
OSGi Service Platform
Mobile Specification
The OSGi Alliance

Release 4, Version 4.0
July 2006

Copyright © 2006, 2000 OSGi Alliance
All Rights Reserved

OSGi Specification License, Version 1.0

The OSGi Alliance (“OSGi Alliance”) hereby grants you a fully-paid, non-exclusive,
non-transferable, worldwide, limited license (without the right to sublicense), under
the OSGi Alliance's applicable intellectual property rights to view, download, and
reproduce the OSGi Specification (“Specification”) which follows this License
Agreement (“Agreement”). You are not authorized to create any derivative work of the
Specification. The OSGi Alliance also grants you a perpetual, non-exclusive,
worldwide, fully paid-up, royalty free, limited license (without the right to sublicense)
under any applicable copyrights, to create and/or distribute an implementation of the
Specification that: (i) fully implements the Specification including all its required
interfaces and functionality; (ii) does not modify, subset, superset or otherwise extend
the OSGi Name Space, or include any public or protected packages, classes, Java
interfaces, fields or methods within the OSGi Name Space other than those required
and authorized by the Specification. An implementation that does not satisfy
limitations (i)-(ii) is not considered an implementation of the Specification, does not
receive the benefits of this license, and must not be described as an implementation of
the Specification. An implementation of the Specification must not claim to be a
compliant implementation of the Specification unless it passes the OSGi Alliance
Compliance Tests for the Specification in accordance with OSGi Alliance processes.
“OSGi Name Space” shall mean the public class or interface declarations whose names
begin with “org.osgi” or any recognized successors or replacements thereof.

THE SPECIFICATION IS PROVIDED “AS IS,” AND THE OSGi ALLIANCE, ITS
MEMBERS AND ANY OTHER AUTHORS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE SPECIFICATION
ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH
CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS. THE OSGi ALLIANCE, ITS MEMBERS AND ANY
OTHER AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
SPECIFICATION OR THE PERFORMANCE OR IMPLEMENTATION OF THE
CONTENTS THEREOF.

The name and trademarks of the OSGi Alliance or any other Authors may NOT be used
in any manner, including advertising or publicity pertaining to the Specification or its
contents without specific, written prior permission. Title to copyright in the
Specification will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Trademarks
OSGi™ is a trademark, registered trademark, or service mark of the OSGi
Alliance in the US and other countries. Java is a trademark, registered trade-
mark, or service mark of Sun Microsystems, Inc. in the US and other coun-
tries. All other trademarks, registered trademarks, or service marks used in
this document are the property of their respective owners and are hereby
recognized.

Feedback
This specification can be downloaded from the OSGi Alliance web site:

http://www.osgi.org

Comments about this specification can be mailed to:

speccomments@mail.osgi.org
i-502 OSGi Service Platform Release 4

OSGi Alliance Member Companies

Aplix Corporation, BenQ, BMW Group, Computer Associates, Deutsche
Telekom AG, Electricité de France (EDF), Ericsson Mobile Platforms AB,
Esmertec, Espial Group, Inc., ETRI Electronics and Telecommunications
Research Institute, Gatespace Telematics AB, Harman/Becker Automotive
Systems GmbH, Hitachi, Ltd., IBM Corporation, Industrial Technology
Research Institute, Insignia Solutions, Intel Corporation, KDDI R&D Labo-
ratories, Inc., KT Corporation, Mitsubishi Electric Corporation, Motorola,
Inc., NEC Corporation, Nokia Corporation, NTT, Oracle Corporation, Pro-
Syst Software GmbH, Robert Bosch Gmbh, Samsung Electronics Co., Ltd.,
Siemens AG, Sprint, Sun Microsystems, Inc., Telcordia Technologies, Inc.,
Telefonica I+D, Vodafone Group Services Limited
OSGi Service Platform Release 4 ii-502

OSGi Alliance Board of Directors and Officers

Director,
VP Americas

Dan Bandera Program Director, WebSphere Standards,
IBM Corporation

Director, Treasurer John Barr Director, Standards Realization, Corporate
Offices,
Motorola, Inc.

Director, VP Europe, Middle
East and Africa

Hans-Werner Bitzer Senior Project Manager, Deutsche Telekom,
Deutsche Telekom AG

Director, MEG chair Jon Bostrom Chief Java Architect,
Nokia Corporation

VP Technology/CTO, CPEG
chair, OSGi Fellow

BJ Hargrave Senior Technical Staff Member,
IBM Corporation

Executive Director Deepak Kamlani CEO, Founder,
Global Inventures, Inc.

Director, VP Asia Pacific Ryutaro Kawamura Senior Manager,
NTT

Director Seok-Ha Koh Vice President of S/W Engineering
Samsung Electronics Co., Ltd.

Technical Director, Editor,
OSGi Fellow

Peter Kriens Managing Director,
aQute

Director,
President

Stan Moyer Executive Director, Strategic Research
Program,
Telcordia Technologies, Inc.

Director, Secretary, VEG
chair

Olivier Pavé Software Architect,
Siemens AG

Director of Operations Rob Ranck Vice President,
Global Inventures, Inc

Director,
VP Marketing

Susan Schwarze Marketing Director,
ProSyst Software GmbH
iii-502 OSGi Service Platform Release 4

Table Of Contents
1 Introduction 1
1.1 Reader Level .. 1

1.2 Version Information .. 2

1.3 Non Functional Requirements ... 3

1.4 References ... 4

2 JSR Interactions 5
2.1 Introduction ... 5

2.2 JSR 211 Content Handling ... 5

2.3 References ... 7

3 Mobile Management Tree 9
3.1 Introduction ... 9

3.2 Configuration Management Object .. 10

3.3 Log Management Object ... 15

3.4 Monitor Management Object ... 19

3.5 Application Model Management Object ... 23

3.6 Deployment Management Object .. 34

3.7 Policy Management Object ... 51

3.8 OMA DM Compatibility ... 57

3.9 References ... 57

101 Log Service Specification 59
101.1 Introduction ... 59

101.2 The Log Service Interface .. 60

101.3 Log Level and Error Severity ... 61

101.4 Log Reader Service .. 62

101.5 Log Entry Interface .. 62

101.6 Mapping of Events ... 63

101.7 Security ... 65

101.8 Changes ... 65

101.9 org.osgi.service.log ... 65

104 Configuration Admin Service Specification 71
104.1 Introduction ... 71

104.2 Configuration Targets ... 74

104.3 The Persistent Identity .. 75

104.4 The Configuration Object ... 76

104.5 Managed Service ... 79
OSGi Service Platform Release 4 iv-502

104.6 Managed Service Factory .. 83

104.7 Configuration Admin Service ..88

104.8 Configuration Events ...90

104.9 Configuration Plugin .. 91

104.10 Remote Management ..94

104.11 Meta Typing ... 95

104.12 Security ..96

104.13 Configurable Service ...98

104.14 Changes ...99

104.15 org.osgi.service.cm ..99

104.16 References ... 115

105 Metatype Service Specification 117
105.1 Introduction ... 117

105.2 Attributes Model ... 120

105.3 Object Class Definition ... 120

105.4 Attribute Definition ... 121

105.5 Meta Type Service ... 121

105.6 Using the Meta Type Resources .. 123

105.7 Object .. 130

105.8 XML Schema .. 130

105.9 Limitations ... 131

105.10 Related Standards .. 132

105.11 Security Considerations .. 132

105.12 Changes ... 132

105.13 org.osgi.service.metatype ... 132

105.14 References ... 139

109 IO Connector Service Specification 141
109.1 Introduction ... 141

109.2 The Connector Framework .. 142

109.3 Connector Service ... 144

109.4 Providing New Schemes .. 145

109.5 Execution Environment ... 146

109.6 Security .. 146

109.7 org.osgi.service.io ... 147

109.8 References ... 150

112 Declarative Services Specification 151
112.1 Introduction ... 151

112.2 Components .. 154

112.3 References to Services .. 157
v-502 OSGi Service Platform Release 4

112.4 Component Description .. 163

112.5 Component Life Cycle ... 168

112.6 Component Properties .. 175

112.7 Deployment ... 176

112.8 Service Component Runtime .. 177

112.9 Security ... 178

112.10 Component Description Schema .. 178

112.11 org.osgi.service.component .. 180

112.12 References ... 185

113 Event Admin Service Specification 187
113.1 Introduction ... 187

113.2 Event Admin Architecture ... 189

113.3 The Event ... 189

113.4 Event Handler .. 190

113.5 Event Publisher .. 191

113.6 Specific Events .. 192

113.7 Event Admin Service ... 195

113.8 Reliability ... 197

113.9 Inter-operability with Native Applications ... 197

113.10 Security ... 198

113.11 Changes ... 199

113.12 org.osgi.service.event ... 199

114 Deployment Admin Specification 205
114.1 Introduction ... 205

114.2 Deployment Package ... 207

114.3 File Format ... 210

114.4 Fix Package .. 217

114.5 Customizer .. 218

114.6 Deployment Admin Service .. 220

114.7 Sessions ... 221

114.8 Installing a Deployment Package .. 224

114.9 Uninstalling a Deployment Package ... 230

114.10 Resource Processors .. 231

114.11 Events .. 237

114.12 Threading .. 237

114.13 Security ... 238

114.14 org.osgi.service.deploymentadmin ... 239

114.15 org.osgi.service.deploymentadmin.spi ... 253

114.16 References ... 260
OSGi Service Platform Release 4 vi-502

115 Auto Configuration Specification 261
115.1 Introduction ... 261

115.2 Configuration Data .. 262

115.3 Processing .. 263

115.4 Security Considerations .. 267

116 Application Admin Service Specification 269
116.1 Introduction ...269

116.2 Application Managers .. 271

116.3 Application Containers .. 277

116.4 Application Admin Implementations ...284

116.5 Interaction ...286

116.6 Security ..288

116.7 org.osgi.service.application ...289

116.8 References ...302

117 DMT Admin Service Specification 303
117.1 Introduction ... 303

117.2 The Device Management Model ... 307

117.3 The DMT Admin Service .. 310

117.4 Manipulating the DMT .. 311

117.5 Meta Data ..320

117.6 Plugins .. 324

117.7 Access Control Lists .. 329

117.8 Notifications .. 333

117.9 Exceptions ... 335

117.10 Events .. 335

117.11 Access Without Service Registry ... 338

117.12 Security .. 339

117.13 info.dmtree .. 343

117.14 info.dmtree.spi .. 399

117.15 info.dmtree.notification .. 413

117.16 info.dmtree.notification.spi .. 416

117.17 info.dmtree.registry .. 417

117.18 info.dmtree.security .. 418

117.19 References ...424

118 Mobile Conditions Specification 425
118.1 Introduction ... 425

118.2 User Prompt Condition .. 425

118.3 IMEI Condition ... 427

118.4 IMSI Condition ... 427
vii-502 OSGi Service Platform Release 4

118.5 Implementation Issues .. 428

118.6 Security ... 428

118.7 org.osgi.util.mobile ... 428

118.8 org.osgi.util.gsm .. 430

118.9 References ... 431

119 Monitor Admin Service Specification 433
119.1 Introduction ... 433

119.2 Monitorable ... 434

119.3 Status Variable .. 437

119.4 Using Monitor Admin Service ... 438

119.5 Monitoring events ... 442

119.6 Security ... 443

119.7 org.osgi.service.monitor ... 443

119.8 References ... 458

120 Foreign Application Access Specification 459
120.1 Introduction ... 459

120.2 Foreign Applications .. 460

120.3 Application Containers .. 466

120.4 Application Descriptor Resource .. 467

120.5 Component Description Schema .. 469

120.6 Security ... 470

120.7 org.osgi.application ... 471

120.8 References ... 478

701 Service Tracker Specification 479
701.1 Introduction ... 479

701.2 Service Tracker Class .. 480

701.3 Using a Service Tracker ... 481

701.4 Customizing the Service Tracker class ... 482

701.5 Customizing Example .. 482

701.6 Security ... 483

701.7 Changes ... 483

701.8 org.osgi.util.tracker ... 483

702 XML Parser Service Specification 491
702.1 Introduction ... 491

702.2 JAXP ... 492

702.3 XML Parser service .. 493

702.4 Properties .. 493

702.5 Getting a Parser Factory .. 494
OSGi Service Platform Release 4 viii-502

702.6 Adapting a JAXP Parser to OSGi ..494

702.7 Usage of JAXP ..496

702.8 Security .. 497

702.9 org.osgi.util.xml ... 497

702.10 References ...500
ix-502 OSGi Service Platform Release 4

Introduction Reader Level
1 Introduction
The OSGi™ Alliance was founded in March 1999. Its mission is to create
open specifications for the network delivery of managed services to local
networks and devices. The OSGi organization is the leading standard for
next-generation Internet services to homes, cars, small offices, and other
environments.

The OSGi service platform specification delivers an open, common architec-
ture for service providers, developers, software vendors, gateway operators
and equipment vendors to develop, deploy and manage services in a coordi-
nated fashion. It enables an entirely new category of smart devices due to its
flexible and managed deployment of services. The primary targets for the
OSGi specifications are set top boxes, service gateways, cable modems, con-
sumer electronics, PCs, industrial computers, cars and more. These devices
that implement the OSGi specifications will enable service providers like
telcos, cable operators, utilities, and others to deliver differentiated and
valuable services over their networks.

This is the fourth release of the OSGi service platform specification devel-
oped by representatives from OSGi member companies. The OSGi Service
Platform Release 4 mostly extends the existing APIs into new areas. The few
modifications to existing APIs are backward compatible so that applications
for previous releases should run unmodified on release 4 Frameworks. The
built-in version management mechanisms allow bundles written for the
new release to adapt to the old Framework implementations, if necessary.

1.1 Reader Level
This specification is written for the following audiences:

• Application developers
• Framework and system service developers (system developers)
• Architects

This specification assumes that the reader has at least one year of practical
experience in writing Java programs. Experience with embedded systems
and server environments is a plus. Application developers must be aware
that the OSGi environment is significantly more dynamic than traditional
desktop or server environments.

System developers require a very deep understanding of Java. At least three
years of Java coding experience in a system environment is recommended. A
Framework implementation will use areas of Java that are not normally
encountered in traditional applications. Detailed understanding is required
of class loaders, garbage collection, Java 2 security, and Java native library
loading.
OSGi Service Platform Release 4 1-502

Version Information Introduction
Architects should focus on the introduction of each subject. This introduc-
tion contains a general overview of the subject, the requirements that influ-
enced its design, and a short description of its operation as well as the
entities that are used. The introductory sections require knowledge of Java
concepts like classes and interfaces, but should not require coding experi-
ence.

Most of these specifications are equally applicable to application developers
and system developers.

1.2 Version Information
This document specifies [2] OSGi Service Platform, Release 4. This specifica-
tion is backward compatible to releases 3.

Components in this specification have their own specification-version,
independent of the OSGi Service Platform, Release 4 specification. The fol-
lowing table summarizes the packages and specification-versions for the dif-
ferent subjects.

Table 1.1 Packages and versions

Item Package Version Opt

Framework org.osg i.f ramework Vers ion 1.3
Package Admin Service Speci-
f ication

org.osg i.service .packageadmin Vers ion 1.2

Condit ional Permission Admin
Speci f icat ion

org.osgi.service .condpermissionadmin Vers ion 1 .0 Yes

Permission Admin Service
Speci f icat ion

org.osg i.service .permissionadmin Vers ion 1.2

3 Mobi le Management Tree Vers ion 1 .0
101 Log Service Speci f ication org.osg i.service. log Vers ion 1 .3
104 Configuration Admin Ser-
vice Spec i f ication

org.osg i.service .cm Vers ion 1.2

105 Metatype Service Specif i-
cation

org.osg i.service .metatype Vers ion 1.1

109 IO Connector Service
Speci f icat ion

org.osgi.service . io Vers ion 1 .0 Yes

112 Declarative Services
Speci f icat ion

org.osg i.service .component Vers ion 1.0

113 Event Admin Service
Speci f icat ion

org.osg i.service .event Vers ion 1.1

114 Deployment Admin Speci-
f ication

org.osgi.service .deploymentadmin
org.osgi.service .deploymentadmin.sp i

Vers ion 1 .0

115 Auto Configurat ion Speci-
f ication

Vers ion 1 .0

116 Appl ication Admin Ser-
vice Spec i f ication

org.osg i.serv ice .appl icat ion Vers ion 1 .0
2-502 OSGi Service Platform Release 4

Introduction Non Functional Requirements
When a component is represented in a bundle, a specification-version is
needed in the declaration of the Import-Package or Export-Package manifest
headers.

1.3 Non Functional Requirements

1.3.1 Framework Optionality
The OSGi Release 4 Core specification on which the Mobile Specifications
are based defines a number of aspects as optional:

• Fragments
• Require-Bundle

This specification inherits the optionality. Compliant implementations are
not required to implement these optionalities, however, when they do, they
must conform strictly to the Core specification. This implies that bundle
developers cannot rely on the presence of these features in a compliant
device. Bundles that use any of the optional features must not be allowed to
install on a device that does not implement these features.

1.3.2 Security Formats and Algorithms
Required certificate formats:

• [3] X.509 Certificates

Required Digest Algorithms:

• [4] Secure Hash Algorithm 1
• [5] RFC 1321 The MD5 Message-Digest Algorithm

Required Signing Algorithm

• [6] RSA

11 7 DMT Admin Service Spec-
i f ication

in fo.dmtree
in fo.dmtree.spi
in fo.dmtree.secur i ty
in fo.dmtree.not if ication
in fo.dmtree.not if ication.spi
in fo.dmtree.regist ry

Vers ion 1 .0 Yes

118 Mobi le Condit ions Speci-
f ication

org.osg i .ut i l .gsm
org.osg i .ut i l .mobi le

Vers ion 1 .0 Yes

119 Monitor Admin Service
Speci f ication

org.osg i .service.monitor Vers ion 1 .0 Yes

120 Foreign Application
Access Speci f icat ion

org.osg i .app lication Vers ion 1 .0

701 Service Tracker Spec i f ica-
t ion

org.osg i .ut i l .tracker Vers ion 1 .3

702 XML Parser Service Speci-
f ication

org.osg i .ut i l .xml Vers ion 1 .0 Yes

Table 1.1 Packages and versions

Item Package Version Opt
OSGi Service Platform Release 4 3-502

References Introduction
1.3.3 Device Management
Device Management is based on concepts in [9] Open Mobile Alliance. The fol-
lowing limits apply.

The Mobile Management tree is an optional aspect of this specification
because the Dmt Admin service is optional.

• Node name lengths of 32 bytes or more must be supported. This length is
defined upon the unescaped, UTF-8 encoded name.

• URI lengths of 255 bytes or more must be supported. This length is based
on the same encoding as previous bullet.

• The minimum number of segments that must be supported in a URI is
16.

1.3.4 Execution Environment
This specification requires a Profile that meets the [8] OSGi Minimum Execu-
tion Environment Version 1.1.

1.3.5 Configuration Admin
Property key names used in the Configuration Admin service must be less
or equal than 32 bytes when encoded in UTF-8 to prevent from being man-
gled in the DMT Admin.

1.4 References
[1] Bradner, S., Key words for use in RFCs to Indicate Requirement Levels

http://www.ietf.org/rfc/rfc2119.txt, March 1997.

[2] OSGi Service Platform, Release 4
http:/www.osgi.org/download

[3] X.509 Certificates
http://www.ietf.org/rfc/rfc2459.txt

[4] Secure Hash Algorithm 1
http://csrc.nist.gov/publications/fips/fips180-2/fips180-
2withchangenotice.pdf

[5] RFC 1321 The MD5 Message-Digest Algorithm
http://www.ietf.org/rfc/rfc1321.txt

[6] RSA
http://www.ietf.org/rfc/rfc2313.txt which is superseded by
http://www.ietf.org/rfc/rfc2437.txt

[7] Public Key Crypography Standard #7
http://www.rsasecurity.com/rsalabs/node.asp?id=2129

[8] OSGi Minimum Execution Environment Version 1.1
http:/www.osgi.org/download

[9] Open Mobile Alliance
http://www.openmobilealliance.org/release_program/index.html
4-502 OSGi Service Platform Release 4

JSR Interactions Version 1.0 Introduction
2 JSR Interactions
Version 1.0

2.1 Introduction
This chapter discusses issues that may arise when JSRs are used in an OSGi
environment.

2.2 JSR 211 Content Handling
The [1] JSR 211 Content Handler API (CHAPI) allows applications and other
similar entities with a lifecycle to act as content handlers. In the context of
OSGi, these entities are OSGi bundles. The following subsections define in
more detail how JSR 211 Content Handler API can be implemented on OSGi
and how bundles can act as content handlers.

2.2.1 Content Handler API
The Content Handler API is an optional package for the J2ME platform. It
allows applications and other entities to register themselves as content han-
dlers and to invoke other content handlers. A content handler is an entity
with a lifecycle (typically an application) that has registered itself to be
invoked through the API. The registered entities typically handle some con-
tent, but this is not required. A lifecycle entity can register itself only for the
purpose of being invoked by other entities and applications, without need-
ing to handle any content. Invocations can be based on content URL, con-
tent type, or content handler ID. Arguments may also be passed to a content
handler, and the content handler can return results and a status.

The CHAPI specification consists of a generic part and a platform-specific
part. The generic part of the specification applies to all CHAPI implementa-
tions, whereas the platform-specific part needs to be specified for each Java
platform that has its own concepts for application packaging and lifecycle
primitives. The CHAPI defines the platform-specific part of the specification
for Mobile Information Device Profile (MIDP), but leaves it undefined for
other platforms. Consequently, a specification is needed for the platform
specific parts of CHAPI on the OSGi platform.

The following subsections briefly define the platform-specific parts of a
CHAPI implementation on the OSGi platform. Familiarity with the Content
Handler API specification is assumed. This specification lists only the addi-
tional requirements and clarifications that are needed to implement the API
in an interoperable way on the OSGi Service Platform.
OSGi Service Platform Release 4 5-502

JSR 211 Content Handling JSR Interactions Version 1.0
2.2.2 Content Handler Identification
A Content Handler API implementation in the OSGi Service Platform must
allow bundles to be registered as content handlers, by either static or
dynamic means as defined by the Content Handler API.

Static registration manifest headers are the same as those defined in the
package description of the Content Handler API. The dynamic registration
parameters are as defined for method Regist ry .register() . The semantics of
the class name parameter in both static and dynamic registrations, however,
is defined for the OSGi Service Platform in the following manner.

When an OSGi bundle is registered as a content handler, it must define a ser-
vice that has a serv ice .pid service property and use the value of this PID as
the class name parameter in the context of the Content Handler API.

Static registration of a service as a content handler must fail if the
service.p id service property is undefined. Dynamic registration of a service
as a content handler must fail if the service .pid service property passed in as
a parameter does not represent a service that has been registered into the
system.

This definition for the class name parameter semantics also applies to meth-
ods: Registry .getRegis try () , Regis try .getServer() and Regist ry .unregister() .

The static registration attributes are placed into the bundle’s manifest file.

2.2.3 Content Handler Access Control
The Content Handler API includes a mechanism allowing content handlers
to optionally limit their accessibility to a predefined list of invokers. This
mechanism requires that the invokers can define a unique identifier for
themselves. CHAPI defines that MIDlets can define this identifier using the
attribute MIDlet-<n>-ID, where <n> refers to a specific MIDlet within the
MIDlet suite JAR. Because this attribute is MIDP-specific, a corresponding
way to identify OSGi bundles is needed.

As specified in the Content Handler API specification, a content handler can
use the attribute MicroEdition-Handler-<n>-ID to identify itself for the pur-
poses of access control. As this attribute is only applicable to content han-
dlers, bundles that are not content handlers must use the Bundle-
SymbolicName header as their identification.

2.2.4 Method Descriptions
Definitions of some Content Handler API methods also need tfurther clarifi-
cation in an OSGi-based Content Handler API implementation. Below are
descriptions of these methods and clarifications.

2.2.4.1 ContentHandler.getAppName()

A bundle acting as a content handler must define a serv ice .name property
that will contain the service name. This property will be used as the return
value from this method.
6-502 OSGi Service Platform Release 4

JSR Interactions Version 1.0 References
2.2.4.2 ContentHandler.getAuthority()

The return value must be the subject of the signing certificate, if the bundle
has been signed and the signature verification has been successful. Other-
wise nul l must be returned.

2.2.4.3 ContentHandler.getID()

No relevant changes.

2.2.4.4 ContentHandler.getVersion()

A bundle acting as a content handler should define a service.version prop-
erty that will contain the implementation version of the service. This prop-
erty will be used as the return value from this method. If the service .vers ion
property is not defined, the implementation must return nul l .

2.2.4.5 Invocation.getID() and Invocation.getInvokingID()

No relevant changes.

2.2.4.6 Invocation.getInvokingAppName()

Return value is obtained in the same way as for ContentHandler.getApp-
Name() on page 6.

2.2.4.7 Invocation.getInvokingAuthority()

No relevant changes.

2.2.4.8 Registry.getID() and Registry.getIDs()

No relevant changes.

2.2.4.9 Registry.getRegistry(), Registry.getServer(), Registry.register(),
Registry.unregister()

No relevant changes.

2.3 References
[1] JSR 211 Content Handler API

http://www.jcp.org/en/jsr/detail?id=211
OSGi Service Platform Release 4 7-502

References JSR Interactions Version 1.0
8-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Introduction
3 Mobile Management
Tree
Version 1.0

3.1 Introduction
This section defines the Mobile Management Tree as it must be available on
an OSGi Mobile Platform via the Dmt Admin service. The protocol used
between the remote manager and the device is not specified, but it is
expected that OMA DM will be the common protocol to manipulate this
tree. Therefore, the objects defined in this chapter have only been evaluated
against the OMA DM protocol, although the OMA DM protocol is optional
for this specification.

Concepts and terms used in this section are defined and explained in DMT
Admin Service Specification on page 303.

The OSGi Mobile Management Tree is a relative tree. Devices can place the
root of this tree anywhere in the Device Management Tree. In this specifica-
tion, this relative location in the Device Management Tree is indicated with
the $ sign. The root of the OSGi tree is set in the System property that must
not change during runtime:

info.dmtree.osgi.root

The OSGi Mobile Management Tree consists of a number of distinct parts.
The top level nodes of the sub-trees are depicted in Figure 3.1. The legend for
this picture can be found in Figure 117.4 on page 308. Additionally, nodes
that are created dynamically with a parametrized name are indicated with
angular brackets (<>), for example <node_id> . Interior nodes use a bold type
face. All dynamic nodes must use the name mangle method on the Dmt
Admin service to ensure that the given name is compatible with the require-
ments of the tree implementation.

Figure 3.1 Overall Tree

These different sub-trees are discussed in the following paragraphs.

Configuration Log Monitor ApplicationDeployment

$

Policy
OSGi Service Platform Release 4 9-502

Configuration Management Object Mobile Management Tree Version 1.0
3.1.1 Legend
The pictures in this chapter follow the legend defined in Figure 117.4 on
page 308. All nodes are described in a table format. This table format defines
the following meta information:

• Add - An x indicates that the implementation must support creation of
the given node by the management system.

• Get - An x indicates that the implementation must support retrieval of
the properties of the given node (including the value).

• Replace - An x indicates that the implementation must support setting
the value of the given node. Support for changing the other properties is
optional. Note, that this column does not correspond to the Replace
Access Type, which can be provided by an implementation even if the
node value cannot be changed, for example in case it supports setting the
Title property.

• Delete - An x indicates that the implementation must support deletion of
the given node by the management system.

• Exec - An x indicates that the implementation must support the execute
operation for the given node.

• Type – The node type for an interior node , or the data type for a leaf node.
The data type is a combination of: chr, in t , f loat , date , t ime, bin, xml ,
bool , b64 .

• Cardinality – The range of occurrences of the given node. * means
infinite.

• Scope – The scope indicates the creation strategy. It can have the fol-
lowing values:
• P – Permanent. A permanent node cannot be changed by the manage-

ment system. It can, however, appear due to an internal device event,
for example, the insertion of an accessory.

• D – Dynamic. A node that must be created by the management sys-
tem. Such a creation can then automatically create other nodes.

• A – Automatic. A node that is created automatically by a managed
object if a parent node is created.

• - – Unknown, Used in optional extension point for vendor (imple-
mentation-specific) parameters. Vendor extensions must not be
defined outside of one of these Ext sub-trees. The interior node cre-
ation depends on the implementation.

In many cases, actions take their parameters from nodes that are in the same
context. They share a common parent or the context is provided by a sub-
tree. This tree, which provides the context, is called the context tree.

3.2 Configuration Management Object
The Configuration Admin Service is responsible for:

• Storing configuration information,
10-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Configuration Management Object
• Providing this information to bundles that need configuration infor-
mation, and

• Notifying these bundles when their configuration changes.

The Configuration Management Object is responsible for mapping these
functions to the Mobile Management Tree, except for the notifications. The
Configuration Management Object implementation can be included in a
separate bundle, or it can be included with the implementation of the Con-
figuration Admin service.

The tree structure of Configuration Admin Service Specification on page 71 can
be accessed from the $/Conf igurat ion sub-tree. Figure 3.2 depicts the struc-
ture of the Configuration Management Object sub-tree.

Figure 3.2 Configuration Management Object Tree

The Tree represents each Configurat ion object as a sub-tree under a node
that has its PID as its name. This configuration node resides under the $/
Configurat ion sub-tree.

The Configuration Management Object must support transactions because
all changes to the $/Conf igurat ion tree must be done in an atomic session to
keep the Configuration object consistent. Only atomic sessions can perform
the required single update of all the configuration properties, as well as
decide to make a factory or singleton configuration.

The length of the PID string should be shorter than the URI segment length
limit defined for the given device. As the Configuration Admin specification
does not contain these limitations for PIDs, it cannot always be guaranteed
that the PID is a valid node name. The actual PID, therefore, must always be
stored in the $/Conf igurat ion/<p id>/Pid node.

<pid>

$/Configuration

FactoryPid

Keys

<key>

Location
1

0..n

1

0..n

Pid

1

0,1

Type Cardinality Value 1

0..*

<n>

Values

Value xor Values based on
the value of Cardinality
OSGi Service Platform Release 4 11-502

Configuration Management Object Mobile Management Tree Version 1.0
All nodes for the Configuration Management Object sub-tree are explained
in Table 3.1.

Table 3.1 Configuration Admin sub-tree Nodes
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description

Configuration x node 1 P Configuration Root node.

Configuration/<pid> x x x node 0. .* D Interior node that represents the
Configurat ion object. The name of
this node is usually the mangled PID
of the Configuration object.

Configuration/<pid>/
Location

x x chr 1 D Bundle location of the Configurat ion
object.

Configuration/<pid>/Pid x x chr 1 D The actual PID as used by the Config-
uration Admin service. Always the
Configurat ion object’s PID, never a
factory PID.

Configuration/<pid>/
FactoryPid

x x chr 0,1 D If this node is present, then the sub-
tree is for a factory configuration. The
value of this node is the PID of the
corresponding Managed Service Fac-
tory.

Configuration/<pid>/Keys x node 1 A Holds the key nodes that contain the
values for the Configurat ion object.

Configuration/<pid>/Keys/
<key>

x x x node 0. .* D A node with the name of a key. The
node holds the value of an entry in
the configuration Dictionary. This
key must be shorter than the max
defined node name length (see Device
Management on page 4). The value is
defined by its type , cardinal i ty and
value sub-nodes. The nodes of the
<key> sub-tree are not automatic
because the tree structure depends on
the type of the value to be stored.

Configuration/<pid>/Keys/
<key>/Type

x x chr 1 D Type of the property. See Configura-
tion dictionary nodes on page 13.

Configuration/<pid>/Keys/
<key>/Cardinality

x x chr 1 D Cardinality of the property. See Con-
figuration dictionary nodes on page 13.
The value is either: sca la r , vector or
array .
12-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Configuration Management Object
3.2.1 Factory and Singleton Configurations
Both a factory configuration and a singleton configuration share the same
basic structure, described in the previous section. The difference is that a
factory configuration has a node for the $/Configuration/<pid>/FactoryPid
URI.

Such a node can only be created, however, if the <pid> component of the URI
is known ahead of time. For factories, it is not possible to know the compo-
nent ahead of time, because the Configuration Admin service creates a
unique PID whenever a new factory configuration is made. The interaction
required between the initiator and the Configuration Admin service for this
model was deemed too complex.

Therefore, the <pid> component of the URI must be chosen by the creator of
the node and is treated as an alias. The Configuration Management Object
must map this chosen PID to the PID that is generated by the Configuration
Admin service. This mapping must be maintained as long as the node exists.

In this way, the PID of the factory configuration becomes a well-known
name for the initiator without needing an additional protocol message
exchange or variables in scripts. The actual PID is determined by the Config-
uration Management Object and is reflected in the Pid node.

3.2.2 Configuration dictionary nodes
The configuration Dictionary of a configuration target consists of key-value
pairs. The configuration Dictionary is mapped to a sub-tree. The URI for a
configuration item is the following:

$/Configuration/<pid>/Keys/<key>

Configuration/<pid>/Keys/
<key>/Value

x x x chr
bin
int

bool
f loat

0,1 D Contains the value of a property in a
leaf node (see Configuration dictionary
nodes on page 13). This node is only
present if the cardinality is sca la r . It
has chr format if there is no corre-
sponding node type as defined in
Table 3.2 on page 14.

Configuration/<pid>/Keys/
<key>/Values

x x node 0,1 D Interior node that contains the actual
values. Children are leaf nodes (see
Configuration dictionary nodes on page
13).This node is only present if the
cardinality is vector or array .

Configuration/<pid>/Keys/
<key>/Values/<n>

x x x x chr
int

bool
f loat

0. .* D A leaf node that contains a value
which is defined by the <key>/Type
node in this sub tree. The name must
be an integer that is continuous for
the parent tree.

Table 3.1 Configuration Admin sub-tree Nodes
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description
OSGi Service Platform Release 4 13-502

Configuration Management Object Mobile Management Tree Version 1.0
For example, a portNumber property of a com.acme.fudd Conf igurat ion
object can be found in the sub-tree under the following URI:

$/Configuration/com.acme.fudd/Keys/portNumber

Key nodes are interior nodes. Their type, cardinality, and value are repre-
sented as separated nodes. These sub-nodes are:

• Type contains the Java type name like java . lang.Float , char , etc.
• Cardinality – Defines if the value is a scalar , an array , or vector . It can

take the following values:
• scalar – For a simple, unstructured value, like a string or a byte[] .
• array – When the value is a Java array (but not byte[])
• vector – When the value must be a Java Vector object.

• Value – A leaf node that only exists if the cardinality is scalar .
• Values – Exists if the cardinality is array or vector . The children of this

node must be named with an integer that starts at zero for the first
element, and increases by one with each additional element.

The actual value (Value node or Values child nodes) is mapped to a Dmt
Data type if possible. If this mapping is not possible, the node must be a chr
node and the Java class of the given type must be able to parse the value in a
constructor.

For Dmt Type nodes, the mapping as defined in Table 3.2 must be used.

The OMA DM t ime , b64 and xml formats have no representation in the Con-
figuration Dictionary.

3.2.3 Restrictions
The specified DMT structure is very flexible, and permits the representation
of Configurat ion objects that are not considered valid according to the Con-
figuration Admin Service specification. Following is a list of restrictions and
rules that should be obeyed in order to maintain valid Configuration
objects. If these rules are violated, the Configuration Management Object
must throw a Dmt Exception.

• Vectors cannot store primitive types (long , int , short , char , byte ,
boolean , double and f loat); therefore, they must not be used in sub-trees
representing a Vector object.

• Java arrays and vectors are indexed from zero to some number continu-
ously. If an index is missing, the array or vector is in an inconsistent
state. When deleting elements (an unlikely but possible use case) care

Table 3.2 Dmt Types to Java Types mapping
Dmt Type Java Type Notes

chr java . lang.Str ing

int java . lang. Integer , int Primitive types only in arrays

bool java . lang.Boolean,
boolean

Primitive types only in arrays

f loat java . lang.Float , f loat Primitive types only in arrays

bin byte[]

chr Other String must contain the value in
string form.
14-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Log Management Object
must be taken to maintain the continuous indexing of elements at the
end of the modification session.

• The node names in the Dmt Admin service are case-sensitive. In a config-
uration dictionary, however, the keys are searched without regard to
case. Therefore, the node names in the DMT representation of a configu-
ration dictionary must be different even if compared without regard to
case.

• Nodes in the $/Conf igurat ion sub-tree support the Add, Get, Replace
and Delete commands, controlled by the ACL of the node. These nodes
do not support the exec command.

• Modification of more than one entry under the same <pid> node must be
done atomically. In other words, the whole dictionary is updated in one
step. In OMA DM, this concept corresponds to the atomic operation.

3.3 Log Management Object
This section describes how log information is made available in the Mobile
Management Tree. Typically, a Mobile Management Tree user is interested
in a subset of the log records, for example, the highest severity entries origi-
nating from a specific application within the last 24 hours. Doing the filter-
ing on the server side is not an option because of the high bandwidth
required to transfer all the records. Therefore, the remote manager must
have means to issue log search requests and receive only the log records in
which it is interested. The standard OSGi Log Reader service (see Log Service
Specification on page 59), does not provide filtering, it simply returns the full
list of available log records.

The Log Management Object is responsible for mapping this repository of
log records to the Mobile Management Tree. The initiator must create a
search node with the appropriate parameters, and then read back the result
from an automatically created node.

The Log Management Object does not have to support transactions.

Log searches can be initiated using the $/Log sub-tree. This sub-tree is
depicted in Figure 3.3.
OSGi Service Platform Release 4 15-502

Log Management Object Mobile Management Tree Version 1.0
Figure 3.3 Mobile Management Tree for Log Management Object

The log sub-tree nodes are defined in the following table:

$/Log

<search_id>

Filter Exclude

1
0..*

MaxRecords

LogResult

<record_id>

Time System SubSystem MessageDataSeverity

1
0..*

Table 3.3 Log Management Object Tree
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

ity

Sc
op

e

Description

Log x node 1 P Log Root node.

Log/<search_id> x x x node 0. .* D Represents a log search request. The
name of the node is a unique ID gener-
ated by the initiator.

Log/<search_id>/Filter x x chr 1 A Contains the filtering expression. The
result must include only those log
entries that satisfy the specified condi-
tion. The filter should be given in the
OSGi Filter format. The filter can con-
tain conditions with the node names
below the LogResult node. For exam-
ple:

(&(Severity>=2)
 (Time>=20040720T194223Z))

The empty string indicates that no fil-
tering must be done. An empty string
is the default value for this node.
16-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Log Management Object
Log/<search_id>/Exclude x x chr 1 A A comma-separated list of log entry
nodes. All node names that are speci-
fied below the LogResu lt node can be
used. If specified, the listed node
names must not be included in the
search result. The filter expression
may contain (and filtering should be
done against) conditions for a node
even if it is added to the exclude list.
For example:

Severity, Data

If the Exc lude node is empty, all log
entry nodes must be included in the
search result, which is the default
value for this node.

Log/<search_id>/
MaxRecords

x x int 1 A The maximum number of log records
to be included in the search result. The
default value for this node is zero,
which means no limit.

Log/<search_id>/
LogResult

x node 1 A All data related to log search requests
is stored under the LogResult node.
The children of this node are only gen-
erated when this sub-tree is first
accessed, based on the actual log
request parameters.

Log/<search_id>/LogResult/
<record_id>

x node 0. .* A A device-generated unique identifier of
the log record.

Log/<search_id>/LogResult/
<record_id>/Time

x chr 0,1 A The value is the UTC based date and
time of the creation of the log entry in
basic representation, complete format
as defined by ISO-8601 with the pat-
tern yyyymmddThhmmssZ . For exam-
ple:

20040720T221011Z

Log/<search_id>/LogResult/
<record_id>/Severity

x int 0,1 A The severity level of the log entry. The
value is the same as the Log Service
level values:

LOG_ERROR 1
LOG_WARNING 2
LOG_INFO 3
LOG_DEBUG 4

Other values are possible because the
Log Service allows custom levels.

Table 3.3 Log Management Object Tree
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description
OSGi Service Platform Release 4 17-502

Log Management Object Mobile Management Tree Version 1.0
3.3.1 Using log search
All data related to a log search request is stored in the log sub-tree under the
following URI:

$/Log/<search_id>

where <search_id> is a unique identifier of the search request, given by the
initiator when it creates the node representing the search request.

To prepare a log search, the client should first create a new node in DMT in
the $/Log sub-tree and optionally fill in the following nodes: F il ter , Exclude ,
and MaxRecord .

At any moment, the initiator can start reading the automatically created
LogResult sub-tree. This node must contain as its children only the log
records that match the criteria of the context tree at the moment of the first
read, in other words, the selection must be frozen at the time the first node is
read.

The sub-tree must only contain the leaf nodes that are not barred by the
Exc luded node.

The <search_ id> node can be deleted by the management server at its conve-
nience. The node can therefore be used as a prepared script.

The Log Management Object can delete the <search_id> after an implemen-
tation-defined time that should allow ample time for reading the results.

Log/<search_id>/LogResult/
<record_id>/System

x chr 0,1 A The name of the large-scale functional
unit that generated the entry, for
example, the ID of the originator bun-
dle.

Log/<search_id>/LogResult/
<record_id>/SubSystem

x chr 0,1 A The name of a related service.

Log/<search_id>/LogResult/
<record_id>/Message

x chr 0,1 A Textual, human-readable description
of the log entry.

Log/<search_id>/LogResult/
<record_id>/Data

x chr 0,1 A Supplementary data for the log entry,
it can be empty. The content is log-
entry specific. Normally, this attribute
should contain exception information
associated with the log entry, if any.
The attribute should also contain the
name of the exception class, the mes-
sage, and the stack trace associated
with the Exception object.

Table 3.3 Log Management Object Tree
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description
18-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Monitor Management Object
3.4 Monitor Management Object
This section describes how the monitor-related features are made available
in the Mobile Management Tree.

The OMA Device Management work group defined a management object
structure for Traps, which is event based reporting of faults and perfor-
mance data (see the Trap-MO documents in [6] OMA DM Draft Trap-MO 1.3).
The structure defined on OMA can be used without modifications in OSGi
to represent monitoring data in the Mobile Management Tree. The Trap
Management Object is not described in this document, refer to [6] OMA DM
Draft Trap-MO 1.3 for the definition.

Some features are available only to the user of the Monitor Admin Service
API, not to a Mobile Management Tree user. The API allows specification of
a given number of measurements to be made. The Mobile Management Tree
user has to explicitly stop a measurement job, otherwise it will never expire.
In the OMA Trap MO, there is no count parameter for periodic measure-
ment jobs, only the frequency can be set (i.e. all jobs started using the DMT
have a count value of zero). In this way, the job is reported as running and
also keeps sending events until it is explicitly stopped, either through the
tree or from the API.

A monitorable service is identified by its service_pid . The Status Variables
provided by the Monitorable service are stored in the Mobile Management
Tree under the node:

$/Monitor/<service_pid>/<status_variable_name>

This is an interior node which has a substructure from the <X>* node
defined as the root node in the Trap MO documents. The sub-tree holds
information about the collection method, the reporting schedule, and the
current value of the Status Variable.
OSGi Service Platform Release 4 19-502

Monitor Management Object Mobile Management Tree Version 1.0
Figure 3.4 Trap MO

Table 3.4 Monitor Management Object Nodes
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description

Monitor x node 1 P Monitor Root node.

Monitor/<service_pid> x node 0. .* P A Monitorable service. The name of
the node is the PID of the Monitorable
service.

Monitor/<serivce_pid>/
<status_variable_name>

x node 0. .* P A Status Variable published by a
Monitorable service. The name of the
node is the ID of the Status Variable.

Monitor/<serivce_pid>/
<status_variable_name>/
TrapID

x chr 1 P Contains the full name of the Status
Variable in the form of: <service_pid>/
<status_var iable_name>

$/Monitor

0..*

TrapID

<service_pid>

<status_variable_name>
0..*

1

1

Server

<x_id>

CM Results

ServerID Enabled

ReportingTrapRef

<y_id>
ValueType

TrapRefID

0..*

1

0..*

1

20-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Monitor Management Object
Monitor/<serivce_pid>/
<status_variable_name>/CM

x chr 1 P Contains the collection method that
describes how the measured data is
collected for a particular Status Vari-
able.

Monitor/<serivce_pid>/
<status_variable_name>/
Results

x chr
int

f loat
bool

1 P Stores the measurement data provided
by the Status Variable. The type of the
node corresponds to the type of the
Status Variable.

Monitor/<serivce_pid>/
<status_variable_name>/
Server

x node 1 P This interior node acts as a placeholder
for all the management servers to
which the alerts containing the mea-
sured data would be sent.

Monitor/<serivce_pid>/
<status_variable_name>/
Server/<x_id>

x x x node 0. .* D Defines a Monitoring job for a manage-
ment server requesting alerts with the
measurement data.

Monitor/<serivce_pid>/
<status_variable_name>/
Server/<x_id>/ServerID

x x chr 1 A Identifies the management server to
which the alerts should be sent (the
principal). The default value for this
node is the name of the parent node
(shown as <x_ id> here).

Monitor/<serivce_pid>/
<status_variable_name>/
Server/<x_id>r/Enabled

x x bool 1 A Indicates if the Monitoring job defined
in this sub-tree is enabled or disabled.
If the job is disabled, no alerts are sent
to the management server. The default
value for this node is fa lse , that is, the
job is disabled until explicitly enabled.

Monitor/<serivce_pid>/
<status_variable_name>/
Server/<x_id>r/Reporting

x node 1 A Acts as a placeholder for nodes that
indicate when the data related to the
Status Variable is reported back to the
management server. The data report-
ing is either Time- based or Event-
based.

Monitor/<serivce_pid>/
<status_variable_name>/
Server/<x_id>r/Reporting/
Type

x x chr 1 A Indicates if the data reporting is Time-
or Event-based. The string TM indi-
cates Time-based reporting, alerts are
sent periodically. The Value node spec-
ifies number of seconds between
alerts. The string EV indicates Event-
based reporting, alerts are triggered by
the changes of the variable. In this case
the Value node specifies the number of
times the variable changes between
sending alerts.

Table 3.4 Monitor Management Object Nodes
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description
OSGi Service Platform Release 4 21-502

Monitor Management Object Mobile Management Tree Version 1.0

3.4.1 Result node format
The Trap MO does not define how the Status Variables should be stored in
the Results node, but it prohibits the use of a tree representation. The Trap
MO allows only a single node of any allowed OMA DM format.

The Status Variables only support the following types:

• float – Mapped to DmtData FORMAT_FLOAT
• String – Mapped to DmtData FORMAT_STRING
• int – Mapped to DmtData FORMAT_INTEGER
• boolean – Mapped to DmtData FORMAT_BOOL

3.4.2 Alert
The Trap MO mandates that an alert must be sent to the initiator when a
Status Variable is updated or when the predefined sampling time expires.
This alert must have alert code 1226.

It must carry one Dmt Alert Item with the new Status Variable value in its
Alert Item element. The type of the alert item must be x-oma-
trap:<service_id>/<sv_name> .

Monitor/<serivce_pid>/
<status_variable_name>/
Server/<x_id>r/Reporting/
Value

x x int 1 A The Value node’s semantics depend on
the Type node. If it is zero, alerts must
be sent at each change of the moni-
tored Status Variable (independently
from the value of the Type node). If it is
greater than 0, it defines the number of
seconds between alerts for the TM
Type, or the number of changes of the
monitored Status Variable between
alerts for the EV Type.

Monitor/<serivce_pid>/
<status_variable_name>/
Server/<x_id>r/TrapRef

x node 1 A Acts as a placeholder for nodes that
identify other Status Variables
(uniquely identified by their respective
TrapIDs) whose results must be
reported along with the results of this
Status Variable.

Monitor/<serivce_pid>/
<status_variable_name>/
Server/<x_id>r/TrapRef/
<y_id>

x x x node 0. .* D Acts as a placeholder for a TrapRefID
node.

Monitor/<serivce_pid>/
<status_variable_name>/
Server/<x_id>r/TrapRef/
<y_id>/<TrapRefID

x x chr 1 A Specifies another Status Variable
(identified by its TrapID), the measure-
ment data of which must also be sent
back to the server whenever an alert is
sent.

Table 3.4 Monitor Management Object Nodes
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description
22-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Application Model Management Object
An Alert needs the following set of parameters:

• code – Defined as 1226
• correlator ID – Not used, as it is not triggered by an EXEC command

Each involved Status Variable must be included as a Dmt Alert Item. Such
items must contain the following information:

• source – $/Monitor/<Monitorable ID>/<Status Var iable ID>
• type – x-oma-trap:<Monitorable ID>/<Status Variable ID>
• format – xml
• mark – not used
• data – A DmtData object with the value.

3.5 Application Model Management
Object
This section describes how the features listed in the Application Admin Ser-
vice Specification on page 269 are made available to a Mobile Management
Tree user. The entity responsible for this mapping is the Application Model
Management Object.

3.5.1 Applications Descriptors
When an Application Container can provide an application, it registers an
Application Descriptor service. The Application Descriptor service is unreg-
istered when the application is uninstalled or is no longer available for
other reasons. This model is described in Application Admin Service Specifica-
tion on page 269.

Each installed application is represented in the Mobile Management Tree
under the following URI:

$/Application/<app_id>

where <app_id> comes from the corresponding Application Descriptor ser-
vice's service .p id service property.

Figure 3.5 Application Management Tree

The nodes are defined in the following table:

<app_id>

$/Application

Name Version
VendorApplicationIDSchedules

Operations
IconURI

Locked
Location

ContainerID
Ext

Instances
Valid
OSGi Service Platform Release 4 23-502

Application Model Management Object Mobile Management Tree Version 1.0

-
n

ill
e

e
.

ue
e
t

lso

d

id
ca-

-

r-

on
Table 3.5 Application Descriptor Nodes
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description

Application x node 1 P Application Model root node.

Application/<app_id> x node 0. .* P Representation of an Application
Descriptor service. The node name
must be the service .p id service prop
erty of the corresponding Applicatio
Descriptor service. This node name
must be mangled to the device con-
straints.

Application/<app_id>/Valid x bool 1 P Indicates whether the application is
valid. The application is valid if it st
has its ApplicationDescriptor servic
registered.
If its value is fa lse then there are som
existing schedules of the application
In that case, any access to any other
node than Val id , ApplicationId , or
Schedules must return an empty val
for its given type. Using EXEC on th
appropriate nodes must throw a Dm
Exception. When the schedules are
completely removed, the whole $/
Appl ication/<app_id> subtree will a
be removed.

Application/<app_id>/
Name

x chr 1 P The name of the application localize
according to the default locale. This
value matches the appl icat ion.name
service property of the application
descriptor.

Application/<app_id>/
ApplicationID

x chr 1 P Unmangled version of the service .p
property of the corresponding appli
tion descriptor

Application/<app_id>/
IconURI

x chr 1 P The URI of an application icon local
ized according to the default locale.
This value matches the
appl ication. icon service property of
the Application Descriptor service.

Application/<app_id>/
Vendor

x chr 0,1 P The vendor of the application. This
value matches the service .vendor se
vice property of the Application
Descriptor service.

Application/<app_id>/
Version

x chr 0,1 P The version of the application. This
value matches the application.versi
service property of the Application
Descriptor service.
24-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Application Model Management Object

 of
ip-
e

er-

n-

e-

.

-
ce
h-

27.
he
3.5.2 Application properties
Standard application properties (name, icon, vendor etc) are represented as
leaf nodes right under the $/Appl icat ion/<app_ id> node. The $/
Appl icat ion/<app_id>/Container ID node contains a container provided
identifier. The $/Application/<app_id>/PackageID node contains an identi-
fier of the package that contains the code of this application. These two
identifiers together provide enough information for the management server
to correlate this application descriptor to one of the deployment packages
installed on the device.

Application/<app_id>/
Locked

x bool 1 P Indicates whether the application is
locked. The value matches the
applicat ion. locked service property
the corresponding application descr
tor. See Locking and Unlocking on pag
29 for more information about lock-
ing.

Application/<app_id>/
ContainerID

x chr 1 P The identifier of the container regist
ing the corresponding Application
Descriptor service. The value of this
node matches the
applicat ion.container service prop-
erty.

Application/<app_id>/
Location

x chr 1 P The identifier of the package (for
example, Deployment Package) that
contains the corresponding applica-
tion. The value is provided by the co
tainer in the appl icat ion . locat ion
service property of the Application
Descriptor service.

Application/<app_id>/Ext x node 0,1 P Application model and container sp
cific properties can be placed under
the Ext node.

Application/<app_id>/
Instances

x node 1 P Contains the currently existing
instances of the context application
See Application Instances on page 30.

Application/<app_id>/
Operations

x node 1 P Contains the different parameteriza
tion used for launching a new instan
of the context application. See Launc
ing new application instances on page

Application/<app_id> /
Schedules

x node 1 P Contains the existing schedules for t
context application. See Scheduling
applications on page 32.

Table 3.5 Application Descriptor Nodes
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description
OSGi Service Platform Release 4 25-502

Application Model Management Object Mobile Management Tree Version 1.0

gu-

Further application model or container implementation specific attributes
can be placed under the $/Appl icat ion/<app_ id>/Ext node.

3.5.3 Application Arguments
Both for launching and scheduling a new application, a management server
needs to specify startup arguments. These arguments are repeated a number
of times in the different trees. These arguments can be specified in the fol-
lowing structure:

Figure 3.6 Argument sub-tree

The Value node in the above structure is optional, but the only cases in
which it can be missing are:

• It is used in a schedule, and
• This schedule was created by a local manager using the schedu le

method, of the Appl icationDescr iptor class, and
• The corresponding startup argument type cannot be mapped to any of

the allowed OMA DM types.

In this case this node must not be present, to indicate the lack of a viable
mapping. Only the following OMA types must be used:

• bin – Passed to the application as byte[] .
• chr - Correspond to java. lang.Str ing type.
• int - Passed to the application as java. lang. Integer .
• f loat - Passed to the application as java . lang.Float .
• bool - Mapped to java. lang.Boolean .
• null - Passed as nul l references to the application.

This mapping is used in the opposite direction as well. The following table
defines the different nodes in more detail.

<<arg_id>

*/Arguments

Name Value

Table 3.6 Argument sub-tree
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description

*/Arguments x node 1 A This sub-tree contains the startup
parameters that should be passed to
the application instance at launch.

/Arguments/<arg_id> x x x node 0. . D This sub-tree represents a startup ar
ment. The name of this node can be
any valid node name, for example, a
number.
26-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Application Model Management Object

f
ty,
t

 a

f
e.
3.5.4 Launching new application instances

Figure 3.7 Operations sub-tree

The $/Appl icat ion/<app_id>/Operations/Launch/< launch_id> sub-tree con-
tains a particular parameterization of the context application. These sub-
trees can be considered canned operations that can be used to launch an
application with a given set of arguments. Management servers can launch
the application by reusing an existing < launch_id> or creating a new one.
These <launch_id> nodes are preserved until a management server explicitly
removes them; they can be reused any number of times. The < launch_id>
node of a new sub-tree is assigned by the management server when it is cre-
ated. The management server should fill in the startup arguments in the
Arguments sub-tree and then call the execute method to the $/Appl icat ion/

*/Arguments/<arg_id>/
Name

x x chr 1 A The name of the startup argument. I
the default value of this node is emp
which is not a valid startup argumen
name, then it must be replaced with
valid value.

*/Arguments/<arg_id>/
Value

x x bin
chr
int

f loat
bool
nul l

0,1 A This node contains the value of the
startup argument. The default type o
this node is nul l , which is a valid typ
Both the type and the value can be
replaced.

Table 3.6 Argument sub-tree
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description

Launch

$/Application/<app_id>/Operations

<launch_id>

Lock Unlock

Arguments Result

InstanceID Status Message
OSGi Service Platform Release 4 27-502

Application Model Management Object Mobile Management Tree Version 1.0

en

rs

be

n

he
<app_id>/Operat ions/Launch/<launch_id> node. These parameters must be
stored persistently. The manager should set the ACLs for this node and must
remove these parameters when they are not longer needed. This command
must execute synchronously.

The application managed object must obtain the corresponding Application
Descriptor service and call the launch method, passing it the specified argu-
ments in a java .uti l .Map object. When the method returns, the Result sub-
tree must be updated. If the launching was successful (i.e. no exception
thrown), the Result/ InstanceID node must then be updated with the
instance identifier of the newly created application instance
(Appl icat ionHandle .get InstanceId()), the Result/Status must be set to OK,
and the Resu lt /Message must be set to the empty string. Applications
should ensure that their startup arguments can be mapped to this tree.

If the launch failed, the Ins tanceID node must be set to the empty string, the
Status node set to the fully qualified class name of the thrown Java Excep-
tion, and the Message node set to the text returned by the getMessage
method of the Exception. In both cases the set values are preserved until the
next command is executed on the same <launch_id> , or that node is deleted.

The following table describes the nodes in detail:

Table 3.7 Application Descriptor Nodes
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description

Application/<app_id>/
Operations

x node 1 P Groups operations

Application/<app_id> /
Operations/Lock

x x nul l 1 P Locks the context application when
executed

Application/<app_id> /
Operations/Unlock

x x nul l 1 P Unlocks the context application wh
executed

Application/<app_id> /
Operations/Launch

x node 1 P All launching parameters sub-tree

Application/<app_id> /
Operations/Launch/
<launch_id>

x x x x node 0. .* D A specific set of launching paramete

Application/<app_id> /
Operations/Launch/
<launch_id>/Arguments

x node 1 A Sub-tree with arguments that must
passed to the application instance at
launch. This sub-tree is further
described at Application Arguments o
page 26.

Application/<app_id> /
Operations/Launch/
<launch_id>/Result

x node 1 A This sub-tree contains the result of t
latest execution of context
<launch_id> .
28-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Application Model Management Object

nd
e

 if
>

 if

t
f
ip-

st

t

3.5.5 Locking and Unlocking
An EXEC command on the $/Appl icat ion/<app_id>/Operat ions/Lock node
can be used to lock the corresponding application. This command is syn-
chronously executed by calling the lock method of the corresponding appli-
cation descriptor. Unlocking the same application requires an EXEC
command on $/Applicat ion/<app_id> /Operations/Unlock node, which is
also executed synchronously.

Application/<app_id> /
Operations/Launch/
<launch_id>/Result/
InstanceID

x chr 1 A The ID of the created application
instance. This value can be used to fi
the corresponding sub-tree under th
$/Appl icat ion/<app_ id>/Instances
node. The value of this node is empty
the last execution of this <launch_id
failed.

Application/<app_id> /
Operations/Launch/
<launch_id>/Result/Status

x chr 1 A This node contains the status of the
last EXEC command on this
<launch_id> . It contains the value OK
the command was successful, other-
wise it contains the fully qualified
class name of the Java Exception tha
was thrown by the launch method o
the corresponding application descr
tor.

Application/<app_id> /
Operations/Launch/
<launch_id>/Result/
Message

x chr 1 A Additional details of the last EXEC
command on this <launch_ id> . It mu
be empty if the command was exe-
cuted successfully, otherwise, it mus
contain the text returned by the
getMessage() method of the Java
Exception that was thrown by the
launch method of the corresponding
application descriptor.

Table 3.7 Application Descriptor Nodes
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description
OSGi Service Platform Release 4 29-502

Application Model Management Object Mobile Management Tree Version 1.0

 of
de

f
-

or-
e

3.5.6 Application Instances

Figure 3.8 Application Instances Tree

The currently running instances of an application are listed under the $/
Appl ication/<app_id> / Instances sub-tree. Each <instance_id> under this
node corresponds to an Application Handle service. The current state of the
application instance can be obtained from the State leaf node. All applica-
tion instances must support the stop operation. This operation can be
invoked by an EXEC command on the Stop node. This operation is executed
synchronously by calling the destroy method of the corresponding Applica-
tion Handle service.

Application model or container implementation specific operations can be
placed in the Ext sub-tree.

<instance_id>

$/Application/<app_id>/Instances

Operations

Ext

State

Stop

InstanceID

Table 3.8 Application Descriptor Nodes; Instances sub-tree
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description

Application/<app_id>/
Instances

x node 1 P The sub-tree identified by this node
contains the currently existing
instances of this application.

Application/<app_id>/
Instances/<instance_id>

x node 0. .* P This sub-tree represents an instance
this application. The name of this no
is the service .p id service property o
the corresponding Application Han
dle service. This node name must be
mangled to the device constraints.

Application/<app_id>/
Instances/<instance_id>/
State

x chr 1 P This node contains the state of the c
responding application instance. Th
value matches the appl icat ion.state
service property of the Application
Handle service.

Application/<app_id>/
Instances/<instance_id>/
InstanceID

x chr 1 P The unmangled version of the
service .p id property of the corre-
sponding application handle.
30-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Application Model Management Object

s

s)
Application/<app_id>/
Instances/<instance_id>/
Operations

x node 1 P This sub-tree contains the operation
to manipulate the life cycle of this
application instance.

Application/<app_id>/
Instances/<instance_id>/
Operations/Stop

x x nul l 1 P An EXEC command on this node can
be used to stop this application
instance.

Application/<app_id>/
Instances/<instance_id>/
Operations/Ext

x node 0,1 P Application model-specific lifecycle
operations (such as pause of MIDlet
should be placed under this node.

Table 3.8 Application Descriptor Nodes; Instances sub-tree
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description
OSGi Service Platform Release 4 31-502

Application Model Management Object Mobile Management Tree Version 1.0
3.5.7 Scheduling applications
Scheduling applications is described in the $/Appl ication/<app_id>/
Schedules sub-tree. This sub-tree can contain enabled and disabled schedul-
ings. The enabled schedules and the Scheduled Application services regis-
tered in the service registry are mapped one-to-one.

Figure 3.9 Schedules sub-tree

When a management server creates a new schedule, the server must assign
the schedule a <schedule_ id> . The created schedule will be disabled by
default. The management server must update the attributes (TopicFi l ter ,
EventF i lter , Recurring , and Arguments) of the schedule and enable the
schedule afterwards. Management servers must not change the attributes of
an enabled schedule. If the attributes need to be updated, the schedule must
be disabled first. Only when the schedule is enabled may the application
managed object call the schedu le method of the corresponding Application-
Descriptor service, and thereby create the Scheduled Application service. If
setting the Enabled node to true fails, the schedule must not be initiated.
When an enabled schedule is disabled, the corresponding Scheduled Appli-
cation service must be unregistered.

In the <schedu le_id>/Arguments sub-tree, startup arguments can be speci-
fied for the schedule. These arguments will be passed to the newly created
application instance when the schedule is triggered.

When creating the schedule by a management server, only the OMA DM
types listed in Application Arguments on page 26 can be used. Schedulings
can also be created, however, using the Application Management Frame-
work API (ApplicationDescr iptor .schedule). Using this API, any serializable
Java object is usable as a startup argument. If an object that cannot be
mapped to one of the allowed OMA DM types is used as the value of an argu-
ment, the Value leaf-node will not be included in the DMT representation of
that argument. Vice versa, if an application requires a startup argument that
is not possible to represent in the OMA DM tree then this application can-
not be correctly scheduled.

Created schedules must survive system restarts. The management server is
responsible for cleaning up any created schedules. ApplicationDescriptor
nodes in DMT are preserved if there exists any scheduling for that applica-
tion (regardless of whether those were created by remote servers or local
applications). Different implementations can use some garbage collection

<schedule_id>

$/Application/<app_id>/Schedules

Enabled EventFilter RecurringTopicFilter Arguments
32-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Application Model Management Object

is

e

.
-
d

f

c
ed-

ed
lt
.
e

ll

ci-

ld
is
mechanism to clean up these orphaned schedulings if needed. For invalid
application descriptors in DMT, only the Valid node (value = false) , Appli-
cationId node and Schedules subtree is accessible, and they must be
removed if the last remaining scheduling is deleted.

Table 3.9 Application Descriptor Nodes; Application Instances
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description

Application/<app_id> /
Schedules

x node 1 P Groups the existing schedules for th
application.

Application/<app_id> /
Schedules/<schedule_id>

x x x node 0. .* D A specific schedule for this applica-
tion. For server-created schedules, th
name of this node is specified by the
server. For scheduling created using
the Appl icat ionDescriptor .schedule
method, the id is given as parameter

Application/<app_id> /
Schedules/<schedule_id>/
Arguments

x node 1 A The startup arguments for this sched
uling. These arguments will be passe
to the application instance when the
scheduling is triggered and a new
instance is launched. The structure o
this sub-tree is defined in Application
Arguments on page 26.

Application/<app_id> /
Schedules/<schedule_id>/
Enabled

x x bool 1 A This node indicates whether this
schedule is enabled. Only enabled
schedules have the corresponding
Scheduled Application service. The
default value is fa lse .

Application/<app_id> /
Schedules/<schedule_id>/
TopicFilter

x x chr 1 A This node contains the name of topi
that should be listened to in this sch
ule. The value may end with a wild-
card ("*", \u002A) , which indicates
that all topics names with the specifi
prefix must be listened to. The defau
value of this node is an empty string
An empty string is invalid, it must b
replaced with a valid value before
enabling this schedule.

Application/<app_id> /
Schedules/<schedule_id>/
EventFilter

x x chr 1 A Filter of events to be listened to. The
value is an OSGi-style filter of event
attributes. The default value of this
node is empty indicating matching a
properties. An empty string must be
converted to a nul l object in the asso
ated method call .

Application/<app_id> /
Schedules/<schedule_id>/
Recurring

x x bool 1 A Specifies whether this schedule shou
be recurring. The default value of th
node is fa lse .
OSGi Service Platform Release 4 33-502

Deployment Management Object Mobile Management Tree Version 1.0
3.6 Deployment Management Object
The Deployment Management Object is a managed object that allows the
downloading of arbitrary JAR files. These JAR files can contain Deployment
Packages as defined by the Deployment Admin Specification on page 205 as
well as bundles. These bundles can be either OSGi bundles or other applica-
tions that are stored in an Java Archive (JAR) file, for example Midlets and
Xlets. This specification is not concerned with the differences between these
Deployment Artifacts and therefore calls them Deployment Artifacts or arti-
facts for short.

Conceptually, the management system creates a download instruction in the
$/Deployment/Download sub-tree. This instruction can be executed to
download the Deployment Artifact to the device and then activate it. It is
also possible for the device to have the content of Deployment Artifacts in a
local storage area, which is represented by the $/Deployment/ Inventory/
Del ivered sub-tree. This specification does not define how this data is deliv-
ered to this sub-tree, that is, there is no DMT operation to download the con-
tent of a deployment artifact in the delivered area, nor is there a
standardized API. The content can be delivered through local means like
Bluetooth, Wifi, CD, etc. The management system can only instruct the
device to activate those delivered components.

The Deployment Management Object starts at the $/Deployment node. Fig-
ure 3.10 shows only the top level nodes, due to the large size of the Deploy-
ment Management Object. Later sections explain the descendants in more
detail.

Figure 3.10 Mobile Tree for Deployment Management Object, Top Level Nodes

The nodes are described in more detail in Table 3.9.

3.6.1 Areas
The Deployment sub-tree has three different functional areas. These areas
are:

• Download – The Download area is used to create a sub-tree containing the
parameters of a download instruction. This instruction can be executed
by executing the DownloadAndInstal lAndActivate node in this sub-tree.
If the DownloadAndInstal lAndActivate operation is successful, the com-
ponents are placed in the Inventory/Deployed sub-tree. The Download
area is an execution tree only, and nodes can therefore be purged by the
management system once they have been successfully executed.

Inventory

$/Deployment

Download

Delivered Deployed

Ext
34-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Deployment Management Object
• Inventory/Delivered – In some cases the delivery and installation of an
artifact can take significant time. For example, the installation of a
digital rights managed artifact can be delayed until the corresponding
licenses are obtained by the user. The Del ivered area consists of a sub-
tree that represents artifacts that are resident but not yet deployed. This
area acts as a kind of file storage. No specific DMT command or construct
exists to download an artifact in this area, but implementations can use
proprietary mechanisms to fill this area from CD, Bluetooth or other
means. This sub-tree has a node Operat ions/ Instal lAndAct ivate . Exe-
cuting this node will install the artifact and make it appear in the
Deployed sub-tree. The Operations/Remove node can be executed to
free up the storage.

• Inventory/Deployed – The Deployed area is where the installed
deployment artifacts are represented. The Operat ions/Remove node can
be executed to deactivate and uninstall a deployment artifact.

The states and their transitions are shown in Figure 3.11.

Table 3.10 Deployment Management Object Top-Level Nodes
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description

Deployment x node 1 P Root node for all deployment related
nodes.

Deployment/Download x node 1 P This is the parent node for the down-
load instruction. To download a
deployment artifact, a sub-tree must be
created below this node that provides
the parameters for a
DownloadAndInstal lAndActivate
operation.

Deployment/Inventory x node 1 P The parent node of the Deployed and
Delivered branches. Either branch rep-
resents an artifact that is either avail-
able on the device or installed and
activated.

Deployment/Inventory/
Delivered

x node 1 P The parent node of the placeholder
branches containing the parameters of
the delivered Deployment Artifacts.

Deployment/nventory/
Deployed

x node 1 P The parent node of the placeholder
branches containing the parameters of
the deployed Deployment Artifacts.

Deployment/Ext x node 0,1 - Extension node
OSGi Service Platform Release 4 35-502

Deployment Management Object Mobile Management Tree Version 1.0
Figure 3.11 State diagram of Deployment Artifacts

3.6.2 Download sub-tree
The purpose of the Download sub-tree is to download a deployment artifact
to the device. The initiator must create a new sub-tree under the $/
Deployment/Download node. This node contains further nodes that
describe the parameters of a download instruction. This sub-tree is depicted
in Figure 3.12.

Figure 3.12 Deployment Management Object Download sub-tree

The nodes are explained in more detail in the following table:

Delivered

(local management entity action)DownloadAndInstallAndActivate

InstallAndActivateDeploy. Active

RemoveRemove
Removed

Undelivered

ID

<node_id>

URI EnvType Status

Operations

DownloadAndInstall
AndActivate

$/Deployment/Download

Ext

1

0..*

Ext
36-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Deployment Management Object

.

as
e.
e
d.

ad
t.

ct.
e

e

d
i-
-

a
he

-

/

of
e
at

D
ct
m-

ns
Table 3.11 Deployment Management Object, Download sub-tree
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description

Deployment/Download/
<node_id>

x x x node 0. .* D This dynamically created node is the
parent node of download instruction
Any node name can be used as long
it is unique under the Download nod

Deployment/Download/
<node_id>/URI

x x chr 1 A This leaf node contains the URI of th
deployment artifact to be downloade
The URI points to a DLOTA Downlo
Descriptor of the deployment artifac
See DLOTA Download Descriptor on
page 50. The default is the empty
string.

Deployment/Download/
<node_id>/ID

x x chr 1 A This leaf node contains the globally
unique ID of the Deployment Artifa
This value is set by the originator, th
Management Server of the package.
The default is the empty string.

Deployment/Download/
<node_id>/Operations

x node 1 A This is the parent node for download
operations to be invoked on the
deployment artifact identified by th
ID node in this sub-tree.

Deployment/Download/
<node_id>/Operations/
DownloadAndInstallA
ndActivate

x x nul l 1 A This node is used with exec comman
to initiate the download and immed
ate installation of a deployment arti
fact. The Deployment Package or
standalone bundle is downloaded vi
the OMA DLOTA 1.0 protocol with t
OSGi-specific Download Descriptor
extension, see DLOTA Download
Descriptor on page 50. When the com
mand is executed, a node is created
under the $/Deployment/ Inventory
Deployed node with the appropriate
parameters (including the same ID)
the installed DP. If the sub-tree for th
deployment artifact already exists, th
is, the operation is update then the I
is the same as the deployment artifa
to be downloaded. The sub-tree para
eters are then updated with the new
information.

Deployment/Download/
<node_id>/Operations/Ext

x node 0,1 - Designates a branch of the Operat io
sub-tree into which vendor-specific
extensions can be added.
OSGi Service Platform Release 4 37-502

Deployment Management Object Mobile Management Tree Version 1.0

ter

s

t
e
-

.
rs
Deployment/Download/
<node_id>/Status

x int 0,1 A The execution status of the device af
an attempt to execute the download
and/or deployment instruction. Thi
value indicates the execution status
following the invocation of the exec
command.
• 10 – Idle
• 20 – Download Failed
• 30 – Download Progressing.
• 40 – Download Complete
• 50 – Download and Deployment

Progressing
• 60 – Deployment Progressing
• 70 – Deployment Failed
• 80 – Deployment Successful
See DownloadAndInstallAndActivate
Command on page 46 for additional
information about the Status node’s
transitions.

Deployment/Download/
<node_id>/EnvType

x x chr 1 A The environment for the deploymen
artifact to be downloaded. This valu
is: OSGi.<vers ion> . For this specifica
tion the value of <version> is R4 .,
therefore the node value is OSGi.R4

Deployment/Download/
<node_id>/Ext

x node 0,1 - A branch of the Download paramete
sub-tree into which vendor-specific
extensions can be added.

Table 3.11 Deployment Management Object, Download sub-tree
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description
38-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Deployment Management Object

m-

l
ed

ct.

e

n-
he
3.6.3 Delivered
The Del ivered area contains deployment artifacts that are available on the
device for installation and activation. From this area, deployment artifacts
can be installed and activated. No specific Dmt Admin servic command
exists to download an artifact into the Del ivered area, this command is left
to the implementation.

The Delivered sub-tree is depicted in Figure 3.13.

Figure 3.13 Deployment Management Object Delivered sub-tree

The nodes are explained in more detail in the following table.

ID

<node_id>

Data EnvType Descriptor

Operations

Install
AndActivate

Ext

$/Deployment/Inventory/Delivered

Remove

Ext

Table 3.12 Deployment Management Object, Delivered sub-tree
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

ity

Sc
op

e

Description

Deployment/Inventory/
Delivered

x node 1 P Placeholder node for all delivered co
ponents.

Deployment/Inventory/
Delivered/<node_id>

x node 0. .* A A local unique ID created by the loca
manager or the Deployment Manag
Object. The chosen name should not
be reused after deletion for a reason-
ably long time.

Deployment/Inventory/
Delivered/<node_id>/ID

x chr 1 A This leaf node contains the globally
unique ID of the Deployment Artifa
This value is set by the originator of
the package (either Device Manage-
ment System or a Local Manager for
deployment artifacts delivered to th
device via technology different from
OMA DM).

Deployment/Inventory/
Delivered/<node_id>/Data

x bin 1 A The data node contains an impleme
tation-dependent representation of t
delivered artifact.
OSGi Service Platform Release 4 39-502

Deployment Management Object Mobile Management Tree Version 1.0

 of

ip-

e
is

-

iv-
de

ter

-

 be

ns

nt
n

n
e

-

3.6.4 Deployed
The Deployed area reflects the deployment artifacts that are installed in the
device (Bundles, Deployment Packages, and others). Deployment artifacts
can be installed on the device through executing the
DownloadAndInstal lAndActivate node or the Insta llAndActivate node,
when the data of the deployment artifact is already present on the device.

Deployment/Inventory/
Delivered/<node_id>/
Descriptor

x xml 0,1 A This leaf node includes the contents
DLOTA Download Descriptor of the
artifact. See DLOTA Download Descr
tor on page 50.

Deployment/Inventory/
Delivered/<node_id>/
Operations

x node 1 A Grouping node for operations

Deployment/Inventory/
Delivered/<node_id>/
Operations/Remove

x x nul l 1 A This node can be executed to remov
(uninstall) the artifact defined by th
sub-tree. The node is used for exec
commands only.

Deployment/Inventory/
Delivered/<node_id>/
Operations/
InstallAndActivate

x x nul l 1 A This node is used with the exec com
mand to start the installation of a
deployment artifact, which is in Del
ered state and identified by the ID no
of the same sub-tree as this node. Af
the command is executed success-
fully, this sub-tree is deleted. If a sub
tree under the $/Deployment/
Inventory/Deployed node with the
same ID node does not exist, it must
created, otherwise, the existing sub-
tree must be updated because it is an
update operation.

Deployment/Inventory/
Delivered/<node_id>/
Operations/Ext

x node 0,1 - Designates a branch of the Operatio
sub-tree into which vendor-specific
extensions can be added.

Deployment/Inventory/
Delivered/<node_id>/
EnvType

x chr 1 A The environment for the deployme
artifact to be downloaded. Definitio
of the leaf node value is:
OSGi.<vers ion> . For this specificatio
the value of <version> is R4 , therefor
the node value is OSGi.R4.

Deployment/Inventory/
Delivered/<node_id>/Ext

x node 0,1 - This placeholder node is the parent
node of the OSGi environment exten
sion branch and may be the place-
holder of any vendor-specific
extension.

Table 3.12 Deployment Management Object, Delivered sub-tree
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description
40-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Deployment Management Object
The Deployed area also reflects deployment artifacts deployed directly via
the Deployment Admin service or Framework API. That is, deployed inde-
pendently from the commands of the management system.

Deployment Artifacts are stored in the tree under a node with a unique
name <node_id> that is automatically generated by Deployment Manage-
ment Object when a artifact becomes available in this sub-tree. The sub-tree
is depicted in Figure 3.14.

Figure 3.14 Deployment Management Object Deployed sub-tree

The nodes are further explained in the following table.

ID

<node_id>

EnvType

Operations

Ext

$/Deployment/Inventory/Deployed

Remove

Ext

Bundles

<bundle_id>

PackageTypeManifest

1

0..*

<signer>

Signers

1

0..*

Manifest

<signer>

Signers

1

0..*

LocationState

Table 3.13 Deployment Management Object Top Level Nodes
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description

Deployment/Inventory/
Deployed

x node 1 P Placeholder node for all deployed
deployment artifacts.

Deployment/Inventory/
Deployed/<node_id>

x node 0. .* A Sub-tree for a deployed artifact. The
<node_id> must be generated by the
Deployment Managed Object. The cho-
sen name should not be reused after
deletion for a reasonably long time.
OSGi Service Platform Release 4 41-502

Deployment Management Object Mobile Management Tree Version 1.0
Deployment/Inventory/
Deployed/<node_id>/ID

x chr 1 A This leaf node contains the globally
unique ID of the Deployment Artifact.
This value is set by the originator of
the package (either Device Manage-
ment System or a Local Manager for
deployment artifacts delivered to the
device via technology different from
OMA DM).

Deployment/Inventory/
Deployed/<node_id>/
EnvType

x chr 1 A This leaf node holds the value that
indicates the environment for the
Deployment Artifact to be down-
loaded. Definition of the leaf node
value is OSGi.<vers ion> . For this speci-
fication the value of <version> is R4 ,
therefore the node value is OSGi.R4 .

Deployment/Inventory/
Deployed/<node_id>/
Operations

x node 1 A Operations grouping node

Deployment/Inventory/
Deployed/<node_id>/
Operations/Remove

x x nul l 1 A Executing this node will remove this
Deployment Artifact.

Deployment/Inventory/
Deployed/<node_id>/
Operations/Ext

x node 0,1 - Designates a branch of the Operations
sub-tree into which vendor-specific
extensions can be added.

Deployment/Inventory/
Deployed/<node_id>/Ext

x node 1 A Placeholder for OSGi-specific exten-
sions

Deployment/Inventory/
Deployed/<node_id>/Ext/
Manifest

x chr 0,1 A The content of the Deployment Pack-
age’s manifest.

Deployment/Inventory/
Deployed/<node_id>/Ext/
Signers

x node 0,1 A This node is the parent of nodes that
specify the signers of the Deployment
Package.

Deployment/Inventory/
Deployed/<node_id>/Ext/
Signers/<signer>

x chr 1. .* A A signer of the Deployment Package.
The node value is the semicolon-sepa-
rated list of the Subjects (distinguished
Name) of the X.509 Certificate chain.
The last item is the root.

Deployment/Inventory/
Deployed/<node_id>/Ext/
PackageType

x int 1 A This node allows querying of the pack-
age type. Possible values are:

OSGi.DP = 1
OSGi.bundle = 2

Deployment/Inventory/
Deployed/<node_id>/Ext/
Bundles

x node 0,1 A Sub-tree of bundles that are contained
in the Deployment Package or a stand-
alone bundle.

Table 3.13 Deployment Management Object Top Level Nodes
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description
42-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Deployment Management Object
3.6.5 Example sub-tree
The following example shows a sub-tree with a single bundle:

$/Deployment/Inventory/Deployed
2 // <node_id>

ID = "com.acme.rp.db"
EnvType = "OSGi.R4"
Operations

Remove
Ext

PackageType = 2
Bundles

6 // <bundle_id>
State = 4
Manifest = "Manifest-Version: 1.0

Deployment/Inventory/
Deployed/<node_id>/Ext/
Bundles/<bundle_id>

x node 1. .* A Start of a sub-tree that represents a
contained bundle. The <bundle_id>
node name must be equal to the bun-
dle id.

Deployment/Inventory/
Deployed/<node_id>/Ext/
Bundles/<bundle_id>/
Location

x chr 1 A This leaf node contains the location of
the bundle.

Deployment/Inventory/
Deployed/<node_id>/Ext/
Bundles/<bundle_id>/
Manifest

x chr 1 A The content of the bundle’s manifest.

Deployment/Inventory/
Deployed/<node_id>/Ext/
Bundles/<bundle_id>/
State

x int 1 A The state of the bundle as returned
from the Bundle method getState() .
This state is one of the following:

• 0 – Not Available
• 2 – Installed
• 4 – Resolved
• 8 – Starting
• 16 – Stopping
• 32 – Active

Deployment/Inventory/
Deployed/<node_id>/Ext/
Bundles/<bundle_id>/
Signers

x node 0,1 A This node is the parent of nodes that
specify the signers of the bundle.

Deployment/Inventory/
Deployed/<node_id>/Ext/
Bundles/<bundle_id>/
Signers/<signer>

x chr 1. .* A A signer of the bundle. The node value
is the semicolon-separated list of the
Subjects (distinguished Name) of the
X.509 Certificate chain. The last item is
the root.

Table 3.13 Deployment Management Object Top Level Nodes
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description
OSGi Service Platform Release 4 43-502

Deployment Management Object Mobile Management Tree Version 1.0
Bundle-Activator: ..."
Location = "com.acme.rp.db"
Signers

1 "cn=Sign, ou=ACME, ..."

The next example shows a sub-tree with a Deployment Package:

$/Deployment/Inventory/Deployed
xyztas2731 // <node_id>

ID = com.acme.dp.512
EnvType = OSGi.R4
Operations

Remove
Ext

PackageType = 1
Manifest = "Manifest-Version: 1.0

Deployment-Package-
SymbolicName: ..."

Signers
1 = "cn=Signe, ou=ACME, ..."

Bundles
3 // <bundle_id>

State = 32
Manifest = "Manifest-Version: 1.0

Bundle-Activator: ..."
Location = "com.acme.customize"

3.6.6 Command Execution
The Deployment Management Object uses dedicated nodes that represent a
specific command. These nodes are resident in all three areas. They are
parented by an Operat ions node that groups the different possible com-
mand nodes. Execution of a command node must use the parent sub-tree as
its context. This tree is called the context tree.

Exec commands are acknowledged synchronously. Successful return from
the execute method indicates only that the execution is initiated. One exec
command may require more than one local operation, for example
DownaloadAndInsta l lAndAct ivate . After all the operations are finished, the
Deployment Managed Object must send back the outcome of the execution
to the initiator using an asynchronous Generic Alert.

3.6.6.1 Remove Command

A Remove node exists in the sub-trees $/Deployment/Inventory/Del ivered
as well as in the $/Deployment/ Inventory/Deployed sub-tree. Performing
an execute operation on the Remove node must remove the deployment
artifact that is described by the context tree.

The actual removal of the Deployment Artifact is performed asynchro-
nously with the execute method. The successful return from the execute
method indicates that removal of the deployment artifact can begin.

After the deployment artifact is removed, the Deployment Management
Object must send the outcome with a Generic Alert and remove the context
tree.
44-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Deployment Management Object
The Remove command for the Del ivered context tree requires the following
Alert parameters:

• code – 1226
• correlator ID – Any value passed from the management server’s execute

command.
• source – $/Deployment/Inventory/Del ivered/<node_id> .
• type – org.osgi .deployment .del ivered.remove
• mark – fatal | cr i t ica l | m inor | warning | informational | harmless |

indeterminate or not set.
• data – An integer with the Result Code on page 48

The Remove command for the Deployed context tree, which corresponds to
the uninstal lForced method in Deployment Admin service, requires the fol-
lowing Alert parameters:

• code – 1226
• correlator ID – Any value passed from the management server’s execute

command.
• source – $/Deployment/Inventory/Deployed/<node_id> .
• type – org.osgi .deployment .deployed.remove
• mark – fatal | cr i t ica l | m inor | warning | informational | harmless |

indeterminate or not set.
• data – An integer with the Result Code on page 48

3.6.6.2 InstallAndActivate Command

The Insta llAndActivate node resides in the sub-tree for a deployment arti-
fact that is stored in the Delivered area. This node takes the data that is refer-
enced in this context tree and installs the artifact. If an artifact with the
same ID is already installed, the existing deployment artifact must be
updated.

If the execute method on the Instal lAndActivate node is successful, the
install can begin. The actual installation is performed asynchronously with
the execute method. If an error is detected during the insta ll method, this
error must be reported and the deployment artifact must not be installed.

After the installation is finished, successfully or not, the Deployment Man-
agement Object must send a Generic Alert to the initiator. If the installation
was successful, the Deployment Management Object must remove the con-
text tree and free up the data associated with the delivered artifact.

The Insta llAndActivate command for the Deployed context tree requires
the following Alert parameters:

• code – 1226
• correlator ID – Any value passed from the management server’s execute

command.
• source – $/Deployment/Inventory/Deployed/<node_id> .
• type – org.osgi .deployment . instal landact ivate
• mark – fatal | cr i t ica l | m inor | warning | informational | harmless |

indeterminate or not set.
• data – And integer with the Result Code on page 48

The newly installed or updated Deployment Artifact must appear in the
Deployed area.
OSGi Service Platform Release 4 45-502

Deployment Management Object Mobile Management Tree Version 1.0
3.6.6.3 DownloadAndInstallAndActivate Command
When an exec command is sent to the DownloadAndInstal lAndActivate
node, the Deployment Management Object sends a status command back to
the server. If the exec command is successful, the Deployment Management
Object starts the download and immediate deployment of the downloaded
package. After the operations are finished, the Deployment Management
Object must send a response back to the initiator using a single Generic
Alert. The source URI of the alert must be the of the dynamic node describ-
ing the deployed deployment artifact, that is, $/Deployment/ Inventory/
Deployed/<node_ id>.

The deployment artifact identified by the URI in the context tree is down-
loaded via [3] Generic Content Download Over The Air, OMA DLOTA 1.0 with
the OSGi specific extension defined in DLOTA Download Descriptor on page
50. It is the responsibility of the Deployment Management Object to down-
load only OSGi deployment artifacts. The deployment artifact must be
immediately activated via the applicable deployment API.

Pre-Condition:

• $/Deployment/Download/<node_id> dynamic node creation
• The following objects need to be set with an appropriate value:

$/Deployment/Download/<node_id>/URI
$/Deployment/Download/<node_id>/ID
$/Deployment/Download/<node_id>/EnvType.

After the successful command execution, a sub-tree under the $/
Deployment/Inventory/Deployed node is created for the deployment arti-
fact, including the ID node in the download branch. If such a sub-tree
already exists, the parameters of the deployment artifact must be updated.

During the downloading, the managed object can optionally report progress
in the Status node. The possible state values are depicted in Figure 3.15.
46-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Deployment Management Object
Figure 3.15 Execution States

The states have the following values and semantics:

• IDLE – (10) No data is available
• DOWNLOAD-FAILED – (20) Download failed and no data was received.
• DOWNLOADING – (30) A download has started and that 0 or more bytes

of data have been downloaded.
• DOWNLOADED – (40) Data is available after download has been com-

pleted successfully.
• STREAMING – (50) Download and Deployment started in streaming

fashion and are progressing.
• DEPLOYING – (60) The Deployment is currently running, but has not yet

completed.
• DEPLOYMENT-FAILED – (70) Deployment failed.
• DEPLOYED – (80) Deployment complete

After the requested operation finishes, the DM server is notified about the
outcome of the operation with a Generic Alert message. The status is then
DEPLOYED , DOWNLOAD-FAILED , or DEPLOYMENT-FAILED . This state must
remain until the Generic Alert is sent to the management server.

The DownloadAndInstal lAndActivate command for the Download context
tree requires the following Alert parameters:

• code – 1226
• correlator ID – Any value passed from the management server’s execute

command.
• source – $/Deployment/Inventory/Deployed/<node_id> . This is the

newly created node, not the node in the Download tree.
• type – org.osgi .deployment .downloadandinstal landactivate
• mark – fatal | cr i t ica l | m inor | warning | informational | harmless |

indeterminate or not set.
• data – An integer with the Result Code on page 48

IDLE

STREAMING

DOWNLOADING

clean up

DOWNLD-FAILED

DEPLOYINGDEPLMNT-FAILED

DEPLOYED

DOWNLOADED

streaming

clean up

Download
AndDeployment

Deployment

Download
AndDeployment
(streaming)
OSGi Service Platform Release 4 47-502

Deployment Management Object Mobile Management Tree Version 1.0
If the server needs to retrieve additional information, such as Status, the
server can query the device for those specific nodes.

3.6.6.4 Result Code

The result code of the operation must be sent as an integer value in the Data
element of the alert message. The Result Code must be one of the values
defined below:

• 200 – Successful. The requested command is executed successfully.
• 250 – Successful but with Bundle start warning. One or more bundles
• couldn't be started. The operation was not rolled back. The Management
• Server is expected to resolve the missing dependencies or other errors
• with an appropriate action.
• 251 - Successful but with removal warning. Not all parts of the

deployment artifact could be removed.
• 401 – User Cancelled. Either the download or the deployment of the

deployment artifact was cancelled by the user.
• 402 – Corrupted Deployment Package. Physical damage of the package,

did not store correctly. Detected, for example, by mismatched CRC.
• 403 – Package Mismatch. Based on the current device characteristics, the

deployment artifact is wrong. That is, the package is targeted to another
environment than the OSGi environment. For example, the value of the
EnvType node of the Download/<node_id> subtree is different than
OSGi.R4 .

• 404 – Not Acceptable Content. The content is not an OSGi deployment
artifact, for example, the Download Descriptor of the package indicates
different value in the EnvType attribute of the environment element
than defined in OSGi DLOTA extension or the package to be downloaded
is not a JAR.

• 405 – Authentication Failure. An Authentication Failure was encoun-
tered during the download initiation, for example, the Download Server
authentication failed.

• 406 – Request Timed Out. The device could not fulfill a server request
because a timeout was encountered, for example, a from hung server
request.

• 407 – Undefined Error. Indicates failure not defined by any other error
code.

• 408 – Malformed or Bad URL. The URL provided for DLOTA download
did not provide access to the package, for example, server down,
incorrect URL, and service errors.

• 409 – The Download Server is temporarily unavailable.
• 410 – Download Descriptor error. The device could not interpret the

DLOTA Download Descriptor. Typically this error results from a syn-
tactic error, or the package does not match the attributes defined in the
Download Descriptor. The Deployment Package was rejected.

• 411 – Authorization Failure. An Authorization Failure was encountered
• during the requested operation execution, for example a Java Permission

is missing to fulfill the request.
• 450 – Deployment error: ordering. The manifest is not the first file in the

stream, or bundles do not precede resource files.
• 451 – Deployment error: missing header.
• 452 – Deployment error: bad header. This error indicates a syntax error

in any manifest header.
48-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Deployment Management Object
• 453 – Deployment error: missing fix0pack target. Fix pack version range
does not match the version of the target deployment package, or the
target deployment package of the fix pack does not exist.

• 454 – Deployment error: missing bundle. A bundle in the Deployment
Package is marked as absent, but no such bundle is in the target
deployment package.

• 455 – Deployment error: missing resource. A resource in the deployment
package is marked as absent, but no such resource is in the target
deployment package.

• 456 – Deployment error: failed signature authentication. The digital sig-
nature(s) of the deployment package could not be validated.

• 457 – Deployment error: bundle name error. Bundle symbolic name is
not the same as is defined by the deployment package manifest.

• 458 – Deployment error: foreign customizer. Matched resource pro-
cessor service is a customizer from another deployment package.

• 460 – Deployment error: bundle sharing violation. Bundle with the same
symbolic name already exists.

• 461 – Deployment error: resource sharing violation. This error code
results if a resource already exists.

• 462 – Deployment error: commit error. A resource processor is not able
to commit the operations.

• 463 – Deployment error: undefined. An undefined error occurred during
deployment. This error is also returned if security exceptions occur
during package processing.

• 464 – Deployment error: resource processor missing. Resource processor
required by the package is not found.

• 465 – Deployment error: deployment session creation time-out.
Deployment Manager is busy with other requests and the blocked
deployment operation was not started, because a timeout was encoun-
tered.

• 470 -499 – Device Error. Vendor-defined error was encountered for the
operation with vendor-specified result code.

• 500 – Download Server Error.
• 501-549 – Reserved for Future Use.
• 550 -599 – Vendor Download Server Error. Vendor-specified download

server error was encountered for operations with vendor-specified result
code.

3.6.6.5 URI of the dynamic node

The URI of the dynamic node created, updated, or removed under $/
Deployment/Inventory/Deployed or $/Deployment/Inventory/Del ivered
node must be sent as the source of the Generic Alert. This rule allows the
Management Server to identify the result node. If the command execution is
unsuccessful, this URI is the URI of the sub-tree for which the exec com-
mand was invoked, for example $/Deployment/ Invenotry/Download/
<node_id> .

3.6.6.6 Alert Types for the Deployment Management Object

One of the following alert types must be used in a Generic Alert message
originating from a Deployment Management Object. The alert types are
used to identify the operation that was performed on the device.

org.osgi.deployment.downloadandinstallandactivate
OSGi Service Platform Release 4 49-502

Deployment Management Object Mobile Management Tree Version 1.0
org.osgi.deployment.delivered.remove
org.osgi.deployment.deployed.remove
org.osgi.deployment.installandactivate

3.6.6.7 Correlator

If the server passes a correlator to the client in the exec command for an
operation, the client must return the same value to the server in the correla-
tor field of the Generic Alert message.

If the server does not pass a correlator to the client in the exec command for
an operation, the client must not send a correlator to the server in the corre-
lator field of the Generic Alert message.

3.6.7 Tree management
After an exec command to Remove , Insta llAndActivate , or
DownloadAndInstal lAndActivate node, it is the device’s responsibility to
reflect the changes in the Inventory sub-tree. After the deployment artifact
is delivered to and deployed on the device, it is tracked with the ID node.

Deletion of a sub-tree headed by <node_ id> under the Download node needs
to be conducted after successful or unsuccessful download and installation
attempts. This specification, however, does not address when such deletions
should occur. The management entity may choose to delete it as soon as the
requested operation is successfully or unsuccessfully terminated, or when-
ever prompted to do so by the device management server.

If a Local Manager needs to receive the Generic Alert after the exec com-
mand execution, then it must register a Remote Alert Sender service for a
given principal. The same principal must be used when opening the session.
This is similar to remote management servers.

3.6.8 DLOTA Download Descriptor
The [3] Generic Content Download Over The Air, OMA DLOTA 1.0 Download
Descriptor is extensible. Extensions can be made to the Download Descrip-
tor by defining the extension data in a separate name space. That way, exten-
sion names will not collide with the standard metadata.

The JAR content to be downloaded may be processed by special rules of the
targeted environment. The environment element indicates the specific
environment via its XML name space. This element has an optional XML
attribute named envtype , which is used to select the appropriate back-
ground content handler to process it. The OSGi-specific value of this
envtype attribute is defined below.

• Definition – Container for identification of the environment agent, which
processes the JAR content. Extension introduced by OSGi.

• Status – Download Descriptor: Optional. User Agent: Optional
• Datatype – A complex type with an optional envtype XML attribute as

URI.
• Refinement – Extension introduced by OSGi.

The envtype attribute value identifies the content handler of the JAR pack-
age.
50-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Policy Management Object
3.6.8.1 The OSGi Specific Schema

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema

targetNamespace="http://www.osgi.org/xmlns/dd/v.1.0"
 xmlns: md="http://www.osgi.org/xmlns/dd/v.1.0"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">

<xsd:element name="environment" >
<xsd:complexType>

<xsd:attribute name="envtype"
type="xsd:anyURI" use="required"/>

</xsd:complexType>
</xsd:element>

</xsd:schema>

The name space qualified environment element indicates that the content is
targeted to the OSGi platform.

The envtype attribute has the http://www.osgi.o rg/xmlns/dd/DP value
indicating the OSGi Deployment Package format and http: //www.osgi .org/
xmlns/dd/bundle value indicating the OSGi standalone bundle. This value
is used to select the content handler for OSGi packages for further process-
ing. The DLOTA DD descriptor refers to the mime type of the JAR package
(appl icat ion/java-archive).

Example of a DLOTA 1.0 DD of an OSGi Deployment Package:

<?xml version="1.0" encoding="UTF-8"?>
<media

xmlns="http://www.openmobilealliance.org/xmlns/dd"
xmlns:dd="http://www.osgi.org/xmlns/dd/v.1.0" >

<objectURI>
http://acme.com/management/bundle.jar

</objectURI>
<size>1234</size>
<type>application/java-archive</type>
<dd:environment

envtype="http://www.osgi.org/xmlns/dd/DP" />
</media>

3.7 Policy Management Object
This section describes the part of the Mobile Management Tree that controls
the permissions in the OSGi Service Platform. This sub-tree manages the fol-
lowing aspects:

• Conditional Permission – Contains the Conditional Permission Info objects
that are part of the Conditional Permission Admin service. This part of
the sub-tree is described at Conditional Permission Management Object on
page 54.
OSGi Service Platform Release 4 51-502

Policy Management Object Mobile Management Tree Version 1.0
• Location Permission – Contains the Permission Admin service Permission
Info objects that are associated with a location of a bundle.Location Per-
mission Management Object on page 53.

• Principal Permission – Maintains a set of permissions that are associated
with a principal that is used in the Dmt Admin service. No related OSGi
service can manage these principals. Dmt Principal Permission Man-
agement Object on page 54.

This tree is depicted in Figure 3.16.

Figure 3.16 Policy Management Object sub-tree

Updates to this tree must use an atomic session. A Policy sub-tree can be
absent if the underlying service is missing.

3.7.1 Permission and Conditional Permission Info Encoding
The OSGi Permissions are described with an array of Permiss ionInfo and
Condit ionInfo objects. This type of information is encoded with a string
when it must be represented in the Mobile Management Tree.

Both classes have a getEncoded method that returns a Str ing object with the
encoded form. An array is the repetition of the encoded form appended with
a new line character (’\n’ \u000A).

For example, an array with three permissions (where ↵ is a new line charac-
ter):

(org.osgi.framework.PackagePermission "*" "IMPORT")↵
(org.osgi.framework.ServicePermission "*" "GET")↵
(org.osgi.framework.AdminPermission "*" "resource")↵

An example of an array with two Condit ion objects:

[org.osgi.service.condpermadmin.BundleLocationCondition
"http://example.com/*"]↵

[org.osgi.util.gsm.IMSICondition "35817239027340"]↵

$/Policy/Java

ConditionalPermissionDmtPrincipalPermissionLocationPermission

Table 3.14 Policy Management Object nodes
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description

Policy x node 1 P Parent node for all policies

Policy/Java x node 1 P Parent node for all Java based poli-
cies
52-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Policy Management Object
3.7.2 Location Permission Management Object

Figure 3.17 The node $/Pol icy/ Java/Locat ionPermiss ion contains data that represents
the bundle’s permissions as defined by the Permission Admin service. This
service maintains an association between a location and an array of
Permission Info objects. This object is modeled as a sub-tree as depicted in
Figure 3.17.

Figure 3.18 Bundle Sub-tree

The following table describes the different nodes.

$/Policy/Java/LocationPermission

<location>

Location PermissionInfo

0..*

1

DefaultLocations

Table 3.15 Policy Management Object nodes
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description

LocationPermission x node 1 P Parent node for all Permission
Admin maintained permissions.

LocationPermission/
Default

x x x x chr 0,1 D The value of this node is a list of
encoded Permiss ionInfo objects.
These permissions are assigned
when a Conditional Permission
Admin service is absent and no per-
missions are associated with a bun-
dle’s location. The Default node is
absent when
getDefaultPermissions() method
returns nul l in the Permission
Admin Service. Deleting the Default
node is equivalent to calling
setDefaultPermiss ions method with
nul l . Having nul l as default permis-
sions is not the same as having a zero
length array. The null case implies
AllPermission , the empty array case
implies a default of no permissions.
OSGi Service Platform Release 4 53-502

Policy Management Object Mobile Management Tree Version 1.0
3.7.3 Dmt Principal Permission Management Object
The DmtPr incipa lPermission sub-tree contains Java 2 permissions that are
associated with a given principal. The principal is a string that identifies a
management entity. It is given to the Dmt Admin service by the different
protocol adapters at session creation. Based on this string, and on what is
specified in this sub-tree, the DMT Admin will assign permissions to the dif-
ferent management servers. This procedure is discussed in DMT Admin Ser-
vice Specification on page 303. No corresponding service API exists for
managing this sub-tree. The structure of the sub-tree is given in Figure 3.19.

Figure 3.19 Dmt Principal sub-tree

The nodes are described in the following table.

3.7.4 Conditional Permission Management Object
The $/Pol icy/ Java/Condit iona lPermission tree represents the Conditional
Permission Admin service. This service maintains the permissions in a
Condit ionalPermiss ionInfo object. This object is a tuple of encoded
Condit ion objects and encoded Permiss ion objects.

LocationPermission/
Locations

x node 1 P Parent node for available bundle per-
missions, identified by location.

LocationPermission/
Locations/<location>

x x x node 0. .* D The Permission Admin service
grants permissions based on location
of the bundle. This location must be
in mangled form.

LocationPermission/
Locations/<location>/
Location

x x chr 1 A Bundle location in unmangled form.

LocationPermission/
Locations/<location>/
PermissionInfo

x x chr 1 A The encoded form of an array of Per-
mission Info objects as described in
Permission and Conditional Permission
Info Encoding on page 52.

Table 3.15 Policy Management Object nodes
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description

$/Policy/Java/DmtPrincipalPermission

<principal>

Principal PermissionInfo
54-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 Policy Management Object

sts

s

nd
n
This tuple can be anonymous (the name is assigned by the Conditional Per-
mission Info service) or can have a given name. The
Condit ionalPermissionInfo object is represented by a node that has a Name
node, a node for the Conditions, and a node for the Permissions. These nodes
are grouped under a group node. The name of the group node is irrelevant; if
the Name node has a value, the tuple is stored under that name. If the Name
node has no value, the Conditional Permission Admin service will generate
a name. The structure of the tree is depicted in Figure 3.19. Table 3.17 on
page 56 contains the details.

Figure 3.20 Conditional Permission sub-tree

Table 3.16
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description

DmtPrincipal
Permission

x node 1 P Parent node

DmtPrincipalPermission/
<principal>

x x x node 0. .* D Name of the principal. One node exi
per principal. The name of the node
must be mangled.

DmtPrincipalPermission/
<principal>/Principal

x x chr 1 A The full name of the principal in
unmangled form.

DmtPrincipalPermission/
<principal>/
PermissionInfo

x x chr 1 A The permissions associated with thi
principal. These permissions are
encoded as described in Permission a
Conditional Permission Info Encoding o
page 52.

$/Policy/Java/ConditionalPermission

<name>

PermissionInfo ConditionInfo

0..*

1

1

1

1

1

Name

1

1

OSGi Service Platform Release 4 55-502

Policy Management Object Mobile Management Tree Version 1.0

is-
nt,
s

If
g,

d,
n
 a
r-

fo
 as
al

s

nd
n
Table 3.17 Conditional Permission Admin Managed Object
URI

Ad
d

G
et

Re
pl

ac
e

D
el

et
e

Ex
ec

Ty
pe

Ca
rd

in
al

it
y

Sc
op

e

Description

ConditionalPermission x node 0,1 P Parent node of the Conditional Perm
sion Info objects. If this node is abse
the Conditional Permission service i
absent.

ConditionalPermission/
<name>

x x x node 0. .* D The name of the Conditional Info
entry. This name must be mangled.
the condition name is an empty strin
the name of the node must be
2jmj7l5rSw0yVb_vlWAYkK_YBwk .

ConditionalPermission/
<name>/Name

x x chr 1 A Returns the real name as used by the
Conditional Permission Info. If this
node is set when the session is close
the given name is used. Otherwise, a
anonymous tuple is created that has
name defined by the Conditional Pe
mission Admin service.

ConditionalPermission/
<name>/ConditionInfo

x x chr 1 A The conditions that are associated
with this Conditional Permission In
node. These conditions are encoded
described in Permission and Condition
Permission Info Encoding on page 52.

ConditionalPermission/
<name>/PermissionInfo

x x chr 1 A The permissions associated with thi
condition. These permissions are
encoded as described in Permission a
Conditional Permission Info Encoding o
page 52.
56-502 OSGi Service Platform Release 4

Mobile Management Tree Version 1.0 OMA DM Compatibility
3.8 OMA DM Compatibility
The OSGi Mobile Management Tree is defined to be compatible with the
OMA DM Management Specification 1.2 and later. The following table
defines the managed object identifiers for the different Management
Objects.

3.9 References
[1] OMA DM public document repository

http://member.openmobilealliance.org/ftp/Public_documents/DM/2004

[2] RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax
http://www.ietf.org/rfc/rfc2396.txt

[3] Generic Content Download Over The Air, OMA DLOTA 1.0
http://www.openmobilealliance.org/release_program/docs/Download/v1.0-
20040625/OMA-Download-OTA-V1_0-20040625-A.pdf

[4] OMA Device Management Protocol, Version 1.2.
Open Mobile Alliance . OMA-TS-DM-Protocol-V1_2_0,
URL:http://www.openmobilealliance.org

[5] Generic Content Download Over The Air Specification Version 1.0
Open Mobile Alliance , OMA-Download-OTA-v1_0
http://www.openmobilealliance.org

[6] OMA DM Draft Trap-MO 1.3
http://member.openmobilealliance.org/ftp/public_documents/dm/2004/
OMA-DM-2004-0120R03-Trap-MO.zip

Table 3.18 Management Objects
OSGi MO Identifier Management Object

org.osgi/1 .0/DeploymentManagementObject Deployment Management Object on page 34

org .osg i/1 .0/LogManagementObject Log Management Object on page 15

org .osg i/1 .0/MonitorManagementObject Monitor Management Object on page 19

org .osg i/1 .0/Conf igurat ionManagementObject Configuration Management Object on page 10

org.osgi /1 .0/Pol icyManagementObject Policy Management Object on page 51

org .osg i/1 .0/ApplicationManagementObject Application Model Management Object on
page 23

org .osg i/1 .0/OSGiMobi leManagementObject Mobile Management Tree on page 9
OSGi Service Platform Release 4 57-502

References Mobile Management Tree Version 1.0
58-502 OSGi Service Platform Release 4

Log Service Specification Version 1.3 Introduction
101 Log Service
Specification
Version 1.3

101.1 Introduction
The Log Service provides a general purpose message logger for the OSGi Ser-
vice Platform. It consists of two services, one for logging information and
another for retrieving current or previously recorded log information.

This specification defines the methods and semantics of interfaces which
bundle developers can use to log entries and to retrieve log entries.

Bundles can use the Log Service to log information for the Operator. Other
bundles, oriented toward management of the environment, can use the Log
Reader Service to retrieve Log Entry objects that were recorded recently or to
receive Log Entry objects as they are logged by other bundles.

101.1.1 Entities
• LogService – The service interface that allows a bundle to log infor-

mation, including a message, a level, an exception, a ServiceReference
object, and a Bundle object.

• LogEntry - An interface that allows access to a log entry in the log. It
includes all the information that can be logged through the Log Service
and a time stamp.

• LogReaderService - A service interface that allows access to a list of recent
LogEntry objects, and allows the registration of a LogListener object that
receives LogEntry objects as they are created.

• LogListener - The interface for the listener to LogEntry objects. Must be
registered with the Log Reader Service.
OSGi Service Platform Release 4 59-502

The Log Service Interface Log Service Specification Version 1.3
Figure 101.1 Log Service Class Diagram org.osgi.service.log package

101.2 The Log Service Interface
The LogService interface allows bundle developers to log messages that can
be distributed to other bundles, which in turn can forward the logged
entries to a file system, remote system, or some other destination.

The LogService interface allows the bundle developer to:

• Specify a message and/or exception to be logged.
• Supply a log level representing the severity of the message being logged.

This should be one of the levels defined in the LogService interface but it
may be any integer that is interpreted in a user-defined way.

• Specify the Service associated with the log requests.

By obtaining a LogService object from the Framework service registry, a
bundle can start logging messages to the LogService object by calling one of
the LogService methods. A Log Service object can log any message, but it is
primarily intended for reporting events and error conditions.

The LogService interface defines these methods for logging messages:

• log(int, Str ing) – This method logs a simple message at a given log level.
• log(int, Str ing , Throwable) – This method logs a message with an

exception at a given log level.
• log(Serv iceReference, int , St r ing) – This method logs a message asso-

ciated with a specific service.
• log(Serv iceReference, int , St r ing , Throwable) – This method logs a

message with an exception associated with a specific service.

While it is possible for a bundle to call one of the log methods without pro-
viding a ServiceReference object, it is recommended that the caller supply
the ServiceReference argument whenever appropriate, because it provides
important context information to the operator in the event of problems.

<<interface>>
LogService

<<interface>>
LogReader
Service

<<interface>>
LogEntry

<<interface>>
LogListener

a Log Reader
Service impl.

LogEntry impl

a Log user bundle

a Log Service
impl

a Log reader user

Log a
message

Store a message in the log for retrieval

message log

send new log entry

retrieve log

1 1

1

0..n (impl dependent maximum)

1

0..n

LogEntry has references to
ServiceReference,
Throwable and Bundle

or register
listener

Bundle using
Log Service

Bundle using
Log Reader
Service

Log implementation bundle
60-502 OSGi Service Platform Release 4

Log Service Specification Version 1.3 Log Level and Error Severity
The following example demonstrates the use of a log method to write a mes-
sage into the log.

logService.log(
myServiceReference,
LogService.LOG_INFO,
"myService is up and running"

);

In the example, the myServiceReference parameter identifies the service
associated with the log request. The specified level, LogService.LOG_INFO ,
indicates that this message is informational.

The following example code records error conditions as log messages.

try {
FileInputStream fis = new FileInputStream("myFile");
int b;
while ((b = fis.read()) != -1) {

...
}
fis.close();

}
catch (IOException exception) {

logService.log(
myServiceReference,
LogService.LOG_ERROR,
"Cannot access file",
exception);

}

Notice that in addition to the error message, the exception itself is also
logged. Providing this information can significantly simplify problem deter-
mination by the Operator.

101.3 Log Level and Error Severity
The log methods expect a log level indicating error severity, which can be
used to filter log messages when they are retrieved. The severity levels are
defined in the LogService interface.

Callers must supply the log levels that they deem appropriate when making
log requests. The following table lists the log levels.

Table 101.1 Log Levels
Level Descriptions
LOG_DEBUG Used for problem determination and may be irrelevant to anyone but the

bundle developer.
LOG_ERROR Indicates the bundle or service may not be functional. Action should be

taken to correct this situation.
LOG_INFO May be the result of any change in the bundle or service and does not indi-

cate a problem.
LOG_WARNING Indicates a bundle or service is still functioning but may experience prob-

lems in the future because of the warning condition.
OSGi Service Platform Release 4 61-502

Log Reader Service Log Service Specification Version 1.3
101.4 Log Reader Service
The Log Reader Service maintains a list of LogEntry objects called the log.
The Log Reader Service is a service that bundle developers can use to
retrieve information contained in this log, and receive notifications about
LogEntry objects when they are created through the Log Service.

The size of the log is implementation-specific, and it determines how far
into the past the log entries go. Additionally, some log entries may not be
recorded in the log in order to save space. In particular, LOG_DEBUG log
entries may not be recorded. Note that this rule is implementation-depen-
dent. Some implementations may allow a configurable policy to ignore cer-
tain LogEntry object types.

The LogReaderService interface defines these methods for retrieving log
entries.

• getLog() – This method retrieves past log entries as an enumeration with
the most recent entry first.

• addLogListener(LogL is tener) – This method is used to subscribe to the
Log Reader Service in order to receive log messages as they occur. Unlike
the previously recorded log entries, all log messages must be sent to sub-
scribers of the Log Reader Service as they are recorded.
A subscriber to the Log Reader Service must implement the LogListener
interface.
After a subscription to the Log Reader Service has been started, the sub-
scriber's LogL is tener. logged method must be called with a Log Entry
object for the message each time a message is logged.

The LogListener interface defines the following method:

• logged(LogEntry) – This method is called for each Log Entry object
created. A Log Reader Service implementation must not filter entries to
the LogLis tener interface as it is allowed to do for its log. A LogListener
object should see all LogEntry objects that are created.

The delivery of LogEntry objects to the LogListener object should be done
asynchronously.

101.5 Log Entry Interface
The LogEntry interface abstracts a log entry. It is a record of the information
that was passed when an event was logged, and consists of a superset of
information which can be passed through the LogService methods. The
LogEntry interface defines these methods to retrieve information related to
Log Entry objects:

• getBundle() – This method returns the Bundle object related to a Log-
Entry object.

• getException() – This method returns the exception related to a Log-
Entry object. In some implementations, the returned exception may not
be the original exception. To avoid references to a bundle defined
exception class, thus preventing an uninstalled bundle from being
garbage collected, the Log Service may return an exception object of an
62-502 OSGi Service Platform Release 4

Log Service Specification Version 1.3 Mapping of Events
implementation defined Throwable subclass. This object will attempt to
return as much information as possible, such as the message and stack
trace, from the original exception object .

• getLevel() – This method returns the severity level related to a Log Entry
object.

• getMessage() – This method returns the message related to a Log Entry
object.

• getServiceReference() –This method returns the ServiceReference
object of the service related to a Log Entry object.

• getTime() – This method returns the time that the log entry was created.

101.6 Mapping of Events
Implementations of a Log Service must log Framework-generated events
and map the information to LogEntry objects in a consistent way. Frame-
work events must be treated exactly the same as other logged events and dis-
tributed to all LogListener objects that are associated with the Log Reader
Service. The following sections define the mapping for the three different
event types: Bundle, Service, and Framework.

101.6.1 Bundle Events Mapping
A Bundle Event is mapped to a LogEntry object according to Table 101.2,
“Mapping of Bundle Events to Log Entries,” on page 63.

101.6.2 Service Events Mapping
A Service Event is mapped to a LogEntry object according to Table 101.3,
“Mapping of Service Events to Log Entries,” on page 64.

101.6.3 Framework Events Mapping
A Framework Event is mapped to a LogEntry object according to Table
101.4, “Mapping of Framework Event to Log Entries,” on page 64.

Table 101.2 Mapping of Bundle Events to Log Entries
Log Entry method Information about Bundle Event
getLevel() LOG_INFO
getBundle() Identifies the bundle to which the event happened. In other words, it

identifies the bundle that was installed, started, stopped, updated, or
uninstalled. This identification is obtained by calling getBundle()
on the BundleEvent object.

getException() nu ll
getServiceReference() nu ll
getMessage() The message depends on the event type:

• INSTALLED – "BundleEvent INSTALLED"
• STARTED – "BundleEvent STARTED"
• STOPPED – "BundleEvent STOPPED"
• UPDATED – "BundleEvent UPDATED"
• UNINSTALLED – "BundleEvent UNINSTALLED"
• RESOLVED – "BundleEvent RESOLVED"
• UNRESOLVED – "BundleEvent UNRESOLVED"
OSGi Service Platform Release 4 63-502

Mapping of Events Log Service Specification Version 1.3
101.6.4 Log Events
Log events must be delivered to the Event Admin service asynchronously
under the topic:

org/osgi/service/log/LogEntry/<event type>

The logging level is used as event type:

LOG_ERROR
LOG_WARNING
LOG_INFO

Table 101.3 Mapping of Service Events to Log Entries
Log Entry method Information about Service Event
getLevel() LOG_INFO , except for the ServiceEvent .MODIFIED event. This

event can happen frequently and contains relatively little informa-
tion. It must be logged with a level of LOG_DEBUG .

getBundle() Identifies the bundle that registered the service associated with
this event. It is obtained by calling
getServ iceReference() .getBundle() on the ServiceEvent object.

getException() nul l
getServiceReference() Identifies a reference to the service associated with the event. It is

obtained by calling getServiceReference() on the Serv iceEvent
object.

getMessage() This message depends on the actual event type. The messages are
mapped as follows:

• REGISTERED – "ServiceEvent REGISTERED"
• MODIFIED – "ServiceEvent MODIFIED"
• UNREGISTERING – "ServiceEvent UNREGISTERING"

Table 101.4 Mapping of Framework Event to Log Entries
Log Entry method Information about Framework Event
getLevel() LOG_INFO , except for the FrameworkEvent.ERROR event. This event

represents an error and is logged with a level of LOG_ERROR.
getBundle() Identifies the bundle associated with the event. This may be the sys-

tem bundle. It is obtained by calling getBundle() on the
FrameworkEvent object.

getException() Identifies the exception associated with the error. This will be null
for event types other than ERROR. It is obtained by calling
getThrowable() on the FrameworkEvent object.

getServiceReference() nul l
getMessage() This message depends on the actual event type. The messages are

mapped as follows:

• STARTED – "FrameworkEvent STARTED"
• ERROR – "FrameworkEvent ERROR"
• PACKAGES_REFRESHED – "FrameworkEvent PACKAGES

REFRESHED"
• STARTLEVEL_CHANGED – "FrameworkEvent STARTLEVEL

CHANGED"
• WARNING – "FrameworkEvent WARNING"
• INFO – "FrameworkEvent INFO"
64-502 OSGi Service Platform Release 4

Log Service Specification Version 1.3 Security
LOG_DEBUG
LOG_OTHER (when event is not recognized)

The properties of a log event are:

• bundle . id – (Long) The source bundle's id.
• bundle.symbol icName – (Str ing) The source bundle's symbolic name.

Only set if not null .
• bundle – (Bundle) The source bundle.
• log . level – (Integer) The log level.
• message – (Str ing) The log message.
• t imestamp – (Long) The log entry's timestamp.
• log.entry – (LogEntry) The LogEntry object.

If the log entry has an associated Exception:

• except ion.class – (Str ing) The fully-qualified class name of the attached
exception. Only set if the getExceptionmethod returns a non-nul l value.

• except ion.message – (Str ing) The message of the attached Exception.
Only set if the Exception message is not null .

• except ion – (Throwable) The Exception returned by the getExcept ion
method.

If the getServiceReference method returns a non-nul l value:

• service – (ServiceReference) The result of the getServiceReference
method.

