
OSGi Service Platform
Enterprise Specification
The OSGi Alliance

Release 4, Version 4.2
March 2010

Page i OSGi Service Platform Release 4, Version 4.2

Copyright © OSGi Alliance (2000,2010).
All Rights Reserved.

OSGi Specification License, Version 1.0
The OSGi Alliance (“OSGi Alliance”) hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide,
limited license (without the right to sublicense), under the OSGi Alliance’s applicable intellectual property rights
to view, download, and reproduce the OSGi Specification (“Specification”) which follows this License Agreement
(“Agreement”). You are not authorized to create any derivative work of the Specification. The OSGi Alliance also
grants you a perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license (without the right to
sublicense) under any applicable copyrights, to create and/or distribute an implementation of the Specification
that: (i) fully implements the Specification including all its required interfaces and functionality; (ii) does not
modify, subset, superset or otherwise extend the OSGi Name Space, or include any public or protected packages,
classes, Java interfaces, fields or methods within the OSGi Name Space other than those required and authorized by
the Specification. An implementation that does not satisfy limitations (i)-(ii) is not considered an implementation
of the Specification, does not receive the benefits of this license, and must not be described as an implementation of
the Specification. An implementation of the Specification must not claim to be a compliant implementation of the
Specification unless it passes the OSGi Alliance Compliance Tests for the Specification in accordance with OSGi
Alliance processes. “OSGi Name Space” shall mean the public class or interface declarations whose names begin
with “org.osgi" or any recognized successors or replacements thereof.
THE SPECIFICATION IS PROVIDED "AS IS," AND THE OSGi ALLIANCE, ITS MEMBERS AND ANY OTHER
AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY
PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. THE OSGi ALLIANCE, ITS MEMBERS AND ANY
OTHER AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SPECIFICATION OR THE PERFORMANCE OR
IMPLEMENTATION OF THE CONTENTS THEREOF.
The name and trademarks of the OSGi Alliance or any other Authors may NOT be used in any manner, including
advertising or publicity pertaining to the Specification or its contents without specific, written prior permission.
Title to copyright in the Specification will at all times remain with the Authors.
No other rights are granted by implication, estoppel or otherwise.

Trademarks
OSGi™ is a trademark, registered trademark, or service mark of the OSGi Alliance in the US and other
countries. Java™, JRE™, JDBC™, and JMX™ are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the US and other countries. All other trademarks, registered trademarks,
or service marks used in this document are the property of their respective owners and are hereby
recognized.

Feedback
This specification can be downloaded from the OSGi Alliance web site:

http://www.osgi.org

Comments about this specification can be raised at:

http://www.osgi.org/bugzilla/

Book Publication
Publisher aQute Publishing

9c, Avenue St. Drezery, Beaulieu, FRANCE
+33467542167 / books@aQute.biz
http://www.aQute.biz

ISBN 978-90-79350-06-3

Table Of Contents

1 Introduction 1
1.1 Overview of Services ... 1

1.2 Reader Level .. 4

1.3 Version Information ... 4

1.4 References ... 5

13 Remote Services 7
13.1 The Fallacies .. 7

13.2 Remote Service Properties .. 8

13.3 Intents .. 12

13.4 General Usage ... 13

13.5 Configuration Types .. 14

13.6 Security .. 16

13.7 Changes ... 17

13.8 References ... 17

101 Log Service Specification 19
101.1 Introduction ... 19

101.2 The Log Service Interface ..20

101.3 Log Level and Error Severity ... 21

101.4 Log Reader Service .. 21

101.5 Log Entry Interface .. 22

101.6 Mapping of Events ... 22

101.7 Security .. 24

101.8 org.osgi.service.log 24

102 Http Service Specification 29
102.1 Introduction ... 29

102.2 Registering Servlets 30

102.3 Registering Resources 31

102.4 Mapping HTTP Requests to Servlet and Resource Registrations 33

102.5 The Default Http Context Object ... 34

102.6 Multipurpose Internet Mail Extension (MIME) Types ... 35

102.7 Authentication ... 36

102.8 Security .. 37

102.9 Configuration Properties ... 38

102.10 org.osgi.service.http .. 38

102.11 References ... 43

104 Configuration Admin Service Specification 45
104.1 Introduction ... 45

104.2 Configuration Targets ...48
OSGi Service Platform Release 4, Version 4.2 Page v

104.3 The Persistent Identity .. 48

104.4 The Configuration Object ... 49

104.5 Managed Service ..51

104.6 Managed Service Factory .. 55

104.7 Configuration Admin Service .. 59

104.8 Configuration Events .. 61

104.9 Configuration Plugin ... 62

104.10 Remote Management .. 64

104.11 Meta Typing .. 65

104.12 Security ... 65

104.13 Configurable Service ... 67

104.14 org.osgi.service.cm ... 68

104.15 References ... 81

105 Metatype Service Specification 83
105.1 Introduction .. 83

105.2 Attributes Model ... 85

105.3 Object Class Definition ... 85

105.4 Attribute Definition .. 85

105.5 Meta Type Service .. 86

105.6 Using the Meta Type Resources ... 88

105.7 Object ... 94

105.8 XML Schema .. 94

105.9 Limitations .. 96

105.10 Related Standards ... 96

105.11 Security Considerations .. 97

105.12 org.osgi.service.metatype ... 97

105.13 References ... 102

107 User Admin Service Specification 103
107.1 Introduction .. 103

107.2 Authentication .. 105

107.3 Authorization .. 107

107.4 Repository Maintenance ... 109

107.5 User Admin Events .. 109

107.6 Security ..110

107.7 Relation to JAAS ... 111

107.8 org.osgi.service.useradmin .. 111

107.9 References .. 121

110 Initial Provisioning Specification 123
110.1 Introduction ...123

110.2 Procedure .. 124

110.3 Special Configurations ...127
Page vi OSGi Service Platform Release 4, Version 4.2

110.4 The Provisioning Service ... 128

110.5 Management Agent Environment ... 128

110.6 Mapping To File Scheme ... 129

110.7 Mapping To HTTP(S) Scheme ... 129

110.8 Mapping To RSH Scheme .. 131

110.9 Exception Handling .. 134

110.10 Security .. 135

110.11 org.osgi.service.provisioning ... 136

110.12 References ... 138

112 Declarative Services Specification 141
112.1 Introduction ... 141

112.2 Components .. 143

112.3 References to Services .. 146

112.4 Component Description .. 151

112.5 Component Life Cycle ... 156

112.6 Component Properties .. 164

112.7 Deployment ... 165

112.8 Service Component Runtime .. 166

112.9 Security .. 167

112.10 Component Description Schema .. 168

112.11 org.osgi.service.component .. 171

112.12 References ... 176

113 Event Admin Service Specification 177
113.1 Introduction ... 177

113.2 Event Admin Architecture ... 178

113.3 The Event ... 179

113.4 Event Handler .. 180

113.5 Event Publisher .. 181

113.6 Specific Events .. 182

113.7 Event Admin Service .. 184

113.8 Reliability ... 185

113.9 Inter-operability with Native Applications ... 186

113.10 Security .. 186

113.11 org.osgi.service.event ... 187

121 Blueprint Container Specification 193
121.1 Introduction ... 193

121.2 Managers ... 196

121.3 Blueprint Life-Cycle ... 203

121.4 Blueprint Definitions ...209

121.5 Bean Manager .. 214

121.6 Service Manager .. 219
OSGi Service Platform Release 4, Version 4.2 Page vii

121.7 Service Reference Managers ... 226

121.8 Object Values .. 232

121.9 Dependency Injection ... 238

121.10 Service Dynamics .. 245

121.11 Blueprint Container ... 247

121.12 Events .. 248

121.13 Class Loading .. 250

121.14 Metadata ..251

121.15 Blueprint XML Schema .. 252

121.16 Security ... 258

121.17 org.osgi.service.blueprint.container ... 258

121.18 org.osgi.service.blueprint.reflect .. 268

121.19 Changes ... 278

121.20 References ... 278

122 Remote Service Admin Service Specification 281
122.1 Introduction .. 281

122.2 Actors .. 283

122.3 Topology Managers ... 284

122.4 Endpoint Description .. 286

122.5 Remote Service Admin .. 290

122.6 Discovery .. 295

122.7 Events .. 299

122.8 Endpoint Description Extender Format .. 300

122.9 Security ... 304

122.10 org.osgi.service.remoteserviceadmin ... 305

122.11 References ..317

123 JTA Transaction Services Specification 319
123.1 Introduction .. 319

123.2 JTA Overview ..321

123.3 Application .. 323

123.4 Resource Managers ... 326

123.5 The JTA Provider .. 326

123.6 Life Cycle ... 327

123.7 Security ... 328

123.8 References ... 328

124 JMX™ Management Model Specification 329
124.1 Introduction .. 329

124.2 JMX Overview .. 330

124.3 OSGi JMX Management .. 333

124.4 MBeans .. 336

124.5 Open Types ... 336
Page viii OSGi Service Platform Release 4, Version 4.2

124.6 Item .. 339

124.7 Security ..340

124.8 org.osgi.jmx ...340

124.9 org.osgi.jmx.framework ... 344

124.10 org.osgi.jmx.service.cm ... 362

124.11 org.osgi.jmx.service.permissionadmin .. 365

124.12 org.osgi.jmx.service.provisioning 366

124.13 org.osgi.jmx.service.useradmin ... 367

124.14 References ... 373

125 JDBC™ Service Specification 375
125.1 Introduction ... 375

125.2 Database Driver ... 376

125.3 Applications ... 377

125.4 Security .. 378

125.5 org.osgi.service.jdbc .. 378

125.6 References ... 381

126 JNDI Services Specification 383
126.1 Introduction ... 383

126.2 JNDI Overview ... 385

126.3 JNDI Context Manager Service .. 388

126.4 JNDI Provider Admin service ...390

126.5 JNDI Providers .. 391

126.6 OSGi URL Scheme ... 394

126.7 Traditional Client Model ... 395

126.8 Security .. 397

126.9 org.osgi.service.jndi .. 398

126.10 References .. 400

127 JPA Service Specification 401
127.1 Introduction ... 401

127.2 JPA Overview ...403

127.3 Bundles with Persistence ...406

127.4 Extending a Persistence Bundle ...409

127.5 JPA Provider ... 412

127.6 Static Access .. 414

127.7 Security .. 415

127.8 org.osgi.service.jpa .. 415

127.9 References ... 416

128 Web Applications Specification 417
128.1 Introduction ... 417

128.2 Web Container .. 419
OSGi Service Platform Release 4, Version 4.2 Page ix

128.3 Web Application Bundle .. 419

128.4 Web URL Handler .. 424

128.5 Events .. 426

128.6 Interacting with the OSGi Environment ... 427

128.7 Security ... 429

128.8 References ... 429

129 SCA Configuration Type Specification 431
129.1 Introduction .. 431

129.2 SCA Overview ... 433

129.3 SCA Configuration Bundles ... 436

129.4 SCA Configuration Document .. 440

129.5 Exporting and Importing Services ... 447

129.6 SCA and Remote Service Admin ... 450

129.7 XML Schema ...451

129.8 Security ... 452

129.9 References ... 452

701 Tracker Specification 453
701.1 Introduction .. 453

701.2 Tracking ... 454

701.3 Service Tracker Class .. 456

701.4 Bundle Tracker .. 458

701.5 Security ... 462

701.6 org.osgi.util.tracker ... 462

702 XML Parser Service Specification 473
702.1 Introduction .. 473

702.2 JAXP ... 474

702.3 XML Parser service .. 475

702.4 Properties .. 475

702.5 Getting a Parser Factory ... 475

702.6 Adapting a JAXP Parser to OSGi .. 476

702.7 Usage of JAXP .. 477

702.8 Security ... 478

702.9 org.osgi.util.xml .. 478

702.10 References ... 480
Page x OSGi Service Platform Release 4, Version 4.2

Introduction Overview of Services
1 Introduction
The OSGi Service Platform Specifications have now been released in their fourth edition. While the
original focus of the specifications was geared towards embedded systems, the latest 4.2 version
added framework core functionality and new services that make the OSGi Service Platform more
appealing to the enterprise world.

The OSGi Enterprise Expert Group (EEG) is chartered to define the technical requirements and speci-
fications to tailor and extend the OSGi Service Platform to address information technology software
infrastructure use cases found in enterprise scenarios.

The EEG technical areas of concern include:

• Scaling, including multi-container and multi-process environments
• Distributed and/or federated service model for:

• Multiple Service Platforms
• External, heterogeneous systems

• Requirements for extensions to the OSGi publish/find/bind service model
• Enterprise-class life cycle and configuration management
• Integration of established Java EE technology into OSGi

This specification is based on [2] OSGi Service Platform Core Specification,Release 4, Version 4.2. The spec-
ification combines previously published, as well as new, OSGi services that address the common use
cases of enterprise application and application server developers. It serves as a first reference point
for the suggested audience when considering the use of OSGi in their environment to fulfill their
own needs or to better serve the needs of their customers. This collection of services is taken from the
complete set of available specifications and narrowed down to what can be relevant to the enterprise
domain.

The services of the Enterprise Specification have been designed to integrate with OSGi and cooperate
with each other. None of the listed service specifications is mandatory; all service specifications are
optional. However, services provided must follow their specification completely.

It is not suggested, or expected, that an enterprise solution will incorporate support for all listed spec-
ifications, instead a customized subset to satisfy the requirements at hand is recommended. A solu-
tion can further include other core and compendium services that are not listed as part of the
Enterprise Specification. The selection of appropriate services should be driven by requirements and
use cases.

The Enterprise Specification includes the recommended specifications for a number of areas. The ser-
vices of the Enterprise Specification have been designed to guarantee integration with OSGi and
cooperation among each other. These Enterprise Specification areas are described in the following
sections.

1.1 Overview of Services

1.1.1 Component Models
While the OSGi framework API is relatively simple to use, it is still considered infrastructure that can
bleed into the application code of a bundle. This Enterprise Specification therefore provides multiple,
interoperable, Dependency Injection based component models. These DI models ensure decoupling
of the application code from the OSGi APIs; they provide an OSGi bundle programming model with
minimal implementation dependencies and virtually no accidental complexity in the Java code. Both
models provide support for handling the life cycle of services, albeit in different ways. These compo-
nent models are the Declarative Services Specification and the Blueprint Container Specification:
OSGi Service Platform Release 4, Version 4.2 Page 1

Overview of Services Introduction
• Declarative Services Specification – The Declarative Services specification provides dependency
injection for services. It handles the service life cycle dynamics by notifying the component or
managing the component’s life cycle. See chapter 112 Declarative Services Specification.

• Blueprint Container Specification – The Blueprint Container is derived from the Spring Dynamic
Module project. It provides a general DI framework; services are supported by proxying them and
damping their life cycle. See chapter 121 Blueprint Container Specification.

1.1.2 Distributed Services
The OSGi framework provides a local service registry for bundles to communicate through service
objects, where a service is an object that one bundle registers and another bundle looks up. The Enter-
prise Specification enhances this model by defining endpoints that represent services hosted in a
remote systems. It allows for seamless access to remote services within the OSGi Service Platform
without changing the service layer. The remote system may or may not be based on OSGi.

The Enterprise Specification includes the specifications of:

• Remote Services - The Remote Services specification defines a number of service properties that par-
ticipating bundles can use to convey information to a distribution provider.The distribution pro-
vider creates endpoints that are accessible to remote clients or registers proxies that access
services hosted external to the OSGi framework. See chapter 13 Remote Services.

• Remote Service Admin Specification - The Remote Services Admin Service Specification defines an
API for the distribution provider and discovery of services in a network. A management agent can
use this API to provide an actual distribution policy. This management agent can export and
import services as well as discovering services in the network. See 122 Remote Service Admin Service
Specification.

• SCA Configuration Type – Distribution providers support a number of communication protocols
configured by specific configuration types. The SCA Remote Services Configuration Specification
defines such a configuration type. See 129 SCA Configuration Type Specification.

1.1.3 Web Applications and HTTP Servlets
Current Java EE architectures almost always require support for web technologies in the form of Java
Servlets or Web Applications. The Enterprise Specification includes two complementary service
specifications in support:

• Web Application Specification - The Web Application specification provides support for web appli-
cations written to the Servlet 2.5 specification as well as the JSP 2.1 specification. This specifi-
cation details how web applications packaged as a WAR or as bundles (WABs) can be installed
into an OSGi Service Platform, as well as how this application can use OSGi services. See 128 Web
Applications Specification.

• Http Service Specification - Bundle developers typically need to develop communication and user
interface solutions for standard technologies such as HTTP, HTML, XML, and servlets. The Http
Service supports two standard techniques for this purpose: registering servlets and registering
resources. See 102 Http Service Specification.

1.1.4 Event models
The OSGi service model is based on synchronous APIs. Support for asynchronous invocations and
event driven interactions usually involves the definition of listeners. However, this model does not
scale well for fine grained events that must be dispatched to many different handlers. The Enterprise
Specification therefore contains the:

• Event Admin Service Specification - The Event Admin service provides an inter-bundle communi-
cation mechanism. It is based on a event publish and subscribe model, popular in many message
based systems. See 113 Event Admin Service Specification.
Page 2 OSGi Service Platform Release 4, Version 4.2

Introduction Overview of Services
1.1.5 Management and Configuration services
Support for managing the servers and their applications is essential to all enterprise systems. The
Enterprise Specification includes several services addressing the need to manage the framework from
the outside as well as configuring individual bundles and applications from within the OSGi Service
Platform.

• JMX™ Management Model Specification - The Java Management Extensions (JMX) is the standard
API specification for providing a management interface to Java SE and Java EE applications. The
JMX Management Model specification provides an MBean interface adaptation of the existing
OSGi framework artifacts; these can then be used to expose an OSGi Framework manipulation
API over JMX. See 124 JMX™ Management Model Specification.

• User Admin Service Specification – The User Admin Service Specification provides authorization for
OSGi Service Platform actions based on authenticated users, instead of using the Java code-based
permission model. See 107 User Admin Service Specification.

• Initial Provisioning Specification - This specification defines how the Management Agent can make
its way into the Service Platform, and gives a structured view of the problems and their corre-
sponding resolution methods. The purpose of this specification is to enable the management of a
Service Platform by an operator, and (optionally) to hand over the management of the Service
Platform later to another operator. See 110 Initial Provisioning Specification.

• Configuration Admin Service Specification - The Configuration Admin service allows an operator to
set the configuration information of bundles. See 104 Configuration Admin Service Specification.

• Metatype Service Specification - The Metatype specification defines interfaces that allow bundle
developers to describe attribute types in a computer readable form using metadata. It is mostly
used in conjunction with the Configuration Admin Service. See 105 Metatype Service Specification.

1.1.6 Naming and Directory services
Naming and directory services are well established and useful tools in enterprise applications. The
Enterprise Specification includes the:

• JNDI Services Specification – The Java Naming and Directory Interface (JNDI) is a registry tech-
nology in Java applications, both in the Java SE and Java EE space. JNDI provides a vendor-neutral
set of APIs that allow clients to interact with a naming service. See 126 JNDI Services Specification.

1.1.7 Database Access
There are multiple approaches available to model and persist data in databases. The Enterprise Speci-
fication includes support for the common technologies:

• JDBC™ Service Specification – provides an API for applications to interact with relational database
systems from different vendors. See 125 JDBC™ Service Specification.

• JPA Service Specification – The Java Persistence API (JPA) is a specification that sets a standard for
persistence in enterprise and non-enterprise JRE™-based environments. The JPA Service Specifi-
cation defines how bundles may access and use JPA persistence units in applications, as well as
how a JPA implementation can become available and be invoked within an OSGi framework. See
127 JPA Service Specification.

1.1.8 Transaction Support
The support for transactions in Java is well defined outside of the OSGi specification. The Enterprise
Specification includes the:

• JTA Transaction Services Specification – This specification provides the User Transaction, Trans-
action Manager, and Synchronization Registry services, which are based on their counterparts in
the Java EE™ JTA Specifications. These services can be used to demarcate transaction boundaries,
enlists durable and volatile resources, and provides transactional aware code to influence the
outcome of a transaction and synchronize with the ending of a transaction. See 123 JTA Trans-
action Services Specification.
OSGi Service Platform Release 4, Version 4.2 Page 3

Reader Level Introduction
1.1.9 Miscellaneous Supporting Services
Services providing solutions to common infrastructure requirements include:

• Log Service Specification – Provides a general purpose message logger for the OSGi Service Platform.
See 101 Log Service Specification.

• XML Parser Service Specification – Addresses how the classes defined in JAXP can be used in an OSGi
Service Platform. See 702 XML Parser Service Specification.

• Tracker Specification – Simplifies tracking the life cycle of bundles and services. See 701 Tracker
Specification.

1.2 Reader Level
This specification is written for the following audiences:

• Application developers
• Framework and system service developers (system developers)
• Architects

This specification assumes that the reader has at least one year of practical experience in writing Java
programs. Experience with enterprise systems and server-environments is a plus. Application devel-
opers must be aware that the OSGi environment is significantly more dynamic than traditional desk-
top or server environments.

System developers require a very deep understanding of Java. At least three years of Java coding expe-
rience in a system environment is recommended. A Framework implementation will use areas of
Java that are not normally encountered in traditional applications. Detailed understanding is
required of class loaders, garbage collection, Java 2 security, and Java native library loading.

Architects should focus on the introduction of each subject. This introduction contains a general
overview of the subject, the requirements that influenced its design, and a short description of its
operation as well as the entities that are used. The introductory sections require knowledge of Java
concepts like classes and interfaces, but should not require coding experience.

Most of these specifications are equally applicable to application developers and system developers.

1.3 Version Information
This document is the Enterprise Specification for the OSGi Service Platform Release 4, Version 4.2.

Components in this specification have their own specification version, independent of the OSGi Ser-
vice Platform, Release 4, Version 4.2 specification. The following table summarizes the packages and
specification versions for the different subjects.

Table 1.1 Packages and versions

Item Package(s) Version

101 Log Service Specif icat ion org.osgi .service. log Version 1.3
102 Http Service Specif icat ion org.osgi .service.http Vers ion 1.2
104 Configurat ion Admin Service Specif icat ion org.osgi .service.cm Version 1.3
105 Metatype Service Specif icat ion org.osgi .service.metatype Version 1.1
107 User Admin Service Specif icat ion org.osgi .service.useradmin Version 1.1
110 Init ia l Provis ioning Specif ication org.osgi .service.provis ioning Vers ion 1.2
112 Declarat ive Services Specif icat ion org.osgi .service.component Vers ion 1 .1
113 Event Admin Service Specif icat ion org.osgi .service.event Version 1.2
115 Auto Configuration Specif icat ion - Vers ion 1.2
Page 4 OSGi Service Platform Release 4, Version 4.2

Introduction References
When a component is represented in a bundle, a vers ion attribute is needed in the declaration of the
Import-Package or Export-Package manifest headers.

1.3.1 Note
1 The org.osgi . jmx sub-packages are individually versioned to be aligned with the service they

manage.

1.4 References
[1] Bradner, S., Key words for use in RFCs to Indicate Requirement Levels

http://www.ietf.org/rfc/rfc2119.txt, March 1997.

[2] OSGi Service Platform Core Specification,Release 4, Version 4.2
http://www.osgi.org/Specifications/HomePage

116 Applicat ion Admin Specif icat ion org.osgi .serv ice.appl icat ion Version 1.1
121 Blueprint Container Specif icat ion org.osgi .blueprint .container

org.osgi .blueprint .ref lect
Vers ion 1.0

122 Remote Service Admin Service Specif ication org.osgi .serv ice.
 remoteserv iceadmin

Version 1.0

123 JTA Transact ion Services Specif ication - Vers ion 1.0
124 JMX™ Management Model Specif icat ion org.osgi . jmx1 Vers ion 1.0
125 JDBC™ Service Specif icat ion org.osgi .serv ice. jdbc Vers ion 1.0
126 JNDI Services Specif icat ion org.osgi .serv ice. jndi Vers ion 1.0
127 JPA Service Specif icat ion org.osgi .serv ice. jpa Version 1.0
128 Web Appl icat ions Specif icat ion - Vers ion 1.0
129 SCA Configurat ion Type Specificat ion - Vers ion 1.0
701 Tracker Specif icat ion org.osgi .ut i l . t racker Version 1.4
702 XML Parser Serv ice Specif icat ion org.osgi .ut i l .xml Version 1.0

Table 1.1 Packages and versions

Item Package(s) Version
OSGi Service Platform Release 4, Version 4.2 Page 5

References Introduction
Page 6 OSGi Service Platform Release 4, Version 4.2

Remote Services Version 1.0 The Fallacies
13 Remote Services
Version 1.0
The OSGi framework provides a local service registry for bundles to communicate through service
objects, where a service is an object that one bundle registers and another bundle gets. A distribution
provider can use this loose coupling between bundles to export a registered service by creating an end-
point. Vice versa, the distribution provider can create a proxy that accesses an endpoint and then regis-
ters this proxy as an imported service. A Framework can contain multiple distribution providers
simultaneously, each independently importing and exporting services.

An endpoint is a communications access mechanisms to a service in another framework, a (web) ser-
vice, another process, or a queue or topic destination, etc., requiring some protocol for communica-
tions. The constellation of the mapping between services and endpoints as well as their
communication characteristics is called the topology. A common case for distribution providers is to
be present on multiple frameworks importing and exporting services; effectively distributing the ser-
vice registry.

The local architecture for remote services is depicted in Figure 13.1 on page 7.

Figure 13.1 Remote Services Architecture

Local services imply in-VM call semantics. Many of these semantics cannot be supported over a com-
munications connection, or require special configuration of the communications connection. It is
therefore necessary to define a mechanism for bundles to convey their assumptions and require-
ments to the distribution provider. This chapter defines a number of service properties that a distri-
bution provider can use to establish a topology while adhering to the given constraints.

13.1 The Fallacies
General abstractions for distributed systems have been tried before and often failed. Well known are
the fallacies described in [2] The Fallacies of Distributed Computing Explained:

• The network is reliable
• Latency is zero
• Bandwidth is infinite
• The network is secure
• Topology doesn't change

Service Consumer
Impl

Service Producer
Impl

service.imported

service.exported.interfaces

=...

=*

Distribution
Provider Impl

imported
service

exported
serviceto an endpoint endpoint
OSGi Service Platform Release 4, Version 4.2 Page 7

Remote Service Properties Remote Services Version 1.0
• There is one administrator
• Transport cost is zero
• The network is homogeneous

Most fallacies represent non-functional trade-offs that should be considered by administrators, their
decisions can then be reflected in the topology. For example, in certain cases limited bandwidth is
acceptable and the latency in a datacenter is near zero. However, the reliability fallacy is the hardest
because it intrudes into the application code. If a communication channel is lost, the application
code needs to take specific actions to recover from this failure.

This reliability aspect is also addressed with OSGi services because services are dynamic. Failures in
the communications layer can be mapped to the unregistration of the imported service. OSGi bun-
dles are already well aware of these dynamics, and a number of programming models have been
developed to minimize the complexity of writing these dynamic applications.

13.2 Remote Service Properties
This section introduces a number of properties that participating bundles can use to convey informa-
tion to the distribution provider according to this Remote Service specification. These properties are
listed alphabetically in Table 13.1. The scenarios that these properties are used in are discussed in
later sections.

Table 13.1 Remote Service Properties

Service Property Name Type Description

remote.conf igs.supported Str ing+ Registered by the distribution provider on one of
its services to indicate the supported configuration
types. See Configuration Types on page 14 and
Dependencies on page 16.

remote. intents.supported Str ing+ Registered by the distribution provider on one of
its services to indicate the vocabulary of imple-
mented intents. See Dependencies on page 16.

service.exported.configs Str ing+ A list of configuration types that should be used to
export the service. Each configuration type repre-
sents the configuration parameters for one or
more Endpoints. A distribution provider should
create endpoints for each configuration type that
it supports. See Configuration Types on page 14 for
more details.

service.exported. intents Str ing+ A list of intents that the distribution provider must
implement to distribute the service. Intents listed
in this property are reserved for intents that are
critical for the code to function correctly, for exam-
ple, ordering of messages. These intents should not
be configurable. For more information about
intents, see Intents on page 12.
Page 8 OSGi Service Platform Release 4, Version 4.2

Remote Services Version 1.0 Remote Service Properties
serv ice.exported. intents.extra String+ This property is merged with the
serv ice.exported. intents property before the dis-
tribution provider interprets the listed intents; it
has therefore the same semantics but the property
should be configurable so the administrator can
choose the intents based on the topology. Bundles
should therefore make this property configurable,
for example through the Configuration Admin ser-
vice. See Intents on page 12.

serv ice.exported. interfaces String+ Setting this property marks this service for export.
It defines the interfaces under which this service
can be exported. This list must be a subset of the
types listed in the objectClass service property.
The single value of an asterisk (’*’, \u002A) indi-
cates all interfaces in the registration’s objectClass
property and ignore the classes. It is strongly rec-
ommended to only export interfaces and not con-
crete classes due to the complexity of creating
proxies for some type of concrete classes. See Regis-
tering a Service for Export on page 11.

serv ice. imported * Must be set by a distribution provider to any value
when it registers the endpoint proxy as an
imported service. A bundle can use this property
to filter out imported services.

serv ice. imported.configs String+ The configuration information used to import this
service, as described in service.exported.configs .
Any associated properties for this configuration
types must be properly mapped to the importing
system. For example, a URL in these properties
must point to a valid resource when used in the
importing framework.

If multiple configuration types are listed in this
property, then they must be synonyms for exactly
the same remote endpoint that is used to export
this service.

Table 13.1 Remote Service Properties

Service Property Name Type Description
OSGi Service Platform Release 4, Version 4.2 Page 9

Remote Service Properties Remote Services Version 1.0
The properties and their treatment by the distribution provider is depicted in Distribution Service Prop-
erties on page 10.

Figure 13.2 Distribution Service Properties

service. intents String+ A list of intents that this service implements. This
property has a dual purpose:

• A bundle can use this service property to notify
the distribution provider that these intents are
already implemented by the exported service
object.

• A distribution provider must use this property
to convey the combined intents of:
• The exporting service, and
• The intents that the exporting distribution

provider adds.
• The intents that the importing distribution

provider adds.

To export a service, a distribution provider must
expand any qualified intents to include those sup-
ported by the endpoint. This can be a subset of all
known qualified intents. See Intents on page 12.

service.pid String+ Services that are exported should have a
service.pid property. The serv ice.pid (PID) is a
unique persistent identity for the service, the PID
is defined in Persistent Identifier (PID) on page 129
of the Core specification. This property enables a
distribution provider to associate persistent pro-
prietary data with a service registration.

Table 13.1 Remote Service Properties

Service Property Name Type Description

service.imported=...

<other service properties>

service.exported.interfaces

service.exported.intents.extra

service.exported.intents

service.intents

service.intents

<other service properties>

service.exported.configs

export import
Framework A Framework B

Distribution Provider

remote.intents.supported

remote.configs.supported

objectClass

service.imported.configs

endpoint

1 *
Page 10 OSGi Service Platform Release 4, Version 4.2

Remote Services Version 1.0 Remote Service Properties
13.2.1 Registering a Service for Export
A distribution provider should create one or more endpoints for an exported service when the follow-
ing conditions are met:

• The service has the service property serv ice.exported. interfaces set.
• All intents listed in service.exported. intents , service.exported. intents.extra and service. intents

are part of the distributed provider’s vocabulary
• None of the intents are mutually exclusive.
• The distribution provider can use the configuration types in service.exported.conf igs to create

one or more endpoints.

The endpoint must at least implement all the intents that are listed in the service.exported. intents
and service.exported. intents.extra properties.

The configuration types listed in the service.exported.configs can contain alternatives and/or syn-
onyms. Alternatives describe different endpoints for the same service while a synonym describes a dif-
ferent configuration type for the same endpoint.

A distribution provider should create endpoints for each of the configuration types it supports; these
configuration types should be alternatives. Synonyms are allowed.

If no configuration types are recognized, the distribution provider should create an endpoint with a
default configuration type except when one of the listed configuration types is <<nodefault>> .

For more information about the configuration types, see further Configuration Types on page 14.

13.2.2 Getting an Imported Service
An imported service must be a normal service, there are therefore no special rules for getting it. An
imported service has a number of additional properties that must be set by the distribution provider.

If the endpoint for an exported service is imported as an OSGi service in another framework, then the
following properties must be treated as special.

• service. imported – Must be set to some value.
• service. intents – This must be the combination of the following:

• The service. intents property on the exported service
• The service.exported. intents and service.exported. intents.extra properties on the exported

service
• Any additional intents implemented by the distribution providers on both sides.

• service. imported.conf igs – Contains the configuration types that can be used to import this
service. The types listed in this property must be synonymous, that is, they must refer to exactly the
same endpoint that is exporting the service. See Configuration Types on page 14.

• service.exported.* – Properties starting with service.exported. must not be set on the imported
service.

• service.exported. interfaces – This property must not be set, its content is reflected in the
objectClass property.

All other public service properties (not starting with a dot (’ . ’ \u002E)) must be listed on the imported
service if they use the basic service property types. If the service property cannot be communicated
because, for example, it uses a type that can not be marshalled by the distribution provider then the
distribution provider must ignore this property.

The serv ice. imported property indicates that a service is an imported service. If this service property
is set to any value, then the imported service is a proxy for an endpoint. If a bundle wants to filter out
imported services, then it can add the following filter:

(&(!(service.imported=*)) <previous filter>)

Distribution providers can also use the Service Hooks Specification on page 315 of the core specification
to hide services from specific bundles.
OSGi Service Platform Release 4, Version 4.2 Page 11

Intents Remote Services Version 1.0
13.2.3 On Demand Import
The Service Hooks specification, see Service Hooks Specification on page 315 of the core specification,
allows a distribution provider to detect when a bundle is listening for specific services. Bundles can
request imported services with specific intents by building an appropriate filter. The distribution
provider can use this information to import a service on demand.

The following example creates a Service Tracker that is interested in an imported service.

Filter f = context.createFilter(
"(&(objectClasss=com.acme.Foo)"

+ "(service.intents=confidentiality))"
);
ServiceTracker tracker =

new ServiceTracker(context, f, null);
tracker.open();

Such a Service Tracker will inform the Listener Hook and will give it the filter expression. If the dis-
tribution provider has registered such a hook, it will be informed about the need for an imported
com.acme.Foo service that has a conf identia l i ty intent. It can then use some proprietary means to
find a service to import that matches the given object class and intent.

How the distribution provider finds an appropriate endpoint is out of scope for this specification.

13.3 Intents
An intent is a name for an abstract distribution capability. An intent can be implemented by a service;
this can then be reflected in the service. intents property. An intent can also constrain the possible
communication mechanisms that a distribution provider can choose to distribute a service. This is
reflected in the service.export . intents and service.exported. intents.extra properties.

The purpose of the intents is to have a vocabulary that is shared between distribution aware bundles
and the distribution provider. This vocabulary allows the bundles to express constraints on the
export of their services as well as providing information on what intents are implemented by a ser-
vice.

Intents have the following syntax

intent ::= token (’.’ token)?

Qualified intents use a dot (’.’ \u002E) to separate the intent from the qualifier. A qualifier provides
additional details, however, it implies its prefix. For example:

confidentiality.message

This example, can be expanded into confidential i ty and conf identia l ity.message . Qualified intents
can be used to provide additional details how an intent is achieved. However, a Distribution Provider
must expand any qualified intents to include those supported by the endpoint. This can be a subset of
all known qualified intents.

The concept of intents is derived from the [4] SCA Policy Framework specification. When designing a
vocabulary for a distribution provider it is recommended to closely follow the vocabulary of intents
defined in the SCA Policy Framework.
Page 12 OSGi Service Platform Release 4, Version 4.2

Remote Services Version 1.0 General Usage
13.4 General Usage

13.4.1 Call by Value
Normal service semantics are call-by-reference. An object passed as an argument in a service call is a
direct reference to that object. Any changes to this object will be shared on both sides of the service
registry.

Distributed services are different. Arguments are normally passed by value, which means that a copy
is sent to the remote system, changes to this value are not reflected in the originating framework.
When using distributed services, call-by-value should always be assumed by all participants in the
distribution chain.

13.4.2 Data Fencing
Services are syntactically defined by their Java interfaces. When exposing a service over a remote pro-
tocol, typically such an interface is mapped to a protocol-specific interface definition. For example, in
CORBA the Java interfaces would be converted to a corresponding IDL definition. This mapping does
not always result in a complete solution.

Therefore, for many practical distributed applications it will be necessary to constrain the possible
usage of data types in service interfaces. A distribution provider must at least support interfaces (not
classes) that only use the basic types as defined for the service properties. These are the primitive
types and their wrappers as well as arrays and collections. See Filter Syntax on page 33 of the Core
Specification for a list of service property types.

Distribution providers will in general provide a richer set of types that can be distributed.

13.4.3 Remote Services Life Cycle
If a distribution provider has distributed a service, it must closely track any modifications on the
exported service. If there is a corresponding imported service, it must closely match any modified ser-
vice properties in the way that was specified for the registration. If the exported service is unregis-
tered, the endpoint must be withdrawn as soon as possible. If there is a corresponding imported
service, then this imported service must also be unregistered expediently.

13.4.4 Runtime
An imported service is just like any other service and can be used as such. However, certain non-func-
tional characteristics of this service can differ significantly from what is normal for an in-VM object
call. Many of these characteristics can be mapped to the normal service operations. That is, if the con-
nection fails in any way, the service can be unregistered. According to the standard OSGi contract,
this means that the users of that service must perform the appropriate cleanup to prevent stale refer-
ences.

13.4.5 Exceptions
It is impossible to guarantee that a service is not used when it is no longer valid. Even with the syn-
chronous callbacks from the Service Listeners, there is always a finite window where a service can be
used while the underlying implementation has failed. In a distributed environment, this window can
actually be quite large for an imported service.

Such failure situations must be exposed to the application code that uses a failing imported service.
In these occasions, the distribution provider must notify the application by throwing a Service
Exception, or subclass thereof, with the reason REMOTE . The Service Exception is a Runtime Excep-
tion, it can be handled higher up in the call chain. The cause of this Service Exception must be the
Exception that caused the problem.
OSGi Service Platform Release 4, Version 4.2 Page 13

Configuration Types Remote Services Version 1.0
A distribution provider should log any problems with the communications layer to the Log Service, if
available.

13.5 Configuration Types
An exported service can have a service.exported.configs service property. This property lists config-
uration types for endpoints that are provided for this service. Each type provides a specification that
defines how the configuration data for one or more endpoints is provided. For example, a hypotheti-
cal configuration type could use a service property to hold a URL for the RMI naming registry.

Configuration types that are not defined by the OSGi Alliance should use a name that follows the
reverse internet domain name scheme defined in [5] Java Language Specification for Java packages. For
example, com.acme.wsdl would be the proprietary way for the ACME company to specify a WSDL
configuration type.

13.5.1 Configuration Type Properties
The service.exported.configs and serv ice. imported.configs use the configuration types in very dif-
ferent ways. That is, the service. imported.conf igs property is not a copy of the
service.exported.configs as the name might seem to imply.

An exporting service can list its desired configuration types in the service.exported.configs prop-
erty. This property is potentially seen and interpreted by multiple distribution providers. Each of
these providers can independently create endpoints from the configuration types. In principle, the
service.exported.configs lists alternatives for a single distribution provider and can list synonyms to
support alternative distribution providers. If only one of the synonyms is useful, there is an implicit
assumption that when the service is exported, only one of the synonyms should be supported by the
installed distribution providers. If it is detected that this assumption is violated, then an error should
be logged and the conflicting configuration is further ignored.

The interplay of synonyms and alternatives is depicted in Table 13.2. In this table, the first columns
on the left list different combinations of the configuration types in the service.exported.configs
property. The next two columns list two distribution providers that each support an overlapping set
of configuration types. The x ’s in this table indicate if a configuration type or distribution provider is
active in a line. The description then outlines the issues, if any. It is assumed in this table that hypo-
thetical configuration types net.rmi and com.rmix map to an identical endpoint, just like net.soap
and net.soapx. .

Table 13.2 Synonyms and Alternatives in Exported Configurations

service.expor
ted.configs

Distribution
Provider A

Distribution
Provider B

Description

ne
t.

rm
i

co
m

.r
m

ix
ne

t.
so

ap
co

m
.so

ap
x

<<
no

 d
ef

au
lt

>> Supports:
net.rmi
com.rmix
com.soapx

Supports
net.rmi
net.soap

x x x Ok, A will create an endpoint for the RMI and SOAP
alternatives.

x x x Configuration error. There is a clash for net.rmi
because A and B can both create an endpoint for the
same configuration. It is likely that one will fail.

x x x Ok, exported on com.soapx by A, the net.soap is
ignored.
Page 14 OSGi Service Platform Release 4, Version 4.2

Remote Services Version 1.0 Configuration Types
To summarize, the following rules apply for a single distribution provider:

• Only configuration types that are supported by this distribution provider must be used. All other
configuration types must be ignored.

• All of the supported configuration types must be alternatives, that is, they must map to different
endpoints. Synonyms for the same distribution provider should be logged as errors.

• If a configuration type results in an endpoint that is already in use, then an error should be logged.
It is likely then that another distribution provider already had created that endpoint.

An export of a service can therefore result in multiple endpoints being created. For example, a service
can be exported over RMI as well as SOAP. Creating an endpoint can fail, in that case the distribution
provider must log this information in the Log Service, if available, and not export the service to that
endpoint. Such a failure can, for example, occur when two configuration types are synonym and mul-
tiple distribution providers are installed that supporting this type.

On the importing side, the service. imported.conf igs property lists configuration types that must
refer to the same endpoint. That is, it can list alternative configuration types for this endpoint but all
configuration types must result in the same endpoint.

For example, there are two distribution providers installed at the exporting and importing frame-
works. Distribution provider A supports the hypothetical configuration type net.rmi and net.soap .
Distribution provider B supports the hypothetical configuration type net.smart . A service is regis-
tered that list all three of those configuration types.

Distribution provider A will create two endpoints, one for RMI and one for SOAP. Distribution pro-
vider B will create one endpoint for the smart protocol. The distribution provider A knows how to
create the configuration data for the com.acme.rmi configuration type as well and can therefore cre-
ate a synonymous description of the endpoint in that configuration type. It will therefore set the
imported configuration type for the RMI endpoint to:

service.imported.configs = net.rmi, com.acme.rmi
net.rmi.url = rmi://172.25.25.109:1099/service-id/24
com.acme.rmi.address = 172.25.25.109
com.acme.rmi.port = 1099

x x x x Synonym error because A and B export to same
SOAP endpoint, it is likely that one will fail.

x x x x Ok, two alternative endpoints over RMI (by A) and
SOAP (by B) are created. This is a typical use case.

x x x Ok. Synonyms are used to allow frameworks that
have either A or B installed. In this case A exports
over SOAP.

x x x Ok. Synonyms are used to allow frameworks that
have either A or B installed. In this case B exports.

x Ok. A creates an endpoint with default configura-
tion type.

x x Ok. Both A and B each create an endpoint with their
default configuration type.

x x Ok. No endpoint is created.

x x x Provider B does not recognize the configuration
types it should therefore use a default configura-
tion type.

Table 13.2 Synonyms and Alternatives in Exported Configurations

service.expor
ted.configs

Distribution
Provider A

Distribution
Provider B

Description
OSGi Service Platform Release 4, Version 4.2 Page 15

Security Remote Services Version 1.0
com.acme.rmi.path = service-id/24

Figure 13.3 Relation between imported and exported configuration types

13.5.2 Dependencies
A bundle that uses a configuration type has an implicit dependency on the distribution provider. To
make this dependency explicit, the distribution provider must register a service with the following
properties:

• remote. intents.supported – (Str ing+) The vocabulary of the given distribution provider.
• remote.configs.supported – (Str ing+) The configuration types that are implemented by the dis-

tribution provider.

A bundle that depends on the availability of specific intents or configuration types can create a ser-
vice dependency on an anonymous service with the given properties. The following filter is an exam-
ple of depending on a hypothetical net.rmi configuration type:

(remote.configs.supported=net.rmi)

13.6 Security
The distribution provider will be required to invoke methods on any exported service. This implies
that it must have the combined set of permissions of all methods it can call. It also implies that the
distribution provider is responsible for ensuring that a bundle that calls an imported service is not
granted additional permissions through the fact that the distribution provider will call the exported
service, not the original invoker.

The actual mechanism to ensure that bundles can get additional permissions through the distribu-
tion is out of scope for this specification. However, distribution providers should provide mecha-
nisms to limit the set of available permissions for a remote invocation, preferably on a small
granularity basis.

service.exported.configs=[net.rmi,net.soap,net.smart]
net.rmi.url=rmi://172.25.25.109:1099/service-id/24
net.soap.wsdl=/wsdl/remote.xml
net.smart.name=remote

service.imported.configs=smart
net.smart.name=remote

service.imported.configs=[net.rmi,com.acme.rmi]
net.rmi.url=rmi://172.25.25.109:1099/service-id/24

service.imported.configs=net.soap
net.soap.wsdl=http://172.25.25.109/wsdls/24.wsdl

service.imported.configs=[net.rmi,com.acme.rmi]
net.rmi.url=rmi://172.25.25.109:1099/service-id/24
com.acme.rmi.*=...

B A

smart

rmi

soap

A

Page 16 OSGi Service Platform Release 4, Version 4.2

Remote Services Version 1.0 Changes
One possible means is to use the getAccessControlContext method on the Conditional Permission
Admin service to get an Access Control Context that is used in a doPrivi leged block where the invo-
cation takes place. The getAccessControlContext method takes a list of signers which could repre-
sent the remote bundles that cause an invocation. How these are authenticated is up to the
distribution provider.

A distribution provider is a potential attack point for intruders. Great care should be taken to prop-
erly setup the permissions or topology in an environment that requires security.

13.6.1 Limiting Exports and Imports
Service registration and getting services is controlled through the ServicePermission class. This per-
mission supports a filter based constructor that can assert service properties. This facility can be used
to limit bundles from being able to register exported services or get imported services if they are com-
bined with Conditional Permission Admin’s ALLOW facility. The following example shows how all
bundles except from www.acme.com are denied the registration and getting of distributed services.

DENY {
 [...BundleLocationCondition("http://www.acme.com/*" "!")]
 (...ServicePermission "(service.imported=*)" "GET")
 (...ServicePermission "(service.exported.interfaces=*)"
 "REGISTER")
}

13.7 Changes
• Any number of levels of qualifier intents could be used, this was not possible in SCA. This is now

aligned with the SCA specification so that now only one level of qualifiers is supported.

13.8 References
[1] OSGi Core Specifications

http://www.osgi.org/Specifications/HomePage

[2] The Fallacies of Distributed Computing Explained
http://www.rgoarchitects.com/Files/fallacies.pdf

[3] Service Component Architecture (SCA)
http://www.oasis-opencsa.org/

[4] SCA Policy Framework specification
http://www.oasis-open.org/committees/sca-policy/

[5] Java Language Specification
http://java.sun.com/docs/books/jls/

http://www.rgotects.
OSGi Service Platform Release 4, Version 4.2 Page 17

References Remote Services Version 1.0
Page 18 OSGi Service Platform Release 4, Version 4.2

Log Service Specification Version 1.3 Introduction
101 Log Service Specification
Version 1.3

101.1 Introduction
The Log Service provides a general purpose message logger for the OSGi Service Platform. It consists
of two services, one for logging information and another for retrieving current or previously recorded
log information.

This specification defines the methods and semantics of interfaces which bundle developers can use
to log entries and to retrieve log entries.

Bundles can use the Log Service to log information for the Operator. Other bundles, oriented toward
management of the environment, can use the Log Reader Service to retrieve Log Entry objects that
were recorded recently or to receive Log Entry objects as they are logged by other bundles.

101.1.1 Entities
• LogService – The service interface that allows a bundle to log information, including a message, a

level, an exception, a ServiceReference object, and a Bundle object.
• LogEntry - An interface that allows access to a log entry in the log. It includes all the information

that can be logged through the Log Service and a time stamp.
• LogReaderService - A service interface that allows access to a list of recent LogEntry objects, and

allows the registration of a LogListener object that receives LogEntry objects as they are created.
• LogListener - The interface for the listener to LogEntry objects. Must be registered with the Log

Reader Service.

Figure 101.1 Log Service Class Diagram org.osgi.service.log package

<<interface>>
LogService

<<interface>>
LogReader
Service

<<interface>>
LogEntry

<<interface>>
LogListener

a Log Reader
Service impl.

LogEntry impl

a Log user bundle

a Log Service
impl

a Log reader user

Log a
message

Store a message in the log for retrieval

message log

send new log entry

retrieve log

1 1

1

0..n (impl dependent maximum)

1

0..n

LogEntry has references to
ServiceReference,
Throwable and Bundle

or register
listener

Bundle using
Log Service

Bundle using
Log Reader
Service

Log implementation bundle
OSGi Service Platform Release 4, Version 4.2 Page 19

The Log Service Interface Log Service Specification Version 1.3
101.2 The Log Service Interface
The LogService interface allows bundle developers to log messages that can be distributed to other
bundles, which in turn can forward the logged entries to a file system, remote system, or some other
destination.

The LogService interface allows the bundle developer to:

• Specify a message and/or exception to be logged.
• Supply a log level representing the severity of the message being logged. This should be one of the

levels defined in the LogService interface but it may be any integer that is interpreted in a user-
defined way.

• Specify the Service associated with the log requests.

By obtaining a LogService object from the Framework service registry, a bundle can start logging
messages to the LogService object by calling one of the LogService methods. A Log Service object can
log any message, but it is primarily intended for reporting events and error conditions.

