properties contains invalid wire types or
case variants of the same key name.
WireAdminEvent

108.16.8 public class WireAdminEvent
A Wire Admin Event.

WireAdminEvent objects are delivered to all registered WireAdminListener
service objects which specify an interest in the WireAdminEvent type.
Events must be delivered in chronological order with respect to each lis-
tener. For example, a WireAdminEvent of type WIRE_CONNECTED [p.185]
must be delivered before a WireAdminEvent of type
WIRE_DISCONNECTED [p.185] for a particular Wire object.

A type code is used to identify the type of event. The following event types
are defined:

• WIRE_CREATED [p.185]
• WIRE_CONNECTED [p.185]
• WIRE_UPDATED [p.186]
• WIRE_TRACE [p.186]
• WIRE_DISCONNECTED [p.185]
• WIRE_DELETED [p.185]
• PRODUCER_EXCEPTION [p.185]
• CONSUMER_EXCEPTION [p.185]

Event type values must be unique and disjoint bit values. Event types must
be defined as a bit in a 32 bit integer and can thus be bitwise OR’ed together.

Security Considerations. WireAdminEvent objects contain Wire objects.
Care must be taken in the sharing of Wire objects with other bundles.

See Also WireAdminListener[p.187]
184-432 OSGi Service Platform Release 4

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin
CONSUMER_EXCEPTION

108.16.8.1 public static final int CONSUMER_EXCEPTION = 2

A Consumer service method has thrown an exception.

This WireAdminEvent type indicates that a Consumer service method has
thrown an exception. The WireAdminEvent.getThrowable [p.186] method
will return the exception that the Consumer service method raised.

The value of CONSUMER_EXCEPTION is 0x00000002.
PRODUCER_EXCEPTION

108.16.8.2 public static final int PRODUCER_EXCEPTION = 1

A Producer service method has thrown an exception.

This WireAdminEvent type indicates that a Producer service method has
thrown an exception. The WireAdminEvent.getThrowable [p.186] method
will return the exception that the Producer service method raised.

The value of PRODUCER_EXCEPTION is 0x00000001.
WIRE_CONNECTED

108.16.8.3 public static final int WIRE_CONNECTED = 32

The WireAdminEvent type that indicates that an existing Wire object has
become connected. The Consumer object and the Producer object that are
associated with the Wire object have both been registered and the Wire
object is connected. See Wire. isConnected [p.181] for a description of the
connected state. This event may come before the producersConnected and
consumersConnected method have returned or called to allow synchronous
delivery of the events. Both methods can cause other WireAdminEvent s to
take place and requiring this event to be send before these methods are
returned would mandate asynchronous delivery.

The value of WIRE_CONNECTED is 0x00000020.
WIRE_CREATED

108.16.8.4 public static final int WIRE_CREATED = 4

A Wire has been created.

This WireAdminEvent type that indicates that a new Wire object has been
created. An event is broadcast when WireAdmin .createWire [p.182] is called.
The WireAdminEvent.getWire [p.187] method will return the Wire object
that has just been created.

The value of WIRE_CREATED is 0x00000004.
WIRE_DELETED

108.16.8.5 public static final int WIRE_DELETED = 16

A Wire has been deleted.

This WireAdminEvent type that indicates that an existing wire has been
deleted. An event is broadcast when WireAdmin.deleteWire [p.183] is called
with a valid wire. WireAdminEvent.getWire [p.187] will return the Wire
object that has just been deleted.

The value of WIRE_DELETED is 0x00000010.
WIRE_DISCONNECTED
OSGi Service Platform Release 4 185-432

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0
108.16.8.6 public static final int WIRE_DISCONNECTED = 64

The WireAdminEvent type that indicates that an existing Wire object has
become disconnected. The Consumer object or/and Producer object is/are
unregistered breaking the connection between the two. See
Wire. isConnected [p.181] for a description of the connected state.

The value of WIRE_DISCONNECTED is 0x00000040.
WIRE_TRACE

108.16.8.7 public static final int WIRE_TRACE = 128

The WireAdminEvent type that indicates that a new value is transferred
over the Wire object. This event is sent after the Consumer service has been
notified by calling the Consumer .updated [p.176] method or the Consumer
service requested a new value with the Wire.poll [p.181] method. This is an
advisory event meaning that when this event is received, another update
may already have occurred and this the Wire.getLastValue [p.179] method
returns a newer value then the value that was communicated for this event.

The value of WIRE_TRACE is 0x00000080.
WIRE_UPDATED

108.16.8.8 public static final int WIRE_UPDATED = 8

A Wire has been updated.

This WireAdminEvent type that indicates that an existing Wire object has
been updated with new properties. An event is broadcast when
WireAdmin.updateWire [p.184] is called with a valid wire. The
WireAdminEvent .getWire [p.187] method will return the Wire object that
has just been updated.

The value of WIRE_UPDATED is 0x00000008.
WireAdminEvent(ServiceReference,int,Wire,Throwable)

108.16.8.9 public WireAdminEvent(ServiceReference reference, int type, Wire
wire, Throwable exception)

reference The ServiceReference object of the Wire Admin service that created this
event.

type The event type. See getType [p.187] .

wire The Wire object associated with this event.

exception An exception associated with this event. This may be null if no exception is
associated with this event.

Constructs a WireAdminEvent object from the given ServiceReference
object, event type, Wire object and exception.
getServiceReference()

108.16.8.10 public ServiceReference getServiceReference()

Return the ServiceReference object of the Wire Admin service that created
this event.

Returns The ServiceReference object for the Wire Admin service that created this
event.
getThrowable()

108.16.8.11 public Throwable getThrowable()

Returns the exception associated with the event, if any.

Returns An exception or null if no exception is associated with this event.
186-432 OSGi Service Platform Release 4

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin
getType()

108.16.8.12 public int getType()

Return the type of this event.

The type values are:

• WIRE_CREATED [p.185]
• WIRE_CONNECTED [p.185]
• WIRE_UPDATED [p.186]
• WIRE_TRACE [p.186]
• WIRE_DISCONNECTED [p.185]
• WIRE_DELETED [p.185]
• PRODUCER_EXCEPTION [p.185]
• CONSUMER_EXCEPTION [p.185]

Returns The type of this event.
getWire()

108.16.8.13 public Wire getWire()

Return the Wire object associated with this event.

Returns The Wire object associated with this event or null when no Wire object is as-
sociated with the event.
WireAdminListener

108.16.9 public interface WireAdminListener
Listener for Wire Admin Events.

WireAdminListener objects are registered with the Framework service reg-
istry and are notified with a WireAdminEvent object when an event is
broadcast.

WireAdminListener objects can inspect the received WireAdminEvent
object to determine its type, the Wire object with which it is associated, and
the Wire Admin service that broadcasts the event.

WireAdminListener objects must be registered with a service property
WireConstants.WIREADMIN_EVENTS [p.188] whose value is a bitwise OR of
all the event types the listener is interested in receiving.

For example:

Integer mask = new Integer(WIRE_TRACE | WIRE_CONNECTED |
WIRE_DISCONNECTED);
Hashtable ht = new Hashtable();
ht.put(WIREADMIN_EVENTS, mask);
context.registerService(WireAdminListener.class.getName(),

this, ht);

If a WireAdminListener object is registered without a service property
WireConstants.WIREADMIN_EVENTS [p.188] , then the WireAdminListener
will receive no events.

Security Considerations. Bundles wishing to monitor WireAdminEvent
objects will require ServicePermission[WireAdminListener,REGISTER] to
register a WireAdminListener service. Since WireAdminEvent objects con-
tain Wire objects, care must be taken in assigning permission to register a
WireAdminListener service.

See Also WireAdminEvent[p.184]
wireAdminEvent(WireAdminEvent)
OSGi Service Platform Release 4 187-432

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0
108.16.9.1 public void wireAdminEvent(WireAdminEvent event)

event The WireAdminEvent object.

Receives notification of a broadcast WireAdminEvent object. The event
object will be of an event type specified in this WireAdminListener service’s
WireConstants.WIREADMIN_EVENTS [p.188] service property.
WireConstants

108.16.10 public interface WireConstants
Defines standard names for Wire properties, wire filter attributes, Con-
sumer and Producer service properties.
WIREADMIN_CONSUMER_COMPOSITE

108.16.10.1 public static final String WIREADMIN_CONSUMER_COMPOSITE =
“wireadmin.consumer.composite”

A service registration property for a Consumer service that is composite. It
contains the names of the composite Producer services it can cooperate
with. Inter-operability exists when any name in this array matches any
name in the array set by the Producer service. The type of this property must
be String[].
WIREADMIN_CONSUMER_FLAVORS

108.16.10.2 public static final String WIREADMIN_CONSUMER_FLAVORS =
“wireadmin.consumer.flavors”

Service Registration property (named wireadmin.consumer.flavors) specify-
ing the list of data types understood by this Consumer service.

The Consumer service object must be registered with this service property.
The list must be in the order of preference with the first type being the most
preferred. The value of the property must be of type Class[].
WIREADMIN_CONSUMER_PID

108.16.10.3 public static final String WIREADMIN_CONSUMER_PID =
“wireadmin.consumer.pid”

Wire property key (named wireadmin.consumer.pid) specifying the ser-
vice.pid of the associated Consumer service.

This wire property is automatically set by the Wire Admin service. The
value of the property must be of type String.
WIREADMIN_CONSUMER_SCOPE

108.16.10.4 public static final String WIREADMIN_CONSUMER_SCOPE =
“wireadmin.consumer.scope”

Service registration property key (named wireadmin.consumer.scope) spec-
ifying a list of names that may be used to define the scope of this Wire
object. A Consumer service should set this service property when it can pro-
duce more than one kind of value. This property is only used during regis-
tration, modifying the property must not have any effect of the Wire
object’s scope. Each name in the given list mist have WirePermission[name,
CONSUME] or else is ignored. The type of this service registration property
must be String[].

See Also Wire.getScope[p.180] , WIREADMIN_PRODUCER_SCOPE[p.190]
WIREADMIN_EVENTS
188-432 OSGi Service Platform Release 4

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin
108.16.10.5 public static final String WIREADMIN_EVENTS = “wireadmin.events”

Service Registration property (named wireadmin.events) specifying the
WireAdminEvent type of interest to a Wire Admin Listener service. The
value of the property is a bitwise OR of all the WireAdminEvent types the
Wire Admin Listener service wishes to receive and must be of type Integer.

See Also WireAdminEvent[p.184]
WIREADMIN_FILTER

108.16.10.6 public static final String WIREADMIN_FILTER = “wireadmin.filter”

Wire property key (named wireadmin.filter) specifying a filter used to con-
trol the delivery rate of data between the Producer and the Consumer ser-
vice.

This property should contain a filter as described in the Filter class. The fil-
ter can be used to specify when an updated value from the Producer service
should be delivered to the Consumer service. In many cases the Consumer
service does not need to receive the data with the same rate that the Pro-
ducer service can generate data. This property can be used to control the
delivery rate.

The filter can use a number of pre-defined attributes that can be used to con-
trol the delivery of new data values. If the filter produces a match upon the
wire filter attributes, the Consumer service should be notifed of the updated
data value.

If the Producer service was registered with the
WIREADMIN_PRODUCER_FILTERS [p.190] service property indicating that
the Producer service will perform the data filtering then the Wire object will
not perform data filtering. Otherwise, the Wire object must perform basic
filtering. Basic filtering includes supporting the following standard wire fil-
ter attributes:

• WIREVALUE_CURRENT [p.190] - Current value
• WIREVALUE_PREVIOUS [p.191] - Previous value
• WIREVALUE_DELTA_ABSOLUTE [p.191] - Absolute delta
• WIREVALUE_DELTA_RELATIVE [p.191] - Relative delta
• WIREVALUE_ELAPSED [p.191] - Elapsed time

See Also org.osgi.framework.Filter
WIREADMIN_PID

108.16.10.7 public static final String WIREADMIN_PID = “wireadmin.pid”

Wire property key (named wireadmin.pid) specifying the persistent iden-
tity (PID) of this Wire object.

Each Wire object has a PID to allow unique and persistent identification of a
specific Wire object. The PID must be generated by the WireAdmin [p.182]
service when the Wire object is created.

This wire property is automatically set by the Wire Admin service. The
value of the property must be of type String.
WIREADMIN_PRODUCER_COMPOSITE

108.16.10.8 public static final String WIREADMIN_PRODUCER_COMPOSITE =
OSGi Service Platform Release 4 189-432

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0
“wireadmin.producer.composite”

A service registration property for a Producer service that is composite. It
contains the names of the composite Consumer services it can inter-operate
with. Inter-operability exists when any name in this array matches any
name in the array set by the Consumer service. The type of this property
must be String[].
WIREADMIN_PRODUCER_FILTERS

108.16.10.9 public static final String WIREADMIN_PRODUCER_FILTERS =
“wireadmin.producer.filters”

Service Registration property (named wireadmin.producer.filters). A Pro-
ducer service registered with this property indicates to the Wire Admin ser-
vice that the Producer service implements at least the filtering as described
for the WIREADMIN_FILTER [p.189] property. If the Producer service is not
registered with this property, the Wire object must perform the basic filter-
ing as described in WIREADMIN_FILTER [p.189] .

The type of the property value is not relevant. Only its presence is relevant.
WIREADMIN_PRODUCER_FLAVORS

108.16.10.10 public static final String WIREADMIN_PRODUCER_FLAVORS =
“wireadmin.producer.flavors”

Service Registration property (named wireadmin.producer.flavors) specify-
ing the list of data types available from this Producer service.

The Producer service object should be registered with this service property.

The value of the property must be of type Class[].
WIREADMIN_PRODUCER_PID

108.16.10.11 public static final String WIREADMIN_PRODUCER_PID =
“wireadmin.producer.pid”

Wire property key (named wireadmin.producer.pid) specifying the ser-
vice.pid of the associated Producer service.

This wire property is automatically set by the WireAdmin service. The
value of the property must be of type String.
WIREADMIN_PRODUCER_SCOPE

108.16.10.12 public static final String WIREADMIN_PRODUCER_SCOPE =
“wireadmin.producer.scope”

Service registration property key (named wireadmin.producer.scope) speci-
fying a list of names that may be used to define the scope of this Wire object.
A Producer service should set this service property when it can produce
more than one kind of value. This property is only used during registration,
modifying the property must not have any effect of the Wire object’s scope.
Each name in the given list mist have WirePermission[name,PRODUCE] or
else is ignored. The type of this service registration property must be
String[].

See Also Wire.getScope[p.180] , WIREADMIN_CONSUMER_SCOPE[p.188]
WIREADMIN_SCOPE_ALL

108.16.10.13 public static final String WIREADMIN_SCOPE_ALL

Matches all scope names.
WIREVALUE_CURRENT
190-432 OSGi Service Platform Release 4

Wire Admin Service Specification Version 1.0 org.osgi.service.wireadmin
108.16.10.14 public static final String WIREVALUE_CURRENT = “wirevalue.current”

Wire object’s filter attribute (named wirevalue.current) representing the
current value.
WIREVALUE_DELTA_ABSOLUTE

108.16.10.15 public static final String WIREVALUE_DELTA_ABSOLUTE =
“wirevalue.delta.absolute”

Wire object’s filter attribute (named wirevalue.delta.absolute) representing
the absolute delta. The absolute (always positive) difference between the
last update and the current value (only when numeric). This attribute must
not be used when the values are not numeric.
WIREVALUE_DELTA_RELATIVE

108.16.10.16 public static final String WIREVALUE_DELTA_RELATIVE =
“wirevalue.delta.relative”

Wire object’s filter attribute (named wirevalue.delta.relative) representing
the relative delta. The relative difference is |previous-current |/| current| (only
when numeric). This attribute must not be used when the values are not
numeric.
WIREVALUE_ELAPSED

108.16.10.17 public static final String WIREVALUE_ELAPSED = “wirevalue.elapsed”

Wire object’s filter attribute (named wirevalue.elapsed) representing the
elapsed time, in ms, between this filter evaluation and the last update of the
Consumer service.
WIREVALUE_PREVIOUS

108.16.10.18 public static final String WIREVALUE_PREVIOUS = “wirevalue.previous”

Wire object’s filter attribute (named wirevalue.previous) representing the
previous value.
WirePermission

108.16.11 public final class WirePermission
extends BasicPermission
Permission for the scope of a Wire object. When a Envelope object is used
for communication with the poll or update method, and the scope is set,
then the Wire object must verify that the Consumer service has WirePer-
mission[name,CONSUME] and the Producer service has WirePermis-
sion[name,PRODUCE] for all names in the scope.

The names are compared with the normal rules for permission names. This
means that they may end with a “*” to indicate wildcards. E.g. Door.* indi-
cates all scope names starting with the string “Door”. The last period is
required due to the implementations of the BasicPermission class.
CONSUME

108.16.11.1 public static final String CONSUME = “consume”

The action string for the CONSUME action: value is “consume”.
PRODUCE

108.16.11.2 public static final String PRODUCE = “produce”

The action string for the PRODUCE action: value is “produce”.
WirePermission(String,String)

108.16.11.3 public WirePermission(String name, String actions)

name Wire name.
OSGi Service Platform Release 4 191-432

org.osgi.service.wireadmin Wire Admin Service Specification Version 1.0
actions produce, consume (canonical order).

Create a new WirePermission with the given name (may be wildcard) and
actions.
equals(Object)

108.16.11.4 public boolean equals(Object obj)

obj The object to test for equality.

Determines the equalty of two WirePermission objects. Checks that speci-
fied object has the same name and actions as this WirePermission object.

Returns true if obj is a WirePermission, and has the same name and actions as this
WirePermission object; false otherwise.
getActions()

108.16.11.5 public String getActions()

Returns the canonical string representation of the actions. Always returns
present actions in the following order: produce, consume.

Returns The canonical string representation of the actions.
hashCode()

108.16.11.6 public int hashCode()

Returns the hash code value for this object.

Returns Hash code value for this object.
implies(Permission)

108.16.11.7 public boolean implies(Permission p)

p The permission to check against.

Checks if this WirePermission object implies the specified permission.

More specifically, this method returns true if:

• p is an instanceof the WirePermission class,
• p ‘s actions are a proper subset of this object’s actions, and
• p ‘s name is implied by this object’s name. For example, java.* implies

java.home.

Returns true if the specified permission is implied by this object; false otherwise.
newPermissionCollection()

108.16.11.8 public PermissionCollection newPermissionCollection()

Returns a new PermissionCollection object for storing WirePermission
objects.

Returns A new PermissionCollection object suitable for storing WirePermission ob-
jects.
toString()

108.16.11.9 public String toString()

Returns a string describing this WirePermission. The convention is to spec-
ify the class name, the permission name, and the actions in the following
format: ‘(org.osgi.service.wireadmin.WirePermission “name” “actions”)’.

Returns information about this Permission object.
192-432 OSGi Service Platform Release 4

Wire Admin Service Specification Version 1.0 References
108.17 References
[26] Design Patterns

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Addison
Wesley, ISBN 0-201-63361
OSGi Service Platform Release 4 193-432

References Wire Admin Service Specification Version 1.0
194-432 OSGi Service Platform Release 4

User Admin Service Specification Version 1.1 Introduction
107 User Admin Service
Specification
Version 1.1

107.1 Introduction
OSGi Service Platforms are often used in places where end users or devices
initiate actions. These kinds of actions inevitably create a need for authenti-
cating the initiator. Authenticating can be done in many different ways,
including with passwords, one-time token cards, bio-metrics, and certifi-
cates.

Once the initiator is authenticated, it is necessary to verify that this princi-
pal is authorized to perform the requested action. This authorization can
only be decided by the operator of the OSGi environment, and thus requires
administration.

The User Admin service provides this type of functionality. Bundles can use
the User Admin service to authenticate an initiator and represent this
authentication as an Authorizat ion object. Bundles that execute actions on
behalf of this user can use the Authorization object to verify if that user is
authorized.

The User Admin service provides authorization based on who runs the code,
instead of using the Java code-based permission model. See [27] The Java
Security Architecture for JDK 1.2. It performs a role similar to [28] Java Authen-
tication and Authorization Service.

107.1.1 Essentials
• Authentication – A large number of authentication schemes already exist,

and more will be developed. The User Admin service must be flexible
enough to adapt to the many different authentication schemes that can
be run on a computer system.

• Authorization – All bundles should use the User Admin service to authen-
ticate users and to find out if those users are authorized. It is therefore
paramount that a bundle can find out authorization information with
little effort.

• Security – Detailed security, based on the Framework security model, is
needed to provide safe access to the User Admin service. It should allow
limited access to the credentials and other properties.

• Extensibility – Other bundles should be able to build on the User Admin
service. It should be possible to examine the information from this
service and get real-time notifications of changes.

• Properties – The User Admin service must maintain a persistent database
of users. It must be possible to use this database to hold more infor-
mation about this user.
OSGi Service Platform Release 4 195-432

Introduction User Admin Service Specification Version 1.1
• Administration – Administering authorizations for each possible action
and initiator is time-consuming and error-prone. It is therefore necessary
to have mechanisms to group end users and make it simple to assign
authorizations to all members of a group at one time.

107.1.2 Entities
This Specification defines the following User Admin service entities:

• UserAdmin – This interface manages a database of named roles which
can be used for authorization and authentication purposes.

• Role – This interface exposes the characteristics shared by all roles: a
name, a type, and a set of properties.

• User – This interface (which extends Role) is used to represent any entity
which may have credentials associated with it. These credentials can be
used to authenticate an initiator.

• Group – This interface (which extends User) is used to contain an aggre-
gation of named Role objects (Group or User objects).

• Authorization – This interface encapsulates an authorization context on
which bundles can base authorization decisions.

• UserAdminEvent – This class is used to represent a role change event.
• UserAdminListener – This interface provides a listener for events of type

UserAdminEvent that can be registered as a service.
• UserAdminPermission – This permission is needed to configure and access

the roles managed by a User Admin service.
• Role.USER_ANYONE – This is a special User object that represents any

user, it implies all other User objects. It is also used when a Group is used
with only basic members. The Role .USER_ANYONE is then the only
required member.
196-432 OSGi Service Platform Release 4

User Admin Service Specification Version 1.1 Introduction
Figure 37 User Admin Service, org.osg i. service .useradmin

107.1.3 Operation
An Operator uses the User Admin service to define OSGi Service Platform
users and configure them with properties, credentials, and roles.

A Ro le object represents the initiator of a request (human or otherwise).
This specification defines two types of roles:

• User – A User object can be configured with credentials, such as a
password, and properties, such as address, telephone number, and so on.

• Group – A Group object is an aggregation of basic and required roles. Basic
and required roles are used in the authorization phase.

An OSGi Service Platform can have several entry points, each of which will
be responsible for authenticating incoming requests. An example of an
entry point is the Http Service, which delegates authentication of incoming
requests to the handleSecur ity method of the HttpContext object that was
specified when the target servlet or resource of the request was registered.

The OSGi Service Platform entry points should use the information in the
User Admin service to authenticate incoming requests, such as a password
stored in the private credentials or the use of a certificate.

<<interface>>
UserAdmin

<<interface>>
Role

<<interface>>
Group

UserAdmin
Event

<<interface>>
Authorization

<<interface>>
UserAdmin
Listener

<<interface>>
User

UserAdmin
Permission

UserAdmin
Implementation

Group
ImplementationsUser

ImplementationsRole
Implementation

User Admin
Listener Impl.

Request
Authenticator

Action
implementation

perform action

consult
for authorization

has roles

authenticate

receive
events

send event

has
permission

role name

user database1..n 1

0..n

0..n

0..n

0..n

1..n

0..n

re
qu

ire
d

m
em

be
r

ba
sic

 m
em

be
r

OSGi Service Platform Release 4 197-432

Authentication User Admin Service Specification Version 1.1
A bundle can determine if a request for an action is authorized by looking
for a Role object that has the name of the requested action.

The bundle may execute the action if the Role object representing the initia-
tor implies the Role object representing the requested action.

For example, an initiator Ro le object X implies an action Group object A if:

• X implies at least one of A’s basic members, and
• X implies all of A’s required members.

An initiator Role object X implies an action User object A if:

• A and X are equal.

The Authorization class handles this non-trivial logic. The User Admin ser-
vice can capture the privileges of an authenticated User object into an
Authorizat ion object. The Authorizat ion.hasRole method checks if the
authenticate User object has (or implies) a specified action Role object.

For example, in the case of the Http Service, the HttpContext object can
authenticate the initiator and place an Authorization object in the request
header. The servlet calls the hasRole method on this Author izat ion object to
verify that the initiator has the authority to perform a certain action. See
Authentication on page 23.

107.2 Authentication
The authentication phase determines if the initiator is actually the one it
says it is. Mechanisms to authenticate always need some information
related to the user or the OSGi Service Platform to authenticate an external
user. This information can consist of the following:

• A secret known only to the initiator.
• Knowledge about cards that can generate a unique token.
• Public information like certificates of trusted signers.
• Information about the user that can be measured in a trusted way.
• Other specific information.

107.2.1 Repository
The User Admin service offers a repository of Ro le objects. Each Role object
has a unique name and a set of properties that are readable by anyone, and
are changeable when the changer has the UserAdminPermission . Addition-
ally, User objects, a sub-interface of Ro le , also have a set of private protected
properties called credentials. Credentials are an extra set of properties that
are used to authenticate users and that are protected by
UserAdminPermission .

Properties are accessed with the Role .getProperties() method and creden-
tials with the User.getCredent ia ls ()method. Both methods return a
Dict ionary object containing key/value pairs. The keys are Str ing objects
and the values of the Dictionary object are limited to Str ing or byte[]
objects.
198-432 OSGi Service Platform Release 4

User Admin Service Specification Version 1.1 Authentication
This specification does not define any standard keys for the properties or
credentials. The keys depend on the implementation of the authentication
mechanism and are not formally defined by OSGi specifications.

The repository can be searched for objects that have a unique property (key/
value pair) with the method UserAdmin.getUser(Str ing ,St r ing) . This makes
it easy to find a specific user related to a specific authentication mechanism.
For example, a secure card mechanism that generates unique tokens could
have a serial number identifying the user. The owner of the card could be
found with the method

User owner = useradmin.getUser(
"secure-card-serial", "132456712-1212");

If multiple User objects have the same property (key and value), a nul l is
returned.

There is a convenience method to verify that a user has a credential without
actually getting the credential. This is the User .hasCredent ia l(Str ing,
Object) method.

Access to credentials is protected on a name basis by UserAdminPermiss ion .
Because properties can be read by anyone with access to a User object,
UserAdminPermission only protects change access to properties.

107.2.2 Basic Authentication
The following example shows a very simple authentication algorithm based
on passwords.

The vendor of the authentication bundle uses the property
"com.acme.bas ic- id" to contain the name of a user as it logs in. This prop-
erty is used to locate the User object in the repository. Next, the credential
"com.acme.password" contains the password and is compared to the
entered password. If the password is correct, the User object is returned. In
all other cases a Secur ityExcept ion is thrown.

public User authenticate(
UserAdmin ua, String name, String pwd)

throws SecurityException {
User user = ua.getUser("com.acme.basicid",

username);
if (user == null)

throw new SecurityException("No such user");

if (!user.hasCredential(“com.acme.password”, pwd))
throw new SecurityException(

"Invalid password");
return user;

}

107.2.3 Certificates
Authentication based on certificates does not require a shared secret.
Instead, a certificate contains a name, a public key, and the signature of one
or more signers.
OSGi Service Platform Release 4 199-432

Authorization User Admin Service Specification Version 1.1
The name in the certificate can be used to locate a User object in the reposi-
tory. Locating a User object, however, only identifies the initiator and does
not authenticate it.

1. The first step to authenticate the initiator is to verify that it has the pri-
vate key of the certificate.

2. Next, the User Admin service must verify that it has a User object with
the right property, for example "com.acme.cert i f icate"="Fudd" .

3. The next step is to see if the certificate is signed by a trusted source. The
bundle could use a central list of trusted signers and only accept certifi-
cates signed by those sources. Alternatively, it could require that the cer-
tificate itself is already stored in the repository under a unique key as a
byte[] in the credentials.

4. In any case, once the certificate is verified, the associated User object is
authenticated.

107.3 Authorization
The User Admin service authorization architecture is a role-based model. In
this model, every action that can be performed by a bundle is associated
with a role. Such a role is a Group object (called group from now on) from
the User Admin service repository. For example, if a servlet could be used to
activate the alarm system, there should be a group named
AlarmSystemActivat ion .

The operator can administrate authorizations by populating the group with
User objects (users) and other groups. Groups are used to minimize the
amount of administration required. For example, it is easier to create one
Admin istrators group and add administrative roles to it rather than individ-
ually administer all users for each role. Such a group requires only one
action to remove or add a user as an administrator.

The authorization decision can now be made in two fundamentally differ-
ent ways:

An initiator could be allowed to carry out an action (represented by a Group
object) if it implied any of the Group object’s members. For example, the
AlarmSystemActivat ion Group object contains an Admin istrators and a
Family Group object:

Administrators = { Elmer, Pepe, Bugs }
Family = { Elmer, Pepe, Daffy }

AlarmSystemActivation = { Administrators, Family }

Any of the four members Elmer , Pepe , Daffy , or Bugs can activate the alarm
system.

Alternatively, an initiator could be allowed to perform an action (repre-
sented by a Group object) if it implied all the Group object’s members. In
this case, using the same AlarmSystemAct ivation group, only Elmer and
Pepe would be authorized to activate the alarm system, since Daffy and
Bugs are not members of both the Administrators and Family Group objects.
200-432 OSGi Service Platform Release 4

User Admin Service Specification Version 1.1 Authorization
The User Admin service supports a combination of both strategies by defin-
ing both a set of basic members (any) and a set of required members (all).

Administrators = { Elmer, Pepe, Bugs }
Family = { Elmer, Pepe, Daffy }

AlarmSystemActivation
required = { Administrators }
basic = { Family }

The difference is made when Role objects are added to the Group object. To
add a basic member, use the Group.addMember(Role) method. To add a
required member, use the Group.addRequiredMember(Role) method.

Basic members define the set of members that can get access and required
members reduce this set by requiring the initiator to imply each required
member.

A User object implies a Group object if it implies the following:

• All of the Group’s required members, and
• At least one of the Group’s basic members

A User object always implies itself.

If only required members are used to qualify the implication, then the stan-
dard user Role.USER_ANYONE can be obtained from the User Admin service
and added to the Group object. This Role object is implied by anybody and
therefore does not affect the required members.

107.3.1 The Authorization Object
The complexity of authorization is hidden in an Authorizat ion class. Nor-
mally, the authenticator should retrieve an Author ization object from the
User Admin service by passing the authenticated User object as an argu-
ment. This Author izat ion object is then passed to the bundle that performs
the action. This bundle checks the authorization with the
Author ization.hasRole(Str ing) method. The performing bundle must pass
the name of the action as an argument. The Authorizat ion object checks
whether the authenticated user implies the Role object, specifically a Group
object, with the given name. This is shown in the following example.

public void activateAlarm(Authorization auth) {
if (auth.hasRole("AlarmSystemActivation")) {

// activate the alarm
...

}
else throw new SecurityException(

"Not authorized to activate alarm");
}

107.3.2 Authorization Example
This section demonstrates a possible use of the User Admin service. The ser-
vice has a flexible model and many other schemes are possible.

Assume an Operator installs an OSGi Service Platform. Bundles in this envi-
ronment have defined the following action groups:
OSGi Service Platform Release 4 201-432

Authorization User Admin Service Specification Version 1.1
AlarmSystemControl
InternetAccess
TemperatureControl
PhotoAlbumEdit
PhotoAlbumView
PortForwarding

Installing and uninstalling bundles could potentially extend this set. There-
fore, the Operator also defines a number of groups that can be used to con-
tain the different types of system users.

Administrators
Buddies
Children
Adults
Residents

In a particular instance, the Operator installs it in a household with the fol-
lowing residents and buddies:

Residents: Elmer, Fudd, Marvin, Pepe
Buddies: Daffy, Foghorn

First, the residents and buddies are assigned to the system user groups. Sec-
ond, the user groups need to be assigned to the action groups.

The following tables show how the groups could be assigned.

Table 18 Example Groups with Basic and Required Members

Groups Elmer Fudd Marvin Pepe Daffy Foghorn

Residents Basic Basic Basic Basic - -
Buddies - - - - Basic Basic
Chi ldren - - Basic Basic - -
Adults Basic Basic - - - -
Administrators Basic - - - - -

Table 19 Example Action Groups with their Basic and Required Members

Groups Residents Buddies Children Adults Admin

AlarmSystemCon-
trol

Bas ic - - - Requ ired

InternetAccess Bas ic - - Required -
TemperatureCon-
trol

Bas ic - - Required -

PhotoAlbumEdit Bas ic - Basic Basic -
PhotoAlbumView Bas ic Bas ic - - -
PortForwarding Bas ic - - - Requ ired
202-432 OSGi Service Platform Release 4

User Admin Service Specification Version 1.1 Repository Maintenance
107.4 Repository Maintenance
The UserAdmin interface is a straightforward API to maintain a repository
of User and Group objects. It contains methods to create new Group and
User objects with the createRole(Str ing, in t) method. The method is pre-
pared so that the same signature can be used to create new types of roles in
the future. The interface also contains a method to remove a Role object.

The existing configuration can be obtained with methods that list all Role
objects using a filter argument. This filter, which has the same syntax as the
Framework filter, must only return the Ro le objects for which the filter
matches the properties.

Several utility methods simplify getting User objects depending on their
properties.

107.5 User Admin Events
Changes in the User Admin service can be determined in real time. Each
User Admin service implementation must send a UserAdminEvent object to
any service in the Framework service registry that is registered under the
UserAdminL is tener interface. This event must be send asynchronously
from the cause of the event.

This procedure is demonstrated in the following code sample.

class Listener implements UserAdminListener {
public void roleChanged(UserAdminEvent event) {

...
}

}
public class MyActivator

implements BundleActivator {
public void start(BundleContext context) {

context.registerService(
UserAdminListener.class.getName(),
new Listener(), null);

}
public void stop(BundleContext context) {}

}

It is not necessary to unregister the listener object when the bundle is
stopped because the Framework automatically unregisters it. Once regis-
tered, the UserAdminLis tener object must be notified of all changes to the
role repository.

107.5.1 Event Admin and User Admin Change Events
User admin events are delivered asynchronously to the Event Admin ser-
vice. The topic of a User Admin Event is:

org/osgi/service/useradmin/UserAdmin/<event type>

The following event types are supported:
OSGi Service Platform Release 4 203-432

Security User Admin Service Specification Version 1.1
ROLE_CREATED
ROLE_CHANGED
ROLE_REMOVED

All User Admin Events must have the following properties:

• event – (UserAdminEvent) The event that was broadcast by the User
Admin service.

• role – (Role) The Role object that was created, modified or removed.
• role.name – (String) The name of the role.
• role.type – (In teger) One of ROLE, USER or GROUP .
• service – (ServiceReference) The Service Reference of the User Admin

service.
• service. id – (Long) The User Admin service's ID.
• service.objectClass – (Str ing[]) The User Admin service's object class

(which must include org.osgi .service .useradmin .UserAdmin)
• service .pid – (Str ing) The User Admin service's persistent identity

107.6 Security
The User Admin service is related to the security model of the OSGi Service
Platform, but is complementary to the [27] The Java Security Architecture for
JDK 1.2. The final permission of most code should be the intersection of the
Java 2 Permissions, which are based on the code that is executing, and the
User Admin service authorization, which is based on the user for whom the
code runs.

107.6.1 UserAdminPermission
The User Admin service defines the UserAdminPermiss ion class that can be
used to restrict bundles in accessing credentials. This permission class has
the following actions:

• changeProperty – This permission is required to modify properties. The
name of the permission is the prefix of the property name.

• changeCredent ia l – This action permits changing credentials. The name
of the permission is the prefix of the name of the credential.

• getCredentia l – This action permits getting credentials. The name of the
permission is the prefix of the credential.

If the name of the permission is "admin", it allows the owner to administer
the repository. No action is associated with the permission in that case.

Otherwise, the permission name is used to match the property name. This
name may end with a ".*" string to indicate a wildcard. For example,
com.acme.*matches com.acme. fudd.e lmer and com.acme.bugs .
204-432 OSGi Service Platform Release 4

User Admin Service Specification Version 1.1 Relation to JAAS
107.7 Relation to JAAS
At a glance, the Java Authorization and Authentication Service (JAAS)
seems to be a very suitable model for user administration. The OSGi organi-
zation, however, decided to develop an independent User Admin service
because JAAS was not deemed applicable. The reasons for this include
dependency on J2SE version 1.3 ("JDK 1.3") and existing mechanisms in the
previous OSGi Service Gateway 1.0 specification.

107.7.1 JDK 1.3 Dependencies
The authorization component of JAAS relies on the
java.security .DomainCombiner interface, which provides a means to
dynamically update the Protect ionDomain objects affiliated with an
AccessControlContext object.

This interface was added in JDK 1.3. In the context of JAAS, the
SubjectDomainCombiner object, which implements the DomainCombiner
interface, is used to update ProtectionDomain objects. The permissions of
ProtectionDomain objects depend on where code came from and who
signed it, with permissions based on who is running the code.

Leveraging JAAS would have resulted in user-based access control on the
OSGi Service Platform being available only with JDK 1.3, which was not
deemed acceptable.

107.7.2 Existing OSGi Mechanism
JAAS provides a pluggable authentication architecture, which enables
applications and their underlying authentication services to remain inde-
pendent from each other.

The Http Service already provides a similar feature by allowing servlet and
resource registrations to be supported by an HttpContext object, which uses
a callback mechanism to perform any required authentication checks
before granting access to the servlet or resource. This way, the registering
bundle has complete control on a per-servlet and per-resource basis over
which authentication protocol to use, how the credentials presented by the
remote requestor are to be validated, and who should be granted access to
the servlet or resource.

107.7.3 Future Road Map
In the future, the main barrier of 1.3 compatibility will be removed. JAAS
could then be implemented in an OSGi environment. At that time, the User
Admin service will still be needed and will provide complementary services
in the following ways:

• The authorization component relies on group membership information
to be stored and managed outside JAAS. JAAS does not manage persistent
information, so the User Admin service can be a provider of group infor-
mation when principals are assigned to a Subject object.

• The authorization component allows for credentials to be collected and
verified, but a repository is needed to actually validate the credentials.
OSGi Service Platform Release 4 205-432

Changes User Admin Service Specification Version 1.1
In the future, the User Admin service can act as the back-end database to
JAAS. The only aspect JAAS will remove from the User Admin service is the
need for the Authorizat ion interface.

107.8 Changes
• Ro le .USER_ANYONE string constant added.
• Event Admin mapping added.

107.9 org.osgi.service.useradmin
The OSGi User Admin service Package. Specification Version 1.1.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.useradmin; version=1.1

107.9.1 Summary
• Authorization - The Authorization interface encapsulates an authori-

zation context on which bundles can base authorization decisions,
where appropriate. [p.206]

• Group - A named grouping of roles (Role objects). [p.207]
• Role - The base interface for Role objects managed by the User Admin

service. [p.209]
• User - A User role managed by a User Admin service. [p.210]
• UserAdmin - This interface is used to manage a database of named Role

objects, which can be used for authentication and authorization pur-
poses. [p.211]

• UserAdminEvent - Role change event. [p.213]
• UserAdminListener - Listener for UserAdminEvents. [p.214]
• UserAdminPermission - Permission to configure and access the

Ro le [p.209] objects managed by a User Admin service. [p.215]
Authorization

107.9.2 public interface Authorization
The Authorization interface encapsulates an authorization context on
which bundles can base authorization decisions, where appropriate.

Bundles associate the privilege to access restricted resources or operations
with roles. Before granting access to a restricted resource or operation, a
bundle will check if the Authorization object passed to it possess the
required role, by calling its hasRole method.

Authorization contexts are instantiated by calling the
UserAdmin.getAuthor izat ion [p.212] method.

Trusting Authorization objects

There are no restrictions regarding the creation of Authorization objects.
Hence, a service must only accept Authorization objects from bundles that
has been authorized to use the service using code based (or Java 2) permis-
sions.
206-432 OSGi Service Platform Release 4

User Admin Service Specification Version 1.1 org.osgi.service.useradmin
In some cases it is useful to use ServicePermission to do the code based
access control. A service basing user access control on Authorization objects
passed to it, will then require that a calling bundle has the ServicePermis-
sion to get the service in question. This is the most convenient way. The
OSGi environment will do the code based permission check when the call-
ing bundle attempts to get the service from the service registry.

Example: A servlet using a service on a user’s behalf. The bundle with the
servlet must be given the ServicePermission to get the Http Service.

However, in some cases the code based permission checks need to be more
fine-grained. A service might allow all bundles to get it, but require certain
code based permissions for some of its methods.

Example: A servlet using a service on a user’s behalf, where some service
functionality is open to anyone, and some is restricted by code based per-
missions. When a restricted method is called (e.g., one handing over an
Authorization object), the service explicitly checks that the calling bundle
has permission to make the call.
getName()

107.9.2.1 public String getName()

Gets the name of the User [p.210] that this Authorization context was cre-
ated for.

Returns The name of the User [p.210] object that this Authorization context was cre-
ated for, or null if no user was specified when this Authorization context was
created.
getRoles()

107.9.2.2 public String[] getRoles()

Gets the names of all roles encapsulated by this Authorization context.

Returns The names of all roles encapsulated by this Authorization context, or null if
no roles are in the context. The predefined role user.anyone will not be in-
cluded in this list.
hasRole(String)

107.9.2.3 public boolean hasRole(String name)

name The name of the role to check for.

Checks if the role with the specified name is implied by this Authorization
context.

Bundles must define globally unique role names that are associated with the
privilege of accessing restricted resources or operations. Operators will
grant users access to these resources, by creating a Group [p.207] object for
each role and adding User [p.210] objects to it.

Returns true if this Authorization context implies the specified role, otherwise false.
Group

107.9.3 public interface Group
extends User
A named grouping of roles (Role objects).

Whether or not a given Authorization context implies a Group object
depends on the members of that Group object.
OSGi Service Platform Release 4 207-432

org.osgi.service.useradmin User Admin Service Specification Version 1.1
A Group object can have two kinds of members: basic and required . A Group
object is implied by an Authorization context if all of its required members
are implied and at least one of its basic members is implied.

A Group object must contain at least one basic member in order to be
implied. In other words, a Group object without any basic member roles is
never implied by any Authorization context.

A User object always implies itself.

No loop detection is performed when adding members to Group objects,
which means that it is possible to create circular implications. Loop detec-
tion is instead done when roles are checked. The semantics is that if a role
depends on itself (i.e., there is an implication loop), the role is not implied.

The rule that a Group object must have at least one basic member to be
implied is motivated by the following example:

group foo
required members: marketing
basic members: alice, bob

Privileged operations that require membership in “foo” can be performed
only by “alice” and “bob”, who are in marketing.

If “alice” and “bob” ever transfer to a different department, anybody in mar-
keting will be able to assume the “foo” role, which certainly must be pre-
vented. Requiring that “foo” (or any Group object for that matter) must have
at least one basic member accomplishes that.

However, this would make it impossible for a Group object to be implied by
just its required members. An example where this implication might be use-
ful is the following declaration: “Any citizen who is an adult is allowed to
vote.” An intuitive configuration of “voter” would be:

group voter
required members: citizen, adult

basic members:

However, according to the above rule, the “voter” role could never be
assumed by anybody, since it lacks any basic members. In order to address
this issue a predefined role named “user.anyone” can be specified, which is
always implied. The desired implication of the “voter” group can then be
achieved by specifying “user.anyone” as its basic member, as follows:

group voter
required members: citizen, adult

basic members: user.anyone
addMember(Role)

107.9.3.1 public boolean addMember(Role role)

role The role to add as a basic member.

Adds the specified Role object as a basic member to this Group object.
208-432 OSGi Service Platform Release 4

User Admin Service Specification Version 1.1 org.osgi.service.useradmin
Returns true if the given role could be added as a basic member, and false if this Group
object already contains a Role object whose name matches that of the speci-
fied role.

Throws SecurityException – If a security manager exists and the caller does not
have the UserAdminPermission with name admin.
addRequiredMember(Role)

107.9.3.2 public boolean addRequiredMember(Role role)

role The Role object to add as a required member.

Adds the specified Role object as a required member to this Group object.

Returns true if the given Role object could be added as a required member, and false if
this Group object already contains a Role object whose name matches that of
the specified role.

Throws SecurityException – If a security manager exists and the caller does not
have the UserAdminPermission with name admin.
getMembers()

107.9.3.3 public Role[] getMembers()

Gets the basic members of this Group object.

Returns The basic members of this Group object, or null if this Group object does not
contain any basic members.
getRequiredMembers()

107.9.3.4 public Role[] getRequiredMembers()

Gets the required members of this Group object.

Returns The required members of this Group object, or null if this Group object does
not contain any required members.
removeMember(Role)

107.9.3.5 public boolean removeMember(Role role)

role The Role object to remove from this Group object.

Removes the specified Role object from this Group object.

Returns true if the Role object could be removed, otherwise false.

Throws SecurityException – If a security manager exists and the caller does not
have the UserAdminPermission with name admin.
Role

107.9.4 public interface Role
The base interface for Role objects managed by the User Admin service.

This interface exposes the characteristics shared by all Role classes: a name,
a type, and a set of properties.

Properties represent public information about the Role object that can be
read by anyone. Specific UserAdminPermission [p.215] objects are required
to change a Role object’s properties.

Role object properties are Dictionary objects. Changes to these objects are
propagated to the User Admin service and made persistent.

Every User Admin service contains a set of predefined Role objects that are
always present and cannot be removed. All predefined Role objects are of
type ROLE. This version of the org.osgi.service.useradmin package defines a
single predefined role named “user.anyone”, which is inherited by any other
role. Other predefined roles may be added in the future. Since “user.anyone”
OSGi Service Platform Release 4 209-432

org.osgi.service.useradmin User Admin Service Specification Version 1.1
is a Role object that has properties associated with it that can be read and
modified. Access to these properties and their use is application specific and
is controlled using UserAdminPermission in the same way that properties
for other Role objects are.
GROUP

107.9.4.1 public static final int GROUP = 2

The type of a Group [p.207] role.

The value of GROUP is 2.
ROLE

107.9.4.2 public static final int ROLE = 0

The type of a predefined role.

The value of ROLE is 0.
USER

107.9.4.3 public static final int USER = 1

The type of a User [p.210] role.

The value of USER is 1.
USER_ANYONE

107.9.4.4 public static final String USER_ANYONE = “user.anyone”

The name of the predefined role, user.anyone, that all users and groups
belong to.

Since 1.1
getName()

107.9.4.5 public String getName()

Returns the name of this role.

Returns The role’s name.
getProperties()

107.9.4.6 public Dictionary getProperties()

Returns a Dictionary of the (public) properties of this Role object. Any
changes to the returned Dictionary will change the properties of this Role
object. This will cause a UserAdminEvent object of type
UserAdminEvent .ROLE_CHANGED [p.213] to be broadcast to any UserAd-
minListener objects.

Only objects of type String may be used as property keys, and only objects of
type String or byte[] may be used as property values. Any other types will
cause an exception of type IllegalArgumentException to be raised.

In order to add, change, or remove a property in the returned Dictionary, a
UserAdminPermission [p.215] named after the property name (or a prefix of
it) with action changeProperty is required.

Returns Dictionary containing the properties of this Role object.
getType()

107.9.4.7 public int getType()

Returns the type of this role.

Returns The role’s type.
User
210-432 OSGi Service Platform Release 4

User Admin Service Specification Version 1.1 org.osgi.service.useradmin
107.9.5 public interface User
extends Role
A User role managed by a User Admin service.

In this context, the term “user” is not limited to just human beings. Instead,
it refers to any entity that may have any number of credentials associated
with it that it may use to authenticate itself.

In general, User objects are associated with a specific User Admin service
(namely the one that created them), and cannot be used with other User
Admin services.

A User object may have credentials (and properties, inherited from the
Role [p.209] class) associated with it. Specific UserAdminPermission [p.215]
objects are required to read or change a User object’s credentials.

Credentials are Dictionary objects and have semantics that are similar to the
properties in the Role class.
getCredentials()

107.9.5.1 public Dictionary getCredentials()

Returns a Dictionary of the credentials of this User object. Any changes to
the returned Dictionary object will change the credentials of this User
object. This will cause a UserAdminEvent object of type
UserAdminEvent.ROLE_CHANGED [p.213] to be broadcast to any UserAd-
minListeners objects.

Only objects of type String may be used as credential keys, and only objects
of type String or of type byte[] may be used as credential values. Any other
types will cause an exception of type IllegalArgumentException to be
raised.

In order to retrieve a credential from the returned Dictionary object, a
UserAdminPermission [p.215] named after the credential name (or a prefix of
it) with action getCredential is required.

In order to add or remove a credential from the returned Dictionary object, a
UserAdminPermission [p.215] named after the credential name (or a prefix of
it) with action changeCredential is required.

Returns Dictionary object containing the credentials of this User object.
hasCredential(String,Object)

107.9.5.2 public boolean hasCredential(String key, Object value)

key The credential key.

value The credential value.

Checks to see if this User object has a credential with the specified key set to
the specified value.

If the specified credential value is not of type String or byte[], it is ignored,
that is, false is returned (as opposed to an IllegalArgumentException being
raised).

Returns true if this user has the specified credential; false otherwise.

Throws SecurityException – If a security manager exists and the caller does not
have the UserAdminPermission named after the credential key (or a prefix of
it) with action getCredential.
UserAdmin
OSGi Service Platform Release 4 211-432

org.osgi.service.useradmin User Admin Service Specification Version 1.1
107.9.6 public interface UserAdmin
This interface is used to manage a database of named Role objects, which
can be used for authentication and authorization purposes.

This version of the User Admin service defines two types of Role objects:
“User” and “Group”. Each type of role is represented by an int constant and
an interface. The range of positive integers is reserved for new types of roles
that may be added in the future. When defining proprietary role types, nega-
tive constant values must be used.

Every role has a name and a type.

A User [p.210] object can be configured with credentials (e.g., a password)
and properties (e.g., a street address, phone number, etc.).

A Group [p.207] object represents an aggregation of User [p.210] and
Group [p.207] objects. In other words, the members of a Group object are
roles themselves.

Every User Admin service manages and maintains its own namespace of
Role objects, in which each Role object has a unique name.
createRole(String,int)

107.9.6.1 public Role createRole(String name, int type)

name The name of the Role object to create.

type The type of the Role object to create. Must be either a Role .USER [p.210] type
or Role .GROUP [p.210] type.

Creates a Role object with the given name and of the given type.

If a Role object was created, a UserAdminEvent object of type
UserAdminEvent .ROLE_CREATED [p.214] is broadcast to any UserAdminLis-
tener object.

Returns The newly created Role object, or null if a role with the given name already
exists.

Throws IllegalArgumentException – if type is invalid.

SecurityException – If a security manager exists and the caller does not
have the UserAdminPermission with name admin.
getAuthorization(User)

107.9.6.2 public Authorization getAuthorization(User user)

user The User object to create an Authorization object for, or null for the anony-
mous user.

Creates an Authorization object that encapsulates the specified User object
and the Role objects it possesses. The null user is interpreted as the anony-
mous user. The anonymous user represents a user that has not been authen-
ticated. An Authorization object for an anonymous user will be unnamed,
and will only imply groups that user.anyone implies.

Returns the Authorization object for the specified User object.
getRole(String)

107.9.6.3 public Role getRole(String name)

name The name of the Role object to get.

Gets the Role object with the given name from this User Admin service.
212-432 OSGi Service Platform Release 4

User Admin Service Specification Version 1.1 org.osgi.service.useradmin
Returns The requested Role object, or null if this User Admin service does not have a
Role object with the given name.
getRoles(String)

107.9.6.4 public Role[] getRoles(String filter) throws InvalidSyntaxException

filter The filter criteria to match.

Gets the Role objects managed by this User Admin service that have proper-
ties matching the specified LDAP filter criteria. See org.osgi.framework.Fil-
ter for a description of the filter syntax. If a null filter is specified, all Role
objects managed by this User Admin service are returned.

Returns The Role objects managed by this User Admin service whose properties
match the specified filter criteria, or all Role objects if a null filter is specified.
If no roles match the filter, null will be returned.

Throws InvalidSyntaxException – If the filter is not well formed.
getUser(String,String)

107.9.6.5 public User getUser(String key, String value)

key The property key to look for.

value The property value to compare with.

Gets the user with the given property key-value pair from the User Admin
service database. This is a convenience method for retrieving a User object
based on a property for which every User object is supposed to have a
unique value (within the scope of this User Admin service), such as for
example a X.500 distinguished name.

Returns A matching user, if exactly one is found. If zero or more than one matching
users are found, null is returned.
removeRole(String)

107.9.6.6 public boolean removeRole(String name)

name The name of the Role object to remove.

Removes the Role object with the given name from this User Admin service.

If the Role object was removed, a UserAdminEvent object of type
UserAdminEvent.ROLE_REMOVED [p.214] is broadcast to any UserAdmin-
Listener object.

Returns true If a Role object with the given name is present in this User Admin serv-
ice and could be removed, otherwise false.

Throws SecurityException – If a security manager exists and the caller does not
have the UserAdminPermission with name admin.
UserAdminEvent

107.9.7 public class UserAdminEvent
Role change event.

UserAdminEvent objects are delivered asynchronously to any UserAdmin-
Listener objects when a change occurs in any of the Role objects managed by
a User Admin service.

A type code is used to identify the event. The following event types are
defined: ROLE_CREATED [p.214] type, ROLE_CHANGED [p.213] type, and
ROLE_REMOVED [p.214] type. Additional event types may be defined in the
future.

See Also UserAdmin[p.211] , UserAdminListener[p.214]
ROLE_CHANGED
OSGi Service Platform Release 4 213-432

org.osgi.service.useradmin User Admin Service Specification Version 1.1
107.9.7.1 public static final int ROLE_CHANGED = 2

A Role object has been modified.

The value of ROLE_CHANGED is 0x00000002.
ROLE_CREATED

107.9.7.2 public static final int ROLE_CREATED = 1

A Role object has been created.

The value of ROLE_CREATED is 0x00000001.
ROLE_REMOVED

107.9.7.3 public static final int ROLE_REMOVED = 4

A Role object has been removed.

The value of ROLE_REMOVED is 0x00000004.
UserAdminEvent(ServiceReference,int,Role)

107.9.7.4 public UserAdminEvent(ServiceReference ref, int type, Role role)

ref The ServiceReference object of the User Admin service that generated this
event.

type The event type.

role The Role object on which this event occurred.

Constructs a UserAdminEvent object from the given ServiceReference
object, event type, and Role object.
getRole()

107.9.7.5 public Role getRole()

Gets the Role object this event was generated for.

Returns The Role object this event was generated for.
getServiceReference()

107.9.7.6 public ServiceReference getServiceReference()

Gets the ServiceReference object of the User Admin service that generated
this event.

Returns The User Admin service’s ServiceReference object.
getType()

107.9.7.7 public int getType()

Returns the type of this event.

The type values are ROLE_CREATED [p.214] type, ROLE_CHANGED [p.213]
type, and ROLE_REMOVED [p.214] type.

Returns The event type.
UserAdminListener

107.9.8 public interface UserAdminListener
Listener for UserAdminEvents.

UserAdminListener objects are registered with the Framework service regis-
try and notified with a UserAdminEvent object when a Role object has been
created, removed, or modified.

UserAdminListener objects can further inspect the received UserAdmin-
Event object to determine its type, the Role object it occurred on, and the
User Admin service that generated it.

See Also UserAdmin[p.211] , UserAdminEvent[p.213]
roleChanged(UserAdminEvent)
214-432 OSGi Service Platform Release 4

User Admin Service Specification Version 1.1 org.osgi.service.useradmin
107.9.8.1 public void roleChanged(UserAdminEvent event)

event The UserAdminEvent object.

Receives notification that a Role object has been created, removed, or modi-
fied.
UserAdminPermission

107.9.9 public final class UserAdminPermission
extends BasicPermission
Permission to configure and access the Role [p.209] objects managed by a
User Admin service.

This class represents access to the Role objects managed by a User Admin
service and their properties and credentials (in the case of User [p.210]
objects).

The permission name is the name (or name prefix) of a property or creden-
tial. The naming convention follows the hierarchical property naming con-
vention. Also, an asterisk may appear at the end of the name, following a “.”,
or by itself, to signify a wildcard match. For example: “org.osgi.security.pro-
tocol.*” or “*” is valid, but “*protocol” or “a*b” are not valid.

The UserAdminPermission with the reserved name “admin” represents the
permission required for creating and removing Role objects in the User
Admin service, as well as adding and removing members in a Group object.
This UserAdminPermission does not have any actions associated with it.

The actions to be granted are passed to the constructor in a string containing
a list of one or more comma-separated keywords. The possible keywords are:
changeProperty,changeCredential, and getCredential. Their meaning is
defined as follows:

action
changeProperty Permission to change (i.e., add and re-

move)
Role object properties whose names start

with
the name argument specified in the con-

structor.
changeCredential Permission to change (i.e., add and re-

move)
User object credentials whose names start
with the name argument specified in the

constructor.
getCredential Permission to retrieve and check for the

existence of User object credentials
whose names

start with the name argument specified in
the

constructor.

The action string is converted to lowercase before processing.

Following is a PermissionInfo style policy entry which grants a user admin-
istration bundle a number of UserAdminPermission object:
OSGi Service Platform Release 4 215-432

org.osgi.service.useradmin User Admin Service Specification Version 1.1
(org.osgi.service.useradmin.UserAdminPermission “admin”)
(org.osgi.service.useradmin.UserAdminPermission “com.foo.*”

“changeProperty,getCredential,changeCredential”)
(org.osgi.service.useradmin.UserAdminPermission “user.*”,

“changeProperty,changeCredential”)

The first permission statement grants the bundle the permission to perform
any User Admin service operations of type “admin”, that is, create and
remove roles and configure Group objects.

The second permission statement grants the bundle the permission to
change any properties as well as get and change any credentials whose
names start with com.foo..

The third permission statement grants the bundle the permission to change
any properties and credentials whose names start with user.. This means
that the bundle is allowed to change, but not retrieve any credentials with
the given prefix.

The following policy entry empowers the Http Service bundle to perform
user authentication:

grant codeBase “${jars}http.jar” {
permission org.osgi.service.useradmin.UserAdminPermission

“user.password”, “getCredential”;
};

The permission statement grants the Http Service bundle the permission to
validate any password credentials (for authentication purposes), but the
bundle is not allowed to change any properties or credentials.
ADMIN

107.9.9.1 public static final String ADMIN = “admin”

The permission name “admin”.
CHANGE_CREDENTIAL

107.9.9.2 public static final String CHANGE_CREDENTIAL = “changeCredential”

The action string “changeCredential”.
CHANGE_PROPERTY

107.9.9.3 public static final String CHANGE_PROPERTY = “changeProperty”

The action string “changeProperty”.
GET_CREDENTIAL

107.9.9.4 public static final String GET_CREDENTIAL = “getCredential”

The action string “getCredential”.
UserAdminPermission(String,String)

107.9.9.5 public UserAdminPermission(String name, String actions)

name the name of this UserAdminPermission

actions the action string.

Creates a new UserAdminPermission with the specified name and actions.
name is either the reserved string “admin” or the name of a credential or
property, and actions contains a comma-separated list of the actions granted
on the specified name. Valid actions are changeProperty,changeCredential,
and getCredential.
216-432 OSGi Service Platform Release 4

User Admin Service Specification Version 1.1 References
Throws IllegalArgumentException – If name equals “admin” and actions are spec-
ified.
equals(Object)

107.9.9.6 public boolean equals(Object obj)

obj the object to be compared for equality with this object.

Checks two UserAdminPermission objects for equality. Checks that obj is a
UserAdminPermission, and has the same name and actions as this object.

Returns true if obj is a UserAdminPermission object, and has the same name and ac-
tions as this UserAdminPermission object.
getActions()

107.9.9.7 public String getActions()

Returns the canonical string representation of the actions, separated by
comma.

Returns the canonical string representation of the actions.
hashCode()

107.9.9.8 public int hashCode()

Returns the hash code of this UserAdminPermission object.
implies(Permission)

107.9.9.9 public boolean implies(Permission p)

p the permission to check against.

Checks if this UserAdminPermission object “implies” the specified permis-
sion.

More specifically, this method returns true if:

• p is an instanceof UserAdminPermission,
• p ‘s actions are a proper subset of this object’s actions, and
• p ‘s name is implied by this object’s name. For example, “java.*” implies

“java.home”.

Returns true if the specified permission is implied by this object; false otherwise.
newPermissionCollection()

107.9.9.10 public PermissionCollection newPermissionCollection()

Returns a new PermissionCollection object for storing UserAdminPermis-
sion objects.

Returns a new PermissionCollection object suitable for storing UserAdminPermis-
sion objects.
toString()

107.9.9.11 public String toString()

Returns a string describing this UserAdminPermission object. This string
must be in PermissionInfo encoded format.

Returns The PermissionInfo encoded string for this UserAdminPermission object.

See Also org.osgi.service.permissionadmin.PermissionInfo.getEncoded

107.10 References
[27] The Java Security Architecture for JDK 1.2

Version 1.0, Sun Microsystems, October 1998
OSGi Service Platform Release 4 217-432

References User Admin Service Specification Version 1.1
[28] Java Authentication and Authorization Service
http://java.sun.com/products/jaas
218-432 OSGi Service Platform Release 4

IO Connector Service Specification Version 1.0 Introduction
109 IO Connector Service
Specification
Version 1.0

109.1 Introduction
Communication is at the heart of OSGi Service Platform functionality.
Therefore, a flexible and extendable communication API is needed: one that
can handle all the complications that arise out of the Reference Architec-
ture. These obstacles could include different communication protocols
based on different networks, firewalls, intermittent connectivity, and oth-
ers.

Therefore, this IO Connector Service specification adopts the [29] Java 2
Micro Edition (J2ME) javax .microedit ion. io packages as a basic communica-
tions infrastructure. In J2ME, this API is also called the Connector frame-
work. A key aspect of this framework is that the connection is configured by
a single string, the URI.

In J2ME, the Connector framework can be extended by the vendor of the
Virtual Machine, but cannot be extended at run-time by other code. There-
fore, this specification defines a service that adopts the flexible model of the
Connector framework, but allows bundles to extend the Connector Services
into different communication domains.

109.1.1 Essentials
• Abstract – Provide an intermediate layer that abstracts the actual pro-

tocol and devices from the bundle using it.
• Extendable – Allow third-party bundles to extend the system with new

protocols and devices.
• Layered – Allow a protocol to be layered on top of lower layer protocols

or devices.
• Configurable – Allow the selection of an actual protocol/device by means

of configuration data.
• Compatibility – Be compatible with existing standards.

109.1.2 Entities
• Connector Service – The service that performs the same function–-creating

connections from different providers–-as the static methods in the Con-
nector framework of javax .microediton. io .

• Connection Factory – A service that extends the Connector service with
more schemes.

• Scheme – A protocol or device that is supported in the Connector
framework.
OSGi Service Platform Release 4 219-432

The Connector Framework IO Connector Service Specification Version 1.0
Figure 38 Class Diagram, org.osgi.service.io (jmi is javax.microedition.io)

109.2 The Connector Framework
The [29] Java 2 Micro Edition specification introduces a package for commu-
nicating with back-end systems. The requirements for this package are very
similar to the following OSGi requirements:

• Small footprint
• Allows many different implementations simultaneously
• Simple to use
• Simple configuration

The key design goal of the Connector framework is to allow an application
to use a communication mechanism/protocol without understanding
implementation details.

An application passes a Uniform Resource Identifier (URI) to the
java.microedit ion . io .Connector class, and receives an object implementing
one or more Connection interfaces. The java.microed it ion. io.Connector
class uses the scheme in the URI to locate the appropriate Connection Fac-
tory service. The remainder of the URI may contain parameters that are used
by the Connection Factory service to establish the connection; for example,
they may contain the baud rate for a serial connection. Some examples:

<<interface>>
Connector
Service

jmi.Connector

<<interface>>
Connection
Factory

<<interface>>
jmi.Connection

<<interface>>
jmi.Input
Connection

<<interface>>
jmi.Output
Connection

<<interface>>
jmi.Stream
Connection

<<interface>>
jmi.Content
Connection

<<interface>>
jmi.Http
Connection

<<interface>>
jmi.Datagram
Connection

<<interface>>
jmi.StreamConn
ec-tionNotifier

Connector impl.

Impl. of scheme
providers

Impl. of IO user

provides io scheme
0..*

1

connections

0..*

0,1

uses Impl. of
Connection

factory

10..*

javax.microedition.io

used as default

1

0,1
220-432 OSGi Service Platform Release 4

IO Connector Service Specification Version 1.0 The Connector Framework
• sms:/ /+46705950899;expiry=24h;reply=yes;type=9
• datagram:// :53
• socket://www.acme.com:5302
• comm://COM1;baudrate=9600;databits=9
• f i le:c :/autoexec .bat

The javax .microedit ion. io API itself does not prescribe any schemes. It is up
to the implementer of this package to include a number of extensions that
provide the schemes. The javax .microedit ion. io.Connector class dispatches
a request to a class which provides an implementation of a Connection
interface. J2ME does not specify how this dispatching takes place, but
implementations usually offer a proprietary mechanism to connect user
defined classes that can provide new schemes.

The Connector framework defines a taxonomy of communication mecha-
nisms with a number of interfaces. For example, a
javax .microedit ion. io. InputConnection interface indicates that the
connection supports the input stream semantics, such as an I/O port. A
javax .microedit ion. io.DatagramConnect ion interface indicates that com-
munication should take place with messages.

When a javax .microedit ion. io.Connector .open method is called, it returns
a javax .microedit ion . io.Connection object. The interfaces implemented by
this object define the type of the communication session. The following
interfaces may be implemented:

• HttpConnection – A javax.microed it ion. io.ContentConnection with spe-
cific HTTP support.

• DatagramConnection – A connection that can be used to send and receive
datagrams.

• OutputConnection – A connection that can be used for streaming output.
• InputConnection – A connection that can be used for streaming input.
• StreamConnection – A connection that is both input and output.
• StreamConnectionNotifier – Can be used to wait for incoming stream

connection requests.
• ContentConnection – A javax .microedit ion. io.StreamConnection that

provides information about the type, encoding, and length of the infor-
mation.

Bundles using this approach must indicate to the Operator what kind of
interfaces they expect to receive. The operator must then configure the bun-
dle with a URI that contains the scheme and appropriate options that match
the bundle’s expectations. Well-written bundles are flexible enough to com-
municate with any of the types of javax .microedit ion . io .Connection inter-
faces they have specified. For example, a bundle should support
javax .microedit ion. io.StreamConnection as well as
javax .microedit ion. io.DatagramConnect ion objects in the appropriate
direction (input or output).

The following code example shows a bundle that sends an alarm message
with the help of the javax.microed it ion. io.Connector framework:

public class Alarm {
String uri;
public Alarm(String uri) { this.uri = uri; }
private void send(byte[] msg) {
OSGi Service Platform Release 4 221-432

Connector Service IO Connector Service Specification Version 1.0
while (true) try {
Connection connection = Connector.open(uri);
DataOutputStream dout = null;

 if (connection instanceof OutputConnection) {
dout = ((OutputConnection)

connection).openDataOutputStream();
 dout.write(msg);
 }
 else if (connection instanceof DatagramConnection) {
 DatagramConnection dgc =

(DatagramConnection) connection;
 Datagram datagram = dgc.newDatagram(

msg, msg.length);
 dgc.send(datagram);
 } else {
 error("No configuration for alarm");
 return;
 }
 connection.close();
 } catch(Exception e) { ... }
 }
}

109.3 Connector Service
The javax.microed it ion. io.Connector framework matches the require-
ments for OSGi applications very well. The actual creation of connections,
however, is handled through static methods in the
javax .microedit ion. io.Connector class. This approach does not mesh well
with the OSGi service registry and dynamic life-cycle management.

This specification therefore introduces the Connector Service. The methods
of the ConnectorService interface have the same signatures as the static
methods of the javax .microedit ion . io .Connector class.

Each javax .microedit ion. io.Connection object returned by a Connector Ser-
vice must implement interfaces from the javax.microed it ion. io package.
Implementations must strictly follow the semantics that are associated
with these interfaces.

The Connector Service must provide all the schemes provided by the
exporter of the javax .microed it ion. io package. The Connection Factory ser-
vices must have priority over schemes implemented in the Java run-time
environment. For example, if a Connection Factory provides the http
scheme and a built-in implementation exists, then the Connector Service
must use the Connection Factory service with the http scheme.

Bundles that want to use the Connector Service should first obtain a
ConnectorServ ice service object. This object contains open methods that
should be called to get a new javax .microed it ion. io.Connect ion object.
222-432 OSGi Service Platform Release 4

IO Connector Service Specification Version 1.0 Providing New Schemes
109.4 Providing New Schemes
The Connector Service must be able to be extended with the Connection
Factory service. Bundles that can provide new schemes must register a
ConnectionFactory service object.

The Connector Service must listen for registrations of new
ConnectionFactory service objects and make the supplied schemes avail-
able to bundles that create connections.

Implementing a Connection Factory service requires implementing the fol-
lowing method:

• createConnection(Str ing, int,boolean) – Creates a new connection
object from the given URI.

The Connection Factory service must be registered with the IO_SCHEME
property to indicate the provided scheme to the Connector Service. The
value of this property must be a String[] object.

If multiple Connection Factory services register with the same scheme, the
Connector Service should select the Connection Factory service with the
highest value for the service .ranking service registration property, or if
more than one Connection Factory service has the highest value, the Con-
nection Factory service with the lowest service. id is selected.