• service. id – (Long) The id of the service.
• service .pid – (Str ing) The service's persistent identity. Only set if the

service .pid service property is not nul l .
• service .ob jectClass – (String[]) The object class of the service object.

101.7 Security
The Log Service should only be implemented by trusted bundles. This bun-
dle requires ServicePermission[LogService|LogReaderService , REGISTER] .
Virtually all bundles should get ServicePermission[LogService , GET] . The
ServicePermiss ion[LogReaderService , GET] should only be assigned to
trusted bundles.

101.8 Changes
 The following clarifications were made.

• New Framework Event type strings are defined.
• New Bundle Event type strings are defined.

101.9 org.osgi.service.log
Log Service Package Version 1.3.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:
OSGi Service Platform Release 4 65-502

org.osgi.service.log Log Service Specification Version 1.3
Import-Package: org.osgi.service.log; version=1.3

101.9.1 Summary
• LogEntry - Provides methods to access the information contained in an

individual Log Service log entry. [p.66]
• LogListener - Subscribes to LogEntry objects from the LogReaderService.

[p.67]
• LogReaderService - Provides methods to retrieve LogEntry objects from

the log. [p.67]
• LogService - Provides methods for bundles to write messages to the log.

[p.68]
LogEntry

101.9.2 public interface LogEntry
Provides methods to access the information contained in an individual Log
Service log entry.

A LogEntry object may be acquired from the LogReaderService.getLog
method or by registering a LogListener object.

See Also LogReaderService.getLog[p.68] , LogListener[p.67]
getBundle()

101.9.2.1 public Bundle getBundle()

Returns the bundle that created this LogEntry object.

Returns The bundle that created this LogEntry object; null if no bundle is associated
with this LogEntry object.
getException()

101.9.2.2 public Throwable getException()

Returns the exception object associated with this LogEntry object.

In some implementations, the returned exception may not be the original
exception. To avoid references to a bundle defined exception class, thus pre-
venting an uninstalled bundle from being garbage collected, the Log Service
may return an exception object of an implementation defined Throwable
subclass. The returned object will attempt to provide as much information
as possible from the original exception object such as the message and stack
trace.

Returns Throwable object of the exception associated with this LogEntry;null if no
exception is associated with this LogEntry object.
getLevel()

101.9.2.3 public int getLevel()

Returns the severity level of this LogEntry object.

This is one of the severity levels defined by the LogService interface.

Returns Severity level of this LogEntry object.

See Also LogService.LOG_ERROR[p.68] , LogService.LOG_WARNING[p.69] ,
LogService.LOG_INFO[p.69] , LogService.LOG_DEBUG[p.68]
getMessage()

101.9.2.4 public String getMessage()

Returns the human readable message associated with this LogEntry object.

Returns String containing the message associated with this LogEntry object.
getServiceReference()
66-502 OSGi Service Platform Release 4

Log Service Specification Version 1.3 org.osgi.service.log
101.9.2.5 public ServiceReference getServiceReference()

Returns the ServiceReference object for the service associated with this
LogEntry object.

Returns ServiceReference object for the service associated with this LogEntry object;
null if no ServiceReference object was provided.
getTime()

101.9.2.6 public long getTime()

Returns the value of currentTimeMillis() at the time this LogEntry object
was created.

Returns The system time in milliseconds when this LogEntry object was created.

See Also System.currentTimeMillis()
LogListener

101.9.3 public interface LogListener
extends EventListener
Subscribes to LogEntry objects from the LogReaderService.

A LogListener object may be registered with the Log Reader Service using
the LogReaderService.addLogListener method. After the listener is regis-
tered, the logged method will be called for each LogEntry object created. The
LogListener object may be unregistered by calling the LogReaderSer-
vice.removeLogListener method.

See Also LogReaderService[p.67] , LogEntry[p.66] ,
LogReaderService.addLogListener(LogListener)[p.67] ,
LogReaderService.removeLogListener(LogListener)[p.68]
logged(LogEntry)

101.9.3.1 public void logged(LogEntry entry)

entry A LogEntry object containing log information.

Listener method called for each LogEntry object created.

As with all event listeners, this method should return to its caller as soon as
possible.

See Also LogEntry[p.66]
LogReaderService

101.9.4 public interface LogReaderService
Provides methods to retrieve LogEntry objects from the log.

There are two ways to retrieve LogEntry objects:

• The primary way to retrieve LogEntry objects is to register a LogListener
object whose LogListener.logged method will be called for each entry
added to the log.

• To retrieve past LogEntry objects, the getLog method can be called which
will return an Enumeration of all LogEntry objects in the log.

See Also LogEntry[p.66] , LogListener[p.67] ,
LogListener.logged(LogEntry)[p.67]
addLogListener(LogListener)

101.9.4.1 public void addLogListener(LogListener listener)

listener A LogListener object to register; the LogListener object is used to receive Lo-
gEntry objects.
OSGi Service Platform Release 4 67-502

org.osgi.service.log Log Service Specification Version 1.3
Subscribes to LogEntry objects.

This method registers a LogListener object with the Log Reader Service. The
LogListener.logged(LogEntry) method will be called for each LogEntry
object placed into the log.

When a bundle which registers a LogListener object is stopped or otherwise
releases the Log Reader Service, the Log Reader Service must remove all of
the bundle’s listeners.

If this Log Reader Service’s list of listeners already contains a listener l such
that (l==listener), this method does nothing.

See Also LogListener[p.67] , LogEntry[p.66] ,
LogListener.logged(LogEntry)[p.67]
getLog()

101.9.4.2 public Enumeration getLog()

Returns an Enumeration of all LogEntry objects in the log.

Each element of the enumeration is a LogEntry object, ordered with the
most recent entry first. Whether the enumeration is of all LogEntry objects
since the Log Service was started or some recent past is implementation-spe-
cific. Also implementation-specific is whether informational and debug
LogEntry objects are included in the enumeration.

Returns An Enumeration of all LogEntry objects in the log.
removeLogListener(LogListener)

101.9.4.3 public void removeLogListener(LogListener listener)

listener A LogListener object to unregister.

Unsubscribes to LogEntry objects.

This method unregisters a LogListener object from the Log Reader Service.

If listener is not contained in this Log Reader Service’s list of listeners, this
method does nothing.

See Also LogListener[p.67]
LogService

101.9.5 public interface LogService
Provides methods for bundles to write messages to the log.

LogService methods are provided to log messages; optionally with a Service-
Reference object or an exception.

Bundles must log messages in the OSGi environment with a severity level
according to the following hierarchy:

1 LOG_ERROR [p.68]
2 LOG_WARNING [p.69]
3 LOG_INFO [p.69]
4 LOG_DEBUG [p.68]
LOG_DEBUG

101.9.5.1 public static final int LOG_DEBUG = 4

A debugging message (Value 4).

This log entry is used for problem determination and may be irrelevant to
anyone but the bundle developer.
LOG_ERROR
68-502 OSGi Service Platform Release 4

Log Service Specification Version 1.3 org.osgi.service.log
101.9.5.2 public static final int LOG_ERROR = 1

An error message (Value 1).

This log entry indicates the bundle or service may not be functional.
LOG_INFO

101.9.5.3 public static final int LOG_INFO = 3

An informational message (Value 3).

This log entry may be the result of any change in the bundle or service and
does not indicate a problem.
LOG_WARNING

101.9.5.4 public static final int LOG_WARNING = 2

A warning message (Value 2).

This log entry indicates a bundle or service is still functioning but may expe-
rience problems in the future because of the warning condition.
log(int,String)

101.9.5.5 public void log(int level, String message)

level The severity of the message. This should be one of the defined log levels but
may be any integer that is interpreted in a user defined way.

message Human readable string describing the condition or null.

Logs a message.

The ServiceReference field and the Throwable field of the LogEntry object
will be set to null.

See Also LOG_ERROR[p.68] , LOG_WARNING[p.69] , LOG_INFO[p.69] , LOG_DEBUG[p.68]
log(int,String,Throwable)

101.9.5.6 public void log(int level, String message, Throwable exception)

level The severity of the message. This should be one of the defined log levels but
may be any integer that is interpreted in a user defined way.

message The human readable string describing the condition or null.

exception The exception that reflects the condition or null.

Logs a message with an exception.

The ServiceReference field of the LogEntry object will be set to null.

See Also LOG_ERROR[p.68] , LOG_WARNING[p.69] , LOG_INFO[p.69] , LOG_DEBUG[p.68]
log(ServiceReference,int,String)

101.9.5.7 public void log(ServiceReference sr, int level, String message)

sr The ServiceReference object of the service that this message is associated
with or null.

level The severity of the message. This should be one of the defined log levels but
may be any integer that is interpreted in a user defined way.

message Human readable string describing the condition or null.

Logs a message associated with a specific ServiceReference object.

The Throwable field of the LogEntry will be set to null.

See Also LOG_ERROR[p.68] , LOG_WARNING[p.69] , LOG_INFO[p.69] , LOG_DEBUG[p.68]
log(ServiceReference,int,String,Throwable)

101.9.5.8 public void log(ServiceReference sr, int level, String message, Throwable
OSGi Service Platform Release 4 69-502

org.osgi.service.log Log Service Specification Version 1.3
exception)

sr The ServiceReference object of the service that this message is associated
with.

level The severity of the message. This should be one of the defined log levels but
may be any integer that is interpreted in a user defined way.

message Human readable string describing the condition or null.

exception The exception that reflects the condition or null.

Logs a message with an exception associated and a ServiceReference object.

See Also LOG_ERROR[p.68] , LOG_WARNING[p.69] , LOG_INFO[p.69] , LOG_DEBUG[p.68]
70-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Introduction
104 Configuration Admin
Service Specification
Version 1.2

104.1 Introduction
The Configuration Admin service is an important aspect of the deployment
of an OSGi Service Platform. It allows an Operator to set the configuration
information of deployed bundles.

Configuration is the process of defining the configuration data of bundles
and assuring that those bundles receive that data when they are active in the
OSGi Service Platform.

Figure 104.1 Configuration Admin Service Overview

104.1.1 Essentials
The following requirements and patterns are associated with the Configura-
tion Admin service specification:

• Local Configuration – The Configuration Admin service must support
bundles that have their own user interface to change their configura-
tions.

• Reflection – The Configuration Admin service must be able to deduce the
names and types of the needed configuration data.

• Legacy – The Configuration Admin service must support configuration
data of existing entities (such as devices).

• Object Oriented – The Configuration Admin service must support the cre-
ation and deletion of instances of configuration information so that a
bundle can create the appropriate number of services under the control
of the Configuration Admin service.

port=?
secure=?

port= 80
secure= true

bundle
developer

writes
a bundle

bundle is
deployed

configuration

Configuration
Admin

data
OSGi Service Platform Release 4 71-502

Introduction Configuration Admin Service Specification Version 1.2
• Embedded Devices – The Configuration Admin service must be deployable
on a wide range of platforms. This requirement means that the interface
should not assume file storage on the platform. The choice to use file
storage should be left to the implementation of the Configuration
Admin service.

• Remote versus Local Management – The Configuration Admin service must
allow for a remotely managed OSGi Service Platform, and must not
assume that configuration information is stored locally. Nor should it
assume that the Configuration Admin service is always done remotely.
Both implementation approaches should be viable.

• Availability – The OSGi environment is a dynamic environment that
must run continuously (24/7/365). Configuration updates must happen
dynamically and should not require restarting of the system or bundles.

• Immediate Response – Changes in configuration should be reflected imme-
diately.

• Execution Environment – The Configuration Admin service will not
require more than an environment that fulfills the minimal execution
requirements.

• Communications – The Configuration Admin service should not assume
“always-on” connectivity, so the API is also applicable for mobile applica-
tions in cars, phones, or boats.

• Extendability – The Configuration Admin service should expose the
process of configuration to other bundles. This exposure should at a
minimum encompass initiating an update, removing certain configu-
ration properties, adding properties, and modifying the value of prop-
erties potentially based on existing property or service values.

• Complexity Trade-offs – Bundles in need of configuration data should
have a simple way of obtaining it. Most bundles have this need and the
code to accept this data. Additionally, updates should be simple from the
perspective of the receiver.
Trade-offs in simplicity should be made at the expense of the bundle
implementing the Configuration Admin service and in favor of bundles
that need configuration information. The reason for this choice is that
normal bundles will outnumber Configuration Admin bundles.

104.1.2 Operation
This specification is based on the concept of a Configuration Admin service
that manages the configuration of an OSGi Service Platform. It maintains a
database of Configurat ion objects, locally or remote. This service monitors
the service registry and provides configuration information to services that
are registered with a serv ice .pid property, the Persistent IDentity (PID), and
implement one of the following interfaces:

• Managed Service – A service registered with this interface receives its con-
figuration dictionary from the database or receives null when no such con-
figuration exists or when an existing configuration has never been
updated.

• Managed Service Factory – Services registered with this interface receive
several configuration dictionaries when registered. The database con-
tains zero or more configuration dictionaries for this service. Each con-
figuration dictionary is given sequentially to the service.
72-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Introduction
The database can be manipulated either by the Management Agent or bun-
dles that configure themselves.

Other parties can provide Configuration Plugin services. Such services par-
ticipate in the configuration process. They can inspect the configuration
dictionary and modify it before it reaches the target service.

104.1.3 Entities
• Configuration information – The information needed by a bundle before it

can provide its intended functionality.
• Configuration dictionary – The configuration information when it is

passed to the target service. It consists of a Dictionary object with a
number of properties and identifiers.

• Configuring Bundle – A bundle that modifies the configuration infor-
mation through the Configuration Admin service. This bundle is either a
management bundle or the bundle for which the configuration infor-
mation is intended.

• Configuration Target – The target (bundle or service) that will receive the
configuration information. For services, there are two types of targets:
ManagedServ iceFactory or ManagedService objects.

• Configuration Admin Service – This service is responsible for supplying
configuration target bundles with their configuration information. It
maintains a database with configuration information, keyed on the
service .pid of configuration target services. These services receive their
configuration dictionary or dictionaries when they are registered with
the Framework. Configurations can be modified or extended using Con-
figuration Plugin services before they reach the target bundle.

• Managed Service – A Managed Service represents a client of the Configu-
ration Admin service, and is thus a configuration target. Bundles should
register a Managed Service to receive the configuration data from the
Configuration Admin service. A Managed Service adds a unique
service .pid service registration property as a primary key for the config-
uration information.

• Managed Service Factory – A Managed Service Factory can receive a
number of configuration dictionaries from the Configuration Admin
service, and is thus also a configuration target service. It should register
with a service .p id and receives zero or more configuration dictionaries.
Each dictionary has its own PID.

• Configuration Object – Implements the Configurat ion interface and con-
tains the configuration dictionary for a Managed Service or one of the
configuration dictionaries for a Managed Service Factory. These objects
are manipulated by configuring bundles.

• Configuration Plugin Services – Configuration Plugin services are called
before the configuration dictionary is given to the configuration targets.
The plug-in can modify the configuration dictionary, which is passed to
the Configuration Target.
OSGi Service Platform Release 4 73-502

Configuration Targets Configuration Admin Service Specification Version 1.2
Figure 104.2 Configuration Admin Class Diagram org.osgi.service.cm

104.2 Configuration Targets
One of the more complicated aspects of this specification is the subtle dis-
tinction between the ManagedService and ManagedServiceFactory classes.

Both receive configuration information from the Configuration Admin ser-
vice and are treated similarly in most respects. Therefore, this specification
refers to configuration targets when the distinction is irrelevant.

The difference between these types is related to the cardinality of the config-
uration dictionary. A Managed Service is used when an existing entity needs
a configuration dictionary. Thus, a one-to-one relationship always exists
between the configuration dictionary and the entity.

<<interface>>
Configuration
Admin

<<interface>>
Configuration

<<interface>>
Managed
Service

<<interface>>
Man. Service
Factory

<<interface>>
Configuration
Plugin

Configuration
Adm. Impl.

config. objects

a Managed
Service Factory
Impl

a Managed
Service Impl

a configured
instance of some
type

Plugin Impl

Factory
configuration
impl

Managed Service
configuration
impl

a cnfg application
(e.g. remote
management)

config information

send

set configuration
properties via

1

0..n

Modify

1

configuration

1

0..n

1

0..n

0..n

1

10..n

0..n

1

send
configuration

for some object

config
information

information

bundle using
ManagedService

bundle
configuring

bundle using
ManagedService

Factory

Configuration Admin implementation
bundle

plugin bundle

Config.
Exception

properties
74-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 The Persistent Identity
A Managed Service Factory is used when part of the configuration is to
define how many instances are required. A management bundle can create,
modify, and delete any number of instances for a Managed Service Factory
through the Configuration Admin service. Each instance is configured by a
single Configuration object. Therefore, a Managed Service Factory can have
multiple associated Conf igurat ion objects.

Figure 104.3 Differentiation of ManagedService and ManagedServiceFactory Classes

To summarize:

• A Managed Service must receive a single configuration dictionary when it
is registered or when its configuration is modified.

• A Managed Service Factory must receive from zero to n configuration dic-
tionaries when it registers, depending on the current configuration. The
Managed Service Factory is informed of configuration dictionary
changes: modifications, creations, and deletions.

104.3 The Persistent Identity
A crucial concept in the Configuration Admin service specification is the
Persistent IDentity (PID) as defined in the Framework’s service layer. Its pur-
pose is to act as a primary key for objects that need a configuration dictio-
nary. The name of the service property for PID is defined in the Framework
in org .osgi . f ramework.Constants.SERVICE.PID .

The Configuration Admin service requires the use of PIDs with Managed
Service and Managed Service Factory registrations because it associates its
configuration data with PIDs.

PIDs must be unique for each service. A bundle must not register multiple
configuration target services with the same PID. If that should occur, the
Configuration Admin service must:

• Send the appropriate configuration data to all services registered under
that PID from that bundle only.

• Report an error in the log.
• Ignore duplicate PIDs from other bundles and report them to the log.

104.3.1 PID Syntax
PIDs are intended for use by other bundles, not by people, but sometimes
the user is confronted with a PID. For example, when installing an alarm
system, the user needs to identify the different components to a wiring
application. This type of application exposes the PID to end users.

Framework Service

ManagedService ManagedServiceFactory

Management layer

Service layer

Registry
OSGi Service Platform Release 4 75-502

The Configuration Object Configuration Admin Service Specification Version 1.2
PIDs should follow the symbolic-name syntax, which uses a very restricted
character set. The following sections, define some schemes for common
cases. These schemes are not required, but bundle developers are urged to
use them to achieve consistency.

104.3.1.1 Local Bundle PIDs

As a convention, descriptions starting with the bundle identity and a dot (.)
are reserved for a bundle. As an example, a PID of "65 .536" would belong to
the bundle with a bundle identity of 65.

104.3.1.2 Software PIDs

Configuration target services that are singletons can use a Java package
name they own as the PID (the reverse domain name scheme) as long as
they do not use characters outside the basic ASCII set. As an example, the
PID named com.acme.watchdog would represent a Watchdog service from
the ACME company.

104.3.1.3 Devices

Devices are usually organized on buses or networks. The identity of a device,
such as a unique serial number or an address, is a good component of a PID.
The format of the serial number should be the same as that printed on the
housing or box, to aid in recognition.

104.4 The Configuration Object
A Conf igurat ion object contains the configuration dictionary, which is a set
of properties that configure an aspect of a bundle. A bundle can receive
Configurat ion objects by registering a configuration target service with a
PID service property. See The Persistent Identity on page 75 for more informa-
tion about PIDs.

Table 104.1 Schemes for Device-Oriented PID Names

Bus Example Format Description

USB USB.0123-0002-
9909873

idVendor (hex 4)
idProduct (hex 4)
iSer ia lNumber (dec i-
mal)

Universal Ser ia l Bus.
Use the s tandard
device descr iptor.

IP IP.172.16.28.21 IP nr (dotted decimal) Internet Protocol
802 802-00:60:97:00:9A:56 MAC address with: sep-

arators
IEEE 802 MAC address
(Token Ring, Ethernet,
. . .)

ONE ONE.06-00000021E461 Family (hex 2) and
ser ia l number inc lud-
ing CRC (hex 6)

1-wire bus of Dal las
Semiconductor

COM COM.krups-brewer-
12323

ser ia l number or type
name of device

Ser ia l ports
76-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 The Configuration Object
During registration, the Configuration Admin service must detect these
configuration target services and hand over their configuration dictionary
via a callback. If this configuration dictionary is subsequently modified, the
modified dictionary is handed over to the configuration target again with
the same callback.

The Conf igurat ion object is primarily a set of properties that can be updated
by a Management Agent, user interfaces on the OSGi Service Platform, or
other applications. Configuration changes are first made persistent, and
then passed to the target service via a call to the updated method in the
ManagedServiceFactory or ManagedService class.

A Configuration object must be uniquely bound to a Managed Service or
Managed Service Factory. This implies that a bundle must not register a
Managed Service Factory with a PID that is the same as the PID given to a
Managed Service.

104.4.1 Location Binding
When a Configuration object is created by either getConf iguration or
createFactoryConfiguration , it becomes bound to the location of the calling
bundle. This location is obtained with the associated bundle’s getLocation
method.

Location binding is a security feature that assures that only management
bundles can modify configuration data, and other bundles can only modify
their own configuration data. A SecurityExcept ion is thrown if a bundle
other than a Management Agent bundle attempts to modify the configura-
tion information of another bundle.

If a Managed Service is registered with a PID that is already bound to
another location, the normal callback to ManagedService.updated must
not take place.

The two argument versions of getConfiguration and
createFactoryConfiguration take a location Str ing as their second argu-
ment. These methods require the correct permission, and they create
Configurat ion objects bound to the specified location, instead of the loca-
tion of the calling bundle. These methods are intended for management
bundles.

The creation of a Conf igurat ion object does not in itself initiate a callback to
the target.

A null location parameter may be used to create Conf igurat ion objects that
are not bound. In this case, the objects become bound to a specific location
the first time that they are used by a bundle. When this dynamically bound
bundle is subsequently uninstalled, the Configurat ion object’s bundle loca-
tion must be set to nul l again so it can be bound again later.

A management bundle may create a Configurat ion object before the associ-
ated Managed Service is registered. It may use a nul l location to avoid any
dependency on the actual location of the bundle which registers this ser-
vice. When the Managed Service is registered later, the Conf igurat ion object
must be bound to the location of the registering bundle, and its configura-
tion dictionary must then be passed to ManagedService.updated .
OSGi Service Platform Release 4 77-502

The Configuration Object Configuration Admin Service Specification Version 1.2
104.4.2 Configuration Properties
A configuration dictionary contains a set of properties in a Dictionary
object. The value of the property may be of the following types:

type ::= simple | vector | arrays

simple ::= String | Integer | Long | Float | Double
| Byte | Short | Character | Boolean

primitive ::= long | int | short | char | byte | double
 | float | boolean

arrays ::= primitive ‘[]’ | simple ‘[]’

vector ::= Vector of simple

The name or key of a property must always be a Str ing object, and is not
case-sensitive during look up, but must preserve the original case. The for-
mat of a property name should be:

property-name ::= symbolic-name // See 1.4.2

Properties can be used in other subsystems that have restrictions on the
character set that can be used. The symbol ic-name production uses a very
minimal character set.

Bundles must not use nested vectors or arrays, nor must they use mixed
types. Using mixed types or nesting makes it impossible to use the meta typ-
ing specification. See Metatype Service Specification on page 117.

104.4.3 Property Propagation
An implementation of a Managed Service should copy all the properties of
the Dictionary object argument in updated(Dict ionary) , known or
unknown, into its service registration properties using
ServiceRegist rat ion.setPropert ies .

This propagation allows the development of applications that leverage the
Framework service registry more extensively, so compliance with this
mechanism is advised.

A configuration target service may ignore any configuration properties it
does not recognize, or it may change the values of the configuration proper-
ties before these properties are registered. Configuration properties in the
Framework service registry are not strictly related to the configuration
information.

Bundles that cooperate with the propagation of configuration properties
can participate in horizontal applications. For example, an application that
maintains physical location information in the Framework service registry
could find out where a particular device is located in the house or car. This
service could use a property dedicated to the physical location and provide
functions that leverage this property, such as a graphic user interface that
displays these locations.
78-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Managed Service
104.4.4 Automatic Properties
The Configuration Admin service must automatically add a number of
properties to the configuration dictionary. If these properties are also set by
a configuring bundle or a plug-in, they must always be overridden before
they are given to the target service. See Configuration Plugin on page 91,
Therefore, the receiving bundle or plug-in can assume that the following
properties are defined by the Configuration Admin service and not by the
configuring bundle:

• service .pid – Set to the PID of the associated Configurat ion object.
• service. factoryPid – Only set for a Managed Service Factory. It is then set

to the PID of the associated Managed Service Factory.
• service.bundleLocation – Set to the location of the bundle that can use

this Configurat ion object. This property can only be used for searching,
it may not appear in the configuration dictionary returned from the
getPropert ies method due to security reasons, nor may it be used when
the target is updated.

Constants for some of these properties can be found in
org .osgi . f ramework.Constants . These system properties are all of type
Str ing .

104.4.5 Equality
Two different Configurat ion objects can actually represent the same under-
lying configuration. This means that a Conf igurat ion object must imple-
ment the equa ls and hashCode methods in such a way that two
Configurat ion objects are equal when their PID is equal.

104.5 Managed Service
A Managed Service is used by a bundle that needs one configuration dictio-
nary and is thus associated with one Conf igurat ion object in the Configura-
tion Admin service.

A bundle can register any number of ManagedService objects, but each
must be identified with its own PID.

A bundle should use a Managed Service when it needs configuration infor-
mation for the following:

• A Singleton – A single entity in the bundle that needs to be configured.
• Externally Detected Devices – Each device that is detected causes a regis-

tration of an associated ManagedService object. The PID of this object is
related to the identity of the device, such as the address or serial number.

104.5.1 Singletons
When an object must be instantiated only once, it is called a singleton. A
singleton requires a single configuration dictionary. Bundles may imple-
ment several different types of singletons if necessary.
OSGi Service Platform Release 4 79-502

Managed Service Configuration Admin Service Specification Version 1.2
For example, a Watchdog service could watch the registry for the status and
presence of services in the Framework service registry. Only one instance of
a Watchdog service is needed, so only a single configuration dictionary is
required that contains the polling time and the list of services to watch.

104.5.2 Networks
When a device in the external world needs to be represented in the OSGi
Environment, it must be detected in some manner. The Configuration
Admin service cannot know the identity and the number of instances of the
device without assistance. When a device is detected, it still needs configu-
ration information in order to play a useful role.

For example, a 1-Wire network can automatically detect devices that are
attached and removed. When it detects a temperature sensor, it could regis-
ter a Sensor service with the Framework service registry. This Sensor service
needs configuration information specifically for that sensor, such as which
lamps should be turned on, at what temperature the sensor is triggered,
what timer should be started, in what zone it resides, and so on. One bundle
could potentially have hundreds of these sensors and actuators, and each
needs its own configuration information.

Each of these Sensor services should be registered as a Managed Service with
a PID related to the physical sensor (such as the address) to receive configu-
ration information.

Other examples are services discovered on networks with protocols like Jini,
UPnP, and Salutation. They can usually be represented in the Framework
service registry. A network printer, for example, could be detected via UPnP.
Once in the service registry, these services usually require local configura-
tion information. A Printer service needs to be configured for its local role:
location, access list, and so on.

This information needs to be available in the Framework service registry
whenever that particular Printer service is registered. Therefore, the Config-
uration Admin service must remember the configuration information for
this Printer service.

This type of service should register with the Framework as a Managed Ser-
vice in order to receive appropriate configuration information.

104.5.3 Configuring Managed Services
A bundle that needs configuration information should register one or more
ManagedService objects with a PID service property. If it has a default set of
properties for its configuration, it may include them as service properties of
the Managed Service. These properties may be used as a configuration tem-
plate when a Configurat ion object is created for the first time. A Managed
Service optionally implements the MetaTypeProvider interface to provide
information about the property types. See Meta Typing on page 95.

When this registration is detected by the Configuration Admin service, the
following steps must occur:

• The configuration stored for the registered PID must be retrieved. If there
is a Configurat ion object for this PID, it is sent to the Managed Service
with updated(Dict ionary) .
80-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Managed Service
• If a Managed Service is registered and no configuration information is
available, the Configuration Admin service must call
updated(Dictionary) with a null parameter.

• If the Configuration Admin service starts after a Managed Service is regis-
tered, it must call updated(Dictionary) on this service as soon as pos-
sible. For this reason, a Managed Service must always get a callback
when it registers and the Configuration Admin service is started.

• A Configuration Event CM_UPDATED is send asynchronously out to all
registered Configuration Listener services.

The updated(Dictionary) callback from the Configuration Admin service to
the Managed Service must take place asynchronously. This requirement
allows the Managed Service to finish its initialization in a synchronized
method without interference from the Configuration Admin service call-
back.

Care should be taken not to cause deadlocks by calling the Framework
within a synchronized method.

Figure 104.4 Managed Service Configuration Action Diagram

The updated method may throw a ConfigurationException . This object
must describe the problem and what property caused the exception.

104.5.4 Race Conditions
When a Managed Service is registered, the default properties may be visible
in the service registry for a short period before they are replaced by the prop-
erties of the actual configuration dictionary. Care should be taken that this
visibility does not cause race conditions for other bundles.

In cases where race conditions could be harmful, the Managed Service must
be split into two pieces: an object performing the actual service and a Man-
aged Service. First, the Managed Service is registered, the configuration is
received, and the actual service object is registered. In such cases, the use of a
Managed Service Factory that performs this function should be considered.

104.5.5 Examples of Managed Service
Figure 104.5 shows a Managed Service configuration example. Two services
are registered under the ManagedService interface, each with a different
PID.

Client Bundle Framework Admin

new

registerService()
send registered event

updated()

Configuration

get for PID

Implementor of
Managed Service

set the
configuration

get pid from props Must be on another thread
OSGi Service Platform Release 4 81-502

Managed Service Configuration Admin Service Specification Version 1.2
Figure 104.5 PIDs and External Associations

The Configuration Admin service has a database containing a configuration
record for each PID. When the Managed Service with service .pid =
com.acme.fudd is registered, the Configuration Admin service will retrieve
the properties name=Elmer and size=42 from its database. The properties
are stored in a Dict ionary object and then given to the Managed Service with
the updated(Dict ionary) method.

104.5.5.1 Configuring A Console Bundle

In this example, a bundle can run a single debugging console over a Telnet
connection. It is a singleton, so it uses a ManagedService object to get its
configuration information: the port and the network name on which it
should register.

class SampleManagedService implements ManagedService {
Dictionary properties;
ServiceRegistration registration;
Console console;

public synchronized void start(
BundleContext context) throws Exception {
properties = new Hashtable();
properties.put(Constants.SERVICE_PID,

"com.acme.console");
properties.put("port", new Integer(2011));

registration = context.registerService(
ManagedService.class.getName(),
this,
properties

);
}

public synchronized void updated(Dictionary np) {
if (np != null) {

properties = np;
properties.put(

Configuration
Admin Impl

16.1

com.

name=Erica

name=Elmer

database com.acme.fudd

4.102 name=Christer
size=2

Managed Service

size=8

acme.fudd size=42

PID configuration

= service

pid=4.102

OSGi
Service
Registry

no associated PID registered

events
82-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Managed Service Factory
Constants.SERVICE_PID, "com.acme.console");
}

if (console == null)
console = new Console();

int port = ((Integer)properties.get("port"))
.intValue();

String network = (String) properties.get("network");
console.setPort(port, network);
registration.setProperties(properties);

}
... further methods

}

104.5.6 Deletion
When a Configuration object for a Managed Service is deleted, the Configu-
ration Admin service must call updated(Dict ionary) with a nul l argument
on a thread that is different from that on which the Conf igurat ion.delete
was executed. This deletion must send out a Configuration Event
CM_DELETED to any registered Configuration Listener services after the
updated method is called with a nul l .

104.6 Managed Service Factory
A Managed Service Factory is used when configuration information is
needed for a service that can be instantiated multiple times. When a Man-
aged Service Factory is registered with the Framework, the Configuration
Admin service consults its database and calls updated(String,Dict ionary)
for each associated Conf igurat ion object. It passes the identifier of the
instance, which can be used as a PID, as well as a Dictionary object with the
configuration properties.

A Managed Service Factory is useful when the bundle can provide function-
ality a number of times, each time with different configuration dictionaries.
In this situation, the Managed Service Factory acts like a class and the Con-
figuration Admin service can use this Managed Service Factory to instantiate
instances for that class.

In the next section, the word factory refers to this concept of creating
instances of a function defined by a bundle that registers a Managed Service
Factory.

104.6.1 When to Use a Managed Service Factory
A Managed Service Factory should be used when a bundle does not have an
internal or external entity associated with the configuration information
but can potentially be instantiated multiple times.
OSGi Service Platform Release 4 83-502

Managed Service Factory Configuration Admin Service Specification Version 1.2
104.6.1.1 Example Email Fetcher

An email fetcher program displays the number of emails that a user has – a
function likely to be required for different users. This function could be
viewed as a class that needs to be instantiated for each user. Each instance
requires different parameters, including password, host, protocol, user id,
and so on.

An implementation of the Email Fetcher service should register a
ManagedServiceFactory object. In this way, the Configuration Admin ser-
vice can define the configuration information for each user separately. The
Email Fetcher service will only receive a configuration dictionary for each
required instance (user).

104.6.1.2 Example Temperature Conversion Service

Assume a bundle has the code to implement a conversion service that
receives a temperature and, depending on settings, can turn an actuator on
and off. This service would need to be instantiated many times depending
on where it is needed. Each instance would require its own configuration
information for the following:

• Upper value
• Lower value
• Switch Identification
• ...

Such a conversion service should register a service object under a
ManagedServiceFactory interface. A configuration program can then use
this Managed Service Factory to create instances as needed. For example,
this program could use a Graphic User Interface (GUI) to create such a com-
ponent and configure it.

104.6.1.3 Serial Ports

Serial ports cannot always be used by the OSGi Device Access specification
implementations. Some environments have no means to identify available
serial ports, and a device on a serial port cannot always provide information
about its type.

Therefore, each serial port requires a description of the device that is con-
nected. The bundle managing the serial ports would need to instantiate a
number of serial ports under the control of the Configuration Admin ser-
vice, with the appropriate DEVICE_CATEGORY property to allow it to partic-
ipate in the Device Access implementation.

If the bundle cannot detect the available serial ports automatically, it should
register a Managed Service Factory. The Configuration Admin service can
then, with the help of a configuration program, define configuration infor-
mation for each available serial port.

104.6.2 Registration
Similar to the Managed Service configuration dictionary, the configuration
dictionary for a Managed Service Factory is identified by a PID. The Man-
aged Service Factory, however, also has a factory PID, which is the PID of the
associated Managed Service Factory. It is used to group all Managed Service
Factory configuration dictionaries together.
84-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Managed Service Factory
When a Configuration object for a Managed Service Factory is created
(Configurat ionAdmin.createFactoryConf igurat ion), a new unique PID is
created for this object by the Configuration Admin service. The scheme used
for this PID is defined by the Configuration Admin service and is unrelated
to the factory PID.

When the Configuration Admin service detects the registration of a Man-
aged Service Factory, it must find all configuration dictionaries for this fac-
tory and must then sequentially call
ManagedServiceFactory.updated(Str ing,Dict ionary) for each configura-
tion dictionary. The first argument is the PID of the Conf igurat ion object
(the one created by the Configuration Admin service) and the second argu-
ment contains the configuration properties.

The Managed Service Factory should then create any artifacts associated
with that factory. Using the PID given in the Conf igurat ion object, the bun-
dle may register new services (other than a Managed Service) with the
Framework, but this is not required. This may be necessary when the PID is
useful in contexts other than the Configuration Admin service.

The receiver must not register a Managed Service with this PID because this
would force two Configuration objects to have the same PID. If a bundle
attempts to do this, the Configuration Admin service should log an error
and must ignore the registration of the Managed Service.

The Configuration Admin service must guarantee that no race conditions
exist between initialization, updates, and deletions.

Figure 104.6 Managed Service Factory Action Diagram

A Managed Service Factory has only one update method: updated(String,
Dictionary) . This method can be called any number of times as Configura-
tion objects are created or updated.

The Managed Service Factory must detect whether a PID is being used for
the first time, in which case it should create a new instance, or a subsequent
time, in which case it should update an existing instance.

The Configuration Admin service must call updated(Str ing ,Dict ionary) on
a thread that is different from the one that executed the registration. This
requirement allows an implementation of a Managed Service Factory to use
a synchronized method to assure that the callbacks do not interfere with the
Managed Service Factory registration.

Client bundle Framework Admin

new

registerService()
send registered event

updated()

Configuration

get all for factory

implementor of
ManagedServiceFactory

set the
configuration

get pid

for each found pidfor a new
instance

MUST be on another thread
OSGi Service Platform Release 4 85-502

Managed Service Factory Configuration Admin Service Specification Version 1.2
The updated(Str ing ,Dict ionary) method may throw a ConfigurationExcep-
tion object. This object describes the problem and what property caused the
problem. These exceptions should be logged by a Configuration Admin ser-
vice.

104.6.3 Deletion
If a configuring bundle deletes an instance of a Managed Service Factory, the
deleted(Str ing) method is called. The argument is the PID for this instance.
The implementation of the Managed Service Factory must remove all infor-
mation and stop any behavior associated with that PID. If a service was reg-
istered for this PID, it should be unregistered.

Deletion will asynchronously send out a Configuration Event CM_DELETED
to all registered Configuration Listener services.

104.6.4 Managed Service Factory Example
Figure 104.7 highlights the differences between a Managed Service and a
Managed Service Factory. It shows how a Managed Service Factory imple-
mentation receives configuration information that was created before it
was registered.

• A bundle implements an EMail Fetcher service. It registers a
ManagedServiceFactory object with PID=com.acme.emai l .

• The Configuration Admin service notices the registration and consults
its database. It finds three Conf igurat ion objects for which the factory
PID is equal to com.acme.emai l . It must call updated(Str ing,Dict ionary)
for each of these Configurat ion objects on the newly registered
ManagedServiceFactory object.

• For each configuration dictionary received, the factory should create a
new instance of a EMai lFetcher object, one for er ica (PID=16.1), one for
anna (PID=16.3), and one for elmer (PID=16.2).

• The EMai lFetcher objects are registered under the Topic interface so
their results can be viewed by an online display.
If the EMai lFetcher object is registered, it may safely use the PID of the
Configurat ion object because the Configuration Admin service must
guarantee its suitability for this purpose.
86-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Managed Service Factory
Figure 104.7 Managed Service Factory Example

104.6.5 Multiple Consoles Example
This example illustrates how multiple consoles, each of which has its own
port and interface can run simultaneously. This approach is very similar to
the example for the Managed Service, but highlights the difference by
allowing multiple consoles to be created.

class ExampleFactory implements ManagedServiceFactory {
Hashtable consoles = new Hashtable();
BundleContext context;
public void start(BundleContext context)

throws Exception {
this.context = context;
Hashtable local = new Hashtable();
local.put(Constants.SERVICE_PID,"com.acme.console");
context.registerService(

ManagedServiceFactory.class.getName(),
this,
local);

}

public void updated(String pid, Dictionary config){
Console console = (Console) consoles.get(pid);
if (console == null) {

console = new Console(context);
consoles.put(pid, console);

}

int port = getInt(config, "port", 2011);
String network = getString(

config,
"network",
null /*all*/

Configuration
Admin

MailFetchFactory
pid=
com.acme.email

pid=16.1
name=erica

OSGi Service
registration
events

pid=16.1

pid=16.2
name=erica

name=elmer

Associations

pid=16.3
name=anna

pid=16.2
name=peter

pid=16.3
name=anna

creates instances
at the request of
the Config. Admin

Topic

Managed Service

factory pid
= com.acme

Registry

Factory

factory pid
= eric.mf

.email
OSGi Service Platform Release 4 87-502

Configuration Admin Service Configuration Admin Service Specification Version 1.2
);
console.setPort(port, network);

}

public void deleted(String pid) {
Console console = (Console) consoles.get(pid);
if (console != null) {

consoles.remove(pid);
console.close();

}
}

}

104.7 Configuration Admin Service
The Configurat ionAdmin interface provides methods to maintain configura-
tion data in an OSGi environment. This configuration information is
defined by a number of Configuration objects associated with specific con-
figuration targets. Configuration objects can be created, listed, modified,
and deleted through this interface. Either a remote management system or
the bundles configuring their own configuration information may perform
these operations.

The Conf igurat ionAdmin interface has methods for creating and accessing
Configurat ion objects for a Managed Service, as well as methods for manag-
ing new Configurat ion objects for a Managed Service Factory.

104.7.1 Creating a Managed Service Configuration Object
A bundle can create a new Managed Service Conf igurat ion object with
Configurat ionAdmin.getConf igurat ion . No create method is offered
because doing so could introduce race conditions between different bundles
trying to create a Configurat ion object for the same Managed Service. The
getConf iguration method must atomically create and persistently store an
object if it does not yet exist.

Two variants of this method are:

• getConfigurat ion(Str ing) – This method is used by a bundle with a given
location to configure its own ManagedService objects. The argument
specifies the PID of the targeted service.

• getConfigurat ion(Str ing,Str ing) – This method is used by a man-
agement bundle to configure another bundle. Therefore, this man-
agement bundle needs the right permission. The first argument is the
PID and the second argument is the location identifier of the targeted
ManagedService object.

All Conf igurat ion objects have a method, getFactoryPid() , which in this
case must return nul l because the Conf igurat ion object is associated with a
Managed Service.

Creating a new Configuration object must not initiate a callback to the Man-
aged Service updated method.
88-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Configuration Admin Service
104.7.2 Creating a Managed Service Factory Configuration
Object
The Conf igurat ionAdmin class provides two methods to create a new
instance of a Managed Service Factory:

• createFactoryConfigurat ion(Str ing) – This method is used by a bundle
with a given location to configure its own ManagedServiceFactory
objects. The argument specifies the PID of the targeted
ManagedServ iceFactory object. This factory PID can be obtained from
the returned Configurat ion object with the getFactoryP id() method.

• createFactoryConfigurat ion(Str ing,Str ing)– This method is used by a
management bundle to configure another bundle’s
ManagedServ iceFactory object. The first argument is the location iden-
tifier and the second is the PID of the targeted ManagedServiceFactory
object. The factory PID can be obtained from the returned Conf igurat ion
object with getFactoryPid method.

Creating a new factory configuration must not initiate a callback to the Man-
aged Service Factory updated method until the properties are set in the
Configurat ion object with the update method.

104.7.3 Accessing Existing Configurations
The existing set of Configurat ion objects can be listed with l is tConfigura-
t ions(Str ing) . The argument is a Str ing object with a filter expression. This
filter expression has the same syntax as the Framework Fi l ter class. For
example:

(&(size=42)(service.factoryPid=*osgi*))

The filter function must use the properties of the Conf igurat ion objects and
only return the ones that match the filter expression.

A single Conf igurat ion object is identified with a PID and can be obtained
with getConfiguration(Str ing) .

If the caller has the right permission, then all Configuration objects are eli-
gible for search. In other cases, only Conf igurat ion objects bound to the call-
ing bundle’s location must be returned.

nul l is returned in both cases when an appropriate Conf igurat ion object can-
not be found.

104.7.3.1 Updating a Configuration

The process of updating a Conf igurat ion object is the same for Managed Ser-
vices and Managed Service Factories. First, l i stConfigurat ions(Str ing) or
getConfiguration(Str ing) should be used to get a Conf igurat ion object. The
properties can be obtained with Conf igurat ion .getProperties . When no
update has occurred since this object was created, getPropert ies returns
nul l .
OSGi Service Platform Release 4 89-502

Configuration Events Configuration Admin Service Specification Version 1.2
New properties can be set by calling Configuration.update . The Configura-
tion Admin service must first store the configuration information and then
call a configuration target’s updated method: either the
ManagedService .updated or ManagedServiceFactory.updated method. If
this target service is not registered, the fresh configuration information
must be given to the target when the configuration target service registers.

The update method calls in Conf igurat ion objects are not executed synchro-
nously with the related target service updated method. This method must
be called asynchronously. The Configuration Admin service, however, must
have updated the persistent storage before the update method returns.

The update method must also asynchronously send out a Configuration
Event CM_UPDATED to all registered Configuration Listeners.

104.7.4 Deletion
A Configurat ion object that is no longer needed can be deleted with
Configurat ion.delete , which removes the Configurat ion object from the
database. The database must be updated before the target service updated
method is called.

If the target service is a Managed Service Factory, the factory is informed of
the deleted Conf igurat ion object by a call to
ManagedServiceFactory.deleted . It should then remove the associated
instance. The ManagedServiceFactory.deleted call must be done asynchro-
nously with respect to Conf igurat ion.delete .

When a Conf igurat ion object of a Managed Service is deleted,
ManagedService .updated is called with nul l for the propert ies argument.
This method may be used for clean-up, to revert to default values, or to
unregister a service.

The update method must also asynchronously send out a Configuration
Event CM_DELETED to all registered Configuration Listeners.

104.7.5 Updating a Bundle’s Own Configuration
The Configuration Admin service specification does not distinguish
between updates via a Management Agent and a bundle updating its own
configuration information (as defined by its location). Even if a bundle
updates its own configuration information, the Configuration Admin ser-
vice must callback the associated target service updated method.

As a rule, to update its own configuration, a bundle’s user interface should
only update the configuration information and never its internal structures
directly. This rule has the advantage that the events, from the bundle imple-
mentation’s perspective, appear similar for internal updates, remote man-
agement updates, and initialization.

104.8 Configuration Events
Configuration Admin can update interested parties of changes in its reposi-
tory. The model is based on the white board pattern where a Configuration
Listener service is registered with the service registry. The Configuration
Listener service will receive Configurat ionEvent objects if important
90-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Configuration Plugin
changes take place. The Configuration Admin service must call the Config-
urationListener. configurat ionEvent(Configurat ionEvent) method with
such an event. This method should be called asynchronously, and on
another thread, than the call that caused the event. Configuration Events
must be delivered in order for each listener as they are generated. The way
events must be delivered is the same as described in Delivering Events on
page 92 of the Core specification.

The Configurat ionEvent object carries a factory PID (getFactoryPid()) and a
PID (getPid()). If the factory PID is nul l , the event is related to a Managed
Service Conf igurat ion object, else the event is related to a Managed Service
Factory Conf igurat ion object.

The Conf igurat ionEvent object can deliver the following events from the
getType() method:

• CM_DELETED – The Conf igurat ion object is deleted.
• CM_UPDATED – The Conf igurat ion object is updated or created.

The Configuration Event also carries the ServiceReference object of the
Configuration Admin service that generated the event.

104.8.1 Event Admin Service and Configuration Change Events
Configuration events are delivered asynchronously. The topic of a configu-
ration event must be:

org/osgi/service/cm/ConfigurationEvent/<event type>

Event type can be any of the following:

CM_UPDATED
CM_DELETED

The properties of a configuration event are:

• cm.factoryPid – (Str ing) The factory PID of the associated Configurat ion
object, if the target is a Managed Service Factory. Otherwise not set.

• cm.pid – (Str ing) The PID of the associated Conf igurat ion object.
• service – (ServiceReference) The Service Reference of the Configuration

Admin service.
• service. id – (Long) The Configuration Admin service's ID.
• service .ob jectClass – (String[]) The Configuration Admin service's

object class (which must include
org .osg i. service .cm.ConfigurationAdmin)

• service .pid – (Str ing) The Configuration Admin service's persistent
identity

104.9 Configuration Plugin
The Configuration Admin service allows third-party applications to partici-
pate in the configuration process. Bundles that register a service object
under a Conf igurat ionPlug in interface can process the configuration dictio-
nary just before it reaches the configuration target service.
OSGi Service Platform Release 4 91-502

Configuration Plugin Configuration Admin Service Specification Version 1.2
Plug-ins allow sufficiently privileged bundles to intercept configuration dic-
tionaries just before they must be passed to the intended Managed Service or
Managed Service Factory but after the properties are stored. The changes the
plug-in makes are dynamic and must not be stored. The plug-in must only
be called when an update takes place while it is registered.

The ConfigurationPlug in interface has only one method: modifyConfigura-
t ion(ServiceReference,Dict ionary) . This method inspects or modifies con-
figuration data.

All plug-ins in the service registry must be traversed and called before the
properties are passed to the configuration target service. Each Configuration
Plugin object gets a chance to inspect the existing data, look at the target
object, which can be a ManagedService object or a ManagedServiceFactory
object, and modify the properties of the configuration dictionary. The
changes made by a plug-in must be visible to plugins that are called later.

Configurat ionPlugin objects should not modify properties that belong to
the configuration properties of the target service unless the implications are
understood. This functionality is mainly intended to provide functions that
leverage the Framework service registry. The changes made by the plugin
should normally not be validated. However, the Configuration Admin must
ignore changes to the automatic properties as described in Automatic Proper-
ties on page 79.

For example, a Configuration Plugin service may add a physical location
property to a service. This property can be leveraged by applications that
want to know where a service is physically located. This scenario could be
carried out without any further support of the service itself, except for the
general requirement that the service should propagate the properties it
receives from the Configuration Admin service to the service registry.

Figure 104.8 Order of Configuration Plugin Services

104.9.1 Limiting The Targets
A Configurat ionPlug in object may optionally specify a cm.target registra-
tion property. This value is the PID of the configuration target whose config-
uration updates the Conf igurat ionPlugin object wants to intercept.

The ConfigurationPlug in object must then only be called with updates for
the configuration target service with the specified PID. Omitting the
cm.target registration property means that it is called for all configuration
updates.

a Configuration
Admin

Configuration
Plugin B

Configuration
Plugin A

Configuration
Plugin C

a Managed
Service

update() modifyConfiguration()
1 2 3

updated()

updated-
Factory()

4

Any time when B needs to change a property

a Configuration
object
92-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Configuration Plugin
104.9.2 Example of Property Expansion
Consider a Managed Service that has a configuration property service.to
with the value (objectclass=com.acme.A larm). When the Configuration
Admin service sets this property on the target service, a
Configurat ionPlug in object may replace the
(objectclass=com.acme.Alarm) filter with an array of existing alarm sys-
tems' PIDs as follows:

ID "service.to=[32434,232,12421,1212]"

A new Alarm Service with service.pid=343 is registered, requiring that the
list of the target service be updated. The bundle which registered the Config-
uration Plugin service, therefore, wants to set the to registration property on
the target service. It does not do this by calling ManagedService .updated
directly for several reasons:

• In a securely configured system, it should not have the permission to
make this call or even obtain the target service.

• It could get into race conditions with the Configuration Admin service if
it had the permissions in the previous bullet. Both services would
compete for access simultaneously.

Instead, it must get the Conf igurat ion object from the Configuration Admin
service and call the update method on it.

The Configuration Admin service must schedule a new update cycle on
another thread, and sometime in the future must call
Configurat ionPlug in .modifyProperties . The Conf igurat ionPlug in object
could then set the service .to property to [32434,232,12421,1212, 343] .
After that, the Configuration Admin service must call updated on the target
service with the new service .to list.

104.9.3 Configuration Data Modifications
Modifications to the configuration dictionary are still under the control of
the Configuration Admin service, which must determine whether to accept
the changes, hide critical variables, or deny the changes for other reasons.

The Conf igurat ionPlugin interface must also allow plugins to detect config-
uration updates to the service via the callback. This ability allows them to
synchronize the configuration updates with transient information.

104.9.4 Forcing a Callback
If a bundle needs to force a Configuration Plugin service to be called again, it
must fetch the appropriate Configuration object from the Configuration
Admin service and call the update() method (the no parameter version) on
this object. This call forces an update with the current configuration dictio-
nary so that all applicable plug-ins get called again.
OSGi Service Platform Release 4 93-502

Remote Management Configuration Admin Service Specification Version 1.2
104.9.5 Calling Order
The order in which the Conf igurat ionPlugin objects are called must depend
on the service.cmRanking configuration property of the
Configurat ionPlugin object. Table 104.2 shows the usage of the
service.cmRanking property for the order of calling the Configuration Plu-
gin services.

104.10 Remote Management
This specification does not attempt to define a remote management inter-
face for the Framework. The purpose of this specification is to define a mini-
mal interface for bundles that is complete enough for testing.

The Configuration Admin service is a primary aspect of remote manage-
ment, however, and this specification must be compatible with common
remote management standards. This section discusses some of the issues of
using this specification with [1] DMTF Common Information Model (CIM) and
[2] Simple Network Management Protocol (SNMP), the most likely candidates
for remote management today.

These discussions are not complete, comprehensive, or normative. They are
intended to point the bundle developer in relevant directions. Further speci-
fications are needed to make a more concrete mapping.

104.10.1 Common Information Model
Common Information Model (CIM) defines the managed objects in [4] Inter-
face Definition Language (IDL) language, which was developed for the Com-
mon Object Request Broker Architecture (CORBA).

The data types and the data values have a syntax. Additionally, these syn-
taxes can be mapped to XML. Unfortunately, this XML mapping is very dif-
ferent from the very applicable [3] XSchema XML data type definition
language. The Framework service registry property types are a proper subset
of the CIM data types.

In this specification, a Managed Service Factory maps to a CIM class defini-
tion. The primitives create , delete , and set are supported in this specifica-
tion via the ManagedServiceFactory interface. The possible data types in
CIM are richer than those the Framework supports and should thus be lim-
ited to cases when CIM classes for bundles are defined.

Table 104.2 service.cmRanking Usage For Ordering

service.cmRanking value Description

< 0 The Configuration Plugin service should not modify
properties and must be called before any modifica-
tions are made.

> 0 && <= 1000 The Configuration Plugin service modifies the config-
uration data. The calling order should be based on the
value of the service.cmRanking property.

> 1000 The Configuration Plugin service should not modify
data and is called after all modifications are made.
94-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Meta Typing
An important conceptual difference between this specification and CIM is
the naming of properties. CIM properties are defined within the scope of a
class. In this specification, properties are primarily defined within the scope
of the Managed Service Factory, but are then placed in the registry, where
they have global scope. This mechanism is similar to [5] Lightweight Directory
Access Protocol, in which the semantics of the properties are defined globally
and a class is a collection of globally defined properties.

This specification does not address the non-Configuration Admin service
primitives such as notifications and method calls.

104.10.2 Simple Network Management Protocol
The Simple Network Management Protocol (SNMP) defines the data model
in ASN.1. SNMP is a rich data typing language that supports many types
that are difficult to map to the data types supported in this specification. A
large overlap exists, however, and it should be possible to design a data type
that is applicable in this context.

The PID of a Managed Service should map to the SNMP Object IDentifier
(OID). Managed Service Factories are mapped to tables in SNMP, although
this mapping creates an obvious restriction in data types because tables can
only contain scalar values. Therefore, the property values of the
Configurat ion object would have to be limited to scalar values.

Similar scope issues as seen in CIM arise for SNMP because properties have
a global scope in the service registry.

SNMP does not support the concept of method calls or function calls. All
information is conveyed as the setting of values. The SNMP paradigm maps
closely to this specification.

This specification does not address non-Configuration Admin primitives
such as traps.

104.11 Meta Typing
This section discusses how the Metatype specification is used in the context
of a Configuration Admin service.

When a Managed Service or Managed Service Factory is registered, the ser-
vice object may also implement the MetaTypeProvider interface.

If the Managed Service or Managed Service Factory object implements the
MetaTypeProvider interface, a management bundle may assume that the
associated ObjectClassDefin it ion object can be used to configure the ser-
vice.

The ObjectClassDef in it ion and Attr ibuteDefin it ion objects contain suffi-
cient information to automatically build simple user interfaces. They can
also be used to augment dedicated interfaces with accurate validations.

When the Metatype specification is used, care should be taken to match the
capabilities of the metatype package to the capabilities of the Configuration
Admin service specification. Specifically:
OSGi Service Platform Release 4 95-502

Security Configuration Admin Service Specification Version 1.2
• The metatype specification must describe nested arrays and vectors or
arrays/vectors of mixed type.

This specification does not address how the metatype is made available to a
management system due to the many open issues regarding remote man-
agement.

104.12 Security

104.12.1 Configuration Permission
The Configuration Permission provides a bundle with the authority to con-
figure other bundles. All bundles implicitly have the permission to manage
configurations that are bound to their own location.

The Configure Permission has only a single action and the target must
always be * . The action is:

• CONFIGURE – This action grants a bundle the authority to manage con-
figurations for any other bundle.

The * wildcard for the actions parameter is supported.

104.12.2 Permissions Summary
Configuration Admin service security is implemented using Service Permis-
sion and Configuration Permission. The following table summarizes the
permissions needed by the Configuration Admin bundle itself, as well as the
typical permissions needed by the bundles with which it interacts.

Configuration Admin:

ServicePermission[..ConfigurationAdmin, REGISTER]
ServicePermission[..ManagedService, GET]
ServicePermission[..ManagedServiceFactory, GET]
ServicePermission[..ConfigurationPlugin, GET]
ConfigurationPermission[*, CONFIGURE]
AdminPermission[*, METADATA]

Managed Service:

ServicePermission[..ConfigurationAdmin, GET]
ServicePermission[..ManagedService, REGISTER]

Managed Service Factory:

ServicePermission[..ConfigurationAdmin, GET]
ServicePermission[..ManagedServiceFactory, REGISTER]

Configuration Plugin:

ServicePermission[..ConfigurationPlugin, REGISTER]

Configuration Listener:

ServicePermission[..ConfigurationListener, REGISTER]
96-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Security
The Configuration Admin service must have ServicePermission[
Configurat ionAdmin, REGISTER] . It will also be the only bundle that needs
the ServicePermiss ion[ManagedService | ManagedServiceFactory
|Configur at ionPlug in, GET] . No other bundle should be allowed to have
GET permission for these interfaces. The Configuration Admin bundle must
also hold ConfigurationPermission[*,CONFIGURE] .

Bundles that can be configured must have the
ServicePermission[ManagedServ ice | ManagedServiceFactory,
REGISTER] . Bundles registering Conf igurat ionPlug in objects must have
ServicePermiss ion[Conf igurationPlug in, REGISTER] . The Configuration
Admin service must trust all services registered with the
Configurat ionPlug in interface. Only the Configuration Admin service
should have Serv icePermiss ion[Conf igur at ionPlug in , GET] .

If a Managed Service or Managed Service Factory is implemented by an
object that is also registered under another interface, it is possible, although
inappropriate, for a bundle other than the Configuration Admin service
implementation to call the updated method. Security-aware bundles can
avoid this problem by having their updated methods check that the caller
has Conf igurat ionPermission[*,CONFIGURE] .

Bundles that want to change their own configuration need
ServicePermiss ion[Conf igurationAdmin, GET] . A bundle with
Configurat ionPermiss ion[*,CONFIGURE]is allowed to access and modify
any Conf igurat ion object.

Pre-configuration of bundles requires Conf igurat ionPermiss ion[*,
CONFIGURE] because the methods that specify a location require this per-
mission.

104.12.3 Forging PIDs
A risk exists of an unauthorized bundle forging a PID in order to obtain and
possibly modify the configuration information of another bundle. To miti-
gate this risk, Conf igurat ion objects are generally bound to a specific bundle
location, and are not passed to any Managed Service or Managed Service
Factory registered by a different bundle.

Bundles with the required permission can create Configuration objects that
are not bound. In other words, they have their location set to null . This can
be useful for pre-configuring bundles before they are installed without hav-
ing to know their actual locations.

In this scenario, the Conf igurat ion object must become bound to the first
bundle that registers a Managed Service (or Managed Service Factory) with
the right PID.

A bundle could still possibly obtain another bundle’s configuration by regis-
tering a Managed Service with the right PID before the victim bundle does
so. This situation can be regarded as a denial-of-service attack, because the
victim bundle would never receive its configuration information. Such an
attack can be avoided by always binding Configurat ion objects to the right
locations. It can also be detected by the Configuration Admin service when
the victim bundle registers the correct PID and two equal PIDs are then reg-
istered. This violation of this specification should be logged.
OSGi Service Platform Release 4 97-502

Configurable Service Configuration Admin Service Specification Version 1.2
104.12.4 Configuration and Permission Administration
Configuration information has a direct influence on the permissions
needed by a bundle. For example, when the Configuration Admin Bundle
orders a bundle to use port 2011 for a console, that bundle also needs per-
mission for listening to incoming connections on that port.

Both a simple and a complex solution exist for this situation.

The simple solution for this situation provides the bundle with a set of per-
missions that do not define specific values but allow a range of values. For
example, a bundle could listen to ports above 1024 freely. All these ports
could then be used for configuration.

The other solution is more complicated. In an environment where there is
very strong security, the bundle would only be allowed access to a specific
port. This situation requires an atomic update of both the configuration
data and the permissions. If this update was not atomic, a potential security
hole would exist during the period of time that the set of permissions did
not match the configuration.

The following scenario can be used to update a configuration and the secu-
rity permissions:

1 Stop the bundle.
2 Update the appropriate Conf igurat ion object via the Configuration

Admin service.
3 Update the permissions in the Framework.
4 Start the bundle.

This scenario would achieve atomicity from the point of view of the bundle.

104.13 Configurable Service
Both the Configuration Admin service and the
org .osg i . f ramework.Conf igurable interface address configuration manage-
ment issues. It is the intention of this specification to replace the Frame-
work interface for configuration management.

The Framework Configurable mechanism works as follows. A registered ser-
vice object implements the Conf igurab le interface to allow a management
bundle to configure that service. The Conf igurab le interface has only one
method: getConf igurat ionObject() . This method returns a Java Bean. Beans
can be examined and modified with the java.ref lect or java .bean packages.

This scheme has the following disadvantages:

• No factory – Only registered services can be configured, unlike the
Managed Service Factory that configures any number of services.

• Atomicity – The beans or reflection API can only modify one property at a
time and there is no way to tell the bean that no more modifications to
the properties will follow. This limitation complicates updates of config-
urations that have dependencies between properties.
This specification passes a Dict ionary object that sets all the configura-
tion properties atomically.
98-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 Changes
• Profile – The Java beans API is linked to many packages that are not likely
to be present in OSGi environments. The reflection API may be present
but is not simple to use.
This specification has no required libraries.

• User Interface support – UI support in beans is very rudimentary when no
AWT is present.
The associated Metatyping specification does not require any external
libraries, and has extensive support for UIs including localization.

104.14 Changes
• Added a Configuration Listener service that receives the Configuration

Admin key events. See Configuration Events on page 90.
• Added a new ConfigurationPermission class which replaces the use of

Admin Permission. So bundles which run with this version of Configu-
ration Admin must be deployed with the necessary Configuration Per-
missions rather than Admin Permission. See Configuration Permission on
page 96.

• The PID is now defined in the Core specification as well
• A property name is now defined as a symbol ic-name .
• Event Admin mapping added.

104.15 org.osgi.service.cm
Configuration Admin Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.cm; version=1.2

104.15.1 Summary
• Configuration - The configuration information for a ManagedService or

ManagedServiceFactory object. [p.99]
• ConfigurationAdmin - Service for administering configuration data.

[p.102]
• ConfigurationEvent - A Configuration Event. [p.105]
• ConfigurationException - An Exception class to inform the Configu-

ration Admin service of problems with configuration data. [p.107]
• ConfigurationListener - Listener for Configuration Events. [p.108]
• ConfigurationPermission - Indicates a bundle’s authority to configure

bundles. [p.108]
• ConfigurationPlugin - A service interface for processing configuration

dictionary before the update. [p.109]
• ManagedService - A service that can receive configuration data from a

Configuration Admin service. [p.111]
• ManagedServiceFactory - Manage multiple service instances. [p.112]
Configuration
OSGi Service Platform Release 4 99-502

org.osgi.service.cm Configuration Admin Service Specification Version 1.2
104.15.2 public interface Configuration
The configuration information for a ManagedService or ManagedService-
Factory object. The Configuration Admin service uses this interface to repre-
sent the configuration information for a ManagedService or for a service
instance of a ManagedServiceFactory.

A Configuration object contains a configuration dictionary and allows the
properties to be updated via this object. Bundles wishing to receive configu-
ration dictionaries do not need to use this class - they register a ManagedSer-
vice or ManagedServiceFactory. Only administrative bundles, and bundles
wishing to update their own configurations need to use this class.

The properties handled in this configuration have case insensitive String
objects as keys. However, case is preserved from the last set key/value.

A configuration can be bound to a bundle location (Bundle.getLocation()).
The purpose of binding a Configuration object to a location is to make it
impossible for another bundle to forge a PID that would match this configu-
ration. When a configuration is bound to a specific location, and a bundle
with a different location registers a corresponding ManagedService object or
ManagedServiceFactory object, then the configuration is not passed to the
updated method of that object.

If a configuration’s location is null, it is not yet bound to a location. It will
become bound to the location of the first bundle that registers a Managed-
Service or ManagedServiceFactory object with the corresponding PID.

The same Configuration object is used for configuring both a Managed Ser-
vice Factory and a Managed Service. When it is important to differentiate
between these two the term “factory configuration” is used.
delete()

104.15.2.1 public void delete() throws IOException

Delete this Configuration object. Removes this configuration object from
the persistent store. Notify asynchronously the corresponding Managed Ser-
vice or Managed Service Factory. A ManagedService object is notified by a
call to its updated method with a null properties argument. A ManagedSer-
viceFactory object is notified by a call to its deleted method.

Also intiates an asynchronous call to all ConfigurationListeners with a Con-
figurationEvent.CM_DELETED event.

Throws IOException – If delete fails

IllegalStateException – if this configuration has been deleted
equals(Object)

104.15.2.2 public boolean equals(Object other)

other Configuration object to compare against

Equality is defined to have equal PIDs Two Configuration objects are equal
when their PIDs are equal.

Returns true if equal, false if not a Configuration object or one with a different PID.
getBundleLocation()

104.15.2.3 public String getBundleLocation()

Get the bundle location. Returns the bundle location to which this configu-
ration is bound, or null if it is not yet bound to a bundle location.
100-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 org.osgi.service.cm
Returns location to which this configuration is bound, or null.

Throws IllegalStateException – If this Configuration object has been deleted.

SecurityException – If the caller does not have ConfigurationPermis-
sion[*,CONFIGURE].
getFactoryPid()

104.15.2.4 public String getFactoryPid()

For a factory configuration return the PID of the corresponding Managed
Service Factory, else return null.

Returns factory PID or null

Throws IllegalStateException – if this configuration has been deleted
getPid()

104.15.2.5 public String getPid()

Get the PID for this Configuration object.

Returns the PID for this Configuration object.

Throws IllegalStateException – if this configuration has been deleted
getProperties()

104.15.2.6 public Dictionary getProperties()

Return the properties of this Configuration object. The Dictionary object
returned is a private copy for the caller and may be changed without influ-
encing the stored configuration. The keys in the returned dictionary are case
insensitive and are always of type String.

If called just after the configuration is created and before update has been
called, this method returns null.

Returns A private copy of the properties for the caller or null. These properties must
not contain the “service.bundleLocation” property. The value of this proper-
ty may be obtained from the getBundleLocation method.

Throws IllegalStateException – if this configuration has been deleted
hashCode()

104.15.2.7 public int hashCode()

Hash code is based on PID. The hashcode for two Configuration objects
must be the same when the Configuration PID’s are the same.

Returns hash code for this Configuration object
setBundleLocation(String)

104.15.2.8 public void setBundleLocation(String bundleLocation)

bundleLocation a bundle location or null

Bind this Configuration object to the specified bundle location. If the
bundleLocation parameter is null then the Configuration object will not be
bound to a location. It will be set to the bundle’s location before the first
time a Managed Service/Managed Service Factory receives this Configura-
tion object via the updated method and before any plugins are called. The
bundle location will be set persistently.

Throws IllegalStateException – If this configuration has been deleted.

SecurityException – If the caller does not have ConfigurationPermis-
sion[*,CONFIGURE].
update(Dictionary)

104.15.2.9 public void update(Dictionary properties) throws IOException

properties the new set of properties for this configuration
OSGi Service Platform Release 4 101-502

org.osgi.service.cm Configuration Admin Service Specification Version 1.2
Update the properties of this Configuration object. Stores the properties in
persistent storage after adding or overwriting the following properties:

• “service.pid” : is set to be the PID of this configuration.
• “service.factoryPid” : if this is a factory configuration it is set to the

factory PID else it is not set.

These system properties are all of type String.

If the corresponding Managed Service/Managed Service Factory is regis-
tered, its updated method must be called asynchronously. Else, this callback
is delayed until aforementioned registration occurs.

Also intiates an asynchronous call to all ConfigurationListeners with a Con-
figurationEvent.CM_UPDATED event.

Throws IOException – if update cannot be made persistent

IllegalArgumentException – if the Dictionary object contains invalid con-
figuration types or contains case variants of the same key name.

IllegalStateException – if this configuration has been deleted
update()

104.15.2.10 public void update() throws IOException

Update the Configuration object with the current properties. Initiate the
updated callback to the Managed Service or Managed Service Factory with
the current properties asynchronously.

This is the only way for a bundle that uses a Configuration Plugin service to
initate a callback. For example, when that bundle detects a change that
requires an update of the Managed Service or Managed Service Factory via
its ConfigurationPlugin object.

Throws IOException – if update cannot access the properties in persistent storage

IllegalStateException – if this configuration has been deleted

See Also ConfigurationPlugin[p.109]
ConfigurationAdmin

104.15.3 public interface ConfigurationAdmin
Service for administering configuration data.

The main purpose of this interface is to store bundle configuration data per-
sistently. This information is represented in Configuration objects. The
actual configuration data is a Dictionary of properties inside a Configura-
tion object.

There are two principally different ways to manage configurations. First
there is the concept of a Managed Service, where configuration data is
uniquely associated with an object registered with the service registry.

Next, there is the concept of a factory where the Configuration Admin ser-
vice will maintain 0 or more Configuration objects for a Managed Service
Factory that is registered with the Framework.

The first concept is intended for configuration data about “things/services”
whose existence is defined externally, e.g. a specific printer. Factories are
intended for “things/services” that can be created any number of times, e.g. a
configuration for a DHCP server for different networks.
102-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 org.osgi.service.cm
Bundles that require configuration should register a Managed Service or a
Managed Service Factory in the service registry. A registration property
named service.pid (persistent identifier or PID) must be used to identify this
Managed Service or Managed Service Factory to the Configuration Admin
service.

When the ConfigurationAdmin detects the registration of a Managed Ser-
vice, it checks its persistent storage for a configuration object whose PID
matches the PID registration property (service.pid) of the Managed Service.
If found, it calls ManagedService .updated [p.112] method with the new
properties. The implementation of a Configuration Admin service must run
these call-backs asynchronously to allow proper synchronization.

When the Configuration Admin service detects a Managed Service Factory
registration, it checks its storage for configuration objects whose factoryPid
matches the PID of the Managed Service Factory. For each such Configura-
tion objects, it calls the ManagedServiceFactory.updated method asynchro-
nously with the new properties. The calls to the updated method of a
ManagedServiceFactory must be executed sequentially and not overlap in
time.

In general, bundles having permission to use the Configuration Admin ser-
vice can only access and modify their own configuration information.
Accessing or modifying the configuration of another bundle requires Con-
figurationPermission[*,CONFIGURE].

Configuration objects can be bound to a specified bundle location. In this
case, if a matching Managed Service or Managed Service Factory is regis-
tered by a bundle with a different location, then the Configuration Admin
service must not do the normal callback, and it should log an error. In the
case where a Configuration object is not bound, its location field is null, the
Configuration Admin service will bind it to the location of the bundle that
registers the first Managed Service or Managed Service Factory that has a
corresponding PID property. When a Configuration object is bound to a
bundle location in this manner, the Confguration Admin service must
detect if the bundle corresponding to the location is uninstalled. If this
occurs, the Configuration object is unbound, that is its location field is set
back to null.

The method descriptions of this class refer to a concept of “the calling bun-
dle”. This is a loose way of referring to the bundle which obtained the Con-
figuration Admin service from the service registry. Implementations of
ConfigurationAdmin must use a org.osgi . f ramework.Serv iceFactory to
support this concept.
SERVICE_BUNDLELOCATION

104.15.3.1 public static final String SERVICE_BUNDLELOCATION =
“service.bundleLocation”

Service property naming the location of the bundle that is associated with a
a Configuration object. This property can be searched for but must not
appear in the configuration dictionary for security reason. The property’s
value is of type String.

Since 1.1
SERVICE_FACTORYPID
OSGi Service Platform Release 4 103-502

org.osgi.service.cm Configuration Admin Service Specification Version 1.2
104.15.3.2 public static final String SERVICE_FACTORYPID = “service.factoryPid”

Service property naming the Factory PID in the configuration dictionary.
The property’s value is of type String.

Since 1.1
createFactoryConfiguration(String)

104.15.3.3 public Configuration createFactoryConfiguration(String factoryPid)
throws IOException

factoryPid PID of factory (not null).

Create a new factory Configuration object with a new PID. The properties of
the new Configuration object are null until the first time that its
Conf igurat ion.update(Dict ionary) [p.101] method is called.

It is not required that the factoryPid maps to a registered Managed Service
Factory.

The Configuration object is bound to the location of the calling bundle.

Returns A new Configuration object.

Throws IOException – if access to persistent storage fails.

SecurityException – if caller does not have ConfigurationPermission[*,
CONFIGURE] and factoryPid is bound to another bundle.
createFactoryConfiguration(String,String)

104.15.3.4 public Configuration createFactoryConfiguration(String factoryPid,
String location) throws IOException

factoryPid PID of factory (not null).

location A bundle location string, or null.

Create a new factory Configuration object with a new PID. The properties of
the new Configuration object are null until the first time that its
Conf igurat ion.update(Dict ionary) [p.101] method is called.

It is not required that the factoryPid maps to a registered Managed Service
Factory.

The Configuration is bound to the location specified. If this location is null
it will be bound to the location of the first bundle that registers a Managed
Service Factory with a corresponding PID.

Returns a new Configuration object.

Throws IOException – if access to persistent storage fails.

SecurityException – if caller does not have ConfigurationPermission[*,
CONFIGURE].
getConfiguration(String,String)

104.15.3.5 public Configuration getConfiguration(String pid, String location)
throws IOException

pid Persistent identifier.

location The bundle location string, or null.

Get an existing Configuration object from the persistent store, or create a
new Configuration object.

If a Configuration with this PID already exists in Configuration Admin ser-
vice return it. The location parameter is ignored in this case.
104-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 org.osgi.service.cm
Else, return a new Configuration object. This new object is bound to the
location and the properties are set to null. If the location parameter is null, it
will be set when a Managed Service with the corresponding PID is registered
for the first time.

Returns An existing or new Configuration object.

Throws IOException – if access to persistent storage fails.

SecurityException – if the caller does not have ConfigurationPermis-
sion[*,CONFIGURE].
getConfiguration(String)

104.15.3.6 public Configuration getConfiguration(String pid) throws IOException

pid persistent identifier.

Get an existing or new Configuration object from the persistent store. If the
Configuration object for this PID does not exist, create a new Configuration
object for that PID, where properties are null. Bind its location to the calling
bundle’s location.

Otherwise, if the location of the existing Configuration object is null, set it
to the calling bundle’s location.

Returns an existing or new Configuration matching the PID.

Throws IOException – if access to persistent storage fails.

SecurityException – if the Configuration object is bound to a location dif-
ferent from that of the calling bundle and it has no ConfigurationPermis-
sion[*,CONFIGURE].
listConfigurations(String)

104.15.3.7 public Configuration[] listConfigurations(String filter) throws
IOException, InvalidSyntaxException

filter a Filter object, or null to retrieve all Configuration objects.

List the current Configuration objects which match the filter.

Only Configuration objects with non- null properties are considered cur-
rent. That is, Configuration.getProperties() is guaranteed not to return null
for each of the returned Configuration objects.

Normally only Configuration objects that are bound to the location of the
calling bundle are returned, or all if the caller has ConfigurationPermis-
sion[*,CONFIGURE].

The syntax of the filter string is as defined in the Filter class. The filter can
test any configuration parameters including the following system proper-
ties:

• service.pid-String- the PID under which this is registered
• service.factoryPid-String- the factory if applicable
• service.bundleLocation-String- the bundle location

The filter can also be null, meaning that all Configuration objects should be
returned.

Returns all matching Configuration objects, or null if there aren’t any

Throws IOException – if access to persistent storage fails

InvalidSyntaxException – if the filter string is invalid
ConfigurationEvent
OSGi Service Platform Release 4 105-502

org.osgi.service.cm Configuration Admin Service Specification Version 1.2
104.15.4 public class ConfigurationEvent
A Configuration Event.

ConfigurationEvent objects are delivered to all registered ConfigurationLis-
tener service objects. ConfigurationEvents must be asynchronously deliv-
ered in chronological order with respect to each listener.

A type code is used to identify the type of event. The following event types
are defined:

• CM_UPDATED [p.106]
• CM_DELETED [p.106]

Security Considerations. ConfigurationEvent objects do not provide Config-
uration objects, so no sensitive configuration information is available from
the event. If the listener wants to locate the Configuration object for the
specified pid, it must use ConfigurationAdmin.

See Also ConfigurationListener[p.108]

Since 1.2
CM_DELETED

104.15.4.1 public static final int CM_DELETED = 2

A Configuration has been deleted.

This ConfigurationEvent type that indicates that a Configuration object has
been deleted. An event is fired when a call to Configuration.delete success-
fully deletes a configuration.

The value of CM_DELETED is 2.
CM_UPDATED

104.15.4.2 public static final int CM_UPDATED = 1

A Configuration has been updated.

This ConfigurationEvent type that indicates that a Configuration object has
been updated with new properties. An event is fired when a call to Configu-
ration.update successfully changes a configuration.

The value of CM_UPDATED is 1.
ConfigurationEvent(ServiceReference,int,String,String)

104.15.4.3 public ConfigurationEvent(ServiceReference reference, int type, String
factoryPid, String pid)

reference The ServiceReference object of the Configuration Admin service that created
this event.

type The event type. See getType [p.107] .

factoryPid The factory pid of the associated configuration if the target of the configura-
tion is a ManagedServiceFactory. Otherwise null if the target of the configu-
ration is a ManagedService.

pid The pid of the associated configuration.

Constructs a ConfigurationEvent object from the given ServiceReference
object, event type, and pids.
getFactoryPid()

104.15.4.4 public String getFactoryPid()

Returns the factory pid of the associated configuration.
106-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 org.osgi.service.cm
Returns Returns the factory pid of the associated configuration if the target of the
configuration is a ManagedServiceFactory. Otherwise null if the target of the
configuration is a ManagedService.
getPid()

104.15.4.5 public String getPid()

Returns the pid of the associated configuration.

Returns Returns the pid of the associated configuration.
getReference()

104.15.4.6 public ServiceReference getReference()

Return the ServiceReference object of the Configuration Admin service that
created this event.

Returns The ServiceReference object for the Configuration Admin service that creat-
ed this event.
getType()

104.15.4.7 public int getType()

Return the type of this event.

The type values are:

• CM_UPDATED [p.106]
• CM_DELETED [p.106]

Returns The type of this event.
ConfigurationException

104.15.5 public class ConfigurationException
extends Exception
An Exception class to inform the Configuration Admin service of problems
with configuration data.
ConfigurationException(String,String)

104.15.5.1 public ConfigurationException(String property, String reason)

property name of the property that caused the problem, null if no specific property
was the cause

reason reason for failure

Create a ConfigurationException object.
ConfigurationException(String,String,Throwable)

104.15.5.2 public ConfigurationException(String property, String reason,
Throwable cause)

property name of the property that caused the problem, null if no specific property
was the cause

reason reason for failure

cause The cause of this exception.

Create a ConfigurationException object.

Since 1.2
getCause()

104.15.5.3 public Throwable getCause()

Returns the cause of this exception or null if no cause was specified when
this exception was created.

Returns The cause of this exception or null if no cause was specified.
OSGi Service Platform Release 4 107-502

org.osgi.service.cm Configuration Admin Service Specification Version 1.2
Since 1.2
getProperty()

104.15.5.4 public String getProperty()

Return the property name that caused the failure or null.

Returns name of property or null if no specific property caused the problem
getReason()

104.15.5.5 public String getReason()

Return the reason for this exception.

Returns reason of the failure
initCause(Throwable)

104.15.5.6 public Throwable initCause(Throwable cause)

cause Cause of the exception.

The cause of this exception can only be set when constructed.

Returns This object.

Throws IllegalStateException – This method will always throw an IllegalState-
Exception since the cause of this exception can only be set when constructed.

Since 1.2
ConfigurationListener

104.15.6 public interface ConfigurationListener
Listener for Configuration Events. When a ConfigurationEvent is fired, it is
asynchronously delivered to a ConfigurationListener.

ConfigurationListener objects are registered with the Framework service
registry and are notified with a ConfigurationEvent object when an event is
fired.

ConfigurationListener objects can inspect the received ConfigurationEvent
object to determine its type, the pid of the Configuration object with which
it is associated, and the Configuration Admin service that fired the event.

Security Considerations. Bundles wishing to monitor configuration events
will require ServicePermission[ConfigurationListener,REGISTER] to register
a ConfigurationListener service.

Since 1.2
configurationEvent(ConfigurationEvent)

104.15.6.1 public void configurationEvent(ConfigurationEvent event)

event The ConfigurationEvent.

Receives notification of a Configuration that has changed.
ConfigurationPermission

104.15.7 public final class ConfigurationPermission
extends BasicPermission
Indicates a bundle’s authority to configure bundles. This permission has
only a single action: CONFIGURE.

Since 1.2
CONFIGURE

104.15.7.1 public static final String CONFIGURE = “configure”

The action string configure.
ConfigurationPermission(String,String)
108-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 org.osgi.service.cm
104.15.7.2 public ConfigurationPermission(String name, String actions)

name Name must be “*”.

actions configure (canonical order).

Create a new ConfigurationPermission.
equals(Object)

104.15.7.3 public boolean equals(Object obj)

obj The object being compared for equality with this object.

Determines the equality of two ConfigurationPermission objects.

Two ConfigurationPermission objects are equal.

Returns true if obj is equivalent to this ConfigurationPermission; false otherwise.
getActions()

104.15.7.4 public String getActions()

Returns the canonical string representation of the ConfigurationPermission
actions.

Always returns present ConfigurationPermission actions in the following
order: CONFIGURE

Returns Canonical string representation of the ConfigurationPermission actions.
hashCode()

104.15.7.5 public int hashCode()

Returns the hash code value for this object.

Returns Hash code value for this object.
implies(Permission)

104.15.7.6 public boolean implies(Permission p)

p The target permission to check.

Determines if a ConfigurationPermission object “implies” the specified per-
mission.

Returns true if the specified permission is implied by this object; false otherwise.
newPermissionCollection()

104.15.7.7 public PermissionCollection newPermissionCollection()

Returns a new PermissionCollection object suitable for storing Configura-
tionPermissions.

Returns A new PermissionCollection object.
ConfigurationPlugin

104.15.8 public interface ConfigurationPlugin
A service interface for processing configuration dictionary before the
update.

A bundle registers a ConfigurationPlugin object in order to process configu-
ration updates before they reach the Managed Service or Managed Service
Factory. The Configuration Admin service will detect registrations of Con-
figuration Plugin services and must call these services every time before it
calls the ManagedService or ManagedServiceFactoryupdated method. The
Configuration Plugin service thus has the opportunity to view and modify
the properties before they are passed to the ManagedS ervice or Managed
Service Factory.
OSGi Service Platform Release 4 109-502

org.osgi.service.cm Configuration Admin Service Specification Version 1.2
Configuration Plugin (plugin) services have full read/write access to all con-
figuration information. Therefore, bundles using this facility should be
trusted. Access to this facility should be limited with ServicePermis-
sion[ConfigurationPlugin,REGISTER]. Implementations of a Configuration
Plugin service should assure that they only act on appropriate configura-
tions.

The Integerservice.cmRanking registration property may be specified. Not
specifying this registration property, or setting it to something other than
an Integer, is the same as setting it to the Integer zero. The service.cmRank-
ing property determines the order in which plugins are invoked. Lower
ranked plugins are called before higher ranked ones. In the event of more
than one plugin having the same value of service.cmRanking, then the Con-
figuration Admin service arbitrarily chooses the order in which they are
called.

By convention, plugins with service.cmRanking< 0 or service.cmRanking
>1000 should not make modifications to the properties.

The Configuration Admin service has the right to hide properties from plu-
gins, or to ignore some or all the changes that they make. This might be
done for security reasons. Any such behavior is entirely implementation
defined.

A plugin may optionally specify a cm.target registration property whose
value is the PID of the Managed Service or Managed Service Factory whose
configuration updates the plugin is intended to intercept. The plugin will
then only be called with configuration updates that are targetted at the
Managed Service or Managed Service Factory with the specified PID. Omit-
ting the cm.target registration property means that the plugin is called for
all configuration updates.
CM_RANKING

104.15.8.1 public static final String CM_RANKING = “service.cmRanking”

A service property to specify the order in which plugins are invoked. This
property contains an Integer ranking of the plugin. Not specifying this regis-
tration property, or setting it to something other than an Integer, is the same
as setting it to the Integer zero. This property determines the order in which
plugins are invoked. Lower ranked plugins are called before higher ranked
ones.

Since 1.2
CM_TARGET

104.15.8.2 public static final String CM_TARGET = “cm.target”

A service property to limit the Managed Service or Managed Service Factory
configuration dictionaries a Configuration Plugin service receives. This
property contains a String[] of PIDs. A Configuration Admin service must
call a Configuration Plugin service only when this property is not set, or the
target service’s PID is listed in this property.
modifyConfiguration(ServiceReference,Dictionary)

104.15.8.3 public void modifyConfiguration(ServiceReference reference, Dictionary
properties)

reference reference to the Managed Service or Managed Service Factory
110-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 org.osgi.service.cm
properties The configuration properties. This argument must not contain the “serv-
ice.bundleLocation” property. The value of this property may be obtained
from the Configuration.getBundleLocation method.

View and possibly modify the a set of configuration properties before they
are sent to the Managed Service or the Managed Service Factory. The Config-
uration Plugin services are called in increasing order of their ser-
vice.cmRanking property. If this property is undefined or is a non- Integer
type, 0 is used.

This method should not modify the properties unless the service.cmRank-
ing of this plugin is in the range 0 <= service.cmRanking <= 1000.

If this method throws any Exception, the Configuration Admin service
must catch it and should log it.
ManagedService

104.15.9 public interface ManagedService
A service that can receive configuration data from a Configuration Admin
service.

A Managed Service is a service that needs configuration data. Such an object
should be registered with the Framework registry with the service.pid prop-
erty set to some unique identitifier called a PID.

If the Configuration Admin service has a Configuration object correspond-
ing to this PID, it will callback the updated() method of the ManagedService
object, passing the properties of that Configuration object.

If it has no such Configuration object, then it calls back with a null proper-
ties argument. Registering a Managed Service will always result in a call-
back to the updated() method provided the Configuration Admin service is,
or becomes active. This callback must always be done asynchronously.

Else, every time that either of the updated() methods is called on that Con-
figuration object, the ManagedService.updated() method with the new
properties is called. If the delete() method is called on that Configuration
object, ManagedService.updated() is called with a null for the properties
parameter. All these callbacks must be done asynchronously.

The following example shows the code of a serial port that will create a port
depending on configuration information.

class SerialPort implements ManagedService {

ServiceRegistration registration;
Hashtable configuration;
CommPortIdentifier id;

synchronized void open(CommPortIdentifier id,
BundleContext context) {

this.id = id;
registration = context.registerService(

ManagedService.class.getName(),
this,
getDefaults()
OSGi Service Platform Release 4 111-502

org.osgi.service.cm Configuration Admin Service Specification Version 1.2
);
}

Hashtable getDefaults() {
Hashtable defaults = new Hashtable();
defaults.put(“port”, id.getName());
defaults.put(“product”, “unknown”);
defaults.put(“baud”, “9600”);
defaults.put(Constants.SERVICE_PID,

“com.acme.serialport.” + id.getName());
return defaults;

}

public synchronized void updated(
Dictionary configuration) {
if (configuration ==

null
)

registration.setProperties(getDefaults());
else {

setSpeed(configuration.get(”baud”));
registration.setProperties(configuration);

}
}
...

}

As a convention, it is recommended that when a Managed Service is
updated, it should copy all the properties it does not recognize into the ser-
vice registration properties. This will allow the Configuration Admin ser-
vice to set properties on services which can then be used by other
applications.
updated(Dictionary)

104.15.9.1 public void updated(Dictionary properties) throws
ConfigurationException

properties A copy of the Configuration properties, or null. This argument must not con-
tain the “service.bundleLocation” property. The value of this property may
be obtained from the Configuration.getBundleLocation method.

Update the configuration for a Managed Service.

When the implementation of updated(Dictionary) detects any kind of error
in the configuration properties, it should create a new ConfigurationExcep-
tion which describes the problem. This can allow a management system to
provide useful information to a human administrator.

If this method throws any other Exception, the Configuration Admin ser-
vice must catch it and should log it.

The Configuration Admin service must call this method asynchronously
which initiated the callback. This implies that implementors of Managed
Service can be assured that the callback will not take place during registra-
tion when they execute the registration in a synchronized method.

Throws ConfigurationException – when the update fails
ManagedServiceFactory
112-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 org.osgi.service.cm
104.15.10 public interface ManagedServiceFactory
Manage multiple service instances. Bundles registering this interface are
giving the Configuration Admin service the ability to create and configure a
number of instances of a service that the implementing bundle can provide.
For example, a bundle implementing a DHCP server could be instantiated
multiple times for different interfaces using a factory.

Each of these service instances is represented, in the persistent storage of the
Configuration Admin service, by a factory Configuration object that has a
PID. When such a Configuration is updated, the Configuration Admin ser-
vice calls the ManagedServiceFactory updated method with the new proper-
ties. When updated is called with a new PID, the Managed Service Factory
should create a new factory instance based on these configuration proper-
ties. When called with a PID that it has seen before, it should update that
existing service instance with the new configuration information.

In general it is expected that the implementation of this interface will main-
tain a data structure that maps PIDs to the factory instances that it has cre-
ated. The semantics of a factory instance are defined by the Managed Service
Factory. However, if the factory instance is registered as a service object with
the service registry, its PID should match the PID of the corresponding Con-
figuration object (but it should not be registered as a Managed Service!).

An example that demonstrates the use of a factory. It will create serial ports
under command of the Configuration Admin service.

class SerialPortFactory
implements ManagedServiceFactory {
ServiceRegistration registration;
Hashtable ports;
void start(BundleContext context) {

Hashtable properties = new Hashtable();
properties.put(Constants.SERVICE_PID,

“com.acme.serialportfactory”);
registration = context.registerService(

ManagedServiceFactory.class.getName(),
this,
properties

);
}
public void updated(String pid,

Dictionary properties) {
String portName = (String) properties.get(”port”);
SerialPortService port =

(SerialPort) ports.get(pid);
if (port == null) {

port = new SerialPortService();
ports.put(pid, port);
port.open();

}
if (port.getPortName().equals(portName))

return;
port.setPortName(portName);
OSGi Service Platform Release 4 113-502

org.osgi.service.cm Configuration Admin Service Specification Version 1.2
}
public void deleted(String pid) {

SerialPortService port =
(SerialPort) ports.get(pid);

port.close();
ports.remove(pid);

}
...

}
deleted(String)

104.15.10.1 public void deleted(String pid)

pid the PID of the service to be removed

Remove a factory instance. Remove the factory instance associated with the
PID. If the instance was registered with the service registry, it should be
unregistered.

If this method throws any Exception, the Configuration Admin service
must catch it and should log it.

The Configuration Admin service must call this method asynchronously.
getName()

104.15.10.2 public String getName()

Return a descriptive name of this factory.

Returns the name for the factory, which might be localized
updated(String,Dictionary)

104.15.10.3 public void updated(String pid, Dictionary properties) throws
ConfigurationException

pid The PID for this configuration.

properties A copy of the configuration properties. This argument must not contain the
service.bundleLocation” property. The value of this property may be ob-
tained from the Configuration.getBundleLocation method.

Create a new instance, or update the configuration of an existing instance. If
the PID of the Configuration object is new for the Managed Service Factory,
then create a new factory instance, using the configuration properties pro-
vided. Else, update the service instance with the provided properties.

If the factory instance is registered with the Framework, then the configura-
tion properties should be copied to its registry properties. This is not manda-
tory and security sensitive properties should obviously not be copied.

If this method throws any Exception, the Configuration Admin service
must catch it and should log it.

When the implementation of updated detects any kind of error in the con-
figuration properties, it should create a new Conf igurat ionException [p.107]
which describes the problem.

The Configuration Admin service must call this method asynchronously.
This implies that implementors of the ManagedServiceFactory class can be
assured that the callback will not take place during registration when they
execute the registration in a synchronized method.

Throws ConfigurationException – when the configuration properties are invalid.
114-502 OSGi Service Platform Release 4

Configuration Admin Service Specification Version 1.2 References
104.16 References
[1] DMTF Common Information Model

http://www.dmtf.org

[2] Simple Network Management Protocol
RFCs http://directory.google.com/Top/Computers/Internet/Protocols/
SNMP/RFCs

[3] XSchema
http://www.w3.org/TR/xmlschema-0/

[4] Interface Definition Language
http://www.omg.org

[5] Lightweight Directory Access Protocol
http://directory.google.com/Top/Computers/Software/Internet/Servers/
Directory/LDAP

[6] Understanding and Deploying LDAP Directory services
Timothy Howes et. al. ISBN 1-57870-070-1, MacMillan Technical
publishing.
OSGi Service Platform Release 4 115-502

References Configuration Admin Service Specification Version 1.2
116-502 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 Introduction
105 Metatype Service
Specification
Version 1.1

105.1 Introduction
The Metatype specification defines interfaces that allow bundle developers
to describe attribute types in a computer readable form using so-called meta-
data.

The purpose of this specification is to allow services to specify the type
information of data that they can use as arguments. The data is based on
attributes, which are key/value pairs like properties.

A designer in a type-safe language like Java is often confronted with the
choice of using the language constructs to exchange data or using a tech-
nique based on attributes/properties that are based on key/value pairs.
Attributes provide an escape from the rigid type-safety requirements of
modern programming languages.

Type-safety works very well for software development environments in
which multiple programmers work together on large applications or sys-
tems, but often lacks the flexibility needed to receive structured data from
the outside world.

The attribute paradigm has several characteristics that make this approach
suitable when data needs to be communicated between different entities
which “speak” different languages. Attributes are uncomplicated, resilient
to change, and allow the receiver to dynamically adapt to different types of
data.

As an example, the OSGi Service Platform Specifications define several
attribute types which are used in a Framework implementation, but which
are also used and referenced by other OSGi specifications such as the Config-
uration Admin Service Specification on page 71. A Configuration Admin ser-
vice implementation deploys attributes (key/value pairs) as configuration
properties.

The Meta Type Service provides a unified access point to the Meta Type
information that is associated with bundles. This Meta Type information
can be defined by an XML resource in a bundle (OSGI-INF/metatype direc-
tories must be scanned for any XML resources), or it can be obtained from
Managed Service or Managed Service Factory services that are implemented
by a bundle.
OSGi Service Platform Release 4 117-502

Introduction Metatype Service Specification Version 1.1
105.1.1 Essentials
• Conceptual model – The specification must have a conceptual model for

how classes and attributes are organized.
• Standards – The specification should be aligned with appropriate stan-

dards, and explained in situations where the specification is not aligned
with, or cannot be mapped to, standards.

• Remote Management – Remote management should be taken into
account.

• Size – Minimal overhead in size for a bundle using this specification is
required.

• Localization – It must be possible to use this specification with different
languages at the same time. This ability allows servlets to serve infor-
mation in the language selected in the browser.

• Type information – The definition of an attribution should contain the
name (if it is required), the cardinality, a label, a description, labels for
enumerated values, and the Java class that should be used for the values.

• Validation – It should be possible to validate the values of the attributes.

105.1.2 Entities
• Meta Type Service – A service that provides a unified access point for meta

type information.
• Attribute – A key/value pair.
• PID – A unique persistent ID, defined in configuration management.
• Attribute Definition – Defines a description, name, help text, and type

information of an attribute.
• Object Class Definition – Defines the type of a datum. It contains a

description and name of the type plus a set of Attr ibuteDef in i t ion
objects.

• Meta Type Provider – Provides access to the object classes that are
available for this object. Access uses the PID and a locale to find the best
ObjectClassDefin it ion object.

• Meta Type Information – Provides meta type information for a bundle.
118-502 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 Introduction
Figure 105.1 Class Diagram Meta Type Service, org.osgi.service.metatype

105.1.3 Operation
The Meta Type service defines a rich dynamic typing system for properties.
The purpose of the type system is to allow reasonable User Interfaces to be
constructed dynamically.

The type information is normally carried by the bundles themselves. Either
by implementing the MetaTypeProvider interface or by carrying one or
more XML resources in that define a number of Meta Types in the OSGI-
INF/metatype directories. Additionally, a Meta Type service could have
other sources.

The Meta Type Service provides unified access to Meta Types that are car-
ried by the resident bundles. The Meta Type Service collects this informa-
tion from the bundles and provides uniform access to it. A client can
requests the Meta Type Information associated with a particular bundle.
The MetaTypeInformat ion object provides a list of ObjectClassDefin it ion
objects for a bundle. These objects define all the information for a specific
object class. An object class is a some descriptive information and a set of
named attributes (which are key/value pairs).

Access to Object Class Definitions is qualified by a locale and a Persistent
IDentity (PID). This specification does not specify what the PID means. One
application is OSGi Configuration Management where a PID is used by the
Managed Service and Managed Service Factory services. In general, a PID
should be regarded as the name of a variable where an Object Class Defini-
tion defines its type.

<<interface>>
ObjectClass
Definition

<<interface>>
MetaType
Provider

<<interface>>
Attribute
Definition

<<interface>>
MetaType
Information

Meta Type
Provider Impl

Any bundle

Meta Type
Information Impl

<<interface>>
MetaType
Service

Meta Type Client

Meta Type
Service Impl
Meta Type
Service Impl

PID & locale

0..n 1

Metatype
xml resource retrieve

from

Meta Type
Provider Impl

Meta Type
Provider Impl

Object Class
Definition Impl

Attribute
Definition Impl

0..n 1..n 0..n 1 bundle
OSGi Service Platform Release 4 119-502

Attributes Model Metatype Service Specification Version 1.1
105.2 Attributes Model
The Framework uses the LDAP filter syntax for searching the Framework
registry. The usage of the attributes in this specification and the Framework
specification closely resemble the LDAP attribute model. Therefore, the
names used in this specification have been aligned with LDAP. Conse-
quently, the interfaces which are defined by this Specification are:

• Attr ibuteDefin it ion
• ObjectClassDefin it ion
• MetaTypeProvider

These names correspond to the LDAP attribute model. For further informa-
tion on ASN.1-defined attributes and X.500 object classes and attributes, see
[2] Understanding and Deploying LDAP Directory services.

The LDAP attribute model assumes a global name-space for attributes, and
object classes consist of a number of attributes. So, if an object class inherits
the same attribute from different parents, only one copy of the attribute
must become part of the object class definition. This name-space implies
that a given attribute, for example cn , should always be the common name
and the type must always be a Str ing . An attribute cn cannot be an Integer
in another object class definition. In this respect, the OSGi approach
towards attribute definitions is comparable with the LDAP attribute model.

105.3 Object Class Definition
The ObjectClassDef in it ion interface is used to group the attributes which
are defined in Attr ibuteDef in it ion objects.

An ObjectClassDef in it ion object contains the information about the over-
all set of attributes and has the following elements:

• A name which can be returned in different locales.
• A global name-space in the registry, which is the same condition as

LDAP/X.500 object classes. In these standards the OSI Object Identifier
(OID) is used to uniquely identify object classes. If such an OID exists,
(which can be requested at several standard organizations, and many
companies already have a node in the tree) it can be returned here. Oth-
erwise, a unique id should be returned. This id can be a Java class name
(reverse domain name) or can be generated with a GUID algorithm. All
LDAP-defined object classes already have an associated OID. It is strongly
advised to define the object classes from existing LDAP schemes which
provide many preexisting OIDs. Many such schemes exist ranging from
postal addresses to DHCP parameters.

• A human-readable description of the class.
• A list of attribute definitions which can be filtered as required, or

optional. Note that in X.500 the mandatory or required status of an
attribute is part of the object class definition and not of the attribute defi-
nition.

• An icon, in different sizes.
120-502 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 Attribute Definition
105.4 Attribute Definition
The Attr ibuteDef in i t ion interface provides the means to describe the data
type of attributes.

The Attr ibuteDef in i t ion interface defines the following elements:

• Defined names (final ints) for the data types as restricted in the
Framework for the attributes, called the syntax in OSI terms, which can
be obtained with the getType() method.

• Attr ibuteDefin it ion objects should use and ID that is similar to the OID
as described in the ID field for ObjectClassDef in it ion .

• A localized name intended to be used in user interfaces.
• A localized description that defines the semantics of the attribute and

possible constraints, which should be usable for tooltips.
• An indication if this attribute should be stored as a unique value, a

Vector , or an array of values, as well as the maximum cardinality of the
type.

• The data type, as limited by the Framework service registry attribute
types.

• A validation function to verify if a possible value is correct.
• A list of values and a list of localized labels. Intended for popup menus in

GUIs, allowing the user to choose from a set.
• A default value. The return type of this is a String[] . For cardinality =

zero, this return type must be an array of one String object. For other car-
dinalities, the array must not contain more than the absolute value of
cardinality Str ing objects. In that case, it may contain 0 objects.

105.5 Meta Type Service
The Meta Type Service provides unified access to Meta Type information
that is associated with a Bundle. It can get this information through the fol-
lowing means:

• Meta Type Resource – A bundle can provide one ore more XML resources
that are contained in its JAR file. These resources contain and XML defi-
nition of meta types as well as to what PIDs these Meta Types apply.
These XML resources must reside in the OSGI-INF/metatype directories
of the bundle (including any fragments).

• ManagedService[Factory] objects – As defined in the configuration man-
agement specification, ManagedService and ManagedServiceFactory
service objects can optionally implement the MetaTypeProvider
interface. The Meta Type Service will only search for MetaTypeProvider
objects if no meta type resources are found in the bundle.
OSGi Service Platform Release 4 121-502

Meta Type Service Metatype Service Specification Version 1.1
Figure 105.2 Sources for Meta Types

This model is depicted in Figure 105.2.

The Meta Type Service can therefore be used to retrieve meta type informa-
tion for bundles which contain Meta Type resources or which provide their
own MetaTypeProvider objects. The MetaTypeService interface has a single
method:

• getMetaTypeInformation(Bundle) – Given a bundle, it must return the
Meta Type Information for that bundle, even if there is no meta type
information available at the moment of the call.

The returned MetaTypeInformation object maintains a map of PID to
ObjectClassDef in it ion objects. The map is keyed by locale and PID. The list
of maintained PIDs is available from the MetaTypeIn format ion object with
the following methods:

• getPids() – PIDs for which Meta Types are available.
• getFactoryPids() – PIDs associated with Managed Service Factory ser-

vices.

These methods and their interaction with the Meta Type resource are
described in Use of the Designate Element on page 128.

The MetaTypeIn format ion interface extends the MetaTypeProv ider inter-
face. The MetaTypeProvider interface is used to access meta type informa-
tion.It supports locale dependent information so that the text used in
Attr ibuteDef in it ion and ObjectClassDef in it ion objects can be adapted to
different locales.

Which locales are supported by the MetaTypeProvider object are defined by
the implementer or the meta type resources.The list of available locales can
be obtained from the MetaTypeProvider object.

The MetaTypeProvider interface provides the following methods:

• getObjectClassDefin it ion(Str ing,Str ing) – Get access to an ObjectClass-
Definition object for the given PID. The second parameter defines the
locale.

• getLocales() – List the locales.that are available.

Locale objects are represented in Str ing objects because not all profiles sup-
port Locale. The String holds the standard Locale presentation of:

locale = language (’_’ country (’_’ variation?))?
language ::= < defined by ISO 3166 >
country ::= < defined by ISO 639 >

<<service>>
MetaType
Service

<<service>>
Managed
Service

<<service>>
Managed Service
Factory

OSGI-INF/metatype
xml resource

... alternative
meta type
sources
122-502 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 Using the Meta Type Resources
For example, en , nl_BE , en_CA_posix are valid locales. The use of nul l for
locale indicates that java.uti l .Loca le .getDefault() must be used.

The Meta Type Service implementation class is the main class. It registers
the org.osgi.service.metatype.MetaTypeService service and has a method to
get a MetaTypeInformat ion object for a bundle.

Following is some sample code demonstrating how to print out all the
Object Class Definitions and Attribute Definitions contained in a bundle:

void printMetaTypes(MetaTypeService mts, Bundle b) {
MetaTypeInformation mti =

mts.getMetaTypeInformation(b);
String [] pids = mti.getPids();
String [] locales = mti.getLocales();

for (int locale = 0; locale<locales.length; locale++) {
System.out.println("Locale " + locales[locale]);
for (int i=0; i< pids.length; i++) {

 ObjectClassDefinition ocd =
mti.getObjectClassDefinition(pids[i], null);

 AttributeDefinition[] ads =
ocd.getAttributeDefinitions(

ObjectClassDefinition.ALL);
 for (int j=0; j< ads.length; j++) {
 System.out.println("OCD="+ocd.getName()

+ "AD="+ads[j].getName());
 }

}
}

}

105.6 Using the Meta Type Resources
A bundle that wants to provide meta type resources must place these
resources in the OSGI- INF/metatype directory. The name of the resource
must be a valid JAR path. All resources in that directory must be meta type
documents. Fragments can contain additional meta type resources in the
same directory and they must be taken into account when the meta type
resources are searched. A meta type resources must be encoded in UTF-8.

The MetaType Service must support localization of the

• name
• icon
• description
• label attributes

The localization mechanism must be identical using the same mechanism
as described in the Core module layer, section Localization on page 62, using
the same property resource. However, it is possible to override the property
resource in the meta type definition resources with the loca lizat ion
attribute of the MetaData element.
OSGi Service Platform Release 4 123-502

Using the Meta Type Resources Metatype Service Specification Version 1.1
The Meta Type Service must examine the bundle and its fragments to locate
all localization resources for the localization base name. From that list, the
Meta Type Service derives the list of locales which are available for the meta
type information. This list can then be returned by
MetaTypeInformation.getLocales method. This list can change at any time
because the bundle could be refreshed. Clients should be prepared that this
list changes after they received it.

105.6.1 XML Schema of a Meta Type Resource
This section describes the schema of the meta type resource. This schema is
not intended to be used during runtime for validating meta type resources.
The schema is intended to be used by tools and external management sys-
tems.

The XML name space for meta type documents must be:

http://www.osgi.org/xmlns/metatype/v1.0.0

The name space abbreviation should be metatype . I.e. the following header
should be:

<metatype:MetaData
xmlns:metatype=

"http://www.osgi.org/xmlns/metatype/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
>

The file can be found in the osgi.jar file that can be downloaded from the
www.osgi.org web site.

Figure 105.3 XML Schema Instance Structure (Type name = Element name)

The element structure of the XML file is:

MetaData

OCD

AD

Designate

Option

Icon

1

*
Object

Attribute

1

*

1 *

1 *

1

1

1

1..n

1

0..n

1

1..n

1

*

Value

1

0..n
124-502 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 Using the Meta Type Resources

n

.

e

t

s-
MetaData ::= OCD* Designate*

OCD ::= AD+ Icon ?
AD ::= Option*

Designate ::= Object
Object ::= Attribute *

Attribute ::= Value *

The different elements are described in Table 105.1.

Table 105.1 XML Schema for Meta Type resources
Attribute Deflt Type Method Description

MetaData Top Element

local ization str ing Points to the Properties file that can
localize this XML. See Localization on
page 62 of the Core book.

OCD Object Class Definition

name <> str ing getName() A human readable name that can be
localized.

descr iption getDescript ion() A human readable description of the
Object Class Definition that can be
localized.

id <> get ID() A unique id, cannot be localized.

Designate An association between one PID and a
Object Class Definition. This element
designates a PID to be of a certain type.

pid <> str ing The PID that is associated with an OCD
This can be a reference to a factory or
singleton configuration object. See Us
of the Designate Element on page 128.

factoryPid str ing If the factoryPid attribute is set, this
Designate element defines a factory
configuration for the given factory, if i
is not set or empty, it designates a sin-
gleton configuration. See Use of the De
ignate Element on page 128.
OSGi Service Platform Release 4 125-502

Using the Meta Type Resources Metatype Service Specification Version 1.1

ts
-
e
ta
n

.
e

e

st

,

s.

-

-

ts

bundle str ing Location of the bundle that implemen
the PID. This binds the PID to the bun
dle. I.e. no other bundle using the sam
PID may use this designation. In a Me
Type resource this field may be set to a
wildcard (\u002A, "*") to indicate the
bundle where the resource comes from
This is an optional attribute but can b
mandatory in certain usage schemes,
like for example the Autoconf Resourc
Processor.

optional fa lse boolean If true , then this Designate element is
optional, errors during processing mu
be ignored.

merge false boolean If the PID refers to an existing variable
then merge the properties with the
existing properties if this attribute is
true . Otherwise, replace the propertie

AD Attribute Definition

name str ing getName() A localizable name for the Attribute
Definition. descr ipt ion

description str ing getDescript ion() A localizable description for the
Attribute Definition.

id get ID() The unique ID of the Attribute Defini
tion.

type str ing getType() The type of an attribute is an enumera
tion of the different scalar types. The
string is mapped to one of the constan
on the AttributeDefinition interface.
Valid values, which are defined in the
Scalar type, are:

String ↔ STRING
Long ↔ LONG
Double ↔ DOUBLE
Float ↔ FLOAT
Integer ↔ INTEGER
Byte ↔ BYTE
Char ↔ CHARACTER
Boolean ↔ BOOLEAN
Short ↔ SHORT

card inal ity 0 getCardina li ty() The number of elements an instance
can take. Positive numbers describe an
array ([]) and negative numbers
describe a Vector object.

Table 105.1 XML Schema for Meta Type resources
Attribute Deflt Type Method Description
126-502 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 Using the Meta Type Resources

st

y

If

]

f-

e
 a

s
t)

s
min str ing val idate(Str ing) A validation value. This value is not
directly available from the
Attr ibuteDefin it ion interface. How-
ever, the va lidate(Str ing) method mu
verify this. The semantics of this field
depend on the type of this Attribute
Definition.

max str ing val idate(Str ing) A validation value. Similar to the min
field.

default str ing getDefaultValue() The default value. A default is an arra
of Str ing objects. The XML attribute
must contain a comma delimited list.
the comma must be represented, it
must be escaped with a back slash (’\’
\u005c). A back slash can be included
with two backslashes. White spaces
around the command and after/before
an XML element must be ignored. For
example:

dflt="a\,b,b\,c, c\\,d"
=> ["a,b", "b,c", "c\", "d"

required true boolean Required attributes

Option One option label/value for the options
in an AD .

label <> str ing getOptionLabels() The label

va lue <> str ing getOptionValues() The value

Icon An icon definition.

resource <> str ing get Icon(int) The resource is a URL. The base URL is
assumed to be the XML file with the de
inition. I.e. if the XML is a resource in
the JAR file, then this URL can referenc
another resource in that JAR file using
relative URL.

s ize <> str ing get Icon(int) The number of pixels of the icon, map
to the size parameter of the getIcon(in
method.

Object A definition of an instance.

ocdref <> str ing A reference to the id attribute of an
OCD element. I.e. this attribute define
the OCD type of this object.

Attr ibute A value for an attribute of an object.

adref <> str ing A reference to the id of the AD in the
OCD as referenced by the parent
Object .

Table 105.1 XML Schema for Meta Type resources
Attribute Deflt Type Method Description
OSGi Service Platform Release 4 127-502

Using the Meta Type Resources Metatype Service Specification Version 1.1

d

l t

105.6.2 Use of the Designate Element
For the MetaType Service, the Designate definition is used to declare the
available PIDs and factory PIDs; the Attribute elements are never used by
the MetaType service.

The getPids() method returns an array of PIDs that were specified in the pid
attribute of the Object elements. The getFactoryPids() method returns an
array of the factoryPid attributes. For factories, the related pid attribute is
ignored because all instances of a factory must share the same meta type.

The following example shows a metatype reference to a singleton configu-
ration and a factory configuration.

<Designate pid="com.acme.designate.1">
<Object ocdref="com.acme.designate"./>

</Designate>
<Designate factoryPid="com.acme.designate.factory"

bundle="*">
<Object ocdref="com.acme.designate"/>

</Designate>

Other schemes can embed the Object element in the Designate element to
define actual instances for the Configuration Admin service. In that case the
pid attribute must be used together with the factoryPid attribute. However,
in that case an aliasing model is required because the Configuration Admin
service does not allow the creator to choose the Conf igurat ion object’s PID.

105.6.3 Example Meta Data File
This example defines a meta type file for a Person record, based on ISO
attribute types. The ids that are used are derived from ISO attributes.

<?xml version="1.0" encoding="UTF-8"?>
<MetaData

xmlns=
"http://www.osgi.org/xmlns/metatype/v1.0.0"

 localization="person">
 <OCD name="%person" id="2.5.6.6"

description="%Person Record">
 <AD name="%sex" id="2.5.4.12" type="Integer">
 <Option label="%male" value="1"/>
 <Option label="%Female" value="0"/>

content str ing The content of the attributes. If this is
an array, the content must be separate
by commas (’,’ \u002C). Commas must
be escaped as described at the defau lt
attribute of the AD element. See defau
on page 127.

Value Holds a single value. This element can
be repeated multiple times under an
Attribute

Table 105.1 XML Schema for Meta Type resources
Attribute Deflt Type Method Description
128-502 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 Using the Meta Type Resources
 </AD>
 <AD name="%sn" id="2.5.4.4" type="String"/>
 <AD name="%cn" id="2.5.4.3" type="String"/>
 <AD name="%seeAlso" id="2.5.4.34" type="String"
 cardinality="8" default="http://www.google.com,

http://www.yahoo.com"/>
 <AD name="%telNumber" id="2.5.4.20" type="String"/>
 </OCD>

 <Designate pid="com.acme.addressbook">
 <Object ocdref="2.5.6.6"/>
 </Designate>
</MetaData>

Translations for this file, as indicated by the local ization attribute must be
stored in the OSGI-INF/l10n directory (e.g. OSGI-INF/l10n/
person_du_NL.propert ies). The default localization root for the properties
is OSGi-INF/bundle , but can be overridden by the Manifest localization
Bundle-Localization header). The property files have the root name of
person . The Dutch, French and English translations could look like:

person_du_NL.properties:
person=Persoon
person\ record=Persoons beschrijving
cn=Naam
sn=Voornaam
seeAlso=Zie ook
telNumber=Tel. Nummer
sex=Geslacht
male=Mannelijk
female=Vrouwelijk

person_fr.properties
person=Personne
person\ record=Description de la personne
cn=Nom
sn=Surnom
seeAlso=Reference
telNumber=Tel.
sex=Sexe
male=Homme
female=Femme

person_en_US.properties
person=Person
person\ record=Person Record
cn=Name
sn=Sur Name
seeAlso=See Also
telNumber=Tel.
sex=Sex
male=Male
female=Female
OSGi Service Platform Release 4 129-502

Object Metatype Service Specification Version 1.1
105.7 Object
The OCD element can be used to describe the possible contents of a
Dict ionary object. In this case, the attribute name is the key. The Object ele-
ment can be used to assign a value to a Dictionary object.

For example:

<Designate pid="com.acme.b">
 <Object ocdref="b">
 <Attribute adref="foo" content="Zaphod Beeblebrox"/>
 <Attribute adref="bar">
 <Value>1</Value>
 <Value>2</Value>
 <Value>3</Value>
 <Value>4</Value>
 <Value>5</Value>
 </Attribute>
 </Object>
 </Designate>

105.8 XML Schema
<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.osgi.org/xmlns/metatype/v1.0.0"
xmlns:metatype="http://www.osgi.org/xmlns/metatype/v1.0.0">

<complexType name="MetaData">
<sequence>

<element name="OCD" type="metatype:OCD" minOccurs="0"
maxOccurs="unbounded" />

<element name="Designate" type="metatype:Designate"
minOccurs="0" maxOccurs="unbounded" />

</sequence>
<attribute name="localization" type="string" use="optional" />

</complexType>

<complexType name="OCD">
<sequence>

<element name="AD" type="metatype:AD" minOccurs="1"
maxOccurs="unbounded" />

<element name="Icon" type="metatype:Icon" minOccurs="0"
maxOccurs="1" />

</sequence>
<attribute name="name" type="string" use="required" />
<attribute name="description" type="string" use="optional" />
<attribute name="id" type="string" use="required" />

</complexType>

<complexType name="AD">
<sequence>

<element name="Option" type="metatype:Option" minOccurs="0"
maxOccurs="unbounded" />

</sequence>
<attribute name="name" type="string" use="optional" />
<attribute name="description" type="string" use="optional" />
<attribute name="id" type="string" use="required" />
<attribute name="type" type="metatype:Scalar" use="required" />
<attribute name="cardinality" type="int" use="optional"

default="0" />
<attribute name="min" type="string" use="optional" />
<attribute name="max" type="string" use="optional" />
<attribute name="default" type="string" use="optional" />
130-502 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 Limitations
<attribute name="required" type="boolean" use="optional"
default="true" />

</complexType>

<complexType name="Object">
<sequence>

<element name="Attribute" type="metatype:Attribute"
minOccurs="0" maxOccurs="unbounded" />

</sequence>
<attribute name="ocdref" type="string" use="required" />

</complexType>

<complexType name="Attribute">
<sequence>

<element name="Value" type="string" minOccurs="0"
maxOccurs="unbounded" />

</sequence>
<attribute name="adref" type="string" use="required" />
<attribute name="content" type="string" use="optional" />

</complexType>

<complexType name="Designate">
<sequence>

<element name="Object" type="metatype:Object" minOccurs="1"
maxOccurs="1" />

</sequence>
<attribute name="pid" type="string" use="required" />
<attribute name="factoryPid" type="string" use="optional" />
<attribute name="bundle" type="string" use="optional" />
<attribute name="optional" type="boolean" default="false"

use="optional" />
<attribute name="merge" type="boolean" default="false"

use="optional" />
</complexType>

<simpleType name="Scalar">
<restriction base="string">

<enumeration value="String" />
<enumeration value="Long" />
<enumeration value="Double" />
<enumeration value="Float" />
<enumeration value="Integer" />
<enumeration value="Byte" />
<enumeration value="Char" />
<enumeration value="Boolean" />
<enumeration value="Short" />

</restriction>
</simpleType>

<complexType name="Option">
<attribute name="label" type="string" use="required" />
<attribute name="value" type="string" use="required" />

</complexType>

<complexType name="Icon">
<attribute name="resource" type="string" use="required" />
<attribute name="size" type="positiveInteger" use="required" />

</complexType>

<element name="MetaData" type="metatype:MetaData" />
</schema>

105.9 Limitations
The OSGi MetaType specification is intended to be used for simple applica-
tions. It does not, therefore, support recursive data types, mixed types in
arrays/vectors, or nested arrays/vectors.
OSGi Service Platform Release 4 131-502

Related Standards Metatype Service Specification Version 1.1
105.10 Related Standards
One of the primary goals of this specification is to make metatype informa-
tion available at run-time with minimal overhead. Many related standards
are applicable to metatypes; except for Java beans, however, all other
metatype standards are based on document formats (e.g. XML). In the OSGi
Service Platform, document format standards are deemed unsuitable due to
the overhead required in the execution environment (they require a parser
during run-time).