The LogService interface defines these methods for logging messages:

• log(int, Str ing) – This method logs a simple message at a given log level.
• log(int, Str ing, Throwable) – This method logs a message with an exception at a given log level.
• log(Serv iceReference, int , Str ing) – This method logs a message associated with a specific

service.
• log(Serv iceReference, int , Str ing, Throwable) – This method logs a message with an exception

associated with a specific service.

While it is possible for a bundle to call one of the log methods without providing a ServiceReference
object, it is recommended that the caller supply the ServiceReference argument whenever appropri-
ate, because it provides important context information to the operator in the event of problems.

The following example demonstrates the use of a log method to write a message into the log.

logService.log(
myServiceReference,
LogService.LOG_INFO,
"myService is up and running"

);

In the example, the myServiceReference parameter identifies the service associated with the log
request. The specified level, LogService.LOG_INFO , indicates that this message is informational.

The following example code records error conditions as log messages.

try {
FileInputStream fis = new FileInputStream("myFile");
int b;
while ((b = fis.read()) != -1) {

...
}
fis.close();

}
catch (IOException exception) {

logService.log(
myServiceReference,
LogService.LOG_ERROR,
"Cannot access file",
exception);

}

Page 20 OSGi Service Platform Release 4, Version 4.2

Log Service Specification Version 1.3 Log Level and Error Severity
Notice that in addition to the error message, the exception itself is also logged. Providing this infor-
mation can significantly simplify problem determination by the Operator.

101.3 Log Level and Error Severity
The log methods expect a log level indicating error severity, which can be used to filter log messages
when they are retrieved. The severity levels are defined in the LogService interface.

Callers must supply the log levels that they deem appropriate when making log requests. The follow-

ing table lists the log levels.

101.4 Log Reader Service
The Log Reader Service maintains a list of LogEntry objects called the log. The Log Reader Service is a
service that bundle developers can use to retrieve information contained in this log, and receive noti-
fications about LogEntry objects when they are created through the Log Service.

The size of the log is implementation-specific, and it determines how far into the past the log entries
go. Additionally, some log entries may not be recorded in the log in order to save space. In particular,
LOG_DEBUG log entries may not be recorded. Note that this rule is implementation-dependent. Some
implementations may allow a configurable policy to ignore certain LogEntry object types.

The LogReaderService interface defines these methods for retrieving log entries.

• getLog() – This method retrieves past log entries as an enumeration with the most recent entry
first.

• addLogListener(LogListener) – This method is used to subscribe to the Log Reader Service in
order to receive log messages as they occur. Unlike the previously recorded log entries, all log mes-
sages must be sent to subscribers of the Log Reader Service as they are recorded.
A subscriber to the Log Reader Service must implement the LogListener interface.
After a subscription to the Log Reader Service has been started, the subscriber's
LogListener. logged method must be called with a Log Entry object for the message each time a
message is logged.

The LogListener interface defines the following method:

• logged(LogEntry) – This method is called for each Log Entry object created. A Log Reader Service
implementation must not filter entries to the LogListener interface as it is allowed to do for its log.
A LogListener object should see all LogEntry objects that are created.

The delivery of LogEntry objects to the LogListener object should be done asynchronously.

Table 101.1 Log Levels
Level Descriptions
LOG_DEBUG Used for problem determination and may be irrelevant to anyone but the

bundle developer.
LOG_ERROR Indicates the bundle or service may not be functional. Action should be

taken to correct this situation.
LOG_INFO May be the result of any change in the bundle or service and does not indi-

cate a problem.
LOG_WARNING Indicates a bundle or service is still functioning but may experience prob-

lems in the future because of the warning condition.
OSGi Service Platform Release 4, Version 4.2 Page 21

Log Entry Interface Log Service Specification Version 1.3
101.5 Log Entry Interface
The LogEntry interface abstracts a log entry. It is a record of the information that was passed when an
event was logged, and consists of a superset of information which can be passed through the
LogService methods. The LogEntry interface defines these methods to retrieve information related
to Log Entry objects:

• getBundle() – This method returns the Bundle object related to a Log Entry object.
• getException() – This method returns the exception related to a Log Entry object. In some imple-

mentations, the returned exception may not be the original exception. To avoid references to a
bundle defined exception class, thus preventing an uninstalled bundle from being garbage col-
lected, the Log Service may return an exception object of an implementation defined Throwable
subclass. This object will attempt to return as much information as possible, such as the message
and stack trace, from the original exception object .

• getLevel() – This method returns the severity level related to a Log Entry object.
• getMessage() – This method returns the message related to a Log Entry object.
• getServiceReference() –This method returns the ServiceReference object of the service related to

a Log Entry object.
• getTime() – This method returns the time that the log entry was created.

101.6 Mapping of Events
Implementations of a Log Service must log Framework-generated events and map the information to
LogEntry objects in a consistent way. Framework events must be treated exactly the same as other
logged events and distributed to all LogListener objects that are associated with the Log Reader Ser-
vice. The following sections define the mapping for the three different event types: Bundle, Service,
and Framework.

101.6.1 Bundle Events Mapping
A Bundle Event is mapped to a LogEntry object according to Table 101.2, “Mapping of Bundle Events
to Log Entries,” on page 22.

Table 101.2 Mapping of Bundle Events to Log Entries
Log Entry method Information about Bundle Event
getLevel() LOG_INFO
getBundle() Identifies the bundle to which the event happened. In other words, it

identifies the bundle that was installed, started, stopped, updated, or
uninstalled. This identification is obtained by calling getBundle()
on the BundleEvent object.

getException() nul l
getServiceReference() nul l
getMessage() The message depends on the event type:

• INSTALLED – "BundleEvent INSTALLED"
• STARTED – "BundleEvent STARTED"
• STOPPED – "BundleEvent STOPPED"
• UPDATED – "BundleEvent UPDATED"
• UNINSTALLED – "BundleEvent UNINSTALLED"
• RESOLVED – "BundleEvent RESOLVED"
• UNRESOLVED – "BundleEvent UNRESOLVED"
Page 22 OSGi Service Platform Release 4, Version 4.2

Log Service Specification Version 1.3 Mapping of Events
101.6.2 Service Events Mapping
A Service Event is mapped to a LogEntry object according to Table 101.3, “Mapping of Service Events
to Log Entries,” on page 23.

101.6.3 Framework Events Mapping
A Framework Event is mapped to a LogEntry object according to Table 101.4, “Mapping of Frame-
work Event to Log Entries,” on page 23.

101.6.4 Log Events
Log events must be delivered by the Log Service implementation to the Event Admin service (if
present) asynchronously under the topic:

Table 101.3 Mapping of Service Events to Log Entries
Log Entry method Information about Service Event
getLevel() LOG_INFO , except for the ServiceEvent.MODIFIED event. This

event can happen frequently and contains relatively little informa-
tion. It must be logged with a level of LOG_DEBUG .

getBundle() Identifies the bundle that registered the service associated with
this event. It is obtained by calling
getServiceReference() .getBundle() on the ServiceEvent object.

getException() nul l
getServiceReference() Identifies a reference to the service associated with the event. It is

obtained by calling getServiceReference() on the ServiceEvent
object.

getMessage() This message depends on the actual event type. The messages are
mapped as follows:

• REGISTERED – "ServiceEvent REGISTERED"
• MODIFIED – "ServiceEvent MODIFIED"
• UNREGISTERING – "ServiceEvent UNREGISTERING"

Table 101.4 Mapping of Framework Event to Log Entries
Log Entry method Information about Framework Event
getLevel() LOG_INFO , except for the FrameworkEvent.ERROR event. This event

represents an error and is logged with a level of LOG_ERROR.
getBundle() Identifies the bundle associated with the event. This may be the sys-

tem bundle. It is obtained by calling getBundle() on the
FrameworkEvent object.

getException() Identifies the exception associated with the error. This will be null
for event types other than ERROR. It is obtained by calling
getThrowable() on the FrameworkEvent object.

getServiceReference() nul l
getMessage() This message depends on the actual event type. The messages are

mapped as follows:

• STARTED – "FrameworkEvent STARTED"
• ERROR – "FrameworkEvent ERROR"
• PACKAGES_REFRESHED – "FrameworkEvent PACKAGES

REFRESHED"
• STARTLEVEL_CHANGED – "FrameworkEvent STARTLEVEL

CHANGED"
• WARNING – "FrameworkEvent WARNING"
• INFO – "FrameworkEvent INFO"
OSGi Service Platform Release 4, Version 4.2 Page 23

Security Log Service Specification Version 1.3
org/osgi/service/log/LogEntry/<event type>

The logging level is used as event type:

LOG_ERROR
LOG_WARNING
LOG_INFO
LOG_DEBUG
LOG_OTHER (when event is not recognized)

The properties of a log event are:

• bundle. id – (Long) The source bundle's id.
• bundle.symbol icName – (Str ing) The source bundle's symbolic name. Only set if not null .
• bundle – (Bundle) The source bundle.
• log. level – (Integer) The log level.
• message – (Str ing) The log message.
• t imestamp – (Long) The log entry's timestamp.
• log.entry – (LogEntry) The LogEntry object.

If the log entry has an associated Exception:

• exception.class – (Str ing) The fully-qualified class name of the attached exception. Only set if the
getExceptionmethod returns a non-nul l value.

• exception.message – (Str ing) The message of the attached Exception. Only set if the Exception
message is not nul l .

• exception – (Throwable) The Exception returned by the getException method.

If the getServiceReference method returns a non-nul l value:

• service – (ServiceReference) The result of the getServiceReference method.
• service. id – (Long) The id of the service.
• service.pid – (Str ing) The service's persistent identity. Only set if the serv ice.pid service property

is not nul l .
• service.objectClass – (Str ing[]) The object class of the service object.

101.7 Security
The Log Service should only be implemented by trusted bundles. This bundle requires
ServicePermission[LogService|LogReaderService, REGISTER] . Virtually all bundles should get
ServicePermission[LogService, GET] . The ServicePermission[LogReaderService, GET] should only
be assigned to trusted bundles.

101.8 org.osgi.service.log
Log Service Package Version 1.3.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. For example:

Import-Package: org.osgi.service.log; version=”[1.3,2.0)”

101.8.1 Summary
• LogEntry - Provides methods to access the information contained in an individual Log Service log

entry.
• LogListener - Subscribes to LogEntry objects from the LogReaderService .
• LogReaderService - Provides methods to retrieve LogEntry objects from the log.
• LogService - Provides methods for bundles to write messages to the log.
Page 24 OSGi Service Platform Release 4, Version 4.2

Log Service Specification Version 1.3 org.osgi.service.log
LogEntry

101.8.2 public interface LogEntry
Provides methods to access the information contained in an individual Log Service log entry.

A LogEntry object may be acquired from the LogReaderServ ice.getLog method or by registering a
LogListener object.

See Also LogReaderService.getLog, LogListener

Concurrency Thread-safe
getBundle()

101.8.2.1 public Bundle getBundle()

Returns the bundle that created this LogEntry object.

Returns The bundle that created this LogEntry object; nul l if no bundle is associated with this LogEntry object.
getException()

101.8.2.2 public Throwable getException()

Returns the exception object associated with this LogEntry object.

In some implementations, the returned exception may not be the original exception. To avoid refer-
ences to a bundle defined exception class, thus preventing an uninstalled bundle from being garbage
collected, the Log Service may return an exception object of an implementation defined Throwable
subclass. The returned object will attempt to provide as much information as possible from the origi-
nal exception object such as the message and stack trace.

Returns Throwable object of the exception associated with this LogEntry ;nul l if no exception is associated with
this LogEntry object.
getLevel()

101.8.2.3 public int getLevel()

Returns the severity level of this LogEntry object.

This is one of the severity levels defined by the LogService interface.

Returns Severity level of this LogEntry object.

See Also LogService.LOG_ERROR, LogService.LOG_WARNING, LogService.LOG_INFO, LogService.LOG_DEBUG
getMessage()

101.8.2.4 public String getMessage()

Returns the human readable message associated with this LogEntry object.

Returns Str ing containing the message associated with this LogEntry object.
getServiceReference()

101.8.2.5 public ServiceReference getServiceReference()

Returns the ServiceReference object for the service associated with this LogEntry object.

Returns ServiceReference object for the service associated with this LogEntry object; nul l if no
ServiceReference object was provided.
getTime()

101.8.2.6 public long getTime()

Returns the value of currentTimeMil l is() at the time this LogEntry object was created.

Returns The system time in milliseconds when this LogEntry object was created.

See Also System.currentTimeMillis()
LogListener

101.8.3 public interface LogListener
extends EventListener
Subscribes to LogEntry objects from the LogReaderService .
OSGi Service Platform Release 4, Version 4.2 Page 25

org.osgi.service.log Log Service Specification Version 1.3
A LogListener object may be registered with the Log Reader Service using the
LogReaderService.addLogListener method. After the listener is registered, the logged method will be
called for each LogEntry object created. The LogListener object may be unregistered by calling the
LogReaderService.removeLogListener method.

See Also LogReaderService, LogEntry, LogReaderService.addLogListener(LogListener),
LogReaderService.removeLogListener(LogListener)

Concurrency Thread-safe
logged(LogEntry)

101.8.3.1 public void logged(LogEntry entry)

entry A LogEntry object containing log information.

Listener method called for each LogEntry object created.

As with all event listeners, this method should return to its caller as soon as possible.

See Also LogEntry
LogReaderService

101.8.4 public interface LogReaderService
Provides methods to retrieve LogEntry objects from the log.

There are two ways to retrieve LogEntry objects:

• The primary way to retrieve LogEntry objects is to register a LogListener object whose
LogListener. logged method will be called for each entry added to the log.

• To retrieve past LogEntry objects, the getLog method can be called which will return an
Enumeration of all LogEntry objects in the log.

See Also LogEntry, LogListener, LogListener.logged(LogEntry)

Concurrency Thread-safe
addLogListener(LogListener)

101.8.4.1 public void addLogListener(LogListener listener)

listener A LogListener object to register; the LogListener object is used to receive LogEntry objects.

Subscribes to LogEntry objects.

This method registers a LogListener object with the Log Reader Service. The
LogListener. logged(LogEntry) method will be called for each LogEntry object placed into the log.

When a bundle which registers a LogListener object is stopped or otherwise releases the Log Reader
Service, the Log Reader Service must remove all of the bundle’s listeners.

If this Log Reader Service’s list of listeners already contains a listener l such that (l==l istener) , this
method does nothing.

See Also LogListener, LogEntry, LogListener.logged(LogEntry)
getLog()

101.8.4.2 public Enumeration getLog()

Returns an Enumeration of all LogEntry objects in the log.

Each element of the enumeration is a LogEntry object, ordered with the most recent entry first.
Whether the enumeration is of all LogEntry objects since the Log Service was started or some recent
past is implementation-specific. Also implementation-specific is whether informational and debug
LogEntry objects are included in the enumeration.

Returns An Enumerat ion of all LogEntry objects in the log.
removeLogListener(LogListener)

101.8.4.3 public void removeLogListener(LogListener listener)

listener A LogListener object to unregister.

Unsubscribes to LogEntry objects.
Page 26 OSGi Service Platform Release 4, Version 4.2

Log Service Specification Version 1.3 org.osgi.service.log
This method unregisters a LogListener object from the Log Reader Service.

If l istener is not contained in this Log Reader Service’s list of listeners, this method does nothing.

See Also LogListener
LogService

101.8.5 public interface LogService
Provides methods for bundles to write messages to the log.

LogService methods are provided to log messages; optionally with a ServiceReference object or an
exception.

Bundles must log messages in the OSGi environment with a severity level according to the following
hierarchy:

1 LOG_ERROR
2 LOG_WARNING
3 LOG_INFO
4 LOG_DEBUG

Concurrency Thread-safe
LOG_DEBUG

101.8.5.1 public static final int LOG_DEBUG = 4

A debugging message (Value 4).

This log entry is used for problem determination and may be irrelevant to anyone but the bundle
developer.
LOG_ERROR

101.8.5.2 public static final int LOG_ERROR = 1

An error message (Value 1).

This log entry indicates the bundle or service may not be functional.
LOG_INFO

101.8.5.3 public static final int LOG_INFO = 3

An informational message (Value 3).

This log entry may be the result of any change in the bundle or service and does not indicate a prob-
lem.
LOG_WARNING

101.8.5.4 public static final int LOG_WARNING = 2

A warning message (Value 2).

This log entry indicates a bundle or service is still functioning but may experience problems in the
future because of the warning condition.
log(int,String)

101.8.5.5 public void log(int level, String message)

level The severity of the message. This should be one of the defined log levels but may be any integer that is
interpreted in a user defined way.

message Human readable string describing the condition or nul l .

Logs a message.

The ServiceReference field and the Throwable field of the LogEntry object will be set to nul l .

See Also LOG_ERROR, LOG_WARNING, LOG_INFO, LOG_DEBUG
log(int,String,Throwable)

101.8.5.6 public void log(int level, String message, Throwable exception)

level The severity of the message. This should be one of the defined log levels but may be any integer that is
interpreted in a user defined way.
OSGi Service Platform Release 4, Version 4.2 Page 27

org.osgi.service.log Log Service Specification Version 1.3
message The human readable string describing the condition or nul l .

exception The exception that reflects the condition or nul l .

Logs a message with an exception.

The ServiceReference field of the LogEntry object will be set to nul l .

See Also LOG_ERROR, LOG_WARNING, LOG_INFO, LOG_DEBUG
log(ServiceReference,int,String)

101.8.5.7 public void log(ServiceReference sr, int level, String message)

sr The ServiceReference object of the service that this message is associated with or nul l .

level The severity of the message. This should be one of the defined log levels but may be any integer that is
interpreted in a user defined way.

message Human readable string describing the condition or nul l .

Logs a message associated with a specific ServiceReference object.

The Throwable field of the LogEntry will be set to null .

See Also LOG_ERROR, LOG_WARNING, LOG_INFO, LOG_DEBUG
log(ServiceReference,int,String,Throwable)

101.8.5.8 public void log(ServiceReference sr, int level, String message, Throwable exception)

sr The ServiceReference object of the service that this message is associated with.

level The severity of the message. This should be one of the defined log levels but may be any integer that is
interpreted in a user defined way.

message Human readable string describing the condition or nul l .

exception The exception that reflects the condition or nul l .

Logs a message with an exception associated and a ServiceReference object.

See Also LOG_ERROR, LOG_WARNING, LOG_INFO, LOG_DEBUG
Page 28 OSGi Service Platform Release 4, Version 4.2

Http Service Specification Version 1.2 Introduction
102 Http Service Specification
Version 1.2

102.1 Introduction
An OSGi Service Platform normally provides users with access to services on the Internet and other
networks. This access allows users to remotely retrieve information from, and send control to, ser-
vices in an OSGi Service Platform using a standard web browser.

Bundle developers typically need to develop communication and user interface solutions for stan-
dard technologies such as HTTP, HTML, XML, and servlets.

The Http Service supports two standard techniques for this purpose:

• Registering servlets – A servlet is a Java object which implements the Java Servlet API. Registering a
servlet in the Framework gives it control over some part of the Http Service URI name-space.

• Registering resources – Registering a resource allows HTML files, image files, and other static
resources to be made visible in the Http Service URI name-space by the requesting bundle.

Implementations of the Http Service can be based on:

• [1] HTTP 1.0 Specification RFC-1945
• [2] HTTP 1.1 Specification RFC-2616

Alternatively, implementations of this service can support other protocols if these protocols can con-
form to the semantics of the javax.servlet API. This additional support is necessary because the Http
Service is closely related to [3] Java Servlet Technology. Http Service implementations must support at
least version 2.1 of the Java Servlet API.

102.1.1 Entities
This specification defines the following interfaces which a bundle developer can implement collec-
tively as an Http Service or use individually:

• HttpContext – Allows bundles to provide information for a servlet or resource registration.
• HttpService – Allows other bundles in the Framework to dynamically register and unregister

resources and servlets into the Http Service URI name-space.
• NamespaceException – Is thrown to indicate an error with the caller's request to register a servlet

or resource into the Http Service URI name-space.
OSGi Service Platform Release 4, Version 4.2 Page 29

Registering Servlets Http Service Specification Version 1.2
Figure 102.1 Http Service Overview Diagram

102.2 Registering Servlets
javax.servlet .Servlet objects can be registered with the Http Service by using the HttpService inter-
face. For this purpose, the HttpService interface defines the method registerServlet(Str ing,
javax.servlet .Serv let ,Dict ionary,HttpContext) .

For example, if the Http Service implementation is listening to port 80 on the machine
www.acme.com and the Servlet object is registered with the name "/servlet" , then the Servlet
object’s service method is called when the following URL is used from a web browser:

http://www.acme.com/servletname=bugs

All Servlet objects and resource registrations share the same name-space. If an attempt is made to reg-
ister a resource or Servlet object under the same name as a currently registered resource or Servlet
object, a NamespaceException is thrown. See Mapping HTTP Requests to Servlet and Resource Registra-
tions on page 33 for more information about the handling of the Http Service name-space.

Each Servlet registration must be accompanied with an HttpContext object. This object provides the
handling of resources, media typing, and a method to handle authentication of remote requests. See
Authentication on page 36.

For convenience, a default HttpContext object is provided by the Http Service and can be obtained
with createDefaultHttpContext() . Passing a nul l parameter to the registration method achieves the
same effect.

Servlet objects require a ServletContext object. This object provides a number of functions to access
the Http Service Java Servlet environment. It is created by the implementation of the Http Service for
each unique HttpContext object with which a Servlet object is registered. Thus, Servlet objects regis-
tered with the same HttpContext object must also share the same ServletContext object.

Servlet objects are initialized by the Http Service when they are registered and bound to that specific
Http Service. The initialization is done by calling the Servlet object’s Servlet. in it(ServletConfig)
method. The ServletConfig parameter provides access to the initialization parameters specified
when the Servlet object was registered.

<<interface>>
HttpService

javax.servlet.
Servlet

javax.servlet.http
HttpServlet
Request

javax.servlet.http
HttpServlet
Response

an Http service
implementation

<<interface>>
HttpContext

servlet
registration

resource
registration

implementation of
Servlet

implementation of
HttpContext

default impl. of
HttpContext

Bundles main
code

1

0..n1

1

1

1

register servlet
or resources

request
resource

service
request

Name-space
alias

Bundle implementing
Http Service

Bundle using
Http Service

Namespace
Exception
Page 30 OSGi Service Platform Release 4, Version 4.2

Http Service Specification Version 1.2 Registering Resources
Therefore, the same Servlet instance must not be reused for registration with another Http Service,
nor can it be registered under multiple names. Unique instances are required for each registration.

The following example code demonstrates the use of the registerServlet method:

Hashtable initparams = new Hashtable();
initparams.put("name", "value");

Servlet myServlet = new HttpServlet() {
String name = "<not set>";

public void init(ServletConfig config) {
this.name = (String)

config.getInitParameter("name");
}

public void doGet(
HttpServletRequest req,
HttpServletResponse rsp

) throws IOException {
rsp.setContentType("text/plain");
req.getWriter().println(this.name);

}
};

getHttpService().registerServlet(
"/servletAlias",
myServlet,
initparams,
null // use default context

);
// myServlet has been registered
// and its init method has been called. Remote
// requests are now handled and forwarded to
// the servlet.
...
getHttpService().unregister("/servletAlias");
// myServlet has been unregistered and its
// destroy method has been called

This example registers the servlet, myServlet , at alias: /servletAl ias . Future requests for http://
www.acme.com/servletAl ias maps to the servlet, myServlet , whose service method is called to pro-
cess the request. (The service method is called in the HttpServlet base class and dispatched to a
doGet , doPut , doPost , doOptions , doTrace, or doDelete call depending on the HTTP request method
used.)

102.3 Registering Resources
A resource is a file containing images, static HTML pages, sounds, movies, applets, etc. Resources do
not require any handling from the bundle. They are transferred directly from their source--usually
the JAR file that contains the code for the bundle--to the requestor using HTTP.
OSGi Service Platform Release 4, Version 4.2 Page 31

Registering Resources Http Service Specification Version 1.2
Resources could be handled by Servlet objects as explained in Registering Servlets on page 30. Transfer-
ring a resource over HTTP, however, would require very similar Servlet objects for each bundle. To
prevent this redundancy, resources can be registered directly with the Http Service via the HttpSer-
vice interface. This HttpService interface defines the registerResources(Str ing,Str ing,HttpCon-
text)method for registering a resource into the Http Service URI name-space.

The first parameter is the external alias under which the resource is registered with the Http Service.
The second parameter is an internal prefix to map this resource to the bundle’s name-space. When a
request is received, the HttpService object must remove the external alias from the URI, replace it
with the internal prefix, and call the getResource(Str ing) method with this new name on the associ-
ated HttpContext object. The HttpContext object is further used to get the MIME type of the resource
and to authenticate the request.

Resources are returned as a java.net.URL object. The Http Service must read from this URL object and
transfer the content to the initiator of the HTTP request.

This return type was chosen because it matches the return type of the
java. lang.Class.getResource(Str ing resource) method. This method can retrieve resources directly
from the same place as the one from which the class was loaded – often a package directory in the JAR
file of the bundle. This method makes it very convenient to retrieve resources from the bundle that
are contained in the package.

The following example code demonstrates the use of the register
Resources method:

package com.acme;
...
HttpContext context = new HttpContext() {

public boolean handleSecurity(
HttpServletRequest request,

 HttpServletResponse response
) throws IOException {

return true;
}

public URL getResource(String name) {
return getClass().getResource(name);

}

public String getMimeType(String name) {
return null;

}
};

getHttpService().registerResources (
"/files",
"www",
context

);
...
getHttpService().unregister("/files");

This example registers the alias /files on the Http Service. Requests for resources below this name-
space are transferred to the HttpContext object with an internal name of www/<name> . This exam-
ple uses the Class.get
Resource(Str ing) method. Because the internal name does not start with a
Page 32 OSGi Service Platform Release 4, Version 4.2

Http Service Specification Version 1.2 Mapping HTTP Requests to Servlet and Resource Registrations
"/", it must map to a resource in the "com/acme/www" directory of the JAR file. If the internal name
did start with a "/", the package name would not have to be prefixed and the JAR file would be
searched from the root. Consult the java. lang.Class.getResource(Str ing) method for more informa-
tion.

In the example, a request for http://www.acme.com/f i les/myfi le .html must map to the name "com/
acme/www/myfi le .html" which is in the bundle’s JAR file.

More sophisticated implementations of the getResource(Str ing) method could filter the input name,
restricting the resources that may be returned or map the input name onto the file system (if the
security implications of this action are acceptable).

Alternatively, the resource registration could have used a default HttpContext object, as demon-
strated in the following call to registerResources :

getHttpService().registerResources(
"/files",
"/com/acme/www",
null

);

In this case, the Http Service implementation would call the
createDefaultHttpContext() method and use its return value as the HttpContext argument for the
registerResources method. The default implementation must map the resource request to the bun-
dle’s resource, using
Bundle.getResource(Str ing) . In the case of the previous example, however, the internal name must
now specify the full path to the directory containing the resource files in the JAR file. No automatic
prefixing of the package name is done.

The getMimeType(Str ing) implementation of the default HttpContext object should rely on the
default mapping provided by the Http Service by returning null. Its
handleSecurity(HttpServletRequest,HttpServletResponse) may implement an authentication
mechanism that is implementation-dependent.

102.4 Mapping HTTP Requests to Servlet and Resource
Registrations
When an HTTP request comes in from a client, the Http Service checks to see if the requested URI
matches any registered aliases. A URI matches only if the path part of the URI is exactly the same
string. Matching is case sensitive.

If it does match, a matching registration takes place, which is processed as follows:

1. If the registration corresponds to a servlet, the authorization is verified by calling the
handleSecurity method of the associated HttpContext object. See Authentication on page 36. If the
request is authorized, the servlet must be called by its service method to complete the HTTP
request.

2. If the registration corresponds to a resource, the authorization is verified by calling the
handleSecurity method of the associated HttpContext object. See Authentication on page 36. If the
request is authorized, a target resource name is constructed from the requested URI by substitut-
ing the alias from the registration with the internal name from the registration if the alias is not "/
". If the alias is "/", then the target resource name is constructed by prefixing the requested URI
with the internal name. An internal name of "/" is considered to have the value of the empty
string ("") during this process.

3. The target resource name must be passed to the getResource method of the associated
HttpContext object.
OSGi Service Platform Release 4, Version 4.2 Page 33

The Default Http Context Object Http Service Specification Version 1.2
4. If the returned URL object is not nul l , the Http Service must return the contents of the URL to the
client completing the HTTP request. The translated target name, as opposed to the original
requested URI, must also be used as the argument to HttpContext .getMimeType .

5. If the returned URL object is nul l , the Http Service continues as if there was no match.

6. If there is no match, the Http Service must attempt to match sub-strings of the requested URI to
registered aliases. The sub-strings of the requested URI are selected by removing the last "/" and
everything to the right of the last "/".

The Http Service must repeat this process until either a match is found or the sub-string is an empty
string. If the sub-string is empty and the alias "/" is registered, the request is considered to match the
alias "/" . Otherwise, the Http Service must return HttpServletResponse.SC_NOT_FOUND(404) to
the client.

For example, an HTTP request comes in with a request URI of "/fudd/bugs/foo.txt" , and the only reg-
istered alias is "/fudd" . A search for "/ fudd/bugs/foo.txt" will not match an alias. Therefore, the Http
Service will search for the alias "/fudd/bugs" and the alias "/ fudd" . The latter search will result in a
match and the matched alias registration must be used.

Registrations for identical aliases are not allowed. If a bundle registers the alias "/fudd" , and another
bundle tries to register the exactly the same alias, the second caller must receive a
NamespaceException and its resource or servlet must not be registered. It could, however, register a
similar alias – for example, "/ fudd/bugs" , as long as no other registration for this alias already exists.

The following table shows some examples of the usage of the name-space.

102.5 The Default Http Context Object
The HttpContext object in the first example demonstrates simple implementations of the HttpCon-
text interface methods. Alternatively, the example could have used a default HttpContext object, as
demonstrated in the following call to registerServlet :

getHttpService().registerServlet(
"/servletAlias",
myServlet,
initparams,
null

);

In this case, the Http Service implementation must call createDefault
HttpContext and use the return value as the HttpContext argument.

Table 102.1 Examples of Name-space Mapping

Alias Internal Name URI getResource Parameter

/ (empty str ing) /fudd/bugs /fudd/bugs
/ / /fudd/bugs /fudd/bugs
/ /tmp /fudd/bugs /tmp/fudd/bugs
/fudd (empty str ing) /fudd/bugs /bugs
/fudd / /fudd/bugs /bugs
/fudd /tmp /fudd/bugs /tmp/bugs
/fudd tmp /fudd/bugs/x.gif tmp/bugs/x.gif
/fudd/bugs/x.gif tmp/y.gi f /fudd/bugs/x.gif tmp/y.gi f
Page 34 OSGi Service Platform Release 4, Version 4.2

Http Service Specification Version 1.2 Multipurpose Internet Mail Extension (MIME) Types
If the default HttpContext object, and thus the ServletContext object, is to be shared by multiple
servlet registrations, the previous servlet registration example code needs to be changed to use the
same default HttpContext object. This change is demonstrated in the next example:

HttpContext defaultContext =
getHttpService().createDefaultHttpContext();

getHttpService().registerServlet(
"/servletAlias",
myServlet,
initparams,
defaultContext

);

// defaultContext can be reused
// for further servlet registrations

102.6 Multipurpose Internet Mail Extension (MIME)
Types
MIME defines an extensive set of headers and procedures to encode binary messages in US-ASCII
mails. For an overview of all the related RFCs, consult [4] MIME Multipurpose Internet Mail Extension.

An important aspect of this extension is the type (file format) mechanism of the binary messages.
The type is defined by a string containing a general category (text, application, image, audio and
video, multipart, and message) followed by a "/" and a specific media type, as in the example, "text/
html" for HTML formatted text files. A MIME type string can be followed by additional specifiers by
separating key=value pairs with a ’;’. These specifiers can be used, for example, to define character sets
as follows:

text/plain ; charset=iso-8859-1

The Internet Assigned Number Authority (IANA) maintains a set of defined MIME media types. This
list can be found at [5] Assigned MIME Media Types. MIME media types are extendable, and when any
part of the type starts with the prefix "x-" , it is assumed to be vendor-specific and can be used for test-
ing. New types can be registered as described in [6] Registration Procedures for new MIME media types.

HTTP bases its media typing on the MIME RFCs. The "Content-Type" header should contain a MIME
media type so that the browser can recognize the type and format the content correctly.

The source of the data must define the MIME media type for each transfer. Most operating systems do
not support types for files, but use conventions based on file names, such as the last part of the file
name after the last ".". This extension is then mapped to a media type.

Implementations of the Http Service should have a reasonable default of mapping common exten-
sions to media types based on file extensions.

Table 102.2 Sample Extension to MIME Media Mapping

Extension MIME media type Description

. jpg . jpeg image/jpeg JPEG Files

.g i f image/gif GIF Files

.css text/css Cascading Style Sheet Files

. txt text/pla in Text Files

.wml text/vnd.wap.wml Wireless Access Protocol (WAP) Mark Language
OSGi Service Platform Release 4, Version 4.2 Page 35

Authentication Http Service Specification Version 1.2
Only the bundle developer, however, knows exactly which files have what media type. The
HttpContext interface can therefore be used to map this knowledge to the media type. The
HttpContext class has the following method for this: getMimeType(Str ing) .

The implementation of this method should inspect the file name and use its internal knowledge to
map this name to a MIME media type.

Simple implementations can extract the extension and look up this extension in a table.

Returning nul l from this method allows the Http Service implementation to use its default mapping
mechanism.

102.7 Authentication
The Http Service has separated the authentication and authorization of a request from the execution
of the request. This separation allows bundles to use available Servlet sub-classes while still provid-
ing bundle specific authentication and authorization of the requests.

Prior to servicing each incoming request, the Http Service calls the
handleSecurity(javax.servlet .http.HttpServletRequest, javax.servlet.http.HttpServletResponse)
method on the HttpContext object that is associated with the request URI. This method controls
whether the request is processed in the normal manner or an authentication error is returned.

If an implementation wants to authenticate the request, it can use the authentication mechanisms of
HTTP. See [7] RFC 2617: HTTP Authentication: Basic and Digest Access Authentication. These mechanisms
normally interpret the headers and decide if the user identity is available, and if it is, whether that
user has authenticated itself correctly.

There are many different ways of authenticating users, and the handleSecurity method on the
HttpContext object can use whatever method it requires. If the method returns true , the request
must continue to be processed using the potentially modified HttpServletRequest and
HttpServletResponse objects. If the method returns false , the request must not be processed.

A common standard for HTTP is the basic authentication scheme that is not secure when used with
HTTP. Basic authentication passes the password in base 64 encoded strings that are trivial to decode
into clear text. Secure transport protocols like HTTPS use SSL to hide this information. With these
protocols basic authentication is secure.

Using basic authentication requires the following steps:

1. If no Authorizat ion header is set in the request, the method should set the WWW-Authenticate
header in the response. This header indicates the desired authentication mechanism and the
realm. For example, WWW-Authenticate: Basic realm="ACME".
The header should be set with the response object that is given as a parameter to the
handleSecurity method. The handleSecurity method should set the status to
HttpServletResponse.SC_UNAUTHORIZED (401) and return false .

2. Secure connections can be verified with the ServletRequest.getScheme() method. This method
returns, for example, "https" for an SSL connection; the handleSecurity method can use this and
other information to decide if the connection’s security level is acceptable. If not, the
handleSecurity method should set the status to HttpServletResponse.SC_FORBIDDEN (403) and
return fa lse .

.htm .html text/html Hyper Text Markup Language

.wbmp image/vnd.wap.wbmp Bitmaps for WAP

Table 102.2 Sample Extension to MIME Media Mapping

Extension MIME media type Description
Page 36 OSGi Service Platform Release 4, Version 4.2

Http Service Specification Version 1.2 Security
3. Next, the request must be authenticated. When basic authentication is used, the Authorizat ion
header is available in the request and should be parsed to find the user and password. See [7] RFC
2617: HTTP Authentication: Basic and Digest Access Authentication for more information.
If the user cannot be authenticated, the status of the response object should be set to
HttpServletResponse.SC_UNAUTHORIZED (401) and return false .

4. The authentication mechanism that is actually used and the identity of the authenticated user
can be of interest to the Servlet object. Therefore, the implementation of the handleSecurity
method should set this information in the request object using the ServletRequest .setAttr ibute
method. This specification has defined a number of OSGi-specific attribute names for this pur-
pose:
• AUTHENTICATION_TYPE - Specifies the scheme used in authentication. A Servlet may retrieve

the value of this attribute by calling the HttpServletRequest.getAuthType method. This
attribute name is org.osgi .service.http.authenticat ion.type .

• REMOTE_USER - Specifies the name of the authenticated user. A Servlet may retrieve the value
of this attribute by calling the HttpServletRequest .getRemoteUser method. This attribute
name is org .osgi .service.http.authenticat ion.remote.user .

• AUTHORIZATION - If a User Admin service is available in the environment, then the
handleSecurity method should set this attribute with the Authorizat ion object obtained from
the User Admin service. Such an object encapsulates the authentication of its remote user. A
Servlet may retrieve the value of this attribute by calling
ServletRequest .getAttr ibute(HttpContext .AUTHORIZATION) . This header name is
org.osgi .service.useradmin.authorization .

5. Once the request is authenticated and any attributes are set, the handleSecurity method should
return true . This return indicates to the Http Service that the request is authorized and processing
may continue. If the request is for a Servlet, the Http Service must then call the service method on
the Servlet object.

102.8 Security
This section only applies when executing in an OSGi environment which is enforcing Java permis-
sions.

102.8.1 Accessing Resources in Bundles
The Http Service must be granted AdminPermission[*,RESOURCE] so that bundles may use a default
HttpContext object. This is necessary because the implementation of the default HttpContext object
must call Bundle.getResource to access the resources of a bundle and this method requires the caller
to have AdminPermission[bundle,RESOURCE] .

Any bundle may access resources in its own bundle by calling Class.getResource . This operation is
privileged. The resulting URL object may then be passed to the Http Service as the result of a
HttpContext .getResource call. No further permission checks are performed when accessing bundle
resource URL objects, so the Http Service does not need to be granted any additional permissions.

102.8.2 Accessing Other Types of Resources
In order to access resources that were not registered using the default HttpContext object, the Http
Service must be granted sufficient privileges to access these resources. For example, if the
getResource method of the registered HttpContext object returns a file URL, the Http Service
requires the corresponding Fi lePermission to read the file. Similarly, if the getResource method of
the registered HttpContext object returns an HTTP URL, the Http Service requires the corresponding
SocketPermission to connect to the resource.
OSGi Service Platform Release 4, Version 4.2 Page 37

Configuration Properties Http Service Specification Version 1.2
Therefore, in most cases, the Http Service should be a privileged service that is granted sufficient per-
mission to serve any bundle's resources, no matter where these resources are located. Therefore, the
Http Service must capture the AccessControlContext object of the bundle registering resources or a
servlet, and then use the captured AccessControlContext object when accessing resources returned
by the registered HttpContext object. This situation prevents a bundle from registering resources
that it does not have permission to access.

Therefore, the Http Service should follow a scheme like the following example. When a resource or
servlet is registered, it should capture the context.

AccessControlContext acc =
AccessController.getContext();

When a URL returned by the getResource method of the associated HttpContext object is called, the
Http Service must call the getResource method in a doPriv i leged construct using the
AccessControlContext object of the registering bundle:

AccessController.doPrivileged(
new PrivilegedExceptionAction() {

public Object run() throws Exception {
...
}

}, acc);

The Http Service must only use the captured AccessControlContext when accessing resource URL
objects. Servlet and HttpContext objects must use a doPriv i leged construct in their implementations
when performing privileged operations.

102.9 Configuration Properties
If the Http Service does not have its port values configured through some other means, the Http Ser-
vice implementation should use the following properties to determine the port values upon which to
listen.

The following OSGi environment properties are used to specify default HTTP ports:

• org.osgi .service.http.port – This property specifies the port used for servlets and resources acces-
sible via HTTP. The default value for this property is 80.

• org.osgi .service.http.port .secure – This property specifies the port used for servlets and
resources accessible via HTTPS. The default value for this property is 443.

102.10 org.osgi.service.http
Http Service Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. For example:

Import-Package: org.osgi.service.http; version=”[1.2,2.0)”

102.10.1 Summary
• HttpContext - This interface defines methods that the Http Service may call to get information

about a registration.
• HttpService - The Http Service allows other bundles in the OSGi environment to dynamically reg-

ister resources and servlets into the URI namespace of Http Service.
• NamespaceException - A NamespaceException is thrown to indicate an error with the caller’s

request to register a servlet or resources into the URI namespace of the Http Service.
HttpContext
Page 38 OSGi Service Platform Release 4, Version 4.2

Http Service Specification Version 1.2 org.osgi.service.http
102.10.2 public interface HttpContext
This interface defines methods that the Http Service may call to get information about a registration.

Servlets and resources may be registered with an HttpContext object; if no HttpContext object is
specified, a default HttpContext object is used. Servlets that are registered using the same
HttpContext object will share the same ServletContext object.

This interface is implemented by users of the HttpService .
AUTHENTICATION_TYPE

102.10.2.1 public static final String AUTHENTICATION_TYPE = “org.osgi.service.http.authentication.type”

HttpServletRequest attribute specifying the scheme used in authentication. The value of the
attribute can be retrieved by HttpServletRequest .getAuthType . This attribute name is
org.osgi .service.http.authenticat ion.type .

Since 1.1
AUTHORIZATION

102.10.2.2 public static final String AUTHORIZATION = “org.osgi.service.useradmin.authorization”

HttpServletRequest attribute specifying the Authorization object obtained from the
org.osgi .service.useradmin.UserAdmin service. The value of the attribute can be retrieved by
HttpServletRequest .getAttr ibute(HttpContext.AUTHORIZATION) . This attribute name is
org.osgi .service.useradmin.authorization .

Since 1.1
REMOTE_USER

102.10.2.3 public static final String REMOTE_USER = “org.osgi.service.http.authentication.remote.user”

HttpServletRequest attribute specifying the name of the authenticated user. The value of the
attribute can be retrieved by HttpServletRequest .getRemoteUser . This attribute name is
org.osgi .service.http.authenticat ion.remote.user .

Since 1.1
getMimeType(String)

102.10.2.4 public String getMimeType(String name)

name determine the MIME type for this name.

Maps a name to a MIME type. Called by the Http Service to determine the MIME type for the name.
For servlet registrations, the Http Service will call this method to support the ServletContext method
getMimeType . For resource registrations, the Http Service will call this method to determine the
MIME type for the Content-Type header in the response.

Returns MIME type (e.g. text/html) of the name or null to indicate that the Http Service should determine the
MIME type itself.
getResource(String)

102.10.2.5 public URL getResource(String name)

name the name of the requested resource

Maps a resource name to a URL.

Called by the Http Service to map a resource name to a URL. For servlet registrations, Http Service
will call this method to support the ServletContext methods getResource and
getResourceAsStream . For resource registrations, Http Service will call this method to locate the
named resource. The context can control from where resources come. For example, the resource can
be mapped to a file in the bundle’s persistent storage area via
bundleContext .getDataFi le(name).toURL() or to a resource in the context’s bundle via
getClass() .getResource(name)

Returns URL that Http Service can use to read the resource or nul l if the resource does not exist.
handleSecurity(javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)

102.10.2.6 public boolean handleSecurity(HttpServletRequest request, HttpServletResponse response)
throws IOException

request the HTTP request
OSGi Service Platform Release 4, Version 4.2 Page 39

org.osgi.service.http Http Service Specification Version 1.2
response the HTTP response

Handles security for the specified request.

The Http Service calls this method prior to servicing the specified request. This method controls
whether the request is processed in the normal manner or an error is returned.

If the request requires authentication and the Authorization header in the request is missing or not
acceptable, then this method should set the WWW-Authenticate header in the response object, set
the status in the response object to Unauthorized(401) and return false . See also RFC 2617: HTTP
Authentication: Basic and Digest Access Authentication (available at http://www.ietf.org/rfc/rfc2617.txt).

If the request requires a secure connection and the getScheme method in the request does not return
‘https’ or some other acceptable secure protocol, then this method should set the status in the
response object to Forbidden(403) and return false .

When this method returns false , the Http Service will send the response back to the client, thereby
completing the request. When this method returns true , the Http Service will proceed with servicing
the request.

If the specified request has been authenticated, this method must set the AUTHENTICATION_TYPE
request attribute to the type of authentication used, and the REMOTE_USER request attribute to the
remote user (request attributes are set using the setAttr ibute method on the request). If this method
does not perform any authentication, it must not set these attributes.

If the authenticated user is also authorized to access certain resources, this method must set the
AUTHORIZATION request attribute to the Authorization object obtained from the
org.osgi .serv ice.useradmin.UserAdmin service.

The servlet responsible for servicing the specified request determines the authentication type and
remote user by calling the getAuthType and getRemoteUser methods, respectively, on the request.

Returns true if the request should be serviced, false if the request should not be serviced and Http Service will
send the response back to the client.

Throws IOException – may be thrown by this method. If this occurs, the Http Service will terminate the re-
quest and close the socket.
HttpService

102.10.3 public interface HttpService
The Http Service allows other bundles in the OSGi environment to dynamically register resources
and servlets into the URI namespace of Http Service. A bundle may later unregister its resources or
servlets.

See Also HttpContext
createDefaultHttpContext()

102.10.3.1 public HttpContext createDefaultHttpContext()

Creates a default HttpContext for registering servlets or resources with the HttpService, a new
HttpContext object is created each time this method is called.

The behavior of the methods on the default HttpContext is defined as follows:

• getMimeType- Does not define any customized MIME types for the Content-Type header in the
response, and always returns null .

• handleSecurity- Performs implementation-defined authentication on the request.
• getResource - Assumes the named resource is in the context bundle; this method calls the context

bundle’s Bundle.getResource method, and returns the appropriate URL to access the resource. On
a Java runtime environment that supports permissions, the Http Service needs to be granted
org.osgi . framework.AdminPermission[*,RESOURCE] .

Returns a default HttpContext object.

Since 1.1
registerResources(String,String,HttpContext)
Page 40 OSGi Service Platform Release 4, Version 4.2

Http Service Specification Version 1.2 org.osgi.service.http
102.10.3.2 public void registerResources(String alias, String name, HttpContext context) throws
NamespaceException

alias name in the URI namespace at which the resources are registered

name the base name of the resources that will be registered

context the HttpContext object for the registered resources, or nul l if a default HttpContext is to be created and
used.

Registers resources into the URI namespace.

The alias is the name in the URI namespace of the Http Service at which the registration will be
mapped. An alias must begin with slash (’/’) and must not end with slash (’/’), with the exception that
an alias of the form “/” is used to denote the root alias. The name parameter must also not end with
slash (’/’) with the exception that a name of the form “/” is used to denote the root of the bundle. See
the specification text for details on how HTTP requests are mapped to servlet and resource registra-
tions.

For example, suppose the resource name /tmp is registered to the alias /files. A request for /files/
foo.txt will map to the resource name /tmp/foo.txt.

httpservice.registerResources(”/files”, “/tmp”, context);

The Http Service will call the HttpContext argument to map resource names to URLs and MIME
types and to handle security for requests. If the HttpContext argument is nul l , a default HttpContext
is used (see createDefaultHttpContext).

Throws NamespaceException – if the registration fails because the alias is already in use.

IllegalArgumentException – if any of the parameters are invalid
registerServlet(String,javax.servlet.Servlet,Dictionary,HttpContext)

102.10.3.3 public void registerServlet(String alias, Servlet servlet, Dictionary initparams, HttpContext
context) throws ServletException, NamespaceException

alias name in the URI namespace at which the servlet is registered

servlet the servlet object to register

initparams initialization arguments for the servlet or nul l if there are none. This argument is used by the servlet’s
ServletConfig object.

context the HttpContext object for the registered servlet, or nul l if a default HttpContext is to be created and
used.

Registers a servlet into the URI namespace.

The alias is the name in the URI namespace of the Http Service at which the registration will be
mapped.

An alias must begin with slash (’/’) and must not end with slash (’/’), with the exception that an alias
of the form “/” is used to denote the root alias. See the specification text for details on how HTTP
requests are mapped to servlet and resource registrations.

The Http Service will call the servlet’s in it method before returning.

httpService.registerServlet(”/myservlet”, servlet, initparams, context);

Servlets registered with the same HttpContext object will share the same ServletContext . The Http
Service will call the context argument to support the ServletContext methods getResource ,
getResourceAsStream and getMimeType , and to handle security for requests. If the context argu-
ment is nul l , a default HttpContext object is used (see createDefaultHttpContext).

Throws NamespaceException – if the registration fails because the alias is already in use.

javax.servlet.ServletException – if the servlet’s in it method throws an exception, or the given
servlet object has already been registered at a different alias.
OSGi Service Platform Release 4, Version 4.2 Page 41

org.osgi.service.http Http Service Specification Version 1.2
IllegalArgumentException – if any of the arguments are invalid
unregister(String)

102.10.3.4 public void unregister(String alias)

alias name in the URI name-space of the registration to unregister

Unregisters a previous registration done by registerServlet or registerResources methods.

After this call, the registered alias in the URI name-space will no longer be available. If the registra-
tion was for a servlet, the Http Service must call the destroy method of the servlet before returning.