The following example shows how a Connection Factory service may be
implemented. The example will return a
javax .microedit ion. io. InputConnection object that returns the value of the
URI after removing the scheme identifier.

public class ConnectionFactoryImpl
implements BundleActivator, ConnectionFactory {

public void start(BundleContext context) {
Hashtable properties = new Hashtable();
properties.put(IO_SCHEME,

new String[] { "data" });
context.registerService(

ConnectorService.class.getName(),
this, properties);

}
public void stop(BundleContext context) {}

public Connection createConnection(
String uri, int mode, boolean timeouts) {
return new DataConnection(uri);

}
}

class DataConnection
implements javax.microedition.io.InputConnection {
String uri;
DataConnection(String uri) {this.uri = uri;}
public DataInputStream openDataInputStream()

throws IOException {
OSGi Service Platform Release 4 223-432

Execution Environment IO Connector Service Specification Version 1.0
return new DataInputStream(openInputStream());
}

public InputStream openInputStream() throws IOException {
byte [] buf = uri.getBytes();
return new ByteArrayInputStream(buf,5,buf.length-5);

}
public void close() {}

}

109.4.1 Orphaned Connection Objects
When a Connection Factory service is unregistered, it must close all
Connection objects that are still open. Closing these Connection objects
should make these objects unusable, and they should subsequently throw
an IOExcept ion when used.

Bundles should not unnecessarily hang onto objects they retrieved from ser-
vices. Implementations of Connection Factory services should program
defensively and ensure that resource allocation is minimized when a
Connection object is closed.

109.5 Execution Environment
The javax.microed it ion. io package is available in J2ME configurations/pro-
files, but is not present in J2SE, J2EE, and the OSGi minimum execution
requirements.

Implementations of the Connector Service that are targeted for all environ-
ments should carry their own implementation of the javax .microedit ion. io
package and export it.

109.6 Security
The OSGi Connector Service is a key service available in the Service Plat-
form. A malicious bundle which provides this service can spoof any com-
munication. Therefore, it is paramount that the
ServicePermission[ConnectorService , REGISTER] is given only to a trusted
bundle. ServicePermission[ConnectorService ,GET] may be handed to bun-
dles that are allowed to communicate to the external world.

ServicePermission[Connect ionFactory, REGISTER] should also be
restricted to trusted bundles because they can implement specific protocols
or access devices. ServicePermission[ConnectionFactory,GET] should be
limited to trusted bundles that implement the Connector Service.

Implementations of Connection Factory services must perform all I/O oper-
ations within a privileged region. For example, an implementation of the
sms: scheme must have permission to access the mobile phone, and should
not require the bundle that opened the connection to have this permission.
Normally, the operations need to be implemented in a doPr iv i leged method
or in a separate thread.
224-432 OSGi Service Platform Release 4

IO Connector Service Specification Version 1.0 org.osgi.service.io
If a specific Connection Factory service needs more detailed permissions
than provided by the OSGi or Java 2, it may create a new specific Permission
sub-class for its purpose.

109.7 org.osgi.service.io
The OSGi IO Connector Specification Version 1.0.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.io; version=1.0, javax.micro-
edition.io

109.7.1 Summary
• ConnectionFactory - A Connection Factory service is called by the imple-

mentation of the Connector Service to create javax.microedition.io.Con-
nection objects which implement the scheme named by IO_SCHEME.
[p.223]

• ConnectorService - The Connector Service should be called to create and
open javax.microedition.io.Connection objects. [p.225]

ConnectionFactory

109.7.2 public interface ConnectionFactory
A Connection Factory service is called by the implementation of the Con-
nector Service to create javax.microedition.io.Connection objects which
implement the scheme named by IO_SCHEME. When a ConnectorSer-
vice.open method is called, the implementation of the Connector Service
will examine the specified name for a scheme. The Connector Service will
then look for a Connection Factory service which is registered with the ser-
vice property IO_SCHEME which matches the scheme. The
createConnection [p.225] method of the selected Connection Factory will
then be called to create the actual Connection object.
IO_SCHEME

109.7.2.1 public static final String IO_SCHEME = “io.scheme”

Service property containing the scheme(s) for which this Connection Fac-
tory can create Connection objects. This property is of type String[].
createConnection(String,int,boolean)

109.7.2.2 public Connection createConnection(String name, int mode, boolean
timeouts) throws IOException

name The full URI passed to the ConnectorService.open method

mode The mode parameter passed to the ConnectorService.open method

timeouts The timeouts parameter passed to the ConnectorService.open method

Create a new Connection object for the specified URI.

Returns A new javax.microedition.io.Connection object.

Throws IOException – If a javax.microedition.io.Connection object can not not be
created.
ConnectorService
OSGi Service Platform Release 4 225-432

org.osgi.service.io IO Connector Service Specification Version 1.0
109.7.3 public interface ConnectorService
The Connector Service should be called to create and open javax.microedi-
tion.io.Connection objects. When an open* method is called, the implemen-
tation of the Connector Service will examine the specified name for a
scheme. The Connector Service will then look for a Connection Factory ser-
vice which is registered with the service property IO_SCHEME which
matches the scheme. The createConnection method of the selected Connec-
tion Factory will then be called to create the actual Connection object.

If more than one Connection Factory service is registered for a particular
scheme, the service with the highest ranking (as specified in its service.rank-
ing property) is called. If there is a tie in ranking, the service with the lowest
service ID (as specified in its service.id property), that is the service that was
registered first, is called. This is the same algorithm used by BundleCon-
text.getServiceReference.
READ

109.7.3.1 public static final int READ = 1

Read access mode.

See Also javax.microedition.io.Connector.READ
READ_WRITE

109.7.3.2 public static final int READ_WRITE = 3

Read/Write access mode.

See Also javax.microedition.io.Connector.READ_WRITE
WRITE

109.7.3.3 public static final int WRITE = 2

Write access mode.

See Also javax.microedition.io.Connector.WRITE
open(String)

109.7.3.4 public Connection open(String name) throws IOException

name The URI for the connection.

Create and open a Connection object for the specified name.

Returns A new javax.microedition.io.Connection object.

Throws IllegalArgumentException – If a parameter is invalid.

javax.microedition.io.ConnectionNotFoundException – If the connec-
tion cannot be found.

IOException – If some other kind of I/O error occurs.

See Also javax.microedition.io.Connector.open(String name)
open(String,int)

109.7.3.5 public Connection open(String name, int mode) throws IOException

name The URI for the connection.

mode The access mode.

Create and open a Connection object for the specified name and access
mode.

Returns A new javax.microedition.io.Connection object.

Throws IllegalArgumentException – If a parameter is invalid.
226-432 OSGi Service Platform Release 4

IO Connector Service Specification Version 1.0 org.osgi.service.io
javax.microedition.io.ConnectionNotFoundException – If the connec-
tion cannot be found.

IOException – If some other kind of I/O error occurs.

See Also javax.microedition.io.Connector.open(String name, int mode)
open(String,int,boolean)

109.7.3.6 public Connection open(String name, int mode, boolean timeouts)
throws IOException

name The URI for the connection.

mode The access mode.

timeouts A flag to indicate that the caller wants timeout exceptions.

Create and open a Connection object for the specified name, access mode
and timeouts.

Returns A new javax.microedition.io.Connection object.

Throws IllegalArgumentException – If a parameter is invalid.

javax.microedition.io.ConnectionNotFoundException – If the connec-
tion cannot be found.

IOException – If some other kind of I/O error occurs.

See Also javax.microedition.io.Connector.open
openDataInputStream(String)

109.7.3.7 public DataInputStream openDataInputStream(String name) throws
IOException

name The URI for the connection.

Create and open a DataInputStream object for the specified name.

Returns A DataInputStream object.

Throws IllegalArgumentException – If a parameter is invalid.

javax.microedition.io.ConnectionNotFoundException – If the connec-
tion cannot be found.

IOException – If some other kind of I/O error occurs.

See Also javax.microedition.io.Connector.openDataInputStream(String
name)
openDataOutputStream(String)

109.7.3.8 public DataOutputStream openDataOutputStream(String name)
throws IOException

name The URI for the connection.

Create and open a DataOutputStream object for the specified name.

Returns A DataOutputStream object.

Throws IllegalArgumentException – If a parameter is invalid.

javax.microedition.io.ConnectionNotFoundException – If the connec-
tion cannot be found.

IOException – If some other kind of I/O error occurs.

See Also javax.microedition.io.Connector.openDataOutputStream(String
name)
openInputStream(String)
OSGi Service Platform Release 4 227-432

References IO Connector Service Specification Version 1.0
109.7.3.9 public InputStream openInputStream(String name) throws IOException

name The URI for the connection.

Create and open an InputStream object for the specified name.

Returns An InputStream object.

Throws IllegalArgumentException – If a parameter is invalid.

javax.microedition.io.ConnectionNotFoundException – If the connec-
tion cannot be found.

IOException – If some other kind of I/O error occurs.

See Also javax.microedition.io.Connector.openInputStream(String name)
openOutputStream(String)

109.7.3.10 public OutputStream openOutputStream(String name) throws
IOException

name The URI for the connection.

Create and open an OutputStream object for the specified name.

Returns An OutputStream object.

Throws IllegalArgumentException – If a parameter is invalid.

javax.microedition.io.ConnectionNotFoundException – If the connec-
tion cannot be found.

IOException – If some other kind of I/O error occurs.

See Also javax.microedition.io.Connector.openOutputStream(String name)

109.8 References
[29] Java 2 Micro Edition

http://java.sun.com/j2me/

[30] javax.microedition.io whitepaper
http://wireless.java.sun.com/midp/chapters/j2mewhite/chap13.pdf

[31] J2ME Foundation Profile
http://www.jcp.org/jsr/detail/46.jsp
228-432 OSGi Service Platform Release 4

Initial Provisioning Version 1.1 Introduction
110 Initial Provisioning
Version 1.1

110.1 Introduction
To allow freedom regarding the choice of management protocol, the OSGi
Specifications assumes an architecture to remotely manage a Service Plat-
form with a Management Agent. The Management Agent is implemented
with a Management Bundle that can communicate with an unspecified
management protocol.

This specification defines how the Management Agent can make its way to
the Service Platform, and gives a structured view of the problems and their
corresponding resolution methods.

The purpose of this specification is to enable the management of a Service
Platform by an Operator, and (optionally) to hand over the management of
the Service Platform later to another Operator. This approach is in accor-
dance with the OSGi remote management reference architecture.

This bootstrapping process requires the installation of a Management
Agent, with appropriate configuration data, in the Service Platform.

This specification consists of a prologue, in which the principles of the Ini-
tial Provisioning are outlined, and a number of mappings to different mech-
anisms.

110.1.1 Essentials
• Policy Free – The proposed solution must be business model agnostic;

none of the affected parties (Operators, SPS Manufacturers, etc.) should
be forced into any particular business model.

• Interoperability – The Initial Provisioning must permit arbitrary interop-
erability between management systems and Service Platforms. Any com-
pliant Remote Manager should be able to manage any compliant Service
Platform, even in the absence of a prior business relationship. Adhering
to this requirement allows a particular Operator to manage a variety of
makes and models of Service Platform Servers using a single man-
agement system of the Operator’s choice. This rule also gives the con-
sumer the greatest choice when selecting an Operator.

• Flexible – The management process should be as open as possible, to
allow innovation and specialization while still achieving interopera-
bility.

110.1.2 Entities
• Provisioning Service – A service registered with the Framework that pro-

vides information about the initial provisioning to the Management
Agent.
OSGi Service Platform Release 4 229-432

Procedure Initial Provisioning Version 1.1
• Provisioning Dictionary – A Dictionary object that is filled with infor-
mation from the ZIP files that are loaded during initial setup.

• RSH Protocol – An OSGi specific secure protocol based on HTTP.
• Management Agent – A bundle that is responsible for managing a Service

Platform under control of a Remote Manager.

Figure 39 Initial Provisioning

110.2 Procedure
The following procedure should be executed by an OSGi Framework imple-
mentation that supports this Initial Provisioning specification.

When the Service Platform is first brought under management control, it
must be provided with an initial request URL in order to be provisioned.
Either the end user or the manufacturer may provide the initial request
URL. How the initial request URL is transferred to the Framework is not
specified, but a mechanism might, for example, be a command line parame-
ter when the framework is started.

When asked to start the Initial Provisioning, the Service Platform will send
a request to the management system. This request is encoded in a URL, for
example:

http://osgi.acme.com/remote-manager

This URL may use any protocol that is available on the Service Platform
Server. Many standard protocols exist, but it is also possible to use a propri-
etary protocol. For example, software could be present which can communi-
cate with a smart card and could handle, for example, this URL:

smart-card://com1:0/7F20/6F38

<<interface>>
Provisioning
Service

Management
Agent impl.

Provisioning
Service impl.

java.net.URL

RSH URL handler HTTP/HTTPS
URL handler

URL FILE handler

is installed by

gets

uses protocol defined by setup information
230-432 OSGi Service Platform Release 4

Initial Provisioning Version 1.1 Procedure
Before the request URL is executed, the Service Platform information is
appended to the URL. This information includes at least the Service Plat-
form Identifier, but may also contain proprietary information, as long as the
keys for this information do not conflict. Different URL schemes may use
different methods of appending parameters; these details are specified in the
mappings of this specification to concrete protocols.

The result of the request must be a ZIP file (The content type should be
appl icat ion/zip). It is the responsibility of the underlying protocol to guar-
antee the integrity and authenticity of this ZIP file.

This ZIP file is unpacked and its entries (except bundle and bundle-url
entries, described in Table 21) are placed in a Dict ionary object. This
Dictionary object is called the Provisioning Dictionary. It must be made avail-
able from the Provisioning Service in the service registry. The names of the
entries in the ZIP file must not start with a slash (’/’).

The ZIP file may contain only four types of dictionary entries: text , binary ,
bundle , or bundle-ur l . The types are specified in the ZIP entry’s extra field,
and must be a MIME type as defined in [38] MIME Types. The text and
bundle-url entries are translated into a Str ing object. All other entries must
be stored as a byte[] .

Table 20 Content types of provisioning ZIP file

Type MIME Type Description

text MIME_STRING
text/p la in ;charset=utf-8

Must be represented as a St r ing ob ject

b inary MIME_BYTE_ARRAY
appl icat ion/octet-st ream

Must be represented as a byte array
(byte[]) .

bundle MIME_BUNDLE
appl icat ion/x-osg i-bundle

Entries must be installed using
BundleContext. instal lBundle(Str ing ,
InputStream) , with the InputStream object
constructed from the contents of the ZIP entry.
The location must be the name of the ZIP
entry without leading slash. This entry must
not be stored in the Provisioning Dictionary.
If a bundle with this location name is already
installed in this system, then this bundle must
be updated instead of installed.

bundle-ur l MIME_BUNDLE_URL
text/x-osg i-bundle-ur l ;
charset=utf-8

The content of this entry is a string coded in
utf-8. Entries must be installed using
BundleContext. instal lBundle(Str ing ,
InputStream) , with the InputStream object
created from the given URL. The location must
be the name of the ZIP entry without leading
slash. This entry must not be stored in the Pro-
visioning Dictionary.
If a bundle with this location url is already
installed in this system, then this bundle must
be updated instead of installed.
OSGi Service Platform Release 4 231-432

Procedure Initial Provisioning Version 1.1
The Provisioning Service must install (but not start) all entries in the ZIP file
that are typed in the extra field with bundle or bundle-ur l .

If an entry named PROVIS IONING_START_BUNDLE is present in the Provi-
sioning Dictionary, then its content type must be text as defined in Table 20.
The content of this entry must match the bundle location of a previously
loaded bundle. This designated bundle must be given Al lPermiss ion and
started.

If no PROVIS IONING_START_BUNDLE entry is present in the Provisioning
Dictionary, the Provisioning Dictionary should contain a reference to
another ZIP file under the PROVISIONING_REFERENCE key. If both keys are
absent, no further action must take place.

If this PROVISIONING_REFERENCE key is present and holds a Str ing object
that can be mapped to a valid URL, then a new ZIP file must be retrieved
from this URL. The PROVISIONING_REFERENCE link may be repeated multi-
ple times in successively loaded ZIP files.

Referring to a new ZIP file with such a URL allows a manufacturer to place a
fixed reference inside the Service Platform Server (in a file or smart card)
that will provide some platform identifying information and then also
immediately load the information from the management system. The
PROVISIONING_REFERENCE link may be repeated multiple times in succes-
sively loaded ZIP files. The entry PROVIS IONING_UPDATE_COUNT must be
an Integer object that must be incremented on every iteration.

Information retrieved while loading subsequent
PROVISIONING_REFERENCE URLs may replace previous key/values in the
Provisioning Dictionary, but must not erase unrecognized key/values. For
example, if an assignment has assigned the key propr ietary-x , with a value
’3’, then later assignments must not override this value, unless the later
loaded ZIP file contains an entry with that name. All these updates to the
Provisioning Dictionary must be stored persistently. At the same time, each
entry of type bundle or bundle-ur l (see Table 20) must be installed and not
started.

Once the Management Agent has been started, the Initial Provisioning ser-
vice has become operational. In this state, the Initial Provisioning service
must react when the Provisioning Dictionary is updated with a new
PROVISIONING_REFERENCE property. If this key is set, it should start the
cycle again. For example, if the control of a Service Platform needs to be
transferred to another Remote Manager, the Management Agent should set
the PROVISIONING_REFERENCE to the location of this new Remote Man-
ager’s Initial Provisioning ZIP file.This process is called re-provisioning.

If errors occur during this process, the Initial Provisioning service should try
to notify the Service User of the problem.

The previous description is depicted in Figure 40 as a flow chart.
232-432 OSGi Service Platform Release 4

Initial Provisioning Version 1.1 Special Configurations
Figure 40 Flow chart installation Management Agent bundle

The Management Agent may require configuration data that is specific to
the Service Platform instance. If this data is available outside the Manage-
ment Agent bundle, the merging of this data with the Management Agent
may take place in the Service Platform. Transferring the data separately will
make it possible to simplify the implementation on the server side, as it is
not necessary to create personalized Service Platform bundles. The
PROVISIONING_AGENT_CONFIG key is reserved for this purpose, but the
Management Agent may use another key or mechanisms if so desired.

The PROVIS IONING_SPID key must contain the Service Platform Identifier.

110.3 Special Configurations
The next section shows some examples of specially configured types of Ser-
vice Platform Servers and how they are treated with the respect to the speci-
fications in this document.

110.3.1 Branded Service Platform Server
If a Service Platform Operator is selling Service Platform Servers branded
exclusively for use with their service, the provisioning will most likely be
performed prior to shipping the Service Platform Server to the User. Typi-
cally the Service Platform is configured with the Dictionary entry
PROVISIONING_REFERENCE pointing at a location controlled by the Opera-
tor.

U = platform URL

provisioning

load ZIP file from U

U = P. REFERENCE

Start
Management

Agent

install all bundles
with content type

bundle (-url)

into Provisioning
Dictionary

PROVISIONING

yes

no PROVISIONING

yes

no

operational

REFERENCE set?START_BUNDLE set?

re-provisioning
OSGi Service Platform Release 4 233-432

The Provisioning Service Initial Provisioning Version 1.1
Up-to-date bundles and additional configuration data must be loaded from
that location at activation time. The Service Platform is probably equipped
with necessary security entities, like certificates, to enable secure down-
loads from the Operator’s URL over open networks, if necessary.

110.3.2 Non-connected Service Platform
Circumstances might exist in which the Service Platform Server has no
WAN connectivity, or prefers not to depend on it for the purposes not cov-
ered by this specification.

The non-connected case can be implemented by specifying a f i le : // URL for
the initial ZIP file (PROVIS IONING_REFERENCE). That f i le : // URL would
name a local file containing the response that would otherwise be received
from a remote server.

The value for the Management Agent PROVISIONING_REFERENCE found in
that file will be used as input to the load process. The
PROVISIONING_REFERENCE may point to a bundle file stored either locally
or remotely. No code changes are necessary for the non-connected scenario.
The f i le : // URLs must be specified, and the appropriate files must be created
on the Service Platform.

110.4 The Provisioning Service
Provisioning information is conveyed between bundles using the Provision-
ing Service, as defined in the Provis ion ingService interface. The Provision-
ing Dictionary is retrieved from the Provis ioningService object using the
get Information() method. This is a read-only Dict ionary object, any changes
to this Dict ionary object must throw an UnsupportedOperat ionException .

The Provisioning Service provides a number of methods to update the Provi-
sioning Dictionary.

• addInformation(Dict ionary) – Add all key/value pairs in the given
Dictionary object to the Provisioning Dictionary.

• addInformation(ZipInputStream) – It is also possible to add a ZIP file to
the Provisioning Service immediately. This will unpack the ZIP file and
add the entries to the Provisioning Dictionary. This method must install
the bundles contained in the ZIP file as described in Procedure on page
230.

• set Informat ion(Dictionary) – Set a new Provisioning Dictionary. This
will remove all existing entries.

Each of these method will increment the PROVIS IONING_UPDATE_COUNT
entry.
234-432 OSGi Service Platform Release 4

Initial Provisioning Version 1.1 Management Agent Environment
110.5 Management Agent Environment
The Management Agent should be written with great care to minimize
dependencies on other packages and services, as all services in OSGi are
optional. Some Service Platforms may have other bundles pre-installed, so it
is possible that there may be exported packages and services available.
Mechanisms outside the current specification, however, must be used to dis-
cover these packages and services before the Management Agent is
installed.

The Provisioning Service must ensure that the Management Agent is run-
ning with Al lPermission . The Management Agent should check to see if the
Permission Admin service is available, and establish the initial permissions
as soon as possible to insure the security of the device when later bundles
are installed. As the PermissionAdmin interfaces may not be present (it is an
optional service), the Management Agent should export the
PermissionAdmin interfaces to ensure they can be resolved.

Once started, the Management Agent may retrieve its configuration data
from the Provisioning Service by getting the byte[] object that corresponds
to the PROVISIONING_AGENT_CONFIG key in the Provisioning Dictionary.
The structure of the configuration data is implementation specific.

The scope of this specification is to provide a mechanism to transmit the
raw configuration data to the Management Agent. The Management Agent
bundle may alternatively be packaged with its configuration data in the
bundle, so it may not be necessary for the Management Agent bundle to use
the Provisioning Service at all.

Most likely, the Management Agent bundle will install other bundles to
provision the Service Platform. Installing other bundles might even involve
downloading a more full featured Management Agent to replace the initial
Management Agent.

110.6 Mapping To File Scheme
The f i le : scheme is the simplest and most completely supported scheme
which can be used by the Initial Provisioning specification. It can be used to
store the configuration data and Management Agent bundle on the Service
Platform Server, and avoids any outside communication.

If the initial request URL has a f i le scheme, no parameters should be
appended, because the f i le : scheme does not accept parameters.

110.6.1 Example With File Scheme
The manufacturer should prepare a ZIP file containing only one entry
named PROVIS IONING_START_BUNDLE that contains a location string of an
entry of type application/x-osg i-bundle or appl ication/x-osgi-bundle-URL .
For example, the following ZIP file demonstrates this:

provisioning.start.bundle text agent
agent bundle C0AF0E9B2AB..

The bundle may also be specified with a URL:
OSGi Service Platform Release 4 235-432

Mapping To HTTP(S) Scheme Initial Provisioning Version 1.1
provisioning.start.bundle text http://acme.com/a.jar
agent bundle-url http://acme.com/a.jar

Upon startup, the framework is provided with the URL with the f i le :
scheme that points to this ZIP file:

file:/opt/osgi/ma.zip

110.7 Mapping To HTTP(S) Scheme
This section defines how HTTP and HTTPS URLs must be used with the Ini-
tial Provisioning specification.

• HTTP – May be used when the data exchange takes place over networks
that are secured by other means, such as a Virtual Private Network (
VPN) or a physically isolated network. Otherwise, HTTP is not a valid
scheme because no authentication takes place.

• HTTPS – May be used if the Service Platform is equipped with appro-
priate certificates.

HTTP and HTTPS share the following qualities:

• Both are well known and widely used
• Numerous implementations of the protocols exist
• Caching of the Management Agent will be desired in many implementa-

tions where limited bandwidth is an issue. Both HTTP and HTTPS
already contain an accepted protocol for caching.

Both HTTP and HTTPS must be used with the GET method. The response is
a ZIP file, implying that the response header Content-Type header must
contain appl icat ion/zip.

110.7.1 HTTPS Certificates
In order to use HTTPS, certificates must be in place. These certificates, that
are used to establish trust towards the Operator, may be made available to
the Service Platform using the Provisioning Service. The root certificate
should be assigned to the Provisioning Dictionary before the HTTPS pro-
vider is used. Additionally, the Service Platform should be equipped with a
Service Platform certificate that allows the Service Platform to properly
authenticate itself towards the Operator. This specification does not state
how this certificate gets installed into the Service Platform.

The root certificate is stored in the Provisioning Dictionary under the key:

PROVIS IONING_ROOTX509

The Root X.509 Certificate holds certificates used to represent a handle to a
common base for establishing trust. The certificates are typically used when
authenticating a Remote Manager to the Service Platform. In this case, a
Root X.509 certificate must be part of a certificate chain for the Operator’s
certificate. The format of the certificate is defined in Certificate Encoding on
page 237.
236-432 OSGi Service Platform Release 4

Initial Provisioning Version 1.1 Mapping To HTTP(S) Scheme
110.7.2 Certificate Encoding
Root certificates are X.509 certificates. Each individual certificate is stored as
a byte[] object. This byte[] object is encoded in the default Java manner, as
follows:

• The original, binary certificate data is DER encoded
• The DER encoded data is encoded into base64 to make it text.
• The base64 encoded data is prefixed with

 -- ---BEGIN CERTIFICATE-----
and suffixed with:
 -----END CERTIF ICATE-----

• If a record contains more than one certificate, they are simply appended
one after the other, each with a delimiting prefix and suffix.

The decoding of such a certificate may be done with the
java.security .cert .Cert i f icateFactory class:

InputStream bis = new ByteArrayInputStream(x509); // byte[]
CertificateFactory cf =

CertificateFactory.getInstance("X.509");
Collection c = cf.generateCertificates(bis);
Iterator i = c.iterator();
while (i.hasNext()) {

Certificate cert = (Certificate)i.next();
System.out.println(cert);

}

110.7.3 URL Encoding
The URL must contain the Service Platform Identity, and may contain more
parameters. These parameters are encoded in the URL according to the
HTTP(S) URL scheme. A base URL may be set by an end user but the Provi-
sioning Service must add the Service Platform Identifier.

If the request URL already contains HTTP parameters (if there is a ’?’ in the
request), the service_p latform_id is appended to this URL as an additional
parameter. If, on the other hand, the request URL does not contain any
HTTP parameters, the service_platform_id will be appended to the URL
after a ’?’, becoming the first HTTP parameter. The following two examples
show these two variants:

http://server.operator.com/service-x? «
foo=bar&service_platform_id=VIN:123456789

http://server.operator.com/service-x? «
service_platform_id=VIN:123456789

Proper URL encoding must be applied when the URL contains characters
that are not allowed. See [37] RFC 2396 - Uniform Resource Identifier (URI).
OSGi Service Platform Release 4 237-432

Mapping To RSH Scheme Initial Provisioning Version 1.1
110.8 Mapping To RSH Scheme
The RSH protocol is an OSGi-specific protocol, and is included in this speci-
fication because it is optimized for Initial Provisioning. It requires a shared
secret between the management system and the Service Platform that is
small enough to be entered by the Service User.

RSH bases authentication and encryption on Message Authentication Codes
(MACs) that have been derived from a secret that is shared between the Ser-
vice Platform and the Operator prior to the start of the protocol execution.

The protocol is based on an ordinary HTTP GET request/response, in which
the request must be signed and the response must be encrypted and authenti-
cated. Both the signature and encryption key are derived from the shared secret
using Hashed Message Access Codes (HMAC) functions.

As additional input to the HMAC calculations, one client-generated nonce
and one server-generated nonce are used to prevent replay attacks. The non-
ces are fairly large random numbers that must be generated in relation to
each invocation of the protocol, in order to guarantee freshness. These non-
ces are called cl ientfg (client-generated freshness guarantee) and server fg
(server-generated freshness guarantee).

In order to separate the HMAC calculations for authentication and encryp-
tion, each is based on a different constant value. These constants are called
the authentication constant and the encryption constant.

From an abstract perspective, the protocol may be described as follows.

• δ – Shared secret, 160 bits or more
• s – Server nonce, called servercfg , 128 bits
• c – Client nonce, called c l ient fg , 128 bits
• Ka – Authentication key, 160 bits
• Ke – Encryption key, 192 bits
• r – Response data
• e – Encrypted data
• E – Encryption constant, a byte[] of 05, 36, 54, 70, 00 (hex)
• A – Authentication constant, a byte[] of 00, 4f, 53, 47, 49 (hex)
• M – Message material, used for Ke calculation.
• m – The calculated message authentication code.
• 3DES – Triple DES, encryption function, see [39] 3DES. The bytes of

the key must be set to odd parity. CBC mode must be used where the
padding method is defined in [40] RFC 1423 Part III: Algorithms, Modes,
and Identifiers. In [42] Java Cryptography API (part of Java 1.4) this is
addressed as PKCS5Padding .

• IV – Initialization vector for 3DES.
• SHA1 – Secure Hash Algorithm to generate the Hashed Message

Autentication Code, see [43] SHA-1. The function takes a single
parameter, the block to be worked upon.

• HMAC – The fuction that calculates a message authentication code,
which must HMAC-SHA1. HMAC-SHA1 is defined in [32] HMAC:
Keyed-Hashing for Message Authentication. The HMAC function takes a
key and a block to be worked upon as arguments. Note that the lower
16 bytes of the result must be used.
238-432 OSGi Service Platform Release 4

Initial Provisioning Version 1.1 Mapping To RSH Scheme
• {} – Concatenates its arguments
• [] – Indicates access to a sub-part of a variable, in bytes. Index starts at

one, not zero.

In each step, the emphasized server or client indicates the context of the
calculation. If both are used at the same time, each variable will have
server or client as a subscript.

1. The client generates a random nonce, stores it and denotes it c l ient fg

2. The client sends the request with the cl ientfg to the server.

3. The server generates a nonce and denotes it serverfg .

4. The server calculates an authentication key based on the SHA1 function,
the shared secret, the received cl ientfg , the serverfg and the authentica-
tion constant.

5. The server calculates an encryption key using an SHA-1 function, the
shared secret, the received c l ient fg , the server fg and the encryption con-
stant. It must first calculate the key material M.

6. The key for DES consists Ke and IV.

The server encrypts the response data using the encryption key derived
in 5. The encryption algorithm that must be used to encrypt/decrypt the
response data is 3DES. 24 bytes (192 bits) from M are used to generate Ke,
but the low order bit of each byte must be used as an odd parity bit. This
means that before using Ke, each byte must be processed to set the low
order bit so that the byte has odd parity.

The encryption/decryption key used is specified by the following:

7. The server calculates a MAC m using the HMAC function, the encrypted
response data and the authentication key derived in 4.

8. The server sends a response to the client containing the server fg , the MAC
m and the encrypted response data

c nonce=

cserver cclient⇐

s nonce=

Ka SHA1 δ c s A, , ,{ }()←

M 1 20,[] SHA1 δ c s E, , ,{ }()←
M 21 40,[] SHA1 δ M 1 20,[] c s E, , , ,{ }()←

Ke M 1 24,[]←

IV M 25 32,[]←

e 3DES Ke IV r, ,()←

m HMAC Ka e,()←

sclient sserver⇐

mclient mserver⇐

eclient eserver⇐
OSGi Service Platform Release 4 239-432

Mapping To RSH Scheme Initial Provisioning Version 1.1
The client calculates the encryption key Ke the same way the server did in
step 5 and 6. and uses this to decrypt the encrypted response data. The
serverfg value received in the response is used in the calculation.

9. The client performs the calculation of the MAC m’ in the same way the
server did, and checks that the results match the received MAC m. If they
do not match, further processing is discarded. The server fg value
received in the response is used in the calculation.

Figure 41 Action Diagram for RSH

110.8.1 Shared Secret
The shared secret should be a key of length 160 bits (20 bytes) or more. The
length is selected to match the output of the selected hash algorithm [33]
NIST, FIPS PUB 180-1: Secure Hash Standard, April 1995..

In some scenarios, the shared secret is generated by the Operator and com-
municated to the User, who inserts the secret into the Service Platform
through some unspecified means.

The opposite is also possible: the shared secret can be stored within the Ser-
vice Platform, extracted from it, and then communicated to the Operator. In
this scenario, the source of the shared secret could be either the Service Plat-
form or the Operator.

In order for the server to calculate the authentication and encryption keys,
it requires the proper shared secret. The server must have access to many dif-
ferent shared secrets, one for each Service Platform it is to support. To be
able to resolve this issue, the server must typically also have access to the
Service Platform Identifier of the Service Platform. The normal way for the
server to know the Service Platform Identifier is through the application
protocol, as this value is part of the URL encoded parameters of the HTTP,
HTTPS, or RSH mapping of the Initial Provisioning.

In order to be able to switch Operators, a new shared secret must be used.
The new secret may be generated by the new Operator and then inserted
into the Service Platform device using a mechanism not covered by this
specification. Or the device itself may generate the new secret and convey it

r 3DES Ke IV e, ,()←

Ka SHA1 δ c s A, , ,{ }()←

m ′ HMAC Ka e,()←

m ′ m=

Service Platform Remote Manager

request(spid,clientfg)

response(spid,mac,serverfg,encrypted-data) Shared Secret

Shared Secret
240-432 OSGi Service Platform Release 4

Initial Provisioning Version 1.1 Mapping To RSH Scheme
to the owner of the device using a display device or read-out, which is then
communicated to the new operator out-of-band. Additionally, the genera-
tion of the new secret may be triggered by some external event, like holding
down a button for a specified amount of time.

110.8.2 Request Coding
RSH is mapped to HTTP or HTTPS. Thus, the request parameters are URL
encoded as discussed in 110.7.3 URL Encoding. RSH requires an additional
parameter in the URL: the cl ientfg parameter. This parameter is a nonce that
is used to counter replay attacks. See also RSH Transport on page 242.

110.8.3 Response Coding
The server’s response to the client is composed of three parts:

• A header containing the protocol version and the server fg
• The MAC
• The encrypted response

These three items are packaged into a binary container according to Table
21.

The response content type is an RSH-specific encrypted ZIP file, implying
that the response header Content-Type must be appl icat ion/x-rsh for the
HTTP request. When the content file is decrypted, the content must be a ZIP
file.

110.8.4 RSH URL
The RSH URL must be used internally within the Service Platform to indi-
cate the usage of RSH for initial provisioning. The RSH URL format is identi-
cal to the HTTP URL format, except that the scheme is rsh: instead of http : .
For example (« means line continues on next line):

rsh://server.operator.com/service-x

110.8.5 Extensions to the Provisioning Service Dictionary
RSH specifies one additional entry for the Provisioning Dictionary:

PROVIS IONING_RSH_SECRET

Table 21 RSH Header description

Bytes Description Value hex

4 Number of bytes in header 2E
1 Major version number 01
1 Minor version number 00
16 server fg ...
4 Number of bytes in MAC 10
16 Message Authentication Code MAC
4 Number of bytes of encrypted ZIP file N
N Encrypted ZIP file ...
OSGi Service Platform Release 4 241-432

Exception Handling Initial Provisioning Version 1.1
The value of this entry is a byte[] containing the shared secret used by the
RSH protocol.

110.8.6 RSH Transport
RSH is mapped to HTTP or HTTPS and follows the same URL encoding rules,
except that the cl ientfg is additionally appended to the URL. The key in the
URL must be c l ientfg and the value must be encoded in base 64 format:

The c l ient fg parameter is transported as an HTTP parameter that is
appended after the service_plat form_id parameter. The second example
above would then be:

rsh://server.operator.com/service-x

Which, when mapped to HTTP, must become:

http://server.operator.com/service-x? «
service_platform_id=VIN:123456789& «
clientfg=AHPmWcw%2FsiWYC37xZNdKvQ%3D%3D

110.9 Exception Handling
The Initial Provisioning process is a a sensitive process that must run
withou user supervision. There is therefore a need to handle exceptional
cases in a well defined way to simplify trouble shooting.

There are only 2 types of problems that halt the provisioning process. They
are:

• IOException when reading or writing provisioning information.
• IOException when retrieving or processing a provisioning zip file.

Other exceptions can occur and the Provisioning Service must do any
attempt to log these events.

In the cases that the provisioning process stops, it is important that the cli-
ents of the provisioning service have a way to find out that the process is
stopped. The mechanism that is used for this is a special entry in the provi-
sioning dictionary. The name of the entry must be provis ioning.error . The
value is a String object with the following format:

• Numeric error code
• Space
• A human readable string describing the error.

Permitted error codes are:

• 0 – Unknown error
• 1 – Couldn't load or save provisioning information
• 2 – MalformedURLException
• 3 – IOException when retrieving document of a URL
• 4 – Corrupted ZipInputStream

The provisioning.update.count will be incremented as normal when a
provis ioning.er ror entry is added to the provisioning information. After, the
provisioning service will take no further action.

Some examples:
242-432 OSGi Service Platform Release 4

Initial Provisioning Version 1.1 Security
0 SIM card removed
2 "http://www.acme.com/secure/blib/ifa.zip"

110.10 Security
The security model for the Service Platform is based on the integrity of the
Management Agent deployment. If any of the mechanisms used during the
deployment of management agents are weak, or can be compromised, the
whole security model becomes weak.

From a security perspective, one attractive means of information exchange
would be a smart card. This approach enables all relevant information to be
stored in a single place. The Operator could then provide the information to
the Service Platform by inserting the smart card into the Service Platform.

110.10.1 Concerns
The major security concerns related to the deployment of the Management
Agent are:

• The Service Platform is controlled by the intended Operator
• The Operator controls the intended Service Platform(s)
• The integrity and confidentiality of the information exchange that takes

place during these processes must be considered

In order to address these concerns, an implementation of the OSGi Remote
Management Architecture must assure that:

• The Operator authenticates itself to the Service Platform
• The Service Platform authenticates itself to the Operator
• The integrity and confidentiality of the Management Agent, certificates,

and configuration data are fully protected if they are transported over
public transports.

Each mapping of the Initial Provisioning specification to a concrete imple-
mentation must describe how these goals are met.

110.10.2 Service Platform Long-Term Security
Secrets for long-term use may be exchanged during the Initial Provisioning
procedures. This way, one or more secrets may be shared securely, assuming
that the Provisioning Dictionary assignments used are implemented with
the proper security characteristics.

110.10.3 Permissions
The provisioning information may contain sensitive information. Also, the
ability to modify provisioning information can have drastic consequences.
Thus, only trusted bundles should be allowed to register, or get the Provi-
sioning Service. This restriction can be enforced using Serv icePermission[
Provis ion ingService, GET] .

No Permission classes guard reading or modification of the Provisioning
Dictionary, so care must be taken not to leak the Dict ionary object received
from the Provisioning Service to bundles that are not trusted.
OSGi Service Platform Release 4 243-432

Changes Initial Provisioning Version 1.1
Whether message-based or connection-based, the communications used for
Initial Provisioning must support mutual authentication and message
integrity checking, at a minimum.

By using both server and client authentication in HTTPS, the problem of
establishing identity is solved. In addition, HTTPS will encrypt the transmit-
ted data. HTTPS requires a Public Key Infrastructure implementation in
order to retrieve the required certificates.

When RSH is used, it is vital that the shared secret is shared only between
the Operator and the Service Platform, and no one else.

110.11 Changes
The only change to the Initial Provisioning specification is the addition of
extra information to find the cause of problems.

110.12 org.osgi.service.provisioning
The OSGi Provisioning Service Package. Specification Version 1.1.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.provisioning; version=1.1
ProvisioningService

110.12.1 public interface ProvisioningService
Service for managing the initial provisioning information.

Initial provisioning of an OSGi device is a multi step process that culmi-
nates with the installation and execution of the initial management agent.
At each step of the process, information is collected for the next step. Multi-
ple bundles may be involved and this service provides a means for these
bundles to exchange information. It also provides a means for the initial
Management Bundle to get its initial configuration information.

The provisioning information is collected in a Dictionary object, called the
Provisioning Dictionary. Any bundle that can access the service can get a
reference to this object and read and update provisioning information. The
key of the dictionary is a String object and the value is a String or byte[]
object. The single exception is the PROVISIONING_UPDATE_COUNT
value which is an Integer. The provisioning prefix is reserved for keys
defined by OSGi, other key names may be used for implementation depen-
dent provisioning systems.

Any changes to the provisioning information will be reflected immediately
in all the dictionary objects obtained from the Provisioning Service.

Because of the specific application of the Provisioning Service, there should
be only one Provisioning Service registered. This restriction will not be
enforced by the Framework. Gateway operators or manufactures should
ensure that a Provisioning Service bundle is not installed on a device that
already has a bundle providing the Provisioning Service.
244-432 OSGi Service Platform Release 4

Initial Provisioning Version 1.1 org.osgi.service.provisioning
The provisioning information has the potential to contain sensitive infor-
mation. Also, the ability to modify provisioning information can have dras-
tic consequences. Thus, only trusted bundles should be allowed to register
and get the Provisioning Service. The ServicePermission is used to limit the
bundles that can gain access to the Provisioning Service. There is no check
of Permission objects to read or modify the provisioning information, so
care must be taken not to leak the Provisioning Dictionary received from
getInformation method.
MIME_BUNDLE

110.12.1.1 public static final String MIME_BUNDLE = “application/x-osgi-bundle”

MIME type to be stored in the extra field of a ZipEntry object for an install-
able bundle file. Zip entries of this type will be installed in the framework,
but not started. The entry will also not be put into the information dictio-
nary.
MIME_BUNDLE_URL

110.12.1.2 public static final String MIME_BUNDLE_URL = “text/x-osgi-bundle-url”

MIME type to be stored in the extra field of a ZipEntry for a String that repre-
sents a URL for a bundle. Zip entries of this type will be used to install (but
not start) a bundle from the URL. The entry will not be put into the informa-
tion dictionary.
MIME_BYTE_ARRAY

110.12.1.3 public static final String MIME_BYTE_ARRAY = “application/octet-
stream”

MIME type to be stored in the extra field of a ZipEntry object for byte[] data.
MIME_STRING

110.12.1.4 public static final String MIME_STRING = “text/plain;charset=utf-8”

MIME type to be stored in the extra field of a ZipEntry object for String data.
PROVISIONING_AGENT_CONFIG

110.12.1.5 public static final String PROVISIONING_AGENT_CONFIG =
“provisioning.agent.config”

The key to the provisioning information that contains the initial configura-
tion information of the initial Management Agent. The value will be of type
byte[].
PROVISIONING_REFERENCE

110.12.1.6 public static final String PROVISIONING_REFERENCE =
“provisioning.reference”

The key to the provisioning information that contains the location of the
provision data provider. The value must be of type String.
PROVISIONING_ROOTX509

110.12.1.7 public static final String PROVISIONING_ROOTX509 =
“provisioning.rootx509”

The key to the provisioning information that contains the root X509 certifi-
cate used to esatblish trust with operator when using HTTPS.
PROVISIONING_RSH_SECRET

110.12.1.8 public static final String PROVISIONING_RSH_SECRET =
“provisioning.rsh.secret”

The key to the provisioning information that contains the shared secret
used in conjunction with the RSH protocol.
PROVISIONING_SPID
OSGi Service Platform Release 4 245-432

org.osgi.service.provisioning Initial Provisioning Version 1.1
110.12.1.9 public static final String PROVISIONING_SPID = “provisioning.spid”

The key to the provisioning information that uniquely identifies the Service
Platform. The value must be of type String.
PROVISIONING_START_BUNDLE

110.12.1.10 public static final String PROVISIONING_START_BUNDLE =
“provisioning.start.bundle”

The key to the provisioning information that contains the location of the
bundle to start with AllPermission. The bundle must have be previously
installed for this entry to have any effect.
PROVISIONING_UPDATE_COUNT

110.12.1.11 public static final String PROVISIONING_UPDATE_COUNT =
“provisioning.update.count”

The key to the provisioning information that contains the update count of
the info data. Each set of changes to the provisioning information must end
with this value being incremented. The value must be of type Integer. This
key/value pair is also reflected in the properties of the ProvisioningService
in the service registry.
addInformation(Dictionary)

110.12.1.12 public void addInformation(Dictionary info)

info the set of Provisioning Information key/value pairs to add to the Provision-
ing Information dictionary. Any keys are values that are of an invalid type
will be silently ignored.

Adds the key/value pairs contained in info to the Provisioning Information
dictionary. This method causes the PROVISIONING_UPDATE_COUNT to
be incremented.
addInformation(ZipInputStream)

110.12.1.13 public void addInformation(ZipInputStream zis) throws IOException

zis the ZipInputStream that will be used to add key/value pairs to the Provision-
ing Information dictionary and install and start bundles. If a ZipEntry does
not have an Extra field that corresponds to one of the four defined MIME
types (MIME_STRING, MIME_BYTE_ARRAY,MIME_BUNDLE, and
MIME_BUNDLE_URL) in will be silently ignored.

Processes the ZipInputStream and extracts information to add to the Provi-
sioning Information dictionary, as well as, install/update and start bundles.
This method causes the PROVISIONING_UPDATE_COUNT to be incre-
mented.

Throws IOException – if an error occurs while processing the ZipInputStream. No
additions will be made to the Provisioning Information dictionary and no
bundles must be started or installed.
getInformation()

110.12.1.14 public Dictionary getInformation()

Returns a reference to the Provisioning Dictionary. Any change operations
(put and remove) to the dictionary will cause an UnsupportedOperationEx-
ception to be thrown. Changes must be done using the setInformation and
addInformation methods of this service.

Returns A reference to the Provisioning Dictionary.
setInformation(Dictionary)
246-432 OSGi Service Platform Release 4

Initial Provisioning Version 1.1 References
110.12.1.15 public void setInformation(Dictionary info)

info the new set of Provisioning Information key/value pairs. Any keys are values
that are of an invalid type will be silently ignored.

Replaces the Provisioning Information dictionary with the key/value pairs
contained in info. Any key/value pairs not in info will be removed from the
Provisioning Information dictionary. This method causes the
PROVISIONING_UPDATE_COUNT to be incremented.

110.13 References
[32] HMAC: Keyed-Hashing for Message Authentication

http://www.ietf.org/rfc/rfc2104.txt Krawczyk ,et. al. 1997.

[33] NIST, FIPS PUB 180-1: Secure Hash Standard, April 1995.

[34] Hypertext Transfer Protocol - HTTP/1.1
http://www.ietf.org/rfc/rfc2616.txt Fielding, R., et. al.

[35] Rescorla, E., HTTP over TLS, IETF RFC 2818, May 2000
http://www.ietf.org/rfc/rfc2818.txt.

[36] ZIP Archive format
ftp://ftp.uu.net/pub/archiving/zip/doc/appnote-970311-iz.zip

[37] RFC 2396 - Uniform Resource Identifier (URI)
http://www.ietf.org/rfc/rfc2396.txt

[38] MIME Types
http://www.ietf.org/rfc/rfc2046.txt and http://www.iana.org/assignments/
media-types

[39] 3DES
W/ Tuchman, "Hellman Presents No Shortcut Solution to DES," IEEE
Spectrum, v. 16, n. 7 July 1979, pp40-41.

[40] RFC 1423 Part III: Algorithms, Modes, and Identifiers
http://www.ietf.org/rfc/rfc1423.txt

[41] PKCS 5
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2

[42] Java Cryptography API (part of Java 1.4)
http://java.sun.com/products/jce/index-14.html

[43] SHA-1
U.S. Government, Proposed Federal Information Processing Standard for
Secure Hash Standard, January 1992

[44] Transport Layer Security
http://www.ietf.org/rfc/rfc2246.txt, January 1999, The TLS Protocol Version
1.0, T. Dierks & C. Allen.
OSGi Service Platform Release 4 247-432

References Initial Provisioning Version 1.1
248-432 OSGi Service Platform Release 4

UPnP™ Device Service Specification Version 1.1 Introduction
111 UPnP™ Device Service
Specification
Version 1.1

111.1 Introduction
The UPnP Device Architecture specification provides the protocols for a
peer-to-peer network. It specifies how to join a network and how devices
can be controlled using XML messages sent over HTTP. The OSGi specifica-
tions address how code can be download and managed in a remote system.
Both standards are therefore fully complimentary. Using an OSGi Service
Platform to work with UPnP enabled devices is therefore a very succesful
combination.

This specification specifies how OSGi bundles can be developed that inter-
operate with UPnP™ (Universal Plug and Play) devices and UPnP control
points. The specification is based on [45] UPnP Device Architecture and does
not further explain the UPnP specifications. The UPnP specifications are
maintained by [46] UPnP Forum.

UPnP™ is a trademark of the UPnP Implementers Corporation.

111.1.1 Essentials
• Scope – This specification is limited to device control aspects of the UPnP

specifications. Aspects concerning the TCP/IP layer, like DHCP and
limited TTL, are not addressed.

• Transparency – OSGi services should be made available to networks with
UPnP enabled devices in a transparent way.

• Network Selection – It must be possible to restrict the use of the UPnP pro-
tocols to a selection of the connected networks. For example, in certain
cases OSGi services that are UPnP enabled should not be publishedto the
Wide Area Network side of a gateway, nor should UPnP devices be
detected on this WAN.

• Event handling – Bundles must be able to listen to UPnP events.
• Export OSGi services as UPnP devices – Enable bundles that make a service

available to UPnP control points.
• Implement UPnP Control Points – Enable bundles that control UPnP

devices.

111.1.2 Entities
• UPnP Base Driver – The bundle that implements the bridge between

OSGi and UPnP networks. This entity is not represented as a service.
• UPnP RootDevice –A physical device can contain one or more root

devices. Root devices contain one ore more devices. A root device is mod-
OSGi Service Platform Release 4 249-432

Introduction UPnP™ Device Service Specification Version 1.1
elled with a UPnPDevice object, there is no separate interface defined for
root devices.

• UPnP Device – The representation of a UPnP device. A UPnP device may
contain other UPnP devices and UPnP services. This entity is represented
by a UPnPDevice object.

• UPnP Service –A UPnP device consists of a number of services. A UPnP
service has a number of UPnP state variables that can be queried and
modified with actions. This concept is represented by a UPnPService
object.

• UPnP Action – A UPnP service is associated with a number of actions that
can be performed on that service and that may modify the UPnP state
variables. This entity is represented by a UPnPAction object.

• UPnP State Variable – A variable associated with a UPnP service, repre-
sented by a UPnPStateVariab le object.

• UPnPLocalStateVariable – Extends the UPnPStateVar iable interface when
the state variable is implemented locally. This interface provides access
to the actual value.

• UPnP Event Listener Service – A listener to events coming from UPnP
devices.

• UPnP Host – The machine that hosts the code to run a UPnP device or
control point.

• UPnP Control Point – A UPnP device that is intended to control UPnP
devices over a network. For example, a UPnP remote controller.

• UPnP Icon – A representation class for an icon associated with a UPnP
device.

• UPnPException – An exception that delivers errors that were discovered
in the UPnP layer.

• UDN – Unique Device Name, a name that uniquely identifies the a spe-
cific device.
250-432 OSGi Service Platform Release 4

UPnP™ Device Service Specification Version 1.1 UPnP Specifications
Figure 42 UPnP Service Specification class Diagram org.osgi.service.upnp package

111.1.3 Operation Summary
To make a UPnP service available to UPnP control points on a network, an
OSGi service object must be registered under the UPnPDevice interface with
the Framework. The UPnP driver bundle must detect these UPnP Device ser-
vices and must make them available to the network as UPnP devices using
the UPnP protocol.

UPnP devices detected on the local network must be detcted and automati-
cally registered under the UPnPDev ice interface with the Framework by the
UPnP driver implementation bundle.

A bundle that wants to control UPnP devices, for example to implement a
UPnP control point, should track UPnP Device services in the OSGi service
registry and control them appropriately. Such bundles should not distin-
guish between resident or remote UPnP Device services.

111.2 UPnP Specifications
The UPnP DA is intended to be used in a broad range of device from the com-
puting (PCs printers), consumer electronics (DVD, TV, radio), communica-
tion (phones) to home automation (lighting control, security) and home
appliances (refridgerators, coffeemakers) domains.

<<interface>>
UPnPService

a listener

<<interface>>
UPnPAction

<<interface>>
UPnPState
Variable

<<interface>>
UPnPEvent
Listener

<<interface>>
UPnPIcon

A UPnP device
implementer

A UPnP control
point

A UPnP device
implementation

in parameter

out parm

has

1

0..n 0..n

1

10..n

11..n

UPnP Base Driver
Implementation

associated w
ith

has

has

registers getsregisters

listens to

0..n

1 1 0..n

has

1..n

1

0..n

1

10..n

<<interface>>
UPnPDevice

child

0..n

0,1
OSGi Service Platform Release 4 251-432

UPnP Specifications UPnP™ Device Service Specification Version 1.1
For example, a UPnP TV might announce its existence on a network by
broadcasting a message. A UPnP control point on that network can then dis-
cover this TV by listening to those announce messages. The UPnP specifica-
tions allow the control point to retrieve information about the user
interface of the TV. This information can then be used to allow the end user
to control the remote TV from the control point, for example turn it on or
change the channels.

The UPnP specification supports the following features:

• Detect and control a UPnP standardized device. In this case the control point
and the remote device share a priori knowledge about how the device
should be controlled. The UPnP Forum intends to define a large number
of these standardized devices.

• Use a user interface description. A UPnP control point receives enough
information about a device and its services to automatically build a user
interface for it.

• Programmatic Control. A program can directly control a UPnP device
without a user interface. This control can be based on detected infor-
mation about the device or through a priori knowledge of the device
type.

• Allows the user to browse a web page supplied by the device. This web page
contains a user interface for the device that be directly manipulated by
the user. However, this option is not well defined in the UPnP Device
Architecture specification and is not tested for compliance.

The UPnP Device Architecture specification and the OSGi Service Platform
provide complementary functionality. The UPnP Device Architecture specifi-
cation is a data communication protocol that does not specify where and
how programs execute. That choice is made by the implementations. In con-
trast, the OSGi Service Platform specifies a (managed) execution point and
does not define what protocols or media are supported. The UPnP specifica-
tion and the OSGi specifications are fully complementary and do not over-
lap.

From the OSGi perspective, the UPnP specification is a communication pro-
tocol that can be implemented by one or more bundles. This specification
therefore defines the following:

• How an OSGi bundle can implement a service that is exported to the
network via the UPnP protocols.

• How to find and control services that are available on the local network.

The UPnP specifications related to the assignment of IP addresses to new
devices on the network or auto-IP self configuration should be handled at
the operating system level. Such functions are outside the scope of this spec-
ification.

111.2.1 UPnP Base Driver
The functionality of the UPnP service is implemented in a UPnP base driver.
This is a bundle that implements the UPnP protocols and handles the inter-
action with bundles that use the UPnP devices. A UPnP base driver bundle
must provide the following functions:
252-432 OSGi Service Platform Release 4

UPnP™ Device Service Specification Version 1.1 UPnP Device
• Discover UPnP devices on the network and map each discovered device
into an OSGi registered UPnP Device service.

• Present UPnP marked services that are registered with the OSGi
Framework on one or more networks to be used by other computers.

111.3 UPnP Device
The principle entity of the UPnP specification is the UPnP device. There is a
UPnP root device that represents a physical appliance, such as a complete TV.
The root device contains a number of sub-devices. These might be the tuner,
the monitor, and the sound system. Each sub-device is further composed of
a number of UPnP services. A UPnP service represents some functional unit
in a device. For example, in a TV tuner it can represent the TV channel selec-
tor. Figure 43 on page 253 illustrates this hierarchy.

Figure 43 UPnP device hierarchy

Each UPnP service can be manipulated with a number of UPnP actions.
UPnP actions can modify the state of a UPnP state variable that is associated
with a service. For example, in a TV there might be a state variable volume.
There are then actions to set the volume, to increase the volume, and to
decrease the volume.

111.3.1 Root Device
The UPnP root device is registered as a UPnP Device service with the Frame-
work, as well as all its sub-devices. Most applications will work with sub-
devices, and, as a result, the children of the root device are registered under
the UPnPDev ice interface.

UPnP device properties are defined per sub-device in the UPnP specification.
These properties must be registered with the OSGi Framework service regis-
try so they are searchable.

Bundles that want to handle the UPnP device hierarchy can use the regis-
tered service properties to find the parent of a device (which is another regis-
tered UPnPDev ice).

The following service registration properties can be used to discover this
hierarchy:

Network

UPnP root device

UPnP device

UPnP service

UPnP Action
OSGi Service Platform Release 4 253-432

UPnP Device UPnP™ Device Service Specification Version 1.1
• PARENT_UDN – The Universal Device Name (UDN) of the parent device.
A root device most not have this property registered. Type is a Str ing
object.

• CHILDREN_UDN – An array of UDNs of this device’s children. Type is a
String[] object.

111.3.2 Exported Versus Imported Devices
Both imported (from the network to the OSGi service registry) and exported
(from the service registry to the network) UPnPDev ice services must have
the same representation in the OSGi Service Platform for identical devices.
For example, if an OSGi UPnP Device service is exported as a UPnP device
from an OSGi Service Platform to the network, and it is imported into
another OSGi Service Platform, the object representation should be equal.
Application bundles should therefore be able to interact with imported and
exported forms of the UPnP device in the same manner.

Imported and exported UPnP devices differ only by two marker properties
that can be added to the service registration. One marker,
DEVICE_CATEGORY, should typically be set only on imported devices. By
not setting DEVICE_CATEGORY on internal UPnP devices, the Device Man-
ager does not try to refine these devices (See the Device Access Specification on
page 33 for more information about the Device Manager). If the device ser-
vice does not implement the Device interface and does not have the
DEVICE_CATEGORY property set, it is not considered a device according to
the Device Access Specification.

The other marker, UPNP_EXPORT , should only be set on internally created
devices that the bundle developer wants to export. By not setting
UPNP_EXPORT on registered UPnP Device services, the UPnP Device service
can be used by internally created devices that should not be exported to the
network. This allows UPnP devices to be simulated within an OSGi Service
Platform without announcing all of these devices to any networks.

111.3.3 Icons
A UPnP device can optionally support an icon. The purpose of this icon is to
identify the device on a UPnP control point. UPnP control points can be
implemented in large computers like PC’s or simple devices like a remote
control. However, the graphic requirements for these UPnP devices differ
tremendously. The device can, therefore, export a number of icons of differ-
ent size and depth.

In the UPnP specifications, an icon is represented by a URL that typically
refers to the device itself. In this specification, a list of icons is available from
the UPnP Device service.

In order to obtain localized icons, the method getIcons(Str ing) can be used
to obtain different versions. If the locale specified is a nul l argument, then
the call returns the icons of the default locale of the called device (not the
default locale of the UPnP control point).When a bundle wants to access the
icon of an imported UPnP device, the UPnP driver gets the data and presents
it to the application through an input stream.
254-432 OSGi Service Platform Release 4

UPnP™ Device Service Specification Version 1.1 Device Category
A bundle that needs to export a UPnP Device service with one ore more
icons must provide an implementation of the UPnPIcon interface. This
implementation must provide an InputStream object to the actual icon
data. The UPnP driver bundle must then register this icon with an HTTP
server and include the URL to the icon with the UPnP device data at the
appropriate place.

111.4 Device Category
UPnP Device services are devices in the context of the Device Manager. This
means that these services need to register with a number of properties to
participate in driver refinement. The value for UPnP devices is defined in
the UPnPDev ice constant DEVICE_CATEGORY . The value is UPnP . The
UPnPDevice interface contains a number of constants for matching values.
Refer to MATCH_GENERIC on page 263 for further information.

111.5 UPnPService
A UPnP Device contains a number of UPnPService objects. UPnPService
objects combine actions and state variables.

111.5.1 State Variables
The UPnPStateVar iable interface encapsulates the properties of a UPnP
state variable. In addition to the properties defined by the UPnP specifica-
tion, a state variable is also mapped to a Java data type. The Java data type is
used when an event is generated for this state variable and when an action is
performed containing arguments related to this state variable. There must
be a strict correspondence between the UPnP data type and the Java data
type so that bundles using a particular UPnP device profile can predict the
precise Java data type.

The function QueryStateVariable defined in the UPnP specification has
been deprecated and is therefore not implemented. It is recommended to
use the UPnP event mechanism to track UPnP state variables.

Additionally, a UPnPStateVariab leobject can also implement the
UPnPLocalStateVar iable interface if the device is implemented locally. That
is, the device is not imported from the network. The
UPnPLocalStateVar iable interface provides a getCurrentValue() method
that provides direct access to the actual value of the state variable.

111.6 Working With a UPnP Device
The UPnP driver must register all discovered UPnP devices in the local net-
works. These devices are registered under a UPnPDevice interface with the
OSGi Framework.
OSGi Service Platform Release 4 255-432

Implementing a UPnP Device UPnP™ Device Service Specification Version 1.1
Using a remote UPnP device thus involves tracking UPnP Device services in
the OSGi service registry. The following code illustrates how this can be
done. The sample Control ler class extends the ServiceTracker class so that it
can track all UPnP Device services and add them to a user interface, such as a
remote controller application.

class Controller extends ServiceTracker {
UI ui;

Controller(BundleContext context) {
super(context, UPnPDevice.class.getName(), null);

}
public Object addingService(ServiceReference ref) {

UPnPDevice dev = (UPnPDevice)super.addingService(ref);
ui.addDevice(dev);
return dev;

}
public void removedService(ServiceReference ref,

Object dev) {
ui.removeDevice((UPnPDevice) dev);

}
...

}

111.7 Implementing a UPnP Device
OSGi services can also be exported as UPnP devices to the local networks, in
a way that is transparent to typical UPnP devices. This allows developers to
bridge legacy devices to UPnP networks. A bundle should perform the fol-
lowing to export an OSGi service as a UPnP device:

• Register an UPnP Device service with the registration property
UPNP_EXPORT .

• Use the registration property PRESENTATION_URL to provide the presen-
tation page. The service implementer must register its own servlet with
the Http Service to serve out this interface. This URL must point to that
servlet.

There can be multiple UPnP root devices hosted by one OSGi platform. The
relationship between the UPnP devices and the OSGi platform is defined by
the PARENT_UDN and CHILDREN_UDN service properties. The bundle regis-
tering those device services must make sure these properties are set accord-
ingly.

Devices that are implemented on the OSGi Service Platform (in contrast
with devices that are imported from the network) should use the UPnPLo-
calStateVariab le interface for their state variables instead of the UPnPState-
Var iable interface. This interface provides programmatic access to the
actual value of the state variable as maintained by the device specific code.
256-432 OSGi Service Platform Release 4

UPnP™ Device Service Specification Version 1.1 Event API
111.8 Event API
UPnP events are sent using the whiteboard model, in which a bundle inter-
ested in receiving the UPnP events registers an object implementing the
UPnPEventLis tener interface. A filter can be set to limit the events for which
a bundle is notified.

If a service is registered with a property named upnp.f i l ter with the value of
an instance of an Fi l ter object, the listener is only notified for matching
events (This is a Fi l ter object and not a Str ing object because it allows the
Inval idSyntaxExcept ion to be thrown in the client and not the UPnP driver
bundle).

The filter might refer to any valid combination of the following pseudo
properties for event filtering:

• UPnPDevice.UDN – (UPnP.device.UDN) Only events generated by ser-
vices contained in the specific device are delivered. For example:
(UPnP.device .UDN=uuid:Upnp-TVEmulator-1_0-1234567890001)

• UPnPDevice.TYPE– (UPnP.device.type) Only events generated by services
contained in a device of the given type are delivered. For example:
(UPnP.device .type=urn :schemas-upnp-org :device :tvdevice :1)

• UPnPService. ID – (UPnP.service . id) Service identity. Only events gen-
erated by services matching the given service ID are delivered.

• UPnPService.TYPE – (UPnP.service.type) Only events generated by ser-
vices of of the given type are delivered.

If an event is generated, the noti fyUPnPEvent(Str ing,Str ing,Dict ionary)
method is called on all registered UPnPEventListener services for which the
optional filter matches for that event. If no filter is specified, all events must
be delivered. If the filter does not match, the UPnP driver must not call the
UPnP Event Listener service.

One or multiple events are passed as parameters to the not ifyUPnPE-
vent(Str ing,Str ing,Dict ionary) method. The Dict ionary object holds a pair
of UpnPStateVariable objects that triggered the event and an Object for the
new value of the state variable.

111.8.1 Initial Event Delivery
Special care must be taken with the initial subscription to events. According
to the UPnP specification, when a client subscribes for notification of events
for the first time, the device sends out a number of events for each state vari-
able, indicating the current status of each state variable. This behavior sim-
plifies the synchronization of a device and an event-driven client.

The UPnP Driver must mimic this event distribution for all UPnP Event Lis-
tener services when they are registered. The driver must guarantee the same
behavior for all registrations by keeping an internal history of the events. If
a device uses the UPnPLoca lStateVar iableinterface, the UPnP driver must
query the actual value of the state variable before sending it to the newly
registered listener. The driver must not rely on any maintained state.

The call to the listener's notification method must be done asynchronously.
OSGi Service Platform Release 4 257-432

UPnP Events and Event Admin service UPnP™ Device Service Specification Version 1.1
111.9 UPnP Events and Event Admin service
UPnP events are delivered asynchronously to the Event Admin service.
UPnP events have the following topic:

org/osgi/service/upnp/UPnPEvent

The properties of a UPnP event are the following:

• upnp.dev ice Id – (Str ing) The identity as defined by UPnPDev ice.UDN of
the device sending the event.

• upnp.service Id – (Str ing) The identity of the service sending the events.
• upnp.events – (Dict ionary) A Dict ionary object containing the new

values for the state variables that have changed.

111.10 Localization
All values of the UPnP properties are obtained from the device using the
device's default locale. If an application wants to query a set of localized
property values, it has to use the method getDescr iptions(Str ing) . For local-
ized versions of the icons, the method getIcons(Str ing) is to be used.

111.11 Dates and Times
The UPnP specification uses different types for date and time concepts. An
overview of these types is given in Table 22 on page 258.

The UPnP specification points to [50] XML Schema. In this standard, [51] ISo
8601 Date And Time formats are referenced. The mapping is not completely
defined which means that the this OSGi UPnP specification defines a com-
plete mapping to Java classes. The UPnP types date , dateTime and
dateT ime. tz are represented as a Date object. For the date type, the hours,
minutes and seconds must all be zero.

The UPnP types t ime and t ime.tz are represented as a Long object that repre-
sents the number of ms since midnight. If the time wraps to the next day
due to a time zone value, then the final value must be truncated to modulo
86.400.000.

See also TYPE_DATE on page 271 and further.

Table 22 Mapping UPnP Date/Time types to Java
UPnP Type Class Example Value (TZ=CEST= +0200)
date Date 1985-04-12 Sun Apri l 12 00:00:00 CEST 1985
dateTime Date 1985-04-12T10:15:30 Sun Apri l 12 10 :15:30 CEST 1985
dateTime.tz Date 1985-04-12T10:15:30+0400 Sun Apri l 12 08:15:30 CEST 1985
t ime Long 23:20:50 84.050.000 (ms)
t ime.tz Long 23:20:50+0300 1.250.000 (ms)
258-432 OSGi Service Platform Release 4

UPnP™ Device Service Specification Version 1.1 UPnP Exception
111.12 UPnP Exception
The UPnP Exception can be thrown when a UPnPAction is invoked. This
exception contains information about the different UPnP layers. The follow-
ing errors are defined:

INVALID_ACTION – (401) No such action could be found.

INVALID_ARGS – (402) Invalid argument.

INVALID_SEQUENCE_NUMBER – (403) Out of synchronization.

INVALID_VARIABLE – (404) State variable not found.

DEVICE_INTERNAL_ERROR – (501) Internal error.

Further errors are categroized as follows:

• Common Action Errors – In the range of 600-69 , defined by the UPnP
Forum Technical Committee.

• Action Specific Errors – In the range of 700-799, defined by the UPnP
Forum Working Committee.

• Non-Standard Action Specific Errors – In the range of 800-899. Defined by
vendors.

111.13 Configuration
In order to provide a standardized way to configure a UPnP driver bundle,
the Configuration Admin property upnp.ssdp.address is defined.

The value is a String[] with a list of IP addresses, optionally followed with a
colon (’:’, \u003A) and a port number. For example:

239.255.255.250:1900

Those addresses define the interfaces which the UPnP driver is operating on.
If no SSDP address is specified, the default assumed will be
239.255.255.250:1900. If no port is specified, port 1900 is assumed as default.

111.14 Networking considerations

111.14.1 The UPnP Multicasts
The operating system must support multicasting on the selected network
device. In certain cases, a multicasting route has to be set in the operating
system routing table.

These configurations are highly dependent on the underlying operating sys-
tem and beyond the scope of this specification.
OSGi Service Platform Release 4 259-432

Security UPnP™ Device Service Specification Version 1.1
111.15 Security
The UPnP specification is based on HTTP and uses plain text SOAP (XML)
messages to control devices. For this reason, it does not provide any inherent
security mechanisms. However, the UPnP specification is based on the
exchange of XML files and not code. This means that at least worms and
viruses cannot be implemented using the UPnP protocols.

However, a bundle registering a UPnP Device service is represented on the
outside network and has the ability to communicate. The same is true for
getting a UPnP Device service. It is therefore recommended that
ServicePermission[UPnPDev ice|UPnPEventListener, REGISTER|GET] be
used sparingly and only for bundles that are trusted.

111.16 Changes
• Added a new interface that represents a Status Variable that is imple-

mented locallly. This is described in State Variables on page 255.
• Added a UnPException class. This class can convey the UPnP Forum,

work groups, and vendor defined errors. See UPnPException on page 266.
• Event Admin mapping added.