Another consideration is the applicability of these standards. Most of these
standards were developed for management systems on platforms where
resources are not necessarily a concern. In this case, a metatype standard is
normally used to describe the data structures needed to control some other
computer via a network. This other computer, however, does not require
the metatype information as it is implementing this information.

In some traditional cases, a management system uses the metatype informa-
tion to control objects in an OSGi Service Platform. Therefore, the concepts
and the syntax of the metatype information must be mappable to these pop-
ular standards. Clearly, then, these standards must be able to describe
objects in an OSGi Service Platform. This ability is usually not a problem,
because the metatype languages used by current management systems are
very powerful.

105.11 Security Considerations
Special security issues are not applicable for this specification.

105.12 Changes
The Metatype specification is significantly expanded by now actually pro-
viding a service. The following additions were made.

• The addition of a service that gathers Metatype information from
bundles through an XML file as well as the original MetatypeProvider
interface based on Managed Service and Managed Service Factory ser-
vices. See Meta Type Service on page 121.

• A standardized XML schema to define Metatypes as well as related
instances. See XML Schema on page 130.

105.13 org.osgi.service.metatype
Metatype Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.metatype; version=1.1
132-502 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 org.osgi.service.metatype
105.13.1 Summary
• AttributeDefinition - An interface to describe an attribute. [p.133]
• MetaTypeInformation - A MetaType Information object is created by the

MetaTypeService to return meta type information for a specific bundle.
[p.136]

• MetaTypeProvider - Provides access to metatypes. [p.136]
• MetaTypeService - The MetaType Service can be used to obtain meta

type information for a bundle. [p.137]
• ObjectClassDefinition - Description for the data type information of an

objectclass. [p.137]
AttributeDefinition

105.13.2 public interface AttributeDefinition
An interface to describe an attribute.

An AttributeDefinition object defines a description of the data type of a
property/attribute.
BIGDECIMAL

105.13.2.1 public static final int BIGDECIMAL = 10

The BIGDECIMAL (10) type. Attributes of this type should be stored as Big-
Decimal, Vector with BigDecimal or BigDecimal[] objects depending on get-
Cardinality().

Deprecated As of 1.1.
BIGINTEGER

105.13.2.2 public static final int BIGINTEGER = 9

The BIGINTEGER (9) type. Attributes of this type should be stored as BigIn-
teger, Vector with BigInteger or BigInteger[] objects, depending on the get-
Cardinality() value.

Deprecated As of 1.1.
BOOLEAN

105.13.2.3 public static final int BOOLEAN = 11

The BOOLEAN (11) type. Attributes of this type should be stored as Boolean,
Vector with Boolean or boolean[] objects depending on getCardinality().
BYTE

105.13.2.4 public static final int BYTE = 6

The BYTE (6) type. Attributes of this type should be stored as Byte, Vector
with Byte or byte[] objects, depending on the getCardinality() value.
CHARACTER

105.13.2.5 public static final int CHARACTER = 5

The CHARACTER (5) type. Attributes of this type should be stored as Char-
acter, Vector with Character or char[] objects, depending on the getCardinal-
ity() value.
DOUBLE

105.13.2.6 public static final int DOUBLE = 7

The DOUBLE (7) type. Attributes of this type should be stored as Double,
Vector with Double or double[] objects, depending on the getCardinality()
value.
FLOAT
OSGi Service Platform Release 4 133-502

org.osgi.service.metatype Metatype Service Specification Version 1.1
105.13.2.7 public static final int FLOAT = 8

The FLOAT (8) type. Attributes of this type should be stored as Float, Vector
with Float or float[] objects, depending on the getCardinality() value.
INTEGER

105.13.2.8 public static final int INTEGER = 3

The INTEGER (3) type. Attributes of this type should be stored as Integer,
Vector with Integer or int[] objects, depending on the getCardinality() value.
LONG

105.13.2.9 public static final int LONG = 2

The LONG (2) type. Attributes of this type should be stored as Long, Vector
with Long or long[] objects, depending on the getCardinality() value.
SHORT

105.13.2.10 public static final int SHORT = 4

The SHORT (4) type. Attributes of this type should be stored as Short, Vector
with Short or short[] objects, depending on the getCardinality() value.
STRING

105.13.2.11 public static final int STRING = 1

The STRING (1) type.

Attributes of this type should be stored as String, Vector with String or
String[] objects, depending on the getCardinality() value.
getCardinality()

105.13.2.12 public int getCardinality()

Return the cardinality of this attribute. The OSGi environment handles
multi valued attributes in arrays ([]) or in Vector objects. The return value is
defined as follows:

x = Integer.MIN_VALUE no limit, but use Vector
x < 0 -x = max occurrences, store in

Vector
x > 0 x = max occurrences, store in

array []
x = Integer.MAX_VALUE no limit, but use array []
x = 0 1 occurrence required

Returns The cardinality of this attribute.
getDefaultValue()

105.13.2.13 public String[] getDefaultValue()

Return a default for this attribute. The object must be of the appropriate
type as defined by the cardinality and getType(). The return type is a list of
String objects that can be converted to the appropriate type. The cardinality
of the return array must follow the absolute cardinality of this type. E.g. if
the cardinality = 0, the array must contain 1 element. If the cardinality is 1, it
must contain 0 or 1 elements. If it is -5, it must contain from 0 to max 5 ele-
ments. Note that the special case of a 0 cardinality, meaning a single value,
does not allow arrays or vectors of 0 elements.

Returns Return a default value or null if no default exists.
getDescription()
134-502 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 org.osgi.service.metatype
105.13.2.14 public String getDescription()

Return a description of this attribute. The description may be localized and
must describe the semantics of this type and any constraints.

Returns The localized description of the definition.
getID()

105.13.2.15 public String getID()

Unique identity for this attribute. Attributes share a global namespace in
the registry. E.g. an attribute cn or commonName must always be a String
and the semantics are always a name of some object. They share this aspect
with LDAP/X.500 attributes. In these standards the OSI Object Identifier
(OID) is used to uniquely identify an attribute. If such an OID exists, (which
can be requested at several standard organisations and many companies
already have a node in the tree) it can be returned here. Otherwise, a unique
id should be returned which can be a Java class name (reverse domain
name) or generated with a GUID algorithm. Note that all LDAP defined
attributes already have an OID. It is strongly advised to define the attributes
from existing LDAP schemes which will give the OID. Many such schemes
exist ranging from postal addresses to DHCP parameters.

Returns The id or oid
getName()

105.13.2.16 public String getName()

Get the name of the attribute. This name may be localized.

Returns The localized name of the definition.
getOptionLabels()

105.13.2.17 public String[] getOptionLabels()

Return a list of labels of option values.

The purpose of this method is to allow menus with localized labels. It is
associated with getOptionValues. The labels returned here are ordered in
the same way as the values in that method.

If the function returns null, there are no option labels available.

This list must be in the same sequence as the getOptionValues() method. I.e.
for each index i in getOptionLabels, i in getOptionValues() should be the
associated value.

For example, if an attribute can have the value male, female, unknown, this
list can return (for dutch) new String[] { “Man”, “Vrouw”, “Onbekend” }.

Returns A list values
getOptionValues()

105.13.2.18 public String[] getOptionValues()

Return a list of option values that this attribute can take.

If the function returns null, there are no option values available.

Each value must be acceptable to validate() (return “”) and must be a String
object that can be converted to the data type defined by getType() for this
attribute.

This list must be in the same sequence as getOptionLabels(). I.e. for each
index i in getOptionValues, i in getOptionLabels() should be the label.

For example, if an attribute can have the value male, female, unknown, this
list can return new String[] { “male”, “female”, “unknown” }.
OSGi Service Platform Release 4 135-502

org.osgi.service.metatype Metatype Service Specification Version 1.1
Returns A list values
getType()

105.13.2.19 public int getType()

Return the type for this attribute.

Defined in the following constants which map to the appropriate Java type.
STRING,LONG,INTEGER, CHAR,BYTE,DOUBLE,FLOAT, BOOLEAN.

Returns The type for this attribute.
validate(String)

105.13.2.20 public String validate(String value)

value The value before turning it into the basic data type

Validate an attribute in String form. An attribute might be further con-
strained in value. This method will attempt to validate the attribute accord-
ing to these constraints. It can return three different values:

null No validation present
“” No problems detected
“...” A localized description of why the value is

wrong

Returns null, “”, or another string
MetaTypeInformation

105.13.3 public interface MetaTypeInformation
extends MetaTypeProvider
A MetaType Information object is created by the MetaTypeService to return
meta type information for a specific bundle.

Since 1.1
getBundle()

105.13.3.1 public Bundle getBundle()

Return the bundle for which this object provides meta type information.

Returns Bundle for which this object provides meta type information.
getFactoryPids()

105.13.3.2 public String[] getFactoryPids()

Return the Factory PIDs (for ManagedServiceFactories) for which Object-
ClassDefinition information is available.

Returns Array of Factory PIDs.
getPids()

105.13.3.3 public String[] getPids()

Return the PIDs (for ManagedServices) for which ObjectClassDefinition
information is available.

Returns Array of PIDs.
MetaTypeProvider

105.13.4 public interface MetaTypeProvider
Provides access to metatypes.
getLocales()

105.13.4.1 public String[] getLocales()

Return a list of available locales. The results must be names that consists of
language [_ country [_ variation]] as is customary in the Locale class.
136-502 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 org.osgi.service.metatype
Returns An array of locale strings or null if there is no locale specific localization can
be found.
getObjectClassDefinition(String,String)

105.13.4.2 public ObjectClassDefinition getObjectClassDefinition(String id, String
locale)

id The ID of the requested object class. This can be a pid or factory pid returned
by getPids or getFactoryPids.

locale The locale of the definition or null for default locale.

Returns an object class definition for the specified id localized to the speci-
fied locale.

The locale parameter must be a name that consists of language[“_” country[
“_” variation]] as is customary in the Locale class. This Locale class is not
used because certain profiles do not contain it.

Returns A ObjectClassDefinition object.

Throws IllegalArgumentException – If the id or locale arguments are not valid
MetaTypeService

105.13.5 public interface MetaTypeService
The MetaType Service can be used to obtain meta type information for a
bundle. The MetaType Service will examine the specified bundle for meta
type documents to create the returned MetaTypeInformation object.

If the specified bundle does not contain any meta type documents, then a
MetaTypeInformation object will be returned that wrappers any Managed-
Service or ManagedServiceFactory services registered by the specified bun-
dle that implement MetaTypeProvider. Thus the MetaType Service can be
used to retrieve meta type information for bundles which contain a meta
type documents or which provide their own MetaTypeProvider objects.

Since 1.1
METATYPE_DOCUMENTS_LOCATION

105.13.5.1 public static final String METATYPE_DOCUMENTS_LOCATION = “OSGI-
INF/metatype”

Location of meta type documents. The MetaType Service will process each
entry in the meta type documents directory.
getMetaTypeInformation(Bundle)

105.13.5.2 public MetaTypeInformation getMetaTypeInformation(Bundle bundle)

bundle The bundle for which meta type information is requested.

Return the MetaType information for the specified bundle.

Returns A MetaTypeInformation object for the specified bundle.
ObjectClassDefinition

105.13.6 public interface ObjectClassDefinition
Description for the data type information of an objectclass.
ALL

105.13.6.1 public static final int ALL = -1

Argument for getAttributeDefinitions(int).

ALL indicates that all the definitions are returned. The value is -1.
OPTIONAL
OSGi Service Platform Release 4 137-502

org.osgi.service.metatype Metatype Service Specification Version 1.1
105.13.6.2 public static final int OPTIONAL = 2

Argument for getAttributeDefinitions(int).

OPTIONAL indicates that only the optional definitions are returned. The
value is 2.
REQUIRED

105.13.6.3 public static final int REQUIRED = 1

Argument for getAttributeDefinitions(int).

REQUIRED indicates that only the required definitions are returned. The
value is 1.
getAttributeDefinitions(int)

105.13.6.4 public AttributeDefinition[] getAttributeDefinitions(int filter)

filter ALL,REQUIRED,OPTIONAL

Return the attribute definitions for this object class.

Return a set of attributes. The filter parameter can distinguish between ALL,
REQUIRED or the OPTIONAL attributes.

Returns An array of attribute definitions or null if no attributes are selected
getDescription()

105.13.6.5 public String getDescription()

Return a description of this object class. The description may be localized.

Returns The description of this object class.
getIcon(int)

105.13.6.6 public InputStream getIcon(int size) throws IOException

size Requested size of an icon, e.g. a 16x16 pixels icon then size = 16

Return an InputStream object that can be used to create an icon from.

Indicate the size and return an InputStream object containing an icon. The
returned icon maybe larger or smaller than the indicated size.

The icon may depend on the localization.

Returns An InputStream representing an icon or null

Throws IOException – If the InputStream cannot be returned.
getID()

105.13.6.7 public String getID()

Return the id of this object class.

ObjectDefintion objects share a global namespace in the registry. They share
this aspect with LDAP/X.500 attributes. In these standards the OSI Object
Identifier (OID) is used to uniquely identify object classes. If such an OID
exists, (which can be requested at several standard organisations and many
companies already have a node in the tree) it can be returned here. Other-
wise, a unique id should be returned which can be a java class name (reverse
domain name) or generated with a GUID algorithm. Note that all LDAP
defined object classes already have an OID associated. It is strongly advised
to define the object classes from existing LDAP schemes which will give the
OID for free. Many such schemes exist ranging from postal addresses to
DHCP parameters.

Returns The id of this object class.
getName()
138-502 OSGi Service Platform Release 4

Metatype Service Specification Version 1.1 References
105.13.6.8 public String getName()

Return the name of this object class. The name may be localized.

Returns The name of this object class.

105.14 References
[1] LDAP.

Available at http://directory.google.com/Top/Computers/Software/Internet/
Servers/Directory/LDAP

[2] Understanding and Deploying LDAP Directory services
Timothy Howes et. al. ISBN 1-57870-070-1, MacMillan Technical
publishing.
OSGi Service Platform Release 4 139-502

References Metatype Service Specification Version 1.1
140-502 OSGi Service Platform Release 4

IO Connector Service Specification Version 1.0 Introduction
109 IO Connector Service
Specification
Version 1.0

109.1 Introduction
Communication is at the heart of OSGi Service Platform functionality.
Therefore, a flexible and extendable communication API is needed: one that
can handle all the complications that arise out of the Reference Architec-
ture. These obstacles could include different communication protocols
based on different networks, firewalls, intermittent connectivity, and oth-
ers.

Therefore, this IO Connector Service specification adopts the [1] Java 2 Micro
Edition (J2ME) javax.microedit ion. io packages as a basic communications
infrastructure. In J2ME, this API is also called the Connector framework. A
key aspect of this framework is that the connection is configured by a single
string, the URI.

In J2ME, the Connector framework can be extended by the vendor of the
Virtual Machine, but cannot be extended at run-time by other code. There-
fore, this specification defines a service that adopts the flexible model of the
Connector framework, but allows bundles to extend the Connector Services
into different communication domains.

109.1.1 Essentials
• Abstract – Provide an intermediate layer that abstracts the actual pro-

tocol and devices from the bundle using it.
• Extendable – Allow third-party bundles to extend the system with new

protocols and devices.
• Layered – Allow a protocol to be layered on top of lower layer protocols

or devices.
• Configurable – Allow the selection of an actual protocol/device by means

of configuration data.
• Compatibility – Be compatible with existing standards.

109.1.2 Entities
• Connector Service – The service that performs the same function–-creating

connections from different providers–-as the static methods in the Con-
nector framework of javax .microediton. io .

• Connection Factory – A service that extends the Connector service with
more schemes.

• Scheme – A protocol or device that is supported in the Connector
framework.
OSGi Service Platform Release 4 141-502

The Connector Framework IO Connector Service Specification Version 1.0
Figure 109.1 Class Diagram, org.osgi.service.io (jmi is javax.microedition.io)

109.2 The Connector Framework
The [1] Java 2 Micro Edition specification introduces a package for communi-
cating with back-end systems. The requirements for this package are very
similar to the following OSGi requirements:

• Small footprint
• Allows many different implementations simultaneously
• Simple to use
• Simple configuration

The key design goal of the Connector framework is to allow an application
to use a communication mechanism/protocol without understanding
implementation details.

An application passes a Uniform Resource Identifier (URI) to the
java.microedit ion . io .Connector class, and receives an object implementing
one or more Connection interfaces. The java.microed it ion. io.Connector
class uses the scheme in the URI to locate the appropriate Connection Fac-
tory service. The remainder of the URI may contain parameters that are used
by the Connection Factory service to establish the connection; for example,
they may contain the baud rate for a serial connection. Some examples:

<<interface>>
Connector
Service

jmi.Connector

<<interface>>
Connection
Factory

<<interface>>
jmi.Connection

<<interface>>
jmi.Input
Connection

<<interface>>
jmi.Output
Connection

<<interface>>
jmi.Stream
Connection

<<interface>>
jmi.Content
Connection

<<interface>>
jmi.Http
Connection

<<interface>>
jmi.Datagram
Connection

<<interface>>
jmi.StreamConn
ec-tionNotifier

Connector impl.

Impl. of scheme
providers

Impl. of IO user

provides io scheme
0..*

1

connections

0..*

0,1

uses Impl. of
Connection

factory

10..*

javax.microedition.io

used as default

1

0,1
142-502 OSGi Service Platform Release 4

IO Connector Service Specification Version 1.0 The Connector Framework
• sms:/ /+46705950899;expiry=24h;reply=yes;type=9
• datagram:// :53
• socket://www.acme.com:5302
• comm://COM1;baudrate=9600;databits=9
• f i le:c :/autoexec .bat

The javax .microedit ion. io API itself does not prescribe any schemes. It is up
to the implementer of this package to include a number of extensions that
provide the schemes. The javax .microedit ion. io.Connector class dispatches
a request to a class which provides an implementation of a Connection
interface. J2ME does not specify how this dispatching takes place, but
implementations usually offer a proprietary mechanism to connect user
defined classes that can provide new schemes.

The Connector framework defines a taxonomy of communication mecha-
nisms with a number of interfaces. For example, a
javax .microedit ion. io. InputConnection interface indicates that the
connection supports the input stream semantics, such as an I/O port. A
javax .microedit ion. io.DatagramConnect ion interface indicates that com-
munication should take place with messages.

When a javax .microedit ion. io.Connector .open method is called, it returns
a javax .microedit ion . io.Connection object. The interfaces implemented by
this object define the type of the communication session. The following
interfaces may be implemented:

• HttpConnection – A javax.microed it ion. io.ContentConnection with spe-
cific HTTP support.

• DatagramConnection – A connection that can be used to send and receive
datagrams.

• OutputConnection – A connection that can be used for streaming output.
• InputConnection – A connection that can be used for streaming input.
• StreamConnection – A connection that is both input and output.
• StreamConnectionNotifier – Can be used to wait for incoming stream

connection requests.
• ContentConnection – A javax .microedit ion. io.StreamConnection that

provides information about the type, encoding, and length of the infor-
mation.

Bundles using this approach must indicate to the Operator what kind of
interfaces they expect to receive. The operator must then configure the bun-
dle with a URI that contains the scheme and appropriate options that match
the bundle’s expectations. Well-written bundles are flexible enough to com-
municate with any of the types of javax .microedit ion . io .Connection inter-
faces they have specified. For example, a bundle should support
javax .microedit ion. io.StreamConnection as well as
javax .microedit ion. io.DatagramConnect ion objects in the appropriate
direction (input or output).

The following code example shows a bundle that sends an alarm message
with the help of the javax.microed it ion. io.Connector framework:

public class Alarm {
String uri;
public Alarm(String uri) { this.uri = uri; }
private void send(byte[] msg) {
OSGi Service Platform Release 4 143-502

Connector Service IO Connector Service Specification Version 1.0
while (true) try {
Connection connection = Connector.open(uri);
DataOutputStream dout = null;

 if (connection instanceof OutputConnection) {
dout = ((OutputConnection)

connection).openDataOutputStream();
 dout.write(msg);
 }
 else if (connection instanceof DatagramConnection) {
 DatagramConnection dgc =

(DatagramConnection) connection;
 Datagram datagram = dgc.newDatagram(

msg, msg.length);
 dgc.send(datagram);
 } else {
 error("No configuration for alarm");
 return;
 }
 connection.close();
 } catch(Exception e) { ... }
 }
}

109.3 Connector Service
The javax.microed it ion. io.Connector framework matches the require-
ments for OSGi applications very well. The actual creation of connections,
however, is handled through static methods in the
javax .microedit ion. io.Connector class. This approach does not mesh well
with the OSGi service registry and dynamic life-cycle management.

This specification therefore introduces the Connector Service. The methods
of the ConnectorService interface have the same signatures as the static
methods of the javax .microedit ion . io .Connector class.

Each javax .microedit ion. io.Connection object returned by a Connector Ser-
vice must implement interfaces from the javax.microed it ion. io package.
Implementations must strictly follow the semantics that are associated
with these interfaces.

The Connector Service must provide all the schemes provided by the
exporter of the javax .microed it ion. io package. The Connection Factory ser-
vices must have priority over schemes implemented in the Java run-time
environment. For example, if a Connection Factory provides the http
scheme and a built-in implementation exists, then the Connector Service
must use the Connection Factory service with the http scheme.

Bundles that want to use the Connector Service should first obtain a
ConnectorServ ice service object. This object contains open methods that
should be called to get a new javax .microed it ion. io.Connect ion object.
144-502 OSGi Service Platform Release 4

IO Connector Service Specification Version 1.0 Providing New Schemes
109.4 Providing New Schemes
The Connector Service must be able to be extended with the Connection
Factory service. Bundles that can provide new schemes must register a
ConnectionFactory service object.

The Connector Service must listen for registrations of new
ConnectionFactory service objects and make the supplied schemes avail-
able to bundles that create connections.

Implementing a Connection Factory service requires implementing the fol-
lowing method:

• createConnection(Str ing, int,boolean) – Creates a new connection
object from the given URI.

The Connection Factory service must be registered with the IO_SCHEME
property to indicate the provided scheme to the Connector Service. The
value of this property must be a String[] object.

If multiple Connection Factory services register with the same scheme, the
Connector Service should select the Connection Factory service with the
highest value for the service .ranking service registration property, or if
more than one Connection Factory service has the highest value, the Con-
nection Factory service with the lowest service. id is selected.

The following example shows how a Connection Factory service may be
implemented. The example will return a
javax .microedit ion. io. InputConnection object that returns the value of the
URI after removing the scheme identifier.

public class ConnectionFactoryImpl
implements BundleActivator, ConnectionFactory {

public void start(BundleContext context) {
Hashtable properties = new Hashtable();
properties.put(IO_SCHEME,

new String[] { "data" });
context.registerService(

ConnectorService.class.getName(),
this, properties);

}
public void stop(BundleContext context) {}

public Connection createConnection(
String uri, int mode, boolean timeouts) {
return new DataConnection(uri);

}
}

class DataConnection
implements javax.microedition.io.InputConnection {
String uri;
DataConnection(String uri) {this.uri = uri;}
public DataInputStream openDataInputStream()

throws IOException {
OSGi Service Platform Release 4 145-502

Execution Environment IO Connector Service Specification Version 1.0
return new DataInputStream(openInputStream());
}

public InputStream openInputStream() throws IOException {
byte [] buf = uri.getBytes();
return new ByteArrayInputStream(buf,5,buf.length-5);

}
public void close() {}

}

109.4.1 Orphaned Connection Objects
When a Connection Factory service is unregistered, it must close all
Connection objects that are still open. Closing these Connection objects
should make these objects unusable, and they should subsequently throw
an IOExcept ion when used.

Bundles should not unnecessarily hang onto objects they retrieved from ser-
vices. Implementations of Connection Factory services should program
defensively and ensure that resource allocation is minimized when a
Connection object is closed.

109.5 Execution Environment
The javax.microed it ion. io package is available in J2ME configurations/pro-
files, but is not present in J2SE, J2EE, and the OSGi minimum execution
requirements.

Implementations of the Connector Service that are targeted for all environ-
ments should carry their own implementation of the javax .microedit ion. io
package and export it.

109.6 Security
The OSGi Connector Service is a key service available in the Service Plat-
form. A malicious bundle which provides this service can spoof any com-
munication. Therefore, it is paramount that the
ServicePermission[ConnectorService , REGISTER] is given only to a trusted
bundle. ServicePermission[ConnectorService ,GET] may be handed to bun-
dles that are allowed to communicate to the external world.

ServicePermission[Connect ionFactory, REGISTER] should also be
restricted to trusted bundles because they can implement specific protocols
or access devices. ServicePermission[ConnectionFactory,GET] should be
limited to trusted bundles that implement the Connector Service.

Implementations of Connection Factory services must perform all I/O oper-
ations within a privileged region. For example, an implementation of the
sms: scheme must have permission to access the mobile phone, and should
not require the bundle that opened the connection to have this permission.
Normally, the operations need to be implemented in a doPr iv i leged method
or in a separate thread.
146-502 OSGi Service Platform Release 4

IO Connector Service Specification Version 1.0 org.osgi.service.io
If a specific Connection Factory service needs more detailed permissions
than provided by the OSGi or Java 2, it may create a new specific Permission
sub-class for its purpose.

109.7 org.osgi.service.io
IO Connector Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.io; version=1.0, javax.micro-
edition.io

109.7.1 Summary
• ConnectionFactory - A Connection Factory service is called by the imple-

mentation of the Connector Service to create javax.microedition.io.Con-
nection objects which implement the scheme named by IO_SCHEME.
[p.145]

• ConnectorService - The Connector Service should be called to create and
open javax.microedition.io.Connection objects. [p.147]

ConnectionFactory

109.7.2 public interface ConnectionFactory
A Connection Factory service is called by the implementation of the Con-
nector Service to create javax.microedition.io.Connection objects which
implement the scheme named by IO_SCHEME. When a ConnectorSer-
vice.open method is called, the implementation of the Connector Service
will examine the specified name for a scheme. The Connector Service will
then look for a Connection Factory service which is registered with the ser-
vice property IO_SCHEME which matches the scheme. The
createConnection [p.147] method of the selected Connection Factory will
then be called to create the actual Connection object.
IO_SCHEME

109.7.2.1 public static final String IO_SCHEME = “io.scheme”

Service property containing the scheme(s) for which this Connection Fac-
tory can create Connection objects. This property is of type String[].
createConnection(String,int,boolean)

109.7.2.2 public Connection createConnection(String name, int mode, boolean
timeouts) throws IOException

name The full URI passed to the ConnectorService.open method

mode The mode parameter passed to the ConnectorService.open method

timeouts The timeouts parameter passed to the ConnectorService.open method

Create a new Connection object for the specified URI.

Returns A new javax.microedition.io.Connection object.

Throws IOException – If a javax.microedition.io.Connection object can not not be
created.
ConnectorService
OSGi Service Platform Release 4 147-502

org.osgi.service.io IO Connector Service Specification Version 1.0
109.7.3 public interface ConnectorService
The Connector Service should be called to create and open javax.microedi-
tion.io.Connection objects. When an open* method is called, the implemen-
tation of the Connector Service will examine the specified name for a
scheme. The Connector Service will then look for a Connection Factory ser-
vice which is registered with the service property IO_SCHEME which
matches the scheme. The createConnection method of the selected Connec-
tion Factory will then be called to create the actual Connection object.

If more than one Connection Factory service is registered for a particular
scheme, the service with the highest ranking (as specified in its service.rank-
ing property) is called. If there is a tie in ranking, the service with the lowest
service ID (as specified in its service.id property), that is the service that was
registered first, is called. This is the same algorithm used by BundleCon-
text.getServiceReference.
READ

109.7.3.1 public static final int READ = 1

Read access mode.

See Also javax.microedition.io.Connector.READ
READ_WRITE

109.7.3.2 public static final int READ_WRITE = 3

Read/Write access mode.

See Also javax.microedition.io.Connector.READ_WRITE
WRITE

109.7.3.3 public static final int WRITE = 2

Write access mode.

See Also javax.microedition.io.Connector.WRITE
open(String)

109.7.3.4 public Connection open(String name) throws IOException

name The URI for the connection.

Create and open a Connection object for the specified name.

Returns A new javax.microedition.io.Connection object.

Throws IllegalArgumentException – If a parameter is invalid.

javax.microedition.io.ConnectionNotFoundException – If the connec-
tion cannot be found.

IOException – If some other kind of I/O error occurs.

See Also javax.microedition.io.Connector.open(String name)
open(String,int)

109.7.3.5 public Connection open(String name, int mode) throws IOException

name The URI for the connection.

mode The access mode.

Create and open a Connection object for the specified name and access
mode.

Returns A new javax.microedition.io.Connection object.

Throws IllegalArgumentException – If a parameter is invalid.
148-502 OSGi Service Platform Release 4

IO Connector Service Specification Version 1.0 org.osgi.service.io
javax.microedition.io.ConnectionNotFoundException – If the connec-
tion cannot be found.

IOException – If some other kind of I/O error occurs.

See Also javax.microedition.io.Connector.open(String name, int mode)
open(String,int,boolean)

109.7.3.6 public Connection open(String name, int mode, boolean timeouts)
throws IOException

name The URI for the connection.

mode The access mode.

timeouts A flag to indicate that the caller wants timeout exceptions.

Create and open a Connection object for the specified name, access mode
and timeouts.

Returns A new javax.microedition.io.Connection object.

Throws IllegalArgumentException – If a parameter is invalid.

javax.microedition.io.ConnectionNotFoundException – If the connec-
tion cannot be found.

IOException – If some other kind of I/O error occurs.

See Also javax.microedition.io.Connector.open
openDataInputStream(String)

109.7.3.7 public DataInputStream openDataInputStream(String name) throws
IOException

name The URI for the connection.

Create and open a DataInputStream object for the specified name.

Returns A DataInputStream object.

Throws IllegalArgumentException – If a parameter is invalid.

javax.microedition.io.ConnectionNotFoundException – If the connec-
tion cannot be found.

IOException – If some other kind of I/O error occurs.

See Also javax.microedition.io.Connector.openDataInputStream(String
name)
openDataOutputStream(String)

109.7.3.8 public DataOutputStream openDataOutputStream(String name)
throws IOException

name The URI for the connection.

Create and open a DataOutputStream object for the specified name.

Returns A DataOutputStream object.

Throws IllegalArgumentException – If a parameter is invalid.

javax.microedition.io.ConnectionNotFoundException – If the connec-
tion cannot be found.

IOException – If some other kind of I/O error occurs.

See Also javax.microedition.io.Connector.openDataOutputStream(String
name)
openInputStream(String)
OSGi Service Platform Release 4 149-502

References IO Connector Service Specification Version 1.0
109.7.3.9 public InputStream openInputStream(String name) throws IOException

name The URI for the connection.

Create and open an InputStream object for the specified name.

Returns An InputStream object.

Throws IllegalArgumentException – If a parameter is invalid.

javax.microedition.io.ConnectionNotFoundException – If the connec-
tion cannot be found.

IOException – If some other kind of I/O error occurs.

See Also javax.microedition.io.Connector.openInputStream(String name)
openOutputStream(String)

109.7.3.10 public OutputStream openOutputStream(String name) throws
IOException

name The URI for the connection.

Create and open an OutputStream object for the specified name.

Returns An OutputStream object.

Throws IllegalArgumentException – If a parameter is invalid.

javax.microedition.io.ConnectionNotFoundException – If the connec-
tion cannot be found.

IOException – If some other kind of I/O error occurs.

See Also javax.microedition.io.Connector.openOutputStream(String name)

109.8 References
[1] Java 2 Micro Edition

http://java.sun.com/j2me/

[2] javax.microedition.io whitepaper
http://wireless.java.sun.com/midp/chapters/j2mewhite/chap13.pdf

[3] J2ME Foundation Profile
http://www.jcp.org/jsr/detail/46.jsp
150-502 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Introduction
112 Declarative Services
Specification
Version 1.0

112.1 Introduction
The OSGi Framework contains a procedural service model which provides a
publish/find/bind model for using services. This model is elegant and power-
ful, it enables the building of applications out of bundles that communicate
and collaborate using these services.

This specification addresses some of the complications that arise when the
OSGi service model is used for larger systems and wider deployments, such
as:

• Startup Time – The procedural service model requires a bundle to actively
register and acquire its services. This is normally done at startup time,
requiring all present bundles to be initialized with a Bundle Activator. In
larger systems, this quickly results in unacceptably long startup times.

• Memory Footprint – A service registered with the Framework implies that
the implementation, and related classes and objects, are loaded in
memory. If the service is never used, this memory is unnecessarily
occupied. The creation of a class loader may therefore cause significant
overhead.

• Complexity – Service can come and go at any time. This dynamic behavior
makes the service programming model more complex than more tradi-
tional models. This complexity negatively influences the adoption of the
OSGi service model as well as the robustness and reliability of applica-
tions because these applications do not always handle the dynamicity
correctly.

The service component model uses a declarative model for publishing, finding
and binding to OSGi services. This model simplifies the task of authoring
OSGi services by performing the work of registering the service and han-
dling service dependencies. This minimizes the amount of code a program-
mer has to write; it also allows service components to be loaded only when
they are needed. As a result, bundles need not provide a BundleActivator
class to collaborate with others through the service registry.

From a system perspective, the service component model means reduced
startup time and potentially a reduction of the memory footprint. From a
programmer’s point of view the service component model provides a sim-
plified programming model.

The Service Component model makes use of concepts described in [1] Auto-
mating Service Dependency Management in a Service-Oriented Component Model.
OSGi Service Platform Release 4 151-502

Introduction Declarative Services Specification Version 1.0
112.1.1 Essentials
• Backward Compatibility – The service component model must operate

seamlessly with the existing service model.
• Size Constraints – The service component model must not require

memory and performance intensive subsystems. The model must also be
applicable on resource constrained devices.

• Delayed Activation – The service component model must allow delayed
activation of a service component. Delayed activation allows for delayed
class loading and object creation until needed, thereby reducing the
overall memory footprint.

• Simplicity – The programming model for using declarative services must
be very simple and not require the programmer to learn a complicated
API or XML sub-language.

112.1.2 Entities
• Service Component – A service component contains a description that is

interpreted at run time to create and dispose objects depending on the
availability of other services, the need for such an object, and available
configuration data. Such objects can optionally provide a service. This
specification also uses the generic term component to refer to a service
component.

• Component Description – The declaration of a service component. It is con-
tained within an XML document in a bundle.

• Component Properties – A set of properties which can be specified by the
component description, Configuration Admin service and from the com-
ponent factory.

• Component Configuration – A component configuration represents a com-
ponent description parameterized by component properties. It is the
entity that tracks the component dependencies and manages a com-
ponent instance. An activated component configuration has a com-
ponent context.

• Component Instance – An instance of the component implementation
class. A component instance is created when a component configuration
is activated and discarded when the component configuration is deacti-
vated. A component instance is associated with exactly one component
configuration.

• Delayed Component – A component whose component configurations are
activated when their service is requested.

• Immediate Component – A component whose component configurations
are activated immediately upon becoming satisfied.

• Factory Component – A component whose component configurations are
created and activated through the component’s component factory.

• Reference – A specified dependency of a component on a set of target ser-
vices.

• Service Component Runtime (SCR) – The actor that manages the compo-
nents and their life cycle.

• Target Services – The set of services that is defined by the reference
interface and target property filter.

• Bound Services – The set of target services that are bound to a component
configuration.
152-502 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Introduction
Figure 112.1 Service Component Runtime, org.osgi.service.component package

112.1.3 Synopsis
The Service Component Runtime reads component descriptions from
started bundles. These descriptions are in the form of XML documents
which define a set of components for a bundle. A component can refer to a
number of services that must be available before a component configura-
tion becomes satisfied. These dependencies are defined in the descriptions
and the specific target services can be influenced by configuration informa-
tion in the Configuration Admin service. After a component configuration
becomes satisfied, a number of different scenarios can take place depending
on the component type:

• Immediate Component – The component configuration of an immediate
component must be activated immediately after becoming satisfied.
Immediate components may provide a service.

• Delayed Component – When a component configuration of a delayed com-
ponent becomes satisfied, SCR will register the service specified by the
service element without activating the component configuration. If this
service is requested, SCR must activate the component configuration cre-
ating an instance of the component implementation class that will be
returned as the service object. If the servicefactory attribute of the
service element is t rue , then, for each distinct bundle that requests the
service, a different component configuration is created and activated and
a new instance of the component implementation class is returned as
the service object.

• Factory Component – If a component’s description specifies the factory
attribute of the component element, SCR will register a Component
Factory service. This service allows client bundles to create and activate
multiple component configurations and dispose of them. If the com-
ponent’s description also specifies a service element, then as each com-
ponent configuration is activated, SCR will register it as a service.

a Component
Impl

a Service Impl

Service
Component
Runtime

a Servicea Component
Instance

Component
Description

a Component
Confguration

registered service

tracks
dependencies

declares com
ponent

created by

controls 1 0..n

0..n

0..n

references

1..n
1

Configuration
Admin

0..n

1

0..n

1

OSGi Service Platform Release 4 153-502

Components Declarative Services Specification Version 1.0
112.1.4 Readers
• Architects – The chapter, Components on page 154, gives a comprehensive

introduction to the capabilities of the component model. It explains the
model with a number of examples. The section about Component Life
Cycle on page 168 provides some deeper insight in the life cycle of com-
ponents.

• Service Programmers – Service programmers should read Components on
page 154. This chapter should suffice for the most common cases. For the
more advanced possibilities, they should consult Component Description
on page 163 for the details of the XML grammar for component descrip-
tions.

• Deployers – Deployers should consult Deployment on page 176.

112.2 Components
A component is a normal Java class contained within a bundle. The distin-
guishing aspect of a component is that it is declared in an XML document.
Component configurations are activated and deactivated under the full con-
trol of SCR. SCR bases its decisions on the information in the component’s
description. This information consists of basic component information like
the name and type, optional services that are implemented by the compo-
nent, and references. References are dependencies that the component has on
other services.

SCR must activate a component configuration when the component is
enabled and the component configuration is satisfied and a component con-
figuration is needed. During the life time of a component configuration,
SCR can notify the component of changes in its bound references.

SCR will deactivate a previously activated component configuration when
the component becomes disabled, the component configuration becomes
unsatisfied, or the component configuration is no longer needed.

If an activated component configuration’s configuration properties change,
SCR must deactivate the component configuration and then attempt to
reactivate the component configuration using the new configuration infor-
mation.

112.2.1 Declaring a Component
A component requires the following artifacts in the bundle:

• An XML document that contains the component description.
• The Service-Component manifest header which names the XML docu-

ments that contain the component descriptions.
• An implementation class that is specified in the component description.

The elements in the component’s description are defined in Component
Description on page 163. The XML grammar for the component declaration is
defined by the XML Schema, see Component Description Schema on page 178.
154-502 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Components
112.2.2 Immediate Component
An immediate component is activated as soon as its dependencies are satisfied.
If an immediate component has no dependencies, it is activated immedi-
ately. A component is an immediate component if it is not a factory compo-
nent and either does not specify a service or specifies a service and the
immediate attribute of the component element set to t rue. If an immediate
component configuration is satisfied and specifies a service, SCR must regis-
ter the component configuration as a service in the service registry and then
activate the component configuration.

For example, the bundle entry /OSGI-INF/activator.xml contains:

<?xml version="1.0" encoding="UTF-8"?>
<component name="example.activator">

<implementation class="com.acme.Activator"/>
</component>

The manifest header Service-Component must also be specified in the bun-
dle manifest. For example:

Service-Component: OSGI-INF/activator.xml

An example class for this component could look like:

public class Activator {
public Activator() {...}
protected void activate(ComponentContext ctxt) {...}
protected void deactivate(ComponentContext ctxt) {...}

}

This example component is virtually identical to a Bundle Activator. It has
no references to other services so it will be satisfied immediately. It pub-
lishes no service so SCR will activate a component configuration immedi-
ately.

The act ivate method is called when SCR activates the component configu-
ration and the deactivate method is called when SCR deactivates the com-
ponent configuration. If the act ivate method throws an Exception, then the
component configuration is not activated and will be discarded.

112.2.3 Delayed Component
A delayed component specifies a service, is not specified to be a factory compo-
nent and does not have the immediate attribute of the component element
set to t rue . If a delayed component configuration is satisfied, SCR must reg-
ister the component configuration as a service in the service registry but the
activation of the component configuration is delayed until the registered
service is requested. The registered service of a delayed component look like
on normal registered service but does not incur the overhead of an ordi-
narily registered service that require a service’s bundle to be initialized to
register the service.

For example, a bundle needs to see events of a specific topic. The Event
Admin uses the white board pattern, receiving the events is therefore as sim-
ple as registering a Event Handler service. The example XML for the delayed
component looks like:
OSGi Service Platform Release 4 155-502

Components Declarative Services Specification Version 1.0
<?xml version="1.0" encoding="UTF-8"?>
<component name="example.handler">

<implementation class="com.acme.HandlerImpl"/>
<property name="event.topics">some/topic</property>
<service>

<provide interface=
"org.osgi.service.event.EventHandler"/>

</service>
<component>

The associated component class looks like:

public class HandlerImpl implements EventHandler {
public void handleEvent(Event evt) {

...
 }
}

The component configuration will only be activated once the Event Admin
service requires the service because it has an event to deliver on the topic to
which the component subscribed.

112.2.4 Factory Component
Certain software patterns require the creation of component configurations
on demand. For example, a component could represent an application that
can be launched multiple times and each application instance can then quit
independently. Such a pattern requires a factory that creates the instances.
This pattern is supported with a factory component. A factory component is
used if the factory attribute of the component element is set to a factory iden-
tifier. This identifier can be used by a bundle to associate the factory with
externally defined information.

SCR must register a Component Factory service on behalf of the component
as soon as the component factory is satisfied. The service properties must be:

• component.name – The name of the component.
• component. factory – The factory identifier.

New configurations of the component can be created and activated by call-
ing the newInstance method on this Component Factory service. The
newInstance(Dict ionary) method has a Dictionary object as argument. This
Dictionary object is merged with the component properties as described in
Component Properties on page 175. If the component specifies a service, then
the service is registered after the created component configuration is satis-
fied with the component properties as service properties. Then the compo-
nent configuration is activated.

For example, a component can provide a connection to a USB device. Such a
connection should normally not be shared and should be created each time
such a service is needed. The component description to implement this pat-
tern looks like:

<?xml version="1.0" encoding="UTF-8"?>
<component name="example.factory"factory="example.factory">

<implementation class="com.acme.USBConnectionImpl"/>
</component>
156-502 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 References to Services
The component class looks like:

public class USBConnectionImpl implements USBConnection {
protected void activate(ComponentContext ctxt) {

 ... // ctxt provides access to properties
}

}

A factory component can be associated with a service. In that case, such a
service is registered for each component configuration. For example, the
previous example could provide a USB Connection service.

<?xml version="1.0" encoding="UTF-8"?>
<component name="example.factory"factory="usb.connection">

<implementation class="com.acme.USBConnectionImpl"/>
<service>

<provide interface="com.acme.USBConnection"/>
</service>

</component>

The associated component class looks like:

public class USBConnectionImpl implements USBConnection {
protected void activate(ComponentContext ctxt) {...}

 public void connect() { ... }
...

 public void close() { ... }
}

A new service will be registered each time a new component configuration
is created and activated with the newInstance method. This allows a bundle
other than the one creating the component configuration to utilize the ser-
vice. If the component configuration is deactivated, the service must be
unregistered.

112.3 References to Services
Most bundles will require access to other services from the service registry.
The dynamics of the service registry require care and attention of the pro-
grammer because referenced services, once acquired, could be unregistered
at any moment. The component model simplifies the handling of these ser-
vice dependencies significantly.

The services that are selected by a reference are called the target services.
These are the services selected by the BundleContext .getServiceReferences
method where the first argument is the reference’s interface and the second
argument is the reference’s target property, which must be a valid filter.

A component configuration becomes satisfied when each specified reference
is satisfied. A reference is satisfied if it specifies optional cardinality or when
the target services contains at least one member. An activated component
configuration that becomes unsatisfied must be deactivated.
OSGi Service Platform Release 4 157-502

References to Services Declarative Services Specification Version 1.0
During the activation of a component configuration, SCR must bind some
or all of the target services of a reference to the component configuration.
Any target service that is bound to the component configuration is called a
bound service. See Binding Services on page 172.

112.3.1 Accessing Services
A component instance must be able to use the services that are referenced
by the component configuration, that is, the bound services of the refer-
ences. There are two strategies for a component instance to acquire these
bound services:

• Event strategy – SCR calls a method on the component instance when a
service becomes bound and another method when a service becomes
unbound. These methods are the bind and unbind methods specified by
the reference. The event strategy is useful if the component needs to be
notified of changes to the bound services for a dynamic reference.

• Lookup strategy – A component instance can use one of the locateService
methods of ComponentContext to locate a bound service. These
methods take the name of the reference as a parameter. If the reference
has a dynamic policy, it is important to not store the returned service
object(s) but look it up every time it is needed.

A component may use either or both strategies to access bound services.

When using the event strategy, the bind and unbind methods will be called
by SCR using reflection and must be protected or public methods. These
methods should not be public methods so that they do not appear as public
methods on the component instance if it is registered as a service.

The bind and unbind methods must take a single object as an argument.
They have the following prototype:

protected void <method-name>(<parameter-type>);

The type of the parameter of the bind or unbind method determines the
value passed to the method. If the type of the parameter is
org .osg i . f ramework.ServiceReference then a Service Reference to the
bound service will be passed to the method. This Service Reference may
later be passed to the locateServ ice(Str ing,ServiceReference) method to
obtain the actual service object. This approach is useful when the service
properties need to be examined before accessing the service object. It also
allows for the delayed activation of bound services when using the event
strategy.

If the parameter is of another type, the service object of the bound service is
passed to the method. The method’s parameter type must be assignable
from the type specified by the reference’s interface attribute. That is, the ser-
vice object of the bound service must be castable to the method’s parameter
type.

The methods must be called once for each bound service. This implies that if
the reference has multiple cardinality, then the methods may be called mul-
tiple times.
158-502 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 References to Services
When searching for the bind or unbind method to call, SCR must look
through the component implementation class hierarchy. The declared
methods of each class are searched for a method with the specified name
that takes a single parameter. The method is searched for using the follow-
ing priority:

1 The method’s parameter type is org.osgi . f ramework.ServiceReference .
2 The method’s parameter type is the type specified by the reference’s

interface attribute.
3 The method’s parameter type is assignable from the type specified by the

reference’s inter face attribute. If multiple methods match this rule, this
implies the method name is overloaded and SCR may choose any of the
methods to call.

If no suitable method is found, the search is repeated on the superclass.
Once a suitable method is found, if it is declared protected or public, SCR
will call the method. If the method is not found or the found method is not
declared protected or public, SCR must log an error message with the Log
Service, if present, and ignore the method.

When the service object for a bound service is first provided to a component
instance, that is passed to a bind or unbind method or returned by a locate
service method, SCR must get the service object from the OSGi Framework’s
service registry using the getService method on the component’s Bundle
Context. If the service object for a bound service has been obtained and the
service becomes unbound, SCR must unget the service object using the
ungetService method on the component’s Bundle Context and discard all
references to the service object.

For example, a component requires the Log Service and uses the lookup
strategy. The reference is declared without any bind and unbind methods:

<?xml version="1.0" encoding="UTF-8"?>
<component name="example.listen">

<implementation class="com.acme.LogLookupImpl"/>
<reference name="LOG"

 interface="org.osgi.service.log.LogService"/>
</component>

The component implementation class must now lookup the service. This
looks like:

public class LogLookupImpl {
protected void activate(ComponentContext ctxt) {

LogService log = (LogService)
ctxt.locateService("LOG");

log.log(LogService.LOG_INFO, "Hello Components!"));
}

}

Alternatively, the component could use the event strategy and ask to be
notified with the Log Service by declaring bind and unbind methods.

<?xml version="1.0" encoding="UTF-8"?>
<component name="example.listen">

<implementation class="com.acme.LogEventImpl"/>
<reference name="LOG"
OSGi Service Platform Release 4 159-502

References to Services Declarative Services Specification Version 1.0
 interface="org.osgi.service.log.LogService"
bind="setLog"
unbind="unsetLog"

/>
</component>

The component implementation class looks like:

public class LogEventImpl {
LogService log;
protected void setLog(LogService l) { log = l; }
protected void unsetLog(LogService l) { log = null; }
protected void activate(ComponentContext ctxt) {

log.log(LogService.LOG_INFO, "Hello Components!"));
}

}

112.3.2 Reference Cardinality
A component implementation is always written with a certain cardinality in
mind. The cardinality represents two important concepts:

• Multiplicity – Does the component implementation assume a single
service or does it explicitly handle multiple occurrences? For example,
when a component uses the Log Service, it only needs to bind to one Log
Service to function correctly. Alternatively, when the Configuration
Admin uses the Configuration Listener services it needs to bind to all
target services present in the service registry to dispatch its events cor-
rectly.

• Optionality – Can the component function without any bound service
present? Some components can still perform useful tasks even when no
target service is available, other components must bind to at least one
target service before they can be useful. For example, the Configuration
Admin in the previous example must still provide its functionality even
if there are no Configuration Listener services present. Alternatively, an
application that solely presents a Servlet page has little to do when the
Http Service is not present, it should therefore use a reference with a
mandatory cardinality.

The cardinality is expressed with the following syntax:

cardinality ::= optionality ’..’ multiplicity
optionality ::= ’0’ | ’1’
multiplicity ::= ’1’ | ’n’

A reference is satisfied if the number of target services is equal to or more
than the opt ional i ty . The multipl ic i ty is irrelevant for the satisfaction of the
reference. The mult ipl ic i ty only specifies if the component implementation
is written to handle being bound to multiple services (n) or requires SCR to
select and bind to a single service (1).

The cardinality for a reference can be specified as one of four choices:

• 0. .1 – Optional and unary.
• 1. .1 – Mandatory and unary (Default) .
• 0. .n – Optional and multiple.
• 1. .n – Mandatory and multiple.
160-502 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 References to Services
When a satisfied component configuration is activated, there must be at
most one bound service for each reference with a unary cardinality and at
least one bound service for each reference with a mandatory cardinality. If
the cardinality constraints cannot be maintained after a component config-
uration is activated, that is the reference becomes unsatisfied, the compo-
nent configuration must be deactivated. If the reference has a unary
cardinality and there is more than one target service for the reference, then
the bound service must be the target service with the highest service rank-
ing as specified by the service .ranking property. If there are multiple target
services with the same service ranking, then the bound service must be the
target service with the highest service ranking and the lowest service ID as
specified by the service. id property.

For example, a component wants to register a resource with all Http Ser-
vices that are available. Such a scenario has the cardinality of 0. .n . The code
must be prepared to handle multiple calls to the bind method for each Http
Service in such a case. In this example, the code uses the reg isterResources
method to register a directory for external access.

<?xml version="1.0" encoding="UTF-8"?>
<component name="example.listen">

<implementation class="com.acme.HttpResourceImpl"/>
<reference name="HTTP"

 interface="org.osgi.service.http.HttpService"
cardinality="0..n"
bind="setPage"
unbind="unsetPage"

/>
</component>

public class HttpResourceImpl {
protected void setPage(HttpService http) {

http.registerResources("/scr", "scr", null);
}
protected void unsetPage(HttpService http) {

http.unregister("/src");
}

}

112.3.3 Reference Policy
Once all the references of a component are satisfied, a component configura-
tion can be activated and therefore bound to target services. However, the
dynamic nature of the OSGi service registry makes it likely that services are
registered, modified and unregistered after target services are bound. These
changes in the service registry could make one or more bound services no
longer a target service thereby making obsolete any object references that
the component has to these service objects. Components therefore must
specify a policy how to handle these changes in the set of bound services.
OSGi Service Platform Release 4 161-502

References to Services Declarative Services Specification Version 1.0
The static policy is the most simple policy and is the default policy. A compo-
nent instance never sees any of the dynamics. Component configurations
are deactivated before any bound service for a reference having a static pol-
icy becomes unavailable. If a target service is available to replace the bound
service which became unavailable, the component configuration must be
reactivated and bound to the replacement service. A reference with a static
policy is called a static reference.

The static policy can be very expensive if it depends on services that fre-
quently unregister and re-register or if the cost of activating and deactivat-
ing a component configuration is high. Static policy is usually also not
applicable if the cardinality specifies multiple bound services.

The dynamic policy is slightly more complex since the component imple-
mentation must properly handle changes in the set of bound services. With
the dynamic policy, SCR can change the set of bound services without deac-
tivating a component configuration. If the component uses the event strat-
egy to access services, then the component instance will be notified of
changes in the set of bound services by calls to the bind and unbind meth-
ods. A reference with a dynamic policy is called a dynamic reference.

The previous example with the registering of a resource directory used a
static policy. This implied that the component configurations are deacti-
vated when there is a change in the bound set of Http Services. The code in
the example can be seen to easily handle the dynamics of Http Services that
come and go. The component description can therefore be updated to:

<?xml version="1.0" encoding="UTF-8"?>
<component name="example.listen">

<implementation class="com.acme.HttpResourceImpl"/>
<reference name="HTTP"

 interface="org.osgi.service.http.HttpService"
cardinality="0..n"
policy="dynamic"
bind="setPage"
unbind="unsetPage"

/>
</component>

The code is identical to the previous example.

112.3.4 Selecting Target Services
The target services for a reference are constrained by the reference’s inter-
face name and target property. By specifying a filter in the target property,
the programmer and deployer can constrain the set of services that should
be part of the target services.

For example, a component wants to track all Component Factory services
that have a factory identification of acme.appl icat ion . The following com-
ponent description shows how this can be done.

<?xml version="1.0" encoding="UTF-8"?>
<component name="example.listen">

<implementation class="com.acme.FactoryTracker"/>
<reference name="FACTORY"
162-502 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Component Description
 interface=
"org.osgi.service.component.ComponentFactory"

target="(component.factory=acme.application)"
/>

</component>

Since the target filter is manifested as a component property, called the tar-
get property, the deployer can modify the target filter by establishing a con-
figuration for the component which sets the value of the target property.
See Component Properties on page 175 for more information.

112.3.5 Circular References
It is possible for a set of component descriptions to create a circular depen-
dency. For example, if component A references a service provided by compo-
nent B and component B references a service provided by component A then
a component configuration of one component cannot be satisfied without
accessing a “partially” activated component instance of the other compo-
nent. SCR must ensure that a component instance is never accessible to
another component instance or as a service until it has been fully activated,
that is it has returned from its act ivate method if it has one.

Circular references must be detected by SCR when it attempts to satisfy
component configurations and SCR must fail to satisfy the references
involved in the cycle and log an error message with the Log Service, if
present. However, if one of the references in the cycle has optional cardinal-
ity SCR must break the cycle. The reference with the optional cardinality
can be satisfied and bound to zero target services. Therefore the cycle is bro-
ken and the other references may be satisfied.

112.4 Component Description
Component descriptions are defined in XML documents contained in a bun-
dle and any attached fragments.

If SCR detects an error when processing a component description, it must
log an error message with the Log Service, if present, and ignore the compo-
nent description. Errors can include XML parsing errors and ill-formed com-
ponent descriptions.

112.4.1 Service Component Header
XML documents containing component descriptions must be specified by
the Service-Component header in the manifest. The value of the header is a
comma separated list of XML entries within the bundle.

Service-Component ::= path (',' path)*

A Service-Component manifest header specified in a fragment is ignored by
SCR. However, XML documents referenced by a bundle’s Service-Compo-
nent manifest header may be contained in attached fragments.

SCR must process each XML document specified in this header. If an XML
document specified by the header cannot be located in the bundle and its
attached fragments, SCR must log an error message with the Log Service, if
present, and continue.
OSGi Service Platform Release 4 163-502

Component Description Declarative Services Specification Version 1.0
112.4.2 XML Document
A component description must be stored in a UTF-8 encoded bundle entry.
The name space for component descriptions is:

http://www.osgi.org/xmlns/scr/v1.0.0

The recommended prefix for this name space is scr . This prefix is used in
this specification. XML documents containing component descriptions may
contain a single, root component element or one or more component ele-
ments embedded in a larger document. Use of the name space is optional if
the document only contains a root component element. In this case, the scr
name space is assumed. Otherwise the name space must be used.

SCR must parse all component elements in the scr name space. Elements
not in this name space must be ignored. Ignoring elements that are not rec-
ognized allows component descriptions to be embedded in any XML docu-
ment. For example, an entry can provide additional information about
components. These additional elements are parsed by another sub-system.

See Component Description Schema on page 178 for component description
schema.

112.4.3 Component Element
The component element specifies the component description. The follow-
ing text defines the structure of the XML grammar using a form that is simi-
lar to the normal grammar used in OSGi specifications. In this case the
grammar should be mapped to XML elements:

<component> ::= <implementation>
 <properties> *
 <service> ?
 <reference> *

SCR must not require component descriptions to specify the elements in the
order listed above and as required by the XML schema. SCR must allow
other orderings since arbitrary orderings of these elements do not affect the
meaning of the component description. Only the relative ordering of
property and propert ies element have meaning.

The component element has the following attributes:

• name – The name of a component must be globally unique because it is
used as a PID in several places. The component name is used as a PID to
retrieve component properties from the OSGi Configuration Admin
service if present. See Deployment on page 176 for more information. The
XML schema allows the use of component names which are not valid
PIDs. Care must be taken to use a valid PID for a component name if the
component should be configured by the Configuration Admin service.

• enabled – Controls whether the component is enabled when the bundle
is started. The default value is true . If enabled is set to fa lse , the com-
ponent is disabled until the method enableComponent is called on the
ComponentContext object. This allows some initialization to be per-
formed by some other component in the bundle before this component
can become satisfied. See Enabled on page 168.
164-502 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Component Description
• factory – If set to a non-empty string, it indicates that this component is a
factory component. SCR must register a Component Factory service for
each factory component. See Factory Component on page 156.

• immediate – Controls whether component configurations must be
immediately activated after becoming satisfied or whether activation
should be delayed. The default value is fa lse if the service element is
specified and true otherwise. If this attribute is specified, its value must
be t rue unless the service element is also specified.

112.4.4 Implementation Element
The implementat ion element is required and defines the name of the com-
ponent implementation class. It has therefore only a single attribute:

• c lass – The Java fully qualified name of the implementation class.

The class is retrieved with the loadClass method of the component’s bun-
dle. The class must be public and have a public constructor without argu-
ments (this is normally the default constructor) so component instances
may be created by SCR with the newInstance method on Class .

If the component description specifies a service, the class must implement
all interfaces that are provided by the service.

112.4.5 Properties and Property Elements
A component description can define a number of properties. There are two
different elements for this:

• property – Defines a single property.
• properties – Reads a set of properties from a bundle entry.

The property and propert ies elements can occur multiple times and they
can be interleaved. This interleaving is relevant because the properties are
processed from top to bottom. Later properties override earlier properties
that have the same name.

Properties can also be overridden by a Configuration Admin service’s
Configurat ion object before they are exposed to the component or used as
service properties. This is described in Component Properties on page 175 and
Deployment on page 176.

The property element has the following attributes:

• name – The name of the property.
• va lue – The value of the property. This value is parsed according to the

property type. If the value attribute is specified, the body of the element
is ignored. If the type of the property is not Str ing , parsing of the value is
done by the valueOf(Str ing) method. If this method is not available for
the given type, the conversion must be done according to the corre-
sponding method in Java 2 SE. For Character types, the conversion is
handled by Integer.valueOf method.

• type – The type of the property. Defines how to interpret the value. The
type must be one of the following Java types:
• Str ing (default)
• Long
• Double
OSGi Service Platform Release 4 165-502

Component Description Declarative Services Specification Version 1.0
• Float
• Integer
• Byte
• Character
• Boolean
• Short

• element body – If the va lue attribute is not specified, the body of the
property element must contain one or more values. The value of the
property is then an array of the specified type. Except for String objects,
the result will be translated to an array of primitive types. For example, if
the type attribute specifies In teger , then the resulting array must be
int[] .
Values must be placed one per line and blank lines are ignored. Parsing
of the value is done by the parse methods in the class identified by the
type, after trimming the line of any beginning and ending white space.
String values are also trimmed of beginning and ending white space
before being placed in the array.

For example, a component that needs an array of hosts can use the following
property definition:

<property name="hosts">
www.acme.com
backup.acme.com

</property>

This property declaration results in the property hosts, with a value of
String[] { "www.acme.com", "backup.acme.com" } .

The properties element references an entry in the bundle whose contents
conform to a standard [3] Java Properties File.

The entry is read and processed to obtain the properties and their values.
The properties element has the following attributes:

• entry – The entry path relative to the root of the bundle

For example, to include vendor identification properties that are stored in
the OSGI-INF directory, the following definition could be used:

<properties entry="OSGI-INF/vendor.properties" />

112.4.6 Service Element
The service element is optional. It describes the service information to be
used when a component configuration is to be registered as a service.

A service element has the following attribute:

• servicefactory – Controls whether the service uses the ServiceFactory
concept of the OSGi Framework. The default value is fa lse . If
servicefactory is set to t rue , a different component configuration is
created, activated and its component instance returned as the service
object for each distinct bundle that requests the service. Each of these
component configurations has the same component properties. Oth-
erwise, the same component instance from the single component config-
uration is returned as the service object for all bundles that request the
service.
166-502 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Component Description
The servicefactory attribute must not be true if the component is a factory
component or an immediate component. This is because SCR is not free to
create component configurations as necessary to support servicefactory . A
component description is ill-formed if it specifies that the component is a
factory component or an immediate component and servicefactory is set to
true .

The service element must have one or more provide elements that define
the service interfaces. The provide element has a single attribute:

• interface – The name of the interface that this service is registered under.
This name must be the fully qualified name of a Java class. For example,
org.osg i. service . log .LogService . The specified Java class should be an
interface rather than a class, however specifying a class is supported.

For example, a component implements an Event Handler service.

<service>
<provide interface=

"org.osgi.service.eventadmin.EventHandler"/>
</service>

112.4.7 Reference Element
A reference declares a dependency that a component has on a set of target ser-
vices. A component configuration is not satisfied, unless all its references
are satisfied. A reference specifies target services by specifying their inter-
face and an optional target filter.

A reference element has the following attributes:

• name – The name of the reference. This name is local to the component
and can be used to locate a bound service of this reference with one of the
locateService methods of ComponentContext .

• interface – Fully qualified name of the class that is used by the com-
ponent to access the service. The service provided to the component
must be type compatible with this class. That is, the component must be
able to cast the service object to this class. A service must be registered
under this name to be considered for the set of target services.

• card inal i ty – Specifies if the reference is optional and if the component
implementation support a single bound service or multiple bound ser-
vices. See Reference Cardinality on page 160.

• pol icy – The policy declares the assumption of the component about
dynamicity. See Reference Policy on page 161.

• target – An optional OSGi Framework filter expression that further con-
strains the set of target services. The default is no filter, limiting the set of
matched services to all service registered under the given reference
interface. The value of this attribute is used to set a target property. See
Selecting Target Services on page 162.

• bind – The name of a method in the component implementation class
that is used to notify that a service is bound to the component configu-
ration. For static references, this method is only called before the
activate method. For dynamic references, this method can also be called
while the component configuration is active. See Accessing Services on
page 158.
OSGi Service Platform Release 4 167-502

Component Life Cycle Declarative Services Specification Version 1.0
• unbind – Same as bind, but is used to notifiy the component configu-
ration that the service is unbound. For static references, the method is
only called after the deactivate method. For dynamic references, this
method can also be called while the component configuration is active.
See Accessing Services on page 158.

112.5 Component Life Cycle

112.5.1 Enabled
A component must first be enabled before it can be used. A component can-
not be enabled unless the component’s bundle is started. All components in
a bundle become disabled when the bundle is stopped. So the life cycle of a
component is contained within the life cycle of its bundle.

Every component can be enabled or disabled. The initial enabled state of a
component is specified in the component description via the enabled
attribute of the component element. See Component Element on page 164.
Component configurations can be created, satisfied and activated only
when the component is enabled.

The enabled state of a component can be controlled with the Component
Context enableComponent(Str ing) and disab leComponent(Str ing) meth-
ods. The purpose of later enabling a component is to be able to decide pro-
grammatically when a component can become enabled. For example, an
immediate component can perform some initialization work before other
components in the bundle are enabled. The component descriptions of all
other components in the bundle can be disabled by having enabled set to
fa lse in their component descriptions. After any necessary initialization
work is complete, the immediate component can call enableComponent to
enable the remaining components.

The enableComponent and disableComponent methods must return after
changing the enabled state of the named component. Any actions that
result from this, such as activating or deactivating a component configura-
tion, must occur asynchronously to the method call. Therefore a component
can disable itself.

All components in a bundle can be enabled by passing a nul l as the argu-
ment to enableComponent .

112.5.2 Satisfied
Component configurations can only be activated when the component con-
figuration is satisfied. A component configuration becomes satisfied when
the following conditions are all satisfied:

• The component is enabled.
• Using the component properties of the component configuration, all the

component’s references are satisfied. A reference is satisfied when the
reference specifies optional cardinality or there is at least one target
service for the reference.
168-502 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Component Life Cycle
Once any of the listed conditions are no longer true, the component config-
uration becomes unsatisfied. An activated component configuration that
becomes unsatisfied, must be deactivated.

112.5.3 Immediate Component
A component is an immediate component when it must be activated as
soon as its dependencies are satisfied. Once the component configuration
becomes unsatisfied, the component configuration must be deactivated. If
an immediate component configuration is satisfied and specifies a service,
SCR must register the component configuration as a service in the service
registry and then activate the component configuration. The state diagram
is shown in Figure 112.2.

Figure 112.2 Immediate Component Configuration

112.5.4 Delayed Component
A key attribute of a delayed component is the delaying of class loading and
object creation. Therefore, the activation of a delayed component configura-
tion does not occur until there is an actual request for a service object. A
component is a delayed component when it specifies a service but it is not a
factory component and does not have the immediate attribute of the
component element set to true .

SCR must register a service after the component configuration becomes sat-
isfied. The registration of this service must look to observers of the service
registry as if the component’s bundle actually registered this service. This
strategy makes it possible to register services without creating a class loader
for the bundle and loading classes, thereby allowing reduction in initializa-
tion time and a delay in memory footprint.

When SCR registers the service on behalf of a component configuration, it
must avoid causing a class load to occur from the component's bundle. SCR
can ensure this by registering a ServiceFactory object with the Framework
for that service. By registering a ServiceFactory object, the actual service
object is not needed until the Serv iceFactory is called to provide the service
object.

The service properties for this registration consist of the component proper-
ties as defined in Component Properties on page 175.

The activation of a component configuration must be delayed until its ser-
vice is requested. When the service is requested, if the service has the
servicefactory attribute set to true , SCR must create and activate a unique
component configuration for each bundle requesting the service. Other-

UNSATISFIED

becomes
satisfied

activate

deactivate

ACTIVE

becomes
unsatisfied

if dynamic:
rebinding
OSGi Service Platform Release 4 169-502

Component Life Cycle Declarative Services Specification Version 1.0
wise, SCR must activate a single component configuration which is used by
all bundles requesting the service. A component instance can determine the
bundle it was activated for by calling the getUsingBundle() method on the
Component Context.

The activation of delayed components is depicted in a state diagram in Fig-
ure 112.3. Notice that multiple component configurations can be created
from the REGISTERED state if a delayed component specifies servicefactory
set to true .

If the service registered by a component configuration becomes unused
because there are no more bundles using it, then SCR should deactivate that
component configuration. This allows SCR implementations to eagerly
reclaim activated component configurations.

Figure 112.3 Delayed Component Configuration

112.5.5 Factory Component
SCR must register a Component Factory service as soon as the component fac-
tory becomes satisfied. The component factory is satisfied when the follow-
ing conditions are all satisfied:

• The component is enabled.
• Using the component properties specified by the component

description, all the component’s references are satisfied. A reference is
satisfied when the reference specifies optional cardinality or there is at
least one target service for the reference

The component factory, however, does not use any of the target services and
does not bind to them.

Once any of the listed conditions are no longer true, the component factory
becomes unsatisfied and the Component Factory service must be unregis-
tered. Any component configurations activated via the component factory
are unaffected by the unregistration of the Component Factory service, but
may themselves become unsatisfied for the same reason.

The Component Factory service must be registered under the name
org .osg i .serv ice .component.ComponentFactory with the following ser-
vice properties:

• component.name – The name of the component.

UNSATISFIED

becomes
satisfied

becomes

activate

deactivate

ACTIVE

unsatisfied

REGISTERED becomes

get
service

unget
service unsatisfied1

if dynamic:
rebinding

servicefactory: 0..n
otherwise: 1
170-502 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Component Life Cycle
• component. factory – The value of the factory attribute.

New component configurations are created and activated when the
newInstance method of the Component Factory service is called. If the com-
ponent description specifies a service, the component configuration is regis-
tered under the provided interfaces and the component properties as
defined in Component Properties on page 175. The service registration must
take place before the component configuration is activated. Service unregis-
tration must take place before the component configuration is deactivated.

Figure 112.4 Factory Component

A Component Factory service has a single method: newInstance(Dictio-
nary) . This method must create, satisfy and activate a new component con-
figuration and register its component instance as a service if the component
description specifies a service. It must then return a ComponentInstance
object. This ComponentInstance object can be used to get the component
instance with the getInstance() method.

SCR must attempt to satisfy the component configuration created by
newInstance before activating it. If SCR is unable to satisfy the component
configuration given the component properties and the Dictionary argu-
ment to newInstance , the newInstance method must throw a
ComponentException .

The client of the Component Factory service can also deactivate a compo-
nent configuration with the dispose() method on the ComponentInstance
object. If the component configuration is already deactivated, or is being
deactivated, then this method is ignored. Also, if the component configura-
tion becomes unsatisfied for any reason, it must be deactivated by SCR.

112.5.6 Activation
Activating a component configuration consists of the following steps:

1 Load the component implementation class.

activate

deactivate

ACTIVE

FACTORY

becomes

newInstance

dispose
unsatisfied

0..n

1

rebinding
if dynamic

register

unregister

UNSATISFIED

becomes
satisfied

becomes
unsatisfied
OSGi Service Platform Release 4 171-502

Component Life Cycle Declarative Services Specification Version 1.0
2 Create the component instance and component context.
3 Bind the target services. See Binding Services on page 172.
4 Call the activate method, if present. See Activate Method on page 172.

Component instances must never be reused. Each time a component config-
uration is activated, SCR must create a new component instance to use with
the activated component configuration. Once the component configuration
is deactivated or fails to activate, SCR must discard all references to the com-
ponent instance associated with the activation.

112.5.7 Binding Services
When a component configuration’s reference is satisfied, there is a set of
zero or more target services for that reference. When the component config-
uration is activated, a subset of the target services for each reference are
bound to the component configuration. The subset is chosen by the cardi-
nality of the reference. See Reference Cardinality on page 160.

When binding services, the references are processed in the order in which
they are specified in the component description. That is, target services from
the first specified reference are bound before services from the next speci-
fied reference.

For each reference using the event strategy, the bind method must be called
for each bound service of that reference. This may result in activating a com-
ponent configuration of the bound service which could result in an excep-
tion. If the loss of the bound service due to the exception causes the
reference’s cardinality constraint to be violated, then activation of this com-
ponent configuration will fail. Otherwise the bound service which failed to
activate will be considered unbound. If a bind method throws an exception,
SCR must log an error message containing the exception with the Log Ser-
vice, if present, but the activation of the component configuration does not
fail.

112.5.8 Activate Method
A component implementation class can have a method called act ivate that
takes a ComponentContext object as argument. The prototype of this
method is:

protected void activate(ComponentContext context);

If the component implementation class defines such an activate method,
SCR must call this method to complete the activation of the component
configuration. If the act ivate method throws an exception, SCR must log an
error message containing the exception with the Log Service, if present, and
the component configuration is not activated.

The activate method will be called by SCR using reflection and must be a
protected or public method. This method should not be a public method so
that it does not appear as a public method on the component instance if it is
registered as a service. SCR will look through the component implementa-
tion class hierarchy for the first declaration of the method. If the method is
declared protected or public, SCR will call the method.
172-502 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Component Life Cycle
112.5.9 Component Context
The Component Context is made available to a component instance via the
act ivate and deactivate methods. It provides the interface to the execution
context of the component, much like the Bundle Context provides a bundle
the interface to the Framework. A Component Context should therefore be
regarded as a capability and not shared with other components or bundles.

Each distinct component instance receives a unique Component Context.
Component Contexts are not reused and must be discarded when the com-
ponent configuration is deactivated.

112.5.10 Bound Service Replacement
If an active component configuration has a dynamic reference with unary
cardinality and the bound service is modified or unregistered and ceases to
be a target service, SCR must attempt to replace the bound service with a
new target service. SCR must first bind a replacement target service and
then unbind the outgoing service. If the dynamic reference has a mandatory
cardinality and no replacement target service is available, the component
configuration must be deactivated because the cardinality constraints will
be violated.

If a component configuration has a static reference and a bound service is
modified or unregistered and ceases to be a target service, SCR must deacti-
vate the component configuration. Afterwards, SCR must attempt to acti-
vate the component configuration again if another target service can be
used as a replacement for the outgoing service.

112.5.11 Deactivation
Deactivating a component configuration consists of the following steps:

1 Call the deactivate method, if present. See Deactivate Method on page 173.
2 Unbind any bound services. See Unbinding on page 174.
3 Release all references to the component instance and component

context.

Once the component configuration is deactivated, SCR must discard all ref-
erences to the component instance associated with the activation.

112.5.12 Deactivate Method
A component implementation class can have a method called deact ivate
that takes a ComponentContext object as argument. The prototype of this
method is:

protected void deactivate(ComponentContext context);

If the component implementation class defines such an deact ivate method,
SCR must call this method to commence the deactivation of the component
configuration. If the deactivate method throws an exception, SCR must log
an error message containing the exception with the Log Service, if present,
and the deactivation of the component configuration will continue.
OSGi Service Platform Release 4 173-502

Component Life Cycle Declarative Services Specification Version 1.0
The deactivate method will be called by SCR using reflection and must be a
protected or public method. This method should not be a public method so
that it does not appear as a public method on the component instance if it is
registered as a service. SCR will look through the component implementa-
tion class hierarchy for the first declaration of the method. If the method is
declared protected or public, SCR will call the method.

112.5.13 Unbinding
When a component configuration is deactivated, the bound services are
unbound from the component configuration.

When unbinding services, the references are processed in the reverse order
in which they are specified in the component description. That is, target ser-
vices from the last specified reference are unbound before services from the
previous specified reference.

For each reference using the event strategy, the unbind method must be
called for each bound service of that reference. If an unbind method throws
an exception, SCR must log an error message containing the exception with
the Log Service, if present, and the deactivation of the component configura-
tion will continue.

112.5.14 Life Cycle Example
A component could declare a dependency on the Http Service to register
some resources.

<?xml version="1.0" encoding="UTF-8"?>
<component name="example.binding">

<implementation class="example.Binding"/>
<reference name="LOG"

interface="org.osgi.service.log.LogService"
cardinality="1..1"
policy="static"

/>
<reference name="HTTP"

interface="org.osgi.service.http.HttpService"
cardinality="0..1"
policy="dynamic"
bind="setHttp"
unbind="unsetHttp"

/>
</component>

The component implementation code looks like:

public class Binding {
LogService log;
HttpService http;

protected void setHttp(HttpService h) {
this.http = h;
// register servlet

}
 protected void unsetHttp(HttpService h){
174-502 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Component Properties
this.h = null;
// unregister servlet

}
protected void activate(ComponentContext context) {.

 log = (LogService) context.locateService("LOG");
 }

protected void deactivate(ComponentContext context){...}
}

This example is depicted in a sequence diagram in Figure 112.5. with the fol-
lowing scenario:

1 A bundle with the example.Bind ing component is started. At that time
there is a Log Service l1 and a Http Service h1 registered.

2 The Http Service h1 is unregistered
3 A new Http Service h2 is registered
4 The Log Service h1 is unregistered.

Figure 112.5 Sequence Diagram for binding

112.6 Component Properties
Each component configuration is associated with a set of component prop-
erties. The component properties are specified in the following places (in
order of precedence):

1 Properties specified in the argument of ComponentFactory .newInstance
method. This is only applicable for factory components.

2 Properties retrieved from the OSGi Configuration Admin service with a
Configuration object that has a PID equal to the name of the component.

a ComponentLog Service Ref.Http Service Ref.SCR

bundle started
resolve
resolve
satisfied
satisfied
setHttp(h1)

activate(context)

unregistered

dynamic, 0..1 static, 1..1

unsetHttp(h1)

locateService("LOG")

available
setHttp(h2)

unregistered
deactivate(context)
unsetHttp(h2)

1.

2.

3.

4.

Configuration

create
OSGi Service Platform Release 4 175-502

Deployment Declarative Services Specification Version 1.0
3 Properties specified in the component description. Later properties
override earlier properties that have the same name. Properties can be
specified in the component description in the following ways:
• Target properties – The key of a target properties is the name of the

reference appended with . ta rget . The value of these properties is the
value of the ta rget attribute of the reference. For example, a reference
with the name http whose ta rget attribute has the value
“(http .port=80)" results in the component property having the name
http.ta rget and value “(http.port=80)“. The target property is not set
if the ta rget attribute of the reference is not specified. See Selecting
Target Services on page 162.

• property and propert ies elements – See Properties and Property Ele-
ments on page 165.

The precedence behavior allows certain default values to be specified in the
component description while allowing properties to be replaced and
extended by:

• A configuration in Configuration Admin
• The argument to ComponentFactory.newInstance method

SCR always adds the following component properties, which cannot be
overridden:

• component.name – The component name.

• component. id – A unique value (Long) that is larger than all previously
assigned values. These values are not persistent across restarts of SCR.

112.7 Deployment
A component description contains default information to select target ser-
vices for each reference. However, when a component is deployed, it is often
necessary to influence the target service selection in a way that suits the
need of the deployer. Therefore, SCR uses Conf igurat ion objects from Con-
figuration Admin to replace and extend the component properties for a
component configuration. That is, through Configuration Admin a
deployer can configure component properties.

The name of the component is used as the key for obtaining additional com-
ponent properties from Configuration Admin. The following situations can
arise:

• No Configuration – If there is no Configuration with a PID or factory PID
equal to the component name, then component configurations will not
obtain component properties from Configuration Admin. Only com-
ponent properties specified in the component description or via the
ComponentFactory.newInstance method will be used.

• Single Configuration – If there exists a Configuration with a PID equal to
the component name, then component configurations will obtain addi-
tional component properties from Configuration Admin. This is the
ManagedService situation.

• Factory Configuration – If a factory PID exists, with zero or more Configu-
rations, that is equal to the component name, then for each Configu-
ration, a component configuration must be created that will obtain
176-502 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Service Component Runtime
additional component properties from Configuration Admin. This is the
ManagedServ iceFactory situation.

A factory configuration must not be used if the component is a factory com-
ponent. This is because SCR is not free to create component configurations
as necessary to support multiple Configurat ions. When SCR detects this
condition, it must log an error message with the Log Service, if present, and
ignore the component description.

SCR must obtain the Configuration objects from the Configuration Admin
service using the Bundle Context of the bundle containing the component.

For example, there is a component named com.acme.cl ient with a reference
named HTTP that requires an Http Service which must be bound to a com-
ponent com.acme.httpserver which provides an Http Service. A deployer
can establish the following configuration:

[PID=com.acme.client, factoryPID=null]
HTTP.target = (component.name=com.acme.httpserver)

SCR must track changes in the Conf igurat ion objects used in the compo-
nent properties of a component configuration. If a Conf igurat ion object that
is related to a component configuration changes, then SCR must deactivate
that component configuration and, if the Conf igurat ion object was not
deleted, SCR must attempt to reactive the component configuration with
the updated component properties.

112.8 Service Component Runtime

112.8.1 Relationship to OSGi Framework
SCR must have access to the Bundle Context of any bundle that contains a
component. There is currently no defined way to obtain the Bundle Context
of a bundle. A Bundle Context is only provided to a bundle via its Bundle
Activator methods. This implies that SCR requires a private interface to the
Framework implementation to obtain Bundle Contexts. SCR needs access to
the Bundle Context for the following reasons:

• To be able to register and get services on behalf of a bundle with compo-
nents.

• To interact with the Configuration Admin on behalf of a bundle with
components.

• To provide a component its Bundle Context when the Component
Context getBundleContext method is called.

Since the Bundle Context is considered a private object to the bundle and
would provide the capability for the receiver of the object to act as the bun-
dle, there is no specified way for the OSGi Framework to provide a
BundleContext object to other bundles.

112.8.2 Starting and Stopping SCR
When SCR is implemented as a bundle, any component configurations acti-
vated by SCR must be deactivated when the SCR bundle is stopped. When
the SCR bundle is started, it must process any components that are declared
in ACTIVE bundles.
OSGi Service Platform Release 4 177-502

Security Declarative Services Specification Version 1.0
112.9 Security

112.9.1 Service Permissions
Declarative services are built upon the existing OSGi service infrastructure.
This means that Service Permission applies regarding the ability to publish,
find or bind services.

If a component specifies a service, then component configurations for the
component cannot be satisfied unless the component’s bundle has
ServicePermiss ion[<provides>, REGISTER] for each provided interface spec-
ified for the service.

If a component’s reference does not specify optional cardinality, the refer-
ence cannot be satisfied unless the component’s bundle has
ServicePermission[<interface>, GET] for the specified interface in the refer-
ence. If the reference specifies optional cardinality but the component’s
bundle does not have ServicePermission[<inter face>, GET] for the specified
interface in the reference, no service must be bound for this reference.

If a component is a factory component, then the above Service Permission
checks still apply. But the component’s bundle is not required to have
ServicePermission[ComponentFactory, REGISTER] as the Component Fac-
tory service is registered by SCR.

112.9.2 Using hasPermission
SCR does all publishing, finding and binding of services on behalf of the
component using the Bundle Context of the component’s bundle. This
means that normal stack-based permission checks will check SCR and not
the component’s bundle. Since SCR is registering and getting services on
behalf of a component’s bundle, SCR must call the Bundle.hasPermission
method to validate that a component’s bundle has the necessary permission
to register or get a service.

112.10 Component Description Schema
This XML Schema defines the component description grammar.

<schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.osgi.org/xmlns/scr/
v1.0.0" xmlns:scr="http://www.osgi.org/xmlns/scr/v1.0.0">

<element name="component" type="scr:Tcomponent"/>

<complexType name="Tcomponent">
<sequence>

<element name="implementation" type="scr:Timplementation" minOccurs="1" maxOccurs="1"/>
<choice minOccurs="0" maxOccurs="unbounded">

<element name="property" type="scr:Tproperty"/>
<element name="properties" type="scr:Tproperties"/>

</choice>
<element name="service" type="scr:Tservice" minOccurs="0" maxOccurs="1"/>
<element name="reference" type="scr:Treference" minOccurs="0" maxOccurs="unbounded"/>

</sequence>
<attribute name="enabled" type="boolean" default="true" use="optional"/>
<attribute name="name" type="token" use="required"/>
<attribute name="factory" type="string" use="optional"/>
<attribute name="immediate" type="boolean" use="optional"/>

</complexType>
178-502 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 Component Description Schema
<complexType name="Timplementation">
<attribute name="class" type="token" use="required"/>

</complexType>

<complexType name="Tproperty">
<simpleContent>

<extension base="string">
<attribute name="name" type="string" use="required"/>
<attribute name="value" type="string" use="optional"/>
<attribute name="type" type="scr:TjavaTypes" default="String" use="optional"/>

</extension>
</simpleContent>

</complexType>

<complexType name="Tproperties">
<attribute name="entry" type="string" use="required"/>

</complexType>

<complexType name="Tservice">
<sequence>

<element name="provide" type="scr:Tprovide" minOccurs="1" maxOccurs="unbounded"/>
</sequence>
<attribute name="servicefactory" type="boolean" default="false" use="optional"/>

</complexType>

<complexType name="Tprovide">
<attribute name="interface" type="token" use="required"/>

</complexType>

<complexType name="Treference">
<attribute name="name" type="NMTOKEN" use="required"/>
<attribute name="interface" type="token" use="required"/>
<attribute name="cardinality" type="scr:Tcardinality" default="1..1" use="optional"/>
<attribute name="policy" type="scr:Tpolicy" default="static" use="optional"/>
<attribute name="target" type="string" use="optional"/>
<attribute name="bind" type="token" use="optional"/>
<attribute name="unbind" type="token" use="optional"/>

</complexType>

<simpleType name="TjavaTypes">
<restriction base="string">

<enumeration value="String"/>
<enumeration value="Long"/>
<enumeration value="Double"/>
<enumeration value="Float"/>
<enumeration value="Integer"/>
<enumeration value="Byte"/>
<enumeration value="Char"/>
<enumeration value="Boolean"/>
<enumeration value="Short"/>

</restriction>
</simpleType>

<simpleType name="Tcardinality">
<restriction base="string">

<enumeration value="0..1"/>
<enumeration value="0..n"/>
<enumeration value="1..1"/>
<enumeration value="1..n"/>

</restriction>
</simpleType>

<simpleType name="Tpolicy">
<restriction base="string">

<enumeration value="static"/>
<enumeration value="dynamic"/>

</restriction>
</simpleType>

</schema>
OSGi Service Platform Release 4 179-502

org.osgi.service.component Declarative Services Specification Version 1.0
SCR must not require component descriptions to specify the elements in the
order required by the schema. SCR must allow other orderings since arbi-
trary orderings of these elements do not affect the meaning of the compo-
nent description. Only the relative ordering of property and propert ies
element have meaning.

112.11 org.osgi.service.component
Service Component Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.component; version=1.0

112.11.1 Summary
• ComponentConstants - Defines standard names for Service Component

constants. [p.180]
• ComponentContext - A Component Context object is used by a com-

ponent instance to interact with its execution context including locating
services by reference name. [p.181]

• ComponentException - Unchecked exception which may be thrown by
the Service Component Runtime. [p.183]

• ComponentFactory - When a component is declared with the factory
attribute on its component element, the Service Component Runtime
will register a Component Factory service to allow new component con-
figurations to be created and activated rather than automatically cre-
ating and activating component configuration as necessary. [p.184]

• ComponentInstance - A ComponentInstance encapsulates a component
instance of an activated component configuration. [p.184]

ComponentConstants

112.11.2 public interface ComponentConstants
Defines standard names for Service Component constants.
COMPONENT_FACTORY

112.11.2.1 public static final String COMPONENT_FACTORY = “component.factory”

A service registration property for a Component Factory that contains the
value of the factory attribute. The type of this property must be String.
COMPONENT_ID

112.11.2.2 public static final String COMPONENT_ID = “component.id”

A component property that contains the generated id for a component con-
figuration. The type of this property must be Long.

The value of this property is assigned by the Service Component Runtime
when a component configuration is created. The Service Component Runt-
ime assigns a unique value that is larger than all previously assigned values
since the Service Component Runtime was started. These values are NOT
persistent across restarts of the Service Component Runtime.
COMPONENT_NAME
180-502 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 org.osgi.service.component
112.11.2.3 public static final String COMPONENT_NAME = “component.name”

A component property for a component configuration that contains the
name of the component as specified in the name attribute of the component
element. The type of this property must be String.
REFERENCE_TARGET_SUFFIX

112.11.2.4 public static final String REFERENCE_TARGET_SUFFIX = “.target”

The suffix for reference target properties. These properties contain the filter
to select the target services for a reference. The type of this property must be
String.
SERVICE_COMPONENT

112.11.2.5 public static final String SERVICE_COMPONENT = “Service-Component”

Manifest header (named “Service-Component”) specifying the XML docu-
ments within a bundle that contain the bundle’s Service Component
descriptions.

The attribute value may be retrieved from the Dictionary object returned by
the Bundle.getHeaders method.
ComponentContext

112.11.3 public interface ComponentContext
A Component Context object is used by a component instance to interact
with its execution context including locating services by reference name.
Each component instance has a unique Component Context.

A component’s implementation class may optionaly implement an activate
method:

protected void activate(ComponentContext context);

If a component implements this method, this method will be called when a
component configuration is activated to provide the component instance’s
Component Context object.

A component’s implementation class may optionaly implement a deacti-
vate method:

protected void deactivate(ComponentContext context);

If a component implements this method, this method will be called when
the component configuration is deactivated.

The activate and deactivate methods will be called using reflection and
must be protected or public accessible. These methods should not be public
methods so that they do not appear as public methods on the component
instance when used as a service object. These methods will be located by
looking through the component’s implementation class hierarchy for the
first declaration of the method. If the method is found, if it is declared pro-
tected or public, the method will be called. Otherwise, the method will not
be called.
disableComponent(String)

112.11.3.1 public void disableComponent(String name)

name The name of a component.

Disables the specified component name. The specified component name
must be in the same bundle as this component.
enableComponent(String)
OSGi Service Platform Release 4 181-502

org.osgi.service.component Declarative Services Specification Version 1.0
112.11.3.2 public void enableComponent(String name)

name The name of a component or null to indicate all components in the bundle.

Enables the specified component name. The specified component name
must be in the same bundle as this component.
getBundleContext()

112.11.3.3 public BundleContext getBundleContext()

Returns the BundleContext of the bundle which contains this component.

Returns The BundleContext of the bundle containing this component.
getComponentInstance()

112.11.3.4 public ComponentInstance getComponentInstance()

Returns the Component Instance object for the component instance associ-
ated with this Component Context.

Returns The Component Instance object for the component instance.
getProperties()

112.11.3.5 public Dictionary getProperties()

Returns the component properties for this Component Context.

Returns The properties for this Component Context. The Dictionary is read only and
cannot be modified.
getServiceReference()

112.11.3.6 public ServiceReference getServiceReference()

If the component instance is registered as a service using the service ele-
ment, then this method returns the service reference of the service provided
by this component instance.

This method will return null if the component instance is not registered as a
service.

Returns The ServiceReference object for the component instance or null if the com-
ponent instance is not registered as a service.
getUsingBundle()

112.11.3.7 public Bundle getUsingBundle()

If the component instance is registered as a service using the servicefac-
tory=”true” attribute, then this method returns the bundle using the service
provided by the component instance.

This method will return null if:

• The component instance is not a service, then no bundle can be using it
as a service.

• The component instance is a service but did not specify the service-
factory=”true” attribute, then all bundles using the service provided by
the component instance will share the same component instance.

• The service provided by the component instance is not currently being
used by any bundle.

Returns The bundle using the component instance as a service or null.
locateService(String)

112.11.3.8 public Object locateService(String name)

name The name of a reference as specified in a reference element in this compo-
nent’s description.

Returns the service object for the specified reference name.
182-502 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 org.osgi.service.component
If the cardinality of the reference is 0..n or 1..n and multiple services are
bound to the reference, the service with the highest ranking (as specified in
its Constants.SERVICE_RANKING property) is returned. If there is a tie in
ranking, the service with the lowest service ID (as specified in its Con-
stants.SERVICE_ID property); that is, the service that was registered first is
returned.

Returns A service object for the referenced service or null if the reference cardinality
is 0..1 or 0..n and no bound service is available.

Throws ComponentException – If the Service Component Runtime catches an ex-
ception while activating the bound service.
locateService(String,ServiceReference)

112.11.3.9 public Object locateService(String name, ServiceReference reference)

name The name of a reference as specified in a reference element in this compo-
nent’s description.

reference The ServiceReference to a bound service. This must be a ServiceReference
provided to the component via the bind or unbind method for the specified
reference name.

Returns the service object for the specified reference name and ServiceRefer-
ence.

Returns A service object for the referenced service or null if the specified ServiceRef-
erence is not a bound service for the specified reference name.

Throws ComponentException – If the Service Component Runtime catches an ex-
ception while activating the bound service.
locateServices(String)

112.11.3.10 public Object[] locateServices(String name)

name The name of a reference as specified in a reference element in this compo-
nent’s description.

Returns the service objects for the specified reference name.

Returns An array of service objects for the referenced service or null if the reference
cardinality is 0..1 or 0..n and no bound service is available.

Throws ComponentException – If the Service Component Runtime catches an ex-
ception while activating a bound service.
ComponentException

112.11.4 public class ComponentException
extends RuntimeException
Unchecked exception which may be thrown by the Service Component
Runtime.
ComponentException(String,Throwable)

112.11.4.1 public ComponentException(String message, Throwable cause)

message The message for the exception.

cause The cause of the exception. May be null.

Construct a new ComponentException with the specified message and
cause.
ComponentException(String)

112.11.4.2 public ComponentException(String message)

message The message for the exception.
OSGi Service Platform Release 4 183-502

org.osgi.service.component Declarative Services Specification Version 1.0
Construct a new ComponentException with the specified message.
ComponentException(Throwable)

112.11.4.3 public ComponentException(Throwable cause)

cause The cause of the exception. May be null.

Construct a new ComponentException with the specified cause.
getCause()

112.11.4.4 public Throwable getCause()

Returns the cause of this exception or null if no cause was specified when
this exception was created.

Returns The cause of this exception or null if no cause was specified.
initCause(Throwable)

112.11.4.5 public Throwable initCause(Throwable cause)

cause Cause of the exception.

The cause of this exception can only be set when constructed.

Returns This object.

Throws IllegalStateException – This method will always throw an IllegalState-
Exception since the cause of this exception can only be set when constructed.
ComponentFactory

112.11.5 public interface ComponentFactory
When a component is declared with the factory attribute on its component
element, the Service Component Runtime will register a Component Fac-
tory service to allow new component configurations to be created and acti-
vated rather than automatically creating and activating component
configuration as necessary.
newInstance(Dictionary)

112.11.5.1 public ComponentInstance newInstance(Dictionary properties)

properties Additional properties for the component configuration or null if there are no
additional properties.

Create and activate a new component configuration. Additional properties
may be provided for the component configuration.

Returns A ComponentInstance object encapsulating the component instance of the
component configuration. The component configuration has been activated
and, if the component specifies a service element, the component instance
has been registered as a service.

Throws ComponentException – If the Service Component Runtime is unable to acti-
vate the component configuration.
ComponentInstance

112.11.6 public interface ComponentInstance
A ComponentInstance encapsulates a component instance of an activated
component configuration. ComponentInstances are created whenever a
component configuration is activated.

ComponentInstances are never reused. A new ComponentInstance object
will be created when the component configuration is activated again.
dispose()
184-502 OSGi Service Platform Release 4

Declarative Services Specification Version 1.0 References
112.11.6.1 public void dispose()

Dispose of the component configuration for this component instance. The
component configuration will be deactivated. If the component configura-
tion has already been deactivated, this method does nothing.
getInstance()

112.11.6.2 public Object getInstance()

Returns the component instance of the activated component configuration.

Returns The component instance or null if the component configuration has been de-
activated.

112.12 References
[1] Automating Service Dependency Management in a Service-Oriented Component

Model
Humberto Cervantes, Richard S. Hall, Proceedings of the Sixth Component-
Based Software Engineering Workshop, May 2003, pp. 91-96.
http://www.osgi.org/news_events/documents/
AutoServDependencyMgmt_byHall_Cervantes.pdf

[2] Service Binder
Humberto Cervantes, Richard S. Hall, http://gravity.sourceforge.net/
servicebinder

[3] Java Properties File
http://java.sun.com/j2se/1.4.2/docs/api/java/util/
Properties.html#load(java.io.InputStream)
OSGi Service Platform Release 4 185-502

References Declarative Services Specification Version 1.0
186-502 OSGi Service Platform Release 4

Event Admin Service Specification Version 1.1 Introduction
113 Event Admin Service
Specification
Version 1.1

113.1 Introduction
Nearly all the bundles in an OSGi framework must deal with events, either
as an event publisher or as an event handler. So far, the preferred mecha-
nism to disperse those events have been the service interface mechanism.

Dispatching events for a design related to X, usually involves a service of
type XListener. However, this model does not scale well for fine grained
events that must be dispatched to many different handlers. Additionally,
the dynamic nature of the OSGi environment introduces several complexi-
ties because both event publishers and event handlers can appear and disap-
pear at any time.

The Event Admin service provides an inter-bundle communication mecha-
nism. It is based on a event publish and subscribe model, popular in many
message based systems.

This specification defines the details for the participants in this event
model.

113.1.1 Essentials
• Simplifications – The model must significantly simplify the process of pro-

gramming an event source and an event handler.
• Dependencies – Handle the myriad of dependencies between event

sources and event handlers for proper cleanup.
• Synchronicity – It must be possible to deliver events asynchronously or

synchronously with the caller.
• Event Window – Only event handlers that are active when an event is

published must receive this event, handlers that register later must not
see the event.

• Performance – The event mechanism must impose minimal overhead in
delivering events.

• Selectivity – Event listeners must only receive notifications for the event
types for which they are interested

• Reliability – The Event Admin must ensure that events continue to be
delivered regardless the quality of the event handlers.

• Security – Publishing and receiving events are sensitive operations that
must be protected per event type.

• Extensibility – It must be possible to define new event types with their
own data types.

• Native Code – Events must be able to be passed to native code or come
from native code.
OSGi Service Platform Release 4 187-502

Introduction Event Admin Service Specification Version 1.1
• OSGi Events – The OSGi Framework, as well as a number of OSGi ser-
vices, already have number of its own events defined. For uniformity of
processing, these have to be mapped into generic event types.

113.1.2 Entities
• Event – An Event object has a topic and a Dictionary object that contains

the event properties. It is an immutable object.
• Event Admin – The service that provides the publish and subscribe model

to Event Handlers and Event Publishers.
• Event Handler – A service that receives and handles Event objects.
• Event Publisher – A bundle that sends event through the Event Admin

service.
• Event Subscriber – Another name for an Event Handler.
• Topic – The name of an Event type.
• Event Properties – The set of properties that is associated with an Event.

Figure 113.1 The Event Admin service org.osgi.service.event package

113.1.3 Synopsis
The Event Admin service provides a place for bundles to publish events,
regardless of their destination. It is also used by Event Handlers to subscribe
to specific types of events.

Events are published under a topic, together with a number of event proper-
ties. Event Handlers can specify a filter to control the Events they receive on
a very fine grained basis.

113.1.4 What To Read
• Architects – The Event Admin Architecture on page 189 provides an

overview of the Event Admin service.

Event Publisher
Impl

an Event
Consumer Impl

receive
send

<<service>>
Event Admin

Event Admin Impl

<<service>>
Event Handler1 0..n

<<class>>
Eventevent

event
188-502 OSGi Service Platform Release 4

Event Admin Service Specification Version 1.1 Event Admin Architecture
• Event Publishers – The Event Publisher on page 191 provides an intro-
duction of how to write an Event Publisher. The Event Admin Architecture
on page 189 provides a good overview of the design.

• Event Subscribers/Handlers – The Event Handler on page 190 provides the
rules on how to subscribe and handle events.

113.2 Event Admin Architecture
The Event Admin is based on the Publish-Subscribe pattern. This pattern
decouples sources from their handlers by interposing an event channel
between them. The publisher posts events to the channel, which identifies
which handlers need to be notified and then takes care of the notification
process. This model is depicted in Figure 113.2.

Figure 113.2 Channel Pattern

In this model, the event source and event handler are completely decoupled
because neither has any direct knowledge of the other. The complicated
logic of monitoring changes in the event publishers and event handlers is
completely contained within the event channel. This is highly advanta-
geous in an OSGi environment because it simplifies the process of both
sending and receiving events.

113.3 The Event
Events have the following attributes:

• Topic – A topic that defines what happened. For example, when a bundle
is started an event is published that has a topic of org/osgi/ f ramework/
BundleEvent/STARTED .

• Properties – Zero or more properties that contain additional information
about the event. For example, the previous example event has a property
of bundle. id which is set to a Long object, among other properties.

113.3.1 Topics
The topic of an event defines the type of the event. It is fairly granular in
order to give handlers the opportunity to register for just the events they are
interested in. When a topic is designed, its name should not include any
other information, such as the publisher of the event or the data associated
with the event, those parts are intended to be stored in the event properties.

The topic is intended to serve as a first-level filter for determining which
handlers should receive the event. Event Admin service implementations
use the structure of the topic to optimize the dispatching of the events to the
handlers.

Publisher <<service>>
EventHandler

1
0..n

<<service>>
Event Admin

1
0..n

sendEvent handleEvent
postEvent
OSGi Service Platform Release 4 189-502

Event Handler Event Admin Service Specification Version 1.1
Topics are arranged in a hierarchical name space. Each level is defined by a
token and levels are separated by slashes. More precisely, the topic must
conform to the following grammar:

 topic ::= token (’/’ token) * // See 1.4.2 Core book

Topics should be designed to become more specific when going from left to
right. Handlers can provide a prefix that matches a topic, using the preferred
order allows a handler to minimize the number of prefixes it needs to regis-
ter.

Topics are case-sensitive. As a convention, topics should follow the reverse
domain name scheme used by Java packages to guarantee uniqueness. The
separator must be slashes (’ / ’ \u002F) instead of the dot (’ . ’ \u002E).

This specification uses the convention fu l ly/qual i f ied/package/ClassName/
ACTION . If necessary, a pseudo-class-name is used.

113.3.2 Properties
Information about the actual event is provided as properties. The property
name is a case-sensitive string and the value can be any object. Although
any Java object can be used as a property value, only Str ing objects and the
eight primitive types (plus their wrappers) should be used. Other types can-
not be passed to handlers that reside external from the Java VM.

Another reason that arbitrary classes should not be used is the mutability of
objects. If the values are not immutable, then any handler that receives the
event could change the value. Any handlers that received the event subse-
quently would see the altered value and not the value as it was when the
event was sent.

The topic of the event is available as a property with the key EVENT_TOPIC .
This allows filters to include the topic as a condition if necessary.

113.4 Event Handler
Event handlers must be registered as services with the OSGi framework
under the object class org .osg i .service.event .EventHandler.

Event handlers should be registered with a property (constant from the
EventConstants class) EVENT_TOPIC . The value being a Str ing[] object that
describes which topics the handler is interested in. A wildcard (’*’ \u002A)
may be used as the last token of a topic name, for example com/action/* .
This matches any topic that shares the same first tokens. For example, com/
act ion/* matches com/action/ listen .

Event Handlers which have not specified the EVENT_TOPIC service prop-
erty must not receive events.

The value of each entry in the EVENT_TOPIC service registration property
must conform to the following grammar:

topic-scope ::= ’*’ | (topic [’/*’])
190-502 OSGi Service Platform Release 4

Event Admin Service Specification Version 1.1 Event Publisher
Event handlers can also be registered with a service property named
EVENT_FILTER . The value of this property must be a string containing a
Framework filter specification. Any of the event's properties can be used in
the filter expression.

event-filter ::= filter // 3.2.6 Core book

Each Event Handler is notified for any event which belongs to the topics the
handler has expressed an interest in. If the handler has defined a
EVENT_FILTER service property then the event properties must also match
the filter expression. If the filter is an error, then the Event Admin service
should log a warning and further ignore the Event Handler.

For example, a bundle wants to see all Log Service events with a level of
WARNING or ERROR , but it must ignore the INFO and DEBUG events. Addi-
tionally, the only events of interest are when the bundle symbolic name
starts with com.acme .

public AcmeWatchDog implements BundleActivator,
EventHandler {

final static String [] topics = new String[] {
"org/osgi/service/log/LogEntry/LOG_WARNING",
"org/osgi/service/log/LogEntry/LOG_ERROR" };

public void start(BundleContext context) {
Dictionary d = new Hashtable();
d.put(EventConstants.EVENT_TOPIC, topics);
d.put(EventConstants.EVENT_FILTER,

"(bundle.symbolicName=com.acme.*)");
context.registerService(EventHandler.class.getName(),

this, d);
}
public void stop(BundleContext context) {}

public void handleEvent(Event event) {
//...

}
}

If there are multiple Event Admin services registered with the Framework
then all Event Admin services must send their published events to all regis-
tered Event Handlers.

113.5 Event Publisher
To fire an event, the event source must retrieve the Event Admin service
from the OSGi service registry. Then it creates the event object and calls one
of the Event Admin service's methods to fire the event either synchronously
or asynchronously.

The following example is a class that publishes a time event every 60 sec-
onds.

public class TimerEvent extends Thread
implements BundleActivator {
OSGi Service Platform Release 4 191-502

Specific Events Event Admin Service Specification Version 1.1
Hashtable time = new Hashtable();

ServiceTrackertracker;

public TimerEvent() { super("TimerEvent"); }

public void start(BundleContext context) {
tracker = new ServiceTracker(context,

EventAdmin.class.getName(), null);
start();

}

public void stop(BundleContext context) {
interrupt();

}

public void run() {
while (! Thread.interrupted()) try {

Calendarc = Calendar.getInstance();
set(c,Calendar.MINUTE,"minutes");
set(c,Calendar.HOUR,"hours");
set(c,Calendar.DAY_OF_MONTH,"day");
set(c,Calendar.MONTH,"month");
set(c,Calendar.YEAR,"year");

EventAdminea = (EventAdmin) tracker.getService();
if (ea != null)

ea.sendEvent(new Event("com/acme/timer", time));

Thread.sleep(60000-c.get(Calendar.SECOND)*1000);
} catch(InterruptedException e) {

// ignore, treated by while loop
}

}

void set(Calendar c, int field, String key) {
time.put(key, new Integer(c.get(field)));

}
}

113.6 Specific Events

113.6.1 General Conventions
Some handlers are more interested in the contents of an event rather than
what actually happened. For example, a handler wants to be notified when-
ever an Exception is thrown anywhere in the system. Both Framework
Events and Log Entry events may contain an exception that would be of
interest to this hypothetical handler. If both Framework Events and Log
192-502 OSGi Service Platform Release 4

Event Admin Service Specification Version 1.1 Specific Events
Entries use the same property names then the handler can access the Excep-
tion in exactly the same way. If some future event type follows the same
conventions then the handler can receive and process the new event type
even though it had no knowledge of it when it was compiled.

The following properties are suggested as conventions. When new event
types are defined they should use these names with the corresponding types
and values where appropriate. These values should be set only if they are
not null

A list of these property names can be found in Table 113.1..

The topic of an OSGi event is constructed by taking the fully qualified name
of the event class, substituting a slash for every period, and appending a
slash followed by the name of the constant that defines the event type. For
example, the topic of

BundleEvent.STARTED

Event becomes

org/osg i/f ramework/BundleEvent/STARTED

If a type code for the event is unknown then the event must be ignored.

113.6.2 OSGi Events
In order to present a consistent view of all the events occurring in the sys-
tem, the existing Framework-level events are mapped to the Event Admin’s
publish-subscribe model. This allows event subscribers to treat framework
events exactly the same as other events.

Table 113.1 General property names for events
Name Type Notes

BUNDLE_SIGNER String A signer DN

BUNDLE_SYMBOLICNAME String A bundle’s symbolic name

EVENT Object The actual event object. Used when rebroadcast-
ing an event that was sent via some other event
mechanism

EXCEPTION Throwable An exception or error

EXCEPTION_MESSAGE String Must be equal to the name of the Exception class.

EXECPTION_CLASS Str ing Must be equal to exception.getMessage()

MESSAGE Str ing A human-readable message that is usually not
localized.

SERVICE Serv iceRefe
rence

A service

SERVICE_ID Long A service’s id

SERVICE_OBJECTCLASS Str ing[] A service's objectC lass

SERVICE_PID Str ing A service’s persistent identity

TIMESTAMP Long The time when the event occurred, as reported by
System.currentTimeMillis()
OSGi Service Platform Release 4 193-502

Specific Events Event Admin Service Specification Version 1.1
The properties associated with the event depends on its class as outlined in
the following sections.

113.6.3 Framework Event
Framework Events must be delivered asynchronously with a topic of:

org/osgi/framework/FrameworkEvent/<event type>

The following event types are supported:

STARTED
ERROR
PACKAGES_REFRESHED
STARTLEVEL_CHANGED
WARNING
INFO

Other events are ignored, no event will be send by the Event Admin. The fol-
lowing event properties must be set for a Framework Event.

• event – (FrameworkEvent) The original event object.

If the FrameworkEvent getBundle method returns a non-nul l value, the fol-
lowing fields must be set:

• bundle . id – (Long) The source’s bundle id.
• bundle.symbol icName – (Str ing) The source bundle's symbolic name.

Only set if the bundle’s symbolic name is not nul l .
• bundle – (Bundle) The source bundle.

If the FrameworkEvent getThrowable method returns a non- nul l value:

• exception .class – (Str ing) The fully-qualified class name of the attached
Exception.

• exception .message –(Str ing) The message of the attached exception.
Only set if the Exception message is not null .

• exception – (Throwable) The Exception returned by the getThrowable
method.

113.6.4 Bundle Event
Framework Events must be delivered asynchronously with a topic of:

org/osgi/framework/BundleEvent/<event type>

The following event types are supported:

INSTALLED
STARTED
STOPPED
UPDATED
UNINSTALLED
RESOLVED
UNRESOLVED

Unknown events must be ignored.

The following event properties must be set for a Bundle Event. If listeners
require synchronous delivery then they should register a Synchronous Bun-
dle Listener with the Framework.
194-502 OSGi Service Platform Release 4

Event Admin Service Specification Version 1.1 Event Admin Service
• event – (BundleEvent) The original event object.
• bundle . id – (Long) The source’s bundle id.
• bundle.symbol icName – (Str ing) The source bundle's symbolic name.

Only set if the bundle’s symbolic name is not nul l .
• bundle – (Bundle) The source bundle.

113.6.5 Service Event
Service Events must be delivered asynchronously with the topic:

org/osg i/f ramework/ServiceEvent/<event type>

The following event types are supported:

REGISTERED
MODIFIED
UNREGISTERING

Unknown events must be ignored.

• event – (ServiceEvent) The original Service Event object.
• service – (ServiceReference) The result of the getServiceReference

method
• service. id – (Long) The service's ID.
• service .pid – (Str ing) The service's persistent identity. Only set if not

nul l .
• service .ob jectClass – (String[]) The service's object class.

113.7 Event Admin Service
The Event Admin service must be registered as a service with the object
class org .osg i .service.event .EventAdmin . Multiple Event Admin services
can be registered. Publishers should publish their event on the Event Admin
service with the highest value for the SERVICE_RANKING service property.
This is the service selected by the getServiceReference method.

The Event Admin service is responsible for tracking the registered handlers,
handling event notifications and providing at least one thread for asynchro-
nous event delivery.

113.7.1 Synchronous Event Delivery
Synchronous event delivery is initiated by the sendEvent method. When
this method is invoked, the Event Admin service determines which han-
dlers must be notified of the event and then notifies each one in turn. The
handlers can be notified in the caller's thread or in an event-delivery thread,
depending on the implementation. In either case, all notifications must be
completely handled before the sendEvent method returns to the caller.

Synchronous event delivery is significantly more expensive than asynchro-
nous delivery. All things considered equal, the asynchronous delivery
should be preferred over the synchronous delivery.
OSGi Service Platform Release 4 195-502

Event Admin Service Event Admin Service Specification Version 1.1
Callers of this method will need to be coded defensively and assume that
synchronous event notifications could be handled in a separate thread. That
entails that they must not be holding any monitors when they invoke the
sendEvent method. Otherwise they significantly increase the likelihood of
deadlocks because Java monitors are not reentrant from another thread by
definition. Not holding monitors is good practice even when the event is
dispatched in the same thread.

113.7.2 Asynchronous Event Delivery
Asynchronous event delivery is initiated by the postEvent method. When
this method is invoked, the Event Admin service must determine which
handlers are interested in the event. By collecting this list of handlers during
the method invocation, the Event Admin service ensures that only handlers
that were registered at the time the event was posted will receive the event
notification. This is the same as described in Delivering Events on page 92 of
the Core specification.

The Event Admin service can use more than one thread to deliver events. If
it does then it must guarantee that each handler receives the events in the
same order as the events were posted. This ensures that handlers see events
in the expected order. For example, it would be an error to see a destroyed
event before the corresponding created event.

Before notifying each handler, the event delivery thread must ensure that
the handler is still registered in the service registry. If it has been unregis-
tered then the handler must not be notified.

The Event Admin service ensures that events are delivered in a well-defined
order. For example, if a thread posts events A and B in the same thread then
the handlers should not receive them in the order B , A . if A and B are posted
by different threads at about the same time then no guarantees about the
order of delivery are made.

113.7.3 Order of Event Delivery
Asynchronous events are delivered in the order in which they arrive in the
event queue. Thus if two events are posted by the same thread then they will
be delivered in the same order (though other events may come between
them). However, if two or more events are posted by different threads then
the order in which they arrive in the queue (and therefore the order in
which they are delivered) will depend very much on subtle timing issues.
The event delivery system cannot make any guarantees in this case.

Synchronous events are delivered as soon as they are sent. If two events are
sent by the same thread, one after the other, then they must be guaranteed
to be processed serially and in the same order. However, if two events are
sent by different threads then no guarantees can be made. The events can be
processed in parallel or serially, depending on whether or not the Event
Admin service dispatches synchronous events in the caller's thread or in a
separate thread.
196-502 OSGi Service Platform Release 4

Event Admin Service Specification Version 1.1 Reliability
Note that if the actions of a handler trigger a synchronous event, then the
delivery of the first event will be paused and delivery of the second event
will begin. Once delivery of the second event has completed, delivery of the
first event will resume. Thus some handlers may observe the second event
before they observe the first one.

113.8 Reliability

113.8.1 Exceptions in callbacks
If a handler throws an Exception during delivery of an event, it must be
caught by the Event Admin service and handled in some implementation
specific way. If a Log Service is available the exception should be logged.
Once the exception has been caught and dealt with, the event delivery must
continue with the next handlers to be notified, if any.

113.8.2 Dealing with Stalled Handlers
Event handlers should not spend too long in the handleEvent method.
Doing so will prevent other handlers in the system from being notified. If a
handler needs to do something that can take a while, it should do it in a dif-
ferent thread.

An event admin implementation can attempt to detect stalled or dead-
locked handlers and deal with them appropriately. Exactly how it deals
with this situation is left as implementation specific. One allowed imple-
mentation is to mark the current event delivery thread as invalid and spawn
a new event delivery thread. Event delivery must resume with the next han-
dler to be notified.

Implementations can choose to blacklist any handlers that they determine
are misbehaving. Blacklisted handlers must not be notified of any events. If
a handler is blacklisted, the event admin should log a message that explains
the reason for it.

113.9 Inter-operability with Native
Applications
Implementations of the Event Admin service can support passing events to,
and/or receiving events from native applications.

If the implementation supports native inter-operability, it must be able to
pass the topic of the event and its properties to/from native code. Implemen-
tations must be able to support property values of the following types:

• Str ing objects, including full Unicode support
• In teger , Long, Byte , Short , F loat , Double , Boolean , Character objects
• Single-dimension arrays of the above types (including Str ing)
• Single-dimension arrays of Java's eight primitive types (in t , long, byte,

short , f loat, double, boo lean , char)
OSGi Service Platform Release 4 197-502

Security Event Admin Service Specification Version 1.1
Implementations can support additional types. Property values of unsup-
ported types must be silently discarded.

113.10 Security

113.10.1 Topic Permission
The TopicPermission class allows fine-grained control over which bundles
may post events to a given topic and which bundles may receive those
events.

The target parameter for the permission is the topic name. TopicPermiss ion
classes uses a wildcard matching algorithm similar to the BasicPermission
class, except that slashes are used as separators instead of periods. For exam-
ple, a name of a/b/* implies a/b/c but not x/y/z or a/b .

There are two available actions: PUBLISH and SUBSCRIBE . These control a
bundle's ability to either publish or receive events, respectively. Neither one
implies the other.

113.10.2 Required Permissions
Bundles that need to register an event handler must be granted
ServicePermission [org .osg i .serv ice .event.EventHandler , REGISTER]. In
addition, handlers require TopicPermiss ion[< top ic>, SUBSCRIBE] for each
topic they want to be notified about.

Bundles that need to publish an event must be granted ServicePermission[
org .osg i .serv ice .event .EventAdmin , GET] so that they may retrieve the
Event Admin service and use it. In addition, event sources require
TopicPermission[<top ic>, PUBLISH] for each topic they want to send
events to.

Bundles that need to iterate the handlers registered with the system must be
granted ServicePermiss ion[org .osg i .service.event .EventHandler, GET] to
retrieve the event handlers from the service registry.

Only a bundle that contains an Event Admin service implementation
should be granted ServicePermission[org.osg i. service .event.EventAdmin,
REGISTER] to register the event channel admin service.

113.10.3 Security Context During Event Callbacks
During an event notification, the Event Admin service's Protection Domain
will be on the stack above the handler's Protection Domain. In the case of a
synchronous event, the event publisher's protection domain can also be on
the stack.

Therefore, if a handler needs to perform a secure operation using its own
privileges, it must invoke the doPr iv i leged method to isolate its security
context from that of its caller.

The event delivery mechanism must not wrap event notifications in a
doPriv i leged call.
198-502 OSGi Service Platform Release 4

Event Admin Service Specification Version 1.1 Changes
113.11 Changes
• Corrected spelling of EXCEPTION_CLASS constant by adding new con-

stant with the proper spelling and deprecating the misspelled constant.
• Added BUNDLE_ID and BUNDLE constants.

113.12 org.osgi.service.event
Event Admin Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.event; version=1.1

113.12.1 Summary
• Event - An event. [p.199]
• EventAdmin - The Event Admin service. [p.200]
• EventConstants - Defines standard names for EventHandler properties.

[p.200]
• EventHandler - Listener for Events. [p.202]
• TopicPermission - A bundle’s authority to publish or subscribe to event

on a topic. [p.203]
Event

113.12.2 public class Event
An event. Event objects are delivered to EventHandler services which sub-
srcibe to the topic of the event.
Event(String,Dictionary)

113.12.2.1 public Event(String topic, Dictionary properties)

topic The topic of the event.

properties The event’s properties (may be null).

Constructs an event.

Throws IllegalArgumentException – If topic is not a valid topic name.
equals(Object)

113.12.2.2 public boolean equals(Object object)

object The Event object to be compared.

Compares this Event object to another object.

An event is considered to be equal to another event if the topic is equal and
the properties are equal.

Returns true if object is a Event and is equal to this object; false otherwise.
getProperty(String)

113.12.2.3 public final Object getProperty(String name)

name the name of the property to retrieve

Retrieves a property.