If the bundle which performed the registration is stopped or otherwise “unget”s the Http Service
without calling unregister then Http Service must automatically unregister the registration. How-
ever, if the registration was for a servlet, the destroy method of the servlet will not be called in this
case since the bundle may be stopped. unregister must be explicitly called to cause the destroy
method of the servlet to be called. This can be done in the BundleActivator .stop method of the bun-
dle registering the servlet.

Throws IllegalArgumentException – if there is no registration for the alias or the calling bundle was not the
bundle which registered the alias.
NamespaceException

102.10.4 public class NamespaceException
extends Exception
A NamespaceException is thrown to indicate an error with the caller’s request to register a servlet or
resources into the URI namespace of the Http Service. This exception indicates that the requested
alias already is in use.
NamespaceException(String)

102.10.4.1 public NamespaceException(String message)

message the detail message

Construct a NamespaceException object with a detail message.
NamespaceException(String,Throwable)

102.10.4.2 public NamespaceException(String message, Throwable cause)

message The detail message.

cause The nested exception.

Construct a NamespaceException object with a detail message and a nested exception.
getCause()

102.10.4.3 public Throwable getCause()

Returns the cause of this exception or nul l if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

Since 1.2
getException()

102.10.4.4 public Throwable getException()

Returns the nested exception.

This method predates the general purpose exception chaining mechanism. The getCause() method
is now the preferred means of obtaining this information.

Returns The result of calling getCause() .
initCause(Throwable)

102.10.4.5 public Throwable initCause(Throwable cause)

cause The cause of this exception.

Initializes the cause of this exception to the specified value.

Returns This exception.

Throws IllegalArgumentException – If the specified cause is this exception.
Page 42 OSGi Service Platform Release 4, Version 4.2

Http Service Specification Version 1.2 References
IllegalStateException – If the cause of this exception has already been set.

Since 1.2

102.11 References
[1] HTTP 1.0 Specification RFC-1945

http://www.ietf.org/rfc/rfc1945.txt, May 1996

[2] HTTP 1.1 Specification RFC-2616
http://www.ietf.org/rfc/rfc2616.txt, June 1999

[3] Java Servlet Technology
http://java.sun.com/products/servlet/index.html

[4] MIME Multipurpose Internet Mail Extension
http://www.mhonarc.org/~ehood/MIME/MIME.html

[5] Assigned MIME Media Types
http://www.iana.org/assignments/media-types

[6] Registration Procedures for new MIME media types
http://www.ietf.org/rfc/rfc2048.txt

[7] RFC 2617: HTTP Authentication: Basic and Digest Access Authentication
http://www.ietf.org/rfc/rfc2617.txt
OSGi Service Platform Release 4, Version 4.2 Page 43

References Http Service Specification Version 1.2
Page 44 OSGi Service Platform Release 4, Version 4.2

Configuration Admin Service Specification Version 1.3 Introduction
104 Configuration Admin Service
Specification
Version 1.3

104.1 Introduction
The Configuration Admin service is an important aspect of the deployment of an OSGi Service Plat-
form. It allows an Operator to set the configuration information of deployed bundles.

Configuration is the process of defining the configuration data of bundles and assuring that those
bundles receive that data when they are active in the OSGi Service Platform.

Figure 104.1 Configuration Admin Service Overview

104.1.1 Essentials
The following requirements and patterns are associated with the Configuration Admin service speci-
fication:

• Local Configuration – The Configuration Admin service must support bundles that have their own
user interface to change their configurations.

• Reflection – The Configuration Admin service must be able to deduce the names and types of the
needed configuration data.

• Legacy – The Configuration Admin service must support configuration data of existing entities
(such as devices).

• Object Oriented – The Configuration Admin service must support the creation and deletion of
instances of configuration information so that a bundle can create the appropriate number of ser-
vices under the control of the Configuration Admin service.

• Embedded Devices – The Configuration Admin service must be deployable on a wide range of plat-
forms. This requirement means that the interface should not assume file storage on the platform.
The choice to use file storage should be left to the implementation of the Configuration Admin
service.

• Remote versus Local Management – The Configuration Admin service must allow for a remotely
managed OSGi Service Platform, and must not assume that configuration information is stored

port=
secure=

port= 80
secure= true

bundle
developer

writes
a bundle

bundle is
deployed

configuration

Configuration
Admin

data
OSGi Service Platform Release 4, Version 4.2 Page 45

Introduction Configuration Admin Service Specification Version 1.3
locally. Nor should it assume that the Configuration Admin service is always done remotely. Both
implementation approaches should be viable.

• Availability – The OSGi environment is a dynamic environment that must run continuously (24/
7/365). Configuration updates must happen dynamically and should not require restarting of the
system or bundles.

• Immediate Response – Changes in configuration should be reflected immediately.
• Execution Environment – The Configuration Admin service will not require more than an envi-

ronment that fulfills the minimal execution requirements.
• Communications – The Configuration Admin service should not assume “always-on” connectivity,

so the API is also applicable for mobile applications in cars, phones, or boats.
• Extendability – The Configuration Admin service should expose the process of configuration to

other bundles. This exposure should at a minimum encompass initiating an update, removing
certain configuration properties, adding properties, and modifying the value of properties poten-
tially based on existing property or service values.

• Complexity Trade-offs – Bundles in need of configuration data should have a simple way of
obtaining it. Most bundles have this need and the code to accept this data. Additionally, updates
should be simple from the perspective of the receiver.
Trade-offs in simplicity should be made at the expense of the bundle implementing the Configu-
ration Admin service and in favor of bundles that need configuration information. The reason for
this choice is that normal bundles will outnumber Configuration Admin bundles.

104.1.2 Operation
This specification is based on the concept of a Configuration Admin service that manages the config-
uration of an OSGi Service Platform. It maintains a database of Configurat ion objects, locally or
remote. This service monitors the service registry and provides configuration information to services
that are registered with a serv ice.pid property, the Persistent IDentity (PID), and implement one of
the following interfaces:

• Managed Service – A service registered with this interface receives its configuration dictionary from
the database or receives null when no such configuration exists or when an existing configuration
has never been updated.

• Managed Service Factory – Services registered with this interface receive several configuration dic-
tionaries when registered. The database contains zero or more configuration dictionaries for this
service. Each configuration dictionary is given sequentially to the service.

The database can be manipulated either by the Management Agent or bundles that configure them-
selves.

Other parties can provide Configuration Plugin services. Such services participate in the configura-
tion process. They can inspect the configuration dictionary and modify it before it reaches the target
service.

104.1.3 Entities
• Configuration information – The information needed by a bundle before it can provide its intended

functionality.
• Configuration dictionary – The configuration information when it is passed to the target service. It

consists of a Dictionary object with a number of properties and identifiers.
• Configuring Bundle – A bundle that modifies the configuration information through the Configu-

ration Admin service. This bundle is either a management bundle or the bundle for which the
configuration information is intended.

• Configuration Target – The target (bundle or service) that will receive the configuration infor-
mation. For services, there are two types of targets: ManagedServiceFactory or ManagedService
objects.

• Configuration Admin Service – This service is responsible for supplying configuration target
bundles with their configuration information. It maintains a database with configuration infor-
Page 46 OSGi Service Platform Release 4, Version 4.2

Configuration Admin Service Specification Version 1.3 Introduction
mation, keyed on the service.pid of configuration target services. These services receive their con-
figuration dictionary or dictionaries when they are registered with the Framework.
Configurations can be modified or extended using Configuration Plugin services before they
reach the target bundle.

• Managed Service – A Managed Service represents a client of the Configuration Admin service, and
is thus a configuration target. Bundles should register a Managed Service to receive the configu-
ration data from the Configuration Admin service. A Managed Service adds one or more unique
service.pid service registration properties as a primary key for the configuration information.

• Managed Service Factory – A Managed Service Factory can receive a number of configuration dic-
tionaries from the Configuration Admin service, and is thus also a configuration target service. It
should register with one or more service.pid strings and receives zero or more configuration dic-
tionaries. Each dictionary has its own PID.

• Configuration Object – Implements the Configurat ion interface and contains the configuration dic-
tionary for a Managed Service or one of the configuration dictionaries for a Managed Service
Factory. These objects are manipulated by configuring bundles.

• Configuration Plugin Services – Configuration Plugin services are called before the configuration
dictionary is given to the configuration targets. The plug-in can modify the configuration dic-
tionary, which is passed to the Configuration Target.

Figure 104.2 Configuration Admin Class Diagram org.osgi.service.cm

<<interface>>
Configuration
Admin

<<interface>>
Configuration

<<interface>>
Managed
Service

<<interface>>
Man. Service
Factory

<<interface>>
Configuration
Plugin

Configuration
Adm. Impl.

config. objects

a Managed
Service Factory
Impl

a Managed
Service Impl

a configured
instance of some
type

Plugin Impl

Factory
configuration
impl

Managed Service
configuration
impl

a cnfg application
(e.g. remote
management)

config information

send

set configuration
properties via

1

0..n

Modify

1

configuration

1

0..n

1

0..n

0..n

1

10..n

0..n

1

send
configuration

for some object

config
information

information

bundle using
ManagedService

bundle
configuring

bundle using
ManagedService

Factory

Configuration Admin implementation
bundle

plugin bundle

Config.
Exception

properties
OSGi Service Platform Release 4, Version 4.2 Page 47

Configuration Targets Configuration Admin Service Specification Version 1.3
104.2 Configuration Targets
One of the more complicated aspects of this specification is the subtle distinction between the
ManagedService and ManagedServiceFactory classes.

Both receive configuration information from the Configuration Admin service and are treated simi-
larly in most respects. Therefore, this specification refers to configuration targets when the distinction
is irrelevant.

The difference between these types is related to the cardinality of the configuration dictionary. A
Managed Service is used when an existing entity needs a configuration dictionary. Thus, a one-to-one
relationship always exists between the configuration dictionary and the entity.

A Managed Service Factory is used when part of the configuration is to define how many instances are
required. A management bundle can create, modify, and delete any number of instances for a Man-
aged Service Factory through the Configuration Admin service. Each instance is configured by a sin-
gle Configuration object. Therefore, a Managed Service Factory can have multiple associated
Configurat ion objects.

Figure 104.3 Differentiation of ManagedService and ManagedServiceFactory Classes

To summarize:

• A Managed Service must receive a single configuration dictionary when it is registered or when its
configuration is modified.

• A Managed Service Factory must receive from zero to n configuration dictionaries when it registers,
depending on the current configuration. The Managed Service Factory is informed of configu-
ration dictionary changes: modifications, creations, and deletions.

104.3 The Persistent Identity
A crucial concept in the Configuration Admin service specification is the Persistent IDentity (PID) as
defined in the Framework’s service layer. Its purpose is to act as a primary key for objects that need a
configuration dictionary. The name of the service property for PID is defined in the Framework in
org.osgi . framework.Constants.SERVICE.PID .

The Configuration Admin service requires the use of PIDs with Managed Service and Managed Ser-
vice Factory registrations because it associates its configuration data with PIDs.

PIDs must be unique for each service, though a service can register with multiple PIDs. A bundle
must not register multiple configuration target services with the same PID. If that should occur, the
Configuration Admin service must:

• Send the appropriate configuration data to all services registered under that PID from that bundle
only.

• Report an error in the log.
• Ignore duplicate PIDs from other bundles and report them to the log.

Framework Service

ManagedService ManagedServiceFactory

Management layer

Service layer

Registry
Page 48 OSGi Service Platform Release 4, Version 4.2

Configuration Admin Service Specification Version 1.3 The Configuration Object
104.3.1 PID Syntax
PIDs are intended for use by other bundles, not by people, but sometimes the user is confronted with
a PID. For example, when installing an alarm system, the user needs to identify the different compo-
nents to a wiring application. This type of application exposes the PID to end users.

PIDs should follow the symbolic-name syntax, which uses a very restricted character set. The follow-
ing sections, define some schemes for common cases. These schemes are not required, but bundle
developers are urged to use them to achieve consistency.

104.3.1.1 Local Bundle PIDs

As a convention, descriptions starting with the bundle identity and a dot (.) are reserved for a bundle.
As an example, a PID of "65.536" would belong to the bundle with a bundle identity of 65.

104.3.1.2 Software PIDs

Configuration target services that are singletons can use a Java package name they own as the PID
(the reverse domain name scheme) as long as they do not use characters outside the basic ASCII set.
As an example, the PID named com.acme.watchdog would represent a Watchdog service from the
ACME company.

104.3.1.3 Devices

Devices are usually organized on buses or networks. The identity of a device, such as a unique serial
number or an address, is a good component of a PID. The format of the serial number should be the
same as that printed on the housing or box, to aid in recognition.

104.4 The Configuration Object
A Configurat ion object contains the configuration dictionary, which is a set of properties that config-
ure an aspect of a bundle. A bundle can receive Configurat ion objects by registering a configuration
target service with a PID service property. See The Persistent Identity on page 48 for more information
about PIDs.

During registration, the Configuration Admin service must detect these configuration target services
and hand over their configuration dictionary via a callback. If this configuration dictionary is subse-
quently modified, the modified dictionary is handed over to the configuration target again with the
same callback.

Table 104.1 Schemes for Device-Oriented PID Names

Bus Example Format Description

USB USB.0123-0002-
9909873

idVendor (hex 4)
idProduct (hex 4)
iSerialNumber (deci-
mal)

Universal Ser ia l Bus.
Use the standard
device descr iptor.

IP IP.172.16.28.21 IP nr (dotted decimal) Internet Protocol
802 802-00:60:97:00:9A:56 MAC address with: sep-

arators
IEEE 802 MAC address
(Token Ring, Ethernet,
. . .)

ONE ONE.06-00000021E461 Family (hex 2) and
seria l number includ-
ing CRC (hex 6)

1-wire bus of Dallas
Semiconductor

COM COM.krups-brewer-
12323

seria l number or type
name of device

Serial ports
OSGi Service Platform Release 4, Version 4.2 Page 49

The Configuration Object Configuration Admin Service Specification Version 1.3
The Configuration object is primarily a set of properties that can be updated by a Management Agent,
user interfaces on the OSGi Service Platform, or other applications. Configuration changes are first
made persistent, and then passed to the target service via a call to the updated method in the
ManagedServiceFactory or ManagedService class.

A Configuration object must be uniquely bound to a Managed Service or Managed Service Factory.
This implies that a bundle must not register a Managed Service Factory with a PID that is the same as
the PID given to a Managed Service.

104.4.1 Location Binding
When a Configurat ion object is created by either getConfigurat ion or createFactoryConfigurat ion ,
it becomes bound to the location of the calling bundle. This location is obtained with the associated
bundle’s getLocation method.

Location binding is a security feature that assures that only management bundles can modify config-
uration data, and other bundles can only modify their own configuration data. A SecurityException
is thrown if a bundle other than a Management Agent bundle attempts to modify the configuration
information of another bundle.

If a Managed Service is registered with a PID that is already bound to another location, the normal
callback to ManagedService.updated must not take place.

The two argument versions of getConfigurat ion and createFactoryConfigurat ion take a location
Str ing as their second argument. These methods require the correct permission, and they create
Configurat ion objects bound to the specified location, instead of the location of the calling bundle.
These methods are intended for management bundles.

The creation of a Configurat ion object does not in itself initiate a callback to the target.

A null location parameter may be used to create Configurat ion objects that are not bound. In this
case, the objects become bound to a specific location the first time that they are used by a bundle.
When this dynamically bound bundle is subsequently uninstalled, the Configurat ion object’s bundle
location must be set to nul l again so it can be bound again later.

A management bundle may create a Configurat ion object before the associated Managed Service is
registered. It may use a nul l location to avoid any dependency on the actual location of the bundle
which registers this service. When the Managed Service is registered later, the Configuration object
must be bound to the location of the registering bundle, and its configuration dictionary must then
be passed to ManagedService.updated .

104.4.2 Configuration Properties
A configuration dictionary contains a set of properties in a Dictionary object. The value of the prop-
erty must be the same type as the set of types specified in the OSGi Core Specification in Figure 3.8 Pri-
mary property types.

The name or key of a property must always be a Str ing object, and is not case-sensitive during look
up, but must preserve the original case. The format of a property name should be:

property-name ::= public | private
public ::= symbolic-name // See 1.3.2
private ::= ’.’ symbolic-name

Properties can be used in other subsystems that have restrictions on the character set that can be
used. The symbolic-name production uses a very minimal character set.

Bundles must not use nested vectors or arrays, nor must they use mixed types. Using mixed types or
nesting makes it impossible to use the meta typing specification. See Metatype Service Specification on
page 83.
Page 50 OSGi Service Platform Release 4, Version 4.2

Configuration Admin Service Specification Version 1.3 Managed Service
104.4.3 Property Propagation
A configuration target should copy the public configuration properties (properties whose name does
not start with a ’ . ’ or \u002E) of the Dictionary object argument in updated(Dictionary) into the ser-
vice properties on any resulting service registration.

This propagation allows the development of applications that leverage the Framework service regis-
try more extensively, so compliance with this mechanism is advised.

A configuration target may ignore any configuration properties it does not recognize, or it may
change the values of the configuration properties before these properties are registered as service
properties. Configuration properties in the Framework service registry are not strictly related to the
configuration information.

Bundles that follow this recommendation to propagate public configuration properties can partici-
pate in horizontal applications. For example, an application that maintains physical location infor-
mation in the Framework service registry could find out where a particular device is located in the
house or car. This service could use a property dedicated to the physical location and provide func-
tions that leverage this property, such as a graphic user interface that displays these locations.

Bundles performing service registrations on behalf of other bundles (e.g. OSGi Declarative Services)
should propagate all public configuration properties and not propagate private configuration proper-
ties.

104.4.4 Automatic Properties
The Configuration Admin service must automatically add a number of properties to the configura-
tion dictionary. If these properties are also set by a configuring bundle or a plug-in, they must always
be overridden before they are given to the target service. See Configuration Plugin on page 62,There-
fore, the receiving bundle or plug-in can assume that the following properties are defined by the Con-
figuration Admin service and not by the configuring bundle:

• service.pid – Set to the PID of the associated Configurat ion object.
• service.factoryPid – Only set for a Managed Service Factory. It is then set to the PID of the asso-

ciated Managed Service Factory.
• service.bundleLocation – Set to the location of the bundle that can use this Configurat ion object.

This property can only be used for searching, it may not appear in the configuration dictionary
returned from the getPropert ies method due to security reasons, nor may it be used when the
target is updated.

Constants for some of these properties can be found in org.osgi . framework.Constants . These system
properties are all of type Str ing .

104.4.5 Equality
Two different Configurat ion objects can actually represent the same underlying configuration. This
means that a Configurat ion object must implement the equals and hashCode methods in such a way
that two Configurat ion objects are equal when their PID is equal.

104.5 Managed Service
A Managed Service is used by a bundle that needs one configuration dictionary and is thus associated
with one Configurat ion object in the Configuration Admin service.

A bundle can register any number of ManagedService objects, but each must be identified with its
own PID or PIDs.

A bundle should use a Managed Service when it needs configuration information for the following:

• A Singleton – A single entity in the bundle that needs to be configured.
OSGi Service Platform Release 4, Version 4.2 Page 51

Managed Service Configuration Admin Service Specification Version 1.3
• Externally Detected Devices – Each device that is detected causes a registration of an associated
ManagedService object. The PID of this object is related to the identity of the device, such as the
address or serial number.

104.5.1 Singletons
When an object must be instantiated only once, it is called a singleton. A singleton requires a single
configuration dictionary. Bundles may implement several different types of singletons if necessary.

For example, a Watchdog service could watch the registry for the status and presence of services in
the Framework service registry. Only one instance of a Watchdog service is needed, so only a single
configuration dictionary is required that contains the polling time and the list of services to watch.

104.5.2 Networks
When a device in the external world needs to be represented in the OSGi Environment, it must be
detected in some manner. The Configuration Admin service cannot know the identity and the num-
ber of instances of the device without assistance. When a device is detected, it still needs configura-
tion information in order to play a useful role.

For example, a 1-Wire network can automatically detect devices that are attached and removed.
When it detects a temperature sensor, it could register a Sensor service with the Framework service
registry. This Sensor service needs configuration information specifically for that sensor, such as
which lamps should be turned on, at what temperature the sensor is triggered, what timer should be
started, in what zone it resides, and so on. One bundle could potentially have hundreds of these sen-
sors and actuators, and each needs its own configuration information.

Each of these Sensor services should be registered as a Managed Service with a PID related to the
physical sensor (such as the address) to receive configuration information.

Other examples are services discovered on networks with protocols like Jini, UPnP, and Salutation.
They can usually be represented in the Framework service registry. A network printer, for example,
could be detected via UPnP. Once in the service registry, these services usually require local configu-
ration information. A Printer service needs to be configured for its local role: location, access list, and
so on.

This information needs to be available in the Framework service registry whenever that particular
Printer service is registered. Therefore, the Configuration Admin service must remember the configu-
ration information for this Printer service.

This type of service should register with the Framework as a Managed Service in order to receive
appropriate configuration information.

104.5.3 Configuring Managed Services
A bundle that needs configuration information should register one or more ManagedService objects
with a PID service property. If it has a default set of properties for its configuration, it may include
them as service properties of the Managed Service. These properties may be used as a configuration
template when a Configurat ion object is created for the first time. A Managed Service optionally
implements the MetaTypeProvider interface to provide information about the property types. See
Meta Typing on page 65.

When this registration is detected by the Configuration Admin service, the following steps must
occur:

• The configuration stored for the registered PID must be retrieved. If there is a Configurat ion
object for this PID, it is sent to the Managed Service with updated(Dictionary) .

• If a Managed Service is registered and no configuration information is available, the Configu-
ration Admin service must call updated(Dictionary) with a nul l parameter.
Page 52 OSGi Service Platform Release 4, Version 4.2

Configuration Admin Service Specification Version 1.3 Managed Service
• If the Configuration Admin service starts after a Managed Service is registered, it must call
updated(Dict ionary) on this service as soon as possible. For this reason, a Managed Service must
always get a callback when it registers and the Configuration Admin service is started.

The updated(Dict ionary) callback from the Configuration Admin service to the Managed Service
must take place asynchronously. This requirement allows the Managed Service to finish its initializa-
tion in a synchronized method without interference from the Configuration Admin service callback.

Care should be taken not to cause deadlocks by calling the Framework within a synchronized
method.

Figure 104.4 Managed Service Configuration Action Diagram

The updated method may throw a ConfigurationException . This object must describe the problem
and what property caused the exception.

104.5.4 Race Conditions
When a Managed Service is registered, the default properties may be visible in the service registry for
a short period before they are replaced by the properties of the actual configuration dictionary. Care
should be taken that this visibility does not cause race conditions for other bundles.

In cases where race conditions could be harmful, the Managed Service must be split into two pieces:
an object performing the actual service and a Managed Service. First, the Managed Service is regis-
tered, the configuration is received, and the actual service object is registered. In such cases, the use of
a Managed Service Factory that performs this function should be considered.

104.5.5 Examples of Managed Service
Figure 104.5 shows a Managed Service configuration example. Two services are registered under the
ManagedService interface, each with a different PID.

Client Bundle Framework Admin

new

registerService()
send registered event

updated()

Configuration

get for PID

Implementor of
Managed Service

set the
configuration

get pid from props Must be on another thread
OSGi Service Platform Release 4, Version 4.2 Page 53

Managed Service Configuration Admin Service Specification Version 1.3
Figure 104.5 PIDs and External Associations

The Configuration Admin service has a database containing a configuration record for each PID.
When the Managed Service with service.pid = com.acme.fudd is registered, the Configuration
Admin service will retrieve the properties name=Elmer and size=42 from its database. The properties
are stored in a Dictionary object and then given to the Managed Service with the
updated(Dict ionary) method.

104.5.5.1 Configuring A Console Bundle

In this example, a bundle can run a single debugging console over a Telnet connection. It is a single-
ton, so it uses a ManagedService object to get its configuration information: the port and the network
name on which it should register.

class SampleManagedService implements ManagedService {
Dictionary properties;
ServiceRegistration registration;
Console console;

public synchronized void start(
BundleContext context) throws Exception {
properties = new Hashtable();
properties.put(Constants.SERVICE_PID,

"com.acme.console");
properties.put("port", new Integer(2011));

registration = context.registerService(
ManagedService.class.getName(),
this,
properties

);
}

public synchronized void updated(Dictionary np) {
if (np != null) {

properties = np;
properties.put(

Constants.SERVICE_PID, "com.acme.console");
}

if (console == null)
console = new Console();

Configuration
Admin Impl

16.1

com.

name=Erica

name=Elmer

database com.acme.fudd

4.102 name=Christer
size=2

Managed Service

size=8

acme.fudd size=42

PID configuration

= service

pid=4.102

OSGi
Service
Registry

no associated PID registered

events
Page 54 OSGi Service Platform Release 4, Version 4.2

Configuration Admin Service Specification Version 1.3 Managed Service Factory
int port = ((Integer)properties.get("port"))
.intValue();

String network = (String) properties.get("network");
console.setPort(port, network);
registration.setProperties(properties);

}
... further methods

}

104.5.6 Deletion
When a Configurat ion object for a Managed Service is deleted, the Configuration Admin service
must call updated(Dict ionary) with a null argument on a thread that is different from that on which
the Configurat ion.delete was executed. This deletion must send out a Configuration Event
CM_DELETED to any registered Configuration Listener services after the updated method is called
with a null .

104.6 Managed Service Factory
A Managed Service Factory is used when configuration information is needed for a service that can
be instantiated multiple times. When a Managed Service Factory is registered with the Framework,
the Configuration Admin service consults its database and calls updated(Str ing,Dict ionary) for each
associated Configurat ion object. It passes the identifier of the instance, which can be used as a PID, as
well as a Dictionary object with the configuration properties.

A Managed Service Factory is useful when the bundle can provide functionality a number of times,
each time with different configuration dictionaries. In this situation, the Managed Service Factory
acts like a class and the Configuration Admin service can use this Managed Service Factory to instanti-
ate instances for that class.

In the next section, the word factory refers to this concept of creating instances of a function defined by
a bundle that registers a Managed Service Factory.

104.6.1 When to Use a Managed Service Factory
A Managed Service Factory should be used when a bundle does not have an internal or external
entity associated with the configuration information but can potentially be instantiated multiple
times.

104.6.1.1 Example Email Fetcher

An email fetcher program displays the number of emails that a user has – a function likely to be
required for different users. This function could be viewed as a class that needs to be instantiated for
each user. Each instance requires different parameters, including password, host, protocol, user id,
and so on.

An implementation of the Email Fetcher service should register a ManagedServiceFactory object. In
this way, the Configuration Admin service can define the configuration information for each user
separately. The Email Fetcher service will only receive a configuration dictionary for each required
instance (user).

104.6.1.2 Example Temperature Conversion Service

Assume a bundle has the code to implement a conversion service that receives a temperature and,
depending on settings, can turn an actuator on and off. This service would need to be instantiated
many times depending on where it is needed. Each instance would require its own configuration
information for the following:
OSGi Service Platform Release 4, Version 4.2 Page 55

Managed Service Factory Configuration Admin Service Specification Version 1.3
• Upper value
• Lower value
• Switch Identification
• ...

Such a conversion service should register a service object under a ManagedServiceFactory interface.
A configuration program can then use this Managed Service Factory to create instances as needed.
For example, this program could use a Graphic User Interface (GUI) to create such a component and
configure it.

104.6.1.3 Serial Ports

Serial ports cannot always be used by the OSGi Device Access specification implementations. Some
environments have no means to identify available serial ports, and a device on a serial port cannot
always provide information about its type.

Therefore, each serial port requires a description of the device that is connected. The bundle manag-
ing the serial ports would need to instantiate a number of serial ports under the control of the Config-
uration Admin service, with the appropriate DEVICE_CATEGORY property to allow it to participate
in the Device Access implementation.

If the bundle cannot detect the available serial ports automatically, it should register a Managed Ser-
vice Factory. The Configuration Admin service can then, with the help of a configuration program,
define configuration information for each available serial port.

104.6.2 Registration
Similar to the Managed Service configuration dictionary, the configuration dictionary for a Managed
Service Factory is identified by a PID. The Managed Service Factory, however, also has a factory PID,
which is the PID of the associated Managed Service Factory. It is used to group all Managed Service
Factory configuration dictionaries together.

When a Configurat ion object for a Managed Service Factory is created
(Configurat ionAdmin.createFactoryConfigurat ion), a new unique PID is created for this object by
the Configuration Admin service. The scheme used for this PID is defined by the Configuration
Admin service and is unrelated to the factory PID.

When the Configuration Admin service detects the registration of a Managed Service Factory, it must
find all configuration dictionaries for this factory and must then sequentially call
ManagedServiceFactory.updated(Str ing,Dict ionary) for each configuration dictionary. The first
argument is the PID of the Configurat ion object (the one created by the Configuration Admin ser-
vice) and the second argument contains the configuration properties.

The Managed Service Factory should then create any artifacts associated with that factory. Using the
PID given in the Configurat ion object, the bundle may register new services (other than a Managed
Service) with the Framework, but this is not required. This may be necessary when the PID is useful
in contexts other than the Configuration Admin service.

The receiver must not register a Managed Service with this PID because this would force two Configu-
ration objects to have the same PID. If a bundle attempts to do this, the Configuration Admin service
should log an error and must ignore the registration of the Managed Service.

The Configuration Admin service must guarantee that no race conditions exist between initializa-
tion, updates, and deletions.
Page 56 OSGi Service Platform Release 4, Version 4.2

Configuration Admin Service Specification Version 1.3 Managed Service Factory
Figure 104.6 Managed Service Factory Action Diagram

A Managed Service Factory has only one update method: updated(Str ing,Dictionary) . This method
can be called any number of times as Configuration objects are created or updated.

The Managed Service Factory must detect whether a PID is being used for the first time, in which case
it should create a new instance, or a subsequent time, in which case it should update an existing
instance.

The Configuration Admin service must call updated(String,Dict ionary) on a thread that is different
from the one that executed the registration. This requirement allows an implementation of a Man-
aged Service Factory to use a synchronized method to assure that the callbacks do not interfere with
the Managed Service Factory registration.

The updated(String,Dict ionary) method may throw a Configurat ionException object. This object
describes the problem and what property caused the problem. These exceptions should be logged by
a Configuration Admin service.

104.6.3 Deletion
If a configuring bundle deletes an instance of a Managed Service Factory, the deleted(String) method
is called. The argument is the PID for this instance. The implementation of the Managed Service Fac-
tory must remove all information and stop any behavior associated with that PID. If a service was reg-
istered for this PID, it should be unregistered.

Deletion will asynchronously send out a Configuration Event CM_DELETED to all registered Config-
uration Listener services.

104.6.4 Managed Service Factory Example
Figure 104.7 highlights the differences between a Managed Service and a Managed Service Factory. It
shows how a Managed Service Factory implementation receives configuration information that was
created before it was registered.

• A bundle implements an EMail Fetcher service. It registers a ManagedServiceFactory object with
PID=com.acme.emai l .

• The Configuration Admin service notices the registration and consults its database. It finds three
Configurat ion objects for which the factory PID is equal to com.acme.email . It must call
updated(Str ing,Dictionary) for each of these Configurat ion objects on the newly registered
ManagedServiceFactory object.

• For each configuration dictionary received, the factory should create a new instance of a
EMai lFetcher object, one for erica (PID=16.1), one for anna (PID=16.3), and one for elmer
(PID=16.2).

• The EMai lFetcher objects are registered under the Topic interface so their results can be viewed by
an online display.
If the EMailFetcher object is registered, it may safely use the PID of the Configurat ion object
because the Configuration Admin service must guarantee its suitability for this purpose.

Client bundle Framework Admin

new

registerService()
send registered event

updated()

Configuration

get all for factory

implementer of
ManagedServiceFactory

set the
configuration

get pid

for each found pidfor a new
instance

MUST be on another thread
OSGi Service Platform Release 4, Version 4.2 Page 57

Managed Service Factory Configuration Admin Service Specification Version 1.3
Figure 104.7 Managed Service Factory Example

104.6.5 Multiple Consoles Example
This example illustrates how multiple consoles, each of which has its own port and interface can run
simultaneously. This approach is very similar to the example for the Managed Service, but highlights
the difference by allowing multiple consoles to be created.

class ExampleFactory implements ManagedServiceFactory {
Hashtable consoles = new Hashtable();
BundleContext context;
public void start(BundleContext context)

throws Exception {
this.context = context;
Hashtable local = new Hashtable();
local.put(Constants.SERVICE_PID,"com.acme.console");
context.registerService(

ManagedServiceFactory.class.getName(),
this,
local);

}

public void updated(String pid, Dictionary config){
Console console = (Console) consoles.get(pid);
if (console == null) {

console = new Console(context);
consoles.put(pid, console);

}

int port = getInt(config, "port", 2011);
String network = getString(

config,
"network",
null /*all*/

);
console.setPort(port, network);

}

Configuration
Admin

MailFetchFactory
pid=
com.acme.email

pid=16.1
name=erica

OSGi Service
registration
events

pid=16.1

pid=16.2
name=erica

name=elmer

Associations

pid=16.3
name=anna

pid=16.2
name=peter

pid=16.3
name=anna

creates instances
at the request of
the Config. Admin

Topic

Managed Service

factory pid
= com.acme

Registry

Factory

factory pid
= eric.mf

.email
Page 58 OSGi Service Platform Release 4, Version 4.2

Configuration Admin Service Specification Version 1.3 Configuration Admin Service
public void deleted(String pid) {
Console console = (Console) consoles.get(pid);
if (console != null) {

consoles.remove(pid);
console.close();

}
}

}

104.7 Configuration Admin Service
The Configurat ionAdmin interface provides methods to maintain configuration data in an OSGi
environment. This configuration information is defined by a number of Configurat ion objects associ-
ated with specific configuration targets. Configurat ion objects can be created, listed, modified, and
deleted through this interface. Either a remote management system or the bundles configuring their
own configuration information may perform these operations.

The Configurat ionAdmin interface has methods for creating and accessing Configurat ion objects for
a Managed Service, as well as methods for managing new Configurat ion objects for a Managed Ser-
vice Factory.

104.7.1 Creating a Managed Service Configuration Object
A bundle can create a new Managed Service Configurat ion object with
Configurat ionAdmin.getConf igurat ion . No create method is offered because doing so could intro-
duce race conditions between different bundles trying to create a Configurat ion object for the same
Managed Service. The getConfiguration method must atomically create and persistently store an
object if it does not yet exist.

Two variants of this method are:

• getConfigurat ion(Str ing) – This method is used by a bundle with a given location to configure its
own ManagedService objects. The argument specifies the PID of the targeted service.

• getConfigurat ion(Str ing,Str ing) – This method is used by a management bundle to configure
another bundle. Therefore, this management bundle needs the right permission. The first
argument is the PID and the second argument is the location identifier of the targeted
ManagedService object.

All Configurat ion objects have a method, getFactoryPid() , which in this case must return nul l
because the Configurat ion object is associated with a Managed Service.

Creating a new Configuration object must not initiate a callback to the Managed Service updated
method.

104.7.2 Creating a Managed Service Factory Configuration Object
The Configurat ionAdmin class provides two methods to create a new instance of a Managed Service
Factory:

• createFactoryConfigurat ion(Str ing) – This method is used by a bundle with a given location to
configure its own ManagedServiceFactory objects. The argument specifies the PID of the targeted
ManagedServiceFactory object. This factory PID can be obtained from the returned Configuration
object with the getFactoryPid() method.

• createFactoryConfigurat ion(Str ing,Str ing)– This method is used by a management bundle to
configure another bundle’s ManagedServiceFactory object. The first argument is the PID and the
second is the location identifier of the targeted ManagedServiceFactory object. The factory PID
can be obtained from the returned Configurat ion object with getFactoryPid method.
OSGi Service Platform Release 4, Version 4.2 Page 59

Configuration Admin Service Configuration Admin Service Specification Version 1.3
Creating a new factory configuration must not initiate a callback to the Managed Service Factory
updated method until the properties are set in the Configurat ion object with the update method.

104.7.3 Accessing Existing Configurations
The existing set of Configurat ion objects can be listed with l istConfigurat ions(String) . The argument
is a Str ing object with a filter expression. This filter expression has the same syntax as the Framework
Fi l ter class. For example:

(&(size=42)(service.factoryPid=*osgi*))

The filter function must use the properties of the Configuration objects and only return the ones that
match the filter expression.

A single Configurat ion object is identified with a PID and can be obtained with getConfigura-
t ion(Str ing) .

If the caller has the right permission, then all Configurat ion objects are eligible for search. In other
cases, only Configurat ion objects bound to the calling bundle’s location must be returned.

nul l is returned in both cases when an appropriate Configurat ion object cannot be found.

104.7.3.1 Updating a Configuration

The process of updating a Configurat ion object is the same for Managed Services and Managed Ser-
vice Factories. First, l istConfigurations(Str ing) or getConfigurat ion(Str ing) should be used to get a
Configurat ion object. The properties can be obtained with Configuration.getPropert ies . When no
update has occurred since this object was created, getPropert ies returns nul l .

New properties can be set by calling Configuration.update . The Configuration Admin service must
first store the configuration information and then call a configuration target’s updated method:
either the ManagedService.updated or ManagedServiceFactory.updated method. If this target ser-
vice is not registered, the fresh configuration information must be given to the target when the con-
figuration target service registers.

The update method calls in Configuration objects are not executed synchronously with the related
target service updated method. This method must be called asynchronously. The Configuration
Admin service, however, must have updated the persistent storage before the update method
returns.

The update method must also asynchronously send out a Configuration Event CM_UPDATED to all
registered Configuration Listeners.

104.7.4 Deletion
A Configurat ion object that is no longer needed can be deleted with Configurat ion.delete , which
removes the Configurat ion object from the database. The database must be updated before the target
service updated method is called.

If the target service is a Managed Service Factory, the factory is informed of the deleted Configuration
object by a call to ManagedServiceFactory.deleted . It should then remove the associated instance.
The ManagedServiceFactory.deleted call must be done asynchronously with respect to
Configurat ion.delete .

When a Configurat ion object of a Managed Service is deleted, ManagedService.updated is called
with nul l for the propert ies argument. This method may be used for clean-up, to revert to default val-
ues, or to unregister a service.

The update method must also asynchronously send out a Configuration Event CM_DELETED to all
registered Configuration Listeners.
Page 60 OSGi Service Platform Release 4, Version 4.2

Configuration Admin Service Specification Version 1.3 Configuration Events
104.7.5 Updating a Bundle’s Own Configuration
The Configuration Admin service specification does not distinguish between updates via a Manage-
ment Agent and a bundle updating its own configuration information (as defined by its location).
Even if a bundle updates its own configuration information, the Configuration Admin service must
callback the associated target service updated method.

As a rule, to update its own configuration, a bundle’s user interface should only update the configura-
tion information and never its internal structures directly. This rule has the advantage that the
events, from the bundle implementation’s perspective, appear similar for internal updates, remote
management updates, and initialization.

104.8 Configuration Events
Configuration Admin can update interested parties of changes in its repository. The model is based
on the white board pattern where a Configuration Listener service is registered with the service regis-
try. The Configuration Listener service will receive ConfigurationEvent objects if important changes
take place. The Configuration Admin service must call the Configurat ionListener. configurat ion-
Event(Configurat ionEvent) method with such an event. This method should be called asynchro-
nously, and on another thread, than the call that caused the event. Configuration Events must be
delivered in order for each listener as they are generated. The way events must be delivered is the
same as described in Delivering Events on page 116 of the Core specification.

The Configurat ionEvent object carries a factory PID (getFactoryPid()) and a PID (getPid()). If the fac-
tory PID is null , the event is related to a Managed Service Configurat ion object, else the event is
related to a Managed Service Factory Configuration object.

The Configurat ionEvent object can deliver the following events from the getType() method:

• CM_DELETED – The Configuration object is deleted.
• CM_UPDATED – The Configurat ion object is updated.

The Configuration Event also carries the ServiceReference object of the Configuration Admin ser-
vice that generated the event.

104.8.1 Event Admin Service and Configuration Change Events
Configuration events must delivered asynchronously by the Configuration Admin implementation,
if present. The topic of a configuration event must be:

org/osgi/service/cm/ConfigurationEvent/<event type>

Event type can be any of the following:

CM_UPDATED
CM_DELETED

The properties of a configuration event are:

• cm.factoryPid – (Str ing) The factory PID of the associated Configuration object, if the target is a
Managed Service Factory. Otherwise not set.

• cm.pid – (Str ing) The PID of the associated Configuration object.
• service – (ServiceReference) The Service Reference of the Configuration Admin service.
• service. id – (Long) The Configuration Admin service's ID.
• service.objectClass – (Str ing[]) The Configuration Admin service's object class (which must

include org.osgi .service.cm.Configurat ionAdmin)
• service.pid – (Str ing) The Configuration Admin service's persistent identity
OSGi Service Platform Release 4, Version 4.2 Page 61

Configuration Plugin Configuration Admin Service Specification Version 1.3
104.9 Configuration Plugin
The Configuration Admin service allows third-party applications to participate in the configuration
process. Bundles that register a service object under a Configurat ionPlugin interface can process the
configuration dictionary just before it reaches the configuration target service.

Plug-ins allow sufficiently privileged bundles to intercept configuration dictionaries just before they
must be passed to the intended Managed Service or Managed Service Factory but after the properties
are stored. The changes the plug-in makes are dynamic and must not be stored. The plug-in must only
be called when an update takes place while it is registered and there is a valid dictionary. The plugin
is not called when a configuration is deleted.

The Configurat ionPlugin interface has only one method: modifyConfigurat ion(ServiceReference,
Dict ionary) . This method inspects or modifies configuration data.

All plug-ins in the service registry must be traversed and called before the properties are passed to the
configuration target service. Each Configuration Plugin object gets a chance to inspect the existing
data, look at the target object, which can be a ManagedService object or a ManagedServiceFactory
object, and modify the properties of the configuration dictionary. The changes made by a plug-in
must be visible to plugins that are called later.

Configurat ionPlugin objects should not modify properties that belong to the configuration proper-
ties of the target service unless the implications are understood. This functionality is mainly
intended to provide functions that leverage the Framework service registry. The changes made by the
plugin should normally not be validated. However, the Configuration Admin must ignore changes to
the automatic properties as described in Automatic Properties on page 51.

For example, a Configuration Plugin service may add a physical location property to a service. This
property can be leveraged by applications that want to know where a service is physically located.
This scenario could be carried out without any further support of the service itself, except for the gen-
eral requirement that the service should propagate the public properties it receives from the Configu-
ration Admin service to the service registry.

Figure 104.8 Order of Configuration Plugin Services

104.9.1 Limiting The Targets
A Configurat ionPlugin object may optionally specify a cm.target registration property. This value is
the PID of the configuration target whose configuration updates the Configurat ionPlugin object
wants to intercept.

The Configurat ionPlugin object must then only be called with updates for the configuration target
service with the specified PID. For a factory target service, the factory PID is used and the plugin will
see all instances of the factory. Omitting the cm.target registration property means that it is called
for all configuration updates.

a Configuration
Admin

Configuration
Plugin B

Configuration
Plugin A

Configuration
Plugin C

a Managed
Service

update() modifyConfiguration()
1 2 3

updated()

updated-
Factory()

4

Any time when B needs to change a property

a Configuration
object
Page 62 OSGi Service Platform Release 4, Version 4.2

Configuration Admin Service Specification Version 1.3 Configuration Plugin
104.9.2 Example of Property Expansion
Consider a Managed Service that has a configuration property service.to with the value
(objectclass=com.acme.Alarm). When the Configuration Admin service sets this property on the
target service, a ConfigurationPlugin object may replace the (objectclass=com.acme.Alarm) filter
with an array of existing alarm systems' PIDs as follows:

ID "service.to=[32434,232,12421,1212]"

A new Alarm Service with serv ice.pid=343 is registered, requiring that the list of the target service be
updated. The bundle which registered the Configuration Plugin service, therefore, wants to set the to
registration property on the target service. It does not do this by calling ManagedService.updated
directly for several reasons:

• In a securely configured system, it should not have the permission to make this call or even obtain
the target service.

• It could get into race conditions with the Configuration Admin service if it had the permissions in
the previous bullet. Both services would compete for access simultaneously.

Instead, it must get the Configurat ion object from the Configuration Admin service and call the
update method on it.

The Configuration Admin service must schedule a new update cycle on another thread, and some-
time in the future must call Configurat ionPlugin.modifyPropert ies . The ConfigurationPlugin object
could then set the service.to property to [32434,232,12421,1212, 343] . After that, the Configuration
Admin service must call updated on the target service with the new serv ice.to list.

104.9.3 Configuration Data Modifications
Modifications to the configuration dictionary are still under the control of the Configuration Admin
service, which must determine whether to accept the changes, hide critical variables, or deny the
changes for other reasons.

The ConfigurationPlugin interface must also allow plugins to detect configuration updates to the ser-
vice via the callback. This ability allows them to synchronize the configuration updates with tran-
sient information.

104.9.4 Forcing a Callback
If a bundle needs to force a Configuration Plugin service to be called again, it must fetch the appropri-
ate Configurat ion object from the Configuration Admin service and call the update() method (the no
parameter version) on this object. This call forces an update with the current configuration dictio-
nary so that all applicable plug-ins get called again.

104.9.5 Calling Order
The order in which the Configurat ionPlugin objects are called must depend on the
service.cmRanking configuration property of the Configurat ionPlugin object. Table 104.2 shows the
usage of the service.cmRanking property for the order of calling the Configuration Plugin services.

Table 104.2 service.cmRanking Usage For Ordering

service.cmRanking value Description

< 0 The Configuration Plugin service should not modify
properties and must be called before any modifica-
tions are made.
OSGi Service Platform Release 4, Version 4.2 Page 63

Remote Management Configuration Admin Service Specification Version 1.3
104.10 Remote Management
This specification does not attempt to define a remote management interface for the Framework. The
purpose of this specification is to define a minimal interface for bundles that is complete enough for
testing.

The Configuration Admin service is a primary aspect of remote management, however, and this spec-
ification must be compatible with common remote management standards. This section discusses
some of the issues of using this specification with [1] DMTF Common Information Model (CIM) and [2]
Simple Network Management Protocol (SNMP), the most likely candidates for remote management
today.

These discussions are not complete, comprehensive, or normative. They are intended to point the
bundle developer in relevant directions. Further specifications are needed to make a more concrete
mapping.

104.10.1 Common Information Model
Common Information Model (CIM) defines the managed objects in [4] Interface Definition Language
(IDL) language, which was developed for the Common Object Request Broker Architecture (CORBA).

The data types and the data values have a syntax. Additionally, these syntaxes can be mapped to XML.
Unfortunately, this XML mapping is very different from the very applicable [3] XSchema XML data
type definition language. The Framework service registry property types are a proper subset of the
CIM data types.

In this specification, a Managed Service Factory maps to a CIM class definition. The primitives
create , delete , and set are supported in this specification via the ManagedServiceFactory interface.
The possible data types in CIM are richer than those the Framework supports and should thus be lim-
ited to cases when CIM classes for bundles are defined.

An important conceptual difference between this specification and CIM is the naming of properties.
CIM properties are defined within the scope of a class. In this specification, properties are primarily
defined within the scope of the Managed Service Factory, but are then placed in the registry, where
they have global scope. This mechanism is similar to LDAP, see [5] Understanding and Deploying LDAP
Directory services, in which the semantics of the properties are defined globally and a class is a collec-
tion of globally defined properties.

This specification does not address the non-Configuration Admin service primitives such as notifica-
tions and method calls.

104.10.2 Simple Network Management Protocol
The Simple Network Management Protocol (SNMP) defines the data model in ASN.1. SNMP is a rich
data typing language that supports many types that are difficult to map to the data types supported
in this specification. A large overlap exists, however, and it should be possible to design a data type
that is applicable in this context.

>= 0 && <= 1000 The Configuration Plugin service modifies the config-
uration data. The calling order should be based on the
value of the service.cmRanking property.

> 1000 The Configuration Plugin service should not modify
data and is called after all modifications are made.

Table 104.2 service.cmRanking Usage For Ordering

service.cmRanking value Description
Page 64 OSGi Service Platform Release 4, Version 4.2

Configuration Admin Service Specification Version 1.3 Meta Typing
The PID of a Managed Service should map to the SNMP Object IDentifier (OID). Managed Service Fac-
tories are mapped to tables in SNMP, although this mapping creates an obvious restriction in data
types because tables can only contain scalar values. Therefore, the property values of the
Configurat ion object would have to be limited to scalar values.

Similar scope issues as seen in CIM arise for SNMP because properties have a global scope in the ser-
vice registry.

SNMP does not support the concept of method calls or function calls. All information is conveyed as
the setting of values. The SNMP paradigm maps closely to this specification.

This specification does not address non-Configuration Admin primitives such as traps.

104.11 Meta Typing
This section discusses how the Metatype specification is used in the context of a Configuration
Admin service.

When a Managed Service or Managed Service Factory is registered, the service object may also imple-
ment the MetaTypeProvider interface.

If the Managed Service or Managed Service Factory object implements the MetaTypeProvider inter-
face, a management bundle may assume that the associated ObjectClassDefinit ion object can be
used to configure the service.

The ObjectClassDefinit ion and Attr ibuteDefinit ion objects contain sufficient information to auto-
matically build simple user interfaces. They can also be used to augment dedicated interfaces with
accurate validations.

When the Metatype specification is used, care should be taken to match the capabilities of the
metatype package to the capabilities of the Configuration Admin service specification. Specifically:

• The metatype specification must describe nested arrays and vectors or arrays/vectors of mixed
type.

This specification does not address how the metatype is made available to a management system due
to the many open issues regarding remote management.