111.17 org.osgi.service.upnp
The OSGi UPnP API Package. Specification Version 1.1.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.upnp; version=1.1

111.17.1 Summary
• UPnPAction - A UPnP action. [p.260]
• UPnPDevice - Represents a UPnP device. [p.262]
• UPnPEventListener - UPnP Events are mapped and delivered to applica-

tions according to the OSGi whiteboard model. [p.265]
• UPnPException - There are several defined error situations describing

UPnP problems while a control point invokes actions to UPnPDevices.
[p.266]

• UPnPIcon - A UPnP icon representation. [p.267]
• UPnPLocalStateVariable - A local UPnP state variable which allows the

value of the state variable to be queried. [p.268]
• UPnPService - A representation of a UPnP Service. [p.268]
• UPnPStateVariable - The meta-information of a UPnP state variable as

declared in the device’s service state table (SST). [p.270]
UPnPAction

111.17.2 public interface UPnPAction
A UPnP action. Each UPnP service contains zero or more actions. Each
action may have zero or more UPnP state variables as arguments.
getInputArgumentNames()
260-432 OSGi Service Platform Release 4

UPnP™ Device Service Specification Version 1.1 org.osgi.service.upnp
111.17.2.1 public String[] getInputArgumentNames()

Lists all input arguments for this action.

Each action may have zero or more input arguments.

Returns Array of input argument names or null if no input arguments.

See Also UPnPStateVariable[p.270]
getName()

111.17.2.2 public String getName()

Returns the action name. The action name corresponds to the name field in
the actionList of the service description.

• For standard actions defined by a UPnP Forum working committee,
action names must not begin with X_ nor A_.

• For non-standard actions specified by a UPnP vendor and added to a
standard service, action names must begin with X_.

Returns Name of action, must not contain a hyphen character or a hash character
getOutputArgumentNames()

111.17.2.3 public String[] getOutputArgumentNames()

List all output arguments for this action.

Returns Array of output argument names or null if there are no output arguments.

See Also UPnPStateVariable[p.270]
getReturnArgumentName()

111.17.2.4 public String getReturnArgumentName()

Returns the name of the designated return argument.

One of the output arguments can be flagged as a designated return argu-
ment.

Returns The name of the designated return argument or null if none is marked.
getStateVariable(String)

111.17.2.5 public UPnPStateVariable getStateVariable(String argumentName)

argumentName The name of the UPnP action argument.

Finds the state variable associated with an argument name. Helps to resolve
the association of state variables with argument names in UPnP actions.

Returns State variable associated with the named argument or null if there is no such
argument.

See Also UPnPStateVariable[p.270]
invoke(Dictionary)

111.17.2.6 public Dictionary invoke(Dictionary args) throws Exception

args A Dictionary of arguments. Must contain the correct set and type of argu-
ments for this action. May be null if no input arguments exist.

Invokes the action. The input and output arguments are both passed as Dic-
tionary objects. Each entry in the Dictionary object has a String object as key
representing the argument name and the value is the argument itself. The
class of an argument value must be assignable from the class of the associ-
ated UPnP state variable. The input argument Dictionary object must con-
tain exactly those arguments listed by getInputArguments method. The
output argument Dictionary object will contain exactly those arguments
listed by getOutputArguments method.
OSGi Service Platform Release 4 261-432

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.1
Returns A Dictionary with the output arguments. null if the action has no output ar-
guments.

Throws UPnPException – A UPnP error has occured.

Exception – The execution fails for some reason.

See Also UPnPStateVariable[p.270]
UPnPDevice

111.17.3 public interface UPnPDevice
Represents a UPnP device. For each UPnP root and embedded device, an
object is registered with the framework under the UPnPDevice interface.

The relationship between a root device and its embedded devices can be
deduced using the UPnPDevice.CHILDREN_UDN and UPnPDe-
vice.PARENT_UDN service registration properties.

The values of the UPnP property names are defined by the UPnP Forum.

All values of the UPnP properties are obtained from the device using the
device’s default locale.

If an application wants to query for a set of localized property values, it has
to use the method UPnPDevice.getDescriptions(String locale).
CHILDREN_UDN

111.17.3.1 public static final String CHILDREN_UDN = “UPnP.device.childrenUDN”

The property key that must be set for all devices containing other embedded
devices.

The value is an array of UDNs for each of the device’s children (String[]). The
array contains UDNs for the immediate descendants only.

If an embedded device in turn contains embedded devices, the latter are not
included in the array.

The UPnP Specification does not encourage more than two levels of nesting.

The property is not set if the device does not contain embedded devices.

The property is of type String[]. Value is “UPnP.device.childrenUDN”
DEVICE_CATEGORY

111.17.3.2 public static final String DEVICE_CATEGORY = “UPnP”

Constant for the value of the service property DEVICE_CATEGORY used for
all UPnP devices. Value is “UPnP”.

See Also org.osgi.service.device.Constants.DEVICE_CATEGORY
FRIENDLY_NAME

111.17.3.3 public static final String FRIENDLY_NAME = “UPnP.device.friendlyName”

Mandatory property key for a short user friendly version of the device name.
The property value holds a String object with the user friendly name of the
device. Value is “UPnP.device.friendlyName”.
ID

111.17.3.4 public static final String ID = “UPnP.device.UDN”

Property key for the Unique Device ID property. This property is an alias to
UPnPDevice.UDN. It is merely provided for reasons of symmetry with the
UPnPService.ID property. The value of the property is a String object of the
Device UDN. The value of the key is “UPnP.device.UDN”.
MANUFACTURER
262-432 OSGi Service Platform Release 4

UPnP™ Device Service Specification Version 1.1 org.osgi.service.upnp
111.17.3.5 public static final String MANUFACTURER = “UPnP.device.manufacturer”

Mandatory property key for the device manufacturer’s property. The prop-
erty value holds a String representation of the device manufacturer’s name.
Value is “UPnP.device.manufacturer”.
MANUFACTURER_URL

111.17.3.6 public static final String MANUFACTURER_URL =
“UPnP.device.manufacturerURL”

Optional property key for a URL to the device manufacturers Web site. The
value of the property is a String object representing the URL. Value is
“UPnP.device.manufacturerURL”.
MATCH_GENERIC

111.17.3.7 public static final int MATCH_GENERIC = 1

Constant for the UPnP device match scale, indicating a generic match for
the device. Value is 1.
MATCH_MANUFACTURER_MODEL

111.17.3.8 public static final int MATCH_MANUFACTURER_MODEL = 7

Constant for the UPnP device match scale, indicating a match with the
device model. Value is 7.
MATCH_MANUFACTURER_MODEL_REVISION

111.17.3.9 public static final int MATCH_MANUFACTURER_MODEL_REVISION = 15

Constant for the UPnP device match scale, indicating a match with the
device revision. Value is 15.
MATCH_MANUFACTURER_MODEL_REVISION_SERIAL

111.17.3.10 public static final int
MATCH_MANUFACTURER_MODEL_REVISION_SERIAL = 31

Constant for the UPnP device match scale, indicating a match with the
device revision and the serial number. Value is 31.
MATCH_TYPE

111.17.3.11 public static final int MATCH_TYPE = 3

Constant for the UPnP device match scale, indicating a match with the
device type. Value is 3.
MODEL_DESCRIPTION

111.17.3.12 public static final String MODEL_DESCRIPTION =
“UPnP.device.modelDescription”

Optional (but recommended) property key for a String object with a long
description of the device for the end user. The value is “UPnP.device.model-
Description”.
MODEL_NAME

111.17.3.13 public static final String MODEL_NAME = “UPnP.device.modelName”

Mandatory property key for the device model name. The property value
holds a String object giving more information about the device model.
Value is “UPnP.device.modelName”.
MODEL_NUMBER

111.17.3.14 public static final String MODEL_NUMBER = “UPnP.device.modelNumber”

Optional (but recommended) property key for a String class typed property
holding the model number of the device. Value is “UPnP.device.modelNum-
ber”.
MODEL_URL
OSGi Service Platform Release 4 263-432

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.1
111.17.3.15 public static final String MODEL_URL = “UPnP.device.modelURL”

Optional property key for a String typed property holding a string represent-
ing the URL to the Web site for this model. Value is “UPnP.device.mode-
lURL”.
PARENT_UDN

111.17.3.16 public static final String PARENT_UDN = “UPnP.device.parentUDN”

The property key that must be set for all embedded devices. It contains the
UDN of the parent device. The property is not set for root devices. The value
is “UPnP.device.parentUDN”.
PRESENTATION_URL

111.17.3.17 public static final String PRESENTATION_URL = “UPnP.presentationURL”

Optional (but recommended) property key for a String typed property hold-
ing a string representing the URL to a device representation Web page.
Value is “UPnP.presentationURL”.
SERIAL_NUMBER

111.17.3.18 public static final String SERIAL_NUMBER = “UPnP.device.serialNumber”

Optional (but recommended) property key for a String typed property hold-
ing the serial number of the device. Value is “UPnP.device.serialNumber”.
TYPE

111.17.3.19 public static final String TYPE = “UPnP.device.type”

Property key for the UPnP Device Type property. Some standard property
values are defined by the Universal Plug and Play Forum. The type string
also includes a version number as defined in the UPnP specification. This
property must be set.

For standard devices defined by a UPnP Forum working committee, this
must consist of the following components in the given order separated by
colons:

• urn
• schemas-upnp-org
• device
• a device type suffix
• an integer device version

For non-standard devices specified by UPnP vendors following components
must be specified in the given order separated by colons:

• urn
• an ICANN domain name owned by the vendor
• device
• a device type suffix
• an integer device version

To allow for backward compatibility the UPnP driver must automatically
generate additional Device Type property entries for smaller versions than
the current one. If for example a device announces its type as version 3, then
properties for versions 2 and 1 must be automatically generated.

In the case of exporting a UPnPDevice, the highest available version must be
announced on the network.

Syntax Example: urn:schemas-upnp-org:device:deviceType:v

The value is “UPnP.device.type”.
264-432 OSGi Service Platform Release 4

UPnP™ Device Service Specification Version 1.1 org.osgi.service.upnp
UDN

111.17.3.20 public static final String UDN = “UPnP.device.UDN”

Property key for the Unique Device Name (UDN) property. It is the unique
identifier of an instance of a UPnPDevice. The value of the property is a
String object of the Device UDN. Value of the key is “UPnP.device.UDN”.
This property must be set.
UPC

111.17.3.21 public static final String UPC = “UPnP.device.UPC”

Optional property key for a String typed property holding the Universal
Product Code (UPC) of the device. Value is “UPnP.device.UPC”.
UPNP_EXPORT

111.17.3.22 public static final String UPNP_EXPORT = “UPnP.export”

The UPnP.export service property is a hint that marks a device to be picked
up and exported by the UPnP Service. Imported devices do not have this
property set. The registered property requires no value.

The UPNP_EXPORT string is “UPnP.export”.
getDescriptions(String)

111.17.3.23 public Dictionary getDescriptions(String locale)

locale A language tag as defined by RFC 1766 and maintained by ISO 639. Examples
include “de“, “en“ or “en-US“. The default locale of the device is specified by
passing a null argument.

Get a set of localized UPnP properties. The UPnP specification allows a
device to present different device properties based on the client’s locale. The
properties used to register the UPnPDevice service in the OSGi registry are
based on the device’s default locale. To obtain a localized set of the proper-
ties, an application can use this method.

Not all properties might be available in all locales. This method does not
substitute missing properties with their default locale versions.

Returns Dictionary mapping property name Strings to property value Strings
getIcons(String)

111.17.3.24 public UPnPIcon[] getIcons(String locale)

locale A language tag as defined by RFC 1766 and maintained by ISO 639. Examples
include “de“, “en“ or “en-US“. The default locale of the device is specified by
passing a null argument.

Lists all icons for this device in a given locale. The UPnP specification allows
a device to present different icons based on the client’s locale.

Returns Array of icons or null if no icons are available.
getService(String)

111.17.3.25 public UPnPService getService(String serviceId)

serviceId The service id

Locates a specific service by its service id.

Returns The requested service or null if not found.
getServices()

111.17.3.26 public UPnPService[] getServices()

Lists all services provided by this device.

Returns Array of services or null if no services are available.
UPnPEventListener
OSGi Service Platform Release 4 265-432

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.1
111.17.4 public interface UPnPEventListener
UPnP Events are mapped and delivered to applications according to the
OSGi whiteboard model. An application that wishes to be notified of events
generated by a particular UPnP Device registers a service extending this
interface.

The notification call from the UPnP Service to any UPnPEventListener
object must be done asynchronous with respect to the originator (in a sepa-
rate thread).

Upon registration of the UPnP Event Listener service with the Framework,
the service is notified for each variable which it listens for with an initial
event containing the current value of the variable. Subsequent notifications
only happen on changes of the value of the variable.

A UPnP Event Listener service filter the events it receives. This event set is
limited using a standard framework filter expression which is specified
when the listener service is registered.

The filter is specified in a property named “upnp.filter” and has as a value an
object of type org.osgi.framework.Filter.

When the Filter is evaluated, the folowing keywords are recognized as
defined as literal constants in the UPnPDevice class.

The valid subset of properties for the registration of UPnP Event Listener ser-
vices are:

• UPnPDevice.TYPE-- Which type of device to listen for events.
• UPnPDevice.ID-- The ID of a specific device to listen for events.
• UPnPService.TYPE-- The type of a specific service to listen for events.
• UPnPService.ID-- The ID of a specific service to listen for events.
UPNP_FILTER

111.17.4.1 public static final String UPNP_FILTER = “upnp.filter”

Key for a service property having a value that is an object of type
org.osgi.framework.Filter and that is used to limit received events.
notifyUPnPEvent(String,String,Dictionary)

111.17.4.2 public void notifyUPnPEvent(String deviceId, String serviceId,
Dictionary events)

deviceId ID of the device sending the events

serviceId ID of the service sending the events

events Dictionary object containing the new values for the state variables that have
changed.

Callback method that is invoked for received events. The events are col-
lected in a Dictionary object. Each entry has a String key representing the
event name (= state variable name) and the new value of the state variable.
The class of the value object must match the class specified by the UPnP
State Variable associated with the event. This method must be called asyn-
chronously
UPnPException
266-432 OSGi Service Platform Release 4

UPnP™ Device Service Specification Version 1.1 org.osgi.service.upnp
111.17.5 public class UPnPException
extends Exception
There are several defined error situations describing UPnP problems while a
control point invokes actions to UPnPDevices.

Since 1.1
DEVICE_INTERNAL_ERROR

111.17.5.1 public static final int DEVICE_INTERNAL_ERROR = 501

The invoked action failed during execution.
INVALID_ACTION

111.17.5.2 public static final int INVALID_ACTION = 401

No Action found by that name at this service.
INVALID_ARGS

111.17.5.3 public static final int INVALID_ARGS = 402

Not enough arguments, too many arguments with a specific name, or one of
more of the arguments are of the wrong type.
INVALID_SEQUENCE_NUMBER

111.17.5.4 public static final int INVALID_SEQUENCE_NUMBER = 403

The different end-points are no longer in synchronization.
INVALID_VARIABLE

111.17.5.5 public static final int INVALID_VARIABLE = 404

Refers to a non existing variable.
UPnPException(int,String)

111.17.5.6 public UPnPException(int errorCode, String errordesc)

errorCode errorCode which defined UPnP Device Architecture V1.0.

errordesc errorDescription which explain the type of propblem.

This constructor creates a UPnPException on the specified error code and
error description.
getUPnPError_Code()

111.17.5.7 public int getUPnPError_Code()

Returns the UPnPError Code occured by UPnPDevices during invocation.

Returns The UPnPErrorCode defined by a UPnP Forum working committee or speci-
fied by a UPnP vendor.
UPnPIcon

111.17.6 public interface UPnPIcon
A UPnP icon representation. Each UPnP device can contain zero or more
icons.
getDepth()

111.17.6.1 public int getDepth()

Returns the color depth of the icon in bits.

Returns The color depth in bits. If the actual color depth of the icon is unknown, -1 is
returned.
getHeight()

111.17.6.2 public int getHeight()

Returns the height of the icon in pixels. If the actual height of the icon is
unknown, -1 is returned.
OSGi Service Platform Release 4 267-432

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.1
Returns The height in pixels, or -1 if unknown.
getInputStream()

111.17.6.3 public InputStream getInputStream() throws IOException

Returns an InputStream object for the icon data. The InputStream object
provides a way for a client to read the actual icon graphics data. The number
of bytes available from this InputStream object can be determined via the
getSize() method. The format of the data encoded can be determined by the
MIME type availble via the getMimeType() method.

Returns An InputStream to read the icon graphics data from.

Throws IOException – If the InputStream cannot be returned.

See Also UPnPIcon.getMimeType()[p.268]
getMimeType()

111.17.6.4 public String getMimeType()

Returns the MIME type of the icon. This method returns the format in
which the icon graphics, read from the InputStream object obtained by the
getInputStream() method, is encoded.

The format of the returned string is in accordance to RFC2046. A list of valid
MIME types is maintained by the IANA (http://www.iana.org/assignments/
media-types/) .

Typical values returned include: “image/jpeg” or “image/gif”

Returns The MIME type of the encoded icon.
getSize()

111.17.6.5 public int getSize()

Returns the size of the icon in bytes. This method returns the number of
bytes of the icon available to read from the InputStream object obtained by
the getInputStream() method. If the actual size can not be determined, -1 is
returned.

Returns The icon size in bytes, or -1 if the size is unknown.
getWidth()

111.17.6.6 public int getWidth()

Returns the width of the icon in pixels. If the actual width of the icon is
unknown, -1 is returned.

Returns The width in pixels, or -1 if unknown.
UPnPLocalStateVariable

111.17.7 public interface UPnPLocalStateVariable
extends UPnPStateVariable
A local UPnP state variable which allows the value of the state variable to be
queried.

Since 1.1
getCurrentValue()

111.17.7.1 public Object getCurrentValue()

This method will keep the current values of UPnPStateVariables of a UPnP-
Device whenever UPnPStateVariable’s value is changed , this method must
be called.

Returns Object current value of UPnPStateVariable. if the current value is initialized
with the default value defined UPnP service description.
UPnPService
268-432 OSGi Service Platform Release 4

UPnP™ Device Service Specification Version 1.1 org.osgi.service.upnp
111.17.8 public interface UPnPService
A representation of a UPnP Service. Each UPnP device contains zero or more
services. The UPnP description for a service defines actions, their arguments,
and event characteristics.
ID

111.17.8.1 public static final String ID = “UPnP.service.id”

Property key for the optional service id. The service id property is used when
registering UPnP Device services or UPnP Event Listener services. The value
of the property contains a String array (String[]) of service ids. A UPnP
Device service can thus announce what service ids it contains. A UPnP
Event Listener service can announce for what UPnP service ids it wants noti-
fications. A service id does not have to be universally unique. It must be
unique only within a device. A null value is a wildcard, matching all ser-
vices. The value is “UPnP.service.id”.
TYPE

111.17.8.2 public static final String TYPE = “UPnP.service.type”

Property key for the optional service type uri. The service type property is
used when registering UPnP Device services and UPnP Event Listener ser-
vices. The property contains a String array (String[]) of service types. A UPnP
Device service can thus announce what types of services it contains. A UPnP
Event Listener service can announce for what type of UPnP services it wants
notifications. The service version is encoded in the type string as specified in
the UPnP specification. A null value is a wildcard, matching all service
types. Value is “UPnP.service.type”.

See Also UPnPService.getType()[p.270]
getAction(String)

111.17.8.3 public UPnPAction getAction(String name)

name Name of action. Must not contain hyphen or hash characters. Should be <32
characters.

Locates a specific action by name. Looks up an action by its name.

Returns The requested action or null if no action is found.
getActions()

111.17.8.4 public UPnPAction[] getActions()

Lists all actions provided by this service.

Returns Array of actions (UPnPAction[])or null if no actions are defined for this serv-
ice.
getId()

111.17.8.5 public String getId()

Returns the serviceId field in the UPnP service description.

For standard services defined by a UPnP Forum working committee, the ser-
viceId must contain the following components in the indicated order:

• urn:upnp-org:serviceId:
• service ID suffix

Example: urn:upnp-org:serviceId:serviceID.

Note that upnp-org is used instead of schemas-upnp-org in this example
because an XML schema is not defined for each serviceId.
OSGi Service Platform Release 4 269-432

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.1
For non-standard services specified by UPnP vendors, the serviceId must
contain the following components in the indicated order:

• urn:
• ICANN domain name owned by the vendor
• :serviceId:
• service ID suffix

Example: urn:domain-name:serviceId:serviceID.

Returns The service ID suffix defined by a UPnP Forum working committee or speci-
fied by a UPnP vendor. Must be <= 64 characters. Single URI.
getStateVariable(String)

111.17.8.6 public UPnPStateVariable getStateVariable(String name)

name Name of the State Variable

Gets a UPnPStateVariable objects provided by this service by name

Returns State variable or null if no such state variable exists for this service.
getStateVariables()

111.17.8.7 public UPnPStateVariable[] getStateVariables()

Lists all UPnPStateVariable objects provided by this service.

Returns Array of state variables or null if none are defined for this service.
getType()

111.17.8.8 public String getType()

Returns the serviceType field in the UPnP service description.

For standard services defined by a UPnP Forum working committee, the ser-
viceType must contain the following components in the indicated order:

• urn:schemas-upnp-org:service:
• service type suffix:
• integer service version

Example: urn:schemas-upnp-org:service:serviceType:v.

For non-standard services specified by UPnP vendors, the serviceType must
contain the following components in the indicated order:

• urn:
• ICANN domain name owned by the vendor
• :service:
• service type suffix:
• integer service version

Example: urn:domain-name:service:serviceType:v.

Returns The service type suffix defined by a UPnP Forum working committee or spec-
ified by a UPnP vendor. Must be <= 64 characters, not including the version
suffix and separating colon. Single URI.
getVersion()

111.17.8.9 public String getVersion()

Returns the version suffix encoded in the serviceType field in the UPnP ser-
vice description.

Returns The integer service version defined by a UPnP Forum working committee or
specified by a UPnP vendor.
UPnPStateVariable
270-432 OSGi Service Platform Release 4

UPnP™ Device Service Specification Version 1.1 org.osgi.service.upnp
111.17.9 public interface UPnPStateVariable
The meta-information of a UPnP state variable as declared in the device’s
service state table (SST).

Method calls to interact with a device (e.g. UPnPAction.invoke(...);) use this
class to encapsulate meta information about the input and output argu-
ments.

The actual values of the arguments are passed as Java objects. The mapping
of types from UPnP data types to Java data types is described with the field
definitions.
TYPE_BIN_BASE64

111.17.9.1 public static final String TYPE_BIN_BASE64 = “bin.base64”

MIME-style Base64 encoded binary BLOB.

Takes 3 Bytes, splits them into 4 parts, and maps each 6 bit piece to an octet.
(3 octets are encoded as 4.) No limit on size.

Mapped to byte[] object. The Java byte array will hold the decoded content of
the BLOB.
TYPE_BIN_HEX

111.17.9.2 public static final String TYPE_BIN_HEX = “bin.hex”

Hexadecimal digits representing octets.

Treats each nibble as a hex digit and encodes as a separate Byte. (1 octet is
encoded as 2.) No limit on size.

Mapped to byte[] object. The Java byte array will hold the decoded content of
the BLOB.
TYPE_BOOLEAN

111.17.9.3 public static final String TYPE_BOOLEAN = “boolean”

True or false.

Mapped to Boolean object.
TYPE_CHAR

111.17.9.4 public static final String TYPE_CHAR = “char”

Unicode string.

One character long.

Mapped to Character object.
TYPE_DATE

111.17.9.5 public static final String TYPE_DATE = “date”

A calendar date.

Date in a subset of ISO 8601 format without time data.

See http://www.w3.org/TR/xmlschema-2/#date (http://www.w3.org/TR/
xmlschema-2/#date) .

Mapped to java.util.Date object. Always 00:00 hours.
TYPE_DATETIME

111.17.9.6 public static final String TYPE_DATETIME = “dateTime”

A specific instant of time.

Date in ISO 8601 format with optional time but no time zone.
OSGi Service Platform Release 4 271-432

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.1
See http://www.w3.org/TR/xmlschema-2/#dateTime (http://www.w3.org/
TR/xmlschema-2/#dateTime) .

Mapped to java.util.Date object using default time zone.
TYPE_DATETIME_TZ

111.17.9.7 public static final String TYPE_DATETIME_TZ = “dateTime.tz”

A specific instant of time.

Date in ISO 8601 format with optional time and optional time zone.

See http://www.w3.org/TR/xmlschema-2/#dateTime (http://www.w3.org/
TR/xmlschema-2/#dateTime) .

Mapped to java.util.Date object adjusted to default time zone.
TYPE_FIXED_14_4

111.17.9.8 public static final String TYPE_FIXED_14_4 = “fixed.14.4”

Same as r8 but no more than 14 digits to the left of the decimal point and no
more than 4 to the right.

Mapped to Double object.
TYPE_FLOAT

111.17.9.9 public static final String TYPE_FLOAT = “float”

Floating-point number.

Mantissa (left of the decimal) and/or exponent may have a leading sign.
Mantissa and/or exponent may have leading zeros. Decimal character in
mantissa is a period, i.e., whole digits in mantissa separated from fractional
digits by period. Mantissa separated from exponent by E. (No currency sym-
bol.) (No grouping of digits in the mantissa, e.g., no commas.)

Mapped to Float object.
TYPE_I1

111.17.9.10 public static final String TYPE_I1 = “i1”

1 Byte int.

Mapped to Integer object.
TYPE_I2

111.17.9.11 public static final String TYPE_I2 = “i2”

2 Byte int.

Mapped to Integer object.
TYPE_I4

111.17.9.12 public static final String TYPE_I4 = “i4”

4 Byte int.

Must be between -2147483648 and 2147483647

Mapped to Integer object.
TYPE_INT

111.17.9.13 public static final String TYPE_INT = “int”

Integer number.

Mapped to Integer object.
TYPE_NUMBER

111.17.9.14 public static final String TYPE_NUMBER = “number”

Same as r8.
272-432 OSGi Service Platform Release 4

UPnP™ Device Service Specification Version 1.1 org.osgi.service.upnp
Mapped to Double object.
TYPE_R4

111.17.9.15 public static final String TYPE_R4 = “r4”

4 Byte float.

Same format as float. Must be between 3.40282347E+38 to 1.17549435E-38.

Mapped to Float object.
TYPE_R8

111.17.9.16 public static final String TYPE_R8 = “r8”

8 Byte float.

Same format as float. Must be between -1.79769313486232E308 and -
4.94065645841247E-324 for negative values, and between
4.94065645841247E-324 and 1.79769313486232E308 for positive values, i.e.,
IEEE 64-bit (8-Byte) double.

Mapped to Double object.
TYPE_STRING

111.17.9.17 public static final String TYPE_STRING = “string”

Unicode string.

No limit on length.

Mapped to String object.
TYPE_TIME

111.17.9.18 public static final String TYPE_TIME = “time”

An instant of time that recurs every day.

Time in a subset of ISO 8601 format with no date and no time zone.

See http://www.w3.org/TR/xmlschema-2/#time (http://www.w3.org/TR/
xmlschema-2/#dateTime) .

Mapped to Long. Converted to milliseconds since midnight.
TYPE_TIME_TZ

111.17.9.19 public static final String TYPE_TIME_TZ = “time.tz”

An instant of time that recurs every day.

Time in a subset of ISO 8601 format with optional time zone but no date.

See http://www.w3.org/TR/xmlschema-2/#time (http://www.w3.org/TR/
xmlschema-2/#dateTime) .

Mapped to Long object. Converted to milliseconds since midnight and
adjusted to default time zone, wrapping at 0 and 24*60*60*1000.
TYPE_UI1

111.17.9.20 public static final String TYPE_UI1 = “ui1”

Unsigned 1 Byte int.

Mapped to an Integer object.
TYPE_UI2

111.17.9.21 public static final String TYPE_UI2 = “ui2”

Unsigned 2 Byte int.

Mapped to Integer object.
TYPE_UI4
OSGi Service Platform Release 4 273-432

org.osgi.service.upnp UPnP™ Device Service Specification Version 1.1
111.17.9.22 public static final String TYPE_UI4 = “ui4”

Unsigned 4 Byte int.

Mapped to Long object.
TYPE_URI

111.17.9.23 public static final String TYPE_URI = “uri”

Universal Resource Identifier.

Mapped to String object.
TYPE_UUID

111.17.9.24 public static final String TYPE_UUID = “uuid”

Universally Unique ID.

Hexadecimal digits representing octets. Optional embedded hyphens are
ignored.

Mapped to String object.
getAllowedValues()

111.17.9.25 public String[] getAllowedValues()

Returns the allowed values, if defined. Allowed values can be defined only
for String types.

Returns The allowed values or null if not defined. Should be less than 32 characters.
getDefaultValue()

111.17.9.26 public Object getDefaultValue()

Returns the default value, if defined.

Returns The default value or null if not defined. The type of the returned object can
be determined by getJavaDataType.
getJavaDataType()

111.17.9.27 public Class getJavaDataType()

Returns the Java class associated with the UPnP data type of this state vari-
able.

Mapping between the UPnP data types and Java classes is performed accord-
ing to the schema mentioned above.

Integer ui1, ui2, i1, i2, i4, int
Long ui4, time, time.tz
Float r4, float
Double r8, number, fixed.14.4
Character char
String string, uri, uuid
Date date, dateTime, dateTime.tz
Boolean boolean
byte[] bin.base64, bin.hex

Returns A class object corresponding to the Java type of this argument.
getMaximum()

111.17.9.28 public Number getMaximum()

Returns the maximum value, if defined. Maximum values can only be
defined for numeric types.

Returns The maximum value or null if not defined.
getMinimum()
274-432 OSGi Service Platform Release 4

UPnP™ Device Service Specification Version 1.1 References
111.17.9.29 public Number getMinimum()

Returns the minimum value, if defined. Minimum values can only be
defined for numeric types.

Returns The minimum value or null if not defined.
getName()

111.17.9.30 public String getName()

Returns the variable name.

• All standard variables defined by a UPnP Forum working committee
must not begin with X_ nor A_.

• All non-standard variables specified by a UPnP vendor and added to a
standard service must begin with X_.

Returns Name of state variable. Must not contain a hyphen character nor a hash char-
acter. Should be <32 characters.
getStep()

111.17.9.31 public Number getStep()

Returns the size of an increment operation, if defined. Step sizes can be
defined only for numeric types.

Returns The increment size or null if not defined.
getUPnPDataType()

111.17.9.32 public String getUPnPDataType()

Returns the UPnP type of this state variable. Valid types are defined as con-
stants.

Returns The UPnP data type of this state variable, as defined in above constants.
sendsEvents()

111.17.9.33 public boolean sendsEvents()

Tells if this StateVariable can be used as an event source. If the StateVariable
is eventable, an event listener service can be registered to be notified when
changes to the variable appear.

Returns true if the StateVariable generates events, false otherwise.

111.18 References
[45] UPnP Device Architecture

http://www.upnp.org/download/UPnPDA10_20000613.htm

[46] UPnP Forum
http://www.upnp.org

[47] Simple Object Access Protocol, SOAP
http://www.w3.org/TR/SOAP

[48] General Event Notification Architecture, GENA
http://www.upnp.org/download/draft-cohen-gena-client-01.txt

[49] Simple Service Discovery Protocol, SSDP
http://www.upnp.org/download/draft_cai_ssdp_v1_03.txt

[50] XML Schema
http://www.w3.org/TR/xmlschema-2
OSGi Service Platform Release 4 275-432

References UPnP™ Device Service Specification Version 1.1
[51] ISo 8601 Date And Time formats
www.iso.ch
276-432 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Introduction
112 Declarative Services
Specification
Version 1.0

112.1 Introduction
The OSGi Framework contains a procedural service model which provides a
publish/find/bind model for using services. This model is elegant and power-
ful, it enables the building of applications out of bundles that communicate
and collaborate using these services.

This specification addresses some of the complications that arise when the
OSGi service model is used for larger systems and wider deployments, such
as:

• Startup Time – The procedural service model requires a bundle to actively
register and acquire its services. This is normally done at startup time,
requiring all present bundles to be initialized with a Bundle Activator. In
larger systems, this quickly results in unacceptably long startup times.

• Memory Footprint – A service registered with the Framework implies that
the implementation, and related classes and objects, are loaded in
memory. If the service is never used, this memory is unnecessarily
occupied. The creation of a class loader may therefore cause significant
overhead.

• Complexity – Service can come and go at any time. This dynamic behavior
makes the service programming model more complex than more tradi-
tional models. This complexity negatively influences the adoption of the
OSGi service model as well as the robustness and reliability of applica-
tions because these applications do not always handle the dynamicity
correctly.

The service component model uses a declarative model for publishing, finding
and binding to OSGi services. This model simplifies the task of authoring
OSGi services by performing the work of registering the service and han-
dling service dependencies. This minimizes the amount of code a program-
mer has to write; it also allows service components to be loaded only when
they are needed. As a result, bundles need not provide a BundleActivator
class to collaborate with others through the service registry.

From a system perspective, the service component model means reduced
startup time and potentially a reduction of the memory footprint. From a
programmer’s point of view the service component model provides a sim-
plified programming model.

The Service Component model makes use of concepts described in [52] Auto-
mating Service Dependency Management in a Service-Oriented Component Model.
OSGi Service Platform Release 4 277-432

Introduction Declarative Services Specification Version 1.0
112.1.1 Essentials
• Backward Compatibility – The service component model must operate

seamlessly with the existing service model.
• Size Constraints – The service component model must not require

memory and performance intensive subsystems. The model must also be
applicable on resource constrained devices.

• Delayed Activation – The service component model must allow delayed
activation of a service component. Delayed activation allows for delayed
class loading and object creation until needed, thereby reducing the
overall memory footprint.

• Simplicity – The programming model for using declarative services must
be very simple and not require the programmer to learn a complicated
API or XML sub-language.

112.1.2 Entities
• Service Component – A service component contains a description that is

interpreted at run time to create and dispose objects depending on the
availability of other services, the need for such an object, and available
configuration data. Such objects can optionally provide a service. This
specification also uses the generic term component to refer to a service
component.

• Component Description – The declaration of a service component. It is con-
tained within an XML document in a bundle.

• Component Properties – A set of properties which can be specified by the
component description, Configuration Admin service and from the com-
ponent factory.

• Component Configuration – A component configuration represents a com-
ponent description parameterized by component properties. It is the
entity that tracks the component dependencies and manages a com-
ponent instance. An activated component configuration has a com-
ponent context.

• Component Instance – An instance of the component implementation
class. A component instance is created when a component configuration
is activated and discarded when the component configuration is deacti-
vated. A component instance is associated with exactly one component
configuration.

• Delayed Component – A component whose component configurations are
activated when their service is requested.

• Immediate Component – A component whose component configurations
are activated immediately upon becoming satisfied.

• Factory Component – A component whose component configurations are
created and activated through the component’s component factory.

• Reference – A specified dependency of a component on a set of target ser-
vices.

• Service Component Runtime (SCR) – The actor that manages the compo-
nents and their life cycle.

• Target Services – The set of services that is defined by the reference
interface and target property filter.

• Bound Services – The set of target services that are bound to a component
configuration.
278-432 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Introduction
Figure 44 Service Component Runtime, org.osgi.service.component package

112.1.3 Synopsis
The Service Component Runtime reads component descriptions from
started bundles. These descriptions are in the form of XML documents
which define a set of components for a bundle. A component can refer to a
number of services that must be available before a component configura-
tion becomes satisfied. These dependencies are defined in the descriptions
and the specific target services can be influenced by configuration informa-
tion in the Configuration Admin service. After a component configuration
becomes satisfied, a number of different scenarios can take place depending
on the component type:

• Immediate Component – The component configuration of an immediate
component must be activated immediately after becoming satisfied.
Immediate components may provide a service.

• Delayed Component – When a component configuration of a delayed com-
ponent becomes satisfied, SCR will register the service specified by the
service element without activating the component configuration. If this
service is requested, SCR must activate the component configuration cre-
ating an instance of the component implementation class that will be
returned as the service object. If the servicefactory attribute of the
service element is t rue , then, for each distinct bundle that requests the
service, a different component configuration is created and activated and
a new instance of the component implementation class is returned as
the service object.

• Factory Component – If a component’s description specifies the factory
attribute of the component element, SCR will register a Component
Factory service. This service allows client bundles to create and activate
multiple component configurations and dispose of them. If the com-
ponent’s description also specifies a service element, then as each com-
ponent configuration is activated, SCR will register it as a service.

a Component
Impl

a Service Impl

Service
Component
Runtime

a Servicea Component
Instance

Component
Description

a Component
Confguration

registered service

tracks
dependencies

declares com
ponent

created by

controls 1 0..n

0..n

0..n

references

1..n
1

Configuration
Admin

0..n

1

0..n

1

OSGi Service Platform Release 4 279-432

Components Declarative Services Specification Version 1.0
112.1.4 Readers
• Architects – The chapter, Components on page 280, gives a comprehensive

introduction to the capabilities of the component model. It explains the
model with a number of examples. The section about Component Life
Cycle on page 294 provides some deeper insight in the life cycle of com-
ponents.

• Service Programmers – Service programmers should read Components on
page 280. This chapter should suffice for the most common cases. For the
more advanced possibilities, they should consult Component Description
on page 289 for the details of the XML grammar for component descrip-
tions.

• Deployers – Deployers should consult Deployment on page 302.

112.2 Components
A component is a normal Java class contained within a bundle. The distin-
guishing aspect of a component is that it is declared in an XML document.
Component configurations are activated and deactivated under the full con-
trol of SCR. SCR bases its decisions on the information in the component’s
description. This information consists of basic component information like
the name and type, optional services that are implemented by the compo-
nent, and references. References are dependencies that the component has on
other services.

SCR must activate a component configuration when the component is
enabled and the component configuration is satisfied and a component con-
figuration is needed. During the life time of a component configuration,
SCR can notify the component of changes in its bound references.

SCR will deactivate a previously activated component configuration when
the component becomes disabled, the component configuration becomes
unsatisfied, or the component configuration is no longer needed.

If an activated component configuration’s configuration properties change,
SCR must deactivate the component configuration and then attempt to
reactivate the component configuration using the new configuration infor-
mation.

112.2.1 Declaring a Component
A component requires the following artifacts in the bundle:

• An XML document that contains the component description.
• The Service-Component manifest header which names the XML docu-

ments that contain the component descriptions.
• An implementation class that is specified in the component description.

The elements in the component’s description are defined in Component
Description on page 289. The XML grammar for the component declaration is
defined by the XML Schema, see Component Description Schema on page 304.
280-432 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Components
112.2.2 Immediate Component
An immediate component is activated as soon as its dependencies are satisfied.
If an immediate component has no dependencies, it is activated immedi-
ately. A component is an immediate component if it is not a factory compo-
nent and either does not specify a service or specifies a service and the
immediate attribute of the component element set to t rue. If an immediate
component configuration is satisfied and specifies a service, SCR must regis-
ter the component configuration as a service in the service registry and then
activate the component configuration.

For example, the bundle entry /OSGI-INF/activator.xml contains:

<?xml version="1.0" encoding="UTF-8"?>
<component name="example.activator">

<implementation class="com.acme.Activator"/>
</component>

The manifest header Service-Component must also be specified in the bun-
dle manifest. For example:

Service-Component: OSGI-INF/activator.xml

An example class for this component could look like:

public class Activator {
public Activator() {...}
protected void activate(ComponentContext ctxt) {...}
protected void deactivate(ComponentContext ctxt) {...}

}

This example component is virtually identical to a Bundle Activator. It has
no references to other services so it will be satisfied immediately. It pub-
lishes no service so SCR will activate a component configuration immedi-
ately.

The act ivate method is called when SCR activates the component configu-
ration and the deactivate method is called when SCR deactivates the com-
ponent configuration. If the act ivate method throws an Exception, then the
component configuration is not activated and will be discarded.

112.2.3 Delayed Component
A delayed component specifies a service, is not specified to be a factory compo-
nent and does not have the immediate attribute of the component element
set to t rue . If a delayed component configuration is satisfied, SCR must reg-
ister the component configuration as a service in the service registry but the
activation of the component configuration is delayed until the registered
service is requested. The registered service of a delayed component look like
on ordinarily registered service but does not incur the overhead of an ordi-
narily registered service that require a service’s bundle to be initialized to
register the service.

For example, a bundle needs to see events of a specific topic. The Event
Admin uses the white board pattern, receiving the events is therefore as sim-
ple as registering a Event Handler service. The example XML for the delayed
component looks like:
OSGi Service Platform Release 4 281-432

Components Declarative Services Specification Version 1.0
<?xml version="1.0" encoding="UTF-8"?>
<component name="example.handler">

<implementation class="com.acme.HandlerImpl"/>
<property name="event.topics" value="some/topic"/>
<service>

<provide interface=
"org.osgi.service.event.EventHandler"/>

</service>
<component>

The associated component class looks like:

public class HandlerImpl implements EventHandler {
public void handleEvent(Event evt) {

...
 }
}

The component configuration will only be activated once the Event Admin
service requires the service because it has an event to deliver on the topic to
which the component subscribed.

112.2.4 Factory Component
Certain software patterns require the creation of component configurations
on demand. For example, a component could represent an application that
can be launched multiple times and each application instance can then quit
independently. Such a pattern requires a factory that creates the instances.
This pattern is supported with a factory component. A factory component is
used if the factory attribute of the component element is set to a factory iden-
tifier. This identifier can be used by a bundle to associate the factory with
externally defined information.

SCR must register a Component Factory service on behalf of the component
as soon as the component factory is satisfied. The service properties must be:

• component.name – The name of the component.
• component. factory – The factory identifier.

New configurations of the component can be created and activated by call-
ing the newInstance method on this Component Factory service. The
newInstance(Dict ionary) method has a Dictionary object as argument. This
Dictionary object is merged with the component properties as described in
Component Properties on page 301. If the component specifies a service, then
the service is registered after the created component configuration is satis-
fied with the component properties as service properties. Then the compo-
nent configuration is activated.

For example, a component can provide a connection to a USB device. Such a
connection should normally not be shared and should be created each time
such a service is needed. The component description to implement this pat-
tern looks like:

<?xml version="1.0" encoding="UTF-8"?>
<component name="example.factory"factory="example.factory">

<implementation class="com.acme.USBConnectionImpl"/>
</component>
282-432 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 References to Services
The component class looks like:

public class USBConnectionImpl implements USBConnection {
protected void activate(ComponentContext ctxt) {

 ... // ctxt provides access to properties
}

}

A factory component can be associated with a service. In that case, such a
service is registered for each component configuration. For example, the
previous example could provide a USB Connection service.

<?xml version="1.0" encoding="UTF-8"?>
<component name="example.factory"factory="usb.connection">

<implementation class="com.acme.USBConnectionImpl"/>
<service>

<provide interface="com.acme.USBConnection"/>
</service>

</component>

The associated component class looks like:

public class USBConnectionImpl implements USBConnection {
protected void activate(ComponentContext ctxt) {...}

 public void connect() { ... }
...

 public void close() { ... }
}

A new service will be registered each time a new component configuration
is created and activated with the newInstance method. This allows a bundle
other than the one creating the component configuration to utilize the ser-
vice. If the component configuration is deactivated, the service must be
unregistered.

112.3 References to Services
Most bundles will require access to other services from the service registry.
The dynamics of the service registry require care and attention of the pro-
grammer because referenced services, once acquired, could be unregistered
at any moment. The component model simplifies the handling of these ser-
vice dependencies significantly.

The services that are selected by a reference are called the target services.
These are the services selected by the BundleContext .getServiceReferences
method where the first argument is the reference’s interface and the second
argument is the reference’s target property, which must be a valid filter.

A component configuration becomes satisfied when each specified reference
is satisfied. A reference is satisfied if it specifies optional cardinality or when
the target services contains at least one member. An activated component
configuration that becomes unsatisfied must be deactivated.
OSGi Service Platform Release 4 283-432

References to Services Declarative Services Specification Version 1.0
During the activation of a component configuration, SCR must bind some
or all of the target services of a reference to the component configuration.
Any target service that is bound to the component configuration is called a
bound service. See Binding Services on page 298.

112.3.1 Accessing Services
A component instance must be able to use the services that are referenced
by the component configuration, that is, the bound services of the refer-
ences. There are two strategies for a component instance to acquire these
bound services:

• Event strategy – SCR calls a method on the component instance when a
service becomes bound and another method when a service becomes
unbound. These methods are the bind and unbind methods specified by
the reference. The event strategy is useful if the component needs to be
notified of changes to the bound services for a dynamic reference.

• Lookup strategy – A component instance can use one of the locateService
methods of ComponentContext to locate a bound service. These
methods take the name of the reference as a parameter. If the reference
has a dynamic policy, it is important to not store the returned service
object(s) but look it up every time it is needed.

A component may use either or both strategies to access bound services.

When using the event strategy, the bind and unbind methods will be called
by SCR using reflection and must be protected or public methods. These
methods should not be public methods so that they do not appear as public
methods on the component instance if it is registered as a service.

The bind and unbind methods must take a single object as an argument.
They have the following prototype:

protected void <method-name>(<parameter-type>);

The type of the parameter of the bind or unbind method determines the
value passed to the method. If the type of the parameter is
org .osg i . f ramework.ServiceReference then a Service Reference to the
bound service will be passed to the method. This Service Reference may
later be passed to the locateServ ice(Str ing,ServiceReference) method to
obtain the actual service object. This approach is useful when the service
properties need to be examined before accessing the service object. It also
allows for the delayed activation of bound services when using the event
strategy.

If the parameter is of another type, the service object of the bound service is
passed to the method. The method’s parameter type must be assignable
from the type specified by the reference’s interface attribute. That is, the ser-
vice object of the bound service must be castable to the method’s parameter
type.

The methods must be called once for each bound service. This implies that if
the reference has multiple cardinality, then the methods may be called mul-
tiple times.
284-432 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 References to Services
When searching for the bind or unbind method to call, SCR must look
through the component implementation class hierarchy. The declared
methods of each class are searched for a method with the specified name
that takes a single parameter. The method is searched for using the follow-
ing priority:

1 The method’s parameter type is org.osgi . f ramework.ServiceReference .
2 The method’s parameter type is the type specified by the reference’s

interface attribute.
3 The method’s parameter type is assignable from the type specified by the

reference’s inter face attribute. If multiple methods match this rule, this
implies the method name is overloaded and SCR may choose any of the
methods to call.

If no suitable method is found, the search is repeated on the superclass.
Once a suitable method is found, if it is declared protected or public, SCR
will call the method. If the method is not found or the found method is not
declared protected or public, SCR must log an error message with the Log
Service, if present, and ignore the method.

When the service object for a bound service is first provided to a component
instance, that is passed to a bind or unbind method or returned by a locate
service method, SCR must get the service object from the OSGi Framework’s
service registry using the getService method on the component’s Bundle
Context. If the service object for a bound service has been obtained and the
service becomes unbound, SCR must unget the service object using the
ungetService method on the component’s Bundle Context and discard all
references to the service object.

For example, a component requires the Log Service and uses the lookup
strategy. The reference is declared without any bind and unbind methods:

<?xml version="1.0" encoding="UTF-8"?>
<component name="example.listen">

<implementation class="com.acme.LogLookupImpl"/>
<reference name="LOG"

 interface="org.osgi.service.log.LogService"/>
</component>

The component implementation class must now lookup the service. This
looks like:

public class LogLookupImpl {
protected void activate(ComponentContext ctxt) {

LogService log = (LogService)
ctxt.locateService("LOG");

log.log(LogService.LOG_INFO, "Hello Components!"));
}

}

Alternatively, the component could use the event strategy and ask to be
notified with the Log Service by declaring bind and unbind methods.

<?xml version="1.0" encoding="UTF-8"?>
<component name="example.listen">

<implementation class="com.acme.LogEventImpl"/>
<reference name="LOG"
OSGi Service Platform Release 4 285-432

References to Services Declarative Services Specification Version 1.0
 interface="org.osgi.service.log.LogService"
bind="setLog"
unbind="unsetLog"

/>
</component>

The component implementation class looks like:

public class LogEventImpl {
LogService log;
protected void setLog(LogService l) { log = l; }
protected void unsetLog(LogService l) { log = null; }
protected void activate(ComponentContext ctxt) {

log.log(LogService.LOG_INFO, "Hello Components!"));
}

}

112.3.2 Reference Cardinality
A component implementation is always written with a certain cardinality in
mind. The cardinality represents two important concepts:

• Multiplicity – Does the component implementation assume a single
service or does it explicitly handle multiple occurrences? For example,
when a component uses the Log Service, it only needs to bind to one Log
Service to function correctly. Alternatively, when the Configuration
Admin uses the Configuration Listener services it needs to bind to all
target services present in the service registry to dispatch its events cor-
rectly.

• Optionality – Can the component function without any bound service
present? Some components can still perform useful tasks even when no
target service is available, other components must bind to at least one
target service before they can be useful. For example, the Configuration
Admin in the previous example must still provide its functionality even
if there are no Configuration Listener services present. Alternatively, an
application that solely presents a Servlet page has little to do when the
Http Service is not present, it should therefore use a reference with a
mandatory cardinality.

The cardinality is expressed with the following syntax:

cardinality ::= optionality ’..’ multiplicity
optionality ::= ’0’ | ’1’
multiplicity ::= ’1’ | ’n’

A reference is satisfied if the number of target services is equal to or more
than the opt ional i ty . The multipl ic i ty is irrelevant for the satisfaction of the
reference. The mult ipl ic i ty only specifies if the component implementation
is written to handle being bound to multiple services (n) or requires SCR to
select and bind to a single service (1).

The cardinality for a reference can be specified as one of four choices:

• 0. .1 – Optional and unary.
• 1. .1 – Mandatory and unary (Default) .
• 0. .n – Optional and multiple.
• 1. .n – Mandatory and multiple.
286-432 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 References to Services
When a satisfied component configuration is activated, there must be at
most one bound service for each reference with a unary cardinality and at
least one bound service for each reference with a mandatory cardinality. If
the cardinality constraints cannot be maintained after a component config-
uration is activated, that is the reference becomes unsatisfied, the compo-
nent configuration must be deactivated. If the reference has a unary
cardinality and there is more than one target service for the reference, then
the bound service must be the target service with the highest service rank-
ing as specified by the service .ranking property. If there are multiple target
services with the same service ranking, then the bound service must be the
target service with the highest service ranking and the lowest service ID as
specified by the service. id property.

For example, a component wants to register a resource with all Http Ser-
vices that are available. Such a scenario has the cardinality of 0. .n . The code
must be prepared to handle multiple calls to the bind method for each Http
Service in such a case. In this example, the code uses the reg isterResources
method to register a directory for external access.

<?xml version="1.0" encoding="UTF-8"?>
<component name="example.listen">

<implementation class="com.acme.HttpResourceImpl"/>
<reference name="LOG"

 interface="org.osgi.service.http.HttpService"
cardinality="0..n"
bind="setPage"
unbind="unsetPage"

/>
</component>

public class HttpResourceImpl {
protected void setPage(HttpService http) {

http.registerResources("/scr", "scr", null);
}
protected void unsetPage(HttpService http) {

http.unregister("/src");
}

}

112.3.3 Reference Policy
Once all the references of a component are satisfied, a component configura-
tion can be activated and therefore bound to target services. However, the
dynamic nature of the OSGi service registry makes it likely that services are
registered, modified and unregistered after target services are bound. These
changes in the service registry could make one or more bound services no
longer a target service thereby making obsolete any object references that
the component has to these service objects. Components therefore must
specify a policy how to handle these changes in the set of bound services.

The static policy is the most simple policy and is the default policy. A compo-
nent instance never sees any of the dynamics. Component configurations
are deactivated before any bound service for a reference having a static pol-
icy becomes unavailable. If a target service is available to replace the bound
OSGi Service Platform Release 4 287-432

References to Services Declarative Services Specification Version 1.0
service which became unavailable, the component configuration must be
reactivated and bound to the replacement service. A reference with a static
policy is called a static reference.

The static policy can be very expensive if it depends on services that fre-
quently unregister and re-register or if the cost of activating and deactivat-
ing a component configuration is high. Static policy is usually also not
applicable if the cardinality specifies multiple bound services.

The dynamic policy is slightly more complex since the component imple-
mentation must properly handle changes in the set of bound services. With
the dynamic policy, SCR can change the set of bound services without deac-
tivating a component configuration. If the component uses the event strat-
egy to access services, then the component instance will be notified of
changes in the set of bound services by calls to the bind and unbind meth-
ods. A reference with a dynamic policy is called a dynamic reference.

The previous example with the registering of a resource directory used a
static policy. This implied that the component configurations are deacti-
vated when there is a change in the bound set of Http Services. The code in
the example can be seen to easily handle the dynamics of Http Services that
come and go. The component description can therefore be updated to:

<?xml version="1.0" encoding="UTF-8"?>
<component name="example.listen">

<implementation class="com.acme.HttpResourceImpl"/>
<reference name="LOG"

 interface="org.osgi.service.http.HttpService"
cardinality="0..n"
policy="dynamic"
bind="setPage"
unbind="unsetPage"

/>
</component>

The code is identical to the previous example.

112.3.4 Selecting Target Services
The target services for a reference are constrained by the reference’s inter-
face name and target property. By specifying a filter in the target property,
the programmer and deployer can constrain the set of services that should
be part of the target services.

For example, a component wants to track all Component Factory services
that have a factory identification of acme.appl icat ion . The following com-
ponent description shows how this can be done.

<?xml version="1.0" encoding="UTF-8"?>
<component name="example.listen">

<implementation class="com.acme.FactoryTracker"/>
<reference name="FACTORY"

 interface=
"org.osgi.service.component.ComponentFactory"
288-432 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Component Description
target="(component.factory=acme.application)"
/>

</component>

Since the target filter is manifested as a component property, called the tar-
get property, the deployer can modify the target filter by establishing a con-
figuration for the component which sets the value of the target property.
See Component Properties on page 301 for more information.

112.3.5 Circular References
It is possible for a set of component descriptions to create a circular depen-
dency. For example, if component A references a service provided by compo-
nent B and component B references a service provided by component A then
a component configuration of one component cannot be satisfied without
accessing a “partially” activated component instance of the other compo-
nent. SCR must ensure that a component instance is never accessible to
another component instance or as a service until it has been fully activated,
that is it has returned from its act ivate method if it has one.

Circular references must be detected by SCR when it attempts to satisfy
component configurations and SCR must fail to satisfy the references
involved in the cycle and log an error message with the Log Service, if
present. However, if one of the references in the cycle has optional cardinal-
ity SCR must break the cycle. The reference with the optional cardinality
can be satisfied and bound to zero target services. Therefore the cycle is bro-
ken and the other references may be satisfied.

112.4 Component Description
Component descriptions are defined in XML documents contained in a bun-
dle and any attached fragments.

If SCR detects an error when processing a component description, it must
log an error message with the Log Service, if present, and ignore the compo-
nent description. Errors can include XML parsing errors and ill-formed com-
ponent descriptions.

112.4.1 Service Component Header
XML documents containing component descriptions must be specified by
the Service-Component header in the manifest. The value of the header is a
comma separated list of XML entries within the bundle.

Service-Component ::= path (',' path)*

A Service-Component manifest header specified in a fragment is ignored by
SCR. However, XML documents referenced by a bundle’s Service-Compo-
nent manifest header may be contained in attached fragments.

SCR must process each XML document specified in this header. If an XML
document specified by the header cannot be located in the bundle and its
attached fragments, SCR must log an error message with the Log Service, if
present, and continue.
OSGi Service Platform Release 4 289-432

Component Description Declarative Services Specification Version 1.0
112.4.2 XML Document
A component description must be stored in a UTF-8 encoded bundle entry.
The name space for component descriptions is:

http://www.osgi.org/xmlns/scr/v1.0.0

The recommended prefix for this name space is scr . This prefix is used in
this specification. XML documents containing component descriptions may
contain a single, root component element or one or more component ele-
ments embedded in a larger document. Use of the name space is optional if
the document only contains a root component element. In this case, the scr
name space is assumed. Otherwise the name space must be used.

SCR must parse all component elements in the scr name space. Elements
not in this name space must be ignored. Ignoring elements that are not rec-
ognized allows component descriptions to be embedded in any XML docu-
ment. For example, an entry can provide additional information about
components. These additional elements are parsed by another sub-system.

See Component Description Schema on page 304 for component description
schema.

112.4.3 Component Element
The component element specifies the component description. The follow-
ing text defines the structure of the XML grammar using a form that is simi-
lar to the normal grammar used in OSGi specifications. In this case the
grammar should be mapped to XML elements:

<component> ::= <implementation>
 <properties> *
 <service> ?
 <reference> *

The component element has the following attributes:

• name – The name of a component must be globally unique because it is
used as a PID in several places. The component name is used as a PID to
retrieve component properties from the OSGi Configuration Admin
service if present. See Deployment on page 302 for more information.

• enabled – Controls whether the component is enabled when the bundle
is started. The default value is true . If enabled is set to fa lse , the com-
ponent is disabled until the method enableComponent is called on the
ComponentContext object. This allows some initialization to be per-
formed by some other component in the bundle before this component
can become satisfied. See Enabled on page 294.

• factory – If set to a non-empty string, it indicates that this component is a
factory component. SCR must register a Component Factory service for
each factory component. See Factory Component on page 282.

• immediate – Controls whether component configurations must be
immediately activated after becoming satisfied or whether activation
should be delayed. The default value is fa lse if the service element is
specified and t rue otherwise. If this attribute is specified, its value must
be t rue unless the service element is also specified.
290-432 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Component Description
112.4.4 Implementation Element
The implementat ion element is required and defines the name of the com-
ponent implementation class. It has therefore only a single attribute:

• c lass – The Java fully qualified name of the implementation class.

The class is retrieved with the loadClass method of the component’s bun-
dle. The class must be public and have a public constructor without argu-
ments (this is normally the default constructor) so component instances
may be created by SCR with the newInstance method on Class .

If the component description specifies a service, the class must implement
all implement all interfaces that are provided by the service.

112.4.5 Properties and Property Elements
A component description can define a number of properties. There are two
different elements for this:

• property – Defines a single property.
• properties – Reads a set of properties from a bundle entry.

The property and propert ies elements can occur multiple times and they
can be interleaved. This interleaving is relevant because the properties are
processed from top to bottom. Later properties override earlier properties
that have the same name.

Properties can also be overridden by a Configuration Admin service’s
Configurat ion object before they are exposed to the component or used as
service properties. This is described in Component Properties on page 301 and
Deployment on page 302.

The property element has the following attributes:

• name – The name of the property.
• va lue – The value of the property. This value is parsed according to the

property type. If the value attribute is specified, the body of the element
is ignored. If the type of the property is not Str ing , parsing of the value is
done by the valueOf(Str ing) method in the class identified by the type.

• type – The type of the property. Defines how to interpret the value. The
type must be one of the following Java types:
• Str ing (default)
• Long
• Double
• Float
• Integer
• Byte
• Char
• Boolean
• Short

• element body – If the value attribute is not specified, the body of the
property element must contain one or more values. The value of the
property is then an array of the specified type. Except for Str ing objects,
the result will be translated to an array of primitive types. For example, if
the type attribute specifies Integer , then the resulting array must be
int[] .
OSGi Service Platform Release 4 291-432

Component Description Declarative Services Specification Version 1.0
Values must be placed one per line and blank lines are ignored. Parsing
of the value is done by the parse methods in the class identified by the
type, after trimming the line of any beginning and ending white space.
String values are also trimmed of beginning and ending white space
before being placed in the array.

For example, a component that needs an array of hosts can use the following
property definition:

<property name="hosts">
www.acme.com
backup.acme.com

</property>

This property declaration results in the property hosts, with a value of
String[] { "www.acme.com", "backup.acme.com" } .

The properties element references an entry in the bundle whose contents
conform to a standard [54] Java Properties File.

The entry is read and processed to obtain the properties and their values.
The properties element has the following attributes:

• entry – The entry path relative to the root of the bundle

For example, to include vendor identification properties that are stored in
the OSGI-INF directory, the following definition could be used:

<properties entry="OSGI-INF/vendor.properties" />

112.4.6 Service Element
The service element is optional. It describes the service information to be
used when a component configuration is to be registered as a service.

A service element has the following attribute:

• servicefactory – Controls whether the service uses the ServiceFactory
concept of the OSGi Framework. The default value is fa lse . If
servicefactory is set to t rue , a different component configuration is
created, activated and its component instance returned as the service
object for each distinct bundle that requests the service. Each of these
component configurations has the same component properties. Oth-
erwise, the same component instance from the single component config-
uration is returned as the service object for all bundles that request the
service.

The servicefactory attribute must not be true if the component is a factory
component or an immediate component. This is because SCR is not free to
create component configurations as necessary to support servicefactory . A
component description is ill-formed if it specifies that the component is a
factory component or an immediate component and serv icefactory is set to
true .

The service element must have one or more provide elements that define
the service interfaces. The provide element has a single attribute:

• inter face – The name of the interface that this service is registered under.
This name must be the fully qualified name of a Java class. For example,
292-432 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Component Description
org.osg i. service . log .LogService . The specified Java class should be an
interface rather than a class, however specifying a class is supported.

For example, a component implements an Event Handler service.

<service>
<provide interface=

"org.osgi.service.eventadmin.EventHandler"/>
</service>

112.4.7 Reference Element
A reference declares a dependency that a component has on a set of target ser-
vices. A component configuration is not satisfied, unless all its references
are satisfied. A reference specifies target services by specifying their inter-
face and an optional target filter.

A reference element has the following attributes:

• name – The name of the reference. This name is local to the component
and can be used to locate a bound service of this reference with one of the
locateService methods of ComponentContext .

• interface – Fully qualified name of the class that is used by the com-
ponent to access the service. The service provided to the component
must be type compatible with this class. That is, the component must be
able to cast the service object to this class. A service must be registered
under this name to be considered for the set of target services.

• card inal i ty – Specifies if the reference is optional and if the component
implementation support a single bound service or multiple bound ser-
vices. See Reference Cardinality on page 286.

• pol icy – The policy declares the assumption of the component about
dynamicity. See Reference Policy on page 287.

• target – An optional OSGi Framework filter expression that further con-
strains the set of target services. The default is no filter, limiting the set of
matched services to all service registered under the given reference
interface. The value of this attribute is used to set a target property. See
Selecting Target Services on page 288.

• bind – The name of a method in the component implementation class
that is used to notify that a service is bound to the component configu-
ration. For static references, this method is only called before the
activate method. For dynamic references, this method can also be called
while the component configuration is active. See Accessing Services on
page 284.

• unbind – Same as bind, but is used to notifiy the component configu-
ration that the service is unbound. For static references, the method is
only called after the deactivate method. For dynamic references, this
method can also be called while the component configuration is active.
See Accessing Services on page 284.
OSGi Service Platform Release 4 293-432

Component Life Cycle Declarative Services Specification Version 1.0
112.5 Component Life Cycle

112.5.1 Enabled
A component must first be enabled before it can be used. A component can-
not be enabled unless the component’s bundle is started. All components in
a bundle become disabled when the bundle is stopped. So the life cycle of a
component is contained within the life cycle of its bundle.

Every component can be enabled or disabled. The initial enabled state of a
component is specified in the component description via the enabled
attribute of the component element. See Component Element on page 290.
Component configurations can be created, satisfied and activated only
when the component is enabled.

The enabled state of a component can be controlled with the Component
Context enableComponent(Str ing) and disab leComponent(Str ing) meth-
ods. The purpose of later enabling a component is to be able to decide pro-
grammatically when a component can become enabled. For example, an
immediate component can perform some initialization work before other
components in the bundle are enabled. The component descriptions of all
other components in the bundle can be disabled by having enabled set to
fa lse in their component descriptions. After any necessary initialization
work is complete, the immediate component can call enableComponent to
enable the remaining components.

The enableComponent and disableComponent methods must return after
changing the enabled state of the named component. Any actions that
result from this, such as activating or deactivating a component configura-
tion, must occur asynchronously to the method call. Therefore a component
can disable itself.

All components in a bundle can be enabled by passing a nul l as the argu-
ment to enableComponent .

112.5.2 Satisfied
Component configurations can only be activated when the component con-
figuration is satisfied. A component configuration becomes satisfied when
the following conditions are all satisfied:

• The component is enabled.
• Using the component properties of the component configuration, all the

component’s references are satisfied. A reference is satisfied when the
reference specifies optional cardinality or there is at least one target
service for the reference.

Once any of the listed conditions are no longer true, the component config-
uration becomes unsatisfied. An activated component configuration that
becomes unsatisfied, must be deactivated.
294-432 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Component Life Cycle
112.5.3 Immediate Component
A component is an immediate component when it must be activated as
soon as its dependencies are satisfied. Once the component configuration
becomes unsatisfied, the component configuration must be deactivated. If
an immediate component configuration is satisfied and specifies a service,
SCR must register the component configuration as a service in the service
registry and then activate the component configuration. The state diagram
is shown in Figure 45.

Figure 45 Immediate Component Configuration

112.5.4 Delayed Component
A key attribute of a delayed component is the delaying of class loading and
object creation. Therefore, the activation of a delayed component configura-
tion does not occur until there is an actual request for a service object. A
component is a delayed component when it specifies a service but it is not a
factory component and does not have the immediate attribute of the
component element set to true .

SCR must register a service after the component configuration becomes sat-
isfied. The registration of this service must look to observers of the service
registry as if the component’s bundle actually registered this service. This
strategy makes it possible to register services without creating a class loader
for the bundle and loading classes, thereby allowing reduction in initializa-
tion time and a delay in memory footprint.

When SCR registers the service on behalf of a component configuration, it
must avoid causing a class load to occur from the component's bundle. SCR
can ensure this by registering a ServiceFactory object with the Framework
for that service. By registering a ServiceFactory object, the actual service
object is not needed until the Serv iceFactory is called to provide the service
object.

The service properties for this registration consist of the component proper-
ties as defined in Component Properties on page 301.

The activation of a component configuration must be delayed until its ser-
vice is requested. When the service is requested, if the service has the
servicefactory attribute set to true , SCR must create and activate a unique
component configuration for each bundle requesting the service. Other-

UNSATISFIED

becomes
satisfied

activate

deactivate

ACTIVE

becomes
unsatisfied

if dynamic:
rebinding
OSGi Service Platform Release 4 295-432

Component Life Cycle Declarative Services Specification Version 1.0
wise, SCR must activate a single component configuration which is used by
all bundles requesting the service. A component instance can determine the
bundle it was activated for by calling the getUsingBundle() method on the
Component Context.

The activation of delayed components is depicted in a state diagram in Fig-
ure 46. Notice that multiple component configurations can be created from
the REGISTERED state if a delayed component specifies servicefactory set to
true .

If the service registered by a component configuration becomes unused
because there are no more bundles using it, then SCR should deactivate that
component configuration. This allows SCR implementations to eagerly
reclaim activated component configurations.

Figure 46 Delayed Component Configuration

112.5.5 Factory Component
SCR must register a Component Factory service as soon as the component fac-
tory becomes satisfied. The component factory is satisfied when the follow-
ing conditions are all satisfied:

• The component is enabled.
• Using the component properties specified by the component

description, all the component’s references are satisfied. A reference is
satisfied when the reference specifies optional cardinality or there is at
least one target service for the reference

The component factory, however, does not use any of the target services and
does not bind to them.

Once any of the listed conditions are no longer true, the component factory
becomes unsatisfied and the Component Factory service must be unregis-
tered. Any component configurations activated via the component factory
are unaffected by the unregistration of the Component Factory service, but
may themselves become unsatisfied for the same reason.

The Component Factory service must be registered under the name
org .osg i .serv ice .component.ComponentFactory with the following ser-
vice properties:

• component.name – The name of the component.

UNSATISFIED

becomes
satisfied

becomes

activate

deactivate

ACTIVE

unsatisfied

REGISTERED becomes

get
service

unget
service unsatisfied1

if dynamic:
rebinding

servicefactory: 0..n
otherwise: 1
296-432 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Component Life Cycle
• component. factory – The value of the factory attribute.

New component configurations are created and activated when the
newInstance method of the Component Factory service is called. If the com-
ponent description specifies a service, the component configuration is regis-
tered under the provided interfaces and the component properties as
defined in Component Properties on page 301. The service registration must
take place before the component configuration is activated. Service unregis-
tration must take place before the component configuration is deactivated.

Figure 47 Factory Component

A Component Factory service has a single method: newInstance(Dictio-
nary) . This method must create, satisfy and activate a new component con-
figuration and register its component instance as a service if the component
description specifies a service. It must then return a ComponentInstance
object. This ComponentInstance object can be used to get the component
instance with the getInstance() method.

SCR must attempt to satisfy the component configuration created by
newInstance before activating it. If SCR is unable to satisfy the component
configuration given the component properties and the Dictionary argu-
ment to newInstance , the newInstance method must throw a
ComponentException .

The client of the Component Factory service can also deactivate a compo-
nent configuration with the dispose() method on the ComponentInstance
object. If the component configuration is already deactivated, or is being
deactivated, then this method is ignored. Also, if the component configura-
tion becomes unsatisfied for any reason, it must be deactivated by SCR.

112.5.6 Activation
Activating a component configuration consists of the following steps:

1 Load the component implementation class.

activate

deactivate

ACTIVE

FACTORY

becomes

newInstance

dispose
unsatisfied

0..n

1

rebinding
if dynamic

register

unregister

UNSATISFIED

becomes
satisfied

becomes
unsatisfied
OSGi Service Platform Release 4 297-432

Component Life Cycle Declarative Services Specification Version 1.0
2 Create the component instance and component context.
3 Bind the target services. See Binding Services on page 298.
4 Call the activate method, if present. See Activate Method on page 298.