Returns The value of the property, or null if not found.
getPropertyNames()
OSGi Service Platform Release 4 199-502

org.osgi.service.event Event Admin Service Specification Version 1.1
113.12.2.4 public final String[] getPropertyNames()

Returns a list of this event’s property names.

Returns A non-empty array with one element per property.
getTopic()

113.12.2.5 public final String getTopic()

Returns the topic of this event.

Returns The topic of this event.
hashCode()

113.12.2.6 public int hashCode()

Returns a hash code value for the object.

Returns An integer which is a hash code value for this object.
matches(Filter)

113.12.2.7 public final boolean matches(Filter filter)

filter The filter to test.

Tests this event’s properties against the given filter.

Returns true If this event’s properties match the filter, false otherwise.
toString()

113.12.2.8 public String toString()

Returns the string representation of this event.

Returns The string representation of this event.
EventAdmin

113.12.3 public interface EventAdmin
The Event Admin service. Bundles wishing to publish events must obtain
the Event Admin service and call one of the event delivery methods.
postEvent(Event)

113.12.3.1 public void postEvent(Event event)

event The event to send to all listeners which subscribe to the topic of the event.

Initiate asynchronous delivery of an event. This method returns to the caller
before delivery of the event is completed.

Throws SecurityException – If the caller does not have TopicPermission[topic,
PUBLISH] for the topic specified in the event.
sendEvent(Event)

113.12.3.2 public void sendEvent(Event event)

event The event to send to all listeners which subscribe to the topic of the event.

Initiate synchronous delivery of an event. This method does not return to
the caller until delivery of the event is completed.

Throws SecurityException – If the caller does not have TopicPermission[topic,
PUBLISH] for the topic specified in the event.
EventConstants

113.12.4 public interface EventConstants
Defines standard names for EventHandler properties.
BUNDLE

113.12.4.1 public static final String BUNDLE = “bundle”

The Bundle object of the bundle relevant to the event.

Since 1.1
BUNDLE_ID
200-502 OSGi Service Platform Release 4

Event Admin Service Specification Version 1.1 org.osgi.service.event
113.12.4.2 public static final String BUNDLE_ID = “bundle.id”

The Bundle id of the bundle relevant to the event.

Since 1.1
BUNDLE_SIGNER

113.12.4.3 public static final String BUNDLE_SIGNER = “bundle.signer”

The Distinguished Name of the bundle relevant to the event.
BUNDLE_SYMBOLICNAME

113.12.4.4 public static final String BUNDLE_SYMBOLICNAME =
“bundle.symbolicName”

The Bundle Symbolic Name of the bundle relevant to the event.
EVENT

113.12.4.5 public static final String EVENT = “event”

The actual event object. Used when rebroadcasting an event that was sent
via some other event mechanism.
EVENT_FILTER

113.12.4.6 public static final String EVENT_FILTER = “event.filter”

Service Registration property (named event.filter) specifying a filter to fur-
ther select Event s of interest to a Event Handler service.

Event handlers MAY be registered with this property. The value of this prop-
erty is a string containing an LDAP-style filter specification. Any of the
event’s properties may be used in the filter expression. Each event handler is
notified for any event which belongs to the topics in which the handler has
expressed an interest. If the event handler is also registered with this service
property, then the properties of the event must also match the filter for the
event to be delivered to the event handler.

If the filter syntax is invalid, then the Event Handler must be ignored and a
warning should be logged.

See Also Event[p.199] , org.osgi.framework.Filter
EVENT_TOPIC

113.12.4.7 public static final String EVENT_TOPIC = “event.topics”

Service registration property (named event.topic) specifying the Event top-
ics of interest to a Event Handler service.

Event handlers SHOULD be registered with this property. The value of the
property is an array of strings that describe the topics in which the handler
is interested. An asterisk (’*’) may be used as a trailing wildcard. Event Han-
dlers which do not have a value for this property must not receive events.
More precisely, the value of each entry in the array must conform to the fol-
lowing grammar:

topic-description := ‘*’ | topic (‘/*’)?
topic := token (‘/’ token)*

See Also Event[p.199]
EXCEPTION

113.12.4.8 public static final String EXCEPTION = “exception”

An exception or error.
EXCEPTION_CLASS

113.12.4.9 public static final String EXCEPTION_CLASS = “exception.class”

Must be equal to the name of the Exception class.
OSGi Service Platform Release 4 201-502

org.osgi.service.event Event Admin Service Specification Version 1.1
Since 1.1
EXCEPTION_MESSAGE

113.12.4.10 public static final String EXCEPTION_MESSAGE = “exception.message”

Must be equal to exception.getMessage()
EXECPTION_CLASS

113.12.4.11 public static final String EXECPTION_CLASS = “exception.class”

This constant was released with an incorrect spelling. It has been replaced
by EXCEPTION_CLASS [p.201]

Deprecated As of 1.1, replaced by EXCEPTION_CLASS
MESSAGE

113.12.4.12 public static final String MESSAGE = “message”

A human-readable message that is usually not localized.
SERVICE

113.12.4.13 public static final String SERVICE = “service”

A service
SERVICE_ID

113.12.4.14 public static final String SERVICE_ID = “service.id”

A service’s id.
SERVICE_OBJECTCLASS

113.12.4.15 public static final String SERVICE_OBJECTCLASS = “service.objectClass”

A service’s objectClass
SERVICE_PID

113.12.4.16 public static final String SERVICE_PID = “service.pid”

A service’s persistent identity.
TIMESTAMP

113.12.4.17 public static final String TIMESTAMP = “timestamp”

The time when the event occurred, as reported by System.currentTimeMil-
lis()
EventHandler

113.12.5 public interface EventHandler
Listener for Events.

EventHandler objects are registered with the Framework service registry
and are notified with an Event object when an event is sent or posted.

EventHandler objects can inspect the received Event object to determine its
topic and properties.

EventHandler objects must be registered with a service property
EventConstants .EVENT_TOPIC [p.201] whose value is the list of topics in
which the event handler is interesed.

For example:

String[] topics = new String[] {EventConstants.EVENT_TOPIC,
“com/isv/*”};
Hashtable ht = new Hashtable();
ht.put(EVENT_TOPIC, topics);
context.registerService(EventHandler.class.getName(), this,
ht);
202-502 OSGi Service Platform Release 4

Event Admin Service Specification Version 1.1 org.osgi.service.event
Event Handler services can also be registered with an
EventConstants .EVENT_FILTER [p.201] service propery to further filter the
events. If the syntax of this filter is invalid, then the Event Handler must be
ignored by the Event Admin service. The Event Admin service should log a
warning.

Security Considerations. Bundles wishing to monitor Event objects will
require ServicePermission[EventHandler,REGISTER] to register an
EventHandler service. The bundle must also have TopicPermission[topic,
SUBSCRIBE] for the topic specified in the event in order to receive the event.

See Also Event[p.199]
handleEvent(Event)

113.12.5.1 public void handleEvent(Event event)

event The event that occurred.

Called by the EventAdmin [p.200] service to notify the listener of an event.
TopicPermission

113.12.6 public final class TopicPermission
extends Permission
A bundle’s authority to publish or subscribe to event on a topic.

A topic is a slash-separated string that defines a topic.

For example:

org/osgi/service/foo/FooEvent/ACTION

TopicPermission has two actions: publish and subscribe.
PUBLISH

113.12.6.1 public static final String PUBLISH = “publish”

The action string publish.
SUBSCRIBE

113.12.6.2 public static final String SUBSCRIBE = “subscribe”

The action string subscribe.
TopicPermission(String,String)

113.12.6.3 public TopicPermission(String name, String actions)

name Topic name.

actions publish,subscribe (canonical order).

Defines the authority to publich and/or subscribe to a topic within the
EventAdmin service.

The name is specified as a slash-separated string. Wildcards may be used.
For example:

org/osgi/service/fooFooEvent/ACTION
com/isv/*
*

A bundle that needs to publish events on a topic must have the appropriate
TopicPermission for that topic; similarly, a bundle that needs to subscribe to
events on a topic must have the appropriate TopicPermssion for that topic.
equals(Object)
OSGi Service Platform Release 4 203-502

org.osgi.service.event Event Admin Service Specification Version 1.1
113.12.6.4 public boolean equals(Object obj)

obj The object to test for equality with this TopicPermission object.

Determines the equality of two TopicPermission objects. This method
checks that specified TopicPermission has the same topic name and actions
as this TopicPermission object.

Returns true if obj is a TopicPermission, and has the same topic name and actions as
this TopicPermission object; false otherwise.
getActions()

113.12.6.5 public String getActions()

Returns the canonical string representation of the TopicPermission actions.

Always returns present TopicPermission actions in the following order:
publish,subscribe.

Returns Canonical string representation of the TopicPermission actions.
hashCode()

113.12.6.6 public int hashCode()

Returns the hash code value for this object.

Returns A hash code value for this object.
implies(Permission)

113.12.6.7 public boolean implies(Permission p)

p The target permission to interrogate.

Determines if the specified permission is implied by this object.

This method checks that the topic name of the target is implied by the topic
name of this object. The list of TopicPermission actions must either match
or allow for the list of the target object to imply the target TopicPermission
action.

x/y/*,”publish” -> x/y/z,”publish” is true
*,”subscribe” -> x/y,”subscribe” is true
*,”publish” -> x/y,”subscribe” is false
x/y,”publish” -> x/y/z,”publish” is false

Returns true if the specified TopicPermission action is implied by this object; false
otherwise.
newPermissionCollection()

113.12.6.8 public PermissionCollection newPermissionCollection()

Returns a new PermissionCollection object suitable for storing TopicPer-
mission objects.

Returns A new PermissionCollection object.
204-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 Introduction
114 Deployment Admin
Specification
Version 1.0

114.1 Introduction
The ability to install new software components after the time of manufac-
ture is of increasing interest to manufacturers, operators, and end users. End
users already are, or soon will be, accustomed to installing applications or
services on their devices from remote servers.

The OSGi Service Platform provides mechanisms to manage the lifecycle of
bundles, configuration objects, and permission objects, but the overall con-
sistency of the runtime configuration is the responsibility of the manage-
ment agent. In other words, the management agent decides to install, update,
or uninstall bundles, create or delete configuration or permission objects,
and manage other resource types.

The task of the management agent is extensive because it must track the
sometimes fine-grained dependencies and constraints between the different
resource types. This model, though extremely flexible, leaves many details
up to the implementation—significantly hindering the interoperability of
devices because it does not unify the management aspects from the manage-
ment systems point of view. This specification, therefore, introduces the
Deployment Admin service that standardizes the access to some of the respon-
sibilities of the management agent: that is, the lifecycle management of
interlinked resources on an OSGi Service Platform.The role of the Deploy-
ment Admin service is depicted in Figure 114.1.

Figure 114.1 Deployment Admin role

Management
Agent Impl

Framework Configuration
Admin

Conditional
Permission
Admin

Other Resource
ManagersOther Resource

Managers

Deployment
Admin

Remote Manager
remotely manage
OSGi Service Platform Release 4 205-502

Introduction Deployment Admin Specification Version 1.0
114.1.1 Essentials
• Installing/Uninstalling – Provide a Deployment Package concept to install

and uninstall bundles and related resources on an OSGi Service Platform
as an atomic unit.

• Tamper Detection – Provide detection of changes to a Deployment
Package.

• Securing – Provide a security model that allows Operators to control the
Deployment Packages that are installed on an OSGi Service Platform.

• Media Independence – Deployment Packages must have the capacity to
load from different media such as CD-ROM, over the air, wireless, etc.

• Management – Management of a repository of Deployment Packages
must be possible locally on the device as well as remotely.

• Customizing – The author of a Deployment Package must be permitted to
customize the environment during the installation and uninstallation
operations.

• Extending – The resource types that are used in a Deployment Package
must be easy to extend.

114.1.2 Entities
• Resource – A file in a Deployment Package that is processed to create arti-

facts in the Service Platform. For example, bundles, configurations, and
permissions are different resources.

• Deployment Admin Service – The service that is used to install and unin-
stall Deployment Packages, as well as to provide information about the
repository of Deployment Packages.

• Resource Processor – A service that can handle the lifecycle of a specific
resource type. It processes a resource to create a number of artifacts that
are removed when the resource is dropped.

• Deployment Package – A group of resources that must be treated as a unit.
Unbreakable dependencies exist among these resources.

• Artifact – A construct that is created from a Resource in a Deployment
Package. A resource can have zero or more artifacts related to it. Artifacts
do not have a common interface because their nature differs and their
existence is abstracted by the Resource Processor services. Artifacts must
be removed when their related resources are dropped. An example of an
artifact is a Configuration object that is created from an configuration
file in a Deployment Package.

• Customizer – A bundle carried in a Deployment Package that can perform
initialization during an install operation and cleanup during an unin-
stall operation.

• Fix Package – A Deployment Package that is an update to an resident
Deployment Package, which does not carry some resources because they
are unchanged.
206-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 Deployment Package
Figure 114.2 Deployment Admin Service, org.osgi.service.deploymentadmin package

114.1.3 Synopsis
A developer can package a number of resources in a Deployment Package. A
Deployment Package is stored in a JAR file, with a format that is similar to
bundles. A Deployment Package JAR can be installed via the Deployment
Admin service via an input stream. The Deployment Admin service man-
ages the bundle resources itself, but processes every other resource in the
Deployment Package by handing them off to a Resource Processor service
that is designated for that resource. The Resource Processor service will then
process the resource to create a number of artifacts.

The uninstallation and update of a Deployment Package works in a similar
manner. All Resource Processor services are notified about any resources
that are dropped or changed.

If all resources have been processed, the changes are committed. If an opera-
tion on the Deployment Admin service fails, all changes are rolled back. The
Deployment Admin service is not, however, guaranteed to support all fea-
tures of transactions.

114.2 Deployment Package
A Deployment Package is a set of related resources that need to be managed
as a unit rather than individual pieces. For example, a Deployment Package
can contain both a bundle and its configuration data. The resources of a
Deployment Package are tightly coupled to the Deployment Package and
cannot be shared with other Deployment Packages.

A Deployment Package is not a script that brings the system from one con-
sistent state to another; several deployment packages may be needed to
achieve a new consistent state. Like a bundle, a Deployment Package does
not have to be self-contained. Its bundle resources can have dependencies
on Java packages and services provided by other Deployment Packages.

Deployment
Admin

Deployment
Admin Impl

Resource
Processor

Resource
Processor Impl

Deployment
Package

Manager Impl

Deployment
Package Impl 1

1 *

*

manages

holds

processes

1 * Resource
Reference

1

*

Artifact Impl

1

* 1
OSGi Service Platform Release 4 207-502

Deployment Package Deployment Admin Specification Version 1.0
For example, a suite of games shares some parts that are common to both
games. The suite contains two games: Chess (com.acme.chess) and Back-
gammon (com.acme.backg). Both share a top-score database as well as a 3D
graphic library.

• com.th ird.3d – The 3D graphic library comes from a third-party pro-
vider. It is a Deployment Package of its own, composed of several
bundles and possible configuration objects.

• com.acme.score – The top-score database would also be its own
Deployment Package, and would in fact be optional. It offers a service for
storing top scores, but games can function without this service.

Each game is a Deployment Package, allowing them to be installed indepen-
dently. Alternatively, the two games can be packaged into the same Deploy-
ment Package, but in this case they must be installed and removed together
and can no longer be deployed independently.

These two different packaging strategies cannot be used simultaneously.
Once the games are deployed separately, they can no longer be grouped later
in an update, because that action would move ownership of the bundle
resource to another Deployment Package—which is specifically not
allowed. A bundle resource can belong to only one Deployment Package.

These two packaging scenarios are depicted in Figure 114.3.

Figure 114.3 Packaged game

Deployment Packages are managed as first-class citizens during runtime, sim-
ilar to bundles. The DeploymentPackage object represents this concept in
runtime.

114.2.1 Resources
A Deployment Package consists of installable resources. Resources are
described in the Name sections of the Manifest. They are stored in the JAR file
under a path. This path is called the resource id.

Subsets of these resources are the bundles. Bundles are treated differently
from the other resources by the Deployment Admin service. Non-bundle
resources are called processed resources.

Bundles are managed by the Deployment Admin service directly. When
installing a new bundle, the Deployment Admin service must set the bundle
location to the following URL:

location ::= 'osgi-dp:' bsn

com.acme.backg

com.acme.chess

deployment package
resource

com.acme.score

com.third.3d

com.acme.chess

com.acme.backg

packaged separatelypackaged together

dependency
208-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 Deployment Package
bsn ::= unique-name // See 1.4.2 Core

The bsn stands for the bundle’s Bundle Symbolic Name, without any param-
eters, which implies that only a single version of a bundle can be installed at
any moment in time. The osgi-dp: scheme is not required to have a valid
URL handler.

Processed resources are not managed directly by the Deployment Admin
service; their management must be handed off to a Resource Processor ser-
vice that is selected in the Name section. The logical structure and process-
ing of resources is depicted in Figure 114.4.

Figure 114.4 Structure of a Deployment Package

114.2.2 Atomicity and Sharing
A Deployment Package is a reified concept, like a bundle, in an OSGi Service
Platform. It is created and managed by the Deployment Admin service. As a
unit, a Deployment Package should be installed or uninstalled atomically.

Deployment packages provide an ownership model for resources installed
in an OSGi Service Platform. A Deployment Package contains resources,
which once processed, will result in the creation of a number of artifacts in
the OSGi Platform such as:

• Installed bundles
• Configuration objects
• System properties
• Certificates
• Wiring schemes

A Deployment Package will own its resources. If a Deployment Package is
uninstalled, all its resources, and thus its artifacts, must be removed as well.
The ownership model follows a no-sharing principle: equal resources are not
shared between deployment packages.

The meaning of "equal" is dependent on the resource type. For example, two
bundles are considered equal if their bundle symbolic name is equal, regard-
less of the version.

Deployment
Package

Resource
Processor

ResourceBundle ResourceManifest

bundle
symbolic name

meta data processed resources

1

1 *

1 1

*

pr
oc

es
se

db
y

Signatures

1

*

ordered

describes
OSGi Service Platform Release 4 209-502

File Format Deployment Admin Specification Version 1.0
A sharing violation must be considered an error. The install or update of the
offending Deployment Package must fail if a resource would be affected by
another Deployment Package. The verification of this rule is delegated to
the Resource Processor services, or the Deployment Admin service in case of
bundles.

For example, a Deployment Package could be used to install bundles and
configuration objects for Managed Services (singleton configurations).
Because of the no-sharing principle, an installed bundle must belong to
one—and only one—Deployment Package (as defined by its Bundle Sym-
bolic Name). A singleton configuration can be set only when the associated
bundle is in the same Deployment Package. Trying to install a Deployment
Package when one of the bundles or one of the configuration objects is
already present and associated with another Deployment Package is an
error, and the install must fail in such a case.

This strong no-sharing rule ensures a clean and robust lifecycle. It allows the
simple cleanup rule: the Deployment Package that installs a resource is the
one that must uninstall it.

114.2.3 Naming
Every Deployment Package must have a name and a version. Package
authors should use unique reverse domain naming, like the naming used
for Java packages. The version syntax must follow the rules defined in Ver-
sion on page 28 in [2] OSGi Service Platform Core Specification; the version must
be specified.

The name is set with a Manifest header. This name is used to detect whether
an install is an update (an Deployment Package has the given name) or an
install (no such Deployment Package exists). The name must be compared
in a case-sensitive manner.

Together, the name and version specify a unique Deployment Package; a
device will consider any Deployment Package with the same name and ver-
sion pairs to be identical. Installing a Deployment Package with a name ver-
sion identical to the existing Deployment Package must not result in any
actions.

Deployment packages with the same name but different versions are con-
sidered to be versions of the same deployment package. The Deployment
Admin service maintains a repository of installed Deployment Packages.
This set must not contain multiple versions of the same Deployment Pack-
age. Installing a deployment package when a prior or later version was
already present must cause replacement of the existing deployment pack-
age. In terms of version, this action can be either an upgrade or downgrade.

114.3 File Format
A Deployment Package is a standard JAR file as specified in [1] JAR File Speci-
fication. The extension of a Deployment Package JAR file name should be
.dp . The MIME type of a Deployment Package JAR should be:

application/vnd.osgi.dp

For example, valid Deployment Package JAR names are:
210-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 File Format
com.acme.chess.dp
chess.dp

A Deployment Package must be formed in such a way that it can be read
with a Jar InputStream object. Therefore, the order of the files in the JAR file
is important. The order must be:

1 META-INF/MANIFEST.MF – A Deployment Package must begin with a
standard Java Manifest file. This rule is not explicitly defined in the Java
JAR file specification; it is implied, however, by the known
Jar InputStream class implementations.

2 META-INF/*.SF, META-INF/*.DSA, META-INF/* .RS – If the Deployment
Package is signed, subsequent files in the JAR must be the signature files
as defined in the manifest specification. The signature files are not con-
sidered resources. Signing is discussed in Signing on page 212.

3 Localization files – Any manifest localization files are normally stored in
the OSGI-INF directory. Localization files must precede the other files
because the resource processors can require localized information.

4 Bundles must come before any other resource types so that they can be
installed before any processed resources.

5 Resources – Any processed resources needed for this package. Resources
are processed in the order in which they appear in the JAR file, and
dropped in reverse order.

The order of all the resources in the JAR file is significant, and is called the
resource order. The purpose of the resource order is to allow the JAR to be pro-
cessed as a stream. It is not necessary to buffer the input stream in memory
or to hard disk, or to allow random access to its contents. The specification
allows access to the stream sequentially. To increase the determinism, the
resource order must also determine the processing order of the bundles and
the resources.

The format is shown graphically in Figure 114.5.

Figure 114.5 Deployment Package JAR format

Manifest

signature files

bundles

processed

resources

1

2n

m

q
resource
order

localization files

r

OSGi Service Platform Release 4 211-502

File Format Deployment Admin Specification Version 1.0
114.3.1 Signing
Deployment packages are optionally signed by JAR signing, compatible
with the operation of the standard java.uti l . jar . Jar InputStream class, i.e. as
defined in JAR Structure and Manifest on page 13 of [2] OSGi Service Platform
Core Specification. This compatibility requires that the manifest must be the
first file in the input stream, and the signature files must follow directly
thereafter.

A Deployment Package must follow the same rules for signing as bundles,
described in the Framework specification, Digitally Signed JAR Files on page
12 in [2] OSGi Service Platform Core Specification.

The Deployment Admin service must reject a Deployment Package that has
an invalid signature.

114.3.2 Path Names
Path names must be limited to remove some of the unnecessary complexi-
ties that are caused by path names that can contain any Unicode character.
Therefore, a path name must not contain any character except:

[A-Za-z0-9_.-]

Directories are separated by a forward slash character (’ / ’ \u002F).

114.3.3 Deployment Package Manifest
The Manifest of a Deployment Package consists of a global section and sepa-
rate sections for each resource contained within it, called the Name sections.
The global section of a Deployment Package Manifest can contain the fol-
lowing headers that have a defined meaning in this specification:

• DeploymentPackage-Symbol icName – The name of the deployment
package as a reverse domain name. For example, com.acme.chess . See
further DeploymentPackage-SymbolicName on page 214.

• DeploymentPackage-Version – The version of the deployment package
as defined in [2] OSGi Service Platform Core Specification. See further
DeploymentPackage-Version on page 214.

• DeploymentPackage-F ixPack – Marks this deployment package as a
partial update to a resident deployment package. See Fix Package on page
217.

The following headers provide information about the Deployment Package,
but are not interpreted by the Deployment Admin service.

• DeploymentPackage-Copyright – Specifies the copyright statement for this
Deployment Package.

• DeploymentPackage-ContactAddress – How to contact the vendor/
developer of this Deployment Package.

• DeploymentPackage-Description – A short description of this Deployment
Package.

• DeploymentPackage-DocURL – A URL to any documentation that is
available for this Deployment Package. The URL can be relative to the
JAR file.

• DeploymentPackage-Vendor – The vendor of the Deployment Package.
212-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 File Format
• DeploymentPackage-License – A URL to a license file. The URL can be rel-
ative to the Deployment Package JAR file.

As with any JAR file Manifest, additional headers can be added and must be
ignored by the Deployment Admin service. If any fields have human read-
able content, localization can be provided through property files as
described in Localization on page 62 in [2] OSGi Service Platform Core Specifica-
tion. The Deployment Admin service must always use the raw, untranslated
version of the header values.

For example, the global section of a Deployment Package Manifest could
look like:

Manifest-Version: 1.0
DeploymentPackage-SymbolicName: com.third._3d
DeploymentPacakge-Version: 1.2.3.build22032005
DeploymentPackage-Copyright: ACME Inc. (c) 2003
↵

Additionally, the Deployment Package Manifest must carry a Name section
for each resource in the JAR file (except the resources in the META-INF direc-
tory). Each name section must start with an empty line (carriage return and
line feed, shown as ↵ when its usage could be ambiguous).

The Name section must start with a Name header that contains the path
name of the resource. This path name is also used as resource id. The path
name must be constructed with the characters as defined in Path Names on
page 212. For example:

Name: bundles/3dlib.jar

The name section can include any additional relevant meta data for the
named resource. For bundles, only the specification of the Bundle-
Symbol icName and Bundle-Vers ion headers are required, but other headers
can be added. Unrecognized headers are allowed and must be ignored by the
Deployment Admin service. The Name section is also used by the JAR sign-
ing to include digests of the actual resources.

The following headers are architected for the Name section in the manifest
of a deployment package:

• Bundle-SymbolicName – Only for bundle resources. This header must be
identical to the Bundle Symbolic Name of the named bundle. If there is a
discrepancy, the install of the Deployment Package must fail. If the
bundle resource has no Bundle-SymbolicName in its manifest, however,
the Deployment Admin must use the given symbolic name for the calcu-
lation of the location of this bundle.

• Bundle-Version – Only for bundle resources. This header must be identical
to the bundle version of the named bundle. Its syntax must follow the
version syntax as defined in the Framework specification. The instal-
lation must fail if incorrect.

• DeploymentPackage-Missing – (true| false) Indicates that the resource is
logically part of the Deployment Package but that a previous version of
the Deployment Package already contained this resource—there is no
data for this resource. See Fix Package on page 217 for a further expla-
nation.
OSGi Service Platform Release 4 213-502

File Format Deployment Admin Specification Version 1.0
• Resource-Processor – The PID of the Resource Processor service that must
install the given resource.

• DeploymentPackage-Customizer – (t rue|fa lse) Indicates whether this
bundle is a customizer bundle by listing a PID for the customizer service.
See a further discussion in Customizer on page 218.

An example Manifest of a Deployment Package that deploys the 3D pack-
age, consisting of two bundles and no resources, could look like:

Manifest-Version: 1.0
DeploymentPackage-SymbolicName: com.third._3d
DeploymentPacakge-Version: 1.2.3.build22032005
↵
Name: bundles/3dlib.jar
SHA1-Digest: MOez1l4gXHBo8ycYdAxstK3UvEg=
Bundle-SymbolicName: com.third._3d
Bundle-Version: 2.3.1
↵
Name: bundles/3dnative.jar
SHA1-Digest: N8Ow2UY4yjnHZv5zeq2I1Uv/+uE=
Bundle-SymbolicName: com.third._3d.native
Bundle-Version: 1.5.3
↵
Name: OSGI-INF/autoconf.xml
SHA1-Digest: M78w24912HgiZv5zeq2X1Uv-+uF=
Resource-Processor:
 org.osgi.deployment.rp.autoconf
↵

114.3.4 Deployment Package Headers
This section contains a detailed description of the different headers for a
Deployment Package with their value syntax.

114.3.4.1 DeploymentPackage-SymbolicName

The name of the deployment package. A name must follow the same rules
as Java packages. The grammar is as follows:

DeploymentPackage-SymbolicName ::= unique-name
// See 1.4.2 Core

This header is mandatory and must not be localized.

An example is:

DeploymentPackage-SymbolicName: com.acme.chess

114.3.4.2 DeploymentPackage-Version

This header defines the version of the deployment package. The syntax fol-
lows the standard OSGi Framework rules for versions.

DeploymentPackage-Version ::= version // See 3.2.4 Core

This header is mandatory and must follow the syntax of the version. It must
not be localized.

An example:
214-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 File Format
DeploymentPackage-Version: 1.2.3.build200501041230

114.3.4.3 DeploymentPackage-FixPack

A fix package can be distinguished from the full format Deployment Pack-
age through the presence of the DeploymentPackage-FixPack header, con-
tained within the global section of the Manifest. The format of this header
is:

DeploymentPackage-FixPack ::= version-range
// See 3.2.5 Core

The version range syntax is identical to the Framework module’s layer ver-
sion range as defined in [2] OSGi Service Platform Core Specification. For exam-
ple, a Manifest header that denotes a fix package which is only applicable to
versions 1.3 through 3.4 of a given deployment package looks like:

DeploymentPackage-FixPack: [1.3,3.4]

See Fix Package on page 217 for more information about Fix Packages.

114.3.4.4 Bundle-SymbolicName (Name Section)

The Bundle-SymbolicName header must be a copy of the Bundle-
Symbol icName header in the named bundle, including any parameters. This
header must match the Bundle-SymbolicName of the actual bundle; if it
does not, the install or update must fail. The parameters, however, can differ
between updates. The header has the following format:

Bundle-SymbolicName: unique-name (’;’ parameter) *

If the bundle resource has no Bundle-SymbolicName header, the given sym-
bolic name must be used to calculate the location of the bundle.

For example:

Name: bundles/http.jar
Bundle-SymbolicName: com.acme.http; singleton=true

114.3.4.5 Bundle-Version (Name Section)

The Bundle-Version header must be equal to the Bundle-Version header in
the named bundle. It must follow the format as defined for the version
clause in [2] OSGi Service Platform Core Specification.

Bundle-Version ::= version // See 3.2.4 Core

A mismatch between the version indicated in the Manifest of the Deploy-
ment Package and the actual value in the Bundle’s Manifest must cause an
installation or update to fail.

For example

Bundle-Version: 1.2

114.3.4.6 Resource-Processor (Name Section)

The Resource-Processor header selects an OSGi Resource Processor service
for this resource by selecting the Resource-Processor service with the given
PID as service. id service property. This header is optional, so that the
Deployment Package can carry resources that are not processed: for exam-
ple, license and documentation files. The format of the header is:

Resource-Processor ::= pid // See 1.4.2 Core
OSGi Service Platform Release 4 215-502

File Format Deployment Admin Specification Version 1.0
For example:

Name: certificate/certificates.xml
SHA1-Digest: M78w249126182Ak5zeq2X1Uv-+uF=
Resource-Processor: com.securitas.keystore

In the example, the cert i f icates.xml in the cert i f icate directory will be pro-
cessed by the Resource Processor service registered with the service property
service.p id set to com.securitas.keystore. The service .p id is a standard
Framework property to uniquely identify a service instance called a Persis-
tent IDentity a.k.a. PID.

114.3.4.7 DeploymentPackage-Missing (Name Section)

Fix packs (see Fix Package on page 217) are Deployment Packages that do not
contain all the resources for a full install. This header indicates the Bundle
Symbolic Name of a bundle that is not present in the enclosing JAR file but
should be part of a prior version of this Deployment Package. The format is:

DeploymentPackage-Missing ::= ’true’ | ’false’

The default value for this header is fa lse . An error results if this header is
true and the resource is not present in the existing Deployment Package.

For example:

Name: bundles/3dlib.jar
DeploymentPackage-Missing: true
Bundle-SymbolicName: com.acme.http
Bundle-Version: 3.0

114.3.4.8 DeploymentPackage-Customizer (Name Section)

This header is used to indicated that a resource is a customizer bundle, as
described in Customizer on page 218. The syntax of this optional header is:

DeploymentPackage-Customizer ::= ’true’ | ’false’

The default for this header is fa lse .

For example:

Name: bundles/3dlibcustomizer.jar
DeploymentPackage-Customizer: true
Bundle-SymbolicName: com.acme.customizer
Bundle-Version: 3.6

114.3.5 Localization
All human readable headers can be localized using the same mechanism as
is used to localize the manifest of a bundle. This mechanism is described in
Localization on page 62 of the [2] OSGi Service Platform Core Specification.

For example, a Manifest could look like:

Manifest-Version: 1.0
DeploymentPackage-ManifestVersion: 1
DeploymentPackage-SymbolicName: com.third._3d
DeploymentPacakge-Version: 1.2.3.build22032005
DeploymentPackage-Copyright: %copyright
DeploymentPackage-Vendor: %vendor
216-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 Fix Package
DeploymentPackage-License: %licenseurl
DeploymentPackage-Description: %3dlib
Bundle-Localization: OSGI-INF/l10n/dp
↵
Name: bundles/3dlib.jar
SHA1-Digest: MOez1l4gXHBo8ycYdAxstK3UvEg=
Bundle-SymbolicName: com.third._3d
Bundle-Version: 2.3.1
↵
Name: OSGI-INF/autoconf.xml
SHA1-Digest: M78w24912HgiZv5zeq2X1Uv-+uF=
Resource-Processor:
 org.osgi.deployment.rp.autoconf
↵

Different language translations can be provided, such as:

OSGI-INF/l10n/dp .propert ies:
copyright=ACME Inc. (c) 2005
vendor=ACME Inc.
license=OSGI-INF/license.en.txt
3dlib=High performance graphic library

OSGI- INF/l10n/dp_nl .propert ies :
copyright=ACME Holland BV (c) 2005
vendor=ACME Holland BV.
license=OSGI-INF/licentie.txt
3dlib=Zeer snelle 3D grafische routine bibliotheek

The language translation resources should appear in the Name section of
the manifest so they can be signed.

114.4 Fix Package
A Fix Package is a Deployment Package that minimizes download time by
excluding resources that are not required to upgrade or downgrade a
Deployment Package. It can only be installed on a Service Platform if a pre-
vious version of that Deployment Package is already installed. The Fix Pack-
age contains only the changed and new resources. A Fix Package (called the
source) therefore must specify the range of versions that the existing Deploy-
ment Package (called the target) must have installed. This range is specified
with the DeploymentPackage-FixPack header in the manifest of the
source.

The Manifest format for a Fix Package is, except for the Fix Package header,
the same as for a Deployment Package manifest: each resource must be
named in the Name section of the Manifest. Resources that are absent, how-
ever, must be marked in the named section with the DeploymentPackage-
Missing header set to t rue .
OSGi Service Platform Release 4 217-502

Customizer Deployment Admin Specification Version 1.0
Thus, the name sections of the manifest of a Fix Package must list all
resources, absent or present, in order to distinguish between resources that
must be removed or resources that are absent. Name sections that specify
the DeploymentPackage-Missing header, however, indicate that the actual
content of the resource is not carried in the Deployment Package—that is,
the resource content is absent. Only a Fix Package is permitted to contain
the DeploymentPackage-Missing headers.

For example, the following headers define a valid Fix Package that can
update an existing Deployment Package, only if the version is between 1
and 2.

Manifest-Version: 1.0
DeploymentPackage-SymbolicName: com.acme.package.chess
DeploymentPackage-Version: 2.1
DeploymentPackage-FixPack: [1,2)
↵
Name: chess.jar
Bundle-SymbolicName: com.acme.bundle.chess
DeploymentPackage-Missing: true
Bundle-Version: 5.7
↵
Name: score.jar
Bundle-SymbolicName: com.acme.bundle.chessscore
Bundle-Version: 5.7
↵

In this example, the Fix Package requires that version 1.x.y of the deploy-
ment package is already installed. The presence of the com.acme.bundle .
chess bundle on the Service Platform is assumed, and it must be part of the
existing Deployment Package com.acme.package.chess . After installation,
this Deployment Package must contain the two listed bundles.

114.5 Customizer
The standardized Deployment Admin service installation and uninstalla-
tion functions do not always cover the needs of a developer. In certain cases,
running custom code at install and uninstall time is required. This need is
supported with the Deployment Package Customizer. Typical Customizer
bundles are:

• Database initialization
• Data conversion
• Wiring

A Customizer bundle is indicated by a DeploymentPackage-Customizer
header in a Name section for a bundle resource. A Deployment Package can
a number of customizers, or none. A Customizer bundle must be installed
and started by the Deployment Admin service before any of the resources are
processed.
218-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 Customizer
As a Customizer bundle is started, it should register one or more Resource
Processor services. These Resource Processor services must only be used by
resources originating from the same Deployment Package. Customizer bun-
dles must never process a resource from another Deployment Package,
which must be ensured by the Deployment Admin service.

Customizers are installed and started in the order that they appear in the
Deployment Package.

114.5.1 Bundle’s Data File Area
Each bundle in the OSGi Framework has its own persistent private storage
area. This private area is accessed by a bundle with the getDataFi le method
on the Bundle Context. The location in the file system where these files are
stored is not defined, and thus is implementation-dependent. A Customizer
bundle, however, typically needs access to this private storage area.

The Deployment Admin service provides access to the Bundle private stor-
age area with the getDataFi le(Bundle) method on the DeploymentSession
object. This method returns a F i le object to the root of the data directory.

The location of a bundle's private storage area is impossible to determine
because it depends on the implementation of the OSGi Framework. It is
therefore impossible to give a Customizer bundle an appropriate File Per-
mission for customization of a bundle’s data area.

Therefore, if a Customizer bundle calls the getDataFi le method for a spe-
cific bundle, the Deployment Admin must add to the Customizer bundle
the required File Permission to access this area. This File Permission must
be removed after the session ends.

114.5.2 Customizers and Update
The lifecycle of a customizer bundle is intertwined with the lifecycle of the
resources it processes. Care should be taken to ensure that updates and
uninstallations are handled correctly. A Customizer bundle is updated before
a resource is processed—implying that a deployment session n is always
dropped or processed by the customizer from session n+1. In this case, a ses-
sion is an install or uninstall of a Deployment or Fix Package.

Figure 114.6 Time line for customizer versus resource versions

In Figure 114.6, Customizer bundle 2.0 must update the resource from ver-
sion 1.0, and customizer 3.0 must drop the resource from version 2.0. As a
consequence, the Customizer bundle that processes a resource will be a dif-
ferent version than the one that processes or drops it.

Resource R1

Customizer Bundle

Session

time

1.0 2.0 3.0

2.01.0

Stopped Resource Update
OSGi Service Platform Release 4 219-502

Deployment Admin Service Deployment Admin Specification Version 1.0
The same ordering issue is also relevant with respect to the Autoconf
resources (see Auto Configuration Specification on page 261). Autoconf
resources will not be available until the commit method is called. This con-
dition implies that a customizer cannot receive fresh configuration infor-
mation from the Deployment Package.

114.6 Deployment Admin Service
The Deployment Admin service provides the following services:

• Introspecting – Provide information about the Deployment Package repos-
itory. Introspecting is further discussed on Introspection on page 220.

• Install – The installation of a Deployment Package is described in
Installing a Deployment Package on page 224.

• Uninstall – The uninstallation of a Deployment Package is described in
Uninstalling a Deployment Package on page 230.

• Canceling – An ongoing session can be canceled with the cancel method
described in Canceling on page 221.

An important concept of the Deployment Admin service is the session.
Installations and uninstallations of Deployment Packages take place inside
a session. This session is represented by a DeploymentAdminSession object.
The session provides access to the Deployment Package that is being
(un)installed, as well as access to the data area of bundles. The transactional
aspects of this sessions are discussed in Sessions on page 221.

114.6.1 Introspection
The Deployment Admin service can provide the list of currently installed
Deployment Packages with the l i stDeploymentPackages() method. Given a
name, it is also possible to get a Deployment Package with getDeployment-
Package(String) using the name, or getDeploymentPackage(Bundle) for the
Deployment Package of a specific bundle.

The l i stDeploymentPackages() method returns an array of Deployment-
Package objects. This list of Deployment Packages must contain only valid
installed packages. During an installation or upgrade of an existing package,
the target must remain in this list until the installation process is complete,
after which the source replaces the target. If the installation fails, the source
must never become visible, even transiently.

DeploymentPackage objects provide access to the following identity infor-
mation:

• getName() – The name of the Deployment Package.
• getVersion() – The version of the Deployment Package.

The Deployment Package also provides access to the bundles that are associ-
ated with a Deployment Package.

• getBundle Infos() – Returns an array of information about all bundles
that are owned by this Deployment Package. The return type is a
Bundle Info object that has a getVersion() and getSymbol icName()
method.

• getBundle(Str ing) – Returns the bundle with the given Bundle Symbolic
Name that is associated with this Deployment Package. As this instance
220-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 Sessions
is transient—for example, a bundle can be removed at any time because
of the dynamic nature of the OSGi platform—this method may also
return nul l , if the bundle is part of this deployment package but is tempo-
rarily not defined in the Framework.

The Deployment Package also provides access to the headers in its Manifest.
The global section and the Name sections are both supported. This informa-
tion can be used to provide human-readable information to the end user. If
the Manifest is using localization, this information must be returned in the
default locale. It is not possible to specify a specific locale. See Localization on
page 216 for more information.

• getHeader(Str ing) – Provides access to the Deployment Package’s
Manifest header global section. Header names must be matched in a
case-insensitive manner.

• getResourceHeader(Str ing,Str ing) – Provides access to a header in the
Name section. The first argument specifies the resource id (JAR path); the
second argument is the (case insensitive) header name.

The Deployment Package contains a number of resources. Each resource
can be queried for its associated Resource Processor service.

• getResourceProcessor(Str ing) – Return the Service Reference of the
Resource Processor service that is associated with the given resource. For
a Bundle resource, the returned Resource Processor must be nul l .

• getResources() – Return an array of resource names. This array must
include the Bundle resources.

The isSta le() method returns true when DeploymentPackage object is no
longer available.

114.6.2 Canceling
An ongoing session can be canceled with the Deployment Admin service’s
cancel() method. This method must find the currently executing Resource
Processor service and call its cancel method. The remainder of the session
must be immediately rolled back after the Resource Processor returns from
the active method.

114.7 Sessions
The (un)installation or upgrade of a deployment package requires the coop-
eration and interaction of a large number of services. This operation, there-
fore, takes place in a session. A session must be created by the Deployment
Admin service before any activity on behalf of the Deployment Package
takes place, including any bundle installations. Sessions are not visible to
the clients of Deployment Admin service.

Before using a resource processor in a session, the Deployment Admin ser-
vice must join the Resource Processor service to the session. The
begin(DeploymentSession) method must be called before a Resource Pro-
cessor service calls the process , drop, or dropAllResources method. For
brevity, this joining is not shown in the following sections, but must be
assumed to have taken place before any of the methods is called.
OSGi Service Platform Release 4 221-502

Sessions Deployment Admin Specification Version 1.0
A Resource Processor has joined the session when it has returned from its
begin(DeploymentSession) method without an Exception being thrown. A
Resource Processor service must not be joined to more than a single session
at any moment in time—implying that a Resource Processor can assume
that only one install takes place at a time.

A roll back can take place at any moment during a session. It can be caused
by a Resource Processor service that throws an Exception during a method
call, or it can be caused by canceling the session (see Canceling on page 221).

If all methods in a session are executed without throwing Exceptions, then
the session must be committed. Commitment first requires a vote about the
outcome of the session in the so-called prepare phase. The Deployment
Admin service must therefore call the prepare method on all Resource Pro-
cessor services that have joined the session. The Resource Processor services
must be called in the reverse order of joining.

Any Resource Processor that wants to roll back the session in the prepare
phase can, at that moment, still throw an Exception. The prepare method
can also be used to persist some of the changes, although the possibility
remains that the session will be rolled back and that those changes must
then be undone.

If all joined Resource Processors have successfully executed the prepare
method, the Deployment Admin service must call the commit method on
all Resource Processor services that have joined the session. The Resource
Processor services must be called in the reverse order of joining. Resource
Processor services must not throw an Exception in this method; they should
only finalize the commit. Any Exceptions thrown should be logged, but
must be ignored by the Deployment Admin service.

114.7.1 Roll Back
At the moment of the roll back, a number of Resource Processor services can
have joined the session and bundles could have been installed. For each of
these joined Resource Processor services, the Deployment Admin service
must call the rol lback() method. A roll back can be caused by a thrown
Exception during an operation, or can be initiated by the caller. The roll
back can even happen after the prepare() method has been called if another
Resource Processor throws an Exception in its prepare method. The
Resource Processor services must be called in the reverse order of joining for
the rollback method.

The system should make every attempt to roll back the situation to its pre-
session state:

• Changed artifacts must be restored to their prior state
• New artifacts must be removed
• Stale artifacts must be created again
• Any installed or updated bundles must be removed
• The state of the target bundles must be restored

If the target bundles were started before, and the state can be restored suc-
cessfully, the target bundles must be refreshed (the PackageAdmin
ref reshPackages method) and started again before the method returns.
222-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 Sessions
If the roll back cannot completely restore the state of the target bundles, the
target bundles that were restored must not be restarted, in order to prevent
running bundles with incompatible versions. An appropriate warning
should be logged in this case.

After the commit or rol lback method, the DeploymentAdminSession object
is no longer usable.

The transactional aspects of the session are depicted in Figure 114.7.

Figure 114.7 Transactional Sessions

The Deployment Admin service must uninstall any new bundles and install
stale bundles (bundles that were uninstalled during the session), and should
roll back updated bundles. Rolling back a bundle update, as well as reinstall-
ing a stale bundle, requires an implementation-dependent back door into
the OSGi Framework, because the Framework specification is not transac-
tional over multiple lifecycle operations. Therefore, this specification does
not mandate full transactional behavior.

After a roll back, however, a Deployment Package must still be removable
with all its resources and bundles dropped. A roll back must not bring the
Deployment Package to a state where it can no longer be removed, or where
resources become orphaned.

operations

nook?

rollbackprepare

commit

ok?

yes

yes

no

begin
OSGi Service Platform Release 4 223-502

Installing a Deployment Package Deployment Admin Specification Version 1.0
114.7.2 Bundle Events During Deployment
Deployment operations usually result in bundles being installed or unin-
stalled. These deployment operations can fail in mid-operation, and cause a
roll back by Deployment Admin—meaning that the platform can go
through some transient states in which bundles are installed, then unin-
stalled due to roll back.

Therefore, the order of Bundle events produced by a transactional imple-
mentation must be compatible with the Bundle events produced by a non-
transactional implementation. A transactional implementation, however,
can choose to postpone all events while maintaining ordering until the end
of the session and thereby canceling any events that cancel each other (e.g.
install and uninstall). A non-transactional Deployment Admin service must
send out the events as they occur.

In the following example, a simple Deployment Package consists of bundles
A , B , and C . If this Deployment Package is successfully installed, an imple-
mentation must produce the following Bundle events (in order):

1 BundleEvent(INSTALLED) for bundle A
2 BundleEvent(INSTALLED) for bundle B
3 BundleEvent(INSTALLED) for bundle C

If an operation of this Deployment Package was unsuccessful because, for
example, Bundle C could not be installed due to an error, then the Deploy-
ment Admin service must roll back the deployment operation to return the
platform to its original state. If the Deployment Admin service is transac-
tional, then it must not expose the events because no persistent bundle
changes were made to the platform.

On the other hand, a non-transactional implementation must expose the
transient bundle states that occur during the deployment operation. In this
case, the following bundle events could have been generated (in order):

1 BundleEvent(INSTALLED) for bundle A
2 BundleEvent(INSTALLED) for bundle B
3 BundleEvent(UNINSTALLED) for bundle A
4 BundleEvent(UNINSTALLED) for bundle B

114.8 Installing a Deployment Package
Installation starts with the insta l lDeploymentPackage(InputStream) . No
separate function exists for an update; if the given Deployment Package
already exists, it must be replaced with this new version. The purpose of the
insta llDeploymentPackage method is to replace the target Deployment
Package (existing) with the source Deployment Package (contained in the
Input Stream).

The InputStream object must stream the bytes of a valid Deployment Pack-
age JAR; it is called the source deployment package. The InputStream object
must be a general InputStream object and not an instance of the
Jar InputStream class, because these objects do not read the JAR file as bytes.
224-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 Installing a Deployment Package
If an installed Deployment Package has the same name as the source, it is
called the target Deployment Package. If no target exists, an invisible empty
target with a version of 0.0.0. must be assumed without any bundles and
resources.

The installation of a deployment package can result in these qualifications
for any resource r:

• r ∈ source, r ∉ target – New resource
• r ∉ source, r ∈ target – Stale resource
• r ∈ source, r ∈ target – Updated resource

The short scenario for an install is depicted in Figure 114.8.
OSGi Service Platform Release 4 225-502

Installing a Deployment Package Deployment Admin Specification Version 1.0
Figure 114.8 Overview of install process

In more detail, to install a Deployment Package, a Deployment Admin ser-
vice must:

1 Create a Deployment Session
2 Assert that the Manifest file is the first resource in the Deployment

Package JAR file.
3 Assert the following:

ok?

Read Manifest
and verify

Stop target bun-
dles

Read resource

bundle?

Start any cus-
tomizers

Drop stale
resources

Install or update
Bundle

process resource

Next resource

resource?

Uninstall stale
bundles

prepare joined
RPs

yes

no

yes

no

Start source
bundles

commit joined
RPs

yes

no
226-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 Installing a Deployment Package
• The source must not contain any bundle that exists in other deploy-
ment packages, except for the target. The source bundles, as defined
by the symbolic name, must belong to the target or be absent.

If the source is a Fix Package, assert that:
• The version of the target matches the required source version range.
• All the missing source bundles are present in the target.
Otherwise:
• Assert that are no missing resources or bundles declared.

4 All target bundles must be stopped in reverse target resource order.
Exceptions thrown during stopping must be ignored, but should be
logged as warnings.

The target is now stopped; none of its bundles are running any longer. The
next step requires the sequential processing of the resources from the source
JAR file in source resource order. The bundles must be processed first (if
present), and can be followed by any number of resources, or none.

For each bundle read from the source JAR stream:

5 If the bundle symbolic name already exists in the system with a different
version number, update that bundle with the resource stream. If the
version is identical, the resource stream must be ignored. The update
method must follow the semantics of the OSGi Framework update
method. An exception thrown during the update must roll back the
session.
Otherwise, install the bundle according to the semantics of the OSGi
Framework ins tal lBundle method. The location of the bundle must be
set to the Bundle Symbolic Name without any parameters and be pre-
fixed with the osgi-dp: scheme. An exception thrown during the install
must roll back the session.
Framework events are discussed in Bundle Events During Deployment on
page 224.

6 Assert that the installed bundle has the Bundle Symbolic Name and
version as defined by the source manifest. If not, the session must be
rolled back.

All the source’s bundles are now installed or updated successfully. Next, any
customizers must be started so that they can participate in the resource pro-
cessing:

7 If Customizer bundles or stale customizers are defined, start them. If any
Customizer bundle’s start method throws an exception, the session must
be rolled back.

For each resource read from the JAR stream:

8 Find the Resource Processor service that processes the resource by using
the PID in the Resource-Processor header. If it cannot be found, the
session must be rolled back.

9 Assert that the matched Resource Processor service is not from a Cus-
tomizer bundle in another Deployment Package.

10 Call the matched Resource Processor service process(Str ing, Input-
Stream) method. The argument is the JAR path of the resource. Any
Exceptions thrown during this method must abort the installation.
OSGi Service Platform Release 4 227-502

Installing a Deployment Package Deployment Admin Specification Version 1.0
All resource updates and installs have now occurred. The next steps must
remove any stale resources. First the stale resources are dropped, and then
the bundles are uninstalled. Exceptions are ignored in this phase to allow
repairs to always succeed, even if the existing package is corrupted.

11 In reverse target order, drop all the resources that are in the target but
not in the source by calling the matching Resource Processor service
dropped(Str ing) method. Any exceptions thrown during this method
should be logged as warnings, but must be ignored.

12 Uninstall all stale bundles in reverse target order, using the OSGi
Framework uninstal l method semantics. Any exceptions thrown should
be logged as warnings, but must be ignored.

The deployment package is now cleaned up, and can be activated and com-
mitted.

13 All the Resource Processor services that have joined the session must
now prepare to commit, which is achieved by calling the prepare()
method. If any Resource Processor throws an Exception, the session must
roll back. The Resource Processors must be called in the reverse order of
joining.

14 If all the Resource Processors have successfully prepared their changes,
then all the Resource Processor services that have joined the session
must now be committed, which is achieved by calling the commit()
method. The Resource Processors must be called in the reverse order of
joining. Any exceptions should be logged as warnings, but must be
ignored.

15 Call the Package Admin service ref reshPackages method so that any
new packages are resolved.

16 Wait until the refresh is finished.
17 Start the bundles in the source resource order. Exceptions thrown during

the start must be logged, but must not abort the deployment operation.

The session is closed and the source replaces the target in the Deployment
Admin service’s repository.

The ins ta l lDeploymentPackage method returns the source Deployment
Package object.

114.8.1 Example Installation
The target Deployment Package has the following manifest:

Manifest-Version: 1.0 ↵
DeploymentPackage-SymbolicName: com.acme.daffy ↵
DeploymentPackage-Version: 1 ↵
↵
Name: bundle-1.jar
Bundle-SymbolicName: com.acme.1
Bundle-Version: 5.7↵
↵
Name: r0.x↵
Resource-Processor: RP-x↵
↵
Name: r1.x↵
Resource-Processor: RP-x ↵
228-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 Installing a Deployment Package
↵
Name: r1.y↵
Resource-Processor: RP-y↵
↵

This deployment package is updated with a new version, with the following
manifest:

Manifest-Version: 1.0
DeploymentPackage-SymbolicName: com.acme.daffy
DeploymentPackage-Version: 2
↵
Name: bundle-2.jar
Bundle-SymbolicName: com.acme.2
Bundle-Version: 5.7↵
↵
Name: r1.x↵
Resource-Processor: RP-x↵
↵
Name: r2.x↵
Resource-Processor: RP-x↵
↵
Name: r1.y↵
Resource-Processor: RP-y↵
↵

The delta between version 1 and version 2 of the com.acme.daf fy Deploy-
ment Package is depicted in Figure 114.9. Bundle-1 must be uninstalled
because it is no longer present in the Deployment Package com.acme.daffy
version 2. Bundle-2 is a new bundle and thus must be installed. The resource
r0 .x must be dropped and r1 .x must be updated (this must be detected and
treated accordingly by Resource Processor RP-x). r2 .x is a new resource. The
resource r1 .y is updated by Resource Processor RP-y).

Figure 114.9 Delta

The sequence diagram for the installation is shown in Figure 114.10.

Bundle-1

Bundle-2

r0.x

r1.x

r1.y

r2.x

r1.y’

r1.x’

uninstall

install

drop

process

process

process

version 2version 1
OSGi Service Platform Release 4 229-502

Uninstalling a Deployment Package Deployment Admin Specification Version 1.0
Figure 114.10 Sequence Diagram for a Resource Processor

114.9 Uninstalling a Deployment Package
Uninstalling a Deployment Package must remove all the effects of its instal-
lation(s). The uninstall is started by calling uninsta ll () or uninsta llForced()
method on a target DeploymentPackage object.

The Deployment Packages are uninstalled explicitly, which may break the
overall runtime configuration. No attempt is made to ensure that the unin-
stalled Deployment Package is required as a provider of Java packages or ser-
vices, or fulfills other dependencies.

The Deployment Admin service must take the following actions to remove
the target Deployment Package when uninstal l () is called. This procedure
must run inside a Deployment Admin session. A Resource Processor that is
called must first join the session as described in Sessions on page 221.

Uninstalling is composed of the following steps:

1 Start a new Deployment Admin session.
2 Stop all the bundles owned by the Deployment Package. If this step

throws a Bundle Exception, this error should be logged but must be
ignored.

3 Call the dropAllResources() method on all the Resource Processor ser-
vices that are owned by this Deployment Package. Absent Resource Pro-

manager
Deployment

Addmin RP -x Rp-y

installDeploymentPackage()

Bundle-1

stop()

Framework

begin(session)

process("r1.x", stream)

process("r2.x", stream)

begin(session)

process("r1.y", stream)

install(bsn,stream)

Bundle-2

uninstall()

drop("r0.x")

prepare

prepare

start()

commit

commit
230-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 Resource Processors
cessor services or Exceptions that are thrown must immediately roll
back this session.

4 Call the prepare method on the Resource Processor services that joined
the session. If any Resource Processor service throws an Exception, the
session must be rolled back.

5 Call the commit method on the Resource Processors that joined the
session.

6 Uninstall all owned bundles.

Uninstalling a Deployment Package can break the overall runtime configu-
ration. No attempt is made to ensure that a Deployment Package being
uninstalled is not necessary as a provider of Java packages or services, or ful-
fills other dependencies.

An error condition results if the Resource Processor services are no longer
present when uninstalling or updating a deployment package. A request to
carry out an uninstall operation on such a Deployment Package must be
refused until the Resource Processor services are all available. A means must
be provided, however, to handle permanent unavailability of these services.

To address this issue, the DeploymentPackage interface provides a method,
uninstal lForced() , which forces removal of the Deployment Package from
the repository maintained by the Deployment Admin service. This method
follows the same steps described earlier. Any errors, or the absence of
Resource Processor services, should be logged but ignored; they must not
cause a roll back.

If errors occur or Resource Processor services are absent, it is likely that the
uninstallation will be incomplete, and that some residual artifacts will
remain on the platform. Whether this residue is eventually cleaned up, and
how, is left up to the implementation.

114.10 Resource Processors
The Resource Processor service interprets the byte stream of a resource. Typ-
ically, the stream is parsed and its information is stored as artifacts. Exam-
ples of resource processors are:

• Configuration Management – This processor is standardized by the OSGi
and more information can be found in Auto Configuration Specification on
page 261.

• Certificate Keystore – A Certificate Keystore processor could extract certif-
icates from a bundle and install them in a keystore.

• SyncML Script – Execute a series of SyncML commands.

The Deployment Admin service maintains the list of resource ids (the path
name in the JAR) that are contained in a Deployment Package. Each
resource is uniquely identified within a Deployment Package by its path
name—hence the term "resource id." The Deployment Package’s getRe-
sources() method provides a list of the resources ids.

The Resource Processor service is responsible for actually creating and delet-
ing the resource related artifacts. The Resource Processor service must be
able to remove the artifacts related to a resource that is being dropped using
only the resource id.
OSGi Service Platform Release 4 231-502

Resource Processors Deployment Admin Specification Version 1.0
The ResourceProcessor interface is based on a session (see Sessions on page
221). The transactionality is limited to the bracketing of any processing or
dropping of resources.The bracketing begins when a Resource Processor
joins an install session. A Resource Processor service can assume that it is
never in two sessions at the same time (see Threading on page 237). It can,
however, be called multiple times during the session to process different
resources.

Before the Resource Processor service is used in an install or uninstall ses-
sion, the Deployment Admin service must call the begin(DeploymentSes-
sion) method; this action makes the Resource Processor service join the
session. This method must be used by the Resource Processor service to
mark any changes for potential roll back, from this time until the prepare()/
commit() or rol lback() method is called.

When the session is opened, the Deployment Admin service can call the
following methods on the Resource Processor service:

• process(Str ing, InputStream) – The Resource processor must parse the
Input Stream and persistently associate the resulting artifacts with the
given resource id. It must be possible to remove those artifacts in a future
time, potentially after a complete system restart. Keep in mind that a
resource can be processed many times. A Deployment Package that
updates to a newer version is likely to contain the same resources again.
Care should be taken to ensure that these updates are real updates and do
not add new, unwanted artifacts.

• dropped(Str ing) – The artifacts that were associated with the given
resource id must be removed. If the named resource does not exist, a
warning should be logged but no Exception should be thrown.

• dropAl lResources() – Remove all artifacts that are related to the current
target Deployment Package. This method is called when a Deployment
Package is uninstalled.

• cancel() – This method is called when the Resource Processor is in the
process(Str ing, InputStream) , dropped(Str ing) or dropAllResources()
method, allowing the caller to cancel a long-running session. In that
case, the Deployment Admin must call the cancel() method for the
active Resource Processor service. The Resource Processor service should
terminate its action as quickly as possible. The Resource Processor
service must still handle a roll back of the session after it has returned.

All methods must perform any integrity checks immediately and throw an
Exception with an appropriate code if the verification fails. These checks
must not be delayed until the prepare or commit method. As stated earlier,
changes must be recorded, but it should be possible to roll back the changes
when the ro llback method is called.

Deployment Packages can be upgraded or downgraded. Resource Processor
services must therefore be capable of processing resources that have a lower,
equal, or higher version.
232-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 Resource Processors
114.10.1 Example Resource Processor
An example is a Resource Processor service that wires services with the
Wire Admin service. The Wire Admin service creates wires between a pro-
ducer and a consumer service, each identified by a PID. Wires are the artifacts
that are installed and removed. Each wire contains a Dict ionary object that
is a convenient place to tag wires with the Deployment Package name and
resource id. The Wire Admin stores this information persistently, which
makes it very suitable for use in a transactional model. This small example
supports full transactionality, although without crash recovery.

For simplicity, the wire definitions are stored in a format compatible with
the java .uti l .Propert ies format (because it can simply be loaded from an
Input Stream object). The key is the producer and the value is the consumer.
A sample wiring could look like:

com.acme.gps = com.acme.navigation
com.acme.asn = com.acme.navigation
com.acme.navigation = com.acme.poi

This wiring is depicted in Figure 114.11.

Figure 114.11 Sample Wiring

This resource is stored in a Deployment Package JAR file. In this example
there are no bundles, so the Deployment Package’s manifest would look
like:

Manifest-Version: 1.0
DeploymentPackage-SymbolicName: com.acme.model.E45.wiring
DeploymentPackage-Version: 1.2832
↵
Name: sample.wiring
Resource-Processor: wire.admin.processor
↵

To reduce the size of the code in this example, the Wire Admin service is
received as a parameter. The constructor registers the object as a Resource
Processor service with the required wire.admin.processor PID.

The transaction strategy of this code is to create wires when new wires have
to be created, but to delay the deletion of wires until the end of the session.
Any created wires are kept in the createdWires field, and the wires that are
to be deleted are kept in the toBeDeletedWires field.

The current DeploymentPackage object is saved in the current field when
the begin method is called.

public class WireAdminProcessor implements ResourceProcessor
{

WireAdmin admin;

com.acme.gps com.acme.poi

com.acme.asn

com.acme.navigation
OSGi Service Platform Release 4 233-502

Resource Processors Deployment Admin Specification Version 1.0
DeploymentPackage current;
List createdWires= new Vector();
List toBeDeletedWires= new Vector();

public WireAdminProcessor(
WireAdmin admin, BundleContext context)
throws Exception {

this.admin = admin;
Dictionary properties = new Hashtable();
properties.put(Constants.SERVICE_PID,

 "wire.admin.processor");
context.registerService(

ResourceProcessor.class.getName(), this,
properties);

}

When the Deployment Admin service is installing a Deployment Package
JAR, it must call the Resource Processor service’s begin method before the
first time it calls a Resource Processor service to join it to the current session.
In this case, only the source DeploymentPackage object is saved in the
current field.

public void begin(DeploymentSession session) {
current = session.getSourceDeploymentPackage();

}

The most complicated method that must be implemented is the process
method. This method receives the resource id and an input stream with the
contents. In this case, the stream is easily converted to a java.ut i l .Propert ies
object that contains the definitions of the wires.

The key and value of the Properties object are the producer and consumer
respectively, which are used to create new wires. Each wire has a Dictionary
object in the Wire Admin service. This Dictionary object is used to store the
following properties:

• deployment.package – The symbolic name of the current (target)
deployment package. This property associates the wire with a specific
deployment package.

• resource . id – The resource id, or JAR path name. This id associates the
specific resource with the wire.

Associating these fields with the wire simplifies finding all wires related to a
Deployment Package or all wires related to a specific resource id and
Deployment Package. The Wire Admin service supports a search method
for wires that takes a filter as argument, further simplifying this process.

After a wire is created, it is stored in the createdWires list so that the wires
can be deleted if the session is rolled back.

The process method looks as follows:

public void process(String resourceId, InputStream in)
throws Exception {

Properties properties = new Properties();
properties.load(in);
Dictionary dict = new Hashtable();
234-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 Resource Processors
dict.put("deployment.package", current.getName());
for (Iterator i = properties.values().iterator();

 i.hasNext();) {
dict.put("resource.id", resourceId);
String producer = (String) i.next();
String consumer = properties.getProperty(producer);
Wire wire = admin.createWire(producer,

consumer, dict);
createdWires.add(wire);

}
}

If a resource is not in the source but is in the target Deployment Package, it
must be dropped from the Resource Processor service. The Deployment
Admin will call the dropped(Str ing) method for those resources. Therefore,
the wires that are tagged with the given resource id and Deployment Pack-
age name must be deleted.

The Wire Admin service has a convenient function to get all the wires that
match a filter. This method is used to list all the wires that belong to the cur-
rent Deployment Package as well as those that have the matching resource
id. This array is added to the toBeDeletedWires field so that it can be deleted
when the session is successfully completed—that is, wires are not deleted
until the commit phase. When the session is rolled back, the list of wires to
be deleted can be discarded, because they were never really deleted.

public void dropped(String name) throws Exception {
List list = getWires(

"(&(resource.id=" + name + ")(deployment.package="
+ current.getName() + "))");

toBeDeletedWires.addAll(list);
}

If the session concludes without errors, the Deployment Admin service
must call the prepare() method. In this example, it is possible to roll back
the persistent changes made so far. The method can therefore just return.

public void prepare() {}

The commit() method must now actually delete the wires that were
removed during the session. After these wires are deleted, the method can
throw away the list of wires that were created. This list was only kept to
remove the wires in case of a roll back.

public void commit() {
delete(toBeDeletedWires);
toBeDeletedWires.clear();
createdWires.clear();

}

The rol lback() method is the reverse of the commit. Any created wires must
now be deleted to undo their creations in this session. The wires that are to
be deleted can now be discarded, because they have not been deleted yet and
therefore do not have to be rolled back.

public void rollback() {
delete(createdWires);
OSGi Service Platform Release 4 235-502

Resource Processors Deployment Admin Specification Version 1.0
toBeDeletedWires.clear();
createdWires.clear();

}

The dropAllResources() method must drop all the wires that were created
on behalf of the current Deployment Package. The filter on the getWires
method makes this process very straightforward. Just delete all the wires
that were tagged with the Deployment Package name.

public void dropAllResources() {
List list = getWires("(deployment.package="

+ current.getName() + ")");
toBeDeletedWires.addAll(list);

}

The cancel() method must cancel ongoing operations. This example does
not have any long-running operations. The cancel method can therefore
just return.

public void cancel() {}

And finally, some helper methods should be self-explanatory.

void delete(List wires) {

while (! wires.isEmpty())
admin.deleteWire((Wire) wires.remove(0));

}

List getWires(String filter) {
try {

Wire[] wires = admin.getWires(filter);
return Arrays.asList(wires);

}
catch (InvalidSyntaxException ise) {

ise.printStackTrace();
}
return new Vector();

}
}

This example is obviously not an "industrial-strength" implementation; its
only purpose is to highlight the different problems that must be addressed.
Implementors should therefore consider the following additional issues
when implementing a Resource Processor service.

• Changes could have been made to the Deployment Package objects
when a Resource Processor’s bundle was updated or has been offline for
some time, which can happen when the uninstal lForceful method has
been used. The Deployment Admin service can provide sufficient infor-
mation to verify its repository to the information maintained in the
Resource Processor service.

• A Resource Processor service should have a strategy for transactions that
can handle crash recovery. For example, in the previous code the list of
createdWires and toBeDeletedWires should have been logged. Logging
these lists would have allowed full crash recovery.
236-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 Events
• Better file formats should be considered. The Properties class is too
restrictive because it can only have a single wire per Producer object. The
Properties class was only chosen for its convenience.

• Multi-threading issues may exist with the cancel method.

114.11 Events
The Deployment Admin service must publish several generic events to the
Event Admin service in the course of a deployment operation. The purpose
of these events is to allow, for example, a user interface to display the
progress of a deployment operation to the user.

The topics to which Deployment Admin publishes events are:

• org/osg i/service/deployment/INSTALL – The insta l lDeployment-
Package(InputStream) method has been called.

• org/osg i/service/deployment/UNINSTALL – The uninstal l () or unin-
stal lForced() method has been called..

• org/osg i/service/deployment/COMPLETE – The deployment operation
has completed.

The INSTALL , UNINSTALL and COMPLETE events have the following prop-
erty:

• deploymentpackage.name – (String) The name of the Deployment Package.
This name is the same name as that specified in the DeploymentPackage-
SymbolicName Manifest header.

The COMPLETE event additionally has the following property:

• successful – (Boolean) Whether the deployment operation was successful
or not.

114.12 Threading
The Deployment Admin service must be a singleton and must only process
a single session at a time. When a client requests a new session with an
install or uninstall operation, it must block that call until the earlier session
is completed. The Deployment Admin service must throw a Deployment
Exception when the session cannot be created after an appropriate time-out
period. Resource Processor services can thus assume that all calls from begin
to commit or rollback methods are called from the same thread.

Special care should be taken with the cancel method that is usually called
from another thread.
OSGi Service Platform Release 4 237-502

Security Deployment Admin Specification Version 1.0
114.13 Security

114.13.1 Deployment Admin Permission
The Deployment Admin Permission is needed to access the methods of the
Deployment Admin service. The target for a Deployment Admin Permission
is the same Filter string as for an Admin Permission, see Admin Permission on
page 95 of [2] OSGi Service Platform Core Specification.

The actions are:

• LIST – The permission to call the l is tDeploymentPackages() method and
getDeploymentPackage(Str ing) .

• INSTALL – Allowed to call the ins ta l lDeploymentPackage(InputStream)
method.

• UNINSTALL – Allowed to call the uninstal l () method.
• UNINSTALL_FORCED – Allowed to call the uninstal lForced() method.
• CANCEL – Allowed to cancel an ongoing session.
• METADATA – Provide access to the Deployment Package meta data.

114.13.2 Deployment Customizer Permission
The DeploymentCustomizerPermission is used by customizer bundles. The
target is the same as the target of Admin Permission: a filter that selects bun-
dles. It has the following action:

• PRIVATEAREA – Permits the use of the private area of the target bundles.

114.13.3 Permissions During an Install Session
Unprotected, Resource Processor services can unwittingly disrupt the
device by processing incorrect or malicious resources in a Deployment
Package. In order to protect the device, Resource Processor service's capabili-
ties must be limited by the permissions granted to the union of the permis-
sions of the Deployment Package’s signers. This union is called the security
scope. Given a signer, its security scope can be obtained from the Conditional
Permission Admin Specification on page 205.

The Deployment Admin service must execute all its operations, including
calls for handling bundles and all calls that are forwarded to a Resource Pro-
cessor service, inside a doPr iv i leged block. This privileged block must use an
AccessControlContext object that limits the permissions to the security
scope. Therefore, a Resource Processor service must assume that it is always
running inside the correct security scope. A Resource Processor can, of
course, use its own security scope by doing a local doPr iv i leged block.

114.13.4 Contained Bundle Permissions
Bundles can be signed independently from the vehicle that deployed them.
As a consequence, a bundle can be granted more permissions than its parent
Deployment Package.
238-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 org.osgi.service.deploymentadmin
114.13.5 Service Registry Security
114.13.5.1 Deployment Admin Service

The Deployment Admin service is likely to require All Permission. This
requirement is caused by the plugin model. Any permission required by any
of the Resource Processor services must be granted to the Deployment
Admin service as well. This set is large and difficult to define. The following
list, however, shows the minimum permissions required if the permissions
for the Resource Processor service permissions are ignored.

ServicePermission ..DeploymentAdmin REGISTER
ServicePermission ..ResourceProcessor GET
PackagePermission org.osgi.service.deploymentEXPORT

114.13.5.2 Resource Processor
ServicePermission ..DeploymentAdmin GET
ServicePermission ..ResourceProcessor REGISTER
PackagePermission org.osgi.service.deploymentIMPORT

114.13.5.3 Client
ServicePermission ..DeploymentAdmin GET
PackagePermission org.osgi.service.deploymentIMPORT

114.14 org.osgi.service.deploymentadmin
Deployment Admin Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.deploymentadmin; version=1.0

114.14.1 Summary
• BundleInfo - Represents a bundle in the array given back by the

DeploymentPackage.getBundle Infos() [p.250] method. [p.239]
• DeploymentAdmin - This is the interface of the Deployment Admin

service. [p.240]
• DeploymentAdminPermission - DeploymentAdminPermission controls

access to the Deployment Admin service. [p.242]
• DeploymentException - Checked exception received when something

fails during any deployment processes. [p.246]
• DeploymentPackage - The DeploymentPackage object represents a

deployment package (already installed or being currently processed).
[p.249]

BundleInfo

114.14.2 public interface BundleInfo
Represents a bundle in the array given back by the
DeploymentPackage.getBundleInfos() [p.250] method.
getSymbolicName()

114.14.2.1 public String getSymbolicName()

Returns the Bundle Symbolic Name of the represented bundle.
OSGi Service Platform Release 4 239-502

org.osgi.service.deploymentadmin Deployment Admin Specification Version 1.0
Returns the Bundle Symbolic Name
getVersion()

114.14.2.2 public Version getVersion()

Returns the version of the represented bundle.

Returns the version of the represented bundle
DeploymentAdmin

114.14.3 public interface DeploymentAdmin
This is the interface of the Deployment Admin service.

The OSGi Service Platform provides mechanisms to manage the life cycle of
bundles, configuration objects, permission objects, etc. but the overall con-
sistency of the runtime configuration is the responsibility of the manage-
ment agent. In other words, the management agent decides to install,
update, or uninstall bundles, create or delete configuration or permission
objects, as well as manage other resource types, etc.

The Deployment Admin service standardizes the access to some of the
responsibilities of the management agent. The service provides functional-
ity to manage Deployment Packages (see DeploymentPackage [p.249]). A
Deployment Package groups resources as a unit of management. A Deploy-
ment Package is something that can be installed, updated, and uninstalled
as a unit.

The Deployment Admin functionality is exposed as a standard OSGi service
with no mandatory service parameters.
cancel()

114.14.3.1 public boolean cancel()

This method cancels the currently active deployment session. This method
addresses the need to cancel the processing of excessively long running, or
resource consuming install, update or uninstall operations.

Returns true if there was an active session and it was successfully cancelled.

Throws SecurityException – if the caller doesn’t have the appropriate
DeploymentAdminPermiss ion [p.242] (”<filter>”, “cancel”) permission.

See Also DeploymentAdminPermission[p.242]
getDeploymentPackage(String)

114.14.3.2 public DeploymentPackage getDeploymentPackage(String symbName)

symbName the symbolic name of the Deployment Package to be retrieved. It mustn’t be
null.

Gets the currenlty installed DeploymentPackage [p.249] instance which has
the given symbolic name.

During an installation of an existing package (update) or during an unin-
stallation, the target Deployment Package must remain the return value
until the installation (uninstallation) process is completed, after which the
source (or null in case of uninstall) is the return value.

Returns The DeploymentPackage for the given symbolic name. If there is no Deploy-
ment Package with that symbolic name currently installed, null is returned.

Throws IllegalArgumentException – if the given symbName is null

SecurityException – if the caller doesn’t have the appropriate
DeploymentAdminPermiss ion [p.242] (”<filter>”, “list”) permission.
240-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 org.osgi.service.deploymentadmin
See Also DeploymentPackage[p.249] , DeploymentAdminPermission[p.242]
getDeploymentPackage(Bundle)

114.14.3.3 public DeploymentPackage getDeploymentPackage(Bundle bundle)

bundle the bundle whose owner is queried

Gives back the installed DeploymentPackage [p.249] that owns the bundle.
Deployment Packages own their bundles by their Bundle Symbolic Name. It
means that if a bundle belongs to an installed Deployment Packages (and at
most to one) the Deployment Admin assigns the bundle to its owner
Deployment Package by the Symbolic Name of the bundle.

Returns the Deployment Package Object that owns the bundle or null if the bundle
doesn’t belong to any Deployment Packages (standalone bundles)

Throws IllegalArgumentException – if the given bundle is null

SecurityException – if the caller doesn’t have the appropriate
DeploymentAdminPermission [p.242] (”<filter>”, “list”) permission.

See Also DeploymentPackage[p.249] , DeploymentAdminPermission[p.242]
installDeploymentPackage(InputStream)

114.14.3.4 public DeploymentPackage installDeploymentPackage(InputStream in)
throws DeploymentException

in the input stream the Deployment Package can be read from. It mustn’t be
null.

Installs a Deployment Package from an input stream. If a version of that
Deployment Package is already installed and the versions are different, the
installed version is updated with this new version even if it is older (down-
grade). If the two versions are the same, then this method simply returns
with the old (target) Deployment Package without any action.

Returns A DeploymentPackage object representing the newly installed/updated De-
ployment Package. It is never null.

Throws IllegalArgumentException – if the got InputStream parameter is null

DeploymentException – if the installation was not successful. For detailed
error code description see DeploymentException [p.246] .

SecurityException – if the caller doesn’t have the appropriate
DeploymentAdminPermission [p.242] (”<filter>”, “install”) permission.

See Also DeploymentAdminPermission[p.242] , DeploymentPackage[p.249] ,
DeploymentPackage[p.249]
listDeploymentPackages()

114.14.3.5 public DeploymentPackage[] listDeploymentPackages()

Lists the Deployment Packages currently installed on the platform.

DeploymentAdminPermission [p.242] (”<filter>”, “list”) is needed for this
operation to the effect that only those packages are listed in the array to
which the caller has appropriate DeploymentAdminPermission. It has the
consequence that the method never throws SecurityException only doesn’t
put certain Deployment Packages into the array.

During an installation of an existing package (update) or during an unin-
stallation, the target must remain in this list until the installation (uninstal-
lation) process is completed, after which the source (or null in case of
uninstall) replaces the target.
OSGi Service Platform Release 4 241-502

org.osgi.service.deploymentadmin Deployment Admin Specification Version 1.0
Returns the array of DeploymentPackage objects representing all the installed De-
ployment Packages (including the “system” Deployment Package). The re-
turn value cannot be null. In case of missing permissions it may give back an
empty array.

See Also DeploymentPackage[p.249] , DeploymentAdminPermission[p.242]
DeploymentAdminPermission

114.14.4 public final class DeploymentAdminPermission
extends Permission
DeploymentAdminPermission controls access to the Deployment Admin
service.

The permission uses a filter string formatted similarly to the
org .osg i . f ramework.F i l ter . The filter determines the target of the permis-
sion. The DeploymentAdminPermission uses the name and the signer filter
attributes only. The value of the signer attribute is matched against the
signer chain (represented with its semicolon separated Distinguished Name
chain) of the Deployment Package, and the value of the name attribute is
matched against the value of the “DeploymentPackage-Name” manifest
header of the Deployment Package. Example:

• (signer=cn = Bugs Bunny, o = ACME, c = US)
• (name=org.osgi.ExampleApp)

Wildcards also can be used:

(signer=cn=*,o=ACME,c=*)

“cn” and “c” may have an arbitrary value

(signer=*, o=ACME, c=US)

Only the value of “o” and “c” are significant

(signer=* ; ou=S & V, o=Tweety Inc., c=US)

The first element of the certificate chain is not important, only the second
(the Distingushed Name of the root certificate)

(signer=- ; *, o=Tweety Inc., c=US)

The same as the previous but ‘-’ represents zero or more certificates, whereas
the asterisk only represents a single certificate

(name=*)

The name of the Deployment Package doesn’t matter

(name=org.osgi.*)

The name has to begin with “org.osgi.”

The following actions are allowed:

list
242-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 org.osgi.service.deploymentadmin
A holder of this permission can access the inventory information of the
deployment packages selected by the <filter> string. The filter selects the
deployment packages on which the holder of the permission can acquire
detailed inventory information. See
DeploymentAdmin.getDeploymentPackage(Bundle) [p.241] ,
DeploymentAdmin.getDeploymentPackage(Str ing) [p.240] and
DeploymentAdmin. l istDeploymentPackages [p.241] .

install

A holder of this permission can install/update deployment packages if the
deployment package satisfies the <filter> string. See
DeploymentAdmin. instal lDeploymentPackage [p.241] .

uninstall

A holder of this permission can uninstall deployment packages if the
deployment package satisfies the <filter> string. See
DeploymentPackage.uninstal l [p.252] .

uninstall_forced

A holder of this permission can forcefully uninstall deployment packages if
the deployment package satisfies the <filter> string. See
DeploymentPackage.uninstal lForced [p.252] .

cancel

A holder of this permission can cancel an active deployment action. This
action being cancelled could correspond to the install, update or uninstall of
a deployment package that satisfies the <filter> string. See
DeploymentAdmin.cancel [p.240]

metadata

A holder of this permission is able to retrieve metadata information about a
Deployment Package (e.g. is able to ask its manifest hedares). See
org .osgi .service .deploymentadmin .DeploymentPackage.getBundle(Str ing
) [p.250] ,
org .osgi .service .deploymentadmin .DeploymentPackage.getBundle Infos()
[p.250] ,
org .osgi .service .deploymentadmin .DeploymentPackage.getHeader(Str in
g) [p.250] , org.osgi .service .deploymentadmin.DeploymentPackage.getRe-
sourceHeader(Str ing, St r ing) [p.251] ,
org .osgi .service .deploymentadmin .DeploymentPackage.getResourceProc
essor(Str ing) [p.251] ,
org .osgi .service .deploymentadmin .DeploymentPackage.getResources() [p
.251]

The actions string is converted to lowercase before processing.
CANCEL

114.14.4.1 public static final String CANCEL = “cancel”

Constant String to the “cancel” action.

See Also DeploymentAdmin.cancel[p.240]
INSTALL

114.14.4.2 public static final String INSTALL = “install”

Constant String to the “install” action.
OSGi Service Platform Release 4 243-502

org.osgi.service.deploymentadmin Deployment Admin Specification Version 1.0
See Also DeploymentAdmin.installDeploymentPackage(InputStream)[p.241]
LIST

114.14.4.3 public static final String LIST = “list”

Constant String to the “list” action.

See Also DeploymentAdmin.listDeploymentPackages()[p.241] ,
DeploymentAdmin.getDeploymentPackage(String)[p.240] ,
DeploymentAdmin.getDeploymentPackage(Bundle)[p.241]
METADATA

114.14.4.4 public static final String METADATA = “metadata”

Constant String to the “metadata” action.

See Also
org.osgi.service.deploymentadmin.DeploymentPackage.getBundle(S
tring)[p.250] ,
org.osgi.service.deploymentadmin.DeploymentPackage.getBundleIn
fos()[p.250] ,
org.osgi.service.deploymentadmin.DeploymentPackage.getHeader(S
tring)[p.250] ,
org.osgi.service.deploymentadmin.DeploymentPackage.getResource
Header(String, String)[p.251] ,
org.osgi.service.deploymentadmin.DeploymentPackage.getResource
Processor(String)[p.251] ,
org.osgi.service.deploymentadmin.DeploymentPackage.getResource
s()[p.251]
UNINSTALL

114.14.4.5 public static final String UNINSTALL = “uninstall”

Constant String to the “uninstall” action.

See Also DeploymentPackage.uninstall()[p.252]
UNINSTALL_FORCED

114.14.4.6 public static final String UNINSTALL_FORCED = “uninstall_forced”

Constant String to the “uninstall_forced” action.

See Also DeploymentPackage.uninstallForced()[p.252]
DeploymentAdminPermission(String,String)

114.14.4.7 public DeploymentAdminPermission(String name, String actions)

name filter string, must not be null.

actions action string, must not be null. “*” means all the possible actions.

Creates a new DeploymentAdminPermission object for the given name and
action.

The name parameter identifies the target depolyment package the permis-
sion relates to. The actions parameter contains the comma separated list of
allowed actions.

Throws IllegalArgumentException – if the filter is invalid, the list of actions con-
tains unknown operations or one of the parameters is null
equals(Object)

114.14.4.8 public boolean equals(Object obj)

obj The reference object with which to compare.

Checks two DeploymentAdminPermission objects for equality. Two per-
mission objects are equal if:

• their target filters are semantically equal and
244-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 org.osgi.service.deploymentadmin
• their actions are the same

Returns true if the two objects are equal.

See Also java.lang.Object.equals(java.lang.Object)
getActions()

114.14.4.9 public String getActions()

Returns the String representation of the action list.

The method always gives back the actions in the following (alphabetical)
order: cancel, install, list, metadata, uninstall, uninstall_forced

Returns Action list of this permission instance. This is a comma-separated list that re-
flects the action parameter of the constructor.

See Also java.security.Permission.getActions()
hashCode()

114.14.4.10 public int hashCode()

Returns hash code for this permission object.

Returns Hash code for this permission object.

See Also java.lang.Object.hashCode()
implies(Permission)

114.14.4.11 public boolean implies(Permission permission)

permission Permission to check.

Checks if this DeploymentAdminPermission would imply the parameter
permission.

Precondition of the implication is that the action set of this permission is
the superset of the action set of the other permission. Further rules of impli-
cation are determined by the org.osgi . f ramework.Fi l ter rules and the “OSGi
Service Platform, Core Specification Release 4, Chapter Certificate Match-
ing”.

The allowed attributes are: name (the symbolic name of the deployment
package) and signer (the signer of the deployment package). In both cases
wildcards can be used.

Examples:

1. DeploymentAdminPermission(”(name=org.osgi.ExampleApp)”,
“list”)
2. DeploymentAdminPermission(”(name=org.osgi.ExampleApp)”,

“list, install”)
3. DeploymentAdminPermission(”(name=org.osgi.*)”, “list”)
4. DeploymentAdminPermission(”(signer=*, o=ACME, c=US)”,

“list”)
5. DeploymentAdminPermission(”(signer=cn = Bugs Bunny, o =

ACME, c = US)”, “list”)

1. implies 1.
2. implies 1.
1. doesn’t implies 2.
3. implies 1.
4. implies 5.
OSGi Service Platform Release 4 245-502

org.osgi.service.deploymentadmin Deployment Admin Specification Version 1.0
Returns true if this DeploymentAdminPermission object implies the specified per-
mission.

See Also java.security.Permission.implies(java.security.Permission),
org.osgi.framework.Filter
newPermissionCollection()

114.14.4.12 public PermissionCollection newPermissionCollection()

Returns a new PermissionCollection object for storing DeploymentAdmin-
Permission objects.

Returns The new PermissionCollection.

See Also java.security.Permission.newPermissionCollection()
DeploymentException

114.14.5 public class DeploymentException
extends Exception
Checked exception received when something fails during any deployment
processes. A DeploymentException always contains an error code (one of
the constants specified in this class), and may optionally contain the textual
description of the error condition and a nested cause exception.
CODE_BAD_HEADER

114.14.5.1 public static final int CODE_BAD_HEADER = 452

Syntax error in any manifest header.

DeploymentAdmin. instal lDeploymentPackage(InputStream) [p.241]
throws exception with this error code.
CODE_BUNDLE_NAME_ERROR

114.14.5.2 public static final int CODE_BUNDLE_NAME_ERROR = 457

Bundle symbolic name is not the same as defined by the deployment pack-
age manifest.

DeploymentAdmin. instal lDeploymentPackage(InputStream) [p.241]
throws exception with this error code.
CODE_BUNDLE_SHARING_VIOLATION

114.14.5.3 public static final int CODE_BUNDLE_SHARING_VIOLATION = 460

Bundle with the same symbolic name alerady exists.

DeploymentAdmin. instal lDeploymentPackage(InputStream) [p.241]
throws exception with this error code.
CODE_CANCELLED

114.14.5.4 public static final int CODE_CANCELLED = 401

DeploymentAdmin. instal lDeploymentPackage(InputStream) [p.241] ,
DeploymentPackage.uninstal l () [p.252] and
DeploymentPackage.uninstal lForced() [p.252] methods can throw
DeploymentException [p.246] with this error code if the
DeploymentAdmin.cancel() [p.240] method is called from another thread.
CODE_COMMIT_ERROR

114.14.5.5 public static final int CODE_COMMIT_ERROR = 462

Exception with this error code is thrown when one of the Resource Proces-
sors involved in the deployment session threw a ResourceProcessorExcep-
tion with the
org.osgi .serv ice .deploymentadmin .spi .ResourceProcessorExcep-
tion.CODE_PREPARE error code.
246-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 org.osgi.service.deploymentadmin
DeploymentAdmin. instal lDeploymentPackage(InputStream) [p.241] and
DeploymentPackage.uninstal l () [p.252] methods throw exception with this
error code.
CODE_FOREIGN_CUSTOMIZER

114.14.5.6 public static final int CODE_FOREIGN_CUSTOMIZER = 458

Matched resource processor service is a customizer from another deploy-
ment package.

DeploymentAdmin. instal lDeploymentPackage(InputStream) [p.241]
throws exception with this error code.
CODE_MISSING_BUNDLE

114.14.5.7 public static final int CODE_MISSING_BUNDLE = 454

A bundle in the deployment package is marked as DeploymentPackage-
Missing but there is no such bundle in the target deployment package.

DeploymentAdmin. instal lDeploymentPackage(InputStream) [p.241]
throws exception with this error code.
CODE_MISSING_FIXPACK_TARGET

114.14.5.8 public static final int CODE_MISSING_FIXPACK_TARGET = 453

Fix pack version range doesn’t fit to the version of the target deployment
package or the target deployment package of the fix pack doesn’t exist.

DeploymentAdmin. instal lDeploymentPackage(InputStream) [p.241]
throws exception with this error code.
CODE_MISSING_HEADER

114.14.5.9 public static final int CODE_MISSING_HEADER = 451

Missing mandatory manifest header.

DeploymentAdmin. instal lDeploymentPackage(InputStream) [p.241] can
throw exception with this error code.
CODE_MISSING_RESOURCE

114.14.5.10 public static final int CODE_MISSING_RESOURCE = 455

A resource in the source deployment package is marked as Deployment-
Package-Missing but there is no such resource in the target deployment
package.

DeploymentAdmin. instal lDeploymentPackage(InputStream) [p.241]
throws exception with this error code.
CODE_NOT_A_JAR

114.14.5.11 public static final int CODE_NOT_A_JAR = 404

DeploymentAdmin. instal lDeploymentPackage(InputStream) [p.241] meth-
ods can throw DeploymentException [p.246] with this error code if the got
InputStream is not a jar.
CODE_ORDER_ERROR

114.14.5.12 public static final int CODE_ORDER_ERROR = 450

Order of files in the deployment package is bad. The right order is the fol-
lowing:

1 META-INF/MANIFEST.MF
2 META-INF/*.SF, META-INF/*.DSA, META-INF/*.RS
3 Localization files
4 Bundles
5 Resources
OSGi Service Platform Release 4 247-502

org.osgi.service.deploymentadmin Deployment Admin Specification Version 1.0
DeploymentAdmin. instal lDeploymentPackage(InputStream) [p.241]
throws exception with this error code.
CODE_OTHER_ERROR

114.14.5.13 public static final int CODE_OTHER_ERROR = 463

Other error condition.

All Deployment Admin methods which throw DeploymentException can
throw an exception with this error code if the error condition cannot be cat-
egorized.
CODE_PROCESSOR_NOT_FOUND

114.14.5.14 public static final int CODE_PROCESSOR_NOT_FOUND = 464

The Resource Processor service with the given PID (see Resource-Processor
manifest header) is not found.

DeploymentAdmin. instal lDeploymentPackage(InputStream) [p.241] ,
DeploymentPackage.uninstal l () [p.252] and
DeploymentPackage.uninstal lForced() [p.252] throws exception with this
error code.
CODE_RESOURCE_SHARING_VIOLATION

114.14.5.15 public static final int CODE_RESOURCE_SHARING_VIOLATION = 461

An artifact of any resource already exists.

This exception is thrown when the called resource processor throws a
ResourceProcessorException with the org.osgi .service .dep loymentad-
min.sp i.ResourceProcessorExcep-
t ion.CODE_RESOURCE_SHARING_VIOLATION error code.

DeploymentAdmin. instal lDeploymentPackage(InputStream) [p.241]
throws exception with this error code.
CODE_SIGNING_ERROR

114.14.5.16 public static final int CODE_SIGNING_ERROR = 456

Bad deployment package signing.

DeploymentAdmin. instal lDeploymentPackage(InputStream) [p.241]
throws exception with this error code.
CODE_TIMEOUT

114.14.5.17 public static final int CODE_TIMEOUT = 465

When a client requests a new session with an install or uninstall operation,
it must block that call until the earlier session is completed. The Deploy-
ment Admin service must throw a Deployment Exception with this error
code when the session can not be created after an appropriate time out
period.

DeploymentAdmin. instal lDeploymentPackage(InputStream) [p.241] ,
DeploymentPackage.uninstal l () [p.252] and
DeploymentPackage.uninstal lForced() [p.252] throws exception with this
error code.
DeploymentException(int,String,Throwable)

114.14.5.18 public DeploymentException(int code, String message, Throwable cause
)

code The error code of the failure. Code should be one of the predefined integer
values (CODE_X).

message Message associated with the exception
248-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 org.osgi.service.deploymentadmin
cause the originating exception

Create an instance of the exception.
DeploymentException(int,String)

114.14.5.19 public DeploymentException(int code, String message)

code The error code of the failure. Code should be one of the predefined integer
values (CODE_X).

message Message associated with the exception

Create an instance of the exception. Cause exception is implicitly set to null.
DeploymentException(int)

114.14.5.20 public DeploymentException(int code)

code The error code of the failure. Code should be one of the predefined integer
values (CODE_X).

Create an instance of the exception. Cause exception and message are
implicitly set to null.
getCause()

114.14.5.21 public Throwable getCause()

Returns Returns the cause.
getCode()

114.14.5.22 public int getCode()

Returns Returns the code.
getMessage()

114.14.5.23 public String getMessage()

Returns Returns the message.
DeploymentPackage

114.14.6 public interface DeploymentPackage
The DeploymentPackage object represents a deployment package (already
installed or being currently processed). A Deployment Package groups
resources as a unit of management. A deployment package is something
that can be installed, updated, and uninstalled as a unit. A deployment pack-
age is a reified concept, like a bundle, in an OSGi Service Platform. It is not
known by the OSGi Framework, but it is managed by the Deployment
Admin service. A deployment package is a stream of resources (including
bundles) which, once processed, will result in new artifacts (effects on the
system) being added to the OSGi platform. These new artifacts can include
installed Bundles, new configuration objects added to the Configuration
Admin service, new Wire objects added to the Wire Admin service, or
changed system properties, etc. All the changes caused by the processing of
a deployment package are persistently associated with the deployment
package, so that they can be appropriately cleaned up when the deployment
package is uninstalled. There is a strict no overlap rule imposed on deploy-
ment packages. Two deployment packages are not allowed to create or
manipulate the same artifact. Obviously, this means that a bundle cannot be
in two different deployment packagess. Any violation of this no overlap rule
is considered an error and the install or update of the offending deployment
package must be aborted.
OSGi Service Platform Release 4 249-502

org.osgi.service.deploymentadmin Deployment Admin Specification Version 1.0
The Deployment Admin service should do as much as possible to ensure
transactionality. It means that if a deployment package installation, update
or removal (uninstall) fails all the side effects caused by the process should
be disappeared and the system should be in the state in which it was before
the process.

If a deployment package is being updated the old version is visible through
the DeploymentPackage interface until the update process ends. After the
package is updated the updated version is visible and the old one is not
accessible any more.
equals(Object)

114.14.6.1 public boolean equals(Object other)

other the reference object with which to compare.

Indicates whether some other object is “equal to” this one. Two deployment
packages are equal if they have the same deployment package symbolic-
name and version.

Returns true if this object is the same as the obj argument; false otherwise.
getBundle(String)

114.14.6.2 public Bundle getBundle(String symbolicName)

symbolicName the symbolic name of the requested bundle

Returns the bundle instance, which is part of this deployment package, that
corresponds to the bundle’s symbolic name passed in the symbolicName
parameter. This method will return null for request for bundles that are not
part of this deployment package.

As this instance is transient (i.e. a bundle can be removed at any time
because of the dynamic nature of the OSGi platform), this method may also
return null if the bundle is part of this deployment package, but is not cur-
rently defined to the framework.

Returns The Bundle instance for a given bundle symbolic name.

Throws SecurityException – if the caller doesn’t have the appropriate
DeploymentAdminPermiss ion [p.242] with “metadata” action

IllegalStateException – if the package is stale
getBundleInfos()

114.14.6.3 public BundleInfo[] getBundleInfos()

Returns an array of Bundle Info [p.239] objects representing the bundles
specified in the manifest of this deployment package. Its size is equal to the
number of the bundles in the deployment package.

Returns array of BundleInfo objects

Throws SecurityException – if the caller doesn’t have the appropriate
DeploymentAdminPermiss ion [p.242] with “metadata” action
getHeader(String)

114.14.6.4 public String getHeader(String header)

header the requested header

Returns the requested deployment package manifest header from the main
section. Header names are case insensitive. If the header doesn’t exist it
returns null.
250-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 org.osgi.service.deploymentadmin
If the header is localized then the localized value is returned (see OSGi Ser-
vice Platform, Mobile Specification Release 4 - Localization related chap-
ters).

Returns the value of the header or null if the header does not exist

Throws SecurityException – if the caller doesn’t have the appropriate
DeploymentAdminPermission [p.242] with “metadata” action
getName()

114.14.6.5 public String getName()

Returns the Deployment Pacakage Symbolic Name of the package.

Returns The name of the deployment package. It cannot be null.
getResourceHeader(String,String)

114.14.6.6 public String getResourceHeader(String resource, String header)

resource the name of the resource (it is the same as the value of the “Name” attribute
in the deployment package’s manifest)

header the requested header

Returns the requested deployment package manifest header from the name
section determined by the resource parameter. Header names are case insen-
sitive. If the resource or the header doesn’t exist it returns null.

If the header is localized then the localized value is returned (see OSGi Ser-
vice Platform, Mobile Specification Release 4 - Localization related chap-
ters).

Returns the value of the header or null if the resource or the header doesn’t exist

Throws SecurityException – if the caller doesn’t have the appropriate
DeploymentAdminPermission [p.242] with “metadata” action
getResourceProcessor(String)

114.14.6.7 public ServiceReference getResourceProcessor(String resource)

resource the name of the resource (it is the same as the value of the “Name” attribute
in the deployment package’s manifest)

At the time of deployment, resource processor service instances are located
to resources contained in a deployment package.

This call returns a service reference to the corresponding service instance. If
the resource is not part of the deployment package or this call is made dur-
ing deployment, prior to the locating of the service to process a given
resource, null will be returned. Services can be updated after a deployment
package has been deployed. In this event, this call will return a reference to
the updated service, not to the instance that was used at deployment time.

Returns resource processor for the resource or null.

Throws SecurityException – if the caller doesn’t have the appropriate
DeploymentAdminPermission [p.242] with “metadata” action

IllegalStateException – if the package is stale
getResources()

114.14.6.8 public String[] getResources()

Returns an array of strings representing the resources (including bundles)
that are specified in the manifest of this deployment package. A string ele-
ment of the array is the same as the value of the “Name” attribute in the
manifest. The array contains the bundles as well.
OSGi Service Platform Release 4 251-502

org.osgi.service.deploymentadmin Deployment Admin Specification Version 1.0
E.g. if the “Name” section of the resource (or individual-section as the Mani-
fest Specification (http://java.sun.com/j2se/1.4.2/docs/guide/jar/
jar.html#Manifest%20Specification) calls it) in the manifest is the follow-
ing

Name: foo/readme.txt
Resource-Processor: foo.rp

then the corresponding array element is the “foo/readme.txt” string.

Returns The string array corresponding to resources. It cannot be null but its length
can be zero.

Throws SecurityException – if the caller doesn’t have the appropriate
DeploymentAdminPermiss ion [p.242] with “metadata” action
getVersion()

114.14.6.9 public Version getVersion()

Returns the version of the deployment package.

Returns version of the deployment package. It cannot be null.
hashCode()

114.14.6.10 public int hashCode()

Returns a hash code value for the object.

Returns a hash code value for this object
isStale()

114.14.6.11 public boolean isStale()

Gives back the state of the deployment package whether it is stale or not).
After uninstall of a deployment package it becomes stale. Any active
method calls to a stale deployment package raise I l lega lStateException .
Active methods are the following:

• getBundle(Str ing) [p.250]
• getResourceProcessor(Str ing) [p.251]
• uninstal l () [p.252]
• uninstal lForced() [p.252]

Returns true if the deployment package is stale. false otherwise

See Also uninstall[p.252] , uninstallForced[p.252]
uninstall()

114.14.6.12 public void uninstall() throws DeploymentException

Uninstalls the deployment package. After uninstallation, the deployment
package object becomes stale. This can be checked by using i sSta le()[p.252] ,
which will return true when stale.

Throws DeploymentException – if the deployment package could not be successful-
ly uninstalled. For detailed error code description see
DeploymentException [p.246] .

SecurityException – if the caller doesn’t have the appropriate
DeploymentAdminPermiss ion [p.242] (”<filter>”, “uninstall”) permission.

IllegalStateException – if the package is stale
uninstallForced()
252-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 org.osgi.service.deploymentadmin.spi
114.14.6.13 public boolean uninstallForced() throws DeploymentException

This method is called to completely uninstall a deployment package, which
couldn’t be uninstalled using traditional means (uninstal l() [p.252]) due to
exceptions. After uninstallation, the deployment package object becomes
stale. This can be checked by using i sSta le() [p.252] , which will return true
when stale.

The method forces removal of the Deployment Package from the repository
maintained by the Deployment Admin service. This method follows the
same steps as uninstal l [p.252] . However, any errors or the absence of
Resource Processor services are ignored, they must not cause a roll back.
These errors should be logged.

Returns true if the operation was successful

Throws DeploymentException – only
DeploymentExcept ion.CODE_TIMEOUT [p.248] and
DeploymentExcept ion.CODE_CANCELLED [p.246] can be thrown. For de-
tailed error code description see DeploymentException [p.246] .

SecurityException – if the caller doesn’t have the appropriate
DeploymentAdminPermission [p.242] (”<filter>”, “uninstall_forced”) permis-
sion.

IllegalStateException – if the package is stale

114.15 org.osgi.service.deploymentadmin.spi
Deployment Admin SPI Package Version 1.0. The SPI is used by Resource
Processors.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.deploymentadmin.spi; ver-
sion=1.0

114.15.1 Summary
• DeploymentCustomizerPermission - The DeploymentCustomizerPer-

mission permission gives the right to Resource Processors to access a
bundle’s (residing in a Deployment Package) private area. [p.253]

• DeploymentSession - The session interface represents a currently
running deployment session (install/update/uninstall). [p.255]

• ResourceProcessor - ResourceProcessor interface is implemented by pro-
cessors handling resource files in deployment packages. [p.256]

• ResourceProcessorException - Checked exception received when some-
thing fails during a call to a Resource Processor. [p.259]

DeploymentCustomizerPermission
OSGi Service Platform Release 4 253-502

org.osgi.service.deploymentadmin.spi Deployment Admin Specification Version 1.0
114.15.2 public class DeploymentCustomizerPermission
extends Permission
The DeploymentCustomizerPermission permission gives the right to
Resource Processors to access a bundle’s (residing in a Deployment Package)
private area. The bundle and the Resource Processor (customizer) have to be
in the same Deployment Package.

The Resource Processor that has this permission is allowed to access the
bundle’s private area by calling the DeploymentSession.getDataFi le [p.256]
method during the session (see DeploymentSession [p.255]). After the ses-
sion ends the FilePermissions are withdrawn. The Resource Processor will
have FilePermission with “read”, “write” and “delete” actions for the
returned java. io .Fi le that represents the the base directory of the persistent
storage area and for its subdirectories.

The actions string is converted to lowercase before processing.
PRIVATEAREA

114.15.2.1 public static final String PRIVATEAREA = “privatearea”

Constant String to the “privatearea” action.
DeploymentCustomizerPermission(String,String)

114.15.2.2 public DeploymentCustomizerPermission(String name, String actions)

name Bundle Symbolic Name of the target bundle, must not be null.

actions action string (only the “privatearea” or “*” action is valid; “*” means all the
possible actions), must not be null.

Creates a new DeploymentCustomizerPermission object for the given name
and action.

The name parameter is a filter string. This filter has the same syntax as an
OSGi filter but only the “name” attribute is allowed. The value of the
attribute is a Bundle Symbolic Name that represents a bundle. The only
allowed action is the “privatearea” action. E.g.

Permission perm = new DeploymentCustomizerPermis-
sion(”(name=com.acme.bundle)”, “privatearea”);

The Resource Processor that has this permission is allowed to access the
bundle’s private area by calling the DeploymentSession.getDataFi le [p.256]
method. The Resource Processor will have FilePermission with “read”,
“write” and “delete” actions for the returned java . io .Fi le and its subdirecto-
ries during the deployment session.

Throws IllegalArgumentException – if the filter is invalid, the list of actions con-
tains unknown operations or one of the parameters is null
equals(Object)

114.15.2.3 public boolean equals(Object obj)

obj the reference object with which to compare.

Checks two DeploymentCustomizerPermission objects for equality. Two
permission objects are equal if:

• their target filters are equal (semantically and not character by character)
and

• their actions are the same
254-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 org.osgi.service.deploymentadmin.spi
Returns true if the two objects are equal.

See Also java.lang.Object.equals(java.lang.Object)
getActions()

114.15.2.4 public String getActions()

Returns the String representation of the action list.

Returns Action list of this permission instance. It is always “privatearea”.

See Also java.security.Permission.getActions()
hashCode()

114.15.2.5 public int hashCode()

Returns hash code for this permission object.

Returns Hash code for this permission object.

See Also java.lang.Object.hashCode()
implies(Permission)

114.15.2.6 public boolean implies(Permission permission)

permission Permission to check.

Checks if this DeploymentCustomizerPermission would imply the parame-
ter permission. This permission implies another DeploymentCustomizer-
Permission permission if:

• both of them has the “privatearea” action (other actions are not allowed)
and

• their filters (only name attribute is allowed in the filters) match similarly
to DeploymentAdminPermiss ion .

The value of the name attribute means Bundle Symbolic Name and not
Deployment Package Symbolic Name here!

Returns true if this DeploymentCustomizerPermission object implies the specified
permission.

See Also java.security.Permission.implies(java.security.Permission)
newPermissionCollection()

114.15.2.7 public PermissionCollection newPermissionCollection()

Returns a new PermissionCollection object for storing DeploymentCus-
tomizerPermission objects.

Returns The new PermissionCollection.

See Also java.security.Permission.newPermissionCollection()
DeploymentSession

114.15.3 public interface DeploymentSession
The session interface represents a currently running deployment session
(install/update/uninstall).

When a deployment package is installed the target package, when unin-
stalled the source package is an empty deployment package. The empty
deployment package is a virtual entity it doesn’t appear for the outside
world. It is only visible on the DeploymentSession interface used by
Resource Processors. Although the empty package is only visible for
Resource Processors it has the following characteristics:

• has version 0.0.0
• its name is an empty string
• it is stale
OSGi Service Platform Release 4 255-502

org.osgi.service.deploymentadmin.spi Deployment Admin Specification Version 1.0
• it has no bundles (see DeploymentPackage.getBundle(Str ing))
• it has no resources (see DeploymentPackage.getResources())
• it has no headers except

DeploymentPackage-SymbolicName and
DeploymentPackage-Version
 (see DeploymentPackage.getHeader(Str ing))

• it has no resource headers (see DeploymentPackage.getResource-
Header(Str ing, St r ing))

• DeploymentPackage.uninsta ll () throws java. lang. I l legalStateExcept ion
• DeploymentPackage.uninsta llForced() throws java. lang. I l legalStateEx-

ception
getDataFile(Bundle)

114.15.3.1 public File getDataFile(Bundle bundle)

bundle the bundle the private area belongs to

Returns the private data area of the specified bundle. The bundle must be
part of either the source or the target deployment packages. The permission
set the caller resource processor needs to manipulate the private area of the
bundle is set by the Deployment Admin on the fly when this method is
called. The permissions remain available during the deployment action
only.

The bundle and the caller Resource Processor have to be in the same Deploy-
ment Package.

Returns file representing the private area of the bundle. It cannot be null.

Throws SecurityException – if the caller doesn’t have the appropriate
DeploymentCustomizerPermiss ion [p.253] (”<filter>”, “privatearea”) permis-
sion.

See Also DeploymentPackage, DeploymentCustomizerPermission[p.253]
getSourceDeploymentPackage()

114.15.3.2 public DeploymentPackage getSourceDeploymentPackage()

If the deployment action is an install or an update, this call returns the
DeploymentPackage instance that corresponds to the deployment package
being streamed in for this session. If the deployment action is an uninstall,
this call returns the empty deploymet package (see DeploymentPackage).

Returns the source deployment package

See Also DeploymentPackage
getTargetDeploymentPackage()

114.15.3.3 public DeploymentPackage getTargetDeploymentPackage()

If the deployment action is an update or an uninstall, this call returns the
DeploymentPackage instance for the installed deployment package. If the
deployment action is an install, this call returns the empty deploymet pack-
age (see DeploymentPackage).

Returns the target deployment package

See Also DeploymentPackage
ResourceProcessor
256-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 org.osgi.service.deploymentadmin.spi
114.15.4 public interface ResourceProcessor
ResourceProcessor interface is implemented by processors handling
resource files in deployment packages. Resource Processors expose their ser-
vices as standard OSGi services. Bundles exporting the service may arrive in
the deployment package (customizers) or may be preregistered (they are
installed prevoiusly). Resource processors has to define the service.pid stan-
dard OSGi service property which should be a unique string.

The order of the method calls on a particular Resource Processor in case of
install/update session is the following:

1 begin(DeploymentSession) [p.257]
2 process(Str ing , InputStream) [p.258] calls till there are resources to

process or ro llback() [p.258] and the further steps are ignored
3 dropped(Str ing) [p.258] calls till there are resources to drop
4 prepare() [p.258]
5 commit() [p.257] or ro llback() [p.258]

The order of the method calls on a particular Resource Processor in case of
uninstall session is the following:

1 begin(DeploymentSession) [p.257]
2 dropAl lResources() [p.257] or rol lback()[p.258] and the further steps are

ignored
3 prepare() [p.258]
4 commit() [p.257] or ro llback() [p.258]
begin(DeploymentSession)

114.15.4.1 public void begin(DeploymentSession session)

session object that represents the current session to the resource processor

Called when the Deployment Admin starts a new operation on the given
deployment package, and the resource processor is associated a resource
within the package. Only one deployment package can be processed at a
time.

See Also DeploymentSession[p.255]
cancel()

114.15.4.2 public void cancel()

Processing of a resource passed to the resource processor may take long. The
cancel() method notifies the resource processor that it should interrupt the
processing of the current resource. This method is called by the Deploymen-
tAdmin implementation after the DeploymentAdmin.cancel() method is
called.
commit()

114.15.4.3 public void commit()

Called when the processing of the current deployment package is finished.
This method is called if the processing of the current deployment package
was successful, and the changes must be made permanent.
dropAllResources()
OSGi Service Platform Release 4 257-502

org.osgi.service.deploymentadmin.spi Deployment Admin Specification Version 1.0
114.15.4.4 public void dropAllResources() throws ResourceProcessorException

This method is called during an “uninstall” deployment session. This
method will be called on all resource processors that are associated with
resources in the deployment package being uninstalled. This provides an
opportunity for the processor to cleanup any memory and persistent data
being maintained for the deployment package.

Throws ResourceProcessorException – if all resources could not be dropped. Only
the ResourceProcessorException .CODE_OTHER_ERROR [p.259] is allowed.
dropped(String)

114.15.4.5 public void dropped(String resource) throws
ResourceProcessorException

resource the name of the resource to drop (it is the same as the value of the “Name” at-
tribute in the deployment package’s manifest)

Called when a resource, associated with a particular resource processor, had
belonged to an earlier version of a deployment package but is not present in
the current version of the deployment package. This provides an opportu-
nity for the processor to cleanup any memory and persistent data being
maintained for the particular resource. This method will only be called dur-
ing “update” deployment sessions.

Throws ResourceProcessorException – if the resource is not allowed to be
dropped. Only the
ResourceProcessorException.CODE_OTHER_ERROR [p.259] error code is al-
lowed
prepare()

114.15.4.6 public void prepare() throws ResourceProcessorException

This method is called on the Resource Processor immediately before calling
the commit method. The Resource Processor has to check whether it is able
to commit the operations since the last begin method call. If it determines
that it is not able to commit the changes, it has to raise a ResourceProcessor-
Exception with the ResourceProcessorExcept ion.CODE_PREPARE [p.259]
error code.

Throws ResourceProcessorException – if the resource processor is able to deter-
mine it is not able to commit. Only the
ResourceProcessorException.CODE_PREPARE [p.259] error code is allowed.
process(String,InputStream)

114.15.4.7 public void process(String name, InputStream stream) throws
ResourceProcessorException

name The name of the resource relative to the deployment package root directory.

stream The stream for the resource.

Called when a resource is encountered in the deployment package for
which this resource processor has been selected to handle the processing of
that resource.

Throws ResourceProcessorException – if the resource cannot be processed. Only
ResourceProcessorException.CODE_RESOURCE_SHARING_VIOLATION [p.
259] and ResourceProcessorException.CODE_OTHER_ERROR [p.259] error
codes are allowed.
rollback()
258-502 OSGi Service Platform Release 4

Deployment Admin Specification Version 1.0 org.osgi.service.deploymentadmin.spi
114.15.4.8 public void rollback()

Called when the processing of the current deployment package is finished.
This method is called if the processing of the current deployment package
was unsuccessful, and the changes made during the processing of the
deployment package should be removed.
ResourceProcessorException

114.15.5 public class ResourceProcessorException
extends Exception
Checked exception received when something fails during a call to a
Resource Processor. A ResourceProcessorException always contains an error
code (one of the constants specified in this class), and may optionally con-
tain the textual description of the error condition and a nested cause excep-
tion.
CODE_OTHER_ERROR

114.15.5.1 public static final int CODE_OTHER_ERROR = 463

Other error condition.

All Resource Processor methods which throw ResourceProcessorException
is allowed throw an exception with this erro code if the error condition can-
not be categorized.
CODE_PREPARE

114.15.5.2 public static final int CODE_PREPARE = 1

Resource Processors are allowed to raise an exception with this error code to
indicate that the processor is not able to commit the operations it made
since the last call of ResourceProcessor.begin(DeploymentSession) [p.257]
method.

Only the ResourceProcessor.prepare() [p.258] method is allowed to throw
exception with this error code.
CODE_RESOURCE_SHARING_VIOLATION

114.15.5.3 public static final int CODE_RESOURCE_SHARING_VIOLATION = 461

An artifact of any resource already exists.

Only the ResourceProcessor.process(Str ing , InputStream) [p.258] method
is allowed to throw exception with this error code.
ResourceProcessorException(int,String,Throwable)

114.15.5.4 public ResourceProcessorException(int code, String message, Throwable
cause)

code The error code of the failure. Code should be one of the predefined integer
values (CODE_X).

message Message associated with the exception

cause the originating exception

Create an instance of the exception.
ResourceProcessorException(int,String)

114.15.5.5 public ResourceProcessorException(int code, String message)

code The error code of the failure. Code should be one of the predefined integer
values (CODE_X).

message Message associated with the exception
OSGi Service Platform Release 4 259-502

References Deployment Admin Specification Version 1.0
Create an instance of the exception. Cause exception is implicitly set to null.
ResourceProcessorException(int)

114.15.5.6 public ResourceProcessorException(int code)

code The error code of the failure. Code should be one of the predefined integer
values (CODE_X).

Create an instance of the exception. Cause exception and message are
implicitly set to null.
getCause()

114.15.5.7 public Throwable getCause()

Returns Returns the cause.
getCode()

114.15.5.8 public int getCode()

Returns Returns the code.
getMessage()

114.15.5.9 public String getMessage()

Returns Returns the message.

114.16 References
[1] JAR File Specification

http://java.sun.com/j2se/1.5.0/docs/guide/jar/jar.html

[2] OSGi Service Platform Core Specification
http://www.osgi.org
260-502 OSGi Service Platform Release 4

Auto Configuration Specification Version 1.0 Introduction
115 Auto Configuration
Specification
Version 1.0

115.1 Introduction
The purpose of the Auto Configuration specification is to allow the configu-
ration of bundles. These bundles can be embedded in Deployment Packages
or bundles that are already present on the OSGi Service Platform. This speci-
fication defines the format and processing rules of a Autoconf Resource Pro-
cessor. Resource processors are defined in Deployment Admin Specification on
page 205.

An Auto Configuration Resource contains information to define
Configurat ion objects for the Configuration Admin Service Specification on
page 71.

115.1.1 Entities
• Autoconf Resource – One or more resources in a Deployment Package that

are processed by the Autoconf Processor.
• Deployment Package – A named and versioned file that groups resources

into a single management unit. Deployment packages are the unit of
deployment and uninstallation. Deployment packages can contain
bundles and associated deployment-time resources that are processed by
Resource Processors.

• Resource Processor – A deployment-time customizer that accepts a
resource in a Deployment Package and turns it into a number of artifacts.
A resource processor is a service that implements the ResourceProcessor
interface.

• Autoconf Resource Processor – The Resource Processor that processes the
autoconf resources in a Deployment Package.
OSGi Service Platform Release 4 261-502

Configuration Data Auto Configuration Specification Version 1.0
Figure 115.1 Autoconf Context Diagram

115.1.2 Synopsis
A Deployment Package can contain one or more Autoconf resources. The
Manifest of the Deployment Package connects this resource to the Autoconf
Resource Processor. When the Deployment Package is deployed, the Auto-
conf Resource Processor reads the information from the Autoconf resources
and creates Configuration objects: both Managed Service as well as Man-
aged Service Factory Conf igurat ion objects.

When the Deployment Package is updated or uninstalled, the Autoconf
Resource Processor must delete the appropriate Configuration objects.

115.2 Configuration Data
Bundles usually require configuration data when they are deployed. For
example, a bundle that has to contact a central server needs one or more
server URLs. In practice, a complete application can consist of:

• A number of bundles
• Their configuration data
• Other required resources

The Deployment Package allows such an application to be installed,
updated, and uninstalled in a single operation. This specification extends
the Deployment Package with a facility to create Conf igurat ion objects. The
extension uses the Resource Processor mechanism to read one or more
resources from the Deployment Package and create Configuration objects
based on these resources.

For example, a Deployment Package contains a single bundle Chat . This
bundle, when started, registers a Managed Service with a PID of
com.acme.p id .Chat . The expected Configuration Dictionary contains a sin-
gle property: serverur l .