104.12 Security

104.12.1 Configuration Permission
The Configuration Permission provides a bundle with the authority to configure other bundles. All
bundles implicitly have the permission to manage configurations that are bound to their own loca-
tion.

The Configure Permission has only a single action and the target must always be * . The action is:

• CONFIGURE – This action grants a bundle the authority to manage configurations for any other
bundle.

The * wildcard for the actions parameter is supported.

104.12.2 Permissions Summary
Configuration Admin service security is implemented using Service Permission and Configuration
Permission. The following table summarizes the permissions needed by the Configuration Admin
bundle itself, as well as the typical permissions needed by the bundles with which it interacts.

Configuration Admin:
OSGi Service Platform Release 4, Version 4.2 Page 65

Security Configuration Admin Service Specification Version 1.3
ServicePermission[..ConfigurationAdmin, REGISTER]
ServicePermission[..ManagedService, GET]
ServicePermission[..ManagedServiceFactory, GET]
ServicePermission[..ConfigurationPlugin, GET]
ConfigurationPermission[*, CONFIGURE]
AdminPermission[*, METADATA]

Managed Service:

ServicePermission[..ConfigurationAdmin, GET]
ServicePermission[..ManagedService, REGISTER]

Managed Service Factory:

ServicePermission[..ConfigurationAdmin, GET]
ServicePermission[..ManagedServiceFactory, REGISTER]

Configuration Plugin:

ServicePermission[..ConfigurationPlugin, REGISTER]

Configuration Listener:

ServicePermission[..ConfigurationListener, REGISTER]

The Configuration Admin service must have ServicePermiss ion[Configurat ionAdmin, REGISTER] .
It will also be the only bundle that needs the ServicePermission[ManagedService |
ManagedServiceFactory |Configur ationPlugin, GET] . No other bundle should be allowed to have
GET permission for these interfaces. The Configuration Admin bundle must also hold
Configurat ionPermission[*,CONFIGURE] .

Bundles that can be configured must have the ServicePermission[ManagedService |
ManagedServiceFactory, REGISTER] . Bundles registering Configurat ionPlugin objects must have
ServicePermiss ion[Conf igurat ionPlugin, REGISTER] . The Configuration Admin service must trust
all services registered with the Configurat ionPlugin interface. Only the Configuration Admin service
should have ServicePermission[Conf igur at ionPlugin, GET] .

If a Managed Service or Managed Service Factory is implemented by an object that is also registered
under another interface, it is possible, although inappropriate, for a bundle other than the Configura-
tion Admin service implementation to call the updated method. Security-aware bundles can avoid
this problem by having their updated methods check that the caller has ConfigurationPermiss ion[*,
CONFIGURE] .

Bundles that want to change their own configuration need ServicePermiss ion[ConfigurationAdmin,
GET] . A bundle with Configurat ionPermission[*,CONFIGURE]is allowed to access and modify any
Configurat ion object.

Pre-configuration of bundles requires ConfigurationPermission[*,CONFIGURE] because the meth-
ods that specify a location require this permission.

104.12.3 Forging PIDs
A risk exists of an unauthorized bundle forging a PID in order to obtain and possibly modify the con-
figuration information of another bundle. To mitigate this risk, Configurat ion objects are generally
bound to a specific bundle location, and are not passed to any Managed Service or Managed Service
Factory registered by a different bundle.

Bundles with the required permission can create Configurat ion objects that are not bound. In other
words, they have their location set to nul l . This can be useful for pre-configuring bundles before they
are installed without having to know their actual locations.

In this scenario, the Configurat ion object must become bound to the first bundle that registers a
Managed Service (or Managed Service Factory) with the right PID.
Page 66 OSGi Service Platform Release 4, Version 4.2

Configuration Admin Service Specification Version 1.3 Configurable Service
A bundle could still possibly obtain another bundle’s configuration by registering a Managed Service
with the right PID before the victim bundle does so. This situation can be regarded as a denial-of-ser-
vice attack, because the victim bundle would never receive its configuration information. Such an
attack can be avoided by always binding Configurat ion objects to the right locations. It can also be
detected by the Configuration Admin service when the victim bundle registers the correct PID and
two equal PIDs are then registered. This violation of this specification should be logged.

104.12.4 Configuration and Permission Administration
Configuration information has a direct influence on the permissions needed by a bundle. For exam-
ple, when the Configuration Admin Bundle orders a bundle to use port 2011 for a console, that bun-
dle also needs permission for listening to incoming connections on that port.

Both a simple and a complex solution exist for this situation.

The simple solution for this situation provides the bundle with a set of permissions that do not define
specific values but allow a range of values. For example, a bundle could listen to ports above 1024
freely. All these ports could then be used for configuration.

The other solution is more complicated. In an environment where there is very strong security, the
bundle would only be allowed access to a specific port. This situation requires an atomic update of
both the configuration data and the permissions. If this update was not atomic, a potential security
hole would exist during the period of time that the set of permissions did not match the configura-
tion.

The following scenario can be used to update a configuration and the security permissions:

1 Stop the bundle.
2 Update the appropriate Configurat ion object via the Configuration Admin service.
3 Update the permissions in the Framework.
4 Start the bundle.

This scenario would achieve atomicity from the point of view of the bundle.

104.13 Configurable Service
Both the Configuration Admin service and the org.osgi . f ramework.Conf igurable interface address
configuration management issues. It is the intention of this specification to replace the Framework
interface for configuration management.

The Framework Configurable mechanism works as follows. A registered service object implements
the Configurable interface to allow a management bundle to configure that service. The
Configurable interface has only one method: getConfigurat ionObject() . This method returns a Java
Bean. Beans can be examined and modified with the java.ref lect or java.bean packages.

This scheme has the following disadvantages:

• No factory – Only registered services can be configured, unlike the Managed Service Factory that
configures any number of services.

• Atomicity – The beans or reflection API can only modify one property at a time and there is no way
to tell the bean that no more modifications to the properties will follow. This limitation compli-
cates updates of configurations that have dependencies between properties.
This specification passes a Dict ionary object that sets all the configuration properties atomically.

• Profile – The Java beans API is linked to many packages that are not likely to be present in OSGi
environments. The reflection API may be present but is not simple to use.
This specification has no required libraries.

• User Interface support – UI support in beans is very rudimentary when no AWT is present.
The associated Metatyping specification does not require any external libraries, and has extensive
support for UIs including localization.
OSGi Service Platform Release 4, Version 4.2 Page 67

org.osgi.service.cm Configuration Admin Service Specification Version 1.3
104.14 org.osgi.service.cm
Configuration Admin Package Version 1.3.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. For example:

Import-Package: org.osgi.service.cm; version=”[1.3,2.0)”

104.14.1 Summary
• Configuration - The configuration information for a ManagedService or ManagedServiceFactory

object.
• ConfigurationAdmin - Service for administering configuration data.
• ConfigurationEvent - A Configuration Event.
• ConfigurationException - An Exception class to inform the Configuration Admin service of

problems with configuration data.
• ConfigurationListener - Listener for Configuration Events.
• ConfigurationPermission - Indicates a bundle’s authority to configure bundles.
• ConfigurationPlugin - A service interface for processing configuration dictionary before the update.
• ManagedService - A service that can receive configuration data from a Configuration Admin

service.
• ManagedServiceFactory - Manage multiple service instances.
Configuration

104.14.2 public interface Configuration
The configuration information for a ManagedService or ManagedServiceFactory object. The Config-
uration Admin service uses this interface to represent the configuration information for a
ManagedService or for a service instance of a ManagedServiceFactory .

A Configurat ion object contains a configuration dictionary and allows the properties to be updated
via this object. Bundles wishing to receive configuration dictionaries do not need to use this class -
they register a ManagedService or ManagedServiceFactory . Only administrative bundles, and bun-
dles wishing to update their own configurations need to use this class.

The properties handled in this configuration have case insensitive Str ing objects as keys. However,
case is preserved from the last set key/value.

A configuration can be bound to a bundle location (Bundle.getLocation()). The purpose of binding a
Configurat ion object to a location is to make it impossible for another bundle to forge a PID that
would match this configuration. When a configuration is bound to a specific location, and a bundle
with a different location registers a corresponding ManagedService object or
ManagedServiceFactory object, then the configuration is not passed to the updated method of that
object.

If a configuration’s location is nul l , it is not yet bound to a location. It will become bound to the loca-
tion of the first bundle that registers a ManagedService or ManagedServiceFactory object with the
corresponding PID.

The same Configurat ion object is used for configuring both a Managed Service Factory and a Man-
aged Service. When it is important to differentiate between these two the term “factory configura-
tion” is used.
delete()

104.14.2.1 public void delete() throws IOException

Delete this Configuration object. Removes this configuration object from the persistent store. Notify
asynchronously the corresponding Managed Service or Managed Service Factory. A ManagedService
object is notified by a call to its updated method with a nul l properties argument. A
ManagedServiceFactory object is notified by a call to its deleted method.
Page 68 OSGi Service Platform Release 4, Version 4.2

Configuration Admin Service Specification Version 1.3 org.osgi.service.cm
Also initiates an asynchronous call to all ConfigurationListeners with a
Configurat ionEvent.CM_DELETED event.

Throws IOException – If delete fails

IllegalStateException – if this configuration has been deleted
equals(Object)

104.14.2.2 public boolean equals(Object other)

other Configurat ion object to compare against

Equality is defined to have equal PIDs Two Configuration objects are equal when their PIDs are
equal.

Returns true if equal, fa lse if not a Configurat ion object or one with a different PID.
getBundleLocation()

104.14.2.3 public String getBundleLocation()

Get the bundle location. Returns the bundle location to which this configuration is bound, or nul l if
it is not yet bound to a bundle location.

Returns location to which this configuration is bound, or nul l .

Throws IllegalStateException – If this Configurat ion object has been deleted.

SecurityException – If the caller does not have ConfigurationPermission[*,CONFIGURE] .
getFactoryPid()

104.14.2.4 public String getFactoryPid()

For a factory configuration return the PID of the corresponding Managed Service Factory, else return
null .

Returns factory PID or nul l

Throws IllegalStateException – if this configuration has been deleted
getPid()

104.14.2.5 public String getPid()

Get the PID for this Configurat ion object.

Returns the PID for this Configurat ion object.

Throws IllegalStateException – if this configuration has been deleted
getProperties()

104.14.2.6 public Dictionary getProperties()

Return the properties of this Configurat ion object. The Dict ionary object returned is a private copy
for the caller and may be changed without influencing the stored configuration. The keys in the
returned dictionary are case insensitive and are always of type Str ing .

If called just after the configuration is created and before update has been called, this method returns
null .

Returns A private copy of the properties for the caller or nul l . These properties must not contain the “serv-
ice.bundleLocation” property. The value of this property may be obtained from the
getBundleLocat ion method.

Throws IllegalStateException – if this configuration has been deleted
hashCode()

104.14.2.7 public int hashCode()

Hash code is based on PID. The hashcode for two Configuration objects must be the same when the
Configuration PID’s are the same.

Returns hash code for this Configuration object
setBundleLocation(String)

104.14.2.8 public void setBundleLocation(String bundleLocation)

bundleLocation a bundle location or null
OSGi Service Platform Release 4, Version 4.2 Page 69

org.osgi.service.cm Configuration Admin Service Specification Version 1.3
Bind this Configurat ion object to the specified bundle location. If the bundleLocation parameter is
nul l then the Configurat ion object will not be bound to a location. It will be set to the bundle’s loca-
tion before the first time a Managed Service/Managed Service Factory receives this Configuration
object via the updated method and before any plugins are called. The bundle location will be set per-
sistently.

Throws IllegalStateException – If this configuration has been deleted.

SecurityException – If the caller does not have ConfigurationPermiss ion[*,CONFIGURE] .
update(Dictionary)

104.14.2.9 public void update(Dictionary properties) throws IOException

properties the new set of properties for this configuration

Update the properties of this Configuration object. Stores the properties in persistent storage after
adding or overwriting the following properties:

• “service.pid” : is set to be the PID of this configuration.
• “service.factoryPid” : if this is a factory configuration it is set to the factory PID else it is not set.

These system properties are all of type Str ing .

If the corresponding Managed Service/Managed Service Factory is registered, its updated method
must be called asynchronously. Else, this callback is delayed until aforementioned registration
occurs.

Also initiates an asynchronous call to all ConfigurationListeners with a
Configurat ionEvent.CM_UPDATED event.

Throws IOException – if update cannot be made persistent

IllegalArgumentException – if the Dictionary object contains invalid configuration types or con-
tains case variants of the same key name.

IllegalStateException – if this configuration has been deleted
update()

104.14.2.10 public void update() throws IOException

Update the Configuration object with the current properties. Initiate the updated callback to the
Managed Service or Managed Service Factory with the current properties asynchronously.

This is the only way for a bundle that uses a Configuration Plugin service to initiate a callback. For
example, when that bundle detects a change that requires an update of the Managed Service or Man-
aged Service Factory via its ConfigurationPlugin object.

Throws IOException – if update cannot access the properties in persistent storage

IllegalStateException – if this configuration has been deleted

See Also ConfigurationPlugin
ConfigurationAdmin

104.14.3 public interface ConfigurationAdmin
Service for administering configuration data.

The main purpose of this interface is to store bundle configuration data persistently. This informa-
tion is represented in Configurat ion objects. The actual configuration data is a Dict ionary of proper-
ties inside a Configurat ion object.

There are two principally different ways to manage configurations. First there is the concept of a
Managed Service, where configuration data is uniquely associated with an object registered with the
service registry.

Next, there is the concept of a factory where the Configuration Admin service will maintain 0 or
more Configurat ion objects for a Managed Service Factory that is registered with the Framework.
Page 70 OSGi Service Platform Release 4, Version 4.2

Configuration Admin Service Specification Version 1.3 org.osgi.service.cm
The first concept is intended for configuration data about “things/services” whose existence is
defined externally, e.g. a specific printer. Factories are intended for “things/services” that can be cre-
ated any number of times, e.g. a configuration for a DHCP server for different networks.

Bundles that require configuration should register a Managed Service or a Managed Service Factory
in the service registry. A registration property named service.pid (persistent identifier or PID) must
be used to identify this Managed Service or Managed Service Factory to the Configuration Admin ser-
vice.

When the ConfigurationAdmin detects the registration of a Managed Service, it checks its persistent
storage for a configuration object whose service.pid property matches the PID service property (
service.pid) of the Managed Service. If found, it calls ManagedService.updated method with the new
properties. The implementation of a Configuration Admin service must run these call-backs asyn-
chronously to allow proper synchronization.

When the Configuration Admin service detects a Managed Service Factory registration, it checks its
storage for configuration objects whose service.factoryPid property matches the PID service prop-
erty of the Managed Service Factory. For each such Configuration objects, it calls the
ManagedServiceFactory.updated method asynchronously with the new properties. The calls to the
updated method of a ManagedServiceFactory must be executed sequentially and not overlap in
time.

In general, bundles having permission to use the Configuration Admin service can only access and
modify their own configuration information. Accessing or modifying the configuration of another
bundle requires ConfigurationPermission[*,CONFIGURE] .

Configurat ion objects can be bound to a specified bundle location. In this case, if a matching Man-
aged Service or Managed Service Factory is registered by a bundle with a different location, then the
Configuration Admin service must not do the normal callback, and it should log an error. In the case
where a Configurat ion object is not bound, its location field is nul l , the Configuration Admin service
will bind it to the location of the bundle that registers the first Managed Service or Managed Service
Factory that has a corresponding PID property. When a Configuration object is bound to a bundle
location in this manner, the Configuration Admin service must detect if the bundle corresponding to
the location is uninstalled. If this occurs, the Configurat ion object is unbound, that is its location
field is set back to nul l .

The method descriptions of this class refer to a concept of “the calling bundle”. This is a loose way of
referring to the bundle which obtained the Configuration Admin service from the service registry.
Implementations of ConfigurationAdmin must use a org.osgi . f ramework.ServiceFactory to support
this concept.
SERVICE_BUNDLELOCATION

104.14.3.1 public static final String SERVICE_BUNDLELOCATION = “service.bundleLocation”

Configuration property naming the location of the bundle that is associated with a a Configurat ion
object. This property can be searched for but must not appear in the configuration dictionary for
security reason. The property’s value is of type Str ing .

Since 1.1
SERVICE_FACTORYPID

104.14.3.2 public static final String SERVICE_FACTORYPID = “service.factoryPid”

Configuration property naming the Factory PID in the configuration dictionary. The property’s value
is of type Str ing .

Since 1.1
createFactoryConfiguration(String)

104.14.3.3 public Configuration createFactoryConfiguration(String factoryPid) throws IOException

factoryPid PID of factory (not nul l).

Create a new factory Configurat ion object with a new PID. The properties of the new Configuration
object are null until the first time that its Configurat ion.update(Dictionary) method is called.
OSGi Service Platform Release 4, Version 4.2 Page 71

org.osgi.service.cm Configuration Admin Service Specification Version 1.3
It is not required that the factoryPid maps to a registered Managed Service Factory.

The Configurat ion object is bound to the location of the calling bundle.

Returns A new Configurat ion object.

Throws IOException – if access to persistent storage fails.

SecurityException – if caller does not have Configurat ionPermission[*,CONFIGURE] and
factoryPid is bound to another bundle.
createFactoryConfiguration(String,String)

104.14.3.4 public Configuration createFactoryConfiguration(String factoryPid, String location) throws
IOException

factoryPid PID of factory (not nul l).

location A bundle location string, or nul l .

Create a new factory Configurat ion object with a new PID. The properties of the new Configuration
object are nul l until the first time that its Configurat ion.update(Dictionary) method is called.

It is not required that the factoryPid maps to a registered Managed Service Factory.

The Configurat ion is bound to the location specified. If this location is null it will be bound to the
location of the first bundle that registers a Managed Service Factory with a corresponding PID.

Returns a new Configurat ion object.

Throws IOException – if access to persistent storage fails.

SecurityException – if caller does not have Configurat ionPermission[*,CONFIGURE] .
getConfiguration(String,String)

104.14.3.5 public Configuration getConfiguration(String pid, String location) throws IOException

pid Persistent identifier.

location The bundle location string, or nul l .

Get an existing Configurat ion object from the persistent store, or create a new Configurat ion object.

If a Configuration with this PID already exists in Configuration Admin service return it. The location
parameter is ignored in this case.

Else, return a new Configurat ion object. This new object is bound to the location and the properties
are set to nul l . If the location parameter is nul l , it will be set when a Managed Service with the corre-
sponding PID is registered for the first time.

Returns An existing or new Configurat ion object.

Throws IOException – if access to persistent storage fails.

SecurityException – if the caller does not have Configurat ionPermission[*,CONFIGURE] .
getConfiguration(String)

104.14.3.6 public Configuration getConfiguration(String pid) throws IOException

pid persistent identifier.

Get an existing or new Configurat ion object from the persistent store. If the Configurat ion object for
this PID does not exist, create a new Configurat ion object for that PID, where properties are nul l . Bind
its location to the calling bundle’s location.

Otherwise, if the location of the existing Configurat ion object is null , set it to the calling bundle’s
location.

Returns an existing or new Configuration matching the PID.

Throws IOException – if access to persistent storage fails.

SecurityException – if the Configuration object is bound to a location different from that of the call-
ing bundle and it has no Configurat ionPermiss ion[*,CONFIGURE] .
listConfigurations(String)
Page 72 OSGi Service Platform Release 4, Version 4.2

Configuration Admin Service Specification Version 1.3 org.osgi.service.cm
104.14.3.7 public Configuration[] listConfigurations(String filter) throws IOException,
InvalidSyntaxException

filter A filter string, or nul l to retrieve all Configurat ion objects.

List the current Configurat ion objects which match the filter.

Only Configurat ion objects with non- null properties are considered current. That is,
Configurat ion.getPropert ies() is guaranteed not to return nul l for each of the returned
Configurat ion objects.

Normally only Configurat ion objects that are bound to the location of the calling bundle are
returned, or all if the caller has Configurat ionPermission[*,CONFIGURE] .

The syntax of the filter string is as defined in the org.osgi . f ramework.F i l ter class. The filter can test
any configuration properties including the following:

• service.pid -Str ing - the PID under which this is registered
• service.factoryPid -Str ing - the factory if applicable
• service.bundleLocation-Str ing - the bundle location

The filter can also be nul l , meaning that all Configuration objects should be returned.

Returns All matching Configurat ion objects, or nul l if there aren’t any.

Throws IOException – if access to persistent storage fails

InvalidSyntaxException – if the filter string is invalid
ConfigurationEvent

104.14.4 public class ConfigurationEvent
A Configuration Event.

Configurat ionEvent objects are delivered to all registered ConfigurationListener service objects. Con-
figurationEvents must be asynchronously delivered in chronological order with respect to each lis-
tener.

A type code is used to identify the type of event. The following event types are defined:

• CM_UPDATED
• CM_DELETED

Security Considerations. Configurat ionEvent objects do not provide Configurat ion objects, so no sen-
sitive configuration information is available from the event. If the listener wants to locate the
Configurat ion object for the specified pid, it must use Configurat ionAdmin .

See Also ConfigurationListener

Since 1.2
CM_DELETED

104.14.4.1 public static final int CM_DELETED = 2

A Configurat ion has been deleted.

This Configurat ionEvent type that indicates that a Configurat ion object has been deleted. An event
is fired when a call to Configurat ion.delete() successfully deletes a configuration.

The value of CM_DELETED is 2.
CM_UPDATED

104.14.4.2 public static final int CM_UPDATED = 1

A Configurat ion has been updated.

This Configurat ionEvent type that indicates that a Configurat ion object has been updated with new
properties. An event is fired when a call to Configurat ion.update(Dict ionary) successfully changes a
configuration.

The value of CM_UPDATED is 1.
OSGi Service Platform Release 4, Version 4.2 Page 73

org.osgi.service.cm Configuration Admin Service Specification Version 1.3
ConfigurationEvent(ServiceReference,int,String,String)

104.14.4.3 public ConfigurationEvent(ServiceReference reference, int type, String factoryPid, String pid)

reference The ServiceReference object of the Configuration Admin service that created this event.

type The event type. See getType .

factoryPid The factory pid of the associated configuration if the target of the configuration is a ManagedService-
Factory. Otherwise nul l if the target of the configuration is a ManagedService.

pid The pid of the associated configuration.

Constructs a Configurat ionEvent object from the given ServiceReference object, event type, and
pids.
getFactoryPid()

104.14.4.4 public String getFactoryPid()

Returns the factory pid of the associated configuration.

Returns Returns the factory pid of the associated configuration if the target of the configuration is a Managed-
ServiceFactory. Otherwise nul l if the target of the configuration is a ManagedService.
getPid()

104.14.4.5 public String getPid()

Returns the pid of the associated configuration.

Returns Returns the pid of the associated configuration.
getReference()

104.14.4.6 public ServiceReference getReference()

Return the ServiceReference object of the Configuration Admin service that created this event.

Returns The ServiceReference object for the Configuration Admin service that created this event.
getType()

104.14.4.7 public int getType()

Return the type of this event.

The type values are:

• CM_UPDATED
• CM_DELETED

Returns The type of this event.
ConfigurationException

104.14.5 public class ConfigurationException
extends Exception
An Exception class to inform the Configuration Admin service of problems with configuration data.
ConfigurationException(String,String)

104.14.5.1 public ConfigurationException(String property, String reason)

property name of the property that caused the problem, null if no specific property was the cause

reason reason for failure

Create a ConfigurationException object.
ConfigurationException(String,String,Throwable)

104.14.5.2 public ConfigurationException(String property, String reason, Throwable cause)

property name of the property that caused the problem, null if no specific property was the cause

reason reason for failure

cause The cause of this exception.

Create a ConfigurationException object.

Since 1.2
getCause()
Page 74 OSGi Service Platform Release 4, Version 4.2

Configuration Admin Service Specification Version 1.3 org.osgi.service.cm
104.14.5.3 public Throwable getCause()

Returns the cause of this exception or null if no cause was set.

Returns The cause of this exception or nul l if no cause was set.

Since 1.2
getProperty()

104.14.5.4 public String getProperty()

Return the property name that caused the failure or null.

Returns name of property or null if no specific property caused the problem
getReason()

104.14.5.5 public String getReason()

Return the reason for this exception.

Returns reason of the failure
initCause(Throwable)

104.14.5.6 public Throwable initCause(Throwable cause)

cause The cause of this exception.

Initializes the cause of this exception to the specified value.

Returns This exception.

Throws IllegalArgumentException – If the specified cause is this exception.

IllegalStateException – If the cause of this exception has already been set.

Since 1.2
ConfigurationListener

104.14.6 public interface ConfigurationListener
Listener for Configuration Events. When a ConfigurationEvent is fired, it is asynchronously deliv-
ered to a Configurat ionListener .

Configurat ionListener objects are registered with the Framework service registry and are notified
with a Configurat ionEvent object when an event is fired.

Configurat ionListener objects can inspect the received Configurat ionEvent object to determine its
type, the pid of the Configuration object with which it is associated, and the Configuration Admin
service that fired the event.

Security Considerations. Bundles wishing to monitor configuration events will require
ServicePermiss ion[Conf igurat ionListener,REGISTER] to register a ConfigurationListener service.

Since 1.2
configurationEvent(ConfigurationEvent)

104.14.6.1 public void configurationEvent(ConfigurationEvent event)

event The Configurat ionEvent .

Receives notification of a Configuration that has changed.
ConfigurationPermission

104.14.7 public final class ConfigurationPermission
extends BasicPermission
Indicates a bundle’s authority to configure bundles. This permission has only a single action: CON-
FIGURE.

Since 1.2

Concurrency Thread-safe
CONFIGURE

104.14.7.1 public static final String CONFIGURE = “configure”

The action string conf igure .
OSGi Service Platform Release 4, Version 4.2 Page 75

org.osgi.service.cm Configuration Admin Service Specification Version 1.3
ConfigurationPermission(String,String)

104.14.7.2 public ConfigurationPermission(String name, String actions)

name Name must be “*”.

actions configure (canonical order).

Create a new ConfigurationPermission.
equals(Object)

104.14.7.3 public boolean equals(Object obj)

obj The object being compared for equality with this object.

Determines the equality of two ConfigurationPermiss ion objects.

Two ConfigurationPermission objects are equal.

Returns true if obj is equivalent to this Configurat ionPermission ; fa lse otherwise.
getActions()

104.14.7.4 public String getActions()

Returns the canonical string representation of the Configurat ionPermission actions.

Always returns present ConfigurationPermiss ion actions in the following order: CONFIGURE

Returns Canonical string representation of the Configurat ionPermiss ion actions.
hashCode()

104.14.7.5 public int hashCode()

Returns the hash code value for this object.

Returns Hash code value for this object.
implies(Permission)

104.14.7.6 public boolean implies(Permission p)

p The target permission to check.

Determines if a ConfigurationPermission object “implies” the specified permission.

Returns true if the specified permission is implied by this object; fa lse otherwise.
newPermissionCollection()

104.14.7.7 public PermissionCollection newPermissionCollection()

Returns a new PermissionCol lect ion object suitable for storing Configurat ionPermissions.

Returns A new PermissionCollection object.
ConfigurationPlugin

104.14.8 public interface ConfigurationPlugin
A service interface for processing configuration dictionary before the update.

A bundle registers a Configurat ionPlugin object in order to process configuration updates before they
reach the Managed Service or Managed Service Factory. The Configuration Admin service will detect
registrations of Configuration Plugin services and must call these services every time before it calls
the ManagedService or ManagedServiceFactoryupdated method. The Configuration Plugin service
thus has the opportunity to view and modify the properties before they are passed to the Managed
Service or Managed Service Factory.

Configuration Plugin (plugin) services have full read/write access to all configuration information.
Therefore, bundles using this facility should be trusted. Access to this facility should be limited with
ServicePermission[Conf igurat ionPlugin,REGISTER] . Implementations of a Configuration Plugin ser-
vice should assure that they only act on appropriate configurations.

The Integerservice.cmRanking registration property may be specified. Not specifying this registra-
tion property, or setting it to something other than an Integer , is the same as setting it to the Integer
zero. The service.cmRanking property determines the order in which plugins are invoked. Lower
ranked plugins are called before higher ranked ones. In the event of more than one plugin having the
same value of service.cmRanking , then the Configuration Admin service arbitrarily chooses the
order in which they are called.
Page 76 OSGi Service Platform Release 4, Version 4.2

Configuration Admin Service Specification Version 1.3 org.osgi.service.cm
By convention, plugins with serv ice.cmRanking< 0 or serv ice.cmRanking > 1000 should not make
modifications to the properties.

The Configuration Admin service has the right to hide properties from plugins, or to ignore some or
all the changes that they make. This might be done for security reasons. Any such behavior is entirely
implementation defined.

A plugin may optionally specify a cm.target registration property whose value is the PID of the Man-
aged Service or Managed Service Factory whose configuration updates the plugin is intended to inter-
cept. The plugin will then only be called with configuration updates that are targeted at the Managed
Service or Managed Service Factory with the specified PID. Omitting the cm.target registration prop-
erty means that the plugin is called for all configuration updates.
CM_RANKING

104.14.8.1 public static final String CM_RANKING = “service.cmRanking”

A service property to specify the order in which plugins are invoked. This property contains an
Integer ranking of the plugin. Not specifying this registration property, or setting it to something
other than an Integer , is the same as setting it to the Integer zero. This property determines the order
in which plugins are invoked. Lower ranked plugins are called before higher ranked ones.

Since 1.2
CM_TARGET

104.14.8.2 public static final String CM_TARGET = “cm.target”

A service property to limit the Managed Service or Managed Service Factory configuration dictionar-
ies a Configuration Plugin service receives. This property contains a Str ing[] of PIDs. A Configura-
tion Admin service must call a Configuration Plugin service only when this property is not set, or the
target service’s PID is listed in this property.
modifyConfiguration(ServiceReference,Dictionary)

104.14.8.3 public void modifyConfiguration(ServiceReference reference, Dictionary properties)

reference reference to the Managed Service or Managed Service Factory

properties The configuration properties. This argument must not contain the “service.bundleLocation” property.
The value of this property may be obtained from the Configurat ion.getBundleLocation method.

View and possibly modify the a set of configuration properties before they are sent to the Managed
Service or the Managed Service Factory. The Configuration Plugin services are called in increasing
order of their service.cmRanking property. If this property is undefined or is a non- Integer type, 0 is
used.

This method should not modify the properties unless the serv ice.cmRanking of this plugin is in the
range 0 <= service.cmRanking <= 1000 .

If this method throws any Exception , the Configuration Admin service must catch it and should log
it.
ManagedService

104.14.9 public interface ManagedService
A service that can receive configuration data from a Configuration Admin service.

A Managed Service is a service that needs configuration data. Such an object should be registered
with the Framework registry with the service.pid property set to some unique identifier called a PID.

If the Configuration Admin service has a Configuration object corresponding to this PID, it will call-
back the updated() method of the ManagedService object, passing the properties of that
Configurat ion object.

If it has no such Configuration object, then it calls back with a nul l properties argument. Registering
a Managed Service will always result in a callback to the updated() method provided the Configura-
tion Admin service is, or becomes active. This callback must always be done asynchronously.
OSGi Service Platform Release 4, Version 4.2 Page 77

org.osgi.service.cm Configuration Admin Service Specification Version 1.3
Else, every time that either of the updated() methods is called on that Configurat ion object, the
ManagedService.updated() method with the new properties is called. If the delete() method is
called on that Configurat ion object, ManagedService.updated() is called with a nul l for the proper-
ties parameter. All these callbacks must be done asynchronously.

The following example shows the code of a serial port that will create a port depending on configura-
tion information.

class SerialPort implements ManagedService {

ServiceRegistration registration;
Hashtable configuration;
CommPortIdentifier id;

synchronized void open(CommPortIdentifier id,
BundleContext context) {
this.id = id;
registration = context.registerService(
ManagedService.class.getName(),
this,
getDefaults()

);
}

Hashtable getDefaults() {
Hashtable defaults = new Hashtable();
defaults.put(“port”, id.getName());
defaults.put(“product”, “unknown”);
defaults.put(“baud”, “9600”);
defaults.put(Constants.SERVICE_PID,
“com.acme.serialport.” + id.getName());

return defaults;
}

public synchronized void updated(
Dictionary configuration) {
if (configuration ==

nul l
)

registration.setProperties(getDefaults());
else {
setSpeed(configuration.get(”baud”));
registration.setProperties(configuration);

}
}
...

}

As a convention, it is recommended that when a Managed Service is updated, it should copy all the
properties it does not recognize into the service registration properties. This will allow the Configu-
ration Admin service to set properties on services which can then be used by other applications.
updated(Dictionary)
Page 78 OSGi Service Platform Release 4, Version 4.2

Configuration Admin Service Specification Version 1.3 org.osgi.service.cm
104.14.9.1 public void updated(Dictionary properties) throws ConfigurationException

properties A copy of the Configuration properties, or nul l . This argument must not contain the “service.bundle-
Location” property. The value of this property may be obtained from the
Configurat ion.getBundleLocation method.

Update the configuration for a Managed Service.

When the implementation of updated(Dictionary) detects any kind of error in the configuration
properties, it should create a new Configurat ionException which describes the problem. This can
allow a management system to provide useful information to a human administrator.

If this method throws any other Exception , the Configuration Admin service must catch it and
should log it.

The Configuration Admin service must call this method asynchronously which initiated the call-
back. This implies that implementors of Managed Service can be assured that the callback will not
take place during registration when they execute the registration in a synchronized method.

Throws ConfigurationException – when the update fails
ManagedServiceFactory

104.14.10 public interface ManagedServiceFactory
Manage multiple service instances. Bundles registering this interface are giving the Configuration
Admin service the ability to create and configure a number of instances of a service that the imple-
menting bundle can provide. For example, a bundle implementing a DHCP server could be instanti-
ated multiple times for different interfaces using a factory.

Each of these service instances is represented, in the persistent storage of the Configuration Admin ser-
vice, by a factory Configurat ion object that has a PID. When such a Configurat ion is updated, the
Configuration Admin service calls the ManagedServiceFactory updated method with the new prop-
erties. When updated is called with a new PID, the Managed Service Factory should create a new fac-
tory instance based on these configuration properties. When called with a PID that it has seen before,
it should update that existing service instance with the new configuration information.

In general it is expected that the implementation of this interface will maintain a data structure that
maps PIDs to the factory instances that it has created. The semantics of a factory instance are defined
by the Managed Service Factory. However, if the factory instance is registered as a service object with
the service registry, its PID should match the PID of the corresponding Configurat ion object (but it
should not be registered as a Managed Service!).

An example that demonstrates the use of a factory. It will create serial ports under command of the
Configuration Admin service.

class SerialPortFactory
implements ManagedServiceFactory {
ServiceRegistration registration;
Hashtable ports;
void start(BundleContext context) {
Hashtable properties = new Hashtable();
properties.put(Constants.SERVICE_PID,
“com.acme.serialportfactory”);

registration = context.registerService(
ManagedServiceFactory.class.getName(),
this,
properties

);
}
public void updated(String pid,
Dictionary properties) {
OSGi Service Platform Release 4, Version 4.2 Page 79

org.osgi.service.cm Configuration Admin Service Specification Version 1.3
String portName = (String) properties.get(”port”);
SerialPortService port =
(SerialPort) ports.get(pid);

if (port == null) {
port = new SerialPortService();
ports.put(pid, port);
port.open();

}
if (port.getPortName().equals(portName))
return;

port.setPortName(portName);
}
public void deleted(String pid) {
SerialPortService port =
(SerialPort) ports.get(pid);

port.close();
ports.remove(pid);

}
...

}
deleted(String)

104.14.10.1 public void deleted(String pid)

pid the PID of the service to be removed

Remove a factory instance. Remove the factory instance associated with the PID. If the instance was
registered with the service registry, it should be unregistered.

If this method throws any Exception , the Configuration Admin service must catch it and should log
it.

The Configuration Admin service must call this method asynchronously.
getName()

104.14.10.2 public String getName()

Return a descriptive name of this factory.

Returns the name for the factory, which might be localized
updated(String,Dictionary)

104.14.10.3 public void updated(String pid, Dictionary properties) throws ConfigurationException

pid The PID for this configuration.

properties A copy of the configuration properties. This argument must not contain the service.bundleLocation”
property. The value of this property may be obtained from the Configurat ion.getBundleLocation
method.

Create a new instance, or update the configuration of an existing instance. If the PID of the
Configurat ion object is new for the Managed Service Factory, then create a new factory instance,
using the configuration propert ies provided. Else, update the service instance with the provided
propert ies .

If the factory instance is registered with the Framework, then the configuration propert ies should be
copied to its registry properties. This is not mandatory and security sensitive properties should obvi-
ously not be copied.

If this method throws any Exception , the Configuration Admin service must catch it and should log
it.

When the implementation of updated detects any kind of error in the configuration properties, it
should create a new Configurat ionException which describes the problem.
Page 80 OSGi Service Platform Release 4, Version 4.2

Configuration Admin Service Specification Version 1.3 References
The Configuration Admin service must call this method asynchronously. This implies that imple-
mentors of the ManagedServiceFactory class can be assured that the callback will not take place dur-
ing registration when they execute the registration in a synchronized method.

Throws ConfigurationException – when the configuration properties are invalid.

104.15 References
[1] DMTF Common Information Model

http://www.dmtf.org

[2] Simple Network Management Protocol
RFCs http://directory.google.com/Top/Computers/Internet/Protocols/SNMP/RFCs

[3] XSchema
http://www.w3.org/TR/xmlschema-0/

[4] Interface Definition Language
http://www.omg.org

[5] Understanding and Deploying LDAP Directory services
Timothy Howes et. al. ISBN 1-57870-070-1, MacMillan Technical publishing.
OSGi Service Platform Release 4, Version 4.2 Page 81

References Configuration Admin Service Specification Version 1.3
Page 82 OSGi Service Platform Release 4, Version 4.2

Metatype Service Specification Version 1.1 Introduction
105 Metatype Service Specification
Version 1.1

105.1 Introduction
The Metatype specification defines interfaces that allow bundle developers to describe attribute
types in a computer readable form using so-called metadata.

The purpose of this specification is to allow services to specify the type information of data that they
can use as arguments. The data is based on attributes, which are key/value pairs like properties.

A designer in a type-safe language like Java is often confronted with the choice of using the language
constructs to exchange data or using a technique based on attributes/properties that are based on
key/value pairs. Attributes provide an escape from the rigid type-safety requirements of modern pro-
gramming languages.

Type-safety works very well for software development environments in which multiple program-
mers work together on large applications or systems, but often lacks the flexibility needed to receive
structured data from the outside world.

The attribute paradigm has several characteristics that make this approach suitable when data needs
to be communicated between different entities which “speak” different languages. Attributes are
uncomplicated, resilient to change, and allow the receiver to dynamically adapt to different types of
data.

As an example, the OSGi Service Platform Specifications define several attribute types which are used
in a Framework implementation, but which are also used and referenced by other OSGi specifica-
tions such as the Configuration Admin Service Specification on page 45. A Configuration Admin service
implementation deploys attributes (key/value pairs) as configuration properties.

The Meta Type Service provides a unified access point to the Meta Type information that is associ-
ated with bundles. This Meta Type information can be defined by an XML resource in a bundle
(OSGI-INF/metatype directories must be scanned for any XML resources), or it can be obtained from
Managed Service or Managed Service Factory services that are implemented by a bundle.

105.1.1 Essentials
• Conceptual model – The specification must have a conceptual model for how classes and attributes

are organized.
• Standards – The specification should be aligned with appropriate standards, and explained in situ-

ations where the specification is not aligned with, or cannot be mapped to, standards.
• Remote Management – Remote management should be taken into account.
• Size – Minimal overhead in size for a bundle using this specification is required.
• Localization – It must be possible to use this specification with different languages at the same

time. This ability allows servlets to serve information in the language selected in the browser.
• Type information – The definition of an attribution should contain the name (if it is required), the

cardinality, a label, a description, labels for enumerated values, and the Java class that should be
used for the values.

• Validation – It should be possible to validate the values of the attributes.

105.1.2 Entities
• Meta Type Service – A service that provides a unified access point for meta type information.
• Attribute – A key/value pair.
OSGi Service Platform Release 4, Version 4.2 Page 83

Introduction Metatype Service Specification Version 1.1
• PID – A unique persistent ID, defined in configuration management.
• Attribute Definition – Defines a description, name, help text, and type information of an attribute.
• Object Class Definition – Defines the type of a datum. It contains a description and name of the type

plus a set of AttributeDefinit ion objects.
• Meta Type Provider – Provides access to the object classes that are available for this object. Access

uses the PID and a locale to find the best ObjectClassDefinit ion object.
• Meta Type Information – Provides meta type information for a bundle.

Figure 105.1 Class Diagram Meta Type Service, org.osgi.service.metatype

105.1.3 Operation
The Meta Type service defines a rich dynamic typing system for properties. The purpose of the type
system is to allow reasonable User Interfaces to be constructed dynamically.

The type information is normally carried by the bundles themselves. Either by implementing the
MetaTypeProvider interface or by carrying one or more XML resources in that define a number of
Meta Types in the OSGI- INF/metatype directories. Additionally, a Meta Type service could have
other sources.

The Meta Type Service provides unified access to Meta Types that are carried by the resident bundles.
The Meta Type Service collects this information from the bundles and provides uniform access to it.
A client can requests the Meta Type Information associated with a particular bundle. The
MetaTypeInformation object provides a list of ObjectClassDefinit ion objects for a bundle. These
objects define all the information for a specific object class. An object class is a some descriptive infor-
mation and a set of named attributes (which are key/value pairs).

Access to Object Class Definitions is qualified by a locale and a Persistent IDentity (PID). This specifi-
cation does not specify what the PID means. One application is OSGi Configuration Management
where a PID is used by the Managed Service and Managed Service Factory services. In general, a PID
should be regarded as the name of a variable where an Object Class Definition defines its type.

<<interface>>
ObjectClass
Definition

<<interface>>
MetaType
Provider

<<interface>>
Attribute
Definition

<<interface>>
MetaType
Information

Meta Type
Provider Impl

Any bundle

Meta Type
Information Impl

<<interface>>
MetaType
Service

Meta Type Client

Meta Type
Service Impl
Meta Type
Service Impl

PID & locale

0..n 1

Metatype
xml resource retrieve

from

Meta Type
Provider Impl

Meta Type
Provider Impl

Object Class
Definition Impl

Attribute
Definition Impl

0..n 1..n 0..n 1 bundle
Page 84 OSGi Service Platform Release 4, Version 4.2

Metatype Service Specification Version 1.1 Attributes Model
105.2 Attributes Model
The Framework uses the LDAP filter syntax for searching the Framework registry. The usage of the
attributes in this specification and the Framework specification closely resemble the LDAP attribute
model. Therefore, the names used in this specification have been aligned with LDAP. Consequently,
the interfaces which are defined by this Specification are:

• Attr ibuteDefinit ion
• ObjectClassDefinit ion
• MetaTypeProvider

These names correspond to the LDAP attribute model. For further information on ASN.1-defined
attributes and X.500 object classes and attributes, see [2] Understanding and Deploying LDAP Directory
services.

The LDAP attribute model assumes a global name-space for attributes, and object classes consist of a
number of attributes. So, if an object class inherits the same attribute from different parents, only one
copy of the attribute must become part of the object class definition. This name-space implies that a
given attribute, for example cn , should always be the common name and the type must always be a
Str ing . An attribute cn cannot be an Integer in another object class definition. In this respect, the
OSGi approach towards attribute definitions is comparable with the LDAP attribute model.

105.3 Object Class Definition
The ObjectClassDefinit ion interface is used to group the attributes which are defined in
Attr ibuteDefinit ion objects.

An ObjectClassDefinit ion object contains the information about the overall set of attributes and has
the following elements:

• A name which can be returned in different locales.
• A global name-space in the registry, which is the same condition as LDAP/X.500 object classes. In

these standards the OSI Object Identifier (OID) is used to uniquely identify object classes. If such
an OID exists, (which can be requested at several standard organizations, and many companies
already have a node in the tree) it can be returned here. Otherwise, a unique id should be returned.
This id can be a Java class name (reverse domain name) or can be generated with a GUID algo-
rithm. All LDAP-defined object classes already have an associated OID. It is strongly advised to
define the object classes from existing LDAP schemes which provide many preexisting OIDs.
Many such schemes exist ranging from postal addresses to DHCP parameters.

• A human-readable description of the class.
• A list of attribute definitions which can be filtered as required, or optional. Note that in X.500 the

mandatory or required status of an attribute is part of the object class definition and not of the
attribute definition.

• An icon, in different sizes.

105.4 Attribute Definition
The Attr ibuteDefinit ion interface provides the means to describe the data type of attributes.

The Attr ibuteDefinit ion interface defines the following elements:

• Defined names (final ints) for the data types as restricted in the Framework for the attributes,
called the syntax in OSI terms, which can be obtained with the getType() method.

• Attr ibuteDefinit ion objects should use and ID that is similar to the OID as described in the ID
field for ObjectClassDefinit ion .

• A localized name intended to be used in user interfaces.
OSGi Service Platform Release 4, Version 4.2 Page 85

Meta Type Service Metatype Service Specification Version 1.1
• A localized description that defines the semantics of the attribute and possible constraints, which
should be usable for tooltips.

• An indication if this attribute should be stored as a unique value, a Vector , or an array of values, as
well as the maximum cardinality of the type.

• The data type, as limited by the Framework service registry attribute types.
• A validation function to verify if a possible value is correct.
• A list of values and a list of localized labels. Intended for popup menus in GUIs, allowing the user

to choose from a set.
• A default value. The return type of this is a Str ing[] . For cardinality = zero, this return type must

be an array of one Str ing object. For other cardinalities, the array must not contain more than the
absolute value of cardinality Str ing objects. In that case, it may contain 0 objects.

105.5 Meta Type Service
The Meta Type Service provides unified access to Meta Type information that is associated with a
Bundle. It can get this information through the following means:

• Meta Type Resource – A bundle can provide one ore more XML resources that are contained in its
JAR file. These resources contain and XML definition of meta types as well as to what PIDs these
Meta Types apply. These XML resources must reside in the OSGI-INF/metatype directories of the
bundle (including any fragments).

• ManagedService[Factory] objects – As defined in the configuration management specification,
ManagedService and ManagedServiceFactory service objects can optionally implement the
MetaTypeProvider interface. The Meta Type Service will only search for MetaTypeProvider
objects if no meta type resources are found in the bundle.

Figure 105.2 Sources for Meta Types

This model is depicted in Figure 105.2.

The Meta Type Service can therefore be used to retrieve meta type information for bundles which
contain Meta Type resources or which provide their own MetaTypeProvider objects. The
MetaTypeService interface has a single method:

• getMetaTypeInformation(Bundle) – Given a bundle, it must return the Meta Type Information
for that bundle, even if there is no meta type information available at the moment of the call.

The returned MetaTypeInformation object maintains a map of PID to ObjectClassDefinit ion objects.
The map is keyed by locale and PID. The list of maintained PIDs is available from the
MetaTypeInformation object with the following methods:

• getPids() – PIDs for which Meta Types are available.
• getFactoryPids() – PIDs associated with Managed Service Factory services.

These methods and their interaction with the Meta Type resource are described in Use of the Designate
Element on page 92.

<<service>>
MetaType
Service

<<service>>
Managed
Service

<<service>>
Managed Service
Factory

OSGI-INF/metatype
xml resource

... alternative
meta type
sources
Page 86 OSGi Service Platform Release 4, Version 4.2

Metatype Service Specification Version 1.1 Meta Type Service
The MetaTypeInformation interface extends the MetaTypeProvider interface. The
MetaTypeProvider interface is used to access meta type information.It supports locale dependent
information so that the text used in AttributeDefinit ion and ObjectClassDefinit ion objects can be
adapted to different locales.

Which locales are supported by the MetaTypeProvider object are defined by the implementer or the
meta type resources.The list of available locales can be obtained from the MetaTypeProvider object.

The MetaTypeProvider interface provides the following methods:

• getObjectClassDefinit ion(Str ing,Str ing) – Get access to an ObjectClassDefinition object for the
given PID. The second parameter defines the locale.

• getLocales() – List the locales.that are available.

Locale objects are represented in Str ing objects because not all profiles support Locale. The Str ing
holds the standard Locale presentation of:

locale = language (’_’ country (’_’ variation))
language ::= < defined by ISO 3166 >
country ::= < defined by ISO 639 >

For example, en , nl_BE , en_CA_posix are valid locales. The use of null for locale indicates that
java.ut i l .Locale.getDefault() must be used.

The Meta Type Service implementation class is the main class. It registers the org.osgi.ser-
vice.metatype.MetaTypeService service and has a method to get a MetaTypeInformation object for a
bundle.

Following is some sample code demonstrating how to print out all the Object Class Definitions and
Attribute Definitions contained in a bundle:

void printMetaTypes(MetaTypeService mts, Bundle b) {
MetaTypeInformation mti =

mts.getMetaTypeInformation(b);
String [] pids = mti.getPids();
String [] locales = mti.getLocales();

for (int locale = 0; locale<locales.length; locale++) {
System.out.println("Locale " + locales[locale]);
for (int i=0; i< pids.length; i++) {

 ObjectClassDefinition ocd =
mti.getObjectClassDefinition(pids[i], null);

 AttributeDefinition[] ads =
ocd.getAttributeDefinitions(

ObjectClassDefinition.ALL);
 for (int j=0; j< ads.length; j++) {
 System.out.println("OCD="+ocd.getName()

+ "AD="+ads[j].getName());
 }

}
}

}

OSGi Service Platform Release 4, Version 4.2 Page 87

Using the Meta Type Resources Metatype Service Specification Version 1.1
105.6 Using the Meta Type Resources
A bundle that wants to provide meta type resources must place these resources in the OSGI-INF/
metatype directory. The name of the resource must be a valid JAR path. All resources in that direc-
tory must be meta type documents. Fragments can contain additional meta type resources in the
same directory and they must be taken into account when the meta type resources are searched. A
meta type resources must be encoded in UTF-8.