Component instances must never be reused. Each time a component config-
uration is activated, SCR must create a new component instance to use with
the activated component configuration. Once the component configuration
is deactivated or fails to activate, SCR must discard all references to the com-
ponent instance associated with the activation.

112.5.7 Binding Services
When a component configuration’s reference is satisfied, there is a set of
zero or more target services for that reference. When the component config-
uration is activated, a subset of the target services for each reference are
bound to the component configuration. The subset is chosen by the cardi-
nality of the reference. See Reference Cardinality on page 286.

When binding services, the references are processed in the order in which
they are specified in the component description. That is, target services from
the first specified reference are bound before services from the next speci-
fied reference.

For each reference using the event strategy, the bind method must be called
for each bound service of that reference. This may result in activating a com-
ponent configuration of the bound service which could result in an excep-
tion. If the loss of the bound service due to the exception causes the
reference’s cardinality constraint to be violated, then activation of this com-
ponent configuration will fail. Otherwise the bound service which failed to
activate will be considered unbound. If a bind method throws an exception,
SCR must log an error message containing the exception with the Log Ser-
vice, if present, but the activation of the component configuration does not
fail.

112.5.8 Activate Method
A component implementation class can have a method called act ivate that
takes a ComponentContext object as argument. The prototype of this
method is:

protected void activate(ComponentContext context);

If the component implementation class defines such an activate method,
SCR must call this method to complete the activation of the component
configuration. If the act ivate method throws an exception, SCR must log an
error message containing the exception with the Log Service, if present, and
the component configuration is not activated.

The activate method will be called by SCR using reflection and must be a
protected or public method. This method should not be a public method so
that it does not appear as a public method on the component instance if it is
registered as a service. SCR will look through the component implementa-
tion class hierarchy for the first declaration of the method. If the method is
declared protected or public, SCR will call the method.
298-432 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Component Life Cycle
112.5.9 Component Context
The Component Context is made available to a component instance via the
act ivate and deactivate methods. It provides the interface to the execution
context of the component, much like the Bundle Context provides a bundle
the interface to the Framework. A Component Context should therefore be
regarded as a capability and not shared with other components or bundles.

Each distinct component instance receives a unique Component Context.
Component Contexts are not reused and must be discarded when the com-
ponent configuration is deactivated.

112.5.10 Bound Service Replacement
If an active component configuration has a dynamic reference with unary
cardinality and the bound service is modified or unregistered and ceases to
be a target service, SCR must attempt to replace the bound service with a
new target service. SCR must first bind a replacement target service and
then unbind the outgoing service. If the dynamic reference has a mandatory
cardinality and no replacement target service is available, the component
configuration must be deactivated because the cardinality constraints will
be violated.

If a component configuration has a static reference and a bound service is
modified or unregistered and ceases to be a target service, SCR must deacti-
vate the component configuration. Afterwards, SCR must attempt to acti-
vate the component configuration again if another target service can be
used as a replacement for the outgoing service.

112.5.11 Deactivation
Deactivating a component configuration consists of the following steps:

1 Call the deactivate method, if present. See Deactivate Method on page 299.
2 Unbind any bound services. See Unbinding on page 300.
3 Release all references to the component instance and component

context.

Once the component configuration is deactivated, SCR must discard all ref-
erences to the component instance associated with the activation.

112.5.12 Deactivate Method
A component implementation class can have a method called deact ivate
that takes a ComponentContext object as argument. The prototype of this
method is:

protected void deactivate(ComponentContext context);

If the component implementation class defines such an deact ivate method,
SCR must call this method to commence the deactivation of the component
configuration. If the deactivate method throws an exception, SCR must log
an error message containing the exception with the Log Service, if present,
and the deactivation of the component configuration will continue.
OSGi Service Platform Release 4 299-432

Component Life Cycle Declarative Services Specification Version 1.0
The deactivate method will be called by SCR using reflection and must be a
protected or public method. This method should not be a public method so
that it does not appear as a public method on the component instance if it is
registered as a service. SCR will look through the component implementa-
tion class hierarchy for the first declaration of the method. If the method is
declared protected or public, SCR will call the method.

112.5.13 Unbinding
When a component configuration is deactivated, the bound services are
unbound from the component configuration.

When unbinding services, the references are processed in the reverse order
in which they are specified in the component description. That is, target ser-
vices from the last specified reference are unbound before services from the
previous specified reference.

For each reference using the event strategy, the unbind method must be
called for each bound service of that reference. If an unbind method throws
an exception, SCR must log an error message containing the exception with
the Log Service, if present, and the deactivation of the component configura-
tion will continue.

112.5.14 Life Cycle Example
A component could declare a dependency on the Http Service to register
some resources.

<?xml version="1.0" encoding="UTF-8"?>
<component name="example.binding">

<implementation class="example.Binding"/>
<reference name="LOG"

interface="org.osgi.service.log.LogService"
cardinality="1..1"
policy="static"

/>
<reference name="HTTP"

interface="org.osgi.service.http.HttpService"
cardinality="0..1"
policy="dynamic"
bind="setHttp"
unbind="unsetHttp"

/>
</component>

The component implementation code looks like:

public class Binding {
LogService log;
HttpService http;

protected void setHttp(HttpService h) {
this.http = h;
// register servlet

}
 protected void unsetHttp(HttpService h){
300-432 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Component Properties
this.h = null;
// unregister servlet

}
protected void activate(ComponentContext context) {.

 log = (LogService) context.locateService("LOG");
 }

protected void deactivate(ComponentContext context){...}
}

This example is depicted in a sequence diagram in Figure 48. with the fol-
lowing scenario:

1 A bundle with the example.Bind ing component is started. At that time
there is a Log Service l1 and a Http Service h1 registered.

2 The Http Service h1 is unregistered
3 A new Http Service h2 is registered
4 The Log Service h1 is unregistered.

Figure 48 Sequence Diagram for binding

112.6 Component Properties
Each component configuration is associated with a set of component prop-
erties. The component properties are specified in the following places (in
order of precedence):

1 Properties specified in the argument of ComponentFactory .newInstance
method. This is only applicable for factory components.

2 Properties retrieved from the OSGi Configuration Admin service with a
Configuration object that has a PID equal to the name of the component.

a ComponentLog Service Ref.Http Service Ref.SCR

bundle started
resolve
resolve
satisfied
satisfied
setHttp(h1)

activate(context)

unregistered

dynamic, 0..1 static, 1..1

unsetHttp(h1)

locateService("LOG")

available
setHttp(h2)

unregistered
deactivate(context)
unsetHttp(h2)

1.

2.

3.

4.

Configuration

create
OSGi Service Platform Release 4 301-432

Deployment Declarative Services Specification Version 1.0
3 Properties specified in the component description. Later properties
override earlier properties that have the same name. Properties can be
specified in the component description in the following ways:
• Target properties – The key of a target properties is the name of the

reference appended with . ta rget . The value of these properties is the
value of the ta rget attribute of the reference. For example, a reference
with the name http whose ta rget attribute has the value
"(http.port=80)" results in the component property having the name
http.ta rget and value "(http .port=80)". The target property is not set
if the ta rget attribute of the reference is not specified. See Selecting
Target Services on page 288.

• property and propert ies elements – See Properties and Property Ele-
ments on page 291.

The precedence behavior allows certain default values to be specified in the
component description while allowing properties to be replaced and
extended by:

• A configuration in Configuration Admin
• The argument to ComponentFactory.newInstance method

SCR always adds the following component properties, which can not be
overridden:

• component.name – The component name.

• component. id – A unique value (Long) that is larger than all previously
assigned values. These values are not persistent across restarts of SCR.

112.7 Deployment
A component description contains default information to select target ser-
vices for each reference. However, when a component is deployed, it is often
necessary to influence the target service selection in a way that suits the
need of the deployer. Therefore, SCR uses Conf igurat ion objects from Con-
figuration Admin to replace and extend the component properties for a
component configuration. That is, through Configuration Admin a
deployer can configure component properties.

The name of the component is used as the key for obtaining additional com-
ponent properties from Configuration Admin. The following situations can
arise:

• No Configuration – If there is no Configuration with a PID or factory PID
equal to the component name, then component configurations will not
obtain component properties from Configuration Admin. Only com-
ponent properties specified in the component description or via the
ComponentFactory.newInstance method will be used.

• Single Configuration – If there exists a Configuration with a PID equal to
the component name, then component configurations will obtain addi-
tional component properties from Configuration Admin. This is the
ManagedService situation.

• Factory Configuration – If a factory PID exists, with zero or more Configu-
rations, that is equal to the component name, then for each Configu-
ration, a component configuration must be created that will obtain
302-432 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Service Component Runtime
additional component properties from Configuration Admin. This is the
ManagedServ iceFactory situation.

A factory configuration must not be used if the component is a factory com-
ponent. This is because SCR is not free to create component configurations
as necessary to support multiple Configurat ions. When SCR detects this
condition, it must log an error message with the Log Service, if present, and
ignore the component description.

SCR must obtain the Configuration objects from the Configuration Admin
service using the Bundle Context of the bundle containing the component.

For example, there is a component named com.acme.cl ient with a reference
named HTTP that requires an Http Service which must be bound to a com-
ponent com.acme.httpserver which provides an Http Service. A deployer
can establish the following configuration:

[PID=com.acme.client, factoryPID=null]
HTTP.target = (component.name=com.acme.httpserver)

SCR must track changes in the Conf igurat ion objects used in the compo-
nent properties of a component configuration. If a Conf igurat ion object that
is related to a component configuration changes, then SCR must deactivate
that component configuration and, if the Conf igurat ion object was not
deleted, SCR must attempt to reactive the component configuration with
the updated component properties.

112.8 Service Component Runtime

112.8.1 Relationship to OSGi Framework
SCR must have access to the Bundle Context of any bundle that contains a
component. There is currently no defined way to obtain the Bundle Context
of a bundle. A Bundle Context is only provided to a bundle via its Bundle
Activator methods. This implies that SCR requires a private interface to the
Framework implementation to obtain Bundle Contexts. SCR needs access to
the Bundle Context for the following reasons:

• To be able to register and get services on behalf of a bundle with compo-
nents.

• To interact with the Configuration Admin on behalf of a bundle with
components.

• To provide a component its Bundle Context when the Component
Context getBundleContext method is called.

Since the Bundle Context is considered a private object to the bundle and
would provide the capability for the receiver of the object to act as the bun-
dle, there is no specified way for the OSGi Framework to provide a
BundleContext object to other bundles.

112.8.2 Starting and Stopping SCR
When SCR is implemented as a bundle, any component configurations acti-
vated by SCR must be deactivated when the SCR bundle is stopped. When
the SCR bundle is started, it must process any components that are declared
in ACTIVE bundles.
OSGi Service Platform Release 4 303-432

Security Declarative Services Specification Version 1.0
112.9 Security

112.9.1 Service Permissions
Declarative services are built upon the existing OSGi service infrastructure.
This means that Service Permission applies regarding the ability to publish,
find or bind services.

If a component specifies a service, then component configurations for the
component cannot be satisfied unless the component’s bundle has
ServicePermiss ion[<provides>, REGISTER] for each provided interface spec-
ified for the service.

If a component’s reference does not specify optional cardinality, the refer-
ence cannot be satisfied unless the component’s bundle has
ServicePermission[<interface>, GET] for the specified interface in the refer-
ence. If the reference specifies optional cardinality but the component’s
bundle does not have ServicePermission[<inter face>, GET] for the specified
interface in the reference, no service must be bound for this reference.

If a component is a factory component, then the above Service Permission
checks still apply. But the component’s bundle is not required to have
ServicePermission[ComponentFactory, REGISTER] as the Component Fac-
tory service is registered by SCR.

112.9.2 Using hasPermission
SCR does all publishing, finding and binding of services on behalf of the
component using the Bundle Context of the component’s bundle. This
means that normal stack-based permission checks will check SCR and not
the component’s bundle. Since SCR is registering and getting services on
behalf of a component’s bundle, SCR must call the Bundle.hasPermission
method to validate that a component’s bundle has the necessary permission
to register or get a service.

112.10 Component Description Schema
This XML Schema defines the component description grammar.

<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.osgi.org/xmlns/scr/v1.0.0"
xmlns:scr="http://www.osgi.org/xmlns/scr/v1.0.0">

<element name="component" type="scr:Tcomponent"/>

<complexType name="Tcomponent">
<sequence>

<element name="implementation" type="scr:Timplementation" minOccurs="1" maxOccurs="1"/>
<choice minOccurs="0" maxOccurs="unbounded">

<element name="property" type="scr:Tproperty"/>
<element name="properties" type="scr:Tproperties"/>

</choice>
<element name="service" type="scr:Tservice" minOccurs="0" maxOccurs="1"/>
<element name="reference" type="scr:Treference" minOccurs="0" maxOccurs="unbounded"/>

</sequence>
<attribute name="enabled" type="boolean" default="true" use="optional"/>
<attribute name="name" type="token" use="required"/>
<attribute name="factory" type="string" use="optional"/>
<attribute name="immediate" type="boolean" use="optional"/>
304-432 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Component Description Schema
</complexType>

<complexType name="Timplementation">
<attribute name="class" type="token" use="required"/>

</complexType>

<complexType name="Tproperty">
<simpleContent>

<extension base="string">
<attribute name="name" type="string" use="required"/>
<attribute name="value" type="string" use="optional"/>
<attribute name="type" type="scr:TjavaTypes" default="String" use="optional"/>

</extension>
</simpleContent>

</complexType>

<complexType name="Tproperties">
<attribute name="entry" type="string" use="required"/>

</complexType>

<complexType name="Tservice">
<sequence>

<element name="provide" type="scr:Tprovide" minOccurs="1" maxOccurs="unbounded"/>
</sequence>
<attribute name="servicefactory" type="boolean" default="false" use="optional"/>

</complexType>

<complexType name="Tprovide">
<attribute name="interface" type="token" use="required"/>

</complexType>

<complexType name="Treference">
<attribute name="name" type="NMTOKEN" use="required"/>
<attribute name="interface" type="token" use="required"/>
<attribute name="cardinality" type="scr:Tcardinality" default="1..1" use="optional"/>
<attribute name="policy" type="scr:Tpolicy" default="static" use="optional"/>
<attribute name="target" type="string" use="optional"/>
<attribute name="bind" type="token" use="optional"/>
<attribute name="unbind" type="token" use="optional"/>

</complexType>

<simpleType name="TjavaTypes">
<restriction base="string">

<enumeration value="String"/>
<enumeration value="Long"/>
<enumeration value="Double"/>
<enumeration value="Float"/>
<enumeration value="Integer"/>
<enumeration value="Byte"/>
<enumeration value="Char"/>
<enumeration value="Boolean"/>
<enumeration value="Short"/>

</restriction>
</simpleType>

<simpleType name="Tcardinality">
<restriction base="string">

<enumeration value="0..1"/>
<enumeration value="0..n"/>
<enumeration value="1..1"/>
<enumeration value="1..n"/>

</restriction>
</simpleType>

<simpleType name="Tpolicy">
<restriction base="string">

<enumeration value="static"/>
<enumeration value="dynamic"/>

</restriction>
</simpleType>

</schema>
OSGi Service Platform Release 4 305-432

org.osgi.service.component Declarative Services Specification Version 1.0
112.11 org.osgi.service.component
The OSGi Service Component Package. Specification Version 1.0.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.component; version=1.0

112.11.1 Summary
• ComponentConstants - Defines standard names for Service Component

constants. [p.306]
• ComponentContext - A Component Context object is used by a com-

ponent instance to interact with its execution context including locating
services by reference name. [p.307]

• ComponentException - Unchecked exception which may be thrown by
the Service Component Runtime. [p.309]

• ComponentFactory - When a component is declared with the factory
attribute on its component element, the Service Component Runtime
will register a Component Factory service to allow new component con-
figurations to be created and activated rather than automatically cre-
ating and activating component configuration as necessary. [p.310]

• ComponentInstance - A ComponentInstance encapsulates a component
instance of an activated component configuration. [p.310]

ComponentConstants

112.11.2 public interface ComponentConstants
Defines standard names for Service Component constants.
COMPONENT_FACTORY

112.11.2.1 public static final String COMPONENT_FACTORY = “component.factory”

A service registration property for a Component Factory that contains the
value of the factory attribute. The type of this property must be String.
COMPONENT_ID

112.11.2.2 public static final String COMPONENT_ID = “component.id”

A component property that contains the generated id for a component con-
figuration. The type of this property must be Long.

The value of this property is assigned by the Service Component Runtime
when a component configuration is created. The Service Component Runt-
ime assigns a unique value that is larger than all previously assigned values
since the Service Component Runtime was started. These values are NOT
persistent across restarts of the Service Component Runtime.
COMPONENT_NAME

112.11.2.3 public static final String COMPONENT_NAME = “component.name”

A component property for a component configuration that contains the
name of the component as specified in the name attribute of the component
element. The type of this property must be String.
REFERENCE_TARGET_SUFFIX

112.11.2.4 public static final String REFERENCE_TARGET_SUFFIX = “.target”

The suffix for reference target properties. These properties contain the filter
to select the target services for a reference. The type of this property must be
String.
306-432 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 org.osgi.service.component
SERVICE_COMPONENT

112.11.2.5 public static final String SERVICE_COMPONENT = “Service-Component”

Manifest header (named “Service-Component”) specifying the XML docu-
ments within a bundle that contain the bundle’s Service Component
descriptions.

The attribute value may be retrieved from the Dictionary object returned by
the Bundle.getHeaders method.
ComponentContext

112.11.3 public interface ComponentContext
A Component Context object is used by a component instance to interact
with its execution context including locating services by reference name.
Each component instance has a unique Component Context.

A component’s implementation class may optionaly implement an activate
method:

protected void activate(ComponentContext context);

If a component implements this method, this method will be called when a
component configuration is activated to provide the component instance’s
Component Context object.

A component’s implementation class may optionaly implement a deacti-
vate method:

protected void deactivate(ComponentContext context);

If a component implements this method, this method will be called when
the component configuration is deactivated.

The activate and deactivate methods will be called using reflection and
must be protected or public accessible. These methods should not be public
methods so that they do not appear as public methods on the component
instance when used as a service object. These methods will be located by
looking through the component’s implementation class hierarchy for the
first declaration of the method. If the method is found, if it is declared pro-
tected or public, the method will be called. Otherwise, the method will not
be called.
disableComponent(String)

112.11.3.1 public void disableComponent(String name)

name The name of a component.

Disables the specified component name. The specified component name
must be in the same bundle as this component.
enableComponent(String)

112.11.3.2 public void enableComponent(String name)

name The name of a component or null to indicate all components in the bundle.

Enables the specified component name. The specified component name
must be in the same bundle as this component.
getBundleContext()

112.11.3.3 public BundleContext getBundleContext()

Returns the BundleContext of the bundle which contains this component.

Returns The BundleContext of the bundle containing this component.
getComponentInstance()
OSGi Service Platform Release 4 307-432

org.osgi.service.component Declarative Services Specification Version 1.0
112.11.3.4 public ComponentInstance getComponentInstance()

Returns the Component Instance object for the component instance associ-
ated with this Component Context.

Returns The Component Instance object for the component instance.
getProperties()

112.11.3.5 public Dictionary getProperties()

Returns the component properties for this Component Context.

Returns The properties for this Component Context. The Dictionary is read only and
cannot be modified.
getServiceReference()

112.11.3.6 public ServiceReference getServiceReference()

If the component instance is registered as a service using the service ele-
ment, then this method returns the service reference of the service provided
by this component instance.

This method will return null if the component instance is not registered as a
service.

Returns The ServiceReference object for the component instance or null if the com-
ponent instance is not registered as a service.
getUsingBundle()

112.11.3.7 public Bundle getUsingBundle()

If the component instance is registered as a service using the servicefac-
tory=”true” attribute, then this method returns the bundle using the service
provided by the component instance.

This method will return null if:

• The component instance is not a service, then no bundle can be using it
as a service.

• The component instance is a service but did not specify the service-
factory=”true” attribute, then all bundles using the service provided by
the component instance will share the same component instance.

• The service provided by the component instance is not currently being
used by any bundle.

Returns The bundle using the component instance as a service or null.
locateService(String)

112.11.3.8 public Object locateService(String name)

name The name of a reference as specified in a reference element in this compo-
nent’s description.

Returns the service object for the specified reference name.

If the cardinality of the reference is 0..n or 1..n and multiple services are
bound to the reference, the service with the highest ranking (as specified in
its Constants.SERVICE_RANKING property) is returned. If there is a tie in
ranking, the service with the lowest service ID (as specified in its Con-
stants.SERVICE_ID property); that is, the service that was registered first is
returned.

Returns A service object for the referenced service or null if the reference cardinality
is 0..1 or 0..n and no bound service is available.

Throws ComponentException – If the Service Component Runtime catches an ex-
ception while activating the bound service.
locateService(String,ServiceReference)
308-432 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 org.osgi.service.component
112.11.3.9 public Object locateService(String name, ServiceReference reference)

name The name of a reference as specified in a reference element in this compo-
nent’s description.

reference The ServiceReference to a bound service. This must be a ServiceReference
provided to the component via the bind or unbind method for the specified
reference name.

Returns the service object for the specified reference name and ServiceRefer-
ence.

Returns A service object for the referenced service or null if the specified ServiceRef-
erence is not a bound service for the specified reference name.

Throws ComponentException – If the Service Component Runtime catches an ex-
ception while activating the bound service.
locateServices(String)

112.11.3.10 public Object[] locateServices(String name)

name The name of a reference as specified in a reference element in this compo-
nent’s description.

Returns the service objects for the specified reference name.

Returns An array of service objects for the referenced service or null if the reference
cardinality is 0..1 or 0..n and no bound service is available.

Throws ComponentException – If the Service Component Runtime catches an ex-
ception while activating a bound service.
ComponentException

112.11.4 public class ComponentException
extends RuntimeException
Unchecked exception which may be thrown by the Service Component
Runtime.
ComponentException(String,Throwable)

112.11.4.1 public ComponentException(String message, Throwable cause)

message The message for the exception.

cause The cause of the exception. May be null.

Construct a new ComponentException with the specified message and
cause.
ComponentException(String)

112.11.4.2 public ComponentException(String message)

message The message for the exception.

Construct a new ComponentException with the specified message.
ComponentException(Throwable)

112.11.4.3 public ComponentException(Throwable cause)

cause The cause of the exception. May be null.

Construct a new ComponentException with the specified cause.
getCause()

112.11.4.4 public Throwable getCause()

Returns the cause of this exception or null if no cause was specified when
this exception was created.
OSGi Service Platform Release 4 309-432

org.osgi.service.component Declarative Services Specification Version 1.0
Returns The cause of this exception or null if no cause was specified.
initCause(Throwable)

112.11.4.5 public Throwable initCause(Throwable cause)

cause Cause of the exception.

The cause of this exception can only be set when constructed.

Returns This object.

Throws IllegalStateException – This method will always throw an IllegalState-
Exception since the cause of this exception can only be set when constructed.
ComponentFactory

112.11.5 public interface ComponentFactory
When a component is declared with the factory attribute on its component
element, the Service Component Runtime will register a Component Fac-
tory service to allow new component configurations to be created and acti-
vated rather than automatically creating and activating component
configuration as necessary.
newInstance(Dictionary)

112.11.5.1 public ComponentInstance newInstance(Dictionary properties)

properties Additional properties for the component configuration.

Create and activate a new component configuration. Additional properties
may be provided for the component configuration.

Returns A ComponentInstance object encapsulating the component instance of the
component configuration. The component configuration has been activated
and, if the component specifies a service element, the component instance
has been registered as a service.

Throws ComponentException – If the Service Component Runtime is unable to acti-
vate the component configuration.
ComponentInstance

112.11.6 public interface ComponentInstance
A ComponentInstance encapsulates a component instance of an activated
component configuration. ComponentInstances are created whenever a
component configuration is activated.

ComponentInstances are never reused. A new ComponentInstance object
will be created when the component configuration is activated again.
dispose()

112.11.6.1 public void dispose()

Dispose of the component configuration for this component instance. The
component configuration will be deactivated. If the component configura-
tion has already been deactivated, this method does nothing.
getInstance()

112.11.6.2 public Object getInstance()

Returns the component instance of the activated component configuration.

Returns The component instance or null if the component configuration has been de-
activated.
310-432 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 References
112.12 References
[52] Automating Service Dependency Management in a Service-Oriented Component

Model
Humberto Cervantes, Richard S. Hall, Proceedings of the Sixth Component-
Based Software Engineering Workshop, May 2003, pp. 91-96.
http://www.osgi.org/news_events/documents/
AutoServDependencyMgmt_byHall_Cervantes.pdf

[53] Service Binder
Humberto Cervantes, Richard S. Hall, http://gravity.sourceforge.net/
servicebinder

[54] Java Properties File
http://java.sun.com/j2se/1.4.2/docs/api/java/util/
Properties.html#load(java.io.InputStream)
OSGi Service Platform Release 4 311-432

References Declarative Services Specification Version 1.0
312-432 OSGi Service Platform Release 4

Event Admin Service Specification Version 1.0 Introduction
113 Event Admin Service
Specification
Version 1.0

113.1 Introduction
Nearly all the bundles in an OSGi framework must deal with events, either
as an event publisher or as an event handler. So far, the preferred mecha-
nism to disperse those events have been the service interface mechanism.

Dispatching events for a design related to X, usually involves a service of
type XListener. However, this model does not scale well for fine grained
events that must be dispatched to many different handlers. Additionally,
the dynamic nature of the OSGi environment introduces several complexi-
ties because both event publishers and event handlers can appear and disap-
pear at any time.

The Event Admin service provides an inter-bundle communication mecha-
nism. It is based on a event publish and subscribe model, popular in many
message based systems.

This specification defines the details for the participants in this event
model.

113.1.1 Essentials
• Simplifications – The model must significantly simplify the process of pro-

gramming an event source and an event handler.
• Dependencies – Handle the myriad of depencies between event sources

and event handlers for proper cleanup.
• Synchronicity – It must be possible to deliver events asynchronously or

synchronously with the caller.
• Event Window – Only event handlers that are active when an event is

published must receive this event, handlers that register later must not
see the event.

• Performance – The event mechanism must impose minimal overhead in
delivering events.

• Selectivity – Event listeners must only receive notifications for the event
types for which they are interested

• Reliability – The Event Admin must ensure that events continue to be
delivered regardless the quality of the event handlers.

• Security – Publishing and receiving events are sensitive operations that
must be protected per event type.

• Extensibility – It must be possible to define new event types with their
own data types.

• Native Code – Events must be able to be passed to native code or come
from native code.
OSGi Service Platform Release 4 313-432

Introduction Event Admin Service Specification Version 1.0
• OSGi Events – The OSGi Framework, as well as a number of OSGi ser-
vices, already have number of its own events defined. For uniformity of
processing, these have to be mapped into generic event types.

113.1.2 Entities
• Event – An Event object has a topic and a Dictionary object that contains

the event properties. It is an immutable object.
• Event Admin – The service that provides the publish and subscribe model

to Event Handlers and Event Publishers.
• Event Handler – A service that receives and handles Event objects.
• Event Publisher – A bundle that sends event through the Event Admin

service.
• Event Subscriber – Another name for an Event Handler.
• Topic – The name of an Event type.
• Event Properties – The set of properties that is associated with an Event.

Figure 49 The Event Admin service org.osgi.service.event package

113.1.3 Synopsis
The Event Admin service provides a place for bundles to publish events,
regardless of their destination. It is also used by Event Handlers to subscribe
to specific types of events.

Events are published under a topic, together with a number of event proper-
ties. Event Handlers can specify a filter to control the Events they receive on
a very fine grained basis.

113.1.4 What To Read
• Architects – The Event Admin Architecture on page 315 provides an

overview of the Event Admin service.

Event Publisher
Impl

an Event
Consumer Impl

receive
send

<<service>>
Event Admin

Event Admin Impl

<<service>>
Event Handler1 0..n

<<class>>
Eventevent

event
314-432 OSGi Service Platform Release 4

Event Admin Service Specification Version 1.0 Event Admin Architecture
• Event Publishers – The Event Publisher on page 317 provides an intro-
duction of how to write an Event Publisher. The Event Admin Architecture
on page 315 provides a good overview of the design.

• Event Subscribers/Handlers – The Event Handler on page 316 provides the
rules on how to subscribe and handle events.

113.2 Event Admin Architecture
The Event Admin is based on the Publish-Subscribe pattern. This pattern
decouples sources from their handlers by interposing an event channel
between them. The publisher posts events to the channel, which identifies
which handlers need to be notified and then takes care of the notification
process. This model is depicted in Figure 50.

Figure 50 Channel Pattern

In this model, the event source and event handler are completely decoupled
because neither has any direct knowledge of the other. The complicated
logic of monitoring changes in the event publishers and event handlers is
completely contained within the event channel. This is highly advanta-
geous in an OSGi environment because it simplifies the process of both
sending and receiving events.

113.3 The Event
Events have the following attributes:

• Topic – A topic that defines what happened. For example, when a bundle
is started an event is published that has a topic of org/osgi/ f ramework/
BundleEvent/STARTED .

• Properties – Zero or more properties that contain additional information
about the event. For example, the previous example event has a property
of bundle. id which is set to a Long object, among other properties.

113.3.1 Topics
The topic of an event defines the type of the event. It is fairly granular in
order to give handlers the opportunity to register for just the events they are
interested in. When a topic is designed, its name should not include any
other information, such as the publisher of the event or the data associated
with the event, those parts are intended to be stored in the event properties.

The topic is intended to serve as a first-level filter for determining which
handlers should receive the event. Event Admin service implementations
use the structure of the topic to optimize the dispatching of the events to the
handlers.

Publisher <<service>>
EventHandler

1
0..n

<<service>>
Event Admin

1
0..n

sendEvent handleEvent
postEvent
OSGi Service Platform Release 4 315-432

Event Handler Event Admin Service Specification Version 1.0
Topics are arranged in a hierarchical name space. Each level is defined by a
token and levels are separated by slashes. More precisely, the topic must
conform to the following grammar:

 topic ::= token (’/’ token) * // See 1.4.2 Core book

Topics should be designed to become more specific when going from left to
right. Handlers can provide a prefix that matches a topic, using the preferred
order allows a handler to minimize the number of prefixes it needs to regis-
ter.

Topics are case sensitive. As a convention, topics should follow the reverse
domain name scheme used by Java packages to guarantee uniqueness. The
separator must be slashes (’ / ’ \u002F) instead of the dot (’ . ’ \u002E).

This specification uses the convention fu l ly/qual i f ied/package/ClassName/
ACTION . If necessary, a pseudo-class-name is used.

113.3.2 Properties
Information about the actual event is provided as properties. The property
name is a case-sensitive string and the value can be any object. Although
any Java object can be used as a property value, only Str ing objects and the
eight primitive types (plus their wrappers) should be used. Other types can-
not be passed to handlers that reside external from the Java VM.

Another reason that arbitrary classes should not be used is the mutability of
objects. If the values are not immutable, then any handler that receives the
event could change the value. Any handlers that received the event subse-
quently would see the altered value and not the value as it was when the
event was sent.

The topic of the event is available as a property with the key EVENT_TOPIC .
This allows filters to include the topic as a condition if necessary.

113.4 Event Handler
Event handlers must be registered as services with the OSGi framework
under the object class org .osg i .service.event .EventHandler.

Event handlers should be registered with a property (constant from the
EventConstants class) EVENT_TOPIC . The value being a Str ing[] object that
describes which topics the handler is interested in. A wildcard (’*’ \u002A)
may be used as the last token of a topic name, for example com/action/* .
This matches any topic that shares the same first tokens. For example, com/
act ion/* matches com/action/ listen .

Event Handlers which do not have a value for the topic property must not
receive events.

The value of each entry in the EVENT_TOPIC service registration property
must conform to the following grammar:

topic-scope ::= ’*’ | (topic [’/*’])
316-432 OSGi Service Platform Release 4

Event Admin Service Specification Version 1.0 Event Publisher
Event handlers can also be registered with a service property named
EVENT_FILTER . The value of this property must be a string containing a
Framework filter specification. Any of the event's properties can be used in
the filter expression.

event-filter ::= filter // 3.2.6 Core book

Each Event Handler is notified for any event which belongs to the topics the
handler has expressed an interest in. If the handler has defined a
EVENT_FILTER service property then the event properties must also match
the filter expression. If the filter is an error, then the Event Admin service
should log a warning and further ignore the Event Handler.

For example, a bundle wants to see all Log Service events with a level of
WARNING or ERROR , but it must ignore the INFO and DEBUG events. Addi-
tionally, the only events of interest are when the bundle symbolic name
starts with com.acme .

public AcmeWatchDog implements Activator, EventHandler {
final static String [] topics = new String[] {

"org/osgi/service/log/LogEntry/LOG_WARNING",
"org/osgi/service/log/LogEntry/LOG_ERROR" };

public void start(BundleContext context) {
Dictionary d = new Hashtable();
d.put(EventConstants.EVENT_TOPICS, topics);
d.put(EventConstants.EVENT_FILTER,

"(bundle.symbolicName=com.acme.*)");
context.registerService(EventHandler.class.getName(),

this, d);
}
public void stop(BundleContext context) {}

public void handleEvent(Event event) {
//...

}
}

If there are multiple Event Admin services registered with the Framework
then all Event Admin services must send their published events to all regis-
tered Event Handlers.

113.5 Event Publisher
To fire an event, the event source must retrieve the Event Admin service
from the OSGi service registry. Then it creates the event object and calls one
of the Event Admin service's methods to fire the event either synchronously
or asynchronously.

The following example is a class that publishes a time event every 60 sec-
onds.

public class TimerEvent extends Thread
implements BundleActivator {
Hashtable time = new Hashtable();
OSGi Service Platform Release 4 317-432

Specific Events Event Admin Service Specification Version 1.0
ServiceTrackertracker;

public TimerEvent() { super("TimerEvent"); }

public void start(BundleContext context) {
tracker = new ServiceTracker(context,

EventAdmin.class.getName(), null);
start();

}

public void stop(BundleContext context) {
interrupt();

}

public void run() {
while (! Thread.interrupted()) try {

Calendarc = Calendar.getInstance();
set(c,Calendar.MINUTES,"minutes");
set(c,Calendar.HOURS,"hours");
set(c,Calendar.DAY_OF_MONTH,"day");
set(c,Calendar.MONTH,"month");
set(c,Calendar.YEAR,"year");

EventAdminea = (EventAdmin) tracker.getService();
if (ea != null)

ea.sendEvent(new Event("com/acme/timer", time));

Thread.sleep(60000-c.get(Calendar.SECOND)*1000);
} catch(InterruptedException e) {

// ignore, treated by while loop
}

}

void set(Calendar c, int field, String key) {
time.put(key, new Integer(c.get(field)));

}
}

113.6 Specific Events

113.6.1 General Conventions
Some handlers are more interested in the contents of an event rather than
what actually happened. For example, a handler wants to be notified when-
ever an Exception is thrown anywhere in the system. Both Framework
Events and Log Entry events may contain an exception that would be of
interest to this hypothetical handler. If both Framework Events and Log
Entries use the same property names then the handler can access the Excep-
tion in exactly the same way. If some future event type follows the same
318-432 OSGi Service Platform Release 4

Event Admin Service Specification Version 1.0 Specific Events
conventions then the handler can receive and process the new event type
even though it had no knowledge of it when it was compiled.

The following properties are suggested as conventions. When new event
types are defined they should use these names with the corresponding types
and values where appropriate. These values should be set only if they are
not null

A list of these property names can be found in Table 23..

The topic of an OSGi event is constructed by taking the fully qualified name
of the event class, substituting a slash for every period, and appending a
slash followed by the name of the constant that defines the event type. For
example, the topic of

BundleEvent.STARTED

Event becomes

org/osg i/f ramework/BundleEvent/STARTED

If a type code for the event is unknown then the event must be ignored.

113.6.2 OSGi Events
In order to present a consistent view of all the events occurring in the sys-
tem, the existing Framework-level events are mapped to the Event Admin’s
publish-subscribe model. This allows event subscribers to treat framework
events exactly the same as other events.

The properties associated with the event depends on its class as outlined in
the following sections.

Table 23 General property names for events
Name Type Notes

BUNDLE_SIGNER String A signer DN

BUNDLE_SYMBOLICNAME String A bundle’s symbolic name

EVENT Object The actual event object. Used when rebroadcast-
ing an event that was sent via some other event
mechanism

EXCEPTION Throwable An exception or error

EXCEPTION_MESSAGE String Must be equal to the name of the Exception class.

EXECPTION_CLASS Str ing Must be equal to exception.getMessage()

MESSAGE Str ing A human-readable message that is usually not
localized.

SERVICE Serv iceRefe
rence

A service

SERVICE_ID Long A service’s id

SERVICE_OBJECTCLASS Str ing[] A service's objectC lass

SERVICE_PID Str ing A service’s persistent identity

TIMESTAMP Long The time when the event occurred, as reported by
System.currentTimeMillis()
OSGi Service Platform Release 4 319-432

Specific Events Event Admin Service Specification Version 1.0
113.6.3 Framework Event
Framework Events must be delivered asynchronously with a topic of:

org/osgi/framework/FrameworkEvent/<event type>

The following event types are supported:

STARTED
ERROR
PACKAGES_REFRESHED
STARTLEVEL_CHANGED
WARNING
INFO

Other events are ignored, no event will be send by the Event Admin. The fol-
lowing event properties must be set for a Framework Event.

• event – (FrameworkEvent) The original event object.

If the FrameworkEvent getBundle method returns a non-nul l value, the fol-
lowing fields must be set:

• bundle . id – (Long) The source’s bundle id.
• bundle.symbol icName – (Str ing) The source bundle's symbolic name.

Only set if the bundle’s symbolic name is not nul l .
• bundle – (Bundle) The source bundle.

If the FrameworkEvent getThrowable method returns a non- nul l value:

• exception .class – (Str ing) The fully-qualified class name of the attached
Exception.

• exception .message –(Str ing) The message of the attached exception.
Only set if the Exception message is not null .

• exception – (Throwable) The Exception returned by the getThrowable
method.

113.6.4 Bundle Event
Framework Events must be delivered asynchronously with a topic of:

org/osgi/framework/BundleEvent/<event type>

The following event types are supported:

INSTALLED
STARTED
STOPPED
UPDATED
UNINSTALLED
RESOLVED
UNRESOLVED

Unknown events must be ignored.

The following event properties must be set for a Bundle Event. If listeners
require synchronous delivery then they should register a Synchronous Bun-
dle Listener with the Framework.

• event – (BundleEvent) The original event object.
• bundle . id – (Long) The source’s bundle id.
320-432 OSGi Service Platform Release 4

Event Admin Service Specification Version 1.0 Specific Events
• bundle.symbol icName – (Str ing) The source bundle's symbolic name.
Only set if the bundle’s symbolic name is not nul l .

• bundle – (Bundle) The source bundle.

113.6.5 Service Event
Service Events must be delivered asynchronously with the topic:

org/osg i/f ramework/ServiceEvent/<event type>

The following event types are supported:

REGISTERED
MODIFIED
UNREGISTERING

Unknown events must be ignored.

• event – (BundleEvent) The original event object.
• service – (ServiceReference) The result of the getServiceReference

method
• service. id – (Long) The service's ID.
• service .pid – (Str ing) The service's persistent identity. Only set if not

nul l .
• service .ob jectClass – (String[]) The service's object class.

113.6.6 Log Events
Log events must be delivered asynchronously under the topic:

org/osgi/service/log/LogEntry/<event type>

The logging level is used as event type:

LOG_ERROR
LOG_WARNING
LOG_INFO
LOG_DEBUG
LOG_OTHER (when event is not recognized)

The properties of a log event are:

• bundle . id – (Long) The source bundle's id.
• bundle.symbol icName – (Str ing) The source bundle's symbolic name.

Only set if not null .
• bundle – (Bundle) The source bundle.
• log . level – (Integer) The log level.
• message – (Str ing) The log message.
• t imestamp – (Long) The log entry's timestamp.
• log.entry – (LogEntry) The LogEntry object.

If the log entry has an associated Exception:

• except ion.class – (Str ing) The fully-qualified class name of the attached
exception. Only set if the getExceptionmethod returns a non-nul l value.

• except ion.message – (Str ing) The message of the attached Exception.
Only set if the Exception message is not null .

• except ion – (Throwable) The Exception returned by the getExcept ion
method.
OSGi Service Platform Release 4 321-432

Event Admin Service Event Admin Service Specification Version 1.0
If the getServ iceReference method returns a non-nul l value:

• service – (ServiceReference) The result of the getServiceReference
method.

• service. id – (Long) The id of the service.
• service .pid – (Str ing) The service's persistent identity. Only set if the

service .pid service property is not null .
• service.objectClass – (Str ing[]) The object class of the service object.

113.7 Event Admin Service
The Event Admin service must be registered as a service with the object
class org .osg i .service.event .EventAdmin . Multiple Event Admin services
can be registered. Publishers should publish their event on the Event Admin
service with the highest value for the SERVICE_RANKING service property.
This is the service selected by the getServiceReference method.

The Event Admin service is responsible for tracking the registered handlers,
handling event notifications and providing at least one thread for asynchro-
nous event delivery.

113.7.1 Synchronous Event Delivery
Synchronous event delivery is initiated by the sendEvent method. When
this method is invoked, the Event Admin service determines which han-
dlers must be notified of the event and then notifies each one in turn. The
handlers can be notified in the caller's thread or in an event-delivery thread,
depending on the implementation. In either case, all notifications must be
completely handled before the sendEvent method returns to the caller.

Synchronous event delivery is significantly more expensive than asynchro-
nous delivery. All things considered equal, the asynchronous delivery
should be preferred over the synchronous delivery.

Callers of this method will need to be coded defensively and assume that
synchronous event notifications could be handled in a separate thread. That
entails that they must not be holding any monitors when they invoke the
sendEvent method. Otherwise they significantly increase the likelihood of
deadlocks because Java monitors are not reentrant from another thread by
definition. Not holding monitors is good practice even when the event is
dispatched in the same thread.

113.7.2 Asynchronous Event Delivery
Asynchronous event delivery is initiated by the postEvent method. When
this method is invoked, the Event Admin service must determine which
handlers are interested in the event. By collecting this list of handlers during
the method invocation, the Event Admin service ensures that only handlers
that were registered at the time the event was posted will receive the event
notification.
322-432 OSGi Service Platform Release 4

Event Admin Service Specification Version 1.0 Reliability
The Event Admin service can use more than one thread to deliver events. If
it does then it must guarantee that each handler receives the events in the
same order as the events were posted. This ensures that handlers see events
in the expected order. For example, it would be an error to see a destroyed
event before the corresponding created event.

Before notifying each handler, the event delivery thread must ensure that
the handler is still registered in the service registry. If it has been unregis-
tered then the handler must not be notified.

The Event Admin service ensures that events are delivered in a well-defined
order. For example, if a thread posts events A and B in the same thread then
the handlers should not receive them in the order B , A . if A and B are posted
by different threads at about the same time then no guarantees about the
order of delivery are made.

113.7.3 Order of Event Delivery
Asynchronous events are delivered in the order in which they arrive in the
event queue. Thus if two events are posted by the same thread then they will
be delivered in the same order (though other events may come between
them). However, if two or more events are posted by different threads then
the order in which they arrive in the queue (and therefore the order in
which they are delivered) will depend very much on subtle timing issues.
The event delivery system cannot make any guarantees in this case.

Synchronous events are delivered as soon as they are sent. If two events are
sent by the same thread, one after the other, then they must be guaranteed
to be processed serially and in the same order. However, if two events are
sent by different threads then no guarantees can be made. The events can be
processed in parallel or serially, depending on whether or not the Event
Admin service dispatches synchronous events in the caller's thread or in a
separate thread.

Note that if the actions of a handler trigger a synchronous event, then the
delivery of the first event will be paused and delivery of the second event
will begin. Once delivery of the second event has completed, delivery of the
first event will resume. Thus some handlers may observe the second event
before they observe the first one.

113.8 Reliability

113.8.1 Exceptions in callbacks
If a handler throws an Exception during delivery of an event, it must be
caught by the Event Admin service and handled in some implementation
specific way. If a Log Service is available the exception should be logged.
Once the exception has been caught and dealt with, the event delivery must
continue with the next handlers to be notified, if any.
OSGi Service Platform Release 4 323-432

Inter-operability with Native Applications Event Admin Service Specification Version
113.8.2 Dealing with Stalled Handlers
Event handlers should not spend too long in the handleEvent method.
Doing so will prevent other handlers in the system from being notified. If a
handler needs to do something that can take a while, it should do it in a dif-
ferent thread.

An event admin implementation can attempt to detect stalled or dead-
locked handlers and deal with them appropriately. Exactly how it deals
with this situation is left as implementation specific. One allowed imple-
mentation is to mark the current event delivery thread as invalid and spawn
a new event delivery thread. Event delivery must resume with the next han-
dler to be notified.

Implementations can choose to blacklist any handlers that they determine
are misbehaving. Blacklisted handlers must not be notified of any events. If
a handler is blacklisted, the event admin should log a message that explains
the reason for it.

113.9 Inter-operability with Native
Applications
Implementations of the Event Admin service can support passing events to,
and/or receiving events from native applications.

If the implementation supports native inter-operability, it must be able to
pass the topic of the event and its properties to/from native code. Implemen-
tations must be able to support property values of the following types:

• String objects, including full Unicode support
• Integer, Long, Byte , Short , F loat, Double , Boolean, Character objects
• Single-dimension arrays of the above types (including Str ing)
• Single-dimension arrays of Java's eight primitive types (int , long, byte ,

short , f loat, double, boolean, char)

Implementations can support additional types. Property values of unsup-
ported types must be silently discarded.

113.10 Security

113.10.1 Topic Permission
The TopicPermission class allows fine-grained control over which bundles
may post events to a given topic and which bundles may receive those
events.

The target parameter for the permission is the topic name. TopicPermiss ion
classes uses a wildcard matching algorithm similar to the BasicPermission
class, except that slashes are used as separators instead of periods. For exam-
ple, a name of a/b/* implies a/b/c but not x/y/z or a/b .
324-432 OSGi Service Platform Release 4

Event Admin Service Specification Version 1.0 org.osgi.service.event
There are two available actions: PUBLISH and SUBSCRIBE . These control a
bundle's ability to either publish or receive events, respectively. Neither one
implies the other.

113.10.2 Required Permissions
Bundles that need to register an event handler must be granted
ServicePermission [org.osgi .service .event.EventHandler , REGISTER]. In
addition, handlers require TopicPermission[<top ic>, SUBSCRIBE] for each
topic they want to be notified about.

Bundles that need to publish an event must be granted ServicePermission[
org .osgi .service .event.EventAdmin , GET] so that they may retrieve the
Event Admin service and use it. In addition, event sources require
TopicPermiss ion[<topic>, PUBLISH] for each topic they want to send
events to.

Bundles that need to iterate the handlers registered with the system must be
granted ServicePermission[org .osgi .serv ice .event.EventHandler, GET] to
retrieve the event handlers from the service registry.

Only a bundle that contains an Event Admin service implementation
should be granted ServicePermiss ion[o rg .osg i .service.event .EventAdmin,
REGISTER] to register the event channel admin service.

113.10.3 Security Context During Event Callbacks
During an event notification, the Event Admin service's Protection Domain
will be on the stack above the handler's Protection Domain. In the case of a
synchronous event, the event publisher's protection domain can also be on
the stack.

Therefore, if a handler needs to perform a secure operation using its own
privileges, it must invoke the doPriv i leged method to isolate its security
context from that of its caller.

The event delivery mechanism must not wrap event notifications in a
doPr iv i leged call.

113.11 org.osgi.service.event
The OSGi Event Admin Specification Version 1.0.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.event; version=1.0

113.11.1 Summary
• Event - An event. [p.326]
• EventAdmin - The Event Admin service. [p.326]
• EventConstants - Defines standard names for EventHandler properties.

[p.327]
• EventHandler - Listener for Events. [p.328]
• TopicPermission - A bundle’s authority to publish or subscribe to event

on a topic. [p.329]
OSGi Service Platform Release 4 325-432

org.osgi.service.event Event Admin Service Specification Version 1.0
Event

113.11.2 public class Event
An event. Event objects are delivered to EventHandler services which sub-
srcibe to the topic of the event.
Event(String,Dictionary)

113.11.2.1 public Event(String topic, Dictionary properties)

topic The topic of the event.

properties The event’s properties (may be null).

Constructs an event.

Throws IllegalArgumentException – If topic is not a valid topic name.
equals(Object)

113.11.2.2 public boolean equals(Object object)

object The Event object to be compared.

Compares this Event object to another object.

An event is considered to be equal to another event if the topic is equal and
the properties are equal.

Returns true if object is a Event and is equal to this object; false otherwise.
getProperty(String)

113.11.2.3 public final Object getProperty(String name)

name the name of the property to retrieve

Retrieves a property.

Returns The value of the property, or null if not found.
getPropertyNames()

113.11.2.4 public final String[] getPropertyNames()

Returns a list of this event’s property names.

Returns A non-empty array with one element per property.
getTopic()

113.11.2.5 public final String getTopic()

Returns the topic of this event.

Returns The topic of this event.
hashCode()

113.11.2.6 public int hashCode()

Returns a hash code value for the object.

Returns An integer which is a hash code value for this object.
matches(Filter)

113.11.2.7 public final boolean matches(Filter filter)

filter The filter to test.

Tests this event’s properties against the given filter.

Returns true If this event’s properties match the filter, false otherwise.
toString()

113.11.2.8 public String toString()

Returns the string representation of this event.

Returns The string representation of this event.
EventAdmin
326-432 OSGi Service Platform Release 4

Event Admin Service Specification Version 1.0 org.osgi.service.event
113.11.3 public interface EventAdmin
The Event Admin service. Bundles wishing to publish events must obtain
the Event Admin service and call one of the event delivery methods.
postEvent(Event)

113.11.3.1 public void postEvent(Event event)

event The event to send to all listeners which subscribe to the topic of the event.

Initiate asynchronous delivery of an event. This method returns to the caller
before delivery of the event is completed.

Throws SecurityException – If the caller does not have TopicPermission[topic,
PUBLISH] for the topic specified in the event.
sendEvent(Event)

113.11.3.2 public void sendEvent(Event event)

event The event to send to all listeners which subscribe to the topic of the event.

Initiate synchronous delivery of an event. This method does not return to
the caller until delivery of the event is completed.

Throws SecurityException – If the caller does not have TopicPermission[topic,
PUBLISH] for the topic specified in the event.
EventConstants

113.11.4 public interface EventConstants
Defines standard names for EventHandler properties.
BUNDLE_SIGNER

113.11.4.1 public static final String BUNDLE_SIGNER = “bundle.signer”

The Distinguished Name of the bundle relevant to the event.
BUNDLE_SYMBOLICNAME

113.11.4.2 public static final String BUNDLE_SYMBOLICNAME =
“bundle.symbolicName”

The Bundle Symbolic Name of the bundle relevant to the event.
EVENT

113.11.4.3 public static final String EVENT = “event”

The actual event object. Used when rebroadcasting an event that was sent
via some other event mechanism.
EVENT_FILTER

113.11.4.4 public static final String EVENT_FILTER = “event.filter”

Service Registration property (named event.filter) specifying a filter to fur-
ther select Event s of interest to a Event Handler service.

Event handlers MAY be registered with this property. The value of this prop-
erty is a string containing an LDAP-style filter specification. Any of the
event’s properties may be used in the filter expression. Each event handler is
notified for any event which belongs to the topics in which the handler has
expressed an interest. If the event handler is also registered with this service
property, then the properties of the event must also match the filter for the
event to be delivered to the event handler.

If the filter syntax is invalid, then the Event Handler must be ignored and a
warning should be logged.

See Also Event[p.326] , org.osgi.framework.Filter
EVENT_TOPIC
OSGi Service Platform Release 4 327-432

org.osgi.service.event Event Admin Service Specification Version 1.0
113.11.4.5 public static final String EVENT_TOPIC = “event.topics”

Service registration property (named event.topic) specifying the Event top-
ics of interest to a Event Handler service.

Event handlers SHOULD be registered with this property. The value of the
property is an array of strings that describe the topics in which the handler
is interested. An asterisk (’*’) may be used as a trailing wildcard. Event han-
dlers which do not have a value for this propery are treated as though they
had specified this property with the value { ‘*’ }. More precisely, the value of
each entry in the array must conform to the following grammar:

topic-description := ‘*’ | topic (‘/*’)?
topic := token (‘/’ token)*

See Also Event[p.326]
EXCEPTION

113.11.4.6 public static final String EXCEPTION = “exception”

An exception or error.
EXCEPTION_MESSAGE

113.11.4.7 public static final String EXCEPTION_MESSAGE = “exception.message”

Must be equal to exception.getMessage()
EXECPTION_CLASS

113.11.4.8 public static final String EXECPTION_CLASS = “exception.class”

Must be equal to the name of the Exception class.
MESSAGE

113.11.4.9 public static final String MESSAGE = “message”

A human-readable message that is usually not localized.
SERVICE

113.11.4.10 public static final String SERVICE = “service”

A service
SERVICE_ID

113.11.4.11 public static final String SERVICE_ID = “service.id”

A service’ s id.
SERVICE_OBJECTCLASS

113.11.4.12 public static final String SERVICE_OBJECTCLASS = “service.objectClass”

A service’s objectClass
SERVICE_PID

113.11.4.13 public static final String SERVICE_PID = “service.pid”

A service’ s persistent identity.
TIMESTAMP

113.11.4.14 public static final String TIMESTAMP = “timestamp”

The time when the event occurred, as reported by System.currentTimeMil-
lis()
EventHandler

113.11.5 public interface EventHandler
Listener for Events.

EventHandler objects are registered with the Framework service registry
and are notified with an Event object when an event is sent or posted.
328-432 OSGi Service Platform Release 4

Event Admin Service Specification Version 1.0 org.osgi.service.event
EventHandler objects can inspect the received Event object to determine its
topic and properties.

EventHandler objects must be registered with a service property
EventConstants .EVENT_TOPIC [p.327] whose value is the list of topics in
which the event handler is interesed.

For example:

String[] topics = new String[] {EventConstants.EVENT_TOPIC,
“com/isv/*”};
Hashtable ht = new Hashtable();
ht.put(EVENT_TOPIC, topics);
context.registerService(EventHandler.class.getName(), this,

ht);

Event Handler services can also be registered with an @link EventCon-
stants#EVENT_FILTER} service propery to further filter the events. If the
syntax of this filter is invalid, then the Event Handler must be ignored by
the Event Admin service. The Event Admin service should log a warning.

Security Considerations. Bundles wishing to monitor Event objects will
require ServicePermission[EventHandler,REGISTER] to register an
EventHandler service. The bundle must also have TopicPermission[topic,
SUBSCRIBE] for the topic specified in the event in order to receive the event.

See Also Event[p.326]
handleEvent(Event)

113.11.5.1 public void handleEvent(Event event)

event The event that occurred.

Called by the EventAdmin [p.326] service to notify the listener of an event.
TopicPermission

113.11.6 public final class TopicPermission
extends Permission
A bundle’s authority to publish or subscribe to event on a topic.

A topic is a slash-separated string that defines a topic.

For example:

org/osgi/service/foo/FooEvent/ACTION

TopicPermission has two actions: publish and subscribe.
PUBLISH

113.11.6.1 public static final String PUBLISH = “publish”

The action string publish.
SUBSCRIBE

113.11.6.2 public static final String SUBSCRIBE = “subscribe”

The action string subscribe.
TopicPermission(String,String)

113.11.6.3 public TopicPermission(String name, String actions)

name Topic name.

actions publish,subscribe (canonical order).
OSGi Service Platform Release 4 329-432

org.osgi.service.event Event Admin Service Specification Version 1.0
Defines the authority to publich and/or subscribe to a topic within the
EventAdmin service.

The name is specified as a slash-separated string. Wildcards may be used.
For example:

org/osgi/service/fooFooEvent/ACTION
com/isv/*
*

A bundle that needs to publish events on a topic must have the appropriate
TopicPermission for that topic; similarly, a bundle that needs to subscribe to
events on a topic must have the appropriate TopicPermssion for that topic.
equals(Object)

113.11.6.4 public boolean equals(Object obj)

obj The object to test for equality with this TopicPermission object.

Determines the equality of two TopicPermission objects. This method
checks that specified TopicPermission has the same topic name and actions
as this TopicPermission object.

Returns true if obj is a TopicPermission, and has the same topic name and actions as
this TopicPermission object; false otherwise.
getActions()

113.11.6.5 public String getActions()

Returns the canonical string representation of the TopicPermission actions.

Always returns present TopicPermission actions in the following order:
publish,subscribe.

Returns Canonical string representation of the TopicPermission actions.
hashCode()

113.11.6.6 public int hashCode()

Returns the hash code value for this object.

Returns A hash code value for this object.
implies(Permission)

113.11.6.7 public boolean implies(Permission p)

p The target permission to interrogate.

Determines if the specified permission is implied by this object.

This method checks that the topic name of the target is implied by the topic
name of this object. The list of TopicPermission actions must either match
or allow for the list of the target object to imply the target TopicPermission
action.

x/y/*,”publish” -> x/y/z,”publish” is true
*,”subscribe” -> x/y,”subscribe” is true
*,”publish” -> x/y,”subscribe” is false
x/y,”publish” -> x/y/z,”publish” is false

Returns true if the specified TopicPermission action is implied by this object; false
otherwise.
newPermissionCollection()

113.11.6.8 public PermissionCollection newPermissionCollection()

Returns a new PermissionCollection object suitable for storing TopicPer-
mission objects.
330-432 OSGi Service Platform Release 4

Event Admin Service Specification Version 1.0 org.osgi.service.event
Returns A new PermissionCollection object.
OSGi Service Platform Release 4 331-432

org.osgi.service.event Event Admin Service Specification Version 1.0
332-432 OSGi Service Platform Release 4

Service Tracker Specification Version 1.3 Introduction
701 Service Tracker
Specification
Version 1.3

701.1 Introduction
The Framework provides a powerful and very dynamic programming envi-
ronment. Bundles are installed, started, stopped, updated, and uninstalled
without shutting down the Framework. Dependencies between bundles are
monitored by the Framework, but bundles must cooperate in handling these
dependencies correctly.

An important aspect of the Framework is the service registry. Bundle devel-
opers must be careful not to use service objects that have been unregistered.
The dynamic nature of the Framework service registry makes it necessary to
track the service objects as they are registered and unregistered. It is easy to
overlook rare race conditions or boundary conditions that will lead to ran-
dom errors.

An example of a potential problem is what happens when the initial list of
services of a certain type is created when a bundle is started. When the
ServiceListener object is registered before the Framework is asked for the
list of services, without special precautions, duplicates can enter the list.
When the ServiceListener object is registered after the list is made, it is pos-
sible to miss relevant events.

The specification defines a utility class, ServiceTracker , that makes tracking
the registration, modification, and unregistration of services much easier. A
ServiceTracker class can be customized by implementing the interface or by
sub-classing the ServiceTracker class.

This utility specifies a class that significantly reduces the complexity of
tracking services in the service registry.

701.1.1 Essentials
• Customizable – Allow a default implementation to be customized so that

bundle developers can start simply and later extend the implementation
to meet their needs.

• Small – Every Framework implementation should have this utility
implemented. It should therefore be very small because some
Framework implementations target minimal OSGi Service Platforms.

• Tracked set – Track a single object defined by a ServiceReference object,
all instances of a service, or any set specified by a filter expression.

701.1.2 Operation
The fundamental tasks of a ServiceTracker object are:
OSGi Service Platform Release 4 333-432

Service Tracker Class Service Tracker Specification Version 1.3
• To create an initial list of services as specified by its creator.
• To listen to ServiceEvent instances so that services of interest to the

owner are properly tracked.
• To allow the owner to customize the tracking process through program-

matic selection of the services to be tracked, as well as to act when a
service is added or removed.

A ServiceTracker object populates a set of services that match a given
search criteria, and then listens to ServiceEvent objects which correspond
to those services.

701.1.3 Entities

Figure 51 Class diagram of org.osgi.util.tracker

701.1.4 Prerequisites
This specification requires OSGi Framework version 1.1 or higher because
the Service Tracker uses the Fi l ter class that was not available in version 1.0.

701.2 Service Tracker Class
The ServiceTracker interface defines three constructors to create
ServiceTracker objects, each providing different search criteria:

• ServiceTracker(BundleContext ,Str ing,ServiceTrackerCustomizer) –
This constructor takes a service interface name as the search criterion.
The ServiceTracker object must then track all services that are registered
under the specified service interface name.

• ServiceTracker(BundleContext ,Fi l ter,Serv iceTrackerCustomizer) – This
constructor uses a Fi l ter object to specify the services to be tracked. The
ServiceTracker must then track all services that match the specified
filter.

• ServiceTracker(BundleContext ,ServiceReference,ServiceTrackerCus-
tomizer) – This constructor takes a ServiceReference object as the
search criterion. The ServiceTracker must then track only the service
that corresponds to the specified ServiceReference . Using this con-
structor, no more than one service must ever be tracked, because a
ServiceReference refers to a specific service.

Each of the Serv iceTracker constructors takes a BundleContext object as a
parameter. This BundleContext object must be used by a Serv iceTracker
object to track, get, and unget services.

A new ServiceTracker object must not begin tracking services until its open
method is called. There are 2 versions of the open method:

• open() – This method is identical to open(false). It is provided for
backward compatibility reasons.

• open(boolean) – The tracker must start tracking the services as were
specified in its constructor. If the boolean parameter is true, it must track

Service
Tracker

customized by

Service
Tracker
Customizer1 1
334-432 OSGi Service Platform Release 4

Service Tracker Specification Version 1.3 Using a Service Tracker
all services, regardless if they are compatible with the bundle that
created the Service Tracker or not. See Section 5.9 “Multiple Version
Export Considerations” for a description of the compatibility issues
when multiple variations of the same package can exist. If the parameter
is false, the Service Tracker must only track compatible versions.

701.3 Using a Service Tracker
Once a ServiceTracker object is opened, it begins tracking services immedi-
ately. A number of methods are available to the bundle developer to moni-
tor the services that are being tracked. The ServiceTracker class defines
these methods:

• getService() – Returns one of the services being tracked or nul l if there
are no active services being tracked.

• getServices() – Returns an array of all the tracked services. The number
of tracked services is returned by the s ize method.

• getServiceReference() – Returns a ServiceReference object for one of
the services being tracked. The service object for this service may be
returned by calling the ServiceTracker object’s getService() method.

• getServiceReferences() – Returns a list of the ServiceReference objects
for services being tracked. The service object for a specific tracked service
may be returned by calling the ServiceTracker object’s
getService(ServiceReference) method.

• waitForServ ice(long) – Allows the caller to wait until at least one
instance of a service is tracked or until the time-out expires. If the time-
out is zero, the caller must wait until at least one instance of a service is
tracked. waitForService must not used within the BundleActivator
methods, as these methods are expected to complete in a short period of
time. A Framework could wait for the start method to complete before
starting the bundle that registers the service for which the caller is
waiting, creating a deadlock situation.

• remove(Serv iceReference) – This method may be used to remove a spe-
cific service from being tracked by the ServiceTracker object, causing
removedService to be called for that service.

• c lose() – This method must remove all services being tracked by the
ServiceTracker object, causing removedService to be called for all
tracked services.

• getTrackingCount() – A Service Tracker can have services added, mod-
ified, or removed at any moment in time. The getTrackingCount method
is intended to efficiently detect changes in a Service Tracker. Every time
the Service Tracker is changed, it must increase the tracking count. A
method that processes changes in a Service Tracker could get the
tracking count before it processes the changes. If the tracking count has
changed at the end of the method, the method should be repeated
because a new change occurred during processing.
OSGi Service Platform Release 4 335-432

Customizing the Service Tracker class Service Tracker Specification Version 1.3
701.4 Customizing the Service Tracker class
The behavior of the ServiceTracker class can be customized either by pro-
viding a ServiceTrackerCustomizer object implementing the desired behav-
ior when the ServiceTracker object is constructed, or by sub-classing the
ServiceTracker class and overriding the ServiceTrackerCustomizer meth-
ods.

The ServiceTrackerCustomizer interface defines these methods:

• addingServ ice(ServiceReference) – Called whenever a service is being
added to the ServiceTracker object.

• modifiedService(ServiceReference,Object) – Called whenever a tracked
service is modified.

• removedService(Serv iceReference,Object) – Called whenever a tracked
service is removed from the ServiceTracker object.

When a service is being added to the ServiceTracker object or when a
tracked service is modified or removed from the ServiceTracker object, it
must call addingServ ice , modif iedServ ice , or removedService , respectively,
on the ServiceTrackerCustomizer object (if specified when the
ServiceTracker object was created); otherwise it must call these methods on
itself.

A bundle developer may customize the action when a service is tracked.
Another reason for customizing the ServiceTracker class is to programmati-
cally select which services are tracked. A filter may not sufficiently specify
the services that the bundle developer is interested in tracking. By imple-
menting addingService , the bundle developer can use additional runtime
information to determine if the service should be tracked. If nul l is returned
by the addingService method, the service must not be tracked.

Finally, the bundle developer can return a specialized object from
addingService that differs from the service object. This specialized object
could contain the service object and any associated information. This
returned object is then tracked instead of the service object. When the
removedService method is called, the object that is passed along with the
ServiceReference object is the one that was returned from the earlier call to
the addingService method.

701.4.1 Symmetry
If sub-classing is used to customize the Service Tracker, care must be exer-
cised in using the default implementations of the addingService and
removedService methods. The addingService method will get the service
and the removedService method assumes it has to unget the service. Over-
riding one and not the other may thus cause unexpected results.

701.5 Customizing Example
An example of customizing the action taken when a service is tracked
might be registering a Serv let object with each Http Service that is tracked.
This customization could be done by sub-classing the ServiceTracker class
and overriding the addingServ ice and removedService methods as follows:
336-432 OSGi Service Platform Release 4

Service Tracker Specification Version 1.3 Security
public Object addingService(ServiceReference reference) {
Object obj = context.getService(reference);
HttpService svc = (HttpService)obj;
// Register the Servlet using svc
...
return svc;

}
public void removedService(ServiceReference reference,

Object obj){
HttpService svc = (HttpService)obj;
// Unregister the Servlet using svc
...
context.ungetService(reference);

}

701.6 Security
A ServiceTracker object contains a BundleContext instance variable that is
accessible to the methods in a subclass. A BundleContext object should
never be given to other bundles because it is used for security aspects of the
Framework.

The ServiceTracker implementation does not have a method to get the
BundleContext object but subclasses should be careful not to provide such a
method if the ServiceTracker object is given to other bundles.

The services that are being tracked are available via a ServiceTracker . These
services are dependent on the BundleContext as well. It is therefore neces-
sary to do a careful security analysis when ServiceTracker objects are given
to other bundles.

701.7 Changes
• The open(boolean) method.was added to support Framework version

1.3.

701.8 org.osgi.util.tracker
The OSGi Service Tracker Package. Specification Version 1.3.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.util.tracker; version=1.3

701.8.1 Summary
• ServiceTracker - The ServiceTracker class simplifies using services from

the Framework’s service registry. [p.337]
• ServiceTrackerCustomizer - The ServiceTrackerCustomizer interface

allows a ServiceTracker object to customize the service objects that are
tracked. [p.342]

ServiceTracker
OSGi Service Platform Release 4 337-432

org.osgi.util.tracker Service Tracker Specification Version 1.3
701.8.2 public class ServiceTracker
implements ServiceTrackerCustomizer
The ServiceTracker class simplifies using services from the Framework’s ser-
vice registry.

A ServiceTracker object is constructed with search criteria and a Service-
TrackerCustomizer object. A ServiceTracker object can use the Service-
TrackerCustomizer object to customize the service objects to be tracked.
The ServiceTracker object can then be opened to begin tracking all services
in the Framework’s service registry that match the specified search criteria.
The ServiceTracker object correctly handles all of the details of listening to
ServiceEvent objects and getting and ungetting services.

The getServiceReferences method can be called to get references to the ser-
vices being tracked. The getService and getServices methods can be called to
get the service objects for the tracked service.
context

701.8.2.1 protected final BundleContext context

Bundle context this ServiceTracker object is tracking against.
filter

701.8.2.2 protected final Filter filter

Filter specifying search criteria for the services to track.

Since 1.1
ServiceTracker(BundleContext,ServiceReference,ServiceTrackerCustomizer)

701.8.2.3 public ServiceTracker(BundleContext context, ServiceReference
reference, ServiceTrackerCustomizer customizer)

context BundleContext object against which the tracking is done.

reference ServiceReference object for the service to be tracked.

customizer The customizer object to call when services are added, modified, or removed
in this ServiceTracker object. If customizer is null, then this ServiceTracker
object will be used as the ServiceTrackerCustomizer object and the Service-
Tracker object will call the ServiceTrackerCustomizer methods on itself.

Create a ServiceTracker object on the specified ServiceReference object.

The service referenced by the specified ServiceReference object will be
tracked by this ServiceTracker object.
ServiceTracker(BundleContext,String,ServiceTrackerCustomizer)

701.8.2.4 public ServiceTracker(BundleContext context, String clazz,
ServiceTrackerCustomizer customizer)

context BundleContext object against which the tracking is done.

clazz Class name of the services to be tracked.

customizer The customizer object to call when services are added, modified, or removed
in this ServiceTracker object. If customizer is null, then this ServiceTracker
object will be used as the ServiceTrackerCustomizer object and the Service-
Tracker object will call the ServiceTrackerCustomizer methods on itself.

Create a ServiceTracker object on the specified class name.