Resource
Processor

Autoconf
Processor Impl

Deployment
Package

1

Resource

Autoconf
resource

0..n

processes

Configuration
Adminconfigures

Configuration

1

0..n
262-502 OSGi Service Platform Release 4

Auto Configuration Specification Version 1.0 Processing
The schema explanation for an Autoconf resource can be found in Metatype
Service Specification on page 117. An Autoconf resource could look like:

<?xml version="1.0" encoding="UTF-8"?>
<metatype:MetaData

xmlns:metatype=
"http://www.osgi.org/xmlns/metatype/v1.0.0">

 <OCD id="ChatConfiguration">
 <AD id="server" type="String">
 </OCD>

 <Designate pid="com.acme.pid.Chat"
bundle="http://www.acme.com/chat.jar>

 <Object ocdref="ChatConfiguration">
 <Attribute adref="server" name="serverurl"

content="http://chat.acme.com"/>
</Object>

 </Designate>

</metatype:MetaData>

The OCD element (an abbreviation of Object Class Definition) defines the
type of the Configuration Dictionary. This typing is based on the Metatype
Service Specification on page 117. The Designate element links the configura-
tion data to a PID. This PID is the PID for the configuration object. The con-
tent is defined in an Object element. An Object element links to an OCD
element and defines the values of the attributes in Attr ibute elements.

The Autoconf Resource Processor in the example is instructed by this
resource to create a Managed Service Configuration object with a Dictio-
nary object that contains serverurl="http:/ /chat.acme.com".

An Autoconf resource can configure Managed Service configurations, as
long as the bundle is contained in the same Deployment Package. For bun-
dles that are not contained in the Deployment Package, a.k.a. foreign bundles,
only Managed Service Factory configurations can be created. Configuring
foreign bundles with a Managed Service configuration could create owner-
ship conflicts and is therefore explicitly not allowed.

The Autoconf Resource Processor must be able to handle installations,
updates, and uninstallations of Deployment Packages.

115.3 Processing
The Autoconf Resource Processor must register itself with the following PID
to become available to the Deployment Admin service:

org.osgi.deployment.rp.autoconf

The Autoconf Resource Processor must process each Designate element in
order of appearance. This element has the following information:

• pid – The PID of the Configuration object. If the Configuration object is a
factory configuration, the PID is actually an alias of the actual PID
because a factory configuration PID is generated.
OSGi Service Platform Release 4 263-502

Processing Auto Configuration Specification Version 1.0
• factoryPid – (Str ing) Defines a factory PID when this Designate is a factory
configuration; otherwise it is for a singleton configuration.

• bundle – The location of the bundle. It must be used to set the location of
the Conf igurat ion object. This attribute is mandatory for autoconf
though it is not mandatory for the schema because other applications
might not need a bundle location.

• merge – (true|false) Indicates that the value of the contained Object defi-
nition replaces (merge=false) the configuration data, or only replaces
properties (merge=true) that do not exist in the configuration data.

• optional – (true|fa lse) If t rue , then this Designate element is optional, and
errors during processing must be ignored. Otherwise, errors during pro-
cessing must abort the installation of the Deployment Package. This
requires the undoing of any work done so far.

The content of a Designate element is an Object element. This element con-
tains the value for the configuration Dictionary.

If the Designate element was marked optional , then any errors during these
steps can be ignored and the next Designate element must be processed.

A factory configuration is processed differently from a singleton configura-
tion. These two different processing methods are discussed in the following
sections.

115.3.1 Factory Configurations
Factory configurations can be created and deleted any number of times. This
concept of multiplicity makes it straightforward to associate factory config-
urations with a Deployment Package. Each Deployment Package can create
its unique configurations that are independent of any other Deployment
Packages. When the Deployment Package is uninstalled, the created config-
urations can be deleted without any concern for sharing.

A factory configuration is defined in a Designate element. The factoryPid
must be set to the PID of the related Managed Service Factory service. For
example:

 <Designate pid="a" factoryPid="com.acme.a"
 bundle="osgi-dp:com.acme.A">
 <Object ocdref="a">
 <Attribute adref="foo" content="Zaphod Beeblebrox"/>
 </Object>
 </Designate>

The Autoconf resource cannot use the actual PID of the Configurat ion
object because the Configuration Admin service automatically generates
the PID of factory configurations. This created PID is called the actual PID.

The Autoconf resource author cannot know the actual PID ahead of time.
The Autoconf resource must therefore specify a alias. The alias does not
have to be globally unique; it must only be unique for a specific Autoconf
resource. The Autoconf Processor must maintain the following association
(per Autoconf resource):

 alias → actual PID
264-502 OSGi Service Platform Release 4

Auto Configuration Specification Version 1.0 Processing
The alias can be viewed as an Autoconf resource local name for the factory
configuration PID. The actual PID is generated when the Autoconf proces-
sor creates a new factory configuration. This mapping is identical to the
mapping defined for the Configuration Admin Plugin; see Factory and Single-
ton Configurations on page 13.

The alias → actual PID association must be used by the Autoconf Processor
to decide what life cycle operation to execute.

• Alias → ∅ – This installation is a first-time installation of the factory con-
figuration. The Autoconf resource specifies a factory configuration that
was not part of a previous installation. The Autoconf Processor must
therefore create a new factory configuration, set the configuration dic-
tionary to the values in the Object element (see Assigning a Value on
page 267), and create the Alias → Actual association.

• Alias → Actual – The factory configuration already exists from a previous
Autoconf resource installation. The Autoconf Processor must merge or
override (depending on the merge attribute) the Configuration object
designated by the actual PID with the values in the Object element (see
Assigning a Value on page 267).

• ∅ → Actual – The Autoconf resource no longer contains an alias that it
previously contained. The configuration identified by the actual PID
must be deleted.

Uninstalling an Autoconf resource requires that the Autoconf Resource Pro-
cessor deletes all Conf igurat ion objects associated with the resource.

115.3.2 Singleton Configuration
A singleton configuration is associated with a Managed Service. The Auto-
conf Resource Processor must only use singleton configurations for bundles
that are contained in the same Deployment Package as the Autoconf
resource. The target Deployment Package can provide a list of these bundles.

This ownership policy is required to prevent sharing conflicts. For this rea-
son, the bundle attribute in the Designate element must be set to the loca-
tion of the bundle so that this ownership is enforced by the Configuration
Admin service. The location of the bundle is defined by the Bundle Sym-
bolic Name of the given bundle prefixed with osgi-dp : .

The processing must abort with a fatal error if the bundle attribute is not set.
The Autoconf Resource processor must bind the singleton configuration to
the given bundle.

 If a singleton configuration with a given PID already exists, it must be
unbound or bound to the same location contained by the bundle attribute.
Otherwise the processing must abort.

The singleton configuration must be merged with or replaced by the infor-
mation in the Object element, depending on the merge attribute as
described in Assigning a Value on page 267.

115.3.3 Example
For example, bundle A uses a factory configuration with the factory PID
com.acme.a and bundle B uses a singleton configuration with PID
com.acme.b . They define the following configuration properties:
OSGi Service Platform Release 4 265-502

Processing Auto Configuration Specification Version 1.0
com.acme.a:
gear Integer
ratio Vector of Float

com.acme.b:
foo String
bar Short[]

For proper operation, a Deployment Package P needs a configuration for
com.acme.a and com.acme.b with the following values:

gear = 3
ratio = {3.14159, 1.41421356, 6.022E23}
foo = "Zaphod Beeblebrox"
bar = {1,2,3,4,5}

The corresponding autoconf.xml resource associated with Deployment
Package P would look like:

<?xml version="1.0" encoding="UTF-8"?>
<metatype:MetaData

xmlns:metatype=
"http://www.osgi.org/xmlns/metatype/v1.0.0">

 <OCD id="a">
 <AD id="gear" type="Integer" cardinality="0" />
 <AD id="ratio" type="Float" cardinality="-3" />
 </OCD>

 <OCD id="b">
 <AD id="foo" type="String" cardinality="0"/>
 <AD id="bar" type="Short" cardinality="5"/>
 </OCD>

 <Designate pid="x" factoryPid="com.acme.a"

bundle="osgi-dp:com.acme.a">
 <Object ocdref="a">
 <Attribute adref="gear" content="3" />
 <Attribute adref="ratio">
 <Value>3.14159</Value>
 <Value>1.41421356"</Value>
 <Value>6.022E23"</Value>
 </Attribute>
 </Object>
 </Designate>

 <Designate pid="com.acme.b"

bundle="osgi-dp:com.acme.B">
 <Object ocdref="b">
 <Attribute adref="foo" content="Zaphod Beeblebrox"/>
 <Attribute adref="bar">
 <Value>1</Value>
 <Value>2</Value>
 <Value>3</Value>
266-502 OSGi Service Platform Release 4

Auto Configuration Specification Version 1.0 Security Considerations
 <Value>4</Value>
 <Value>5</Value>
 </Attribute>
 </Object>
 </Designate>
</metatype:MetaData>

115.3.4 Assigning a Value
The Autoconf resources share a scheme and can cooperate with the
Metatype Service Specification on page 117. An Autoconf resource primarily
contains a number of values for configuration objects in the Designate ele-
ments. Designate elements :

• Are for a factory or singleton configuration (factoryPid attribute)
• Are bound to a bundle location (bundle attribute)
• Are meant to be merged with an existing value or replace an existing

value (merge attribute). Merging means only setting the values for
which the existing Configurat ion object has no value.

• Provide a value for the Configurat ion object with the Object element.

Designate elements contain an Object element that contains the actual
value. Object elements refer to an OCD element by name. The OCD ele-
ments act as a descriptor of the properties.

The OCD elements that are referred from an Object element can be con-
tained in the Autoconf resource, or they can come from the Meta Type ser-
vice. The reference takes place through the ocdref attribute of the Object
element. The Autoconf Resource Processor must first match this name to
any OCD elements in the Autoconf resources. If the reference cannot be
found in this file, it must consult the Meta Type service (if present) for the
bundle that is associated with the PID that is configured.

115.3.5 Process Ordering
The Autoconf Processor must create any factory and singleton configura-
tions when it is called with an Autoconf resource. This phase should per-
form as much validation as possible. The configurations must be created in
the order of appearance in the Autoconf resource.

In the commit method, the Autoconf Resource Processor must first delete
all Conf igurat ion objects that were uninstalled. Thereafter, it must set or
update the appropriate Configuration objects.

This ordering implies that a customizer bundle cannot receive configura-
tion parameters from an Autoconf resource.

115.4 Security Considerations
Allowing a deployment package's Autoconf resources to (re)configure arbi-
trary configurations creates security threats. The possible threats are dis-
cussed in the following sections.
OSGi Service Platform Release 4 267-502

Security Considerations Auto Configuration Specification Version 1.0
115.4.1 Location Binding
As described in Configuration Admin Service Specification on page 71, it is pos-
sible for a malicious bundle to register a Managed Service under a PID used
by another (legitimate) bundle. This activity essentially hijacks the Managed
Service PID, and constitutes a denial of service attack on the legitimate bun-
dle (as it never receives the configuration information it needs). The Config-
uration Admin specification describes a location binding technique that can
be used to prevent this attack. The Autoconf Resource Processor must bind
Configurat ion objects to locations specified in the Autoconf resources using
the mandatory bundle attribute.

115.4.2 Autoconf Resource Permissions
The capabilities of an Autoconf Resource Processor must be limited to the
permissions that are granted to the signer of a Deployment Package. This is
the specified way for the Deployment Admin service to act. The Autoconf
Resource Processor does not have to take any special actions; all its actions
are automatically scoped by the signer of the Deployment Package.

This restriction implies, however, that the Autoconf Resource Processor
must do a doPriv i leged method for any actions that should not be scoped:
for example, when it persists the associations of the alias → actual PID.

A Deployment Package that requires any activity from the Autoconf
Resource processor must at least provide ConfigurationPermission[*,
CONFIGURE].
268-502 OSGi Service Platform Release 4

Application Admin Service Specification Version 1.0 Introduction
116 Application Admin
Service Specification
Version 1.0

116.1 Introduction
The OSGi Application Admin service is intended to simplify the manage-
ment of an environment with many different types of applications that are
simultaneously available. A diverse set of application types are a fact of life
because backward compatibility and normal evolution require modern
devices to be able to support novel as well as legacy applications. End users
do not care if an application is an Applet, a Midlet, a bundle, a Symbian, or a
BREW application. This specification enables applications that manage
other applications, regardless of application type. These applications are
called application managers. This specification supports enumerating,
launching, stopping and locking applications. This specification does not
specify a user interface or end-user interactions.

The OSGi Service Platform is an excellent platform on which to host differ-
ent Application Containers. The class loading and code sharing mecha-
nisms available in the OSGi Service Platform can be used to implement
powerful and extendable containers for Java based application models with
relative ease. Native code based application models like Symbian and BREW
can be supported with proxies.

116.1.1 Essentials
• Generic Model - The Application Admin service defines how all applica-

tions, regardless of type, can be launched and destroyed. This appli-
cation-type neutral model allows a screen or desktop manager access to
all executable content in a uniform manner.

• Schedule - A mechanism that allows the launching of applications at a
pre-defined time, interval, or event.

• Dynamic - Detects installations and un-installations of applications in
real time.

• Locking - Allows applications to be persistently locked so that they
cannot be launched.

116.1.2 Entities
• Application - A software component, which has well-defined entry and

exit criteria. Applications can be started and destroyed, and usually are
designed for user interaction. Applications may be of various types, each
having their own specification. Applications and application instances
are visible through the their Application Descriptor services and Appli-
cation Handle services.
OSGi Service Platform Release 4 269-502

Introduction Application Admin Service Specification Version 1.0
• Application Container - An implementation of a runtime environment for
one or more application types. It provides specialized Application
Descriptor and Application Handle services that correspond to the sup-
ported application type and their instances. The design of a particular
Application Container is defined by other specifications. For example, an
Application Container which implements MIDlets must follow the
appropriate JSR specifications for MIDP.

• Application Handle - A service that represents an instance of an appli-
cation. This service is available in the OSGi service registry as long as the
application instance exists.

• Application Instance – The actual application that has been launched. Reg-
istered in the service registry as long as the application is running.

• Application Descriptor - A service that represents an installed Application
and provides information about the application as well as launching,
scheduling and locking features. An Application Descriptor must be reg-
istered for each application as long as the Application is installed

• Application Manager – A bundle that manages a number of applications.
• Scheduled Application – An information record for a scheduled appli-

cation.

Figure 116.1 Application Management Diagram org.osgi.service.application package

116.1.3 Synopsis
Different types of applications can be accommodated in the Application
Admin service using a model of Application Containers. An Application
Container typically follows an external specification, for example, the MIDP
specification. In an OSGi environment, the implementer of such a specifica-
tion can allow its applications (MIDlets in the previous example) to partici-
pate in the OSGi Application Model by registering an Application
Descriptor service for each of its installed applications, and an Application
Handle service for each of its running instances.

Application Admin service implementation

<<service-class>>
Application
Descriptor

<<service-class>>
Application
Handle

Application
Container Impl

Application
Instance impl

Application
Manager Impl.

discovery life cycle

<<interface>>
Scheduled
Application

* 1

Scheduled
Application Impl

implemented in implemented in
270-502 OSGi Service Platform Release 4

Application Admin Service Specification Version 1.0 Application Managers
This model leverages the capabilities of the OSGi service registry. Installed
applications and running applications can be found by enumerating the
appropriate services, possibly using a filter if a specific application is
sought.The service registry provides necessary isolation of the clients of the
applications and their implementers. Typical clients of this specification are
desktop/screen managers that provide the end user access to the installed
applications.

116.2 Application Managers
An application manager (a bundle or application that manages other appli-
cations) must be able to discover the available applications, present them to
an end user and launch applications on demand. A bundle that maintains
the display of a mobile phone is a typical client of this specification.

116.2.1 Discovery
The primary means of discovery is the Application Descriptor service. An
Application Container must register an Application Descriptor service for
each of its applications. An application manager can detect the installation
and uninstallation of applications by listening to service events.

Service properties on the Application Descriptor carry most of the informa-
tion that an application manager requires to present the application to the
end user. The properties as defined in Table 116.1.

Table 116.1 Service Properties for an Application Descriptor
Key Name Type Default Description

service.pid String must be set Unique identifier of the application. It is
recommended to set a value generated
from the vendor's reverse domain name,
e.g. com.acme.app lication.chess . The
serv ice .pid service property is a standard
Framework property.

appl icat ion.vers ion String empty
string

Specifies the version of the application.
The default value is an empty string

service .vendor String empty
string

Specifies the vendor of the application.

appl icat ion.container Str ing must be set A unique identifier (like a PID) of the con-
tainer implementation that registered this
application descriptor.

appl icat ion. location String must be set The identifier of package that contains the
application corresponding to this descrip-
tor. It represents the installation unit that
contains the corresponding application. It
should be a URL. For applications installed
as bundles, it should be the location of the
bundle. For others, it is defined by the con-
tainer implementation.
OSGi Service Platform Release 4 271-502

Application Managers Application Admin Service Specification Version 1.0

Specialized application descriptors can offer further service properties and
method. For example, a MIDP container can register a property that
describes that the MIDLet comes from a specific JAD file, thereby allowing a
MIDLet aware Application Manager to group these MIDLets.

Application Descriptor services must not be declarative. That is. they can be
obtained from the service registry at any time without accidentitally initial-
izing a class loader.

The following example shows how to track all visible, launchable, and
unlocked applications. These tracked applications are the ones that can be
started.

public class TrackLaunchables {
final static String filter=

"(&(objectclass="
+ ApplicationDescriptor.class.getName()
+ ")(application.launchable=true)"
+ "(application.visible=true)"
+ "(application.locked=false))";
static ApplicationDescriptor[] EMPTY =

new ApplicationDescriptor[0];
ServiceTracker tracker;

public void init(BundleContext cntxt) throws Exception {
tracker = new ServiceTracker(cntxt,

cntxt.createFilter(filter), null);
tracker.open();

}

public ApplicationDescriptor[] getActive() {
Object [] result = tracker.getServices();
List list = Arrays.asList(result);
return (ApplicationDescriptor[]) list.toArray(EMPTY);

}
}

appl icat ion.v is ible Boolean true Specifies whether the application should
be visible for the user. For example, some
applications may provide features to other
applications but nothing directly to the
user. In this case the application should
not be revealed to the user to start it indi-
vidually.

appl icat ion. launchable Boolean false Specifies whether the application is ready
to be launched. If the value is true , it
means that all the requirements of the
application are fulfilled.

appl icat ion. locked Boolean false Specifies whether the represented applica-
tion is locked to prevent launching it.

Table 116.1 Service Properties for an Application Descriptor
Key Name Type Default Description
272-502 OSGi Service Platform Release 4

Application Admin Service Specification Version 1.0 Application Managers
The code is quite simple because the Service Tracker does the actual track-
ing. The most important part is therefore the filter. The filter selects all the
Application Descriptor services that are visible, launchable, and not locked.
The getAct ive method converts the Object[] that the Service Tracker main-
tains into an array of Application Descriptors.

116.2.2 Application Descriptor Properties
The Application Descriptor object has an additional number of properties
that are not available as service properties. These descriptor properties can
be localized. The getProperties(Str ing) method therefore takes a locale
Str ing object. This is a standard locale string as defined by the
java.ut i l .Locale class. The order for the locale constituents is:

• language
• country
• variant

For example, the following files provide manifest translations for English,
Dutch (Belgium and the Netherlands) and Swedish.

en nl_BE
nl_NL sv

It returns a Map object containing localized versions of the properties. This
is a copy of the original objects so changes to this Map object are not
reflected in the Application Descriptor properties.

If the locale string is nul l , the localization will be based on the default locale,
as specified by the java .uti l .Locale.getDefau lt method. If the locale is the
empty Str ing object (""), no localization must be used. This will contain the
raw values that are usually used as keys. If a specific locale has no appropri-
ate translations, a less specific locale must be used, as described in the
Loca le class. As last resort, the raw values must be returned.

The key names in the Map object are case-sensitive. Application Containers
can add additional properties to this Map object, however, they must avoid
key names starting with appl icat ion . They should use key names that have a
prefix that does not collide with other Application Containers.

If no locale specific value of an application property is available then the
default one must be returned. The following case-sensitive key names are
treated as standard for locale specific values in the Map object. Additional
elements may also be stored in the Map object. The specified properties are
explained in Table 116.2.

Table 116.2 Descriptor localized properties
Key Name Type Default Description

appl icat ion.name String must be set The name of the application.

appl icat ion. icon URL No Icon A URL an icon's image resource. A compli-
ant implementation of this specification
must support the [1] PNG Image Format.

appl ication.version String 0.0.0 The version of the application
OSGi Service Platform Release 4 273-502

Application Managers Application Admin Service Specification Version 1.0
116.2.3 Launching
The Application Descriptor provides the launch(Map) methods for applica-
tion managers to launch an application. Launching consists of creating the
specific application object, starting it, registering an Application Handle ser-
vice that represents that instance and return the Application Handle ser-
vice.

The Map object parameter is application specific. Applications should use
unique names for the keys in this map, for example com.acme.r ingsignal .
This specification does not specify any keys for this map except for:

• org.osgi . t r igger ingevent – This property is set to the Event object that
cause the application to be launched (if any).

When an application is started successfully the corresponding Application
Handle service will be registered with the service registry.

116.2.4 Application States
An Application Handle service represents an instance of an application. The
application handle is registered by the Application Container after success-
fully launching a new application instance.

An Application Handle service can be used to query the state and manipu-
late the application instance. It is the responsibility of the Application Han-
dle service to maintain the application instance life cycle state by
interacting with the implementation object of the application.

A running instance can have the following state according to this specifica-
tion:

• RUNNING – This is the state of the Application Handle when it gets regis-
tered. It indicates that the application instance is active.

• STOPPING – The application is stopping. This is a transient state.

Application Containers can extend the number of states.

service .vendor Str ing The vendor of the application

appl icat ion.v is ible Boolean true

appl icat ion. launchable Boolean true If the application can be launched

appl icat ion. locked Boolean true If the application is locked

appl icat ion.descript ion Str ing A description of the application

appl icat ion.documentation Str ing Document

appl icat ion.copyright Str ing A Copyright statement

appl icat ion. l icense Str ing A URL to the license related to the applica-
tion

appl icat ion.container Str ing must be set The PID of the associated container

appl icat ion. location Str ing The URL of the location of the correspond-
ing JAR file of the application, if exists.

Table 116.2 Descriptor localized properties
Key Name Type Default Description
274-502 OSGi Service Platform Release 4

Application Admin Service Specification Version 1.0 Application Managers
The Application Handle service maintains the service properties as listed in
Table 116.2. Specialized application handles may offer further service prop-
erties, but the key names specified in the table below must not be used for
other purposes.

Specialized application handles may offer further application states. The
name of additional states must be qualified names (dotted); non-qualified
names are reserved for future specifications.

116.2.5 Destroying an Application Instance
An application instance can be stopped with its associated Application Han-
dle using the destroy() method. This first turns the state of the Application
to STOPPING . The application instance may save its persistent data before
termination and it must release all the used resources. The application
instance's artifacts should not be reused any more. The Application Admin
service and the application container should ensure (even forcefully) that
all allocated resources are cleaned up.

If the application instance has completely stopped, then its Application
Handle must be unregistered.

116.2.6 Locking an Application
Applications represented by the application descriptors can be locked. If an
application is locked then no new instance of the represented application
can be started until it is unlocked. The locking state of the application has
no effect on the already launched instance(s). The Application Descriptor
provides the methods lock and unlock to set, unset the locking state. Lock-
ing and unlocking an application represented by an Application Descriptor
requires the proper Application Admin Permission. The methods to lock,
unlock, and query the locked status of an application are implemented as
final methods of the abstract application descriptor class to ensure that an
application container implementation will not be able to circumvent this
security policy.

116.2.7 Scheduling
Scheduling can be used to launch an a new application instance in the
future when a specific event occurs, if needed on a recurring basis.

The Application Descriptor service provides the schedule(Str ing,Map,
Str ing,Str ing,boolean) method to schedule an application to be launched
when an specific event occurs. The parameters to this method are:

Table 116.3 Application Handle service properties
Key Name Type Default Description

service.pid String must be set The Application Instance ID as returned
by the getInstanceId method.

appl icat ion.state Str ing must be set Contains the current state of the applica-
tion instance represented by this applica-
tion handle. These states can be
application model specific.

appl icat ion.descriptor Str ing must be set The PID of the associated Application
Descriptor service
OSGi Service Platform Release 4 275-502

Application Managers Application Admin Service Specification Version 1.0
• Schedule Id – (Str ing) An id for this application that identifies the
schedule, even over system restarts. Ids must be unique for one appli-
cation. This id will be registered as service property on the Scheduled
Application service under the name of SCHEDULE_ID . The name must
match the following format:

scheduleId ::= symbolic-name
// Core 1.4.2 General Syntax Definitions

• Arguments – (Map) These arguments will be passed to the application in
the launch method. The keys in this map must not be null or the empty
string.

• Topic – (Str ing) The topic of the event that must trigger the launch of the
application.

• Filter – (Str ing) A filter that is passed to the Event Admin for subscribing
to specific events, can be nul l . The syntax of the string is the same as an
OSGi Framework filter.

• Recurring – (boolean) Repeatedly launch the application when the spec-
ified events occur until the schedule is canceled.

The schedu le method must register a Scheduled Application service with
the service registry and return the Schedule Application service object.

For example, the invocation

appDesc.schedule(
null, // System generates schedule id
null, // No arguments

 "org/osgi/application/timer",
 "(&(hour_of_day=0)(minute=0))",
 true)

Schedules the application to be launched when a timer event is received and
the hour_of_day and minute properties are zero.

The Scheduled Application service must have the following properties:

• APPLICATION_PID - (Str ing) The PID of the Application Descriptor
service.

• SCHEDULE_ID - (String) a unique id (within the schedules for one appli-
cation).

The list of active Scheduled Application services can be obtained from the
service registry. A non-recurrent Scheduled Application service is unregis-
tered once the application is succesfully launched.

The timer used to start an application from a schedule has a resolution of
one minute. It is therefore possible that an application is delayed up to a
minute before it is started.

116.2.8 Application Exceptions
Exceptional conditions that arise during processing of application requests.
The Exception identifies the actual error with an integer code. The follow-
ing codes are supported:

• APPLICATION_INTERNAL_ERROR – An internal error occurred.
276-502 OSGi Service Platform Release 4

Application Admin Service Specification Version 1.0 Application Containers
• APPL ICATION_LOCKED – The application is locked and can therefore not
be launched.

• APPL ICATION_NOT_LAUNCHABLE – The application could not be
launched.

• APPL ICATION_SCHEDULING_FAILED – The application scheduling
could not be created due to some internal error . This entails that the the
scheduling information is not persisted.

• APPL ICATION_DUPL ICATE_SCHEDULE_ID – The application scheduling
failed because the specified identifier is already in use.

116.2.9 Application Events
The event mechanism of the Application Admin service is based on the
OSGi service registry event model. Both Application Descriptor and Appli-
cation Handle are services. Bundles can listen to these events registering a
ServiceListener object with a Bundle Context or they can listen to events
from the Event Admin, see for more information Service Event on page 195.

• Application Descriptor service
• REGISTERED – A new application has become available. Depending

on its properties, this application could be launched.
• MODIFIED – The visibility, launchable or locked status is changed.
• UNREGISTERING – The application is no longer available. All running

instances of this application must be destroyed before this event is
delivered.

• Application Handle service
• REGISTERED – A new instance is created and started running.
• MODIFIED – The application instance is changed its state. This speci-

fication only specifies the STOPPING state but application containers
are free to add additional states. Transitions between all these states
must be signalled with the MODIFIED service event.

• UNREGISTERING – The application instance is no longer running.

116.3 Application Containers
Application Containers provide the implementation of a specific applica-
tion model like MIDP, BREW,.NET, or Symbian. Application Containers can
be implemented inside the OSGi environment or run externally, in another
VM or as native code. When the container runs externally, it is necessary to
run a proxy inside the OSGi environment that communicates with the
external container. This is shown in Figure 116.2.
OSGi Service Platform Release 4 277-502

Application Containers Application Admin Service Specification Version 1.0
Figure 116.2 Application Container Model with Proxy

116.3.1 The Application Descriptor
The first responsibility of the Application Container is to register an Appli-
cation Descriptor for each available application. The Application Container
must therefore extend the Appl icationDescriptor base class that is provided
by the Application Admin service implementer and provided in the
org .osg i .serv ice .appl ication package. The base class is defined as an
abstract class in this specification with only minimal implementation code.
Implementers of the Application Admin service implementation can
replace this class with an implementation that enforces their desired poli-
cies.

The Application Container must override the methods that have a Spec i f ic
suffix. These methods are:

• Appl icationDescr iptor(Str ing) – The Base class Application Descriptor
takes the PID of the Application Descriptor as argument.

• getPropertiesSpec i f ic(St r ing) – Return the properties (including service
properties) based on a specific locale. See the locale rules at Application
Descriptor Properties on page 273. The Application Container must fill the
returned Map object with the properties listed in Table 116.2 on page 273
as well as other service properties. Non-localized data is returned if the
corresponding application container doesn't support the localization of
application properties. Changes in the Map object must not be reflected
in Application Descriptor properties.

• launchSpeci f ic(Map) – Launch a new instance and return its handle. The
container must ensure that the application is started in a doPriv i leged
block I.e. the permissions of the caller must not influence the capabil-
ities of the started application.

• lockSpeci f ic() – Do the specific locking of the Application Descriptor.

Native Application
Container Impl

<<service>>
Application
Descriptor

Appl. Container
Impl

<<service>>
Application
Handle

proxy communication

Native Executable Application
Instance Process1 *

OSGi Environment

External Process
278-502 OSGi Service Platform Release 4

Application Admin Service Specification Version 1.0 Application Containers
• unlockSpec i f ic() – Do the specific unlocking of the Application
Descriptor.

• isLaunchableSpecif ic() – This method must return t rue when the appli-
cation can be launched. This method can be called by the Application
Descriptor implementation to find out if an application can be launched
according to the container.

The specific methods must be made protected because the specific Applica-
tion Descriptor is registered as a service and is intended to be used by a wide
array of clients. These clients can call public methods so care should be
taken to ensure that no intrusion can take place this way. The Application
Admin service implementer must provide the implementation for the
publ ic methods and perform the appropriate security checks.

The specific Application Descriptor must be registered for each possible
application with the set of service properties listed in Table 116.1 on page
271.

An application is launched with the launchSpecif ic method. This method is
called by the Application Admin service, as implemented in the
Appl icat ionDescriptor base class. The implementation of the
launchSpec i f ic method must return expediently. The Application Descrip-
tor must perform the following steps (in the given order):

1 Create a new instance of the associated application
2 Start the application in another process or thread.
3 If the application cannot be started, an appropriate Exception must be

thrown.
4 Register an Application Handle for this running application. The regis-

tration of the Application Handle must be accompanied by the service
properties from Table 116.3 on page 275.

5 Return the new Application Handle.

116.3.2 The Application Handle
The Application Handle represents the running instance. The Application
Container must extend the provided base class and implement the follow-
ing methods:

• Appl icationHandle(Str ing,Appl icat ionDescriptor) – The constructor of
the base class takes the executable id and the Application Descriptor as
parameter.

• destroySpeci f ic() – Clients of the Application Admin service use the
destroy method on the Application Handle service to make an appli-
cation instance quit. The Application Admin service implements this
method and must at an appropriate time call the destroySpeci f ic
method. The Application Container must destroy the application
instance (if it had not destroyed already) and clean up.

• getAppl icationDescr iptor() – Return the Application Descriptor that
belongs to this Application Handle.

• getInstanceId() – A unique id for this instance.
• getState() – Returns the state for the instance. The Application Admin

service only specifies two states: RUNNING and STOPPING . Application
Containers can add new states to represent for example PAUSED . States
OSGi Service Platform Release 4 279-502

Application Containers Application Admin Service Specification Version 1.0
are strings and must be qualified to prevent conflicts. For example, the
Midlet state for paused could be MIDLET.PAUSED .

The most important method is destroySpeci f ic . This method must perform
the following actions in the given order:

1 Set the state to STOPPING
2 Modify the service properties of the Service Handle to reflect the new

state. This sends out a service event.
3 If the application instance is active, use any proprietary mechanism to

stop it. Any errors and problems should be logged.
4 Using proprietary means, clean up any resources on the system that were

used by the application: locks, open files, etc.
5 Unregister the Application Handle service.

The Application container should monitor the progress of its instances. If
an instance stops, for example due an exception or it quits voluntarily, the
Application Container must call the destroy method on the Application
Handle itself and handle the fact correctly that the instance is already
stopped in the destroySpec i f ic method.

116.3.3 Certificates
The following method on the Application Descriptor provides access to the
certificate chain that was used to sign the application. This method is used
by the Application Permission.

• matchDNChain(Str ing) – Verifies that the given pattern matches one or
more of the certificates that were used to sign the application. This
method is primarily used by the Application Admin Permission to verify
permissions. Matching certificates is described in Certificate Matching on
page 21 of the OSGi Release 4 Core Specification.

116.3.4 Application Descriptor Example
This is an Application Container that scans a directory for executables. Each
executable is registered as an Application Descriptor. The example assumes
that there is a bundle activator that creates the Application Descriptor ser-
vices. This activator must also ensure that when it is stopped no handles
remain.

The example is not an robust implementation, its onl intention is to show
the concepts of the Application Admin service in practice.

The (simple) Application Descriptor could look like:

public class SimpleDescriptor extends ApplicationDescriptor{
ServiceRegistration registration;
File executable;
SimpleModel model;
boolean locked;
static URLgenericIcon= SimpleDescriptor.class

.getResource("icon.png");

SimpleDescriptor(SimpleModel model, File executable) {
super("com.acme." + executable.getName());
this.model = model;
280-502 OSGi Service Platform Release 4

Application Admin Service Specification Version 1.0 Application Containers
this.executable = executable;
}

public Map getPropertiesSpecific(String locale) {
Map map = new Hashtable();
map.put(APPLICATION_ICON, genericIcon);
map.put(APPLICATION_NAME, executable.getName());
return map;

}

protected ApplicationHandle launchSpecific(
final Map args) throws Exception {
final SimpleDescriptor descriptor = this;

return (ApplicationHandle) AccessController
.doPrivileged(new PrivilegedExceptionAction() {

public Object run() throws Exception {
SimpleHandle handle =

new SimpleHandle(descriptor, args);
handle.registration =

 model.register(handle);
return handle;

}
});

}

Dictionary getServiceProperties() {
Hashtable p = new Hashtable();
p.put(APPLICATION_LAUNCHABLE, Boolean.TRUE);
p.put(APPLICATION_LOCKED, Boolean.valueOf(locked));
p.put(Constants.SERVICE_PID, getApplicationId());
return p;

}

protected void lockSpecific() {locked = true; }
protected void unlockSpecific() { locked = false; }
public boolean matchDNChain(String arg) { return false; }
protected boolean isLaunchableSpecific() { return true; }

}

The associated Application Handle must launch the external executable
and track its process. If the process dies autonomously or is stopped via the
destroy method, it must unregister the Application Handle service. The
class could be implementedlike:

public class SimpleHandle extends
ApplicationHandle implements Runnable {

ServiceRegistration registration;
Process process;
int instance;
String state = RUNNING;
static int INSTANCE= 0;
OSGi Service Platform Release 4 281-502

Application Containers Application Admin Service Specification Version 1.0
Thread thread;

public SimpleHandle(SimpleDescriptor descriptor,
Map arguments) throws IOException {
super(descriptor.getApplicationId()

+ ":" + (INSTANCE++), descriptor);
String path = descriptor.executable.getAbsolutePath();
process = Runtime.getRuntime().exec(path);
thread = new Thread(this, getInstanceId());
thread.start();

}

public String getState() {return state; }

protected void destroySpecific() throws Exception {
state = STOPPING;
registration.setProperties(getServiceProperties());
thread.interrupt();

}

// Wait until process finishes or when
// interrupted
public void run() {

try {
process.waitFor();
destroy();

}
catch (InterruptedException ie) {

process.destroy();
try {

process.waitFor();
}
catch (InterruptedException iee) {

// Ignore
}

}
catch(Exception e) {

.. logging
}
registration.unregister();

}

Dictionary getServiceProperties() {
Hashtable p = new Hashtable();
p.put(APPLICATION_PID, getInstanceId());
p.put(APPLICATION_STATE, state);
p.put(APPLICATION_DESCRIPTOR,

 getApplicationDescriptor().getApplicationId());
return p;

}
}

282-502 OSGi Service Platform Release 4

Application Admin Service Specification Version 1.0 Application Containers
The Application Container must create the Application Descriptor services
from some source. Care should be taken to optimize this scanning so that
the initialization time is not significantly increased. Running application
instances should be stopped if the Application Container is stopped. The fol-
lowing code shows a possible implementation:

public class SimpleModel implements BundleActivator {
BundleContext context;
Set handles= new HashSet();

public ServiceRegistration register(SimpleHandle handle){
handles.add(handle);
return context.registerService(

ApplicationHandle.class.getName(),
handle, handle.getServiceProperties());

}

public void start(BundleContext context) throws Exception
{

this.context = context;

File file = new File("c:/windows");
final SimpleModel me = this;

file.list(new FilenameFilter() {
public boolean accept(File dir, String name) {

if (name.endsWith(".exe")) {
SimpleDescriptor sd = new SimpleDescriptor(me,

 new File(dir, name));
sd.registration = me.context.registerService(

ApplicationDescriptor.class.getName(),
 sd, sd.getServiceProperties());

}
// We ignore the return anyway
return false;

}});}

public void stop(BundleContext context) throws Exception{
for (Iterator handle = handles.iterator();

 handle.hasNext();) {
SimpleHandle sh = (SimpleHandle) handle.next();
try {

sh.destroy();
}
catch (Exception e) {

// We are cleaning up ...
}

}}}
OSGi Service Platform Release 4 283-502

Application Admin Implementations Application Admin Service Specification Version
116.4 Application Admin Implementations

116.4.1 Implementing the Base Classes
The OSGi specified org .osg i. serv ice .appl icat ion package that is delivered
with the specication in a JAR file is a dummy implementation. The inten-
tion of this package is to be replaced by an Application Admin service
implementation. This implementation can then enforce policies by inter-
cepting the calls from any Application Managers to the Application Con-
tainers.

The Application Admin service implementer must re-implement the fol-
lowing methods in the ApplicationDescr iptor class:

• launch(Map) – The method can perform any checks before it must call
the launchSpec if ic (Map) method. This must be a protected method. The
implementation must perform any security checks. If these succeed, the
launchSpeci f ic method must not be called in a doPr iv i leged block.

• lock() – Must call the lockSpec i f ic method.
• unlock() – Must call the unlockSpec i f ic method.
• schedule(Str ing,Map,Str ing,St r ing,boolean) – Register a new Scheduled

Application service with the given arguments, thereby scheduling the
application for launching when the topic and filter match an event. A
virtual event is defined for timer based scheduling, see Virtual Timer
Event on page 286.

The Application Admin service implementer must also implement the fol-
lowing method in the Appl icationHandle class:

• destroy() – The Application Admin service should call the protected
destroySpec i f ic () method after which it should perform any possible
cleanup operations.

Implementers must not change the signature of the publ ic and protected
parts of the Appl icat ionDescriptor and Appl icationHandle classes. Adding
fields or methods, either public or protected is explicitly forbidden.

116.4.2 Exception Handling
The implementation of the container must ensure that Security Exceptions
are only thrown during the invocation of any of the Application Descriptor
methods when the required permissions are lacking. If the Application
Descritor is not valid, an Illegal State Exception must be thrown and never a
Security Exception.

116.4.3 Launching
The launch method of the Application Descriptor must be implemented by
the Application Admin service implementer. Launching must be performed
in the following steps:

1 Verify that the caller has the appropriate permissions, see Security on
page 288.

2 Verify that the Application Descriptor is not locked and launchable
3 Perform any policy actions that are deemed necessary before the appli-

cation is really launched.
284-502 OSGi Service Platform Release 4

Application Admin Service Specification Version 1.0 Application Admin Implementa-
4 Call the protected launchSpeci f ic method. If the method throws an
Exception, then this exception should be logged, and must be re-thrown.

5 Otherwise, return the received Application Handle

116.4.4 Destroying
The implementation of the Appl icat ionHandle destroy method must follow
the following steps:

1 Verify that the caller has the appropriate permissions, seeSecurity on
page 288.

2 Call the destroySpeci f ic method. If an Exception is thrown, then this
should be logged but must be further ignored.

3 Perform any cleanup deemed necessary.

116.4.5 Scheduling
Application Descriptor services can be scheduled by calling the schedule
method, as described in Scheduling on page 275. This method must be imple-
mented by the Application Admin service implementer.

Application Admin service implementations must make a reasonable effort
to launch scheduled applications in a timely manner. However, launching
is not guaranteed, implementations can drop and forget events if it is neces-
sary in order to preserve the stability and integrity of the device. The granu-
larity of the timer should also be taken into account, this granularity is one
minute so the actual time an application will be launched can be shifted up
to 60 seconds.

If an event would launch multiple applications then the order of launching
is not defined, it is implementation specific.

Launching a scheduled application is constrained by the same rules as appli-
cation launching. Thus, attempting to launch a locked application on the
specified event must fail to launch. Launching can only succeed when the
application is unlocked.

If the scheduling is non-recurring and launching a new instance fails then
when the specified event occurs again launching the application must be
attempted again until it succeeds. Non recurring schedules must be
removed once the launch succeeds.

The triggering event will be delivered to the starting application instance as
an additional item identified by the org.osg i . tr iggeringevent argument in
its startup parameters. This property must not be used for other purposes in
the startup parameters. To ensure that no events are leaked to applications
without the apropriate permission, the event is delivered in a
java.security .GuardedObject , where the guarding permission is the Topic
Permission for the topic to which the event was posted.

Scheduling and unscheduling an application, or retrieving information
about scheduled applications requires the Application Admin Permission
for the target application to be scheduled. If the target is the unique identi-
fier of the scheduling application itself then it can schedule itself. In addi-
tion, the scheduling entity must have Topic Permission for the specified
topic.
OSGi Service Platform Release 4 285-502

Interaction Application Admin Service Specification Version 1.0
116.4.6 Virtual Timer Event
The application scheduler can use a virtual timer event for time scheduled
applications. This event is not actually sent out by the Event Admin; this
virtual event is only used for the syntax to specify a recurring launch.

The topic name of this virtual timer event is:

org/osgi/application/timer

The properties of the virtual timer event are:

• year – (Integer) The year of the specified date. The value is defined by
Calendar .YEAR field.

• month - (Integer) The month of the year. The value is defined by
Calendar .MONTH field.

• day_of_month – (In teger) The day of the month. The value is defined by
the Calendar .DAY_OF_MONTH field.

• day_of_week – (In teger) The day of the week. The value is defined by the
Calendar .DAY_OF_WEEK field.

• hour_of_day – (Integer) The hour of the day. The value is defined by the
Calendar .HOUR_OF_DAY field.

• minute – (Integer) The minute of the hour. The value is defined by the
Calendar .MINUTE field.

The timer has a resolution of a minute. That is, it is not possible to schedule
per second.

A property that is not included into the filter matches any value. Not includ-
ing a field implies that it always matches. For example, if the minute=0
clause from the filter is missing, the timer event will be fired every minute.

The following examples are filters for the timer event to specify certain time
in the device local time. The topic is always org/osgi/appl ication/t imer .

Noon every day:

(&(hour_of_day=12)(minute=0))

Every whole hour, on every sunday:

(&(day_of_week=0)(minute=0))

Every whole hour:

(minute=0)

116.5 Interaction

116.5.1 Application Installation
Figure 116.3 shows how an application manager can be notified about the
installation of a new application. The actual installation may be done prior
to the notification or may be done by the application container. At the end
of the successful installation the application container must register a spe-
cialized Application Descriptor service which properly represents the
286-502 OSGi Service Platform Release 4

Application Admin Service Specification Version 1.0 Interaction
installed application. If the installed application's dependencies are fulfilled
(which are container specific) then the application descriptor's
appl icat ion.v is ible and appl icat ion. launchable properties should be set to
true .

Figure 116.3 Installing a bundle that is managed by an Application Contaner

116.5.2 Launching an Application
Firstly the appropriate Application Descriptor service on which the opera-
tion will be made is fetched from the service registry. This Application
Descriptor is a container specific sub-class of the Application Descriptor
class. Its launch method is called which is in the base class.

The application instance may not receive the startup arguments if its appli-
cation container does not support startup arguments. The launch method
checks if the a new application instance can be launched, for example, that
the necessary rights are granted, the application is not locked and the appli-
cation is not a singleton that already has an instance.

If the application can be launched then the launchSpec if ic method, which
is in the subclass, will create and start a new application instance according
to its application container. It will create a specific application handle and
associate the newly created application instance to it. The launchSpeci f ic
method will register the application handle with proper service properties.
The value of appl ication.s tate service property must be RUNNING . The call
chain returns the application handle.

Figure 116.4 Launching an application

ApplicationApplicationApplicationFramework

install bundle
Container Descriptor Manager Impl

bundle event
create

register

service event

ApplicationApplicationFramework

get descriptor

Descriptor Impl. Manager Impl

create

service event

launch

Application
Handle Impl.

service

register

Application
Instance

.. start

new

launchSpecific
OSGi Service Platform Release 4 287-502

Security Application Admin Service Specification Version 1.0
116.5.3 Destroying an Application Instance
To destroy an application, the proper application handle has to be fetched
from the service registry to call its destroy() method. It checks if the
instance can be destroyed, for example that the necessary permissions are
granted, it then calls the destroySpeci f ic method to let its implementation
destroy the instance in an application container specific way. First, it sets
the appl icat ion .state service property to STOPPING then stops the applica-
tion instance. Finally it unregisters the application handle.

116.6 Security
The Application Admin service is an interaction of the:

• Application Container implementers
• Applications
• Application Managers

There are two permissions used in the security model of the Application
Admin service. The first is the Service Permission that grants access to get-
ting or registering the Application Descriptor and Application Handle ser-
vices. The second security is specific for the Application Admin service
specification and is the Application Permission.

The Application Container must be very powerful because it starts the
application code, which should be able to perform almost any function.

The security checks are performed in the ApplicationDescr iptor and
Appl icat ionHandle base classes.

116.6.1 Application Admin Permissions
 This ApplicationAdminPermission class implements permissions for
manipulating applications and their instances. The permission must be
held by any bundle that manipulates application descriptors or application
handles.

The target of the Application Admin Permission is an OSGi filter that
matches a number of properties. This is similar to the Admin Permission in
the Framework. Alternatively, instead of the filter the pseudo target
<<SELF>> can be used.

The following properties can be tested in the filter:

• signer – A Distinguished Name chain that is used to sign the application.
The matching of this property must be done according to the rules
described for DN matching in the OSGi Core Service Platform specifi-
cation. The Application Admin Permission must use the
Appl icationDescrptor class’ matchDNChain method. Matching DN’s is
described in Certificate Matching on page 21 of the OSGi Service Platform
Core specification.

• pid – The PID of the target application.

The pseudo target <<SELF>> indicates that the calling application is allowed
to manipulate its own descriptors and handlers.

The following actions can be granted:
288-502 OSGi Service Platform Release 4

Application Admin Service Specification Version 1.0 org.osgi.service.application
• SCHEDULE_ACTION – The caller is allowed to schedule an application.,
i.e. call the Appl icat ionDescriptor schedule method. This action implies
LIFECYCLE_ACTION .

• LIFECYCLE_ACTION – The caller is allowed to manipulate the life cycle
state of an application instance: launch and destroy.

• LOCK_ACTION – The caller is allowed to the lock and unlock methods.

116.6.2 Service and Package Permissions
116.6.2.1 Application Admin Implementation

The Application Admin service implementation must have the following
permissions:

ServicePermission ..ScheduledApplication REGISTER
ServicePermission ..ApplicationDescriptor GET
ServicePermission ..ApplicationHandle GET
PackagePermission org.osgi.service.application EXPORT
ServicePermission ..ApplicationDescriptor GET
ServicePermission ..ApplicationHandle GET
ApplicationAdminPermission * *

116.6.2.2 Application Container
ServicePermission ..ApplicationDescriptor REGISTER
ServicePermission ..ApplicationHandle REGISTER
PackagePermission org.osgi.service.application IMPORT

Additionally, an Application Container requires all the permissions that are
needed to run the applications. This is likely to be All Permission.

116.7 org.osgi.service.application
Application Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.application; version=1.0

116.7.1 Summary
• ApplicationAdminPermission - This class implements permissions for

manipulating applications and their instances. [p.289]
• ApplicationDescriptor - An OSGi service that represents an installed

application and stores information about it. [p.291]
• ApplicationException - This exception is used to indicate problems

related to application lifecycle management. [p.297]
• ApplicationHandle - ApplicationHandle is an OSGi service interface

which represents an instance of an application. [p.298]
• ScheduledApplication - It is allowed to schedule an application based on

a specific event. [p.300]
ApplicationAdminPermission
OSGi Service Platform Release 4 289-502

org.osgi.service.application Application Admin Service Specification Version 1.0
116.7.2 public class ApplicationAdminPermission
extends Permission
This class implements permissions for manipulating applications and their
instances.

ApplicationAdminPermission can be targeted to applications that matches
the specified filter.

ApplicationAdminPermission may be granted for different actions: lifecy-
cle, schedule and lock. The permission schedule implies the permission life-
cycle.
LIFECYCLE_ACTION

116.7.2.1 public static final String LIFECYCLE_ACTION = “lifecycle”

Allows the lifecycle management of the target applications.
LOCK_ACTION

116.7.2.2 public static final String LOCK_ACTION = “lock”

Allows setting/unsetting the locking state of the target applications.
SCHEDULE_ACTION

116.7.2.3 public static final String SCHEDULE_ACTION = “schedule”

Allows scheduling of the target applications. The permission to schedule an
application implies that the scheduler can also manage the lifecycle of that
application i.e. schedule implies lifecycle
ApplicationAdminPermission(String,String)

116.7.2.4 public ApplicationAdminPermission(String filter, String actions) throws
InvalidSyntaxException

filter filter to identify application. The value null is equivalent to “*” and it indi-
cates “all application”.

actions comma-separated list of the desired actions granted on the applications or
“*” means all the actions. It must not be null. The order of the actions in the
list is not significant.

Constructs an ApplicationAdminPermission. The filter specifies the target
application. The filter is an LDAP-style filter, the recognized properties are
signer and pid. The pattern specified in the signer is matched with the Dis-
tinguished Name chain used to sign the application. Wildcards in a DN are
not matched according to the filter string rules, but according to the rules
defined for a DN chain. The attribute pid is matched with the PID of the
application according to the filter string rules.

If the filter is null then it matches “*”. If actions is “*” then it identifies all
the possible actions.

Throws InvalidSyntaxException – is thrown if the specified filter is not syntacti-
cally correct.

NullPointerException – is thrown if the actions parameter is null

See Also ApplicationDescriptor[p.291] , org.osgi.framework.AdminPermission
ApplicationAdminPermission(ApplicationDescriptor,String)

116.7.2.5 public ApplicationAdminPermission(ApplicationDescriptor application,
String actions)

application the tareget of the operation, it must not be null

actions the required operation. it must not be null
290-502 OSGi Service Platform Release 4

Application Admin Service Specification Version 1.0 org.osgi.service.application
This contructor should be used when creating ApplicationAdminPermis-
sion instance for checkPermission call.

Throws NullPointerException – if any of the arguments is null.
equals(Object)

116.7.2.6 public boolean equals(Object with)
getActions()

116.7.2.7 public String getActions()

Returns the actions of this permission.

Returns the actions specified when this permission was created
hashCode()

116.7.2.8 public int hashCode()
implies(Permission)

116.7.2.9 public boolean implies(Permission otherPermission)

otherPermission the implied permission

Checks if the specified permission is implied by this permission. The
method returns true under the following conditions:

• This permission was created by specifying a filter (see Appl icat ionAd-
minPermission(Str ing, St r ing) [p.290])

• The implied otherPermission was created for a particular
Appl icationDescr iptor [p.291] (see Appl icationAdminPermission(Appli-
cationDescr iptor, Str ing) [p.290])

• The filter of this permission mathes the ApplicationDescriptor specified
in the otherPermission. If the filter in this permission is the <<SELF>>
pseudo target, then the currentApplicationId set in the otherPermission
is compared to the application Id of the target ApplicationDescriptor.

• The list of permitted actions in this permission contains all actions
required in the otherPermission

Returns true if this permission implies the otherPermission, false otherwise.
setCurrentApplicationId(String)

116.7.2.10 public ApplicationAdminPermission setCurrentApplicationId(String
applicationId)

applicationId the ID of the current application.

This method can be used in the java .secur ity .Protect ionDomain implemen-
tation in the implies method to insert the application ID of the current
application into the permission being checked. This enables the evaluation
of the <<SELF>> pseudo targets.

Returns the permission updated with the ID of the current application
ApplicationDescriptor

116.7.3 public abstract class ApplicationDescriptor
An OSGi service that represents an installed application and stores informa-
tion about it. The application descriptor can be used for instance creation.
APPLICATION_CONTAINER

116.7.3.1 public static final String APPLICATION_CONTAINER =
“application.container”

The property key for the application container of the application.
APPLICATION_COPYRIGHT

116.7.3.2 public static final String APPLICATION_COPYRIGHT =
“application.copyright”

The property key for the localized copyright notice of the application.
OSGi Service Platform Release 4 291-502

org.osgi.service.application Application Admin Service Specification Version 1.0
APPLICATION_DESCRIPTION

116.7.3.3 public static final String APPLICATION_DESCRIPTION =
“application.description”

The property key for the localized description of the application.
APPLICATION_DOCUMENTATION

116.7.3.4 public static final String APPLICATION_DOCUMENTATION =
“application.documentation”

The property key for the localized documentation of the application.
APPLICATION_ICON

116.7.3.5 public static final String APPLICATION_ICON = “application.icon”

The property key for the localized icon of the application.
APPLICATION_LAUNCHABLE

116.7.3.6 public static final String APPLICATION_LAUNCHABLE =
“application.launchable”

The property key for the launchable property of the application.
APPLICATION_LICENSE

116.7.3.7 public static final String APPLICATION_LICENSE = “application.license”

The property key for the localized license of the application.
APPLICATION_LOCATION

116.7.3.8 public static final String APPLICATION_LOCATION =
“application.location”

The property key for the location of the application.
APPLICATION_LOCKED

116.7.3.9 public static final String APPLICATION_LOCKED = “application.locked”

The property key for the locked property of the application.
APPLICATION_NAME

116.7.3.10 public static final String APPLICATION_NAME = “application.name”

The property key for the localized name of the application.
APPLICATION_PID

116.7.3.11 public static final String APPLICATION_PID = “service.pid”

The property key for the unique identifier (PID) of the application.
APPLICATION_VENDOR

116.7.3.12 public static final String APPLICATION_VENDOR = “service.vendor”

The property key for the name of the application vendor.
APPLICATION_VERSION

116.7.3.13 public static final String APPLICATION_VERSION = “application.version”

The property key for the version of the application.
APPLICATION_VISIBLE

116.7.3.14 public static final String APPLICATION_VISIBLE = “application.visible”

The property key for the visibility property of the application.
ApplicationDescriptor(String)

116.7.3.15 protected ApplicationDescriptor(String applicationId)

applicationId The identifier of the application. Its value is also available as the service.pid
service property of this ApplicationDescriptor service. This parameter must
not be null.

Constructs the ApplicationDescriptor.

Throws NullPointerException – if the specified applicationId is null.
getApplicationId()
292-502 OSGi Service Platform Release 4

Application Admin Service Specification Version 1.0 org.osgi.service.application
116.7.3.16 public final String getApplicationId()

Returns the identifier of the represented application.

Returns the identifier of the represented application
getProperties(String)

116.7.3.17 public final Map getProperties(String locale)

locale the locale string, it may be null, the value null means the default locale. If the
provided locale is the empty String (“”)then raw (non-localized) values are re-
turned.

Returns the properties of the application descriptor as key-value pairs. The
return value contains the locale aware and unaware properties as well. The
returned Map will include the service properties of this ApplicationDescrip-
tor as well.

This method will call the getPropertiesSpecific method to enable the con-
tainer implementation to insert application model and/or container imple-
mentation specific properties.

The returned java.uti l .Map will contain the standard OSGi service proper-
ties as well (e.g. service.id, service.vendor etc.) and specialized application
descriptors may offer further service properties. The returned Map contains
a snapshot of the properties. It will not reflect further changes in the prop-
erty values nor will the update of the Map change the corresponding service
property.

Returns copy of the service properties of this application descriptor service, accord-
ing to the specified locale. If locale is null then the default locale’s properties
will be returned. (Since service properties are always exist it cannot return
null.)

Throws IllegalStateException – if the application descriptor is unregistered
getPropertiesSpecific(String)

116.7.3.18 protected abstract Map getPropertiesSpecific(String locale)

locale the locale to be used for localizing the properties. If null the default locale
should be used. If it is the empty String (“”) then raw (non-localized) values
should be returned.

Container implementations can provide application model specific and/or
container implementation specific properties via this method. Localizable
properties must be returned localized if the provided locale argument is not
the empty String. The value null indicates to use the default locale, for other
values the specified locale should be used. The returned java.uti l .Map must
contain the standard OSGi service properties as well (e.g. service.id, ser-
vice.vendor etc.) and specialized application descriptors may offer further
service properties. The returned Map contains a snapshot of the properties.
It will not reflect further changes in the property values nor will the update
of the Map change the corresponding service property.

Returns the application model specific and/or container implementation specific
properties of this application descriptor.

Throws IllegalStateException – if the application descriptor is unregistered
isLaunchableSpecific()

116.7.3.19 protected abstract boolean isLaunchableSpecific()

This method is called by launch() to verify that according to the container,
the application is launchable.
OSGi Service Platform Release 4 293-502

org.osgi.service.application Application Admin Service Specification Version 1.0
Returns true, if the application is launchable according to the container, false other-
wise.

Throws IllegalStateException – if the application descriptor is unregistered
launch(Map)

116.7.3.20 public final ApplicationHandle launch(Map arguments) throws
ApplicationException

arguments Arguments for the newly launched application, may be null

Launches a new instance of an application. The args parameter specifies the
startup parameters for the instance to be launched, it may be null.

The following steps are made:

• Check for the appropriate permission.
• Check the locking state of the application. If locked then return null oth-

erwise continue.
• Calls the launchSpecific() method to create and start an application

instance.
• Returns the ApplicationHandle returned by the launchSpecific()

The Map argument of the launch method contains startup arguments for
the application. The keys used in the Map must be non-null, non-empty
String objects. They can be standard or application specific. OSGi defines the
org.osgi.triggeringevent key to be used to pass the triggering event to a
scheduled application, however in the future it is possible that other well-
known keys will be defined. To avoid unwanted clashes of keys, the follow-
ing rules should be applied:

• The keys starting with the dash (-) character are application specific, no
well-known meaning should be associated with them.

• Well-known keys should follow the reverse domain name based naming.
In particular, the keys standardized in OSGi should start with org.osgi..

The method is synchonous, it return only when the application instance
was successfully started or the attempt to start it failed.

This method never returns null. If launching an application fails, the appro-
priate exception is thrown.

Returns the registered ApplicationHandle, which represents the newly launched ap-
plication instance. Never returns null.

Throws SecurityException – if the caller doesn’t have “lifecycle” ApplicationAd-
minPermission for the application.

ApplicationException – if starting the application failed

IllegalStateException – if the application descriptor is unregistered

IllegalArgumentException – if the specified Map contains invalid keys
(null objects, empty String or a key that is not String)
launchSpecific(Map)

116.7.3.21 protected abstract ApplicationHandle launchSpecific(Map arguments)
throws Exception

arguments the startup parameters of the new application instance, may be null
294-502 OSGi Service Platform Release 4

Application Admin Service Specification Version 1.0 org.osgi.service.application
Called by launch() to create and start a new instance in an application
model specific way. It also creates and registeres the application handle to
represent the newly created and started instance and registeres it. The
method is synchonous, it return only when the application instance was
successfully started or the attempt to start it failed.

This method must not return null. If launching the application failed, and
exception must be thrown.

Returns the registered application model specific application handle for the newly
created and started instance.

Throws IllegalStateException – if the application descriptor is unregistered

Exception – if any problem occures.
lock()

116.7.3.22 public final void lock()

Sets the lock state of the application. If an application is locked then launch-
ing a new instance is not possible. It does not affect the already launched
instances.

Throws SecurityException – if the caller doesn’t have “lock” ApplicationAdmin-
Permission for the application.

IllegalStateException – if the application descriptor is unregistered
lockSpecific()

116.7.3.23 protected abstract void lockSpecific()

This method is used to notify the container implementation that the corre-
sponding application has been locked and it should update the applica-
tion.locked service property accordingly.

Throws IllegalStateException – if the application descriptor is unregistered
matchDNChain(String)

116.7.3.24 public abstract boolean matchDNChain(String pattern)

pattern a pattern for a chain of Distinguished Names. It must not be null.

This method verifies whether the specified pattern matches the Distin-
guished Names of any of the certificate chains used to authenticate this
application.

The pattern must adhere to the syntax defined in
org .osgi .service .app lication.ApplicationAdminPermiss ion [p.289] for
signer attributes.

This method is used by
Appl icat ionAdminPermission . impl ies(java.security .Permission) [p.291]
method to match target ApplicationDescriptor and filter.

Returns true if the specified pattern matches at least one of the certificate chains used
to authenticate this application

Throws NullPointerException – if the specified pattern is null.

IllegalStateException – if the application descriptor was unregistered
schedule(String,Map,String,String,boolean)

116.7.3.25 public final ScheduledApplication schedule(String scheduleId, Map
arguments, String topic, String eventFilter, boolean recurring) throws
InvalidSyntaxException, ApplicationException

scheduleId the identifier of the created schedule. It can be null, in this case the identifier
is automatically generated.
OSGi Service Platform Release 4 295-502

org.osgi.service.application Application Admin Service Specification Version 1.0
arguments the startup arguments for the scheduled application, may be null

topic specifies the topic of the triggering event, it may contain a trailing asterisk as
wildcard, the empty string is treated as “*”, must not be null

eventFilter specifies and LDAP filter to filter on the properties of the triggering event,
may be null

recurring if the recurring parameter is false then the application will be launched only
once, when the event firstly occurs. If the parameter is true then scheduling
will take place for every event occurrence; i.e. it is a recurring schedule

Schedules the application at a specified event. Schedule information should
not get lost even if the framework or the device restarts so it should be
stored in a persistent storage. The method registers a
ScheduledAppl icat ion [p.300] service in Service Registry, representing the
created schedule.

The Map argument of the method contains startup arguments for the appli-
cation. The keys used in the Map must be non-null, non-empty String
objects.

The created schedules have a unique identifier within the scope of this
ApplicationDescriptor. This identifier can be specified in the scheduleId
argument. If this argument is null, the identifier is automatically generated.

Returns the registered scheduled application service

Throws NullPointerException – if the topic is null

InvalidSyntaxException – if the specified eventFilter is not syntactically
correct

ApplicationException – if the schedule couldn’t be created. The possible
error codes are
ApplicationException.APPLICATION_DUPLICATE_SCHEDULE_ID if the
specified scheduleId is already used for this ApplicationDescriptor
ApplicationException.APPLICATION_SCHEDULING_FAILED if the sched-
uling failed due to some internal reason (e.g. persistent storage error).

SecurityException – if the caller doesn’t have “schedule” ApplicationAd-
minPermission for the application.

IllegalStateException – if the application descriptor is unregistered

IllegalArgumentException – if the specified Map contains invalid keys
(null objects, empty String or a key that is not String)
unlock()

116.7.3.26 public final void unlock()

Unsets the lock state of the application.

Throws SecurityException – if the caller doesn’t have “lock” ApplicationAdmin-
Permission for the application.

IllegalStateException – if the application descriptor is unregistered
unlockSpecific()

116.7.3.27 protected abstract void unlockSpecific()

This method is used to notify the container implementation that the corre-
sponding application has been unlocked and it should update the applica-
tion.locked service property accordingly.
296-502 OSGi Service Platform Release 4

Application Admin Service Specification Version 1.0 org.osgi.service.application
Throws IllegalStateException – if the application descriptor is unregistered
ApplicationException

116.7.4 public class ApplicationException
extends Exception
This exception is used to indicate problems related to application lifecycle
management. ApplicationException object is created by the Application
Admin to denote an exception condition in the lifecycle of an application.
ApplicationExceptions should not be created by developers.
ApplicationExceptions are associated with an error code. This code
describes the type of problem reported in this exception. The possible codes
are:

• APPL ICATION_LOCKED [p.297] - The application couldn’t be launched
because it is locked.

• APPL ICATION_NOT_LAUNCHABLE [p.297] - The application is not in
launchable state.

• APPL ICATION_INTERNAL_ERROR [p.297] - An exception was thrown by
the application or its container during launch.

• APPL ICATION_SCHEDULING_FAILED [p.297] - The scheduling of an
application failed.

APPLICATION_DUPLICATE_SCHEDULE_ID

116.7.4.1 public static final int APPLICATION_DUPLICATE_SCHEDULE_ID = 5

The application scheduling failed because the specified identifier is already
in use.
APPLICATION_INTERNAL_ERROR

116.7.4.2 public static final int APPLICATION_INTERNAL_ERROR = 3

An exception was thrown by the application or the corresponding container
during launch. The exception is available in getCause() [p.298] .
APPLICATION_LOCKED

116.7.4.3 public static final int APPLICATION_LOCKED = 1

The application couldn’t be launched because it is locked.
APPLICATION_NOT_LAUNCHABLE

116.7.4.4 public static final int APPLICATION_NOT_LAUNCHABLE = 2

The application is not in launchable state, it’s
Appl icat ionDescriptor .APPL ICATION_LAUNCHABLE [p.292] attribute is
false.
APPLICATION_SCHEDULING_FAILED

116.7.4.5 public static final int APPLICATION_SCHEDULING_FAILED = 4

The application schedule could not be created due to some internal error
(for example, the schedule information couldn’t be saved).
ApplicationException(int)

116.7.4.6 public ApplicationException(int errorCode)

errorCode The code of the error

Creates an ApplicationException with the specified error code.
ApplicationException(int,Throwable)

116.7.4.7 public ApplicationException(int errorCode, Throwable cause)

errorCode The code of the error

cause The cause of this exception.
OSGi Service Platform Release 4 297-502

org.osgi.service.application Application Admin Service Specification Version 1.0
Creates a ApplicationException that wraps another exception.
ApplicationException(int,String)

116.7.4.8 public ApplicationException(int errorCode, String message)

errorCode The code of the error

message The associated message

Creates an ApplicationException with the specified error code.
ApplicationException(int,String,Throwable)

116.7.4.9 public ApplicationException(int errorCode, String message, Throwable
cause)

errorCode The code of the error

message The associated message.

cause The cause of this exception.

Creates a ApplicationException that wraps another exception.
getCause()

116.7.4.10 public Throwable getCause()

Returns the cause of this exception or null if no cause was specified when
this exception was created.

Returns The cause of this exception or null if no cause was specified.
getErrorCode()

116.7.4.11 public int getErrorCode()

Returns the error code associcated with this exception.

Returns The error code of this exception.
ApplicationHandle

116.7.5 public abstract class ApplicationHandle
ApplicationHandle is an OSGi service interface which represents an
instance of an application. It provides the functionality to query and manip-
ulate the lifecycle state of the represented application instance. It defines
constants for the lifecycle states.
APPLICATION_DESCRIPTOR

116.7.5.1 public static final String APPLICATION_DESCRIPTOR =
“application.descriptor”

The property key for the pid of the corresponding application descriptor.
APPLICATION_PID

116.7.5.2 public static final String APPLICATION_PID = “service.pid”

The property key for the unique identifier (PID) of the application instance.
APPLICATION_STATE

116.7.5.3 public static final String APPLICATION_STATE = “application.state”

The property key for the state of this appliction instance.
RUNNING

116.7.5.4 public static final String RUNNING = “RUNNING”

The application instance is running. This is the initial state of a newly cre-
ated application instance.
STOPPING

116.7.5.5 public static final String STOPPING = “STOPPING”

The application instance is being stopped. This is the state of the application
instance during the execution of the destroy() method.
298-502 OSGi Service Platform Release 4

Application Admin Service Specification Version 1.0 org.osgi.service.application
ApplicationHandle(String,ApplicationDescriptor)

116.7.5.6 protected ApplicationHandle(String instanceId, ApplicationDescriptor
descriptor)

instanceId the instance identifier of the represented application instance. It must not be
null.

descriptor the ApplicationDescriptor of the represented application instance. It must
not be null.

Application instance identifier is specified by the container when the
instance is created. The instance identifier must remain static for the life-
time of the instance, it must remain the same even across framework
restarts for the same application instance. This value must be the same as
the service.pid service property of this application handle.

The instance identifier should follow the following scheme: <application
descriptor PID>.<index> where <application descriptor PID> is the PID of the
corresponding ApplicationDescriptor and <index> is a unique integer index
assigned by the application container. Even after destroying the application
index the same index value should not be reused in a reasonably long time-
frame.

Throws NullPointerException – if any of the arguments is null.
destroy()

116.7.5.7 public final void destroy()

The application instance’s lifecycle state can be influenced by this method.
It lets the application instance perform operations to stop the application
safely, e.g. saving its state to a permanent storage.

The method must check if the lifecycle transition is valid; a STOPPING
application cannot be stopped. If it is invalid then the method must exit.
Otherwise the lifecycle state of the application instance must be set to
STOPPING. Then the destroySpecific() method must be called to perform
any application model specific steps for safe stopping of the represented
application instance.

At the end the ApplicationHandle must be unregistered. This method
should free all the resources related to this ApplicationHandle.

When this method is completed the application instance has already made
its operations for safe stopping, the ApplicationHandle has been unregis-
tered and its related resources has been freed. Further calls on this applica-
tion should not be made because they may have unexpected results.

Throws SecurityException – if the caller doesn’t have “lifecycle” ApplicationAd-
minPermission for the corresponding application.

IllegalStateException – if the application handle is unregistered
destroySpecific()

116.7.5.8 protected abstract void destroySpecific()

Called by the destroy() method to perform application model specific steps
to stop and destroy an application instance safely.

Throws IllegalStateException – if the application handle is unregistered
getApplicationDescriptor()

116.7.5.9 public final ApplicationDescriptor getApplicationDescriptor()

Retrieves the ApplicationDescriptor to which this ApplicationHandle
belongs.
OSGi Service Platform Release 4 299-502

org.osgi.service.application Application Admin Service Specification Version 1.0
Returns The corresponding ApplicationDescriptor
getInstanceId()

116.7.5.10 public final String getInstanceId()

Returns the unique identifier of this instance. This value is also available as
a service property of this application handle’s service.pid.

Returns the unique identifier of the instance
getState()

116.7.5.11 public abstract String getState()

Get the state of the application instance.

Returns the state of the application.

Throws IllegalStateException – if the application handle is unregistered
ScheduledApplication

116.7.6 public interface ScheduledApplication
It is allowed to schedule an application based on a specific event. Sched-
uledApplication service keeps the schedule information. When the speci-
fied event is fired a new instance must be launched. Note that launching
operation may fail because e.g. the application is locked.

Each ScheduledApplication instance has an identifier which is unique
within the scope of the application being scheduled.

ScheduledApplication instances are registered as services. The
APPLICATION_PID [p.300] service property contains the PID of the applica-
tion being scheduled, the SCHEDULE_ID [p.300] service property contains
the schedule identifier.
APPLICATION_PID

116.7.6.1 public static final String APPLICATION_PID = “service.pid”

The property key for the identifier of the application being scheduled.
DAY_OF_MONTH

116.7.6.2 public static final String DAY_OF_MONTH = “day_of_month”

The name of the day of month attribute of a virtual timer event. The value is
defined by java.uti l .Calendar.DAY_OF_MONTH .
DAY_OF_WEEK

116.7.6.3 public static final String DAY_OF_WEEK = “day_of_week”

The name of the day of week attribute of a virtual timer event. The value is
defined by java.uti l .Calendar.DAY_OF_WEEK .
HOUR_OF_DAY

116.7.6.4 public static final String HOUR_OF_DAY = “hour_of_day”

The name of the hour of day attribute of a virtual timer event. The value is
defined by java.uti l .Calendar.HOUR_OF_DAY .
MINUTE

116.7.6.5 public static final String MINUTE = “minute”

The name of the minute attribute of a virtual timer event. The value is
defined by java.uti l .Calendar.MINUTE .
MONTH

116.7.6.6 public static final String MONTH = “month”

The name of the month attribute of a virtual timer event. The value is
defined by java.uti l .Calendar.MONTH .
SCHEDULE_ID
300-502 OSGi Service Platform Release 4

Application Admin Service Specification Version 1.0 org.osgi.service.application
116.7.6.7 public static final String SCHEDULE_ID = “schedule.id”

The property key for the schedule identifier. The identifier is unique within
the scope of the application being scheduled.
TIMER_TOPIC

116.7.6.8 public static final String TIMER_TOPIC = “org/osgi/application/timer”

The topic name for the virtual timer topic. Time based schedules should be
created using this topic.
TRIGGERING_EVENT

116.7.6.9 public static final String TRIGGERING_EVENT = “org.osgi.triggeringevent”

The key for the startup argument used to pass the event object that triggered
the schedule to launch the application instance. The event is passed in a
java.security .GuardedObject protected by the corresponding org.osgi .ser-
vice .event.TopicPermission .
YEAR

116.7.6.10 public static final String YEAR = “year”

The name of the year attribute of a virtual timer event. The value is defined
by java .uti l .Ca lendar.YEAR .
getApplicationDescriptor()

116.7.6.11 public ApplicationDescriptor getApplicationDescriptor()

Retrieves the ApplicationDescriptor which represents the application and
necessary for launching.

Returns the application descriptor that represents the scheduled application

Throws IllegalStateException – if the scheduled application service is unregis-
tered
getArguments()

116.7.6.12 public Map getArguments()

Queries the startup arguments specified when the application was sched-
uled. The method returns a copy of the arguments, it is not possible to mod-
ify the arguments after scheduling.

Returns the startup arguments of the scheduled application. It may be null if null ar-
gument was specified.

Throws IllegalStateException – if the scheduled application service is unregis-
tered
getEventFilter()

116.7.6.13 public String getEventFilter()

Queries the event filter for the triggering event.

Returns the event filter for triggering event

Throws IllegalStateException – if the scheduled application service is unregis-
tered
getScheduleId()

116.7.6.14 public String getScheduleId()

Returns the identifier of this schedule. The identifier is unique within the
scope of the application that the schedule is related to.

Returns the identifier of this schedule
getTopic()
OSGi Service Platform Release 4 301-502

References Application Admin Service Specification Version 1.0
116.7.6.15 public String getTopic()

Queries the topic of the triggering event. The topic may contain a trailing
asterisk as wildcard.

Returns the topic of the triggering event

Throws IllegalStateException – if the scheduled application service is unregis-
tered
isRecurring()

116.7.6.16 public boolean isRecurring()

Queries if the schedule is recurring.

Returns true if the schedule is recurring, otherwise returns false

Throws IllegalStateException – if the scheduled application service is unregis-
tered
remove()

116.7.6.17 public void remove()

Cancels this schedule of the application.

Throws SecurityException – if the caller doesn’t have “schedule” ApplicationAd-
minPermission for the scheduled application.

IllegalStateException – if the scheduled application service is unregis-
tered

116.8 References
[1] PNG Image Format

http://www.libpng.org/pub/png/
302-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 Introduction
117 DMT Admin Service
Specification
Version 1.0

117.1 Introduction
This specification defines an API for managing a device using concepts from
the OMA DM specifications. This API is has been designed to be useful with
or without an OSGi service platform. The API is decomposed in the follow-
ing packages/functionality:

• info.dmtree – Main package that provides access to the local Device
Management Tree. Access is session based.

• info.dmtree.noti f icat ion – The notification package provides the capa-
bility to send alerts to the management server.

• info.dmtree.reg ist ry – This package provides access to the services
defined in this specification when there is no service registry available.

• info.dmtree.spi – Provides the capability to register subtree handlers in
the Device Management Tree.

• info.dmtree.noti f icat ion.spi – The API to provide the possibilitity to
send alerts and notifications to management servers.

• info.dmtree.securi ty – Security classes.

This specification defines a number of services. Normally in an OSGi specifi-
cation a service is a well defined entity. However, this specification is also
applicable to environments where no OSGi service registry is present. In
this case, the specified services are available from the DmtServiceFactory
class.

117.1.1 Entities
• Device Management Tree – The Device Management Tree (DMT) is the

logical view of manageable aspects of an OSGi Environment, structured
in a tree with named nodes.

• Dmt Admin – A service through which the DMT can be manipulated. It is
used by local managers or by protocol adapters that initiate DMT opera-
tions. The Dmt Admin service forwards selected DMT operations to Data
Plugins and execute operations to Exec Plugins; in certain cases the Dmt
Admin service handles the operations itself. The Dmt Admin service is a
singleton.

• Dmt Session – A session groups a set of operations with optional transac-
tionality and locking. Dmt Session objects are created by the Dmt Admin
service and are given to a plugin when they first join the session.

• Local Manager – A bundle which uses the Dmt Admin service directly to
read or manipulate the DMT. Local Managers usually do not have a prin-
cipal associated with the session.
OSGi Service Platform Release 4 303-502

Introduction DMT Admin Service Specification Version 1.0
• Protocol Adapter – A bundle that communicates with a management
server external to the device and uses the Dmt Admin service to operate
on the DMT.

• Meta Node – Information provided by the node implementation about a
node for the purpose of performing validation and providing assistance
to users when these values are edited.

• Multi nodes – Interior nodes that have a homogeneous set of children. All
these children share the same meta node.

• Plugin – Services which take the responsibility over a given sub-tree of
the DMT: Data Plugin services and Exec Plugin services. Plugins exclu-
sively manage a particular sub-tree, though Exec and Data Plugins can
overlap.

• Data Plugin – A Plugin that can create a Readable Data Session, Read
Write Data Session, or Transactional Data Session that handle data oper-
ations on a sub-tree for a Dmt Session.

• Exec Plugin – A Plugin that can handle execute operations.
• Readable Data Session – A plugin session that can only read.
• Read Write Data Session – A plugin session that can read and write.
• Transactional Data Session – A plugin session that is transactional.
• Principal – Represents the identity of the optional initiator of a Dmt

Session. When a session has a principal, the Dmt Admin must enforce
ACLs and must ignore Dmt Permissions.

• ACL – An Access Control List is a set of principals that is associated with
permitted operations.

• Dmt Event – Provides information about an event inside Dmt Admin.
• Dmt Event Listener – Listeners to Dmt Events. These listeners can be regis-

tered with a Dmt Admin service.
• Dmt Service Factory – Provide access to the Dmt Admin service and Notifi-

cation Service.
304-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 Introduction
Figure 117.1 Using Dmt Admin service, info.dmtree package

<<service>>
Dmt Admin

administers

DMT Admin Impl

<<service>>
Notification
Service

Local Manager or
Protocol Adapter

sends alerts

<<class>>
Alert Item

<<class>>
Acl

<<interface>>
Meta Node

<<class>>
Dmt Data

<<interface>>
Dmt Session

Session Impl Alert Sender Impl

0..*

1

0..*

1

<<service>>
Remote Alert
Sender

Remote Alert
Sender Impl

0..*

1

<<interface>>
Dmt Event
Listener

<<class>>
Dmt Event

0..*

1

Listener Impl
OSGi Service Platform Release 4 305-502

Introduction DMT Admin Service Specification Version 1.0
Figure 117.2 Extending the Dmt Admin service, info.dmtree.spi package

The bundle and service boundaries are not present when there is no Service
Platform. In that case, the DmtServiceFactory class provides access to the
Dmt Admin and Notification Service instances with a static method.

Figure 117.3 Dmt Admin service without Service Platform

DMT Admin ImplSession Impl

<<service>>
Data Plugin

<<service>>
Exec Plugin

<<interface>>
Readable Data
Session

Data Plugin Impl Exec Plugin Impl

<<interface>>
Read Write
Data Session

<<interface>>
Transactional
Data Session

Session Impl

<<interface>>
Dmt Admin

administers

Local Manager

sends notifications

<<class>>
Alert Item

<<class>>
Acl

<<interface>>
Meta Node

<<class>>
Dmt Data

<<interface>>
Dmt Session

0..*

1

0..*

1
<<interface>>
Notification
Service

<<static>>
Dmt Service
Factory

<<interface>>
Dmt Event
Listener

<<class>>
Dmt Event

0..* 1

1

1 1

1

306-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 The Device Management Model
117.2 The Device Management Model
The most important decision in determining any fundamentally new archi-
tecture is choosing a single meta-data model that expresses a common con-
ceptual and semantic view for all consumers of that architecture. In the case
of networked systems management, a number of meta-data models exist to
choose from:

• SNMP – The best-established and most ubiquitous model for network
management. See [7] SNMP for more information.

• JMX, a generic systems management model for Java, a de-facto standard
in J2EE management. See [4] Java™ Management Extensions Instrumen-
tation and Agent Specification for more information.

• JSR 9 FMA – Federated Management Architecture (FMA) [5], another Java
standard originating in storage management. See [5] JSR 9 - Federated
Management Architecture (FMA) Specification.

• CIM/WBEM – Common Information Model (CIM) and Web-Based
Enterprise Management, a rich and extensible management meta-model
developed by the DMTF. See [6] WBEM Profile Template, DSP1000.

For various reasons, none of these models enjoy any significant mind share
within the mobile device community. Some, like SNMP, are primitive and
very limited in functionality. Some, such as JMX and FMA, are too Java-cen-
tric and not well-suited for mobile devices.

One model that appears to have gained an almost universal acceptance is
the Device Management Tree (DMT), introduced in support of the OMA DM
protocol (formerly known as SyncML DM); see [1] OMA DM-TND v1.2 draft.

OMA DM provides a hierarchical model, like SNMP, but it is more sophisti-
cated in the kinds of operations and data structures it can support.

117.2.1 The Device Management Tree
The standard-based features of the DMT model are:

• The Device Management Tree consists of interior nodes and leaf nodes.
Interior nodes can have children and leaf nodes have primitive values.

• All nodes have a set of properties: Name, Title, Format, ACL, Version,
Size, Type, Value, and TimeStamp.

• The storage of the nodes is undefined. Nodes typically map to peripheral
registers, settings, configuration, databases, etc.

• A node’s name must be unique within its parent.
• Nodes can have Access Control Lists (ACLs), associating operations

allowed on those nodes with a particular principal.
• Nodes can have Meta nodes that describe nodes and their siblings.
• Base value types (called formats in the standard) are

• Integer
• Unicode string
• Boolean
• Binary data
• Date
• Time
• Float
• XML fragments
OSGi Service Platform Release 4 307-502

The Device Management Model DMT Admin Service Specification Version 1.0
• Leaf nodes in the tree can have default values specified in the meta node.
• Meta nodes have allowed access operations defined (Get , Add , Replace ,

Delete and Exec)

Figure 117.4 Device Management Tree example

Based on its industry acceptance and technical features, the DMT model was
chosen as the uniform meta-data and operational model. In this capacity it
is considered separately and independently from OMA DM or any other pro-
visioning protocol. The DMT model, not the protocol, underlies all local and
remote device management operations on the OSGi Environment.

Users of this specification should be familiar with the concept of the Device
Management Tree and its properties and operations as defined by OMA DM;
see [1] OMA DM-TND v1.2 draft.

117.2.2 Extensions
This specification introduces attributes in the meta nodes, refining seman-
tics of both interior and leaf nodes. The following constraint information
has been added to the meta data:

• Range – Max/min. values for numbers.
• Enumeration – Valid values for the node value as well as the node name.
• Validation – Provides a basis for determining whether a node name or

value is valid.
• Raw Format – Support for future and non-standardized data formats.

117.2.3 Tree Terminology
In the following sections, the DMT is discussed frequently. Thus, well-
defined terms for all the concepts that the DMT introduces are needed. The
different terms are shown in Figure 117.5.

root node.

Vendor Operator

ScreenSavers

OSGiOMA DM

RingSignals

Bach Popcorn Sinatra

interior node

leaf node

leaf node

interior node
308-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 The Device Management Model
Figure 117.5 DMT naming, relative to node F

All terms are defined relative to node F. For this node, the terminology is as
follows:

• ancestors – All nodes that are above the given node ordered in proximity.
The closest node must be first in the list. In the example, this list is [./E , .]

• parent – The first ancestor, in this example this is . /E .
• children – A list of nodes that are directly beneath the given node without

any preferred ordering. For node F this list is { . /E /F/ f1 , . /E/F/f2 , . /E/F/G
} .

• siblings – An unordered list of nodes that have the same parent. All sib-
lings must have different names. For F , this is { . /E/K}

• descendants – A list of all nodes below the given node. For F this is { . /E/F/
f1 , . /E/F/G, . /E/F/f2 , . /E/F/G/H, . /E/F/G/I , . /E/F/G/ J }

• sub-tree – The given node plus the list of all descendants. For node F this is
{ . /E/F, . /E/F/f1 , . /E/F/G, . /E/F/f2, . /E/F/G/H, . /E/F/G/I , . /E/F/G/ J }

• overlap – Two given URIs overlap if they share any node in their sub-
trees. In the example, the sub-tree . /E/F and . /E/F/G overlap.

• Context Tree – The context tree consists of the nodes that belong to the
same logical unit as a given node. For example, the f1 node could
describe an aspect of the J node. In that case, they both belong to the
same context tree.

117.2.4 Actors
There are two typical users of the Dmt Admin service:

• Remote manager – The typical client of the Dmt Admin service is a Protocol
Adapter. A management server external to the device can issue DMT
operations over some management protocol. The protocol to be used is
not specified by this specification; for example, OMA DM, OMA CP, and
IOTA could be used. The protocol operations reach the service platform
through the protocol adapter, which forwards the calls to the Dmt
Admin service in a session. Protocol Adapters should authenticate the
remote manager and set the principal in the session. This association
will make the Dmt Admin enforce the ACLs. This requires that the prin-
cipal is equal to the server name.
The Dmt Admin provides a facility to send notifications to the remote
manager with the Notification Service.

.

E

G

F

f1 f2

A

DC

IH J

parent

self
siblings

ancestors

descendants
children sub-tree

K

OSGi Service Platform Release 4 309-502

The DMT Admin Service DMT Admin Service Specification Version 1.0
• Local Manager – A bundle which uses the Dmt Admin service to operate
on the DMT: for example, a GUI application that allows the end user to
change settings through the DMT.
Although it is possible to manage some aspects of the system through
the DMT, it can be easier for such applications to directly use the services
that underlie the DMT; many of the management features available
through the DMT are also available as services. These services shield the
callers from the underlying details of the abstract, and sometimes hard to
use DMT structure. As an example, it is more straightforward to use the
Monitor Admin service than to operate upon the monitoring sub-tree.
The local management application might listen to Dmt Events if it is
interested in updates in the tree made by other entities, however, these
events do not necessarily reflect the state of the underlying services.

Figure 117.6 Actors

117.3 The DMT Admin Service
The Dmt Admin service operates on the Device Management Tree of an
OSGi-based device. The Dmt Admin API is closely modelled after the OMA
DM protocol: the operations for Get , Replace , Add , Delete and Exec are
directly available. The Dmt Admin is a singleton service.

Access to the DMT is session-based to allow for locking and transactionality.
The sessions are, in principle, concurrent, but implementations that queue
sessions can be compliant. The client indicates to the Dmt Admin service
what kind of session is needed:

• Exclusive Update Session– Two or more updating sessions cannot access
the same part of the tree simultaneously. An updating session must
acquire an exclusive lock on the sub-tree which blocks the creation of
other sessions that want to operate on an overlapping sub-tree.

• Multiple Readers Session – Any number of read-only sessions can run con-
currently, but ongoing read-only sessions must block the creation of an
updating session on an overlapping sub-tree.

• Atomic Session – An atomic session is the same as an exclusive update
session, except that the session can be rolled back at any moment,
undoing all changes made so far in the session. The participants must

<<service>>
Dmt Admin

Protocol Adapter
Impl

remote management

<<interface>>
Dmt Session

Local Manager
Impl

Remote Server

protocol

principal
310-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 Manipulating the DMT
accept the outcome: rollback or commit. There is no prepare phase. This
specification does not mandate the support of atomic sessions. The lack
of real transaction support can lead to error situations which are
described later in this document; see Plugins and Transactions on page
327.

Although the DMT represents a persistent data store with transactional
access and without size limitations, the notion of the DMT should not be
confused with a general purpose database.

The intended purpose of the DMT is to provide a dynamic view of the man-
agement state of the device; the DMT model and the Dmt Admin service are
designed for this purpose. Other kinds of usage, like storing and sharing
generic application-specific data, are strictly discouraged because they can
have severe performance implications.

117.4 Manipulating the DMT

117.4.1 The DMT Addressing URI
The OMA DM limits URIs to the definition of a URI in [8] RFC 2396 Uniform
Resource Identifiers (URI): Generic Syntax. The Uri utility classes handles
nearly all escaping issues with a number of static methods. All URIs in any
of the API methods can use the full Unicode character set. For example, the
following URIs as used in Java code are valid URIs for the Dmt Admin ser-
vice.

"./ACME © 2000/A/x"
"./ACME/Address/Street/9C, Avenue St. Drézéry"

This strategy has a number of consequences.

• A slash (’ / ’ \u002F) collides with the use of the slash as separator of the
node names. Slashes must therefore be escaped using a backslash slash
(’ \ / ’). The backslash must be escaped with a double backslash sequence.
Dmt Admin service must ignore a backslash when it is not followed by a
slash or backslash. The slash and backslash must not be escaped using
the %00 escaping. For example, a node that has the name of a MIME
type could look like:

./OSGi/mime/application\/png

In Java, a backslash must be escaped as well, therefore requiring double
backslashes:

String a = "./OSGi/mime/application\\/png";

• The length of a node name is defined to be the length of the byte array
that results from UTF-8 encoding a string. This definition assumes that
implementations store each character in the encoded URI as a single
byte.

• Using the full Unicode character set for node names is discouraged
because the encoding in the underlying storage—as well as the encoding
needed in communications—can create significant performance and
OSGi Service Platform Release 4 311-502

Manipulating the DMT DMT Admin Service Specification Version 1.0
memory usage overhead. Names that are restricted to the URI set [-a-zA-
Z0-9_. !~*'()] are most efficient.

Dmt Admin service implementations usually have a limit on node length.
This length can be found out with the getMaxSegmentNameLength()
method. If a node name (not a URI, but only the name part of a node) is too
long, the Dmt Admin service must throw an Exception. Clients of the Dmt
Admin service can use the mangle(Str ing) method; this method is described
in Node Name Mangling on page 319. This method also handles any neces-
sary escaping. Names are not automatically mangled, because a mangled
name cannot be distinguished from a non-mangled name.

Nodes are addressed by presenting a relative or absolute URI for the requested
node. Absolute URIs start with dot (’ . ’ \u002E) , if a URI starts with some-
thing else it is a relative URI. The Uri isAbsoluteUr i(Str ing) method makes it
simple to find out if a URI is relative or absolute. Relative URIs require a base
URI that is for example provided by the session, see Locking and Sessions on
page 312.

Each node name is appended to the previous ones using a slash (’/’ \u002F)
as the separating character. The first node of an absolute URI must be the
dot (’.’\u002E).

For example, to access the Bach leaf node in the RingTones interior node
from Figure 117.4 on page 308, the URI must be:

./Vendor/RingSignals/Bach

 The URI must be given with the root of the management tree as the starting
point. URIs used in the DMT must be treated and interpreted as case-sensitive.
I.e. . /Vendor and . /vendor designate two different nodes. The following
mandatory restrictions on URI syntax are intended to simplify the parsing
of URIs.

• No End Slash – A URI must not end with the delimiter slash (’/ ’ \u002F) .
The root node must be denoted as . and not . / .

• Parents – A URI must not be constructed using the character sequence . . /
to traverse the tree upwards.

• Single Root – The character sequence . / must not be used anywhere other
than in the beginning of a URI.

• Max number of segments – A URI can have a maximum number of seg-
ments. This maximum can be found out with the getMaxUriSegments()
method.

• Maximum length – A URI is restricted in its total length. The maximum
length can be discovered with the getMaxUr iLength() method.

The i sVal idUri(Str ing) method verifies that a URI fulfills all its obligations
and is valid.

117.4.2 Locking and Sessions
The Dmt Admin service is the main entry point into the Device Manage-
ment API, its usage is to create sessions.
312-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 Manipulating the DMT
A simple example is getting a session on a specific sub-tree. Such a session
can be created with the getSess ion(String) method. This method creates an
updating session with an exclusive lock on the given sub-tree. The given
sub-tree can be a single leaf node if so desired.

Each session has an ID associated with it which is unique to the machine
and is never reused. The URI argument addresses the sub-tree root. If nul l , it
addresses the root of the DMT. All nodes can be reached from the root, so
specifying a session root node is not strictly necessary but it permits certain
optimizations in the implementation.

If the default exclusive locking mode of a session is not adequate, it is possi-
ble to specify the locking mode with the getSession(Str ing, int) and getSes-
sion(Str ing,Str ing, int) method. These methods supports the following
locking modes:

• LOCK_TYPE_SHARED – Creates a shared session. It is limited to read-only
access to the given sub-tree, which means that multiple sessions are
allowed to read the given sub-tree at the same time.

• LOCK_TYPE_EXCLUSIVE – Creates an exclusive session. The lock guar-
antees full read-write access to the tree. Such sessions, however, cannot
share their sub-tree with any other session. This type of lock requires
that the underlying implementation supports Read Write Data Sessions.

• LOCK_TYPE_ATOMIC – Creates an atomic session with an exclusive lock
on the sub-tree, but with added transactionality. Operations on such a
session must either succeed together or fail together. This type of lock
requires that the underlying implementation supports Transactional
Data Sessions.

The Dmt Admin service must lock the sub-tree in the requested mode before
any operations are performed. If the requested sub-tree is not accessible, the
getSess ion(String, int) , getSession(Str ing, int) , or getSession(Str ing)
method must block until the sub-tree becomes available. The implementa-
tion can decide after an implementation-dependent period to throw a Dmt
Exception with the SESSION_CREATION_TIMEOUT code.

As a simplification, the Dmt Admin service is allowed to lock the entire tree
irrespective of the given sub-tree. For performance reasons, implementa-
tions should provide more fine-grained locking when possible.

Persisting the changes of a session works differently for exclusive and
atomic sessions. Changes to the sub-tree in an atomic session are not per-
sisted until the commit or close method of the session is called. Changes
since the last transaction point can be rolled back with the rol lback method.

The commit and rol lback methods can be called multiple times in a session;
they do not close the session. The open , commit , and rol lback methods all
establish a transaction point. The rollback operation cannot roll back further
than the last transaction point.

Once a fatal error is encountered (as defined by the DmtException i sFatal()
method), all successful changes must be rolled back automatically. Non-
fatal errors do not rollback the session. Any error/exception in the commit
or ro llback methods invalidates the session.

Changes in an exclusive session are persisted immediately after each opera-
tion. Errors do not roll back any changes made in such a session.
OSGi Service Platform Release 4 313-502

Manipulating the DMT DMT Admin Service Specification Version 1.0
Due to locking and transactional behavior, a session of any type must be
closed once it is no longer used. Locks must always be released, even if the
close method throws an exception.

Once a session is closed no further operations are allowed and manipulation
methods must throw an Illegal State Exception when called. Certain infor-
mation methods like for example getState() and getRootUri() can still be
called for logging or diagnostic purposes. This is documented with the Dmt
Session methods.

The c lose or commit method can be expected to fail even if all or some of
the individual operations were successful. This failure can occur due to
multi-node constraints defined by a specific implementation. The details of
how an implementation specifies such constraints is outside the scope of
this specification.

Events in an atomic session must only be sent at commit time.

117.4.3 Associating a Principal
Protocol adapters must use the getSess ion(String,Str ing, int) method
which features the principal as the first parameter. The principal identifies
the external entity on whose behalf the session is created. This server identi-
fication string is determined during the authentication process in a way spe-
cific to the management protocol.

For example, the identity of the OMA DM server can be established during
the handshake between the OMA DM agent and the server. In the simpler
case of OMA CP protocol, which is a one-way protocol based on WAP Push,
the identity of the agent can be a fixed value.

117.4.4 Relative Addressing
All tree operation methods are found on the session object. Most of these
methods accept a relative or absolute URI as their first parameter: for exam-
ple, the method i sLeafNode(Str ing) .

This URI is absolute or relative to the sub-tree with which the session is
associated. For example, if the session is opened on:

./Vendor

then the following URIs address the Bach ring tone:

RingTones/Bach
./Vendor/RingTones/Bach

Opening the session with a nul l URI is identical to opening the session at the
root. But the absolute URI can be used to address the Bach ring tone as well
as a relative URI.

./Vendor/RingTones/Bach
Vendor/RingTones/Bach
314-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 Manipulating the DMT
If the URI specified does not correspond to a legitimate node in the tree, a
Dmt Exception must be thrown. The only exception to this rule is the i sNo-
deUr i(Str ing) method that can verify if a node is actually valid. The getMet-
aNode(String) method must accept URIs to non-existing nodes if an
applicable meta node is available; otherwise it must also throw a Dmt
Exception.

117.4.5 Creating Nodes
The methods that create interior nodes are:

• create Inter io rNode(String) – Create a new interior node using the
default meta data. If the principal does not have Replace access rights on
the parent of the new node then the session must automatically set the
ACL of the new node so that the creating server has Add , Delete and
Replace rights on the new node.

• create Inter io rNode(String,Str ing) – Create a new interior node. The
meta data for this new node is identified by the second argument, which
is a URI identifying an OMA DM Device Description Framework (DDF)
file, this does not have to be a valid location. It uses a format like
org .osg i/1 .0/LogManagementObject . This meta node must be con-
sistent with any meta information from the parent node.

• createLeafNode(Str ing) – Create a new leaf node with a default value.
• createLeafNode(Str ing,DmtData) – Create a leaf node and assign a value

to the leaf-node.
• createLeafNode(Str ing,DmtData,Str ing) – Create a leaf node and assign

a value for the node. The last argument is the MIME type, which can be
nul l .

For a node to be created, the following conditions must be fulfilled:

• The URI of the new node has to be a valid URI.
• The principal of the Dmt Session, if present, must have ACL Add per-

mission to add the node to the parent. Otherwise, the caller must have
the necessary permission.

• All constraints of the meta node must be verified, including value con-
straints, name constraints, type constraints, and MIME type constraints.
If any of the constraints fail, a Dmt Exception must be thrown with an
appropriate code.

117.4.6 Node Properties
A DMT node has a number of runtime properties that can be set through the
session object. These properties are:

• Title – (Str ing) A human readable title for the object. The title is distinct
from the node name. The title can be set with setNodeTit le(Str ing,
Str ing) and read with getNodeTit le(Str ing) . This specification does not
define how this information is localized. This property is optional
depending on the implementation that handles the node.

• Type –(Str ing) The MIME type, as defined in [9] MIME Media Types, of the
node’s value.The type of an interior node is an URL identifying an OMA
DM Device Description Framework file (DDF). The type can be set with
setNodeType(String,Str ing) and read with getNodeT ype(String) .
OSGi Service Platform Release 4 315-502

Manipulating the DMT DMT Admin Service Specification Version 1.0
• Version – (int) Version number, which must start at 0, incremented after
every modification (for both a leaf and an interior node) modulo
0x10000. Changes to the value or any of the properties (including ACLs),
or adding/deleting nodes, are considered changes. The getNode-
Version(Str ing) method returns this version; the value is read-only. In
certain cases, the underlying data structure does not support change
notifications or makes it difficult to support versions. This property is
optional depending on the node’s implementation.

• Size – (int) The size is read-only and can be read with get-
NodeSize(Str ing) .

• Time Stamp –(Date) Time of the last change in version. The getNo-
deTimestamp(String) returns the time stamp. The value is read only.
This property is optional depending on the node’s implementation.

• ACL – The Access Control List for this and descendant nodes. The
property can be set with setNodeAcl(St r ing,Ac l) and obtained with get-
NodeAcl(Str ing) .

If a plugin that does not implement an optional property is accessed, a Dmt
Exception with the code FEATURE_NOT_SUPPORTED must be thrown.

117.4.7 Setting and Getting Data
Values are represented as DmtData objects, which are immutable. The are
acquired with the getNodeValue(Str ing) method and set with the setNode-
Value(Str ing[], in fo.dmtree.DmtData) method.

DmtData objectcs are dynamically typed by an integer enumeration. In
OMA DM, this integer is called the format of the data value. The format of
the DmtData class is similar to the type of a variable in a programming lan-
guage, but the word format is used here to align it with the OMA DM specifi-
cation.

Formats are defined with an integer enumeration:

• FORMAT_NULL–No valid data is available. DmtData objects with this
format cannot be constructed; the only instance is the DmtData
NULL_VALUE constant.

• FORMAT_BINARY– A byte array. The DmtData object is created with the
DmtData(byte[]) constructor. The byte array can only be acquired with
the getBinary() method.

• FORMAT_BOOLEAN– A boolean , it can only be acquired with the get-
Boo lean() method. It can be created with the DmtData(boolean) con-
structor.

• FORMAT_INTEGER– An int . Only the getInt () method returns this value.
It can be created with the DmtData(int) constructor.

• FORMAT_FLOAT– A f loat . Only the getF loat() method returns this value.
It can be created with the DmtData(float) constructor.

• FORMAT_STRING– A Str ing , can only be obtained with getStr ing() and is
constructed with the DmtData(Str ing) method.

• FORMAT_TIME – A Str ing object that is interpreted as an OMA time type.
It can be set with the DmtData(Str ing, int) method that takes the
FORMAT_TIME as the second parameter.

• FORMAT_DATE – A Str ing object that is interpreted as an OMA date type.
It can be set with the DmtData(Str ing, int) method that takes the
FORMAT_DATE as the second parameter.
316-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 Manipulating the DMT
• FORMAT_XML– A string containing an XML fragment. It can be obtained
with getXml() . The constructor is DmtData(Str ing, int) with the int
argument set to FORMAT_XML . The validity of the XML must not be ver-
ified by the Dmt Admin service.

• FORMAT_BASE64 – A byte[] that is formatted base 64. This format is
created with the DmtData(byte[],boolean) method, where the boolean
must be true . It can be obtained with getBase64() .

• FORMAT_RAW_BINARY– A raw binary format is always created with a
format name. This format name allows the creator to define a propri-
etary format. The constructor is DmtData(Str ing,byte[]) and the value
can be obtained with getRawBinary() . The format name is available from
the getFormatName() method, which has predefined values for the
standard formats.

• FORMAT_RAW_STRING – A raw string format is always created with a
format name. This format name allows the creator to define a propri-
etary format. The constructor is DmtData(Str ing,Str ing) and the value
can be obtained with getRawString() . The format name is available from
the getFormatName() method, which has predefined values for the
standard formats.

• FORMAT_NODE– A DmtData object can have a format of
FORMAT_NODE . This value is returned from a MetaNode getFormat()
method if the node is an interior node or for a data value when the Plugin
supports complex values. This format is created with the
DmtData(Object) constructor and can be obtained with the getNode()
method.

The format of a DmtData object can be retrieved with the getFormat() and
getFormatName() . The names for the standard formats are the OMA DM
names. For example, the name for FORMAT_TIME must be t ime .

117.4.8 Complex Values
The OMA DM model prescribes that only leaf nodes have primitive values.
This model maps very well to remote managers. However, when a manager
is written in Java and uses the Dmt Admin API to access the tree, there are
often unnecessary conversions from a complex object, to leaf nodes, and
back to a complex object. For example, an interior node could hold the cur-
rent GPS position as an OSGi Posit ion object, which consists of a longitude,
latitude, altitude, speed, and direction. All these objects are Measurement
objects which consist of value, error, and unit. Reading such a Posit ion
object through its leaves only to make a new Posit ion object is wasting
resources. It is therefore that the Dmt Admin service also supports complex
values as a supplementary facility.

If a complex value is used then the leaves must also be accessible and repre-
sent the same semantics as the complex value. A manager unaware of com-
plex values must work correctly by only using the leaf nodes. Setting or
getting the complex value of an interior node must be identical to setting or
getting the leaf nodes.

Setting a complex value to an interior node must not change the structure of
the tree. No new subnodes must be added, nor is it allowed to remove sub-
nodes.
OSGi Service Platform Release 4 317-502

Manipulating the DMT DMT Admin Service Specification Version 1.0
Accessing a complex value requires Get access to the node and all its decen-
dants. Setting a complex value requires Replace access to the interior node.

Trying to set or get a complex value on an interior node that does not sup-
port complex values must throw a Dmt Exception with the code
COMMAND_NOT_ALLOWED .

117.4.9 Nodes and MIME Types
The Dmt Admin service recognizes a MIME type for a node. This MIME type
reflects how the data of the node should be interpreted. For example, it is pos-
sible to store a GIF and a JPEG image in a DmtData object with a
FORMAT_BINARY format. Both the GIF and the JPEG object share the same
format, but will have MIME types of image/ jpg and image/gi f respectively.

The node’s MIME type can be set with the setNodeT ype(Str ing,Str ing)
method and acquired with getNodeT ype(String) .

117.4.10 Deleting Nodes
The deleteNode(String) method on the session represents the Delete opera-
tion. It deletes the sub-tree of that node. This method is applicable to both
leaf and interior nodes. Nodes can be deleted by the Dmt Admin service in
any order. The root node of the session can not be deleted.

For example, given Figure 117.7, deleting node P must delete the nodes . /P ,. /
P/ M , . /P/M/X , . /P/M/n2 and . /P/M/n3 in any order.

Figure 117.7 DMT node and deletion

117.4.11 Copying Nodes
The copy(Str ing,St r ing,boolean) method on the DmtSession object repre-
sents the Copy operation. A node is completely copied to a new URI. It can
be specified with a boolean if the whole sub-tree (t rue) or just the indicated
node is copied.

The ACLs must not be copied; the new access rights must be the same as if
the caller had created the new nodes individually. This restriction means
that the copied nodes inherit the access rights from the parent of the desti-
nation node, unless the calling principal does not have Replace rights for the
parent. See Creating Nodes on page 315 for details.

.

P

X

M

n2 n3
318-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 Manipulating the DMT
117.4.12 Renaming Nodes
The renameNode(Str ing,St r ing) method on the DmtSession object repre-
sents the Rename operation, which replaces the node name. It requires per-
mission for the Replace operation. The root node for the current session can
not be renamed.

117.4.13 Execute
The execute(Str ing,Str ing) and execute(Str ing,Str ing,Str ing) methods can
execute a node. Executing a node is intended to be used when a problem is
hard to model as a set of leaf nodes. This can be related to synchronization
issues or data manipulation. The execute methods can provide a correlator
for a notification and an opaque string that is forwarded to the implementer
of the node.

Execute operations can not take place in a read only session because simul-
taneous execution could make conflicting changes to the tree.

117.4.14 Closing
When all the changes have been made, the session must be closed by calling
the c lose() method on the session. The Dmt Admin service must then final-
ize, clean up, and release any locks.

For atomic sessions, the Dmt Admin service must automatically commit
any changes that were made since the last transaction point.

A session times out and is invalidated after an extended period of inactivity.
The exact length of this period is not specified, but is recommended to be at
least 1 minute and at most 24 hours. All methods of an invalidated session
must throw an Invalid State Exception after the session is invalidated.

A session's state is one of the following: STATE_CLOSED , STATE_ INVALID or
STATE_OPEN , as can be queried by the getState() call. The invalid state is
reached either after a fatal error case is encountered or after the session is
timed out. When an atomic session is invalidated, it is automatically rolled
back to the last transaction point of the session, at which the session had not
yet been committed.

117.4.15 Node Name Mangling
Implementations of a Dmt Admin service can set a limit on the node name
length. The node name length is defined as the length of the byte array of a
UTF-8 encoded string. The node name length is a system-wide defined limit.
For OMA DM, this limit can be found at the node . /DevDeta il /URI/
MaxSegLen . In this text this limit is called the segment length. As a conve-
nience, these values are also available via static methods in the Uri class.

The Dmt Admin service must not accept long node names, and must throw
a Dmt Exception with the code URI_TOO_LONG .

The user can prevent long names (and escaping issues) by mangling the
name first with the mangle method on the Dmt Admin service. For exam-
ple:

String uri = "./OSGi/Configuration/"
+ Uri.mangle(pid);
OSGi Service Platform Release 4 319-502

Meta Data DMT Admin Service Specification Version 1.0
This method works as follows.

• A name with a node name length that is less or equal than the system
defined limit only has to be escaped. Escaping is prefixing the slash (’ / ’
\u002F) and back slash (’ \ ’ \u005C) characters with a backslash.
Escaping does not influence the node name length, because this length is
defined as the length of the unescaped UTF-8 encoded byte array.

• A longer name must be turned into a SHA 1 digest; see [11] Secure Hash
Algorithm 1.

• This digest is then encoded with the base 64 algorithm; see [10] RFC 3548
The Base16, Base32, and Base64 Data Encodings.

• The encoded digest can now contain the slash (’ / ’ \u002F). This char-
acter must be changed to an underscore (’_ ’ \u005F).

• Any trailing equal signs (’= ’ \003D) must be removed.

117.5 Meta Data
The getMetaNode(String) method returns a MetaNode object for a given
URI. This node is called the meta node. A meta node provides information
about nodes.

Any node can optionally have a meta node associated with it. The one or
more nodes that are described by the meta nodes are called the meta node’s
related instances. A meta node can describe a singleton-related instance, or it
can describe all the children of a given parent. That is to say, meta nodes can
exist without an actual instance being present. For example, if a new ring
tone, Grieg , was created in Figure 117.8 it would be possible to get the Meta
Node for . /Vendor/RingSignals/Gr ieg before the node was created. This is
usually the case for multi nodes. The model is depicted in Figure 117.8.

Figure 117.8 Nodes and meta nodes

A URI must always be associated with the same Meta Node. The getMetaN-
ode(String) always returns the same meta node for the same URI.

The actual meta data can come from two sources:

• Dmt Admin – Each Dmt Admin likely has a private meta data repository.
This meta data is placed in the device in a proprietary way.

• Plugins – Plugins can carry meta nodes and provide these to Dmt Admin
by implementing the getMetaNode(Str ing[]) method. If a plugin
returns a non-null value, the Dmt Admin must use that value—possibly

meta node

Vendor

RingSignals

Bach Popcorn ...

./Vendor/RingSingals

<>

related instance
320-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 Meta Data
complemented by its own metadata for elements not provided by the
plugin.

The MetaNode interface supports methods to retrieve read-only meta data:
both standard OMA DM as well as defined OSGi extensions and user exten-
sions. The extensions were added to provide for better DMT data quality in
an environment where many software components manipulate this data.
These extensions do not break compatibility with OMA DM. Compatibility
with OMA DM is further discussed in Differences with OMA DM on page 323.

117.5.1 Operations
The can(int) methods provide information as to whether the associated
node can perform the given operation. This information is only about the
capability; it can still be restricted in runtime by ACLs and permissions.

For example, if the can(MetaNode.CMD_EXECUTE) method returns true ,
the target object supports the Execute operation. That is, calling the exe-
cute(Str ing,St r ing) method with the target URI is possible.

The can(int) method can take the following constants as parameters:

• CMD_ADD
• CMD_DELETE
• CMD_EXECUTE
• CMD_GET
• CMD_REPLACE

For example:

void foo(DmtSession session, String nodeUri) {
MetaNode meta = session.getMetaNode(nodeUri);

 if (meta !=null && meta.can(MetaNode.CMD_EXECUTE))
session.execute(nodeUri,"foo");

}

117.5.2 Miscellaneous Meta Data
• getScope() – (int) Certain nodes represent structures in the devices that

can never just be deleted or created; they represent an aspect of the
device that cannot be controlled remotely. The scope defines whether
the nodes can be created and deleted, or are permanent. Permanent nodes
can, however, still appear and disappear. For example, an accessory that
is plugged into the phone can create a new node. The return value of the
getScope method describes this scope:
• DYNAMIC – Nodes can be dynamically created and deleted.
• PERMANENT – Nodes are permanent and cannot be created or deleted.
• AUTOMATIC – A dynamic node that is created automatically, either

when its parent node is created, or triggered by some other condition.
For example, a node representing the battery level can never be deleted
because it is an intrinsic part of the device; it will therefore be
PERMANENT .

• getDescr iption() – (Str ing) A description of the node. Descriptions can
be used in dialogs with end users: for example, a GUI application that
allows the user to set the value of a node. Localization of these values is
not defined.
OSGi Service Platform Release 4 321-502

Meta Data DMT Admin Service Specification Version 1.0
• getDefault () – (DmtData) A default data value.

117.5.3 Validation
The validation information allows the runtime system to verify constraints
on the values; it also, however, allows user interfaces to provide guidance.

A node does not have to exist in the DMT in order to have meta data associ-
ated with it. Nodes may exist that have only partial meta data, or no meta-
data, associated with them. For each type of metadata, the default value to
assume when it is omitted is described in MetaNode on page 391.

117.5.3.1 Data Types

A leaf node can be constrained to a certain format and one of a set of MIME
types.

• getFormat() – (in t) The required type. This type is a logical OR of the sup-
ported formats.

• getRawFormatNames() – Return an array of possible raw format names.
This is only applicable when the getFormat() returns the
FORMAT_RAW_BINARY or FORMAT_RAW_STRING formats. The method
must return null otherwise.

• getMimeTypes() – (Str ing[]) A list of MIME types. If this list is nul l , the
DmtData value object can hold an arbitrary MIME type. Otherwise, the
MIME type of the given DmtData object must be a member of the list
returned from the getMimeT ypes() method. The default value is the first
entry.

117.5.3.2 Cardinality

A meta node can constrain the number of siblings (i.e., not the number of
children) of an interior or leaf node. This constraint can be used to verify
that a node must not be deleted, because there should be at least one node
left on that level (i sZeroOccurrenceAl lowed()), or to verify that a node can-
not be created, because there are already too many siblings (getMaxOccur-
rence()).

If the cardinality of a meta node is more than one, all siblings must share the
same meta node to prevent an invalid situation. For example, if a node has
two children that are described by different meta nodes, and any of the meta
nodes has a cardinality >1, that situation is invalid.

For example, the . /Vendor/RingSignals/<> meta node (where <> stands for
any name) could specify that there should be between 0 and 12 ring signals.

• getMaxOccurrence() – (in t) A value greater than 0 that specifies the
maximum number of instances for this node.

• i sZeroOccurrenceAl lowed() – (boolean) Returns true if zero instances
are allowed. If not, the last instance must not be deleted.

117.5.3.3 Matching

The following methods provide validation capabilities for leaf nodes.

• i sVal idValue(DmtData) – (DmtData) Verify that the given value is valid
for this meta node.
322-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 Meta Data
• getVal idValues() – (DmtData[]) A set of possible values for a node, or
nul l otherwise. This can for example be used to give a user a set of
options to choose from.

117.5.3.4 Numeric Ranges

Numeric leaf nodes (format must be FORMAT_INTEGER or FORMAT_FLOAT)
can be checked for a minimum and maximum value.

Minimum and maximum values are inclusive. That is, the range is
[getMin() ,getMax()] . For example, if the maximum value is 5 and the mini-
mum value is -5, then the range is [-5,5]. This means that valid values are -5,-
4,-3,-2... 4, 5.

• getMax() – (double) The value of the node must be less than or equal to
this maximum value.

• getMin() – (double) The value of the node must be greater than or equal
to this minimum value.

If no meta data is provided for the minimum and maximum values, the
meta node must return the Double .MIN_VALUE , and Double .MAX_VALUE
respectively.

117.5.3.5 Name Validation

The meta node provides the following name validation facilities for both
leaf and interior nodes:

• i sVal idName(String) – (Str ing) Verifies that the given name matches the
rules for this meta node.

• getVal idNames() – (String[]) An array of possible names. A valid name
for this node must appear in this list.

117.5.4 User Extensions
The Meta Node provides an extension mechanism; each meta node can be
associated with a number of properties. These properties are then inter-
preted in a proprietary way. The following methods are used for user exten-
sions:

• getExtens ionPropertyKeys() – Returns an array of key names that can be
provided by this meta node.

• getExtens ionProperty(Str ing) – Returns the value of an extension
property.

For example, a manufacturer could use a regular expression to validate the
node names with the i sVa lidName(Str ing) method. In a web based user
interface it is interesting to provide validity checking in the browser, how-
ever, in such a case the regular expression string is required. This string
could then be provided as a user extension under the key x-acme-regex-
javascript .

117.5.5 Differences with OMA DM
As the meta data of a node in OSGi provides more features than are man-
dated by OMA DM, the Dmt Admin nodes cannot be fully described by
OMA DM's DDF (Device Description Framework). How the management
server learns the OSGi management object structure is out of the scope of
this specification.
OSGi Service Platform Release 4 323-502

Plugins DMT Admin Service Specification Version 1.0
The following table shows the differences between the OSGi meta data and
the Data Description Framework of the OMA. The DTD description of DDF
can be found at [1] OMA DM-TND v1.2 draft.

117.6 Plugins
The Plugins take the responsibility of handling DMT operations within cer-
tain sub-trees of the DMT. It is the responsibility of the Dmt Admin service
to forward the operation requests to the appropriate plugin. The only excep-
tions are the ACL manipulation commands. ACLs must be enforced by the
Dmt Admin service: never by the plugin.

Table 117.1 Comparison of OMA DM DDF versus OSGi meta data
DDF Fragment Comment

can AccessType: Add, Delete, Exec , Get,
Rep lace

AccessType: Copy Missing in OSGi

getScope Scope: Permanent | Dynamic |
Automatic

getDefault DefaultVa lue:

getFormat S ing le format a l lowed for leaf nodes OSGi allows multi-
ple formats

i sLeaf

getDescript ion Descr ipt ion :

getMaxOccurrences,
isZeroOccurrencesAllowed

Occurrence: One | ZeroOrOne |
ZeroOrMore | OneOrMore | ZeroOrN |
OneOrN

getMax, getMin Missing in OMA

getMimeTypes Type: MIME List or DDF document URI OSGi does not allow
specifying the DDF
document URI; only
MIME types are sup-
ported

getVa lidValues Missing in OMA

getVa lidNames Missing in OMA
324-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 Plugins
Figure 117.9 Device Management Tree example

Plugins are OSGi services. The Dmt Admin must dynamically add and
remove the plugins, acting as node handler, as they are registered and unreg-
istered. Service properties are used to specify the sub-tree that the plugin
can manage. Overlapping plugins are explicitly not allowed. Therefore, it is
not possible for a plugin to control the same, or part of the same, sub-tree
that another plugins controls.

It is the responsibility of the Dmt Admin service to guard against the regis-
tration of plugins that attempt to manage an overlapping sub-tree. If more
than one plugin of the same type (Data or Exec) is registered for a particular
node, the Dmt Admin service must log an error and ignore the second regis-
tration. In other words, the plugin which registered itself first will get prior-
ity over other plugins that register later. Exec Plugins are allowed to overlap
Data Plugins.

For example, a plugin related to Configuration Admin handles the sub-tree
which stores configuration data. This sub-tree could start at . /OSGi/
Configurat ion. When the client wants to add a new configuration object to
the DMT, it must issue an Add operation to the . /OSGi/Configuration node.
The Dmt Admin then forwards this operation to the configuration plugin.
The plugin maps the request to one or more method calls on the Configura-
tion Admin service. Such a plugin can be a simple proxy to the Configura-
tion Admin service, so it can provide a DMT view of the configuration data
store.