The MetaType Service must support localization of the

• name
• icon
• description
• label attributes

The localization mechanism must be identical using the same mechanism as described in the Core
module layer, section Localization on page 69, using the same property resource. However, it is possi-
ble to override the property resource in the meta type definition resources with the local ization
attribute of the MetaData element.

The Meta Type Service must examine the bundle and its fragments to locate all localization resources
for the localization base name. From that list, the Meta Type Service derives the list of locales which
are available for the meta type information. This list can then be returned by
MetaTypeInformation.getLocales method. This list can change at any time because the bundle could
be refreshed. Clients should be prepared that this list changes after they received it.

105.6.1 XML Schema of a Meta Type Resource
This section describes the schema of the meta type resource. This schema is not intended to be used
during runtime for validating meta type resources. The schema is intended to be used by tools and
external management systems.

The XML namespace for meta type documents must be:

http://www.osgi.org/xmlns/metatype/v1.1.0

The namespace abbreviation should be metatype . I.e. the following header should be:

<metatype:MetaData
xmlns:metatype=

"http://www.osgi.org/xmlns/metatype/v1.1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
>

The file can be found in the osgi.jar file that can be downloaded from the www.osgi.org web site.
Page 88 OSGi Service Platform Release 4, Version 4.2

Metatype Service Specification Version 1.1 Using the Meta Type Resources
Figure 105.3 XML Schema Instance Structure (Type name = Element name)

The element structure of the XML file is:

MetaData ::= OCD* Designate*

OCD ::= AD+ Icon
AD ::= Option*

Designate ::= Object
Object ::= Attribute *

Attribute ::= Value *

The different elements are described in Table 105.1.

MetaData

OCD

AD

Designate

Option

Icon

1

*
Object

Attribute

1

*

1 *

1 *

1

1

1

1..n

1

0..n

1

1..n

1

*

Value

1

0..n

Table 105.1 XML Schema for Meta Type resources
Attribute Deflt Type Method Description

MetaData Top Element

local izat ion str ing Points to the Properties file that can
localize this XML. See Localization on
page 69 of the Core book.

OCD Object Class Definition

name <> str ing getName() A human readable name that can be
localized.

descr ipt ion getDescr iption() A human readable description of the
Object Class Definition that can be
localized.

id <> getID() A unique id, cannot be localized.
OSGi Service Platform Release 4, Version 4.2 Page 89

Using the Meta Type Resources Metatype Service Specification Version 1.1
Designate An association between one PID and an
Object Class Definition. This element
designates a PID to be of a certain type.

pid <> str ing The PID that is associated with an OCD .
This can be a reference to a factory or
singleton configuration object. See Use
of the Designate Element on page 92.

factoryPid str ing If the factoryPid attribute is set, this
Designate element defines a factory
configuration for the given factory, if it
is not set or empty, it designates a sin-
gleton configuration. See Use of the Des-
ignate Element on page 92.

bundle str ing Location of the bundle that implements
the PID. This binds the PID to the bun-
dle. I.e. no other bundle using the same
PID may use this designation. In a Meta
Type resource this field may be set to an
wildcard (\u002A, "*") to indicate the
bundle where the resource comes from.
This is an optional attribute but can be
mandatory in certain usage schemes,
for example the Autoconf Resource Pro-
cessor.

optional fa lse boolean If true , then this Designate element is
optional, errors during processing must
be ignored.

merge false boolean If the PID refers to an existing variable,
then merge the properties with the
existing properties if this attribute is
true . Otherwise, replace the properties.

AD Attribute Definition

name str ing getName() A localizable name for the Attribute
Definition. descr iption

descr ipt ion str ing getDescr ipt ion() A localizable description for the
Attribute Definition.

id getID() The unique ID of the Attribute Defini-
tion.

Table 105.1 XML Schema for Meta Type resources
Attribute Deflt Type Method Description
Page 90 OSGi Service Platform Release 4, Version 4.2

Metatype Service Specification Version 1.1 Using the Meta Type Resources
type str ing getType() The type of an attribute is an enumera-
tion of the different scalar types. The
string is mapped to one of the constants
on the AttributeDefinition interface.
Valid values, which are defined in the
Scalar type, are:

String ↔ STRING
Long ↔ LONG
Double ↔ DOUBLE
Float ↔ FLOAT
Integer ↔ INTEGER
Byte ↔ BYTE
Char ↔ CHARACTER
Boolean ↔ BOOLEAN
Short ↔ SHORT

cardinal i ty 0 getCardinal i ty() The number of elements an instance
can take. Positive numbers describe an
array ([]) and negative numbers
describe a Vector object.

min string val idate(Str ing) A validation value. This value is not
directly available from the
AttributeDefinit ion interface. How-
ever, the val idate(Str ing) method must
verify this. The semantics of this field
depend on the type of this Attribute
Definition.

max string val idate(Str ing) A validation value. Similar to the min
field.

default str ing getDefaultValue() The default value. A default is an array
of Str ing objects. The XML attribute
must contain a comma delimited list. If
the comma must be represented, it
must be escaped with a back slash (’\’
\u005c). A back slash can be included
with two backslashes. White spaces
around the command and after/before
an XML element must be ignored. For
example:

dflt="a\,b,b\,c, c\\,d"
=> ["a,b", "b,c", "c\", "d"]

required true boolean Required attributes

Option One option label/value for the options
in an AD .

label <> str ing getOptionLabels() The label

value <> str ing getOptionValues() The value

Icon An icon definition.

Table 105.1 XML Schema for Meta Type resources
Attribute Deflt Type Method Description
OSGi Service Platform Release 4, Version 4.2 Page 91

Using the Meta Type Resources Metatype Service Specification Version 1.1
105.6.2 Use of the Designate Element
For the MetaType Service, the Designate definition is used to declare the available PIDs and factory
PIDs; the Attribute elements are never used by the MetaType service.

The getPids() method returns an array of PIDs that were specified in the pid attribute of the Object
elements. The getFactoryPids() method returns an array of the factoryPid attributes. For factories,
the related pid attribute is ignored because all instances of a factory must share the same meta type.

The following example shows a metatype reference to a singleton configuration and a factory config-
uration.

<Designate pid="com.acme.designate.1">
<Object ocdref="com.acme.designate"./>

</Designate>
<Designate factoryPid="com.acme.designate.factory"

bundle="*">
<Object ocdref="com.acme.designate"/>

</Designate>

Other schemes can embed the Object element in the Designate element to define actual instances
for the Configuration Admin service. In that case the pid attribute must be used together with the
factoryPid attribute. However, in that case an aliasing model is required because the Configuration
Admin service does not allow the creator to choose the Configurat ion object’s PID.

resource <> str ing getIcon(int) The resource is a URL. The base URL is
assumed to be the XML file with the def-
inition. I.e. if the XML is a resource in
the JAR file, then this URL can reference
another resource in that JAR file using a
relative URL.

size <> str ing getIcon(int) The number of pixels of the icon, maps
to the size parameter of the getIcon(int)
method.

Object A definition of an instance.

ocdref <> str ing A reference to the id attribute of an
OCD element. I.e. this attribute defines
the OCD type of this object.

Attr ibute A value for an attribute of an object.

adref <> str ing A reference to the id of the AD in the
OCD as referenced by the parent
Object .

content str ing The content of the attributes. If this is
an array, the content must be separated
by commas (’,’ \u002C). Commas must
be escaped as described at the default
attribute of the AD element. See default
on page 91.

Value Holds a single value. This element can
be repeated multiple times under an
Attribute

Table 105.1 XML Schema for Meta Type resources
Attribute Deflt Type Method Description
Page 92 OSGi Service Platform Release 4, Version 4.2

Metatype Service Specification Version 1.1 Using the Meta Type Resources
105.6.3 Example Metadata File
This example defines a meta type file for a Person record, based on ISO attribute types. The ids that
are used are derived from ISO attributes.

<xml version="1.0" encoding="UTF-8">
<MetaData

xmlns=
"http://www.osgi.org/xmlns/metatype/v1.1.0"

 localization="person">
 <OCD name="%person" id="2.5.6.6"

description="%Person Record">
 <AD name="%sex" id="2.5.4.12" type="Integer">
 <Option label="%male" value="1"/>
 <Option label="%Female" value="0"/>
 </AD>
 <AD name="%sn" id="2.5.4.4" type="String"/>
 <AD name="%cn" id="2.5.4.3" type="String"/>
 <AD name="%seeAlso" id="2.5.4.34" type="String"
 cardinality="8" default="http://www.google.com,

http://www.yahoo.com"/>
 <AD name="%telNumber" id="2.5.4.20" type="String"/>
 </OCD>

 <Designate pid="com.acme.addressbook">
 <Object ocdref="2.5.6.6"/>
 </Designate>
</MetaData>

Translations for this file, as indicated by the localization attribute must be stored in the root directory
(e.g. person_du_NL.propert ies). The default localization base name for the properties is OSGI-INF/
l10n/bundle , but can be overridden by the manifest Bundle-Localization header and the local izat ion
attribute of the Meta Data element. The property files have the base name of person . The Dutch,
French and English translations could look like:

person_du_NL.properties:
person=Persoon
person\ record=Persoons beschrijving
cn=Naam
sn=Voornaam
seeAlso=Zie ook
telNumber=Tel. Nummer
sex=Geslacht
male=Mannelijk
female=Vrouwelijk

person_fr.properties
person=Personne
person\ record=Description de la personne
cn=Nom
sn=Surnom
seeAlso=Reference
telNumber=Tel.
sex=Sexe
male=Homme
female=Femme
OSGi Service Platform Release 4, Version 4.2 Page 93

Object Metatype Service Specification Version 1.1
person_en_US.properties
person=Person
person\ record=Person Record
cn=Name
sn=Sur Name
seeAlso=See Also
telNumber=Tel.
sex=Sex
male=Male
female=Female

105.7 Object
The OCD element can be used to describe the possible contents of a Dict ionary object. In this case, the
attribute name is the key. The Object element can be used to assign a value to a Dictionary object.

For example:

<Designate pid="com.acme.b">
 <Object ocdref="b">
 <Attribute adref="foo" content="Zaphod Beeblebrox"/>
 <Attribute adref="bar">
 <Value>1</Value>
 <Value>2</Value>
 <Value>3</Value>
 <Value>4</Value>
 <Value>5</Value>
 </Attribute>
 </Object>
 </Designate>

105.8 XML Schema
<xml version="1.0" encoding="UTF-8">
<schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:metatype="http://www.osgi.org/xmlns/metatype/v1.1.0"
targetNamespace="http://www.osgi.org/xmlns/metatype/v1.1.0"
version="1.1.0">

<element name="MetaData" type="metatype:Tmetadata" />

<complexType name="Tmetadata">
<sequence>

<element name="OCD" type="metatype:Tocd" minOccurs="0"
maxOccurs="unbounded" />

<element name="Designate" type="metatype:Tdesignate"
minOccurs="0" maxOccurs="unbounded" />

<any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded" />

</sequence>
<attribute name="localization" type="string" use="optional" />
<anyAttribute />

</complexType>

<complexType name="Tocd">
<sequence>

<element name="AD" type="metatype:Tad" minOccurs="1"
maxOccurs="unbounded" />

<element name="Icon" type="metatype:Ticon" minOccurs="0"
maxOccurs="1" />

<any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded" />
Page 94 OSGi Service Platform Release 4, Version 4.2

Metatype Service Specification Version 1.1 XML Schema
</sequence>
<attribute name="name" type="string" use="required" />
<attribute name="description" type="string" use="optional" />
<attribute name="id" type="string" use="required" />
<anyAttribute />

</complexType>

<complexType name="Tad">
<sequence>

<element name="Option" type="metatype:Toption" minOccurs="0"
maxOccurs="unbounded" />

<any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded" />

</sequence>
<attribute name="name" type="string" use="optional" />
<attribute name="description" type="string" use="optional" />
<attribute name="id" type="string" use="required" />
<attribute name="type" type="metatype:Tscalar" use="required" />
<attribute name="cardinality" type="int" use="optional"

default="0" />
<attribute name="min" type="string" use="optional" />
<attribute name="max" type="string" use="optional" />
<attribute name="default" type="string" use="optional" />
<attribute name="required" type="boolean" use="optional"

default="true" />
<anyAttribute />

</complexType>

<complexType name="Tobject">
<sequence>

<element name="Attribute" type="metatype:Tattribute"
minOccurs="0" maxOccurs="unbounded" />

<any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded" />

</sequence>
<attribute name="ocdref" type="string" use="required" />
<anyAttribute />

</complexType>

<complexType name="Tattribute">
<sequence>

<element name="Value" type="string" minOccurs="0"
maxOccurs="unbounded" />

<any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded" />

</sequence>
<attribute name="adref" type="string" use="required" />
<attribute name="content" type="string" use="optional" />
<anyAttribute />

</complexType>

<complexType name="Tdesignate">
<sequence>

<element name="Object" type="metatype:Tobject" minOccurs="1"
maxOccurs="1" />

<any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded" />

</sequence>
<attribute name="pid" type="string" use="required" />
<attribute name="factoryPid" type="string" use="optional" />
<attribute name="bundle" type="string" use="optional" />
<attribute name="optional" type="boolean" default="false"

use="optional" />
<attribute name="merge" type="boolean" default="false"

use="optional" />
<anyAttribute />

</complexType>

<simpleType name="Tscalar">
<restriction base="string">

<enumeration value="String" />
<enumeration value="Long" />
<enumeration value="Double" />
<enumeration value="Float" />
<enumeration value="Integer" />
OSGi Service Platform Release 4, Version 4.2 Page 95

Limitations Metatype Service Specification Version 1.1
<enumeration value="Byte" />
<enumeration value="Char" />
<enumeration value="Boolean" />
<enumeration value="Short" />

</restriction>
</simpleType>

<complexType name="Toption">
<sequence>

<any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded" />

</sequence>
<attribute name="label" type="string" use="required" />
<attribute name="value" type="string" use="required" />
<anyAttribute />

</complexType>

<complexType name="Ticon">
<sequence>

<any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded" />

</sequence>
<attribute name="resource" type="string" use="required" />
<attribute name="size" type="positiveInteger" use="required" />
<anyAttribute />

</complexType>

<attribute name="must-understand" type="boolean">
<annotation>

<documentation xml:lang="en">
This attribute should be used by extensions to documents
to require that the document consumer understand the
extension.

</documentation>
</annotation>

</attribute>
</schema>

105.9 Limitations
The OSGi MetaType specification is intended to be used for simple applications. It does not, there-
fore, support recursive data types, mixed types in arrays/vectors, or nested arrays/vectors.

105.10 Related Standards
One of the primary goals of this specification is to make metatype information available at run-time
with minimal overhead. Many related standards are applicable to metatypes; except for Java beans,
however, all other metatype standards are based on document formats (e.g. XML). In the OSGi Service
Platform, document format standards are deemed unsuitable due to the overhead required in the exe-
cution environment (they require a parser during run-time).

Another consideration is the applicability of these standards. Most of these standards were developed
for management systems on platforms where resources are not necessarily a concern. In this case, a
metatype standard is normally used to describe the data structures needed to control some other
computer via a network. This other computer, however, does not require the metatype information
as it is implementing this information.

In some traditional cases, a management system uses the metatype information to control objects in
an OSGi Service Platform. Therefore, the concepts and the syntax of the metatype information must
be mappable to these popular standards. Clearly, then, these standards must be able to describe
objects in an OSGi Service Platform. This ability is usually not a problem, because the metatype lan-
guages used by current management systems are very powerful.
Page 96 OSGi Service Platform Release 4, Version 4.2

Metatype Service Specification Version 1.1 Security Considerations
105.11 Security Considerations
Special security issues are not applicable for this specification.

105.12 org.osgi.service.metatype
Metatype Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. For example:

Import-Package: org.osgi.service.metatype; version=”[1.1,2.0)”

105.12.1 Summary
• AttributeDefinition - An interface to describe an attribute.
• MetaTypeInformation - A MetaType Information object is created by the MetaTypeService to

return meta type information for a specific bundle.
• MetaTypeProvider - Provides access to metatypes.
• MetaTypeService - The MetaType Service can be used to obtain meta type information for a

bundle.
• ObjectClassDefinition - Description for the data type information of an objectclass.
AttributeDefinition

105.12.2 public interface AttributeDefinition
An interface to describe an attribute.

An Attr ibuteDefinit ion object defines a description of the data type of a property/attribute.
BIGDECIMAL

105.12.2.1 public static final int BIGDECIMAL = 10

The BIGDECIMAL (10) type. Attributes of this type should be stored as BigDecimal , Vector with
BigDecimal or BigDecimal[] objects depending on getCardinal ity() .

Deprecated As of 1.1.
BIGINTEGER

105.12.2.2 public static final int BIGINTEGER = 9

The BIGINTEGER (9) type. Attributes of this type should be stored as BigInteger , Vector with
BigInteger or BigInteger[] objects, depending on the getCardinal i ty() value.

Deprecated As of 1.1.
BOOLEAN

105.12.2.3 public static final int BOOLEAN = 11

The BOOLEAN (11) type. Attributes of this type should be stored as Boolean , Vector with Boolean or
boolean[] objects depending on getCardinal ity() .
BYTE

105.12.2.4 public static final int BYTE = 6

The BYTE (6) type. Attributes of this type should be stored as Byte , Vector with Byte or byte[] objects,
depending on the getCardinal i ty() value.
CHARACTER

105.12.2.5 public static final int CHARACTER = 5

The CHARACTER (5) type. Attributes of this type should be stored as Character , Vector with
Character or char[] objects, depending on the getCardinal i ty() value.
DOUBLE

105.12.2.6 public static final int DOUBLE = 7

The DOUBLE (7) type. Attributes of this type should be stored as Double , Vector with Double or
double[] objects, depending on the getCardinal ity() value.
OSGi Service Platform Release 4, Version 4.2 Page 97

org.osgi.service.metatype Metatype Service Specification Version 1.1
FLOAT

105.12.2.7 public static final int FLOAT = 8

The FLOAT (8) type. Attributes of this type should be stored as Float , Vector with Float or f loat[]
objects, depending on the getCardinal i ty() value.
INTEGER

105.12.2.8 public static final int INTEGER = 3

The INTEGER (3) type. Attributes of this type should be stored as Integer , Vector with Integer or int[]
objects, depending on the getCardinal i ty() value.
LONG

105.12.2.9 public static final int LONG = 2

The LONG (2) type. Attributes of this type should be stored as Long , Vector with Long or long[]
objects, depending on the getCardinal i ty() value.
SHORT

105.12.2.10 public static final int SHORT = 4

The SHORT (4) type. Attributes of this type should be stored as Short , Vector with Short or short[]
objects, depending on the getCardinal i ty() value.
STRING

105.12.2.11 public static final int STRING = 1

The STRING (1) type.

Attributes of this type should be stored as Str ing , Vector with Str ing or Str ing[] objects, depending
on the getCardinal ity() value.
getCardinality()

105.12.2.12 public int getCardinality()

Return the cardinality of this attribute. The OSGi environment handles multi valued attributes in
arrays ([]) or in Vector objects. The return value is defined as follows:

x = Integer.MIN_VALUE no limit, but use Vector
x < 0 -x = max occurrences, store in Vector
x > 0 x = max occurrences, store in array []
x = Integer.MAX_VALUE no limit, but use array []
x = 0 1 occurrence required

Returns The cardinality of this attribute.
getDefaultValue()

105.12.2.13 public String[] getDefaultValue()

Return a default for this attribute. The object must be of the appropriate type as defined by the cardi-
nality and getType() . The return type is a list of Str ing objects that can be converted to the appropri-
ate type. The cardinality of the return array must follow the absolute cardinality of this type. E.g. if
the cardinality = 0, the array must contain 1 element. If the cardinality is 1, it must contain 0 or 1 ele-
ments. If it is -5, it must contain from 0 to max 5 elements. Note that the special case of a 0 cardinality,
meaning a single value, does not allow arrays or vectors of 0 elements.

Returns Return a default value or nul l if no default exists.
getDescription()

105.12.2.14 public String getDescription()

Return a description of this attribute. The description may be localized and must describe the seman-
tics of this type and any constraints.

Returns The localized description of the definition.
getID()
Page 98 OSGi Service Platform Release 4, Version 4.2

Metatype Service Specification Version 1.1 org.osgi.service.metatype
105.12.2.15 public String getID()

Unique identity for this attribute. Attributes share a global namespace in the registry. E.g. an
attribute cn or commonName must always be a Str ing and the semantics are always a name of some
object. They share this aspect with LDAP/X.500 attributes. In these standards the OSI Object Identi-
fier (OID) is used to uniquely identify an attribute. If such an OID exists, (which can be requested at
several standard organisations and many companies already have a node in the tree) it can be
returned here. Otherwise, a unique id should be returned which can be a Java class name (reverse
domain name) or generated with a GUID algorithm. Note that all LDAP defined attributes already
have an OID. It is strongly advised to define the attributes from existing LDAP schemes which will
give the OID. Many such schemes exist ranging from postal addresses to DHCP parameters.

Returns The id or oid
getName()

105.12.2.16 public String getName()

Get the name of the attribute. This name may be localized.

Returns The localized name of the definition.
getOptionLabels()

105.12.2.17 public String[] getOptionLabels()

Return a list of labels of option values.

The purpose of this method is to allow menus with localized labels. It is associated with
getOptionValues . The labels returned here are ordered in the same way as the values in that method.

If the function returns nul l , there are no option labels available.

This list must be in the same sequence as the getOptionValues() method. I.e. for each index i in
getOptionLabels , i in getOptionValues() should be the associated value.

For example, if an attribute can have the value male, female, unknown, this list can return (for dutch)
new Str ing[] { “Man”, “Vrouw”, “Onbekend” } .

Returns A list values
getOptionValues()

105.12.2.18 public String[] getOptionValues()

Return a list of option values that this attribute can take.

If the function returns nul l , there are no option values available.

Each value must be acceptable to validate() (return “”) and must be a Str ing object that can be con-
verted to the data type defined by getType() for this attribute.

This list must be in the same sequence as getOptionLabels() . I.e. for each index i in getOptionValues ,
i in getOptionLabels() should be the label.

For example, if an attribute can have the value male, female, unknown, this list can return new
Str ing[] { “male”, “female”, “unknown” } .

Returns A list values
getType()

105.12.2.19 public int getType()

Return the type for this attribute.

Defined in the following constants which map to the appropriate Java type. STRING ,LONG ,INTEGER ,
CHAR ,BYTE ,DOUBLE ,FLOAT , BOOLEAN .

Returns The type for this attribute.
validate(String)

105.12.2.20 public String validate(String value)

value The value before turning it into the basic data type
OSGi Service Platform Release 4, Version 4.2 Page 99

org.osgi.service.metatype Metatype Service Specification Version 1.1
Validate an attribute in Str ing form. An attribute might be further constrained in value. This method
will attempt to validate the attribute according to these constraints. It can return three different val-
ues:

null No validation present
“” No problems detected
“...” A localized description of why the value is wrong

Returns nul l , “”, or another string
MetaTypeInformation

105.12.3 public interface MetaTypeInformation
extends MetaTypeProvider
A MetaType Information object is created by the MetaTypeService to return meta type information
for a specific bundle.

Since 1.1
getBundle()

105.12.3.1 public Bundle getBundle()

Return the bundle for which this object provides meta type information.

Returns Bundle for which this object provides meta type information.
getFactoryPids()

105.12.3.2 public String[] getFactoryPids()

Return the Factory PIDs (for ManagedServiceFactories) for which ObjectClassDefinition information
is available.

Returns Array of Factory PIDs.
getPids()

105.12.3.3 public String[] getPids()

Return the PIDs (for ManagedServices) for which ObjectClassDefinition information is available.

Returns Array of PIDs.
MetaTypeProvider

105.12.4 public interface MetaTypeProvider
Provides access to metatypes.
getLocales()

105.12.4.1 public String[] getLocales()

Return a list of available locales. The results must be names that consists of language [_ country [_
variation]] as is customary in the Locale class.

Returns An array of locale strings or nul l if there is no locale specific localization can be found.
getObjectClassDefinition(String,String)

105.12.4.2 public ObjectClassDefinition getObjectClassDefinition(String id, String locale)

id The ID of the requested object class. This can be a pid or factory pid returned by getPids or getFactoryP-
ids.

locale The locale of the definition or null for default locale.

Returns an object class definition for the specified id localized to the specified locale.

The locale parameter must be a name that consists of language [“_” country [“_” var iat ion]] as is cus-
tomary in the Locale class. This Locale class is not used because certain profiles do not contain it.

Returns A ObjectClassDefinit ion object.

Throws IllegalArgumentException – If the id or locale arguments are not valid
MetaTypeService
Page 100 OSGi Service Platform Release 4, Version 4.2

Metatype Service Specification Version 1.1 org.osgi.service.metatype
105.12.5 public interface MetaTypeService
The MetaType Service can be used to obtain meta type information for a bundle. The MetaType Ser-
vice will examine the specified bundle for meta type documents to create the returned
MetaTypeInformation object.

If the specified bundle does not contain any meta type documents, then a MetaTypeInformation
object will be returned that wrappers any ManagedService or ManagedServiceFactory services regis-
tered by the specified bundle that implement MetaTypeProvider . Thus the MetaType Service can be
used to retrieve meta type information for bundles which contain a meta type documents or which
provide their own MetaTypeProvider objects.

Since 1.1
METATYPE_DOCUMENTS_LOCATION

105.12.5.1 public static final String METATYPE_DOCUMENTS_LOCATION = “OSGI-INF/metatype”

Location of meta type documents. The MetaType Service will process each entry in the meta type
documents directory.
getMetaTypeInformation(Bundle)

105.12.5.2 public MetaTypeInformation getMetaTypeInformation(Bundle bundle)

bundle The bundle for which meta type information is requested.

Return the MetaType information for the specified bundle.

Returns A MetaTypeInformation object for the specified bundle.
ObjectClassDefinition

105.12.6 public interface ObjectClassDefinition
Description for the data type information of an objectclass.
ALL

105.12.6.1 public static final int ALL = -1

Argument for getAttr ibuteDefinit ions(int) .

ALL indicates that all the definitions are returned. The value is -1.
OPTIONAL

105.12.6.2 public static final int OPTIONAL = 2

Argument for getAttr ibuteDefinit ions(int) .

OPTIONAL indicates that only the optional definitions are returned. The value is 2.
REQUIRED

105.12.6.3 public static final int REQUIRED = 1

Argument for getAttr ibuteDefinit ions(int) .

REQUIRED indicates that only the required definitions are returned. The value is 1.
getAttributeDefinitions(int)

105.12.6.4 public AttributeDefinition[] getAttributeDefinitions(int filter)

filter ALL ,REQUIRED ,OPTIONAL

Return the attribute definitions for this object class.

Return a set of attributes. The filter parameter can distinguish between ALL ,REQUIRED or the
OPTIONAL attributes.

Returns An array of attribute definitions or nul l if no attributes are selected
getDescription()

105.12.6.5 public String getDescription()

Return a description of this object class. The description may be localized.

Returns The description of this object class.
getIcon(int)
OSGi Service Platform Release 4, Version 4.2 Page 101

References Metatype Service Specification Version 1.1
105.12.6.6 public InputStream getIcon(int size) throws IOException

size Requested size of an icon, e.g. a 16x16 pixels icon then size = 16

Return an InputStream object that can be used to create an icon from.

Indicate the size and return an InputStream object containing an icon. The returned icon maybe
larger or smaller than the indicated size.

The icon may depend on the localization.

Returns An InputStream representing an icon or nul l

Throws IOException – If the InputStream cannot be returned.
getID()

105.12.6.7 public String getID()

Return the id of this object class.

ObjectDefintion objects share a global namespace in the registry. They share this aspect with LDAP/
X.500 attributes. In these standards the OSI Object Identifier (OID) is used to uniquely identify object
classes. If such an OID exists, (which can be requested at several standard organisations and many
companies already have a node in the tree) it can be returned here. Otherwise, a unique id should be
returned which can be a java class name (reverse domain name) or generated with a GUID algorithm.
Note that all LDAP defined object classes already have an OID associated. It is strongly advised to
define the object classes from existing LDAP schemes which will give the OID for free. Many such
schemes exist ranging from postal addresses to DHCP parameters.

Returns The id of this object class.
getName()

105.12.6.8 public String getName()

Return the name of this object class. The name may be localized.

Returns The name of this object class.

105.13 References
[1] LDAP.

http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol

[2] Understanding and Deploying LDAP Directory services
Timothy Howes et. al. ISBN 1-57870-070-1, MacMillan Technical publishing.
Page 102 OSGi Service Platform Release 4, Version 4.2

User Admin Service Specification Version 1.1 Introduction
107 User Admin Service
Specification
Version 1.1

107.1 Introduction
OSGi Service Platforms are often used in places where end users or devices initiate actions. These
kinds of actions inevitably create a need for authenticating the initiator. Authenticating can be done
in many different ways, including with passwords, one-time token cards, bio-metrics, and certificates.

Once the initiator is authenticated, it is necessary to verify that this principal is authorized to per-
form the requested action. This authorization can only be decided by the operator of the OSGi envi-
ronment, and thus requires administration.

The User Admin service provides this type of functionality. Bundles can use the User Admin service
to authenticate an initiator and represent this authentication as an Authorizat ion object. Bundles
that execute actions on behalf of this user can use the Authorizat ion object to verify if that user is
authorized.

The User Admin service provides authorization based on who runs the code, instead of using the Java
code-based permission model. See [1] The Java Security Architecture for JDK 1.2. It performs a role simi-
lar to [2] Java Authentication and Authorization Service.

107.1.1 Essentials
• Authentication – A large number of authentication schemes already exist, and more will be

developed. The User Admin service must be flexible enough to adapt to the many different
authentication schemes that can be run on a computer system.

• Authorization – All bundles should use the User Admin service to authenticate users and to find
out if those users are authorized. It is therefore paramount that a bundle can find out authori-
zation information with little effort.

• Security – Detailed security, based on the Framework security model, is needed to provide safe
access to the User Admin service. It should allow limited access to the credentials and other prop-
erties.

• Extensibility – Other bundles should be able to build on the User Admin service. It should be pos-
sible to examine the information from this service and get real-time notifications of changes.

• Properties – The User Admin service must maintain a persistent database of users. It must be pos-
sible to use this database to hold more information about this user.

• Administration – Administering authorizations for each possible action and initiator is time-con-
suming and error-prone. It is therefore necessary to have mechanisms to group end users and
make it simple to assign authorizations to all members of a group at one time.

107.1.2 Entities
This Specification defines the following User Admin service entities:

• UserAdmin – This interface manages a database of named roles which can be used for authori-
zation and authentication purposes.

• Role – This interface exposes the characteristics shared by all roles: a name, a type, and a set of
properties.
OSGi Service Platform Release 4, Version 4.2 Page 103

Introduction User Admin Service Specification Version 1.1
• User – This interface (which extends Role) is used to represent any entity which may have creden-
tials associated with it. These credentials can be used to authenticate an initiator.

• Group – This interface (which extends User) is used to contain an aggregation of named Role
objects (Group or User objects).

• Authorization – This interface encapsulates an authorization context on which bundles can base
authorization decisions.

• UserAdminEvent – This class is used to represent a role change event.
• UserAdminListener – This interface provides a listener for events of type UserAdminEvent that can

be registered as a service.
• UserAdminPermission – This permission is needed to configure and access the roles managed by a

User Admin service.
• Role.USER_ANYONE – This is a special User object that represents any user, it implies all other

User objects. It is also used when a Group is used with only basic members. The
Role.USER_ANYONE is then the only required member.

Figure 107.1 User Admin Service, org.osgi .service.useradmin

107.1.3 Operation
An Operator uses the User Admin service to define OSGi Service Platform users and configure them
with properties, credentials, and roles.

A Role object represents the initiator of a request (human or otherwise). This specification defines
two types of roles:

<<interface>>
UserAdmin

<<interface>>
Role

<<interface>>
Group

UserAdmin
Event

<<interface>>
Authorization

<<interface>>
UserAdmin
Listener

<<interface>>
User

UserAdmin
Permission

UserAdmin
Implementation

Group
ImplementationsUser

ImplementationsRole
Implementation

User Admin
Listener Impl.

Request
Authenticator

Action
implementation

perform action

consult
for authorization

has roles

authenticate

receive
events

send event

has
permission

role name

user database1..n 1

0..n

0..n

0..n

0..n

1..n

0..n

re
qu

ire
d

m
em

be
r

ba
sic

 m
em

be
r

Page 104 OSGi Service Platform Release 4, Version 4.2

User Admin Service Specification Version 1.1 Authentication
• User – A User object can be configured with credentials, such as a password, and properties, such
as address, telephone number, and so on.

• Group – A Group object is an aggregation of basic and required roles. Basic and required roles are
used in the authorization phase.

An OSGi Service Platform can have several entry points, each of which will be responsible for authen-
ticating incoming requests. An example of an entry point is the Http Service, which delegates
authentication of incoming requests to the handleSecurity method of the HttpContext object that
was specified when the target servlet or resource of the request was registered.

The OSGi Service Platform entry points should use the information in the User Admin service to
authenticate incoming requests, such as a password stored in the private credentials or the use of a
certificate.

A bundle can determine if a request for an action is authorized by looking for a Role object that has
the name of the requested action.

The bundle may execute the action if the Role object representing the initiator implies the Role object
representing the requested action.

For example, an initiator Role object X implies an action Group object A if:

• X implies at least one of A’s basic members, and
• X implies all of A’s required members.

An initiator Role object X implies an action User object A if:

• A and X are equal.

The Authorizat ion class handles this non-trivial logic. The User Admin service can capture the privi-
leges of an authenticated User object into an Authorizat ion object. The Authorizat ion.hasRole
method checks if the authenticate User object has (or implies) a specified action Role object.

For example, in the case of the Http Service, the HttpContext object can authenticate the initiator
and place an Authorizat ion object in the request header. The servlet calls the hasRole method on this
Authorizat ion object to verify that the initiator has the authority to perform a certain action. See
Authentication on page 36.

107.2 Authentication
The authentication phase determines if the initiator is actually the one it says it is. Mechanisms to
authenticate always need some information related to the user or the OSGi Service Platform to
authenticate an external user. This information can consist of the following:

• A secret known only to the initiator.
• Knowledge about cards that can generate a unique token.
• Public information like certificates of trusted signers.
• Information about the user that can be measured in a trusted way.
• Other specific information.

107.2.1 Repository
The User Admin service offers a repository of Role objects. Each Role object has a unique name and a
set of properties that are readable by anyone, and are changeable when the changer has the
UserAdminPermiss ion . Additionally, User objects, a sub-interface of Role , also have a set of private
protected properties called credentials. Credentials are an extra set of properties that are used to
authenticate users and that are protected by UserAdminPermission .
OSGi Service Platform Release 4, Version 4.2 Page 105

Authentication User Admin Service Specification Version 1.1
Properties are accessed with the Role.getPropert ies() method and credentials with the
User.getCredentials()method. Both methods return a Dict ionary object containing key/value pairs.
The keys are Str ing objects and the values of the Dictionary object are limited to Str ing or byte[]
objects.

This specification does not define any standard keys for the properties or credentials. The keys
depend on the implementation of the authentication mechanism and are not formally defined by
OSGi specifications.

The repository can be searched for objects that have a unique property (key/value pair) with the
method UserAdmin.getUser(Str ing,Str ing) . This makes it easy to find a specific user related to a spe-
cific authentication mechanism. For example, a secure card mechanism that generates unique tokens
could have a serial number identifying the user. The owner of the card could be found with the
method

User owner = useradmin.getUser(
"secure-card-serial", "132456712-1212");

If multiple User objects have the same property (key and value), a nul l is returned.

There is a convenience method to verify that a user has a credential without actually getting the cre-
dential. This is the User.hasCredential(Str ing,Object) method.

Access to credentials is protected on a name basis by UserAdminPermiss ion . Because properties can
be read by anyone with access to a User object, UserAdminPermiss ion only protects change access to
properties.

107.2.2 Basic Authentication
The following example shows a very simple authentication algorithm based on passwords.

The vendor of the authentication bundle uses the property "com.acme.basic-id" to contain the name
of a user as it logs in. This property is used to locate the User object in the repository. Next, the cre-
dential "com.acme.password" contains the password and is compared to the entered password. If the
password is correct, the User object is returned. In all other cases a SecurityException is thrown.

public User authenticate(
UserAdmin ua, String name, String pwd)

throws SecurityException {
User user = ua.getUser("com.acme.basicid",

username);
if (user == null)

throw new SecurityException("No such user");

if (!user.hasCredential(“com.acme.password”, pwd))
throw new SecurityException(

"Invalid password");
return user;

}

107.2.3 Certificates
Authentication based on certificates does not require a shared secret. Instead, a certificate contains a
name, a public key, and the signature of one or more signers.

The name in the certificate can be used to locate a User object in the repository. Locating a User
object, however, only identifies the initiator and does not authenticate it.
Page 106 OSGi Service Platform Release 4, Version 4.2

User Admin Service Specification Version 1.1 Authorization
1. The first step to authenticate the initiator is to verify that it has the private key of the certificate.

2. Next, the User Admin service must verify that it has a User object with the right property, for
example "com.acme.cert i f icate"="Fudd" .

3. The next step is to see if the certificate is signed by a trusted source. The bundle could use a central
list of trusted signers and only accept certificates signed by those sources. Alternatively, it could
require that the certificate itself is already stored in the repository under a unique key as a byte[]
in the credentials.

4. In any case, once the certificate is verified, the associated User object is authenticated.

107.3 Authorization
The User Admin service authorization architecture is a role-based model. In this model, every action
that can be performed by a bundle is associated with a role. Such a role is a Group object (called group
from now on) from the User Admin service repository. For example, if a servlet could be used to acti-
vate the alarm system, there should be a group named AlarmSystemActivat ion .

The operator can administrate authorizations by populating the group with User objects (users) and
other groups. Groups are used to minimize the amount of administration required. For example, it is
easier to create one Administrators group and add administrative roles to it rather than individually
administer all users for each role. Such a group requires only one action to remove or add a user as an
administrator.

The authorization decision can now be made in two fundamentally different ways:

An initiator could be allowed to carry out an action (represented by a Group object) if it implied any
of the Group object’s members. For example, the AlarmSystemActivat ion Group object contains an
Administrators and a Family Group object:

Administrators = { Elmer, Pepe, Bugs }
Family = { Elmer, Pepe, Daffy }

AlarmSystemActivation = { Administrators, Family }

Any of the four members Elmer , Pepe , Daffy , or Bugs can activate the alarm system.

Alternatively, an initiator could be allowed to perform an action (represented by a Group object) if it
implied all the Group object’s members. In this case, using the same AlarmSystemActivation group,
only Elmer and Pepe would be authorized to activate the alarm system, since Daffy and Bugs are not
members of both the Administrators and Family Group objects.

The User Admin service supports a combination of both strategies by defining both a set of basic mem-
bers (any) and a set of required members (all).

Administrators = { Elmer, Pepe, Bugs }
Family = { Elmer, Pepe, Daffy }

AlarmSystemActivation
required = { Administrators }
basic = { Family }

The difference is made when Role objects are added to the Group object. To add a basic member, use
the Group.addMember(Role) method. To add a required member, use the
Group.addRequiredMember(Role) method.

Basic members define the set of members that can get access and required members reduce this set by
requiring the initiator to imply each required member.

A User object implies a Group object if it implies the following:
OSGi Service Platform Release 4, Version 4.2 Page 107

Authorization User Admin Service Specification Version 1.1
• All of the Group’s required members, and
• At least one of the Group’s basic members

A User object always implies itself.

If only required members are used to qualify the implication, then the standard user
Role.USER_ANYONE can be obtained from the User Admin service and added to the Group object.
This Role object is implied by anybody and therefore does not affect the required members.

107.3.1 The Authorization Object
The complexity of authorization is hidden in an Authorizat ion class. Normally, the authenticator
should retrieve an Authorization object from the User Admin service by passing the authenticated
User object as an argument. This Authorizat ion object is then passed to the bundle that performs the
action. This bundle checks the authorization with the Authorizat ion.hasRole(String) method. The
performing bundle must pass the name of the action as an argument. The Authorizat ion object
checks whether the authenticated user implies the Role object, specifically a Group object, with the
given name. This is shown in the following example.

public void activateAlarm(Authorization auth) {
if (auth.hasRole("AlarmSystemActivation")) {

// activate the alarm
...

}
else throw new SecurityException(

"Not authorized to activate alarm");
}

107.3.2 Authorization Example
This section demonstrates a possible use of the User Admin service. The service has a flexible model
and many other schemes are possible.

Assume an Operator installs an OSGi Service Platform. Bundles in this environment have defined the
following action groups:

AlarmSystemControl
InternetAccess
TemperatureControl
PhotoAlbumEdit
PhotoAlbumView
PortForwarding

Installing and uninstalling bundles could potentially extend this set. Therefore, the Operator also
defines a number of groups that can be used to contain the different types of system users.

Administrators
Buddies
Children
Adults
Residents

In a particular instance, the Operator installs it in a household with the following residents and bud-
dies:

Residents: Elmer, Fudd, Marvin, Pepe
Buddies: Daffy, Foghorn

First, the residents and buddies are assigned to the system user groups. Second, the user groups need
to be assigned to the action groups.
Page 108 OSGi Service Platform Release 4, Version 4.2

User Admin Service Specification Version 1.1 Repository Maintenance
The following tables show how the groups could be assigned.

107.4 Repository Maintenance
The UserAdmin interface is a straightforward API to maintain a repository of User and Group objects.
It contains methods to create new Group and User objects with the createRole(Str ing, int) method.
The method is prepared so that the same signature can be used to create new types of roles in the
future. The interface also contains a method to remove a Role object.

The existing configuration can be obtained with methods that list all Role objects using a filter argu-
ment. This filter, which has the same syntax as the Framework filter, must only return the Role
objects for which the filter matches the properties.

Several utility methods simplify getting User objects depending on their properties.

107.5 User Admin Events
Changes in the User Admin service can be determined in real time. Each User Admin service imple-
mentation must send a UserAdminEvent object to any service in the Framework service registry that
is registered under the UserAdminListener interface. This event must be send asynchronously from
the cause of the event. The way events must be delivered is the same as described in Delivering Events
on page 116 of the Core specification.

This procedure is demonstrated in the following code sample.

class Listener implements UserAdminListener {
public void roleChanged(UserAdminEvent event) {

...
}

}
public class MyActivator

implements BundleActivator {
public void start(BundleContext context) {

context.registerService(

Table 107.1 Example Groups with Basic and Required Members

Groups Elmer Fudd Marvin Pepe Daffy Foghorn

Residents Basic Basic Basic Basic - -
Buddies - - - - Basic Basic
Chi ldren - - Basic Basic - -
Adults Basic Basic - - - -
Administrators Basic - - - - -

Table 107.2 Example Action Groups with their Basic and Required Members

Groups Residents Buddies Children Adults Admin

AlarmSystemCon-
trol

Basic - - - Required

InternetAccess Basic - - Required -
TemperatureCon-
trol

Basic - - Required -

PhotoAlbumEdit Basic - Basic Basic -
PhotoAlbumView Basic Basic - - -
PortForwarding Basic - - - Required
OSGi Service Platform Release 4, Version 4.2 Page 109

Security User Admin Service Specification Version 1.1
UserAdminListener.class.getName(),
new Listener(), null);

}
public void stop(BundleContext context) {}

}

It is not necessary to unregister the listener object when the bundle is stopped because the Frame-
work automatically unregisters it. Once registered, the UserAdminListener object must be notified of
all changes to the role repository.

107.5.1 Event Admin and User Admin Change Events
User admin events must be delivered asynchronously to the Event Admin service by the implemen-
tation, if present. The topic of a User Admin Event is:

org/osgi/service/useradmin/UserAdmin/<event type>

The following event types are supported:

ROLE_CREATED
ROLE_CHANGED
ROLE_REMOVED

All User Admin Events must have the following properties:

• event – (UserAdminEvent) The event that was broadcast by the User Admin service.
• role – (Role) The Role object that was created, modified or removed.
• role .name – (Str ing) The name of the role.
• role .type – (Integer) One of ROLE, USER or GROUP .
• service – (ServiceReference) The Service Reference of the User Admin service.
• service. id – (Long) The User Admin service's ID.
• service.objectClass – (Str ing[]) The User Admin service's object class (which must include

org.osgi .serv ice.useradmin.UserAdmin)
• service.pid – (Str ing) The User Admin service's persistent identity

107.6 Security
The User Admin service is related to the security model of the OSGi Service Platform, but is comple-
mentary to the [1] The Java Security Architecture for JDK 1.2. The final permission of most code should
be the intersection of the Java 2 Permissions, which are based on the code that is executing, and the
User Admin service authorization, which is based on the user for whom the code runs.

107.6.1 UserAdminPermission
The User Admin service defines the UserAdminPermiss ion class that can be used to restrict bundles
in accessing credentials. This permission class has the following actions:

• changeProperty – This permission is required to modify properties. The name of the permission is
the prefix of the property name.

• changeCredential – This action permits changing credentials. The name of the permission is the
prefix of the name of the credential.

• getCredentia l – This action permits getting credentials. The name of the permission is the prefix
of the credential.

If the name of the permission is "admin", it allows the owner to administer the repository. No action
is associated with the permission in that case.

Otherwise, the permission name is used to match the property name. This name may end with a ".*"
string to indicate a wildcard. For example, com.acme.*matches com.acme.fudd.elmer and
com.acme.bugs .
Page 110 OSGi Service Platform Release 4, Version 4.2

User Admin Service Specification Version 1.1 Relation to JAAS
107.7 Relation to JAAS
At a glance, the Java Authorization and Authentication Service (JAAS) seems to be a very suitable
model for user administration. The OSGi organization, however, decided to develop an independent
User Admin service because JAAS was not deemed applicable. The reasons for this include depen-
dency on Java SE version 1.3 ("JDK 1.3") and existing mechanisms in the previous OSGi Service Gate-
way 1.0 specification.

107.7.1 JDK 1.3 Dependencies
The authorization component of JAAS relies on the java.security.DomainCombiner interface, which
provides a means to dynamically update the Protect ionDomain objects affiliated with an
AccessControlContext object.

This interface was added in JDK 1.3. In the context of JAAS, the SubjectDomainCombiner object,
which implements the DomainCombiner interface, is used to update ProtectionDomain objects. The
permissions of Protect ionDomain objects depend on where code came from and who signed it, with
permissions based on who is running the code.

Leveraging JAAS would have resulted in user-based access control on the OSGi Service Platform
being available only with JDK 1.3, which was not deemed acceptable.

107.7.2 Existing OSGi Mechanism
JAAS provides a pluggable authentication architecture, which enables applications and their under-
lying authentication services to remain independent from each other.

The Http Service already provides a similar feature by allowing servlet and resource registrations to
be supported by an HttpContext object, which uses a callback mechanism to perform any required
authentication checks before granting access to the servlet or resource. This way, the registering bun-
dle has complete control on a per-servlet and per-resource basis over which authentication protocol
to use, how the credentials presented by the remote requestor are to be validated, and who should be
granted access to the servlet or resource.

107.7.3 Future Road Map
In the future, the main barrier of 1.3 compatibility will be removed. JAAS could then be implemented
in an OSGi environment. At that time, the User Admin service will still be needed and will provide
complementary services in the following ways:

• The authorization component relies on group membership information to be stored and managed
outside JAAS. JAAS does not manage persistent information, so the User Admin service can be a
provider of group information when principals are assigned to a Subject object.

• The authorization component allows for credentials to be collected and verified, but a repository
is needed to actually validate the credentials.

In the future, the User Admin service can act as the back-end database to JAAS. The only aspect JAAS
will remove from the User Admin service is the need for the Authorizat ion interface.

107.8 org.osgi.service.useradmin
User Admin Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. For example:

Import-Package: org.osgi.service.useradmin; version=”[1.1,2.0)”
OSGi Service Platform Release 4, Version 4.2 Page 111

org.osgi.service.useradmin User Admin Service Specification Version 1.1
107.8.1 Summary
• Authorization - The Authorizat ion interface encapsulates an authorization context on which

bundles can base authorization decisions, where appropriate.
• Group - A named grouping of roles (Role objects).
• Role - The base interface for Role objects managed by the User Admin service.
• User - A User role managed by a User Admin service.
• UserAdmin - This interface is used to manage a database of named Role objects, which can be used

for authentication and authorization purposes.
• UserAdminEvent - Role change event.
• UserAdminListener - Listener for UserAdminEvents.
• UserAdminPermission - Permission to configure and access the Role objects managed by a User

Admin service.
Authorization

107.8.2 public interface Authorization
The Authorizat ion interface encapsulates an authorization context on which bundles can base
authorization decisions, where appropriate.

Bundles associate the privilege to access restricted resources or operations with roles. Before granting
access to a restricted resource or operation, a bundle will check if the Authorizat ion object passed to
it possess the required role, by calling its hasRole method.

Authorization contexts are instantiated by calling the UserAdmin.getAuthorization method.

Trusting Authorization objects

There are no restrictions regarding the creation of Authorizat ion objects. Hence, a service must only
accept Authorizat ion objects from bundles that has been authorized to use the service using code
based (or Java 2) permissions.