Services registered under the specified class name will be tracked by this
ServiceTracker object.
338-432 OSGi Service Platform Release 4

Service Tracker Specification Version 1.3 org.osgi.util.tracker
ServiceTracker(BundleContext,Filter,ServiceTrackerCustomizer)

701.8.2.5 public ServiceTracker(BundleContext context, Filter filter,
ServiceTrackerCustomizer customizer)

context BundleContext object against which the tracking is done.

filter Filter object to select the services to be tracked.

customizer The customizer object to call when services are added, modified, or removed
in this ServiceTracker object. If customizer is null, then this ServiceTracker
object will be used as the ServiceTrackerCustomizer object and the Service-
Tracker object will call the ServiceTrackerCustomizer methods on itself.

Create a ServiceTracker object on the specified Filter object.

Services which match the specified Filter object will be tracked by this Ser-
viceTracker object.

Since 1.1
addingService(ServiceReference)

701.8.2.6 public Object addingService(ServiceReference reference)

reference Reference to service being added to this ServiceTracker object.

Default implementation of the ServiceTrackerCustomizer.addingService
method.

This method is only called when this ServiceTracker object has been con-
structed with a null ServiceTrackerCustomizer argument. The default
implementation returns the result of calling getService, on the BundleCon-
text object with which this ServiceTracker object was created, passing the
specified ServiceReference object.

This method can be overridden in a subclass to customize the service object
to be tracked for the service being added. In that case, take care not to rely on
the default implementation of removedService that will unget the service.

Returns The service object to be tracked for the service added to this ServiceTracker
object.

See Also ServiceTrackerCustomizer[p.342]
close()

701.8.2.7 public synchronized void close()

Close this ServiceTracker object.

This method should be called when this ServiceTracker object should end
the tracking of services.
finalize()

701.8.2.8 protected void finalize() throws Throwable

Finalize. This method no longer performs any function but it kept to main-
tain binary compatibility with prior versions of this class.
getService(ServiceReference)

701.8.2.9 public Object getService(ServiceReference reference)

reference Reference to the desired service.

Returns the service object for the specified ServiceReference object if the ref-
erenced service is being tracked by this ServiceTracker object.

Returns Service object or null if the service referenced by the specified ServiceRefer-
ence object is not being tracked.
getService()
OSGi Service Platform Release 4 339-432

org.osgi.util.tracker Service Tracker Specification Version 1.3
701.8.2.10 public Object getService()

Returns a service object for one of the services being tracked by this Service-
Tracker object.

If any services are being tracked, this method returns the result of calling
getService(getServiceReference()).

Returns Service object or null if no service is being tracked.
getServiceReference()

701.8.2.11 public ServiceReference getServiceReference()

Returns a ServiceReference object for one of the services being tracked by
this ServiceTracker object.

If multiple services are being tracked, the service with the highest ranking
(as specified in its service.ranking property) is returned.

If there is a tie in ranking, the service with the lowest service ID (as specified
in its service.id property); that is, the service that was registered first is
returned.

This is the same algorithm used by BundleContext.getServiceReference.

Returns ServiceReference object or null if no service is being tracked.

Since 1.1
getServiceReferences()

701.8.2.12 public ServiceReference[] getServiceReferences()

Return an array of ServiceReference objects for all services being tracked by
this ServiceTracker object.

Returns Array of ServiceReference objects or null if no service are being tracked.
getServices()

701.8.2.13 public Object[] getServices()

Return an array of service objects for all services being tracked by this Ser-
viceTracker object.

Returns Array of service objects or null if no service are being tracked.
getTrackingCount()

701.8.2.14 public int getTrackingCount()

Returns the tracking count for this ServiceTracker object. The tracking
count is initialized to 0 when this ServiceTracker object is opened. Every
time a service is added or removed from this ServiceTracker object the track-
ing count is incremented.

The tracking count can be used to determine if this ServiceTracker object
has added or removed a service by comparing a tracking count value previ-
ously collected with the current tracking count value. If the value has not
changed, then no service has been added or removed from this Service-
Tracker object since the previous tracking count was collected.

Returns The tracking count for this ServiceTracker object or -1 if this ServiceTracker
object is not open.

Since 1.2
modifiedService(ServiceReference,Object)

701.8.2.15 public void modifiedService(ServiceReference reference, Object service
)

reference Reference to modified service.
340-432 OSGi Service Platform Release 4

Service Tracker Specification Version 1.3 org.osgi.util.tracker
service The service object for the modified service.

Default implementation of the ServiceTrackerCustomizer.modifiedService
method.

This method is only called when this ServiceTracker object has been con-
structed with a null ServiceTrackerCustomizer argument. The default
implementation does nothing.

See Also ServiceTrackerCustomizer[p.342]
open()

701.8.2.16 public void open()

Open this ServiceTracker object and begin tracking services.

This method calls open(false).

Throws IllegalStateException – if the BundleContext object with which this
ServiceTracker object was created is no longer valid.

See Also open(boolean)[p.341]
open(boolean)

701.8.2.17 public synchronized void open(boolean trackAllServices)

trackAllServices If true, then this ServiceTracker will track all matching services regardless of
class loader accessibility. If false, then this ServiceTracker will only track
matching services which are class loader accessibile to the bundle whose
BundleContext is used by this ServiceTracker.

Open this ServiceTracker object and begin tracking services.

Services which match the search criteria specified when this ServiceTracker
object was created are now tracked by this ServiceTracker object.

Throws IllegalStateException – if the BundleContext object with which this
ServiceTracker object was created is no longer valid.

Since 1.3
remove(ServiceReference)

701.8.2.18 public void remove(ServiceReference reference)

reference Reference to the service to be removed.

Remove a service from this ServiceTracker object. The specified service will
be removed from this ServiceTracker object. If the specified service was
being tracked then the ServiceTrackerCustomizer.removedService method
will be called for that service.
removedService(ServiceReference,Object)

701.8.2.19 public void removedService(ServiceReference reference, Object service
)

reference Reference to removed service.

service The service object for the removed service.

Default implementation of the ServiceTrackerCustomizer.removedService
method.

This method is only called when this ServiceTracker object has been con-
structed with a null ServiceTrackerCustomizer argument. The default
implementation calls ungetService, on the BundleContext object with
which this ServiceTracker object was created, passing the specified Service-
Reference object.
OSGi Service Platform Release 4 341-432

org.osgi.util.tracker Service Tracker Specification Version 1.3
This method can be overridden in a subclass. If the default implementation
of addingService method was used, this method must unget the service.

See Also ServiceTrackerCustomizer[p.342]
size()

701.8.2.20 public int size()

Return the number of services being tracked by this ServiceTracker object.

Returns Number of services being tracked.
waitForService(long)

701.8.2.21 public Object waitForService(long timeout) throws
InterruptedException

timeout time interval in milliseconds to wait. If zero, the method will wait indefinate-
ly.

Wait for at least one service to be tracked by this ServiceTracker object.

It is strongly recommended that waitForService is not used during the call-
ing of the BundleActivator methods. BundleActivator methods are expected
to complete in a short period of time.

Returns Returns the result of getService().

Throws InterruptedException – If another thread has interrupted the current
thread.

IllegalArgumentException – If the value of timeout is negative.
ServiceTrackerCustomizer

701.8.3 public interface ServiceTrackerCustomizer
The ServiceTrackerCustomizer interface allows a ServiceTracker object to
customize the service objects that are tracked. The ServiceTrackerCus-
tomizer object is called when a service is being added to the ServiceTracker
object. The ServiceTrackerCustomizer can then return an object for the
tracked service. The ServiceTrackerCustomizer object is also called when a
tracked service is modified or has been removed from the ServiceTracker
object.

The methods in this interface may be called as the result of a ServiceEvent
being received by a ServiceTracker object. Since ServiceEvent s are synchro-
nously delivered by the Framework, it is highly recommended that imple-
mentations of these methods do not register
(BundleContext.registerService), modify (ServiceRegistration.setProperties)
or unregister (ServiceRegistration.unregister) a service while being syn-
chronized on any object.
addingService(ServiceReference)

701.8.3.1 public Object addingService(ServiceReference reference)

reference Reference to service being added to the ServiceTracker object.

A service is being added to the ServiceTracker object.

This method is called before a service which matched the search parameters
of the ServiceTracker object is added to it. This method should return the
service object to be tracked for this ServiceReference object. The returned
service object is stored in the ServiceTracker object and is available from the
getService and getServices methods.
342-432 OSGi Service Platform Release 4

Service Tracker Specification Version 1.3 org.osgi.util.tracker
Returns The service object to be tracked for the ServiceReference object or null if the
ServiceReference object should not be tracked.
modifiedService(ServiceReference,Object)

701.8.3.2 public void modifiedService(ServiceReference reference, Object service
)

reference Reference to service that has been modified.

service The service object for the modified service.

A service tracked by the ServiceTracker object has been modified.

This method is called when a service being tracked by the ServiceTracker
object has had it properties modified.
removedService(ServiceReference,Object)

701.8.3.3 public void removedService(ServiceReference reference, Object service
)

reference Reference to service that has been removed.

service The service object for the removed service.

A service tracked by the ServiceTracker object has been removed.

This method is called after a service is no longer being tracked by the Ser-
viceTracker object.
OSGi Service Platform Release 4 343-432

org.osgi.util.tracker Service Tracker Specification Version 1.3
344-432 OSGi Service Platform Release 4

XML Parser Service Specification Version 1.0 Introduction
702 XML Parser Service
Specification
Version 1.0

702.1 Introduction
The Extensible Markup Language (XML) has become a popular method of
describing data. As more bundles use XML to describe their data, a common
XML Parser becomes necessary in an embedded environment in order to
reduce the need for space. Not all XML Parsers are equivalent in function,
however, and not all bundles have the same requirements on an XML parser.

This problem was addressed in the Java API for XML Processing, see [58]
JAXP for Java 2 Standard Edition and Enterprise Edition. This specification
addresses how the classes defined in JAXP can be used in an OSGi Service
Platform. It defines how:

• Implementations of XML parsers can become available to other bundles
• Bundles can find a suitable parser
• A standard parser in a JAR can be transformed to a bundle

702.1.1 Essentials
• Standards – Leverage existing standards in Java based XML parsing: JAXP,

SAX and DOM
• Unmodified JAXP code – Run unmodified JAXP code
• Simple – It should be easy to provide a SAX or DOM parser as well as easy

to find a matching parser
• Multiple – It should be possible to have multiple implementations of

parsers available
• Extendable – It is likely that parsers will be extended in the future with

more functionality

702.1.2 Entities
• XMLParserActivator – A utility class that registers a parser factory from

declarative information in the Manifest file.
• SAXParserFactory – A class that can create an instance of a SAXParser

class.
• DocumentBuilderFactory – A class that can create an instance of a

DocumentBu ilder class.
• SAXParser – A parser, instantiated by a SaxParserFactory object, that

parses according to the SAX specifications.
• DocumentBuilder – A parser, instantiated by a DocumentBui lderFactory ,

that parses according to the DOM specifications.
OSGi Service Platform Release 4 345-432

JAXP XML Parser Service Specification Version 1.0
Figure 52 XML Parsing diagram

702.1.3 Operations
A bundle containing a SAX or DOM parser is started. This bundle registers a
SAXParserFactory and/or a DocumentBui lderFactory service object with the
Framework. Service registration properties describe the features of the
parsers to other bundles. A bundle that needs an XML parser will get a
SAXParserFactory or DocumentBui lderFactory service object from the
Framework service registry. This object is then used to instantiate the
requested parsers according to their specifications.

702.2 JAXP
XML has become very popular in the last few years because it allows the
interchange of complex information between different parties. Though
only a single XML standard exists, there are multiple APIs to XML parsers,
primarily of two types:

• The Simple API for XML (SAX1 and SAX2)
• Based on the Document Object Model (DOM 1 and 2)

Both standards, however, define an abstract API that can be implemented by
different vendors.

A given XML Parser implementation may support either or both of these
parser types by implementing the org .w3c .dom and/or org .xml. sax pack-
ages. In addition, parsers have characteristics such as whether they are vali-
dating or non-validating parsers and whether or not they are name-space
aware.

SAXParser
Factory

Document
Builder
Factory

XMLParser
Activator

SAXParser
user

Document
Builder user

Subclass impl.

SAXParser Document
Builder

Document Builder
impl.

SAXParser impl.

parses withparses with

registered by registered by

instantiatesinstant. by

reads bundle META-INF
Parser Implementation
Bundle

getsgets

0..* 0..*

0..*0..*

0..* 0..*

0..*0..*

0,1 0,1

0,10,1

0..* 1 0..*1
346-432 OSGi Service Platform Release 4

XML Parser Service Specification Version 1.0 XML Parser service
An application which uses a specific XML Parser must code to that specific
parser and become coupled to that specific implementation. If the parser
has implemented [58] JAXP, however, the application developer can code
against SAX or DOM and let the runtime environment decide which parser
implementation is used.

JAXP uses the concept of a factory. A factory object is an object that abstracts
the creation of another object. JAXP defines a DocumentBui lderFactory and
a SAXParserFactory class for this purpose.

JAXP is implemented in the javax .xml.parsers package and provides an
abstraction layer between an application and a specific XML Parser imple-
mentation. Using JAXP, applications can choose to use any JAXP compliant
parser without changing any code, simply by changing a System property
which specifies the SAX- and DOM factory class names.

In JAXP, the default factory is obtained with a static method in the
SAXParserFactory or DocumentBui lderFactory class. This method will
inspect the associated System property and create a new instance of that
class.

702.3 XML Parser service
The current specification of JAXP has the limitation that only one of each
type of parser factories can be registered. This specification specifies how
multiple SAXParserFactory objects and DocumentBui lderFactory objects
can be made available to bundles simultaneously.

Providers of parsers should register a JAXP factory object with the OSGi ser-
vice registry under the factory class name. Service properties are used to
describe whether the parser:

• Is validating
• Is name-space aware
• Has additional features

With this functionality, bundles can query the OSGi service registry for
parsers supporting the specific functionality that they require.

702.4 Properties
Parsers must be registered with a number of properties that qualify the ser-
vice. In this specification, the following properties are specified:

• PARSER_NAMESPACEAWARE – The registered parser is aware of name-
spaces. Name-spaces allow an XML document to consist of indepen-
dently developed DTDs. In an XML document, they are recognized by the
xmlns attribute and names prefixed with an abbreviated name-space
identifier, like: <xsl : i f . . .> . The type is a Boolean object that must be true
when the parser supports name-spaces. All other values, or the absence
of the property, indicate that the parser does not implement name-
spaces.

• PARSER_VALIDATING – The registered parser can read the DTD and can
validate the XML accordingly. The type is a Boolean object that must
OSGi Service Platform Release 4 347-432

Getting a Parser Factory XML Parser Service Specification Version 1.0
t rue when the parser is validating. All other values, or the absence of the
property, indicate that the parser does not validate.

702.5 Getting a Parser Factory
Getting a parser factory requires a bundle to get the appropriate factory
from the service registry. In a simple case in which a non-validating, non-
name-space aware parser would suffice, it is best to use
getServiceReference(Str ing) .

DocumentBui lder getParser(BundleContext context)
throws Except ion {
Serv iceReference ref = context .getServiceReference(

DocumentBui lderFactory.class .getName()) ;
if (ref == null)

return null;
DocumentBuilderFactory factory =

(DocumentBuilderFactory) context.getService(ref);
return factory.newDocumentBuilder();

}

In a more demanding case, the filtered version allows the bundle to select a
parser that is validating and name-space aware:

SAXParser getParser(BundleContext context)
throws Except ion {
Serv iceReference refs[] = context.getServiceReferences(

SAXParserFactory.c lass.getName() ,
"(&(parser.namespaceAware=true)"

+ "(parser.val idating=true))") ;
if (refs == null)

return null;
SAXParserFactory factory =

(SAXParserFactory) context.getService(refs[O]);
return factory.newSAXParser();

}

702.6 Adapting a JAXP Parser to OSGi
If an XML Parser supports JAXP, then it can be converted to an OSGi aware
bundle by adding a BundleActivator class which registers an XML Parser
Service. The utility org .osg i .ut i l .xml .XMLParserActivator class provides this
function and can be added (copied, not referenced) to any XML Parser bun-
dle, or it can be extended and customized if desired.
348-432 OSGi Service Platform Release 4

XML Parser Service Specification Version 1.0 Adapting a JAXP Parser to OSGi
702.6.1 JAR Based Services
Its functionality is based on the definition of the [59] JAR File specification, ser-
vices directory. This specification defines a concept for service providers. A
JAR file can contain an implementation of an abstractly defined service. The
class (or classes) implementing the service are designated from a file in the
META-INF/services directory. The name of this file is the same as the
abstract service class.

The content of the UTF-8 encoded file is a list of class names separated by
new lines. White space is ignored and the number sign (’#’ or \u0023) is the
comment character.

JAXP uses this service provider mechanism. It is therefore likely that ven-
dors will place these service files in the META-INF/services directory.

702.6.2 XMLParserActivator
To support this mechanism, the XML Parser service provides a utility class
that should be normally delivered with the OSGi Service Platform imple-
mentation. This class is a Bundle Activator and must start when the bundle
is started. This class is copied into the parser bundle, and not imported.

The start method of the utility BundleAct ivator class will look in the META-
INF/services service provider directory for the files
javax .xml.parsers.SAXParserFactory (SAXFACTORYNAME) or
javax .xml.parsers.DocumentBu ilderFactory (DOMFACTORYNAME). The
full path name is specified in the constants SAXCLASSFILE and DOMCLASS-
FILE respectively.

If either of these files exist, the utility BundleActivator class will parse the
contents according to the specification. A service provider file can contain
multiple class names. Each name is read and a new instance is created. The
following example shows the possible content of such a file:

ACME example SAXParserFactory file
com.acme.saxparser.SAXParserFast # Fast
com.acme.saxparser.SAXParserValidating # Validates

Both the javax .xml .parsers.SAXParserFactory and the
javax .xml.parsers.DocumentBu ilderFactory provide methods that describe
the features of the parsers they can create. The XMLParserActivator activa-
tor will use these methods to set the values of the properties, as defined in
Properties on page 347, that describe the instances.

702.6.3 Adapting an Existing JAXP Compatible Parser
 To incorporate this bundle activator into a XML Parser Bundle, do the fol-
lowing:

• If SAX parsing is supported, create a /META-INF/services/
javax.xml .parsers.SAXParserFactory resource file containing the class
names of the SAXParserFactory classes.

• If DOM parsing is supported, create a /META-INF/serv ices/
javax.xml .parsers.DocumentBui lderFactory file containing the fully
qualified class names of the DocumentBu ilderFactory classes.
OSGi Service Platform Release 4 349-432

Usage of JAXP XML Parser Service Specification Version 1.0
• Create manifest file which imports the packages org .w3c.dom ,
org.xml.sax , and javax .xml.parsers .

• Add a Bundle-Activator header to the manifest pointing to the
XMLParserAct ivator , the sub-class that was created, or a fully custom
one.

• If the parsers support attributes, properties, or features that should be
registered as properties so they can be searched, extend the
XMLParserAct ivator class and override setSAXProp-
ert ies (javax.xml.parsers.SAXParserFactory,Hashtable) and setDOM-
Properties(javax .xml.parsers.DocumentBu ilderFactory,Hashtable) .

• Ensure that custom properties are put into the Hashtable object. JAXP
does not provide a way for XMLParserAct ivator to query the parser to
find out what properties were added.

• Bundles that extend the XMLParserActivator class must call the original
methods via super to correctly initialize the XML Parser Service prop-
erties.

• Compile this class into the bundle.
• Install the new XML Parser Service bundle.
• Ensure that the org .osg i .ut i l .xml .XMLParserActivator class is contained

in the bundle.

702.7 Usage of JAXP
A single bundle should export the JAXP, SAX, and DOM APIs. The version of
contained packages must be appropriately labeled. JAXP 1.1 or later is
required which references SAX 2 and DOM 2. See [58] JAXP for the exact ver-
sion dependencies.

This specification is related to related packages as defined in the JAXP 1.1
document. Table 24 contains the expected minimum versions.

The Xerces project from the Apache group, [60] Xerces 2 Java Parser, contains
a number libraries that implement the necessary APIs. These libraries can
be wrapped in a bundle to provide the relevant packages.

Table 24 JAXP 1.1 minimum package versions

Package Minimum Version

javax.xml.parsers 1.1

org.xml.sax 2.0

org.xml.sax.helpers 2.0

org.xsml.sax.ext 1.0

org.w3c.dom 2.0
350-432 OSGi Service Platform Release 4

XML Parser Service Specification Version 1.0 Security
702.8 Security
A centralized XML parser is likely to see sensitive information from other
bundles. Provisioning an XML parser should therefore be limited to trusted
bundles. This security can be achieved by providing
ServicePermission[javax.xml.parsers .DocumentBui lderFactory |
javax .xml.parsers.SAXFactory ,REGISTER] to only trusted bundles.

Using an XML parser is a common function, and
ServicePermission[javax.xml.parsers .DOMParserFactory |
javax .xml.parsers.SAXFactory , GET] should not be restricted.

The XML parser bundle will need F ilePermiss ion[<<ALL F ILES>>,READ] for
parsing of files because it is not known beforehand where those files will be
located. This requirement further implies that the XML parser is a system
bundle that must be fully trusted.

702.9 org.osgi.util.xml
The OSGi XML Parser service Package. Specification Version 1.0.
XMLParserActivator

702.9.1 public class XMLParserActivator
implements BundleActivator , ServiceFactory
A BundleActivator class that allows any JAXP compliant XML Parser to reg-
ister itself as an OSGi parser service. Multiple JAXP compliant parsers can
concurrently register by using this BundleActivator class. Bundles who
wish to use an XML parser can then use the framework’s service registry to
locate available XML Parsers with the desired characteristics such as validat-
ing and namespace-aware.

The services that this bundle activator enables a bundle to provide are:

• javax.xml.parsers.SAXParserFactory(SAXFACTORYNAME [p.352])
• javax.xml.parsers.DocumentBuilderFactory(

DOMFACTORYNAME [p.352])

The algorithm to find the implementations of the abstract parsers is derived
from the JAR file specifications, specifically the Services API.

An XMLParserActivator assumes that it can find the class file names of the
factory classes in the following files:

• /META-INF/services/javax.xml.parsers.SAXParserFactory is a file con-
tained in a jar available to the runtime which contains the implemen-
tation class name(s) of the SAXParserFactory.

• /META-INF/services/javax.xml.parsers.DocumentBuilderFactory is a file
contained in a jar available to the runtime which contains the imple-
mentation class name(s) of the DocumentBuilderFactory

If either of the files does not exist, XMLParserActivator assumes that the
parser does not support that parser type.
OSGi Service Platform Release 4 351-432

org.osgi.util.xml XML Parser Service Specification Version 1.0
XMLParserActivator attempts to instantiate both the SAXParserFactory and
the DocumentBuilderFactory. It registers each factory with the framework
along with service properties:

• PARSER_VALIDATING [p.352] - indicates if this factory supports validating
parsers. It’s value is a Boolean.

• PARSER_NAMESPACEAWARE [p.352] - indicates if this factory supports
namespace aware parsers It’s value is a Boolean.

Individual parser implementations may have additional features, proper-
ties, or attributes which could be used to select a parser with a filter. These
can be added by extending this class and overriding the setSAXProperties
and setDOMProperties methods.
DOMCLASSFILE

702.9.1.1 public static final String DOMCLASSFILE = “/META-INF/services/
javax.xml.parsers.DocumentBuilderFactory”

Fully qualified path name of DOM Parser Factory Class Name file
DOMFACTORYNAME

702.9.1.2 public static final String DOMFACTORYNAME =
“javax.xml.parsers.DocumentBuilderFactory”

Filename containing the DOM Parser Factory Class name. Also used as the
basis for the SERVICE_PID registration property.
PARSER_NAMESPACEAWARE

702.9.1.3 public static final String PARSER_NAMESPACEAWARE =
“parser.namespaceAware”

Service property specifying if factory is configured to support namespace
aware parsers. The value is of type Boolean.
PARSER_VALIDATING

702.9.1.4 public static final String PARSER_VALIDATING = “parser.validating”

Service property specifying if factory is configured to support validating
parsers. The value is of type Boolean.
SAXCLASSFILE

702.9.1.5 public static final String SAXCLASSFILE = “/META-INF/services/
javax.xml.parsers.SAXParserFactory”

Fully qualified path name of SAX Parser Factory Class Name file
SAXFACTORYNAME

702.9.1.6 public static final String SAXFACTORYNAME =
“javax.xml.parsers.SAXParserFactory”

Filename containing the SAX Parser Factory Class name. Also used as the
basis for the SERVICE_PID registration property.
XMLParserActivator()

702.9.1.7 public XMLParserActivator()
getService(Bundle,ServiceRegistration)

702.9.1.8 public Object getService(Bundle bundle, ServiceRegistration
registration)

bundle The bundle using the service.

registration The ServiceRegistration object for the service.

Creates a new XML Parser Factory object.

A unique XML Parser Factory object is returned for each call to this method.
352-432 OSGi Service Platform Release 4

XML Parser Service Specification Version 1.0 org.osgi.util.xml
The returned XML Parser Factory object will be configured for validating
and namespace aware support as specified in the service properties of the
specified ServiceRegistration object. This method can be overridden to con-
figure additional features in the returned XML Parser Factory object.

Returns A new, configured XML Parser Factory object or null if a configuration error
was encountered
setDOMProperties(javax.xml.parsers.DocumentBuilderFactory,Hashtable)

702.9.1.9 public void setDOMProperties(DocumentBuilderFactory factory,
Hashtable props)

factory - the DocumentBuilderFactory object

props - Hashtable of service properties.

Set the customizable DOM Parser Service Properties.

This method attempts to instantiate a validating parser and a
namespaceaware parser to determine if the parser can support those fea-
tures. The appropriate properties are then set in the specified props object.

This method can be overridden to add additional DOM2 features and prop-
erties. If you want to be able to filter searches of the OSGi service registry,
this method must put a key, value pair into the properties object for each
feature or property. For example, properties.put(”http://www.acme.com/fea-
tures/foo”, Boolean.TRUE);
setSAXProperties(javax.xml.parsers.SAXParserFactory,Hashtable)

702.9.1.10 public void setSAXProperties(SAXParserFactory factory, Hashtable
properties)

factory - the SAXParserFactory object

properties - the properties object for the service

Set the customizable SAX Parser Service Properties.

This method attempts to instantiate a validating parser and a
namespaceaware parser to determine if the parser can support those fea-
tures. The appropriate properties are then set in the specified properties
object.

This method can be overridden to add additional SAX2 features and proper-
ties. If you want to be able to filter searches of the OSGi service registry, this
method must put a key, value pair into the properties object for each feature
or property. For example, properties.put(”http://www.acme.com/features/
foo”, Boolean.TRUE);
start(BundleContext)

702.9.1.11 public void start(BundleContext context) throws Exception

context The execution context of the bundle being started.

Called when this bundle is started so the Framework can perform the bun-
dle-specific activities necessary to start this bundle. This method can be
used to register services or to allocate any resources that this bundle needs.

This method must complete and return to its caller in a timely manner.

This method attempts to register a SAX and DOM parser with the Frame-
work’s service registry.

Throws Exception – If this method throws an exception, this bundle is marked as
stopped and the Framework will remove this bundle’s listeners, unregister
OSGi Service Platform Release 4 353-432

References XML Parser Service Specification Version 1.0
all services registered by this bundle, and release all services used by this bun-
dle.

See Also Bundle.start
stop(BundleContext)

702.9.1.12 public void stop(BundleContext context) throws Exception

context The execution context of the bundle being stopped.

This method has nothing to do as all active service registrations will auto-
matically get unregistered when the bundle stops.

Throws Exception – If this method throws an exception, the bundle is still marked
as stopped, and the Framework will remove the bundle’s listeners, unregister
all services registered by the bundle, and release all services used by the bun-
dle.

See Also Bundle.stop
ungetService(Bundle,ServiceRegistration,Object)

702.9.1.13 public void ungetService(Bundle bundle, ServiceRegistration
registration, Object service)

bundle The bundle releasing the service.

registration The ServiceRegistration object for the service.

service The XML Parser Factory object returned by a previous call to the getService
method.

Releases a XML Parser Factory object.

702.10 References
[55] XML

http://www.w3.org/XML

[56] SAX
http://www.saxproject.org/

[57] DOM Java Language Binding
http://www.w3.org/TR/REC-DOM-Level-1/java-language-binding.html

[58] JAXP
http://java.sun.com/xml/jaxp

[59] JAR File specification, services directory
http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html

[60] Xerces 2 Java Parser
http://xml.apache.org/xerces2-j
354-432 OSGi Service Platform Release 4

Position Specification Version 1.0 Introduction
703 Position Specification
Version 1.0

703.1 Introduction
The Posit ion class is a utility providing bundle developers with a consistent
way of handling geographic positions in OSGi applications. The Pos it ion
class is intended to be used with the Wire Admin service but has wider
applicability.

The Pos it ion class is designed to be compatible with the Global Positioning
System (GPS). This specification will not define or explain the complexities
of positioning information. It is assumed that the reader has the appropriate
background to understand this information.

703.1.1 Essentials
• Position – Provide an information object that has well defined semantics

for a position.
• WGS-84 – Use the World Geodetic System 84 as the datum.
• Speed – Provide speed and track information.
• Errors – Position information always has certain errors or cannot be mea-

sured at all. This information must be available to the users of the infor-
mation.

• Units – Use SI units for all measurements.
• Wire Admin – This specification must work within the Wire Admin

service.

703.1.2 Entities
• Position – An object containing the different aspects of a position.
• Measurement – Contains a typed measurement made at a certain time and

with a specified error.

Figure 53 Class Diagram, org.osgi.util.position

latitude

Position Measurement

longitude

altitude

track

speed

1 1
1

1

1

11
1

1

1

OSGi Service Platform Release 4 355-432

Positioning Position Specification Version 1.0
703.2 Positioning
The Pos it ion class is used to give information about the position and move-
ment of a vehicle with a specified amount of uncertainty. The position is
based on WGS-84.

The Position class offers the following information:

• getLat i tude() – The WGS-84 latitude of the current position. The unit of
a latitude must be rad (radians).

• getLongitude() – The WGS-84 longitude of the current position. The
unit of a longitude must be rad (radians).

• getA lt i tude() – Altitude is expressed as height in meters above the WGS-
84 ellipsoid. This value can differ from the actual height above mean sea
level depending on the place on earth where the measurement is taken
place. This value is not corrected for the geoid.

• getTrack() – The true north course of the vehicle in radians.
• getSpeed() – The ground speed. This speed must not include vertical

speed.

703.3 Units
Longitude and latitude are represented in radians, not degrees. This is con-
sistent with the use of the Measurement object. Radians can be converted to
degrees with the following formula, when lonlat is the longitude or latitude:

degrees = (lonlat / π) * 180

Calculation errors are significantly reduced when all calculations are done
with a single unit system. This approach increases the complexity of presen-
tation, but presentations are usually localized and require conversion any-
way. Also, the radians are the units in the SI system and the java.lang.Math
class uses only radians for angles.

703.4 Optimizations
A Posit ion object must be immutable. It must remain its original values
after it is created.

The Pos it ion class is not final. This approach implies that developers are
allowed to sub-class it and provide optimized implementations. For exam-
ple, it is possible that the Measurement objects are only constructed when
actually requested.

703.5 Errors
Positioning information is never exact. Even large errors can exist in certain
conditions. For this reason, the Posit ion class returns all its measurements
as Measurement objects. The Measurement class maintains an error value
for each measurement.
356-432 OSGi Service Platform Release 4

Position Specification Version 1.0 Using Position With Wire Admin
In certain cases it is not possible to supply a value; in those cases, the
method should return a NaN as specified in the Measurement class.

703.6 Using Position With Wire Admin
The primary reason the Position is specified, is to use it with the Wire Admin
Service Specification on page 151. A bundle that needs position information
should register a Consumer service and the configuration should connect
this service to an appropriate Producer service.

703.7 Related Standards

703.7.1 JSR 179
In JCP, started [63] Location API for J2ME . This API is targeted at embedded
systems and is likely to not contain some of the features found in this API.
This API is targeted to be reviewed at Q4 of 2002. This API should be consid-
ered in a following release.

703.8 Security
The security aspects of the Posit ion class are delegated to the security
aspects of the Wire Admin service. The Posit ion object only carries the
information. The Wire Admin service will define what Consumer services
will receive position information from what Producer services. It is there-
fore up to the administrator of the Wire Admin service to assure that only
trusted bundles receive this information, or can supply it.

703.9 org.osgi.util.position
The OSGi Position Package. Specification Version 1.0.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.util.position; version=1.0
Position

703.9.1 public class Position
Position represents a geographic location, based on the WGS84 System
(World Geodetic System 1984).

The org.osgi.util.measurement.Measurement class is used to represent the
values that make up a position.

A given position object may lack any of it’s components, i.e. the altitude
may not be known. Such missing values will be represented by null.

Position does not override the implementation of either equals() or hash-
Code() because it is not clear how missing values should be handled. It is up
to the user of a position to determine how best to compare two position
objects. A Position object is immutable.
OSGi Service Platform Release 4 357-432

References Position Specification Version 1.0
Position(Measurement,Measurement,Measurement,Measurement,Measurement)

703.9.1.1 public Position(Measurement lat, Measurement lon, Measurement alt,
Measurement speed, Measurement track)

lat a Measurement object specifying the latitude in radians, or null

lon a Measurement object specifying the longitude in radians, or null

alt a Measurement object specifying the altitude in meters, or null

speed a Measurement object specifying the speed in meters per second, or null

track a Measurement object specifying the track in radians, or null

Contructs a Position object with the given values.
getAltitude()

703.9.1.2 public Measurement getAltitude()

Returns the altitude of this position in meters.

Returns a Measurement object in Unit.m representing the altitude in meters above
the ellipsoid null if the altitude is not known.
getLatitude()

703.9.1.3 public Measurement getLatitude()

Returns the latitude of this position in radians.

Returns a Measurement object in Unit.rad representing the latitude, or null if the lat-
itude is not known..
getLongitude()

703.9.1.4 public Measurement getLongitude()

Returns the longitude of this position in radians.

Returns a Measurement object in Unit.rad representing the longitude, or null if the
longitude is not known.
getSpeed()

703.9.1.5 public Measurement getSpeed()

Returns the ground speed of this position in meters per second.

Returns a Measurement object in Unit.m_s representing the speed, or null if the
speed is not known..
getTrack()

703.9.1.6 public Measurement getTrack()

Returns the track of this position in radians as a compass heading. The track
is the extrapolation of previous previously measured positions to a future
position.

Returns a Measurement object in Unit.rad representing the track, or null if the track
is not known..

703.10 References
[61] World Geodetic System 84 (WGS-84)

http://www.wgs84.com

[62] Location Interoperability Forum
http://www.locationforum.org/

[63] Location API for J2ME
http://www.jcp.org/jsr/detail/179.jsp
358-432 OSGi Service Platform Release 4

Measurement and State Specification Version 1.0 Introduction
704 Measurement and State
Specification
Version 1.0

704.1 Introduction
The Measurement class is a utility that provides a consistent way of han-
dling a diverse range of measurements for bundle developers. Its purpose is
to simplify the correct handling of measurements in OSGi Service Plat-
forms.

OSGi bundle developers from all over the world have different preferences
for measurement units, such as feet versus meters. In an OSGi environment,
bundles developed in different parts of the world can and will exchange
measurements when collaborating.

Distributing a measurement such as a simple floating point number
requires the correct and equal understanding of the measurement’s seman-
tic by both the sender and the receiver. Numerous accidents have occurred
due to misunderstandings between the sender and receiver because there
are so many different ways to represent the same value. For example, on
September 23, 1999, the Mars Polar Lander was lost because calculations
used to program the craft's trajectory were input with English units while
the operation documents specified metric units. See [68] Mars Polar Lander
failure for more information.

This Measurement and State Specification defines the norm that should be
used by all applications that execute in an OSGi Service Platform. This spec-
ification also provides utility classes.

704.1.1 Measurement Essentials
• Numerical error – All floating point measurements should be able to have

a numerical error.
• Numerical error calculations simplification – Support should be provided to

simplify measurements calculations.
• Unit conflict resolution – It must not be possible to perform addition or sub-

traction with different units when they are not compatible. For example,
it must not be possible to add meters to amperes or watts to pascals.

• Unit coercion – Multiplication and division operations involving more
than one type of measurement must result in a different unit. For
example, if meters are divided by seconds, the result must be a new unit
that represents m/s .

• Time-stamp – Measurements should contain a time-stamp so that
bundles can determine the age of a particular measurement.
OSGi Service Platform Release 4 359-432

Introduction Measurement and State Specification Version 1.0
• Support for floating and discrete values – Both floating point values (64 bit
Java double floats) and discrete measurements (32 bit Java int) should be
supported.

• Consistency – The method of error calculation and handling of unit types
should be consistent.

• Presentation – The format of measurements and specified units should be
easy to read and understand.

704.1.2 Measurement Entities
• Measurement object – A Measurement object contains a double value, a

double error, and a long time-stamp. It is associated with a Unit object
that represents its type.

• State object – A State object contains a discrete measurement (in t) with a
time-stamp and a name.

• Unit object – A Unit object represents a unit such as meter, second, mol, or
Pascal. A number of Unit objects are predefined and have common
names. Other Unit objects are created as needed from the 7 basic Système
International d’Unité (SI) units. Different units are not used when a con-
version is sufficient. For example, the unit of a Measurement object for
length is always meters. If the length is needed in feet, then the number
of feet is calculated by multiplying the value of the Measurement object
in meters with the necessary conversion factor.

• Error – When a measurement is taken, it is never accurate. This specifi-
cation defines the error as the value that is added and subtracted to the
value to produce an interval, where the probability is 95% that the
actual value falls within this interval.

• Unit – A unit is the type of a measurement: meter, feet, liter, gallon etc.
• Base Unit – One of the 7 base units defined in the SI.
• Derived SI unit – A unit is a derived SI unit when it is a combination of

exponentiated base units. For example, a volt (V) is a derived unit
because it can be expressed as (m2 × kg) / (s 3 × A), where m , kg , s and A
are all base units.

• Quantitative derivation – A unit is quantitatively derived when it is con-
verted to one of the base units or derived units using a conversion
formula. For example, kilometers (km) can be converted to meters (m),
gallons can be converted to liters, or horsepower can be converted to
watts.

Figure 54 Class Diagram, org.osgi.util.measurement

is of unit UnitMeasurement

State

0..* 1
360-432 OSGi Service Platform Release 4

Measurement and State Specification Version 1.0 Measurement Object
704.2 Measurement Object
A Measurement object contains a value, an error, and a time-stamp It is
linked to a Unit object that describes the measurement unit in an SI Base
Unit or Derived SI Unit.

704.2.1 Value
The value of the Measurement object is the measured value. It is set in a
constructor. The type of the value is double .

704.2.2 Error
The Measurement object can contain a numerical error. This error specifies
an interval by adding and subtracting the error value from the measured
value. The type of the error is double . A valid error value indicates that the
actual measured value has a 95% chance of falling within this interval (see
Figure 2). If the error is not known it should be represented as a
Double .NaN .

Figure 55 The Error Interval

704.2.3 Time-stamp
When a Measurement object is created, the time-stamp can be set. A time-
stamp is a long value representing the number of milliseconds since the
epoch midnight of January 1, 1970, UTC (this is the value from
System.currentTimeMil l is() method).

By default, a time-stamp is not set because the call to
System.currentTimeMil l is() incurs overhead. If the time-stamp is not set
when the Measurement object is created, then its default value is zero. If the
time-stamp is set, the creator of the Measurement object must give the time
as an argument to the constructor. For example:

Measurement m = new Measurement(
v, e, null, System.currentTimeMillis());

measurement

|error||error|

95% chance that the actual value is in this range

+–
OSGi Service Platform Release 4 361-432

Error Calculations Measurement and State Specification Version 1.0
704.3 Error Calculations
Once a measurement is taken, it often is used in calculations. The error
value assigned to the result of a calculation depends largely on the error val-
ues of the operands. Therefore, the Measurement class offers addition, sub-
traction, multiplication, and division functions for measurements and
constants. These functions take the error into account when performing the
specific operation.

The Measurement class uses absolute errors and has methods to calculate a
new absolute error when multiplication, division, addition, or subtraction is
performed. Error calculations must therefore adhere to the rules listed in
Table 25. In this table, ∆a is the absolute positive error in a value a and ∆b is
the absolute positive error in a value b. c is a constant floating point value
without an error.

704.4 Constructing and Comparing
Measurements
Measurement objects have a value and an error range, making comparing
and constructing these objects more complicated than normal scalars.

704.4.1 Constructors
The Measurements object has the following constructors that the value,
error, unit and timestamp:

• Measurement(double,double ,Unit , long)
• Measurement(double,double ,Unit)
• Measurement(double,Unit)
• Measurement(double)

Additionally, there is a String constructor so that the a Measurement object
can be created from a String, this is a necessity if Measurement objects are to
be used with filters.

The syntax of the string given to the constructor is:

Measurement ::= double ’:’ unit [’:’ error]

Table 25 Error Calculation Rules

Calculation Function Error

a × b mul(Measurement) | ∆a × b | + | a × ∆b |
a / b div(Measurement) (| ∆a × b | + | a × ∆b |) / b2

a + b add(Measurement) ∆a + ∆b
a – b sub(Measurement) ∆a + ∆b
a × c mul(double) | ∆a × c |
a / c div(double) | ∆a / c |
a + c add(double) ∆a
a – c sub(double) ∆a
362-432 OSGi Service Platform Release 4

Measurement and State Specification Version 1.0 Constructing and Comparing Mea-
double ::= <Java Double String constructor>
unit ::= ('1' | expr) ['/' expr]
expr ::= (<Unit name> [exponent]) *
exponent ::= [1-5]

For example:

10.49:m/s
15:Ohm
9.8:m/s2:0.1
20:s3A2/m2kg

Units are case sensitive, it is therefore important to specify the right case.

704.4.2 Identity and Equality
Both equals(Object) and hashCode() methods are overridden to provide
value-based equality. Two Measurement objects are equal when the unit,
error, and value are the same. The time-stamp is not relevant for equality or
the hash code.

704.4.3 Comparing Measurement Objects
The Measurement class implements the java . lang.Comparable interface
and thus implements the compareTo(Object) method. Comparing two
Measurement objects is not straightforward, however, due to the associated
error. The error effectively creates a range, so comparing two Measurement
objects is actually comparing intervals.

Two Measurement objects are considered to be equal when their intervals
overlap. In all other cases, the value is used in the comparison.

Figure 56 Comparing Measurement Objects

This comparison implies that the equals (Object) method may return fa lse
while the compareTo(Object) method returns 0 for the same Measurement
object.

+–

+–

all these ranges are comparing equal
because they overlap with a

> a

a

< a

a

OSGi Service Platform Release 4 363-432

Unit Object Measurement and State Specification Version 1.0
704.5 Unit Object
Each Measurement object is related to a Unit object. The Unit object defines
the unit of the measurement value and error. For example, the Unit object
might define the unit of the measurement value and the error as meters (m).
For convenience, the Unit class defines a number of standard units as con-
stants. Measurement objects are given a specific Unit with the constructor.
The following example shows how a measurement can be associated with
meters (m):

Measurement length = new Measurement(v, 0.01, Unit.m);

Units are based on the Système International d’Unité (SI), developed after
the French Revolution. The SI consists of 7 different units that can be com-
bined in many ways to form a large series of derived units. The basic 7 units
are listed in Table 26. For more information, see [65] General SI index.

Additional units are derived in the following ways:

Derived units can be a combination of exponentiated base units. For exam-
ple, Hz (Hertz) is the unit for frequencies and is actually derived from the
calculation of 1/s . A more complicated derived unit is volt (V). A volt is actu-
ally:

 (m2 × kg) / (s3 × A)

The SI defines various derived units with their own name, for example pas-
cal (Pa), watt (W), volt (V), and many more.

The Measurement class must maintain its unit by keeping track of the expo-
nents of the 7 basic SI units.

If different units are used in addition or subtraction of Measurement
objects, an Ar ithmeticException must be thrown.

Measurement length = new Measurement(v1, 0.01, Unit.m);
Measurement duration = new Measurement(v2, 0, Unit.s);
try {

Measurement r = length.add(duration);
}
catch(ArithmeticException e) {

// This must be thrown
}

Table 26 Basic SI units.

Description Unit name Symbol

length meter m
mass ki logram kg
t ime second s
electr ic current ampere A
thermodynamic temperature kelv in K
amount of substance mole mol
luminous intensity candela cd
364-432 OSGi Service Platform Release 4

Measurement and State Specification Version 1.0 Unit Object
When two Measurement objects are multiplied, the Unit object of the result
contains the sum of the exponents. When two Measurement objects are
divided, the exponents of the Unit object of the result are calculated by sub-
traction of the exponents.

The Measurement class must support exponents of -64 to +63. Overflow
must not be reported but must result in an invalid Unit object. All calcula-
tions with an invalid Unit object should result in an invalid Unit object. Typ-
ical computations generate exponents for units between +/- 4.

704.5.1 Quantitive Differences
The base and derived units can be converted to other units that are of the
same quality, but require a conversion because their scales and offsets may
differ. For example, degrees Fahrenheit, kelvin, and Celsius are all tempera-
tures and, therefore, only differ in their quantity. Kelvin and Celsius are the
same scale and differ only in their starting points. Fahrenheit differs from
kelvin in that both scale and starting point differ.

Using different Unit objects for the units that differ only in quantity can eas-
ily introduce serious software bugs. Therefore, the Unit class utilizes the SI
units. Any exchange of measurements should be done using SI units to pre-
vent these errors. When a measurement needs to be displayed, the presenta-
tion logic should perform the necessary conversions to present it in a
localized form. For example, when speed is presented in a car purchased in
the United States, it should be presented as miles instead of meters.

704.5.2 Why Use SI Units?
The adoption of the SI in the United States and the United Kingdom has met
with resistance. This issue raises the question why the SI system has to be
the preferred measurement system in the OSGi Specifications.

The SI system is utilized because it is the only measurement system that has
a consistent set of base units. The base units can be combined to create a
large number of derived units without requiring a large number of compli-
cated conversion formulas. For example, a watt is simply a combination of
meters, kilograms, and seconds (m2×kg /s3). In contrast, horsepower is not
easily related to inches, feet, fathoms, yards, furlongs, ounces, pounds,
stones, or miles. This difficulty is the reason that science has utilized the SI
for a long time. It is also the reason that the SI has been chosen as the system
used for the Measurement class.

The purpose of the Measurement class is internal, however, and should not
restrict the usability of the OSGi environment. Users should be able to use
the local measurement units when data is input or displayed. This choice is
the responsibility of the application developer.
OSGi Service Platform Release 4 365-432

State Object Measurement and State Specification Version 1.0
704.6 State Object
The State object is used to represent discrete states. It contains a time-stamp
but does not contain an error or Unit object. The Measurement object is not
suitable to maintain discrete states. For example, a car door can be LOCKED ,
UNLOCKED , or CHILDLOCKED . Measuring and operating with these values
does not require error calculations, nor does it require SI units. Therefore,
the State object is a simple, named object that holds an integer value.

704.7 Related Standards

704.7.1 GNU Math Library in Kawa
The open source project Kawa, a scheme-based Java environment, has
included a gnu.math library that contains unit handling similar to this spec-
ification. It can be found at [67] A Math Library containing unit handling in
Kawa.

The library seems considerably more complex without offering much more
functionality than this specification. It also does not strictly separate basic
SI units such as meter from quantitatively derived units such as pica.

704.8 Security Considerations
The Measurement , Un it , and State classes have been made immutable.
Instances of these classes can be freely handed out to other bundles because
they cannot be extended, nor can the value, error, or time-stamp be altered
after the object is created.

704.9 org.osgi.util.measurement
The OSGi Measurement Package. Specification Version 1.0.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.util.measurement; version=1.0

704.9.1 Summary
• Measurement - Represents a value with an error, a unit and a time-stamp.

[p.366]
• State - Groups a state name, value and timestamp. [p.371]
• Unit - A unit system for measurements. [p.372]
Measurement

704.9.2 public class Measurement
implements Comparable
Represents a value with an error, a unit and a time-stamp.
366-432 OSGi Service Platform Release 4

Measurement and State Specification Version 1.0 org.osgi.util.measurement
A Measurement object is used for maintaining the tuple of value, error, unit
and time-stamp. The value and error are represented as doubles and the time
is measured in milliseconds since midnight, January 1, 1970 UTC.

Mathematic methods are provided that correctly calculate taking the error
into account. A runtime error will occur when two measurements are used
in an incompatible way. E.g., when a speed (m/s) is added to a distance (m).
The measurement class will correctly track changes in unit during multipli-
cation and division, always coercing the result to the most simple form. See
Unit [p.372] for more information on the supported units.

Errors in the measurement class are absolute errors. Measurement errors
should use the P95 rule. Actual values must fall in the range value +/- error
95% or more of the time.

A Measurement object is immutable in order to be easily shared.

Note: This class has a natural ordering that is inconsistent with equals. See
compareTo [p.368] .
Measurement(double,double,Unit,long)

704.9.2.1 public Measurement(double value, double error, Unit unit, long time)

value The value of the Measurement.

error The error of the Measurement.

unit The Unit object in which the value is measured. If this argument is null, then
the unit will be set to Unit.un ity [p.374] .

time The time measured in milliseconds since midnight, January 1, 1970 UTC.

Create a new Measurement object.
Measurement(double,double,Unit)

704.9.2.2 public Measurement(double value, double error, Unit unit)

value The value of the Measurement.

error The error of the Measurement.

unit The Unit object in which the value is measured. If this argument is null, then
the unit will be set to Unit.un ity [p.374] .

Create a new Measurement object with a time of zero.
Measurement(double,Unit)

704.9.2.3 public Measurement(double value, Unit unit)

value The value of the Measurement.

unit The Unit in which the value is measured. If this argument is null, then the
unit will be set to Unit .unity [p.374] .

Create a new Measurement object with an error of 0.0 and a time of zero.
Measurement(double)

704.9.2.4 public Measurement(double value)

value The value of the Measurement.

Create a new Measurement object with an error of 0.0, a unit of
Unit.unity [p.374] and a time of zero.
add(Measurement)

704.9.2.5 public Measurement add(Measurement m)

m The Measurement object that will be added with this object.
OSGi Service Platform Release 4 367-432

org.osgi.util.measurement Measurement and State Specification Version 1.0
Returns a new Measurement object that is the sum of this object added to
the specified object. The error and unit of the new object are computed. The
time of the new object is set to the time of this object.

Returns A new Measurement object that is the sum of this and m.

Throws ArithmeticException – If the Unit objects of this object and the specified
object cannot be added.

See Also Unit[p.372]
add(double,Unit)

704.9.2.6 public Measurement add(double d, Unit u)

d The value that will be added with this object.

u The Unit object of the specified value.

Returns a new Measurement object that is the sum of this object added to
the specified value.

Returns A new Measurement object that is the sum of this object added to the speci-
fied value. The unit of the new object is computed. The error and time of the
new object is set to the error and time of this object.

Throws ArithmeticException – If the Unit objects of this object and the specified
value cannot be added.

See Also Unit[p.372]
add(double)

704.9.2.7 public Measurement add(double d)

d The value that will be added with this object.

Returns a new Measurement object that is the sum of this object added to
the specified value.

Returns A new Measurement object that is the sum of this object added to the speci-
fied value. The error, unit, and time of the new object is set to the error, Unit
and time of this object.
compareTo(Object)

704.9.2.8 public int compareTo(Object obj)

obj The object to be compared.

Compares this object with the specified object for order. Returns a negative
integer, zero, or a positive integer if this object is less than, equal to, or
greater than the specified object.

Note: This class has a natural ordering that is inconsistent with equals. For
this method, another Measurement object is considered equal if there is
some x such that

getValue() - getError() <= x <= getValue() + getError()

for both Measurement objects being compared.

Returns A negative integer, zero, or a positive integer if this object is less than, equal
to, or greater than the specified object.

Throws ClassCastException – If the specified object is not of type Measurement.

ArithmeticException – If the unit of the specified Measurement object is
not equal to the Unit object of this object.
div(Measurement)
368-432 OSGi Service Platform Release 4

Measurement and State Specification Version 1.0 org.osgi.util.measurement
704.9.2.9 public Measurement div(Measurement m)

m The Measurement object that will be the divisor of this object.

Returns a new Measurement object that is the quotient of this object divided
by the specified object.

Returns A new Measurement object that is the quotient of this object divided by the
specified object. The error and unit of the new object are computed. The time
of the new object is set to the time of this object.

Throws ArithmeticException – If the Unit objects of this object and the specified
object cannot be divided.

See Also Unit[p.372]
div(double,Unit)

704.9.2.10 public Measurement div(double d, Unit u)

d The value that will be the divisor of this object.

u The Unit object of the specified value.

Returns a new Measurement object that is the quotient of this object divided
by the specified value.

Returns A new Measurement that is the quotient of this object divided by the speci-
fied value. The error and unit of the new object are computed. The time of the
new object is set to the time of this object.

Throws ArithmeticException – If the Unit objects of this object and the specified
object cannot be divided.

See Also Unit[p.372]
div(double)

704.9.2.11 public Measurement div(double d)

d The value that will be the divisor of this object.

Returns a new Measurement object that is the quotient of this object divided
by the specified value.

Returns A new Measurement object that is the quotient of this object divided by the
specified value. The error of the new object is computed. The unit and time
of the new object is set to the Unit and time of this object.
equals(Object)

704.9.2.12 public boolean equals(Object obj)

obj The object to compare with this object.

Returns whether the specified object is equal to this object. Two Measure-
ment objects are equal if they have same value, error and Unit.

Note: This class has a natural ordering that is inconsistent with equals. See
compareTo [p.368] .

Returns true if this object is equal to the specified object; false otherwise.
getError()

704.9.2.13 public final double getError()

Returns the error of this Measurement object. The error is always a positive
value.

Returns The error of this Measurement as a double.
getTime()
OSGi Service Platform Release 4 369-432

org.osgi.util.measurement Measurement and State Specification Version 1.0
704.9.2.14 public final long getTime()

Returns the time at which this Measurement object was taken. The time is
measured in milliseconds since midnight, January 1, 1970 UTC, or zero
when not defined.

Returns The time at which this Measurement object was taken or zero.
getUnit()

704.9.2.15 public final Unit getUnit()

Returns the Unit object of this Measurement object.

Returns The Unit object of this Measurement object.

See Also Unit[p.372]
getValue()

704.9.2.16 public final double getValue()

Returns the value of this Measurement object.

Returns The value of this Measurement object as a double.
hashCode()

704.9.2.17 public int hashCode()

Returns a hash code value for this object.

Returns A hash code value for this object.
mul(Measurement)

704.9.2.18 public Measurement mul(Measurement m)

m The Measurement object that will be multiplied with this object.

Returns a new Measurement object that is the product of this object multi-
plied by the specified object.

Returns A new Measurement that is the product of this object multiplied by the spec-
ified object. The error and unit of the new object are computed. The time of
the new object is set to the time of this object.

Throws ArithmeticException – If the Unit objects of this object and the specified
object cannot be multiplied.

See Also Unit[p.372]
mul(double,Unit)

704.9.2.19 public Measurement mul(double d, Unit u)

d The value that will be multiplied with this object.

u The Unit of the specified value.

Returns a new Measurement object that is the product of this object multi-
plied by the specified value.

Returns A new Measurement object that is the product of this object multiplied by
the specified value. The error and unit of the new object are computed. The
time of the new object is set to the time of this object.

Throws ArithmeticException – If the units of this object and the specified value
cannot be multiplied.

See Also Unit[p.372]
mul(double)

704.9.2.20 public Measurement mul(double d)

d The value that will be multiplied with this object.
370-432 OSGi Service Platform Release 4

Measurement and State Specification Version 1.0 org.osgi.util.measurement
Returns a new Measurement object that is the product of this object multi-
plied by the specified value.

Returns A new Measurement object that is the product of this object multiplied by
the specified value. The error of the new object is computed. The unit and
time of the new object is set to the unit and time of this object.
sub(Measurement)

704.9.2.21 public Measurement sub(Measurement m)

m The Measurement object that will be subtracted from this object.

Returns a new Measurement object that is the subtraction of the specified
object from this object.

Returns A new Measurement object that is the subtraction of the specified object
from this object. The error and unit of the new object are computed. The time
of the new object is set to the time of this object.

Throws ArithmeticException – If the Unit objects of this object and the specified
object cannot be subtracted.

See Also Unit[p.372]
sub(double,Unit)

704.9.2.22 public Measurement sub(double d, Unit u)

d The value that will be subtracted from this object.

u The Unit object of the specified value.

Returns a new Measurement object that is the subtraction of the specified
value from this object.

Returns A new Measurement object that is the subtraction of the specified value from
this object. The unit of the new object is computed. The error and time of the
new object is set to the error and time of this object.

Throws ArithmeticException – If the Unit objects of this object and the specified
object cannot be subtracted.

See Also Unit[p.372]
sub(double)

704.9.2.23 public Measurement sub(double d)

d The value that will be subtracted from this object.

Returns a new Measurement object that is the subtraction of the specified
value from this object.

Returns A new Measurement object that is the subtraction of the specified value from
this object. The error, unit and time of the new object is set to the error, Unit
object and time of this object.
toString()

704.9.2.24 public String toString()

Returns a String object representing this Measurement object.

Returns a String object representing this Measurement object.
State

704.9.3 public class State
Groups a state name, value and timestamp.

The state itself is represented as an integer and the time is measured in milli-
seconds since midnight, January 1, 1970 UTC.
OSGi Service Platform Release 4 371-432

org.osgi.util.measurement Measurement and State Specification Version 1.0
A State object is immutable so that it may be easily shared.
State(int,String,long)

704.9.3.1 public State(int value, String name, long time)

value The value of the state.

name The name of the state.

time The time measured in milliseconds since midnight, January 1, 1970 UTC.

Create a new State object.
State(int,String)

704.9.3.2 public State(int value, String name)

value The value of the state.

name The name of the state.

Create a new State object with a time of 0.
equals(Object)

704.9.3.3 public boolean equals(Object obj)

obj The object to compare with this object.

Return whether the specified object is equal to this object. Two State objects
are equal if they have same value and name.

Returns true if this object is equal to the specified object; false otherwise.
getName()

704.9.3.4 public final String getName()

Returns the name of this State.

Returns The name of this State object.
getTime()

704.9.3.5 public final long getTime()

Returns the time with which this State was created.

Returns The time with which this State was created. The time is measured in millisec-
onds since midnight, January 1, 1970 UTC.
getValue()

704.9.3.6 public final int getValue()

Returns the value of this State.

Returns The value of this State object.
hashCode()

704.9.3.7 public int hashCode()

Returns a hash code value for this object.

Returns A hash code value for this object.
toString()

704.9.3.8 public String toString()

Returns a String object representing this object.

Returns a String object representing this object.
Unit

704.9.4 public class Unit
A unit system for measurements. This class contains definitions of the most
common SI units.
372-432 OSGi Service Platform Release 4

Measurement and State Specification Version 1.0 org.osgi.util.measurement
This class only support exponents for the base SI units in the range -64 to
+63. Any operation which produces an exponent outside of this range will
result in a Unit object with undefined exponents.
A

704.9.4.1 public static final Unit A

The electric current unit ampere (A)
C

704.9.4.2 public static final Unit C

The electric charge unit coulomb (C).

coulomb is expressed in SI units as s· A
cd

704.9.4.3 public static final Unit cd

The luminous intensity unit candela (cd)
F

704.9.4.4 public static final Unit F

The capacitance unit farad (F).

farad is equal to C/V or is expressed in SI units as s 4 · A 2 /m 2 · kg
Gy

704.9.4.5 public static final Unit Gy

The absorbed dose unit gray (Gy).

Gy is equal to J/kg or is expressed in SI units as m 2 /s 2
Hz

704.9.4.6 public static final Unit Hz

The frequency unit hertz (Hz).

hertz is expressed in SI units as 1/s
J

704.9.4.7 public static final Unit J

The energy unit joule (J).

joule is equal to N· m or is expressed in SI units as m 2 · kg/s 2
K

704.9.4.8 public static final Unit K

The temperature unit kelvin (K)
kat

704.9.4.9 public static final Unit kat

The catalytic activity unit katal (kat).

katal is expressed in SI units as mol/s
kg

704.9.4.10 public static final Unit kg

The mass unit kilogram (kg)
lx

704.9.4.11 public static final Unit lx

The illuminance unit lux (lx).

lux is expressed in SI units as cd/m 2
m

OSGi Service Platform Release 4 373-432

org.osgi.util.measurement Measurement and State Specification Version 1.0
704.9.4.12 public static final Unit m

The length unit meter (m)
m2

704.9.4.13 public static final Unit m2

The area unit square meter(m 2)
m3

704.9.4.14 public static final Unit m3

The volume unit cubic meter (m 3)
m_s

704.9.4.15 public static final Unit m_s

The speed unit meter per second (m/s)
m_s2

704.9.4.16 public static final Unit m_s2

The acceleration unit meter per second squared (m/s 2)
mol

704.9.4.17 public static final Unit mol

The amount of substance unit mole (mol)
N

704.9.4.18 public static final Unit N

The force unit newton (N).

N is expressed in SI units as m· kg/s 2
Ohm

704.9.4.19 public static final Unit Ohm

The electric resistance unit ohm.

ohm is equal to V/A or is expressed in SI units as m 2 · kg/s 3 · A 2
Pa

704.9.4.20 public static final Unit Pa

The pressure unit pascal (Pa).

Pa is equal to N/m 2 or is expressed in SI units as kg/m· s 2
rad

704.9.4.21 public static final Unit rad

The angle unit radians (rad)
S

704.9.4.22 public static final Unit S

The electric conductance unit siemens (S).

siemens is equal to A/V or is expressed in SI units as s 3 · A 2 /m 2 · kg
s

704.9.4.23 public static final Unit s

The time unit second (s)
T

704.9.4.24 public static final Unit T

The magnetic flux density unit tesla (T).

tesla is equal to Wb/m 2 or is expressed in SI units as kg/s 2 · A
unity
374-432 OSGi Service Platform Release 4

Measurement and State Specification Version 1.0 References
704.9.4.25 public static final Unit unity

No Unit (Unity)
V

704.9.4.26 public static final Unit V

The electric potential difference unit volt (V).

volt is equal to W/A or is expressed in SI units as m 2 · kg/s 3 · A
W

704.9.4.27 public static final Unit W

The power unit watt (W).

watt is equal to J/s or is expressed in SI units as m 2 · kg/s 3
Wb

704.9.4.28 public static final Unit Wb

The magnetic flux unit weber (Wb).

weber is equal to V· s or is expressed in SI units as m 2 · kg/s 2 · A
equals(Object)

704.9.4.29 public boolean equals(Object obj)

obj the Unit object that should be checked for equality

Checks whether this Unit object is equal to the specified Unit object. The
Unit objects are considered equal if their exponents are equal.

Returns true if the specified Unit object is equal to this Unit object.
hashCode()

704.9.4.30 public int hashCode()

Returns the hash code for this object.

Returns This object’s hash code.
toString()

704.9.4.31 public String toString()

Returns a String object representing the Unit

Returns A String object representing the Unit

704.10 References
[64] SI Units information

http://physics.nist.gov/cuu/Units

[65] General SI index
http://directory.google.com/Top/Science/Reference/Units_of_Measurement

[66] JSR 108 Units Specification
http://www.jcp.org/jsr/detail/108.jsp

[67] A Math Library containing unit handling in Kawa
http://www.gnu.org/software/kawa

[68] Mars Polar Lander failure
http://mars.jpl.nasa.gov/msp98/news/mco990930.html
OSGi Service Platform Release 4 375-432

References Measurement and State Specification Version 1.0
376-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 Introduction
999 Execution Environment
Specification
Version 1.1

999.1 Introduction
This specification defines two different execution environments for OSGi
Server Platform Servers. One is based on a minimal environment that sup-
ports OSGi Framework and basic services implementations. The other is
derived from [74] Foundation Profile. Care has been taken to make the mini-
mum requirements a proper subset of Foundation Profile.

This chapter contains a detailed listing of the Execution Environments. This
list is the actual specification and is normative. However, this list is not
suited for tools. Therefore, the OSGi web site provides the JAR files that con-
tain all the signatures of the Execution Environments on the OSGi web site,
see [70] Downloadable Execution Environments.

Please note that the OSGi Minimum Execution Requirements do not consti-
tute a specification for a Java technology profile or platform under the Java
Community Process, but rather are a list of dependencies on certain ele-
ments of the presumed underlying Java profile(s) or platform(s).

999.1.1 Essentials
• Bundle Environment – A well defined format with handling rules for

defining the classes and methods that a bundle can rely on.
• Machine Processable – It should be easy to process the specification with

tools to verify bundles and Service Platforms.
• Standards – It should be based on standards as much as possible. It must

be compatible with [71] J2ME, Java 2 Micro Edition.

999.1.2 Entities
• Execution Environment – A collection of classes.
• Class – Contains a set of qualifiers and a set of signature for each method

and field in that class.
• Signature – A unique identifier for the type associated with a field or the

return type and argument types of a function.
• Qualifiers – A set of attributes that further define a signature.
• Profile – A SUN/JCP defined set of classes, based on a configuration.
• Configuration – A SUN/JCP defined set of classes and VM specification.
OSGi Service Platform Release 4 377-432

About Execution Environments Execution Environment Specification Version 1.1
Figure 57 Entities involved in an Execution Environment

999.2 About Execution Environments

999.2.1 Signatures
An Execution Environment consists of a set of public and protected signa-
tures. A signature is defined to be a unique identifier for a field or method
with class and type information. For example, the signature of the
wait (long) method in Object would be:

java/lang/Object.wait(J)V

The encoding of the signature is defined in [69] The Java Virtual Machine
Specification.

For this specification, each signature includes a set of qualifiers that further
qualify the field or method. These are the access qualifiers (like publ ic ,
private , and protected), and informational qualifiers like synchron ized ,
volati le , st r ic tfp , inter face , native , and abstract . These informational quali-
fiers are not included in the EE listings.

An Execution Environment consists of a set of classes and interfaces with
their access qualifiers. Each class consist of a set of signatures.

999.2.2 Semantics
An Execution environment is solely based on the signatures of the methods
and fields. An OSGi Execution Environment relies on the appropriate SUN
Java documents to define the semantics of a methods or fields.

999.3 OSGi Defined Execution
Environments
This specification contains two Execution Environments. They are listed in
the following sections. Each signature is printed in the normal Java format
except that publ ic modifiers are not shown to save space (all fields or meth-
ods must be publ ic or protected to be included in this list).

Bundle based on the

Execution
Environment

Class or
Interface

Signature

Qualifier

Service
Platform

intersection

provides the
union

0..*

0..*

0..*

contains

contains

qualified by

qualified by

0..*

0..*

1

1

1

0..*

0..*

1

0..*
378-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
Before each signature there are two columns.

1. OSGi/Minimum-1.1 execution requirements

2. CDC-1.0/Foundation-1.0 execution environment.

If the column contains a , it means that the signature has been included in
that Execution Environment. A indicates that the signature is missing
from the EE.

The information is included here for completeness. However, it is likely that
tools will be developed by vendors that validate the compliance of Service
Platforms and bundles in relation to an Execution Environment. For that
reason, it is possible to download a JAR file containing all the signatures as
Java class files from the OSGi web site, see [70] Downloadable Execution Envi-
ronments.