In other cases, plugin implementations may need a proprietary backdoor to
the service they make available in the DMT. For instance, the Monitor
Admin service provides only methods to start local monitoring jobs; there is
no public method for creating a remotely initiated job.

There are two types of Dmt plugins: data plugins and exec plugins. A data plu-
gin is responsible for handling the sub-tree retrieval, addition and deletion
operations, and handling of meta data, while an exec plugin handles the
node execution operation.

Device Operator

ScreenSavers

OSGiOMA DM

Battery

Level Temp Cycles

<<service>>
Data Pluginhandled by

Battery Handler
Impl

.

OSGi Service Platform Release 4 325-502

Plugins DMT Admin Service Specification Version 1.0
117.6.1 Data Sessions
Data Plugins must participate in the Dmt Admin sessions. A Data Plugin
provider must therefore register a Data Plugin service. Such a service can
create a session for the Dmt Admin service when the given sub-tree is
accessed by a Dmt Session. If the associated Dmt Session is later closed, the
Data Session will also be closed. Three types of sessions provide different
capabilities. Data Plugins do not have to implement all session types; if they
do not, they can return nul l .

• Readable Data Session – Must always be supported. It provides the basic
read-only access to the nodes and the c lose method. The Dmt Admin
service uses this session type when the lock mode is
LOCK_TYPE_SHARED for the Dmt Session. Such a session is created with
the plugin’s openReadOnlySession(String[] , info.dmtree.DmtSession) ,
method which returns a ReadableDataSession object.

• Read Write Data Session – Extends the Readable Data Session with capa-
bilities to modify the DMT. This is used for Dmt Sessions that are opened
with LOCK_TYPE_EXCLUSIVE . Such a session is created with the plugin’s
openReadWriteSession(Str ing[] , info.dmtree.DmtSession) method,
which returns a ReadWriteDataSession object.

• Transactional Data Session – Extends the Read Write Data Session with
commit and rollback methods so that this session can be used with trans-
actions. It is used when the Dmt Session is opened with lock mode
LOCK_TYPE_ATOMIC . Such a session is created with the plugin’s openA-
tomicSession(String[] , in fo.dmtree.DmtSession) method, which
returns a Transactiona lDataSession object.

117.6.2 URIs and Plugins
The plugin Data Sessions do not use a simple string to identify a node, like
the Dmt Session does. Instead the URI parameter is a Str ing[] . The members
of this Str ing[] are the different segments. The first node after the root is the
second segment and the node name is the last segment. The different seg-
ments require escaping of the slash and backslash (’/’ and’\’).

The reason to use String[] objects instead of the original string is to reduce
the number times that the URI is parsed. The entry String objects, however,
are still escaped (and potentially mangled). For example, the URI . /A/B/
image\/ jpg gives the following Str ing[] :

{ ".", "A", "B", "image\/jpg" }

A plugin can assume that the path is validated and can be used directly.

117.6.3 Associating a sub-tree
Each plugin is associated with one ore more DMT sub-trees. The top node of
a sub-tree is called the plugin root. The plugin root is defined by a service reg-
istration property. This property is different for exec plugins and data plu-
gins:

• dataRootURIs – (Str ing[], St r ing) Must be used by data plugins.
• execRootURIs – (Str ing[] , Str ing) Must be used by exec plugins.

The reason for the different properties is to allow a single service to register
both as a Data Plugin service as well as an Exec Plugin service.
326-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 Plugins
Only nodes having occurrence=1 in their meta data can be plugin roots. If a
given type of node can occur in multiple instances with different names on
the same level, a plugin cannot be rooted at any of these nodes.

For example, a data plugin can register itself in its activator to handle the
sub-tree . /Dev/Battery :

public void start(BundleContext context) {
 Hashtable ht = new Hashtable();
 ht.put(Constants.SERVICE_PID, "com.acme.data.plugin");
 ht.put("dataRootURIs", "./Dev/Battery");
 context.registerService(

DataPlugin.class.getName(),
new BatteryHandler(context);
ht);

}

If this activator was executed, an access to ./Dev/Battery must be for-
warded by the Dmt Admin service to this plugin via a data session.

117.6.4 Synchronization with Dmt Admin Service
The Dmt Admin service can, in certain cases, detect that a node was changed
without the plugin knowing about this change. For example, if the ACL is
changed, the version and timestamp must be updated; these properties are
maintained by the plugin. In these cases, the Dmt Admin service must open
a ReadableDataSession and call nodeChanged(String[]) method with the
changed URI.

117.6.5 Plugin Meta Data
Plugins can provide meta data; meta data from the Plugin must take prece-
dence over the meta data of the Dmt Admin service.

If a plugin provides meta information, the Dmt Admin service must verify
that an operation is compatible with the meta data of the given node.

For example if the plugin reports in its meta data that the . /A leaf node can
only have the text/p la in MIME type, the createLeafNode(Str ing[] ,
info.dmtree.DmtData ,Str ing) call must not be forwarded to the Plugin if
the third argument specifies any other MIME type. If this contract between
the Admin and the plugin is violated, the plugin should throw an Illegal
State Exception.

117.6.6 Plugins and Transactions
For the Dmt Admin service to be transactional, transactions must be sup-
ported by the data plugins. This support is not mandatory in this specifica-
tion, and therefore the Dmt Admin service has no transactional guarantees
for atomicity, consistency, isolation or durability. The DmtAdmin interface
and the DataPlug in (or more specifically the data session) interfaces, how-
ever, are designed to support Data Plugin services that are transactional.
Exec plugins need not be transaction-aware because the execute method
does not provide transactional semantics, although it can be executed in an
atomic transaction.
OSGi Service Platform Release 4 327-502

Plugins DMT Admin Service Specification Version 1.0
Data Plugins do not have to support atomic sessions. When the Dmt Admin
service creates a Transactional Data Session by calling openAtomicSes-
sion(String[] , info.dmtree.DmtSession) the Data Plugin is allowed to
return nul l . In that case, the plugin does not support atomic sessions. The
caller receives a Dmt Exception with a TRANSACTION_ERROR code.

Plugins must persist any changes immediately for Read Write Data Ses-
sions. Transactional Data Sessions must delay changes until the commit
method is called, which can happen multiple times during a session. The
open, commit, and rollback methods all establish a transaction point. Roll-
back can never go further back than the last transaction point.

• commit() – Commit any changes that were made to the DMT but not yet
persisted. This method should not throw an Exception because other
Plugins already could have persisted their data and can no longer roll it
back. The commit method can be called multiple times in an open
session, and if so, the commit must make persistent the changes since
the last transaction point.

• rol lback() – Undo any changes made to the sub-tree since the last trans-
action point.

• c lose() – Clean up and release any locks. The Dmt Admin service must
call the commit methods before the close method is called. A Plugin
must not perform any persistency operations in the close method.

The commit() , rol lback() , and c lose() plugin data session methods must all
be called in reverse order of that in which Plugins joined the session.

If a Plugin throws a fatal exception during an operation, the Dmt Session
must be rolled back immediately, automatically rolling back all data plu-
gins, as well as the plugins that threw the fatal Dmt Exception. The fatality
of an Exception can be checked with the Dmt Exception i sFatal() method.

If a plugin throws a non-fatal exception in any method accessing the DMT,
the current operation fails, but the session remains open for further com-
mands. All errors due to invalid parameters (e.g. non-existing nodes, unrec-
ognized values), all temporary errors, etc. should fall into this category.

A rollback of the transaction can take place due to any irregularity during
the session. For example:

• A necessary Plugin is unregistered
• A fatal exception is thrown while calling a plugin
• Critical data is not available
• An attempt is made to breach the security

Any Exception thrown during the course of a commit or rol lback method
call is considered fatal, because the session can be in a half-committed state
and is not safe for further use. The operation in progress should be contin-
ued with the remaining Plugins to achieve a best-effort solution in this lim-
ited transactional model. Once all plugins have been committed or rolled
back, the Dmt Admin service must throw an exception, specifying the cause
exception(s) thrown by the plugin(s), and should log an error.
328-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 Access Control Lists
117.6.7 Side Effects
Changing a node’s value will have a side effect of changing the system. A
plugin can also, however, cause state changes with a get operation. Some-
times the pattern to use a get operation to perform a state changing action
can be quite convenient. The get operation, however, is defined to have no
side effects. This definition is reflected in the session model, which allows
the DMT to be shared among readers. Therefore, plugins should refrain
from causing side effects for read-only operations.

117.6.8 Copying
Plugins do not have to support the copy operation. They can throw a Dmt
Exception with a code FEATURE_NOT_SUPPORTED . In this case, the Dmt
Admin service must do the copying node by node. For the clients of the Dmt
Admin service, it therefore appears that the copy method is always sup-
ported.

117.7 Access Control Lists
Each node in the DMT can be protected with an access control list, or ACL. An
ACL is a list of associations between Principal and Operation:

• Principal – The identity that is authorized to use the associated opera-
tions. Special principal is the wildcard (’*’ \u002A); the operations
granted to this principal are called the global permissions. The global per-
missions are available to all principals.

• Operation – A list of operations: ADD, DELETE, GET, REPLACE, EXECUTE .

DMT ACLs are defined as strings with an internal syntax in [1] OMA DM-
TND v1.2 draft. Instances of the ACL class can be created by supplying a
valid OMA DM ACL string as its parameter. The syntax of the ACL is pre-
sented here in shortened form for convenience:

acl ::= (acl-entry (’&’ acl-entry)*)?
acl-entry ::= command ’=’ (principals | ’*’)
principals ::= principal (’+’ principal)*
principal ::= [^=&*+ \t\n\r]+

The principal name should only use printable characters according to the
OMA DM specification.

command ::= ’Add’ | ’Delete’ | ’Exec’ | ’Get’ | ’Replace’

White space between tokens is not allowed.

Examples:

Add=*&Replace=*&Get=*

Add=www.sonera.fi-8765&Delete=www.sonera.fi-
8765&Replace=www.sonera.fi-8765+321_ibm.com&Get=*

The Acl(St r ing) constructor can be used to construct an ACL from an ACL
string. The toString() method returns a Str ing object that is formatted in the
specified form, also called the canonical form. In this form, the principals
must be sorted alphabetically and the order of the commands is:
OSGi Service Platform Release 4 329-502

Access Control Lists DMT Admin Service Specification Version 1.0
 ADD, DELETE, EXEC, GET, REPLACE

The Acl class is immutable, meaning that a Acl object can be treated like a
string, and that the object cannot be changed after it has been created.

ACLs must only be verified by the Dmt Admin service when the session has
an associated principal.

ACLs are properties of nodes. If an ACL is not set (i.e. contains no commands
nor principals), the effective ACL of that node must be the ACL of its first
ancestor that has a non-empty ACL. This effective ACL can be acquired with
the getEffectiveNodeAcl(Str ing) method. The root node of DMT must
always have an ACL associated with it. If this ACL is not explicitly set, it
should be set to Add=*&Get=*&Replace=* .

This effect is shown in Figure 117.10. This diagram shows the ACLs set on a
node and their effect (which is shown by the shaded rectangles). Any princi-
pal can get the value of p , q and r , but they cannot replace, add or delete the
node. Node t can only be read and replaced by principal S1 .

Node X is fully accessible to any authenticated principal because the root
node specifies that all principals have Get , Add and Replace access (*->G,A,
R).

Figure 117.10 ACL inheritance

The definition and example demonstrate the access rights to the properties
of a node, which includes the value.

Changing the ACL property itself has different rules. If a principal has
Replace access to an interior node, the principal is permitted to change its
own ACL property and the ACL properties of all its child nodes. Replace
access on a leaf node does not allow changing the ACL property itself.

In the previous example, only principal S1 is authorized to change the ACL
of node B because it has Replace permission on node B ’s parent node A .

.

X

B

p q r

A

* -> Get,Add,Replace

S1 -> Get,Replace

* -> Get
t

330-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 Access Control Lists
Figure 117.11 ACLs for the ACL property

Figure 117.11 demonstrates the effect of this rule with an example. Server S1
can change the ACL properties of all interior nodes. A more detailed analy-
sis:

• Root – The root allows all authenticated principals to access it. The root is
an interior node so the Replace permission permits the change of the
ACL property.

• Node A – Server S1 has Replace permission and node A is an interior node
so principal S1 can modify the ACL.

• Node B – Server S1 has no Replace permission for node B, but the parent
node A of node B grants principal S1 Replace permission, and S1 is
therefore permitted to change the ACL.

• Node t – Server S1 must not be allowed to change the ACL of node t ,
despite the fact that it has Replace permission on node t . For leaf nodes,
permission to change an ACL is defined by the Replace permission in the
parent node’s ACL. This parent, node B, has no such permission set and
thus, access is denied.

The following methods provide access to the ACL property of the node.

• getNodeAcl(Str ing) – Return the ACL for the given node, this method
must not take any ACL inheritance into account. The ACL may be nul l if
no ACL is set.

• getEffectiveNodeAcl(St r ing) – Return the effective ACL for the given
node, taking any inheritance into account.

• setNodeAcl(St r ing,Ac l) – Set the node’s ACL. The ACL can be nul l , in
which case the effective permission must be derived from an ancestor.
The Dmt Admin service must call nodeChanged(String[]) on the data
session with the given plugin to let the plugin update any timestamps
and versions.

The Acl class maintains the permissions for a given principal in a bit mask.
The following permission masks are defined as constants in the Acl class:

• ADD
• DELETE
• EXEC
• GET
• REPLACE

The class features methods for getting permissions for given principals. A
number of methods allow an existing ACL to be modified while creating a
new ACL.

.

B

t

A

* -> Get,Add,Replace

S1 -> Get,Replace

S1 -> Get

S1 -> Get,Replace
OSGi Service Platform Release 4 331-502

Access Control Lists DMT Admin Service Specification Version 1.0
• addPermiss ion(Str ing, int) – Return a new Acl object where the given
permissions have been added to permissions of the given principal.

• deletePermiss ion(String, int) – Return a new Acl object where the given
permissions have been removed from the permissions of the given prin-
cipal.

• setPermission(Str ing, int) – Return a new Acl object where the permis-
sions of the given principal are overwritten with the given permissions.

Information from a given ACL can be retrieved with:

• getPermissions(Str ing) – (int) Return the combined permission mask
for this principal.

• getPrincipals() – (Str ing[]) Return a list of principals (String objects)
that have been granted permissions for this node.

Additionally, the i sPermitted(String, int) method verifies if the given ACL
authorizes the given permission mask. The method returns true if all com-
mands in the mask are allowed by the ACL.

For example:

Acl acl = new Acl("Get=S1&Replace=S1");

if (acl.isPermitted("S1", Acl.GET+Acl.REPLACE))
... // will execute

if (acl.isPermitted(
"S1", Acl.GET+Acl.REPLACE+Acl.ADD))
... // will NOT execute

117.7.1 Global Permissions
Global permissions are indicated with the ’* ’ and the given permissions
apply to all principals. Processing the global permissions, however, has a
number of non-obvious side effects:

• Global permissions can be retrieved and manipulated using the special’*’
principal: all methods of the Acl class that have a principal parameter
also accept this principal.

• Global permissions are automatically granted to all specific principals.
That is, the result of the getPermissions or i sPermit ted methods will be
based on the OR of the global permissions and the principal-specific per-
missions.

• If a global permission is revoked, it is revoked from all specific prin-
cipals, even if the specific principals already had that permission before
it was made global.

• None of the global permissions can be revoked from a specific principal.
The OMA DM ACL format does not handle exceptions, which must be
enforced by the deletePermiss ion and setPermission methods.
332-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 Notifications
117.7.2 Ghost ACLs
The ACLs are fully maintained by the Dmt Admin service and enforced
when the session has an associated principal. A plugin must be completely
unaware of any ACLs. The Dmt Admin service must synchronize the ACLs
with any change in the DMT that is made through its service interface. For
example, if a node is deleted through the Dmt Admin service, it must also
delete an associated ACL.

The DMT nodes, however, are mapped to plugins, and plugins can delete
nodes outside the scope of the Dmt Admin service.

As an example, consider a configuration record which is mapped to a DMT
node that has an ACL. If the configuration record is deleted using the Con-
figuration Admin service, the data disappears, but the ACL entry in the Dmt
Admin remains. If the configuration dictionary is recreated with the same
PID, it will get the old ACL, which is likely not the intended behavior.

This specification does not specify a solution to solve this problem. Sugges-
tions to solve this problem are:

• Use a proprietary callback mechanism from the underlying represen-
tation to notify the Dmt Admin service to clean up the related ACLs.

• Implement the services on top of the DMT. For example, the Configu-
ration Admin service could use a plugin that provides general data
storage service.

117.8 Notifications
In certain cases it is necessary for some code on the device to alert a remote
management server or to initiate a session; this process is called sending a
notification or an alert. Some examples:

• A Plugin that must send the result of an asynchronous EXEC operation.
• Sending a request to the server to start a management session.
• Notifying the server of completion of a software update operation.

Notifications can be sent to a management server using the sendNot i f ica-
t ion(Str ing, int ,Str ing,Alert I tem[]) method on the Notification Service,
which is available from the service registry or from the DmtServiceFactory
getNoti f icat ionService() . This method is on the Notification Service and
not on the session, because the session can already be closed when the need
for an alert arises. If an alert is related to a session, the session can provide
the required principal, even after it is closed.

The remote server is alerted with one or more Alert I tem objects. The
Alert I tem class describes details of the alert. In OMA DM, sending an alert
requires an alert code. Alert codes are defined by OMA DM and others. An
alert code is a type identifier, usually requiring specifically formatted
Alert I tem objects.

The data syntax and semantics varies widely between various alerts, and so
does the optionality of particular parameters of an alert item. If an item,
such as source or type, is not defined, the corresponding getter method must
return nul l .
OSGi Service Platform Release 4 333-502

Notifications DMT Admin Service Specification Version 1.0
The Alert I tem class contains the following items. The value of these items
must be defined in an alert definition:

• source – (Str ing) The URI of a node that is related to this request. This
parameter can be nul l .

• type – (String) The type of the item. For example, x-oma-
appl icat ion:syncml.samplealert in the Generic Alert example.

• mark – (String) Mark field of an alert. Contents depend on the alert type.

• data – (DmtData) The payload of the alert with its type.

An Alert I tem object can be constructed with two different constructors:

• Alert Item(Str ing,St r ing,Str ing, info.dmtree.DmtData) – This method
takes all the previously defined fields.

• Alert I tem(Str ing[] ,St r ing,Str ing, info.dmtree.DmtData) – Same as pre-
vious but with a convenience parameter for a segmented URI.

The Notification Service provides the following method to send Alert I tem
objects to the management server:

• sendNot i f icat ion(Str ing, int ,Str ing,Alert I tem[]) – Send the alert to the
server that is associated with the session. The first argument is the name
of the principal (identifying the remote management system) or nul l for
implementation defined routing. The int argument is the alert type. The
alert types are defined by managed object types. The third argument
(Str ing) can be used for the correlation id of a previous execute operation
that triggered the alert. The Alert I tem objects contain the data of the
alert. The method will run asynchronously from the caller. The Notifi-
cation Service must provide a reliable delivery method for these alerts.
Alerts must therefore not be re-transmitted.
When this method is called with nul l and 0 as values, it should send a
protocol specific notification that must initiate a new management ses-
sion.

Implementers should base the routing on the session or server information
provided as a parameter in the sendNoti f icat ion(Str ing, int ,St r ing,A ler-
t I tem[]) method. Routing might even be possible without any routing
information if there is a well known remote server for the device.

If the request cannot be routed, the Alert Sender service must immediately
throw a Dmt Exception with a code of ALERT_NOT_ROUTED . The caller
should not attempt to retry the sending of the notification. It is the responsi-
bility of the Notification Service to deliver the notification to the remote
management system.

117.8.1 Routing Alerts
The Notification Service allows external parties to route alerts to their desti-
nation. This mechanism enables protocol adapters to receive any alerts for
systems with which they can communicate.

Such a protocol adapter should register a Remote Alert Sender service. It
should provide the following service property:

• principals – (Str ing[]) The array of principals to which this Remote Alert
Sender service can route alerts. If this property is not registered, the
334-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 Exceptions
Remote Alert Sender service will be treated as the default sender. The
default alert sender is only used when a more specific alert sender cannot
be found.

If multiple Remote Alert Sender services register for the same principals,
then the service with the highest value for the service .ranking property
must be used.

117.9 Exceptions
Most of the methods of this Dmt Admin service API throw Dmt Exceptions
whenever an operation fails. The DmtException class contains numeric
error codes which describe the cause of the error. Some of the error codes
correspond to the codes described by the OMA DM spec, while some are
introduced by the OSGi Alliance. The documentation of each method
describes what codes could potentially be used for that method.

The fatality of the exception decides if a thrown Exception rolls back an
atomic session or not. If the i sFatal() method returns true , the Exception is
fatal and the session must be rolled back.

All possible error codes are constants in the DmtException class.

117.10 Events
There are two mechanisms to work with events when using the Dmt Admin
service. The first mechanism is based on the Event Admin service, the sec-
ond uses a traditional event listener model.

117.10.1 Event Admin based Events
The Dmt Admin service uses the Event Admin service for event delivery. For
atomic sessions, events are only sent at the time the session is committed
(which can happen multiple times during a session). Otherwise they are
sent immediately.

Each event must carry the information of all nodes that underwent the
related operation.

• info/dmtree/DmtEvent/ADDED – New nodes were added.
• info/dmtree/DmtEvent/DELETED – Existing nodes were removed.
• info/dmtree/DmtEvent/REPLACED – Existing node values or other prop-

erties were changed.
• info/dmtree/DmtEvent/RENAMED – Existing nodes were renamed.
• info/dmtree/DmtEvent/COPIED – Existing nodes were copied. A copy

operation does not trigger an ADDED event (in addition to the COPIED
event), even though new node(s) are created.

• info/dmtree/DmtEvent/SESSION_OPENED – A new sessions was
opened.

• info/dmtree/DmtEvent/SESSION_CLOSED – A session was closed (by
means of the close operation or an error).
OSGi Service Platform Release 4 335-502

Events DMT Admin Service Specification Version 1.0
For an atomic session, a maximum of five events can be sent: one for each
operation type. In this case, the ordering for the events must follow the
order of the previous list.

For efficiency reasons, recursive copy and delete operations must only gen-
erate a single COPIED and DELETED event for the root of the affected sub-
tree. An event must only be sent when that type of event actually occurred.

DMT events have the following properties:

• sess ion. id – (In teger) A unique identifier for the session that triggered
the event. This property has the same value as getSessionId() of the
associated DMT session.

• nodes – (String[]) The absolute URIs of each affected node. This is the
nodeUri parameter of the Dmt API methods. The order of the URIs in the
array corresponds to the chronological order of the operations. In case of
a recursive delete, only the root URI is present in the array. Session
events do not have this property.

• newnodes – (Str ing[]) – The absolute URIs of new renamed or copied
nodes. Only the RENAMED and COPIED events have this property.
The newnodes array runs parallel to the nodes array. In case of a rename,
newnodes[i] must contains the new name of nodes[i] , and in case of a
copy, newnodes[i] is the URI to which nodes[i] was copied.

The Dmt Event contains information about activities of the tree, which
could be confidential. Topic Permission should be used to control access to
the events. However, this permission only supports blank access, it can not
restrict access for specific URIs.

Figure 117.12 Example DMT before

For example, in a given session, when the DMT in Figure 117.12 is modified
with the following operations:

• Add node . /A/B/C
• Add node . /A/B/C/D
• Rename . /M/n1 to./M/n2
• Copy . /M/n2 to . /M/n3
• Delete node . /P/Q
• Replace . /X/Y/z with 3

.

Q

z

P X

YB

A M

n1

R

s1 s2

value=1
336-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 Events
Figure 117.13 Example DMT after

When the Dmt Session is closed (assuming it is atomic), the following
events are published by the Dmt Admin in the defined order:

info/dmtree/DmtEvent/ADDED {
nodes = [./A/B/C, ./A/B/C/D]
session.id = 42

}
info/dmtree/DmtEvent/DELETED {

nodes = [./P/Q]
session.id = 42

}
info/dmtree/dmt/DmtEvent/REPLACED {

nodes = [./X/Y/z]
session.id = 42

}
info/dmtree/DmtEvent/RENAMED {

nodes = [./M/n1]
newnodes = [./M/n2]
session.id = 42

}
info/dmtree/DmtEvent/COPIED {

nodes = [./M/n2]
newnodes = [./M/n3]
session.id = 42

}

117.10.2 Event Listeners
The traditional event listener model is provided to allow compatibility with
solutions that do not support an OSGi service platform.

A Dmt Event Listener is registered and unregistered with a Dmt Admin ser-
vice using the following methods:

• addEventListener(int ,Str ing,DmtEventListener) – Registers an event lis-
tener on behalf of a local application. The given listener will receive noti-
fication on all changes affecting the specified subtree. An event is
delivered to the registered listener if at least one affected node is within
this subtree. The events can also be filtered by specifying a bit mask of
relevant event types. If the listener object was already registered, it is

.

P X

YB

A M

n2

C

D

n3

z value=3
OSGi Service Platform Release 4 337-502

Access Without Service Registry DMT Admin Service Specification Version 1.0
removed first. The listener must only see the nodes for which it has Get
permission.

• addEventL is tener(Str ing, in t ,Str ing,DmtEventListener) – This method is
the same as the previous but provides a principal on who’s behalf the lis-
tening takes place. The principal must only see nodes for which it has
the Get access right.

• removeEventListener(DmtEventListener) – Remove the event listener.

A Dmt Event Listener must implement the changeOccurred(DmtEvent)
method. This method is called asynchronously from the actual event occur-
rence.

The DmtEvent object is used for the following events:

• ADDED – New nodes were added.
• DELETED – Existing nodes were removed.
• REPLACED – Existing node values or other properties were changed.
• RENAMED – Existing nodes were renamed.
• COPIED – Existing nodes were copied. A copy operation does not trigger

an ADDED event (in addition to the COPIED event), even though new
node(s) are created.

• SESSION_OPENED – A new session is opened. Both the nodes and the
new nodes must be null for this event.

• SESSION_CLOSED – A session is closed. Both the nodes and the new
nodes must be null for this event.

For efficiency reasons, recursive copy and delete operations must only gen-
erate a single COPIED and DELETED event for the root of the affected sub-
tree. An event must only be sent when that type of event actually occurred.

The DmtEvent object can provide the following information:

• getType() – Returns the type of the event.
• getNodes() – The absolute URIs of each affected node. This is the

nodeUri parameter of the Dmt API methods. The order of the URIs in the
array corresponds to the chronological order of the operations. In case of
a recursive delete, only the root URI is present in the array.

• getNewNodes() – The absolute URIs of new renamed or copied nodes.
Only the RENAMED and COPIED events have this property.

• The newnodes array runs parallel to the nodes array. In case of a rename,
newnodes[i] must contains the new name of nodes[i] , and in case of a
copy, newnodes[i] is the URI to which nodes[i] was copied.

• getSessionId() – The id of the session in which the event was generated.

117.11 Access Without Service Registry
The Dmt Admin can be used without access to an OSGi Service Registry. The
DmtServiceFactory class provides a number of methods to access the Dmt
Admin service and the Notification Service.

• getDmtAdmin() – Returns the Dmt Admin service for the calling appli-
cation.

• getNoti f icationService() – Returns the Notification Service for the
calling application.
338-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 Security
117.12 Security
The Dmt Admin service specification can run on both OSGi based Service
Platform (which normally requires CDC or J2SE) and CLDC based solutions.
A crucial difference between these environments is the handling of security.
The OSGi Service Platform uses Java 2 security with an open ended set of
class based permissions while the security handling of CLDC based solu-
tions is dependent on the profile. For example, MIDP uses a solution that
uses a fixed set of permissions that are name based.

A key aspect of the Dmt Admin service model is the separation from DMT
clients and plugins. The Dmt Admin service receives all the operation
requests and, after verification of authority, forwards the requests to the
plugins.

Figure 117.14 Separation of clients and plugins

This architecture makes it straightforward to use the OSGi security architec-
ture to protect the different actors.

117.12.1 Principals
The caller of the getSession(Str ing,St r ing, int) method must have the Dmt
Principal Permission with a target that matches the given principal. This
Dmt Principal Permission is used to enforce that only trusted entities can
act on behalf of remote managers.

The Dmt Admin service must verify that all operations from a session with a
principal can be executed on the given nodes using the available ACLs.

The other two forms of the getSession method are meant for local manage-
ment applications where no principal is available. No special permission is
defined to restrict the usage of these methods. The callers that want to exe-
cute device management commands, however, need to have the appropriate
Dmt Permissions.

.

<<service>>
Dmt Admin

<<service>>
Data Plugin

<<service>>
Exec Plugin

Client

Data Plugin Impl

Exec Plugin Impl

forward

request
<<service>>
Dmt Session
OSGi Service Platform Release 4 339-502

Security DMT Admin Service Specification Version 1.0
117.12.2 Operational Permissions
The operational security of a local manager and a remote manager is dis-
tinctly different. The distinction is made on the principal. Protocol adapters
should use the getSession method that takes an authenticated principal.
Local managers should not specify a principal.

Figure 117.15 Access control context, for local manager and protocol adapter operation

117.12.3 Protocol Adapters
A protocol adapter must provide a principal to the Dmt Admin service
when it gets a session. It must use the getSession(Str ing,St r ing, int)
method. The protocol adapter must have Dmt Principal Permission for the
given principal. The Dmt Admin must then use this principal to determine
the security scope of the given principal. This security scope is a set of permis-
sions. How these permissions are found is not defined in this specification;
they are usually in the management tree of a device. For example, the
Mobile Specification stores these under the $/Pol icy/ Java/
DmtPrinc ipalPermission sub-tree.

Additionally, a Dmt Session with a principal implies that the Dmt Admin
service must verify the ACLs on the node for all operations.

Any operation that is requested by a protocol adapter must be executed in a
doPriv i leged block that takes the principal’s security scope. The
doPriv i leged block effectively hides the permissions of the protocol adapter;
all operations must be performed under the security scope of the principal.

The security check for a protocol adapter is therefore as follows:

• The operation method calls doPriv i leged with the security scope of the
principal.

• The operation is forwarded to the appropriate plugin. The underlying
service must perform its normal security checks. For example, the Con-
figuration Admin service must check for the appropriate Configuration
Permission.

The Access Control context is shown in Figure 117.15 within the protocol
adapter column.

This principal-based security model allows for minimal permissions on the
protocol adapter, because the Dmt Admin service performs a doPriv i leged
on behalf of the principal, inserting the permissions for the principal on the
call stack. This model does not guard against malicious protocol adapters,
though the protocol adapter must have the appropriate Dmt Principal Per-
mission.

Local Manager

Protocol adapter

Dmt Admin

Dmt Admin

Plugin

Proxied Service

Plugin

Proxied Service

Principal

Some caller

security
check

doPrivileged

security
check

Local Manager Protocol adapterLocal Manager
340-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 Security
The protocol adapter is responsible for the authentication of the principal.
The Dmt Admin must trust that the Protocol Adapter has correctly verified
the identity of the other party. This specification does not address the type
of authentication mechanisms that can be used. Once it has permission to
use that principal, it can use any DMT command that is permitted for that
principal at any time.

117.12.4 Local Manager
A local manager does not specify a principal. Security checks are therefore
performed against the security scope of the local manager bundle, as shown
in Figure 117.15 with the local manager stack. An operation is checked only
with a Dmt Permission for the given node URI and operation. A thrown
Security Exception must be passed unmodified to the caller of the operation
method. The Dmt Admin service must not check the ACLs when no princi-
pal is set.

A local manager, and all its callers, must therefore have sufficient permis-
sion to handle the DMT operations as well as the permissions required by
the plugins when they proxy other services (which is likely an extensive set
of Permissions).

117.12.5 Plugin Security
Plugins are required to hold the maximum security scope for any services
they proxy. For example, the plugin that manages the Configuration Admin
service must have Configurat ionPermiss ion("*" ,"*") to be effective.

Plugins should not make doPr iv i leged calls, but should use the caller’s con-
text on the stack for permission checks.

117.12.6 Events and Permissions
The addEventListener(Str ing, int ,Str ing,DmtEventLis tener) method
requires Dmt Principal Permission for the given principal. In this case, the
principal must have Get access to see the nodes for the event. Any nodes
that the listener does not have access to must be removed from the event.

The listener registered with the addEventListener(int,Str ing,DmtEventLis-
tener) method requires to have the appropriate Dmt Permission to receive
the event.

117.12.7 Dmt Principal Permission
Execution of the getSession methods of the Dmt Admin service featuring
an explicit principal name is guarded by the Dmt Principal Permission. This
permission must be granted only to protocol adapters that open Dmt Ses-
sions on behalf of remote management servers.

The DmtPr incipalPermission class does not have defined actions; it must
always be created with a * to allow future extensions. The target is the prin-
cipal name. A wildcard character is allowed at the end of the string to match
a prefix.

Example:

new DmtPrincipalPermission("com.acme.dep*", "*")
OSGi Service Platform Release 4 341-502

Security DMT Admin Service Specification Version 1.0
117.12.8 Dmt Permission
The Dmt Permission controls access to management objects in the DMT. It
is intended to control only the local access to the DMT. The Dmt Permission
target string identifies the target node’s URI (absolute path is required, start-
ing with the ’ . / ’ prefix) and the action field lists the management com-
mands that are permitted on the node.

The URI can end in a wildcard character * to indicate it is a prefix that must
be matched. This comparison is string based so that node boundaries can be
ignored.

The following actions are defined:

• ADD
• DELETE
• EXEC
• GET
• REPLACE

For example, the following code creates a Dmt Permission for a bundle to
add and replace nodes in any URI that starts with . /D .

new DmtPermission("./D*", "Add,Replace")

This permission must imply the following permission:

new DmtPermission("./Dev/Operator/Name", "Replace")

117.12.9 Alert Permission
The Alert Permission permits the holder of this permission to send a notifi-
cation to a specific target principal. The target is identical to Dmt Principal Per-
mission on page 341. No actions are defined for Alert Permission.

117.12.10 Security Summary
117.12.10.1 Dmt Admin Service and Notification Service

The Dmt Admin service is likely to require All Permission. This requirement
is caused by the plugin model. Any permission required by any of the plu-
gins must be granted to the Dmt Admin service. This set of permissions is
large and hard to define. The following list shows the minimum permis-
sions required if the plugin permissions are left out.

ServicePermission ..DmtAdmin REGISTER
ServicePermission ..NotificationService REGISTER
ServicePermission ..DataPlugin GET
ServicePermission ..ExecPlugin GET
ServicePermission ..EventAdmin GET
ServicePermission ..RemoteAlertSender GET
DmtPermission * *
DmtPrincipal
 Permission * *
PackagePermission info.dmtree EXPORT
PackagePermission info.dmtree.spi EXPORT
PackagePermission info.dmtree.notification EXPORT
PackagePermission info.dmtree.notification.spiEXPORT
342-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
PackagePermission info.dmtree.registry EXPORT
PackagePermission info.dmtree.security EXPORT

117.12.10.2 Data and Exec Plugin
ServicePermission ..NotificationService GET
ServicePermission ..DataPlugin REGISTER
ServicePermission ..ExecPlugin REGISTER
PackagePermission info.dmtree IMPORT
PackagePermission info.dmtree.notification IMPORT
PackagePermission info.dmtree.spi IMPORT
PackagePermission info.dmtree.security IMPORT

The plugin is also required to have any permissions to call its underlying
services.

117.12.10.3 Local Manager
ServicePermission ..DmtAdmin GET
PackagePermission info.dmtree IMPORT
PackagePermission info.dmtree.security IMPORT
DmtPermission <scope> ...

Additionally, the local manager requires all permissions that are needed by
the plugins it addresses.

117.12.10.4 Protocol Adapter

The Protocol adapter only requires Dmt Principal Permission for the
instances that it is permitted to manage. The other permissions are taken
from the security scope of the principal.

ServicePermission ..DmtAdmin GET
ServicePermission ..RemoteAlertSender REGISTER
PackagePermission info.dmtree IMPORT
PackagePermission info.dmtree.notification.spiIMPORT
PackagePermission info.dmtree.notification IMPORT
DmtPrincipalPermission<scope>

117.13 info.dmtree
Device Management Tree Package Version 1.0. This package contains the
public API for the Device Management Tree manipulations. Permission
classes are provided by the info.dmtree.security package, and DMT plugin
interfaces can be found in the info.dmtree.spi package. Asynchronous noti-
fications to remote management servers can be sent using the interfaces in
the info.dmtree.notification package.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: info.dmtree;version=1.0

117.13.1 Summary
• Acl - Acl is an immutable class representing structured access to DMT

ACLs. [p.344]
OSGi Service Platform Release 4 343-502

info.dmtree DMT Admin Service Specification Version 1.0
• DmtAdmin - An interface providing methods to open sessions and reg-
ister listeners. [p.347]

• DmtData - An immutable data structure representing the contents of a
leaf or interior node. [p.351]

• DmtEvent - Event class storing the details of a change in the tree. [p.357]
• DmtEventListener - Registered implementations of this class are notified

via DmtEvent [p.357] objects about important changes in the tree. [p.359]
• DmtException - Checked exception received when a DMT operation

fails. [p.359]
• DmtIllegalStateException - Unchecked illegal state exception. [p.366]
• DmtSession - DmtSession provides concurrent access to the DMT.

[p.367]
• MetaNode - The MetaNode contains meta data as standardized by OMA

DM but extends it (without breaking the compatibility) to provide for
better DMT data quality in an environment where many software com-
ponents manipulate this data. [p.391]

• Uri - This class contains static utility methods to manipulate DMT URIs.
[p.396]

Acl

117.13.2 public final class Acl
Acl is an immutable class representing structured access to DMT ACLs.
Under OMA DM the ACLs are defined as strings with an internal syntax.

The methods of this class taking a principal as parameter accept remote
server IDs (as passed to DmtAdmin.getSess ion(Str ing , Str ing, int)
DmtAdmin.getSession [p.350]), as well as “* “indicating any principal.

The syntax for valid remote server IDs:
 <server-identifier> ::= All printable characters except ‘=’, ‘&’, ‘*’, ‘+’ or white-
space characters.
ADD

117.13.2.1 public static final int ADD = 2

Principals holding this permission can issue ADD commands on the node
having this ACL.
ALL_PERMISSION

117.13.2.2 public static final int ALL_PERMISSION = 31

Principals holding this permission can issue any command on the node hav-
ing this ACL. This permission is the logical OR of ADD [p.344] ,
DELETE [p.344] , EXEC [p.344] , GET [p.344] and REPLACE [p.345] permissions.
DELETE

117.13.2.3 public static final int DELETE = 8

Principals holding this permission can issue DELETE commands on the
node having this ACL.
EXEC

117.13.2.4 public static final int EXEC = 16

Principals holding this permission can issue EXEC commands on the node
having this ACL.
GET

117.13.2.5 public static final int GET = 1

Principals holding this permission can issue GET command on the node
having this ACL.
344-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
REPLACE

117.13.2.6 public static final int REPLACE = 4

Principals holding this permission can issue REPLACE commands on the
node having this ACL.
Acl(String)

117.13.2.7 public Acl(String acl)

acl The string representation of the ACL as defined in OMA DM. If null or empty
then it represents an empty list of principals with no permissions.

Create an instance of the ACL from its canonic string representation.

Throws IllegalArgumentException – if acl is not a valid OMA DM ACL string
Acl(String[],int[])

117.13.2.8 public Acl(String[] principals, int[] permissions)

principals The array of principals

permissions The array of permissions

Creates an instance with a specified list of principals and the permissions
they hold. The two arrays run in parallel, that is principals[i] will hold per-
missions[i] in the ACL.

A principal name may not appear multiple times in the ‘principals’ argu-
ment. If the “*” principal appears in the array, the corresponding permis-
sions will be granted to all principals (regardless of whether they appear in
the array or not).

Throws IllegalArgumentException – if the length of the two arrays are not the
same, if any array element is invalid, or if a principal appears multiple times
in the principals array
addPermission(String,int)

117.13.2.9 public synchronized Acl addPermission(String principal, int permissions
)

principal The entity to which permissions should be granted, or “*” to grant permis-
sions to all principals.

permissions The permissions to be given. The parameter can be a logical or of more per-
mission constants defined in this class.

Create a new Acl instance from this Acl with the given permission added for
the given principal. The already existing permissions of the principal are
not affected.

Returns a new Acl instance

Throws IllegalArgumentException – if principal is not a valid principal name or if
permissions is not a valid combination of the permission constants defined
in this class
deletePermission(String,int)

117.13.2.10 public synchronized Acl deletePermission(String principal, int
permissions)

principal The entity from which permissions should be revoked, or “*” to revoke per-
missions from all principals.

permissions The permissions to be revoked. The parameter can be a logical or of more per-
mission constants defined in this class.
OSGi Service Platform Release 4 345-502

info.dmtree DMT Admin Service Specification Version 1.0
Create a new Acl instance from this Acl with the given permission revoked
from the given principal. Other permissions of the principal are not
affected.

Note, that it is not valid to revoke a permission from a specific principal if
that permission is granted globally to all principals.

Returns a new Acl instance

Throws IllegalArgumentException – if principal is not a valid principal name, if
permissions is not a valid combination of the permission constants defined
in this class, or if a globally granted permission would have been revoked
from a specific principal
equals(Object)

117.13.2.11 public boolean equals(Object obj)

obj the object to compare with this Acl instance

Checks whether the given object is equal to this Acl instance. Two Acl
instances are equal if they allow the same set of permissions for the same set
of principals.

Returns true if the parameter represents the same ACL as this instance
getPermissions(String)

117.13.2.12 public synchronized int getPermissions(String principal)

principal The entity whose permissions to query, or “*” to query the permissions that
are granted globally, to all principals

Get the permissions associated to a given principal.

Returns The permissions of the given principal. The returned int is a bitmask of the
permission constants defined in this class

Throws IllegalArgumentException – if principal is not a valid principal name
getPrincipals()

117.13.2.13 public String[] getPrincipals()

Get the list of principals who have any kind of permissions on this node.
The list only includes those principals that have been explicitly assigned
permissions (so “*” is never returned), globally set permissions naturally
apply to all other principals as well.

Returns The array of principals having permissions on this node.
hashcode()

117.13.2.14 public int hashcode()

Returns the hash code for this ACL instance. If two Acl instances are equal
according to the equals [p.346] method, then calling this method on each of
them must produce the same integer result.

Returns hash code for this ACL
isPermitted(String,int)

117.13.2.15 public synchronized boolean isPermitted(String principal, int
permissions)

principal The entity to check, or “*” to check whether the given permissions are grant-
ed to all principals globally

permissions The permissions to check

Check whether the given permissions are granted to a certain principal. The
requested permissions are specified as a bitfield, for example (Acl.ADD |
Acl.DELETE | Acl.GET).
346-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
Returns true if the principal holds all the given permissions

Throws IllegalArgumentException – if principal is not a valid principal name or if
permissions is not a valid combination of the permission constants defined
in this class
setPermission(String,int)

117.13.2.16 public synchronized Acl setPermission(String principal, int permissions)

principal The entity to which permissions should be granted, or “*” to globally grant
permissions to all principals.

permissions The set of permissions to be given. The parameter is a bitmask of the permis-
sion constants defined in this class.

Create a new Acl instance from this Acl where all permissions for the given
principal are overwritten with the given permissions.

Note, that when changing the permissions of a specific principal, it is not
allowed to specify a set of permissions stricter than the global set of permis-
sions (that apply to all principals).

Returns a new Acl instance

Throws IllegalArgumentException – if principal is not a valid principal name, if
permissions is not a valid combination of the permission constants defined
in this class, or if a globally granted permission would have been revoked
from a specific principal
toString()

117.13.2.17 public synchronized String toString()

Give the canonic string representation of this ACL. The operations are in the
following order: {Add, Delete, Exec, Get, Replace}, principal names are sorted
alphabetically.

Returns The string representation as defined in OMA DM.
DmtAdmin

117.13.3 public interface DmtAdmin
An interface providing methods to open sessions and register listeners. The
implementation of DmtAdmin should register itself in the OSGi service reg-
istry as a service. DmtAdmin is the entry point for applications to use the
DMT API.

The getSession methods are used to open a session on a specified subtree of
the DMT. A typical way of usage:

serviceRef = context.getServiceReference(DmtAdmin.class.get-
Name());
DmtAdmin admin = (DmtAdmin) context.getService(serviceRef);
DmtSession session = admin.getSession(”./OSGi/Configura-

tion”);
session.createInteriorNode(”./OSGi/Configuration/my.table”);

The methods for opening a session take a node URI (the session root) as a
parameter. All segments of the given URI must be within the segment
length limit of the implementation, and the special characters ‘/’ and ‘\’must
be escaped (preceded by a ‘\’). Any string can be converted to a valid URI seg-
ment using the Uri.mangle(Str ing) [p.398] method.
OSGi Service Platform Release 4 347-502

info.dmtree DMT Admin Service Specification Version 1.0
It is possible to specify a lock mode when opening the session (see lock type
constants in DmtSess ion [p.367]). This determines whether the session can
run in parallel with other sessions, and the kinds of operations that can be
performed in the session. All Management Objects constituting the device
management tree must support read operations on their nodes, while sup-
port for write operations depends on the Management Object. Management
Objects supporting write access may support transactional write, non-trans-
actional write or both. Users of DmtAdmin should consult the Management
Object specification and implementation for the supported update modes. If
Management Object definition permits, implementations are encouraged to
support both update modes.

This interface also contains methods for manipulating the set of
DmtEventListener objects that are called when the structure or content of
the tree is changed. These methods are not needed in an OSGi environment,
clients should register listeners through the Event Admin service.
addEventListener(int,String,DmtEventListener)

117.13.3.1 public void addEventListener(int type, String uri, DmtEventListener
listener)

type a bitmask of event types the caller is interested in

uri the URI of the root node of a subtree, must not be null

listener the listener to be registered, must not be null

Registers an event listener on behalf of a local application. The given lis-
tener will receive notification on all changes affecting the specified subtree.
The subtree is specified by its root node URI. An event is delivered to the reg-
istered listener if at least one affected node is within this subtree. The events
can also be filtered by specifying a bitmask of relevant event types (e.g.
DmtEvent.ADDED | DmtEvent.REPLACED | DmtEvent.SESSION_CLOSED).
Only event types included in the bitmask will be delivered to the listener.

The listener will only receive the change notifications of nodes for which
the registering application has the appropriate GET info.dmtree.secu-
r i ty .DmtPermission .

If the specified listener was already registered, calling this method will
update the registration.

Throws SecurityException – if the caller doesn’t have the necessary GET DmtPer-
mission for the given URI

NullPointerException – if the uri or listener parameter is null

IllegalArgumentException – if the type parameter contains invalid bits
(not corresponding to any event type defined in DmtEvent), or if the uri pa-
rameter is invalid (is not an absolute URI or is syntactically incorrect)
addEventListener(String,int,String,DmtEventListener)

117.13.3.2 public void addEventListener(String principal, int type, String uri,
DmtEventListener listener)

principal the management server identity the caller is acting on behalf of, must not be
null

type a bitmask of event types the caller is interested in

uri the URI of the root node of a subtree, must not be null
348-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
listener the listener to be registered, must not be null

Registers an event listener on behalf of a remote principal. The given lis-
tener will receive notification on all changes affecting the specified subtree.
The subtree is specified by its root node URI. An event is delivered to the reg-
istered listener if at least one affected node is within this subtree. The events
can also be filtered by specifying a bitmask of relevant event types (e.g.
DmtEvent.ADDED | DmtEvent.REPLACED | DmtEvent.SESSION_CLOSED).
Only event types included in the bitmask will be delivered to the listener.

The listener will only receive the change notifications of nodes for which
the node ACL grants GET access to the specified principal.

If the specified listener was already registered, calling this method will
update the registration.

Throws SecurityException – if the caller doesn’t have the necessary DmtPrinci-
palPermission to use the specified principal

NullPointerException – if the principal, uri or listener parameter is null

IllegalArgumentException – if the type parameter contains invalid bits
(not corresponding to any event type defined in DmtEvent), or if the uri pa-
rameter is invalid (is not an absolute URI or is syntactically incorrect)
getSession(String)

117.13.3.3 public DmtSession getSession(String subtreeUri) throws DmtException

subtreeUri the subtree on which DMT manipulations can be performed within the re-
turned session

Opens a DmtSession for local usage on a given subtree of the DMT with non
transactional write lock. This call is equivalent to the following: getSes-
sion(null, subtreeUri, DmtSession.LOCK_TYPE_EXCLUSIVE)

The subtreeUri parameter must contain an absolute URI. It can also be null,
in this case the session is opened with the default session root, “.”, that gives
access to the whole tree.

To perform this operation the caller must have DmtPermission for the sub-
treeUri node with the Get action present.

Returns a DmtSession object for the requested subtree

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if subtreeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if subtreeUri is syntactically invalid
NODE_NOT_FOUND if subtreeUri specifies a non-existing node
SESSION_CREATION_TIMEOUT if the operation timed out because of an-
other ongoing session
COMMAND_FAILED if subtreeUri specifies a relative URI, or some unspeci-
fied error is encountered while attempting to complete the command

SecurityException – if the caller does not have DmtPermission for the giv-
en root node with the Get action present
getSession(String,int)

117.13.3.4 public DmtSession getSession(String subtreeUri, int lockMode) throws
DmtException

subtreeUri the subtree on which DMT manipulations can be performed within the re-
turned session
OSGi Service Platform Release 4 349-502

info.dmtree DMT Admin Service Specification Version 1.0
lockMode one of the lock modes specified in DmtSession

Opens a DmtSession for local usage on a specific DMT subtree with a given
lock mode. This call is equivalent to the following: getSession(null, sub-
treeUri, lockMode)

The subtreeUri parameter must contain an absolute URI. It can also be null,
in this case the session is opened with the default session root, “.”, that gives
access to the whole tree.

To perform this operation the caller must have DmtPermission for the sub-
treeUri node with the Get action present.

Returns a DmtSession object for the requested subtree

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if subtreeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if subtreeUri is syntactically invalid
NODE_NOT_FOUND if subtreeUri specifies a non-existing node
FEATURE_NOT_SUPPORTED if atomic sessions are not supported by the
implementation and lockMode requests an atomic session
SESSION_CREATION_TIMEOUT if the operation timed out because of an-
other ongoing session
COMMAND_FAILED if subtreeUri specifies a relative URI, if lockMode is
unknown, or some unspecified error is encountered while attempting to
complete the command

SecurityException – if the caller does not have DmtPermission for the giv-
en root node with the Get action present
getSession(String,String,int)

117.13.3.5 public DmtSession getSession(String principal, String subtreeUri, int
lockMode) throws DmtException

principal the identifier of the remote server on whose behalf the data manipulation is
performed, or null for local sessions

subtreeUri the subtree on which DMT manipulations can be performed within the re-
turned session

lockMode one of the lock modes specified in DmtSession

Opens a DmtSession on a specific DMT subtree using a specific lock mode
on behalf of a remote principal. If local management applications are using
this method then they should provide null as the first parameter. Alterna-
tively they can use other forms of this method without providing a princi-
pal string.

The subtreeUri parameter must contain an absolute URI. It can also be null,
in this case the session is opened with the default session root, “.”, that gives
access to the whole tree.

This method is guarded by DmtPrincipalPermission in case of remote ses-
sions. In addition, the caller must have Get access rights (ACL in case of
remote sessions, DmtPermission in case of local sessions) on the subtreeUri
node to perform this operation.

Returns a DmtSession object for the requested subtree
350-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
Throws DmtException – with the following possible error codes:
URI_TOO_LONG if subtreeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if subtreeUri is syntactically invalid
NODE_NOT_FOUND if subtreeUri specifies a non-existing node
PERMISSION_DENIED if principal is not null and the ACL of the node does
not allow the Get operation for the principal on the given root node
FEATURE_NOT_SUPPORTED if atomic sessions are not supported by the
implementation and lockMode requests an atomic session
SESSION_CREATION_TIMEOUT if the operation timed out because of an-
other ongoing session
COMMAND_FAILED if subtreeUri specifies a relative URI, if lockMode is
unknown, or some unspecified error is encountered while attempting to
complete the command

SecurityException – in case of remote sessions, if the caller does not have
the required DmtPrincipalPermission with a target matching the principal
parameter, or in case of local sessions, if the caller does not have DmtPermis-
sion for the given root node with the Get action present
removeEventListener(DmtEventListener)

117.13.3.6 public void removeEventListener(DmtEventListener listener)

listener the listener to be unregistered, must not be null

Remove a previously registered listener. After this call, the listener will not
receive change notifications.

Throws NullPointerException – if the listener parameter is null
DmtData

117.13.4 public final class DmtData
An immutable data structure representing the contents of a leaf or interior
node. This structure represents only the value and the format property of
the node, all other properties (like MIME type) can be set and read using the
DmtSession interface.

Different constructors are available to create nodes with different formats.
Nodes of null format can be created using the static NULL_VALUE [p.352]
constant instance of this class.

FORMAT_RAW_BINARY [p.352] and FORMAT_RAW_STRING [p.352] enable
the support of future data formats. When using these formats, the actual for-
mat name is specified as a String. The application is responsible for the
proper encoding of the data according to the specified format.
FORMAT_BASE64

117.13.4.1 public static final int FORMAT_BASE64 = 128

The node holds an OMA DM b64 value. Like FORMAT_BINARY [p.351] , this
format is also represented by the Java byte[] type, the difference is only in the
corresponding OMA DM format.
FORMAT_BINARY

117.13.4.2 public static final int FORMAT_BINARY = 64

The node holds an OMA DM bin value. The value of the node corresponds to
the Java byte[] type.
FORMAT_BOOLEAN
OSGi Service Platform Release 4 351-502

info.dmtree DMT Admin Service Specification Version 1.0
117.13.4.3 public static final int FORMAT_BOOLEAN = 8

The node holds an OMA DM bool value.
FORMAT_DATE

117.13.4.4 public static final int FORMAT_DATE = 16

The node holds an OMA DM date value.
FORMAT_FLOAT

117.13.4.5 public static final int FORMAT_FLOAT = 2

The node holds an OMA DM float value.
FORMAT_INTEGER

117.13.4.6 public static final int FORMAT_INTEGER = 1

The node holds an OMA DM int value.
FORMAT_NODE

117.13.4.7 public static final int FORMAT_NODE = 1024

Format specifier of an internal node. An interior node can hold a Java object
as value (see DmtData.DmtData(Object) [p.353] and
DmtData.getNode() [p.355]). This value can be used by Java programs that
know a specific URI understands the associated Java type. This type is fur-
ther used as a return value of the MetaNode.getFormat [p.393] method for
interior nodes.
FORMAT_NULL

117.13.4.8 public static final int FORMAT_NULL = 512

The node holds an OMA DM null value. This corresponds to the Java null
type.
FORMAT_RAW_BINARY

117.13.4.9 public static final int FORMAT_RAW_BINARY = 4096

The node holds raw protocol data encoded in binary format. The
getFormatName() [p.355] method can be used to get the actual format
name.
FORMAT_RAW_STRING

117.13.4.10 public static final int FORMAT_RAW_STRING = 2048

The node holds raw protocol data encoded as String. The
getFormatName() [p.355] method can be used to get the actual format
name.
FORMAT_STRING

117.13.4.11 public static final int FORMAT_STRING = 4

The node holds an OMA DM chr value.
FORMAT_TIME

117.13.4.12 public static final int FORMAT_TIME = 32

The node holds an OMA DM time value.
FORMAT_XML

117.13.4.13 public static final int FORMAT_XML = 256

The node holds an OMA DM xml value.
NULL_VALUE

117.13.4.14 public static final DmtData NULL_VALUE

Constant instance representing a leaf node of null format.
DmtData(String)
352-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
117.13.4.15 public DmtData(String str)

str the string value to set

Create a DmtData instance of chr format with the given string value. The
null string argument is valid.
DmtData(Object)

117.13.4.16 public DmtData(Object complex)

complex the complex data object to set

Create a DmtData instance of node format with the given object value. The
value represents complex data associated with an interior node.

Certain interior nodes can support access to their subtrees through such
complex values, making it simpler to retrieve or update all leaf nodes in a
subtree.

The given value must be a non-null immutable object.
DmtData(String,int)

117.13.4.17 public DmtData(String value, int format)

value the string, XML, date or time value to set

format the format of the DmtData instance to be created, must be one of the formats
specified above

Create a DmtData instance of the specified format and set its value based on
the given string. Only the following string-based formats can be created
using this constructor:

• FORMAT_STRING [p.352] - value can be any string
• FORMAT_XML [p.352] - value must contain an XML fragment (the

validity is not checked by this constructor)
• FORMAT_DATE [p.352] - value must be parseable to an ISO 8601 calendar

date in complete representation, basic format (pattern CCYYMMDD)
• FORMAT_TIME [p.352] - value must be parseable to an ISO 8601 time of

day in either local time, complete representation, basic format (pattern
hhmmss) or Coordinated Universal Time, basic format (pattern hhmmssZ)

null string argument is only valid if the format is string or XML.

Throws IllegalArgumentException – if format is not one of the allowed formats, or
value is not a valid string for the given format

NullPointerException – if a date or time is constructed and value is null
DmtData(int)

117.13.4.18 public DmtData(int integer)

integer the integer value to set

Create a DmtData instance of int format and set its value.
DmtData(float)

117.13.4.19 public DmtData(float flt)

flt the float value to set

Create a DmtData instance of float format and set its value.
DmtData(boolean)

117.13.4.20 public DmtData(boolean bool)

bool the boolean value to set
OSGi Service Platform Release 4 353-502

info.dmtree DMT Admin Service Specification Version 1.0
Create a DmtData instance of bool format and set its value.
DmtData(byte[])

117.13.4.21 public DmtData(byte[] bytes)

bytes the byte array to set, must not be null

Create a DmtData instance of bin format and set its value.

Throws NullPointerException – if bytes is null
DmtData(byte[],boolean)

117.13.4.22 public DmtData(byte[] bytes, boolean base64)

bytes the byte array to set, must not be null

base64 if true, the new instance will have b64 format, if false, it will have bin format

Create a DmtData instance of bin or b64 format and set its value. The chosen
format is specified by the base64 parameter.

Throws NullPointerException – if bytes is null
DmtData(String,String)

117.13.4.23 public DmtData(String formatName, String data)

formatName the name of the format, must not be null

data the data encoded according to the specified format, must not be null

Create a DmtData instance in FORMAT_RAW_STRING [p.352] format. The
data is provided encoded as a String. The actual data format is specified in
formatName. The encoding used in data must conform to this format.

Throws NullPointerException – if formatName or data is null
DmtData(String,byte[])

117.13.4.24 public DmtData(String formatName, byte[] data)

formatName the name of the format, must not be null

data the data encoded according to the specified format, must not be null

Create a DmtData instance in FORMAT_RAW_BINARY [p.352] format. The
data is provided encoded as binary. The actual data format is specified in for-
matName. The encoding used in data must conform to this format.

Throws NullPointerException – if formatName or data is null
equals(Object)

117.13.4.25 public boolean equals(Object obj)

obj the object to compare with this DmtData

Compares the specified object with this DmtData instance. Two DmtData
objects are considered equal if their format is the same, and their data
(selected by the format) is equal.

In case of FORMAT_RAW_BINARY [p.352] and FORMAT_RAW_STRING [p.352]
the textual name of the data format - as returned by
getFormatName() [p.355] - must be equal as well.

Returns true if the argument represents the same DmtData as this object
getBase64()

117.13.4.26 public byte[] getBase64()

Gets the value of a node with base 64 (b64) format.

Returns the binary value

Throws DmtIllegalStateException – if the format of the node is not base 64.
getBinary()
354-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
117.13.4.27 public byte[] getBinary()

Gets the value of a node with binary (bin) format.

Returns the binary value

Throws DmtIllegalStateException – if the format of the node is not binary
getBoolean()

117.13.4.28 public boolean getBoolean()

Gets the value of a node with boolean (bool) format.

Returns the boolean value

Throws DmtIllegalStateException – if the format of the node is not boolean
getDate()

117.13.4.29 public String getDate()

Gets the value of a node with date format. The returned date string is format-
ted according to the ISO 8601 definition of a calendar date in complete rep-
resentation, basic format (pattern CCYYMMDD).

Returns the date value

Throws DmtIllegalStateException – if the format of the node is not date
getFloat()

117.13.4.30 public float getFloat()

Gets the value of a node with float format.

Returns the float value

Throws DmtIllegalStateException – if the format of the node is not float
getFormat()

117.13.4.31 public int getFormat()

Get the node’s format, expressed in terms of type constants defined in this
class. Note that the ‘format’ term is a legacy from OMA DM, it is more cus-
tomary to think of this as ‘type’.

Returns the format of the node
getFormatName()

117.13.4.32 public String getFormatName()

Returns the format of this DmtData as String. For the predefined data for-
mats this is the OMA DM defined name of the format. For
FORMAT_RAW_STRING [p.352] and FORMAT_RAW_BINARY [p.352] this is
the format specified when the object was created.

Returns the format name as String
getInt()

117.13.4.33 public int getInt()

Gets the value of a node with integer (int) format.

Returns the integer value

Throws DmtIllegalStateException – if the format of the node is not integer
getNode()

117.13.4.34 public Object getNode()

Gets the complex data associated with an interior node (node format).

Certain interior nodes can support access to their subtrees through complex
values, making it simpler to retrieve or update all leaf nodes in the subtree.

Returns the data object associated with an interior node
OSGi Service Platform Release 4 355-502

info.dmtree DMT Admin Service Specification Version 1.0
Throws DmtIllegalStateException – if the format of the data is not node
getRawBinary()

117.13.4.35 public byte[] getRawBinary()

Gets the value of a node in raw binary (FORMAT_RAW_BINARY [p.352]) for-
mat.

Returns the data value in raw binary format

Throws DmtIllegalStateException – if the format of the node is not raw binary
getRawString()

117.13.4.36 public String getRawString()

Gets the value of a node in raw String (FORMAT_RAW_STRING [p.352]) for-
mat.

Returns the data value in raw String format

Throws DmtIllegalStateException – if the format of the node is not raw String
getSize()

117.13.4.37 public int getSize()

Get the size of the data. The returned value depends on the format of data in
the node:

• FORMAT_STRING [p.352] , FORMAT_XML [p.352] ,
FORMAT_BINARY [p.351] , FORMAT_BASE64 [p.351] ,
FORMAT_RAW_STRING [p.352] , and FORMAT_RAW_BINARY [p.352] : the
length of the stored data, or 0 if the data is null

• FORMAT_INTEGER [p.352] and FORMAT_FLOAT [p.352] : 4
• FORMAT_DATE [p.352] and FORMAT_TIME [p.352] : the length of the date

or time in its string representation
• FORMAT_BOOLEAN [p.351] : 1
• FORMAT_NODE [p.352] : -1 (unknown)
• FORMAT_NULL [p.352] : 0

Returns the size of the data stored by this object
getString()

117.13.4.38 public String getString()

Gets the value of a node with string (chr) format.

Returns the string value

Throws DmtIllegalStateException – if the format of the node is not string
getTime()

117.13.4.39 public String getTime()

Gets the value of a node with time format. The returned time string is for-
matted according to the ISO 8601 definition of the time of day. The exact for-
mat depends on the value the object was initialized with: either local time,
complete representation, basic format (pattern hhmmss) or Coordinated Uni-
versal Time, basic format (pattern hhmmssZ).

Returns the time value

Throws DmtIllegalStateException – if the format of the node is not time
getXml()

117.13.4.40 public String getXml()

Gets the value of a node with xml format.

Returns the XML value

Throws DmtIllegalStateException – if the format of the node is not xml
hashCode()
356-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
117.13.4.41 public int hashCode()

Returns the hash code value for this DmtData instance. The hash code is cal-
culated based on the data (selected by the format) of this object.

Returns the hash code value for this object
toString()

117.13.4.42 public String toString()

Gets the string representation of the DmtData. This method works for all
formats.

For string format data - including FORMAT_RAW_STRING [p.352] - the string
value itself is returned, while for XML, date, time, integer, float, boolean and
node formats the string form of the value is returned. Binary - including
FORMAT_RAW_BINARY [p.352] - and base64 data is represented by two-digit
hexadecimal numbers for each byte separated by spaces. The
NULL_VALUE [p.352] data has the string form of “null“. Data of string or XML
format containing the Java null value is represented by an empty string.

Returns the string representation of this DmtData instance
DmtEvent

117.13.5 public interface DmtEvent
Event class storing the details of a change in the tree. DmtEvent is used by
DmtAdmin to notify registered DmtEventListener EventListeners [p.359]
about important changes. Events are generated after every successful DMT
change, and also when sessions are opened or closed. If a DmtSession [p.367]
is opened in atomic mode, DMT events are only sent when the session is
committed, when the changes are actually performed.

An event is generated for each group of nodes added, deleted, replaced,
renamed or copied, in this order. Events are also generated when sessions
are opened and closed.

The type of the event describes the change that triggered the event delivery.
Each event carries the unique identifier of the session in which the
described change happened. The events describing changes in the DMT
carry the list of affected nodes. In case of COPIED [p.357] or RENAMED [p.358]
events, the event carries the list of new nodes as well.

When a DmtEvent is delivered to a listener, the event contains only those
node URIs that the listener has access to. This access control decision is
based on the principal specified when the listener was registered:

• If the listener was registered specifying an explicit principal, using the
DmtAdmin.addEventListener(Str ing , int , St r ing ,
DmtEventListener) [p.348] method, then the target node ACLs should be
checked for providing GET access to the specified principal;

• When the listener was registered without an explicit principal then the
listener needs GET info.dmtree.secur ity .DmtPermiss ion for the corre-
sponding node.

ADDED

117.13.5.1 public static final int ADDED = 1

Event type indicating nodes that were added.
COPIED

117.13.5.2 public static final int COPIED = 2

Event type indicating nodes that were copied.
OSGi Service Platform Release 4 357-502

info.dmtree DMT Admin Service Specification Version 1.0
DELETED

117.13.5.3 public static final int DELETED = 4

Event type indicating nodes that were deleted.
RENAMED

117.13.5.4 public static final int RENAMED = 8

Event type indicating nodes that were renamed.
REPLACED

117.13.5.5 public static final int REPLACED = 16

Event type indicating nodes that were replaced.
SESSION_CLOSED

117.13.5.6 public static final int SESSION_CLOSED = 64

Event type indicating that a session was closed. This type of event is sent
when the session is closed by the client or becomes inactive for any other
reason (session timeout, fatal errors in business methods, etc.).
SESSION_OPENED

117.13.5.7 public static final int SESSION_OPENED = 32

Event type indicating that a new session was opened.
getNewNodes()

117.13.5.8 public String[] getNewNodes()

This method can be used to query the new nodes, when the type of the event
is COPIED [p.357] or RENAMED [p.358] . For all other event types this method
returns null.

The array returned by this method runs parallel to the array returned by
getNodes [p.358] , the elements in the two arrays contain the source and des-
tination URIs for the renamed or copied nodes in the same order. All
returned URIs are absolute.

This method returns only those nodes where the caller has the GET permis-
sion for the source or destination node of the operation. Therefore, it is pos-
sible that the method returns an empty array.

Returns the array of newly created nodes
getNodes()

117.13.5.9 public String[] getNodes()

This method can be used to query the subject nodes of this event. The
method returns null for SESSION_OPENED [p.358] and
SESSION_CLOSED [p.358] .

The method returns only those affected nodes that the caller has the GET
permission for (or in case of COPIED [p.357] or RENAMED [p.358] events,
where the caller has GET permissions for either the source or the destina-
tion nodes). Therefore, it is possible that the method returns an empty array.
All returned URIs are absolute.

Returns the array of affected nodes

See Also getNewNodes[p.358]
getSessionId()

117.13.5.10 public int getSessionId()

This method returns the identifier of the session in which this event took
place. The ID is guaranteed to be unique on a machine.

Returns the unique indetifier of the session that triggered the event
getType()
358-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
117.13.5.11 public int getType()

This method returns the type of this event.

Returns the type of this event.
DmtEventListener

117.13.6 public interface DmtEventListener
Registered implementations of this class are notified via DmtEvent [p.357]
objects about important changes in the tree. Events are generated after every
successful DMT change, and also when sessions are opened or closed. If a
DmtSess ion [p.367] is opened in atomic mode, DMT events are only sent
when the session is committed, when the changes are actually performed.
changeOccurred(DmtEvent)

117.13.6.1 public void changeOccurred(DmtEvent event)

event the DmtEvent describing the change in detail

DmtAdmin uses this method to notify the registered listeners about the
change. This method is called asynchronously from the actual event occur-
rence.
DmtException

117.13.7 public class DmtException
extends Exception
Checked exception received when a DMT operation fails. Beside the excep-
tion message, a DmtException always contains an error code (one of the
constants specified in this class), and may optionally contain the URI of the
related node, and information about the cause of the exception.

Some of the error codes defined in this class have a corresponding error code
defined in OMA DM, in these cases the name and numerical value from
OMA DM is used. Error codes without counterparts in OMA DM were given
numbers from a different range, starting from 1.

The cause of the exception (if specified) can either be a single Throwable
instance, or a list of such instances if several problems occurred during the
execution of a method. An example for the latter is the close method of Dmt-
Session that tries to close multiple plugins, and has to report the exceptions
of all failures.

Each constructor has two variants, one accepts a String node URI, the other
accepts a String[] node path. The former is used by the DmtAdmin imple-
mentation, the latter by the plugins, who receive the node URI as an array of
segment names. The constructors are otherwise identical.

Getter methods are provided to retrieve the values of the additional parame-
ters, and the printStackTrace(PrintWriter) method is extended to print the
stack trace of all causing throwables as well.
ALERT_NOT_ROUTED

117.13.7.1 public static final int ALERT_NOT_ROUTED = 5

An alert can not be sent from the device to the given principal. This can hap-
pen if there is no Remote Alert Sender willing to forward the alert to the
given principal, or if no principal was given and the DmtAdmin did not find
an appropriate default destination.
OSGi Service Platform Release 4 359-502

info.dmtree DMT Admin Service Specification Version 1.0
This error code does not correspond to any OMA DM response status code. It
should be translated to the code 500 “Command Failed” when transferring
over OMA DM.
COMMAND_FAILED

117.13.7.2 public static final int COMMAND_FAILED = 500

The recipient encountered an error which prevented it from fulfilling the
request.

This error code is only used in situations not covered by any of the other
error codes that a method may use. Some methods specify more specific
error situations for this code, but it can generally be used for any unexpected
condition that causes the command to fail.

This error code corresponds to the OMA DM response status code 500 “Com-
mand Failed”.
COMMAND_NOT_ALLOWED

117.13.7.3 public static final int COMMAND_NOT_ALLOWED = 405

The requested command is not allowed on the target node. This includes the
following situations:

• an interior node operation is requested for a leaf node, or vice versa (e.g.
trying to retrieve the children of a leaf node)

• an attempt is made to create a node where the parent is a leaf node
• an attempt is made to rename or delete the root node of the tree
• an attempt is made to rename or delete the root node of the session
• a write operation (other than setting the ACL) is performed in a non-

atomic write session on a node provided by a plugin that is read-only or
does not support non-atomic writing

• a node is copied to its descendant
• the ACL of the root node is changed not to include Add rights for all prin-

cipals

This error code corresponds to the OMA DM response status code 405 “Com-
mand not allowed”.
CONCURRENT_ACCESS

117.13.7.4 public static final int CONCURRENT_ACCESS = 4

An error occurred related to concurrent access of nodes. This can happen for
example if a configuration node was deleted directly through the Configura-
tion Admin service, while the node was manipulated via the tree.

This error code does not correspond to any OMA DM response status code. It
should be translated to the code 500 “Command Failed” when transferring
over OMA DM.
DATA_STORE_FAILURE

117.13.7.5 public static final int DATA_STORE_FAILURE = 510

An error related to the recipient data store occurred while processing the
request. This error code may be thrown by any of the methods accessing the
tree, but whether it is really used depends on the implementation, and the
data store it uses.

This error code corresponds to the OMA DM response status code 510 “Data
store failure”.
FEATURE_NOT_SUPPORTED
360-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
117.13.7.6 public static final int FEATURE_NOT_SUPPORTED = 406

The requested command failed because an optional feature required by the
command is not supported. For example, opening an atomic session might
return this error code if the DmtAdmin implementation does not support
transactions. Similarly, accessing the optional node properties (Title, Times-
tamp, Version, Size) might not succeed if either the DmtAdmin implemen-
tation or the underlying plugin does not support the property.

When getting or setting values for interior nodes (an optional optimization
feature), a plugin can use this error code to indicate that the given interior
node does not support values.

This error code corresponds to the OMA DM response status code 406
“Optional feature not supported”.
INVALID_URI

117.13.7.7 public static final int INVALID_URI = 3

The requested command failed because the target URI or node name is null
or syntactically invalid. This covers the following cases:

• the URI or node name ends with the ‘\’or ‘/’ character
• the URI is an empty string (only invalid if the method does not accept

relative URIs)
• the URI contains the segment “.“ at a position other than the beginning

of the URI
• the node name is “..“ or the URI contains such a segment
• the node name is an empty string or the URI contains an empty segment
• the node name contains an unescaped ‘/’ character

See the Uri .mangle(Str ing) [p.398] method for support on escaping invalid
characters in a URI.

This code is only used if the URI or node name does not match any of the cri-
teria for URI_TOO_LONG [p.363] . This error code does not correspond to any
OMA DM response status code. It should be translated to the code 404 “Not
Found” when transferring over OMA DM.
METADATA_MISMATCH

117.13.7.8 public static final int METADATA_MISMATCH = 2

Operation failed because of meta data restrictions. This covers any
attempted deviation from the parameters defined by the MetaNode objects
of the affected nodes, for example in the following situations:

• creating, deleting or renaming a permanent node, or modifying its type
or value

• creating an interior node where the meta-node defines it as a leaf, or vice
versa

• any operation on a node which does not have the required access type
(e.g. executing a node that lacks the MetaNode.CMD_EXECUTE access
type)

• any node creation or deletion that would violate the cardinality con-
straints

• any leaf node value setting that would violate the allowed formats,
values, mime types, etc.

• any node creation that would violate the allowed node names
OSGi Service Platform Release 4 361-502

info.dmtree DMT Admin Service Specification Version 1.0
This error code can also be used to indicate any other meta data violation,
even if it cannot be described by the MetaNode class. For example, detecting
a multi-node constraint violation while committing an atomic session
should result in this error.

This error code does not correspond to any OMA DM response status code. It
should be translated to the code 405 “Command not allowed” when transfer-
ring over OMA DM.
NODE_ALREADY_EXISTS

117.13.7.9 public static final int NODE_ALREADY_EXISTS = 418

The requested node creation operation failed because the target already
exists. This can occur if the node is created directly (with one of the create...
methods), or indirectly (during a copy operation).

This error code corresponds to the OMA DM response status code 418
“Already exists”.
NODE_NOT_FOUND

117.13.7.10 public static final int NODE_NOT_FOUND = 404

The requested target node was not found. No indication is given as to
whether this is a temporary or permanent condition, unless otherwise
noted.

This is only used when the requested node name is valid, otherwise the
more specific error codes URI_TOO_LONG [p.363] or INVALID_URI [p.361]
are used. This error code corresponds to the OMA DM response status code
404 “Not Found”.
PERMISSION_DENIED

117.13.7.11 public static final int PERMISSION_DENIED = 425

The requested command failed because the principal associated with the
session does not have adequate access control permissions (ACL) on the tar-
get. This can only appear in case of remote sessions, i.e. if the session is asso-
ciated with an authenticated principal.

This error code corresponds to the OMA DM response status code 425 “Per-
mission denied”.
REMOTE_ERROR

117.13.7.12 public static final int REMOTE_ERROR = 1

A device initiated remote operation failed. This is used when the protocol
adapter fails to send an alert for any reason.

Alert routing errors (that occur while looking for the proper protocol
adapter to use) are indicated by ALERT_NOT_ROUTED [p.359] , this code is
only for errors encountered while sending the routed alert. This error code
does not correspond to any OMA DM response status code. It should be
translated to the code 500 “Command Failed” when transferring over OMA
DM.
ROLLBACK_FAILED

117.13.7.13 public static final int ROLLBACK_FAILED = 516

The rollback command was not completed successfully. The tree might be
in an inconsistent state after this error.

This error code corresponds to the OMA DM response status code 516
“Atomic roll back failed”.
SESSION_CREATION_TIMEOUT
362-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
117.13.7.14 public static final int SESSION_CREATION_TIMEOUT = 7

Creation of a session timed out because of another ongoing session. The
length of time while the DmtAdmin waits for the blocking session(s) to fin-
ish is implementation dependant.

This error code does not correspond to any OMA DM response status code.
OMA has several status codes related to timeout, but these are meant to be
used when a request times out, not if a session can not be established. This
error code should be translated to the code 500 “Command Failed” when
transferring over OMA DM.
TRANSACTION_ERROR

117.13.7.15 public static final int TRANSACTION_ERROR = 6

A transaction-related error occurred in an atomic session. This error is
caused by one of the following situations:

• an updating method within an atomic session can not be executed
because the underlying plugin is read-only or does not support atomic
writing

• a commit operation at the end of an atomic session failed because one of
the underlying plugins failed to close

The latter case may leave the tree in an inconsistent state due to the lack of a
two-phase commit system, see DmtSession .commit [p.368] for details.

This error code does not correspond to any OMA DM response status code. It
should be translated to the code 500 “Command Failed” when transferring
over OMA DM.
UNAUTHORIZED

117.13.7.16 public static final int UNAUTHORIZED = 401

The originator’s authentication credentials specify a principal with insuffi-
cient rights to complete the command.

This status code is used as response to device originated sessions if the
remote management server cannot authorize the device to perform the
requested operation.

This error code corresponds to the OMA DM response status code 401
“Unauthorized”.
URI_TOO_LONG

117.13.7.17 public static final int URI_TOO_LONG = 414

The requested command failed because the target URI or one of its segments
is too long for what the recipient is able or willing to process, or the target
URI contains too many segments. The length and segment number limits
are implementation dependent, their minimum values can be found in the
Non Functional Requirements section of the OSGi specification.

The Uri .mangle(Str ing) [p.398] method provides support for ensuring that a
URI segment conforms to the length limits set by the implementation.

This error code corresponds to the OMA DM response status code 414 “URI
too long”.

See Also OSGi Service Platform, Mobile Specification Release 4
DmtException(String,int,String)
OSGi Service Platform Release 4 363-502

info.dmtree DMT Admin Service Specification Version 1.0
117.13.7.18 public DmtException(String uri, int code, String message)

uri the node on which the failed DMT operation was issued, or null if the opera-
tion is not associated with a node

code the error code of the failure

message the message associated with the exception, or null if there is no error mes-
sage

Create an instance of the exception. The uri and message parameters are
optional. No originating exception is specified.
DmtException(String,int,String,Throwable)

117.13.7.19 public DmtException(String uri, int code, String message, Throwable
cause)

uri the node on which the failed DMT operation was issued, or null if the opera-
tion is not associated with a node

code the error code of the failure

message the message associated with the exception, or null if there is no error mes-
sage

cause the originating exception, or null if there is no originating exception

Create an instance of the exception, specifying the cause exception. The uri,
message and cause parameters are optional.
DmtException(String,int,String,Vector,boolean)

117.13.7.20 public DmtException(String uri, int code, String message, Vector causes,
boolean fatal)

uri the node on which the failed DMT operation was issued, or null if the opera-
tion is not associated with a node

code the error code of the failure

message the message associated with the exception, or null if there is no error mes-
sage

causes the list of originating exceptions, or empty list or null if there are no originat-
ing exceptions

fatal whether the exception is fatal

Create an instance of the exception, specifying the list of cause exceptions
and whether the exception is a fatal one. This constructor is meant to be
used by plugins wishing to indicate that a serious error occurred which
should invalidate the ongoing atomic session. The uri, message and causes
parameters are optional.

If a fatal exception is thrown, no further business methods will be called on
the originator plugin. In case of atomic sessions, all other open plugins will
be rolled back automatically, except if the fatal exception was thrown dur-
ing commit.
DmtException(String[],int,String)

117.13.7.21 public DmtException(String[] path, int code, String message)

path the path of the node on which the failed DMT operation was issued, or null
if the operation is not associated with a node

code the error code of the failure
364-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
message the message associated with the exception, or null if there is no error mes-
sage

Create an instance of the exception, specifying the target node as an array of
path segments. This method behaves in exactly the same way as if the path
was given as a URI string.

See Also DmtException(String, int, String)[p.363]
DmtException(String[],int,String,Throwable)

117.13.7.22 public DmtException(String[] path, int code, String message, Throwable
cause)

path the path of the node on which the failed DMT operation was issued, or null
if the operation is not associated with a node

code the error code of the failure

message the message associated with the exception, or null if there is no error mes-
sage

cause the originating exception, or null if there is no originating exception

Create an instance of the exception, specifying the target node as an array of
path segments, and specifying the cause exception. This method behaves in
exactly the same way as if the path was given as a URI string.

See Also DmtException(String, int, String, Throwable)[p.364]
DmtException(String[],int,String,Vector,boolean)

117.13.7.23 public DmtException(String[] path, int code, String message, Vector
causes, boolean fatal)

path the path of the node on which the failed DMT operation was issued, or null
if the operation is not associated with a node

code the error code of the failure

message the message associated with the exception, or null if there is no error mes-
sage

causes the list of originating exceptions, or empty list or null if there are no originat-
ing exceptions

fatal whether the exception is fatal

Create an instance of the exception, specifying the target node as an array of
path segments, the list of cause exceptions, and whether the exception is a
fatal one. This method behaves in exactly the same way as if the path was
given as a URI string.

See Also DmtException(String, int, String, Vector, boolean)[p.364]
getCause()

117.13.7.24 public Throwable getCause()

Get the cause of this exception. Returns non-null, if this exception is caused
by one or more other exceptions (like a NullPointerException in a DmtPlu-
gin). If there are more than one cause exceptions, the first one is returned.

Returns the cause of this exception, or null if no cause was given
getCauses()

117.13.7.25 public Throwable[] getCauses()

Get all causes of this exception. Returns the causing exceptions in an array.
If no cause was specified, an empty array is returned.

Returns the list of causes of this exception
OSGi Service Platform Release 4 365-502

info.dmtree DMT Admin Service Specification Version 1.0
getCode()

117.13.7.26 public int getCode()

Get the error code associated with this exception. Most of the error codes
within this exception correspond to OMA DM error codes.

Returns the error code
getMessage()

117.13.7.27 public String getMessage()

Get the message associated with this exception. The returned string also
contains the associated URI (if any) and the exception code. The resulting
message has the following format (parts in square brackets are only
included if the field inside them is not null):

<exception_code>[: ‘<uri>’][: <error_message>]

Returns the error message in the format described above
getURI()

117.13.7.28 public String getURI()

Get the node on which the failed DMT operation was issued. Some opera-
tions like DmtSession.close() don’t require an URI, in this case this method
returns null.

Returns the URI of the node, or null
isFatal()

117.13.7.29 public boolean isFatal()

Check whether this exception is marked as fatal in the session. Fatal excep-
tions trigger an automatic rollback of atomic sessions.

Returns whether the exception is marked as fatal
printStackTrace(PrintStream)

117.13.7.30 public void printStackTrace(PrintStream s)

s PrintStream to use for output

Prints the exception and its backtrace to the specified print stream. Any
causes that were specified for this exception are also printed, together with
their backtraces.
DmtIllegalStateException

117.13.8 public class DmtIllegalStateException
extends RuntimeException
Unchecked illegal state exception. This class is used in DMT because
java.lang.IllegalStateException does not exist in CLDC.
DmtIllegalStateException()

117.13.8.1 public DmtIllegalStateException()

Create an instance of the exception with no message.
DmtIllegalStateException(String)

117.13.8.2 public DmtIllegalStateException(String message)

message the reason for the exception

Create an instance of the exception with the specified message.
DmtIllegalStateException(Throwable)

117.13.8.3 public DmtIllegalStateException(Throwable cause)

cause the cause of the exception

Create an instance of the exception with the specified cause exception and
no message.
366-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
DmtIllegalStateException(String,Throwable)

117.13.8.4 public DmtIllegalStateException(String message, Throwable cause)

message the reason for the exception

cause the cause of the exception

Create an instance of the exception with the specified message and cause
exception.
getCause()

117.13.8.5 public Throwable getCause()

Returns the cause of this exception or null if no cause was specified when
this exception was created.

Returns the cause of this exception or null if no cause was specified
DmtSession

117.13.9 public interface DmtSession
DmtSession provides concurrent access to the DMT. All DMT manipulation
commands for management applications are available on the DmtSession
interface. The session is associated with a root node which limits the subtree
in which the operations can be executed within this session.

Most of the operations take a node URI as parameter, which can be either an
absolute URI (starting with “./”) or a URI relative to the root node of the ses-
sion. The empty string as relative URI means the root URI the session was
opened with. All segments of a URI must be within the segment length limit
of the implementation, and the special characters ‘/’ and ‘\’must be escaped
(preceded by a ‘\’). Any string can be converted to a valid URI segment using
the Uri .mangle(Str ing) [p.398] method.

If the URI specified does not correspond to a legitimate node in the tree an
exception is thrown. The only exception is the i sNodeUri(Str ing) [p.385]
method which returns false in case of an invalid URI.

Each method of DmtSession that accesses the tree in any way can throw
DmtIllegalStateException if the session has been closed or invalidated (due
to timeout, fatal exceptions, or unexpectedly unregistered plugins).
LOCK_TYPE_ATOMIC

117.13.9.1 public static final int LOCK_TYPE_ATOMIC = 2

LOCK_TYPE_ATOMIC is an exclusive lock with transactional functional-
ity. Commands of an atomic session will either fail or succeed together, if a
single command fails then the whole session will be rolled back.
LOCK_TYPE_EXCLUSIVE

117.13.9.2 public static final int LOCK_TYPE_EXCLUSIVE = 1

LOCK_TYPE_EXCLUSIVE lock guarantees full access to the tree, but can not
be shared with any other locks.
LOCK_TYPE_SHARED

117.13.9.3 public static final int LOCK_TYPE_SHARED = 0

Sessions created with LOCK_TYPE_SHARED lock allows read-only access to
the tree, but can be shared between multiple readers.
STATE_CLOSED

117.13.9.4 public static final int STATE_CLOSED = 1

The session is closed, DMT manipulation operations are not available, they
throw DmtIllegalStateException if tried.
OSGi Service Platform Release 4 367-502

info.dmtree DMT Admin Service Specification Version 1.0
STATE_INVALID

117.13.9.5 public static final int STATE_INVALID = 2

The session is invalid because a fatal error happened. Fatal errors include
the timeout of the session, any DmtException with the ‘fatal’ flag set, or the
case when a plugin service is unregistered while in use by the session. DMT
manipulation operations are not available, they throw DmtIllegalStateEx-
ception if tried.
STATE_OPEN

117.13.9.6 public static final int STATE_OPEN = 0

The session is open, all session operations are available.
close()

117.13.9.7 public void close() throws DmtException

Closes a session. If the session was opened with atomic lock mode, the Dmt-
Session must first persist the changes made to the DMT by calling commit()
on all (transactional) plugins participating in the session. See the documen-
tation of the commit [p.368] method for details and possible errors during
this operation.

The state of the session changes to DmtSession.STATE_CLOSED if the close
operation completed successfully, otherwise it becomes DmtSes-
sion.STATE_INVALID.

Throws DmtException – with the following possible error codes:
METADATA_MISMATCH in case of atomic sessions, if the commit opera-
tion failed because of meta-data restrictions
CONCURRENT_ACCESS in case of atomic sessions, if the commit operation
failed because of some modification outside the scope of the DMT to the
nodes affected in the session
TRANSACTION_ERROR in case of atomic sessions, if an underlying plugin
failed to commit
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if an underlying plugin failed to close, or if some un-
specified error is encountered while attempting to complete the command

DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation
commit()

117.13.9.8 public void commit() throws DmtException

Commits a series of DMT operations issued in the current atomic session
since the last transaction boundary. Transaction boundaries are the creation
of this object that starts the session, and all subsequent commit [p.368] and
rol lback [p.386] calls.

This method can fail even if all operations were successful. This can happen
due to some multi-node semantic constraints defined by a specific imple-
mentation. For example, node A can be required to always have children A/
B, A/C and A/D. If this condition is broken when commit() is executed, the
method will fail, and throw a METADATA_MISMATCH exception.

An error situation can arise due to the lack of a two phase commit mecha-
nism in the underlying plugins. As an example, if plugin A has committed
successfully but plugin B failed, the whole session must fail, but there is no
way to undo the commit performed by A. To provide predictable behaviour,
368-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
the commit operation should continue with the remaining plugins even
after detecting a failure. All exceptions received from failed commits are
aggregated into one TRANSACTION_ERROR exception thrown by this
method.

In many cases the tree is not the only way to manage a given part of the sys-
tem. It may happen that while modifying some nodes in an atomic session,
the underlying settings are modified in parallel outside the scope of the
DMT. If this is detected during commit, an exception with the code
CONCURRENT_ACCESS is thrown.

Throws DmtException – with the following possible error codes:
METADATA_MISMATCH if the operation failed because of meta-data re-
strictions
CONCURRENT_ACCESS if it is detected that some modification has been
made outside the scope of the DMT to the nodes affected in the session’s op-
erations
TRANSACTION_ERROR if an error occurred during the commit of any of the
underlying plugins
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command

DmtIllegalStateException – if the session was not opened using the
LOCK_TYPE_ATOMIC lock type, or if the session is already closed or invali-
dated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation
copy(String,String,boolean)

117.13.9.9 public void copy(String nodeUri, String newNodeUri, boolean recursive)
throws DmtException

nodeUri the node or root of a subtree to be copied

newNodeUri the URI of the new node or root of a subtree

recursive false if only a single node is copied, true if the whole subtree is copied

Create a copy of a node or a whole subtree. Beside the structure and values of
the nodes, most properties are also copied, with the exception of the ACL
(Access Control List), Timestamp and Version properties.

The copy method is essentially a convenience method that could be substi-
tuted with a sequence of retrieval and update operations. This determines
the permissions required for copying. However, some optimization can be
possible if the source and target nodes are all handled by DmtAdmin or by
the same plugin. In this case, the handler might be able to perform the
underlying management operation more efficiently: for example, a configu-
ration table can be copied at once instead of reading each node for each
entry and creating it in the new tree.

This method may result in any of the errors possible for the contributing
operations. Most of these are collected in the exception descriptions below,
but for the full list also consult the documentation of
getChi ldNodeNames(String) [p.378] , i sLeafNode(Str ing) [p.384] ,
OSGi Service Platform Release 4 369-502

info.dmtree DMT Admin Service Specification Version 1.0
getNodeValue(Str ing) [p.383] , getNodeType(Str ing) [p.382] ,
getNodeTit le(Str ing) [p.382] , setNodeTit le(Str ing, St r ing) [p.388] , create-
LeafNode(Str ing, DmtData, Str ing) [p.375] and create InteriorNode(Str ing,
St r ing) [p.371] .

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or newNodeUri or any segment of them is too
long, or if they have too many segments
INVALID_URI if nodeUri or newNodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a non-existing node, or if newNo-
deUri points to a node that cannot exist in the tree according to the meta-data
(see getMetaNode(String))
NODE_ALREADY_EXISTS if newNodeUri points to a node that already ex-
ists
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the copied node(s) does not allow the Get operation, or the ACL of the
parent of the target node does not allow the Add operation for the associated
principal
COMMAND_NOT_ALLOWED if nodeUri is an ancestor of newNodeUri, or
if any of the implied retrieval or update operations are not allowed
METADATA_MISMATCH if any of the meta-data constraints of the implied
retrieval or update operations are violated
TRANSACTION_ERROR in an atomic session if the underlying plugin is
read-only or does not support atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if either URI is not within the current session’s sub-
tree, or if some unspecified error is encountered while attempting to com-
plete the command

DmtIllegalStateException – if the session was opened using the
LOCK_TYPE_SHARED lock type, or if the session is already closed or invali-
dated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the copied node(s) with
the Get action present, or for the parent of the target node with the Add ac-
tion
createInteriorNode(String)

117.13.9.10 public void createInteriorNode(String nodeUri) throws DmtException

nodeUri the URI of the node to create

Create an interior node. If the parent node does not exist, it is created auto-
matically, as if this method were called for the parent URI. This way all miss-
ing ancestor nodes leading to the specified node are created. Any exceptions
encountered while creating the ancestors are propagated to the caller of this
method, these are not explicitly listed in the error descriptions below.

If meta-data is available for the node, several checks are made before creat-
ing it. The node must have MetaNode.CMD_ADD access type, it must be
defined as a non-permanent interior node, the node name must conform to
the valid names, and the creation of the new node must not cause the maxi-
mum occurrence number to be exceeded.
370-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
If the meta-data cannot be retrieved because the given node cannot possibly
exist in the tree (it is not defined in the specification), the
NODE_NOT_FOUND error code is returned (see
getMetaNode(String) [p.379]).

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree
(see above)
NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the parent node does not allow the Add operation for the associated
principal
COMMAND_NOT_ALLOWED if the parent node is not an interior node, or
in non-atomic sessions if the underlying plugin is read-only or does not sup-
port non-atomic writing
METADATA_MISMATCH if the node could not be created because of meta-
data restrictions (see above)
TRANSACTION_ERROR in an atomic session if the underlying plugin is
read-only or does not support atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree,
or if some unspecified error is encountered while attempting to complete the
command

DmtIllegalStateException – if the session was opened using the
LOCK_TYPE_SHARED lock type, or if the session is already closed or invali-
dated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the parent node with the
Add action present
createInteriorNode(String,String)

117.13.9.11 public void createInteriorNode(String nodeUri, String type) throws
DmtException

nodeUri the URI of the node to create

type the type URI of the interior node, can be null if no node type is defined

Create an interior node with a given type. The type of interior node, if speci-
fied, is a URI identifying a DDF document. If the parent node does not exist,
it is created automatically, as if create Inter io rNode(String) [p.370] were
called for the parent URI. This way all missing ancestor nodes leading to the
specified node are created. Any exceptions encountered while creating the
ancestors are propagated to the caller of this method, these are not explicitly
listed in the error descriptions below.

If meta-data is available for the node, several checks are made before creat-
ing it. The node must have MetaNode.CMD_ADD access type, it must be
defined as a non-permanent interior node, the node name must conform to
the valid names, and the creation of the new node must not cause the maxi-
mum occurrence number to be exceeded.
OSGi Service Platform Release 4 371-502

info.dmtree DMT Admin Service Specification Version 1.0
If the meta-data cannot be retrieved because the given node cannot possibly
exist in the tree (it is not defined in the specification), the
NODE_NOT_FOUND error code is returned (see
getMetaNode(String) [p.379]).

Interior node type identifiers must follow the format defined in section
7.7.7.2 of the OMA Device Management Tree and Description document.
Checking the validity of the type string does not have to be done by the
DmtAdmin, this can be left to the plugin handling the node (if any), to avoid
unnecessary double-checks.

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree
(see above)
NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the parent node does not allow the Add operation for the associated
principal
COMMAND_NOT_ALLOWED if the parent node is not an interior node, or
in non-atomic sessions if the underlying plugin is read-only or does not sup-
port non-atomic writing
METADATA_MISMATCH if the node could not be created because of meta-
data restrictions (see above)
TRANSACTION_ERROR in an atomic session if the underlying plugin is
read-only or does not support atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, if
the type string is invalid (see above), or if some unspecified error is encoun-
tered while attempting to complete the command

DmtIllegalStateException – if the session was opened using the
LOCK_TYPE_SHARED lock type, or if the session is already closed or invali-
dated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the parent node with the
Add action present

See Also createInteriorNode(String)[p.370] , OMA Device Management Tree and
Description v1.2 draft (http://member.openmobilealliance.org/ftp/
public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-
20050615-C.zip)
createLeafNode(String)

117.13.9.12 public void createLeafNode(String nodeUri) throws DmtException

nodeUri the URI of the node to create

Create a leaf node with default value and MIME type. If a node does not have
a default value or MIME type, this method will throw a DmtException with
error code METADATA_MISMATCH. Note that a node might have a default
value or MIME type even if there is no meta-data for the node or its meta-
data does not specify the default.
372-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
If the parent node does not exist, it is created automatically, as if
create Inter io rNode(String) [p.370] were called for the parent URI. This way
all missing ancestor nodes leading to the specified node are created. Any
exceptions encountered while creating the ancestors are propagated to the
caller of this method, these are not explicitly listed in the error descriptions
below.

If meta-data is available for a node, several checks are made before creating
it. The node must have MetaNode.CMD_ADD access type, it must be
defined as a non-permanent leaf node, the node name must conform to the
valid names, and the creation of the new node must not cause the maximum
occurrence number to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly
exist in the tree (it is not defined in the specification), the
NODE_NOT_FOUND error code is returned (see
getMetaNode(String) [p.379]).

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree
(see above)
NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the parent node does not allow the Add operation for the associated
principal
COMMAND_NOT_ALLOWED if the parent node is not an interior node, or
in non-atomic sessions if the underlying plugin is read-only or does not sup-
port non-atomic writing
METADATA_MISMATCH if the node could not be created because of meta-
data restrictions (see above)
TRANSACTION_ERROR in an atomic session if the underlying plugin is
read-only or does not support atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree,
or if some unspecified error is encountered while attempting to complete the
command

DmtIllegalStateException – if the session was opened using the
LOCK_TYPE_SHARED lock type, or if the session is already closed or invali-
dated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the parent node with the
Add action present

See Also createLeafNode(String, DmtData)[p.373]
createLeafNode(String,DmtData)

117.13.9.13 public void createLeafNode(String nodeUri, DmtData value) throws
DmtException

nodeUri the URI of the node to create

value the value to be given to the new node, can be null
OSGi Service Platform Release 4 373-502

info.dmtree DMT Admin Service Specification Version 1.0
Create a leaf node with a given value and the default MIME type. If the spec-
ified value is null, the default value is taken. If the node does not have a
default MIME type or value (if needed), this method will throw a DmtExcep-
tion with error code METADATA_MISMATCH. Note that a node might
have a default value or MIME type even if there is no meta-data for the node
or its meta-data does not specify the default.

If the parent node does not exist, it is created automatically, as if
create InteriorNode(String) [p.370] were called for the parent URI. This way
all missing ancestor nodes leading to the specified node are created. Any
exceptions encountered while creating the ancestors are propagated to the
caller of this method, these are not explicitly listed in the error descriptions
below.

If meta-data is available for a node, several checks are made before creating
it. The node must have MetaNode.CMD_ADD access type, it must be
defined as a non-permanent leaf node, the node name must conform to the
valid names, the node value must conform to the value constraints, and the
creation of the new node must not cause the maximum occurrence number
to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly
exist in the tree (it is not defined in the specification), the
NODE_NOT_FOUND error code is returned (see
getMetaNode(String) [p.379]).

Nodes of null format can be created by using DmtData.NULL_VALUE[p.352]
as second argument.

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree
(see above)
NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the parent node does not allow the Add operation for the associated
principal
COMMAND_NOT_ALLOWED if the parent node is not an interior node, or
in non-atomic sessions if the underlying plugin is read-only or does not sup-
port non-atomic writing
METADATA_MISMATCH if the node could not be created because of meta-
data restrictions (see above)
TRANSACTION_ERROR in an atomic session if the underlying plugin is
read-only or does not support atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree,
or if some unspecified error is encountered while attempting to complete the
command

DmtIllegalStateException – if the session was opened using the
LOCK_TYPE_SHARED lock type, or if the session is already closed or invali-
dated
374-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the parent node with the
Add action present
createLeafNode(String,DmtData,String)

117.13.9.14 public void createLeafNode(String nodeUri, DmtData value, String
mimeType) throws DmtException

nodeUri the URI of the node to create

value the value to be given to the new node, can be null

mimeType the MIME type to be given to the new node, can be null

Create a leaf node with a given value and MIME type. If the specified value
or MIME type is null, their default values are taken. If the node does not
have the necessary defaults, this method will throw a DmtException with
error code METADATA_MISMATCH. Note that a node might have a default
value or MIME type even if there is no meta-data for the node or its meta-
data does not specify the default.

If the parent node does not exist, it is created automatically, as if
create Inter io rNode(String) [p.370] were called for the parent URI. This way
all missing ancestor nodes leading to the specified node are created. Any
exceptions encountered while creating the ancestors are propagated to the
caller of this method, these are not explicitly listed in the error descriptions
below.

If meta-data is available for a node, several checks are made before creating
it. The node must have MetaNode.CMD_ADD access type, it must be
defined as a non-permanent leaf node, the node name must conform to the
valid names, the node value must conform to the value constraints, the
MIME type must be among the listed types, and the creation of the new
node must not cause the maximum occurrence number to be exceeded.

If the meta-data cannot be retrieved because the given node cannot possibly
exist in the tree (it is not defined in the specification), the
NODE_NOT_FOUND error code is returned (see
getMetaNode(String) [p.379]).

Nodes of null format can be created by using DmtData.NULL_VALUE [p.352]
as second argument.

The MIME type string must conform to the definition in RFC 2045. Check-
ing its validity does not have to be done by the DmtAdmin, this can be left to
the plugin handling the node (if any), to avoid unnecessary double-checks.

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a node that cannot exist in the tree
(see above)
NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the parent node does not allow the Add operation for the associated
principal
COMMAND_NOT_ALLOWED if the parent node is not an interior node, or
OSGi Service Platform Release 4 375-502

info.dmtree DMT Admin Service Specification Version 1.0
in non-atomic sessions if the underlying plugin is read-only or does not sup-
port non-atomic writing
METADATA_MISMATCH if the node could not be created because of meta-
data restrictions (see above)
TRANSACTION_ERROR in an atomic session if the underlying plugin is
read-only or does not support atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, if
mimeType is not a proper MIME type string (see above), or if some unspeci-
fied error is encountered while attempting to complete the command

DmtIllegalStateException – if the session was opened using the
LOCK_TYPE_SHARED lock type, or if the session is already closed or invali-
dated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the parent node with the
Add action present

See Also createLeafNode(String, DmtData)[p.373] , RFC 2045 (http://
www.ietf.org/rfc/rfc2045.txt)
deleteNode(String)

117.13.9.15 public void deleteNode(String nodeUri) throws DmtException

nodeUri the URI of the node

Delete the given node. Deleting interior nodes is recursive, the whole sub-
tree under the given node is deleted. It is not allowed to delete the root node
of the session.

If meta-data is available for a node, several checks are made before deleting
it. The node must be non-permanent, it must have the MetaN-
ode.CMD_DELETE access type, and if zero occurrences of the node are not
allowed, it must not be the last one.

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the node does not allow the Delete operation for the associated prin-
cipal
COMMAND_NOT_ALLOWED if the target node is the root of the session, or
in non-atomic sessions if the underlying plugin is read-only or does not sup-
port non-atomic writing
METADATA_MISMATCH if the node could not be deleted because of meta-
data restrictions (see above)
TRANSACTION_ERROR in an atomic session if the underlying plugin is
read-only or does not support atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree,
or if some unspecified error is encountered while attempting to complete the
command
376-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
DmtIllegalStateException – if the session was opened using the
LOCK_TYPE_SHARED lock type, or if the session is already closed or invali-
dated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the node with the Delete
action present
execute(String,String)

117.13.9.16 public void execute(String nodeUri, String data) throws DmtException

nodeUri the node on which the execute operation is issued

data the parameter of the execute operation, can be null

Executes a node. This corresponds to the EXEC operation in OMA DM. This
method cannot be called in a read-only session.

The semantics of an execute operation and the data parameter it takes
depends on the definition of the managed object on which the command is
issued.

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if the node does not exist and the plugin does not al-
low executing unexisting nodes
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the node does not allow the Execute operation for the associated prin-
cipal
METADATA_MISMATCH if the node cannot be executed according to the
meta-data (does not have MetaNode.CMD_EXECUTE access type)
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, if
no DmtExecPlugin is associated with the node and the DmtAdmin can not
execute the node, or if some unspecified error is encountered while attempt-
ing to complete the command

DmtIllegalStateException – if the session was opened using the
LOCK_TYPE_SHARED lock type, or if the session is already closed or invali-
dated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the node with the Exec
action present

See Also execute(String, String, String)[p.377]
execute(String,String,String)

117.13.9.17 public void execute(String nodeUri, String correlator, String data)
throws DmtException

nodeUri the node on which the execute operation is issued

correlator an identifier to associate this operation with any notifications sent in re-
sponse to it, can be null if not needed

data the parameter of the execute operation, can be null
OSGi Service Platform Release 4 377-502

info.dmtree DMT Admin Service Specification Version 1.0
Executes a node, also specifying a correlation ID for use in response notifica-
tions. This operation corresponds to the EXEC command in OMA DM. This
method cannot be called in a read-only session.

The semantics of an execute operation and the data parameter it takes
depends on the definition of the managed object on which the command is
issued. If a correlation ID is specified, it should be used as the correlator
parameter for notifications sent in response to this execute operation.

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if the node does not exist and the plugin does not al-
low executing unexisting nodes
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the node does not allow the Execute operation for the associated prin-
cipal
METADATA_MISMATCH if the node cannot be executed according to the
meta-data (does not have MetaNode.CMD_EXECUTE access type)
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, if
no DmtExecPlugin is associated with the node, or if some unspecified error
is encountered while attempting to complete the command

DmtIllegalStateException – if the session was opened using the
LOCK_TYPE_SHARED lock type, or if the session is already closed or invali-
dated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the node with the Exec
action present

See Also execute(String, String)[p.377]
getChildNodeNames(String)

117.13.9.18 public String[] getChildNodeNames(String nodeUri) throws
DmtException

nodeUri the URI of the node

Get the list of children names of a node. The returned array contains the
names - not the URIs - of the immediate children nodes of the given node.
The returned child names are mangled (Uri .mangle [p.398]). The elements
are in no particular order. The returned array must not contain null entries.

Returns the list of child node names as a string array or an empty string array if the
node has no children

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the node does not allow the Get operation for the associated principal
COMMAND_NOT_ALLOWED if the specified node is not an interior node
METADATA_MISMATCH if node information cannot be retrieved accord-
378-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
ing to the meta-data (it does not have MetaNode.CMD_GET access type)
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree,
or if some unspecified error is encountered while attempting to complete the
command

DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the node with the Get ac-
tion present
getEffectiveNodeAcl(String)

117.13.9.19 public Acl getEffectiveNodeAcl(String nodeUri) throws DmtException

nodeUri the URI of the node

Gives the Access Control List in effect for a given node. The returned Acl
takes inheritance into account, that is if there is no ACL defined for the
node, it will be derived from the closest ancestor having an ACL defined.

Returns the Access Control List belonging to the node

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the node does not allow the Get operation for the associated principal
METADATA_MISMATCH if node information cannot be retrieved accord-
ing to the meta-data (the node does not have MetaNode.CMD_GET access
type)
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree,
or if some unspecified error is encountered while attempting to complete the
command

DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – in case of local sessions, if the caller does not have
DmtPermission for the node with the Get action present

See Also getNodeAcl[p.380]
getLockType()

117.13.9.20 public int getLockType()

Gives the type of lock the session has.

Returns the lock type of the session, one of LOCK_TYPE_SHARED [p.367] ,
LOCK_TYPE_EXCLUSIVE [p.367] and LOCK_TYPE_ATOMIC [p.367]
getMetaNode(String)

117.13.9.21 public MetaNode getMetaNode(String nodeUri) throws DmtException

nodeUri the URI of the node

Get the meta data which describes a given node. Meta data can only be
inspected, it can not be changed.
OSGi Service Platform Release 4 379-502

info.dmtree DMT Admin Service Specification Version 1.0
The MetaNode object returned to the client is the combination of the meta
data returned by the data plugin (if any) plus the meta data returned by the
DmtAdmin. If there are differences in the meta data elements known by the
plugin and the DmtAdmin then the plugin specific elements take prece-
dence.

Note, that a node does not have to exist for having meta-data associated with
it. This method may provide meta-data for any node that can possibly exist
in the tree (any node defined in the specification). For nodes that are not
defined, it may throw DmtException with the error code
NODE_NOT_FOUND. To allow easier implementation of plugins that do
not provide meta-data, it is allowed to return null for any node, regardless of
whether it is defined or not.

Returns a MetaNode which describes meta data information, can be null if there is no
meta data available for the given node

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a node that is not defined in the
tree (see above)
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the node does not allow the Get operation for the associated principal
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree,
or if some unspecified error is encountered while attempting to complete the
command

DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the node with the Get ac-
tion present
getNodeAcl(String)

117.13.9.22 public Acl getNodeAcl(String nodeUri) throws DmtException

nodeUri the URI of the node

Get the Access Control List associated with a given node. The returned Acl
object does not take inheritance into account, it gives the ACL specifically
given to the node.

Returns the Access Control List belonging to the node or null if none defined

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the node does not allow the Get operation for the associated principal
METADATA_MISMATCH if node information cannot be retrieved accord-
ing to the meta-data (the node does not have MetaNode.CMD_GET access
type)
DATA_STORE_FAILURE if an error occurred while accessing the data store
380-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
COMMAND_FAILED if the URI is not within the current session’s subtree,
or if some unspecified error is encountered while attempting to complete the
command

DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – in case of local sessions, if the caller does not have
DmtPermission for the node with the Get action present

See Also getEffectiveNodeAcl[p.379]
getNodeSize(String)

117.13.9.23 public int getNodeSize(String nodeUri) throws DmtException

nodeUri the URI of the leaf node

Get the size of the data in a leaf node. The returned value depends on the for-
mat of the data in the node, see the description of the
DmtData.getS ize() [p.356] method for the definition of node size for each
format.

Returns the size of the data in the node

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the node does not allow the Get operation for the associated principal
COMMAND_NOT_ALLOWED if the specified node is not a leaf node
METADATA_MISMATCH if node information cannot be retrieved accord-
ing to the meta-data (it does not have MetaNode.CMD_GET access type)
FEATURE_NOT_SUPPORTED if the Size property is not supported by the
DmtAdmin implementation or the underlying plugin
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree,
or if some unspecified error is encountered while attempting to complete the
command

DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the node with the Get ac-
tion present

See Also DmtData.getSize[p.356]
getNodeTimestamp(String)

117.13.9.24 public Date getNodeTimestamp(String nodeUri) throws DmtException

nodeUri the URI of the node

Get the timestamp when the node was created or last modified.

Returns the timestamp of the last modification

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a non-existing node
OSGi Service Platform Release 4 381-502

info.dmtree DMT Admin Service Specification Version 1.0
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the node does not allow the Get operation for the associated principal
METADATA_MISMATCH if node information cannot be retrieved accord-
ing to the meta-data (it does not have MetaNode.CMD_GET access type)
FEATURE_NOT_SUPPORTED if the Timestamp property is not supported
by the DmtAdmin implementation or the underlying plugin
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree,
or if some unspecified error is encountered while attempting to complete the
command

DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the node with the Get ac-
tion present
getNodeTitle(String)

117.13.9.25 public String getNodeTitle(String nodeUri) throws DmtException

nodeUri the URI of the node

Get the title of a node. There might be no title property set for a node.

Returns the title of the node, or null if the node has no title

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the node does not allow the Get operation for the associated principal
METADATA_MISMATCH if node information cannot be retrieved accord-
ing to the meta-data (it does not have MetaNode.CMD_GET access type)
FEATURE_NOT_SUPPORTED if the Title property is not supported by the
DmtAdmin implementation or the underlying plugin
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree,
or if some unspecified error is encountered while attempting to complete the
command

DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the node with the Get ac-
tion present
getNodeType(String)

117.13.9.26 public String getNodeType(String nodeUri) throws DmtException

nodeUri the URI of the node

Get the type of a node. The type of leaf node is the MIME type of the data it
contains. The type of an interior node is a URI identifying a DDF document;
a null type means that there is no DDF document overriding the tree struc-
ture defined by the ancestors.

Returns the type of the node, can be null
382-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the node does not allow the Get operation for the associated principal
METADATA_MISMATCH if node information cannot be retrieved accord-
ing to the meta-data (it does not have MetaNode.CMD_GET access type)
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree,
or if some unspecified error is encountered while attempting to complete the
command

DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the node with the Get ac-
tion present
getNodeValue(String)

117.13.9.27 public DmtData getNodeValue(String nodeUri) throws DmtException

nodeUri the URI of the node to retrieve

Get the data contained in a leaf or interior node. When retrieving the value
associated with an interior node, the caller must have rights to read all
nodes in the subtree under the given node.

Returns the data of the node, can not be null

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the node (and the ACLs of all its descendants in case of interior nodes)
do not allow the Get operation for the associated principal
METADATA_MISMATCH if the node value cannot be retrieved according to
the meta-data (it does not have MetaNode.CMD_GET access type)
FEATURE_NOT_SUPPORTED if the specified node is an interior node and
does not support Java object values
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree,
or if some unspecified error is encountered while attempting to complete the
command

DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the node (and all its de-
scendants in case of interior nodes) with the Get action present
getNodeVersion(String)

117.13.9.28 public int getNodeVersion(String nodeUri) throws DmtException

nodeUri the URI of the node
OSGi Service Platform Release 4 383-502

info.dmtree DMT Admin Service Specification Version 1.0
Get the version of a node. The version can not be set, it is calculated auto-
matically by the device. It is incremented modulo 0x10000 at every modifi-
cation of the value or any other property of the node, for both leaf and
interior nodes. When a node is created the initial value is 0.

Returns the version of the node

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the node does not allow the Get operation for the associated principal
METADATA_MISMATCH if node information cannot be retrieved accord-
ing to the meta-data (it does not have MetaNode.CMD_GET access type)
FEATURE_NOT_SUPPORTED if the Version property is not supported by
the DmtAdmin implementation or the underlying plugin
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree,
or if some unspecified error is encountered while attempting to complete the
command

DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the node with the Get ac-
tion present
getPrincipal()

117.13.9.29 public String getPrincipal()

Gives the name of the principal on whose behalf the session was created.
Local sessions do not have an associated principal, in this case null is
returned.

Returns the identifier of the remote server that initiated the session, or null for local
sessions
getRootUri()

117.13.9.30 public String getRootUri()

Get the root URI associated with this session. Gives “.“ if the session was cre-
ated without specifying a root, which means that the target of this session is
the whole DMT.

Returns the root URI
getSessionId()

117.13.9.31 public int getSessionId()

The unique identifier of the session. The ID is generated automatically, and
it is guaranteed to be unique on a machine.

Returns the session identification number
getState()

117.13.9.32 public int getState()

Get the current state of this session.

Returns the state of the session, one of STATE_OPEN [p.368] , STATE_CLOSED [p.367]
and STATE_INVALID [p.368]
isLeafNode(String)
384-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
117.13.9.33 public boolean isLeafNode(String nodeUri) throws DmtException

nodeUri the URI of the node

Tells whether a node is a leaf or an interior node of the DMT.

Returns true if the given node is a leaf node

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the node does not allow the Get operation for the associated principal
METADATA_MISMATCH if node information cannot be retrieved accord-
ing to the meta-data (it does not have MetaNode.CMD_GET access type)
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree,
or if some unspecified error is encountered while attempting to complete the
command

DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the node with the Get ac-
tion present
isNodeUri(String)

117.13.9.34 public boolean isNodeUri(String nodeUri)

nodeUri the URI to check

Check whether the specified URI corresponds to a valid node in the DMT.

Returns true if the given node exists in the DMT

Throws DmtIllegalStateException – if the session is already closed or invalidated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the node with the Get ac-
tion present
renameNode(String,String)

117.13.9.35 public void renameNode(String nodeUri, String newName) throws
DmtException

nodeUri the URI of the node to rename

newName the new name property of the node

Rename a node. This operation only changes the name of the node (updat-
ing the timestamp and version properties if they are supported), the value
and the other properties are not changed. The new name of the node must
be provided, the new URI is constructed from the base of the old URI and the
given name. It is not allowed to rename the root node of the session.
OSGi Service Platform Release 4 385-502

info.dmtree DMT Admin Service Specification Version 1.0
If available, the meta-data of the original and the new nodes are checked
before performing the rename operation. Neither node can be permanent,
their leaf/interior property must match, and the name change must not vio-
late any of the cardinality constraints. The original node must have the Met-
aNode.CMD_REPLACE access type, and the name of the new node must
conform to the valid names.

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, if nodeUri has too
many segments, or if newName is too long
INVALID_URI if nodeUri or newName is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a non-existing node, or if the new
node is not defined in the tree according to the meta-data (see getMetaN-
ode(String))
NODE_ALREADY_EXISTS if there already exists a sibling of nodeUri with
the name newName
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the node does not allow the Replace operation for the associated prin-
cipal
COMMAND_NOT_ALLOWED if the target node is the root of the session, or
in non-atomic sessions if the underlying plugin is read-only or does not sup-
port non-atomic writing
METADATA_MISMATCH if the node could not be renamed because of
meta-data restrictions (see above)
TRANSACTION_ERROR in an atomic session if the underlying plugin is
read-only or does not support atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree,
or if some unspecified error is encountered while attempting to complete the
command

DmtIllegalStateException – if the session was opened using the
LOCK_TYPE_SHARED lock type, or if the session is already closed or invali-
dated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the node with the Re-
place action present
rollback()

117.13.9.36 public void rollback() throws DmtException

Rolls back a series of DMT operations issued in the current atomic session
since the last transaction boundary. Transaction boundaries are the creation
of this object that starts the session, and all subsequent commit [p.368] and
rol lback [p.386] calls.

Throws DmtException – with the error code ROLLBACK_FAILED in case the roll-
back did not succeed

DmtIllegalStateException – if the session was not opened using the
LOCK_TYPE_ATOMIC lock type, or if the session is already closed or invali-
dated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation
setDefaultNodeValue(String)
386-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
117.13.9.37 public void setDefaultNodeValue(String nodeUri) throws DmtException

nodeUri the URI of the node

Set the value of a leaf or interior node to its default. The default can be
defined by the node’s MetaNode. The method throws a
METADATA_MISMATCH exception if the node does not have a default
value.