In some cases it is useful to use ServicePermission to do the code based access control. A service bas-
ing user access control on Authorizat ion objects passed to it, will then require that a calling bundle
has the ServicePermission to get the service in question. This is the most convenient way. The OSGi
environment will do the code based permission check when the calling bundle attempts to get the
service from the service registry.

Example: A servlet using a service on a user’s behalf. The bundle with the servlet must be given the
ServicePermission to get the Http Service.

However, in some cases the code based permission checks need to be more fine-grained. A service
might allow all bundles to get it, but require certain code based permissions for some of its methods.

Example: A servlet using a service on a user’s behalf, where some service functionality is open to any-
one, and some is restricted by code based permissions. When a restricted method is called (e.g., one
handing over an Authorizat ion object), the service explicitly checks that the calling bundle has per-
mission to make the call.
getName()

107.8.2.1 public String getName()

Gets the name of the User that this Authorizat ion context was created for.

Returns The name of the User object that this Authorizat ion context was created for, or null if no user was spec-
ified when this Authorizat ion context was created.
getRoles()

107.8.2.2 public String[] getRoles()

Gets the names of all roles implied by this Authorization context.

Returns The names of all roles implied by this Authorizat ion context, or nul l if no roles are in the context. The
predefined role user.anyone will not be included in this list.
hasRole(String)
Page 112 OSGi Service Platform Release 4, Version 4.2

User Admin Service Specification Version 1.1 org.osgi.service.useradmin
107.8.2.3 public boolean hasRole(String name)

name The name of the role to check for.

Checks if the role with the specified name is implied by this Authorization context.

Bundles must define globally unique role names that are associated with the privilege of accessing
restricted resources or operations. Operators will grant users access to these resources, by creating a
Group object for each role and adding User objects to it.

Returns true if this Authorizat ion context implies the specified role, otherwise false .
Group

107.8.3 public interface Group
extends User
A named grouping of roles (Role objects).

Whether or not a given Authorizat ion context implies a Group object depends on the members of
that Group object.

A Group object can have two kinds of members: basic and required . A Group object is implied by an
Authorizat ion context if all of its required members are implied and at least one of its basic members
is implied.

A Group object must contain at least one basic member in order to be implied. In other words, a
Group object without any basic member roles is never implied by any Authorizat ion context.

A User object always implies itself.

No loop detection is performed when adding members to Group objects, which means that it is possi-
ble to create circular implications. Loop detection is instead done when roles are checked. The
semantics is that if a role depends on itself (i.e., there is an implication loop), the role is not implied.

The rule that a Group object must have at least one basic member to be implied is motivated by the
following example:

group foo
required members: marketing
basic members: alice, bob

Privileged operations that require membership in “foo” can be performed only by “alice” and “bob”,
who are in marketing.

If “alice” and “bob” ever transfer to a different department, anybody in marketing will be able to
assume the “foo” role, which certainly must be prevented. Requiring that “foo” (or any Group object
for that matter) must have at least one basic member accomplishes that.

However, this would make it impossible for a Group object to be implied by just its required mem-
bers. An example where this implication might be useful is the following declaration: “Any citizen
who is an adult is allowed to vote.” An intuitive configuration of “voter” would be:

group voter
required members: citizen, adult

basic members:

However, according to the above rule, the “voter” role could never be assumed by anybody, since it
lacks any basic members. In order to address this issue a predefined role named “user.anyone” can be
specified, which is always implied. The desired implication of the “voter” group can then be achieved
by specifying “user.anyone” as its basic member, as follows:

group voter
OSGi Service Platform Release 4, Version 4.2 Page 113

org.osgi.service.useradmin User Admin Service Specification Version 1.1
required members: citizen, adult
basic members: user.anyone

addMember(Role)

107.8.3.1 public boolean addMember(Role role)

role The role to add as a basic member.

Adds the specified Role object as a basic member to this Group object.

Returns true if the given role could be added as a basic member, and false if this Group object already contains
a Role object whose name matches that of the specified role.

Throws SecurityException – If a security manager exists and the caller does not have the
UserAdminPermiss ion with name admin .
addRequiredMember(Role)

107.8.3.2 public boolean addRequiredMember(Role role)

role The Role object to add as a required member.

Adds the specified Role object as a required member to this Group object.

Returns true if the given Role object could be added as a required member, and false if this Group object al-
ready contains a Role object whose name matches that of the specified role.

Throws SecurityException – If a security manager exists and the caller does not have the
UserAdminPermiss ion with name admin .
getMembers()

107.8.3.3 public Role[] getMembers()

Gets the basic members of this Group object.

Returns The basic members of this Group object, or null if this Group object does not contain any basic mem-
bers.
getRequiredMembers()

107.8.3.4 public Role[] getRequiredMembers()

Gets the required members of this Group object.

Returns The required members of this Group object, or nul l if this Group object does not contain any required
members.
removeMember(Role)

107.8.3.5 public boolean removeMember(Role role)

role The Role object to remove from this Group object.

Removes the specified Role object from this Group object.

Returns true if the Role object could be removed, otherwise false .

Throws SecurityException – If a security manager exists and the caller does not have the
UserAdminPermiss ion with name admin .
Role

107.8.4 public interface Role
The base interface for Role objects managed by the User Admin service.

This interface exposes the characteristics shared by all Role classes: a name, a type, and a set of proper-
ties.

Properties represent public information about the Role object that can be read by anyone. Specific
UserAdminPermiss ion objects are required to change a Role object’s properties.

Role object properties are Dict ionary objects. Changes to these objects are propagated to the User
Admin service and made persistent.
Page 114 OSGi Service Platform Release 4, Version 4.2

User Admin Service Specification Version 1.1 org.osgi.service.useradmin
Every User Admin service contains a set of predefined Role objects that are always present and can-
not be removed. All predefined Role objects are of type ROLE . This version of the
org.osgi .service.useradmin package defines a single predefined role named “user.anyone”, which is
inherited by any other role. Other predefined roles may be added in the future. Since “user.anyone” is
a Role object that has properties associated with it that can be read and modified. Access to these
properties and their use is application specific and is controlled using UserAdminPermission in the
same way that properties for other Role objects are.
GROUP

107.8.4.1 public static final int GROUP = 2

The type of a Group role.

The value of GROUP is 2.
ROLE

107.8.4.2 public static final int ROLE = 0

The type of a predefined role.

The value of ROLE is 0.
USER

107.8.4.3 public static final int USER = 1

The type of a User role.

The value of USER is 1.
USER_ANYONE

107.8.4.4 public static final String USER_ANYONE = “user.anyone”

The name of the predefined role, user.anyone, that all users and groups belong to.

Since 1.1
getName()

107.8.4.5 public String getName()

Returns the name of this role.

Returns The role’s name.
getProperties()

107.8.4.6 public Dictionary getProperties()

Returns a Dictionary of the (public) properties of this Role object. Any changes to the returned
Dictionary will change the properties of this Role object. This will cause a UserAdminEvent object of
type UserAdminEvent.ROLE_CHANGED to be broadcast to any UserAdminListener objects.

Only objects of type Str ing may be used as property keys, and only objects of type Str ing or byte[]
may be used as property values. Any other types will cause an exception of type
I l legalArgumentException to be raised.

In order to add, change, or remove a property in the returned Dict ionary , a UserAdminPermiss ion
named after the property name (or a prefix of it) with action changeProperty is required.

Returns Dictionary containing the properties of this Role object.
getType()

107.8.4.7 public int getType()

Returns the type of this role.

Returns The role’s type.
User

107.8.5 public interface User
extends Role
A User role managed by a User Admin service.

In this context, the term “user” is not limited to just human beings. Instead, it refers to any entity that
may have any number of credentials associated with it that it may use to authenticate itself.
OSGi Service Platform Release 4, Version 4.2 Page 115

org.osgi.service.useradmin User Admin Service Specification Version 1.1
In general, User objects are associated with a specific User Admin service (namely the one that cre-
ated them), and cannot be used with other User Admin services.

A User object may have credentials (and properties, inherited from the Role class) associated with it.
Specific UserAdminPermission objects are required to read or change a User object’s credentials.

Credentials are Dict ionary objects and have semantics that are similar to the properties in the Role
class.
getCredentials()

107.8.5.1 public Dictionary getCredentials()

Returns a Dict ionary of the credentials of this User object. Any changes to the returned Dict ionary
object will change the credentials of this User object. This will cause a UserAdminEvent object of type
UserAdminEvent.ROLE_CHANGED to be broadcast to any UserAdminListeners objects.

Only objects of type Str ing may be used as credential keys, and only objects of type Str ing or of type
byte[] may be used as credential values. Any other types will cause an exception of type
I l legalArgumentException to be raised.

In order to retrieve a credential from the returned Dict ionary object, a UserAdminPermission named
after the credential name (or a prefix of it) with action getCredentia l is required.

In order to add or remove a credential from the returned Dictionary object, a UserAdminPermission
named after the credential name (or a prefix of it) with action changeCredentia l is required.

Returns Dictionary object containing the credentials of this User object.
hasCredential(String,Object)

107.8.5.2 public boolean hasCredential(String key, Object value)

key The credential key .

value The credential value .

Checks to see if this User object has a credential with the specified key set to the specified value .

If the specified credential value is not of type Str ing or byte[] , it is ignored, that is, fa lse is returned
(as opposed to an I l legalArgumentException being raised).

Returns true if this user has the specified credential; false otherwise.

Throws SecurityException – If a security manager exists and the caller does not have the
UserAdminPermiss ion named after the credential key (or a prefix of it) with action getCredentia l .
UserAdmin

107.8.6 public interface UserAdmin
This interface is used to manage a database of named Role objects, which can be used for authentica-
tion and authorization purposes.

This version of the User Admin service defines two types of Role objects: “User” and “Group”. Each
type of role is represented by an int constant and an interface. The range of positive integers is
reserved for new types of roles that may be added in the future. When defining proprietary role types,
negative constant values must be used.

Every role has a name and a type.

A User object can be configured with credentials (e.g., a password) and properties (e.g., a street
address, phone number, etc.).

A Group object represents an aggregation of User and Group objects. In other words, the members of
a Group object are roles themselves.

Every User Admin service manages and maintains its own namespace of Role objects, in which each
Role object has a unique name.
createRole(String,int)
Page 116 OSGi Service Platform Release 4, Version 4.2

User Admin Service Specification Version 1.1 org.osgi.service.useradmin
107.8.6.1 public Role createRole(String name, int type)

name The name of the Role object to create.

type The type of the Role object to create. Must be either a Role.USER type or Role.GROUP type.

Creates a Role object with the given name and of the given type.

If a Role object was created, a UserAdminEvent object of type UserAdminEvent.ROLE_CREATED is
broadcast to any UserAdminListener object.

Returns The newly created Role object, or nul l if a role with the given name already exists.

Throws IllegalArgumentException – if type is invalid.

SecurityException – If a security manager exists and the caller does not have the
UserAdminPermiss ion with name admin .
getAuthorization(User)

107.8.6.2 public Authorization getAuthorization(User user)

user The User object to create an Authorizat ion object for, or nul l for the anonymous user.

Creates an Authorizat ion object that encapsulates the specified User object and the Role objects it
possesses. The null user is interpreted as the anonymous user. The anonymous user represents a user
that has not been authenticated. An Authorizat ion object for an anonymous user will be unnamed,
and will only imply groups that user.anyone implies.

Returns the Authorizat ion object for the specified User object.
getRole(String)

107.8.6.3 public Role getRole(String name)

name The name of the Role object to get.

Gets the Role object with the given name from this User Admin service.

Returns The requested Role object, or nul l if this User Admin service does not have a Role object with the given
name .
getRoles(String)

107.8.6.4 public Role[] getRoles(String filter) throws InvalidSyntaxException

filter The filter criteria to match.

Gets the Role objects managed by this User Admin service that have properties matching the speci-
fied LDAP filter criteria. See org.osgi . framework.F i lter for a description of the filter syntax. If a nul l
filter is specified, all Role objects managed by this User Admin service are returned.

Returns The Role objects managed by this User Admin service whose properties match the specified filter cri-
teria, or all Role objects if a nul l filter is specified. If no roles match the filter, nul l will be returned.

Throws InvalidSyntaxException – If the filter is not well formed.
getUser(String,String)

107.8.6.5 public User getUser(String key, String value)

key The property key to look for.

value The property value to compare with.

Gets the user with the given property key -value pair from the User Admin service database. This is a
convenience method for retrieving a User object based on a property for which every User object is
supposed to have a unique value (within the scope of this User Admin service), such as for example a
X.500 distinguished name.

Returns A matching user, if exactly one is found. If zero or more than one matching users are found, null is re-
turned.
removeRole(String)

107.8.6.6 public boolean removeRole(String name)

name The name of the Role object to remove.
OSGi Service Platform Release 4, Version 4.2 Page 117

org.osgi.service.useradmin User Admin Service Specification Version 1.1
Removes the Role object with the given name from this User Admin service and all groups it is a
member of.

If the Role object was removed, a UserAdminEvent object of type UserAdminEvent.ROLE_REMOVED
is broadcast to any UserAdminListener object.

Returns true If a Role object with the given name is present in this User Admin service and could be removed,
otherwise fa lse .

Throws SecurityException – If a security manager exists and the caller does not have the
UserAdminPermiss ion with name admin .
UserAdminEvent

107.8.7 public class UserAdminEvent
Role change event.

UserAdminEvent objects are delivered asynchronously to any UserAdminListener objects when a
change occurs in any of the Role objects managed by a User Admin service.

A type code is used to identify the event. The following event types are defined: ROLE_CREATED type,
ROLE_CHANGED type, and ROLE_REMOVED type. Additional event types may be defined in the
future.

See Also UserAdmin, UserAdminListener
ROLE_CHANGED

107.8.7.1 public static final int ROLE_CHANGED = 2

A Role object has been modified.

The value of ROLE_CHANGED is 0x00000002.
ROLE_CREATED

107.8.7.2 public static final int ROLE_CREATED = 1

A Role object has been created.

The value of ROLE_CREATED is 0x00000001.
ROLE_REMOVED

107.8.7.3 public static final int ROLE_REMOVED = 4

A Role object has been removed.

The value of ROLE_REMOVED is 0x00000004.
UserAdminEvent(ServiceReference,int,Role)

107.8.7.4 public UserAdminEvent(ServiceReference ref, int type, Role role)

ref The ServiceReference object of the User Admin service that generated this event.

type The event type.

role The Role object on which this event occurred.

Constructs a UserAdminEvent object from the given ServiceReference object, event type, and Role
object.
getRole()

107.8.7.5 public Role getRole()

Gets the Role object this event was generated for.

Returns The Role object this event was generated for.
getServiceReference()

107.8.7.6 public ServiceReference getServiceReference()

Gets the ServiceReference object of the User Admin service that generated this event.

Returns The User Admin service’s ServiceReference object.
getType()
Page 118 OSGi Service Platform Release 4, Version 4.2

User Admin Service Specification Version 1.1 org.osgi.service.useradmin
107.8.7.7 public int getType()

Returns the type of this event.

The type values are ROLE_CREATED type, ROLE_CHANGED type, and ROLE_REMOVED type.

Returns The event type.
UserAdminListener

107.8.8 public interface UserAdminListener
Listener for UserAdminEvents.

UserAdminListener objects are registered with the Framework service registry and notified with a
UserAdminEvent object when a Role object has been created, removed, or modified.

UserAdminListener objects can further inspect the received UserAdminEvent object to determine its
type, the Role object it occurred on, and the User Admin service that generated it.

See Also UserAdmin, UserAdminEvent
roleChanged(UserAdminEvent)

107.8.8.1 public void roleChanged(UserAdminEvent event)

event The UserAdminEvent object.

Receives notification that a Role object has been created, removed, or modified.
UserAdminPermission

107.8.9 public final class UserAdminPermission
extends BasicPermission
Permission to configure and access the Role objects managed by a User Admin service.

This class represents access to the Role objects managed by a User Admin service and their properties
and credentials (in the case of User objects).

The permission name is the name (or name prefix) of a property or credential. The naming conven-
tion follows the hierarchical property naming convention. Also, an asterisk may appear at the end of
the name, following a “.”, or by itself, to signify a wildcard match. For example: “org.osgi.security.pro-
tocol.*” or “*” is valid, but “*protocol” or “a*b” are not valid.

The UserAdminPermission with the reserved name “admin” represents the permission required for
creating and removing Role objects in the User Admin service, as well as adding and removing mem-
bers in a Group object. This UserAdminPermission does not have any actions associated with it.

The actions to be granted are passed to the constructor in a string containing a list of one or more
comma-separated keywords. The possible keywords are: changeProperty ,changeCredentia l , and
getCredential . Their meaning is defined as follows:

action
changeProperty Permission to change (i.e., add and remove)

Role object properties whose names start with
the name argument specified in the constructor.

changeCredential Permission to change (i.e., add and remove)
User object credentials whose names start
with the name argument specified in the constructor.

getCredential Permission to retrieve and check for the
existence of User object credentials whose names
start with the name argument specified in the
constructor.

The action string is converted to lowercase before processing.

Following is a PermissionInfo style policy entry which grants a user administration bundle a number
of UserAdminPermiss ion object:
OSGi Service Platform Release 4, Version 4.2 Page 119

org.osgi.service.useradmin User Admin Service Specification Version 1.1
(org.osgi.service.useradmin.UserAdminPermission “admin”)
(org.osgi.service.useradmin.UserAdminPermission “com.foo.*” “changeProperty,get-

Credential,changeCredential”)
(org.osgi.service.useradmin.UserAdminPermission “user.*”, “changeProperty,

changeCredential”)

The first permission statement grants the bundle the permission to perform any User Admin service
operations of type “admin”, that is, create and remove roles and configure Group objects.

The second permission statement grants the bundle the permission to change any properties as well
as get and change any credentials whose names start with com.foo. .

The third permission statement grants the bundle the permission to change any properties and cre-
dentials whose names start with user . . This means that the bundle is allowed to change, but not
retrieve any credentials with the given prefix.

The following policy entry empowers the Http Service bundle to perform user authentication:

grant codeBase “${jars}http.jar” {
permission org.osgi.service.useradmin.UserAdminPermission
“user.password”, “getCredential”;

};

The permission statement grants the Http Service bundle the permission to validate any password
credentials (for authentication purposes), but the bundle is not allowed to change any properties or
credentials.

Concurrency Thread-safe
ADMIN

107.8.9.1 public static final String ADMIN = “admin”

The permission name “admin”.
CHANGE_CREDENTIAL

107.8.9.2 public static final String CHANGE_CREDENTIAL = “changeCredential”

The action string “changeCredential”.
CHANGE_PROPERTY

107.8.9.3 public static final String CHANGE_PROPERTY = “changeProperty”

The action string “changeProperty”.
GET_CREDENTIAL

107.8.9.4 public static final String GET_CREDENTIAL = “getCredential”

The action string “getCredential”.
UserAdminPermission(String,String)

107.8.9.5 public UserAdminPermission(String name, String actions)

name the name of this UserAdminPermission

actions the action string.

Creates a new UserAdminPermission with the specified name and actions. name is either the
reserved string “admin” or the name of a credential or property, and actions contains a comma-sepa-
rated list of the actions granted on the specified name. Valid actions are changeProperty ,
changeCredential , and getCredential.

Throws IllegalArgumentException – If name equals “admin” and actions are specified.
equals(Object)

107.8.9.6 public boolean equals(Object obj)

obj the object to be compared for equality with this object.
Page 120 OSGi Service Platform Release 4, Version 4.2

User Admin Service Specification Version 1.1 References
Checks two UserAdminPermission objects for equality. Checks that obj is a UserAdminPermission ,
and has the same name and actions as this object.

Returns true if obj is a UserAdminPermission object, and has the same name and actions as this
UserAdminPermiss ion object.
getActions()

107.8.9.7 public String getActions()

Returns the canonical string representation of the actions, separated by comma.

Returns the canonical string representation of the actions.
hashCode()

107.8.9.8 public int hashCode()

Returns the hash code value for this object.

Returns A hash code value for this object.
implies(Permission)

107.8.9.9 public boolean implies(Permission p)

p the permission to check against.

Checks if this UserAdminPermission object “implies” the specified permission.

More specifically, this method returns true if:

• p is an instanceof UserAdminPermiss ion ,
• p ‘s actions are a proper subset of this object’s actions, and
• p ‘s name is implied by this object’s name. For example, “java.*” implies “java.home”.

Returns true if the specified permission is implied by this object; false otherwise.
newPermissionCollection()

107.8.9.10 public PermissionCollection newPermissionCollection()

Returns a new PermissionCol lect ion object for storing UserAdminPermission objects.

Returns a new Permiss ionCol lection object suitable for storing UserAdminPermission objects.
toString()

107.8.9.11 public String toString()

Returns a string describing this UserAdminPermission object. This string must be in PermissionInfo
encoded format.

Returns The PermissionInfo encoded string for this UserAdminPermission object.

See Also org.osgi.service.permissionadmin.PermissionInfo.getEncoded

107.9 References
[1] The Java Security Architecture for JDK 1.2

Version 1.0, Sun Microsystems, October 1998

[2] Java Authentication and Authorization Service
http://java.sun.com/javase/technologies/security/
OSGi Service Platform Release 4, Version 4.2 Page 121

References User Admin Service Specification Version 1.1
Page 122 OSGi Service Platform Release 4, Version 4.2

Initial Provisioning Specification Version 1.2 Introduction
110 Initial Provisioning Specification
Version 1.2

110.1 Introduction
To allow freedom regarding the choice of management protocol, the OSGi Specifications assumes an
architecture to remotely manage a Service Platform with a Management Agent. The Management
Agent is implemented with a Management Bundle that can communicate with an unspecified man-
agement protocol.

This specification defines how the Management Agent can make its way to the Service Platform, and
gives a structured view of the problems and their corresponding resolution methods.

The purpose of this specification is to enable the management of a Service Platform by an Operator,
and (optionally) to hand over the management of the Service Platform later to another Operator. This
approach is in accordance with the OSGi remote management reference architecture.

This bootstrapping process requires the installation of a Management Agent, with appropriate con-
figuration data, in the Service Platform.

This specification consists of a prologue, in which the principles of the Initial Provisioning are out-
lined, and a number of mappings to different mechanisms.

110.1.1 Essentials
• Policy Free – The proposed solution must be business model agnostic; none of the affected parties

(Operators, SPS Manufacturers, etc.) should be forced into any particular business model.
• Inter-operability – The Initial Provisioning must permit arbitrary inter-operability between man-

agement systems and Service Platforms. Any compliant Remote Manager should be able to
manage any compliant Service Platform, even in the absence of a prior business relationship.
Adhering to this requirement allows a particular Operator to manage a variety of makes and
models of Service Platform Servers using a single management system of the Operator’s choice.
This rule also gives the consumer the greatest choice when selecting an Operator.

• Flexible – The management process should be as open as possible, to allow innovation and special-
ization while still achieving interoperability.

110.1.2 Entities
• Provisioning Service – A service registered with the Framework that provides information about the

initial provisioning to the Management Agent.
• Provisioning Dictionary – A Dict ionary object that is filled with information from the ZIP files that

are loaded during initial setup.
• RSH Protocol – An OSGi specific secure protocol based on HTTP.
• Management Agent – A bundle that is responsible for managing a Service Platform under control of

a Remote Manager.
OSGi Service Platform Release 4, Version 4.2 Page 123

Procedure Initial Provisioning Specification Version 1.2
Figure 110.1 Initial Provisioning

110.2 Procedure
The following procedure should be executed by an OSGi Framework implementation that supports
this Initial Provisioning specification.

When the Service Platform is first brought under management control, it must be provided with an
initial request URL in order to be provisioned. Either the end user or the manufacturer may provide
the initial request URL. How the initial request URL is transferred to the Framework is not specified,
but a mechanism might, for example, be a command line parameter when the framework is started.

When asked to start the Initial Provisioning, the Service Platform will send a request to the manage-
ment system. This request is encoded in a URL, for example:

http://osgi.acme.com/remote-manager

This URL may use any protocol that is available on the Service Platform Server. Many standard proto-
cols exist, but it is also possible to use a proprietary protocol. For example, software could be present
which can communicate with a smart card and could handle, for example, this URL:

smart-card://com1:0/7F20/6F38

Before the request URL is executed, the Service Platform information is appended to the URL. This
information includes at least the Service Platform Identifier, but may also contain proprietary infor-
mation, as long as the keys for this information do not conflict. Different URL schemes may use dif-
ferent methods of appending parameters; these details are specified in the mappings of this
specification to concrete protocols.

The result of the request must be a ZIP file (The content type should be appl ication/zip). It is the
responsibility of the underlying protocol to guarantee the integrity and authenticity of this ZIP file.

This ZIP file is unpacked and its entries (except bundle and bundle-url entries, described in Table
110.2) are placed in a Dict ionary object. This Dictionary object is called the Provisioning Dictionary. It
must be made available from the Provisioning Service in the service registry. The names of the entries
in the ZIP file must not start with a slash (’/’).

<<interface>>
Provisioning
Service

Management
Agent impl.

Provisioning
Service impl.

java.net.URL

RSH URL handler HTTP/HTTPS
URL handler

URL FILE handler

is installed by

gets

uses protocol defined by setup information
Page 124 OSGi Service Platform Release 4, Version 4.2

Initial Provisioning Specification Version 1.2 Procedure
The ZIP file may contain only four types of dictionary entries: text , binary , bundle , or bundle-url . The
type of an entry can be specified in different ways. An Initial Provisioning service must look in the
following places to find the information about an entry’s (MIME) type (in the given order):

1 The manifest header InitialProvisioning-Entries of the given ZIP file. This header is defined in Ini-
tialProvisioning-Entries Manifest Header on page 127. If this header is present, but a given entry’s
path is not named then try the next step.

2 The ZIP entry’s extra field. If this ZIP entry field is present, the Initial Provisioning service should
not look further, even if the extra field contains an erroneous value.

3 The extension of the entry path name if one of . txt , . jar , .ur l extensions. See Content types of provi-
sioning ZIP file on page 125 for the mapping of types, MIME types, and extensions.

4 The entry is assumed to be a binary type

The types can optionally be specified as a MIME type as defined in [7] MIME Types. The text and
bundle-url entries are translated into a Str ing object from an UTF-8 encoded byte array. All other
entries must be stored as a byte[] .

The Provisioning Service must install (but not start) all entries in the ZIP file that are typed with
bundle or bundle-url .

Table 110.1 Content types of provisioning ZIP file

Type MIME Type Ext Description

text MIME_STRING
text/
pla in;charset=utf-8

.txt Must be represented as a String object

binary MIME_BYTE_ARRAY
appl ication/octet-
stream

not
.txt ,
.ur l ,
or . jar

Must be represented as a byte array (byte[]).

bundle MIME_BUNDLE
appl ication/
 vnd.osgi .bundle

MIME_BUNDLE_ALT
appl ication/
 x-osgi-bundle

. jar Entries must be installed using BundleCon-
text.installBundle(String,InputStream), with
the InputStream object constructed from the
contents of the ZIP entry. The location must
be the name of the ZIP entry without leading
slash. This entry must not be stored in the
Provisioning Dictionary.
If a bundle with this location name is
already installed in this system, then this
bundle must be updated instead of installed.
The MIME_BUNDLE_ALT version is intended
for backward compatibility, it specifies the
original MIME type for bundles before there
was an official IANA MIME type.

bundle-ur l MIME_BUNDLE_URL
text/
 x-osgi-bundle-url ;
 charset=utf-8

.url The content of this entry is a string coded in
utf-8. Entries must be installed using
BundleContext . instal lBundle(Str ing,
InputStream) , with the InputStream object
created from the given URL. The location
must be the name of the ZIP entry without
leading slash. This entry must not be stored
in the Provisioning Dictionary.
If a bundle with this location url is already
installed in this system, then this bundle
must be updated instead of installed.
OSGi Service Platform Release 4, Version 4.2 Page 125

Procedure Initial Provisioning Specification Version 1.2
If an entry named PROVISIONING_START_BUNDLE is present in the Provisioning Dictionary, then its
content type must be text as defined in Table 110.1. The content of this entry must match the bundle
location of a previously loaded bundle. This designated bundle must be given Al lPermission and
started.

If no PROVISIONING_START_BUNDLE entry is present in the Provisioning Dictionary, the Provision-
ing Dictionary should contain a reference to another ZIP file under the PROVISIONING_REFERENCE
key. If both keys are absent, no further action must take place.

If this PROVISIONING_REFERENCE key is present and holds a Str ing object that can be mapped to a
valid URL, then a new ZIP file must be retrieved from this URL. The PROVISIONING_REFERENCE link
may be repeated multiple times in successively loaded ZIP files.

Referring to a new ZIP file with such a URL allows a manufacturer to place a fixed reference inside the
Service Platform Server (in a file or smart card) that will provide some platform identifying informa-
tion and then also immediately load the information from the management system. The
PROVISIONING_REFERENCE link may be repeated multiple times in successively loaded ZIP files. The
entry PROVISIONING_UPDATE_COUNT must be an Integer object that must be incremented on every
iteration.

Information retrieved while loading subsequent PROVISIONING_REFERENCE URLs may replace pre-
vious key/values in the Provisioning Dictionary, but must not erase unrecognized key/values. For
example, if an assignment has assigned the key proprietary-x , with a value ’3’, then later assignments
must not override this value, unless the later loaded ZIP file contains an entry with that name. All
these updates to the Provisioning Dictionary must be stored persistently. At the same time, each
entry of type bundle or bundle-url (see Table 110.1) must be installed and not started.

Once the Management Agent has been started, the Initial Provisioning service has become opera-
tional. In this state, the Initial Provisioning service must react when the Provisioning Dictionary is
updated with a new PROVISIONING_REFERENCE property. If this key is set, it should start the cycle
again. For example, if the control of a Service Platform needs to be transferred to another Remote
Manager, the Management Agent should set the PROVISIONING_REFERENCE to the location of this
new Remote Manager’s Initial Provisioning ZIP file.This process is called re-provisioning.

If errors occur during this process, the Initial Provisioning service should try to notify the Service
User of the problem.

The previous description is depicted in Figure 110.2 as a flow chart.
Page 126 OSGi Service Platform Release 4, Version 4.2

Initial Provisioning Specification Version 1.2 Special Configurations
Figure 110.2 Flow chart installation Management Agent bundle

The Management Agent may require configuration data that is specific to the Service Platform
instance. If this data is available outside the Management Agent bundle, the merging of this data
with the Management Agent may take place in the Service Platform. Transferring the data separately
will make it possible to simplify the implementation on the server side, as it is not necessary to create
personalized Service Platform bundles. The PROVISIONING_AGENT_CONFIG key is reserved for this
purpose, but the Management Agent may use another key or mechanisms if so desired.

The PROVISIONING_SPID key must contain the Service Platform Identifier.

110.2.1 InitialProvisioning-Entries Manifest Header
The InitialProvisioning-Entries manifest header optionally specifies the type of the entries in the ZIP
file. This header, when present, overrides the extra field for the given entry. The syntax for this
header is:

InitialProvisioning-Entries ::= ip-entry (’,’ ip-entry) *
ip-entry ::= path (’;’ parameter) *

The entry is the path name of a resource in the ZIP file. This InitialProvisioning-Entries header recog-
nizes the following attribute:

• type – Gives the type of the dictionary entry. The type can have one of the following values: text ,
binary , bundle , or bundle-ur l

If the type parameter entry is not specified for an entry, then the type will be inferred from the exten-
sion of the entry, as defined in table Content types of provisioning ZIP file on page 125.

110.3 Special Configurations
The next section shows some examples of specially configured types of Service Platform Servers and
how they are treated with the respect to the specifications in this document.

U = platform URL

provisioning

load ZIP file from U

U = P. REFERENCE

Start
Management

Agent

install all bundles
with content type

bundle (-url)

into Provisioning
Dictionary

PROVISIONING

yes

no PROVISIONING

yes

no

operational

REFERENCE setSTART_BUNDLE set

re-provisioning
OSGi Service Platform Release 4, Version 4.2 Page 127

The Provisioning Service Initial Provisioning Specification Version 1.2
110.3.1 Branded Service Platform Server
If a Service Platform Operator is selling Service Platform Servers branded exclusively for use with
their service, the provisioning will most likely be performed prior to shipping the Service Platform
Server to the User. Typically the Service Platform is configured with the Dict ionary entry
PROVISIONING_REFERENCE pointing at a location controlled by the Operator.

Up-to-date bundles and additional configuration data must be loaded from that location at activation
time. The Service Platform is probably equipped with necessary security entities, like certificates, to
enable secure downloads from the Operator’s URL over open networks, if necessary.

110.3.2 Non-connected Service Platform
Circumstances might exist in which the Service Platform Server has no WAN connectivity, or prefers
not to depend on it for the purposes not covered by this specification.

The non-connected case can be implemented by specifying a f i le :// URL for the initial ZIP file
(PROVISIONING_REFERENCE). That f i le :// URL would name a local file containing the response that
would otherwise be received from a remote server.

The value for the Management Agent PROVISIONING_REFERENCE found in that file will be used as
input to the load process. The PROVISIONING_REFERENCE may point to a bundle file stored either
locally or remotely. No code changes are necessary for the non-connected scenario. The f i le :// URLs
must be specified, and the appropriate files must be created on the Service Platform.

110.4 The Provisioning Service
Provisioning information is conveyed between bundles using the Provisioning Service, as defined in
the Provis ioningService interface. The Provisioning Dictionary is retrieved from the
Provis ioningService object using the getInformation() method. This is a read-only Dict ionary object,
any changes to this Dict ionary object must throw an UnsupportedOperat ionException .

The Provisioning Service provides a number of methods to update the Provisioning Dictionary.

• addInformation(Dict ionary) – Add all key/value pairs in the given Dict ionary object to the Provi-
sioning Dictionary.

• addInformation(ZipInputStream) – It is also possible to add a ZIP file to the Provisioning Service
immediately. This will unpack the ZIP file and add the entries to the Provisioning Dictionary. This
method must install the bundles contained in the ZIP file as described in Procedure on page 124.

• set Information(Dict ionary) – Set a new Provisioning Dictionary. This will remove all existing
entries.

Each of these method will increment the PROVISIONING_UPDATE_COUNT entry.

110.5 Management Agent Environment
The Management Agent should be written with great care to minimize dependencies on other pack-
ages and services, as all services in OSGi are optional. Some Service Platforms may have other bundles
pre-installed, so it is possible that there may be exported packages and services available. Mecha-
nisms outside the current specification, however, must be used to discover these packages and ser-
vices before the Management Agent is installed.

The Provisioning Service must ensure that the Management Agent is running with AllPermiss ion .
The Management Agent should check to see if the Permission Admin service is available, and estab-
lish the initial permissions as soon as possible to insure the security of the device when later bundles
are installed. As the PermissionAdmin interfaces may not be present (it is an optional service), the
Management Agent should export the PermissionAdmin interfaces to ensure they can be resolved.
Page 128 OSGi Service Platform Release 4, Version 4.2

Initial Provisioning Specification Version 1.2 Mapping To File Scheme
Once started, the Management Agent may retrieve its configuration data from the Provisioning Ser-
vice by getting the byte[] object that corresponds to the PROVISIONING_AGENT_CONFIG key in the
Provisioning Dictionary. The structure of the configuration data is implementation specific.

The scope of this specification is to provide a mechanism to transmit the raw configuration data to
the Management Agent. The Management Agent bundle may alternatively be packaged with its con-
figuration data in the bundle, so it may not be necessary for the Management Agent bundle to use the
Provisioning Service at all.

Most likely, the Management Agent bundle will install other bundles to provision the Service Plat-
form. Installing other bundles might even involve downloading a more full featured Management
Agent to replace the initial Management Agent.

110.6 Mapping To File Scheme
The f i le : scheme is the simplest and most completely supported scheme which can be used by the Ini-
tial Provisioning specification. It can be used to store the configuration data and Management Agent
bundle on the Service Platform Server, and avoids any outside communication.

If the initial request URL has a f i le scheme, no parameters should be appended, because the f i le :
scheme does not accept parameters.

110.6.1 Example With File Scheme
The manufacturer should prepare a ZIP file containing only one entry named
PROVISIONING_START_BUNDLE that contains a location string of an entry of type bundle or bundle-
ur l . For example, the following ZIP file demonstrates this:

provisioning.start.bundle text agent
agent bundle C0AF0E9B2AB..

The bundle may also be specified with a URL:

provisioning.start.bundle text http://acme.com/a.jar
agent bundle-url http://acme.com/a.jar

Upon startup, the framework is provided with the URL with the f i le : scheme that points to this ZIP
file:

file:/opt/osgi/ma.zip

110.7 Mapping To HTTP(S) Scheme
This section defines how HTTP and HTTPS URLs must be used with the Initial Provisioning specifica-
tion.

• HTTP – May be used when the data exchange takes place over networks that are secured by other
means, such as a Virtual Private Network (VPN) or a physically isolated network. Otherwise,
HTTP is not a valid scheme because no authentication takes place.

• HTTPS – May be used if the Service Platform is equipped with appropriate certificates.

HTTP and HTTPS share the following qualities:

• Both are well known and widely used
• Numerous implementations of the protocols exist
• Caching of the Management Agent will be desired in many implementations where limited band-

width is an issue. Both HTTP and HTTPS already contain an accepted protocol for caching.

Both HTTP and HTTPS must be used with the GET method. The response is a ZIP file, implying that
the response header Content-Type header must contain appl ication/zip.
OSGi Service Platform Release 4, Version 4.2 Page 129

Mapping To HTTP(S) Scheme Initial Provisioning Specification Version 1.2
110.7.1 HTTPS Certificates
In order to use HTTPS, certificates must be in place. These certificates, that are used to establish trust
towards the Operator, may be made available to the Service Platform using the Provisioning Service.
The root certificate should be assigned to the Provisioning Dictionary before the HTTPS provider is
used. Additionally, the Service Platform should be equipped with a Service Platform certificate that
allows the Service Platform to properly authenticate itself towards the Operator. This specification
does not state how this certificate gets installed into the Service Platform.

The root certificate is stored in the Provisioning Dictionary under the key:

PROVISIONING_ROOTX509

The Root X.509 Certificate holds certificates used to represent a handle to a common base for estab-
lishing trust. The certificates are typically used when authenticating a Remote Manager to the Ser-
vice Platform. In this case, a Root X.509 certificate must be part of a certificate chain for the Operator’s
certificate. The format of the certificate is defined in Certificate Encoding on page 130.

110.7.2 Certificate Encoding
Root certificates are X.509 certificates. Each individual certificate is stored as a byte[] object. This
byte[] object is encoded in the default Java manner, as follows:

• The original, binary certificate data is DER encoded
• The DER encoded data is encoded into base64 to make it text.
• The base64 encoded data is prefixed with

 -----BEGIN CERTIFICATE-----
and suffixed with:
 -----END CERTIFICATE-----

• If a record contains more than one certificate, they are simply appended one after the other, each
with a delimiting prefix and suffix.

The decoding of such a certificate may be done with the java.security .cert.Cert i f icateFactory class:

InputStream bis = new ByteArrayInputStream(x509); // byte[]
CertificateFactory cf =

CertificateFactory.getInstance("X.509");
Collection c = cf.generateCertificates(bis);
Iterator i = c.iterator();
while (i.hasNext()) {

Certificate cert = (Certificate)i.next();
System.out.println(cert);

}

110.7.3 URL Encoding
The URL must contain the Service Platform Identity, and may contain more parameters. These
parameters are encoded in the URL according to the HTTP(S) URL scheme. A base URL may be set by
an end user but the Provisioning Service must add the Service Platform Identifier.

If the request URL already contains HTTP parameters (if there is a ’’ in the request), the
service_platform_id is appended to this URL as an additional parameter. If, on the other hand, the
request URL does not contain any HTTP parameters, the service_platform_id will be appended to the
URL after a ’’, becoming the first HTTP parameter. The following two examples show these two vari-
ants:

http://server.operator.com/service-x «
foo=bar&service_platform_id=VIN:123456789

http://server.operator.com/service-x «
Page 130 OSGi Service Platform Release 4, Version 4.2

Initial Provisioning Specification Version 1.2 Mapping To RSH Scheme
service_platform_id=VIN:123456789

Proper URL encoding must be applied when the URL contains characters that are not allowed. See [6]
RFC 2396 - Uniform Resource Identifier (URI).

110.8 Mapping To RSH Scheme
The RSH protocol is an OSGi-specific protocol, and is included in this specification because it is opti-
mized for Initial Provisioning. It requires a shared secret between the management system and the
Service Platform that is small enough to be entered by the Service User.

RSH bases authentication and encryption on Message Authentication Codes (MACs) that have been
derived from a secret that is shared between the Service Platform and the Operator prior to the start of
the protocol execution.

The protocol is based on an ordinary HTTP GET request/response, in which the request must be
signed and the response must be encrypted and authenticated. Both the signature and encryption key are
derived from the shared secret using Hashed Message Access Codes (HMAC) functions.

As additional input to the HMAC calculations, one client-generated nonce and one server-generated
nonce are used to prevent replay attacks. The nonces are fairly large random numbers that must be
generated in relation to each invocation of the protocol, in order to guarantee freshness. These non-
ces are called cl ientfg (client-generated freshness guarantee) and serverfg (server-generated freshness
guarantee).

In order to separate the HMAC calculations for authentication and encryption, each is based on a dif-
ferent constant value. These constants are called the authentication constant and the encryption constant.

From an abstract perspective, the protocol may be described as follows.

• δ – Shared secret, 160 bits or more
• s – Server nonce, called servercfg , 128 bits
• c – Client nonce, called cl ientfg , 128 bits
• Ka – Authentication key, 160 bits
• Ke – Encryption key, 192 bits
• r – Response data
• e – Encrypted data
• E – Encryption constant, a byte[] of 05, 36, 54, 70, 00 (hex)
• A – Authentication constant, a byte[] of 00, 4f, 53, 47, 49 (hex)
• M – Message material, used for Ke calculation.
• m – The calculated message authentication code.
• 3DES – Triple DES, encryption function, see [8] 3DES. The bytes of the key must be set to odd

parity. CBC mode must be used where the padding method is defined in [9] RFC 1423 Part III:
Algorithms, Modes, and Identifiers. In [11] Java Cryptography API (part of Java 1.4) this is addressed
as PKCS5Padding .

• IV – Initialization vector for 3DES.
• SHA1 – Secure Hash Algorithm to generate the Hashed Message Authentication Code, see [12]

SHA-1. The function takes a single parameter, the block to be worked upon.
• HMAC – The function that calculates a message authentication code, which must HMAC-

SHA1. HMAC-SHA1 is defined in [1] HMAC: Keyed-Hashing for Message Authentication. The
HMAC function takes a key and a block to be worked upon as arguments. Note that the lower
16 bytes of the result must be used.

• {} – Concatenates its arguments
• [] – Indicates access to a sub-part of a variable, in bytes. Index starts at one, not zero.

In each step, the emphasized server or client indicates the context of the calculation. If both are
used at the same time, each variable will have server or client as a subscript.
OSGi Service Platform Release 4, Version 4.2 Page 131

Mapping To RSH Scheme Initial Provisioning Specification Version 1.2
1. The client generates a random nonce, stores it and denotes it cl ientfg

2. The client sends the request with the cl ientfg to the server.

3. The server generates a nonce and denotes it serverfg .

4. The server calculates an authentication key based on the SHA1 function, the shared secret, the
received cl ientfg , the serverfg and the authentication constant.

5. The server calculates an encryption key using an SHA-1 function, the shared secret, the received
cl ientfg , the serverfg and the encryption constant. It must first calculate the key material M.

6. The key for DES consists Ke and IV.

The server encrypts the response data using the encryption key derived in 5. The encryption algo-
rithm that must be used to encrypt/decrypt the response data is 3DES. 24 bytes (192 bits) from M
are used to generate Ke, but the low order bit of each byte must be used as an odd parity bit. This
means that before using Ke, each byte must be processed to set the low order bit so that the byte
has odd parity.

The encryption/decryption key used is specified by the following:

7. The server calculates a MAC m using the HMAC function, the encrypted response data and the
authentication key derived in 4.

8. The server sends a response to the client containing the serverfg , the MAC m and the encrypted
response data

The client calculates the encryption key Ke the same way the server did in step 5 and 6, and uses
this to decrypt the encrypted response data. The serverfg value received in the response is used in
the calculation.

9. The client performs the calculation of the MAC m’ in the same way the server did, and checks that
the results match the received MAC m. If they do not match, further processing is discarded. The
serverfg value received in the response is used in the calculation.

c nonce=

cserver cclient⇐

s nonce=

Ka SHA1 δ c s A, , ,{ }()←

M 1 20,[] SHA1 δ c s E, , ,{ }()←
M 21 40,[] SHA1 δ M 1 20,[] c s E, , , ,{ }()←

Ke M 1 24,[]←

IV M 25 32,[]←

e 3DES Ke IV r, ,()←

m HMAC Ka e,()←

sclient sserver⇐

mclient mserver⇐

eclient eserver⇐

r 3DES Ke IV e, ,()←

Ka SHA1 δ c s A, , ,{ }()←

m′ HMAC Ka e,()←

m′ m=
Page 132 OSGi Service Platform Release 4, Version 4.2

Initial Provisioning Specification Version 1.2 Mapping To RSH Scheme
Figure 110.3 Action Diagram for RSH

110.8.1 Shared Secret
The shared secret should be a key of length 160 bits (20 bytes) or more. The length is selected to match
the output of the selected hash algorithm [2] NIST, FIPS PUB 180-1: Secure Hash Standard, April 1995..

In some scenarios, the shared secret is generated by the Operator and communicated to the User, who
inserts the secret into the Service Platform through some unspecified means.

The opposite is also possible: the shared secret can be stored within the Service Platform, extracted
from it, and then communicated to the Operator. In this scenario, the source of the shared secret
could be either the Service Platform or the Operator.

In order for the server to calculate the authentication and encryption keys, it requires the proper
shared secret. The server must have access to many different shared secrets, one for each Service Plat-
form it is to support. To be able to resolve this issue, the server must typically also have access to the
Service Platform Identifier of the Service Platform. The normal way for the server to know the Service
Platform Identifier is through the application protocol, as this value is part of the URL encoded
parameters of the HTTP, HTTPS, or RSH mapping of the Initial Provisioning.

In order to be able to switch Operators, a new shared secret must be used. The new secret may be gen-
erated by the new Operator and then inserted into the Service Platform device using a mechanism
not covered by this specification. Or the device itself may generate the new secret and convey it to the
owner of the device using a display device or read-out, which is then communicated to the new oper-
ator out-of-band. Additionally, the generation of the new secret may be triggered by some external
event, like holding down a button for a specified amount of time.

110.8.2 Request Coding
RSH is mapped to HTTP or HTTPS. Thus, the request parameters are URL encoded as discussed in
110.7.3 URL Encoding. RSH requires an additional parameter in the URL: the cl ientfg parameter. This
parameter is a nonce that is used to counter replay attacks. See also RSH Transport on page 134.

110.8.3 Response Coding
The server’s response to the client is composed of three parts:

• A header containing the protocol version and the serverfg
• The MAC
• The encrypted response

These three items are packaged into a binary container according to Table 110.2.

Service Platform Remote Manager

request(spid,clientfg)

response(spid,mac,serverfg,encrypted-data) Shared Secret

Shared Secret

Table 110.2 RSH Header description

Bytes Description Value hex

4 Number of bytes in header 2E
1 Major version number 01
1 Minor version number 00
16 serverfg ...
OSGi Service Platform Release 4, Version 4.2 Page 133

Exception Handling Initial Provisioning Specification Version 1.2
The response content type is an RSH-specific encrypted ZIP file, implying that the response header
Content-Type must be appl icat ion/x-rsh for the HTTP request. When the content file is decrypted,
the content must be a ZIP file.

110.8.4 RSH URL
The RSH URL must be used internally within the Service Platform to indicate the usage of RSH for
initial provisioning. The RSH URL format is identical to the HTTP URL format, except that the
scheme is rsh: instead of http: . For example (« means line continues on next line):

rsh://server.operator.com/service-x

110.8.5 Extensions to the Provisioning Service Dictionary
RSH specifies one additional entry for the Provisioning Dictionary:

PROVISIONING_RSH_SECRET

The value of this entry is a byte[] containing the shared secret used by the RSH protocol.

110.8.6 RSH Transport
RSH is mapped to HTTP or HTTPS and follows the same URL encoding rules, except that the cl ientfg
is additionally appended to the URL. The key in the URL must be cl ientfg and the value must be
encoded in base 64 format:

The cl ientfg parameter is transported as an HTTP parameter that is appended after the
service_platform_id parameter. The second example above would then be:

rsh://server.operator.com/service-x

Which, when mapped to HTTP, must become:

http://server.operator.com/service-x «
service_platform_id=VIN:123456789& «
clientfg=AHPmWcw%2FsiWYC37xZNdKvQ%3D%3D

110.9 Exception Handling
The Initial Provisioning process is a a sensitive process that must run without user supervision.
There is therefore a need to handle exceptional cases in a well defined way to simplify trouble shoot-
ing.

There are only 2 types of problems that halt the provisioning process. They are:

• IOException when reading or writing provisioning information.
• IOException when retrieving or processing a provisioning zip file.

Other exceptions can occur and the Provisioning Service must do any attempt to log these events.

4 Number of bytes in MAC 10
16 Message Authentication Code MAC
4 Number of bytes of encrypted ZIP file N
N Encrypted ZIP file ...