999.3.1 java.io
package java.io
class BufferedInputStream extends FilterInputStream
BufferedInputStream(InputStream)
BufferedInputStream(InputStream, int)
int avai lable() throws IOException
protected byte[] buf
void c lose() throws IOException
protected int count
void mark(int)
protected int markl imit

protected int markpos
boolean markSupported()
protected int pos
int read() throws IOException
int read(byte[] , int , int) throws
IOException
void reset() throws IOException
long skip(long) throws IOException

class BufferedOutputStream extends FilterOutputStream
BufferedOutputStream(OutputStream)
BufferedOutputStream(OutputStream,
int)
protected byte[] buf
protected int count

void f lush() throws IOException
void write(byte[] , int , int) throws
IOException
void write(int) throws IOException

class BufferedReader extends Reader
BufferedReader(Reader)
BufferedReader(Reader , int)
void c lose() throws IOException
void mark(int) throws IOException
boolean markSupported()
int read() throws IOException

int read(char[], int , int) throws
IOException
String readLine() throws IOException
boolean ready() throws IOException
void reset() throws IOException
long skip(long) throws IOException

class BufferedWriter extends Writer
BufferedWriter (Wr iter)
BufferedWriter (Wr iter, int)
void c lose() throws IOException
void f lush() throws IOException
void newLine() throws IOException

void write(char[] , int , int) throws
IOException
void write(int) throws IOException
void write(String, int , int) throws
IOException

class ByteArrayInputStream extends InputStream
ByteArrayInputStream(byte[])
ByteArrayInputStream(byte[] , int , int)
int avai lable()
protected byte[] buf
void c lose() throws IOException
protected int count
void mark(int)

protected int mark
boolean markSupported()
protected int pos
int read()
int read(byte[] , int , int)
void reset()
long skip(long)

class ByteArrayOutputStream extends OutputStream
ByteArrayOutputStream()
ByteArrayOutputStream(int)
protected byte[] buf
void c lose() throws IOException
protected int count
void reset()
int s ize()
byte[] toByteArray()

Str ing toStr ing()
Str ing toStr ing(Str ing) throws
UnsupportedEncodingException
void write(byte[] , int , int)
void write(int)
void writeTo(OutputStream) throws
IOException

class CharArrayReader extends Reader
CharArrayReader(char[]) CharArrayReader(char[] , int , int)
OSGi Service Platform Release 4 379-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
protected char[] buf
void c lose()
protected int count
void mark(int) throws IOException
protected int markedPos
boolean markSupported()
protected int pos

int read() throws IOException
int read(char[] , int , int) throws
IOException
boolean ready() throws IOException
vo id reset() throws IOException
long skip(long) throws IOException

class CharArrayWriter extends Writer
CharArrayWriter()
CharArrayWriter(int)
protected char[] buf
void c lose()
protected int count
void f lush()
void reset()

int s ize()
char[] toCharArray()
Str ing toStr ing()
vo id wr ite(char[] , int , int)
vo id wr ite(int)
vo id wr ite(String , int , int)
vo id wr iteTo(Writer) throws IOException

class CharConversionException extends IOException
CharConversionException() CharConversionException(Str ing)
interface DataInput
abstract boo lean readBoolean() throws
IOException
abstract byte readByte() throws
IOException
abstract char readChar() throws
IOException
abstract double readDouble() throws
IOException
abstract f loat readFloat() throws
IOException
abstract void readFul ly(byte[]) throws
IOException
abstract void readFul ly(byte[] , int , int)
throws IOException
abstract int readInt() throws IOException

abstract Str ing readL ine() throws
IOException
abstract long readLong() throws
IOException
abstract short readShort() throws
IOException
abstract int readUnsignedByte() throws
IOException
abstract int readUnsignedShort() throws
IOException
abstract Str ing readUTF() throws
IOException
abstract int skipBytes(int) throws
IOException

class DataInputStream extends FilterInputStream implements DataInput
DataInputStream(InputStream)
f inal int read(byte[]) throws IOException
f inal int read(byte[] , int , int) throws
IOException
f inal boolean readBoolean() throws
IOException
f inal byte readByte() throws IOException
f inal char readChar() throws IOException
f inal double readDouble() throws
IOException
f inal f loat readFloat() throws IOException
f inal void readFully(byte[]) throws
IOException
f inal void readFul ly (byte[] , int , int) throws
IOException
f inal int readInt() throws IOException

f inal Str ing readLine() throws
IOException
f inal long readLong() throws IOException
f inal short readShort() throws
IOException
f inal int readUnsignedByte() throws
IOException
f inal int readUnsignedShort() throws
IOException
f inal Str ing readUTF() throws
IOException
f inal stat ic Str ing readUTF(DataInput)
throws IOException
f inal int skipBytes(int) throws
IOException

interface DataOutput
abstract void write(byte[]) throws
IOException
abstract void write(byte[], int , int) throws
IOException
abstract void write(int) throws
IOException
abstract void writeBoolean(boolean)
throws IOException
abstract void writeByte(int) throws
IOException
abstract void writeBytes(Str ing) throws
IOException
abstract void writeChar(int) throws
IOException

abstract void writeChars(Str ing) throws
IOException
abstract void writeDouble(double)
throws IOException
abstract void writeFloat(f loat) throws
IOException
abstract void writeInt(int) throws
IOException
abstract void writeLong(long) throws
IOException
abstract void writeShort(int) throws
IOException
abstract void writeUTF(Str ing) throws
IOException

class DataOutputStream extends FilterOutputStream implements DataOutput
DataOutputStream(OutputStream)
void f lush() throws IOException
f inal int s ize()
void wr ite(byte[] , int , int) throws
IOException

vo id wr ite(int) throws IOException
f inal void writeBoolean(boolean) throws
IOException
f inal void writeByte(int) throws
IOException
380-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
f inal void writeBytes(String) throws
IOException
f inal void writeChar(int) throws
IOException
f inal void writeChars(String) throws
IOException
f inal void writeDouble(double) throws
IOException
f inal void writeFloat(f loat) throws
IOException

f ina l void writeInt(int) throws
IOException
f ina l void writeLong(long) throws
IOException
f ina l void writeShort(int) throws
IOException
f ina l void writeUTF(String) throws
IOException
protected int written

class EOFException extends IOException
EOFException() EOFException(Str ing)
interface Externalizable extends Serializable
abstract void readExternal(Object Input)
throws IOException ,
ClassNotFoundException

abstract void
writeExternal(ObjectOutput) throws
IOException

class File implements Serializable , Comparable
Fi le(F ile ,Str ing)
F i le(Str ing)
F i le(Str ing,Str ing)
boolean canRead()
boolean canWrite()
int compareTo(Fi le)
int compareTo(Object)
boolean createNewFi le() throws
IOException
stat ic F i le createTempFi le(String,Str ing)
throws IOException
stat ic F i le createTempFi le(String,Str ing,
F i le) throws IOException
boolean de lete()
void deleteOnExit()
boolean equals(Object)
boolean exists()
F i le getAbsoluteFi le()
Str ing getAbsolutePath()
F i le getCanonicalF i le() throws
IOException
String getCanonicalPath() throws
IOException
String getName()
Str ing getParent()
F i le getParentFi le()

String getPath()
int hashCode()
boolean isAbsolute()
boolean isDirectory()
boolean isF ile ()
boolean isHidden()
long lastModif ied()
long length()
Str ing[] l ist()
Str ing[] l ist(F i lenameFi l ter)
F i le[] l istF i les()
F i le[] l istF i les(Fi leFi l ter)
F i le[] l istF i les(Fi lenameFil ter)
stat ic F i le[] l istRoots()
boolean mkdir()
boolean mkdirs()
f ina l stat ic Str ing pathSeparator
f ina l stat ic char pathSeparatorChar
boolean renameTo(Fi le)
f ina l stat ic Str ing separator
f ina l stat ic char separatorChar
boolean setLastModif ied(long)
boolean setReadOnly()
Str ing toStr ing()
java.net.URL toURL() throws
java.net.MalformedURLException

final class FileDescriptor
Fi leDescr iptor()
f inal static F i leDescr iptor err
f inal static F i leDescr iptor in

f ina l stat ic F i leDescr iptor out
void sync() throws SyncFai ledException
boolean val id()

interface FileFilter
abstract boolean accept(F i le)
class FileInputStream extends InputStream
Fi leInputStream(Fi le) throws
Fi leNotFoundException
Fi leInputStream(Fi leDescriptor)
F i leInputStream(String) throws
Fi leNotFoundException
int avai lable() throws IOException
void c lose() throws IOException
protected void f inal ize() throws
IOException

f ina l Fi leDescriptor getFD() throws
IOException
int read() throws IOException
int read(byte[]) throws IOException
int read(byte[] , int , int) throws
IOException
long skip(long) throws IOException

interface FilenameFilter
abstract boolean accept(F i le,Str ing)
class FileNotFoundException extends IOException
Fi leNotFoundException() F i leNotFoundException(String)
class FileOutputStream extends OutputStream
Fi leOutputStream(Fi le) throws
Fi leNotFoundException
Fi leOutputStream(Fi leDescr iptor)
F i leOutputStream(String) throws
Fi leNotFoundException
Fi leOutputStream(String ,boolean)
throws Fi leNotFoundException

void c lose() throws IOException
protected void f inal ize() throws
IOException
f ina l Fi leDescriptor getFD() throws
IOException
void write(byte[]) throws IOException
OSGi Service Platform Release 4 381-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
void wr ite(byte[] , int , int) throws
IOException

vo id wr ite(int) throws IOException

final class FilePermission extends java.security.Permission implements Serializable
Fi lePermiss ion(String,Str ing)
boolean equals(Object)
Str ing getActions()
int hashCode()

boolean impl ies(java.security .Permission)
java.security.PermissionCol lect ion
newPermiss ionCol lect ion()

class FileReader extends InputStreamReader
Fi leReader(F i le) throws
Fi leNotFoundException
Fi leReader(F i leDescriptor)

F i leReader(String) throws
Fi leNotFoundException

class FileWriter extends OutputStreamWriter
Fi leWriter (F i le) throws IOException
Fi leWriter (F i leDescriptor)
F i leWriter (String) throws IOException

Fi leWriter (String,boolean) throws
IOException

class FilterInputStream extends InputStream
protected
Fi l terInputStream(InputStream)
int avai lable() throws IOException
void c lose() throws IOException
protected InputStream in
void mark(int)
boolean markSupported()

int read() throws IOException
int read(byte[]) throws IOException
int read(byte[], int , int) throws
IOException
vo id reset() throws IOException
long skip(long) throws IOException

class FilterOutputStream extends OutputStream
Fi l terOutputStream(OutputStream)
void c lose() throws IOException
void f lush() throws IOException
protected OutputStream out

vo id wr ite(byte[]) throws IOException
vo id wr ite(byte[] , int , int) throws
IOException
vo id wr ite(int) throws IOException

abstract class FilterReader extends Reader
protected F il te rReader(Reader)
void c lose() throws IOException
protected Reader in
void mark(int) throws IOException
boolean markSupported()
int read() throws IOException

int read(char[] , int , int) throws
IOException
boolean ready() throws IOException
vo id reset() throws IOException
long skip(long) throws IOException

abstract class FilterWriter extends Writer
protected F il terWriter(Writer)
void c lose() throws IOException
void f lush() throws IOException
protected Writer out

vo id wr ite(char[] , int , int) throws
IOException
vo id wr ite(int) throws IOException
vo id wr ite(String , int , int) throws
IOException

abstract class InputStream
InputStream()
int avai lable() throws IOException
void c lose() throws IOException
void mark(int)
boolean markSupported()
abstract int read() throws IOException

int read(byte[]) throws IOException
int read(byte[], int , int) throws
IOException
vo id reset() throws IOException
long skip(long) throws IOException

class InputStreamReader extends Reader
InputStreamReader(InputStream)
InputStreamReader(InputStream,String)
throws UnsupportedEncodingException
void c lose() throws IOException
String getEncoding()

int read() throws IOException
int read(char[] , int , int) throws
IOException
boolean ready() throws IOException

class InterruptedIOException extends IOException
InterruptedIOException()
InterruptedIOException(String)

int bytesTransferred

class InvalidClassException extends ObjectStreamException
Inval idClassException(String)
Inval idClassException(String,Str ing)

Str ing classname
String getMessage()

class InvalidObjectException extends ObjectStreamException
Inval idObjectException(String)
class IOException extends Exception
IOException() IOException(String)
class LineNumberReader extends BufferedReader
L ineNumberReader(Reader)
L ineNumberReader(Reader, int)
int getLineNumber()
void mark(int) throws IOException
int read() throws IOException

int read(char[] , int , int) throws
IOException
String readLine() throws IOException
vo id reset() throws IOException
vo id setL ineNumber(int)
382-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
long skip(long) throws IOException
class NotActiveException extends ObjectStreamException
NotActiveException() NotActiveException(String)
class NotSerializableException extends ObjectStreamException
NotSeria l izableException() NotSer ial izableException(String)
interface ObjectInput extends DataInput
abstract int avai lable() throws
IOException
abstract void c lose() throws IOException
abstract int read() throws IOException
abstract int read(byte[]) throws
IOException

abstract int read(byte[] , int , int) throws
IOException
abstract Object readObject() throws
ClassNotFoundException, IOException
abstract long skip(long) throws
IOException

class ObjectInputStream extends InputStream implements ObjectInput , ObjectStreamConstants
protected Object InputStream() throws
IOException, SecurityException
Object InputStream(InputStream) throws
StreamCorruptedException , IOException
int avai lable() throws IOException
void c lose() throws IOException
void defaultReadObject() throws
IOException, ClassNotFoundException,
NotActiveException
protected boolean
enableReso lveObject(boolean) throws
SecurityException
int read() throws IOException
int read(byte[] , int , int) throws
IOException
boolean readBoolean() throws
IOException
byte readByte() throws IOException
char readChar() throws IOException
protected ObjectStreamClass
readClassDescriptor() throws
IOException, ClassNotFoundException
double readDouble() throws IOException
Object InputStream.GetField readFields()
throws IOException ,
ClassNotFoundException ,
NotActiveException
f loat readFloat() throws IOException
void readFul ly(byte[]) throws
IOException
void readFul ly(byte[] , int , int) throws
IOException

int readInt() throws IOException
String readLine() throws IOException
long readLong() throws IOException
f ina l Object readObject() throws
OptionalDataException ,
C lassNotFoundException, IOException
protected Object readObjectOverride()
throws OptionalDataException ,
C lassNotFoundException, IOException
short readShort() throws IOException
protected void readStreamHeader()
throws IOException ,
StreamCorruptedException
int readUnsignedByte() throws
IOException
int readUnsignedShort() throws
IOException
String readUTF() throws IOException
void
registerVal idation(Object InputValidat ion,
int) throws NotActiveException,
Inval idObjectException
protected Class
resolveClass(ObjectStreamClass) throws
IOException , ClassNotFoundException
protected Object resolveObject(Object)
throws IOException
protected Class
resolveProxyClass(Str ing[]) throws
IOException , ClassNotFoundException
int skipBytes(int) throws IOException

abstract class ObjectInputStream.GetField
ObjectInputStream.GetField()
abstract boolean defaulted(String)
throws IOException ,
I l legalArgumentException
abstract byte get(Str ing,byte) throws
IOException, I l legalArgumentException
abstract char get(Str ing,char) throws
IOException, I l legalArgumentException
abstract double get(Str ing,double)
throws IOException ,
I l legalArgumentException
abstract f loat get(String,f loat) throws
IOException, I l legalArgumentException

abstract int get(String, int) throws
IOException , I l legalArgumentException
abstract long get(Str ing, long) throws
IOException , I l legalArgumentException
abstract Object get(Str ing,Object)
throws IOException ,
I l legalArgumentException
abstract short get(Str ing,short) throws
IOException , I l legalArgumentException
abstract boolean get(Str ing,boo lean)
throws IOException ,
I l legalArgumentException
abstract ObjectStreamClass
getObjectStreamClass()

interface ObjectInputValidation
abstract void val idateObject() throws
Inval idObjectException
interface ObjectOutput extends DataOutput
abstract void c lose() throws IOException
abstract void f lush() throws IOException
abstract void write(byte[]) throws
IOException
abstract void write(byte[], int , int) throws
IOException

abstract void write(int) throws
IOException
abstract void writeObject(Object)
throws IOException

class ObjectOutputStream extends OutputStream implements ObjectOutput ,
OSGi Service Platform Release 4 383-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
ObjectStreamConstants
protected ObjectOutputStream() throws
IOException, SecurityException
ObjectOutputStream(OutputStream)
throws IOException
protected void annotateClass(C lass)
throws IOException
protected void annotateProxyClass(Class)
throws IOException
void c lose() throws IOException
void defaultWriteObject() throws
IOException
protected void drain() throws
IOException
protected boo lean
enableReplaceObject(boolean) throws
SecurityException
void f lush() throws IOException
ObjectOutputStream.PutField putFie lds()
throws IOException
protected Object replaceObject(Object)
throws IOException
void reset() throws IOException
void useProtoco lVersion(int) throws
IOException
void wr ite(byte[]) throws IOException
void wr ite(byte[] , int , int) throws
IOException
void wr ite(int) throws IOException

vo id wr iteBoolean(boolean) throws
IOException
vo id wr iteByte(int) throws IOException
vo id wr iteBytes(String) throws
IOException
vo id wr iteChar(int) throws IOException
vo id wr iteChars(String) throws
IOException
protected void
writeClassDescriptor(ObjectStreamClass)
throws IOException
vo id wr iteDouble(double) throws
IOException
vo id wr iteFie lds() throws IOException
vo id wr iteFloat(f loat) throws IOException
vo id wr iteInt(int) throws IOException
vo id wr iteLong(long) throws IOException
f inal void writeObject(Object) throws
IOException
protected void
writeObjectOverr ide(Object) throws
IOException
vo id wr iteShort(int) throws IOException
protected void writeStreamHeader()
throws IOException
vo id wr iteUTF(String) throws
IOException

abstract class ObjectOutputStream.PutField
ObjectOutputStream.PutField()
abstract void put(Str ing,byte)
abstract void put(Str ing,char)
abstract void put(Str ing,double)
abstract void put(Str ing,f loat)
abstract void put(Str ing, int)

abstract void put(Str ing, long)
abstract void put(Str ing,Object)
abstract void put(Str ing, short)
abstract void put(Str ing,boolean)
abstract void write(ObjectOutput)
throws IOException

class ObjectStreamClass implements Serializable
Class forClass()
ObjectStreamField getField(Str ing)
ObjectStreamField[] getFields()
Str ing getName()
long getSeria lVersionUID()

stat ic ObjectStreamClass lookup(Class)
f inal stat ic ObjectStreamField[]
NO_FIELDS
String toStr ing()

interface ObjectStreamConstants
f inal stat ic int baseWireHandle
f inal stat ic int PROTOCOL_VERSION_1
f inal stat ic int PROTOCOL_VERSION_2
final stat ic byte SC_BLOCK_DATA
final stat ic byte SC_EXTERNALIZABLE
f inal stat ic byte SC_SERIALIZABLE
f inal stat ic byte SC_WRITE_METHOD
final stat ic short STREAM_MAGIC
final stat ic short STREAM_VERSION
final stat ic Seria l izablePermission
SUBCLASS_ IMPLEMENTATION_PERMISSIO
N
final stat ic Seria l izablePermission
SUBSTITUTION_PERMISSION
final stat ic byte TC_ARRAY

final stat ic byte TC_BASE
f inal stat ic byte TC_BLOCKDATA
final stat ic byte TC_BLOCKDATALONG
final stat ic byte TC_CLASS
final stat ic byte TC_CLASSDESC
final stat ic byte TC_ENDBLOCKDATA
final stat ic byte TC_EXCEPTION
final stat ic byte TC_LONGSTRING
final stat ic byte TC_MAX
final stat ic byte TC_NULL
f inal stat ic byte TC_OBJECT
f inal stat ic byte TC_PROXYCLASSDESC
final stat ic byte TC_REFERENCE
final stat ic byte TC_RESET
f inal stat ic byte TC_STRING

abstract class ObjectStreamException extends IOException
protected ObjectStreamException() protected ObjectStreamException(Str ing)
class ObjectStreamField implements Comparable
ObjectStreamField(Str ing,Class)
int compareTo(Object)
Str ing getName()
int getOffset()
Class getType()

char getTypeCode()
Str ing getTypeString()
boolean isPr imit ive()
protected void setOffset(int)
Str ing toStr ing()

class OptionalDataException extends ObjectStreamException
boolean eof int length
abstract class OutputStream
OutputStream()
void c lose() throws IOException

vo id f lush() throws IOException
vo id wr ite(byte[]) throws IOException
384-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
void wr ite(byte[] , int , int) throws
IOException

abstract void write(int) throws
IOException

class OutputStreamWriter extends Writer
OutputStreamWriter (OutputStream)
OutputStreamWriter (OutputStream,
String) throws
UnsupportedEncodingException
void c lose() throws IOException
void f lush() throws IOException

String getEncoding()
void write(char[] , int , int) throws
IOException
void write(int) throws IOException
void write(String, int , int) throws
IOException

class PipedInputStream extends InputStream
PipedInputStream()
P ipedInputStream(PipedOutputStream)
throws IOException
int avai lable() throws IOException
protected byte[] buffer
void c lose() throws IOException
void connect(PipedOutputStream)
throws IOException

protected int in
protected int out
f ina l protected stat ic int PIPE_SIZE
int read() throws IOException
int read(byte[] , int , int) throws
IOException
protected void receive(int) throws
IOException

class PipedOutputStream extends OutputStream
PipedOutputStream()
P ipedOutputStream(PipedInputStream)
throws IOException
void c lose() throws IOException
void connect(P ipedInputStream) throws
IOException

void f lush() throws IOException
void write(byte[] , int , int) throws
IOException
void write(int) throws IOException

class PipedReader extends Reader
PipedReader()
P ipedReader(PipedWriter) throws
IOException
void c lose() throws IOException
void connect(P ipedWriter) throws
IOException

int read() throws IOException
int read(char[], int , int) throws
IOException
boolean ready() throws IOException

class PipedWriter extends Writer
PipedWriter ()
P ipedWriter (P ipedReader) throws
IOException
void c lose() throws IOException
void connect(P ipedReader) throws
IOException

void f lush() throws IOException
void write(char[] , int , int) throws
IOException
void write(int) throws IOException

class PrintStream extends FilterOutputStream
PrintStream(OutputStream)
PrintStream(OutputStream,boolean)
boolean checkError()
void c lose()
void f lush()
void print(char[])
void print(char)
void print(double)
void print(f loat)
void print(int)
void print(long)
void print(Object)
void print(Str ing)
void print(boo lean)

void print ln()
void print ln(char[])
void print ln(char)
void print ln(double)
void print ln(f loat)
void print ln(int)
void print ln(long)
void print ln(Object)
void print ln(String)
void print ln(boolean)
protected void setError()
void write(byte[] , int , int)
void write(int)

class PrintWriter extends Writer
PrintWriter(OutputStream)
PrintWriter(OutputStream,boolean)
PrintWriter(Writer)
Pr intWriter(Writer,boolean)
boolean checkError()
void c lose()
void f lush()
protected Writer out
void print(char[])
void print(char)
void print(double)
void print(f loat)
void print(int)
void print(long)
void print(Object)
void print(Str ing)

void print(boolean)
void print ln()
void print ln(char[])
void print ln(char)
void print ln(double)
void print ln(f loat)
void print ln(int)
void print ln(long)
void print ln(Object)
void print ln(String)
void print ln(boolean)
protected void setError()
void write(char[])
void write(char[] , int , int)
void write(int)
void write(String)
OSGi Service Platform Release 4 385-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
void wr ite(Str ing , int , int)
class PushbackInputStream extends FilterInputStream
PushbackInputStream(InputStream)
PushbackInputStream(InputStream,int)
int avai lable() throws IOException
protected byte[] buf
void c lose() throws IOException
boolean markSupported()
protected int pos
int read() throws IOException

int read(byte[], int , int) throws
IOException
long skip(long) throws IOException
vo id unread(byte[]) throws IOException
vo id unread(byte[], int , int) throws
IOException
vo id unread(int) throws IOException

class PushbackReader extends FilterReader
PushbackReader(Reader)
PushbackReader(Reader, int)
void c lose() throws IOException
void mark(int) throws IOException
boolean markSupported()
int read() throws IOException
int read(char[] , int , int) throws
IOException

boolean ready() throws IOException
vo id reset() throws IOException
vo id unread(char[]) throws IOException
vo id unread(char[] , int , int) throws
IOException
vo id unread(int) throws IOException

class RandomAccessFile implements DataInput , DataOutput
RandomAccessFile (F i le,Str ing) throws
Fi leNotFoundException
RandomAccessFile (Str ing,Str ing) throws
Fi leNotFoundException
void c lose() throws IOException
f inal F i leDescr iptor getFD() throws
IOException
long getFi lePointer () throws IOException
long length() throws IOException
int read() throws IOException
int read(byte[]) throws IOException
int read(byte[] , int , int) throws
IOException
f inal boolean readBoolean() throws
IOException
f inal byte readByte() throws IOException
f inal char readChar() throws IOException
f inal double readDouble() throws
IOException
f inal f loat readFloat() throws IOException
f inal void readFully(byte[]) throws
IOException
f inal void readFul ly (byte[] , int , int) throws
IOException
f inal int readInt() throws IOException
f inal Str ing readLine() throws
IOException
f inal long readLong() throws IOException
f inal short readShort() throws
IOException
f inal int readUnsignedByte() throws
IOException

f inal int readUnsignedShort() throws
IOException
f inal Str ing readUTF() throws
IOException
vo id seek(long) throws IOException
vo id setLength(long) throws IOException
int skipBytes(int) throws IOException
vo id wr ite(byte[]) throws IOException
vo id wr ite(byte[] , int , int) throws
IOException
vo id wr ite(int) throws IOException
f inal void writeBoolean(boolean) throws
IOException
f inal void writeByte(int) throws
IOException
f inal void writeBytes(String) throws
IOException
f inal void writeChar(int) throws
IOException
f inal void writeChars(String) throws
IOException
f inal void writeDouble(double) throws
IOException
f inal void writeFloat(f loat) throws
IOException
f inal void writeInt(int) throws
IOException
f inal void writeLong(long) throws
IOException
f inal void writeShort(int) throws
IOException
f inal void writeUTF(String) throws
IOException

abstract class Reader
protected Reader()
protected Reader(Object)
abstract void close() throws IOException
protected Object lock
void mark(int) throws IOException
boolean markSupported()
int read() throws IOException

int read(char[]) throws IOException
abstract int read(char[] , int , int) throws
IOException
boolean ready() throws IOException
vo id reset() throws IOException
long skip(long) throws IOException

class SequenceInputStream extends InputStream
SequenceInputStream(InputStream,
InputStream)

SequenceInputStream(java.ut i l .Enumerat i
on)

int avai lable() throws IOException
vo id c lose() throws IOException
int read() throws IOException
int read(byte[], int , int) throws
IOException

interface Serializable
final class SerializablePermission extends java.security.BasicPermission
Seria l izablePermission(String) Seria l izablePermiss ion(String,Str ing)
class StreamCorruptedException extends ObjectStreamException
386-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
StreamCorruptedException() StreamCorruptedException(String)
class StreamTokenizer
StreamTokenizer(Reader)
void commentChar(int)
void eolIsS ignif icant(boolean)
int l ineno()
void lowerCaseMode(boolean)
int nextToken() throws IOException
double nval
void ordinaryChar(int)
void ordinaryChars(int , int)
void parseNumbers()
void pushBack()
void quoteChar(int)

void resetSyntax()
void s lashSlashComments(boolean)
void s lashStarComments(boolean)
Str ing sval
Str ing toStr ing()
f ina l stat ic int TT_EOF
f ina l stat ic int TT_EOL
f ina l stat ic int TT_NUMBER
f ina l stat ic int TT_WORD
int ttype
void whitespaceChars(int , int)
void wordChars(int , int)

class StringReader extends Reader
StringReader(String)
void c lose()
void mark(int) throws IOException
boolean markSupported()
int read() throws IOException

int read(char[], int , int) throws
IOException
boolean ready() throws IOException
void reset() throws IOException
long skip(long) throws IOException

class StringWriter extends Writer
StringWr iter()
StringWr iter(int)
void c lose() throws IOException
void f lush()
Str ingBuffer getBuffer()

Str ing toStr ing()
void write(char[] , int , int)
void write(int)
void write(String)
void write(String, int , int)

class SyncFailedException extends IOException
SyncFai ledException(String)
class UnsupportedEncodingException extends IOException
UnsupportedEncodingException() UnsupportedEncodingException(Str ing)
class UTFDataFormatException extends IOException
UTFDataFormatException() UTFDataFormatException(String)
class WriteAbortedException extends ObjectStreamException
WriteAbortedException(String,Exception)
Exception detai l

Str ing getMessage()

abstract class Writer
protected Writer ()
protected Writer (Object)
abstract void c lose() throws IOException
abstract void f lush() throws IOException
protected Object lock
void wr ite(char[]) throws IOException

abstract void write(char[] , int , int) throws
IOException
void write(int) throws IOException
void write(String) throws IOException
void write(String, int , int) throws
IOException

999.3.2 java.lang
package java.lang
class AbstractMethodError extends IncompatibleClassChangeError
AbstractMethodError () AbstractMethodError (String)
class ArithmeticException extends RuntimeException
ArithmeticException() Ar ithmeticException(String)
class ArrayIndexOutOfBoundsException extends IndexOutOfBoundsException
ArrayIndexOutOfBoundsException()
ArrayIndexOutOfBoundsException(int)

Ar rayIndexOutOfBoundsException(Str ing)

class ArrayStoreException extends RuntimeException
ArrayStoreException() Ar rayStoreException(String)
final class Boolean implements java.io.Serializable
Boolean(Str ing)
Boolean(boolean)
boolean boo leanValue()
boolean equals(Object)
f inal static Boolean FALSE
stat ic boolean getBoolean(Str ing)

int hashCode()
Str ing toStr ing()
f ina l stat ic Boolean TRUE
fina l stat ic C lass TYPE
stat ic Boolean valueOf(Str ing)

final class Byte extends Number implements Comparable
Byte(byte)
Byte(String) throws
NumberFormatException
byte byteValue()
int compareTo(Byte)
int compareTo(Object)

stat ic Byte decode(String) throws
NumberFormatException
double doubleValue()
boolean equals(Object)
f loat f loatValue()
int hashCode()
int intValue()
OSGi Service Platform Release 4 387-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
long longValue()
f inal stat ic byte MAX_VALUE
final stat ic byte MIN_VALUE
stat ic byte parseByte(Str ing) throws
NumberFormatException
stat ic byte parseByte(Str ing, int) throws
NumberFormatException
short shortValue()

Str ing toStr ing()
stat ic Str ing toString(byte)
f inal stat ic Class TYPE
stat ic Byte valueOf(Str ing) throws
NumberFormatException
stat ic Byte valueOf(String, int) throws
NumberFormatException

final class Character implements java.io.Serializable , Comparable
Character(char)
char charValue()
f inal stat ic byte
COMBINING_SPACING_MARK
int compareTo(Character)
int compareTo(Object)
f inal stat ic byte
CONNECTOR_PUNCTUATION
final stat ic byte CONTROL
final stat ic byte CURRENCY_SYMBOL
final stat ic byte DASH_PUNCTUATION
final stat ic byte DECIMAL_DIGIT_NUMBER
stat ic int d igit(char , int)
f inal stat ic byte ENCLOSING_MARK
final stat ic byte END_PUNCTUATION
boolean equals(Object)
stat ic char forDigit(int , int)
f inal stat ic byte FORMAT
stat ic int getNumericValue(char)
stat ic int getType(char)
int hashCode()
stat ic boolean isDef ined(char)
stat ic boolean isDig it(char)
stat ic boolean is Identi fie r Ignorable(char)
stat ic boolean is ISOContro l(char)
stat ic boolean is JavaIdentif ierPar t(char)
stat ic boolean is JavaIdentif ierStart(char)
stat ic boolean isLetter(char)
stat ic boolean isLetterOrDigit(char)
stat ic boolean isLowerCase(char)
stat ic boolean isSpaceChar(char)
stat ic boolean isTit leCase(char)
stat ic boolean
isUnicodeIdenti f ierPart(char)

stat ic boolean
isUnicodeIdenti f ierStart(char)
stat ic boolean isUpperCase(char)
stat ic boolean isWhitespace(char)
f inal stat ic byte LETTER_NUMBER
f inal stat ic byte L INE_SEPARATOR
final stat ic byte LOWERCASE_LETTER
f inal stat ic byte MATH_SYMBOL
final stat ic int MAX_RADIX
f inal stat ic char MAX_VALUE
final stat ic int MIN_RADIX
f inal stat ic char MIN_VALUE
final stat ic byte MODIFIER_LETTER
f inal stat ic byte MODIFIER_SYMBOL
final stat ic byte NON_SPACING_MARK
final stat ic byte OTHER_LETTER
f inal stat ic byte OTHER_NUMBER
f inal stat ic byte OTHER_PUNCTUATION
final stat ic byte OTHER_SYMBOL
final stat ic byte PARAGRAPH_SEPARATOR
final stat ic byte PRIVATE_USE
f inal stat ic byte SPACE_SEPARATOR
final stat ic byte START_PUNCTUATION
final stat ic byte SURROGATE
f inal stat ic byte T ITLECASE_LETTER
static char toLowerCase(char)
Str ing toStr ing()
stat ic char toTit leCase(char)
stat ic char toUpperCase(char)
f inal stat ic Class TYPE
f inal stat ic byte UNASSIGNED
final stat ic byte UPPERCASE_LETTER

class Character.Subset
protected Character.Subset(String)
f inal boolean equals(Object)

f inal int hashCode()
f inal Str ing toString()

final class Character.UnicodeBlock extends Character.Subset
f inal stat ic Character.UnicodeBlock
ALPHABETIC_PRESENTATION_FORMS
final stat ic Character.UnicodeBlock
ARABIC
f inal stat ic Character.UnicodeBlock
ARABIC_PRESENTATION_FORMS_A
final stat ic Character.UnicodeBlock
ARABIC_PRESENTATION_FORMS_B
f inal stat ic Character.UnicodeBlock
ARMENIAN
final stat ic Character.UnicodeBlock
ARROWS
final stat ic Character.UnicodeBlock
BASIC_LATIN
f inal stat ic Character.UnicodeBlock
BENGALI
f inal stat ic Character.UnicodeBlock
BLOCK_ELEMENTS
final stat ic Character.UnicodeBlock
BOPOMOFO
final stat ic Character.UnicodeBlock
BOX_DRAWING
final stat ic Character.UnicodeBlock
CJK_COMPATIB ILITY

f inal stat ic Character.UnicodeBlock
CJK_COMPATIB ILITY_FORMS
final stat ic Character.UnicodeBlock
CJK_COMPATIB ILITY_IDEOGRAPHS
final stat ic Character.UnicodeBlock
CJK_SYMBOLS_AND_PUNCTUATION
final stat ic Character.UnicodeBlock
CJK_UNIFIED_IDEOGRAPHS
final stat ic Character.UnicodeBlock
COMBINING_DIACRITICAL_MARKS
final stat ic Character.UnicodeBlock
COMBINING_HALF_MARKS
final stat ic Character.UnicodeBlock
COMBINING_MARKS_FOR_SYMBOLS
final stat ic Character.UnicodeBlock
CONTROL_PICTURES
f inal stat ic Character.UnicodeBlock
CURRENCY_SYMBOLS
final stat ic Character.UnicodeBlock
CYRILLIC
f inal stat ic Character.UnicodeBlock
DEVANAGARI
f inal stat ic Character.UnicodeBlock
DINGBATS
388-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
f inal static Character.UnicodeBlock
ENCLOSED_ALPHANUMERICS
f inal static Character.UnicodeBlock
ENCLOSED_CJK_LETTERS_AND_MONTHS
final static Character.UnicodeBlock
GENERAL_PUNCTUATION
final static Character.UnicodeBlock
GEOMETRIC_SHAPES
f inal static Character.UnicodeBlock
GEORGIAN
final static Character.UnicodeBlock
GREEK
f inal static Character.UnicodeBlock
GREEK_EXTENDED
final static Character.UnicodeBlock
GUJARATI
f inal static Character.UnicodeBlock
GURMUKHI
f inal static Character.UnicodeBlock
HALFWIDTH_AND_FULLWIDTH_FORMS
final static Character.UnicodeBlock
HANGUL_COMPATIBIL ITY_JAMO
final static Character.UnicodeBlock
HANGUL_JAMO
final static Character.UnicodeBlock
HANGUL_SYLLABLES
f inal static Character.UnicodeBlock
HEBREW
final static Character.UnicodeBlock
HIRAGANA
final static Character.UnicodeBlock
IPA_EXTENSIONS
final static Character.UnicodeBlock
KANBUN
final static Character.UnicodeBlock
KANNADA
final static Character.UnicodeBlock
KATAKANA
final static Character.UnicodeBlock LAO
final static Character.UnicodeBlock
LATIN_1_SUPPLEMENT

fina l stat ic Character.UnicodeBlock
LATIN_EXTENDED_A
fina l stat ic Character.UnicodeBlock
LATIN_EXTENDED_ADDITIONAL
fina l stat ic Character.UnicodeBlock
LATIN_EXTENDED_B
fina l stat ic Character.UnicodeBlock
LETTERL IKE_SYMBOLS
fina l stat ic Character.UnicodeBlock
MALAYALAM
fina l stat ic Character.UnicodeBlock
MATHEMATICAL_OPERATORS
fina l stat ic Character.UnicodeBlock
MISCELLANEOUS_SYMBOLS
fina l stat ic Character.UnicodeBlock
MISCELLANEOUS_TECHNICAL
fina l stat ic Character.UnicodeBlock
NUMBER_FORMS
static Character.UnicodeBlock of(char)
f ina l stat ic Character.UnicodeBlock
OPTICAL_CHARACTER_RECOGNITION
fina l stat ic Character.UnicodeBlock
ORIYA
fina l stat ic Character.UnicodeBlock
PRIVATE_USE_AREA
fina l stat ic Character.UnicodeBlock
SMALL_FORM_VARIANTS
fina l stat ic Character.UnicodeBlock
SPACING_MODIFIER_LETTERS
fina l stat ic Character.UnicodeBlock
SPECIALS
fina l stat ic Character.UnicodeBlock
SUPERSCRIPTS_AND_SUBSCRIPTS
fina l stat ic Character.UnicodeBlock
SURROGATES_AREA
fina l stat ic Character.UnicodeBlock
TAMIL
f ina l stat ic Character.UnicodeBlock
TELUGU
fina l stat ic Character.UnicodeBlock THAI
f ina l stat ic Character.UnicodeBlock
T IBETAN

final class Class implements java.io.Serializable
stat ic Class forName(String) throws
ClassNotFoundException
stat ic Class forName(String,boolean,
ClassLoader) throws
ClassNotFoundException
Class[] getClasses()
ClassLoader getC lassLoader()
Class getComponentType()
Constructor getConstructor(Class[])
throws NoSuchMethodException,
SecurityException
Constructor[] getConstructors() throws
SecurityException
Class[] getDeclaredClasses() throws
SecurityException
Constructor
getDeclaredConstructor(Class[]) throws
NoSuchMethodException,
SecurityException
Constructor[] getDeclaredConstructors()
throws Secur ityException
Field getDeclaredField(String) throws
NoSuchFieldException, SecurityException
Field[] getDeclaredFields() throws
SecurityException
Method getDeclaredMethod(Str ing,
Class[]) throws NoSuchMethodException,
SecurityException

Method[] getDeclaredMethods() throws
Secur ityException
Class getDeclaringClass()
F ield getField(String) throws
NoSuchFieldException, Secur ityException
Field[] getFields() throws
Secur ityException
Class[] getInterfaces()
Method getMethod(Str ing,Class[])
throws NoSuchMethodException,
Secur ityException
Method[] getMethods() throws
Secur ityException
int getModif iers()
Str ing getName()
Package getPackage()
java.security.Protect ionDomain
getProtect ionDomain()
java.net.URL getResource(Str ing)
java. io. InputStream
getResourceAsStream(String)
Object[] getSigners()
C lass getSuperc lass()
boolean isArray()
boolean isAssignableFrom(Class)
boolean is Instance(Object)
boolean is Inter face()
boolean isPrimit ive()
OSGi Service Platform Release 4 389-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
Object newInstance() throws
I l legalAccessException,
Instantiat ionException

String toStr ing()

class ClassCastException extends RuntimeException
ClassCastException() ClassCastException(String)
class ClassCircularityError extends LinkageError
ClassCircular ityEr ror() ClassCircu lar i tyEr ror(Str ing)
class ClassFormatError extends LinkageError
ClassFormatError() ClassFormatError (Str ing)
abstract class ClassLoader
protected ClassLoader()
protected ClassLoader(ClassLoader)
f inal protected Class def ineClass(String,
byte[] , int, int) throws ClassFormatEr ror
f inal protected Class def ineClass(String,
byte[] , int, int ,
java.security.Protect ionDomain) throws
ClassFormatError
protected Package def inePackage(String,
Str ing,Str ing ,Str ing,Str ing,Str ing,Str ing ,
java.net.URL) throws
I l legalArgumentException
protected Class f indClass(String) throws
ClassNotFoundException
protected Str ing f indLibrary(String)
f inal protected Class
f indLoadedClass(String)
protected java.net.URL
f indResource(Str ing)
protected java.ut i l .Enumerat ion
f indResources(Str ing) throws
java. io. IOException
f inal protected Class
f indSystemClass(String) throws
ClassNotFoundException

protected Package getPackage(String)
protected Package[] getPackages()
f inal ClassLoader getParent()
java.net.URL getResource(Str ing)
java. io. InputStream
getResourceAsStream(String)
f inal java.ut i l .Enumerat ion
getResources(String) throws
java. io. IOException
stat ic ClassLoader
getSystemClassLoader()
stat ic java.net.URL
getSystemResource(String)
stat ic java. io. InputStream
getSystemResourceAsStream(Str ing)
stat ic java.ut il .Enumerat ion
getSystemResources(String) throws
java. io. IOException
Class loadClass(String) throws
ClassNotFoundException
protected Class loadClass(String,
boolean) throws ClassNotFoundException
f inal protected void resolveClass(Class)
f inal protected void setSigners(C lass,
Object[])

class ClassNotFoundException extends Exception
ClassNotFoundException()
ClassNotFoundException(Str ing)
ClassNotFoundException(Str ing,
Throwable)

Throwable getException()
vo id printStackTrace()
vo id printStackTrace(java. io.PrintStream)
vo id printStackTrace(java. io.PrintWriter)

interface Cloneable
class CloneNotSupportedException extends Exception
CloneNotSupportedException() CloneNotSupportedException(Str ing)
interface Comparable
abstract int compareTo(Object)
final class Compiler
stat ic Object command(Object)
stat ic boolean compileClass(Class)
stat ic boolean compileClasses(String)

stat ic void disable()
stat ic void enable()

final class Double extends Number implements Comparable
Double(double)
Double(String) throws
NumberFormatException
byte byteValue()
int compareTo(Double)
int compareTo(Object)
stat ic long doubleToLongBits(double)
stat ic long doubleToRawLongBits(double)
double doubleVa lue()
boolean equals(Object)
f loat f loatValue()
int hashCode()
int intValue()
boolean is In f inite()
stat ic boolean is In fin ite(double)
boolean isNaN()

stat ic boolean isNaN(double)
stat ic double longBitsToDouble(long)
long longValue()
f inal stat ic double MAX_VALUE
final stat ic double MIN_VALUE
final stat ic double NaN
final stat ic double NEGATIVE_INFINITY
stat ic double parseDouble(Str ing)
throws NumberFormatException
f inal stat ic double POSITIVE_INFINITY
short shortValue()
Str ing toStr ing()
stat ic Str ing toString(double)
f inal stat ic Class TYPE
stat ic Double valueOf(Str ing) throws
NumberFormatException

class Error extends Throwable
Error () Error(String)
class Exception extends Throwable
Exception() Exception(String)
390-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
class ExceptionInInitializerError extends LinkageError
Exception InInit ia l izerEr ror()
Exception InInit ia l izerEr ror(Str ing)
Exception InInit ial izerEr ror(Throwable)
Throwable getException()

void printStackTrace()
void printStackTrace(java. io.PrintStream)
void printStackTrace(java. io.Pr intWriter)

final class Float extends Number implements Comparable
Float(double)
F loat(f loat)
F loat(Str ing) throws
NumberFormatException
byte byteValue()
int compareTo(Float)
int compareTo(Object)
double doubleValue()
boolean equals(Object)
stat ic int floatToIntBits(f loat)
stat ic int floatToRawIntBits(f loat)
f loat f loatValue()
int hashCode()
stat ic f loat intB itsToFloat(int)
int intValue()
boolean is Inf inite()
stat ic boolean is In f in ite(float)

boolean isNaN()
stat ic boolean isNaN(f loat)
long longValue()
f ina l stat ic f loat MAX_VALUE
f ina l stat ic f loat MIN_VALUE
f ina l stat ic f loat NaN
fina l stat ic f loat NEGATIVE_INFINITY
stat ic f loat parseFloat(String) throws
NumberFormatException
f ina l stat ic f loat POSITIVE_ INFINITY
short shortValue()
Str ing toStr ing()
stat ic Str ing toString(f loat)
f ina l stat ic C lass TYPE
stat ic F loat valueOf(Str ing) throws
NumberFormatException

class IllegalAccessError extends IncompatibleClassChangeError
I l legalAccessEr ror() I l legalAccessEr ror(String)
class IllegalAccessException extends Exception
I l legalAccessException() I l legalAccessException(Str ing)
class IllegalArgumentException extends RuntimeException
I l legalArgumentException() I l legalArgumentException(String)
class IllegalMonitorStateException extends RuntimeException
I l legalMonitorStateException() I l legalMonitorStateException(String)
class IllegalStateException extends RuntimeException
I l legalStateException() I l legalStateException(String)
class IllegalThreadStateException extends IllegalArgumentException
I l legalThreadStateException() I l legalThreadStateException(Str ing)
class IncompatibleClassChangeError extends LinkageError
Incompatib leClassChangeError() Incompatib leClassChangeError(String)
class IndexOutOfBoundsException extends RuntimeException
IndexOutOfBoundsException() IndexOutOfBoundsException(String)
class InheritableThreadLocal extends ThreadLocal
Inher itableThreadLocal()
protected Object chi ldValue(Object)

Object get()
void set(Object)

class InstantiationError extends IncompatibleClassChangeError
Instantiat ionError () Instantiat ionError(String)
class InstantiationException extends Exception
Instantiat ionException() Instantiat ionException(String)
final class Integer extends Number implements Comparable
Integer(int)
Integer(Str ing) throws
NumberFormatException
byte byteValue()
int compareTo(Integer)
int compareTo(Object)
stat ic Integer decode(String) throws
NumberFormatException
double doubleValue()
boolean equals(Object)
f loat f loatValue()
stat ic Integer getInteger(Str ing)
stat ic Integer getInteger(Str ing, int)
stat ic Integer getInteger(Str ing, Integer)
int hashCode()
int intValue()
long longValue()
f inal static int MAX_VALUE

f ina l stat ic int MIN_VALUE
stat ic int parse Int(String) throws
NumberFormatException
stat ic int parse Int(String, int) throws
NumberFormatException
short shortValue()
stat ic String toBinaryStr ing(int)
stat ic Str ing toHexStr ing(int)
stat ic Str ing toOctalStr ing(int)
Str ing toStr ing()
stat ic Str ing toString(int)
stat ic Str ing toString(int , int)
f ina l stat ic C lass TYPE
stat ic Integer valueOf(Str ing) throws
NumberFormatException
stat ic Integer valueOf(Str ing, int) throws
NumberFormatException

class InternalError extends VirtualMachineError
InternalError() InternalError(Str ing)
class InterruptedException extends Exception
InterruptedException() InterruptedException(String)
class LinkageError extends Error
OSGi Service Platform Release 4 391-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
L inkageError() L inkageError (Str ing)
final class Long extends Number implements Comparable
Long(long)
Long(Str ing) throws
NumberFormatException
byte byteValue()
int compareTo(Long)
int compareTo(Object)
stat ic Long decode(String) throws
NumberFormatException
double doubleVa lue()
boolean equals(Object)
f loat f loatValue()
stat ic Long getLong(String)
stat ic Long getLong(Str ing, long)
stat ic Long getLong(Str ing,Long)
int hashCode()
int intValue()
long longValue()
f inal stat ic long MAX_VALUE

final stat ic long MIN_VALUE
stat ic long parseLong(String) throws
NumberFormatException
stat ic long parseLong(String , int) throws
NumberFormatException
short shortValue()
stat ic String toBinaryStr ing(long)
stat ic Str ing toHexString(long)
stat ic Str ing toOctalStr ing(long)
Str ing toStr ing()
stat ic Str ing toString(long)
stat ic Str ing toString(long, int)
f inal stat ic Class TYPE
stat ic Long va lueOf(Str ing) throws
NumberFormatException
stat ic Long va lueOf(String, int) throws
NumberFormatException

final class Math
stat ic double abs(double)
stat ic f loat abs(f loat)
stat ic int abs(int)
stat ic long abs(long)
stat ic double acos(double)
stat ic double as in(double)
stat ic double atan(double)
stat ic double atan2(double ,double)
stat ic double ce i l(double)
stat ic double cos(double)
f inal stat ic double E
stat ic double exp(double)
stat ic double f loor(double)
stat ic double IEEEremainder(double,
double)
stat ic double log(double)
stat ic double max(double ,double)
stat ic f loat max(f loat , f loat)

stat ic int max(int , int)
stat ic long max(long , long)
stat ic double min(double,double)
stat ic f loat min(float, f loat)
stat ic int min(int , int)
stat ic long min(long, long)
f inal stat ic double P I
stat ic double pow(double,double)
stat ic double random()
stat ic double r int(double)
stat ic long round(double)
stat ic int round(f loat)
stat ic double s in(double)
stat ic double sqrt(double)
stat ic double tan(double)
stat ic double toDegrees(double)
stat ic double toRadians(double)

class NegativeArraySizeException extends RuntimeException
NegativeArraySizeException() NegativeArraySizeException(String)
class NoClassDefFoundError extends LinkageError
NoClassDefFoundError() NoClassDefFoundError(String)
class NoSuchFieldError extends IncompatibleClassChangeError
NoSuchFieldError() NoSuchFieldError(Str ing)
class NoSuchFieldException extends Exception
NoSuchFieldException() NoSuchFieldException(String)
class NoSuchMethodError extends IncompatibleClassChangeError
NoSuchMethodError() NoSuchMethodError(Str ing)
class NoSuchMethodException extends Exception
NoSuchMethodException() NoSuchMethodException(Str ing)
class NullPointerException extends RuntimeException
NullPointerException() NullPointerException(Str ing)
abstract class Number implements java.io.Serializable
Number()
byte byteValue()
abstract double doubleValue()
abstract f loat f loatValue()

abstract int intVa lue()
abstract long longValue()
short shortValue()

class NumberFormatException extends IllegalArgumentException
NumberFormatException() NumberFormatException(String)
class Object
Object()
protected Object c lone() throws
CloneNotSupportedException
boolean equals(Object)
protected void f inal ize() throws
Throwable
f inal C lass getClass()
int hashCode()
f inal void not i fy ()

f inal void not i fyAll ()
Str ing toStr ing()
f inal void wait() throws
InterruptedException
f inal void wait(long) throws
InterruptedException
f inal void wait(long, int) throws
InterruptedException
392-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
class OutOfMemoryError extends VirtualMachineError
OutOfMemoryError() OutOfMemoryError (Str ing)
class Package
String get Implementat ionTit le()
Str ing getImplementat ionVendor()
Str ing getImplementat ionVersion()
Str ing getName()
stat ic Package getPackage(Str ing)
stat ic Package[] getPackages()
Str ing getSpecif icat ionTit le()
String getSpecif icat ionVendor()

Str ing getSpecif icat ionVersion()
int hashCode()
boolean isCompatibleWith(String)
throws NumberFormatException
boolean isSealed()
boolean isSealed(java.net.URL)
Str ing toStr ing()

abstract class Process
Process()
abstract void destroy()
abstract int exitValue()
abstract java. io. InputStream
getEr rorStream()

abstract java. io. InputStream
getInputStream()
abstract java. io.OutputStream
getOutputStream()
abstract int waitFor() throws
InterruptedException

interface Runnable
abstract void run()
class Runtime
void addShutdownHook(Thread)
Process exec(String[]) throws
java. io. IOException
Process exec(Str ing[],Str ing[]) throws
java. io. IOException
Process exec(Str ing[],Str ing[],
java. io.Fi le) throws java. io. IOException
Process exec(String) throws
java. io. IOException
Process exec(String ,Str ing[]) throws
java. io. IOException
Process exec(String ,Str ing[] , java. io.F i le)
throws java. io. IOException

void exit(int)
long freeMemory()
void gc()
stat ic Runtime getRuntime()
void halt(int)
void load(String)
void loadLibrary(String)
boolean removeShutdownHook(Thread)
void runFinal izat ion()
long totalMemory()
void traceInstruct ions(boolean)
void traceMethodCal ls(boolean)

class RuntimeException extends Exception
RuntimeException() RuntimeException(String)
final class RuntimePermission extends java.security.BasicPermission
RuntimePermission(String) RuntimePermission(String,Str ing)
class SecurityException extends RuntimeException
SecurityException() Secur ityException(String)
class SecurityManager
SecurityManager()
void checkAccept(String , int)
void checkAccess(Thread)
void checkAccess(ThreadGroup)
void checkAwtEventQueueAccess()
void checkConnect(String , int)
void checkConnect(String , int ,Object)
void checkCreateClassLoader()
void checkDelete(String)
void checkExec(String)
void checkExit(int)
void checkLink(Str ing)
void checkListen(int)
void checkMemberAccess(Class, int)
void
checkMult icast(java.net. InetAddress)
void checkMult icast(java.net. InetAddress,
byte)
void checkPackageAccess(String)
void checkPackageDef init ion(String)

void
checkPermission(java.security .Permission
)
void
checkPermission(java.security .Permission
,Object)
void checkPrint JobAccess()
void checkPropert iesAccess()
void checkPropertyAccess(String)
void checkRead(java. io.F i leDescr iptor)
void checkRead(String)
void checkRead(String,Object)
void checkSecuri tyAccess(String)
void checkSetFactory()
void checkSystemCl ipboardAccess()
boolean checkTopLevelWindow(Object)
void checkWrite(java. io.F i leDescriptor)
void checkWrite(Str ing)
protected Class[] getClassContext()
Object getSecurityContext()
ThreadGroup getThreadGroup()

final class Short extends Number implements Comparable
Short(Str ing) throws
NumberFormatException
Short(short)
byte byteValue()
int compareTo(Object)
int compareTo(Short)
stat ic Short decode(String) throws
NumberFormatException

double doubleValue()
boolean equals(Object)
f loat f loatValue()
int hashCode()
int intValue()
long longValue()
f ina l stat ic short MAX_VALUE
f ina l stat ic short MIN_VALUE
OSGi Service Platform Release 4 393-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
stat ic short parseShort(String) throws
NumberFormatException
stat ic short parseShort(String, int)
throws NumberFormatException
short shortValue()
Str ing toString()

stat ic Str ing toString(short)
f inal stat ic Class TYPE
stat ic Short valueOf(String) throws
NumberFormatException
stat ic Short valueOf(String, int) throws
NumberFormatException

class StackOverflowError extends VirtualMachineError
StackOver flowError() StackOver f lowError(Str ing)
final class StrictMath
stat ic double abs(double)
stat ic f loat abs(f loat)
stat ic int abs(int)
stat ic long abs(long)
stat ic double acos(double)
stat ic double as in(double)
stat ic double atan(double)
stat ic double atan2(double ,double)
stat ic double ce i l(double)
stat ic double cos(double)
f inal stat ic double E
stat ic double exp(double)
stat ic double f loor(double)
stat ic double IEEEremainder(double,
double)
stat ic double log(double)
stat ic double max(double ,double)
stat ic f loat max(f loat , f loat)

stat ic int max(int , int)
stat ic long max(long , long)
stat ic double min(double,double)
stat ic f loat min(float, f loat)
stat ic int min(int , int)
stat ic long min(long, long)
f inal stat ic double P I
stat ic double pow(double,double)
stat ic double random()
stat ic double r int(double)
stat ic long round(double)
stat ic int round(f loat)
stat ic double s in(double)
stat ic double sqrt(double)
stat ic double tan(double)
stat ic double toDegrees(double)
stat ic double toRadians(double)

final class String implements java.io.Serializable , Comparable
String()
Str ing(byte[])
Str ing(byte[] , int , int)
Str ing(byte[], int , int ,Str ing) throws
java. io.UnsupportedEncodingException
String(byte[],Str ing) throws
java. io.UnsupportedEncodingException
Str ing(char[])
Str ing(char[] , int , int)
Str ing(String)
Str ing(StringBuffer)
f inal stat ic java.ut i l.Comparator
CASE_ INSENSIT IVE_ORDER
char charAt(int)
int compareTo(Object)
int compareTo(String)
int compareToIgnoreCase(Str ing)
Str ing concat(String)
stat ic Str ing copyValueOf(char[])
stat ic Str ing copyValueOf(char[] , int , int)
boolean endsWith(String)
boolean equals(Object)
boolean equals IgnoreCase(Str ing)
byte[] getBytes()
byte[] getBytes(String) throws
java. io.UnsupportedEncodingException
void getChars(int , int ,char[] , int)
int hashCode()
int indexOf(int)
int indexOf(int , int)
int indexOf(Str ing)

int indexOf(String, int)
Str ing intern()
int last IndexOf(int)
int last IndexOf(int , int)
int last IndexOf(Str ing)
int last IndexOf(Str ing, int)
int length()
boolean regionMatches(int ,Str ing, int , int)
boolean regionMatches(boolean, int,
String, int , int)
Str ing replace(char,char)
boolean startsWith(Str ing)
boolean startsWith(Str ing, int)
Str ing substring(int)
Str ing substring(int , int)
char[] toCharArray()
Str ing toLowerCase()
Str ing toLowerCase(java.ut il .Locale)
Str ing toStr ing()
Str ing toUpperCase()
Str ing toUpperCase(java.ut i l .Locale)
Str ing tr im()
stat ic Str ing valueOf(char[])
stat ic Str ing valueOf(char[] , int , int)
stat ic Str ing valueOf(char)
stat ic Str ing valueOf(double)
stat ic Str ing valueOf(f loat)
stat ic Str ing valueOf(int)
stat ic Str ing valueOf(long)
stat ic Str ing valueOf(Object)
stat ic Str ing valueOf(boolean)

final class StringBuffer implements java.io.Serializable
StringBuffer()
Str ingBuffer(int)
Str ingBuffer(String)
StringBuffer append(char[])
StringBuffer append(char[] , int , int)
Str ingBuffer append(char)
Str ingBuffer append(double)
Str ingBuffer append(f loat)
Str ingBuffer append(int)
Str ingBuffer append(long)
StringBuffer append(Object)

Str ingBuffer append(String)
StringBuffer append(boolean)
int capacity ()
char charAt(int)
StringBuffer de lete(int , int)
StringBuffer de leteCharAt(int)
vo id ensureCapacity(int)
vo id getChars(int , int, char[] , int)
StringBuffer inser t(int ,char[])
StringBuffer inser t(int ,char[] , int , int)
StringBuffer inser t(int ,char)
394-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
StringBuffer inser t(int ,double)
Str ingBuffer inser t(int , f loat)
Str ingBuffer insert(int , int)
Str ingBuffer inser t(int , long)
Str ingBuffer inser t(int ,Object)
Str ingBuffer inser t(int ,Str ing)
Str ingBuffer insert(int ,boolean)
int length()

Str ingBuffer rep lace(int , int ,Str ing)
Str ingBuffer reverse()
void setCharAt(int ,char)
void setLength(int)
Str ing substring(int)
Str ing substring(int , int)
Str ing toStr ing()

class StringIndexOutOfBoundsException extends IndexOutOfBoundsException
String IndexOutOfBoundsException()
String IndexOutOfBoundsException(int) String IndexOutOfBoundsException(String

)
final class System
static void arraycopy(Object , int ,Object,
int , int)
stat ic long currentTimeMil l is()
f inal static java. io.Pr intStream err
stat ic void exit(int)
stat ic void gc()
stat ic java.ut il .Properties getPropert ies()
stat ic Str ing getProperty(Str ing)
stat ic Str ing getProperty(Str ing,Str ing)
stat ic SecurityManager
getSecurityManager()
stat ic int identityHashCode(Object)
f inal static java. io. InputStream in

stat ic void load(String)
stat ic void loadLibrary(Str ing)
stat ic Str ing mapLibraryName(Str ing)
f ina l stat ic java . io .Pr intStream out
stat ic void runFinal izat ion()
stat ic void setErr(java. io.PrintStream)
stat ic void set In(java. io. InputStream)
stat ic void setOut(java. io.Pr intStream)
stat ic void
setPropert ies(java.ut i l .Propert ies)
stat ic Str ing setProperty(Str ing,Str ing)
stat ic void
setSecur ityManager(SecurityManager)

class Thread implements Runnable
Thread()
Thread(Runnable)
Thread(Runnable,String)
Thread(String)
Thread(ThreadGroup,Runnable)
Thread(ThreadGroup,Runnable,Str ing)
Thread(ThreadGroup,Str ing)
stat ic int act iveCount()
f inal void checkAccess()
stat ic Thread currentThread()
void destroy()
stat ic void dumpStack()
stat ic int enumerate(Thread[])
ClassLoader getContextClassLoader()
f inal Str ing getName()
f inal int getPrior ity ()
f inal ThreadGroup getThreadGroup()
void interrupt()
stat ic boolean interrupted()
f inal boolean isAl ive()
f inal boolean isDaemon()
boolean is Interrupted()

f ina l void jo in() throws
InterruptedException
f ina l void jo in(long) throws
InterruptedException
f ina l void jo in(long, int) throws
InterruptedException
f ina l stat ic int MAX_PRIORITY
f ina l stat ic int MIN_PRIORITY
f ina l stat ic int NORM_PRIORITY
void run()
void setContextC lassLoader(ClassLoader)
f ina l void setDaemon(boolean)
f ina l void setName(String)
f ina l void setPriority(int)
stat ic void s leep(long) throws
InterruptedException
stat ic void s leep(long, int) throws
InterruptedException
void star t()
Str ing toStr ing()
stat ic void yield()

class ThreadDeath extends Error
ThreadDeath()
class ThreadGroup
ThreadGroup(String)
ThreadGroup(ThreadGroup,String)
int act iveCount()
int act iveGroupCount()
f inal void checkAccess()
f inal void destroy()
int enumerate(Thread[])
int enumerate(Thread[] ,boolean)
int enumerate(ThreadGroup[])
int enumerate(ThreadGroup[],boolean)
f inal int getMaxPriori ty()
f inal Str ing getName()

f ina l ThreadGroup getParent()
f ina l void interrupt()
f ina l boolean isDaemon()
boolean isDestroyed()
void l ist()
f ina l boolean parentOf(ThreadGroup)
f ina l void setDaemon(boolean)
f ina l void setMaxPriori ty(int)
Str ing toStr ing()
void uncaughtException(Thread,
Throwable)

class ThreadLocal
ThreadLocal()
Object get()

protected Object in it ia lValue()
void set(Object)

class Throwable implements java.io.Serializable
Throwable()
Throwable(Str ing)
Throwable f i l l InStackTrace()

Str ing getLocal izedMessage()
Str ing getMessage()
void printStackTrace()
OSGi Service Platform Release 4 395-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
void pr intStackTrace(java. io.PrintStream)
void printStackTrace(java. io.PrintWr iter)

Str ing toStr ing()

class UnknownError extends VirtualMachineError
UnknownError() UnknownError (Str ing)
class UnsatisfiedLinkError extends LinkageError
Unsatisf iedL inkEr ror() Unsat isf iedL inkEr ror(Str ing)
class UnsupportedClassVersionError extends ClassFormatError
UnsupportedClassVersionError () UnsupportedClassVersionError (String)
class UnsupportedOperationException extends RuntimeException
UnsupportedOperat ionException() UnsupportedOperat ionException(String)
class VerifyError extends LinkageError
Ver ifyError() Ver i fyError(Str ing)
abstract class VirtualMachineError extends Error
Virtua lMachineError() VirtualMachineError(String)
final class Void
f inal stat ic Class TYPE

999.3.3 java.lang.ref
package java.lang.ref
class PhantomReference extends Reference
PhantomReference(Object ,
ReferenceQueue)

Object get()

abstract class Reference
void c lear()
boolean enqueue()

Object get()
boolean isEnqueued()

class ReferenceQueue
ReferenceQueue()
Reference pol l()
Reference remove() throws
InterruptedException

Reference remove(long) throws
I l legalArgumentException,
InterruptedException

class SoftReference extends Reference
SoftReference(Object)
SoftReference(Object ,ReferenceQueue)

Object get()

class WeakReference extends Reference
WeakReference(Object) WeakReference(Object ,ReferenceQueue)

999.3.4 java.lang.reflect
package java.lang.reflect
class AccessibleObject
protected Accessib leObject()
boolean isAccessible()
stat ic void
setAccessible(Accessib leObject[] ,
boolean) throws Secur ityException

vo id setAccessible(boolean) throws
SecurityException

final class Array
stat ic Object get(Object , int) throws
I l legalArgumentException,
ArrayIndexOutOfBoundsException
stat ic boolean getBoolean(Object , int)
throws I l legalArgumentException ,
ArrayIndexOutOfBoundsException
stat ic byte getByte(Object , int) throws
I l legalArgumentException,
ArrayIndexOutOfBoundsException
stat ic char getChar(Object , int) throws
I l legalArgumentException,
ArrayIndexOutOfBoundsException
stat ic double getDouble(Object , int)
throws I l legalArgumentException ,
ArrayIndexOutOfBoundsException
stat ic f loat getFloat(Object , int) throws
I l legalArgumentException,
ArrayIndexOutOfBoundsException
stat ic int get Int(Object , int) throws
I l legalArgumentException,
ArrayIndexOutOfBoundsException
stat ic int getLength(Object) throws
I l legalArgumentException

stat ic long getLong(Object , int) throws
I l legalArgumentException,
ArrayIndexOutOfBoundsException
stat ic short getShort(Object , int) throws
I l legalArgumentException,
ArrayIndexOutOfBoundsException
stat ic Object newInstance(Class, int[])
throws NegativeArraySizeException,
I l legalArgumentException
stat ic Object newInstance(Class, int)
throws NegativeArraySizeException
stat ic void set(Object , int ,Object) throws
I l legalArgumentException,
ArrayIndexOutOfBoundsException
stat ic void setBoolean(Object , int ,
boolean) throws
I l legalArgumentException,
ArrayIndexOutOfBoundsException
stat ic void setByte(Object , int ,byte)
throws I l legalArgumentException ,
ArrayIndexOutOfBoundsException
396-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
stat ic void setChar(Object , int ,char)
throws I l legalArgumentException ,
ArrayIndexOutOfBoundsException
stat ic void setDouble(Object , int ,double)
throws I l legalArgumentException ,
ArrayIndexOutOfBoundsException
stat ic void setFloat(Object , int , f loat)
throws I l legalArgumentException ,
ArrayIndexOutOfBoundsException

stat ic void set Int(Object , int , int) throws
I l legalArgumentException ,
Ar rayIndexOutOfBoundsException
stat ic void setLong(Object , int , long)
throws I llegalArgumentException ,
Ar rayIndexOutOfBoundsException
stat ic void setShort(Object , int ,short)
throws I llegalArgumentException ,
Ar rayIndexOutOfBoundsException

final class Constructor extends AccessibleObject implements Member
boolean equals(Object)
Class getDeclaringClass()
Class[] getExceptionTypes()
int getModif iers()
Str ing getName()
Class[] getParameterTypes()
int hashCode()

Object newInstance(Object[]) throws
Instantiat ionException ,
I l legalAccessException,
I l legalArgumentException ,
InvocationTargetException
String toStr ing()

final class Field extends AccessibleObject implements Member
boolean equals(Object)
Object get(Object) throws
I l legalAccessException,
I l legalArgumentException
boolean getBoolean(Object) throws
I l legalAccessException,
I l legalArgumentException
byte getByte(Object) throws
I l legalAccessException,
I l legalArgumentException
char getChar(Object) throws
I l legalAccessException,
I l legalArgumentException
Class getDeclaringClass()
double getDouble(Object) throws
I l legalAccessException,
I l legalArgumentException
f loat getFloat(Object) throws
I l legalAccessException,
I l legalArgumentException
int getInt(Object) throws
I l legalAccessException,
I l legalArgumentException
long getLong(Object) throws
I l legalAccessException,
I l legalArgumentException
int getModif iers()
Str ing getName()
short getShort(Object) throws
I l legalAccessException,
I l legalArgumentException

Class getType()
int hashCode()
void set(Object ,Object) throws
I l legalAccessException,
I l legalArgumentException
void setBoolean(Object ,boolean) throws
I l legalAccessException,
I l legalArgumentException
void setByte(Object ,byte) throws
I l legalAccessException,
I l legalArgumentException
void setChar(Object ,char) throws
I l legalAccessException,
I l legalArgumentException
void setDouble(Object ,double) throws
I l legalAccessException,
I l legalArgumentException
void setFloat(Object , f loat) throws
I l legalAccessException,
I l legalArgumentException
void set Int(Object , int) throws
I l legalAccessException,
I l legalArgumentException
void setLong(Object , long) throws
I l legalAccessException,
I l legalArgumentException
void setShort(Object ,short) throws
I l legalAccessException,
I l legalArgumentException
String toStr ing()

interface InvocationHandler
abstract Object invoke(Object ,Method,
Object[]) throws Throwable
class InvocationTargetException extends Exception
protected InvocationTargetException()
InvocationTargetException(Throwable)
InvocationTargetException(Throwable ,
Str ing)

Throwable getTargetException()
void printStackTrace()
void printStackTrace(java. io.PrintStream)
void printStackTrace(java. io.Pr intWriter)

interface Member
f inal static int DECLARED
abstract Class getDeclaringClass()
abstract int getModifie rs()

abstract Str ing getName()
f ina l stat ic int PUBLIC

final class Method extends AccessibleObject implements Member
boolean equals(Object)
Class getDeclaringClass()
Class[] getExceptionTypes()
int getModif iers()
Str ing getName()
Class[] getParameterTypes()
Class getReturnType()

int hashCode()
Object invoke(Object ,Object[]) throws
I l legalAccessException,
I l legalArgumentException ,
InvocationTargetException
String toStr ing()

class Modifier
Modif ier() f ina l stat ic int ABSTRACT
OSGi Service Platform Release 4 397-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
f inal stat ic int FINAL
f inal stat ic int INTERFACE
stat ic boolean isAbstract(int)
stat ic boolean isF inal(int)
stat ic boolean is Interface(int)
stat ic boolean isNative(int)
stat ic boolean isPrivate(int)
stat ic boolean isProtected(int)
stat ic boolean isPubl ic(int)
stat ic boolean isStat ic(int)
stat ic boolean isStrict(int)
stat ic boolean isSynchronized(int)

stat ic boolean isTransient(int)
stat ic boolean isVolat i le(int)
f inal stat ic int NATIVE
f inal stat ic int PR IVATE
f inal stat ic int PROTECTED
final stat ic int PUBLIC
f inal stat ic int STATIC
f inal stat ic int STRICT
f inal stat ic int SYNCHRONIZED
stat ic Str ing toString(int)
f inal stat ic int TRANSIENT
final stat ic int VOLATILE

class Proxy implements java.io.Serializable
protected Proxy(InvocationHandler)
stat ic InvocationHandler
getInvocationHandler(Object) throws
I l legalArgumentException
stat ic Class getProxyClass(ClassLoader,
Class[]) throws I l legalArgumentException

protected InvocationHandler h
stat ic boolean isProxyClass(Class)
stat ic Object
newProxyInstance(ClassLoader,Class[] ,
InvocationHandler) throws
I l legalArgumentException

final class ReflectPermission extends java.security.BasicPermission
ReflectPermission(String) Ref lectPermission(String ,Str ing)
class UndeclaredThrowableException extends RuntimeException