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the node does not allow the Replace operation for the associated prin-
cipal
COMMAND_NOT_ALLOWED in non-atomic sessions if the underlying
plugin is read-only or does not support non-atomic writing
METADATA_MISMATCH if the node is permanent or cannot be modified
according to the meta-data (does not have the MetaNode.CMD_REPLACE ac-
cess type), or if there is no default value defined for this node
FEATURE_NOT_SUPPORTED if the specified node is an interior node and
does not support Java object values
TRANSACTION_ERROR in an atomic session if the underlying plugin is
read-only or does not support atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree,
or if some unspecified error is encountered while attempting to complete the
command

DmtIllegalStateException – if the session was opened using the
LOCK_TYPE_SHARED lock type, or if the session is already closed or invali-
dated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the node with the Re-
place action present

See Also setNodeValue[p.390]
setNodeAcl(String,Acl)

117.13.9.38 public void setNodeAcl(String nodeUri, Acl acl) throws DmtException

nodeUri the URI of the node

acl the Access Control List to be set on the node, can be null

Set the Access Control List associated with a given node. To perform this
operation, the caller needs to have replace rights (Acl.REPLACE or the corre-
sponding Java permission depending on the session type) as described
below:

• if nodeUri specifies a leaf node, replace rights are needed on the parent of
the node

• if nodeUri specifies an interior node, replace rights on either the node or
its parent are sufficient
OSGi Service Platform Release 4 387-502

info.dmtree DMT Admin Service Specification Version 1.0
If the given acl is null or an empty ACL (not specifying any permissions for
any principals), then the ACL of the node is deleted, and the node will
inherit the ACL from its parent node.

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the node or its parent (see above) does not allow the Replace opera-
tion for the associated principal
COMMAND_NOT_ALLOWED if the command attempts to set the ACL of
the root node not to include Add rights for all principals
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree,
or if some unspecified error is encountered while attempting to complete the
command

DmtIllegalStateException – if the session was opened using the
LOCK_TYPE_SHARED lock type, or if the session is already closed or invali-
dated

SecurityException – in case of local sessions, if the caller does not have
DmtPermission for the node or its parent (see above) with the Replace action
present
setNodeTitle(String,String)

117.13.9.39 public void setNodeTitle(String nodeUri, String title) throws
DmtException

nodeUri the URI of the node

title the title text of the node, can be null

Set the title property of a node. The length of the title string in UTF-8 encod-
ing must not exceed 255 bytes.

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the node does not allow the Replace operation for the associated prin-
cipal
COMMAND_NOT_ALLOWED in non-atomic sessions if the underlying
plugin is read-only or does not support non-atomic writing
METADATA_MISMATCH if the node cannot be modified according to the
meta-data (does not have the MetaNode.CMD_REPLACE access type)
FEATURE_NOT_SUPPORTED if the Title property is not supported by the
DmtAdmin implementation or the underlying plugin
TRANSACTION_ERROR in an atomic session if the underlying plugin is
read-only or does not support atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the title string is too long, if the URI is not within the
388-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
current session’s subtree, or if some unspecified error is encountered while
attempting to complete the command

DmtIllegalStateException – if the session was opened using the
LOCK_TYPE_SHARED lock type, or if the session is already closed or invali-
dated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the node with the Re-
place action present
setNodeType(String,String)

117.13.9.40 public void setNodeType(String nodeUri, String type) throws
DmtException

nodeUri the URI of the node

type the type of the node, can be null

Set the type of a node. The type of leaf node is the MIME type of the data it
contains. The type of an interior node is a URI identifying a DDF document.

For interior nodes, a null type string means that there is no DDF document
overriding the tree structure defined by the ancestors. For leaf nodes, it
requests that the default MIME type is used for the given node. If the node
does not have a default MIME type this method will throw a DmtException
with error code METADATA_MISMATCH. Note that a node might have a
default MIME type even if there is no meta-data for the node or its meta-data
does not specify the default.

MIME types must conform to the definition in RFC 2045. Interior node type
identifiers must follow the format defined in section 7.7.7.2 of the OMA
Device Management Tree and Description document. Checking the validity
of the type string does not have to be done by the DmtAdmin, this can be left
to the plugin handling the node (if any), to avoid unnecessary double-
checks.

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the node does not allow the Replace operation for the associated prin-
cipal
COMMAND_NOT_ALLOWED in non-atomic sessions if the underlying
plugin is read-only or does not support non-atomic writing
METADATA_MISMATCH if the node is permanent or cannot be modified
according to the meta-data (does not have the MetaNode.CMD_REPLACE ac-
cess type), and in case of leaf nodes, if null is given and there is no default
MIME type, or the given MIME type is not allowed
TRANSACTION_ERROR in an atomic session if the underlying plugin is
read-only or does not support atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree, if
the type string is invalid (see above), or if some unspecified error is encoun-
tered while attempting to complete the command
OSGi Service Platform Release 4 389-502

info.dmtree DMT Admin Service Specification Version 1.0
DmtIllegalStateException – if the session was opened using the
LOCK_TYPE_SHARED lock type, or if the session is already closed or invali-
dated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the node with the Re-
place action present

See Also RFC 2045 (http://www.ietf.org/rfc/rfc2045.txt) , OMA Device Management
Tree and Description v1.2 draft (http://member.openmobilealliance.org/ftp/
public_documents/dm/Permanent_documents/OMA-TS-DM-TND-V1_2-
20050615-C.zip)
setNodeValue(String,DmtData)

117.13.9.41 public void setNodeValue(String nodeUri, DmtData data) throws
DmtException

nodeUri the URI of the node

data the data to be set, can be null

Set the value of a leaf or interior node. The format of the node is contained
in the DmtData object. For interior nodes, the format must be
FORMAT_NODE, while for leaf nodes this format must not be used.

If the specified value is null, the default value is taken. In this case, if the
node does not have a default value, this method will throw a DmtException
with error code METADATA_MISMATCH. Nodes of null format can be set
by using DmtData.NULL_VALUE [p.352] as second argument.

An Event of type REPLACE is sent out for a leaf node. A replaced interior
node sends out events for each of its children in depth first order and node
names sorted with Arrays.sort(String[]). When setting a value on an interior
node, the values of the leaf nodes under it can change, but the structure of
the subtree is not modified by the operation.

Throws DmtException – with the following possible error codes:
URI_TOO_LONG if nodeUri or a segment of it is too long, or if it has too
many segments
INVALID_URI if nodeUri is null or syntactically invalid
NODE_NOT_FOUND if nodeUri points to a non-existing node
PERMISSION_DENIED if the session is associated with a principal and the
ACL of the node does not allow the Replace operation for the associated prin-
cipal
COMMAND_NOT_ALLOWED if the given data has FORMAT_NODE for-
mat but the node is a leaf node (or vice versa), or in non-atomic sessions if the
underlying plugin is read-only or does not support non-atomic writing
METADATA_MISMATCH if the node is permanent or cannot be modified
according to the meta-data (does not have the MetaNode.CMD_REPLACE ac-
cess type), or if the given value does not conform to the meta-data value con-
straints
FEATURE_NOT_SUPPORTED if the specified node is an interior node and
does not support Java object values
TRANSACTION_ERROR in an atomic session if the underlying plugin is
read-only or does not support atomic writing
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if the URI is not within the current session’s subtree,
390-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
or if some unspecified error is encountered while attempting to complete the
command

DmtIllegalStateException – if the session was opened using the
LOCK_TYPE_SHARED lock type, or if the session is already closed or invali-
dated

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation, or, in case of local ses-
sions, if the caller does not have DmtPermission for the node with the Re-
place action present
MetaNode

117.13.10 public interface MetaNode
The MetaNode contains meta data as standardized by OMA DM but extends
it (without breaking the compatibility) to provide for better DMT data qual-
ity in an environment where many software components manipulate this
data.

The interface has several types of functions to describe the nodes in the
DMT. Some methods can be used to retrieve standard OMA DM metadata
such as access type, cardinality, default, etc., others are for data extensions
such as valid names and values. In some cases the standard behaviour has
been extended, for example it is possible to provide several valid MIME
types, or to differentiate between normal and automatic dynamic nodes.

Most methods in this interface receive no input, just return information
about some aspect of the node. However, there are two methods that behave
differently, isVal idName [p.395] and i sVal idValue [p.396] . These validation
methods are given a potential node name or value (respectively), and can
decide whether it is valid for the given node. Passing the validation methods
is a necessary condition for a name or value to be used, but it is not necessar-
ily sufficient: the plugin may carry out more thorough (more expensive)
checks when the node is actually created or set.

If a MetaNode is available for a node, the DmtAdmin must use the informa-
tion provided by it to filter out invalid requests on that node. However, not
all methods on this interface are actually used for this purpose, as many of
them (e.g. getFormat [p.393] or getVal idNames [p.395]) can be substituted
with the validating methods. For example, i sVal idValue [p.396] can be
expected to check the format, minimum, maximum, etc. of a given value,
making it unnecessary for the DmtAdmin to call getFormat() [p.393] ,
getMin() [p.394] , getMax() [p.393] etc. separately. It is indicated in the
description of each method if the DmtAdmin does not enforce the con-
straints defined by it - such methods are only for external use, for example in
user interfaces.

Most of the methods of this class return null if a certain piece of meta infor-
mation is not defined for the node or providing this information is not sup-
ported. Methods of this class do not throw exceptions.
AUTOMATIC
OSGi Service Platform Release 4 391-502

info.dmtree DMT Admin Service Specification Version 1.0
117.13.10.1 public static final int AUTOMATIC = 2

Constant for representing an automatic node in the tree. This must be
returned by getScope() [p.395] for all nodes that are created automatically
by the management object. Automatic nodes represent a special case of
dynamic nodes, so this scope should be mapped to DYNAMIC [p.392] when
used in an OMA DM context.

An automatic node is usually created instantly when its parent is created,
but it is also valid if it only appears later, triggered by some other condition.
The exact behaviour must be defined by the Management Object.
CMD_ADD

117.13.10.2 public static final int CMD_ADD = 0

Constant for the ADD access type. If can(int) [p.392] returns true for this
operation, this node can potentially be added to its parent. Nodes with
PERMANENT [p.392] or AUTOMATIC [p.391] scope typically do not have this
access type.
CMD_DELETE

117.13.10.3 public static final int CMD_DELETE = 1

Constant for the DELETE access type. If can(int) [p.392] returns true for this
operation, the node can potentially be deleted.
CMD_EXECUTE

117.13.10.4 public static final int CMD_EXECUTE = 2

Constant for the EXECUTE access type. If can(int) [p.392] returns true for
this operation, the node can potentially be executed.
CMD_GET

117.13.10.5 public static final int CMD_GET = 4

Constant for the GET access type. If can(int) [p.392] returns true for this
operation, the value, the list of child nodes (in case of interior nodes) and the
properties of the node can potentially be retrieved.
CMD_REPLACE

117.13.10.6 public static final int CMD_REPLACE = 3

Constant for the REPLACE access type. If can(int) [p.392] returns true for
this operation, the value and other properties of the node can potentially be
modified.
DYNAMIC

117.13.10.7 public static final int DYNAMIC = 1

Constant for representing a dynamic node in the tree. This must be returned
by getScope [p.395] for all nodes that are not permanent and are not created
automatically by the management object.
PERMANENT

117.13.10.8 public static final int PERMANENT = 0

Constant for representing a permanent node in the tree. This must be
returned by getScope [p.395] if the node cannot be added, deleted or modi-
fied in any way through tree operations. Permanent nodes cannot have non-
permanent nodes as parents.
can(int)

117.13.10.9 public boolean can(int operation)

operation One of the MetaNode.CMD_... constants.
392-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
Check whether the given operation is valid for this node. If no meta-data is
provided for a node, all operations are valid.

Returns false if the operation is not valid for this node or the operation code is not one
of the allowed constants
getDefault()

117.13.10.10 public DmtData getDefault()

Get the default value of this node if any.

Returns The default value or null if not defined
getDescription()

117.13.10.11 public String getDescription()

Get the explanation string associated with this node. Can be null if no
description is provided for this node.

Returns node description string or null for no description
getExtensionProperty(String)

117.13.10.12 public Object getExtensionProperty(String key)

key the key for the extension property

Returns the value for the specified extension property key. This method
only works if the provider of this MetaNode provides proprietary extensions
to node meta data.

Returns the value of the requested property, cannot be null

Throws IllegalArgumentException – if the specified key is not supported by this
MetaNode
getExtensionPropertyKeys()

117.13.10.13 public String[] getExtensionPropertyKeys()

Returns the list of extension property keys, if the provider of this MetaNode
provides proprietary extensions to node meta data. The method returns null
if the node doesn’t provide such extensions.

Returns the array of supported extension property keys
getFormat()

117.13.10.14 public int getFormat()

Get the node’s format, expressed in terms of type constants defined in
DmtData [p.351] . If there are multiple formats allowed for the node then the
format constants are OR-ed. Interior nodes must have
DmtData.FORMAT_NODE [p.352] format, and this code must not be
returned for leaf nodes. If no meta-data is provided for a node, all applicable
formats are considered valid (with the above constraints regarding interior
and leaf nodes).

Note that the ‘format’ term is a legacy from OMA DM, it is more customary
to think of this as ‘type’.

The formats returned by this method are not checked by DmtAdmin, they
are only for external use, for example in user interfaces. DmtAdmin only
calls i sVal idValue [p.396] for checking the value, its behaviour should be
consistent with this method.

Returns the allowed format(s) of the node
getMax()
OSGi Service Platform Release 4 393-502

info.dmtree DMT Admin Service Specification Version 1.0
117.13.10.15 public double getMax()

Get the maximum allowed value associated with a node of numeric format.
If no meta-data is provided for a node, there is no upper limit to its value.
This method is only meaningful if the node has integer or float format. The
returned limit has double type, as this can be used to denote both integer
and float limits with full precision. The actual maximum should be the larg-
est integer or float number that does not exceed the returned value.

The information returned by this method is not checked by DmtAdmin, it is
only for external use, for example in user interfaces. DmtAdmin only calls
isVal idValue [p.396] for checking the value, its behaviour should be consis-
tent with this method.

Returns the allowed maximum, or Double.MAX_VALUE if there is no upper limit de-
fined or the node’s format is not integer or float
getMaxOccurrence()

117.13.10.16 public int getMaxOccurrence()

Get the number of maximum occurrences of this type of nodes on the same
level in the DMT. Returns Integer.MAX_VALUE if there is no upper limit.
Note that if the occurrence is greater than 1 then this node can not have sib-
lings with different metadata. In other words, if different types of nodes
coexist on the same level, their occurrence can not be greater than 1. If no
meta-data is provided for a node, there is no upper limit on the number of
occurrences.

Returns The maximum allowed occurrence of this node type
getMimeTypes()

117.13.10.17 public String[] getMimeTypes()

Get the list of MIME types this node can hold. The first element of the
returned list must be the default MIME type.

All MIME types are considered valid if no meta-data is provided for a node or
if null is returned by this method. In this case the default MIME type cannot
be retrieved from the meta-data, but the node may still have a default. This
hidden default (if it exists) can be utilized by passing null as the type param-
eter of DmtSession.setNodeType(Str ing , Str ing) [p.389] or DmtSes-
sion.createLeafNode(String , DmtData, St r ing) [p.375] .

Returns the list of allowed MIME types for this node, starting with the default MIME
type, or null if all types are allowed
getMin()

117.13.10.18 public double getMin()

Get the minimum allowed value associated with a node of numeric format.
If no meta-data is provided for a node, there is no lower limit to its value.
This method is only meaningful if the node has integer or float format. The
returned limit has double type, as this can be used to denote both integer
and float limits with full precision. The actual minimum should be the
smallest integer or float number that is larger than the returned value.

The information returned by this method is not checked by DmtAdmin, it is
only for external use, for example in user interfaces. DmtAdmin only calls
isVal idValue [p.396] for checking the value, its behaviour should be consis-
tent with this method.

Returns the allowed minimum, or Double.MIN_VALUE if there is no lower limit de-
fined or the node’s format is not integer or float
394-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
getRawFormatNames()

117.13.10.19 public String[] getRawFormatNames()

Get the format names for any raw formats supported by the node. This
method is only meaningful if the list of supported formats returned by
getFormat() [p.393] contains DmtData.FORMAT_RAW_STRING [p.352] or
DmtData.FORMAT_RAW_BINARY [p.352] : it specifies precisely which raw
format(s) are actually supported. If the node cannot contain data in one of
the raw types, this method must return null.

The format names returned by this method are not checked by DmtAdmin,
they are only for external use, for example in user interfaces. DmtAdmin
only calls isVal idValue [p.396] for checking the value, its behaviour should
be consistent with this method.

Returns the allowed format name(s) of raw data stored by the node, or null if raw for-
mats are not supported
getScope()

117.13.10.20 public int getScope()

Return the scope of the node. Valid values are PERMANENT
MetaNode.PERMANENT [p.392] , DYNAMIC MetaNode.DYNAMIC [p.392]
and AUTOMATIC MetaNode.AUTOMATIC [p.391] . Note that a permanent
node is not the same as a node where the DELETE operation is not allowed.
Permanent nodes never can be deleted, whereas a non-deletable node can
disappear in a recursive DELETE operation issued on one of its parents. If no
meta-data is provided for a node, it can be assumed to be a dynamic node.

Returns PERMANENT [p.392] for permanent nodes, AUTOMATIC [p.391] for nodes
that are automatically created, and DYNAMIC [p.392] otherwise
getValidNames()

117.13.10.21 public String[] getValidNames()

Return an array of Strings if valid names are defined for the node, or null if
no valid name list is defined or if this piece of meta info is not supported. If
no meta-data is provided for a node, all names are considered valid.

The information returned by this method is not checked by DmtAdmin, it is
only for external use, for example in user interfaces. DmtAdmin only calls
i sVa lidName [p.395] for checking the name, its behaviour should be consis-
tent with this method.

Returns the valid values for this node name, or null if not defined
getValidValues()

117.13.10.22 public DmtData[] getValidValues()

Return an array of DmtData objects if valid values are defined for the node,
or null otherwise. If no meta-data is provided for a node, all values are con-
sidered valid.

The information returned by this method is not checked by DmtAdmin, it is
only for external use, for example in user interfaces. DmtAdmin only calls
i sVa lidValue [p.396] for checking the value, its behaviour should be consis-
tent with this method.

Returns the valid values for this node, or null if not defined
isLeaf()

117.13.10.23 public boolean isLeaf()

Check whether the node is a leaf node or an internal one.

Returns true if the node is a leaf node
isValidName(String)
OSGi Service Platform Release 4 395-502

info.dmtree DMT Admin Service Specification Version 1.0
117.13.10.24 public boolean isValidName(String name)

name the node name to check for validity

Checks whether the given name is a valid name for this node. This method
can be used for example to ensure that the node name is always one of a pre-
defined set of valid names, or that it matches a specific pattern. This method
should be consistent with the values returned by getVal idNames [p.395] (if
any), the DmtAdmin only calls this method for name validation.

This method may return true even if not all aspects of the name have been
checked, expensive operations (for example those that require external
resources) need not be performed here. The actual node creation may still
indicate that the node name is invalid.

Returns false if the specified name is found to be invalid for the node described by this
meta-node, true otherwise
isValidValue(DmtData)

117.13.10.25 public boolean isValidValue(DmtData value)

value the value to check for validity

Checks whether the given value is valid for this node. This method can be
used to ensure that the value has the correct format and range, that it is well
formed, etc. This method should be consistent with the constraints defined
by the getFormat[p.393] , getVal idValues [p.395] , getMin [p.394] and
getMax [p.393] methods (if applicable), as the Dmt Admin only calls this
method for value validation.

This method may return true even if not all aspects of the value have been
checked, expensive operations (for example those that require external
resources) need not be performed here. The actual value setting method
may still indicate that the value is invalid.

Returns false if the specified value is found to be invalid for the node described by this
meta-node, true otherwise
isZeroOccurrenceAllowed()

117.13.10.26 public boolean isZeroOccurrenceAllowed()

Check whether zero occurrence of this node is valid. If no meta-data is
returned for a node, zero occurrences are allowed.

Returns true if zero occurrence of this node is valid
Uri

117.13.11 public final class Uri
This class contains static utility methods to manipulate DMT URIs.

Syntax of valid DMT URIs:

• A slash (‘/’ \u002F) is the separator of the node names. Slashes used in
node name must therefore be escaped using a backslash slash (“\/”). The
backslash must be escaped with a double backslash sequence. A back-
slash found must be ignored when it is not followed by a slash or back-
slash.

• The node name can be constructed using full Unicode character set
(except the Supplementary code, not being supported by CLDC/CDC).
However, using the full Unicode character set for node names is dis-
couraged because the encoding in the underlying storage as well as the
encoding needed in communications can create significant performance
396-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree
and memory usage overhead. Names that are restricted to the URI set [-a-
zA-Z0-9_.!~*’()] are most efficient.

• URIs used in the DMT must be treated and interpreted as case sensitive.
• No End Slash: URI must not end with the delimiter slash (‘/’ \u002F). This

implies that the root node must be denoted as “.” and not “./”.
• No parent denotation: URI must not be constructed using the character

sequence “../” to traverse the tree upwards.
• Single Root: The character sequence “./” must not be used anywhere else

but in the beginning of a URI.
getMaxSegmentNameLength()

117.13.11.1 public static int getMaxSegmentNameLength()

Returns the maximum allowed length of a URI segment. The value is imple-
mentation specific. The length of the URI segment is defined as the number
of bytes in the unescaped, UTF-8 encoded represenation of the segment.

The return value of Integer.MAX_VALUE indicates that there is no upper
limit on the length of segment names.

Returns maximum URI segment length supported by the implementation
getMaxUriLength()

117.13.11.2 public static int getMaxUriLength()

Returns the maximum allowed length of a URI. The value is implementa-
tion specific. The length of the URI is defined as the number of bytes in the
unescaped, UTF-8 encoded represenation of the URI.

The return value of Integer.MAX_VALUE indicates that there is no upper
limit on the length of URIs.

Returns maximum URI length supported by the implementation
getMaxUriSegments()

117.13.11.3 public static int getMaxUriSegments()

Returns the maximum allowed number of URI segments. The returned
value is implementation specific.

The return value of Integer.MAX_VALUE indicates that there is no upper
limit on the number of URI segments.

Returns maximum number of URI segments supported by the implementation
isAbsoluteUri(String)

117.13.11.4 public static boolean isAbsoluteUri(String uri)

uri the URI to be checked, must not be null and must contain a valid URI

Checks whether the specified URI is an absolute URI. An absolute URI con-
tains the complete path to a node in the DMT starting from the DMT root
(”.”).

Returns whether the specified URI is absolute

Throws NullPointerException – if the specified URI is null

IllegalArgumentException – if the specified URI is malformed
isValidUri(String)

117.13.11.5 public static boolean isValidUri(String uri)

uri the URI to be validated

Checks whether the specified URI is valid. A URI is considered valid if it
meets the following constraints:

• the URI is not null;
OSGi Service Platform Release 4 397-502

info.dmtree DMT Admin Service Specification Version 1.0
• the URI follows the syntax defined for valid DMT URIs;
• the length of the URI is not more than getMaxUriLength() [p.397] ;
• the URI doesn’t contain more than getMaxUr iSegments()[p.397] seg-

ments;
• the length of each segment of the URI is less than or equal to

getMaxSegmentNameLength() [p.397] .

getMaxUriLength() and getMaxSegmentNameLength() methods.

Returns whether the specified URI is valid
mangle(String)

117.13.11.6 public static String mangle(String nodeName)

nodeName the node name to be mangled (if necessary), must not be null or empty

Returns a node name that is valid for the tree operation methods, based on
the given node name. This transformation is not idempotent, so it must not
be called with a parameter that is the result of a previous mangle method
call.

Node name mangling is needed in the following cases:

• if the name contains ‘/’ or ‘\’characters
• if the length of the name exceeds the limit defined by the implemen-

tation

A node name that does not suffer from either of these problems is guaran-
teed to remain unchanged by this method. Therefore the client may skip the
mangling if the node name is known to be valid (though it is always safe to
call this method).

The method returns the normalized nodeName as described below. Invalid
node names are normalized in different ways, depending on the cause. If the
length of the name does not exceed the limit, but the name contains ‘/’ or
‘\’characters, then these are simply escaped by inserting an additional
‘\’before each occurrence. If the length of the name does exceed the limit, the
following mechanism is used to normalize it:

• the SHA 1 digest of the name is calculated
• the digest is encoded with the base 64 algorithm
• all ‘/’ characters in the encoded digest are replaced with ‘_’
• trailing ‘=’ signs are removed

Returns the normalized node name that is valid for tree operations

Throws NullPointerException – if nodeName is null

IllegalArgumentException – if nodeName is empty
toPath(String)

117.13.11.7 public static String[] toPath(String uri)

uri the URI to be split, must not be null

Split the specified URI along the path separator ‘/’ charaters and return an
array of URI segments. Special characters in the returned segments are
escaped. The returned array may be empty if the specifed URI was empty.

Returns an array of URI segments created by splitting the specified URI

Throws NullPointerException – if the specified URI is null

IllegalArgumentException – if the specified URI is malformed
toUri(String[])
398-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree.spi
117.13.11.8 public static String toUri(String[] path)

path a possibly empty array of URI segments, must not be null

Construct a URI from the specified URI segments. The segments must
already be mangled.

If the specified path is an empty array then an empty URI (“”) is returned.

Returns the URI created from the specified segments

Throws NullPointerException – if the specified path or any of its segments are null

IllegalArgumentException – if the specified path contains too many or
malformed segments or the resulting URI is too long

117.14 info.dmtree.spi
Device Management Tree SPI Package Version 1.0. This package contains
the interface classes that compose the Device Management SPI (Service Pro-
vider Interface). These interfaces are implemented by DMT plugins; users of
the DmtAdmin interface do not interact directly with these.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: info.dmtree.spi;version=1.0

117.14.1 Summary
• DataPlugin - An implementation of this interface takes the responsibility

of handling data requests in a subtree of the DMT. [p.399]
• ExecPlugin - An implementation of this interface takes the responsibility

of handling node execute requests requests in a subtree of the DMT.
[p.401]

• ReadableDataSession - Provides read-only access to the part of the tree
handled by the plugin that created this session. [p.402]

• ReadWriteDataSession - Provides non-atomic read-write access to the
part of the tree handled by the plugin that created this session. [p.407]

• TransactionalDataSession - Provides atomic read-write access to the part
of the tree handled by the plugin that created this session. [p.412]

DataPlugin

117.14.2 public interface DataPlugin
An implementation of this interface takes the responsibility of handling
data requests in a subtree of the DMT.

In an OSGi environment such implementations should be registered at the
OSGi service registry specifying the list of root node URIs in a String array in
the dataRootURIs registration parameter.

When the first reference in a session is made to a node handled by this plu-
gin, the DmtAdmin calls one of the open... methods to retrieve a plugin ses-
sion object for processing the request. The called method depends on the
lock type of the current session. In case of openReadWriteSession(Str ing[] ,
DmtSess ion) [p.401] and openAtomicSess ion(Str ing[],
OSGi Service Platform Release 4 399-502

info.dmtree.spi DMT Admin Service Specification Version 1.0
DmtSess ion) [p.400] , the plugin may return null to indicate that the speci-
fied lock type is not supported. In this case the DmtAdmin may call open-
ReadOnlySess ion(String[], DmtSess ion) [p.400] to start a read-only plugin
session, which can be used as long as there are no write operations on the
nodes handled by this plugin.

The sessionRoot parameter of each method is a String array containing the
segments of the URI pointing to the root of the session. This is an absolute
path, so the first segment is always “.”. Special characters appear escaped in
the segments.
openAtomicSession(String[],info.dmtree.DmtSession)

117.14.2.1 public TransactionalDataSession openAtomicSession(String[]
sessionRoot, DmtSession session) throws DmtException

sessionRoot the path to the subtree which is locked in the current session, must not be
null

session the session from which this plugin instance is accessed, must not be null

This method is called to signal the start of an atomic read-write session
when the first reference is made within a DmtSession to a node which is
handled by this plugin. Session information is given as it is needed for send-
ing alerts back from the plugin.

The plugin can assume that there are no other sessions open on any subtree
that has any overlap with the subtree of this session.

Returns a plugin session capable of executing read-write operations in an atomic
block, or null if the plugin does not support atomic read-write sessions

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if sessionRoot points to a non-existing node
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command

SecurityException – if some underlying operation failed because of lack of
permissions
openReadOnlySession(String[],info.dmtree.DmtSession)

117.14.2.2 public ReadableDataSession openReadOnlySession(String[]
sessionRoot, DmtSession session) throws DmtException

sessionRoot the path to the subtree which is accessed in the current session, must not be
null

session the session from which this plugin instance is accessed, must not be null

This method is called to signal the start of a read-only session when the first
reference is made within a DmtSession to a node which is handled by this
plugin. Session information is given as it is needed for sending alerts back
from the plugin.

The plugin can assume that there are no writing sessions open on any sub-
tree that has any overlap with the subtree of this session.

Returns a plugin session capable of executing read operations

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if sessionRoot points to a non-existing node
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command
400-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree.spi
SecurityException – if some underlying operation failed because of lack of
permissions
openReadWriteSession(String[],info.dmtree.DmtSession)

117.14.2.3 public ReadWriteDataSession openReadWriteSession(String[]
sessionRoot, DmtSession session) throws DmtException

sessionRoot the path to the subtree which is locked in the current session, must not be
null

session the session from which this plugin instance is accessed, must not be null

This method is called to signal the start of a non-atomic read-write session
when the first reference is made within a DmtSession to a node which is
handled by this plugin. Session information is given as it is needed for send-
ing alerts back from the plugin.

The plugin can assume that there are no other sessions open on any subtree
that has any overlap with the subtree of this session.

Returns a plugin session capable of executing read-write operations, or null if the
plugin does not support non-atomic read-write sessions

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if sessionRoot points to a non-existing node
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command

SecurityException – if some underlying operation failed because of lack of
permissions
ExecPlugin

117.14.3 public interface ExecPlugin
An implementation of this interface takes the responsibility of handling
node execute requests requests in a subtree of the DMT.

In an OSGi environment such implementations should be registered at the
OSGi service registry specifying the list of root node URIs in a String array in
the execRootURIs registration parameter.
execute(info.dmtree.DmtSession,String[],String,String)

117.14.3.1 public void execute(DmtSession session, String[] nodePath, String
correlator, String data) throws DmtException

session a reference to the session in which the operation was issued, must not be null

nodePath the absolute path of the node to be executed, must not be null

correlator an identifier to associate this operation with any alerts sent in response to it,
can be null

data the parameter of the execute operation, can be null

Execute the given node with the given data. This operation corresponds to
the EXEC command in OMA DM.

The semantics of an execute operation and the data parameter it takes
depends on the definition of the managed object on which the command is
issued. Session information is given as it is needed for sending alerts back
from the plugin. If a correlation ID is specified, it should be used as the corr-
elator parameter for alerts sent in response to this execute operation.
OSGi Service Platform Release 4 401-502

info.dmtree.spi DMT Admin Service Specification Version 1.0
The nodePath parameter contains an array of path segments identifying the
node to be executed in the subtree of this plugin. This is an absolute path, so
the first segment is always “.”. Special characters appear escaped in the seg-
ments.

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if the node does not exist and the plugin does not al-
low executing unexisting nodes
METADATA_MISMATCH if the command failed because of meta-data re-
strictions
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command

See Also DmtSession.execute(String, String), DmtSession.execute(String,
String, String)
ReadableDataSession

117.14.4 public interface ReadableDataSession
Provides read-only access to the part of the tree handled by the plugin that
created this session.

Since the ReadWriteDataSession [p.407] and
TransactionalDataSession [p.412] interfaces inherit from this interface,
some of the method descriptions do not apply for an instance that is only a
ReadableDataSession. For example, the c lose [p.403] method description
also contains information about its behaviour when invoked as part of a
transactional session.

The nodePath parameters appearing in this interface always contain an
array of path segments identifying a node in the subtree of this plugin. This
parameter contains an absolute path, so the first segment is always “.”. Spe-
cial characters appear escaped in the segments.

Error handling

When a tree access command is called on the DmtAdmin service, it must
perform an extensive set of checks on the parameters and the authority of
the caller before delegating the call to a plugin. Therefore plugins can take
certain circumstances for granted: that the path is valid and is within the
subtree of the plugin and the session, the command can be applied to the
given node (e.g. the target of getChildNodeNames is an interior node), etc.
All errors described by the error codes DmtException. INVALID_URI , DmtEx-
cept ion.URI_TOO_LONG , DmtExcept ion.PERMISSION_DENIED , DmtEx-
cept ion.COMMAND_NOT_ALLOWED and
DmtException.TRANSACTION_ERROR are fully filtered out before control
reaches the plugin.

If the plugin provides meta-data for a node, the DmtAdmin service must
also check the constraints specified by it, as described in MetaNode . If the
plugin does not provide meta-data, it must perform the necessary checks for
itself and use the DmtExcept ion.METADATA_MISMATCH error code to indi-
cate such discrepancies.
402-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree.spi
The DmtAdmin also ensures that the targeted nodes exist before calling the
plugin (except, of course, before the isNodeUri call). However, some small
amount of time elapses between the check and the call, so in case of plugins
where the node structure can change independantly from the DMT, the tar-
get node might disappear in that time. For example, a whole subtree can dis-
appear when a Monitorable application is unregistered, which might
happen in the middle of a DMT session accessing it. Plugins managing such
nodes always need to check whether they still exist and throw DmtExcep-
tion.NODE_NOT_FOUND as necessary, but for more static subtrees there is
no need for the plugin to use this error code.

The plugin can use the remaining error codes as needed. If an error does not
fit into any other category, the DmtException.COMMAND_FAILED code
should be used.
close()

117.14.4.1 public void close() throws DmtException

Closes a session. This method is always called when the session ends for any
reason: if the session is closed, if a fatal error occurs in any method, or if any
error occurs during commit or rollback. In case the session was invalidated
due to an exception during commit or rollback, it is guaranteed that no
methods are called on the plugin until it is closed. In case the session was
invalidated due to a fatal exception in one of the tree manipulation meth-
ods, only the rollback method is called before this (and only in atomic ses-
sions).

This method should not perform any data manipulation, only cleanup oper-
ations. In non-atomic read-write sessions the data manipulation should be
done instantly during each tree operation, while in atomic sessions the
DmtAdmin always calls Transact ionalDataSess ion.commit [p.412] auto-
matically before the session is actually closed.

Throws DmtException – with the error code COMMAND_FAILED if the plugin
failed to close for any reason
getChildNodeNames(String[])

117.14.4.2 public String[] getChildNodeNames(String[] nodePath) throws
DmtException

nodePath the absolute path of the node

Get the list of children names of a node. The returned array contains the
names - not the URIs - of the immediate children nodes of the given node.
The returned child names must be mangled (info.dmtree.Ur i.mangle). The
returned array may contain null entries, but these are removed by the
DmtAdmin before returning it to the client.

Returns the list of child node names as a string array or an empty string array if the
node has no children

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the information could not be retrieved because
of meta-data restrictions
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command
OSGi Service Platform Release 4 403-502

info.dmtree.spi DMT Admin Service Specification Version 1.0
SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation
getMetaNode(String[])

117.14.4.3 public MetaNode getMetaNode(String[] nodePath) throws
DmtException

nodePath the absolute path of the node

Get the meta data which describes a given node. Meta data can be only
inspected, it can not be changed.

Meta data support by plugins is an optional feature. It can be used, for exam-
ple, when a data plugin is implemented on top of a data store or another API
that has their own metadata, such as a relational database, in order to avoid
metadata duplication and inconsistency. The meta data specific to the plu-
gin returned by this method is complemented by meta data from the
DmtAdmin before returning it to the client. If there are differences in the
meta data elements known by the plugin and the DmtAdmin then the plu-
gin specific elements take precedence.

Note, that a node does not have to exist for having meta-data associated with
it. This method may provide meta-data for any node that can possibly exist
in the tree (any node defined by the Management Object provided by the
plugin). For nodes that are not defined, a DmtException may be thrown
with the NODE_NOT_FOUND error code. To allow easier implementation
of plugins that do not provide meta-data, it is allowed to return null for any
node, regardless of whether it is defined or not.

Returns a MetaNode which describes meta data information, can be null if there is no
meta data available for the given node

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodeUri points to a node that is not defined in the
tree (see above)
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation
getNodeSize(String[])

117.14.4.4 public int getNodeSize(String[] nodePath) throws DmtException

nodePath the absolute path of the leaf node

Get the size of the data in a leaf node. The value to return depends on the for-
mat of the data in the node, see the description of the DmtData .getS ize()
method for the definition of node size for each format.

Returns the size of the data in the node

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the information could not be retrieved because
of meta-data restrictions
FEATURE_NOT_SUPPORTED if the Size property is not supported by the
plugin
DATA_STORE_FAILURE if an error occurred while accessing the data store
404-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree.spi
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation

See Also DmtData.getSize
getNodeTimestamp(String[])

117.14.4.5 public Date getNodeTimestamp(String[] nodePath) throws
DmtException

nodePath the absolute path of the node

Get the timestamp when the node was last modified.

Returns the timestamp of the last modification

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the information could not be retrieved because
of meta-data restrictions
FEATURE_NOT_SUPPORTED if the Timestamp property is not supported
by the plugin
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation
getNodeTitle(String[])

117.14.4.6 public String getNodeTitle(String[] nodePath) throws DmtException

nodePath the absolute path of the node

Get the title of a node. There might be no title property set for a node.

Returns the title of the node, or null if the node has no title

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the information could not be retrieved because
of meta-data restrictions
FEATURE_NOT_SUPPORTED if the Title property is not supported by the
plugin
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation
getNodeType(String[])

117.14.4.7 public String getNodeType(String[] nodePath) throws DmtException

nodePath the absolute path of the node

Get the type of a node. The type of leaf node is the MIME type of the data it
contains. The type of an interior node is a URI identifying a DDF document;
a null type means that there is no DDF document overriding the tree struc-
ture defined by the ancestors.

Returns the type of the node, can be null
OSGi Service Platform Release 4 405-502

info.dmtree.spi DMT Admin Service Specification Version 1.0
Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the information could not be retrieved because
of meta-data restrictions
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation
getNodeValue(String[])

117.14.4.8 public DmtData getNodeValue(String[] nodePath) throws
DmtException

nodePath the absolute path of the node to retrieve

Get the data contained in a leaf or interior node.

Returns the data of the leaf node, must not be null

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the information could not be retrieved because
of meta-data restrictions
FEATURE_NOT_SUPPORTED if the specified node is an interior node and
does not support Java object values
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation
getNodeVersion(String[])

117.14.4.9 public int getNodeVersion(String[] nodePath) throws DmtException

nodePath the absolute path of the node

Get the version of a node. The version can not be set, it is calculated auto-
matically by the device. It is incremented modulo 0x10000 at every modifi-
cation of the value or any other property of the node, for both leaf and
interior nodes. When a node is created the initial value is 0.

Returns the version of the node

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the information could not be retrieved because
of meta-data restrictions
FEATURE_NOT_SUPPORTED if the Version property is not supported by
the plugin
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation
isLeafNode(String[])

117.14.4.10 public boolean isLeafNode(String[] nodePath) throws DmtException

nodePath the absolute path of the node
406-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree.spi
Tells whether a node is a leaf or an interior node of the DMT.

Returns true if the given node is a leaf node

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the information could not be retrieved because
of meta-data restrictions
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation
isNodeUri(String[])

117.14.4.11 public boolean isNodeUri(String[] nodePath)

nodePath the absolute path to check

Check whether the specified path corresponds to a valid node in the DMT.

Returns true if the given node exists in the DMT
nodeChanged(String[])

117.14.4.12 public void nodeChanged(String[] nodePath) throws DmtException

nodePath the absolute path of the node that has changed

Notifies the plugin that the given node has changed outside the scope of the
plugin, therefore the Version and Timestamp properties must be updated (if
supported). This method is needed because the ACL property of a node is
managed by the DmtAdmin instead of the plugin. The DmtAdmin must call
this method whenever the ACL property of a node changes.

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command
ReadWriteDataSession

117.14.5 public interface ReadWriteDataSession
extends ReadableDataSession
Provides non-atomic read-write access to the part of the tree handled by the
plugin that created this session.

The nodePath parameters appearing in this interface always contain an
array of path segments identifying a node in the subtree of this plugin. This
parameter contains an absolute path, so the first segment is always “.”. Spe-
cial characters appear escaped in the segments.

Error handling

When a tree manipulation command is called on the DmtAdmin service, it
must perform an extensive set of checks on the parameters and the author-
ity of the caller before delegating the call to a plugin. Therefore plugins can
take certain circumstances for granted: that the path is valid and is within
the subtree of the plugin and the session, the command can be applied to
the given node (e.g. the target of setNodeValue is a leaf node), etc. All errors
described by the error codes DmtException. INVALID_URI , DmtExcep-
OSGi Service Platform Release 4 407-502

info.dmtree.spi DMT Admin Service Specification Version 1.0
t ion.UR I_TOO_LONG , DmtException.PERMISSION_DENIED , DmtExcep-
t ion.COMMAND_NOT_ALLOWED and
DmtException.TRANSACTION_ERROR are fully filtered out before control
reaches the plugin.

If the plugin provides meta-data for a node, the DmtAdmin service must
also check the constraints specified by it, as described in MetaNode . If the
plugin does not provide meta-data, it must perform the necessary checks for
itself and use the DmtExcept ion.METADATA_MISMATCH error code to indi-
cate such discrepancies.

The DmtAdmin also ensures that the targeted nodes exist before calling the
plugin (or that they do not exist, in case of node creation). However, some
small amount of time elapses between the check and the call, so in case of
plugins where the node structure can change independantly from the DMT,
the target node might appear/disappear in that time. For example, a whole
subtree can disappear when a Monitorable application is unregistered,
which might happen in the middle of a DMT session accessing it. Plugins
managing such nodes always need to check the existance or non-existance
of nodes and throw DmtExcept ion.NODE_NOT_FOUND or DmtExcep-
tion.NODE_ALREADY_EXISTS as necessary, but for more static subtrees
there is no need for the plugin to use these error codes.

The plugin can use the remaining error codes as needed. If an error does not
fit into any other category, the DmtException.COMMAND_FAILED code
should be used.
copy(String[],String[],boolean)

117.14.5.1 public void copy(String[] nodePath, String[] newNodePath, boolean
recursive) throws DmtException

nodePath an absolute path specifying the node or the root of a subtree to be copied

newNodePath the absolute path of the new node or root of a subtree

recursive false if only a single node is copied, true if the whole subtree is copied

Create a copy of a node or a whole subtree. Beside the structure and values of
the nodes, most properties managed by the plugin must also be copied, with
the exception of the Timestamp and Version properties.

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node, or if newN-
odePath points to a node that cannot exist in the tree
NODE_ALREADY_EXISTS if newNodePath points to a node that already ex-
ists
METADATA_MISMATCH if the node could not be copied because of meta-
data restrictions
FEATURE_NOT_SUPPORTED if the copy operation is not supported by the
plugin
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation

See Also DmtSession.copy(String, String, boolean)
createInteriorNode(String[],String)
408-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree.spi
117.14.5.2 public void createInteriorNode(String[] nodePath, String type) throws
DmtException

nodePath the absolute path of the node to create

type the type URI of the interior node, can be null if no node type is defined

Create an interior node with a given type. The type of interior node, if speci-
fied, is a URI identifying a DDF document.

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a node that cannot exist in the
tree
NODE_ALREADY_EXISTS if nodeUri points to a node that already exists
METADATA_MISMATCH if the node could not be created because of meta-
data restrictions
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation

See Also DmtSession.createInteriorNode(String),
DmtSession.createInteriorNode(String, String)
createLeafNode(String[],info.dmtree.DmtData,String)

117.14.5.3 public void createLeafNode(String[] nodePath, DmtData value, String
mimeType) throws DmtException

nodePath the absolute path of the node to create

value the value to be given to the new node, can be null

mimeType the MIME type to be given to the new node, can be null

Create a leaf node with a given value and MIME type. If the specified value
or MIME type is null, their default values must be taken.

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a node that cannot exist in the
tree
NODE_ALREADY_EXISTS if nodePath points to a node that already exists
METADATA_MISMATCH if the node could not be created because of meta-
data restrictions
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation

See Also DmtSession.createLeafNode(String),
DmtSession.createLeafNode(String, DmtData),
DmtSession.createLeafNode(String, DmtData, String)
deleteNode(String[])

117.14.5.4 public void deleteNode(String[] nodePath) throws DmtException

nodePath the absolute path of the node to delete

Delete the given node. Deleting interior nodes is recursive, the whole sub-
tree under the given node is deleted.
OSGi Service Platform Release 4 409-502

info.dmtree.spi DMT Admin Service Specification Version 1.0
Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the node could not be deleted because of meta-
data restrictions
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation

See Also DmtSession.deleteNode(String)
renameNode(String[],String)

117.14.5.5 public void renameNode(String[] nodePath, String newName) throws
DmtException

nodePath the absolute path of the node to rename

newName the new name property of the node

Rename a node. This operation only changes the name of the node (updat-
ing the timestamp and version properties if they are supported), the value
and the other properties are not changed. The new name of the node must
be provided, the new path is constructed from the base of the old path and
the given name.

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node, or if the new
node is not defined in the tree
NODE_ALREADY_EXISTS if there already exists a sibling of nodePath with
the name newName
METADATA_MISMATCH if the node could not be renamed because of
meta-data restrictions
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation

See Also DmtSession.renameNode(String, String)
setNodeTitle(String[],String)

117.14.5.6 public void setNodeTitle(String[] nodePath, String title) throws
DmtException

nodePath the absolute path of the node

title the title text of the node, can be null

Set the title property of a node. The length of the title is guaranteed not to
exceed the limit of 255 bytes in UTF-8 encoding.

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the title could not be set because of meta-data
restrictions
FEATURE_NOT_SUPPORTED if the Title property is not supported by the
plugin
DATA_STORE_FAILURE if an error occurred while accessing the data store
410-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree.spi
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation

See Also DmtSession.setNodeTitle(String, String)
setNodeType(String[],String)

117.14.5.7 public void setNodeType(String[] nodePath, String type) throws
DmtException

nodePath the absolute path of the node

type the type of the node, can be null

Set the type of a node. The type of leaf node is the MIME type of the data it
contains. The type of an interior node is a URI identifying a DDF document.

For interior nodes, the null type should remove the reference (if any) to a
DDF document overriding the tree structure defined by the ancestors. For
leaf nodes, it requests that the default MIME type is used for the given node.

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the type could not be set because of meta-data
restrictions
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation

See Also DmtSession.setNodeType(String, String)
setNodeValue(String[],info.dmtree.DmtData)

117.14.5.8 public void setNodeValue(String[] nodePath, DmtData data) throws
DmtException

nodePath the absolute path of the node

data the data to be set, can be null

Set the value of a leaf or interior node. The format of the node is contained
in the DmtData object. For interior nodes, the format is FORMAT_NODE,
while for leaf nodes this format is never used.

If the specified value is null, the default value must be taken; if there is no
default value, a DmtException with error code METADATA_MISMATCH
must be thrown.

Throws DmtException – with the following possible error codes:
NODE_NOT_FOUND if nodePath points to a non-existing node
METADATA_MISMATCH if the value could not be set because of meta-data
restrictions
FEATURE_NOT_SUPPORTED if the specified node is an interior node and
does not support Java object values
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command
OSGi Service Platform Release 4 411-502

info.dmtree.spi DMT Admin Service Specification Version 1.0
SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation

See Also DmtSession.setNodeValue(String, DmtData)
TransactionalDataSession

117.14.6 public interface TransactionalDataSession
extends ReadWriteDataSession
Provides atomic read-write access to the part of the tree handled by the plu-
gin that created this session.
commit()

117.14.6.1 public void commit() throws DmtException

Commits a series of DMT operations issued in the current atomic session
since the last transaction boundary. Transaction boundaries are the creation
of this object that starts the session, and all subsequent commit [p.412] and
rol lback [p.412] calls.

This method can fail even if all operations were successful. This can happen
due to some multi-node semantic constraints defined by a specific imple-
mentation. For example, node A can be required to always have children A/
B, A/C and A/D. If this condition is broken when commit() is executed, the
method will fail, and throw a METADATA_MISMATCH exception.

In many cases the tree is not the only way to manage a given part of the sys-
tem. It may happen that while modifying some nodes in an atomic session,
the underlying settings are modified parallelly outside the scope of the
DMT. If this is detected during commit, an exception with the code
CONCURRENT_ACCESS is thrown.

Throws DmtException – with the following possible error codes
METADATA_MISMATCH if the operation failed because of meta-data re-
strictions
CONCURRENT_ACCESS if it is detected that some modification has been
made outside the scope of the DMT to the nodes affected in the session’s op-
erations
DATA_STORE_FAILURE if an error occurred while accessing the data store
COMMAND_FAILED if some unspecified error is encountered while at-
tempting to complete the command

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation
rollback()

117.14.6.2 public void rollback() throws DmtException

Rolls back a series of DMT operations issued in the current atomic session
since the last transaction boundary. Transaction boundaries are the creation
of this object that starts the session, and all subsequent commit [p.412] and
rol lback [p.412] calls.

Throws DmtException – with the error code ROLLBACK_FAILED in case the roll-
back did not succeed

SecurityException – if the caller does not have the necessary permissions
to execute the underlying management operation
412-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree.notification
117.15 info.dmtree.notification
Device Management Tree Notification Package Version 1.0. This package
contains the public API of the Notification service. This service enables the
sending of asynchronous notifications to management servers. Permission
classes are provided by the info.dmtree.security package.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: info.dmtree.notification;version=1.0

117.15.1 Summary
• AlertItem - Immutable data structure carried in an alert (client initiated

notification). [p.413]
• NotificationService - NotificationService enables sending aynchronous

notifications to a management server. [p.415]
AlertItem

117.15.2 public class AlertItem
Immutable data structure carried in an alert (client initiated notification).
The AlertItem describes details of various notifications that can be sent by
the client, for example as alerts in the OMA DM protocol. The use cases
include the client sending a session request to the server (alert 1201), the cli-
ent notifying the server of completion of a software update operation (alert
1226) or sending back results in response to an asynchronous EXEC com-
mand.

The data syntax and semantics varies widely between various alerts, so does
the optionality of particular parameters of an alert item. If an item, such as
source or type, is not defined, the corresponding getter method returns null.
For example, for alert 1201 (client-initiated session) all elements will be
null.

The syntax used in AlertItem class corresponds to the OMA DM alert for-
mat. Noti f icat ionServ ice [p.415] implementations on other management
protocols should map these constructs to the underlying protocol.
AlertItem(String,String,String,info.dmtree.DmtData)

117.15.2.1 public AlertItem(String source, String type, String mark, DmtData data)

source the URI of the node which is the source of the alert item

type a MIME type or a URN that identifies the type of the data in the alert item

data a DmtData object that contains the format and value of the data in the alert
item

mark the mark parameter of the alert item

Create an instance of the alert item. The constructor takes all possible data
entries as parameters. Any of these parameters can be null. The semantics of
the parameters may be refined by the definition of a specific alert, identified
by its alert code (see Noti f icationService.sendNoti f ication [p.415]). In case
of Generic Alerts for example (code 1226), the mark parameter contains a
severity string.
AlertItem(String[],String,String,info.dmtree.DmtData)
OSGi Service Platform Release 4 413-502

info.dmtree.notification DMT Admin Service Specification Version 1.0
117.15.2.2 public AlertItem(String[] source, String type, String mark, DmtData
data)

source the path of the node which is the source of the alert item

type a MIME type or a URN that identifies the type of the data in the alert item

data a DmtData object that contains the format and value of the data in the alert
item

mark the mark parameter of the alert item

Create an instance of the alert item, specifying the source node URI as an
array of path segments. The constructor takes all possible data entries as
parameters. Any of these parameters can be null. The semantics of the
parameters may be refined by the definition of a specific alert, identified by
its alert code (see Noti f icat ionService .sendNot if icat ion [p.415]). In case of
Generic Alerts for example (code 1226), the mark parameter contains a
severity string.
getData()

117.15.2.3 public DmtData getData()

Get the data associated with the alert item. The returned DmtData object
contains the format and the value of the data in the alert item. There might
be no data associated with the alert item.

Returns the data associated with the alert item, or null if there is no data
getMark()

117.15.2.4 public String getMark()

Get the mark parameter associated with the alert item. The interpretation of
the mark parameter depends on the alert being sent, as identified by the
alert code in Noti f icat ionService .sendNot if icat ion [p.415] . There might be
no mark associated with the alert item.

Returns the mark associated with the alert item, or null if there is no mark
getSource()

117.15.2.5 public String getSource()

Get the node which is the source of the alert. There might be no source asso-
ciated with the alert item.

Returns the URI of the node which is the source of this alert, or null if there is no
source
getType()

117.15.2.6 public String getType()

Get the type associated with the alert item. The type string is a MIME type or
a URN that identifies the type of the data in the alert item (returned by
getData [p.414]). There might be no type associated with the alert item.

Returns the type type associated with the alert item, or null if there is no type
toString()

117.15.2.7 public String toString()

Returns the string representation of this alert item. The returned string
includes all parameters of the alert item, and has the following format:

AlertItem(<source>, <type>, <mark>, <data>)

The last parameter is the string representation of the data value. The format
of the data is not explicitly included.

Returns the string representation of this alert item
414-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree.notification
NotificationService

117.15.3 public interface NotificationService
NotificationService enables sending aynchronous notifications to a man-
agement server. The implementation of NotificationService should register
itself in the OSGi service registry as a service.
sendNotification(String,int,String,AlertItem[])

117.15.3.1 public void sendNotification(String principal, int code, String correlator,
AlertItem[] items) throws DmtException

principal the principal name which is the recipient of this notification, can be null

code the alert code, can be 0 if not needed

correlator optional field that contains the correlation identifier of an associated exec
command, can be null if not needed

items the data of the alert items carried in this alert, can be null or empty if not
needed

Sends a notification to a named principal. It is the responsibility of the Noti-
ficationService to route the notification to the given principal using the reg-
istered in fo.dmtree.noti f icat ion .spi .RemoteAlertSender services.

In remotely initiated sessions the principal name identifies the remote
server that created the session, this can be obtained using the session’s Dmt-
Sess ion.getPr incipal getPrincipal call.

The principal name may be omitted if the client does not know the princi-
pal name. Even in this case the routing might be possible if the Notification
Service finds an appropriate default destination (for example if it is only
connected to one protocol adapter, which is only connected to one manage-
ment server).

Since sending the notification and receiving acknowledgment for it is
potentially a very time-consuming operation, notifications are sent asyn-
chronously. This method should attempt to ensure that the notification can
be sent successfully, and should throw an exception if it detects any prob-
lems. If the method returns without error, the notification is accepted for
sending and the implementation must make a best-effort attempt to deliver
it.

In case the notification is an asynchronous response to a previous DmtSes-
sion.execute(Str ing, Str ing , Str ing) execute command, a correlation iden-
tifier can be specified to provide the association between the execute and
the notification.

In order to send a notification using this method, the caller must have an
AlertPermission with a target string matching the specified principal name.
If the principal parameter is null (the principal name is not known), the tar-
get of the AlertPermission must be “*”.

When this method is called with all its parameters null or 0 (except princi-
pal), it should send a protocol specific default notification to initiate a man-
agement session. For example, in case of OMA DM this is alert 1201 “Client
Initiated Session”. The principal parameter can be used to determine the
recipient of the session initiation request.
OSGi Service Platform Release 4 415-502

info.dmtree.notification.spi DMT Admin Service Specification Version 1.0
Throws DmtException – with the following possible error codes:
UNAUTHORIZED when the remote server rejected the request due to insuf-
ficient authorization
ALERT_NOT_ROUTED when the alert can not be routed to the given princi-
pal
REMOTE_ERROR in case of communication problems between the device
and the destination
COMMAND_FAILED for unspecified errors encountered while attempting
to complete the command
FEATURE_NOT_SUPPORTED if the underlying management protocol
doesn’t support asynchronous notifications

SecurityException – if the caller does not have the required AlertPermis-
sion with a target matching the principal parameter, as described above

117.16 info.dmtree.notification.spi
Device Management Tree Notification SPI Package Version 1.0. This pack-
age contains the SPI (Service Provider Interface) of the Notification service.
These interfaces are implemented by Protocol Adapters capable of deliver-
ing notifications to management servers on a specific protocol. Users of the
NotificationService interface do not interact directly with this package.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: info.dmtree.notification.spi;version=1.0
RemoteAlertSender

117.16.1 public interface RemoteAlertSender
The RemoteAlertSender can be used to send notifications to (remote) enti-
ties identified by principal names. This service is provided by Protocol
Adapters, and is used by the info.dmtree.not i f ication.Noti f icat ionService
when sending alerts. Implementations of this interface have to be able to
connect and send alerts to one or more management servers in a protocol
specific way.

The properties of the service registration should specify a list of destinations
(principals) where the service is capable of sending alerts. This can be done
by providing a String array of principal names in the principals registration
property. If this property is not registered, the service will be treated as the
default sender. The default alert sender is only used when a more specific
alert sender cannot be found.

The principals registration property is used when the info.dmtree.noti f ica-
t ion.Noti f icat ionService .sendNot if icat ion method is called, to find the
proper RemoteAlertSender for the given destination. If the caller does not
specify a principal, the alert is only sent if the Notification Sender finds a
default alert sender, or if the choice is unambiguous for some other reason
(for example if only one alert sender is registered).
sendAlert(String,int,String,info.dmtree.notification.AlertItem[])

117.16.1.1 public void sendAlert(String principal, int code, String correlator,
416-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree.registry
AlertItem[] items) throws Exception

principal the name identifying the server where the alert should be sent, can be null

code the alert code, can be 0 if not needed

correlator the correlation identifier of an associated EXEC command, or null if there is
no associated EXEC

items the data of the alert items carried in this alert, can be empty or null if no alert
items are needed

Sends an alert to a server identified by its principal name. In case the alert is
sent in response to a previous in fo.dmtree.DmtSession.execute(Str ing,
St r ing , Str ing) execute command, a correlation identifier can be specified
to provide the association between the execute and the alert.

The principal parameter specifies which server the alert should be sent to.
This parameter can be null if the client does not know the name of the desti-
nation. The alert should still be delivered if possible; for example if the alert
sender is only connected to one destination.

Any exception thrown on this method will be propagated to the original
sender of the event, wrapped in a DmtException with the code
REMOTE_ERROR.

Since sending the alert and receiving acknowledgment for it is potentially a
very time-consuming operation, alerts are sent asynchronously. This
method should attempt to ensure that the alert can be sent successfully, and
should throw an exception if it detects any problems. If the method returns
without error, the alert is accepted for sending and the implementation
must make a best-effort attempt to deliver it.

Throws Exception – if the alert can not be sent to the server

117.17 info.dmtree.registry
Device Management Tree Registry Package Version 1.0. This package con-
tains the factory class providing access to the different Device Management
services for non-OSGi applications. The DmtServiceFactory class contained
in this package provides methods for retrieving NotificationService and
DmtAdmin service implementations.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: info.dmtree.registry;version=1.0
DmtServiceFactory

117.17.1 public final class DmtServiceFactory
This class is the central access point for Device Management services. Appli-
cations can use the static factory methods provided in this class to obtain
access to the different Device Management related services, such as the
DmtAdmin for manipulating the tree, or the Notification Service for send-
ing notifications to management servers.
OSGi Service Platform Release 4 417-502

info.dmtree.security DMT Admin Service Specification Version 1.0
These methods are not needed in an OSGi environment, clients should
retrieve the required service objects from the OSGi Service Registry.
getDmtAdmin()

117.17.1.1 public static DmtAdmin getDmtAdmin()

This method is used to obtain access to DmtAdmin, which enables applica-
tions to manipulate the Device Management Tree.

Returns a DmtAdmin service object
getNotificationService()

117.17.1.2 public static NotificationService getNotificationService()

This method is used to obtain access to NotificationService, which enables
applications to send asynchronous notifications to management servers.

Returns a NotificationService service object

117.18 info.dmtree.security
Device Management Tree Security Package Version 1.0. This package con-
tains the permission classes used by the Device Management API in envi-
ronments that support the Java 2 security model.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: info.dmtree.security;version=1.0

117.18.1 Summary
• AlertPermission - Indicates the callers authority to send alerts to man-

agement servers, identified by their principal names. [p.418]
• DmtPermission - Controls access to management objects in the Device

Management Tree (DMT). [p.419]
• DmtPrincipalPermission - Indicates the callers authority to create DMT

sessions on behalf of a remote management server. [p.422]
AlertPermission

117.18.2 public class AlertPermission
extends Permission
Indicates the callers authority to send alerts to management servers, identi-
fied by their principal names.

AlertPermission has a target string which controls the principal names
where alerts can be sent. A wildcard is allowed at the end of the target string,
to allow sending alerts to any principal with a name matching the given pre-
fix. The “*” target means that alerts can be sent to any destination.
AlertPermission(String)

117.18.2.1 public AlertPermission(String target)

target the name of a principal, can end with * to match any principal identifier with
the given prefix

Creates a new AlertPermission object with its name set to the target string.
Name must be non-null and non-empty.

Throws NullPointerException – if name is null
418-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree.security
IllegalArgumentException – if name is empty
AlertPermission(String,String)

117.18.2.2 public AlertPermission(String target, String actions)

target the name of the server, can end with * to match any server identifier with the
given prefix

actions no actions defined, must be “*” for forward compatibility

Creates a new AlertPermission object using the ‘canonical’ two argument
constructor. In this version this class does not define any actions, the second
argument of this constructor must be “*” so that this class can later be
extended in a backward compatible way.

Throws NullPointerException – if name or actions is null

IllegalArgumentException – if name is empty or actions is not “*”
equals(Object)

117.18.2.3 public boolean equals(Object obj)

obj the object to compare to this AlertPermission instance

Checks whether the given object is equal to this AlertPermission instance.
Two AlertPermission instances are equal if they have the same target string.

Returns true if the parameter represents the same permissions as this instance
getActions()

117.18.2.4 public String getActions()

Returns the action list (always * in the current version).

Returns the action string “*”
hashCode()

117.18.2.5 public int hashCode()

Returns the hash code for this permission object. If two AlertPermission
objects are equal according to the equals [p.419] method, then calling this
method on each of the two AlertPermission objects must produce the same
integer result.

Returns hash code for this permission object
implies(Permission)

117.18.2.6 public boolean implies(Permission p)

p the permission to check for implication

Checks if this AlertPermission object implies the specified permission.
Another AlertPermission instance is implied by this permission either if the
target strings are identical, or if this target can be made identical to the other
target by replacing a trailing “*” with any string.

Returns true if this AlertPermission instance implies the specified permission
newPermissionCollection()

117.18.2.7 public PermissionCollection newPermissionCollection()

Returns a new PermissionCollection object for storing AlertPermission
objects.

Returns the new PermissionCollection
DmtPermission
OSGi Service Platform Release 4 419-502

info.dmtree.security DMT Admin Service Specification Version 1.0
117.18.3 public class DmtPermission
extends Permission
Controls access to management objects in the Device Management Tree
(DMT). It is intended to control local access to the DMT. DmtPermission tar-
get string identifies the management object URI and the action field lists the
OMA DM commands that are permitted on the management object. Exam-
ple:

DmtPermission(”./OSGi/bundles”, “Add,Replace,Get”);

This means that owner of this permission can execute Add, Replace and Get
commands on the ./OSGi/bundles management object. It is possible to use
wildcards in both the target and the actions field. Wildcard in the target
field means that the owner of the permission can access children nodes of
the target node. Example:

DmtPermission(”./OSGi/bundles/*”, “Get”);

This means that owner of this permission has Get access on every child node
of ./OSGi/bundles. The asterix does not necessarily have to follow a ‘/’ char-
acter. For example the “./OSGi/a*” target matches the ./OSGi/applications
subtree.

If wildcard is present in the actions field, all legal OMA DM commands are
allowed on the designated nodes(s) by the owner of the permission. Action
names are interpreted case-insensitively, but the canonical action string
returned by getAct ions [p.421] uses the forms defined by the action con-
stants.
ADD

117.18.3.1 public static final String ADD = “Add”

Holders of DmtPermission with the Add action present can create new
nodes in the DMT, that is they are authorized to execute the createInterior-
Node() and createLeafNode() methods of the DmtSession. This action is also
required for the copy() command, which needs to perform node creation
operations (among others).
DELETE

117.18.3.2 public static final String DELETE = “Delete”

Holders of DmtPermission with the Delete action present can delete nodes
from the DMT, that is they are authorized to execute the deleteNode()
method of the DmtSession.
EXEC

117.18.3.3 public static final String EXEC = “Exec”

Holders of DmtPermission with the Exec action present can execute nodes
in the DMT, that is they are authorized to call the execute() method of the
DmtSession.
GET
420-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree.security
117.18.3.4 public static final String GET = “Get”

Holders of DmtPermission with the Get action present can query DMT node
value or properties, that is they are authorized to execute the isLeafNode(),
getNodeAcl(), getEffectiveNodeAcl(), getMetaNode(), getNodeValue(), get-
ChildNodeNames(), getNodeTitle(), getNodeVersion(), getNodeTimeS-
tamp(), getNodeSize() and getNodeType() methods of the DmtSession. This
action is also required for the copy() command, which needs to perform
node query operations (among others).
REPLACE

117.18.3.5 public static final String REPLACE = “Replace”

Holders of DmtPermission with the Replace action present can update DMT
node value or properties, that is they are authorized to execute the set-
NodeAcl(), setNodeTitle(), setNodeValue(), setNodeType() and renameN-
ode() methods of the DmtSession. This action is also be required for the
copy() command if the original node had a title property (which must be set
in the new node).
DmtPermission(String,String)

117.18.3.6 public DmtPermission(String dmtUri, String actions)

dmtUri URI of the management object (or subtree)

actions OMA DM actions allowed

Creates a new DmtPermission object for the specified DMT URI with the
specified actions. The given URI can be:

• “*”, which matches all valid (see Uri. isVal idUr i) absolute URIs;
• the prefix of an absolute URI followed by the * character (for example “./

OSGi/L*”), which matches all valid absolute URIs beginning with the
given prefix;

• a valid absolute URI, which matches itself.

Since the * character is itself a valid URI character, it can appear as the last
character of a valid absolute URI. To distinguish this case from using * as a
wildcard, the * character at the end of the URI must be escaped with the \
charater. For example the URI “./a*” matches “./a”, “./aa”, “./a/b” etc. while “./
a*” matches “./a*” only.

The actions string must either be “*” to allow all actions, or it must contain a
non-empty subset of the valid actions, defined as constants in this class.

Throws NullPointerException – if any of the parameters are null

IllegalArgumentException – if any of the parameters are invalid
equals(Object)

117.18.3.7 public boolean equals(Object obj)

obj the object to compare to this DmtPermission instance

Checks whether the given object is equal to this DmtPermission instance.
Two DmtPermission instances are equal if they have the same target string
and the same action mask. The “*” action mask is considered equal to a mask
containing all actions.

Returns true if the parameter represents the same permissions as this instance
getActions()
OSGi Service Platform Release 4 421-502

info.dmtree.security DMT Admin Service Specification Version 1.0
117.18.3.8 public String getActions()

Returns the String representation of the action list. The allowed actions are
listed in the following order: Add, Delete, Exec, Get, Replace. The wildcard
character is not used in the returned string, even if the class was created
using the “*” wildcard.

Returns canonical action list for this permission object
hashCode()

117.18.3.9 public int hashCode()

Returns the hash code for this permission object. If two DmtPermission
objects are equal according to the equa ls [p.421] method, then calling this
method on each of the two DmtPermission objects must produce the same
integer result.

Returns hash code for this permission object
implies(Permission)

117.18.3.10 public boolean implies(Permission p)

p the permission to check for implication

Checks if this DmtPermission object “implies” the specified permission.
This method returns false if and only if at least one of the following condi-
tions are fulfilled for the specified permission:

• it is not a DmtPermission
• its set of actions contains an action not allowed by this permission
• the set of nodes defined by its path contains a node not defined by the

path of this permission

Returns true if this DmtPermission instance implies the specified permission
newPermissionCollection()

117.18.3.11 public PermissionCollection newPermissionCollection()

Returns a new PermissionCollection object for storing DmtPermission
objects.

Returns the new PermissionCollection
DmtPrincipalPermission

117.18.4 public class DmtPrincipalPermission
extends Permission
Indicates the callers authority to create DMT sessions on behalf of a remote
management server. Only protocol adapters communicating with manage-
ment servers should be granted this permission.

DmtPrincipalPermission has a target string which controls the name of the
principal on whose behalf the protocol adapter can act. A wildcard is
allowed at the end of the target string, to allow using any principal name
with the given prefix. The “*” target means the adapter can create a session
in the name of any principal.
DmtPrincipalPermission(String)

117.18.4.1 public DmtPrincipalPermission(String target)

target the name of the principal, can end with * to match any principal with the
given prefix

Creates a new DmtPrincipalPermission object with its name set to the target
string. Name must be non-null and non-empty.

Throws NullPointerException – if name is null
422-502 OSGi Service Platform Release 4

DMT Admin Service Specification Version 1.0 info.dmtree.security
IllegalArgumentException – if name is empty
DmtPrincipalPermission(String,String)

117.18.4.2 public DmtPrincipalPermission(String target, String actions)

target the name of the principal, can end with * to match any principal with the
given prefix

actions no actions defined, must be “*” for forward compatibility

Creates a new DmtPrincipalPermission object using the ‘canonical’ two
argument constructor. In this version this class does not define any actions,
the second argument of this constructor must be “*” so that this class can
later be extended in a backward compatible way.

Throws NullPointerException – if name or actions is null

IllegalArgumentException – if name is empty or actions is not “*”
equals(Object)

117.18.4.3 public boolean equals(Object obj)

obj the object to compare to this DmtPrincipalPermission instance

Checks whether the given object is equal to this DmtPrincipalPermission
instance. Two DmtPrincipalPermission instances are equal if they have the
same target string.

Returns true if the parameter represents the same permissions as this instance
getActions()

117.18.4.4 public String getActions()

Returns the action list (always * in the current version).

Returns the action string “*”
hashCode()

117.18.4.5 public int hashCode()

Returns the hash code for this permission object. If two DmtPrincipalPer-
mission objects are equal according to the equals [p.423] method, then call-
ing this method on each of the two DmtPrincipalPermission objects must
produce the same integer result.

Returns hash code for this permission object
implies(Permission)

117.18.4.6 public boolean implies(Permission p)

p the permission to check for implication

Checks if this DmtPrincipalPermission object implies the specified permis-
sion. Another DmtPrincipalPermission instance is implied by this permis-
sion either if the target strings are identical, or if this target can be made
identical to the other target by replacing a trailing “*” with any string.

Returns true if this DmtPrincipalPermission instance implies the specified permis-
sion
newPermissionCollection()

117.18.4.7 public PermissionCollection newPermissionCollection()

Returns a new PermissionCollection object for storing DmtPrincipalPermis-
sion objects.

Returns the new PermissionCollection
OSGi Service Platform Release 4 423-502

References DMT Admin Service Specification Version 1.0
117.19 References
[1] OMA DM-TND v1.2 draft

http://member.openmobilealliance.org/ftp/public_documents/dm/
Permanent_documents/OMA-TS-DM-TND-V1_2-20050615-C.zip

[2] OMA DM-RepPro v1.2 draft:
http://member.openmobilealliance.org/ftp/public_documents/dm/
Permanent_documents/OMA-DM-RepPro-V1_2_0-20050131-D.zip

[3] IETF RFC2578. Structure of Management Information
Version 2 (SMIv2), http://www.ietf.org/rfc/rfc2578.txt

[4] Java™ Management Extensions Instrumentation and Agent Specification
v1.2, October 2002, http://java.sun.com/products/JavaManagement/

[5] JSR 9 - Federated Management Architecture (FMA) Specification
Version 1.0, January 2000, http://www.jcp.org/en/jsr/detail?id=9

[6] WBEM Profile Template, DSP1000
Status: Draft, Version 1.0 Preliminary, March 11, 2004
http://www.dmtf.org/standards/wbem

[7] SNMP
http://www.wtcs.org/snmp4tpc/snmp_rfc.htm#rfc

[8] RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax
http://www.ietf.org/rfc/rfc2396.txt

[9] MIME Media Types
http://www.iana.org/assignments/media-types/

[10] RFC 3548 The Base16, Base32, and Base64 Data Encodings
http://www.ietf.org/rfc/rfc3548.txt

[11] Secure Hash Algorithm 1
http://csrc.nist.gov/publications/fips/fips180-2/fips180-
2withchangenotice.pdf
424-502 OSGi Service Platform Release 4

Mobile Conditions Specification Version 1.0 Introduction
118 Mobile Conditions
Specification
Version 1.0

118.1 Introduction
This section defines a number of conditions that are specifically applicable
to the mobile world. These conditions can be used with the Conditional Per-
mission Admin service, as specified in Conditional Permission Admin Specifica-
tion on page 205 in the OSGi Core Specification.

118.1.1 Essentials
• User Prompting Condition – Allow a set of permissions to depend on the

answer of an end user.
• GSM Equipment Type Condition – Allow a set of permissions to depend

upon the device type on which the code is running, specifically
matching a pattern in the GSM International Mobile Equipment Identifi-
cation (IMEI).

• GSM Subscriber Condition – Allow a set of permissions to depend on the
subscriber or subscriber group: specifically, the GSM International
Mobile Subscriber Identity (IMSI).

118.1.2 Entities

Figure 1 org.osgi.util.mobile and org.osgi.util.gsm package

• IMEI Condition – A Condit ion object that is satisfied when the GSM
device’s IMEI code matches a given pattern.

• IMSI Condition – A Condit ion object that is satisfied when the GSM sub-
scriber’s IMSI code matches a given pattern.

• User Prompt Condition – A Condit ion object that is satisfied when the user
approves it. Approval can be for the session, one shot, blanket, or never.

118.2 User Prompt Condition
The User Prompt Condition is a condition that allows a set of permissions to
depend on interaction with the end user. For example, accessing the Inter-
net can be protected with the following User Prompt Condition:

(

<<class>>
IMSI
Condition

<<class>>
User Prompt
Condition

<<class>>
IMEI
Condition
OSGi Service Platform Release 4 425-502

User Prompt Condition Mobile Conditions Specification Version 1.0
[org.osgi.util.mobile.UserPromptCondition
"ONESHOT" "ONESHOT" "com.acme.l10n.Internet",

 "%Internet"]
{ java.net.SocketPermission "*" "*" }

)

 The User Prompt Condition is a postponed condition; the actual prompting
is delayed until the end of the permission check, so that multiple prompts
can be prevented.

The User Prompt Condition can take the following parameters in its
Condit ionalPermiss ionInfo object.

• level – The level defines how long a given answer can be valid. The user
selects one from a given list. The argument is a comma separated list of
these levels (case insensitive):
• ONESHOT – Permission is given once. The user must be prompted

every time the i sSatisf ied method is called with the following
choices:
• Yes – Answer true for this occasion
• No – Answer fa lse for this occasion
• Never – Never ask the user again and always return fa lse

• SESSION – Permission is given for a session. The concept of the ses-
sion is is left to implementations. A session could be the life time of
an application or the length of time the phone is turned on. The first
time the i sSatisf ied method is called in a session, the user must be
prompted with at least the following choices:
• Yes – Answer true for the rest of this session.
• No – Answer fa lse for the rest of this session.
• Never – Never ask the user again and always return fa lse until the

system is restarted.
• BLANKET – The permission is given forever, even between system

restarts. The first time the i sSat isf ied method is called for an applica-
tion, the user must be prompted with at least the following choices:
• Always – Always return t rue .
• Never – Never returns t rue .

At prompting, the implementation can list additional choices, that allow
the user to change the current permission level to one of the other possi-
ble permission levels. If the application model has applications that span
multiple bundles, in a way that the user sees them as one entity, the
implementation can ask the question for the whole application.
The platform implementation should provide a separately launchable
management application, where the user can modify the current permis-
sion levels for the user prompts. This implies that a UserPrompt is likely
never to become immutable.

• defaultLevel – The advice to the UI to mark one of the levels as the default.
• catalog – The name of a Resource Bundle used for localization. This

parameter is given to ResourceBundle getBundle method as the catalog
name.

• prompt – The text with which to prompt. If this text starts with a percent
sign (’%’\u0025), then the name (without the percent sign) must be
looked up in the given resource bundle. If the translated name cannot be
found, the name (without the percent sign) must be used as translation.
426-502 OSGi Service Platform Release 4

Mobile Conditions Specification Version 1.0 IMEI Condition
118.2.1 Session Definition
A SESSION is one run of a software from launching to stopping. For applica-
tions managed through the Application Admin Service, this should be the
time between the call of the Appl icationDescr iptor. launch method and the
Appl icat ion.dest roymethod, thus the time that one Application Instance is
active. Different Application Instances should count as different sessions,
even if they overlap.

For other application models, the User Prompt implementation should use
a session definition that is closest to the user's perception of one run of the
software. If there is no application model for the given bundle, the imple-
mentation should use the bundle lifestyle as session definition.

118.3 IMEI Condition
The IMEI Condition can be used to limit permissions to a certain set when
the application runs on a specific device. The International Mobile Equip-
ment Identity is an identification number assigned to GSM mobile stations
that uniquely identifies each one. It is a 15-digit serial number that contains:

• type approval code + final assembly code or type allocation code
• serial number

Entering *#06# on a GSM phone will show this number.

The IMEI Condition accepts the following parameter:

• imei – The 15-digit IMEI or 17-digit IMEISV number. This number must
not contain any dashes, but can end with a wildcard (’*’ \u002A).

For example, an operator allows full Admin Permission to a certain phone:

(
[org.osgi.util.gsm.IMEICondition "35430500*"]
{ org.osgi.framework.AdminPermission "*" "*" }

)

118.4 IMSI Condition
The IMSI Condition can be used to limit permissions to a certain set when
the bundle runs on a specific class of devices. The International Mobile Sub-
scriber Identity is an identification number assigned to GSM subscribers. It
is a 15-digit serial number that contains:

• MCC – mobile country code (3 digits)
• MNC – mobile network code (2 or 3 digits)
• MSIN – mobile subscriber identification number (9 or 10 digits)

The IMSI Condition accepts the following parameter:

• imsi – The 15-digit IMSI number. The number can end with a wildcard
(’*’ \u002A) at the end.

For example, an operator allows full Admin Permission to certain phones:

(

OSGi Service Platform Release 4 427-502

Implementation Issues Mobile Conditions Specification Version 1.0
[org.osgi.util.gsm.IMSICondition "284010927102762"]
{ org.osgi.framework.AdminPermission "*" "*" }

)

118.5 Implementation Issues
The specification contains reference implementations of the condition
classes. Implementations of this specification, however, should replace
those classes with implementation-specific classes.

The provided classes look for the following system properties:

• org.osgi .u ti l .gsm.imei – The mobile phone’s IMEI number.
• org.osgi .u ti l .gsm.imsi – The mobile phone’s IMSI number.

Both the provided IMSI and IMEI Conditions check the match when they
are constructed with the static getInstance method.

The User Prompt Condition must be a postponed condition so that it can
merge multiple prompts. This use case is discussed in several places in the
Conditional Permission Admin service specification.

118.6 Security
These condition classes must be provided as Framework extensions.

118.7 org.osgi.util.mobile
Mobile Conditions Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.util.mobile; version=1.0
UserPromptCondition

118.7.1 public class UserPromptCondition
implements Condition
Class representing a user prompt condition. Instances of this class hold two
values: a prompt string that is to be displayed to the user and the permission
level string according to MIDP2.0 (oneshot, session, blanket).
getCondition(Bundle,ConditionInfo)

118.7.1.1 public static Condition getCondition(Bundle bundle, ConditionInfo
conditionInfo)

bundle the bundle to ask about.

conditionInfo the conditionInfo containing the construction information. Its Condit ionIn-
fo.getArgs() method should return a String array with 4 strings in it:
the possible permission levels. This is a comma-separated list that can con-
tain following strings: ONESHOT SESSION BLANKET. The order is not im-
portant. This parameter is case-insensitive.
the default permission level, one chosen from the possible permission levels.
If it is an empty string, then there is no default. This parameter is case-insen-
428-502 OSGi Service Platform Release 4

Mobile Conditions Specification Version 1.0 org.osgi.util.mobile
sitive.
the message catalog base name. It will be loaded by a java.util.ResourceBun-
dle, or equivalent from an exporting OSGi Bundle. Thus, if the catalogName
is “com.provider.messages.userprompt”, then there should be an OSGi Bun-
dle exporting the “com.provider.messages” package, and inside it files like
“userprompt_en_US.properties”.
textual description of the condition, to be displayed to the user. If it starts
with a ‘%’ sign, then the message is looked up from the catalog specified pre-
viously. The key is the rest of the string after the ‘%’ sign.

Returns a UserPromptCondition object with the given prompt string and
permission level. The user should be given choice as to what level of permis-
sion is given. Thus, the lifetime of the permission is controlled by the user.

Returns The requested UserPromptCondition.

Throws IllegalArgumentException – if the parameters are malformed.

NullPointerException – if one of the parameters is null.
isMutable()

118.7.1.2 public boolean isMutable()

Checks whether the condition may change during the lifetime of the User-
PromptCondition object. This depends on the permission level given in
UserPromptCondit ion.getCondit ion(Bundle , Condit ionInfo) [p.428] .

• ONESHOT - true
• SESSION - true, if the application model’s session lifetime is shorter than

the UserPromptCondition object lifetime
• BLANKET - false

If the system supports separately accessible permission management GUI,
then this function may also return true for SESSION and BLANKET.

Returns True, if the condition can change.
isPostponed()

118.7.1.3 public boolean isPostponed()

Checks if the i sSatisf ied() [p.429] method needs to prompt the user, thus
cannot give results instantly. This depends on the permission level given in
UserPromptCondit ion.getCondit ion(Bundle , Condit ionInfo) [p.428] .

• ONESHOT - isPostponed always returns true. The user is prompted for
question every time.

• SESSION - isPostponed returns true until the user decides either yes or
no for the current session.

• BLANKET - isPostponed returns true until the user decides either always
or never.

Regardless of the session level, the user is always given the option to reject
the prompt permanently, as if BLANKET/never was chosen. In this case, the
question is not postponed anymore, and i sSatisf ied() [p.429] returns false.
 If the system supports an separately accessible permission management
GUI, that may reset the condition to its initial state.

Returns True, if user interaction is needed.
isSatisfied()
OSGi Service Platform Release 4 429-502

org.osgi.util.gsm Mobile Conditions Specification Version 1.0
118.7.1.4 public boolean isSatisfied()

Displays the prompt string to the user and returns true if the user accepts.
Depending on the amount of levels the condition is assigned to, the prompt
may have multiple accept buttons and one of them can be selected by
default (see default level parameter at UserPromptCondit ion.getCondi-
t ion(Bundle, Condit ionIn fo) [p.428]). It must always be possible for the user
to stop further prompting of this question, even with ONESHOT and SES-
SION levels. In case of BLANKET and SESSION levels, it is possible that the
user has already answered the question, in this case there will be no prompt-
ing, but immediate return with the previous answer.

Returns True if the user accepts the prompt (or accepts any prompt in case there are
multiple permission levels).
isSatisfied(Condition[],Dictionary)

118.7.1.5 public boolean isSatisfied(Condition[] conds, Dictionary context)

conds The array containing the UserPrompt conditions to evaluate.

context Storage area for evaluation. The org .osgi .service .condpermadmin .Condi-
t ionalPermiss ionAdmin may evaluate a condition several times for one per-
mission check, so this context will be used to store results of ONESHOT
questions. This way asking the same question twice in a row can be avoided.
If context is null, temporary results will not be stored.

Checks an array of UserPrompt conditions.

Returns True, if all conditions are satisfied.

Throws NullPointerException – if conds is null.

118.8 org.osgi.util.gsm
Mobile GSM Conditions Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.util.gsm; version=1.0

118.8.1 Summary
• IMEICondition - Class representing an IMEI condition. [p.430]
• IMSICondition - Class representing an IMSI condition. [p.431]
IMEICondition

118.8.2 public class IMEICondition
Class representing an IMEI condition. Instances of this class contain a string
value that is matched against the IMEI of the device.
getCondition(Bundle,ConditionInfo)

118.8.2.1 public static Condition getCondition(Bundle bundle, ConditionInfo
conditionInfo)

bundle ignored, as the IMEI number is the property of the mobile device, and thus
the same for all bundles.
430-502 OSGi Service Platform Release 4

Mobile Conditions Specification Version 1.0 References
conditionInfo contains the IMEI value to match the device’s IMEI against. Its Condit ionIn-
fo .getArgs() method should return a String array with one value, the IMEI
string. The IMEI is 15 digits without hypens. Limited pattern matching is al-
lowed, then the string is 0 to 14 digits, followed by an asterisk(*).

Creates an IMEICondition object.

Returns An IMEICondition object, that can tell whether its IMEI number matches
that of the device. If the number contains an asterisk(*), then the beginning
of the imei is compared to the pattern.

Throws NullPointerException – if one of the parameters is null.

IllegalArgumentException – if the IMEI is not a string of 15 digits, or 0 to
14 digits with an * at the end.
IMSICondition

118.8.3 public class IMSICondition
Class representing an IMSI condition. Instances of this class contain a string
value that is matched against the IMSI of the subscriber.
getCondition(Bundle,ConditionInfo)

118.8.3.1 public static Condition getCondition(Bundle bundle, ConditionInfo
conditionInfo)

bundle ignored, as the IMSI number is the same for all bundles.

conditionInfo contains the IMSI value to match the device’s IMSI against. Its Condit ionIn-
fo .getArgs() method should return a String array with one value, the IMSI
string. The IMSI is 15 digits without hypens. Limited pattern matching is al-
lowed, then the string is 0 to 14 digits, followed by an asterisk(*).

Creates an IMSI condition object.

Returns An IMSICondition object, that can tell whether its IMSI number matches
that of the device. If the number contains an asterisk(*), then the beginning
of the IMSI is compared to the pattern.

Throws NullPointerException – if one of the parameters is null.

IllegalArgumentException – if the IMSI is not a string of 15 digits, or 0 to
14 digits with an * at the end.

118.9 References
OSGi Service Platform Release 4 431-502

References Mobile Conditions Specification Version 1.0
432-502 OSGi Service Platform Release 4

Monitor Admin Service Specification Version 1.0 Introduction
119 Monitor Admin Service
Specification
Version 1.0

119.1 Introduction
Applications and services may publish status information that manage-
ment systems can receive to monitor the status of the device. For example, a
bundle could publish Status Variables for a number key VM variables like
the amount of available memory, batter power, number of SMSs sent, etc.

Status Variables can be used in performance management, fault manage-
ment as well as in customer relations management systems.

This specification outlines how a bundle can publish Status Variables and
how administrative bundles can discover Status Variables as well as read
and reset their values.

119.1.1 Entities
• Status Variable – Application specific variables that a Status Variable Pro-

vider publishes with a Monitorable service to the Monitor Admin
service.Status Variable values can be long , double , boolean or Str ing
objects.

• Status Variable Provider – A bundle which has a number of Status Vari-
ables that it publishes with one or more Monitorable services.

• Monitor Admin – Provides unified and secure access to available Status
Variables as well as providing a function to create monitoring jobs to
monitor the Status Variables.

• Monitorable – A service that is registered by a Status Variable Provider to
publish its Status Variables.

• Monitor Job – An event or time based query of a given set of Status Vari-
ables. When a monitored Status Variable is updated, or the timer expires,
the Monitor Admin must generate an event via the Event Admin service.

• Local Administrator – A management application which uses the Monitor
Admin service to query Status Variables and to initiate monitoring jobs.

• Status Variable Name – The unique name, within a Monitorable service,
of a Status Variable.

• Status Variable Path – A string that uniquely identifies the Status Variable
in an OSGi environment. It consists of the PID of the Monitorable service
and the Status Variable name separated by a slash.
OSGi Service Platform Release 4 433-502

Monitorable Monitor Admin Service Specification Version 1.0
Figure 119.1 Monitor Admin Diagram org.osgi.service.monitor package

119.1.2 Synopsis
A bundle that provides a Status Variable must register a Monitorable ser-
vice. This service is used by the Monitor Admin to get Status Variables and
provide meta information to clients.

Clients can use the Monitor Admin to obtain Status Variables in a protected
way. Clients can also create Monitoring Jobs. These Monitoring Jobs send
out notifications to the clients when the value changes or periodically.

119.2 Monitorable
A Status Variable is a simple scalar that represents some key indicator of the
environment, for example amount of available memory. Status Variables
are further discussed in Status Variable on page 437.

A Status Variable Provider must therefore register a Monitorable service
with the service property service .p id set to a PID. This PID must have the
following format:

monitorable-pid ::= symbolic-name // See 3.2.4 Core

The length of this PID must fit in 32 bytes when UTF-8 encoded.

Monitorable services are tracked by the Monitor Admin service. The Moni-
tor Admin service can provide the local administrator unified access to all
the Status Variables in the system. This is depicted in Figure 119.2.

Figure 119.2 Access to Status Variables

administrates

<<interface>>
Monitor
Admin

Monitor Admin
Impl

<<interface>>
Monitorable

Status Variable
Provider

<<interface>>
Monitoring
Job

Monitoring
Job Impl

Local
Administrator

<<class>>
Status
Variable1

1..n

0..n

1

<<interface>>
Monitor
Listener

tracks

notifies

1
0..n

1

1..n

<<interface>>
Monitor
Admin

Local
Administrator

Monitorable0..n0..n 0..n1

name
434-502 OSGi Service Platform Release 4

Monitor Admin Service Specification Version 1.0 Monitorable
The main responsibility of a Monitorable service is therefore to provide
access to its own Status Variables as well as providing information about
those Status Variables.

The Monitorable interface contains the following methods:

• getStatusVariab leNames() – Provides a list of the Status Variable names.
The status variables can subsequently be acquired with the getStatus-
Variab le(Str ing) method.

• getStatusVariab le(Str ing) – Given the name of a Status Variable, return
the StatusVar iable object, if exists.

• resetStatusVariab le(Str ing) – Reset the given Status Variable if there is a
reasonable reset value. If the Status Variable could not be reset, fa lse is
returned. Otherwise true is returned. Resetting a Status Variable triggers
a Monitor Event, as described in Monitoring events on page 442.

• noti f iesOnChange(Str ing) – Tells whether the given Status Variable
sends a notification when its value changes or when it is reset. This is
further discussed in Providing Notifications on page 435.

• getDescr iption(Str ing) – Provide a non-localized description of the
given Status Variable.

119.2.1 Providing Notifications
If a Monitorable service returns true for the noti f iesOnChange(String)
method then it must notify all Monitor Listener services when the related
Status Variable changes. These Status Variables are called dynamic Status
Variables.

After the value of a dynamic Status Variable is changed, the Monitorable
service must get the singleton Monitor Listener service and call the
updated(Str ing,StatusVar iable) method. The Monitor Admin service must
use this notification mechanism to send out a generic event via the Event
Admin service, as described in Monitoring events on page 442. The Monitor
Admin can also use this information to signal a remote server in a propri-
etary way. Figure 119.3 shows a sequence diagram for such an update. This
indirection is required for security reasons.

Figure 119.3 Notification on Update

119.2.2 Example Monitorable Implementation
The following code shows how a bundle could provide a Status Variable
that contains the current amount of memory.

public class MemoryMonitor

<<service>>
Monitor
Listener

<<service>>
Monitorable

update(StatusVariable)
sendEvent

<<service>>
Event Admin

<<service>>
Event Handler

local administratorStatus Variable Provider Monitor Admin impl

handleEvent(event)

async
OSGi Service Platform Release 4 435-502

Monitorable Monitor Admin Service Specification Version 1.0
implements BundleActivator, Monitorable {

public void start(BundleContext context) {
Hashtable ht = new Hashtable();
ht.put("service.pid", "com.acme.foo");
context.registerService(

Monitorable.class.getName(), this, ht);
}

public void stop(BundleContext context) {}

public String[] getStatusVariableNames() {
return new String[] {"memory.free"};

}

public StatusVariable getStatusVariable(String name)
throws IllegalArgumentException {
if ("memory.free".equals(name))

return
new StatusVariable(name,
StatusVariable.CM_GAUGE,

 Runtime.getRuntime().freeMemory());
else

throw new IllegalArgumentException(
"Invalid Status Variable name " + name);

}

public boolean notifiesOnChange(String name)
throws IllegalArgumentException {
return false;

}

public boolean resetStatusVariable(String name)
throws IllegalArgumentException {
return false;

}

public String getDescription(String name)
throws IllegalArgumentException {

 if ("memory.free".equals(name))
 return "current amount of free memory in the JVM";
 else
 throw new IllegalArgumentException(

"Invalid Status Variable name " + name);
 }
}

436-502 OSGi Service Platform Release 4

Monitor Admin Service Specification Version 1.0 Status Variable
119.3 Status Variable
A Status Variable is a simple value that is published from a Monitorable ser-
vice. A Status Variable has a name, a value, a timestamp, and a collection
method. Additionally, the Monitorable service that publishes the Status
Variable can be used to reset the Status Variable and provide a description of
it.

The OSGi Specification provides an implementation class for a Status Vari-
able. This class is final and immutable, it must be treated as a value.

119.3.1 Name
Each Status Variable must have a unique identity in the scope of a Monitor-
able service. This identity can be obtained with the getID() method. A Sta-
tus Variable identity must have the following syntax:

status-variable-name ::= symbolic-name // See 3.2.4 Core

The name should be descriptive and concise. Additionally, it has the follow-
ing limitations:

• The length must be limited to 32 characters in UTF-8 encoded form.
• It must be unique in the scope of the Monitorable service.

119.3.2 Value
A Status Variable provides the type of its value with the getT ype()method.
The return value of this method can take the following values:

• TYPE_BOOLEAN – A boolean value. The associated method to retrieve
the value is getBoolean() . The corresponding constructor is Status-
Variab le(Str ing, in t,boolean) .

• TYPE_INTEGER – A signed numeric value that fits in a Java int type. The
associated method to retrieve the value is getInteger() . The corre-
sponding constructor is StatusVar iable(Str ing, int , int) .

• TYPE_FLOAT – A floating point value that fits in a Java f loat type. The
associated method to retrieve the value is getF loat() . The corresponding
constructor is StatusVariab le(Str ing, in t,f loat) .

• TYPE_STRING – A Str ing object. The associated method to retrieve the
value is getStr ing() .The corresponding constructor is Status-
Variab le(Str ing, in t,Str ing)

If a method is called that does not match the return value of the getType()
method, the Status Variable must throw an Illegal State Exception.

119.3.3 Time Stamp
The time stamp must reflect the time that the measurement was taken from
the standard Java System.currentTimeMil l is method. The time stamp can
be obtained with the getTimeStamp() method.
OSGi Service Platform Release 4 437-502

Using Monitor Admin Service Monitor Admin Service Specification Version 1.0
119.3.4 Collection Method
This specification is compatible with terminology used in [2] ETSI Perfor-
mance Management [TS 132 403]. An important concept of a Status Variable
is the way it was collected, this is called the collection method. The collection
method is independent of how (if and when) the reporting of the Status
Variables happens. The collection method is part of the Status Variable's
definition and cannot be changed. The collection method of a Status Vari-
able can be obtained with the getCollect ionMethod() method.

The ETSI document defines the following collection methods:

• CM_CC – A numeric counter whose value can only increase, except
when the Status Variable is reset. An example of a CC is a variable which
stores the number of incoming SMSs handled by the protocol driver
since it was started or reset.

• CM_GAUGE – A numeric counter whose value can vary up or down. An
example of a GAUGE is a variable which stores the current battery level
percentage. The value of the Status Variable must be the absolute value
not a difference.

• CM_DER – (Discrete Event Registration) A status variable (numeric or
string) which can change when a certain event happens in the system
one or more times. The event which fires the change of the Status
Variable is typically some event like the arrival of an SMS. The definition
of a DER counter contains an integer N which means how many events it
takes for the counter to change its value. The most usual value for N is 1,
but if N is greater than 1 then it means that the variable changes after
each Nth event.

• - CM_SI – (Status Inspect) The most general status variable which can be
a string or numeric. An example of an SI is a string variable which con-
tains the name of the currently logged in user.

119.4 Using Monitor Admin Service
The Monitor Admin service is a singleton service that provides unified
access to the Status Variables in the system. It provides security checking,
resolution of the Status Variable paths and scheduling of periodic or event
based Monitoring Jobs.

119.4.1 Discovery
The Monitor Admin manages the status variables from any registered Moni-
torable services. The Monitorable services can be discovered using the get-
Monitorab leNames() method. This returns a sorted list of PIDs, or nul l
when no services are registered. This list can contain the PIDs of Monitor-
able services where the caller has no access to any of its Status Variables.

119.4.2 Status Variable Administration
The Monitor Admin provides the following methods for manipulating the
Status Variables:

getStatusVar iable(Str ing) – Return a Status Variable given a Status Vari-
able path. A path must have the following syntax:
438-502 OSGi Service Platform Release 4

Monitor Admin Service Specification Version 1.0 Using Monitor Admin Service
status-variable-path ::= pid ’/’ status-variable-name

• getStatusVariab leNames(Str ing) – Returns the Status Variable names
given the PID of a Monitorable service.

• getStatusVariab les(Str ing) – Returns an array of Status Variable objects
given the PID of a Monitorable service.

• resetStatusVariab le(Str ing) – Reset the value of a Status Variable.

Figure 119.4 is the simple sequence diagram for getting a Status Variable
from the Monitor Admin service. The caller requests a Status Variable from
the Monitor Admin service with the getStatusVar iable(Str ing) method. Its
sole argument specifies a path to the Status Variable. For example:

com.acme.foo/memory.free

The Monitor Admin service finds the associated Monitorable service by
looking for a Monitorable service with the given PID (com.acme.foo). It will
then query the Monitorable service for the Status Variable memory.free,
which is then subsequently returned to the caller.

Figure 119.4 Status Variable request through the Monitor Admin service

119.4.3 Notifications
The Monitor Admin service can receive events from Monitorable services as
described in Providing Notifications on page 435. The Monitor Admin Service
can control the sending of events with the switchEvents(Str ing,boolean)
method. The argument is a path to a Status Variable, with a possible wild-
card character in place of the Status Variable or Monitorable PID. For exam-
ple:

/
com.acme.sv.carots/*
*/received.packets

The use of wildcards is the same as described in Monitor Permission on page
443 The Monitor Admin service must expand this wildcard to the set of Sta-
tus Variable names at the time the events are switched. If the boolean argu-
ment is set to fa lse , no more events will be sent to the Event Admin service.

The default state is sending events. The state of sending events must not be
persistent, switching the events off must not be remembered between sys-
tem restarts.

<<service>>
Monitor
Admin

Local
Administrator

<<service>>
Monitorable

getStatusVariable(path)

getStatusVariable(name)

use path to find
appropriate
Monitorable service
OSGi Service Platform Release 4 439-502

Using Monitor Admin Service Monitor Admin Service Specification Version 1.0
119.4.4 Monitoring jobs
A local administrator can create a monitoring job. A monitoring job consists
of a set of Status Variables and reporting rules. According to these rules, the
Monitor Admin service will send events to the Event Admin service. The
same Status Variable can participate in any number of monitoring jobs.

There are two types of monitoring jobs, each created with a different
method. One is based on periodic measurements and one based on changes
in the value of the Status Variable. The results of the measurements are sent
to the Event Admin service, these events are described in Monitoring events
on page 442.

• startScheduledJob(Str ing,Str ing[], in t , int) – Start a job based on a
periodic measurement. Both the period of measurements as well as the
number of measurements can be given.

• start Job(Str ing,St r ing[] , int) – Start a job based on notifications. The
load on the Event Admin service can be minimized by specifying that
only every n-th measurement must be reported. Status Variables used
with this monitoring job must support notifications, otherwise an Illegal
Argument Exception must be thrown.

Both monitoring jobs take an identification Str ing object as first argument.
This identification is placed in the properties of the Event object under the
key: l i stener. id . The initiator of the monitoring job should set this id to a
unique value and so that it can discriminate the monitoring events that are
related to his monitoring job.

The second argument is a list of paths to Status Variables.

The difference between the Time based monitoring and event based moni-
toring is further elucidated in Figure 119.5.

Figure 119.5 Time and event based monitoring job

<<service>>
Monitor
Admin

<<service>>
Monitorable

sendEvent

<<service>>
Event Admin

<<service>>
Event
Handler

local adminStatus Variable Provider

channelEvent(event)

async

time

channelEvent(event)

startScheduledJob(...)

getStatusVariable()

update()
sendEvent()

channelEvent(event)

async

channelEvent(event)

startJob(...)

stop (via MonitorJob)
440-502 OSGi Service Platform Release 4

Monitor Admin Service Specification Version 1.0 Using Monitor Admin Service
Monitoring jobs can be started also remotely by a management server
through Device Management Tree operations. The monitoring job therefore
has a boolean method which tells whether it was started locally or
remotely: i sLoca l() .

A monitoring job is transient, it must not survive a system restart. A moni-
toring job can be explicitly stopped with the stop() method.

119.4.4.1 Example Monitoring Job

For example, a bundle is interested in working with periodic samples of the
com.acme.foo/memory.free Status Variable. It should therefore register an
Event Handler with the correct topic and a filter on its Event Handler ser-
vice. It then starts a monitoring job that is stopped in the BundleAct ivator
stop method.

public class MemoryListener
implements BundleActivator, EventHandler {
MonitoringJob job;

public void start(BundleContext context) throws Exception
{

Hashtable p = new Hashtable();
p.put(EventConstants.EVENT_TOPIC,

new String[] { "org/osgi/service/monitor" });
p.put(EventConstants.EVENT_FILTER,

"(mon.listener.id=foo.bar)");

context.registerService(
EventHandler.class.getName(),this,p);

job = getMonitorAdmin().startScheduledJob(
"foo.bar", // listener.id
 new String[] {"com.acme.foo/memory.free"},
15, // seconds
0 // Forever

);
}

public void stop(BundleContext ctxt) throws Exception {
job.stop();

}

public void handleEvent(Event event) {
String value = (String) event.getProperty(

"mon.statusvariable.value");
String name = (String) event.getProperty(

"mon.statusvariable.name");
System.out.println("Mon: " name + "=" value);

}
...

}

OSGi Service Platform Release 4 441-502

Monitoring events Monitor Admin Service Specification Version 1.0
After starting the job, the Monitor Admin queries the com.acme.foo/
memory.free Status Variable every 15 seconds. At each acquisition, the
Monitor Admin sends a org/osgi/service/monitor event to the Event
Admin service. The event properties contain the mon.l is tener. id set to
foo .bar . The Event Admin service updates the Event Handler service that is
registered by the example bundle. After receiving the event, the bundle can
get the updated value of the Status Variable from the event properties.

The events are therefore repeated once every 15 seconds until the bundle
stops.

119.5 Monitoring events
The Monitor Admin must send an asynchronous event to the Event Admin
service when:

• A Monitorable reported the change on the Monitor Listener service
• The Status Variable was explicitly reset to its starting value with the

resetStatusVariab le(Str ing) method.
• The Status Variable is queried from within a scheduled monitoring job

by the Monitor Admin service.

Event sending in the first two cases can be switched on and off, but in the
case of monitoring jobs, it cannot be disabled. Monitoring events must be
sent asynchronously.

The topic of the event must be:

org/osgi/service/monitor

The properties of the event are:

• mon.monitorab le.p id – (Str ing) The unique identifier of the Moni-
torable service which the changed Status Variable.

• mon.statusvariab le.name – (String) The name of the changed status
variable.

• mon.l is tener. id – (Str ing |St r ing[]) Name or names representing the ini-
tiators of any monitoring jobs in which the Status Variable was included.
Listeners can use this field for filtering, so that they receive only events
related to their own jobs. If the event is fired because of a notification on
the MonitorListener interface of the Monitor Admin service (and not
because of an measurement taken within a monitoring job) then this
property is absent.

• mon.statusvariab le.value – (String) The value of the status variable in
string format. The following methods must be used to format the Str ing
object.
• long – Long. toString(long) .
• double – Double .toString(double) .
• boolean – Boolean .toStr ing(boolean) .
• Str ing – No conversion
442-502 OSGi Service Platform Release 4

Monitor Admin Service Specification Version 1.0 Security
119.6 Security

119.6.1 Monitor Permission
Registering Monitorable services, querying and resetting Status Variables
and starting monitoring jobs requires a Monitor Permission. If the entity
issuing the operation does not have this permission, a Security Exception
must be thrown.

Unless noted otherwise, the target of the Monitor Permission identifies the
Status Variable paths. It has the following format:

widldcard-path ::= wildcard-pid ’/’ wildcard-name
wildcard-pid ::= pid ’*’ ? | ’*’
wildcard-name ::= unique-id ’*’ ? | ’*’

Example:

/
com.acme.*/*
*/count
com.acme.foo/memory.free

The actions that can be used are:

• READ –Reading of the value of the given Status Variables.
• RESET – Resetting the given Status Variables.
• PUBL ISH – Publishing a Status Variable. This does not forbid the Status

Variable Provider to register the Monitorable. However, the Monitor
Admin must not show a Status Variables to any caller when the Status
Variable Provider has no permission to publish that specific Status
Variable.

• STARTJOB – Initiating monitoring jobs involving the given Status Vari-
ables A minimal sampling interval can be optionally defined in the fol-
lowing form:

startjob:n

The n is the allowed minimal value of the schedule parameter of time
based monitoring jobs. If n is not specified or zero then there is no lower
limit for the minimum sampling interval specified. The purpose of the
minimum sampling interval is to prevent the system from flooding. The
target specifies the Status Variables that can be monitored.

• SWITCHEVENTS – Switch event sending on or off for the notification of
value changes for the given Status Variables.

The permissions must all be checked by the Monitor Admin.

Further, the different actors must have the permissions as specified in Table
119.1 to operate correctly.

119.7 org.osgi.service.monitor
Monitor Admin Package Version 1.0.
OSGi Service Platform Release 4 443-502

org.osgi.service.monitor Monitor Admin Service Specification Version 1.0
Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.service.monitor; version=1.0

119.7.1 Summary
• Monitorable - A Monitorable can provide information about itself in the

form of StatusVariables. [p.444]
• MonitorAdmin - The MonitorAdmin service is a singleton service that

handles StatusVariable query requests and measurement job control
requests. [p.446]

• MonitoringJob - A Monitoring Job is a request for scheduled or event
based notifications on update of a set of StatusVariables. [p.451]

• MonitorListener - The MonitorListener is used by Monitorable services
to send notifications when a StatusVariable value is changed. [p.452]

• MonitorPermission - Indicates the callers authority to publish, read or
reset StatusVariables, to switch event sending on or off or to start moni-
toring jobs. [p.452]

• StatusVariable - A StatusVariable object represents the value of a status
variable taken with a certain collection method at a certain point of time.
[p.455]

Monitorable

119.7.2 public interface Monitorable
A Monitorable can provide information about itself in the form of Status-
Variables. Instances of this interface should register themselves at the OSGi
Service Registry. The MonitorAdmin listens to the registration of Monitor-
able services, and makes the information they provide available also
through the Device Management Tree (DMT) for remote access.

The monitorable service is identified by its PID string which must be a non-
null, non-empty string that conforms to the “symbolic-name” definition in
the OSGi core specification. This means that only the characters [-_.a-zA-Z0-
9] may be used. The length of the PID must not exceed 20 characters.

A Monitorable may optionally support sending notifications when the sta-
tus of its StatusVariables change. Support for change notifications can be
defined per StatusVariable.

Publishing StatusVariables requires the presence of the MonitorPermission
with the publish action string. This permission, however, is not checked
during registration of the Monitorable service. Instead, the MonitorAdmin
implemenatation must make sure that when a StatusVariable is queried, it
is shown only if the Monitorable is authorized to publish the given Status-
Variable.
getDescription(String)

119.7.2.1 public String getDescription(String id) throws

Table 119.1 Permission for the different actors
ServicePermiss ion Status Variab le

Provider
Local Admin Monitor Admin

MonitorAdmin - GET REGISTER
UpdateListener GET - REGISTER
Monitorab le REGISTER - GET
444-502 OSGi Service Platform Release 4

Monitor Admin Service Specification Version 1.0 org.osgi.service.monitor
IllegalArgumentException

id the identifier of the StatusVariable, cannot be null

Returns a human readable description of a StatusVariable. This can be used
by management systems on their GUI. The null return value is allowed if
there is no description for the specified Status Variable.

The given identifier does not contain the Monitorable PID, i.e. it specifies
the name and not the path of the Status Variable.

Returns the human readable description of this StatusVariable or null if it is not set

Throws IllegalArgumentException – if id points to a non-existing StatusVariable
getStatusVariable(String)

119.7.2.2 public StatusVariable getStatusVariable(String id) throws
IllegalArgumentException

id the identifier of the StatusVariable, cannot be null

Returns the StatusVariable object addressed by its identifier. The StatusVari-
able will hold the value taken at the time of this method call.

The given identifier does not contain the Monitorable PID, i.e. it specifies
the name and not the path of the Status Variable.

Returns the StatusVariable object

Throws IllegalArgumentException – if id points to a non-existing StatusVariable
getStatusVariableNames()

119.7.2.3 public String[] getStatusVariableNames()

Returns the list of StatusVariable identifiers published by this Monitorable.
A StatusVariable name is unique within the scope of a Monitorable. The
array contains the elements in no particular order. The returned value must
not be null.

Returns the StatusVariable identifiers published by this object, or an empty array if
none are published
notifiesOnChange(String)

119.7.2.4 public boolean notifiesOnChange(String id) throws
IllegalArgumentException

id the identifier of the StatusVariable, cannot be null

Tells whether the StatusVariable provider is able to send instant notifica-
tions when the given StatusVariable changes. If the Monitorable supports
sending change updates it must notify the MonitorListener when the value
of the StatusVariable changes. The Monitorable finds the MonitorListener
service through the Service Registry.

The given identifier does not contain the Monitorable PID, i.e. it specifies
the name and not the path of the Status Variable.

Returns true if the Monitorable can send notification when the given StatusVariable
changes, false otherwise

Throws IllegalArgumentException – if id points to a non-existing StatusVariable
resetStatusVariable(String)

119.7.2.5 public boolean resetStatusVariable(String id) throws
IllegalArgumentException

id the identifier of the StatusVariable, cannot be null
OSGi Service Platform Release 4 445-502

org.osgi.service.monitor Monitor Admin Service Specification Version 1.0
Issues a request to reset a given StatusVariable. Depending on the semantics
of the actual Status Variable this call may or may not succeed: it makes
sense to reset a counter to its starting value, but for example a StatusVari-
able of type String might not have a meaningful default value. Note that for
numeric StatusVariables the starting value may not necessarily be 0. Reset-
ting a StatusVariable must trigger a monitor event.

The given identifier does not contain the Monitorable PID, i.e. it specifies
the name and not the path of the Status Variable.

Returns true if the Monitorable could successfully reset the given StatusVariable,
false otherwise

Throws IllegalArgumentException – if id points to a non-existing StatusVariable
MonitorAdmin

119.7.3 public interface MonitorAdmin
The MonitorAdmin service is a singleton service that handles StatusVari-
able query requests and measurement job control requests.

Note that an alternative but not recommended way of obtaining StatusVari-
ables is that applications having the required ServicePermissions can query
the list of Monitorable services from the service registry and then query the
list of StatusVariable names from the Monitorable services. This way all ser-
vices which publish StatusVariables will be returned regardless of whether
they do or do not hold the necessary MonitorPermission for publishing Sta-
tusVariables. By using the MonitorAdmin to obtain the StatusVariables it is
guaranteed that only those Monitorable services will be accessed who are
authorized to publish StatusVariables. It is the responsibility of the Monito-
rAdmin implementation to check the required permissions and show only
those variables which pass this check.

The events posted by MonitorAdmin contain the following properties:

• mon.monitorable.pid: The identifier of the Monitorable
• mon.statusvariable.name: The identifier of the StatusVariable within the

given Monitorable
• mon.statusvariable.value: The value of the StatusVariable, represented

as a String
• mon.listener.id: The identifier of the initiator of the monitoring job (only

present if the event was generated due to a monitoring job)

Most of the methods require either a Monitorable ID or a Status Variable
path parameter, the latter in [Monitorable_ID]/[StatusVariable_ID] format.
These parameters must not be null, and the IDs they contain must conform
to their respective definitions in Monitorable [p.444] and
StatusVar iable [p.455] . If any of the restrictions are violated, the method
must throw an IllegalArgumentException.
getDescription(String)

119.7.3.1 public String getDescription(String path) throws
IllegalArgumentException, SecurityException

path the full path of the StatusVariable in [Monitorable_ID]/[StatusVariable_ID]
format

Returns a human readable description of the given StatusVariable. The null
value may be returned if there is no description for the given StatusVariable.
446-502 OSGi Service Platform Release 4

Monitor Admin Service Specification Version 1.0 org.osgi.service.monitor
The entity that queries a StatusVariable needs to hold MonitorPermission
for the given target with the read action present.

Returns the human readable description of this StatusVariable or null if it is not set

Throws IllegalArgumentException – if path is null or otherwise invalid, or points
to a non-existing StatusVariable

SecurityException – if the caller does not hold a MonitorPermission for
the StatusVariable specified by path with the read action present
getMonitorableNames()

119.7.3.2 public String[] getMonitorableNames()

Returns the names of the Monitorable services that are currently registered.
The Monitorable instances are not accessible through the MonitorAdmin,
so that requests to individual status variables can be filtered with respect to
the publishing rights of the Monitorable and the reading rights of the caller.

The returned array contains the names in alphabetical order. It cannot be
null, an empty array is returned if no Monitorable services are registered.

Returns the array of Monitorable names
getRunningJobs()

119.7.3.3 public MonitoringJob[] getRunningJobs()

Returns the list of currently running MonitoringJobs. Jobs are only visible
to callers that have the necessary permissions: to receive a Monitoring Job in
the returned list, the caller must hold all permissions required for starting
the job. This means that if the caller does not have MonitorPermission with
the proper startjob action for all the Status Variables monitored by a job,
then that job will be silently omitted from the results.

The returned array cannot be null, an empty array is returned if there are no
running jobs visible to the caller at the time of the call.

Returns the list of running jobs visible to the caller
getStatusVariable(String)

119.7.3.4 public StatusVariable getStatusVariable(String path) throws
IllegalArgumentException, SecurityException

path the full path of the StatusVariable in [Monitorable_ID]/[StatusVariable_ID]
format

Returns a StatusVariable addressed by its full path. The entity which queries
a StatusVariable needs to hold MonitorPermission for the given target with
the read action present.

Returns the StatusVariable object

Throws IllegalArgumentException – if path is null or otherwise invalid, or points
to a non-existing StatusVariable

SecurityException – if the caller does not hold a MonitorPermission for
the StatusVariable specified by path with the read action present
getStatusVariableNames(String)

119.7.3.5 public String[] getStatusVariableNames(String monitorableId) throws
IllegalArgumentException

monitorableId the identifier of a Monitorable instance

Returns the list of StatusVariable names published by a Monitorable
instance. Only those status variables are listed where the following two con-
ditions are met:
OSGi Service Platform Release 4 447-502

org.osgi.service.monitor Monitor Admin Service Specification Version 1.0
• the specified Monitorable holds a MonitorPermission for the status
variable with the publish action present

• the caller holds a MonitorPermission for the status variable with the read
action present

The returned array does not contain duplicates, and the elements are in
alphabetical order. It cannot be null, an empty array is returned if no (autho-
rized and readable) Status Variables are provided by the given Monitorable.

Returns a list of StatusVariable objects names published by the specified Monitorable

Throws IllegalArgumentException – if monitorableId is null or otherwise invalid,
or points to a non-existing Monitorable
getStatusVariables(String)

119.7.3.6 public StatusVariable[] getStatusVariables(String monitorableId)
throws IllegalArgumentException

monitorableId the identifier of a Monitorable instance

Returns the StatusVariable objects published by a Monitorable instance.
The StatusVariables will hold the values taken at the time of this method
call. Only those status variables are returned where the following two condi-
tions are met:

• the specified Monitorable holds a MonitorPermission for the status
variable with the publish action present

• the caller holds a MonitorPermission for the status variable with the read
action present

The elements in the returned array are in no particular order. The return
value cannot be null, an empty array is returned if no (authorized and read-
able) Status Variables are provided by the given Monitorable.

Returns a list of StatusVariable objects published by the specified Monitorable

Throws IllegalArgumentException – if monitorableId is null or otherwise invalid,
or points to a non-existing Monitorable
resetStatusVariable(String)

119.7.3.7 public boolean resetStatusVariable(String path) throws
IllegalArgumentException, SecurityException

path the identifier of the StatusVariable in [Monitorable_id]/[StatusVariable_id]
format

Issues a request to reset a given StatusVariable. Depending on the semantics
of the StatusVariable this call may or may not succeed: it makes sense to
reset a counter to its starting value, but e.g. a StatusVariable of type String
might not have a meaningful default value. Note that for numeric Status-
Variables the starting value may not necessarily be 0. Resetting a StatusVari-
able triggers a monitor event if the StatusVariable supports update
notifications.

The entity that wants to reset the StatusVariable needs to hold MonitorPer-
mission with the reset action present. The target field of the permission
must match the StatusVariable name to be reset.

Returns true if the Monitorable could successfully reset the given StatusVariable,
false otherwise

Throws IllegalArgumentException – if path is null or otherwise invalid, or points
to a non-existing StatusVariable
448-502 OSGi Service Platform Release 4

Monitor Admin Service Specification Version 1.0 org.osgi.service.monitor
SecurityException – if the caller does not hold MonitorPermission with
the reset action or if the specified StatusVariable is not allowed to be reset as
per the target field of the permission
startJob(String,String[],int)

119.7.3.8 public MonitoringJob startJob(String initiator, String[] statusVariables,
int count) throws IllegalArgumentException, SecurityException

initiator the identifier of the entity that initiated the job

statusVariables the list of StatusVariables to be monitored, with each StatusVariable name
given in [Monitorable_PID]/[StatusVariable_ID] format

count the number of changes that must happen to a StatusVariable before a new
notification is sent

Starts a change based MonitoringJob with the parameters provided. Moni-
toring events will be sent when the StatusVariables of this job are updated.
All specified StatusVariables must exist when the job is started, and all must
support update notifications. The initiator string is used in the mon.lis-
tener.id field of all events triggered by the job, to allow filtering the events
based on the initiator.

The count parameter specifies the number of changes that must happen to a
StatusVariable before a new notification is sent, this must be a positive inte-
ger.

The entity which initiates a MonitoringJob needs to hold MonitorPermis-
sion for all the specified target StatusVariables with the startjob action
present.

Returns the successfully started job object, cannot be null

Throws IllegalArgumentException – if the list of StatusVariable names contains
an invalid or non-existing StatusVariable, or one that does not support noti-
fications; if the initiator is null or empty; or if count is invalid

SecurityException – if the caller does not hold MonitorPermission for all
the specified StatusVariables, with the startjob action present
startScheduledJob(String,String[],int,int)

119.7.3.9 public MonitoringJob startScheduledJob(String initiator, String[]
statusVariables, int schedule, int count) throws
IllegalArgumentException, SecurityException

initiator the identifier of the entity that initiated the job

statusVariables the list of StatusVariables to be monitored, with each StatusVariable name
given in [Monitorable_PID]/[StatusVariable_ID] format

schedule the time in seconds between two measurements

count the number of measurements to be taken, or 0 for the measurement to run
until explicitely stopped

Starts a time based MonitoringJob with the parameters provided. Monitor-
ing events will be sent according to the specified schedule. All specified Sta-
tusVariables must exist when the job is started. The initiator string is used
in the mon.listener.id field of all events triggered by the job, to allow filter-
ing the events based on the initiator.
OSGi Service Platform Release 4 449-502

org.osgi.service.monitor Monitor Admin Service Specification Version 1.0
The schedule parameter specifies the time in seconds between two measure-
ments, it must be greater than 0. The first measurement will be taken when
the timer expires for the first time, not when this method is called.