Table 110.2 RSH Header description

Bytes Description Value hex
Page 134 OSGi Service Platform Release 4, Version 4.2

Initial Provisioning Specification Version 1.2 Security
In the cases that the provisioning process stops, it is important that the clients of the provisioning
service have a way to find out that the process is stopped. The mechanism that is used for this is a spe-
cial entry in the provisioning dictionary. The name of the entry must be provis ioning.error . The
value is a String object with the following format:

• Numeric error code
• Space
• A human readable string describing the error.

Permitted error codes are:

• 0 – Unknown error
• 1 – Couldn't load or save provisioning information
• 2 – MalformedURLException
• 3 – IOException when retrieving document of a URL
• 4 – Corrupted ZipInputStream

The provisioning.update.count will be incremented as normal when a provisioning.error entry is
added to the provisioning information. After, the provisioning service will take no further action.

Some examples:

0 SIM card removed
2 "http://www.acme.com/secure/blib/ifa.zip"

110.10 Security
The security model for the Service Platform is based on the integrity of the Management Agent
deployment. If any of the mechanisms used during the deployment of management agents are weak,
or can be compromised, the whole security model becomes weak.

From a security perspective, one attractive means of information exchange would be a smart card.
This approach enables all relevant information to be stored in a single place. The Operator could then
provide the information to the Service Platform by inserting the smart card into the Service Platform.

110.10.1 Concerns
The major security concerns related to the deployment of the Management Agent are:

• The Service Platform is controlled by the intended Operator
• The Operator controls the intended Service Platform(s)
• The integrity and confidentiality of the information exchange that takes place during these pro-

cesses must be considered

In order to address these concerns, an implementation of the OSGi Remote Management Architec-
ture must assure that:

• The Operator authenticates itself to the Service Platform
• The Service Platform authenticates itself to the Operator
• The integrity and confidentiality of the Management Agent, certificates, and configuration data

are fully protected if they are transported over public transports.

Each mapping of the Initial Provisioning specification to a concrete implementation must describe
how these goals are met.

110.10.2 Service Platform Long-Term Security
Secrets for long-term use may be exchanged during the Initial Provisioning procedures. This way, one
or more secrets may be shared securely, assuming that the Provisioning Dictionary assignments used
are implemented with the proper security characteristics.
OSGi Service Platform Release 4, Version 4.2 Page 135

org.osgi.service.provisioning Initial Provisioning Specification Version 1.2
110.10.3 Permissions
The provisioning information may contain sensitive information. Also, the ability to modify provi-
sioning information can have drastic consequences. Thus, only trusted bundles should be allowed to
register, or get the Provisioning Service. This restriction can be enforced using ServicePermiss ion[
Provis ioningService, GET] .

No Permission classes guard reading or modification of the Provisioning Dictionary, so care must be
taken not to leak the Dictionary object received from the Provisioning Service to bundles that are not
trusted.

Whether message-based or connection-based, the communications used for Initial Provisioning
must support mutual authentication and message integrity checking, at a minimum.

By using both server and client authentication in HTTPS, the problem of establishing identity is
solved. In addition, HTTPS will encrypt the transmitted data. HTTPS requires a Public Key Infrastruc-
ture implementation in order to retrieve the required certificates.

When RSH is used, it is vital that the shared secret is shared only between the Operator and the Ser-
vice Platform, and no one else.

110.11 org.osgi.service.provisioning
Provisioning Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. For example:

Import-Package: org.osgi.service.provisioning; version=”[1.2,2.0)”
ProvisioningService

110.11.1 public interface ProvisioningService
Service for managing the initial provisioning information.

Initial provisioning of an OSGi device is a multi step process that culminates with the installation
and execution of the initial management agent. At each step of the process, information is collected
for the next step. Multiple bundles may be involved and this service provides a means for these bun-
dles to exchange information. It also provides a means for the initial Management Bundle to get its
initial configuration information.

The provisioning information is collected in a Dict ionary object, called the Provisioning Dictionary.
Any bundle that can access the service can get a reference to this object and read and update provi-
sioning information. The key of the dictionary is a Str ing object and the value is a Str ing or byte[]
object. The single exception is the PROVISIONING_UPDATE_COUNT value which is an Integer. The
provis ioning prefix is reserved for keys defined by OSGi, other key names may be used for implemen-
tation dependent provisioning systems.

Any changes to the provisioning information will be reflected immediately in all the dictionary
objects obtained from the Provisioning Service.

Because of the specific application of the Provisioning Service, there should be only one Provisioning
Service registered. This restriction will not be enforced by the Framework. Gateway operators or
manufactures should ensure that a Provisioning Service bundle is not installed on a device that
already has a bundle providing the Provisioning Service.
Page 136 OSGi Service Platform Release 4, Version 4.2

Initial Provisioning Specification Version 1.2 org.osgi.service.provisioning
The provisioning information has the potential to contain sensitive information. Also, the ability to
modify provisioning information can have drastic consequences. Thus, only trusted bundles should
be allowed to register and get the Provisioning Service. The ServicePermission is used to limit the
bundles that can gain access to the Provisioning Service. There is no check of Permission objects to
read or modify the provisioning information, so care must be taken not to leak the Provisioning Dic-
tionary received from getInformation method.
INITIALPROVISIONING_ENTRIES

110.11.1.1 public static final String INITIALPROVISIONING_ENTRIES = “InitialProvisioning-Entries”

Name of the header that specifies the type information for the ZIP file entries.

Since 1.2
MIME_BUNDLE

110.11.1.2 public static final String MIME_BUNDLE = “application/vnd.osgi.bundle”

MIME type to be stored in the extra field of a ZipEntry object for an installable bundle file. Zip entries
of this type will be installed in the framework, but not started. The entry will also not be put into the
information dictionary.
MIME_BUNDLE_ALT

110.11.1.3 public static final String MIME_BUNDLE_ALT = “application/x-osgi-bundle”

Alternative MIME type to be stored in the extra field of a ZipEntry object for an installable bundle file.
Zip entries of this type will be installed in the framework, but not started. The entry will also not be
put into the information dictionary. This alternative entry is only for backward compatibility, new
applications are recommended to use MIME_BUNDLE , which is an official IANA MIME type.

Since 1.2
MIME_BUNDLE_URL

110.11.1.4 public static final String MIME_BUNDLE_URL = “text/x-osgi-bundle-url”

MIME type to be stored in the extra field of a ZipEntry for a String that represents a URL for a bundle.
Zip entries of this type will be used to install (but not start) a bundle from the URL. The entry will not
be put into the information dictionary.
MIME_BYTE_ARRAY

110.11.1.5 public static final String MIME_BYTE_ARRAY = “application/octet-stream”

MIME type to be stored stored in the extra field of a ZipEntry object for byte[] data.
MIME_STRING

110.11.1.6 public static final String MIME_STRING = “text/plain;charset=utf-8”

MIME type to be stored in the extra field of a ZipEntry object for String data.
PROVISIONING_AGENT_CONFIG

110.11.1.7 public static final String PROVISIONING_AGENT_CONFIG = “provisioning.agent.config”

The key to the provisioning information that contains the initial configuration information of the
initial Management Agent. The value will be of type byte[] .
PROVISIONING_REFERENCE

110.11.1.8 public static final String PROVISIONING_REFERENCE = “provisioning.reference”

The key to the provisioning information that contains the location of the provision data provider.
The value must be of type Str ing .
PROVISIONING_ROOTX509

110.11.1.9 public static final String PROVISIONING_ROOTX509 = “provisioning.rootx509”

The key to the provisioning information that contains the root X509 certificate used to establish trust
with operator when using HTTPS.
PROVISIONING_RSH_SECRET

110.11.1.10 public static final String PROVISIONING_RSH_SECRET = “provisioning.rsh.secret”

The key to the provisioning information that contains the shared secret used in conjunction with the
RSH protocol.
PROVISIONING_SPID
OSGi Service Platform Release 4, Version 4.2 Page 137

References Initial Provisioning Specification Version 1.2
110.11.1.11 public static final String PROVISIONING_SPID = “provisioning.spid”

The key to the provisioning information that uniquely identifies the Service Platform. The value
must be of type Str ing .
PROVISIONING_START_BUNDLE

110.11.1.12 public static final String PROVISIONING_START_BUNDLE = “provisioning.start.bundle”

The key to the provisioning information that contains the location of the bundle to start with
AllPermiss ion . The bundle must have be previously installed for this entry to have any effect.
PROVISIONING_UPDATE_COUNT

110.11.1.13 public static final String PROVISIONING_UPDATE_COUNT = “provisioning.update.count”

The key to the provisioning information that contains the update count of the info data. Each set of
changes to the provisioning information must end with this value being incremented. The value
must be of type Integer . This key/value pair is also reflected in the properties of the ProvisioningSer-
vice in the service registry.
addInformation(Dictionary)

110.11.1.14 public void addInformation(Dictionary info)

info the set of Provisioning Information key/value pairs to add to the Provisioning Information dictionary.
Any keys are values that are of an invalid type will be silently ignored.

Adds the key/value pairs contained in info to the Provisioning Information dictionary. This method
causes the PROVISIONING_UPDATE_COUNT to be incremented.
addInformation(ZipInputStream)

110.11.1.15 public void addInformation(ZipInputStream zis) throws IOException

zis the ZipInputStream that will be used to add key/value pairs to the Provisioning Information diction-
ary and install and start bundles. If a ZipEntry does not have an Extra field that corresponds to one of
the four defined MIME types (MIME_STRING , MIME_BYTE_ARRAY ,MIME_BUNDLE , and
MIME_BUNDLE_URL) in will be silently ignored.

Processes the ZipInputStream and extracts information to add to the Provisioning Information dic-
tionary, as well as, install/update and start bundles. This method causes the
PROVISIONING_UPDATE_COUNT to be incremented.

Throws IOException – if an error occurs while processing the ZipInputStream. No additions will be made to
the Provisioning Information dictionary and no bundles must be started or installed.
getInformation()

110.11.1.16 public Dictionary getInformation()

Returns a reference to the Provisioning Dictionary. Any change operations (put and remove) to the
dictionary will cause an UnsupportedOperationException to be thrown. Changes must be done
using the setInformation and addInformation methods of this service.

Returns A reference to the Provisioning Dictionary.
setInformation(Dictionary)

110.11.1.17 public void setInformation(Dictionary info)

info the new set of Provisioning Information key/value pairs. Any keys are values that are of an invalid
type will be silently ignored.

Replaces the Provisioning Information dictionary with the key/value pairs contained in info . Any
key/value pairs not in info will be removed from the Provisioning Information dictionary. This
method causes the PROVISIONING_UPDATE_COUNT to be incremented.

110.12 References
[1] HMAC: Keyed-Hashing for Message Authentication

http://www.ietf.org/rfc/rfc2104.txt Krawczyk ,et. al. 1997.
Page 138 OSGi Service Platform Release 4, Version 4.2

Initial Provisioning Specification Version 1.2 References
[2] NIST, FIPS PUB 180-1: Secure Hash Standard, April 1995.

[3] Hypertext Transfer Protocol - HTTP/1.1
http://www.ietf.org/rfc/rfc2616.txt Fielding, R., et. al.

[4] Rescorla, E., HTTP over TLS, IETF RFC 2818, May 2000
http://www.ietf.org/rfc/rfc2818.txt.

[5] ZIP Archive format
ftp://ftp.uu.net/pub/archiving/zip/doc/appnote-970311-iz.zip

[6] RFC 2396 - Uniform Resource Identifier (URI)
http://www.ietf.org/rfc/rfc2396.txt

[7] MIME Types
http://www.ietf.org/rfc/rfc2046.txt and http://www.iana.org/assignments/media-types

[8] 3DES
W/ Tuchman, "Hellman Presents No Shortcut Solution to DES," IEEE Spectrum, v. 16, n. 7 July 1979,
pp40-41.

[9] RFC 1423 Part III: Algorithms, Modes, and Identifiers
http://www.ietf.org/rfc/rfc1423.txt

[10] PKCS 5
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2

[11] Java Cryptography API (part of Java 1.4)
http://java.sun.com/javase/technologies/security/

[12] SHA-1
U.S. Government, Proposed Federal Information Processing Standard for Secure Hash Standard,
January 1992

[13] Transport Layer Security
http://www.ietf.org/rfc/rfc2246.txt, January 1999, The TLS Protocol Version 1.0, T. Dierks & C. Allen.
OSGi Service Platform Release 4, Version 4.2 Page 139

References Initial Provisioning Specification Version 1.2
Page 140 OSGi Service Platform Release 4, Version 4.2

Declarative Services Specification Version 1.1 Introduction
112 Declarative Services
Specification
Version 1.1

112.1 Introduction
The OSGi Framework contains a procedural service model which provides a publish/find/bind model
for using services. This model is elegant and powerful, it enables the building of applications out of
bundles that communicate and collaborate using these services.

This specification addresses some of the complications that arise when the OSGi service model is
used for larger systems and wider deployments, such as:

• Startup Time – The procedural service model requires a bundle to actively register and acquire its
services. This is normally done at startup time, requiring all present bundles to be initialized with
a Bundle Activator. In larger systems, this quickly results in unacceptably long startup times.

• Memory Footprint – A service registered with the Framework implies that the implementation, and
related classes and objects, are loaded in memory. If the service is never used, this memory is
unnecessarily occupied. The creation of a class loader may therefore cause significant overhead.

• Complexity – Service can come and go at any time. This dynamic behavior makes the service pro-
gramming model more complex than more traditional models. This complexity negatively influ-
ences the adoption of the OSGi service model as well as the robustness and reliability of
applications because these applications do not always handle the dynamicity correctly.

The service component model uses a declarative model for publishing, finding and binding to OSGi ser-
vices. This model simplifies the task of authoring OSGi services by performing the work of register-
ing the service and handling service dependencies. This minimizes the amount of code a
programmer has to write; it also allows service components to be loaded only when they are needed.
As a result, bundles need not provide a BundleActivator class to collaborate with others through the
service registry.

From a system perspective, the service component model means reduced startup time and poten-
tially a reduction of the memory footprint. From a programmer’s point of view the service compo-
nent model provides a simplified programming model.

The Service Component model makes use of concepts described in [1] Automating Service Dependency
Management in a Service-Oriented Component Model.

112.1.1 Essentials
• Backward Compatibility – The service component model must operate seamlessly with the existing

service model.
• Size Constraints – The service component model must not require memory and performance

intensive subsystems. The model must also be applicable on resource constrained devices.
• Delayed Activation – The service component model must allow delayed activation of a service com-

ponent. Delayed activation allows for delayed class loading and object creation until needed,
thereby reducing the overall memory footprint.

• Simplicity – The programming model for using declarative services must be very simple and not
require the programmer to learn a complicated API or XML sub-language.
OSGi Service Platform Release 4, Version 4.2 Page 141

Introduction Declarative Services Specification Version 1.1
112.1.2 Entities
• Service Component – A service component contains a description that is interpreted at run time to

create and dispose objects depending on the availability of other services, the need for such an
object, and available configuration data. Such objects can optionally provide a service. This speci-
fication also uses the generic term component to refer to a service component.

• Component Description – The declaration of a service component. It is contained within an XML
document in a bundle.

• Component Properties – A set of properties which can be specified by the component description,
Configuration Admin service and from the component factory.

• Component Configuration – A component configuration represents a component description
parameterized by component properties. It is the entity that tracks the component dependencies
and manages a component instance. An activated component configuration has a component
context.

• Component Instance – An instance of the component implementation class. A component instance
is created when a component configuration is activated and discarded when the component con-
figuration is deactivated. A component instance is associated with exactly one component config-
uration.

• Delayed Component – A component whose component configurations are activated when their
service is requested.

• Immediate Component – A component whose component configurations are activated immediately
upon becoming satisfied.

• Factory Component – A component whose component configurations are created and activated
through the component’s component factory.

• Reference – A specified dependency of a component on a set of target services.
• Service Component Runtime (SCR) – The actor that manages the components and their life cycle.
• Target Services – The set of services that is defined by the reference interface and target property

filter.
• Bound Services – The set of target services that are bound to a component configuration.

Figure 112.1 Service Component Runtime, org.osgi.service.component package

a Component
Impl

a Service Impl

Service
Component
Runtime

a Servicea Component
Instance

Component
Description

a Component
Confguration

registered service

tracks
dependencies

declares com
ponent

created by

controls 1 0..n

0..n

0..n

references

1..n
1

Configuration
Admin

0..n

1

0..n

1

Page 142 OSGi Service Platform Release 4, Version 4.2

Declarative Services Specification Version 1.1 Components
112.1.3 Synopsis
The Service Component Runtime reads component descriptions from started bundles. These descrip-
tions are in the form of XML documents which define a set of components for a bundle. A component
can refer to a number of services that must be available before a component configuration becomes
satisfied. These dependencies are defined in the descriptions and the specific target services can be
influenced by configuration information in the Configuration Admin service. After a component
configuration becomes satisfied, a number of different scenarios can take place depending on the
component type:

• Immediate Component – The component configuration of an immediate component must be acti-
vated immediately after becoming satisfied. Immediate components may provide a service.

• Delayed Component – When a component configuration of a delayed component becomes sat-
isfied, SCR will register the service specified by the service element without activating the com-
ponent configuration. If this service is requested, SCR must activate the component configuration
creating an instance of the component implementation class that will be returned as the service
object. If the servicefactory attribute of the service element is true , then, for each distinct bundle
that requests the service, a different component configuration is created and activated and a new
instance of the component implementation class is returned as the service object.

• Factory Component – If a component’s description specifies the factory attribute of the component
element, SCR will register a Component Factory service. This service allows client bundles to
create and activate multiple component configurations and dispose of them. If the component’s
description also specifies a service element, then as each component configuration is activated,
SCR will register it as a service.

112.1.4 Readers
• Architects – The chapter, Components on page 143, gives a comprehensive introduction to the capa-

bilities of the component model. It explains the model with a number of examples. The section
about Component Life Cycle on page 156 provides some deeper insight in the life cycle of compo-
nents.

• Service Programmers – Service programmers should read Components on page 143. This chapter
should suffice for the most common cases. For the more advanced possibilities, they should
consult Component Description on page 151 for the details of the XML grammar for component
descriptions.

• Deployers – Deployers should consult Deployment on page 165.

112.2 Components
A component is a normal Java class contained within a bundle. The distinguishing aspect of a compo-
nent is that it is declared in an XML document. Component configurations are activated and deacti-
vated under the full control of SCR. SCR bases its decisions on the information in the component’s
description. This information consists of basic component information like the name and type,
optional services that are implemented by the component, and references. References are dependen-
cies that the component has on other services.

SCR must activate a component configuration when the component is enabled and the component
configuration is satisfied and a component configuration is needed. During the life time of a compo-
nent configuration, SCR can notify the component of changes in its bound references.

SCR will deactivate a previously activated component configuration when the component becomes
disabled, the component configuration becomes unsatisfied, or the component configuration is no
longer needed.

If an activated component configuration’s configuration properties change, SCR must deactivate the
component configuration and then attempt to reactivate the component configuration using the
new configuration information.
OSGi Service Platform Release 4, Version 4.2 Page 143

Components Declarative Services Specification Version 1.1
112.2.1 Declaring a Component
A component requires the following artifacts in the bundle:

• An XML document that contains the component description.
• The Service-Component manifest header which names the XML documents that contain the

component descriptions.
• An implementation class that is specified in the component description.

The elements in the component’s description are defined in Component Description on page 151. The
XML grammar for the component declaration is defined by the XML Schema, see Component Descrip-
tion Schema on page 168.

112.2.2 Immediate Component
An immediate component is activated as soon as its dependencies are satisfied. If an immediate compo-
nent has no dependencies, it is activated immediately. A component is an immediate component if it
is not a factory component and either does not specify a service or specifies a service and the
immediate attribute of the component element set to true . If an immediate component configura-
tion is satisfied and specifies a service, SCR must register the component configuration as a service in
the service registry and then activate the component configuration.

For example, the bundle entry /OSGI-INF/activator.xml contains:

<xml version="1.0" encoding="UTF-8">
<scr:component name="example.activator"

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0">
<implementation class="com.acme.Activator"/>

</scr:component>

The manifest header Service-Component must also be specified in the bundle manifest. For exam-
ple:

Service-Component: OSGI-INF/activator.xml

An example class for this component could look like:

public class Activator {
public Activator() {...}
private void activate(BundleContext context) {...}
private void deactivate() {...}

}

This example component is virtually identical to a Bundle Activator. It has no references to other ser-
vices so it will be satisfied immediately. It publishes no service so SCR will activate a component con-
figuration immediately.

The act ivate method is called when SCR activates the component configuration and the deactivate
method is called when SCR deactivates the component configuration. If the act ivate method throws
an Exception, then the component configuration is not activated and will be discarded.

112.2.3 Delayed Component
A delayed component specifies a service, is not specified to be a factory component and does not have
the immediate attribute of the component element set to true . If a delayed component configuration
is satisfied, SCR must register the component configuration as a service in the service registry but the
activation of the component configuration is delayed until the registered service is requested. The
registered service of a delayed component look like on normal registered service but does not incur
the overhead of an ordinarily registered service that require a service’s bundle to be initialized to reg-
ister the service.
Page 144 OSGi Service Platform Release 4, Version 4.2

Declarative Services Specification Version 1.1 Components
For example, a bundle needs to see events of a specific topic. The Event Admin uses the white board
pattern, receiving the events is therefore as simple as registering a Event Handler service. The exam-
ple XML for the delayed component looks like:

<xml version="1.0" encoding="UTF-8">
<scr:component name="example.handler"

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0">
<implementation class="com.acme.HandlerImpl"/>
<property name="event.topics">some/topic</property>
<service>

<provide interface=
"org.osgi.service.event.EventHandler"/>

</service>
<scr:component>

The associated component class looks like:

public class HandlerImpl implements EventHandler {
public void handleEvent(Event evt) {

...
 }
}

The component configuration will only be activated once the Event Admin service requires the ser-
vice because it has an event to deliver on the topic to which the component subscribed.

112.2.4 Factory Component
Certain software patterns require the creation of component configurations on demand. For exam-
ple, a component could represent an application that can be launched multiple times and each appli-
cation instance can then quit independently. Such a pattern requires a factory that creates the
instances. This pattern is supported with a factory component. A factory component is used if the
factory attribute of the component element is set to a factory identifier. This identifier can be used by a
bundle to associate the factory with externally defined information.

SCR must register a Component Factory service on behalf of the component as soon as the compo-
nent factory is satisfied. The service properties must be:

• component.name – The name of the component.
• component. factory – The factory identifier.

The service properties of the Component Factory service must not include the component properties.

New configurations of the component can be created and activated by calling the newInstance
method on this Component Factory service. The newInstance(Dict ionary) method has a Dictionary
object as argument. This Dictionary object is merged with the component properties as described in
Component Properties on page 164. If the component specifies a service, then the service is registered
after the created component configuration is satisfied with the component properties. Then the com-
ponent configuration is activated.

For example, a component can provide a connection to a USB device. Such a connection should nor-
mally not be shared and should be created each time such a service is needed. The component
description to implement this pattern looks like:

<xml version="1.0" encoding="UTF-8">
<scr:component name="example.factory"

factory="usb.connection"
xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0">
<implementation class="com.acme.USBConnectionImpl"/>

</scr:component>
OSGi Service Platform Release 4, Version 4.2 Page 145

References to Services Declarative Services Specification Version 1.1
The component class looks like:

public class USBConnectionImpl implements USBConnection {
private void activate(Map properties) {

 ...
}

}

A factory component can be associated with a service. In that case, such a service is registered for each
component configuration. For example, the previous example could provide a USB Connection ser-
vice.

<xml version="1.0" encoding="UTF-8">
<scr:component name="example.factory"

factory="usb.connection"
xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0">
<implementation class="com.acme.USBConnectionImpl"/>
<service>

<provide interface="com.acme.USBConnection"/>
</service>

</scr:component>

The associated component class looks like:

public class USBConnectionImpl implements USBConnection {
private void activate(Map properties) {...}
public void connect() { ... }
...
public void close() { ... }

}

A new service will be registered each time a new component configuration is created and activated
with the newInstance method. This allows a bundle other than the one creating the component con-
figuration to utilize the service. If the component configuration is deactivated, the service must be
unregistered.

112.3 References to Services
Most bundles will require access to other services from the service registry. The dynamics of the ser-
vice registry require care and attention of the programmer because referenced services, once
acquired, could be unregistered at any moment. The component model simplifies the handling of
these service dependencies significantly.

The services that are selected by a reference are called the target services. These are the services
selected by the BundleContext.getServiceReferences method where the first argument is the refer-
ence’s interface and the second argument is the reference’s target property, which must be a valid fil-
ter.

A component configuration becomes satisfied when each specified reference is satisfied. A reference is
satisfied if it specifies optional cardinality or when the target services contains at least one member.
An activated component configuration that becomes unsatisfied must be deactivated.

During the activation of a component configuration, SCR must bind some or all of the target services
of a reference to the component configuration. Any target service that is bound to the component
configuration is called a bound service. See Binding Services on page 160.
Page 146 OSGi Service Platform Release 4, Version 4.2

Declarative Services Specification Version 1.1 References to Services
112.3.1 Accessing Services
A component instance must be able to use the services that are referenced by the component configu-
ration, that is, the bound services of the references. There are two strategies for a component instance
to acquire these bound services:

• Event strategy – SCR calls a method on the component instance when a service becomes bound
and another method when a service becomes unbound. These methods are the bind and unbind
methods specified by the reference. The event strategy is useful if the component needs to be
notified of changes to the bound services for a dynamic reference.

• Lookup strategy – A component instance can use one of the locateService methods of Component-
Context to locate a bound service. These methods take the name of the reference as a parameter. If
the reference has a dynamic policy, it is important to not store the returned service object(s) but
look it up every time it is needed.

A component may use either or both strategies to access bound services.

When using the event strategy, the bind and unbind methods must have one of the following proto-
types:

void <method-name>(ServiceReference);
void <method-name>(<parameter-type>);
void <method-name>(<parameter-type>, Map);

If the bind or unbind method has the first prototype, then a Service Reference to the bound service
will be passed to the method. This Service Reference may later be passed to the locateService(Str ing,
Serv iceReference) method to obtain the actual service object. This approach is useful when the ser-
vice properties need to be examined before accessing the service object. It also allows for the delayed
activation of bound services when using the event strategy.

If the bind or unbind method has the second prototype, then the service object of the bound service is
passed to the method. The method’s parameter type must be assignable from the type specified by the
reference’s interface attribute. That is, the service object of the bound service must be castable to the
method’s parameter type.

If the bind or unbind method has the third prototype, then the service object of the bound service is
passed to the method as the first argument and an unmodifiable Map containing the service proper-
ties of the bound service is passed as the second argument. The method’s first parameter type must be
assignable from the type specified by the reference’s interface attribute. That is, the service object of
the bound service must be castable to the method’s first parameter type.

The methods must be called once for each bound service. This implies that if the reference has multi-
ple cardinality, then the methods may be called multiple times.

A suitable method is selected using the following priority:

1 The method takes a single argument and the type of the argument is
org.osgi . f ramework.ServiceReference .

2 The method takes a single argument and the type of the argument is the type specified by the ref-
erence’s interface attribute.

3 The method takes a single argument and the type of the argument is assignable from the type
specified by the reference’s interface attribute. If multiple methods match this rule, this implies
the method name is overloaded and SCR may choose any of the methods to call.

4 The method takes two argument and the type of the first argument is the type specified by the ref-
erence’s interface attribute and the type of the second argument is java.ut i l .Map .

5 The method takes two argument and the type of the first argument is assignable from the type
specified by the reference’s interface attribute and the type of the second argument is
java.ut i l .Map . If multiple methods match this rule, this implies the method name is overloaded
and SCR may choose any of the methods to call.
OSGi Service Platform Release 4, Version 4.2 Page 147

References to Services Declarative Services Specification Version 1.1
When searching for the bind or unbind method to call, SCR must locate a suitable method as speci-
fied in Locating Component Methods on page 167. If no suitable method is located, SCR must log an
error message with the Log Service, if present, and there will be no bind or unbind notification.

When the service object for a bound service is first provided to a component instance, that is passed
to a bind or unbind method or returned by a locate service method, SCR must get the service object
from the OSGi Framework’s service registry using the getService method on the component’s Bun-
dle Context. If the service object for a bound service has been obtained and the service becomes
unbound, SCR must unget the service object using the ungetService method on the component’s
Bundle Context and discard all references to the service object.

For example, a component requires the Log Service and uses the lookup strategy. The reference is
declared without any bind and unbind methods:

<xml version="1.0" encoding="UTF-8">
<scr:component name="example.listen"

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0">
<implementation class="com.acme.LogLookupImpl"/>
<reference name="LOG"

 interface="org.osgi.service.log.LogService"/>
</scr:component>

The component implementation class must now lookup the service. This looks like:

public class LogLookupImpl {
private void activate(ComponentContext ctxt) {

LogService log = (LogService)
ctxt.locateService("LOG");

log.log(LogService.LOG_INFO, "Hello Components!"));
}

}

Alternatively, the component could use the event strategy and ask to be notified with the Log Service
by declaring bind and unbind methods.

<xml version="1.0" encoding="UTF-8">
<scr:component name="example.listen"

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0">
<implementation class="com.acme.LogEventImpl"/>
<reference name="LOG"

 interface="org.osgi.service.log.LogService"
bind="setLog"
unbind="unsetLog"

/>
</scr:component>

The component implementation class looks like:

public class LogEventImpl {
private LogService log;
private void setLog(LogService l) { log = l; }
private void unsetLog(LogService l) { log = null; }
private void activate() {

log.log(LogService.LOG_INFO, "Hello Components!"));
}

}

Page 148 OSGi Service Platform Release 4, Version 4.2

Declarative Services Specification Version 1.1 References to Services
112.3.2 Reference Cardinality
A component implementation is always written with a certain cardinality in mind. The cardinality
represents two important concepts:

• Multiplicity – Does the component implementation assume a single service or does it explicitly
handle multiple occurrences For example, when a component uses the Log Service, it only needs
to bind to one Log Service to function correctly. Alternatively, when the Configuration Admin
uses the Configuration Listener services it needs to bind to all target services present in the service
registry to dispatch its events correctly.

• Optionality – Can the component function without any bound service present Some components
can still perform useful tasks even when no target service is available, other components must
bind to at least one target service before they can be useful. For example, the Configuration
Admin in the previous example must still provide its functionality even if there are no Configu-
ration Listener services present. Alternatively, an application that solely presents a Servlet page
has little to do when the Http Service is not present, it should therefore use a reference with a
mandatory cardinality.

The cardinality is expressed with the following syntax:

cardinality ::= optionality ’..’ multiplicity
optionality ::= ’0’ | ’1’
multiplicity ::= ’1’ | ’n’

A reference is satisfied if the number of target services is equal to or more than the optional i ty . The
mult ipl ic ity is irrelevant for the satisfaction of the reference. The mult ipl ic ity only specifies if the
component implementation is written to handle being bound to multiple services (n) or requires SCR
to select and bind to a single service (1).

The cardinality for a reference can be specified as one of four choices:

• 0..1 – Optional and unary.
• 1. .1 – Mandatory and unary (Default) .
• 0..n – Optional and multiple.
• 1. .n – Mandatory and multiple.

When a satisfied component configuration is activated, there must be at most one bound service for
each reference with a unary cardinality and at least one bound service for each reference with a man-
datory cardinality. If the cardinality constraints cannot be maintained after a component configura-
tion is activated, that is the reference becomes unsatisfied, the component configuration must be
deactivated. If the reference has a unary cardinality and there is more than one target service for the
reference, then the bound service must be the target service with the highest service ranking as speci-
fied by the service.ranking property. If there are multiple target services with the same service rank-
ing, then the bound service must be the target service with the highest service ranking and the lowest
service ID as specified by the serv ice. id property.

For example, a component wants to register a resource with all Http Services that are available. Such
a scenario has the cardinality of 0. .n . The code must be prepared to handle multiple calls to the bind
method for each Http Service in such a case. In this example, the code uses the registerResources
method to register a directory for external access.

<xml version="1.0" encoding="UTF-8">
<scr:component name="example.listen"

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0">
<implementation class="com.acme.HttpResourceImpl"/>
<reference name="HTTP"

 interface="org.osgi.service.http.HttpService"
cardinality="0..n"
bind="setPage"
unbind="unsetPage"
OSGi Service Platform Release 4, Version 4.2 Page 149

References to Services Declarative Services Specification Version 1.1
/>
</scr:component>

public class HttpResourceImpl {
private void setPage(HttpService http) {

http.registerResources("/scr", "scr", null);
}
private void unsetPage(HttpService http) {

http.unregister("/scr");
}

}

112.3.3 Reference Policy
Once all the references of a component are satisfied, a component configuration can be activated and
therefore bound to target services. However, the dynamic nature of the OSGi service registry makes it
likely that services are registered, modified and unregistered after target services are bound. These
changes in the service registry could make one or more bound services no longer a target service
thereby making obsolete any object references that the component has to these service objects. Com-
ponents therefore must specify a policy how to handle these changes in the set of bound services.

The static policy is the most simple policy and is the default policy. A component instance never sees
any of the dynamics. Component configurations are deactivated before any bound service for a refer-
ence having a static policy becomes unavailable. If a target service is available to replace the bound
service which became unavailable, the component configuration must be reactivated and bound to
the replacement service. A reference with a static policy is called a static reference.

The static policy can be very expensive if it depends on services that frequently unregister and re-reg-
ister or if the cost of activating and deactivating a component configuration is high. Static policy is
usually also not applicable if the cardinality specifies multiple bound services.

The dynamic policy is slightly more complex since the component implementation must properly
handle changes in the set of bound services. With the dynamic policy, SCR can change the set of
bound services without deactivating a component configuration. If the component uses the event
strategy to access services, then the component instance will be notified of changes in the set of
bound services by calls to the bind and unbind methods. A reference with a dynamic policy is called a
dynamic reference.

The previous example with the registering of a resource directory used a static policy. This implied
that the component configurations are deactivated when there is a change in the bound set of Http
Services. The code in the example can be seen to easily handle the dynamics of Http Services that
come and go. The component description can therefore be updated to:

<xml version="1.0" encoding="UTF-8">
<scr:component name="example.listen"

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0">
<implementation class="com.acme.HttpResourceImpl"/>
<reference name="HTTP"

 interface="org.osgi.service.http.HttpService"
cardinality="0..n"
policy="dynamic"
bind="setPage"
unbind="unsetPage"

/>
</scr:component>

The code is identical to the previous example.
Page 150 OSGi Service Platform Release 4, Version 4.2

Declarative Services Specification Version 1.1 Component Description
112.3.4 Selecting Target Services
The target services for a reference are constrained by the reference’s interface name and target prop-
erty. By specifying a filter in the target property, the programmer and deployer can constrain the set
of services that should be part of the target services.

For example, a component wants to track all Component Factory services that have a factory identifi-
cation of acme.appl ication . The following component description shows how this can be done.

<xml version="1.0" encoding="UTF-8">
<scr:component name="example.listen"

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0">
<implementation class="com.acme.FactoryTracker"/>
<reference name="FACTORY"

 interface=
"org.osgi.service.component.ComponentFactory"

target="(component.factory=acme.application)"
/>

</scr:component>

The filter is manifested as a component property called the target property. The target property can
also be set by property and propert ies elements, see Properties and Property Elements on page 154. The
deployer can also set the target property by establishing a configuration for the component which
sets the value of the target property. This allows the deployer to override the target property in the
component description. See Component Properties on page 164 for more information.

112.3.5 Circular References
It is possible for a set of component descriptions to create a circular dependency. For example, if com-
ponent A references a service provided by component B and component B references a service pro-
vided by component A then a component configuration of one component cannot be satisfied
without accessing a partially activated component instance of the other component. SCR must
ensure that a component instance is never accessible to another component instance or as a service
until it has been fully activated, that is it has returned from its act ivate method if it has one.

Circular references must be detected by SCR when it attempts to satisfy component configurations
and SCR must fail to satisfy the references involved in the cycle and log an error message with the Log
Service, if present. However, if one of the references in the cycle has optional cardinality SCR must
break the cycle. The reference with the optional cardinality can be satisfied and bound to zero target
services. Therefore the cycle is broken and the other references may be satisfied.

112.4 Component Description
Component descriptions are defined in XML documents contained in a bundle and any attached frag-
ments.

If SCR detects an error when processing a component description, it must log an error message with
the Log Service, if present, and ignore the component description. Errors can include XML parsing
errors and ill-formed component descriptions.

112.4.1 Service Component Header
XML documents containing component descriptions must be specified by the Service-Component
header in the manifest. The value of the header is a comma separated list of paths to XML entries
within the bundle.

Service-Component ::= header // 3.2.4

The Service-Component header has no architected directives or properties.
OSGi Service Platform Release 4, Version 4.2 Page 151

Component Description Declarative Services Specification Version 1.1
The last component of each path in the Service-Component header may use wildcards so that
Bundle.f indEntries can be used to locate the XML document within the bundle and its fragments. For
example:

Service-Component: OSGI-INF/*.xml

A Service-Component manifest header specified in a fragment is ignored by SCR. However, XML doc-
uments referenced by a bundle’s Service-Component manifest header may be contained in attached
fragments.

SCR must process each XML document specified in this header. If an XML document specified by the
header cannot be located in the bundle and its attached fragments, SCR must log an error message
with the Log Service, if present, and continue.

112.4.2 XML Document
A component description must be in a well-formed XML document [4] stored in a UTF-8 encoded
bundle entry. The namespace for component descriptions is:

http://www.osgi.org/xmlns/scr/v1.1.0

The recommended prefix for this namespace is scr . This prefix is used by examples in this specifica-
tion. XML documents containing component descriptions may contain a single, root component ele-
ment or one or more component elements embedded in a larger document. Use of the namespace for
component descriptions is mandatory. The attributes and sub-elements of a component element are
always unqualified.

If an XML document contains a single, root component element which does not specify a namespace,
then the http://www.osgi.org/xmlns/scr/v1.0.0 namespace is assumed. Component descriptions
using the http://www.osgi .org/xmlns/scr/v1.0.0 namespace must be treated according to version 1.0
of this specification.

SCR must parse all component elements in the namespace. Elements not in this namespace must be
ignored. Ignoring elements that are not recognized allows component descriptions to be embedded
in any XML document. For example, an entry can provide additional information about components.
These additional elements are parsed by another sub-system.

See Component Description Schema on page 168 for component description schema.

112.4.3 Component Element
The component element specifies the component description. The following text defines the struc-
ture of the XML grammar using a form that is similar to the normal grammar used in OSGi specifica-
tions. In this case the grammar should be mapped to XML elements:

<component> ::= <implementation>
 <properties> *
 <service>
 <reference> *

SCR must not require component descriptions to specify the elements in the order listed above and as
required by the XML schema. SCR must allow other orderings since arbitrary orderings of these ele-
ments do not affect the meaning of the component description. Only the relative ordering of
property and propert ies element have meaning.

The component element has the following attributes:

• name – The name of a component must be unique within a bundle. The component name is used
as a PID to retrieve component properties from the OSGi Configuration Admin service if present.
See Deployment on page 165 for more information. Since the component name is used as a PID, it
should be unique within the framework. The XML schema allows the use of component names
which are not valid PIDs. Care must be taken to use a valid PID for a component name if the com-
Page 152 OSGi Service Platform Release 4, Version 4.2

Declarative Services Specification Version 1.1 Component Description
ponent should be configured by the Configuration Admin service. This attribute is optional. The
default value of this attribute is the value of the class attribute of the nested implementation
element. If multiple component elements in a bundle use the same value for the class attribute of
their nested implementation element, then using the default value for this attribute will result in
duplicate component names. In this case, this attribute must be specified with a unique value.

• enabled – Controls whether the component is enabled when the bundle is started. The default
value is true . If enabled is set to false , the component is disabled until the method
enableComponent is called on the ComponentContext object. This allows some initialization to
be performed by some other component in the bundle before this component can become sat-
isfied. See Enabled on page 156.

• factory – If set to a non-empty string, it indicates that this component is a factory component. SCR
must register a Component Factory service for each factory component. See Factory Component on
page 145.

• immediate – Controls whether component configurations must be immediately activated after
becoming satisfied or whether activation should be delayed. The default value is fa lse if the
factory attribute or if the service element is specified and true otherwise. If this attribute is spec-
ified, its value must be fa lse if the factory attribute is also specified or must be true unless the
service element is also specified.

• conf igurat ion-pol icy – Controls whether component configurations must be satisfied depending
on the presence of a corresponding Configurat ion object in the OSGi Configuration Admin
service. A corresponding configuration is a Configurat ion object where the PID is the name of the
component.
• optional – (default) Use the corresponding Configurat ion object if present but allow the com-

ponent to be satisfied even if the corresponding Configurat ion object is not present.
• require – There must be a corresponding Configurat ion object for the component configura-

tion to become satisfied.
• ignore – Always allow the component configuration to be satisfied and do not use the corre-

sponding Configurat ion object even if it is present.

• activate – Specifies the name of the method to call when a component configuration is activated.
The default value of this attribute is act ivate . See Activate Method on page 160 for more infor-
mation.

• deactivate – Specifies the name of the method to call when a component configuration is deacti-
vated. The default value of this attribute is deactivate . See Deactivate Method on page 162 for more
information.

• modif ied – Specifies the name of the method to call when the configuration properties for a com-
ponent configuration is using a Configurat ion object from the Configuration Admin service and
that Configurat ion object is modified without causing the component configuration to become
unsatisfied. If this attribute is not specified, then the component configuration will become unsat-
isfied if its configuration properties use a Configurat ion object that is modified in any way. See
Modified Method on page 161 for more information.

112.4.4 Implementation Element
The implementation element is required and defines the name of the component implementation
class. It has therefore only a single attribute:

• class – The Java fully qualified name of the implementation class.

The class is retrieved with the loadClass method of the component’s bundle. The class must be public
and have a public constructor without arguments (this is normally the default constructor) so com-
ponent instances may be created by SCR with the newInstance method on Class .

If the component description specifies a service, the class must implement all interfaces that are pro-
vided by the service.
OSGi Service Platform Release 4, Version 4.2 Page 153

Component Description Declarative Services Specification Version 1.1
112.4.5 Properties and Property Elements
A component description can define a number of properties. There are two different elements for
this:

• property – Defines a single property.
• propert ies – Reads a set of properties from a bundle entry.

The property and propert ies elements can occur multiple times and they can be interleaved. This
interleaving is relevant because the properties are processed from top to bottom. Later properties
override earlier properties that have the same name.

Properties can also be overridden by a Configuration Admin service’s Configuration object before
they are exposed to the component or used as service properties. This is described in Component Prop-
erties on page 164 and Deployment on page 165.

The property element has the following attributes:

• name – The name of the property.
• value – The value of the property. This value is parsed according to the property type. If the value

attribute is specified, the body of the element is ignored. If the type of the property is not Str ing ,
parsing of the value is done by the valueOf(Str ing) method. If this method is not available for the
given type, the conversion must be done according to the corresponding method in Java 2 SE. For
Character types, the conversion is handled by Integer.valueOf method.

• type – The type of the property. Defines how to interpret the value. The type must be one of the
following Java types:
• Str ing (default)
• Long
• Double
• Float
• Integer
• Byte
• Character
• Boolean
• Short

• element body – If the value attribute is not specified, the body of the property element must
contain one or more values. The value of the property is then an array of the specified type. Except
for Str ing objects, the result will be translated to an array of primitive types. For example, if the
type attribute specifies Integer , then the resulting array must be int[] .
Values must be placed one per line and blank lines are ignored. Parsing of the value is done by the
parse methods in the class identified by the type, after trimming the line of any beginning and
ending white space. Str ing values are also trimmed of beginning and ending white space before
being placed in the array.

For example, a component that needs an array of hosts can use the following property definition:

<property name="hosts">
www.acme.com
backup.acme.com

</property>

This property declaration results in the property hosts, with a value of Str ing[] { "www.acme.com",
"backup.acme.com" } .

The propert ies element references an entry in the bundle whose contents conform to a standard [3]
Java Properties File.

The entry is read and processed to obtain the properties and their values. The properties element has
the following attributes:

• entry – The entry path relative to the root of the bundle
Page 154 OSGi Service Platform Release 4, Version 4.2

Declarative Services Specification Version 1.1 Component Description
For example, to include vendor identification properties that are stored in the OSGI-INF directory,
the following definition could be used:

<properties entry="OSGI-INF/vendor.properties" />

112.4.6 Service Element
The service element is optional. It describes the service information to be used when a component
configuration is to be registered as a service.

A service element has the following attribute:

• servicefactory – Controls whether the service uses the ServiceFactory concept of the OSGi
Framework. The default value is fa lse . If serv icefactory is set to true , a different component con-
figuration is created, activated and its component instance returned as the service object for each
distinct bundle that requests the service. Each of these component configurations has the same
component properties. Otherwise, the same component instance from the single component con-
figuration is returned as the service object for all bundles that request the service.

The serv icefactory attribute must not be true if the component is a factory component or an immedi-
ate component. This is because SCR is not free to create component configurations as necessary to
support servicefactory . A component description is ill-formed if it specifies that the component is a
factory component or an immediate component and servicefactory is set to true .

The service element must have one or more provide elements that define the service interfaces. The
provide element has a single attribute:

• interface – The name of the interface that this service is registered under. This name must be the
fully qualified name of a Java class. For example, org.osgi .service. log.LogService . The specified
Java class should be an interface rather than a class, however specifying a class is supported.

The component implementation class must implement all the specified service interfaces.

For example, a component implements an Event Handler service.

<service>
<provide interface=

"org.osgi.service.eventadmin.EventHandler"/>
</service>

112.4.7 Reference Element
A reference declares a dependency that a component has on a set of target services. A component con-
figuration is not satisfied, unless all its references are satisfied. A reference specifies target services by
specifying their interface and an optional target filter.

A reference element has the following attributes:

• name – The name of the reference. This name is local to the component and can be used to locate
a bound service of this reference with one of the locateService methods of ComponentContext .
Each reference element within the component must have a unique name. This name attribute is
optional. The default value of this attribute is the value of the interface attribute of this element.
If multiple reference elements in the component use the same interface name, then using the
default value for this attribute will result in duplicate reference names. In this case, this attribute
must be specified with a unique name for the reference to avoid an error.

• interface – Fully qualified name of the class that is used by the component to access the service.
The service provided to the component must be type compatible with this class. That is, the com-
ponent must be able to cast the service object to this class. A service must be registered under this
name to be considered for the set of target services.

• cardinal ity – Specifies if the reference is optional and if the component implementation support
a single bound service or multiple bound services. See Reference Cardinality on page 149.
OSGi Service Platform Release 4, Version 4.2 Page 155

Component Life Cycle Declarative Services Specification Version 1.1
• pol icy – The policy declares the assumption of the component about dynamicity. See Reference
Policy on page 150.

• target – An optional OSGi Framework filter expression that further constrains the set of target
services. The default is no filter, limiting the set of matched services to all service registered under
the given reference interface. The value of this attribute is used to set a target property. See
Selecting Target Services on page 151.

• bind – The name of a method in the component implementation class that is used to notify that a
service is bound to the component configuration. For static references, this method is only called
before the act ivate method. For dynamic references, this method can also be called while the com-
ponent configuration is active. See Accessing Services on page 147.

• unbind – Same as bind, but is used to notify the component configuration that the service is
unbound. For static references, the method is only called after the deactivate method. For
dynamic references, this method can also be called while the component configuration is active.
See Accessing Services on page 147.

112.5 Component Life Cycle

112.5.1 Enabled
A component must first be enabled before it can be used. A component cannot be enabled unless the
component’s bundle is started. See Starting Bundles on page 98 of the Core specification. All compo-
nents in a bundle become disabled when the bundle is stopped. So the life cycle of a component is
contained within the life cycle of its bundle.

Every component can be enabled or disabled. The initial enabled state of a component is specified in
the component description via the enabled attribute of the component element. See Component Ele-
ment on page 152. Component configurations can be created, satisfied and activated only when the
component is enabled.

The enabled state of a component can be controlled with the Component Context enableCompo-
nent(Str ing) and disableComponent(Str ing) methods. The purpose of later enabling a component is
to be able to decide programmatically when a component can become enabled. For example, an
immediate component can perform some initialization work before other components in the bundle
are enabled. The component descriptions of all other components in the bundle can be disabled by
having enabled set to false in their component descriptions. After any necessary initialization work
is complete, the immediate component can call enableComponent to enable the remaining compo-
nents.

The enableComponent and disableComponent methods must return after changing the enabled
state of the named component. Any actions that result from this, such as activating or deactivating a
component configuration, must occur asynchronously to the method call. Therefore a component
can disable itself.

All components in a bundle can be enabled by passing a null as the argument to enableComponent .

112.5.2 Satisfied
Component configurations can only be activated when the component configuration is satisfied. A
component configuration becomes satisfied when the following conditions are all satisfied:

• The component is enabled.
• If the component description specifies configurat ion-pol icy=required , then a Configurat ion

object for the component is present in the Configuration Admin service.
• Using the component properties of the component configuration, all the component’s references

are satisfied. A reference is satisfied when the reference specifies optional cardinality or there is at
least one target service for the reference.
Page 156 OSGi Service Platform Release 4, Version 4.2

Declarative Services Specification Version 1.1 Component Life Cycle
Once any of the listed conditions are no longer true, the component configuration becomes unsatis-
fied. An activated component configuration that becomes unsatisfied must be deactivated.

112.5.3 Immediate Component
A component is an immediate component when it must be activated as soon as its dependencies are
satisfied. Once the component configuration becomes unsatisfied, the component configuration
must be deactivated. If an immediate component configuration is satisfied and specifies a service,
SCR must register the component configuration as a service in the service registry and then activate
the component configuration. The service properties for this registration consist of the component
properties as defined in Service Properties on page 165.