UndeclaredThrowableException(Throwabl
e)

UndeclaredThrowableException(Throwabl
e,Str ing)

Throwable getUndeclaredThrowable()
vo id printStackTrace()
vo id printStackTrace(java. io.PrintStream)
vo id printStackTrace(java. io.PrintWriter)

999.3.5 java.math
package java.math
class BigInteger extends Number implements Comparable
BigInteger(byte[])
B igInteger(int ,byte[])
B igInteger(int , int , java.ut i l. Random)
B igInteger(int , java.ut i l .Random)
B igInteger(Str ing)
B igInteger(Str ing, int)
B igInteger abs()
B igInteger add(BigInteger)
B igInteger and(BigInteger)
B igInteger andNot(BigInteger)
int bitCount()
int bitLength()
B igInteger c learB it(int)
int compareTo(Object)
int compareTo(Big Integer)
B igInteger d ivide(B ig Integer)
B igInteger[]
d ivideAndRemainder(B igInteger)
double doubleVa lue()
boolean equals(Object)
B igInteger f l ipB it(int)
f loat f loatValue()
B igInteger gcd(B igInteger)
int getLowestSetBit()
int hashCode()
int intValue()
boolean isProbablePrime(int)

long longValue()
B igInteger max(BigInteger)
B igInteger min(BigInteger)
B igInteger mod(BigInteger)
B igInteger modInverse(B igInteger)
B igInteger modPow(BigInteger,
B igInteger)
B igInteger mult iply (B igInteger)
B igInteger negate()
B igInteger not()
f inal stat ic B igInteger ONE
BigInteger or (B igInteger)
B igInteger pow(int)
B igInteger remainder(B igInteger)
B igInteger setBit(int)
B igInteger sh i ftLeft(int)
B igInteger sh i ftR ight(int)
int s ignum()
B igInteger subtract(BigInteger)
boolean testBit(int)
byte[] toByteArray()
Str ing toStr ing()
Str ing toStr ing(int)
stat ic B ig Integer valueOf(long)
B igInteger xor (B igInteger)
f inal stat ic B igInteger ZERO

999.3.6 java.net
package java.net
abstract class Authenticator
Authenticator()
protected PasswordAuthenticat ion
getPasswordAuthenticat ion()
f inal protected int getRequest ingPort()
f inal protected String
getRequestingPrompt()

f inal protected String
getRequestingProtocol()
f inal protected String
getRequestingScheme()
f inal protected InetAddress
getRequestingSite()
398-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
stat ic PasswordAuthenticat ion
requestPasswordAuthenticat ion(InetAddr
ess, int ,Str ing,Str ing,Str ing)

stat ic void setDefault(Authenticator)

class BindException extends SocketException
BindException() B indException(Str ing)
class ConnectException extends SocketException
ConnectException() ConnectException(String)
abstract class ContentHandler
ContentHandler ()
abstract Object
getContent(URLConnection) throws
java. io. IOException

Object getContent(URLConnection ,
C lass[]) throws java. io. IOException

interface ContentHandlerFactory
abstract ContentHandler
createContentHandler(Str ing)
final class DatagramPacket
DatagramPacket(byte[] , int)
DatagramPacket(byte[] , int , int)
DatagramPacket(byte[] , int , int ,
InetAddress, int)
DatagramPacket(byte[], int , InetAddress,
int)
InetAddress getAddress()
byte[] getData()

int getLength()
int getOffset()
int getPort()
void setAddress(InetAddress)
void setData(byte[])
void setData(byte[] , int , int)
void setLength(int)
void setPort(int)

class DatagramSocket
DatagramSocket() throws
SocketException
DatagramSocket(int) throws
SocketException
DatagramSocket(int , InetAddress) throws
SocketException
void c lose()
void connect(InetAddress, int)
void d isconnect()
InetAddress get InetAddress()
InetAddress getLocalAddress()
int getLocalPort()
int getPort()
int getReceiveBufferS ize() throws
SocketException
int getSendBufferS ize() throws
SocketException

int getSoTimeout() throws
SocketException
void receive(DatagramPacket) throws
java. io. IOException
void send(DatagramPacket) throws
java. io. IOException
stat ic void
setDatagramSocketImplFactory(Datagra
mSocketImplFactory) throws
java. io. IOException
void setReceiveBufferSize(int) throws
SocketException
void setSendBufferS ize(int) throws
SocketException
void setSoTimeout(int) throws
SocketException

abstract class DatagramSocketImpl implements SocketOptions
DatagramSocketImpl()
abstract protected void bind(int ,
InetAddress) throws SocketException
abstract protected void close()
abstract protected void create() throws
SocketException
protected java. io.F i leDescr iptor fd
protected java. io.F i leDescr iptor
getF ileDescriptor ()
protected int getLocalPort()
abstract Object getOption(int) throws
SocketException
abstract protected int getT imeToLive()
throws java. io. IOException
abstract protected void join(InetAddress)
throws java. io. IOException

abstract protected void
leave(InetAddress) throws
java. io. IOException
protected int localPort
abstract protected int peek(InetAddress)
throws java. io. IOException
abstract protected void
receive(DatagramPacket) throws
java. io. IOException
abstract protected void
send(DatagramPacket) throws
java. io. IOException
abstract void setOption(int ,Object)
throws SocketException
abstract protected void
setTimeToLive(int) throws
java. io. IOException

interface DatagramSocketImplFactory
abstract DatagramSocketImpl
createDatagramSocketImpl()
interface FileNameMap
abstract Str ing
getContentTypeFor(Str ing)
abstract class HttpURLConnection extends URLConnection
protected HttpURLConnection(URL)
abstract void disconnect()
java. io. InputStream getErrorStream()

stat ic boolean getFol lowRedirects()
long getHeaderFie ldDate(String, long)
boolean getInstanceFol lowRedirects()
OSGi Service Platform Release 4 399-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
java.security.Permission getPermission()
throws java. io. IOException
String getRequestMethod()
int getResponseCode() throws
java. io. IOException
String getResponseMessage() throws
java. io. IOException
f inal stat ic int HTTP_ACCEPTED
final stat ic int HTTP_BAD_GATEWAY
final stat ic int HTTP_BAD_METHOD
final stat ic int HTTP_BAD_REQUEST
f inal stat ic int HTTP_CLIENT_TIMEOUT
final stat ic int HTTP_CONFLICT
f inal stat ic int HTTP_CREATED
final stat ic int HTTP_ENTITY_TOO_LARGE
final stat ic int HTTP_FORBIDDEN
final stat ic int HTTP_GATEWAY_TIMEOUT
final stat ic int HTTP_GONE
final stat ic int HTTP_INTERNAL_ERROR
final stat ic int HTTP_LENGTH_REQUIRED
final stat ic int HTTP_MOVED_PERM
final stat ic int HTTP_MOVED_TEMP
final stat ic int HTTP_MULT_CHOICE
f inal stat ic int HTTP_NO_CONTENT
final stat ic int HTTP_NOT_ACCEPTABLE
f inal stat ic int
HTTP_NOT_AUTHORITATIVE
f inal stat ic int HTTP_NOT_FOUND

final stat ic int HTTP_NOT_IMPLEMENTED
final stat ic int HTTP_NOT_MODIFIED
final stat ic int HTTP_OK
final stat ic int HTTP_PARTIAL
f inal stat ic int
HTTP_PAYMENT_REQUIRED
final stat ic int HTTP_PRECON_FAILED
final stat ic int HTTP_PROXY_AUTH
final stat ic int HTTP_REQ_TOO_LONG
final stat ic int HTTP_RESET
f inal stat ic int HTTP_SEE_OTHER
final stat ic int HTTP_UNAUTHORIZED
final stat ic int HTTP_UNAVAILABLE
f inal stat ic int
HTTP_UNSUPPORTED_TYPE
f inal stat ic int HTTP_USE_PROXY
final stat ic int HTTP_VERSION
protected boolean
instanceFol lowRedirects
protected Str ing method
protected int responseCode
protected Str ing responseMessage
stat ic void setFol lowRedirects(boolean)
vo id
set InstanceFol lowRedirects(boolean)
vo id setRequestMethod(String) throws
ProtocolException
abstract boolean usingProxy()

final class InetAddress implements java.io.Serializable
boolean equals(Object)
byte[] getAddress()
stat ic InetAddress[]
getAl lByName(String) throws
UnknownHostException
stat ic InetAddress getByName(String)
throws UnknownHostException

String getHostAddress()
Str ing getHostName()
stat ic InetAddress getLocalHost() throws
UnknownHostException
int hashCode()
boolean isMult icastAddress()
Str ing toStr ing()

abstract class JarURLConnection extends URLConnection
protected JarURLConnection(URL)
throws MalformedURLException
java.ut i l. jar .Attr ibutes getAttr ibutes()
throws java. io. IOException
java.security.cert .Cert i f icate[]
getCert i f icates() throws
java. io. IOException
String getEntryName()
java.ut i l. jar . JarEntry getJarEntry() throws
java. io. IOException

abstract java.uti l . jar . JarF ile get JarF i le()
throws java. io. IOException
URL getJarF ileURL()
java.ut i l . ja r .Attr ibutes
getMainAttr ibutes() throws
java. io. IOException
java.ut i l . ja r .Manifest getManifest()
throws java. io. IOException
protected URLConnection
jarF i leURLConnection

class MalformedURLException extends java.io.IOException
MalformedURLException() MalformedURLException(String)
class MulticastSocket extends DatagramSocket
Mult icastSocket() throws
java. io. IOException
Mult icastSocket(int) throws
java. io. IOException
InetAddress getInterface() throws
SocketException
int getTimeToLive() throws
java. io. IOException
void joinGroup(InetAddress) throws
java. io. IOException

vo id leaveGroup(InetAddress) throws
java. io. IOException
vo id send(DatagramPacket,byte) throws
java. io. IOException
vo id set Interface(InetAddress) throws
SocketException
vo id setT imeToLive(int) throws
java. io. IOException

final class NetPermission extends java.security.BasicPermission
NetPermission(String) NetPermission(String,Str ing)
class NoRouteToHostException extends SocketException
NoRouteToHostException() NoRouteToHostException(Str ing)
final class PasswordAuthentication
PasswordAuthenticat ion(String,char[])
char[] getPassword()

Str ing getUserName()

class ProtocolException extends java.io.IOException
ProtocolException() ProtocolException(Str ing)
class ServerSocket
ServerSocket(int) throws java. io. IOException
400-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
ServerSocket(int , int) throws
java. io. IOException
ServerSocket(int , int , InetAddress) throws
java. io. IOException
Socket accept() throws
java. io. IOException
void c lose() throws java. io. IOException
InetAddress get InetAddress()
int getLocalPort()

int getSoTimeout() throws
java. io. IOException
f ina l protected void implAccept(Socket)
throws java. io. IOException
stat ic void
setSocketFactory(SocketImplFactory)
throws java. io. IOException
void setSoTimeout(int) throws
SocketException
String toStr ing()

class Socket
protected Socket()
Socket(String, int) throws
UnknownHostException,
java. io. IOException
Socket(String, int , InetAddress, int)
throws java. io. IOException
Socket(InetAddress, int) throws
java. io. IOException
Socket(InetAddress, int , InetAddress, int)
throws java. io. IOException
protected Socket(SocketImpl) throws
SocketException
void c lose() throws java. io. IOException
InetAddress get InetAddress()
java. io. InputStream getInputStream()
throws java. io. IOException
boolean getKeepAlive() throws
SocketException
InetAddress getLocalAddress()
int getLocalPort()
java. io.OutputStream getOutputStream()
throws java. io. IOException
int getPort()
int getReceiveBufferS ize() throws
SocketException
int getSendBufferS ize() throws
SocketException

int getSoLinger() throws SocketException
int getSoTimeout() throws
SocketException
boolean getTcpNoDelay() throws
SocketException
void setKeepAl ive(boolean) throws
SocketException
void setReceiveBufferSize(int) throws
SocketException
void setSendBufferS ize(int) throws
SocketException
stat ic void
setSocketImplFactory(SocketImplFactory
) throws java. io. IOException
void setSoL inger(boolean, int) throws
SocketException
void setSoTimeout(int) throws
SocketException
void setTcpNoDelay(boolean) throws
SocketException
void shutdownInput() throws
java. io. IOException
void shutdownOutput() throws
java. io. IOException
String toStr ing()

class SocketException extends java.io.IOException
SocketException() SocketException(String)
abstract class SocketImpl implements SocketOptions
SocketImpl()
abstract protected void
accept(SocketImpl) throws
java. io. IOException
protected InetAddress address
abstract protected int avai lab le() throws
java. io. IOException
abstract protected void b ind(InetAddress,
int) throws java. io. IOException
abstract protected void close() throws
java. io. IOException
abstract protected void connect(String,
int) throws java. io. IOException
abstract protected void
connect(InetAddress, int) throws
java. io. IOException
abstract protected void create(boolean)
throws java. io. IOException
protected java. io.F i leDescr iptor fd
protected java. io.F i leDescr iptor
getF ileDescriptor ()
protected InetAddress getInetAddress()

abstract protected java. io. InputStream
getInputStream() throws
java. io. IOException
protected int getLocalPort()
abstract Object getOption(int) throws
SocketException
abstract protected java. io.OutputStream
getOutputStream() throws
java. io. IOException
protected int getPort()
abstract protected void l isten(int)
throws java. io. IOException
protected int localport
protected int port
abstract void setOption(int ,Object)
throws SocketException
protected void shutdownInput() throws
java. io. IOException
protected void shutdownOutput()
throws java. io. IOException
String toStr ing()

interface SocketImplFactory
abstract SocketImpl createSocketImpl()
interface SocketOptions
abstract Object getOption(int) throws
SocketException
f inal static int IP_MULTICAST_IF
abstract void setOption(int ,Object)
throws SocketException

f ina l stat ic int SO_BINDADDR
fina l stat ic int SO_KEEPALIVE
f ina l stat ic int SO_LINGER
f ina l stat ic int SO_RCVBUF
f ina l stat ic int SO_REUSEADDR
OSGi Service Platform Release 4 401-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
f inal stat ic int SO_SNDBUF
f inal stat ic int SO_TIMEOUT

final stat ic int TCP_NODELAY

final class SocketPermission extends java.security.Permission implements java.io.Serializable
SocketPermission(String,Str ing)
boolean equals(Object)
Str ing getActions()
int hashCode()

boolean impl ies(java.security .Permission)
java.security.PermissionCol lect ion
newPermiss ionCol lect ion()

class UnknownHostException extends java.io.IOException
UnknownHostException() UnknownHostException(Str ing)
class UnknownServiceException extends java.io.IOException
UnknownServiceException() UnknownServiceException(String)
final class URL implements java.io.Serializable
URL(String) throws
MalformedURLException
URL(String ,Str ing, int ,Str ing) throws
MalformedURLException
URL(String ,Str ing, int ,Str ing,
URLStreamHandler) throws
MalformedURLException
URL(String ,Str ing,Str ing) throws
MalformedURLException
URL(URL,String) throws
MalformedURLException
URL(URL,String,URLStreamHandler)
throws MalformedURLException
boolean equals(Object)
Str ing getAuthority()
f inal Object getContent() throws
java. io. IOException
f inal Object getContent(Class[]) throws
java. io. IOException
String getFi le()
Str ing getHost()

Str ing getPath()
int getPort()
Str ing getProtocol()
Str ing getQuery()
Str ing getRef()
Str ing getUserInfo()
int hashCode()
URLConnection openConnection()
throws java. io. IOException
f inal java. io. InputStream openStream()
throws java. io. IOException
boolean sameFi le(URL)
protected void set(String,Str ing, int ,
Str ing,Str ing)
protected void set(String,Str ing, int ,
Str ing,Str ing,Str ing,Str ing,Str ing)
stat ic void
setURLStreamHandlerFactory(URLStream
HandlerFactory)
Str ing toExternalForm()
Str ing toStr ing()

class URLClassLoader extends java.security.SecureClassLoader
URLClassLoader(URL[])
URLClassLoader(URL[],ClassLoader)
URLClassLoader(URL[],ClassLoader,
URLStreamHandlerFactory)
protected void addURL(URL)
protected Package def inePackage(String,
java.ut i l. jar .Manifest ,URL) throws
I l legalArgumentException
protected Class f indClass(String) throws
ClassNotFoundException
URL f indResource(String)

java.ut i l .Enumeration
f indResources(Str ing) throws
java. io. IOException
protected
java.security.PermissionCol lect ion
getPermissions(java. security.CodeSource
)
URL[] getURLs()
stat ic URLClassLoader
newInstance(URL[])
stat ic URLClassLoader
newInstance(URL[],ClassLoader)

abstract class URLConnection
protected URLConnection(URL)
protected boo lean al lowUserInteract ion
abstract void connect() throws
java. io. IOException
protected boo lean connected
protected boo lean doInput
protected boo lean doOutput
boolean getAl lowUserInteraction()
Object getContent() throws
java. io. IOException
Object getContent(Class[]) throws
java. io. IOException
String getContentEncoding()
int getContentLength()
Str ing getContentType()
long getDate()
stat ic boolean
getDefaultAl lowUserInteract ion()
boolean getDefaultUseCaches()
boolean getDoInput()
boolean getDoOutput()
long getExpirat ion()
stat ic F i leNameMap getFi leNameMap()
Str ing getHeaderField(int)

Str ing getHeaderField(String)
long getHeaderFieldDate(String, long)
int getHeaderField Int(String, int)
Str ing getHeaderFieldKey(int)
long get I fModif iedSince()
java. io. InputStream getInputStream()
throws java. io. IOException
long getLastModified()
java. io.OutputStream getOutputStream()
throws java. io. IOException
java.security.Permiss ion getPermission()
throws java. io. IOException
String getRequestProperty(Str ing)
URL getURL()
boolean getUseCaches()
protected stat ic Str ing
guessContentTypeFromName(Str ing)
stat ic Str ing
guessContentTypeFromStream(java. io. In
putStream) throws java. io. IOException
protected long i fModif iedSince
vo id setAl lowUserInteraction(boolean)
402-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
stat ic void
setContentHandlerFactory(ContentHandl
erFactory)
stat ic void
setDefaultAl lowUserInteract ion(boolean)
void setDefaultUseCaches(boolean)
void setDoInput(boolean)
void setDoOutput(boolean)

stat ic void
setFi leNameMap(FileNameMap)
void set I fModif iedSince(long)
void setRequestProperty(String,Str ing)
void setUseCaches(boolean)
Str ing toStr ing()
protected URL ur l
protected boolean useCaches

class URLDecoder
URLDecoder() stat ic Str ing decode(String)
class URLEncoder
stat ic Str ing encode(String)
abstract class URLStreamHandler
URLStreamHandler ()
protected boolean equals(URL ,URL)
protected int getDefau ltPort()
protected InetAddress
getHostAddress(URL)
protected int hashCode(URL)
protected boolean hostsEqual(URL,URL)

abstract protected URLConnection
openConnection(URL) throws
java. io. IOException
protected void parseURL(URL,Str ing, int ,
int)
protected boolean sameFi le(URL,URL)
protected void setURL(URL,String,Str ing,
int ,Str ing,Str ing,Str ing,Str ing ,Str ing)
protected String toExternalForm(URL)

interface URLStreamHandlerFactory
abstract URLStreamHandler
createURLStreamHandler(Str ing)

999.3.7 java.security
package java.security
final class AccessControlContext

AccessControlContext(ProtectionDomain
[])

AccessControlContext(AccessControlCon
text,DomainCombiner)

void checkPermission(Permission)
throws AccessControlException
boolean equals(Object)
DomainCombiner getDomainCombiner()
int hashCode()

class AccessControlException extends SecurityException
AccessControlException(String)
AccessControlException(String,
Permission)

Permission getPermission()

final class AccessController
stat ic void checkPermission(Permission)
throws AccessControlException
stat ic Object
doPrivi leged(Pr iv ilegedAct ion)
stat ic Object
doPrivi leged(Pr iv ilegedAction,
AccessControlContext)

stat ic Object
doPrivi leged(Pr ivi legedExceptionAction)
throws Pr iv i legedActionException
stat ic Object
doPrivi leged(Pr ivi legedExceptionAction ,
AccessControlContext) throws
Priv ilegedActionException
stat ic AccessControlContext
getContext()

class AlgorithmParameterGenerator
protected
Algor ithmParameterGenerator(Algor ithm
ParameterGeneratorSpi,Provider ,Str ing)
f inal AlgorithmParameters
generateParameters()
f inal Str ing getAlgor ithm()
stat ic AlgorithmParameterGenerator
get Instance(Str ing) throws
NoSuchAlgor ithmException
static AlgorithmParameterGenerator
get Instance(Str ing,Str ing) throws
NoSuchAlgor ithmException ,
NoSuchProv iderException

f ina l Provider getProvider ()
f ina l void in it(int)
f ina l void in it(int ,SecureRandom)
f ina l void in it(Algor ithmParameterSpec)
throws
Inval idAlgorithmParameterException
f ina l void in it(Algor ithmParameterSpec,
SecureRandom) throws
Inval idAlgorithmParameterException

abstract class AlgorithmParameterGeneratorSpi
Algor ithmParameterGeneratorSpi()
abstract protected AlgorithmParameters
engineGenerateParameters()
abstract protected void engineInit(int ,
SecureRandom)

abstract protected void
engine Init(AlgorithmParameterSpec,
SecureRandom) throws
Inval idAlgorithmParameterException
OSGi Service Platform Release 4 403-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
class AlgorithmParameters
protected
AlgorithmParameters(Algor ithmParamete
rsSpi ,Prov ider ,Str ing)
f inal Str ing getAlgorithm()
f inal byte[] getEncoded() throws
java. io. IOException
f inal byte[] getEncoded(Str ing) throws
java. io. IOException
stat ic AlgorithmParameters
getInstance(Str ing) throws
NoSuchAlgorithmException
stat ic AlgorithmParameters
getInstance(Str ing,Str ing) throws
NoSuchAlgorithmException ,
NoSuchProv iderException

f inal Algor ithmParameterSpec
getParameterSpec(Class) throws
Inval idParameterSpecException
f inal Provider getProv ider()
f inal void in it(byte[]) throws
java. io. IOException
f inal void in it(byte[] ,Str ing) throws
java. io. IOException
f inal void in it(AlgorithmParameterSpec)
throws Inval idParameterSpecException
f inal Str ing toString()

abstract class AlgorithmParametersSpi
AlgorithmParametersSpi()
abstract protected byte[]
engineGetEncoded() throws
java. io. IOException
abstract protected byte[]
engineGetEncoded(String) throws
java. io. IOException
abstract protected
AlgorithmParameterSpec
engineGetParameterSpec(Class) throws
Inval idParameterSpecException

abstract protected void
engine Init(byte[]) throws
java. io. IOException
abstract protected void engineIn it(byte[],
Str ing) throws java. io. IOException
abstract protected void
engine Init(Algor ithmParameterSpec)
throws Inval idParameterSpecException
abstract protected String
engineToStr ing()

final class AllPermission extends Permission
Al lPermission()
Al lPermission(String,Str ing)
boolean equals(Object)
Str ing getActions()

int hashCode()
boolean impl ies(Permission)
PermissionCollect ion
newPermiss ionCol lect ion()

abstract class BasicPermission extends Permission implements java.io.Serializable
BasicPermission(Str ing)
BasicPermission(Str ing,Str ing)
boolean equals(Object)
Str ing getActions()

int hashCode()
boolean impl ies(Permission)
PermissionCollect ion
newPermiss ionCol lect ion()

interface Certificate
abstract void
decode(java. io. InputStream) throws
KeyException , java. io. IOException
abstract void
encode(java. io.OutputStream) throws
KeyException , java. io. IOException

abstract Str ing getFormat()
abstract Pr inc ipal getGuarantor()
abstract Pr incipal getPr inc ipal()
abstract PublicKey getPubl icKey()
abstract Str ing toString(boolean)

class CodeSource implements java.io.Serializable
CodeSource(java.net.URL,Cert i f icate[])
boolean equals(Object)
f inal Cert i f icate[] getCert i f icates()
f inal java.net.URL getLocation()

int hashCode()
boolean impl ies(CodeSource)
Str ing toStr ing()

class DigestException extends GeneralSecurityException
DigestException() DigestException(Str ing)
class DigestInputStream extends java.io.FilterInputStream
DigestInputStream(java. io. InputStream,
MessageDigest)
protected MessageDigest digest
MessageDigest getMessageDigest()
void on(boolean)

int read() throws java. io. IOException
int read(byte[], int , int) throws
java. io. IOException
vo id setMessageDigest(MessageDigest)
Str ing toStr ing()

class DigestOutputStream extends java.io.FilterOutputStream

DigestOutputStream(java. io.OutputStrea
m,MessageDigest)
protected MessageDigest digest
MessageDigest getMessageDigest()
void on(boolean)

vo id setMessageDigest(MessageDigest)
Str ing toStr ing()
vo id wr ite(byte[] , int , int) throws
java. io. IOException
vo id wr ite(int) throws
java. io. IOException

interface DomainCombiner
abstract ProtectionDomain[]
combine(Protect ionDomain[],
ProtectionDomain[])
class GeneralSecurityException extends Exception
GeneralSecur ityException() GeneralSecur ityException(Str ing)
404-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
interface Guard
abstract void checkGuard(Object)
throws Secur ityException
class GuardedObject implements java.io.Serializable
GuardedObject(Object ,Guard) Object getObject() throws

Secur ityException
abstract class Identity implements Principal , java.io.Serializable
protected Identity()
Identity(String)
Identity(String, IdentityScope) throws
KeyManagementException
void addCert i f icate(Cert if icate) throws
KeyManagementException
Cert i f icate[] cert i f icates()
f inal boolean equals(Object)
Str ing getInfo()
f inal Str ing getName()
Publ icKey getPubl icKey()

f ina l IdentityScope getScope()
int hashCode()
protected boolean
identityEquals(Identity)
void removeCert i ficate(Cert i f icate)
throws KeyManagementException
void set Info(String)
void setPubl icKey(Publ icKey) throws
KeyManagementException
String toStr ing()
String toStr ing(boolean)

abstract class IdentityScope extends Identity
protected IdentityScope()
IdentityScope(String)
IdentityScope(String, IdentityScope)
throws KeyManagementException
abstract void addIdentity(Identity)
throws KeyManagementException
abstract Identity getIdentity(String)
Identity get Identity(Principal)
abstract Identity getIdentity(Publ icKey)

stat ic IdentityScope getSystemScope()
abstract java.ut i l.Enumeration
identit ies()
abstract void removeIdentity(Identity)
throws KeyManagementException
protected stat ic void
setSystemScope(IdentityScope)
abstract int s ize()
Str ing toStr ing()

class InvalidAlgorithmParameterException extends GeneralSecurityException
Inval idAlgorithmParameterException()

Inval idAlgorithmParameterException(Stri
ng)

class InvalidKeyException extends KeyException
Inval idKeyException() Inval idKeyException(String)
class InvalidParameterException extends IllegalArgumentException
Inval idParameterException() Inval idParameterException(String)
interface Key extends java.io.Serializable
abstract Str ing getAlgorithm()
abstract byte[] getEncoded()

abstract Str ing getFormat()
f ina l stat ic long ser ia lVersionUID

class KeyException extends GeneralSecurityException
KeyException() KeyException(String)
class KeyFactory
protected KeyFactory(KeyFactorySpi ,
Prov ider ,Str ing)
f inal Pr ivateKey
generatePrivate(KeySpec) throws
Inval idKeySpecException
f inal Publ icKey generatePubl ic(KeySpec)
throws Inval idKeySpecException
f inal Str ing getAlgor ithm()
stat ic KeyFactory getInstance(Str ing)
throws NoSuchAlgor ithmException

stat ic KeyFactory getInstance(String,
String) throws
NoSuchAlgor ithmException ,
NoSuchProviderException
f ina l KeySpec getKeySpec(Key,Class)
throws Inval idKeySpecException
f ina l Provider getProvider ()
f ina l Key translateKey(Key) throws
Inval idKeyException

abstract class KeyFactorySpi
KeyFactorySpi()
abstract protected Pr ivateKey
engineGeneratePrivate(KeySpec) throws
Inval idKeySpecException
abstract protected Publ icKey
engineGeneratePubl ic(KeySpec) throws
Inval idKeySpecException

abstract protected KeySpec
engineGetKeySpec(Key,Class) throws
Inval idKeySpecException
abstract protected Key
engineTranslateKey(Key) throws
Inval idKeyException

class KeyManagementException extends KeyException
KeyManagementException() KeyManagementException(Str ing)
final class KeyPair implements java.io.Serializable
KeyPair(PublicKey,PrivateKey)
PrivateKey getPrivate()

Publ icKey getPubl ic()

abstract class KeyPairGenerator extends KeyPairGeneratorSpi
protected KeyPairGenerator (String)
KeyPair generateKeyPair()
f inal KeyPair genKeyPair()
Str ing getAlgorithm()

stat ic KeyPairGenerator
getInstance(String) throws
NoSuchAlgor ithmException
OSGi Service Platform Release 4 405-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
stat ic KeyPairGenerator
getInstance(Str ing,Str ing) throws
NoSuchAlgorithmException ,
NoSuchProv iderException
f inal Provider getProv ider()
void init ia l ize(int)
void init ia l ize(int ,SecureRandom)

vo id init ia l ize(AlgorithmParameterSpec)
throws
Inval idAlgorithmParameterException
vo id init ia l ize(AlgorithmParameterSpec,
SecureRandom) throws
Inval idAlgorithmParameterException

abstract class KeyPairGeneratorSpi
KeyPairGeneratorSpi()
abstract KeyPair generateKeyPair()
abstract void init ia l ize(int ,
SecureRandom)

vo id init ia l ize(AlgorithmParameterSpec,
SecureRandom) throws
Inval idAlgorithmParameterException

class KeyStore
protected KeyStore(KeyStoreSpi ,
Provider,Str ing)
f inal java.ut i l .Enumerat ion al iases()
throws KeyStoreException
f inal boolean containsAl ias(String)
throws KeyStoreException
f inal void deleteEntry(String) throws
KeyStoreException
f inal Cert i f icate getCert i ficate(Str ing)
throws KeyStoreException
f inal String
getCert i f icateAl ias(Cert if icate) throws
KeyStoreException
f inal Cert i f icate[]
getCert i f icateChain(String) throws
KeyStoreException
f inal java.ut i l .Date
getCreationDate(Str ing) throws
KeyStoreException
f inal stat ic Str ing getDefau ltType()
stat ic KeyStore getInstance(Str ing)
throws KeyStoreException
stat ic KeyStore getInstance(String,Str ing)
throws KeyStoreException ,
NoSuchProv iderException

f inal Key getKey(Str ing,char[]) throws
KeyStoreException,
NoSuchAlgorithmException ,
UnrecoverableKeyException
f inal Provider getProv ider()
f inal Str ing getType()
f inal boolean isCerti f icateEntry(String)
throws KeyStoreException
f inal boolean isKeyEntry(String) throws
KeyStoreException
f inal void load(java. io. InputStream,
char[]) throws java. io. IOException,
NoSuchAlgorithmException ,
Cert i f icateException
f inal void setCert i f icateEntry(Str ing,
Cert i f icate) throws KeyStoreException
f inal void setKeyEntry(Str ing,byte[],
Cert i f icate[]) throws KeyStoreException
f inal void setKeyEntry(Str ing,Key,char[] ,
Cert i f icate[]) throws KeyStoreException
f inal int s ize() throws KeyStoreException
f inal void store(java. io.OutputStream,
char[]) throws KeyStoreException,
java. io. IOException ,
NoSuchAlgorithmException ,
Cert i f icateException

class KeyStoreException extends GeneralSecurityException
KeyStoreException() KeyStoreException(String)
abstract class KeyStoreSpi
KeyStoreSpi()
abstract java.ut i l .Enumerat ion
engineAl iases()
abstract boo lean
engineContainsAl ias(String)
abstract void eng ineDeleteEntry(String)
throws KeyStoreException
abstract Cert i f icate
engineGetCert i ficate(Str ing)
abstract Str ing
engineGetCert i ficateAl ias(Cert i f icate)
abstract Cert i f icate[]
engineGetCert i ficateChain(String)
abstract java.ut i l .Date
engineGetCreationDate(String)
abstract Key engineGetKey(Str ing,char[])
throws NoSuchAlgor ithmException ,
UnrecoverableKeyException
abstract boo lean
engineIsCert i f icateEntry(String)
abstract boo lean
engineIsKeyEntry(String)

abstract void
engineLoad(java. io. InputStream,char[])
throws java. io. IOException ,
NoSuchAlgorithmException ,
Cert i f icateException
abstract void
engineSetCert i f icateEntry(String,
Cert i f icate) throws KeyStoreException
abstract void eng ineSetKeyEntry(Str ing,
byte[],Cert i f icate[]) throws
KeyStoreException
abstract void eng ineSetKeyEntry(Str ing,
Key,char[] ,Cert i f icate[]) throws
KeyStoreException
abstract int engineSize()
abstract void
engineStore(java. io.OutputStream,
char[]) throws java. io. IOException,
NoSuchAlgorithmException ,
Cert i f icateException

abstract class MessageDigest extends MessageDigestSpi
protected MessageDigest(String)
Object clone() throws
CloneNotSupportedException
byte[] d igest()
byte[] d igest(byte[])

int digest(byte[] , int , int) throws
DigestException
f inal Str ing getAlgor ithm()
f inal int getDigestLength()
stat ic MessageDigest getInstance(String)
throws NoSuchAlgor ithmException
406-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
stat ic MessageDigest getInstance(String,
String) throws
NoSuchAlgor ithmException ,
NoSuchProv iderException
f inal Provider getProv ider ()
stat ic boolean isEqual(byte[] ,byte[])

void reset()
Str ing toStr ing()
void update(byte[])
void update(byte[] , int , int)
void update(byte)

abstract class MessageDigestSpi
MessageDigestSpi()
Object clone() throws
CloneNotSupportedException
abstract protected byte[] engineDigest()
protected int engineDigest(byte[] , int , int)
throws DigestException

protected int engineGetDigestLength()
abstract protected void engineReset()
abstract protected void
engineUpdate(byte[] , int , int)
abstract protected void
engineUpdate(byte)

class NoSuchAlgorithmException extends GeneralSecurityException
NoSuchAlgor ithmException() NoSuchAlgor ithmException(Str ing)
class NoSuchProviderException extends GeneralSecurityException
NoSuchProv iderException() NoSuchProviderException(String)
abstract class Permission implements Guard , java.io.Serializable
Permission(String)
void checkGuard(Object) throws
SecurityException
abstract boolean equals(Object)
abstract Str ing getActions()
f inal Str ing getName()

abstract int hashCode()
abstract boolean implies(Permission)
PermissionCol lect ion
newPermissionCollection()
Str ing toStr ing()

abstract class PermissionCollection implements java.io.Serializable
PermissionCollect ion()
abstract void add(Permission)
abstract java.ut i l .Enumeration elements()
abstract boolean impl ies(Permission)

boolean isReadOnly()
void setReadOnly()
Str ing toStr ing()

final class Permissions extends PermissionCollection implements java.io.Serializable
Permissions()
void add(Permiss ion)

java.ut i l .Enumeration elements()
boolean impl ies(Permission)

abstract class Policy
Pol icy()
abstract PermissionCol lect ion
getPermissions(CodeSource)

stat ic Pol icy getPol icy()
abstract void re fresh()
stat ic void setPol icy(Pol icy)

interface Principal
abstract boolean equals(Object)
abstract Str ing getName()

abstract int hashCode()
abstract Str ing toString()

interface PrivateKey extends Key
f inal static long ser ia lVersionUID
interface PrivilegedAction
abstract Object run()
class PrivilegedActionException extends Exception
Privi legedActionException(Exception)
Exception getException()
void printStackTrace()

void printStackTrace(java. io.PrintStream)
void printStackTrace(java. io.Pr intWriter)
Str ing toStr ing()

interface PrivilegedExceptionAction
abstract Object run() throws Exception
class ProtectionDomain
ProtectionDomain(CodeSource,
PermissionCollect ion)
f inal CodeSource getCodeSource()

f ina l PermissionCol lect ion
getPermissions()
boolean impl ies(Permission)
Str ing toStr ing()

abstract class Provider extends java.util.Properties
protected Provider(Str ing,double ,Str ing)
void c lear()
java.ut i l .Set entrySet()
Str ing getInfo()
Str ing getName()
double getVersion()
java.ut i l .Set keySet()

void load(java. io. InputStream) throws
java. io. IOException
Object put(Object ,Object)
void putAl l (java.ut i l .Map)
Object remove(Object)
Str ing toStr ing()
java.ut i l .Col lect ion values()

class ProviderException extends RuntimeException
Prov iderException() ProviderException(String)
interface PublicKey extends Key
f inal static long ser ia lVersionUID
class SecureClassLoader extends ClassLoader
protected SecureClassLoader()
protected
SecureClassLoader(ClassLoader)

f ina l protected Class def ineClass(String,
byte[] , int , int ,CodeSource)
OSGi Service Platform Release 4 407-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
protected PermissionCol lect ion
getPermissions(CodeSource)
class SecureRandom extends java.util.Random
SecureRandom()
SecureRandom(byte[])
protected
SecureRandom(SecureRandomSpi ,
Provider)
byte[] generateSeed(int)
stat ic SecureRandom getInstance(String)
throws NoSuchAlgor ithmException

stat ic SecureRandom getInstance(String ,
Str ing) throws
NoSuchAlgorithmException ,
NoSuchProv iderException
f inal Provider getProv ider()
stat ic byte[] getSeed(int)
f inal protected int next(int)
vo id nextBytes(byte[])
vo id setSeed(byte[])
vo id setSeed(long)

abstract class SecureRandomSpi implements java.io.Serializable
SecureRandomSpi()
abstract protected byte[]
engineGenerateSeed(int)

abstract protected void
engineNextBytes(byte[])
abstract protected void
engineSetSeed(byte[])

final class Security
stat ic int addProv ider (Prov ider)
stat ic Str ing getProperty(String)
stat ic Provider getProvider(String)
stat ic Provider[] getProviders()
stat ic Provider[] getProviders(String)

stat ic Provider[]
getProviders(java.ut i l .Map)
stat ic int insertProviderAt(Provider, int)
stat ic void removeProvider(String)
stat ic void setProperty(Str ing,Str ing)

final class SecurityPermission extends BasicPermission
SecurityPermission(String) SecurityPermission(String,Str ing)
abstract class Signature extends SignatureSpi
protected Signature(String)
Object clone() throws
CloneNotSupportedException
f inal Str ing getAlgorithm()
stat ic Signature getInstance(Str ing)
throws NoSuchAlgor ithmException
static Signature getInstance(Str ing,
Str ing) throws
NoSuchAlgorithmException ,
NoSuchProv iderException
f inal Provider getProv ider()
f inal void in itS ign(PrivateKey) throws
Inval idKeyException
f inal void in itS ign(PrivateKey,
SecureRandom) throws
Inval idKeyException
f inal void in itVeri fy (Cert i f icate) throws
Inval idKeyException
f inal void in itVeri fy (Publ icKey) throws
Inval idKeyException

f inal void
setParameter(Algori thmParameterSpec)
throws
Inval idAlgorithmParameterException
f inal protected stat ic int S IGN
final byte[] s ign() throws
SignatureException
f inal int s ign(byte[] , int , int) throws
SignatureException
protected int state
String toStr ing()
f inal protected stat ic int UNINITIALIZED
final void update(byte[]) throws
SignatureException
f inal void update(byte[] , int , int) throws
SignatureException
f inal void update(byte) throws
SignatureException
f inal protected stat ic int VERIFY
f inal boolean ver i fy (byte[]) throws
SignatureException

class SignatureException extends GeneralSecurityException
SignatureException() S ignatureException(String)
abstract class SignatureSpi
SignatureSpi()
protected SecureRandom appRandom
Object clone() throws
CloneNotSupportedException
abstract protected void
engineIn itSign(PrivateKey) throws
Inval idKeyException
protected void eng ineInitS ign(PrivateKey,
SecureRandom) throws
Inval idKeyException
abstract protected void
engineIn itVeri fy(Publ icKey) throws
Inval idKeyException
protected void
engineSetParameter(Algor ithmParameter
Spec) throws
Inval idAlgorithmParameterException

abstract protected byte[] eng ineSign()
throws SignatureException
protected int engineSign(byte[] , int , int)
throws SignatureException
abstract protected void
engineUpdate(byte[] , int , int) throws
SignatureException
abstract protected void
engineUpdate(byte) throws
SignatureException
abstract protected boolean
engineVeri fy(byte[]) throws
SignatureException

final class SignedObject implements java.io.Serializable
SignedObject(java. io.Seria l izable,
PrivateKey ,Signature) throws

java. io. IOException , Inval idKeyException,
S ignatureException
408-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
String getAlgorithm()
Object getObject() throws
java. io. IOException ,
ClassNotFoundException

byte[] getSignature()
boolean ver i fy (Publ icKey,S ignature)
throws Inval idKeyException ,
S ignatureException

abstract class Signer extends Identity
protected S igner()
S igner(String)
S igner(String , IdentityScope) throws
KeyManagementException

PrivateKey getPrivateKey()
f ina l void setKeyPair (KeyPair) throws
Inval idParameterException, KeyException
String toStr ing()

class UnrecoverableKeyException extends GeneralSecurityException
UnrecoverableKeyException() UnrecoverableKeyException(String)
final class UnresolvedPermission extends Permission implements java.io.Serializable
UnresolvedPermission(String,Str ing,
Str ing ,Cert i f icate[])
boolean equals(Object)
String getActions()
int hashCode()

boolean impl ies(Permission)
PermissionCol lect ion
newPermissionCollection()
Str ing toStr ing()

999.3.8 java.security.acl
package java.security.acl
interface Acl extends Owner
abstract boolean
addEntry(java.security.Pr incipal,Ac lEntry)
throws NotOwnerException
abstract boolean
checkPermission(java.security.Pr incipal ,
Permission)
abstract java.ut il .Enumerat ion entries()
abstract Str ing getName()

abstract java.ut i l.Enumeration
getPermissions(java.security.Pr incipal)
abstract boolean
removeEntry(java.security.Pr incipal ,
Ac lEntry) throws NotOwnerException
abstract void
setName(java.security.Pr incipal ,Str ing)
throws NotOwnerException
abstract Str ing toString()

interface AclEntry extends Cloneable
abstract boolean
addPermission(Permission)
abstract boolean
checkPermission(Permission)
abstract Object c lone()
abstract java.secur ity.Pr incipal
getPr inc ipal()
abstract boolean isNegative()

abstract java.ut i l.Enumeration
permissions()
abstract boolean
removePermission(Permission)
abstract void setNegativePermissions()
abstract boolean
setPr inc ipal(java.security.Pr incipal)
abstract Str ing toString()

class AclNotFoundException extends Exception
AclNotFoundException()
interface Group extends java.security.Principal
abstract boolean
addMember(java.security.Pr incipal)
abstract boolean
isMember(java.security.Pr inc ipal)

abstract java.uti l .Enumerat ion members()
abstract boolean
removeMember(java.secur ity.Pr inc ipal)

class LastOwnerException extends Exception
LastOwnerException()
class NotOwnerException extends Exception
NotOwnerException()
interface Owner
abstract boolean
addOwner(java.secur ity .Pr inc ipal ,
java. security.Pr incipal) throws
NotOwnerException

abstract boolean
deleteOwner(java.security.Pr incipal ,
java.security.Pr incipal) throws
NotOwnerException , LastOwnerException
abstract boolean
isOwner(java.secur ity .Pr incipal)

interface Permission
abstract boolean equals(Object) abstract Str ing toString()

999.3.9 java.security.cert
package java.security.cert
abstract class Certificate implements java.io.Serializable
protected Cert if icate(Str ing)
boolean equals(Object)
abstract byte[] getEncoded() throws
Cert i f icateEncodingException

abstract java.security.PublicKey
getPubl icKey()
f ina l Str ing getType()
int hashCode()
abstract Str ing toString()
OSGi Service Platform Release 4 409-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
abstract void
veri fy(java.security.Publ icKey) throws
Cert i ficateException ,
java.security.NoSuchAlgorithmException,
java.security. InvalidKeyException,
java.security.NoSuchProviderException ,
java.security.S ignatureException

abstract void
veri fy(java.security.Publ icKey,Str ing)
throws Cert i f icateException ,
java.security.NoSuchAlgorithmException ,
java.security. Inval idKeyException,
java.security.NoSuchProviderException ,
java.security.S ignatureException
protected Object writeReplace() throws
java. io.ObjectStreamException

class Certificate.CertificateRep implements java.io.Serializable
protected
Cert i ficate.Cert i f icateRep(String ,byte[])

protected Object readResolve() throws
java. io.ObjectStreamException

class CertificateEncodingException extends CertificateException
Cert i ficateEncodingException() Cert i f icateEncodingException(String)
class CertificateException extends java.security.GeneralSecurityException
Cert i ficateException() Cert i f icateException(String)
class CertificateExpiredException extends CertificateException
Cert i ficateExpiredException() Cert i f icateExpiredException(String)
class CertificateFactory
protected
Cert i ficateFactory(Cert if icateFactorySpi ,
java.security.Provider,Str ing)
f inal Cert i f icate
generateCert i f icate(java. io. InputStream)
throws Cert i f icateException
f inal java.ut i l .Col lect ion
generateCert i f icates(java. io . InputStream)
throws Cert i f icateException
f inal CRL
generateCRL(java. io. InputStream)
throws CRLException

f inal java.ut i l .Col lect ion
generateCRLs(java. io. InputStream)
throws CRLException
f inal stat ic Cert i f icateFactory
getInstance(Str ing) throws
Cert i f icateException
f inal stat ic Cert i f icateFactory
getInstance(Str ing,Str ing) throws
Cert i f icateException ,
java.security.NoSuchProviderException
f inal java.security.Prov ider getProvider()
f inal Str ing getType()

abstract class CertificateFactorySpi
Cert i ficateFactorySpi()
abstract Cert i f icate
engineGenerateCert i ficate(java. io. InputS
tream) throws Cert i f icateException
abstract java.ut i l .Col lect ion
engineGenerateCert i ficates(java. io. Input
Stream) throws Cert if icateException

abstract CRL
engineGenerateCRL(java. io. InputStream)
throws CRLException
abstract java.uti l .Co llect ion
engineGenerateCRLs(java. io. InputStream
) throws CRLException

class CertificateNotYetValidException extends CertificateException
Cert i ficateNotYetVa lidException() Cert i f icateNotYetValidException(Str ing)
class CertificateParsingException extends CertificateException
Cert i ficatePars ingException() Cert i f icateParsingException(Str ing)
abstract class CRL
protected CRL(String)
f inal Str ing getType()

abstract boolean isRevoked(Cert i f icate)
abstract Str ing toString()

class CRLException extends java.security.GeneralSecurityException
CRLException() CRLException(String)
abstract class X509Certificate extends Certificate implements X509Extension
protected X509Cert i f icate()
abstract void checkVal id ity () throws
Cert i ficateExpiredException ,
Cert i ficateNotYetVa lidException
abstract void
checkVal id ity(java.ut i l .Date) throws
Cert i ficateExpiredException ,
Cert i ficateNotYetVa lidException
abstract int getBasicConstraints()
abstract java.ut i l .Set
getCrit icalExtensionOIDs()
abstract byte[] getExtensionValue(Str ing)
abstract java.secur ity .Pr incipal
getIssuerDN()
abstract boo lean[] getIssuerUniqueID()
abstract boo lean[] getKeyUsage()
abstract java.ut i l .Set
getNonCrit icalExtensionOIDs()

abstract java.uti l .Date getNotAfter ()
abstract java.uti l .Date getNotBefore()
abstract java.math.B igInteger
getSer ialNumber()
abstract Str ing getSigAlgName()
abstract Str ing getSigAlgOID()
abstract byte[] getSigAlgParams()
abstract byte[] getSignature()
abstract java.secur ity .Pr incipal
getSubjectDN()
abstract boolean[] getSubjectUniqueID()
abstract byte[] getTBSCert if icate()
throws Cert i f icateEncodingException
abstract int getVersion()
abstract boolean
hasUnsupportedCrit icalExtension()

abstract class X509CRL extends CRL implements X509Extension
protected X509CRL()
boolean equals(Object)

abstract java.uti l .Set
getCrit icalExtensionOIDs()
410-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
abstract byte[] getEncoded() throws
CRLException
abstract byte[] getExtensionValue(Str ing)
abstract java.secur ity.Pr incipal
getIssuerDN()
abstract java.ut il .Date getNextUpdate()
abstract java.ut il .Set
getNonCr it icalExtensionOIDs()
abstract X509CRLEntry
getRevokedCert i f icate(java.math.B igInteg
er)
abstract java.ut il .Set
getRevokedCert i f icates()
abstract Str ing getSigAlgName()
abstract Str ing getSigAlgOID()
abstract byte[] getSigAlgParams()
abstract byte[] getSignature()
abstract byte[] getTBSCertList() throws
CRLException

abstract java.ut i l.Date getThisUpdate()
abstract int getVersion()
int hashCode()
abstract boolean
hasUnsupportedCrit icalExtension()
abstract void
veri fy(java.security.Publ icKey) throws
CRLException,
java.security.NoSuchAlgorithmException ,
java.security. Inval idKeyException,
java.security.NoSuchProv iderException ,
java.security.S ignatureException
abstract void
veri fy(java.security.Publ icKey ,Str ing)
throws CRLException,
java.security.NoSuchAlgorithmException ,
java.security. Inval idKeyException,
java.security.NoSuchProv iderException ,
java.security.S ignatureException

abstract class X509CRLEntry implements X509Extension
X509CRLEntry()
boolean equals(Object)
abstract java.ut il .Set
getCrit icalExtensionOIDs()
abstract byte[] getEncoded() throws
CRLException
abstract byte[] getExtensionValue(Str ing)
abstract java.ut il .Set
getNonCr it icalExtensionOIDs()

abstract java.ut i l.Date
getRevocationDate()
abstract java.math.B igInteger
getSeria lNumber()
abstract boolean hasExtensions()
int hashCode()
abstract boolean
hasUnsupportedCrit icalExtension()
abstract Str ing toString()

interface X509Extension
abstract java.ut il .Set
getCrit icalExtensionOIDs()
abstract byte[] getExtensionValue(Str ing)

abstract java.ut i l.Set
getNonCr it icalExtensionOIDs()
abstract boolean
hasUnsupportedCrit icalExtension()

999.3.10 java.security.interfaces
package java.security.interfaces
interface DSAKey
abstract DSAParams getParams()
interface DSAKeyPairGenerator
abstract void init ia l ize(int ,boolean,
java. security.SecureRandom) throws
java. security. Inval idParameterException

abstract void init ia l ize(DSAParams,
java.security.SecureRandom) throws
java.security. Inval idParameterException

interface DSAParams
abstract java.math.B igInteger getG()
abstract java.math.B igInteger getP()

abstract java.math.B igInteger getQ()

interface DSAPrivateKey extends DSAKey , java.security.PrivateKey
abstract java.math.B igInteger getX() f ina l stat ic long ser ia lVersionUID
interface DSAPublicKey extends DSAKey , java.security.PublicKey
abstract java.math.B igInteger getY() f ina l stat ic long ser ia lVersionUID
interface RSAKey
abstract java.math.B igInteger
getModulus()
interface RSAPrivateCrtKey extends RSAPrivateKey
abstract java.math.B igInteger
getCrtCoeff ic ient()
abstract java.math.B igInteger
getPr imeExponentP()
abstract java.math.B igInteger
getPr imeExponentQ()

abstract java.math .BigInteger getPr imeP()
abstract java.math.B igInteger
getPrimeQ()
abstract java.math.B igInteger
getPubl icExponent()

interface RSAPrivateKey extends java.security.PrivateKey , RSAKey
abstract java.math.B igInteger
getPr ivateExponent()
interface RSAPublicKey extends java.security.PublicKey , RSAKey
abstract java.math.B igInteger
getPubl icExponent()
OSGi Service Platform Release 4 411-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
999.3.11 java.security.spec
package java.security.spec
interface AlgorithmParameterSpec
class DSAParameterSpec implements AlgorithmParameterSpec , java.security.interfaces.DSAParams
DSAParameterSpec(java.math.B igInteger,
java.math.B igInteger,
java.math.B igInteger)

java.math.BigInteger getG()
java.math.BigInteger getP()
java.math.BigInteger getQ()

class DSAPrivateKeySpec implements KeySpec
DSAPrivateKeySpec(java.math.B igInteger,
java.math.B igInteger,
java.math.B igInteger,
java.math.B igInteger)

java.math.BigInteger getG()
java.math.BigInteger getP()
java.math.BigInteger getQ()
java.math.BigInteger getX()

class DSAPublicKeySpec implements KeySpec
DSAPubl icKeySpec(java.math.B ig Integer ,
java.math.B igInteger,
java.math.B igInteger,
java.math.B igInteger)

java.math.BigInteger getG()
java.math.BigInteger getP()
java.math.BigInteger getQ()
java.math.BigInteger getY()

abstract class EncodedKeySpec implements KeySpec
EncodedKeySpec(byte[])
byte[] getEncoded()

abstract Str ing getFormat()

class InvalidKeySpecException extends java.security.GeneralSecurityException
Inval idKeySpecException() Inval idKeySpecException(String)
class InvalidParameterSpecException extends java.security.GeneralSecurityException
Inval idParameterSpecException() Inval idParameterSpecException(String)
interface KeySpec
class PKCS8EncodedKeySpec extends EncodedKeySpec
PKCS8EncodedKeySpec(byte[])
byte[] getEncoded()

f inal Str ing getFormat()

class RSAKeyGenParameterSpec implements AlgorithmParameterSpec
RSAKeyGenParameterSpec(int ,
java.math.B igInteger)
f inal stat ic java.math.B igInteger F0

f inal stat ic java.math.B igInteger F4
int getKeysize()
java.math.BigInteger getPubl icExponent()

class RSAPrivateCrtKeySpec extends RSAPrivateKeySpec

RSAPrivateCrtKeySpec(java.math .BigInteg
er , java.math.B ig Integer,
java.math.B igInteger,
java.math.B igInteger,
java.math.B igInteger,
java.math.B igInteger,
java.math.B igInteger,
java.math.B igInteger)

java.math.BigInteger getCrtCoeffic ient()
java.math.BigInteger
getPr imeExponentP()
java.math.BigInteger
getPr imeExponentQ()
java.math.BigInteger getPrimeP()
java.math.BigInteger getPrimeQ()
java.math.BigInteger getPubl icExponent()

class RSAPrivateKeySpec implements KeySpec
RSAPrivateKeySpec(java.math.B igInteger,
java.math.B igInteger)
java.math.B igInteger getModulus()

java.math.BigInteger
getPr ivateExponent()

class RSAPublicKeySpec implements KeySpec
RSAPubl icKeySpec(java.math.B igInteger,
java.math.B igInteger)

java.math.BigInteger getModulus()
java.math.BigInteger getPubl icExponent()

class X509EncodedKeySpec extends EncodedKeySpec
X509EncodedKeySpec(byte[])
byte[] getEncoded()

f inal Str ing getFormat()

999.3.12 java.text
package java.text
class Annotation
Annotat ion(Object)
Object getValue()

Str ing toStr ing()

interface AttributedCharacterIterator extends CharacterIterator
abstract java.ut i l .Set
getAl lAttr ibuteKeys()
abstract Object
getAttr ibute(Attr ibutedCharacter Iterator.
Attr ibute)
abstract java.ut i l .Map getAttr ibutes()
abstract int getRunLimit()

abstract int
getRunLimit(Attr ibutedCharacterIterator .
Attr ibute)
abstract int getRunL imit(java.ut i l .Set)
abstract int getRunStart()
abstract int
getRunStart(Attr ibutedCharacterIterator .
Attr ibute)
abstract int getRunStart(java.ut i l .Set)
412-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
class AttributedCharacterIterator.Attribute implements java.io.Serializable
protected
Attr ibutedCharacterIterator .Attr ibute(Str
ing)
f inal boolean equals(Object)
protected String getName()
f inal int hashCode()
f inal static
Attr ibutedCharacterIterator .Attr ibute
INPUT_METHOD_SEGMENT

fina l stat ic
Attr ibutedCharacterIterator .Attr ibute
LANGUAGE
fina l stat ic
Attr ibutedCharacterIterator .Attr ibute
READING
protected Object readResolve() throws
java. io. Inval idObjectException
String toStr ing()

class AttributedString
AttributedStr ing(String)
Attr ibutedStr ing(String, java.uti l .Map)

Attr ibutedStr ing(Attr ibutedCharacterIter
ator)

Attr ibutedStr ing(Attr ibutedCharacterIter
ator , int , int)

Attr ibutedStr ing(Attr ibutedCharacterIter
ator , int , int ,
Attr ibutedCharacterIterator .Attr ibute[])

void
addAttr ibute(Attr ibutedCharacter Iterator
.Attr ibute ,Object)
void
addAttr ibute(Attr ibutedCharacter Iterator
.Attr ibute ,Object , int , int)
void addAttr ibutes(java.ut il .Map, int , int)
Attr ibutedCharacterIterator getItera tor()
Attr ibutedCharacterIterator
getIterator (Attr ibutedCharacter Iterator.A
ttr ibute[])
Attr ibutedCharacterIterator
getIterator (Attr ibutedCharacter Iterator.A
ttr ibute[] , int , int)

abstract class BreakIterator implements Cloneable
protected BreakIterator ()
Object clone()
abstract int current()
f inal static int DONE
abstract int f i rst()
abstract int fol lowing(int)
stat ic java.ut il .Locale[]
getAvai lableLocales()
stat ic BreakIterator
getCharacter Instance()
stat ic BreakIterator
getCharacter Instance(java.ut i l .Locale)
stat ic BreakIterator getL ineInstance()
stat ic BreakIterator
getLine Instance(java.ut i l .Locale)

stat ic BreakIterator
getSentenceInstance()
stat ic BreakIterator
getSentenceInstance(java.ut i l .Locale)
abstract CharacterItera tor getText()
stat ic BreakIterator getWordInstance()
stat ic BreakIterator
getWordInstance(java.ut i l .Locale)
boolean isBoundary(int)
abstract int last()
abstract int next()
abstract int next(int)
int preceding(int)
abstract int previous()
void setText(String)
abstract void setText(CharacterIterator)

interface CharacterIterator extends Cloneable
abstract Object c lone()
abstract char current()
f inal static char DONE
abstract char fi r st()
abstract int getBeginIndex()
abstract int getEndIndex()

abstract int getIndex()
abstract char last()
abstract char next()
abstract char previous()
abstract char set Index(int)

class ChoiceFormat extends NumberFormat
ChoiceFormat(double[],Str ing[])
ChoiceFormat(Str ing)
void applyPattern(String)
Object clone()
boolean equals(Object)
Str ingBuffer format(double,Str ingBuffer,
F ieldPosit ion)
Str ingBuffer format(long,Str ingBuffer,
F ieldPosit ion)
Object[] getFormats()

double[] getLimits()
int hashCode()
f ina l stat ic double nextDouble(double)
stat ic double nextDouble(double,
boolean)
Number parse(Str ing,ParsePosit ion)
f ina l stat ic double
prev iousDouble(double)
void setChoices(double[] ,Str ing[])
Str ing toPattern()

final class CollationElementIterator
int getMaxExpansion(int)
int getOffset()
int next()
f inal static int NULLORDER
int previous()
f inal static int pr imaryOrder(int)

void reset()
f ina l stat ic short secondaryOrder(int)
void setOffset(int)
void setText(String)
void setText(Character Iterator)
f ina l stat ic short tert iaryOrder(int)

final class CollationKey implements Comparable
int compareTo(Object)
int compareTo(Col lat ionKey)
boolean equals(Object)

Str ing getSourceString()
int hashCode()
byte[] toByteArray()
OSGi Service Platform Release 4 413-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
abstract class Collator implements java.util.Comparator , Cloneable
protected Col lator()
f inal stat ic int
CANONICAL_DECOMPOSITION
Object clone()
int compare(Object ,Object)
abstract int compare(String ,Str ing)
boolean equals(Object)
boolean equals(String,Str ing)
f inal stat ic int FULL_DECOMPOSITION
stat ic java.ut i l .Locale[]
getAvai lab leLocales()
abstract Col lat ionKey
getCol lat ionKey(String)

int getDecomposit ion()
stat ic Col lator get Instance()
stat ic Col lator
get Instance(java.ut i l .Locale)
int getStrength()
abstract int hashCode()
f inal stat ic int IDENTICAL
f inal stat ic int NO_DECOMPOSIT ION
final stat ic int PR IMARY
final stat ic int SECONDARY
vo id setDecomposit ion(int)
vo id setStrength(int)
f inal stat ic int TERTIARY

abstract class DateFormat extends Format
protected DateFormat()
f inal stat ic int AM_PM_FIELD
protected java.ut i l .Calendar calendar
Object clone()
f inal stat ic int DATE_FIELD
final stat ic int DAY_OF_WEEK_FIELD
final stat ic int
DAY_OF_WEEK_IN_MONTH_FIELD
final stat ic int DAY_OF_YEAR_FIELD
final stat ic int DEFAULT
boolean equals(Object)
f inal stat ic int ERA_FIELD
final StringBuffer format(Object ,
Str ingBuffer, FieldPosit ion)
f inal Str ing format(java.ut i l .Date)
abstract Str ingBuffer
format(java.ut i l .Date ,Str ingBuffer,
F ieldPosit ion)
f inal stat ic int FULL
stat ic java.ut i l .Locale[]
getAvai lab leLocales()
java.ut i l.Calendar getCalendar()
f inal stat ic DateFormat getDateInstance()
f inal stat ic DateFormat
getDateInstance(int)
f inal stat ic DateFormat
getDateInstance(int , java.ut i l .Locale)
f inal stat ic DateFormat
getDateTimeInstance()
f inal stat ic DateFormat
getDateTimeInstance(int , int)
f inal stat ic DateFormat
getDateTimeInstance(int , int ,
java.ut i l. Locale)
f inal stat ic DateFormat get Instance()

NumberFormat getNumberFormat()
f inal stat ic DateFormat
getTimeInstance()
f inal stat ic DateFormat
getTimeInstance(int)
f inal stat ic DateFormat
getTimeInstance(int , java.ut i l.Locale)
java.ut i l .TimeZone getTimeZone()
int hashCode()
f inal stat ic int HOUR0_FIELD
final stat ic int HOUR1_FIELD
final stat ic int HOUR_OF_DAY0_FIELD
final stat ic int HOUR_OF_DAY1_FIELD
boolean isLenient()
f inal stat ic int LONG
final stat ic int MEDIUM
final stat ic int MILL ISECOND_FIELD
final stat ic int MINUTE_FIELD
final stat ic int MONTH_FIELD
protected NumberFormat numberFormat
java.ut i l .Date parse(Str ing) throws
ParseException
abstract java.uti l .Date parse(Str ing,
ParsePosit ion)
Object parseObject(String ,ParsePosit ion)
f inal stat ic int SECOND_FIELD
vo id setCalendar(java.ut i l .Calendar)
vo id setLenient(boolean)
vo id setNumberFormat(NumberFormat)
vo id setT imeZone(java.uti l .T imeZone)
f inal stat ic int SHORT
final stat ic int TIMEZONE_FIELD
final stat ic int WEEK_OF_MONTH_FIELD
final stat ic int WEEK_OF_YEAR_FIELD
final stat ic int YEAR_FIELD

class DateFormatSymbols implements java.io.Serializable , Cloneable
DateFormatSymbols()
DateFormatSymbols(java.ut il .Locale)
Object clone()
boolean equals(Object)
Str ing[] getAmPmStr ings()
Str ing[] getEras()
Str ing getLocalPatternChars()
Str ing[] getMonths()
String[] getShortMonths()
Str ing[] getShortWeekdays()
Str ing[] getWeekdays()

Str ing[] [] getZoneStr ings()
int hashCode()
vo id setAmPmStrings(String[])
vo id setEras(String[])
vo id setLocalPatternChars(String)
vo id setMonths(String[])
vo id setShortMonths(String[])
vo id setShortWeekdays(String[])
vo id setWeekdays(Str ing[])
vo id setZoneStr ings(Str ing[][])

class DecimalFormat extends NumberFormat
DecimalFormat()
DecimalFormat(String)
DecimalFormat(String,
DecimalFormatSymbols)
void applyLocal izedPattern(String)
void applyPattern(String)
Object clone()
boolean equals(Object)

Str ingBuffer format(double,Str ingBuffer,
F ieldPosit ion)
Str ingBuffer format(long,Str ingBuffer,
F ieldPosit ion)
DecimalFormatSymbols
getDecimalFormatSymbols()
int getGroupingSize()
int getMult ipl ier()
414-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
String getNegativePref ix()
Str ing getNegativeSuffix()
Str ing getPosit ivePref ix()
Str ing getPosit iveSuff ix()
int hashCode()
boolean
isDecimalSeparatorAlwaysShown()
Number parse(Str ing,ParsePosit ion)
void
setDecimalFormatSymbols(DecimalForma
tSymbols)
void
setDecimalSeparatorAlwaysShown(boole
an)

void setGroupingSize(int)
void setMaximumFract ionDigits(int)
void setMaximumIntegerDigits(int)
void setMinimumFract ionDigits(int)
void setMinimumIntegerDigits(int)
void setMult ipl ier (int)
void setNegativePref ix(Str ing)
void setNegativeSuff ix(Str ing)
void setPosit ivePref ix(Str ing)
void setPosit iveSuff ix(Str ing)
Str ing toLocal izedPattern()
Str ing toPattern()

final class DecimalFormatSymbols implements Cloneable , java.io.Serializable
DecimalFormatSymbols()
DecimalFormatSymbols(java.ut i l .Locale)
Object clone()
boolean equals(Object)
Str ing getCurrencySymbol()
char getDecimalSeparator()
char getDigit()
char getGroupingSeparator()
Str ing getInfin ity ()
Str ing getInternationalCurrencySymbol()
char getMinusSign()
char getMonetaryDecimalSeparator()
Str ing getNaN()
char getPatternSeparator()
char getPercent()
char getPerMi l l()

char getZeroDig it()
int hashCode()
void setCurrencySymbol(String)
void setDecimalSeparator(char)
void setDigit(char)
void setGroupingSeparator(char)
void set Inf inity(String)
void
set InternationalCurrencySymbol(Str ing)
void setMinusSign(char)
void setMonetaryDecimalSeparator(char)
void setNaN(String)
void setPatternSeparator(char)
void setPercent(char)
void setPerMil l (char)
void setZeroDigit(char)

class FieldPosition
FieldPosit ion(int)
boolean equals(Object)
int getBeginIndex()
int getEndIndex()
int getField()

int hashCode()
void setBegin Index(int)
void setEndIndex(int)
Str ing toStr ing()

abstract class Format implements java.io.Serializable , Cloneable
Format()
Object clone()
f inal Str ing format(Object)
abstract Str ingBuffer format(Object ,
StringBuffer ,Fie ldPosit ion)

Object parseObject(String) throws
ParseException
abstract Object parseObject(Str ing,
ParsePosit ion)

class MessageFormat extends Format
MessageFormat(Str ing)
void applyPattern(String)
Object clone()
boolean equals(Object)
f inal Str ingBuffer format(Object[] ,
StringBuffer ,Fie ldPosit ion)
f inal Str ingBuffer format(Object ,
StringBuffer ,Fie ldPosit ion)
stat ic Str ing format(Str ing,Object[])
Format[] getFormats()

java.ut i l .Locale getLocale()
int hashCode()
Object[] parse(Str ing) throws
ParseException
Object[] parse(Str ing,ParsePosit ion)
Object parseObject(Str ing,ParsePosit ion)
void setFormat(int ,Format)
void setFormats(Format[])
void setLocale(java.ut i l .Locale)
Str ing toPattern()

abstract class NumberFormat extends Format
NumberFormat()
Object clone()
boolean equals(Object)
f inal Str ing format(double)
abstract Str ingBuffer format(double ,
StringBuffer ,Fie ldPosit ion)
f inal Str ing format(long)
abstract Str ingBuffer format(long,
StringBuffer ,Fie ldPosit ion)
f inal Str ingBuffer format(Object ,
StringBuffer ,Fie ldPosit ion)
f inal static int FRACTION_FIELD
stat ic java.ut il .Locale[]
getAvai lableLocales()
f inal static NumberFormat
getCurrencyInstance()

stat ic NumberFormat
getCurrencyInstance(java.ut i l .Locale)
f ina l stat ic NumberFormat getInstance()
stat ic NumberFormat
getInstance(java.ut il .Locale)
int getMaximumFract ionDig its()
int getMaximumIntegerDigits()
int getMin imumFract ionDigits()
int getMin imumIntegerDigits()
f ina l stat ic NumberFormat
getNumberInstance()
stat ic NumberFormat
getNumberInstance(java.ut il .Loca le)
f ina l stat ic NumberFormat
getPercentInstance()
OSGi Service Platform Release 4 415-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
stat ic NumberFormat
getPercentInstance(java.ut i l .Locale)
int hashCode()
f inal stat ic int INTEGER_FIELD
boolean isGroupingUsed()
boolean isParseIntegerOnly()
Number parse(String) throws
ParseException
abstract Number parse(Str ing,
ParsePosit ion)

f inal Object parseObject(String,
ParsePosit ion)
vo id setGroupingUsed(boolean)
vo id setMaximumFractionDig its(int)
vo id setMaximumIntegerDigits(int)
vo id setMinimumFract ionDigits(int)
vo id setMinimumIntegerDigits(int)
vo id setParse IntegerOnly(boolean)

class ParseException extends Exception
ParseException(String , int) int getErrorOffset()
class ParsePosition
ParsePosit ion(int)
boolean equals(Object)
int getError Index()
int getIndex()

int hashCode()
vo id setErrorIndex(int)
vo id setIndex(int)
Str ing toStr ing()

class RuleBasedCollator extends Collator
RuleBasedCol lator(Str ing) throws
ParseException
Object clone()
int compare(String,Str ing)
boolean equals(Object)
Col lat ionElementIterator
getCol lat ionElementIterator (String)