The count parameter defines the number of measurements to be taken, and
must either be a positive integer, or 0 if the measurement is to run until
explicitely stopped.

The entity which initiates a MonitoringJob needs to hold MonitorPermis-
sion for all the specified target StatusVariables with the startjob action
present. If the permission’s action string specifies a minimal sampling inter-
val then the schedule parameter should be at least as great as the value in
the action string.

Returns the successfully started job object, cannot be null

Throws IllegalArgumentException – if the list of StatusVariable names contains
an invalid or non-existing StatusVariable; if initiator is null or empty; or if
the schedule or count parameters are invalid

SecurityException – if the caller does not hold MonitorPermission for all
the specified StatusVariables, with the startjob action present, or if the per-
mission does not allow starting the job with the given frequency
switchEvents(String,boolean)

119.7.3.10 public void switchEvents(String path, boolean on) throws
IllegalArgumentException, SecurityException

path the identifier of the StatusVariable(s) in [Monitorable_id]/
[StatusVariable_id] format, possibly with the “*” wildcard at the end of either
path fragment

on false if event sending should be switched off, true if it should be switched on
for the given path

Switches event sending on or off for the specified StatusVariables. When the
MonitorAdmin is notified about a StatusVariable being updated it sends an
event unless this feature is switched off. Note that events within a monitor-
ing job can not be switched off. The event sending state of the StatusVari-
ables must not be persistently stored. When a StatusVariable is registered
for the first time in a framework session, its event sending state is set to ON
by default.

Usage of the “*” wildcard is allowed in the path argument of this method as
a convenience feature. The wildcard can be used in either or both path frag-
ments, but only at the end of the fragments. The semantics of the wildcard is
that it stands for any matching StatusVariable at the time of the method
call, it does not affect the event sending status of StatusVariables which are
not yet registered. As an example, when the switchEvents(”MyMonitorable/
*”, false) method is executed, event sending from all StatusVariables of the
MyMonitorable service are switched off. However, if the MyMonitorable
service starts to publish a new StatusVariable later, it’s event sending status
is on by default.

Throws SecurityException – if the caller does not hold MonitorPermission with
the switchevents action or if there is any StatusVariable in the path field for
which it is not allowed to switch event sending on or off as per the target field
of the permission
450-502 OSGi Service Platform Release 4

Monitor Admin Service Specification Version 1.0 org.osgi.service.monitor
IllegalArgumentException – if path is null or otherwise invalid, or points
to a non-existing StatusVariable
MonitoringJob

119.7.4 public interface MonitoringJob
A Monitoring Job is a request for scheduled or event based notifications on
update of a set of StatusVariables. The job is a data structure that holds a
non-empty list of StatusVariable names, an identification of the initiator of
the job, and the sampling parameters. There are two kinds of monitoring
jobs: time based and change based. Time based jobs take samples of all Sta-
tusVariables with a specified frequency. The number of samples to be taken
before the job finishes may be specified. Change based jobs are only inter-
ested in the changes of the monitored StatusVariables. In this case, the num-
ber of changes that must take place between two notifications can be
specified.

The job can be started on the MonitorAdmin interface. Running the job
(querying the StatusVariables, listening to changes, and sending out notifi-
cations on updates) is the task of the MonitorAdmin implementation.

Whether a monitoring job keeps track dynamically of the StatusVariables it
monitors is not specified. This means that if we monitor a StatusVariable of
a Monitorable service which disappears and later reappears then it is imple-
mentation specific whether we still receive updates of the StatusVariable
changes or not.
getInitiator()

119.7.4.1 public String getInitiator()

Returns the identitifier of the principal who initiated the job. This is set at
the time when MonitorAdmin.star t Job MonitorAdmin.start Job() [p.449]
method is called. This string holds the ServerID if the operation was initi-
ated from a remote manager, or an arbitrary ID of the initiator entity in the
local case (used for addressing notification events).

Returns the ID of the initiator, cannot be null
getReportCount()

119.7.4.2 public int getReportCount()

Returns the number of times MonitorAdmin will query the StatusVariables
(for time based jobs), or the number of changes of a StatusVariable between
notifications (for change based jobs). Time based jobs with non-zero report
count will take getReportCount()*getSchedule() time to finish. Time based
jobs with 0 report count and change based jobs do not stop automatically,
but all jobs can be stopped with the stop [p.452] method.

Returns the number of measurements to be taken, or the number of changes between
notifications
getSchedule()

119.7.4.3 public int getSchedule()

Returns the delay (in seconds) between two samples. If this call returns N
(greater than 0) then the MonitorAdmin queries each StatusVariable that
belongs to this job every N seconds. The value 0 means that the job is not
scheduled but event based: in this case instant notification on changes is
requested (at every nth change of the value, as specified by the report count
parameter).

Returns the delay (in seconds) between samples, or 0 for change based jobs
getStatusVariableNames()
OSGi Service Platform Release 4 451-502

org.osgi.service.monitor Monitor Admin Service Specification Version 1.0
119.7.4.4 public String[] getStatusVariableNames()

Returns the list of StatusVariable names that are the targets of this measure-
ment job. For time based jobs, the MonitorAdmin will iterate through this
list and query all StatusVariables when its timer set by the job’s frequency
rate expires.

Returns the target list of the measurement job in [Monitorable_ID]/
[StatusVariable_ID] format, cannot be null
isLocal()

119.7.4.5 public boolean isLocal()

Returns whether the job was started locally or remotely. Jobs started by the
clients of this API are always local, remote jobs can only be started using the
Device Management Tree.

Returns true if the job was started from the local device, false if the job was initiated
from a management server through the device management tree
isRunning()

119.7.4.6 public boolean isRunning()

Returns whether the job is running. A job is running until it is explicitely
stopped, or, in case of time based jobs with a finite report count, until the
given number of measurements have been made.

Returns true if the job is still running, false if it has finished
stop()

119.7.4.7 public void stop()

Stops a Monitoring Job. Note that a time based job can also stop automati-
cally if the specified number of samples have been taken.
MonitorListener

119.7.5 public interface MonitorListener
The MonitorListener is used by Monitorable services to send notifications
when a StatusVariable value is changed. The MonitorListener should regis-
ter itself as a service at the OSGi Service Registry. This interface must (only)
be implemented by the Monitor Admin component.
updated(String,StatusVariable)

119.7.5.1 public void updated(String monitorableId, StatusVariable statusVariable
) throws IllegalArgumentException

monitorableId the identifier of the Monitorable instance reporting the change

statusVariable the StatusVariable that has changed

Callback for notification of a StatusVariable change.

Throws IllegalArgumentException – if the specified monitorable ID is invalid
(null, empty, or contains illegal characters) or points to a non-existing Mon-
itorable, or if statusVariable is null
MonitorPermission
452-502 OSGi Service Platform Release 4

Monitor Admin Service Specification Version 1.0 org.osgi.service.monitor
119.7.6 public class MonitorPermission
extends Permission
Indicates the callers authority to publish, read or reset StatusVariables, to
switch event sending on or off or to start monitoring jobs. The target of the
permission is the identifier of the StatusVariable, the action can be read,
publish, reset, startjob, switchevents, or the combination of these separated
by commas. Action names are interpreted case-insensitively, but the canoni-
cal action string returned by getActions [p.454] uses the forms defined by
the action constants.

If the wildcard * appears in the actions field, all legal monitoring commands
are allowed on the designated target(s) by the owner of the permission.
PUBLISH

119.7.6.1 public static final String PUBLISH = “publish”

Holders of MonitorPermission with the publish action present are Monitor-
able services that are allowed to publish the StatusVariables specified in the
permission’s target field. Note, that this permission cannot be enforced
when a Monitorable registers to the framework, because the Service Regis-
try does not know about this permission. Instead, any StatusVariables pub-
lished by a Monitorable without the corresponding publish permission are
silently ignored by MonitorAdmin, and are therefore invisible to the users
of the monitoring service.
READ

119.7.6.2 public static final String READ = “read”

Holders of MonitorPermission with the read action present are allowed to
read the value of the StatusVariables specified in the permission’s target
field.
RESET

119.7.6.3 public static final String RESET = “reset”

Holders of MonitorPermission with the reset action present are allowed to
reset the value of the StatusVariables specified in the permission’s target
field.
STARTJOB

119.7.6.4 public static final String STARTJOB = “startjob”

Holders of MonitorPermission with the startjob action present are allowed
to initiate monitoring jobs involving the StatusVariables specified in the
permission’s target field.

A minimal sampling interval can be optionally defined in the following
form: startjob:n. This allows the holder of the permission to initiate time
based jobs with a measurement interval of at least n seconds. If n is not spec-
ified or 0 then the holder of this permission is allowed to start monitoring
jobs specifying any frequency.
SWITCHEVENTS

119.7.6.5 public static final String SWITCHEVENTS = “switchevents”

Holders of MonitorPermission with the switchevents action present are
allowed to switch event sending on or off for the value of the StatusVari-
ables specified in the permission’s target field.
MonitorPermission(String,String)

119.7.6.6 public MonitorPermission(String statusVariable, String actions) throws
OSGi Service Platform Release 4 453-502

org.osgi.service.monitor Monitor Admin Service Specification Version 1.0
IllegalArgumentException

statusVariable the identifier of the StatusVariable in [Monitorable_id]/[StatusVariable_id]
format

actions the list of allowed actions separated by commas, or * for all actions

Create a MonitorPermission object, specifying the target and actions.

The statusVariable parameter is the target of the permission, defining one or
more status variable names to which the specified actions apply. Multiple
status variable names can be selected by using the wildcard * in the target
string. The wildcard is allowed in both fragments, but only at the end of the
fragments.

For example, the following targets are valid: com.mycomp.myapp/
queue_length, com.mycomp.myapp/*, com.mycomp.*/*, */*, */
queue_length, */queue*.

The following targets are invalid: *.myapp/queue_length, com.*.myapp/*,
*.

The actions parameter specifies the allowed action(s): read, publish, startjob,
reset, switchevents, or the combination of these separated by commas.
String constants are defined in this class for each valid action. Passing “*” as
the action string is equivalent to listing all actions.

Throws IllegalArgumentException – if either parameter is null, or invalid with re-
gard to the constraints defined above and in the documentation of the used
actions
equals(Object)

119.7.6.7 public boolean equals(Object o)

o the object being compared for equality with this object

Determines the equality of two MonitorPermission objects. Two Monitor-
Permission objects are equal if their target strings are equal and the same set
of actions are listed in their action strings.

Returns true if the two permissions are equal
getActions()

119.7.6.8 public String getActions()

Get the action string associated with this permission. The actions are
returned in the following order: read, reset, publish, startjob, switchevents.

Returns the allowed actions separated by commas, cannot be null
hashCode()

119.7.6.9 public int hashCode()

Create an integer hash of the object. The hash codes of MonitorPermissions
p1 and p2 are the same if p1.equals(p2).

Returns the hash of the object
implies(Permission)

119.7.6.10 public boolean implies(Permission p)

p the permission to be checked

Determines if the specified permission is implied by this permission.

This method returns false if and only if at least one of the following condi-
tions are fulfilled for the specified permission:

• it is not a MonitorPermission
454-502 OSGi Service Platform Release 4

Monitor Admin Service Specification Version 1.0 org.osgi.service.monitor
• it has a broader set of actions allowed than this one
• it allows initiating time based monitoring jobs with a lower minimal

sampling interval
• the target set of Monitorables is not the same nor a subset of the target

set of Monitorables of this permission
• the target set of StatusVariables is not the same nor a subset of the target

set of StatusVariables of this permission

Returns true if the given permission is implied by this permission
StatusVariable

119.7.7 public final class StatusVariable
A StatusVariable object represents the value of a status variable taken with a
certain collection method at a certain point of time. The type of the Status-
Variable can be int, float, boolean or String.

A StatusVariable is identified by an ID string that is unique within the scope
of a Monitorable. The ID must be a non- null, non-empty string that con-
forms to the “symbolic-name” definition in the OSGi core specification. This
means that only the characters [-_.a-zA-Z0-9] may be used. The length of the
ID must not exceed 32 bytes when UTF-8 encoded.
CM_CC

119.7.7.1 public static final int CM_CC = 0

Constant for identifying ‘Cumulative Counter’ data collection method.
CM_DER

119.7.7.2 public static final int CM_DER = 1

Constant for identifying ‘Discrete Event Registration’ data collection
method.
CM_GAUGE

119.7.7.3 public static final int CM_GAUGE = 2

Constant for identifying ‘Gauge’ data collection method.
CM_SI

119.7.7.4 public static final int CM_SI = 3

Constant for identifying ‘Status Inspection’ data collection method.
TYPE_BOOLEAN

119.7.7.5 public static final int TYPE_BOOLEAN = 3

Constant for identifying boolean data type.
TYPE_FLOAT

119.7.7.6 public static final int TYPE_FLOAT = 1

Constant for identifying float data type.
TYPE_INTEGER

119.7.7.7 public static final int TYPE_INTEGER = 0

Constant for identifying int data type.
TYPE_STRING

119.7.7.8 public static final int TYPE_STRING = 2

Constant for identifying String data type.
StatusVariable(String,int,int)

119.7.7.9 public StatusVariable(String id, int cm, int data)

id the identifier of the StatusVariable

cm the collection method, one of the CM_ constants
OSGi Service Platform Release 4 455-502

org.osgi.service.monitor Monitor Admin Service Specification Version 1.0
data the int value of the StatusVariable

Constructor for a StatusVariable of int type.

Throws IllegalArgumentException – if the given id is not a valid StatusVariable
name, or if cm is not one of the collection method constants

NullPointerException – if the id parameter is null
StatusVariable(String,int,float)

119.7.7.10 public StatusVariable(String id, int cm, float data)

id the identifier of the StatusVariable

cm the collection method, one of the CM_ constants

data the float value of the StatusVariable

Constructor for a StatusVariable of float type.

Throws IllegalArgumentException – if the given id is not a valid StatusVariable
name, or if cm is not one of the collection method constants

NullPointerException – if the id parameter is null
StatusVariable(String,int,boolean)

119.7.7.11 public StatusVariable(String id, int cm, boolean data)

id the identifier of the StatusVariable

cm the collection method, one of the CM_ constants

data the boolean value of the StatusVariable

Constructor for a StatusVariable of boolean type.

Throws IllegalArgumentException – if the given id is not a valid StatusVariable
name, or if cm is not one of the collection method constants

NullPointerException – if the id parameter is null
StatusVariable(String,int,String)

119.7.7.12 public StatusVariable(String id, int cm, String data)

id the identifier of the StatusVariable

cm the collection method, one of the CM_ constants

data the String value of the StatusVariable, can be null

Constructor for a StatusVariable of String type.

Throws IllegalArgumentException – if the given id is not a valid StatusVariable
name, or if cm is not one of the collection method constants

NullPointerException – if the id parameter is null
equals(Object)

119.7.7.13 public boolean equals(Object obj)

obj the object to compare with this StatusVariable

Compares the specified object with this StatusVariable. Two StatusVariable
objects are considered equal if their full path, collection method and type
are identical, and the data (selected by their type) is equal.

Returns true if the argument represents the same StatusVariable as this object
getBoolean()

119.7.7.14 public boolean getBoolean() throws IllegalStateException

Returns the StatusVariable value if its type is boolean.

Returns the StatusVariable value as a boolean
456-502 OSGi Service Platform Release 4

Monitor Admin Service Specification Version 1.0 org.osgi.service.monitor
Throws IllegalStateException – if the type of this StatusVariable is not boolean
getCollectionMethod()

119.7.7.15 public int getCollectionMethod()

Returns the collection method of this StatusVariable. See section 3.3 b) in
[ETSI TS 132 403]

Returns one of the CM_ constants
getFloat()

119.7.7.16 public float getFloat() throws IllegalStateException

Returns the StatusVariable value if its type is float.

Returns the StatusVariable value as a float

Throws IllegalStateException – if the type of this StatusVariable is not float
getID()

119.7.7.17 public String getID()

Returns the ID of this StatusVariable. The ID is unique within the scope of a
Monitorable.

Returns the ID of this StatusVariable
getInteger()

119.7.7.18 public int getInteger() throws IllegalStateException

Returns the StatusVariable value if its type is int.

Returns the StatusVariable value as an int

Throws IllegalStateException – if the type of this StatusVariable is not int
getString()

119.7.7.19 public String getString() throws IllegalStateException

Returns the StatusVariable value if its type is String.

Returns the StatusVariable value as a String

Throws IllegalStateException – if the type of the StatusVariable is not String
getTimeStamp()

119.7.7.20 public Date getTimeStamp()

Returns the timestamp associated with the StatusVariable. The timestamp
is stored when the StatusVariable instance is created, generally during the
Monitorab le.getStatusVariab le [p.445] method call.

Returns the time when the StatusVariable value was queried, cannot be null
getType()

119.7.7.21 public int getType()

Returns information on the data type of this StatusVariable.

Returns one of the TYPE_ constants indicating the type of this StatusVariable
hashCode()

119.7.7.22 public int hashCode()

Returns the hash code value for this StatusVariable. The hash code is calcu-
lated based on the full path, collection method and value of the StatusVari-
able.

Returns the hash code of this object
toString()

119.7.7.23 public String toString()

Returns a String representation of this StatusVariable. The returned String
contains the full path, collection method, timestamp, type and value param-
eters of the StatusVariable in the following format:
OSGi Service Platform Release 4 457-502

References Monitor Admin Service Specification Version 1.0
StatusVariable(<path>, <cm>, <timestamp>, <type>, <value>)

The collection method identifiers used in the string representation are “CC”,
“DER”, “GAUGE” and “SI” (without the quotes). The format of the timestamp
is defined by the Date.toString method, while the type is identified by one of
the strings “INTEGER”, “FLOAT”, “STRING” and “BOOLEAN”. The final field
contains the string representation of the value of the status variable.

Returns the String representation of this StatusVariable

119.8 References
[1] SyncML Device Management Tree Description

[2] ETSI Performance Management [TS 132 403]
http://webapp.etsi.org/action/PU/20040113/ts_132403v050500p.pdf

[3] RFC-2396 Uniform Resource Identifiers (URI): Generic Syntax
http://www.ietf.org/rfc/rfc2396.txt

RFC-2396
458-502 OSGi Service Platform Release 4

Foreign Application Access Specification Version 1.0 Introduction
120 Foreign Application
Access Specification
Version 1.0

120.1 Introduction
The OSGi Framework contains an advanced collaboration model which pro-
vides a publish/find/bind model using services. This OSGi service architec-
ture is not natively supported by foreign application models like MIDP,
Xlets, Applets, other Java application models. The purpose of this specifica-
tion is to enable these foreign applications to participate in the OSGi service
oriented architecture.

120.1.1 Essentials
• Interoperatbility – Full inter-operability between foreign application

models and OSGi services is required. This requires both getting services,
registering services, and listening to Framework events.

• No Change – The interworking specification cannot modify the life cycle
model of the foreign application models. The foreign application model
specifications cannot be changed.

• Familiarity – Programmers familiar with a foreign application model
should be able to leverage the services architecture without much effort.

• Simplicity – The programming model for using services must be very
simple and not require the programmer to learn many new concepts.

• Management – Support managing the foreign applications; both through
proper OSGi APIs and from a remote management server.

120.1.2 Entities
• Foreign Application – Java Applications, which must be delivered in JAR

files, which are not OSGi bundles.
• Application Container – An Application Container is responsible for con-

trolling a foreign application and providing the appropriate envi-
ronment. It must interact with the OSGi Framework to give the foreign
application instances access to the OSGi services and package sharing.

• Application Activator – A class in the foreign application JAR file that is
used to notify the application of life cycle changes. One JAR file can
contain multiple application activators.

• Framework – A class that provides access to the application container’s
application context for a given application activator.

• Application Context – The interface to the application container’s func-
tions to inter-work with the OSGi Framework.

• Application Declaration – An XML resource that must be placed in the
application’s JAR file at OSGI-INF/app/apps .xml . This is an optional dec-
laration.
OSGi Service Platform Release 4 459-502

Foreign Applications Foreign Application Access Specification Version 1.0
• Application Instance – A launched application. Most foreign application
models permit an application to be launched multiple times.

Figure 120.1 Foreign Applications, org.osgi.application package

120.1.3 Synopsis
Foreign application JAR files can be installed in an OSGi Framework as if
they were normal bundles. Application containers running on the OSGi
Framework must detect the installation of recognized foreign applications
and provide a bridge to the OSGi Environment. This bridge can include
interaction with the Application Admin Service Specification on page 269, as
well as provide access to the OSGi services and Framework events.

The Application container reads the application XML resource from the JAR
file and treats the foreign application according to this information. When
the foreign application is launched, the application container creates an
application instance.

Foreign application instances can get an application context through a
static method on the Framework class. The Application Context provides
access to getting services, registering services and registering listeners.

The foreign application instance’s life cycle can be influenced by the appli-
cation declaration. If desired, an application can be prevented from launch-
ing or stopping when required services are, or become, unavailable.

120.2 Foreign Applications
Foreign applications are Java applications that can be installed and man-
aged through the normal OSGi mechanisms. However, they use another
application programming model than the bundle programming model. For
example: MIDP, MHP, DOJA.

Foreign
Application
Object

<<interface>>
Application
Context

OSGI-INF/
app/apps.xml

Application
Contiainer Impl

m
etadata

0,1

Application
Context Impl

Framework

getApplicationContext

0..n

0,1

(static)

1

0..n1

controlled by

Application
Descriptor
460-502 OSGi Service Platform Release 4

Foreign Application Access Specification Version 1.0 Foreign Applications
Foreign applications must fulfill the following requirements to be able to
inter-work with the OSGi environment:

• The applications must be written in Java
• The applications must be delivered in JAR files. This is the common

model for Java applications.
• They must have a clearly defined life cycle with a start and stop state.
• One or more classes in the application must be available to start and stop

the application. For example the Midlet in MIDP or the Xlet in MHP. This
object is called the application’s activator. As the application container
uses this object for life cycle control of the application, the lifetime of
this object equals the lifetime of the application.

Foreign applications are managed by application containers. Application con-
tainers provide the environment and life cycle management as defined by
foreign application model.

This specification does not require any changes in the foreign application
model; existing applications must run unmodified. However, to allow the
foreign applications to participate as a first class OSGi citizen, a number of
additional artifacts in the JAR file are required. These artifacts use Manifest
headers and an XML resource in the applications JAR file; these artifacts are
permitted and ignored by the foreign application models that are currently
known.

120.2.1 Foreign Metadata
There are different types of metadata associated with application models.
Descriptive information, for example the name, icon, documentation etc. of
the application, is usually provided in an application model specific way.
Application models can also define behavioral metadata, that is, prescribe
that the application needs to be started automatically at device startup (auto
start) or whether multiple instances of an application can be executed con-
currently (singleton). These kinds of metadata are supported by different
application models to different extent and are not in the scope of this speci-
fication. The application container is responsible for interpreting this meta-
data and treating the foreign application in the appropriate way.

120.2.2 OSGi Manifest Headers
Foreign applications can import packages by specifying the appropriate
OSGi module headers in the manifest. These headers are fully described in
the OSGi Core Specification. Their semantics remain unchanged. The fol-
lowing headers must not be used in foreign applications:

• Export-Package – Exporting packages is forbidden in foreign applications.
• Bundle-Activator – Foreign applications have their own activator.
• Service-Component – Service components should be bundles.

Foreign applications that intend to use the OSGi Framework features
should have Bundle-SymbolicName and Bundle-Version headers. If they do
not have such a header, they can be deployed with Deployment Package,
which can assign these headers in the Deployment Package manifest.
OSGi Service Platform Release 4 461-502

Foreign Applications Foreign Application Access Specification Version 1.0
Any JAR that uses these headers must not be recognized as a foreign applica-
tion, even if their manifest is conforming and valid with respect to the for-
eign application model. This entails that a JAR cannot both be a bundle with
activator or exports and a foreign application.

For example, a MIDlet can be extended to import the org.osgi .appl icat ion
package from the OSGi environment. The Import-Package header is used to
describe such an import:

Manifest-Version: 1.0
MIDlet-Name: Example
MIDlet-1: Example, , osgi.ExampleMidlet
MIDlet-Version: 1.1.0
MIDlet-Vendor: OSGi
MicroEdition-Configuration: CDC-1.0
MicroEdition-Profile: MIDP-1.0
Bundle-ManifestVersion: 2
Bundle-SymbolicName: osgi.example
Import-Package: org.osgi.application;version=1.0,
 org.osgi.framework;version=1.3

120.2.3 Interacting with the OSGi Framework
The application container must maintain an application context for each
started application, that is, the application instance. This context is related
to the application’s activator. The Application Context can be acquired
using a static getAppl icat ionContext(Object) method on the Framework
class. The parameter of this method is the application’s activator itself. The
getApplicationContext method cannot check if the caller is really the given
application; the application activator is therefore a capability, any applica-
tion that has this object can get the Application Context. The application
activator should never be shared with other applications. The Application
Context must therefore deny the application activator to be used as a service
object.

The getAppl icat ionContext method must not be called from the applica-
tion activator’s constructor; at that time it must not be available yet.

For example, a MIDlet could acquire the application context with the fol-
lowing code:

import org.osgi.framework.*;
import org.osgi.application.*;
import javax.microedition.midlet.*;

public class Example extends MIDlet {
ApplicationContext context;

 public void startApp() {
context = Framework.getApplicationContext(this);

 }

 public void pauseApp() { ... }

 public void destroyApp(boolean unconditional) { ... }
}
462-502 OSGi Service Platform Release 4

Foreign Application Access Specification Version 1.0 Foreign Applications
The getAppl icationContext method must throw an Illegal Argument
Exception if it is called with an object that is not an application’s activator.

The ApplicationContext object is singleton for the corresponding applica-
tion’s activator. Subsequent calls to the getAppl icationContext method
with the same application’s activator must return the same
Appl icat ionContext object; therefore, applications are free to forget and get
the object any number of times during their lifetime. However, it is an error
to get the Appl icationContext object for an application that is already
stopped. Existing Appl icat ionContext objects must be invalidated once the
application’s activator is stopped.

120.2.4 Introspection
The Application Context provides the following methods about the applica-
tion:

• getAppl icationId() – Return the Application Descriptor id for this appli-
cation.

• getInstanceId() – Return the instance id for this application.

120.2.5 Access to Services
Foreign applications do not have direct access to the OSGi service registry.
However, the application context provides the mechanism to interact with
this service registry.

Access to services is more protected and controlled than traditional OSGi
access that uses the BundleContext object. The service model is conceptu-
ally based on the Declarative Services Specification on page 151. It uses the
same concepts as that specification. Albeit there are a number of differences
due the nature of foreign applications.

Applications can use the locateService or locateServices methods of their
associated application context to obtain service objects from the OSGi ser-
vice registry. Just like OSGi Declarative services, these service objects must
be declared a priori in the reference element of the metadata, seeApplication
Descriptor Resource on page 467. This metadata declares a number of named
references; References contain the criteria which services are eligible for use
by the application and how these dependencies should be handled. The for-
eign application can only use services defined in references; the application
context only takes the name of a reference as parameter in the
locateService and locateServices methods. That is, a foreign application
cannot indiscriminately use the service registry, it is restricted by the appli-
cation declaration.

A reference selects a subset of services in the service registry. The primary
selector is its interface. However, this subset can be further narrowed down
with a target filter. The target specifies an OSGi filter expression that is used
to additionally qualify the subset of appropriate services.

There are two different methods to access the services selected by the refer-
ence:

• locateService(Str ing) – Return one of the services that is selected by the
reference with the given name. If multiple services are selected by the
reference, then the service with the highest ranking must be returned.
OSGi Service Platform Release 4 463-502

Foreign Applications Foreign Application Access Specification Version 1.0
This is compatible with the getServiceReference method in the OSGi
Framework’s BundleContext class.

• locateServices(Str ing) – Return all the services that are selected by the
reference with the given name.

Once the application instance has obtained a service object, that service is
said to be bound to the application instance. There is no method to unbind a
service.

For example, a foreign application that wants to log via the Log Service,
should declare the following metadata in OSGI-INF/app/apps.xml :

<?xml version="1.0" ?>
<descriptor xmlns="http://www.osgi.org/xmlns/app/v1.0.0">

<application class="com.acme.app.SampleMidlet">
<reference name="log"

interface="org.osgi.service.log.LogService"/>
</application>

</descriptor>

The code to log could look like:

void log(String msg) {
ApplicationContext ctxt=

Framework.getApplicationContext(this);
LogService log = (LogService) ctxt.locateService("log");
log.log(LogService.LOG_INFO, msg);

}

120.2.6 Service Properties
The foreign applications receive the services objects they have access to
directly. This means that they cannot access the service properties that are
normally associated with the service registrations.

The getServiceProperties(Object) returns a Map object with a copy of these
service properties.

120.2.7 Dependencies on Services
The availability of services can influence the life cycle of the foreign applica-
tion. The life cycle is influenced by the policy and the cardinality.

The policy defines how the unregistration of a bound service must be han-
dled. The following policies are supported:

• static – The application assumes that bound services will never go away.
So if a bound service becomes unregistered, the Application Container
must stop the application to prevent it from using a stale service.

• dynamic – The application must never store service objects and will
always get them on demand. Once a service is bound, it can become
unregistered without any effect on the application.

Additionally, the cardinality defines if a reference is optional. An optional
reference does not influence the life cycle of an application, a mandatory
reference does. The cardinality is expressed as one of the following values:

• 0. .1 or 0..n – Optional reference
• 1. .1 or 1 . .n – Mandatory reference
464-502 OSGi Service Platform Release 4

Foreign Application Access Specification Version 1.0 Foreign Applications
The multiplicity is only for compatibility with the Declarative Services.
Both locateService and locateServ ices methods can be used regardless of
the given multiplicity and return the selected subset for the given reference.

Mandatory references can influence the launching of an application. An
application must only be started when a mandatory reference is satisfied. A
reference is satisfied when there is at least one registered service selected by
the reference.

If a mandatory reference of an application is about to become unsatisfied,
due to unregistering a service, the application container must stop the
application instance according to corresponding application model seman-
tics.

120.2.8 Registering Services
A common pattern in the OSGi is registering a service to listen to certain
events. For example, the Configuration Admin service requires their clients
to register a callback Managed Service, so that the service can asynchro-
nously update the client with new configurations. The Appl icat ionContext
interface contains methods that allow the applications to register such ser-
vices. These services must be automatically unregistered by the application
container after the application has been stopped.

The available methods are:

• reg isterService(Str ing[] ,Object,Dict ionary) – Register a service under a
single interface.

• reg isterService(Str ing,Object,Dictionary) – Register a service under a
number of interfaces.

Either method requires that the given object implements all the interfaces
that are given. The Dictionary object provides the properties. See the OSGi
reg isterService methods in the BundleContext class. These identical meth-
ods specifies the behavior in detail.

The use of the application activator as a service object is explicitly forbid-
den. Registering the application activator as a service allows other applica-
tions in the OSGi environment to access the Application Context using this
object and the getAppl icationContext method.

Both methods return a ServiceRegistration object that can be used to unreg-
ister the service. Services must be automatically unregistered when the
application instance is stopped.

120.2.9 Listening to Service Events
The Application Context provides the following methods to listen to service
events:

• addServiceListener(ApplicationServiceLis tener,Str ing) – Add an Appli-
cation Service Listener. The listener will receive the service events for
the given reference name.

• addServiceListener(ApplicationServiceLis tener,Str ing[]) – Add an
Application Service Listener that will receive the events for all the ser-
vices identified with the given reference name.
OSGi Service Platform Release 4 465-502

Application Containers Foreign Application Access Specification Version 1.0
If a Application Service Listener is registered more than once, then the pre-
vious registration is removed. Listeners can be removed with removeSer-
viceListener(Appl icationServiceListener) . When the application instance
is stopped, the listeners are automatically unregistered.

120.2.10 Access to Startup Parameters
Applications can use the getStartupArguments method on the application
context to obtain their startup arguments. The startup arguments are repre-
sented as map with name and value pairs. The name is a non-nul l and non-
empty ("") Str ing object. The value can be any type of object.

The reason for providing the startup parameters through a special mecha-
nism is that it allows foreign applications access to the parameters of a
schedule application, see Scheduling on page 275.

This uniform access to the startup parameters provides a uniform way for
applications of any foreign application model. This facility does not remove
the need for any mechanisms required by the foreign application model for
startup parameters access.

120.2.11 Sibling Instances
Most foreign application models allow an application to be launched multi-
ple times, creating multiple instances. In OSGi, a bundle can only be started
once, which creates certain assumptions. For example, the Service Factory
concept creates a unique service object per bundle.

Each application instance must be seen as a unique bundle while it runs.
That is, it should not share anything with other instances. The foreign appli-
cation container is responsible for this isolation; implementing this isola-
tion requires implementation dependent constructs.

120.3 Application Containers
Application containers:

• Provide management for the foreign applications
• Launches application instances in a defined environment
• Provide a specific a application model context to foreign application

instances
• Interact with the Application Admin service to provide the foreign appli-

cations to application managers.

A single OSGi environment can host multiple application containers.

120.3.1 Installation
Applications are installed into the system using OSGi bundle installation
mechanism (i.e. insta llBundle method of the BundleContext interface). This
allows including application JARs to Deployment Packages without any
changes to the Deployment Package format or Deployment Admin behav-
ior. It also allows the OSGi framework to process the dependency informa-
tion (the package dependencies) included in the application metadata.
466-502 OSGi Service Platform Release 4

Foreign Application Access Specification Version 1.0 Application Descriptor Resource
The application container can listen to the BundleEvent. INSTALLED events
and examine the installed JARs whether they contain applications sup-
ported by the particular container. After the installation, the application
container is responsible for registering the corresponding Application
Descriptor as defined in the Application Admin Service Specification on page
269. Similarly, the container can recognize the removal of the package by
listening to BundleEvent.UNINSTALLED events and then it can unregister
the corresponding descriptors. Additionally, application container must
check the bundle registry for changes when they are started.

Receiving BundleEvent . INSTALLED events via a Synchronous Bundle Lis-
tener makes it possible for the application container to examine the pack-
age content during installation. A foreign application must not become
available for execution unless it is started as a bundle. This mechanism
allows foreign applications to be installed but not yet recognized as a for-
eign application.

120.4 Application Descriptor Resource
Applications' dependencies on services must be declared in the OSGI- INF/
app/apps.xml resource. The XML file must use the http://www.osg i.org/
xmlns/app/v1.0.0 name space. The preferred abbreviation is app . The XML
schema definition can be found at Component Description Schema on page
469. The apps.xml file is optional if a foreign application does not require
any dependencies.

The structure of the XML must conform to the description below.

<descriptor> ::= <application> +
<application> ::= <reference> *

120.4.1 Descriptor Element
The descriptor is the top level element. The descr iptor element has no
attributes.

120.4.2 Application Element
A JAR file can contain multiple application activators. The appl ication ele-
ment can therefore be repeated one or more times in the descriptor element.

The appl ication element has the following attribute:

• c lass – The class attribute of the appl icat ion element must contain the
fully qualified name of the application’s activator.

120.4.3 Reference Element
A reference element represents the applications use of a particular service.
All services that an application uses must be declared in a reference ele-
ment.

A reference element has the following attributes:

• name – A reference element is identified by a name. This name can be
used in the locateService or locateServ ice , see Access to Services on page
463. This name must be unique within an application element.
OSGi Service Platform Release 4 467-502

Application Descriptor Resource Foreign Application Access Specification Version 1.0
• inter face – The fully qualified name of the interface or class that defines
the selected service.

• policy – The choice of action when a bound services becomes unregis-
tered while an application instance is running. It can have the following
values:
• static – If a bound service becomes unregistered, the application

instance must be stopped but the corresponding Application Descrip-
tor is still launchable.

• dynamic – If a bound service becomes unregistered, the application
can continue to run if the mandatory reference can still be satisfied by
another service.

• card inal ity – Defines the optionality of the reference. If it starts with a 0,
an application can handle that the reference selects no service. That is,
locateService method can return a nul l . If it starts with 1, the reference is
mandatory and at least one service must be available before an appli-
cation instance can be launched. The cardinality can have one of the fol-
lowing values:
• 0..1 or 0. .n – Optional reference
• 1. .1 or 1. .n – Mandatory reference

• target – The optional target attribute of the element can be used to
further narrow which services are acceptable for the application by pro-
viding an OSGi filter on the properties of the services.

120.4.4 Example XML
The following example is an application declaration for a MIDlet applica-
tion that depends on the OSGi Log Service and another service:

<?xml version="1.0" ?>
<descriptor xmlns="http://www.osgi.org/xmlns/app/v1.0.0">
 <application class="com.acme.apps.SampleMidlet">
 <reference name="log" interface="org.osgi.service.log"/>
 <reference name="foo"
 interface="com.acme.service.FooService"
 policy="dynamic"
 cardinality="0..n" />
 </application>
</descriptor>

A similar example for an imaginary Xlet, with different dependencies:

<?xml version="1.0" encoding="UTF-8" ?>
<descriptor xmlns="http://www.osgi.org/xmlns/app/v1.0.0">
 <application class="com.acme.apps.SampleXlet">
 <reference name="log" interface="org.osgi.service.log"/>
 <reference name="bar"
 interface="com.acme.service.BarService"
 policy="static" cardinality="1..n" />
 </application>
</descriptor>
468-502 OSGi Service Platform Release 4

Foreign Application Access Specification Version 1.0 Component Description Schema
120.5 Component Description Schema
This XML Schema defines the component description grammar.

<xs:schema
 xmlns="http://www.osgi.org/xmlns/app/v1.0.0"
 xmlns:app="http://www.osgi.org/xmlns/app/v1.0.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.osgi.org/xmlns/app/v1.0.0"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 version="1.0.0">

<xs:element name="descriptor" type="app:descriptorType">
<xs:annotation>

<xs:documentation>descriptor element encloses the applicaiton
descriptors provided in a document</xs:documentation>

</xs:annotation>
</xs:element>

<xs:complexType name="descriptorType">
<xs:sequence>

<xs:element name="application" type="app:applicationType"
minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="applicationType">
<xs:annotation>

<xs:documentation>describes the service dependecies of
an application</xs:documentation>

</xs:annotation>
<xs:sequence>

<xs:element name="reference" minOccurs="0" maxOccurs="unbounded" type="referenceType"/>
</xs:sequence>
<xs:attribute name="class" type="xs:string"/>

</xs:complexType>

<xs:complexType name="referenceType">
<xs:attribute name="name" type="xs:NMTOKEN" use="required"/>
<xs:attribute name="interface" type="xs:string" use="required"/>
<xs:attribute name="cardinality" default="1..1" use="optional" type="cardinalityType"/>
<xs:attribute name="policy" use="optional" default="static" type="policyType"/>
<xs:attribute name="target" type="xs:string" use="optional"/>

</xs:complexType>

 <xs:simpleType name="cardinalityType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="0..1"/>
 <xs:enumeration value="0..n"/>
 <xs:enumeration value="1..1"/>
 <xs:enumeration value="1..n"/>
 </xs:restriction>

</xs:simpleType>

<xs:simpleType name="policyType">
<xs:restriction base="xs:string">

<xs:enumeration value="static"/>
<xs:enumeration value="dynamic"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>
OSGi Service Platform Release 4 469-502

Security Foreign Application Access Specification Version 1.0
120.6 Security

120.6.1 Application Context Access
The getAppl icat ionContext method provides access to the Application Con-
text of a given applicaton activator. The application activator is therefore a
capability; any party that has access to this object can potentially get its
related Application Context and use it in intended ways.

A common pattern in small applications is to (ab)use the application activa-
tor class for all tasks, among them as service object. However, registering the
application activator as a service will allow any party that can use that ser-
vice to to use it as the parameter to the getApplicationContext method.

The Application Context must therefore be protected to not allow the regis-
tration of the application activator.

120.6.2 Signing
Application models can include the definition of a security model. For
example, MIDP 2 defines a security model different from the standard Java 2
security model. If the foreign application model defines a security model
different from Java 2 security, then it is the responsibility of the application
container to implement this model and enforce it.

OSGi services are protected by Java 2 permissions. Applications wishing to
use such services must have the appropriate permissions for those services.

Java 2 permissions are assigned during class loading based on the location of
the code, the JAR signatures, and possibly based on other conditions, when
using the Conditional Permission framework.

Signing is a very common technique to handle the granting of permissions.
It requires that the JAR be signed according to the JAR Signing model. There-
fore, OSGi-aware application packages should be signed by JAR signing.
However, some foreign application models have alternative signing models
in place. However, it is unlikely that this conflicts because JAR signing uses
well defined separate files and manifest headers. If the foreign application
model changes the JAR file outside the META-INF directory, then the sign-
ing according to the foreign application model must be performed before
the standard JAR signing.

For example, in the case of MIDP signing and both models are used, the JAR
signature should be put to the file first as it modifies the content of the file,
and MIDP signing should be applied afterwards.

120.6.3 Permission Management
Applications that use OSGi services must have the corresponding Java 2 per-
missions granted. In order to simplify the policy management, and ensure
that the overall device policy is consistent, application containers should
not define separate policy management for each application model; rather
they should use the existing OSGi policy management and express the com-
plete security policy by the means of Java 2 permissions with the Condi-
tional Permission Admin service. This way, policy administrator can define
470-502 OSGi Service Platform Release 4

Foreign Application Access Specification Version 1.0 org.osgi.application
the boundaries of the sandbox available for a particular application based
on its location, signer or other condition. The application container is
responsible for enforcing both the foreign application specific security
mechanisms as well as the OSGi granted permissions.

Applications can package permissions as described in the Conditional Per-
mission Admin, section 9.9 in the OSGi R4 Core specification. These permis-
sions will restric the foreign’s application permissions to maximally the
permissions in this file scoped by the signer’s permissions.

120.7 org.osgi.application
Foreign Application Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.application; version=1.0

120.7.1 Summary
• ApplicationContext - ApplicationContext is the access point for an

OSGi-aware application to the features of the OSGi Service Platform.
[p.471]

• ApplicationServiceEvent - An event from the Framework describing a
service lifecycle change. [p.476]

• ApplicationServiceListener - An ApplicationServiceEvent listener.
[p.477]

• Framework - Using this class, OSGi-aware applications can obtain their
Appl icationContext [p.471] . [p.477]

ApplicationContext

120.7.2 public interface ApplicationContext
ApplicationContext is the access point for an OSGi-aware application to the
features of the OSGi Service Platform. Each application instance will have
its own ApplicationContext instance, which will not be reused after desto-
rying the corresponding application instace.

Application instances can obtain their ApplicationContext using the
Framework.getAppl icat ionContext [p.477] method.

The lifecycle of an ApplicationContext instance is bound to the lifecycle of
the corresponding application instance. The ApplicationContext becomes
available when the application is started and it is invalidated when the
application instance is stopped (i.e. the “stop” method of the application
activator object returned). All method calls (except
getAppl icationId() [p.472] and getInstanceId() [p.472]) to an invalidated
context object result an IllegalStateException.

See Also org.osgi.application.Framework[p.477]
addServiceListener(ApplicationServiceListener,String)

120.7.2.1 public void addServiceListener(ApplicationServiceListener listener,
String referenceName) throws IllegalArgumentException

listener The org .osg i .app lication.ApplicationServiceListener [p.477] to be added. It
must not be null
OSGi Service Platform Release 4 471-502

org.osgi.application Foreign Application Access Specification Version 1.0
referenceName the reference name of a service from the descriptor of the corresponding ap-
plication. It must not be null.

Adds the specified Appl icat ionServiceListener [p.477] object to this context
application instance’s list of listeners. The specified referenceName is a ref-
erence name specified in the descriptor of the corresponding application.
The registered listener> will only receive the
Appl icat ionServiceEvent [p.476] s realted to the referred service.

If the listener was already added, calling this method will overwrite the pre-
vious registration.

Throws IllegalStateException – If this context application instance has stopped.

NullPointerException – If listener or referenceName is null

IllegalArgumentException – If there is no service in the application de-
scriptor with the specified referenceName.
addServiceListener(ApplicationServiceListener,String[])

120.7.2.2 public void addServiceListener(ApplicationServiceListener listener,
String[] referenceNames) throws IllegalArgumentException

listener The org .osg i .appl ication.Appl icationServiceListener [p.477] to be added. It
must not be null

referenceNames and array of service reference names from the descriptor of the correspond-
ing application. It must not be null and it must not be empty.

Adds the specified Appl icat ionServiceListener [p.477] object to this context
application instance’s list of listeners. The referenceNames parameter is an
array of reference name specified in the descriptor of the corresponding
application. The registered listener> will only receive the
Appl icat ionServiceEvent [p.476] s realted to the referred services.

If the listener was already added, calling this method will overwrite the pre-
vious registration.

Throws IllegalStateException – If this context application instance has stopped.

NullPointerException – If listener or referenceNames is null

IllegalArgumentException – If referenceNames array is empty or it con-
tains unknown references
getApplicationId()

120.7.2.3 public String getApplicationId()

This method return the identifier of the correspondig application type. This
identifier is the same for the different instances of the same application but
it is different for different application type.

Note: this method can safely be called on an invalid ApplicationContext as
well.

Returns the identifier of the application type.

See Also
org.osgi.service.application.ApplicationDescriptor.getApplicat
ionId()
getInstanceId()
472-502 OSGi Service Platform Release 4

Foreign Application Access Specification Version 1.0 org.osgi.application
120.7.2.4 public String getInstanceId()

This method returns the identifier of the corresponding application instace.
This identifier is guarateed to be unique within the scope of the device.
Note: this method can safely be called on an invalid ApplicationContext as
well.

Returns the unique identifier of the corresponding application instance

See Also org.osgi.service.application.ApplicationHandle.getInstanceId()
getServiceProperties(Object)

120.7.2.5 public Map getServiceProperties(Object serviceObject)

serviceObject A service object the application is bound to. It must not be null.

Application can query the service properties of a service object it is bound
to. Application gets bound to a service object when it fisrt obtains a refer-
ence to the service by calling locateService or locateServices methods.

Returns The service properties associated with the specified service object.

Throws NullPointerException – if the specified serviceObject is null

IllegalArgumentException – if the application is not bound to the speci-
fied service object or it is not a service object at all.

IllegalStateException – If this context application instance has stopped.
getStartupParameters()

120.7.2.6 public Map getStartupParameters()

Returns the startup parameters specified when calling the org .osg i .ser-
v ice .appl icat ion.Appl icat ionDescriptor. launch method.

Startup arguments can be specified as name, value pairs. The name must be
of type java. lang.St r ing , which must not be null or empty java. lang.Str ing
(“”), the value can be any object including null.

Returns a java.uti l .Map containing the startup arguments. It can be null.

Throws IllegalStateException – If this context application instance has stopped.
locateService(String)

120.7.2.7 public Object locateService(String referenceName)

referenceName The name of a reference as specified in a reference element in this context ap-
plications’s description. It must not be null

This method returns the service object for the specified referenceName. If
the cardinality of the reference is 0..n or 1..n and multiple services are bound
to the reference, the service with the highest ranking (as specified in its
org .osgi . f ramework.Constants.SERVICE_RANKING property) is returned. If
there is a tie in ranking, the service with the lowest service ID (as specified
in its org.osg i. f ramework.Constants.SERVICE_ID property); that is, the ser-
vice that was registered first is returned.

Returns A service object for the referenced service or null if the reference cardinality
is 0..1 or 0..n and no bound service is available.

Throws NullPointerException – If referenceName is null.

IllegalArgumentException – If there is no service in the application de-
scriptor with the specified referenceName.

IllegalStateException – If this context application instance has stopped.
locateServices(String)
OSGi Service Platform Release 4 473-502

org.osgi.application Foreign Application Access Specification Version 1.0
120.7.2.8 public Object[] locateServices(String referenceName)

referenceName The name of a reference as specified in a reference element in this context ap-
plications’s description. It must not be null.

This method returns the service objects for the specified referenceName.

Returns An array of service object for the referenced service or null if the reference
cardinality is 0..1 or 0..n and no bound service is available.

Throws NullPointerException – If referenceName is null.

IllegalArgumentException – If there is no service in the application de-
scriptor with the specified referenceName.

IllegalStateException – If this context application instance has stopped.
registerService(String[],Object,Dictionary)

120.7.2.9 public ServiceRegistration registerService(String[] clazzes, Object
service, Dictionary properties)

clazzes The class names under which the service can be located. The class names in
this array will be stored in the service’s properties under the key org .os-
gi . f ramework.Constants.OBJECTCLASS . This parameter must not be null.

service The service object or a ServiceFactory object.

properties The properties for this service. The keys in the properties object must all be
String objects. See org .osg i . f ramework.Constants for a list of standard serv-
ice property keys. Changes should not be made to this object after calling this
method. To update the service’s properties the org .osg i . framework.Service-
Regist rat ion.setPropert ies method must be called. The set of properties may
be null if the service has no properties.

Registers the specified service object with the specified properties under the
specified class names into the Framework. A org.osgi . f ramework.Service-
Regist rat ion object is returned. The org .osg i . f ramework.ServiceRegistra-
t ion object is for the private use of the application registering the service
and should not be shared with other applications. The registering applica-
tion is defined to be the context application. Bundles can locate the service
by using either the org.osg i . framework.BundleContext.getServiceRefer-
ences or org.osg i. framework.BundleContext .getServiceReference
method. Other applications can locate this service by using
locateService(Str ing) [p.473] or locateServices(Str ing) [p.473] method, if
they declared their dependece on the registered service.

An application can register a service object that implements the
org .osg i . f ramework.ServiceFactory interface to have more flexibility in
providing service objects to other applications or bundles.

The following steps are required to register a service:

1 If service is not a ServiceFactory, an IllegalArgumentException is thrown
if service is not an instanceof all the classes named.

2 The Framework adds these service properties to the specified Dictionary
(which may be null): a property named org.osgi . f ramework.Con-
stants.SERVICE_ ID identifying the registration number of the service
and a property named org.osg i. framework.Constants.OBJECTCLASS
containing all the specified classes. If any of these properties have
already been specified by the registering bundle, their values will be
overwritten by the Framework.
474-502 OSGi Service Platform Release 4

Foreign Application Access Specification Version 1.0 org.osgi.application
3 The service is added to the Framework service registry and may now be
used by others.

4 A service event of type org.osg i. f ramework.ServiceEvent.REGISTERED is
fired. This event triggers the corresponding
Appl icationServiceEvent [p.476] to be delivered to the applications that
registered the appropriate listener.

5 A ServiceRegistration object for this registration is returned.

Returns A org.osgi . f ramework.Serv iceRegist rat ion object for use by the application
registering the service to update the service’s properties or to unregister the
service.

Throws IllegalArgumentException – If one of the following is true:
service is null.
service is not a ServiceFactory object and is not an instance of all the named
classes in clazzes.
properties contains case variants of the same key name.

NullPointerException – if clazzes is null

SecurityException – If the caller does not have the ServicePermission to
register the service for all the named classes and the Java Runtime Environ-
ment supports permissions.

IllegalStateException – If this ApplicationContext is no longer valid.

See Also
org.osgi.framework.BundleContext.registerService(java.lang.Str
ing[], java.lang.Object, java.util.Dictionary),
org.osgi.framework.ServiceRegistration,
org.osgi.framework.ServiceFactory
registerService(String,Object,Dictionary)

120.7.2.10 public ServiceRegistration registerService(String clazz, Object service,
Dictionary properties)

clazz The class name under which the service can be located. It must not be null

service The service object or a ServiceFactory object.

properties The properties for this service.

Registers the specified service object with the specified properties under the
specified class name with the Framework.

This method is otherwise identical to registerService(java. lang.Str ing[] ,
java. lang.Object , java.uti l .Dict ionary) [p.474] and is provided as a conve-
nience when service will only be registered under a single class name. Note
that even in this case the value of the service’s Constants.OBJECTCLASS
property will be an array of strings, rather than just a single string.

Returns A ServiceRegistration object for use by the application registering the service
to update the service’s properties or to unregister the service.

Throws IllegalArgumentException – If one of the following is true:
service is null.
service is not a ServiceFactory object and is not an instance of the named
class in clazz.
properties contains case variants of the same key name.

NullPointerException – if clazz is null
OSGi Service Platform Release 4 475-502

org.osgi.application Foreign Application Access Specification Version 1.0
SecurityException – If the caller does not have the ServicePermission to
register the service the named class and the Java Runtime Environment sup-
ports permissions.

IllegalStateException – If this ApplicationContext is no longer valid.

See Also registerService(java.lang.String[], java.lang.Object,
java.util.Dictionary)[p.474]
removeServiceListener(ApplicationServiceListener)

120.7.2.11 public void removeServiceListener(ApplicationServiceListener listener)

listener The org .osg i .appl ication.Appl icationServiceListener [p.477] object to be re-
moved.

Removes the specified
org .osg i .app l ication .Appl icationServiceLis tener [p.477] object from this
context application instances’s list of listeners.

If listener is not contained in this context application instance’s list of lis-
teners, this method does nothing.

Throws IllegalStateException – If this context application instance has stopped.
ApplicationServiceEvent

120.7.3 public class ApplicationServiceEvent
extends ServiceEvent
An event from the Framework describing a service lifecycle change.

ApplicationServiceEvent objects are delivered to a ApplicationServiceLis-
tener objects when a change occurs in this service’s lifecycle. The delivery of
an ApplicationServiceEvent is always triggered by a org .osg i. frame-
work.Serv iceEvent . ApplicationServiceEvent extends the content of Servi-
ceEvent with the service object the event is referring to as applications has
no means to find the corresponding service object for a org .osgi . f rame-
work.Serv iceReference . A type code is used to identify the event type for
future extendability. The available type codes are defined in
org .osg i . f ramework.ServiceEvent .

OSGi Alliance reserves the right to extend the set of types.

See Also org.osgi.framework.ServiceEvent,
ApplicationServiceListener[p.477]
ApplicationServiceEvent(int,ServiceReference,Object)

120.7.3.1 public ApplicationServiceEvent(int type, ServiceReference reference,
Object serviceObject)

type The event type. Available type codes are defines in org .osg i . framework.Ser-
viceEvent

reference A ServiceReference object to the service that had a lifecycle change. This ref-
erence will be used as the source in the java.ut i l .EventObject baseclass,
therefore, it must not be null.

serviceObject The service object bound to this application instance. It can be null if this ap-
plication is not bound to this service yet.

Creates a new application service event object.

Throws IllegalArgumentException – if the specified reference is null.
getServiceObject()
476-502 OSGi Service Platform Release 4

Foreign Application Access Specification Version 1.0 org.osgi.application
120.7.3.2 public Object getServiceObject()

This method returns the service object of this service bound to the listener
application instace. A service object becomes bound to the application
when it first obtains a service object reference to that service by calling the
ApplicationContext.locateService or locateServices methods. If the applica-
tion is not bound to the service yet, this method returns null.

Returns the service object bound to the listener application or null if it isn’t bound to
this service yet.
ApplicationServiceListener

120.7.4 public interface ApplicationServiceListener
extends EventListener
An ApplicationServiceEvent listener. When a ServiceEvent is fired, it is con-
verted to an ApplictionServiceEvent and it is synchronously delivered to an
ApplicationServiceListener.

ApplicationServiceListener is a listener interface that may be implemented
by an application developer.

An ApplicationServiceListener object is registered with the Framework
using the ApplicationContext.addServiceListener method. ApplicationSer-
viceListener objects are called with an ApplicationServiceEvent object
when a service is registered, modified, or is in the process of unregistering.

ApplicationServiceEvent object delivery to ApplicationServiceListener
objects is filtered by the filter specified when the listener was registered. If
the Java Runtime Environment supports permissions, then additional filter-
ing is done. ApplicationServiceEvent objects are only delivered to the lis-
tener if the application which defines the listener object’s class has the
appropriate ServicePermission to get the service using at least one of the
named classes the service was registered under, and the application speci-
fied its dependece on the corresponding service in the application metadata.

ApplicationServiceEvent object delivery to ApplicationServiceListener
objects is further filtered according to package sources as defined in Ser-
viceReference. isAssignableTo(Bundle, Str ing) .

See Also ApplicationServiceEvent[p.476] , ServicePermission
serviceChanged(ApplicationServiceEvent)

120.7.4.1 public void serviceChanged(ApplicationServiceEvent event)

event The ApplicationServiceEvent object.

Receives notification that a service has had a lifecycle change.
Framework

120.7.5 public final class Framework
Using this class, OSGi-aware applications can obtain their
Appl icat ionContext [p.471] .
getApplicationContext(Object)

120.7.5.1 public static ApplicationContext getApplicationContext(Object
applicationInstance)

applicationInstance is the activator object of an application instance
OSGi Service Platform Release 4 477-502

References Foreign Application Access Specification Version 1.0
This method needs an argument, an object that represents the application
instance. An application consists of a set of object, however there is a single
object, which is used by the corresponding application container to manage
the lifecycle on the application instance. The lifetime of this object equals
the lifetime of the application instance; therefore, it is suitable to represent
the instance.

The returned Appl icat ionContext [p.471] object is singleton for the specified
application instance. Subsequent calls to this method with the same appli-
cation instance must return the same context object

Returns the Appl icat ionContext [p.471] of the specified application instance.

Throws NullPointerException – If applicationInstance is null

IllegalArgumentException – if called with an object that is not the activa-
tor object of an application.

120.8 References
[1] OSGi Core Specifications

http://www.osgi.org/download
478-502 OSGi Service Platform Release 4

Service Tracker Specification Version 1.3 Introduction
701 Service Tracker
Specification
Version 1.3

701.1 Introduction
The Framework provides a powerful and very dynamic programming envi-
ronment. Bundles are installed, started, stopped, updated, and uninstalled
without shutting down the Framework. Dependencies between bundles are
monitored by the Framework, but bundles must cooperate in handling these
dependencies correctly.

An important aspect of the Framework is the service registry. Bundle devel-
opers must be careful not to use service objects that have been unregistered.
The dynamic nature of the Framework service registry makes it necessary to
track the service objects as they are registered and unregistered. It is easy to
overlook rare race conditions or boundary conditions that will lead to ran-
dom errors.

An example of a potential problem is what happens when the initial list of
services of a certain type is created when a bundle is started. When the
ServiceListener object is registered before the Framework is asked for the
list of services, without special precautions, duplicates can enter the list.
When the ServiceListener object is registered after the list is made, it is pos-
sible to miss relevant events.

The specification defines a utility class, ServiceTracker , that makes tracking
the registration, modification, and unregistration of services much easier. A
ServiceTracker class can be customized by implementing the interface or by
sub-classing the ServiceTracker class.

This utility specifies a class that significantly reduces the complexity of
tracking services in the service registry.

701.1.1 Essentials
• Customizable – Allow a default implementation to be customized so that

bundle developers can start simply and later extend the implementation
to meet their needs.

• Small – Every Framework implementation should have this utility
implemented. It should therefore be very small because some
Framework implementations target minimal OSGi Service Platforms.

• Tracked set – Track a single object defined by a ServiceReference object,
all instances of a service, or any set specified by a filter expression.

701.1.2 Operation
The fundamental tasks of a ServiceTracker object are:
OSGi Service Platform Release 4 479-502

Service Tracker Class Service Tracker Specification Version 1.3
• To create an initial list of services as specified by its creator.
• To listen to ServiceEvent instances so that services of interest to the

owner are properly tracked.
• To allow the owner to customize the tracking process through program-

matic selection of the services to be tracked, as well as to act when a
service is added or removed.

A ServiceTracker object populates a set of services that match a given
search criteria, and then listens to ServiceEvent objects which correspond
to those services.

701.1.3 Entities

Figure 701.1 Class diagram of org.osgi.util.tracker

701.1.4 Prerequisites
This specification requires OSGi Framework version 1.1 or higher because
the Service Tracker uses the Fi l ter class that was not available in version 1.0.

701.2 Service Tracker Class
The ServiceTracker interface defines three constructors to create
ServiceTracker objects, each providing different search criteria:

• ServiceTracker(BundleContext ,Str ing,ServiceTrackerCustomizer) –
This constructor takes a service interface name as the search criterion.
The ServiceTracker object must then track all services that are registered
under the specified service interface name.

• ServiceTracker(BundleContext ,Fi l ter,Serv iceTrackerCustomizer) – This
constructor uses a Fi l ter object to specify the services to be tracked. The
ServiceTracker must then track all services that match the specified
filter.

• ServiceTracker(BundleContext ,ServiceReference,ServiceTrackerCus-
tomizer) – This constructor takes a ServiceReference object as the
search criterion. The ServiceTracker must then track only the service
that corresponds to the specified ServiceReference . Using this con-
structor, no more than one service must ever be tracked, because a
ServiceReference refers to a specific service.

Each of the Serv iceTracker constructors takes a BundleContext object as a
parameter. This BundleContext object must be used by a Serv iceTracker
object to track, get, and unget services.

A new ServiceTracker object must not begin tracking services until its open
method is called. There are 2 versions of the open method:

• open() – This method is identical to open(false). It is provided for
backward compatibility reasons.

• open(boolean) – The tracker must start tracking the services as were
specified in its constructor. If the boolean parameter is true, it must track

Service
Tracker

customized by

Service
Tracker
Customizer1 1
480-502 OSGi Service Platform Release 4

Service Tracker Specification Version 1.3 Using a Service Tracker
all services, regardless if they are compatible with the bundle that
created the Service Tracker or not. See Section 5.9 “Multiple Version
Export Considerations” for a description of the compatibility issues
when multiple variations of the same package can exist. If the parameter
is false, the Service Tracker must only track compatible versions.

701.3 Using a Service Tracker
Once a ServiceTracker object is opened, it begins tracking services immedi-
ately. A number of methods are available to the bundle developer to moni-
tor the services that are being tracked. The ServiceTracker class defines
these methods:

• getService() – Returns one of the services being tracked or nul l if there
are no active services being tracked.

• getServices() – Returns an array of all the tracked services. The number
of tracked services is returned by the s ize method.

• getServiceReference() – Returns a ServiceReference object for one of
the services being tracked. The service object for this service may be
returned by calling the ServiceTracker object’s getService() method.

• getServiceReferences() – Returns a list of the ServiceReference objects
for services being tracked. The service object for a specific tracked service
may be returned by calling the ServiceTracker object’s
getService(ServiceReference) method.

• waitForServ ice(long) – Allows the caller to wait until at least one
instance of a service is tracked or until the time-out expires. If the time-
out is zero, the caller must wait until at least one instance of a service is
tracked. waitForService must not used within the BundleActivator
methods, as these methods are expected to complete in a short period of
time. A Framework could wait for the start method to complete before
starting the bundle that registers the service for which the caller is
waiting, creating a deadlock situation.

• remove(Serv iceReference) – This method may be used to remove a spe-
cific service from being tracked by the ServiceTracker object, causing
removedService to be called for that service.

• c lose() – This method must remove all services being tracked by the
ServiceTracker object, causing removedService to be called for all
tracked services.

• getTrackingCount() – A Service Tracker can have services added, mod-
ified, or removed at any moment in time. The getTrackingCount method
is intended to efficiently detect changes in a Service Tracker. Every time
the Service Tracker is changed, it must increase the tracking count. A
method that processes changes in a Service Tracker could get the
tracking count before it processes the changes. If the tracking count has
changed at the end of the method, the method should be repeated
because a new change occurred during processing.
OSGi Service Platform Release 4 481-502

Customizing the Service Tracker class Service Tracker Specification Version 1.3
701.4 Customizing the Service Tracker class
The behavior of the ServiceTracker class can be customized either by pro-
viding a ServiceTrackerCustomizer object implementing the desired behav-
ior when the ServiceTracker object is constructed, or by sub-classing the
ServiceTracker class and overriding the ServiceTrackerCustomizer meth-
ods.

The ServiceTrackerCustomizer interface defines these methods:

• addingServ ice(ServiceReference) – Called whenever a service is being
added to the ServiceTracker object.

• modifiedService(ServiceReference,Object) – Called whenever a tracked
service is modified.

• removedService(Serv iceReference,Object) – Called whenever a tracked
service is removed from the ServiceTracker object.

When a service is being added to the ServiceTracker object or when a
tracked service is modified or removed from the ServiceTracker object, it
must call addingServ ice , modif iedServ ice , or removedService , respectively,
on the ServiceTrackerCustomizer object (if specified when the
ServiceTracker object was created); otherwise it must call these methods on
itself.

A bundle developer may customize the action when a service is tracked.
Another reason for customizing the ServiceTracker class is to programmati-
cally select which services are tracked. A filter may not sufficiently specify
the services that the bundle developer is interested in tracking. By imple-
menting addingService , the bundle developer can use additional runtime
information to determine if the service should be tracked. If nul l is returned
by the addingService method, the service must not be tracked.

Finally, the bundle developer can return a specialized object from
addingService that differs from the service object. This specialized object
could contain the service object and any associated information. This
returned object is then tracked instead of the service object. When the
removedService method is called, the object that is passed along with the
ServiceReference object is the one that was returned from the earlier call to
the addingService method.

701.4.1 Symmetry
If sub-classing is used to customize the Service Tracker, care must be exer-
cised in using the default implementations of the addingService and
removedService methods. The addingService method will get the service
and the removedService method assumes it has to unget the service. Over-
riding one and not the other may thus cause unexpected results.

701.5 Customizing Example
An example of customizing the action taken when a service is tracked
might be registering a Serv let object with each Http Service that is tracked.
This customization could be done by sub-classing the ServiceTracker class
and overriding the addingServ ice and removedService methods as follows:
482-502 OSGi Service Platform Release 4

Service Tracker Specification Version 1.3 Security
public Object addingService(ServiceReference reference) {
Object obj = context.getService(reference);
HttpService svc = (HttpService)obj;
// Register the Servlet using svc
...
return svc;

}
public void removedService(ServiceReference reference,

Object obj){
HttpService svc = (HttpService)obj;
// Unregister the Servlet using svc
...
context.ungetService(reference);

}

701.6 Security
A ServiceTracker object contains a BundleContext instance variable that is
accessible to the methods in a subclass. A BundleContext object should
never be given to other bundles because it is used for security aspects of the
Framework.

The ServiceTracker implementation does not have a method to get the
BundleContext object but subclasses should be careful not to provide such a
method if the ServiceTracker object is given to other bundles.

The services that are being tracked are available via a ServiceTracker . These
services are dependent on the BundleContext as well. It is therefore neces-
sary to do a careful security analysis when ServiceTracker objects are given
to other bundles.

701.7 Changes
• The open(boolean) method.was added to support Framework version

1.3.

701.8 org.osgi.util.tracker
Service Tracker Package Version 1.3.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.util.tracker; version=1.3

701.8.1 Summary
• ServiceTracker - The ServiceTracker class simplifies using services from

the Framework’s service registry. [p.483]
• ServiceTrackerCustomizer - The ServiceTrackerCustomizer interface

allows a ServiceTracker object to customize the service objects that are
tracked. [p.488]

ServiceTracker
OSGi Service Platform Release 4 483-502

org.osgi.util.tracker Service Tracker Specification Version 1.3
701.8.2 public class ServiceTracker
implements ServiceTrackerCustomizer
The ServiceTracker class simplifies using services from the Framework’s ser-
vice registry.

A ServiceTracker object is constructed with search criteria and a Service-
TrackerCustomizer object. A ServiceTracker object can use the Service-
TrackerCustomizer object to customize the service objects to be tracked.
The ServiceTracker object can then be opened to begin tracking all services
in the Framework’s service registry that match the specified search criteria.
The ServiceTracker object correctly handles all of the details of listening to
ServiceEvent objects and getting and ungetting services.

The getServiceReferences method can be called to get references to the ser-
vices being tracked. The getService and getServices methods can be called to
get the service objects for the tracked service.
context

701.8.2.1 protected final BundleContext context

Bundle context against which this ServiceTracker object is tracking.
filter

701.8.2.2 protected final Filter filter

Filter specifying search criteria for the services to track.

Since 1.1
ServiceTracker(BundleContext,ServiceReference,ServiceTrackerCustomizer)

701.8.2.3 public ServiceTracker(BundleContext context, ServiceReference
reference, ServiceTrackerCustomizer customizer)

context BundleContext object against which the tracking is done.

reference ServiceReference object for the service to be tracked.

customizer The customizer object to call when services are added, modified, or removed
in this ServiceTracker object. If customizer is null, then this ServiceTracker
object will be used as the ServiceTrackerCustomizer object and the Service-
Tracker object will call the ServiceTrackerCustomizer methods on itself.

Create a ServiceTracker object on the specified ServiceReference object.

The service referenced by the specified ServiceReference object will be
tracked by this ServiceTracker object.
ServiceTracker(BundleContext,String,ServiceTrackerCustomizer)

701.8.2.4 public ServiceTracker(BundleContext context, String clazz,
ServiceTrackerCustomizer customizer)

context BundleContext object against which the tracking is done.

clazz Class name of the services to be tracked.

customizer The customizer object to call when services are added, modified, or removed
in this ServiceTracker object. If customizer is null, then this ServiceTracker
object will be used as the ServiceTrackerCustomizer object and the Service-
Tracker object will call the ServiceTrackerCustomizer methods on itself.

Create a ServiceTracker object on the specified class name.

Services registered under the specified class name will be tracked by this
ServiceTracker object.
484-502 OSGi Service Platform Release 4

Service Tracker Specification Version 1.3 org.osgi.util.tracker
ServiceTracker(BundleContext,Filter,ServiceTrackerCustomizer)

701.8.2.5 public ServiceTracker(BundleContext context, Filter filter,
ServiceTrackerCustomizer customizer)

context BundleContext object against which the tracking is done.

filter Filter object to select the services to be tracked.

customizer The customizer object to call when services are added, modified, or removed
in this ServiceTracker object. If customizer is null, then this ServiceTracker
object will be used as the ServiceTrackerCustomizer object and the Service-
Tracker object will call the ServiceTrackerCustomizer methods on itself.

Create a ServiceTracker object on the specified Filter object.

Services which match the specified Filter object will be tracked by this Ser-
viceTracker object.

Since 1.1
addingService(ServiceReference)

701.8.2.6 public Object addingService(ServiceReference reference)

reference Reference to service being added to this ServiceTracker object.

Default implementation of the ServiceTrackerCustomizer.addingService
method.

This method is only called when this ServiceTracker object has been con-
structed with a null ServiceTrackerCustomizer argument. The default
implementation returns the result of calling getService, on the BundleCon-
text object with which this ServiceTracker object was created, passing the
specified ServiceReference object.

This method can be overridden in a subclass to customize the service object
to be tracked for the service being added. In that case, take care not to rely on
the default implementation of removedService that will unget the service.

Returns The service object to be tracked for the service added to this ServiceTracker
object.

See Also ServiceTrackerCustomizer[p.488]
close()

701.8.2.7 public synchronized void close()

Close this ServiceTracker object.

This method should be called when this ServiceTracker object should end
the tracking of services.
finalize()

701.8.2.8 protected void finalize() throws Throwable

Finalize. This method no longer performs any function but it kept to main-
tain binary compatibility with prior versions of this class.
getService(ServiceReference)

701.8.2.9 public Object getService(ServiceReference reference)

reference Reference to the desired service.

Returns the service object for the specified ServiceReference object if the ref-
erenced service is being tracked by this ServiceTracker object.

Returns Service object or null if the service referenced by the specified ServiceRefer-
ence object is not being tracked.
getService()
OSGi Service Platform Release 4 485-502

org.osgi.util.tracker Service Tracker Specification Version 1.3
701.8.2.10 public Object getService()

Returns a service object for one of the services being tracked by this Service-
Tracker object.

If any services are being tracked, this method returns the result of calling
getService(getServiceReference()).

Returns Service object or null if no service is being tracked.
getServiceReference()

701.8.2.11 public ServiceReference getServiceReference()

Returns a ServiceReference object for one of the services being tracked by
this ServiceTracker object.

If multiple services are being tracked, the service with the highest ranking
(as specified in its service.ranking property) is returned.

If there is a tie in ranking, the service with the lowest service ID (as specified
in its service.id property); that is, the service that was registered first is
returned.

This is the same algorithm used by BundleContext.getServiceReference.

Returns ServiceReference object or null if no service is being tracked.

Since 1.1
getServiceReferences()

701.8.2.12 public ServiceReference[] getServiceReferences()

Return an array of ServiceReference objects for all services being tracked by
this ServiceTracker object.

Returns Array of ServiceReference objects or null if no service are being tracked.
getServices()

701.8.2.13 public Object[] getServices()

Return an array of service objects for all services being tracked by this Ser-
viceTracker object.

Returns Array of service objects or null if no service are being tracked.
getTrackingCount()

701.8.2.14 public int getTrackingCount()

Returns the tracking count for this ServiceTracker object. The tracking
count is initialized to 0 when this ServiceTracker object is opened. Every
time a service is added or removed from this ServiceTracker object the track-
ing count is incremented.

The tracking count can be used to determine if this ServiceTracker object
has added or removed a service by comparing a tracking count value previ-
ously collected with the current tracking count value. If the value has not
changed, then no service has been added or removed from this Service-
Tracker object since the previous tracking count was collected.

Returns The tracking count for this ServiceTracker object or -1 if this ServiceTracker
object is not open.

Since 1.2
modifiedService(ServiceReference,Object)

701.8.2.15 public void modifiedService(ServiceReference reference, Object service
)

reference Reference to modified service.
486-502 OSGi Service Platform Release 4

Service Tracker Specification Version 1.3 org.osgi.util.tracker
service The service object for the modified service.

Default implementation of the ServiceTrackerCustomizer.modifiedService
method.

This method is only called when this ServiceTracker object has been con-
structed with a null ServiceTrackerCustomizer argument. The default
implementation does nothing.

See Also ServiceTrackerCustomizer[p.488]
open()

701.8.2.16 public void open()

Open this ServiceTracker object and begin tracking services.

This method calls open(false).

Throws IllegalStateException – if the BundleContext object with which this
ServiceTracker object was created is no longer valid.

See Also open(boolean)[p.487]
open(boolean)

701.8.2.17 public synchronized void open(boolean trackAllServices)

trackAllServices If true, then this ServiceTracker will track all matching services regardless of
class loader accessibility. If false, then this ServiceTracker will only track
matching services which are class loader accessibile to the bundle whose
BundleContext is used by this ServiceTracker.

Open this ServiceTracker object and begin tracking services.

Services which match the search criteria specified when this ServiceTracker
object was created are now tracked by this ServiceTracker object.

Throws IllegalStateException – if the BundleContext object with which this
ServiceTracker object was created is no longer valid.

Since 1.3
remove(ServiceReference)

701.8.2.18 public void remove(ServiceReference reference)

reference Reference to the service to be removed.

Remove a service from this ServiceTracker object. The specified service will
be removed from this ServiceTracker object. If the specified service was
being tracked then the ServiceTrackerCustomizer.removedService method
will be called for that service.
removedService(ServiceReference,Object)

701.8.2.19 public void removedService(ServiceReference reference, Object service
)

reference Reference to removed service.

service The service object for the removed service.

Default implementation of the ServiceTrackerCustomizer.removedService
method.

This method is only called when this ServiceTracker object has been con-
structed with a null ServiceTrackerCustomizer argument. The default
implementation calls ungetService, on the BundleContext object with
which this ServiceTracker object was created, passing the specified Service-
Reference object.
OSGi Service Platform Release 4 487-502

org.osgi.util.tracker Service Tracker Specification Version 1.3
This method can be overridden in a subclass. If the default implementation
of addingService method was used, this method must unget the service.

See Also ServiceTrackerCustomizer[p.488]
size()

701.8.2.20 public int size()

Return the number of services being tracked by this ServiceTracker object.

Returns Number of services being tracked.
waitForService(long)

701.8.2.21 public Object waitForService(long timeout) throws
InterruptedException

timeout time interval in milliseconds to wait. If zero, the method will wait indefinate-
ly.

Wait for at least one service to be tracked by this ServiceTracker object.

It is strongly recommended that waitForService is not used during the call-
ing of the BundleActivator methods. BundleActivator methods are expected
to complete in a short period of time.

Returns Returns the result of getService().

Throws InterruptedException – If another thread has interrupted the current
thread.

IllegalArgumentException – If the value of timeout is negative.
ServiceTrackerCustomizer

701.8.3 public interface ServiceTrackerCustomizer
The ServiceTrackerCustomizer interface allows a ServiceTracker object to
customize the service objects that are tracked. The ServiceTrackerCus-
tomizer object is called when a service is being added to the ServiceTracker
object. The ServiceTrackerCustomizer can then return an object for the
tracked service. The ServiceTrackerCustomizer object is also called when a
tracked service is modified or has been removed from the ServiceTracker
object.

The methods in this interface may be called as the result of a ServiceEvent
being received by a ServiceTracker object. Since ServiceEvent s are synchro-
nously delivered by the Framework, it is highly recommended that imple-
mentations of these methods do not register
(BundleContext.registerService), modify (ServiceRegistration.setProperties)
or unregister (ServiceRegistration.unregister) a service while being syn-
chronized on any object.
addingService(ServiceReference)

701.8.3.1 public Object addingService(ServiceReference reference)

reference Reference to service being added to the ServiceTracker object.

A service is being added to the ServiceTracker object.

This method is called before a service which matched the search parameters
of the ServiceTracker object is added to it. This method should return the
service object to be tracked for this ServiceReference object. The returned
service object is stored in the ServiceTracker object and is available from the
getService and getServices methods.
488-502 OSGi Service Platform Release 4

Service Tracker Specification Version 1.3 org.osgi.util.tracker
Returns The service object to be tracked for the ServiceReference object or null if the
ServiceReference object should not be tracked.
modifiedService(ServiceReference,Object)

701.8.3.2 public void modifiedService(ServiceReference reference, Object service
)

reference Reference to service that has been modified.

service The service object for the modified service.

A service tracked by the ServiceTracker object has been modified.

This method is called when a service being tracked by the ServiceTracker
object has had it properties modified.
removedService(ServiceReference,Object)

701.8.3.3 public void removedService(ServiceReference reference, Object service
)

reference Reference to service that has been removed.

service The service object for the removed service.

A service tracked by the ServiceTracker object has been removed.

This method is called after a service is no longer being tracked by the Ser-
viceTracker object.
OSGi Service Platform Release 4 489-502

org.osgi.util.tracker Service Tracker Specification Version 1.3
490-502 OSGi Service Platform Release 4

XML Parser Service Specification Version 1.0 Introduction
702 XML Parser Service
Specification
Version 1.0

702.1 Introduction
The Extensible Markup Language (XML) has become a popular method of
describing data. As more bundles use XML to describe their data, a common
XML Parser becomes necessary in an embedded environment in order to
reduce the need for space. Not all XML Parsers are equivalent in function,
however, and not all bundles have the same requirements on an XML parser.

This problem was addressed in the Java API for XML Processing, see [4] JAXP
for Java 2 Standard Edition and Enterprise Edition. This specification
addresses how the classes defined in JAXP can be used in an OSGi Service
Platform. It defines how:

• Implementations of XML parsers can become available to other bundles
• Bundles can find a suitable parser
• A standard parser in a JAR can be transformed to a bundle

702.1.1 Essentials
• Standards – Leverage existing standards in Java based XML parsing: JAXP,

SAX and DOM
• Unmodified JAXP code – Run unmodified JAXP code
• Simple – It should be easy to provide a SAX or DOM parser as well as easy

to find a matching parser
• Multiple – It should be possible to have multiple implementations of

parsers available
• Extendable – It is likely that parsers will be extended in the future with

more functionality

702.1.2 Entities
• XMLParserActivator – A utility class that registers a parser factory from

declarative information in the Manifest file.
• SAXParserFactory – A class that can create an instance of a SAXParser

class.
• DocumentBuilderFactory – A class that can create an instance of a

DocumentBu ilder class.
• SAXParser – A parser, instantiated by a SaxParserFactory object, that

parses according to the SAX specifications.
• DocumentBuilder – A parser, instantiated by a DocumentBui lderFactory ,

that parses according to the DOM specifications.
OSGi Service Platform Release 4 491-502

JAXP XML Parser Service Specification Version 1.0
Figure 702.1 XML Parsing diagram

702.1.3 Operations
A bundle containing a SAX or DOM parser is started. This bundle registers a
SAXParserFactory and/or a DocumentBui lderFactory service object with the
Framework. Service registration properties describe the features of the
parsers to other bundles. A bundle that needs an XML parser will get a
SAXParserFactory or DocumentBui lderFactory service object from the
Framework service registry. This object is then used to instantiate the
requested parsers according to their specifications.

702.2 JAXP
XML has become very popular in the last few years because it allows the
interchange of complex information between different parties. Though
only a single XML standard exists, there are multiple APIs to XML parsers,
primarily of two types:

• The Simple API for XML (SAX1 and SAX2)
• Based on the Document Object Model (DOM 1 and 2)

Both standards, however, define an abstract API that can be implemented by
different vendors.

A given XML Parser implementation may support either or both of these
parser types by implementing the org .w3c .dom and/or org .xml. sax pack-
ages. In addition, parsers have characteristics such as whether they are vali-
dating or non-validating parsers and whether or not they are name-space
aware.

SAXParser
Factory

Document
Builder
Factory

XMLParser
Activator

SAXParser
user

Document
Builder user

Subclass impl.

SAXParser Document
Builder

Document Builder
impl.

SAXParser impl.

parses withparses with

registered by registered by

instantiatesinstant. by

reads bundle META-INF
Parser Implementation
Bundle

getsgets

0..* 0..*

0..*0..*

0..* 0..*

0..*0..*

0,1 0,1

0,10,1

0..* 1 0..*1
492-502 OSGi Service Platform Release 4

XML Parser Service Specification Version 1.0 XML Parser service
An application which uses a specific XML Parser must code to that specific
parser and become coupled to that specific implementation. If the parser
has implemented [4] JAXP, however, the application developer can code
against SAX or DOM and let the runtime environment decide which parser
implementation is used.

JAXP uses the concept of a factory. A factory object is an object that abstracts
the creation of another object. JAXP defines a DocumentBui lderFactory and
a SAXParserFactory class for this purpose.

JAXP is implemented in the javax .xml.parsers package and provides an
abstraction layer between an application and a specific XML Parser imple-
mentation. Using JAXP, applications can choose to use any JAXP compliant
parser without changing any code, simply by changing a System property
which specifies the SAX- and DOM factory class names.

In JAXP, the default factory is obtained with a static method in the
SAXParserFactory or DocumentBui lderFactory class. This method will
inspect the associated System property and create a new instance of that
class.

702.3 XML Parser service
The current specification of JAXP has the limitation that only one of each
type of parser factories can be registered. This specification specifies how
multiple SAXParserFactory objects and DocumentBui lderFactory objects
can be made available to bundles simultaneously.

Providers of parsers should register a JAXP factory object with the OSGi ser-
vice registry under the factory class name. Service properties are used to
describe whether the parser:

• Is validating
• Is name-space aware
• Has additional features

With this functionality, bundles can query the OSGi service registry for
parsers supporting the specific functionality that they require.

702.4 Properties
Parsers must be registered with a number of properties that qualify the ser-
vice. In this specification, the following properties are specified:

• PARSER_NAMESPACEAWARE – The registered parser is aware of name-
spaces. Name-spaces allow an XML document to consist of indepen-
dently developed DTDs. In an XML document, they are recognized by the
xmlns attribute and names prefixed with an abbreviated name-space
identifier, like: <xsl : i f . . .> . The type is a Boolean object that must be true
when the parser supports name-spaces. All other values, or the absence
of the property, indicate that the parser does not implement name-
spaces.

• PARSER_VALIDATING – The registered parser can read the DTD and can
validate the XML accordingly. The type is a Boolean object that must
OSGi Service Platform Release 4 493-502

Getting a Parser Factory XML Parser Service Specification Version 1.0
t rue when the parser is validating. All other values, or the absence of the
property, indicate that the parser does not validate.

702.5 Getting a Parser Factory
Getting a parser factory requires a bundle to get the appropriate factory
from the service registry. In a simple case in which a non-validating, non-
name-space aware parser would suffice, it is best to use
getServiceReference(Str ing) .

DocumentBui lder getParser(BundleContext context)
throws Except ion {
Serv iceReference ref = context .getServiceReference(

DocumentBui lderFactory.class .getName()) ;
if (ref == null)

return null;
DocumentBuilderFactory factory =

(DocumentBuilderFactory) context.getService(ref);
return factory.newDocumentBuilder();

}

In a more demanding case, the filtered version allows the bundle to select a
parser that is validating and name-space aware:

SAXParser getParser(BundleContext context)
throws Except ion {
Serv iceReference refs[] = context.getServiceReferences(

SAXParserFactory.c lass.getName() ,
"(&(parser.namespaceAware=true)"

+ "(parser.val idating=true))") ;
if (refs == null)

return null;
SAXParserFactory factory =

(SAXParserFactory) context.getService(refs[O]);
return factory.newSAXParser();

}

702.6 Adapting a JAXP Parser to OSGi
If an XML Parser supports JAXP, then it can be converted to an OSGi aware
bundle by adding a BundleActivator class which registers an XML Parser
Service. The utility org .osg i .ut i l .xml .XMLParserActivator class provides this
function and can be added (copied, not referenced) to any XML Parser bun-
dle, or it can be extended and customized if desired.
494-502 OSGi Service Platform Release 4

XML Parser Service Specification Version 1.0 Adapting a JAXP Parser to OSGi
702.6.1 JAR Based Services
Its functionality is based on the definition of the [5] JAR File specification, ser-
vices directory. This specification defines a concept for service providers. A
JAR file can contain an implementation of an abstractly defined service. The
class (or classes) implementing the service are designated from a file in the
META-INF/services directory. The name of this file is the same as the
abstract service class.

The content of the UTF-8 encoded file is a list of class names separated by
new lines. White space is ignored and the number sign (’#’ or \u0023) is the
comment character.

JAXP uses this service provider mechanism. It is therefore likely that ven-
dors will place these service files in the META-INF/services directory.

702.6.2 XMLParserActivator
To support this mechanism, the XML Parser service provides a utility class
that should be normally delivered with the OSGi Service Platform imple-
mentation. This class is a Bundle Activator and must start when the bundle
is started. This class is copied into the parser bundle, and not imported.

The start method of the utility BundleAct ivator class will look in the META-
INF/services service provider directory for the files
javax .xml.parsers.SAXParserFactory (SAXFACTORYNAME) or
javax .xml.parsers.DocumentBu ilderFactory (DOMFACTORYNAME). The
full path name is specified in the constants SAXCLASSFILE and DOMCLASS-
FILE respectively.

If either of these files exist, the utility BundleActivator class will parse the
contents according to the specification. A service provider file can contain
multiple class names. Each name is read and a new instance is created. The
following example shows the possible content of such a file:

ACME example SAXParserFactory file
com.acme.saxparser.SAXParserFast # Fast
com.acme.saxparser.SAXParserValidating # Validates

Both the javax .xml .parsers.SAXParserFactory and the
javax .xml.parsers.DocumentBu ilderFactory provide methods that describe
the features of the parsers they can create. The XMLParserActivator activa-
tor will use these methods to set the values of the properties, as defined in
Properties on page 493, that describe the instances.

702.6.3 Adapting an Existing JAXP Compatible Parser
 To incorporate this bundle activator into a XML Parser Bundle, do the fol-
lowing:

• If SAX parsing is supported, create a /META-INF/services/
javax.xml .parsers.SAXParserFactory resource file containing the class
names of the SAXParserFactory classes.

• If DOM parsing is supported, create a /META-INF/serv ices/
javax.xml .parsers.DocumentBui lderFactory file containing the fully
qualified class names of the DocumentBu ilderFactory classes.
OSGi Service Platform Release 4 495-502

Usage of JAXP XML Parser Service Specification Version 1.0
• Create manifest file which imports the packages org .w3c.dom ,
org.xml.sax , and javax .xml.parsers .

• Add a Bundle-Activator header to the manifest pointing to the
XMLParserAct ivator , the sub-class that was created, or a fully custom
one.

• If the parsers support attributes, properties, or features that should be
registered as properties so they can be searched, extend the
XMLParserAct ivator class and override setSAXProp-
ert ies (javax.xml.parsers.SAXParserFactory,Hashtable) and setDOM-
Properties(javax .xml.parsers.DocumentBu ilderFactory,Hashtable) .

• Ensure that custom properties are put into the Hashtable object. JAXP
does not provide a way for XMLParserAct ivator to query the parser to
find out what properties were added.

• Bundles that extend the XMLParserActivator class must call the original
methods via super to correctly initialize the XML Parser Service prop-
erties.

• Compile this class into the bundle.
• Install the new XML Parser Service bundle.
• Ensure that the org .osg i .ut i l .xml .XMLParserActivator class is contained

in the bundle.

702.7 Usage of JAXP
A single bundle should export the JAXP, SAX, and DOM APIs. The version of
contained packages must be appropriately labeled. JAXP 1.1 or later is
required which references SAX 2 and DOM 2. See [4] JAXP for the exact ver-
sion dependencies.

This specification is related to related packages as defined in the JAXP 1.1
document. Table 702.1 contains the expected minimum versions.

The Xerces project from the Apache group, [6] Xerces 2 Java Parser, contains a
number libraries that implement the necessary APIs. These libraries can be
wrapped in a bundle to provide the relevant packages.

Table 702.1 JAXP 1.1 minimum package versions

Package Minimum Version

javax.xml.parsers 1.1

org.xml.sax 2.0

org.xml.sax.helpers 2.0

org.xsml.sax.ext 1.0

org.w3c.dom 2.0
496-502 OSGi Service Platform Release 4

XML Parser Service Specification Version 1.0 Security
702.8 Security
A centralized XML parser is likely to see sensitive information from other
bundles. Provisioning an XML parser should therefore be limited to trusted
bundles. This security can be achieved by providing
ServicePermission[javax.xml.parsers .DocumentBui lderFactory |
javax .xml.parsers.SAXFactory ,REGISTER] to only trusted bundles.

Using an XML parser is a common function, and
ServicePermission[javax.xml.parsers .DOMParserFactory |
javax .xml.parsers.SAXFactory , GET] should not be restricted.

The XML parser bundle will need F ilePermiss ion[<<ALL F ILES>>,READ] for
parsing of files because it is not known beforehand where those files will be
located. This requirement further implies that the XML parser is a system
bundle that must be fully trusted.

702.9 org.osgi.util.xml
XML Parser Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-
Package header of the bundle’s manifest. For example:

Import-Package: org.osgi.util.xml; version=1.0
XMLParserActivator

702.9.1 public class XMLParserActivator
implements BundleActivator , ServiceFactory
A BundleActivator class that allows any JAXP compliant XML Parser to reg-
ister itself as an OSGi parser service. Multiple JAXP compliant parsers can
concurrently register by using this BundleActivator class. Bundles who
wish to use an XML parser can then use the framework’s service registry to
locate available XML Parsers with the desired characteristics such as validat-
ing and namespace-aware.

The services that this bundle activator enables a bundle to provide are:

• javax.xml.parsers.SAXParserFactory(SAXFACTORYNAME [p.498])
• javax.xml.parsers.DocumentBuilderFactory(

DOMFACTORYNAME [p.498])

The algorithm to find the implementations of the abstract parsers is derived
from the JAR file specifications, specifically the Services API.

An XMLParserActivator assumes that it can find the class file names of the
factory classes in the following files:

• /META-INF/services/javax.xml.parsers.SAXParserFactory is a file con-
tained in a jar available to the runtime which contains the implemen-
tation class name(s) of the SAXParserFactory.

• /META-INF/services/javax.xml.parsers.DocumentBuilderFactory is a file
contained in a jar available to the runtime which contains the imple-
mentation class name(s) of the DocumentBuilderFactory
OSGi Service Platform Release 4 497-502

org.osgi.util.xml XML Parser Service Specification Version 1.0
If either of the files does not exist, XMLParserActivator assumes that the
parser does not support that parser type.

XMLParserActivator attempts to instantiate both the SAXParserFactory and
the DocumentBuilderFactory. It registers each factory with the framework
along with service properties:

• PARSER_VALIDATING [p.498] - indicates if this factory supports validating
parsers. It’s value is a Boolean.

• PARSER_NAMESPACEAWARE [p.498] - indicates if this factory supports
namespace aware parsers It’s value is a Boolean.

Individual parser implementations may have additional features, proper-
ties, or attributes which could be used to select a parser with a filter. These
can be added by extending this class and overriding the setSAXProperties
and setDOMProperties methods.
DOMCLASSFILE

702.9.1.1 public static final String DOMCLASSFILE = “/META-INF/services/
javax.xml.parsers.DocumentBuilderFactory”

Fully qualified path name of DOM Parser Factory Class Name file
DOMFACTORYNAME

702.9.1.2 public static final String DOMFACTORYNAME =
“javax.xml.parsers.DocumentBuilderFactory”

Filename containing the DOM Parser Factory Class name. Also used as the
basis for the SERVICE_PID registration property.
PARSER_NAMESPACEAWARE

702.9.1.3 public static final String PARSER_NAMESPACEAWARE =
“parser.namespaceAware”

Service property specifying if factory is configured to support namespace
aware parsers. The value is of type Boolean.
PARSER_VALIDATING

702.9.1.4 public static final String PARSER_VALIDATING = “parser.validating”

Service property specifying if factory is configured to support validating
parsers. The value is of type Boolean.
SAXCLASSFILE

702.9.1.5 public static final String SAXCLASSFILE = “/META-INF/services/
javax.xml.parsers.SAXParserFactory”

Fully qualified path name of SAX Parser Factory Class Name file
SAXFACTORYNAME

702.9.1.6 public static final String SAXFACTORYNAME =
“javax.xml.parsers.SAXParserFactory”

Filename containing the SAX Parser Factory Class name. Also used as the
basis for the SERVICE_PID registration property.
XMLParserActivator()

702.9.1.7 public XMLParserActivator()
getService(Bundle,ServiceRegistration)

702.9.1.8 public Object getService(Bundle bundle, ServiceRegistration
registration)

bundle The bundle using the service.

registration The ServiceRegistration object for the service.

Creates a new XML Parser Factory object.
498-502 OSGi Service Platform Release 4

XML Parser Service Specification Version 1.0 org.osgi.util.xml
A unique XML Parser Factory object is returned for each call to this method.

The returned XML Parser Factory object will be configured for validating
and namespace aware support as specified in the service properties of the
specified ServiceRegistration object. This method can be overridden to con-
figure additional features in the returned XML Parser Factory object.

Returns A new, configured XML Parser Factory object or null if a configuration error
was encountered
setDOMProperties(javax.xml.parsers.DocumentBuilderFactory,Hashtable)

702.9.1.9 public void setDOMProperties(DocumentBuilderFactory factory,
Hashtable props)

factory - the DocumentBuilderFactory object

props - Hashtable of service properties.

Set the customizable DOM Parser Service Properties.

This method attempts to instantiate a validating parser and a
namespaceaware parser to determine if the parser can support those fea-
tures. The appropriate properties are then set in the specified props object.

This method can be overridden to add additional DOM2 features and prop-
erties. If you want to be able to filter searches of the OSGi service registry,
this method must put a key, value pair into the properties object for each
feature or property. For example, properties.put(”http://www.acme.com/fea-
tures/foo”, Boolean.TRUE);
setSAXProperties(javax.xml.parsers.SAXParserFactory,Hashtable)

702.9.1.10 public void setSAXProperties(SAXParserFactory factory, Hashtable
properties)

factory - the SAXParserFactory object

properties - the properties object for the service

Set the customizable SAX Parser Service Properties.

This method attempts to instantiate a validating parser and a
namespaceaware parser to determine if the parser can support those fea-
tures. The appropriate properties are then set in the specified properties
object.

This method can be overridden to add additional SAX2 features and proper-
ties. If you want to be able to filter searches of the OSGi service registry, this
method must put a key, value pair into the properties object for each feature
or property. For example, properties.put(”http://www.acme.com/features/
foo”, Boolean.TRUE);
start(BundleContext)

702.9.1.11 public void start(BundleContext context) throws Exception

context The execution context of the bundle being started.

Called when this bundle is started so the Framework can perform the bun-
dle-specific activities necessary to start this bundle. This method can be
used to register services or to allocate any resources that this bundle needs.

This method must complete and return to its caller in a timely manner.

This method attempts to register a SAX and DOM parser with the Frame-
work’s service registry.
OSGi Service Platform Release 4 499-502

References XML Parser Service Specification Version 1.0
Throws Exception – If this method throws an exception, this bundle is marked as
stopped and the Framework will remove this bundle’s listeners, unregister
all services registered by this bundle, and release all services used by this bun-
dle.

See Also Bundle.start
stop(BundleContext)

702.9.1.12 public void stop(BundleContext context) throws Exception

context The execution context of the bundle being stopped.

This method has nothing to do as all active service registrations will auto-
matically get unregistered when the bundle stops.

Throws Exception – If this method throws an exception, the bundle is still marked
as stopped, and the Framework will remove the bundle’s listeners, unregister
all services registered by the bundle, and release all services used by the bun-
dle.

See Also Bundle.stop
ungetService(Bundle,ServiceRegistration,Object)

702.9.1.13 public void ungetService(Bundle bundle, ServiceRegistration
registration, Object service)

bundle The bundle releasing the service.

registration The ServiceRegistration object for the service.

service The XML Parser Factory object returned by a previous call to the getService
method.

Releases a XML Parser Factory object.

702.10 References
[1] XML

http://www.w3.org/XML

[2] SAX
http://www.saxproject.org/

[3] DOM Java Language Binding
http://www.w3.org/TR/REC-DOM-Level-1/java-language-binding.html

[4] JAXP
http://java.sun.com/xml/jaxp

[5] JAR File specification, services directory
http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html

[6] Xerces 2 Java Parser
http://xml.apache.org/xerces2-j
500-502 OSGi Service Platform Release 4

OSGi Service Platform Release 4 501-502

502-502 OSGi Service Platform Release 4

End Of Document

	1 Introduction
	1.1 Reader Level
	1.2 Version Information
	1.3 Non Functional Requirements
	1.3.1 Framework Optionality
	1.3.2 Security Formats and Algorithms
	1.3.3 Device Management
	1.3.4 Execution Environment
	1.3.5 Configuration Admin

	1.4 References

	2 JSR Interactions
	2.1 Introduction
	2.2 JSR 211 Content Handling
	2.2.1 Content Handler API
	2.2.2 Content Handler Identification
	2.2.3 Content Handler Access Control
	2.2.4 Method Descriptions

	2.3 References

	3 Mobile Management Tree
	3.1 Introduction
	3.1.1 Legend

	3.2 Configuration Management Object
	3.2.1 Factory and Singleton Configurations
	3.2.2 Configuration dictionary nodes
	3.2.3 Restrictions

	3.3 Log Management Object
	3.3.1 Using log search

	3.4 Monitor Management Object
	3.4.1 Result node format
	3.4.2 Alert

	3.5 Application Model Management Object
	3.5.1 Applications Descriptors
	3.5.2 Application properties
	3.5.3 Application Arguments
	3.5.4 Launching new application instances
	3.5.5 Locking and Unlocking
	3.5.6 Application Instances
	3.5.7 Scheduling applications

	3.6 Deployment Management Object
	3.6.1 Areas
	3.6.2 Download sub-tree
	3.6.3 Delivered
	3.6.4 Deployed
	3.6.5 Example sub-tree
	3.6.6 Command Execution
	3.6.7 Tree management
	3.6.8 DLOTA Download Descriptor

	3.7 Policy Management Object
	3.7.1 Permission and Conditional Permission Info Encoding
	3.7.2 Location Permission Management Object
	3.7.3 Dmt Principal Permission Management Object
	3.7.4 Conditional Permission Management Object

	3.8 OMA DM Compatibility
	3.9 References

	101 Log Service Specification
	101.1 Introduction
	101.1.1 Entities

	101.2 The Log Service Interface
	101.3 Log Level and Error Severity
	101.4 Log Reader Service
	101.5 Log Entry Interface
	101.6 Mapping of Events
	101.6.1 Bundle Events Mapping
	101.6.2 Service Events Mapping
	101.6.3 Framework Events Mapping
	101.6.4 Log Events

	101.7 Security
	101.8 Changes
	101.9 org.osgi.service.log
	101.9.1 Summary
	101.9.2 public interface LogEntry
	101.9.3 public interface LogListener extends EventListener
	101.9.4 public interface LogReaderService
	101.9.5 public interface LogService

	104 Configuration Admin Service Specification
	104.1 Introduction
	104.1.1 Essentials
	104.1.2 Operation
	104.1.3 Entities

	104.2 Configuration Targets
	104.3 The Persistent Identity
	104.3.1 PID Syntax

	104.4 The Configuration Object
	104.4.1 Location Binding
	104.4.2 Configuration Properties
	104.4.3 Property Propagation
	104.4.4 Automatic Properties
	104.4.5 Equality

	104.5 Managed Service
	104.5.1 Singletons
	104.5.2 Networks
	104.5.3 Configuring Managed Services
	104.5.4 Race Conditions
	104.5.5 Examples of Managed Service
	104.5.6 Deletion

	104.6 Managed Service Factory
	104.6.1 When to Use a Managed Service Factory
	104.6.2 Registration
	104.6.3 Deletion
	104.6.4 Managed Service Factory Example
	104.6.5 Multiple Consoles Example

	104.7 Configuration Admin Service
	104.7.1 Creating a Managed Service Configuration Object
	104.7.2 Creating a Managed Service Factory Configuration Object
	104.7.3 Accessing Existing Configurations
	104.7.4 Deletion
	104.7.5 Updating a Bundle’s Own Configuration

	104.8 Configuration Events
	104.8.1 Event Admin Service and Configuration Change Events

	104.9 Configuration Plugin
	104.9.1 Limiting The Targets
	104.9.2 Example of Property Expansion
	104.9.3 Configuration Data Modifications
	104.9.4 Forcing a Callback
	104.9.5 Calling Order

	104.10 Remote Management
	104.10.1 Common Information Model
	104.10.2 Simple Network Management Protocol

	104.11 Meta Typing
	104.12 Security
	104.12.1 Configuration Permission
	104.12.2 Permissions Summary
	104.12.3 Forging PIDs
	104.12.4 Configuration and Permission Administration

	104.13 Configurable Service
	104.14 Changes
	104.15 org.osgi.service.cm
	104.15.1 Summary
	104.15.2 public interface Configuration
	104.15.3 public interface ConfigurationAdmin
	104.15.4 public class ConfigurationEvent
	104.15.5 public class ConfigurationException extends Exception
	104.15.6 public interface ConfigurationListener
	104.15.7 public final class ConfigurationPermission extends BasicPermission
	104.15.8 public interface ConfigurationPlugin
	104.15.9 public interface ManagedService
	104.15.10 public interface ManagedServiceFactory

	104.16 References

	105 Metatype Service Specification
	105.1 Introduction
	105.1.1 Essentials
	105.1.2 Entities
	105.1.3 Operation

	105.2 Attributes Model
	105.3 Object Class Definition
	105.4 Attribute Definition
	105.5 Meta Type Service
	105.6 Using the Meta Type Resources
	105.6.1 XML Schema of a Meta Type Resource
	105.6.2 Use of the Designate Element
	105.6.3 Example Meta Data File

	105.7 Object
	105.8 XML Schema
	105.9 Limitations
	105.10 Related Standards
	105.11 Security Considerations
	105.12 Changes
	105.13 org.osgi.service.metatype
	105.13.1 Summary
	105.13.2 public interface AttributeDefinition
	105.13.3 public interface MetaTypeInformation extends MetaTypeProvider
	105.13.4 public interface MetaTypeProvider
	105.13.5 public interface MetaTypeService
	105.13.6 public interface ObjectClassDefinition

	105.14 References

	109 IO Connector Service Specification
	109.1 Introduction
	109.1.1 Essentials
	109.1.2 Entities

	109.2 The Connector Framework
	109.3 Connector Service
	109.4 Providing New Schemes
	109.4.1 Orphaned Connection Objects

	109.5 Execution Environment
	109.6 Security
	109.7 org.osgi.service.io
	109.7.1 Summary
	109.7.2 public interface ConnectionFactory
	109.7.3 public interface ConnectorService

	109.8 References

	112 Declarative Services Specification
	112.1 Introduction
	112.1.1 Essentials
	112.1.2 Entities
	112.1.3 Synopsis
	112.1.4 Readers

	112.2 Components
	112.2.1 Declaring a Component
	112.2.2 Immediate Component
	112.2.3 Delayed Component
	112.2.4 Factory Component

	112.3 References to Services
	112.3.1 Accessing Services
	112.3.2 Reference Cardinality
	112.3.3 Reference Policy
	112.3.4 Selecting Target Services
	112.3.5 Circular References

	112.4 Component Description
	112.4.1 Service Component Header
	112.4.2 XML Document
	112.4.3 Component Element
	112.4.4 Implementation Element
	112.4.5 Properties and Property Elements
	112.4.6 Service Element
	112.4.7 Reference Element

	112.5 Component Life Cycle
	112.5.1 Enabled
	112.5.2 Satisfied
	112.5.3 Immediate Component
	112.5.4 Delayed Component
	112.5.5 Factory Component
	112.5.6 Activation
	112.5.7 Binding Services
	112.5.8 Activate Method
	112.5.9 Component Context
	112.5.10 Bound Service Replacement
	112.5.11 Deactivation
	112.5.12 Deactivate Method
	112.5.13 Unbinding
	112.5.14 Life Cycle Example

	112.6 Component Properties
	112.7 Deployment
	112.8 Service Component Runtime
	112.8.1 Relationship to OSGi Framework
	112.8.2 Starting and Stopping SCR

	112.9 Security
	112.9.1 Service Permissions
	112.9.2 Using hasPermission

	112.10 Component Description Schema
	112.11 org.osgi.service.component
	112.11.1 Summary
	112.11.2 public interface ComponentConstants
	112.11.3 public interface ComponentContext
	112.11.4 public class ComponentException extends RuntimeException
	112.11.5 public interface ComponentFactory
	112.11.6 public interface ComponentInstance

	112.12 References

	113 Event Admin Service Specification
	113.1 Introduction
	113.1.1 Essentials
	113.1.2 Entities
	113.1.3 Synopsis
	113.1.4 What To Read

	113.2 Event Admin Architecture
	113.3 The Event
	113.3.1 Topics
	113.3.2 Properties

	113.4 Event Handler
	113.5 Event Publisher
	113.6 Specific Events
	113.6.1 General Conventions
	113.6.2 OSGi Events
	113.6.3 Framework Event
	113.6.4 Bundle Event
	113.6.5 Service Event

	113.7 Event Admin Service
	113.7.1 Synchronous Event Delivery
	113.7.2 Asynchronous Event Delivery
	113.7.3 Order of Event Delivery

	113.8 Reliability
	113.8.1 Exceptions in callbacks
	113.8.2 Dealing with Stalled Handlers

	113.9 Inter-operability with Native Applications
	113.10 Security
	113.10.1 Topic Permission
	113.10.2 Required Permissions
	113.10.3 Security Context During Event Callbacks

	113.11 Changes
	113.12 org.osgi.service.event
	113.12.1 Summary
	113.12.2 public class Event
	113.12.3 public interface EventAdmin
	113.12.4 public interface EventConstants
	113.12.5 public interface EventHandler
	113.12.6 public final class TopicPermission extends Permission

	114 Deployment Admin Specification
	114.1 Introduction
	114.1.1 Essentials
	114.1.2 Entities
	114.1.3 Synopsis

	114.2 Deployment Package
	114.2.1 Resources
	114.2.2 Atomicity and Sharing
	114.2.3 Naming

	114.3 File Format
	114.3.1 Signing
	114.3.2 Path Names
	114.3.3 Deployment Package Manifest
	114.3.4 Deployment Package Headers
	114.3.5 Localization

	114.4 Fix Package
	114.5 Customizer
	114.5.1 Bundle’s Data File Area
	114.5.2 Customizers and Update

	114.6 Deployment Admin Service
	114.6.1 Introspection
	114.6.2 Canceling

	114.7 Sessions
	114.7.1 Roll Back
	114.7.2 Bundle Events During Deployment

	114.8 Installing a Deployment Package
	114.8.1 Example Installation

	114.9 Uninstalling a Deployment Package
	114.10 Resource Processors
	114.10.1 Example Resource Processor

	114.11 Events
	114.12 Threading
	114.13 Security
	114.13.1 Deployment Admin Permission
	114.13.2 Deployment Customizer Permission
	114.13.3 Permissions During an Install Session
	114.13.4 Contained Bundle Permissions
	114.13.5 Service Registry Security

	114.14 org.osgi.service.deploymentadmin
	114.14.1 Summary
	114.14.2 public interface BundleInfo
	114.14.3 public interface DeploymentAdmin
	114.14.4 public final class DeploymentAdminPermission extends Permission
	114.14.5 public class DeploymentException extends Exception
	114.14.6 public interface DeploymentPackage

	114.15 org.osgi.service.deploymentadmin.spi
	114.15.1 Summary
	114.15.2 public class DeploymentCustomizerPermission extends Permission
	114.15.3 public interface DeploymentSession
	114.15.4 public interface ResourceProcessor
	114.15.5 public class ResourceProcessorException extends Exception

	114.16 References

	115 Auto Configuration Specification
	115.1 Introduction
	115.1.1 Entities
	115.1.2 Synopsis

	115.2 Configuration Data
	115.3 Processing
	115.3.1 Factory Configurations
	115.3.2 Singleton Configuration
	115.3.3 Example
	115.3.4 Assigning a Value
	115.3.5 Process Ordering

	115.4 Security Considerations
	115.4.1 Location Binding
	115.4.2 Autoconf Resource Permissions

	116 Application Admin Service Specification
	116.1 Introduction
	116.1.1 Essentials
	116.1.2 Entities
	116.1.3 Synopsis

	116.2 Application Managers
	116.2.1 Discovery
	116.2.2 Application Descriptor Properties
	116.2.3 Launching
	116.2.4 Application States
	116.2.5 Destroying an Application Instance
	116.2.6 Locking an Application
	116.2.7 Scheduling
	116.2.8 Application Exceptions
	116.2.9 Application Events

	116.3 Application Containers
	116.3.1 The Application Descriptor
	116.3.2 The Application Handle
	116.3.3 Certificates
	116.3.4 Application Descriptor Example

	116.4 Application Admin Implementations
	116.4.1 Implementing the Base Classes
	116.4.2 Exception Handling
	116.4.3 Launching
	116.4.4 Destroying
	116.4.5 Scheduling
	116.4.6 Virtual Timer Event

	116.5 Interaction
	116.5.1 Application Installation
	116.5.2 Launching an Application
	116.5.3 Destroying an Application Instance

	116.6 Security
	116.6.1 Application Admin Permissions
	116.6.2 Service and Package Permissions

	116.7 org.osgi.service.application
	116.7.1 Summary
	116.7.2 public class ApplicationAdminPermission extends Permission
	116.7.3 public abstract class ApplicationDescriptor
	116.7.4 public class ApplicationException extends Exception
	116.7.5 public abstract class ApplicationHandle
	116.7.6 public interface ScheduledApplication

	116.8 References

	117 DMT Admin Service Specification
	117.1 Introduction
	117.1.1 Entities

	117.2 The Device Management Model
	117.2.1 The Device Management Tree
	117.2.2 Extensions
	117.2.3 Tree Terminology
	117.2.4 Actors

	117.3 The DMT Admin Service
	117.4 Manipulating the DMT
	117.4.1 The DMT Addressing URI
	117.4.2 Locking and Sessions
	117.4.3 Associating a Principal
	117.4.4 Relative Addressing
	117.4.5 Creating Nodes
	117.4.6 Node Properties
	117.4.7 Setting and Getting Data
	117.4.8 Complex Values
	117.4.9 Nodes and MIME Types
	117.4.10 Deleting Nodes
	117.4.11 Copying Nodes
	117.4.12 Renaming Nodes
	117.4.13 Execute
	117.4.14 Closing
	117.4.15 Node Name Mangling

	117.5 Meta Data
	117.5.1 Operations
	117.5.2 Miscellaneous Meta Data
	117.5.3 Validation
	117.5.4 User Extensions
	117.5.5 Differences with OMA DM

	117.6 Plugins
	117.6.1 Data Sessions
	117.6.2 URIs and Plugins
	117.6.3 Associating a sub-tree
	117.6.4 Synchronization with Dmt Admin Service
	117.6.5 Plugin Meta Data
	117.6.6 Plugins and Transactions
	117.6.7 Side Effects
	117.6.8 Copying

	117.7 Access Control Lists
	117.7.1 Global Permissions
	117.7.2 Ghost ACLs

	117.8 Notifications
	117.8.1 Routing Alerts

	117.9 Exceptions
	117.10 Events
	117.10.1 Event Admin based Events
	117.10.2 Event Listeners

	117.11 Access Without Service Registry
	117.12 Security
	117.12.1 Principals
	117.12.2 Operational Permissions
	117.12.3 Protocol Adapters
	117.12.4 Local Manager
	117.12.5 Plugin Security
	117.12.6 Events and Permissions
	117.12.7 Dmt Principal Permission
	117.12.8 Dmt Permission
	117.12.9 Alert Permission
	117.12.10 Security Summary

	117.13 info.dmtree
	117.13.1 Summary
	117.13.2 public final class Acl
	117.13.3 public interface DmtAdmin
	117.13.4 public final class DmtData
	117.13.5 public interface DmtEvent
	117.13.6 public interface DmtEventListener
	117.13.7 public class DmtException extends Exception
	117.13.8 public class DmtIllegalStateException extends RuntimeException
	117.13.9 public interface DmtSession
	117.13.10 public interface MetaNode
	117.13.11 public final class Uri

	117.14 info.dmtree.spi
	117.14.1 Summary
	117.14.2 public interface DataPlugin
	117.14.3 public interface ExecPlugin
	117.14.4 public interface ReadableDataSession
	117.14.5 public interface ReadWriteDataSession extends ReadableDataSession
	117.14.6 public interface TransactionalDataSession extends ReadWriteDataSession

	117.15 info.dmtree.notification
	117.15.1 Summary
	117.15.2 public class AlertItem
	117.15.3 public interface NotificationService

	117.16 info.dmtree.notification.spi
	117.16.1 public interface RemoteAlertSender

	117.17 info.dmtree.registry
	117.17.1 public final class DmtServiceFactory

	117.18 info.dmtree.security
	117.18.1 Summary
	117.18.2 public class AlertPermission extends Permission
	117.18.3 public class DmtPermission extends Permission
	117.18.4 public class DmtPrincipalPermission extends Permission

	117.19 References

	118 Mobile Conditions Specification
	118.1 Introduction
	118.1.1 Essentials
	118.1.2 Entities

	118.2 User Prompt Condition
	118.2.1 Session Definition

	118.3 IMEI Condition
	118.4 IMSI Condition
	118.5 Implementation Issues
	118.6 Security
	118.7 org.osgi.util.mobile
	118.7.1 public class UserPromptCondition implements Condition

	118.8 org.osgi.util.gsm
	118.8.1 Summary
	118.8.2 public class IMEICondition
	118.8.3 public class IMSICondition

	118.9 References

	119 Monitor Admin Service Specification
	119.1 Introduction
	119.1.1 Entities
	119.1.2 Synopsis

	119.2 Monitorable
	119.2.1 Providing Notifications
	119.2.2 Example Monitorable Implementation

	119.3 Status Variable
	119.3.1 Name
	119.3.2 Value
	119.3.3 Time Stamp
	119.3.4 Collection Method

	119.4 Using Monitor Admin Service
	119.4.1 Discovery
	119.4.2 Status Variable Administration
	119.4.3 Notifications
	119.4.4 Monitoring jobs

	119.5 Monitoring events
	119.6 Security
	119.6.1 Monitor Permission

	119.7 org.osgi.service.monitor
	119.7.1 Summary
	119.7.2 public interface Monitorable
	119.7.3 public interface MonitorAdmin
	119.7.4 public interface MonitoringJob
	119.7.5 public interface MonitorListener
	119.7.6 public class MonitorPermission extends Permission
	119.7.7 public final class StatusVariable

	119.8 References

	120 Foreign Application Access Specification
	120.1 Introduction
	120.1.1 Essentials
	120.1.2 Entities
	120.1.3 Synopsis

	120.2 Foreign Applications
	120.2.1 Foreign Metadata
	120.2.2 OSGi Manifest Headers
	120.2.3 Interacting with the OSGi Framework
	120.2.4 Introspection
	120.2.5 Access to Services
	120.2.6 Service Properties
	120.2.7 Dependencies on Services
	120.2.8 Registering Services
	120.2.9 Listening to Service Events
	120.2.10 Access to Startup Parameters
	120.2.11 Sibling Instances

	120.3 Application Containers
	120.3.1 Installation

	120.4 Application Descriptor Resource
	120.4.1 Descriptor Element
	120.4.2 Application Element
	120.4.3 Reference Element
	120.4.4 Example XML

	120.5 Component Description Schema
	120.6 Security
	120.6.1 Application Context Access
	120.6.2 Signing
	120.6.3 Permission Management

	120.7 org.osgi.application
	120.7.1 Summary
	120.7.2 public interface ApplicationContext
	120.7.3 public class ApplicationServiceEvent extends ServiceEvent
	120.7.4 public interface ApplicationServiceListener extends EventListener
	120.7.5 public final class Framework

	120.8 References

	701 Service Tracker Specification
	701.1 Introduction
	701.1.1 Essentials
	701.1.2 Operation
	701.1.3 Entities
	701.1.4 Prerequisites

	701.2 Service Tracker Class
	701.3 Using a Service Tracker
	701.4 Customizing the Service Tracker class
	701.4.1 Symmetry

	701.5 Customizing Example
	701.6 Security
	701.7 Changes
	701.8 org.osgi.util.tracker
	701.8.1 Summary
	701.8.2 public class ServiceTracker implements ServiceTrackerCustomizer
	701.8.3 public interface ServiceTrackerCustomizer

	702 XML Parser Service Specification
	702.1 Introduction
	702.1.1 Essentials
	702.1.2 Entities
	702.1.3 Operations

	702.2 JAXP
	702.3 XML Parser service
	702.4 Properties
	702.5 Getting a Parser Factory
	702.6 Adapting a JAXP Parser to OSGi
	702.6.1 JAR Based Services
	702.6.2 XMLParserActivator
	702.6.3 Adapting an Existing JAXP Compatible Parser

	702.7 Usage of JAXP
	702.8 Security
	702.9 org.osgi.util.xml
	702.9.1 public class XMLParserActivator implements BundleActivator , ServiceFactory

	702.10 References

		2006-07-14T15:24:11-0400
	OSGi Alliance
	I attest to the accuracy and integrity of this document