Co llat ionElementIterator
getCol lat ionElementIterator (CharacterIte
rator)
Co llat ionKey getCol lat ionKey(String)
Str ing getRules()
int hashCode()

class SimpleDateFormat extends DateFormat
SimpleDateFormat()
S impleDateFormat(Str ing)
S impleDateFormat(Str ing,
DateFormatSymbols)
S impleDateFormat(Str ing,
java.ut i l. Locale)
void applyLocal izedPattern(String)
void applyPattern(String)
Object clone()
boolean equals(Object)
Str ingBuffer format(java.ut i l.Date,
Str ingBuffer, FieldPosit ion)

java.ut i l .Date get2DigitYearStar t()
DateFormatSymbols
getDateFormatSymbols()
int hashCode()
java.ut i l .Date parse(String ,ParsePosit ion)
vo id set2DigitYearStart(java.ut i l .Date)
vo id
setDateFormatSymbols(DateFormatSymb
ols)
Str ing toLocal izedPattern()
Str ing toPattern()

final class StringCharacterIterator implements CharacterIterator
StringCharacterIterator(Str ing)
Str ingCharacterIterator(Str ing, int)
Str ingCharacterIterator(Str ing, int , int, int)
Object clone()
char current()
boolean equals(Object)
char f ir st()
int getBeginIndex()

int getEndIndex()
int get Index()
int hashCode()
char last()
char next()
char previous()
char set Index(int)
vo id setText(String)

999.3.13 java.text.resources
package java.text.resources
class BreakIteratorRules extends java.util.ListResourceBundle
BreakIteratorRules() Object[][] getContents()
class BreakIteratorRules_th extends java.util.ListResourceBundle
BreakIteratorRules_th() Object[][] getContents()

999.3.14 java.util
package java.util
abstract class AbstractCollection implements Collection
protected AbstractCol lect ion()
boolean add(Object)
boolean addAll (Col lect ion)
void c lear()
boolean contains(Object)
boolean containsAl l (Col lect ion)
boolean isEmpty()
abstract Iterator iterator ()

boolean remove(Object)
boolean removeAl l (Col lect ion)
boolean retainAl l (Col lect ion)
abstract int s ize()
Object[] toArray()
Object[] toArray(Object[])
Str ing toStr ing()

abstract class AbstractList extends AbstractCollection implements List
protected AbstractList()
void add(int ,Object)

boolean add(Object)
boolean addAll (int ,Co llect ion)
416-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
void c lear()
boolean equals(Object)
abstract Object get(int)
int hashCode()
int indexOf(Object)
I te rator iterator()
int last IndexOf(Object)

L ist Iterator l ist I te rator()
L ist Iterator l ist I te rator(int)
protected int modCount
Object remove(int)
protected void removeRange(int , int)
Object set(int ,Object)
L ist subList(int , int)

abstract class AbstractMap implements Map
protected AbstractMap()
void c lear()
boolean containsKey(Object)
boolean containsValue(Object)
abstract Set entrySet()
boolean equals(Object)
Object get(Object)
int hashCode()

boolean isEmpty()
Set keySet()
Object put(Object ,Object)
void putAl l (Map)
Object remove(Object)
int s ize()
Str ing toStr ing()
Col lect ion values()

abstract class AbstractSequentialList extends AbstractList
protected AbstractSequentialL ist()
void add(int ,Object)
boolean addAl l(int ,Collect ion)
Object get(int)

I te rator i te rator()
abstract List Iterator l ist I terator(int)
Object remove(int)
Object set(int ,Object)

abstract class AbstractSet extends AbstractCollection implements Set
protected AbstractSet()
boolean equals(Object)

int hashCode()
boolean removeAl l(Col lect ion)

class ArrayList extends AbstractList implements List , Cloneable , java.io.Serializable
ArrayList()
ArrayList(int)
ArrayList(Col lect ion)
void add(int ,Object)
boolean add(Object)
boolean addAl l(int ,Collect ion)
boolean addAl l(Col lect ion)
void c lear()
Object clone()
boolean contains(Object)
void ensureCapacity(int)

Object get(int)
int indexOf(Object)
boolean isEmpty()
int last IndexOf(Object)
Object remove(int)
protected void removeRange(int , int)
Object set(int ,Object)
int s ize()
Object[] toArray()
Object[] toArray(Object[])
void tr imToSize()

class Arrays
stat ic List asList(Object[])
stat ic int binarySearch(byte[] ,byte)
stat ic int binarySearch(char[] ,char)
stat ic int binarySearch(double[] ,double)
stat ic int binarySearch(float[] , f loat)
stat ic int binarySearch(int[] , int)
stat ic int binarySearch(long[], long)
stat ic int binarySearch(Object[] ,Object)
stat ic int binarySearch(Object[] ,Object ,
Comparator)
stat ic int binarySearch(short[] ,short)
stat ic boolean equals(byte[],byte[])
stat ic boolean equals(char[] ,char[])
stat ic boolean equals(double[] ,double[])
stat ic boolean equals(f loat[] , f loat[])
stat ic boolean equals(int[] , int[])
stat ic boolean equals(long[], long[])
stat ic boolean equals(Object[] ,Object[])
stat ic boolean equals(short[] ,short[])
stat ic boolean equals(boolean[],
boolean[])
stat ic void f i l l(byte[] ,byte)
stat ic void f i l l(byte[] , int , int ,byte)
stat ic void f i l l(char[] , char)
stat ic void f i l l(char[] , int , int ,char)
stat ic void f i l l(double[] ,double)
stat ic void f i l l(double[] , int , int ,double)
stat ic void f i l l(f loat[] , f loat)
stat ic void f i l l(f loat[] , int , int , float)

stat ic void f i l l(int[] , int)
stat ic void f i l l(int[] , int , int , int)
stat ic void f i l l(long[] , int , int , long)
stat ic void f i l l(long[] , long)
stat ic void f i l l(Object[] , int , int ,Object)
stat ic void f i l l(Object[] ,Object)
stat ic void f i l l(short[] , int , int ,short)
stat ic void f i l l(short[] ,short)
stat ic void f i l l(boolean[] , int , int ,boolean)
stat ic void f i l l(boolean[] ,boolean)
stat ic void sort(byte[])
stat ic void sort(byte[] , int , int)
stat ic void sort(char[])
stat ic void sort(char[] , int , int)
stat ic void sort(double[])
stat ic void sort(double[] , int , int)
stat ic void sort(f loat[])
stat ic void sort(f loat[] , int , int)
stat ic void sort(int[])
stat ic void sort(int[] , int , int)
stat ic void sort(long[])
stat ic void sort(long[] , int , int)
stat ic void sort(Object[])
stat ic void sort(Object[] , int , int)
stat ic void sort(Object[] , int , int ,
Comparator)
stat ic void sort(Object[] ,Comparator)
stat ic void sort(short[])
stat ic void sort(short[] , int , int)

class BitSet implements java.io.Serializable , Cloneable
BitSet()
B itSet(int)
void and(BitSet)
void andNot(BitSet)

void c lear(int)
Object clone()
boolean equals(Object)
boolean get(int)
OSGi Service Platform Release 4 417-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
int hashCode()
int length()
void or(B itSet)
void set(int)

int s ize()
Str ing toStr ing()
vo id xor (B itSet)

abstract class Calendar implements java.io.Serializable , Cloneable
protected Calendar()
protected Calendar(TimeZone,Locale)
abstract void add(int , int)
boolean after(Object)
f inal stat ic int AM
final stat ic int AM_PM
final stat ic int APRIL
protected boo lean areFieldsSet
f inal stat ic int AUGUST
boolean before(Object)
f inal void c lear()
f inal void c lear(int)
Object clone()
protected void complete()
abstract protected void computeFie lds()
abstract protected void computeTime()
f inal stat ic int DATE
f inal stat ic int DAY_OF_MONTH
final stat ic int DAY_OF_WEEK
final stat ic int DAY_OF_WEEK_IN_MONTH
final stat ic int DAY_OF_YEAR
f inal stat ic int DECEMBER
f inal stat ic int DST_OFFSET
boolean equals(Object)
f inal stat ic int ERA
f inal stat ic int FEBRUARY
final stat ic int FIELD_COUNT
protected int[] f ields
f inal stat ic int FR IDAY
final int get(int)
int getActualMaximum(int)
int getActualMinimum(int)
stat ic Locale[] getAvai lableLocales()
int getFirstDayOfWeek()
abstract int getGreatestMinimum(int)
stat ic Calendar get Instance()
stat ic Calendar get Instance(Locale)
stat ic Calendar get Instance(TimeZone)
stat ic Calendar get Instance(TimeZone,
Locale)
abstract int getLeastMaximum(int)
abstract int getMaximum(int)
int getMin imalDaysInFirstWeek()
abstract int getMinimum(int)
f inal Date getTime()
protected long getTimeInMil l is()
TimeZone getTimeZone()

int hashCode()
f inal stat ic int HOUR
final stat ic int HOUR_OF_DAY
final protected int internalGet(int)
boolean isLenient()
f inal boolean isSet(int)
protected boolean[] isSet
protected boolean isTimeSet
f inal stat ic int JANUARY
final stat ic int JULY
f inal stat ic int JUNE
f inal stat ic int MARCH
final stat ic int MAY
final stat ic int MILL ISECOND
final stat ic int MINUTE
final stat ic int MONDAY
final stat ic int MONTH
final stat ic int NOVEMBER
f inal stat ic int OCTOBER
f inal stat ic int PM
void ro ll (int , int)
abstract void rol l (int ,boo lean)
f inal stat ic int SATURDAY
final stat ic int SECOND
final stat ic int SEPTEMBER
f inal void set(int, int)
f inal void set(int, int , int)
f inal void set(int, int , int , int , int)
f inal void set(int, int , int , int , int , int)
vo id setFirstDayOfWeek(int)
vo id setLenient(boolean)
vo id setMinimalDaysInFirstWeek(int)
f inal void setTime(Date)
protected void setTimeInMill is(long)
vo id setT imeZone(TimeZone)
f inal stat ic int SUNDAY
final stat ic int THURSDAY
protected long t ime
String toStr ing()
f inal stat ic int TUESDAY
final stat ic int UNDECIMBER
f inal stat ic int WEDNESDAY
final stat ic int WEEK_OF_MONTH
final stat ic int WEEK_OF_YEAR
f inal stat ic int YEAR
f inal stat ic int ZONE_OFFSET

interface Collection
abstract boo lean add(Object)
abstract boo lean addAl l(Col lect ion)
abstract void clear()
abstract boo lean contains(Object)
abstract boo lean containsAll (Col lect ion)
abstract boo lean equals(Object)
abstract int hashCode()
abstract boo lean isEmpty()

abstract Iterator iterator ()
abstract boolean remove(Object)
abstract boolean removeAl l (Collect ion)
abstract boolean retainAl l (Col lect ion)
abstract int s ize()
abstract Object[] toArray()
abstract Object[] toArray(Object[])

class Collections
stat ic int b inarySearch(L ist ,Object)
stat ic int b inarySearch(L ist ,Object ,
Comparator)
stat ic void copy(List ,L ist)
f inal stat ic L ist EMPTY_LIST
f inal stat ic Map EMPTY_MAP
final stat ic Set EMPTY_SET
stat ic Enumeration
enumeration(Collect ion)

stat ic void f i l l (List ,Object)
stat ic Object max(Col lect ion)
stat ic Object max(Col lect ion ,
Comparator)
stat ic Object min(Col lect ion)
stat ic Object min(Col lect ion ,Comparator)
stat ic List nCopies(int ,Object)
stat ic void reverse(List)
stat ic Comparator reverseOrder()
418-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
stat ic void shuffle(L ist)
stat ic void shuffle(L ist ,Random)
stat ic Set s ingleton(Object)
stat ic List s ingletonL ist(Object)
stat ic Map s ing letonMap(Object ,Object)
stat ic void sort(List)
stat ic void sort(List ,Comparator)
stat ic Col lect ion
synchronizedCol lect ion(Collect ion)
stat ic List synchronizedList(List)
stat ic Map synchronizedMap(Map)
stat ic Set synchronizedSet(Set)

stat ic SortedMap
synchronizedSortedMap(SortedMap)
stat ic SortedSet
synchronizedSortedSet(SortedSet)
stat ic Col lect ion
unmodif iableCol lect ion(Col lect ion)
stat ic L ist unmodif iab leList(List)
stat ic Map unmodif iableMap(Map)
stat ic Set unmodif iableSet(Set)
stat ic SortedMap
unmodif iableSortedMap(SortedMap)
stat ic SortedSet
unmodif iableSortedSet(SortedSet)

interface Comparator
abstract int compare(Object ,Object) abstract boolean equals(Object)
class ConcurrentModificationException extends RuntimeException
ConcurrentModif icat ionException() ConcurrentModif icat ionException(String)
class Date implements java.io.Serializable , Cloneable , Comparable
Date()
Date(long)
boolean after(Date)
boolean before(Date)
Object clone()
int compareTo(Object)

int compareTo(Date)
boolean equals(Object)
long getTime()
int hashCode()
void setTime(long)
Str ing toStr ing()

abstract class Dictionary
Dict ionary()
abstract Enumeration elements()
abstract Object get(Object)
abstract boolean isEmpty()

abstract Enumeration keys()
abstract Object put(Object ,Object)
abstract Object remove(Object)
abstract int s ize()

class EmptyStackException extends RuntimeException
EmptyStackException()
interface Enumeration
abstract boolean hasMoreElements() abstract Object nextElement()
interface EventListener
class EventObject implements java.io.Serializable
EventObject(Object)
Object getSource()

protected Object source
String toStr ing()

class GregorianCalendar extends Calendar
Gregor ianCalendar()
Gregor ianCalendar(int , int , int)
Gregor ianCalendar(int , int , int , int , int)
Gregor ianCalendar(int , int , int , int , int , int)
Gregor ianCalendar(Locale)
Gregor ianCalendar(TimeZone)
Gregor ianCalendar(TimeZone,Locale)
f inal static int AD
void add(int , int)
f inal static int BC
protected void computeFields()
protected void computeTime()
boolean equals(Object)

int getActualMaximum(int)
int getActualMin imum(int)
int getGreatestMinimum(int)
f ina l Date getGregorianChange()
int getLeastMaximum(int)
int getMaximum(int)
int getMin imum(int)
int hashCode()
boolean isLeapYear(int)
void rol l(int , int)
void rol l(int ,boolean)
void setGregorianChange(Date)

class HashMap extends AbstractMap implements Map , Cloneable , java.io.Serializable
HashMap()
HashMap(int)
HashMap(int , f loat)
HashMap(Map)
void c lear()
Object clone()
boolean containsKey(Object)
boolean containsValue(Object)
Set entrySet()

Object get(Object)
boolean isEmpty()
Set keySet()
Object put(Object ,Object)
void putAl l (Map)
Object remove(Object)
int s ize()
Col lect ion values()

class HashSet extends AbstractSet implements Set , Cloneable , java.io.Serializable
HashSet()
HashSet(int)
HashSet(int , f loat)
HashSet(Col lect ion)
boolean add(Object)
void c lear()

Object clone()
boolean contains(Object)
boolean isEmpty()
I te rator i te rator()
boolean remove(Object)
int s ize()

class Hashtable extends Dictionary implements Map , Cloneable , java.io.Serializable
Hashtable() Hashtable(int)
OSGi Service Platform Release 4 419-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
Hashtable(int , f loat)
Hashtable(Map)
void c lear()
Object clone()
boolean contains(Object)
boolean containsKey(Object)
boolean containsValue(Object)
Enumeration e lements()
Set entrySet()
boolean equals(Object)
Object get(Object)

int hashCode()
boolean isEmpty()
Enumeration keys()
Set keySet()
Object put(Object ,Object)
vo id putAl l (Map)
protected void rehash()
Object remove(Object)
int s ize()
Str ing toStr ing()
Co llect ion values()

interface Iterator
abstract boo lean hasNext()
abstract Object next()

abstract void remove()

class LinkedList extends AbstractSequentialList implements List , Cloneable , java.io.Serializable
L inkedL ist()
L inkedL ist(Col lect ion)
void add(int ,Object)
boolean add(Object)
boolean addAll (int ,Col lect ion)
boolean addAll (Col lect ion)
void addFirst(Object)
void addLast(Object)
void c lear()
Object clone()
boolean contains(Object)
Object get(int)
Object getFirst()

Object getLast()
int indexOf(Object)
int last IndexOf(Object)
L istIterator list I terator(int)
Object remove(int)
boolean remove(Object)
Object removeFirst()
Object removeLast()
Object set(int ,Object)
int s ize()
Object[] toArray()
Object[] toArray(Object[])

interface List extends Collection
abstract void add(int ,Object)
abstract boo lean add(Object)
abstract boo lean addAl l(int ,Col lect ion)
abstract boo lean addAl l(Col lect ion)
abstract void clear()
abstract boo lean contains(Object)
abstract boo lean containsAll (Col lect ion)
abstract boo lean equals(Object)
abstract Object get(int)
abstract int hashCode()
abstract int indexOf(Object)
abstract boo lean isEmpty()
abstract Iterator iterator ()

abstract int last IndexOf(Object)
abstract List Iterator l ist I terator ()
abstract List Iterator l ist I terator (int)
abstract Object remove(int)
abstract boolean remove(Object)
abstract boolean removeAl l (Collect ion)
abstract boolean retainAl l (Col lect ion)
abstract Object set(int ,Object)
abstract int s ize()
abstract List subL ist(int , int)
abstract Object[] toArray()
abstract Object[] toArray(Object[])

interface ListIterator extends Iterator
abstract void add(Object)
abstract boo lean hasNext()
abstract boo lean hasPrevious()
abstract Object next()
abstract int next Index()

abstract Object previous()
abstract int prev iousIndex()
abstract void remove()
abstract void set(Object)

abstract class ListResourceBundle extends ResourceBundle
L istResourceBundle()
abstract protected Object[][]
getContents()

Enumeration getKeys()
f inal Object handleGetObject(String)

final class Locale implements Cloneable , java.io.Serializable
Locale(String,Str ing)
Locale(String,Str ing ,Str ing)
f inal stat ic Locale CANADA
final stat ic Locale CANADA_FRENCH
final stat ic Locale CHINA
final stat ic Locale CHINESE
Object clone()
f inal stat ic Locale ENGLISH
boolean equals(Object)
f inal stat ic Locale FRANCE
final stat ic Locale FRENCH
final stat ic Locale GERMAN
final stat ic Locale GERMANY
stat ic Locale[] getAvai lableLocales()
Str ing getCountry()
stat ic Locale getDefau lt()
f inal Str ing getDisp layCountry()
Str ing getDisp layCountry(Locale)

f inal String getDisplayLanguage()
Str ing getDisp layLanguage(Locale)
f inal Str ing getDisplayName()
Str ing getDisp layName(Locale)
f inal Str ing getDisplayVariant()
Str ing getDisp layVariant(Locale)
Str ing getISO3Country() throws
MissingResourceException
String getISO3Language() throws
MissingResourceException
stat ic Str ing[] getISOCountr ies()
stat ic Str ing[] getISOLanguages()
Str ing getLanguage()
Str ing getVariant()
int hashCode()
f inal stat ic Locale ITALIAN
final stat ic Locale ITALY
f inal stat ic Locale JAPAN
420-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
f inal static Locale JAPANESE
f inal static Locale KOREA
final static Locale KOREAN
final static Locale PRC
stat ic void setDefault(Locale)
f inal static Locale SIMPLIF IED_CHINESE

f ina l stat ic Locale TAIWAN
fina l Str ing toString()
f ina l stat ic Locale TRADITIONAL_CHINESE
f ina l stat ic Locale UK
f ina l stat ic Locale US

interface Map
abstract void c lear()
abstract boolean containsKey(Object)
abstract boolean containsValue(Object)
abstract Set entrySet()
abstract boolean equals(Object)
abstract Object get(Object)
abstract int hashCode()

abstract boolean isEmpty()
abstract Set keySet()
abstract Object put(Object ,Object)
abstract void putAl l(Map)
abstract Object remove(Object)
abstract int s ize()
abstract Col lect ion values()

interface Map.Entry
abstract boolean equals(Object)
abstract Object getKey()
abstract Object getValue()

abstract int hashCode()
abstract Object setValue(Object)

class MissingResourceException extends RuntimeException
MissingResourceException(String ,Str ing,
Str ing)

Str ing getClassName()
Str ing getKey()

class NoSuchElementException extends RuntimeException
NoSuchElementException() NoSuchElementException(String)
class Observable
Observable()
void addObserver(Observer)
protected void c learChanged()
int countObservers()
void deleteObserver(Observer)

void deleteObservers()
boolean hasChanged()
void noti fyObservers()
void noti fyObservers(Object)
protected void setChanged()

interface Observer
abstract void update(Observable ,Object)
class Properties extends Hashtable
Propert ies()
Propert ies(Propert ies)
protected Propert ies defaults
String getProperty(String)
Str ing getProperty(Str ing,Str ing)
void l ist(java. io.PrintStream)
void l ist(java. io.PrintWriter)

void load(java. io. InputStream) throws
java. io. IOException
Enumeration propertyNames()
void save(java. io.OutputStream,String)
Object setProperty(Str ing,Str ing)
void store(java. io.OutputStream,String)
throws java. io. IOException

final class PropertyPermission extends java.security.BasicPermission
PropertyPermission(Str ing,Str ing)
boolean equals(Object)
String getActions()
int hashCode()

boolean impl ies(java.secur ity .Permission)
java.security.PermissionCollect ion
newPermissionCollection()

class PropertyResourceBundle extends ResourceBundle

PropertyResourceBundle(java. io. InputStre
am) throws java. io. IOException

Enumeration getKeys()
Object handleGetObject(String)

class Random implements java.io.Serializable
Random()
Random(long)
protected int next(int)
boolean nextBoolean()
void nextBytes(byte[])
double nextDouble()

f loat nextF loat()
double nextGaussian()
int nextInt()
int nextInt(int)
long nextLong()
void setSeed(long)

abstract class ResourceBundle
ResourceBundle()
f inal static ResourceBundle
getBundle(String) throws
MissingResourceException
f inal static ResourceBundle
getBundle(Str ing,Locale)
stat ic ResourceBundle getBundle(String,
Loca le ,ClassLoader) throws
MissingResourceException
abstract Enumeration getKeys()
Loca le getLocale()

f ina l Object getObject(String) throws
MissingResourceException
f ina l Str ing getString(String) throws
MissingResourceException
f ina l Str ing[] getStringArray(Str ing)
throws MissingResourceException
abstract protected Object
handleGetObject(String) throws
MissingResourceException
protected ResourceBundle parent
protected void
setParent(ResourceBundle)

interface Set extends Collection
abstract boolean add(Object) abstract boolean addAl l(Col lect ion)
OSGi Service Platform Release 4 421-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
abstract void clear()
abstract boo lean contains(Object)
abstract boo lean containsAll (Col lect ion)
abstract boo lean equals(Object)
abstract int hashCode()
abstract boo lean isEmpty()
abstract Iterator iterator ()

abstract boolean remove(Object)
abstract boolean removeAl l (Collect ion)
abstract boolean retainAl l (Col lect ion)
abstract int s ize()
abstract Object[] toArray()
abstract Object[] toArray(Object[])

class SimpleTimeZone extends TimeZone
SimpleTimeZone(int ,Str ing)
S impleTimeZone(int ,Str ing, int , int , int , int ,
int , int , int , int)
S impleTimeZone(int ,Str ing, int , int , int , int ,
int , int , int , int , int)
Object clone()
boolean equals(Object)
int getDSTSavings()
int getOffset(int , int , int , int , int , int)
int getRawOffset()
int hashCode()
boolean hasSameRules(TimeZone)

boolean inDay lightTime(Date)
vo id setDSTSavings(int)
vo id setEndRule(int , int , int)
vo id setEndRule(int , int , int , int)
vo id setEndRule(int , int , int , int ,boolean)
vo id setRawOffset(int)
vo id setStartRule(int , int , int)
vo id setStartRule(int , int , int , int)
vo id setStartRule(int , int , int , int ,boolean)
vo id setStartYear(int)
Str ing toStr ing()
boolean useDayl ightTime()

interface SortedMap extends Map
abstract Comparator comparator ()
abstract Object f i rstKey()
abstract SortedMap headMap(Object)
abstract Object lastKey()

abstract SortedMap subMap(Object ,
Object)
abstract SortedMap tai lMap(Object)

interface SortedSet extends Set
abstract Comparator comparator ()
abstract Object f i rst()
abstract SortedSet headSet(Object)
abstract Object last()

abstract SortedSet subSet(Object ,
Object)
abstract SortedSet tailSet(Object)

class Stack extends Vector
Stack()
boolean empty()
Object peek()

Object pop()
Object push(Object)
int search(Object)

class StringTokenizer implements Enumeration
StringTokenizer (String)
Str ingTokenizer (String,Str ing)
StringTokenizer (String,Str ing,boo lean)
int countTokens()
boolean hasMoreElements()

boolean hasMoreTokens()
Object nextElement()
String nextToken()
String nextToken(String)

class Timer
Timer()
Timer(boolean)
void cancel()
void schedule(TimerTask, long)
void schedule(TimerTask, long, long)
void schedule(TimerTask,Date)

vo id schedule(TimerTask,Date, long)
vo id scheduleAtFixedRate(TimerTask,
long, long)
vo id scheduleAtFixedRate(TimerTask,
Date, long)

abstract class TimerTask implements Runnable
protected TimerTask()
boolean cance l()

abstract void run()
long scheduledExecut ionTime()

abstract class TimeZone implements java.io.Serializable , Cloneable
TimeZone()
Object clone()
stat ic Str ing[] getAvai lableIDs()
stat ic Str ing[] getAvai lableIDs(int)
stat ic TimeZone getDefault()
f inal Str ing getDisp layName()
f inal Str ing getDisp layName(Locale)
f inal String getDisplayName(boolean, int)
Str ing getDisp layName(boolean, int ,
Locale)
Str ing getID()

abstract int getOffset(int , int , int , int , int ,
int)
abstract int getRawOffset()
stat ic TimeZone getTimeZone(String)
boolean hasSameRules(T imeZone)
abstract boolean inDayl ightTime(Date)
f inal stat ic int LONG
stat ic void setDefault(T imeZone)
vo id setID(Str ing)
abstract void setRawOffset(int)
f inal stat ic int SHORT
abstract boolean useDay l ightTime()

class TooManyListenersException extends Exception
TooManyListenersException() TooManyListenersException(Str ing)
class TreeMap extends AbstractMap implements SortedMap , Cloneable , java.io.Serializable
TreeMap()
TreeMap(Comparator)
TreeMap(Map)
TreeMap(SortedMap)

vo id c lear()
Object clone()
Comparator comparator()
boolean containsKey(Object)
422-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
boolean containsValue(Object)
Set entrySet()
Object f ir stKey()
Object get(Object)
SortedMap headMap(Object)
Set keySet()
Object lastKey()

Object put(Object ,Object)
void putAl l (Map)
Object remove(Object)
int s ize()
SortedMap subMap(Object ,Object)
SortedMap tai lMap(Object)
Col lect ion values()

class TreeSet extends AbstractSet implements SortedSet , Cloneable , java.io.Serializable
TreeSet()
TreeSet(Col lect ion)
TreeSet(Comparator)
TreeSet(SortedSet)
boolean add(Object)
boolean addAl l(Col lect ion)
void c lear()
Object clone()
Comparator comparator()
boolean contains(Object)

Object f ir st()
SortedSet headSet(Object)
boolean isEmpty()
I te rator i te rator()
Object last()
boolean remove(Object)
int s ize()
SortedSet subSet(Object ,Object)
SortedSet tai lSet(Object)

class Vector extends AbstractList implements List , Cloneable , java.io.Serializable
Vector()
Vector(int)
Vector(int , int)
Vector(Col lect ion)
void add(int ,Object)
boolean add(Object)
boolean addAl l(int ,Collect ion)
boolean addAl l(Col lect ion)
void addElement(Object)
int capacity ()
protected int capacityIncrement
void c lear()
Object clone()
boolean contains(Object)
boolean containsAl l (Col lect ion)
void copy Into(Object[])
Object elementAt(int)
protected int e lementCount
protected Object[] e lementData
Enumeration e lements()
void ensureCapacity(int)
boolean equals(Object)
Object f ir stElement()
Object get(int)
int hashCode()

int indexOf(Object)
int indexOf(Object , int)
void insertElementAt(Object , int)
boolean isEmpty()
Object lastElement()
int last IndexOf(Object)
int last IndexOf(Object , int)
Object remove(int)
boolean remove(Object)
boolean removeAl l(Col lect ion)
void removeAl lElements()
boolean removeElement(Object)
void removeElementAt(int)
protected void removeRange(int , int)
boolean retainAll (Col lect ion)
Object set(int ,Object)
void setElementAt(Object , int)
void setSize(int)
int s ize()
L ist subList(int , int)
Object[] toArray()
Object[] toArray(Object[])
Str ing toStr ing()
void tr imToSize()

class WeakHashMap extends AbstractMap implements Map
WeakHashMap()
WeakHashMap(int)
WeakHashMap(int , f loat)
WeakHashMap(Map)
void c lear()
boolean containsKey(Object)

Set entrySet()
Object get(Object)
boolean isEmpty()
Object put(Object ,Object)
Object remove(Object)
int s ize()

999.3.15 java.util.jar
package java.util.jar
class Attributes implements Cloneable , java.util.Map
Attributes()
Attr ibutes(int)
Attr ibutes(Attr ibutes)
void c lear()
Object clone()
boolean containsKey(Object)
boolean containsValue(Object)
java.ut i l .Set entrySet()
boolean equals(Object)
Object get(Object)
Str ing getValue(String)

String getValue(Attr ibutes.Name)
int hashCode()
boolean isEmpty()
java.ut i l .Set keySet()
protected java.ut il .Map map
Object put(Object ,Object)
void putAl l (java.ut i l .Map)
Str ing putValue(Str ing,Str ing)
Object remove(Object)
int s ize()
java.ut i l .Col lect ion values()

class Attributes.Name
Attributes.Name(Str ing)
f inal static Attr ibutes.Name CLASS_PATH

fina l stat ic Attr ibutes.Name
CONTENT_TYPE
boolean equals(Object)
OSGi Service Platform Release 4 423-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
f inal stat ic Attr ibutes.Name
EXTENSION_INSTALLATION
final stat ic Attr ibutes.Name
EXTENSION_LIST
f inal stat ic Attr ibutes.Name
EXTENSION_NAME
int hashCode()
f inal stat ic Attr ibutes.Name
IMPLEMENTATION_TITLE
f inal stat ic Attr ibutes.Name
IMPLEMENTATION_URL
f inal stat ic Attr ibutes.Name
IMPLEMENTATION_VENDOR
final stat ic Attr ibutes.Name
IMPLEMENTATION_VENDOR_ID

final stat ic Attr ibutes.Name
IMPLEMENTATION_VERSION
final stat ic Attr ibutes.Name MAIN_CLASS
final stat ic Attr ibutes.Name
MANIFEST_VERSION
final stat ic Attr ibutes.Name SEALED
final stat ic Attr ibutes.Name
SIGNATURE_VERSION
final stat ic Attr ibutes.Name
SPECIFICATION_TITLE
f inal stat ic Attr ibutes.Name
SPECIFICATION_VENDOR
final stat ic Attr ibutes.Name
SPECIFICATION_VERSION
String toStr ing()

class JarEntry extends java.util.zip.ZipEntry
JarEntry(String)
JarEntry(JarEntry)
JarEntry(java.ut i l .z ip .ZipEntry)

Attr ibutes getAttr ibutes() throws
java. io. IOException
java.security.cert .Cert i f icate[]
getCert i f ica tes()

class JarException extends java.util.zip.ZipException
JarException() JarException(String)
class JarFile extends java.util.zip.ZipFile
JarF i le(java. io.F i le) throws
java. io. IOException
JarF i le(java. io.F i le,boolean) throws
java. io. IOException
JarF i le(java. io.F i le,boolean, int) throws
java. io. IOException
JarF i le(Str ing) throws java. io. IOException
JarF i le(Str ing,boolean) throws
java. io. IOException

java.ut i l .Enumerat ion entr ies()
java.ut i l .z ip.ZipEntry getEntry(String)
java. io. InputStream
getInputStream(java.ut i l.z ip.ZipEntry)
throws java. io. IOException
JarEntry getJarEntry(String)
Manifest getManifest() throws
java. io. IOException
f inal stat ic Str ing MANIFEST_NAME

class JarInputStream extends java.util.zip.ZipInputStream
Jar InputStream(java. io. InputStream)
throws java. io. IOException
Jar InputStream(java. io. InputStream,
boolean) throws java. io. IOException
protected java.ut i l .z ip .ZipEntry
createZipEntry(String)
Manifest getManifest()

java.ut i l .z ip.ZipEntry getNextEntry()
throws java. io. IOException
JarEntry getNextJarEntry() throws
java. io. IOException
int read(byte[], int , int) throws
java. io. IOException

class JarOutputStream extends java.util.zip.ZipOutputStream
JarOutputStream(java. io.OutputStream)
throws java. io. IOException
JarOutputStream(java. io.OutputStream,
Manifest) throws java. io. IOException

vo id putNextEntry(java.ut i l .z ip.Z ipEntry)
throws java. io. IOException

class Manifest implements Cloneable
Manifest()
Manifest(java. io. InputStream) throws
java. io. IOException
Manifest(Manifest)
void c lear()
Object clone()
boolean equals(Object)
Attr ibutes getAttr ibutes(String)

java.ut i l .Map getEntries()
Attr ibutes getMainAttr ibutes()
int hashCode()
vo id read(java. io. InputStream) throws
java. io. IOException
vo id wr ite(java. io .OutputStream) throws
java. io. IOException

999.3.16 java.util.zip
package java.util.zip
class Adler32 implements Checksum
Adler32()
long getValue()
void reset()

vo id update(byte[])
vo id update(byte[], int , int)
vo id update(int)

class CheckedInputStream extends java.io.FilterInputStream

CheckedInputStream(java. io. InputStream
,Checksum)
Checksum getChecksum()
int read() throws java. io . IOException

int read(byte[], int , int) throws
java. io. IOException
long skip(long) throws
java. io. IOException

class CheckedOutputStream extends java.io.FilterOutputStream

CheckedOutputStream(java . io .OutputStr
eam,Checksum)
Checksum getChecksum()
424-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
void wr ite(byte[] , int , int) throws
java. io. IOException

void write(int) throws
java. io. IOException

interface Checksum
abstract long getValue()
abstract void reset()

abstract void update(byte[] , int , int)
abstract void update(int)

class CRC32 implements Checksum
CRC32()
long getValue()
void reset()

void update(byte[])
void update(byte[] , int , int)
void update(int)

class DataFormatException extends Exception
DataFormatException() DataFormatException(String)
class Deflater
Deflater()
Def later(int)
Def later(int ,boolean)
f inal static int BEST_COMPRESSION
final static int BEST_SPEED
final static int DEFAULT_COMPRESSION
final static int DEFAULT_STRATEGY
int deflate(byte[])
int deflate(byte[] , int , int)
f inal static int DEFLATED
void end()
f inal static int F ILTERED
protected void f inal ize()
void f inish()

boolean f inished()
int getAdler()
int getTotalIn()
int getTotalOut()
f ina l stat ic int HUFFMAN_ONLY
boolean needsInput()
f ina l stat ic int NO_COMPRESSION
void reset()
void setDict ionary(byte[])
void setDict ionary(byte[] , int , int)
void set Input(byte[])
void set Input(byte[] , int , int)
void setLeve l(int)
void setStrategy(int)

class DeflaterOutputStream extends java.io.FilterOutputStream

DeflaterOutputStream(java. io.OutputStr
eam)

DeflaterOutputStream(java. io.OutputStr
eam,Def later)

DeflaterOutputStream(java. io.OutputStr
eam,Def later, int)
protected byte[] buf

void c lose() throws java. io. IOException
protected Def later def
protected void def late() throws
java. io. IOException
void f inish() throws java . io . IOException
void write(byte[] , int , int) throws
java. io. IOException
void write(int) throws
java. io. IOException

class GZIPInputStream extends InflaterInputStream
GZIPInputStream(java. io. InputStream)
throws java. io. IOException
GZIPInputStream(java. io. InputStream,int)
throws java. io. IOException
void c lose() throws java. io. IOException

protected CRC32 crc
protected boolean eos
f ina l stat ic int GZIP_MAGIC
int read(byte[] , int , int) throws
java. io. IOException

class GZIPOutputStream extends DeflaterOutputStream

GZIPOutputStream(java. io.OutputStream
) throws java. io. IOException

GZIPOutputStream(java. io.OutputStream
,int) throws java. io. IOException

void c lose() throws java. io. IOException
protected CRC32 crc
void f inish() throws java . io . IOException
void write(byte[] , int , int) throws
java. io. IOException

class Inflater
In f later()
In f later(boolean)
void end()
protected void f inal ize()
boolean f inished()
int getAdler()
int getRemaining()
int getTotal In()
int getTotalOut()
int inf late(byte[]) throws
DataFormatException

int inf late(byte[] , int , int) throws
DataFormatException
boolean needsDict ionary()
boolean needsInput()
void reset()
void setDict ionary(byte[])
void setDict ionary(byte[] , int , int)
void set Input(byte[])
void set Input(byte[] , int , int)

class InflaterInputStream extends java.io.FilterInputStream
In f laterInputStream(java . io . InputStream)
In f laterInputStream(java . io . InputStream,
Inf later)
In f laterInputStream(java . io . InputStream,
Inf later, int)
int avai lable() throws java. io. IOException
protected byte[] buf
void c lose() throws java. io. IOException

protected void f i l l() throws
java. io. IOException
protected Inf later inf
protected int len
int read() throws java. io. IOException
int read(byte[] , int , int) throws
java. io. IOException
OSGi Service Platform Release 4 425-432

OSGi Defined Execution Environments Execution Environment Specification Version 1.1
long skip(long) throws
java. io. IOException
class ZipEntry implements ZipConstants , Cloneable
ZipEntry(Str ing)
ZipEntry(ZipEntry)
Object clone()
f inal stat ic int DEFLATED
String getComment()
long getCompressedSize()
long getCrc()
byte[] getExtra()
int getMethod()
Str ing getName()
long getSize()
long getT ime()

int hashCode()
boolean isDirectory()
vo id setComment(String)
vo id setCompressedSize(long)
vo id setCrc(long)
vo id setExtra(byte[])
vo id setMethod(int)
vo id setSize(long)
vo id setT ime(long)
f inal stat ic int STORED
String toStr ing()

class ZipException extends java.io.IOException
ZipException() ZipException(Str ing)
class ZipFile implements ZipConstants
ZipFile (java. io.F i le) throws ZipException,
java. io. IOException
ZipFile (java. io.F i le, int) throws
java. io. IOException
ZipFile (Str ing) throws
java. io. IOException
void c lose() throws java. io. IOException
java.ut i l. Enumerat ion entr ies()
protected void f inal ize() throws
java. io. IOException

ZipEntry getEntry(String)
java. io. InputStream
getInputStream(ZipEntry) throws
java. io. IOException
String getName()
f inal stat ic int OPEN_DELETE
f inal stat ic int OPEN_READ
int s ize()

class ZipInputStream extends InflaterInputStream implements ZipConstants
Zip InputStream(java. io. InputStream)
int avai lable() throws java. io. IOException
void c lose() throws java. io. IOException
void c loseEntry() throws
java. io. IOException
protected ZipEntry
createZipEntry(String)

ZipEntry getNextEntry() throws
java. io. IOException
int read(byte[], int , int) throws
java. io. IOException
long skip(long) throws
java. io. IOException

class ZipOutputStream extends DeflaterOutputStream implements ZipConstants
ZipOutputStream(java. io.OutputStream)
void c lose() throws java. io. IOException
void c loseEntry() throws
java. io. IOException
f inal stat ic int DEFLATED
void f inish() throws java. io. IOException
void putNextEntry(ZipEntry) throws
java. io. IOException

vo id setComment(String)
vo id setLevel(int)
vo id setMethod(int)
f inal stat ic int STORED
void wr ite(byte[] , int , int) throws
java. io. IOException

999.3.17 javax.microedition.io
package javax.microedition.io
interface Connection
abstract void close() throws
java. io. IOException
class ConnectionNotFoundException extends java.io.IOException
ConnectionNotFoundException() ConnectionNotFoundException(String)
class Connector
stat ic Connection open(String) throws
java. io. IOException
stat ic Connection open(String, int)
throws java. io. IOException
stat ic Connection open(String, int ,
boolean) throws java. io. IOException
stat ic java. io.Data InputStream
openDataInputStream(String) throws
java. io. IOException
stat ic java. io.DataOutputStream
openDataOutputStream(String) throws
java. io. IOException

stat ic java. io. InputStream
openInputStream(Str ing) throws
java. io. IOException
stat ic java. io.OutputStream
openOutputStream(Str ing) throws
java. io. IOException
f inal stat ic int READ
final stat ic int READ_WRITE
f inal stat ic int WRITE

interface ContentConnection extends StreamConnection
abstract Str ing getEncoding()
abstract long getLength()
abstract Str ing getType()
426-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 OSGi Defined Execution Environments
interface Datagram extends java.io.DataInput , java.io.DataOutput
abstract Str ing getAddress()
abstract byte[] getData()
abstract int getLength()
abstract int getOffset()
abstract void reset()

abstract void setAddress(String) throws
java. io. IOException
abstract void setAddress(Datagram)
abstract void setData(byte[], int , int)
abstract void setLength(int)

interface DatagramConnection extends Connection
abstract int getMaximumLength() throws
java. io. IOException
abstract int getNominalLength() throws
java. io. IOException
abstract Datagram newDatagram(byte[],
int) throws java. io. IOException
abstract Datagram newDatagram(byte[],
int ,Str ing) throws java. io. IOException

abstract Datagram newDatagram(int)
throws java. io. IOException
abstract Datagram newDatagram(int,
Str ing) throws java. io. IOException
abstract void receive(Datagram) throws
java. io. IOException
abstract void send(Datagram) throws
java. io. IOException

interface HttpConnection extends ContentConnection
f inal static Str ing GET
abstract long getDate() throws
java. io. IOException
abstract long getExpirat ion() throws
java. io. IOException
abstract Str ing getFile ()
abstract Str ing getHeaderField(int)
throws java. io. IOException
abstract Str ing getHeaderField(Str ing)
throws java. io. IOException
abstract long getHeaderFieldDate(Str ing,
long) throws java. io. IOException
abstract int getHeaderField Int(String, int)
throws java. io. IOException
abstract Str ing getHeaderFieldKey(int)
throws java. io. IOException
abstract Str ing getHost()
abstract long getLastModif ied() throws
java. io. IOException
abstract int getPort()
abstract Str ing getProtocol()
abstract Str ing getQuery()
abstract Str ing getRef()
abstract Str ing getRequestMethod()
abstract Str ing
getRequestProperty(String)
abstract int getResponseCode() throws
java. io. IOException
abstract Str ing getResponseMessage()
throws java. io. IOException
abstract Str ing getURL()
f inal static Str ing HEAD
final static int HTTP_ACCEPTED
final static int HTTP_BAD_GATEWAY
final static int HTTP_BAD_METHOD
final static int HTTP_BAD_REQUEST
final static int HTTP_CLIENT_TIMEOUT
final static int HTTP_CONFLICT
f inal static int HTTP_CREATED
final static int HTTP_ENTITY_TOO_LARGE

f ina l stat ic int HTTP_EXPECT_FAILED
fina l stat ic int HTTP_FORBIDDEN
fina l sta tic int HTTP_GATEWAY_TIMEOUT
fina l stat ic int HTTP_GONE
fina l stat ic int HTTP_INTERNAL_ERROR
fina l stat ic int HTTP_LENGTH_REQUIRED
fina l stat ic int HTTP_MOVED_PERM
fina l stat ic int HTTP_MOVED_TEMP
fina l stat ic int HTTP_MULT_CHOICE
f ina l stat ic int HTTP_NO_CONTENT
fina l stat ic int HTTP_NOT_ACCEPTABLE
f ina l stat ic int
HTTP_NOT_AUTHORITATIVE
f ina l stat ic int HTTP_NOT_FOUND
fina l stat ic int HTTP_NOT_IMPLEMENTED
fina l stat ic int HTTP_NOT_MODIFIED
fina l stat ic int HTTP_OK
fina l stat ic int HTTP_PARTIAL
f ina l stat ic int
HTTP_PAYMENT_REQUIRED
fina l stat ic int HTTP_PRECON_FAILED
fina l stat ic int HTTP_PROXY_AUTH
fina l stat ic int HTTP_REQ_TOO_LONG
fina l stat ic int HTTP_RESET
f ina l stat ic int HTTP_SEE_OTHER
f ina l stat ic int HTTP_TEMP_REDIRECT
fina l stat ic int HTTP_UNAUTHORIZED
fina l stat ic int HTTP_UNAVAILABLE
f ina l stat ic int
HTTP_UNSUPPORTED_RANGE
fina l stat ic int
HTTP_UNSUPPORTED_TYPE
f ina l stat ic int HTTP_USE_PROXY
fina l stat ic int HTTP_VERSION
fina l stat ic Str ing POST
abstract void setRequestMethod(String)
throws java. io. IOException
abstract void setRequestProperty(String,
Str ing) throws java. io. IOException

interface InputConnection extends Connection
abstract java. io.DataInputStream
openDataInputStream() throws
java. io. IOException

abstract java. io. InputStream
openInputStream() throws
java. io. IOException

interface OutputConnection extends Connection
abstract java. io.DataOutputStream
openDataOutputStream() throws
java. io. IOException

abstract java. io.OutputStream
openOutputStream() throws
java. io. IOException

interface StreamConnection extends InputConnection , OutputConnection
interface StreamConnectionNotifier extends Connection
abstract StreamConnection
acceptAndOpen() throws
java. io. IOException
OSGi Service Platform Release 4 427-432

Changes Execution Environment Specification Version 1.1
999.4 Changes

999.4.1 Added Classes
java. lang. Inher itableThreadLocal
java. lang.ThreadLocal
java.net.URLClassLoader
java.security.GeneralSecurityException
java.security.Guard
java.security.GuardedObject
java.security. Inval idKeyException
java.security. Inval idParameterException
java.security.Key
java.security.KeyException
java.security.NoSuchAlgor ithmException
java.security.NoSuchProviderException
java.security.Provider
java.security.Publ icKey

java.security .SecureClassLoader
java.security .SignatureException
java.security .cer t .Cert i f icate.Cert if icateRep
java.security .cer t .Cert i f icateEncoding-

Exception
java.security .cer t .Cert i f icateException
java.ut i l .EmptyStackException
java.ut i l .HashMap
java.ut i l .HashSet
java.ut i l .L inkedL ist
java.ut i l .Stack
java.ut i l .TreeMap
java.ut i l .TreeSet

999.4.2 Updated Classes
java.security.Permission updated to also

implement java.security.Guard

999.4.3 Added Methods
java.io.DataInputStream
readUTF(java. io.DataInput)
java.io.File
Fi le[] l istRoots()
Fi le getParentFile ()

boolean setLastModified(J)Z
F ile[] l istFi les()

java.lang.Character
boolean isLetterOrDig it(char)
java.lang.Class
Object[] getSigners()
java.lang.ClassLoader
void setSigners(Class,Object[])
java.lang.Double
boolean is Inf inite() boolean isNaN()
java.lang.Float
boolean is Inf inite() boolean isNaN()
java.lang.Integer
String toOctalStr ing(int)
Str ing toString(int , int)

Integer valueOf(Str ing)

java.lang.Long
String toString(long, int)
java.lang.String
String(StringBuffer)
Str ing toLowerCase(Locale)
Str ing toUpperCase(Locale)

Str ing valueOf(char[])
Str ing valueOf(char[] , int , int)

java.lang.Thread
int act iveCount()
ClassLoader getContextClassLoader()

void setContextClassLoader(ClassLoader)
Str ing getLocal izedMessage()

java.security.CodeSource
Cert i f icate[] getCert i f icates()
java.security.Permission
void checkGuard(Object)
java.security.Security
int addProvider(Provider)
Provider getProvider (String)
Provider[] getProviders()
Provider[] getProviders(String)

Provider[] getProviders(Map)
int insertProviderAt(Provider , int)
void removeProv ider (String)

java.security.cert.Certificate
boolean equals(Object)
byte[] getEncoded()
Publ icKey getPubl icKey()
Str ing getType()
int hashCode()

Str ing toString()
void veri fy(PublicKey)
void veri fy(PublicKey,Str ing)
Object wr iteReplace()
428-432 OSGi Service Platform Release 4

Execution Environment Specification Version 1.1 References
java.util.Calendar
 Calendar(TimeZone,Locale)
Locale[] getAvai lableLoca les()
Calendar getInstance(Locale)

Calendar
getInstance(TimeZone,Locale)

java.util.GregorianCalendar
GregorianCalendar(Locale) GregorianCalendar(TimeZone,Locale)
java.util.Locale
Locale[] getAvai lableLoca les()
Str ing getDisplayCountry()
Str ing getDisplayCountry(Locale)
Str ing getDisplayLanguage()
Str ing getDisplayLanguage(Locale)
Str ing getDisplayName()
Str ing getDisplayName(Locale)

Str ing getDisplayVar iant()
Str ing getDisplayVar iant(Locale)
Str ing getISO3Country()
Str ing getISO3Language()
Str ing[] get ISOCountries()
Str ing[] get ISOLanguages()

java.util.Properties
Object setProperty(Str ing,Str ing)
java.util.SimpleTimeZone
int getDSTSav ings()

999.5 References
[69] The Java Virtual Machine Specification

Tim Lindholm and Frank Yellin, Addison Wesley, ISBN 0-201-63452-X

[70] Downloadable Execution Environments
http://www.osgi.org/download

[71] J2ME, Java 2 Micro Edition
http://java.sun.com/j2me

[72] CDC, Connected Device Configuration
http://java.sun.com/products/cdc

[73] CLDC, Connected Limited Device Configuration
http://java.sun.com/products/cldc

[74] Foundation Profile
http://java.sun.com/products/foundation. This external specification is ©
Copyright 2000 Sun Microsystems, Inc.
OSGi Service Platform Release 4 429-432

References Execution Environment Specification Version 1.1
430-432 OSGi Service Platform Release 4

OSGi Service Platform Release 4 431-432

432-432 OSGi Service Platform Release 4

End Of Document

	Table Of Contents
	1 Introduction
	1.1 Reader Level
	1.2 Version Information
	1.3 References

	101 Log Service Specification
	101.1 Introduction
	101.1.1 Entities

	101.2 The Log Service Interface
	101.3 Log Level and Error Severity
	101.4 Log Reader Service
	101.5 Log Entry Interface
	101.6 Mapping of Events
	101.6.1 Bundle Events Mapping
	101.6.2 Service Events Mapping
	101.6.3 Framework Events Mapping

	101.7 Security
	101.8 Changes
	101.9 org.osgi.service.log
	101.9.1 Summary
	101.9.2 public interface LogEntry
	101.9.3 public interface LogListener extends EventListener
	101.9.4 public interface LogReaderService
	101.9.5 public interface LogService

	102 Http Service Specification
	102.1 Introduction
	102.1.1 Entities

	102.2 Registering Servlets
	102.3 Registering Resources
	102.4 Mapping HTTP Requests to Servlet and Resource Registrations
	102.5 The Default Http Context Object
	102.6 Multipurpose Internet Mail Extension (MIME) Types
	102.7 Authentication
	102.8 Security
	102.8.1 Accessing Resources in Bundles
	102.8.2 Accessing Other Types of Resources

	102.9 Configuration Properties
	102.10 Changes
	102.11 org.osgi.service.http
	102.11.1 Summary
	102.11.2 public interface HttpContext
	102.11.3 public interface HttpService
	102.11.4 public class NamespaceException extends Exception

	102.12 References

	103 Device Access Specification
	103.1 Introduction
	103.1.1 Essentials
	103.1.2 Operation
	103.1.3 Entities

	103.2 Device Services
	103.2.1 Device Service Registration
	103.2.2 Device Service Attachment

	103.3 Device Category Specifications
	103.3.1 Device Category Guidelines
	103.3.2 Sample Device Category Specification
	103.3.3 Match Example

	103.4 Driver Services
	103.4.1 Driver Bundles
	103.4.2 Driver Taxonomy
	103.4.3 Driver Service Registration
	103.4.4 Driver Service Unregistration
	103.4.5 Driver Service Methods
	103.4.6 Idle Driver Bundles

	103.5 Driver Locator Service
	103.5.1 The DriverLocator Interface
	103.5.2 A Driver Example

	103.6 The Driver Selector Service
	103.7 Device Manager
	103.7.1 Device Manager Startup
	103.7.2 The Device Attachment Algorithm
	103.7.3 Legend
	103.7.4 Optimizations
	103.7.5 Driver Bundle Reclamation
	103.7.6 Handling Driver Bundle Updates
	103.7.7 Simultaneous Device Service and Driver Service Registration

	103.8 Security
	103.9 Changes
	103.10 org.osgi.service.device
	103.10.1 Summary
	103.10.2 public interface Constants
	103.10.3 public interface Device
	103.10.4 public interface Driver
	103.10.5 public interface DriverLocator
	103.10.6 public interface DriverSelector
	103.10.7 public interface Match

	103.11 References

	104 Configuration Admin Service Specification
	104.1 Introduction
	104.1.1 Essentials
	104.1.2 Operation
	104.1.3 Entities

	104.2 Configuration Targets
	104.3 The Persistent Identity
	104.3.1 PID Syntax

	104.4 The Configuration Object
	104.4.1 Location Binding
	104.4.2 Configuration Properties
	104.4.3 Property Propagation
	104.4.4 Automatic Properties
	104.4.5 Equality

	104.5 Managed Service
	104.5.1 Singletons
	104.5.2 Networks
	104.5.3 Configuring Managed Services
	104.5.4 Race Conditions
	104.5.5 Examples of Managed Service
	104.5.6 Deletion

	104.6 Managed Service Factory
	104.6.1 When to Use a Managed Service Factory
	104.6.2 Registration
	104.6.3 Deletion
	104.6.4 Managed Service Factory Example
	104.6.5 Multiple Consoles Example

	104.7 Configuration Admin Service
	104.7.1 Creating a Managed Service Configuration Object
	104.7.2 Creating a Managed Service Factory Configuration Object
	104.7.3 Accessing Existing Configurations
	104.7.4 Deletion
	104.7.5 Updating a Bundle’s Own Configuration

	104.8 Configuration Events
	104.8.1 Event Admin Service and Configuration Change Events

	104.9 Configuration Plugin
	104.9.1 Limiting The Targets
	104.9.2 Example of Property Expansion
	104.9.3 Configuration Data Modifications
	104.9.4 Forcing a Callback
	104.9.5 Calling Order

	104.10 Remote Management
	104.10.1 Common Information Model
	104.10.2 Simple Network Management Protocol

	104.11 Meta Typing
	104.12 Security
	104.12.1 Configuration Permission
	104.12.2 Permissions Summary
	104.12.3 Forging PIDs
	104.12.4 Configuration and Permission Administration

	104.13 Configurable Service
	104.14 Changes
	104.15 org.osgi.service.cm
	104.15.1 Summary
	104.15.2 public interface Configuration
	104.15.3 public interface ConfigurationAdmin
	104.15.4 public class ConfigurationEvent
	104.15.5 public class ConfigurationException extends Exception
	104.15.6 public interface ConfigurationListener
	104.15.7 public final class ConfigurationPermission extends BasicPermission
	104.15.8 public interface ConfigurationPlugin
	104.15.9 public interface ManagedService
	104.15.10 public interface ManagedServiceFactory

	104.16 References

	106 Preferences Service Specification
	106.1 Introduction
	106.1.1 Essentials
	106.1.2 Entities
	106.1.3 Operation

	106.2 Preferences Interface
	106.2.1 Hierarchies
	106.2.2 Naming
	106.2.3 Tree Traversal Methods
	106.2.4 Properties
	106.2.5 Storing and Retrieving Properties
	106.2.6 Defaults

	106.3 Concurrency
	106.4 PreferencesService Interface
	106.5 Cleanup
	106.6 Changes
	106.7 org.osgi.service.prefs
	106.7.1 Summary
	106.7.2 public class BackingStoreException extends Exception
	106.7.3 public interface Preferences
	106.7.4 public interface PreferencesService

	106.8 References

	105 Metatype Service Specification
	105.1 Introduction
	105.1.1 Essentials
	105.1.2 Entities
	105.1.3 Operation

	105.2 Attributes Model
	105.3 Object Class Definition
	105.4 Attribute Definition
	105.5 Meta Type Service
	105.6 Using the Meta Type Resources
	105.6.1 XML Schema of a Meta Type Resource
	105.6.2 Example Meta Data File

	105.7 Object
	105.8 XML Schema
	105.9 Limitations
	105.10 Related Standards
	105.11 Security Considerations
	105.12 Changes
	105.13 org.osgi.service.metatype
	105.13.1 Summary
	105.13.2 public interface AttributeDefinition
	105.13.3 public interface MetaTypeInformation extends MetaTypeProvider
	105.13.4 public interface MetaTypeProvider
	105.13.5 public interface MetaTypeService
	105.13.6 public interface ObjectClassDefinition

	105.14 References

	108 Wire Admin Service Specification
	108.1 Introduction
	108.1.1 Wire Admin Service Essentials
	108.1.2 Wire Admin Service Entities
	108.1.3 Operation Summary

	108.2 Producer Service
	108.2.1 Producer Properties
	108.2.2 Connections
	108.2.3 Producer Example
	108.2.4 Push and Pull
	108.2.5 Producers and Flavors

	108.3 Consumer Service
	108.3.1 Consumer Properties
	108.3.2 Connections
	108.3.3 Consumer Example
	108.3.4 Polling or Receiving a Value
	108.3.5 Consumers and Flavors

	108.4 Implementation issues
	108.5 Wire Properties
	108.5.1 Display Service Example

	108.6 Composite objects
	108.6.1 Identification
	108.6.2 Scope
	108.6.3 Access Control
	108.6.4 Composites and Flavors
	108.6.5 Scope name syntax

	108.7 Wire Flow Control
	108.7.1 Filtering by Time
	108.7.2 Filtering by Change
	108.7.3 Hysteresis

	108.8 Flavors
	108.9 Converters
	108.10 Wire Admin Service Implementation
	108.11 Wire Admin Listener Service Events
	108.11.1 Event Admin Service Events

	108.12 Connecting External Entities
	108.13 Related Standards
	108.13.1 Java Beans

	108.14 Security
	108.14.1 Separation of Consumer and Producer Services
	108.14.2 Using Wire Admin Service
	108.14.3 Wire Permission

	108.15 Changes
	108.16 org.osgi.service.wireadmin
	108.16.1 Summary
	108.16.2 public class BasicEnvelope implements Envelope
	108.16.3 public interface Consumer
	108.16.4 public interface Envelope
	108.16.5 public interface Producer
	108.16.6 public interface Wire
	108.16.7 public interface WireAdmin
	108.16.8 public class WireAdminEvent
	108.16.9 public interface WireAdminListener
	108.16.10 public interface WireConstants
	108.16.11 public final class WirePermission extends BasicPermission

	108.17 References

	107 User Admin Service Specification
	107.1 Introduction
	107.1.1 Essentials
	107.1.2 Entities
	107.1.3 Operation

	107.2 Authentication
	107.2.1 Repository
	107.2.2 Basic Authentication
	107.2.3 Certificates

	107.3 Authorization
	107.3.1 The Authorization Object
	107.3.2 Authorization Example

	107.4 Repository Maintenance
	107.5 User Admin Events
	107.5.1 Event Admin and User Admin Change Events

	107.6 Security
	107.6.1 UserAdminPermission

	107.7 Relation to JAAS
	107.7.1 JDK 1.3 Dependencies
	107.7.2 Existing OSGi Mechanism
	107.7.3 Future Road Map

	107.8 Changes
	107.9 org.osgi.service.useradmin
	107.9.1 Summary
	107.9.2 public interface Authorization
	107.9.3 public interface Group extends User
	107.9.4 public interface Role
	107.9.5 public interface User extends Role
	107.9.6 public interface UserAdmin
	107.9.7 public class UserAdminEvent
	107.9.8 public interface UserAdminListener
	107.9.9 public final class UserAdminPermission extends BasicPermission

	107.10 References

	109 IO Connector Service Specification
	109.1 Introduction
	109.1.1 Essentials
	109.1.2 Entities

	109.2 The Connector Framework
	109.3 Connector Service
	109.4 Providing New Schemes
	109.4.1 Orphaned Connection Objects

	109.5 Execution Environment
	109.6 Security
	109.7 org.osgi.service.io
	109.7.1 Summary
	109.7.2 public interface ConnectionFactory
	109.7.3 public interface ConnectorService

	109.8 References

	110 Initial Provisioning
	110.1 Introduction
	110.1.1 Essentials
	110.1.2 Entities

	110.2 Procedure
	110.3 Special Configurations
	110.3.1 Branded Service Platform Server
	110.3.2 Non-connected Service Platform

	110.4 The Provisioning Service
	110.5 Management Agent Environment
	110.6 Mapping To File Scheme
	110.6.1 Example With File Scheme

	110.7 Mapping To HTTP(S) Scheme
	110.7.1 HTTPS Certificates
	110.7.2 Certificate Encoding
	110.7.3 URL Encoding

	110.8 Mapping To RSH Scheme
	110.8.1 Shared Secret
	110.8.2 Request Coding
	110.8.3 Response Coding
	110.8.4 RSH URL
	110.8.5 Extensions to the Provisioning Service Dictionary
	110.8.6 RSH Transport

	110.9 Exception Handling
	110.10 Security
	110.10.1 Concerns
	110.10.2 Service Platform Long-Term Security
	110.10.3 Permissions

	110.11 Changes
	110.12 org.osgi.service.provisioning
	110.12.1 public interface ProvisioningService

	110.13 References

	111 UPnP™ Device Service Specification
	111.1 Introduction
	111.1.1 Essentials
	111.1.2 Entities
	111.1.3 Operation Summary

	111.2 UPnP Specifications
	111.2.1 UPnP Base Driver

	111.3 UPnP Device
	111.3.1 Root Device
	111.3.2 Exported Versus Imported Devices
	111.3.3 Icons

	111.4 Device Category
	111.5 UPnPService
	111.5.1 State Variables

	111.6 Working With a UPnP Device
	111.7 Implementing a UPnP Device
	111.8 Event API
	111.8.1 Initial Event Delivery

	111.9 UPnP Events and Event Admin service
	111.10 Localization
	111.11 Dates and Times
	111.12 UPnP Exception
	111.13 Configuration
	111.14 Networking considerations
	111.14.1 The UPnP Multicasts

	111.15 Security
	111.16 Changes
	111.17 org.osgi.service.upnp
	111.17.1 Summary
	111.17.2 public interface UPnPAction
	111.17.3 public interface UPnPDevice
	111.17.4 public interface UPnPEventListener
	111.17.5 public class UPnPException extends Exception
	111.17.6 public interface UPnPIcon
	111.17.7 public interface UPnPLocalStateVariable extends UPnPStateVariable
	111.17.8 public interface UPnPService
	111.17.9 public interface UPnPStateVariable

	111.18 References

	112 Declarative Services Specification
	112.1 Introduction
	112.1.1 Essentials
	112.1.2 Entities
	112.1.3 Synopsis
	112.1.4 Readers

	112.2 Components
	112.2.1 Declaring a Component
	112.2.2 Immediate Component
	112.2.3 Delayed Component
	112.2.4 Factory Component

	112.3 References to Services
	112.3.1 Accessing Services
	112.3.2 Reference Cardinality
	112.3.3 Reference Policy
	112.3.4 Selecting Target Services
	112.3.5 Circular References

	112.4 Component Description
	112.4.1 Service Component Header
	112.4.2 XML Document
	112.4.3 Component Element
	112.4.4 Implementation Element
	112.4.5 Properties and Property Elements
	112.4.6 Service Element
	112.4.7 Reference Element

	112.5 Component Life Cycle
	112.5.1 Enabled
	112.5.2 Satisfied
	112.5.3 Immediate Component
	112.5.4 Delayed Component
	112.5.5 Factory Component
	112.5.6 Activation
	112.5.7 Binding Services
	112.5.8 Activate Method
	112.5.9 Component Context
	112.5.10 Bound Service Replacement
	112.5.11 Deactivation
	112.5.12 Deactivate Method
	112.5.13 Unbinding
	112.5.14 Life Cycle Example

	112.6 Component Properties
	112.7 Deployment
	112.8 Service Component Runtime
	112.8.1 Relationship to OSGi Framework
	112.8.2 Starting and Stopping SCR

	112.9 Security
	112.9.1 Service Permissions
	112.9.2 Using hasPermission

	112.10 Component Description Schema
	112.11 org.osgi.service.component
	112.11.1 Summary
	112.11.2 public interface ComponentConstants
	112.11.3 public interface ComponentContext
	112.11.4 public class ComponentException extends RuntimeException
	112.11.5 public interface ComponentFactory
	112.11.6 public interface ComponentInstance

	112.12 References

	113 Event Admin Service Specification
	113.1 Introduction
	113.1.1 Essentials
	113.1.2 Entities
	113.1.3 Synopsis
	113.1.4 What To Read

	113.2 Event Admin Architecture
	113.3 The Event
	113.3.1 Topics
	113.3.2 Properties

	113.4 Event Handler
	113.5 Event Publisher
	113.6 Specific Events
	113.6.1 General Conventions
	113.6.2 OSGi Events
	113.6.3 Framework Event
	113.6.4 Bundle Event
	113.6.5 Service Event
	113.6.6 Log Events

	113.7 Event Admin Service
	113.7.1 Synchronous Event Delivery
	113.7.2 Asynchronous Event Delivery
	113.7.3 Order of Event Delivery

	113.8 Reliability
	113.8.1 Exceptions in callbacks
	113.8.2 Dealing with Stalled Handlers

	113.9 Inter-operability with Native Applications
	113.10 Security
	113.10.1 Topic Permission
	113.10.2 Required Permissions
	113.10.3 Security Context During Event Callbacks

	113.11 org.osgi.service.event
	113.11.1 Summary
	113.11.2 public class Event
	113.11.3 public interface EventAdmin
	113.11.4 public interface EventConstants
	113.11.5 public interface EventHandler
	113.11.6 public final class TopicPermission extends Permission

	701 Service Tracker Specification
	701.1 Introduction
	701.1.1 Essentials
	701.1.2 Operation
	701.1.3 Entities
	701.1.4 Prerequisites

	701.2 Service Tracker Class
	701.3 Using a Service Tracker
	701.4 Customizing the Service Tracker class
	701.4.1 Symmetry

	701.5 Customizing Example
	701.6 Security
	701.7 Changes
	701.8 org.osgi.util.tracker
	701.8.1 Summary
	701.8.2 public class ServiceTracker implements ServiceTrackerCustomizer
	701.8.3 public interface ServiceTrackerCustomizer

	702 XML Parser Service Specification
	702.1 Introduction
	702.1.1 Essentials
	702.1.2 Entities
	702.1.3 Operations

	702.2 JAXP
	702.3 XML Parser service
	702.4 Properties
	702.5 Getting a Parser Factory
	702.6 Adapting a JAXP Parser to OSGi
	702.6.1 JAR Based Services
	702.6.2 XMLParserActivator
	702.6.3 Adapting an Existing JAXP Compatible Parser

	702.7 Usage of JAXP
	702.8 Security
	702.9 org.osgi.util.xml
	702.9.1 public class XMLParserActivator implements BundleActivator , ServiceFactory

	702.10 References

	703 Position Specification
	703.1 Introduction
	703.1.1 Essentials
	703.1.2 Entities

	703.2 Positioning
	703.3 Units
	703.4 Optimizations
	703.5 Errors
	703.6 Using Position With Wire Admin
	703.7 Related Standards
	703.7.1 JSR 179

	703.8 Security
	703.9 org.osgi.util.position
	703.9.1 public class Position

	703.10 References

	704 Measurement and State Specification
	704.1 Introduction
	704.1.1 Measurement Essentials
	704.1.2 Measurement Entities

	704.2 Measurement Object
	704.2.1 Value
	704.2.2 Error
	704.2.3 Time-stamp

	704.3 Error Calculations
	704.4 Constructing and Comparing Measurements
	704.4.1 Constructors
	704.4.2 Identity and Equality
	704.4.3 Comparing Measurement Objects

	704.5 Unit Object
	704.5.1 Quantitive Differences
	704.5.2 Why Use SI Units?

	704.6 State Object
	704.7 Related Standards
	704.7.1 GNU Math Library in Kawa

	704.8 Security Considerations
	704.9 org.osgi.util.measurement
	704.9.1 Summary
	704.9.2 public class Measurement implements Comparable
	704.9.3 public class State
	704.9.4 public class Unit

	704.10 References

	999 Execution Environment Specification
	999.1 Introduction
	999.1.1 Essentials
	999.1.2 Entities

	999.2 About Execution Environments
	999.2.1 Signatures
	999.2.2 Semantics

	999.3 OSGi Defined Execution Environments
	999.4 Changes
	999.4.1 Added Classes
	999.4.2 Updated Classes
	999.4.3 Added Methods

	999.5 References

		2005-08-15T18:20:46+0200
	OSGi Alliance