The state diagram is shown in Figure 112.2.

Figure 112.2 Immediate Component Configuration

112.5.4 Delayed Component
A key attribute of a delayed component is the delaying of class loading and object creation. Therefore,
the activation of a delayed component configuration does not occur until there is an actual request
for a service object. A component is a delayed component when it specifies a service but it is not a fac-
tory component and does not have the immediate attribute of the component element set to true .

SCR must register a service after the component configuration becomes satisfied. The registration of
this service must look to observers of the service registry as if the component’s bundle actually regis-
tered this service. This strategy makes it possible to register services without creating a class loader
for the bundle and loading classes, thereby allowing reduction in initialization time and a delay in
memory footprint.

When SCR registers the service on behalf of a component configuration, it must avoid causing a class
load to occur from the component's bundle. SCR can ensure this by registering a ServiceFactory
object with the Framework for that service. By registering a ServiceFactory object, the actual service
object is not needed until the ServiceFactory is called to provide the service object. The service prop-
erties for this registration consist of the component properties as defined in Service Properties on page
165.

The activation of a component configuration must be delayed until its service is requested. When the
service is requested, if the service has the servicefactory attribute set to true , SCR must create and
activate a unique component configuration for each bundle requesting the service. Otherwise, SCR
must activate a single component configuration which is used by all bundles requesting the service.
A component instance can determine the bundle it was activated for by calling the getUsingBundle()
method on the Component Context.

The activation of delayed components is depicted in a state diagram in Figure 112.3. Notice that mul-
tiple component configurations can be created from the REGISTERED state if a delayed component
specifies servicefactory set to true .

UNSATISFIED

becomes
satisfied

activate

deactivate

ACTIVE

becomes
unsatisfied

if dynamic:
rebinding
OSGi Service Platform Release 4, Version 4.2 Page 157

Component Life Cycle Declarative Services Specification Version 1.1
If the service registered by a component configuration becomes unused because there are no more
bundles using it, then SCR should deactivate that component configuration. This allows SCR imple-
mentations to eagerly reclaim activated component configurations.

Figure 112.3 Delayed Component Configuration

112.5.5 Factory Component
SCR must register a Component Factory service as soon as the component factory becomes satisfied.
The component factory is satisfied when the following conditions are all satisfied:

• The component is enabled.
• Using the component properties specified by the component description, all the component’s ref-

erences are satisfied. A reference is satisfied when the reference specifies optional cardinality or
there is at least one target service for the reference

The component factory, however, does not use any of the target services and does not bind to them.

Once any of the listed conditions are no longer true, the component factory becomes unsatisfied and
the Component Factory service must be unregistered. Any component configurations activated via
the component factory are unaffected by the unregistration of the Component Factory service, but
may themselves become unsatisfied for the same reason.

The Component Factory service must be registered under the name
org.osgi .serv ice.component.ComponentFactory with the following service properties:

• component.name – The name of the component.
• component.factory – The value of the factory attribute.

The service properties of the Component Factory service must not include the component properties.

New component configurations are created and activated when the newInstance method of the
Component Factory service is called. If the component description specifies a service, the component
configuration is registered as a service under the provided interfaces. The service properties for this
registration consist of the component properties as defined in Service Properties on page 165. The ser-
vice registration must take place before the component configuration is activated. Service unregistra-
tion must take place before the component configuration is deactivated.

UNSATISFIED

becomes
satisfied

becomes

activate

deactivate

ACTIVE

unsatisfied

REGISTERED becomes

get
service

unget
service unsatisfied1

if dynamic:
rebinding

servicefactory: 0..n
otherwise: 1
Page 158 OSGi Service Platform Release 4, Version 4.2

Declarative Services Specification Version 1.1 Component Life Cycle
Figure 112.4 Factory Component

A Component Factory service has a single method: newInstance(Dict ionary) . This method must cre-
ate, satisfy and activate a new component configuration and register its component instance as a ser-
vice if the component description specifies a service. It must then return a ComponentInstance
object. This ComponentInstance object can be used to get the component instance with the getIn-
stance() method.

SCR must attempt to satisfy the component configuration created by newInstance before activating
it. If SCR is unable to satisfy the component configuration given the component properties and the
Dictionary argument to newInstance , the newInstance method must throw a ComponentException .

The client of the Component Factory service can also deactivate a component configuration with the
dispose() method on the ComponentInstance object. If the component configuration is already deac-
tivated, or is being deactivated, then this method is ignored. Also, if the component configuration
becomes unsatisfied for any reason, it must be deactivated by SCR.

Once a component configuration created by the Component Factory has been deactivated, that com-
ponent configuration will not be reactivated or used again.

112.5.6 Activation
Activating a component configuration consists of the following steps:

1 Load the component implementation class.
2 Create the component instance and component context.
3 Bind the target services. See Binding Services on page 160.
4 Call the activate method, if present. See Activate Method on page 160.

Component instances must never be reused. Each time a component configuration is activated, SCR
must create a new component instance to use with the activated component configuration. A compo-
nent instance must complete activation before it can be deactivated. Once the component configura-
tion is deactivated or fails to activate due to an exception, SCR must unbind all the component’s
bound services and discard all references to the component instance associated with the activation.

activate

deactivate

ACTIVE

FACTORY

becomes

newInstance

dispose
unsatisfied

0..n

1

rebinding
if dynamic

register

unregister

UNSATISFIED

becomes
satisfied

becomes
unsatisfied
OSGi Service Platform Release 4, Version 4.2 Page 159

Component Life Cycle Declarative Services Specification Version 1.1
112.5.7 Binding Services
When a component configuration’s reference is satisfied, there is a set of zero or more target services
for that reference. When the component configuration is activated, a subset of the target services for
each reference are bound to the component configuration. The subset is chosen by the cardinality of
the reference. See Reference Cardinality on page 149.

When binding services, the references are processed in the order in which they are specified in the
component description. That is, target services from the first specified reference are bound before ser-
vices from the next specified reference.

For each reference using the event strategy, the bind method must be called for each bound service of
that reference. This may result in activating a component configuration of the bound service which
could result in an exception. If the loss of the bound service due to the exception causes the refer-
ence’s cardinality constraint to be violated, then activation of this component configuration will fail.
Otherwise the bound service which failed to activate will be considered unbound. If a bind method
throws an exception, SCR must log an error message containing the exception with the Log Service, if
present, but the activation of the component configuration does not fail.

112.5.8 Activate Method
A component instance can have an activate method. The name of the activate method can be speci-
fied by the act ivate attribute. See Component Element on page 152. If the act ivate attribute is not spec-
ified, the default method name of activate is used. The prototype of the activate method is:

void <method-name>(<arguments>);

The activate method can take zero or more arguments. Each argument must be of one of the follow-
ing types:

• ComponentContext – The component instance will be passed the Component Context for the
component configuration.

• BundleContext – The component instance will be passed the Bundle Context of the component's
bundle.

• Map – The component instance will be passed an unmodifiable Map containing the component
properties.

A suitable method is selected using the following priority:

1 The method takes a single argument and the type of the argument is
org.osgi .serv ice.component.ComponentContext .

2 The method takes a single argument and the type of the argument is
org.osgi . framework.BundleContext .

3 The method takes a single argument and the type of the argument is the java.uti l .Map .
4 The method takes two or more arguments and the type of each argument must be

org.osgi .serv ice.component.ComponentContext , org.osgi . framework.BundleContext or
java.ut i l .Map . If multiple methods match this rule, this implies the method name is overloaded
and SCR may choose any of the methods to call.

5 The method takes zero arguments.

When searching for the activate method to call, SCR must locate a suitable method as specified in
Locating Component Methods on page 167. If the activate attribute is specified and no suitable method
is located, SCR must log an error message with the Log Service, if present, and the component config-
uration is not activated.

If an activate method is located, SCR must call this method to complete the activation of the compo-
nent configuration. If the activate method throws an exception, SCR must log an error message con-
taining the exception with the Log Service, if present, and the component configuration is not
activated.
Page 160 OSGi Service Platform Release 4, Version 4.2

Declarative Services Specification Version 1.1 Component Life Cycle
112.5.9 Component Context
The Component Context is made available to a component instance via the act ivate and deactivate
methods. It provides the interface to the execution context of the component, much like the Bundle
Context provides a bundle the interface to the Framework. A Component Context should therefore
be regarded as a capability and not shared with other components or bundles.

Each distinct component instance receives a unique Component Context. Component Contexts are
not reused and must be discarded when the component configuration is deactivated.

112.5.10 Bound Service Replacement
If an active component configuration has a dynamic reference with unary cardinality and the bound
service is modified or unregistered and ceases to be a target service, SCR must attempt to replace the
bound service with a new target service. SCR must first bind a replacement target service and then
unbind the outgoing service. If the dynamic reference has a mandatory cardinality and no replace-
ment target service is available, the component configuration must be deactivated because the cardi-
nality constraints will be violated.

If a component configuration has a static reference and a bound service is modified or unregistered
and ceases to be a target service, SCR must deactivate the component configuration. Afterwards, SCR
must attempt to activate the component configuration again if another target service can be used as a
replacement for the outgoing service.

112.5.11 Modification
Modifying a component configuration can occur if the component description specifies the modif ied
attribute and the component properties of the component configuration use a Configurat ion object
from the Configuration Admin service and that Configuration object is modified without causing the
component configuration to become unsatisfied. If this occurs, the component instance will be noti-
fied of the change in the component properties.

If the modif ied attribute is not specified, then the component configuration will become unsatisfied
if its component properties use a Configurat ion object and that Configuration object is modified in
any way.

Modifying a component configuration consists of the following steps:

1 Update the component context for the component configuration with the modified configuration
properties.

2 Call the modified method. See Modified Method on page 161.
3 Modify the bound services for the dynamic references if the set of target services changed due to

changes in the target properties. See Bound Service Replacement on page 161.
4 If the component configuration is registered as a service, modify the service properties.

A component instance must complete activation, or a previous modification, before it can be modi-
fied.

See Modified Configurations on page 166 for more information.

112.5.12 Modified Method
The name of the modified method is specified by the modif ied attribute. See Component Element on
page 152. The prototype and selection priority of the modified method is identical to that of the acti-
vate method. See Activate Method on page 160.

SCR must locate a suitable method as specified in Locating Component Methods on page 167. If the
modif ied attribute is specified and no suitable method is located, SCR must log an error message with
the Log Service, if present, and the component configuration becomes unsatisfied and is deactivated
as if the modif ied attribute was not specified.
OSGi Service Platform Release 4, Version 4.2 Page 161

Component Life Cycle Declarative Services Specification Version 1.1
If a modified method is located, SCR must call this method to notify the component configuration of
changes to the component properties. If the modified method throws an exception, SCR must log an
error message containing the exception with the Log Service, if present and continue processing the
modification.

112.5.13 Deactivation
Deactivating a component configuration consists of the following steps:

1 Call the deactivate method, if present. See Deactivate Method on page 162.
2 Unbind any bound services. See Unbinding on page 163.
3 Release all references to the component instance and component context.

A component instance must complete activation or modification before it can be deactivated. A com-
ponent configuration can be deactivated for a variety of reasons. The deactivation reason can be
received by the deactivate method. The following reason values are defined:

• 0 – Unspecified.
• 1 – The component was disabled.
• 2 – A reference became unsatisfied.
• 3 – A configuration was changed.
• 4 – A configuration was deleted.
• 5 – The component was disposed.
• 6 – The bundle was stopped.

Once the component configuration is deactivated, SCR must discard all references to the component
instance and component context associated with the activation.

112.5.14 Deactivate Method
A component instance can have a deactivate method. The name of the deactivate method can be spec-
ified by the deactivate attribute. See Component Element on page 152. If the deactivate attribute is not
specified, the default method name of deactivate is used. The prototype of the deactivate method is:

void <method-name>(<arguments>);

The deactivate method can take zero or more arguments. Each argument must be assignable from
one of the following types:

• ComponentContext – The component instance will be passed the Component Context for the
component.

• BundleContext – The component instance will be passed the Bundle Context of the component's
bundle.

• Map – The component instance will be passed an unmodifiable Map containing the component
properties.

• int or Integer – The component instance will be passed the reason the component configuration
is being deactivated. See Deactivation on page 162.

A suitable method is selected using the following priority:

1 The method takes a single argument and the type of the argument is
org.osgi .serv ice.component.ComponentContext .

2 The method takes a single argument and the type of the argument is
org.osgi . framework.BundleContext .

3 The method takes a single argument and the type of the argument is the java.uti l .Map .
4 The method takes a single argument and the type of the argument is the int .
5 The method takes a single argument and the type of the argument is the java. lang. Integer .
6 The method takes two or more arguments and the type of each argument must be

org.osgi .serv ice.component.ComponentContext , org.osgi . framework.BundleContext ,
Page 162 OSGi Service Platform Release 4, Version 4.2

Declarative Services Specification Version 1.1 Component Life Cycle
java.ut i l .Map , int or java. lang. Integer . If multiple methods match this rule, this implies the
method name is overloaded and SCR may choose any of the methods to call.

7 The method takes zero arguments.

When searching for the deactivate method to call, SCR must locate a suitable method as specified in
Locating Component Methods on page 167. If the deactivate attribute is specified and no suitable
method is located, SCR must log an error message with the Log Service, if present, and the deactiva-
tion of the component configuration will continue.

If a deactivate method is located, SCR must call this method to commence the deactivation of the
component configuration. If the deactivate method throws an exception, SCR must log an error mes-
sage containing the exception with the Log Service, if present, and the deactivation of the component
configuration will continue.

112.5.15 Unbinding
When a component configuration is deactivated, the bound services are unbound from the compo-
nent configuration.

When unbinding services, the references are processed in the reverse order in which they are speci-
fied in the component description. That is, target services from the last specified reference are
unbound before services from the previous specified reference.

For each reference using the event strategy, the unbind method must be called for each bound service
of that reference. If an unbind method throws an exception, SCR must log an error message contain-
ing the exception with the Log Service, if present, and the deactivation of the component configura-
tion will continue.

112.5.16 Life Cycle Example
A component could declare a dependency on the Http Service to register some resources.

<xml version="1.0" encoding="UTF-8">
<scr:component name="example.binding"

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0">
<implementation class="example.Binding"/>
<reference name="LOG"

interface="org.osgi.service.log.LogService"
cardinality="1..1"
policy="static"

/>
<reference name="HTTP"

interface="org.osgi.service.http.HttpService"
cardinality="0..1"
policy="dynamic"
bind="setHttp"
unbind="unsetHttp"

/>
</scr:component>

The component implementation code looks like:

public class Binding {
LogService log;
HttpService http;

private void setHttp(HttpService h) {
this.http = h;
// register servlet

}

OSGi Service Platform Release 4, Version 4.2 Page 163

Component Properties Declarative Services Specification Version 1.1
 private void unsetHttp(HttpService h){
this.h = null;
// unregister servlet

}
private void activate(ComponentContext context) {.

 log = (LogService) context.locateService("LOG");
 }

private void deactivate(ComponentContext context){...}
}

This example is depicted in a sequence diagram in Figure 112.5. with the following scenario:

1 A bundle with the example.Binding component is started. At that time there is a Log Service l1
and a Http Service h1 registered.

2 The Http Service h1 is unregistered
3 A new Http Service h2 is registered
4 The Log Service h1 is unregistered.

Figure 112.5 Sequence Diagram for binding

112.6 Component Properties
Each component configuration is associated with a set of component properties. The component
properties are specified in the following places (in order of precedence):

1 Properties specified in the argument of ComponentFactory.newInstance method. This is only
applicable for factory components.

2 Properties retrieved from the OSGi Configuration Admin service with a Configuration object that
has a PID equal to the name of the component.

3 Properties specified in the component description. Properties specified later in the component
description override properties that have the same name specified earlier. Properties can be spec-
ified in the component description in the following ways:
• target attribute of reference elements – Sets a component property called the target property of

the reference. The key of a target property is the name of the reference appended with . target .

a ComponentLog Service Ref.Http Service Ref.SCR

bundle started
resolve
resolve
satisfied
satisfied
setHttp(h1)

activate(context)

unregistered

dynamic, 0..1 static, 1..1

unsetHttp(h1)

locateService("LOG")

available
setHttp(h2)

unregistered
deactivate(context)
unsetHttp(h2)

1.

2.

3.

4.

Configuration

create
Page 164 OSGi Service Platform Release 4, Version 4.2

Declarative Services Specification Version 1.1 Deployment
The value of a target property is the value of the target attribute. For example, a reference with
the name http whose target attribute has the value "(http.port=80)" results in the component
property having the name http.target and value "(http.port=80)". See Selecting Target Services
on page 151. The target property can also be set wherever component properties can be set.

• property and propert ies elements – See Properties and Property Elements on page 154.

The precedence behavior allows certain default values to be specified in the component description
while allowing properties to be replaced and extended by:

• A configuration in Configuration Admin
• The argument to ComponentFactory.newInstance method

SCR always adds the following component properties, which cannot be overridden:

• component.name – The component name.

• component. id – A unique value (Long) that is larger than all previously assigned values. These
values are not persistent across restarts of SCR.

112.6.1 Service Properties
When SCR registers a service on behalf of a component configuration, SCR must follow the recom-
mendations in Property Propagation on page 51 and must not propagate private configuration proper-
ties. That is, the service properties of the registered service must be all the component properties of
the component configuration whose property names do not start with dot (’ . ’ \u002E).

Component properties whose names start with dot are available to the component instance but are
not available as service properties of the registered service.

112.7 Deployment
A component description contains default information to select target services for each reference.
However, when a component is deployed, it is often necessary to influence the target service selec-
tion in a way that suits the needs of the deployer. Therefore, SCR uses Configuration objects from
Configuration Admin to replace and extend the component properties for a component configura-
tion. That is, through Configuration Admin, a deployer can configure component properties.

The name of the component is used as the key for obtaining additional component properties from
Configuration Admin. The following situations can arise:

• No Configuration – If the component’s conf igurat ion-pol icy is set to ignore or there is no Configu-
ration with a PID or factory PID equal to the component name, then component configurations
will not obtain component properties from Configuration Admin. Only component properties
specified in the component description or via the ComponentFactory.newInstance method will
be used.

• Not Satisfied – If the component’s conf igurat ion-pol icy is set to require and there is no Configu-
ration with a PID or factory PID equal to the component name, then the component configuration
is not satisfied and will not be activated.

• Single Configuration – If there exists a Configuration with a PID equal to the component name,
then component configurations will obtain additional component properties from Configuration
Admin.

• Factory Configuration – If a factory PID exists, with zero or more Configurations, that is equal to the
component name, then for each Configuration, a component configuration must be created that
will obtain additional component properties from Configuration Admin.

A factory configuration must not be used if the component is a factory component. This is because
SCR is not free to create component configurations as necessary to support multiple Configurat ions.
When SCR detects this condition, it must log an error message with the Log Service, if present, and
ignore the component description.
OSGi Service Platform Release 4, Version 4.2 Page 165

Service Component Runtime Declarative Services Specification Version 1.1
SCR must obtain the Configurat ion objects from the Configuration Admin service using the Bundle
Context of the bundle containing the component.

For example, there is a component named com.acme.cl ient with a reference named HTTP that
requires an Http Service which must be bound to a component com.acme.httpserver which provides
an Http Service. A deployer can establish the following configuration:

[PID=com.acme.client, factoryPID=null]
HTTP.target = (component.name=com.acme.httpserver)

112.7.1 Modified Configurations
SCR must track changes in the Configurat ion objects used in the component properties of a compo-
nent configuration. If a Configurat ion object that is used by a component configuration is deleted,
then the component configuration will become unsatisfied and SCR must deactivate that component
configuration.

If a Configurat ion object that is used by a component configuration changes, then SCR must take
action based upon whether the component configuration has been activated and whether the com-
ponent description specifies the modif ied attribute.

If a component configuration has not been activated and it has a service registered, then a
Configurat ion object change that leaves the component configuration satisfied will only cause the
service properties of the service to be modified.

If a component description specifies the modif ied attribute and the changes to the target properties
for the component configuration do not cause any references of the component configuration to
become unsatisfied, SCR must modify the component properties for the component configuration.
See Modification on page 161. A reference can become unsatisfied by a target property change if either:

• A bound service of a static reference is no longer a target service, or
• There are no target services for a mandatory dynamic reference.

Otherwise, the component configuration will become unsatisfied and SCR must deactivate that com-
ponent configuration. SCR must attempt to satisfy the component configuration with the updated
component properties.

112.8 Service Component Runtime

112.8.1 Relationship to OSGi Framework
The SCR must have access to the Bundle Context of any bundle that contains a component. The SCR
needs access to the Bundle Context for the following reasons:

• To be able to register and get services on behalf of a bundle with components.
• To interact with the Configuration Admin on behalf of a bundle with components.
• To provide a component its Bundle Context when the Component Context getBundleContext

method is called.

The SCR should use the Bundle.getBundleContext() method to obtain the Bundle Context reference.

112.8.2 Starting and Stopping SCR
When SCR is implemented as a bundle, any component configurations activated by SCR must be
deactivated when the SCR bundle is stopped. When the SCR bundle is started, it must process any
components that are declared in bundles that are started. This includes bundles which are started and
are awaiting lazy activation.
Page 166 OSGi Service Platform Release 4, Version 4.2

Declarative Services Specification Version 1.1 Security
112.8.3 Logging Error Messages
When SCR must log an error message to the Log Service, it must use a Log Service obtained using the
component’s Bundle Context so that the resulting Log Entry is associated with the component’s bun-
dle.

If SCR is unable to obtain, or use, a Log Service using the component’s Bundle Context, then SCR
must log the error message to a Log Service obtained using SCR’s bundle context to ensure the error
message is logged.

112.8.4 Locating Component Methods
SCR will need to locate activate, deactivate, modified, bind and unbind methods for a component
instance. These methods will be located, and called, using reflection. The declared methods of each
class in the component implementation class' hierarchy are examined for a suitable method. If a suit-
able method is found in a class, and it is accessible to the component implementation class, then that
method must be used. If suitable methods are found in a class but none of the suitable methods are
accessible by the component implementation class, then the search for suitable methods terminates
with no suitable method having been located. If no suitable methods are found in a class, the search
continues in the superclass.

Only methods that are accessible, [5] Access Control Java Language Specification, to the component
implementation class will be used. If the method has the public or protected access modifier, then
access is permitted. Otherwise, if the method has the private access modifier, then access is permitted
only if the method is declared in the component implementation class. Otherwise, if the method has
default access, also known as package private access, then access is permitted only if the method is
declared in the component implementation class or if the method is declared in a superclass and all
classes in the hierarchy from the component implementation class to the superclass, inclusive, are in
the same package and loaded by the same class loader.

It is recommended that these methods should not be declared with the publ ic access modifier so that
they do not appear as public methods on the component instance when it is used as a service object.
Having these methods declared publ ic allows any code to call the methods with reflection, even if a
Security Manager is installed. These methods are generally intended to only be called by SCR.

112.9 Security

112.9.1 Service Permissions
Declarative services are built upon the existing OSGi service infrastructure. This means that Service
Permission applies regarding the ability to publish, find or bind services.

If a component specifies a service, then component configurations for the component cannot be sat-
isfied unless the component’s bundle has ServicePermission[<provides>, REGISTER] for each pro-
vided interface specified for the service.

If a component’s reference does not specify optional cardinality, the reference cannot be satisfied
unless the component’s bundle has ServicePermission[<interface>, GET] for the specified interface
in the reference. If the reference specifies optional cardinality but the component’s bundle does not
have ServicePermission[<interface>, GET] for the specified interface in the reference, no service
must be bound for this reference.

If a component is a factory component, then the above Service Permission checks still apply. But the
component’s bundle is not required to have ServicePermission[ComponentFactory, REGISTER] as
the Component Factory service is registered by SCR.
OSGi Service Platform Release 4, Version 4.2 Page 167

Component Description Schema Declarative Services Specification Version 1.1
112.9.2 Required Admin Permission
The SCR requires AdminPermission[*,CONTEXT] because it needs access to the bundle’s Bundle Con-
text object with the Bundle.getBundleContext() method.

112.9.3 Using hasPermission
SCR does all publishing, finding and binding of services on behalf of the component using the Bundle
Context of the component’s bundle. This means that normal stack-based permission checks will
check SCR and not the component’s bundle. Since SCR is registering and getting services on behalf of
a component’s bundle, SCR must call the Bundle.hasPermission method to validate that a compo-
nent’s bundle has the necessary permission to register or get a service.

112.10 Component Description Schema
This XML Schema defines the component description grammar.

<xml version="1.0" encoding="UTF-8">
<schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0"
targetNamespace="http://www.osgi.org/xmlns/scr/v1.1.0"
elementFormDefault="unqualified"
attributeFormDefault="unqualified"
version="1.1.0">

<annotation>
<documentation xml:lang="en">

This is the XML Schema for component descriptions used by
the Service Component Runtime (SCR). Component description
documents may be embedded in other XML documents. SCR will
process all XML documents listed in the Service-Component
manifest header of a bundle. XML documents containing
component descriptions may contain a single, root component
element or one or more component elements embedded in a
larger document. Use of the namespace for component
descriptions is mandatory. The attributes and subelements
of a component element are always unqualified.

</documentation>
</annotation>
<element name="component" type="scr:Tcomponent" />
<complexType name="Tcomponent">

<sequence>
<annotation>

<documentation xml:lang="en">
Implementations of SCR must not require component
descriptions to specify the subelements of the component
element in the order as required by the schema. SCR
implementations must allow other orderings since
arbitrary orderings do not affect the meaning of the
component description. Only the relative ordering of
property and properties element have meaning.

</documentation>
</annotation>
<choice minOccurs="0" maxOccurs="unbounded">

<element name="property" type="scr:Tproperty" />
<element name="properties" type="scr:Tproperties" />

</choice>
<element name="service" type="scr:Tservice" minOccurs="0"

maxOccurs="1" />
<element name="reference" type="scr:Treference"

minOccurs="0" maxOccurs="unbounded" />
<element name="implementation" type="scr:Timplementation"

minOccurs="1" maxOccurs="1" />
<any namespace="##any" processContents="lax" minOccurs="0"

maxOccurs="unbounded" />
</sequence>
<attribute name="enabled" type="boolean" default="true"

use="optional" />
<attribute name="name" type="token" use="optional">
Page 168 OSGi Service Platform Release 4, Version 4.2

Declarative Services Specification Version 1.1 Component Description Schema
<annotation>
<documentation xml:lang="en">

The default value of this attribute is the value of
the class attribute of the nested implementation
element. If multiple component elements use the same
value for the class attribute of their nested
implementation element, then using the default value
for this attribute will result in duplicate names.
In this case, this attribute must be specified with
a unique value.

</documentation>
</annotation>

</attribute>
<attribute name="factory" type="string" use="optional" />
<attribute name="immediate" type="boolean" use="optional" />
<attribute name="configuration-policy"

type="scr:Tconfiguration-policy" default="optional" use="optional" />
<attribute name="activate" type="token" use="optional"

default="activate" />
<attribute name="deactivate" type="token" use="optional"

default="deactivate" />
<attribute name="modified" type="token" use="optional" />
<anyAttribute />

</complexType>
<complexType name="Timplementation">

<sequence>
<any namespace="##any" processContents="lax" minOccurs="0"

maxOccurs="unbounded" />
</sequence>
<attribute name="class" type="token" use="required" />
<anyAttribute />

</complexType>
<complexType name="Tproperty">

<simpleContent>
<extension base="string">

<attribute name="name" type="string" use="required" />
<attribute name="value" type="string" use="optional" />
<attribute name="type" type="scr:Tjava-types"

default="String" use="optional" />
<anyAttribute />

</extension>
</simpleContent>

</complexType>
<complexType name="Tproperties">

<sequence>
<any namespace="##any" processContents="lax" minOccurs="0"

maxOccurs="unbounded" />
</sequence>
<attribute name="entry" type="string" use="required" />
<anyAttribute />

</complexType>
<complexType name="Tservice">

<sequence>
<element name="provide" type="scr:Tprovide" minOccurs="1"

maxOccurs="unbounded" />
<!-- It is non-deterministic, per W3C XML Schema 1.0:
http://www.w3.org/TR/xmlschema-1/#cos-nonambig
to use namespace="##any" below. -->
<any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded" />
</sequence>
<attribute name="servicefactory" type="boolean" default="false"

use="optional" />
<anyAttribute />

</complexType>
<complexType name="Tprovide">

<sequence>
<any namespace="##any" processContents="lax" minOccurs="0"

maxOccurs="unbounded" />
</sequence>
<attribute name="interface" type="token" use="required" />
<anyAttribute />

</complexType>
<complexType name="Treference">

<sequence>
OSGi Service Platform Release 4, Version 4.2 Page 169

Component Description Schema Declarative Services Specification Version 1.1
<any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded" />

</sequence>
<attribute name="name" type="token" use="optional">

<annotation>
<documentation xml:lang="en">

The default value of this attribute is the value of
the interface attribute of this element. If multiple
instances of this element within a component element
use the same value for the interface attribute, then
using the default value for this attribute will result
in duplicate names. In this case, this attribute
must be specified with a unique value.

</documentation>
</annotation>

</attribute>
<attribute name="interface" type="token" use="required" />
<attribute name="cardinality" type="scr:Tcardinality"

default="1..1" use="optional" />
<attribute name="policy" type="scr:Tpolicy" default="static"

use="optional" />
<attribute name="target" type="string" use="optional" />
<attribute name="bind" type="token" use="optional" />
<attribute name="unbind" type="token" use="optional" />
<anyAttribute />

</complexType>
<simpleType name="Tjava-types">

<restriction base="string">
<enumeration value="String" />
<enumeration value="Long" />
<enumeration value="Double" />
<enumeration value="Float" />
<enumeration value="Integer" />
<enumeration value="Byte" />
<enumeration value="Character" />
<enumeration value="Boolean" />
<enumeration value="Short" />

</restriction>
</simpleType>
<simpleType name="Tcardinality">

<restriction base="string">
<enumeration value="0..1" />
<enumeration value="0..n" />
<enumeration value="1..1" />
<enumeration value="1..n" />

</restriction>
</simpleType>
<simpleType name="Tpolicy">

<restriction base="string">
<enumeration value="static" />
<enumeration value="dynamic" />

</restriction>
</simpleType>
<simpleType name="Tconfiguration-policy">

<restriction base="string">
<enumeration value="optional" />
<enumeration value="require" />
<enumeration value="ignore" />

</restriction>
</simpleType>
<attribute name="must-understand" type="boolean">

<annotation>
<documentation xml:lang="en">

This attribute should be used by extensions to documents
to require that the document consumer understand the
extension. This attribute must be qualified when used.

</documentation>
</annotation>

</attribute>
</schema>
Page 170 OSGi Service Platform Release 4, Version 4.2

Declarative Services Specification Version 1.1 org.osgi.service.component
SCR must not require component descriptions to specify the elements in the order required by the
schema. SCR must allow other orderings since arbitrary orderings of these elements do not affect the
meaning of the component description. Only the relative ordering of property , propert ies and
reference elements have meaning for overriding previously set property values.

The schema is also available in digital form from [6] OSGi XML Schemas.

112.11 org.osgi.service.component
Service Component Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. For example:

Import-Package: org.osgi.service.component; version=”[1.1,2.0)”

112.11.1 Summary
• ComponentConstants - Defines standard names for Service Component constants.
• ComponentContext - A Component Context object is used by a component instance to interact with

its execution context including locating services by reference name.
• ComponentException - Unchecked exception which may be thrown by the Service Component

Runtime.
• ComponentFactory - When a component is declared with the factory attribute on its component

element, the Service Component Runtime will register a Component Factory service to allow new
component configurations to be created and activated rather than automatically creating and
activating component configuration as necessary.

• ComponentInstance - A ComponentInstance encapsulates a component instance of an activated
component configuration.

ComponentConstants

112.11.2 public interface ComponentConstants
Defines standard names for Service Component constants.
COMPONENT_FACTORY

112.11.2.1 public static final String COMPONENT_FACTORY = “component.factory”

A service registration property for a Component Factory that contains the value of the factory
attribute. The value of this property must be of type Str ing .
COMPONENT_ID

112.11.2.2 public static final String COMPONENT_ID = “component.id”

A component property that contains the generated id for a component configuration. The value of
this property must be of type Long .

The value of this property is assigned by the Service Component Runtime when a component config-
uration is created. The Service Component Runtime assigns a unique value that is larger than all pre-
viously assigned values since the Service Component Runtime was started. These values are NOT
persistent across restarts of the Service Component Runtime.
COMPONENT_NAME

112.11.2.3 public static final String COMPONENT_NAME = “component.name”

A component property for a component configuration that contains the name of the component as
specified in the name attribute of the component element. The value of this property must be of type
Str ing .
DEACTIVATION_REASON_BUNDLE_STOPPED

112.11.2.4 public static final int DEACTIVATION_REASON_BUNDLE_STOPPED = 6

The component configuration was deactivated because the bundle was stopped.

Since 1.1
DEACTIVATION_REASON_CONFIGURATION_DELETED
OSGi Service Platform Release 4, Version 4.2 Page 171

org.osgi.service.component Declarative Services Specification Version 1.1
112.11.2.5 public static final int DEACTIVATION_REASON_CONFIGURATION_DELETED = 4

The component configuration was deactivated because its configuration was deleted.

Since 1.1
DEACTIVATION_REASON_CONFIGURATION_MODIFIED

112.11.2.6 public static final int DEACTIVATION_REASON_CONFIGURATION_MODIFIED = 3

The component configuration was deactivated because its configuration was changed.

Since 1.1
DEACTIVATION_REASON_DISABLED

112.11.2.7 public static final int DEACTIVATION_REASON_DISABLED = 1

The component configuration was deactivated because the component was disabled.

Since 1.1
DEACTIVATION_REASON_DISPOSED

112.11.2.8 public static final int DEACTIVATION_REASON_DISPOSED = 5

The component configuration was deactivated because the component was disposed.

Since 1.1
DEACTIVATION_REASON_REFERENCE

112.11.2.9 public static final int DEACTIVATION_REASON_REFERENCE = 2

The component configuration was deactivated because a reference became unsatisfied.

Since 1.1
DEACTIVATION_REASON_UNSPECIFIED

112.11.2.10 public static final int DEACTIVATION_REASON_UNSPECIFIED = 0

The reason the component configuration was deactivated is unspecified.

Since 1.1
REFERENCE_TARGET_SUFFIX

112.11.2.11 public static final String REFERENCE_TARGET_SUFFIX = “.target”

The suffix for reference target properties. These properties contain the filter to select the target ser-
vices for a reference. The value of this property must be of type Str ing .
SERVICE_COMPONENT

112.11.2.12 public static final String SERVICE_COMPONENT = “Service-Component”

Manifest header specifying the XML documents within a bundle that contain the bundle’s Service
Component descriptions.

The attribute value may be retrieved from the Dictionary object returned by the Bundle.getHeaders
method.
ComponentContext

112.11.3 public interface ComponentContext
A Component Context object is used by a component instance to interact with its execution context
including locating services by reference name. Each component instance has a unique Component
Context.

A component instance may have an activate method. If a component instance has a suitable and
accessible activate method, this method will be called when a component configuration is activated.
If the activate method takes a ComponentContext argument, it will be passed the component
instance’s Component Context object. If the activate method takes a BundleContext argument, it will
be passed the component instance’s Bundle Context object. If the activate method takes a Map argu-
ment, it will be passed an unmodifiable Map containing the component properties.

A component instance may have a deactivate method. If a component instance has a suitable and
accessible deactivate method, this method will be called when the component configuration is deac-
tivated. If the deactivate method takes a ComponentContext argument, it will be passed the compo-
nent instance’s Component Context object. If the deactivate method takes a BundleContext
Page 172 OSGi Service Platform Release 4, Version 4.2

Declarative Services Specification Version 1.1 org.osgi.service.component
argument, it will be passed the component instance’s Bundle Context object. If the deactivate method
takes a Map argument, it will be passed an unmodifiable Map containing the component properties.
If the deactivate method takes an int or Integer argument, it will be passed the reason code for the
component instance’s deactivation.

Concurrency Thread-safe
disableComponent(String)

112.11.3.1 public void disableComponent(String name)

name The name of a component.

Disables the specified component name. The specified component name must be in the same bundle
as this component.
enableComponent(String)

112.11.3.2 public void enableComponent(String name)

name The name of a component or null to indicate all components in the bundle.

Enables the specified component name. The specified component name must be in the same bundle
as this component.
getBundleContext()

112.11.3.3 public BundleContext getBundleContext()

Returns the BundleContext of the bundle which contains this component.

Returns The BundleContext of the bundle containing this component.
getComponentInstance()

112.11.3.4 public ComponentInstance getComponentInstance()

Returns the Component Instance object for the component instance associated with this Component
Context.

Returns The Component Instance object for the component instance.
getProperties()

112.11.3.5 public Dictionary getProperties()

Returns the component properties for this Component Context.

Returns The properties for this Component Context. The Dictionary is read only and cannot be modified.
getServiceReference()

112.11.3.6 public ServiceReference getServiceReference()

If the component instance is registered as a service using the service element, then this method
returns the service reference of the service provided by this component instance.

This method will return null if the component instance is not registered as a service.

Returns The ServiceReference object for the component instance or nul l if the component instance is not reg-
istered as a service.
getUsingBundle()

112.11.3.7 public Bundle getUsingBundle()

If the component instance is registered as a service using the servicefactory=”true” attribute, then
this method returns the bundle using the service provided by the component instance.

This method will return null if:

• The component instance is not a service, then no bundle can be using it as a service.
• The component instance is a service but did not specify the serv icefactory=”true” attribute, then

all bundles using the service provided by the component instance will share the same component
instance.

• The service provided by the component instance is not currently being used by any bundle.

Returns The bundle using the component instance as a service or null .
locateService(String)

112.11.3.8 public Object locateService(String name)

name The name of a reference as specified in a reference element in this component’s description.
OSGi Service Platform Release 4, Version 4.2 Page 173

org.osgi.service.component Declarative Services Specification Version 1.1
Returns the service object for the specified reference name.

If the cardinality of the reference is 0..n or 1. .n and multiple services are bound to the reference, the
service with the highest ranking (as specified in its Constants.SERVICE_RANKING property) is
returned. If there is a tie in ranking, the service with the lowest service ID (as specified in its
Constants.SERVICE_ID property); that is, the service that was registered first is returned.

Returns A service object for the referenced service or nul l if the reference cardinality is 0..1 or 0..n and no
bound service is available.

Throws ComponentException – If the Service Component Runtime catches an exception while activating the
bound service.
locateService(String,ServiceReference)

112.11.3.9 public Object locateService(String name, ServiceReference reference)

name The name of a reference as specified in a reference element in this component’s description.

reference The ServiceReference to a bound service. This must be a ServiceReference provided to the compo-
nent via the bind or unbind method for the specified reference name.

Returns the service object for the specified reference name and ServiceReference .

Returns A service object for the referenced service or null if the specified ServiceReference is not a bound serv-
ice for the specified reference name.

Throws ComponentException – If the Service Component Runtime catches an exception while activating the
bound service.
locateServices(String)

112.11.3.10 public Object[] locateServices(String name)

name The name of a reference as specified in a reference element in this component’s description.

Returns the service objects for the specified reference name.

Returns An array of service objects for the referenced service or nul l if the reference cardinality is 0..1 or 0..n
and no bound service is available. If the reference cardinality is 0..1 or 1. .1 and a bound service is avail-
able, the array will have exactly one element.

Throws ComponentException – If the Service Component Runtime catches an exception while activating a
bound service.
ComponentException

112.11.4 public class ComponentException
extends RuntimeException
Unchecked exception which may be thrown by the Service Component Runtime.
ComponentException(String,Throwable)

112.11.4.1 public ComponentException(String message, Throwable cause)

message The message for the exception.

cause The cause of the exception. May be nul l .

Construct a new ComponentException with the specified message and cause.
ComponentException(String)

112.11.4.2 public ComponentException(String message)

message The message for the exception.

Construct a new ComponentException with the specified message.
ComponentException(Throwable)

112.11.4.3 public ComponentException(Throwable cause)

cause The cause of the exception. May be nul l .

Construct a new ComponentException with the specified cause.
getCause()
Page 174 OSGi Service Platform Release 4, Version 4.2

Declarative Services Specification Version 1.1 org.osgi.service.component
112.11.4.4 public Throwable getCause()

Returns the cause of this exception or null if no cause was set.

Returns The cause of this exception or nul l if no cause was set.
initCause(Throwable)

112.11.4.5 public Throwable initCause(Throwable cause)

cause The cause of this exception.

Initializes the cause of this exception to the specified value.

Returns This exception.

Throws IllegalArgumentException – If the specified cause is this exception.

IllegalStateException – If the cause of this exception has already been set.
ComponentFactory

112.11.5 public interface ComponentFactory
When a component is declared with the factory attribute on its component element, the Service
Component Runtime will register a Component Factory service to allow new component configura-
tions to be created and activated rather than automatically creating and activating component con-
figuration as necessary.

Concurrency Thread-safe
newInstance(Dictionary)

112.11.5.1 public ComponentInstance newInstance(Dictionary properties)

properties Additional properties for the component configuration or nul l if there are no additional properties.

Create and activate a new component configuration. Additional properties may be provided for the
component configuration.

Returns A ComponentInstance object encapsulating the component instance of the component configura-
tion. The component configuration has been activated and, if the component specifies a service ele-
ment, the component instance has been registered as a service.

Throws ComponentException – If the Service Component Runtime is unable to activate the component con-
figuration.
ComponentInstance

112.11.6 public interface ComponentInstance
A ComponentInstance encapsulates a component instance of an activated component configuration.
ComponentInstances are created whenever a component configuration is activated.

ComponentInstances are never reused. A new ComponentInstance object will be created when the
component configuration is activated again.

Concurrency Thread-safe
dispose()

112.11.6.1 public void dispose()

Dispose of the component configuration for this component instance. The component configuration
will be deactivated. If the component configuration has already been deactivated, this method does
nothing.
getInstance()

112.11.6.2 public Object getInstance()

Returns the component instance of the activated component configuration.

Returns The component instance or null if the component configuration has been deactivated.
OSGi Service Platform Release 4, Version 4.2 Page 175

References Declarative Services Specification Version 1.1
112.12 References
[1] Automating Service Dependency Management in a Service-Oriented Component Model

Humberto Cervantes, Richard S. Hall, Proceedings of the Sixth Component-Based Software
Engineering Workshop, May 2003, pp. 91-96.
http://www-adele.imag.fr/Les.Publications/intConferences/CBSE2003Cer.pdf

[2] Service Binder
Humberto Cervantes, Richard S. Hall, http://gravity.sourceforge.net/servicebinder

[3] Java Properties File
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Properties.html#load(java.io.InputStream)

[4] Extensible Markup Language (XML) 1.0
http://www.w3.org/TR/REC-xml/

[5] Access Control Java Language Specification
http://java.sun.com/docs/books/jls/second_edition/html/names.doc.html#104285

[6] OSGi XML Schemas
http://www.osgi.org/Release4/XMLSchemas
Page 176 OSGi Service Platform Release 4, Version 4.2

Event Admin Service Specification Version 1.2 Introduction
113 Event Admin Service
Specification
Version 1.2

113.1 Introduction
Nearly all the bundles in an OSGi framework must deal with events, either as an event publisher or as
an event handler. So far, the preferred mechanism to disperse those events have been the service
interface mechanism.

Dispatching events for a design related to X, usually involves a service of type XListener . However,
this model does not scale well for fine grained events that must be dispatched to many different han-
dlers. Additionally, the dynamic nature of the OSGi environment introduces several complexities
because both event publishers and event handlers can appear and disappear at any time.

The Event Admin service provides an inter-bundle communication mechanism. It is based on a event
publish and subscribe model, popular in many message based systems.

This specification defines the details for the participants in this event model.

113.1.1 Essentials
• Simplifications – The model must significantly simplify the process of programming an event

source and an event handler.
• Dependencies – Handle the myriad of dependencies between event sources and event handlers for

proper cleanup.
• Synchronicity – It must be possible to deliver events asynchronously or synchronously with the

caller.
• Event Window – Only event handlers that are active when an event is published must receive this

event, handlers that register later must not see the event.
• Performance – The event mechanism must impose minimal overhead in delivering events.
• Selectivity – Event listeners must only receive notifications for the event types for which they are

interested
• Reliability – The Event Admin must ensure that events continue to be delivered regardless the

quality of the event handlers.
• Security – Publishing and receiving events are sensitive operations that must be protected per

event type.
• Extensibility – It must be possible to define new event types with their own data types.
• Native Code – Events must be able to be passed to native code or come from native code.
• OSGi Events – The OSGi Framework, as well as a number of OSGi services, already have number of

its own events defined. For uniformity of processing, these have to be mapped into generic event
types.

113.1.2 Entities
• Event – An Event object has a topic and a Dictionary object that contains the event properties. It is

an immutable object.
• Event Admin – The service that provides the publish and subscribe model to Event Handlers and

Event Publishers.
• Event Handler – A service that receives and handles Event objects.
OSGi Service Platform Release 4, Version 4.2 Page 177

Event Admin Architecture Event Admin Service Specification Version 1.2
• Event Publisher – A bundle that sends event through the Event Admin service.
• Event Subscriber – Another name for an Event Handler.
• Topic – The name of an Event type.
• Event Properties – The set of properties that is associated with an Event.

Figure 113.1 The Event Admin service org.osgi.service.event package

113.1.3 Synopsis
The Event Admin service provides a place for bundles to publish events, regardless of their destina-
tion. It is also used by Event Handlers to subscribe to specific types of events.

Events are published under a topic, together with a number of event properties. Event Handlers can
specify a filter to control the Events they receive on a very fine grained basis.

113.1.4 What To Read
• Architects – The Event Admin Architecture on page 178 provides an overview of the Event Admin

service.
• Event Publishers – The Event Publisher on page 181 provides an introduction of how to write an

Event Publisher. The Event Admin Architecture on page 178 provides a good overview of the design.
• Event Subscribers/Handlers – The Event Handler on page 180 provides the rules on how to subscribe

and handle events.

113.2 Event Admin Architecture
The Event Admin is based on the Publish-Subscribe pattern. This pattern decouples sources from their
handlers by interposing an event channel between them. The publisher posts events to the channel,
which identifies which handlers need to be notified and then takes care of the notification process.
This model is depicted in Figure 113.2.

Event Publisher
Impl

an Event
Consumer Impl

receive
send

<<service>>
Event Admin

Event Admin Impl

<<service>>
Event Handler1 0..n

<<class>>
Eventevent

event
Page 178 OSGi Service Platform Release 4, Version 4.2

Event Admin Service Specification Version 1.2 The Event
Figure 113.2 Channel Pattern

In this model, the event source and event handler are completely decoupled because neither has any
direct knowledge of the other. The complicated logic of monitoring changes in the event publishers
and event handlers is completely contained within the event channel. This is highly advantageous in
an OSGi environment because it simplifies the process of both sending and receiving events.

113.3 The Event
Events have the following attributes:

• Topic – A topic that defines what happened. For example, when a bundle is started an event is pub-
lished that has a topic of org/osgi/f ramework/BundleEvent/STARTED .

• Properties – Zero or more properties that contain additional information about the event. For
example, the previous example event has a property of bundle. id which is set to a Long object,
among other properties.

113.3.1 Topics
The topic of an event defines the type of the event. It is fairly granular in order to give handlers the
opportunity to register for just the events they are interested in. When a topic is designed, its name
should not include any other information, such as the publisher of the event or the data associated
with the event, those parts are intended to be stored in the event properties.

The topic is intended to serve as a first-level filter for determining which handlers should receive the
event. Event Admin service implementations use the structure of the topic to optimize the dispatch-
ing of the events to the handlers.

Topics are arranged in a hierarchical namespace. Each level is defined by a token and levels are sepa-
rated by slashes. More precisely, the topic must conform to the following grammar:

 topic ::= token (’/’ token) * // See 1.3.2 Core book

Topics should be designed to become more specific when going from left to right. Handlers can pro-
vide a prefix that matches a topic, using the preferred order allows a handler to minimize the number
of prefixes it needs to register.

Topics are case-sensitive. As a convention, topics should follow the reverse domain name scheme
used by Java packages to guarantee uniqueness. The separator must be slashes (’ / ’ \u002F) instead of
the dot (’ . ’ \u002E).

This specification uses the convention ful ly/qual i f ied/package/ClassName/ACTION . If necessary, a
pseudo-class-name is used.

113.3.2 Properties
Information about the actual event is provided as properties. The property name is a case-sensitive
string and the value can be any object. Although any Java object can be used as a property value, only
Str ing objects and the eight primitive types (plus their wrappers) should be used. Other types cannot
be passed to handlers that reside external from the Java VM.

Publisher <<service>>
EventHandler

1
0..n

<<service>>
Event Admin

1
0..n

sendEvent handleEvent
postEvent
OSGi Service Platform Release 4, Version 4.2 Page 179

Event Handler Event Admin Service Specification Version 1.2
Another reason that arbitrary classes should not be used is the mutability of objects. If the values are
not immutable, then any handler that receives the event could change the value. Any handlers that
received the event subsequently would see the altered value and not the value as it was when the
event was sent.

The topic of the event is available as a property with the key EVENT_TOPIC . This allows filters to
include the topic as a condition if necessary.

113.4 Event Handler
Event handlers must be registered as services with the OSGi framework under the object class
org.osgi .service.event.EventHandler .

Event handlers should be registered with a property (constant from the EventConstants class)
EVENT_TOPIC . The value being a Str ing or Str ing[] object that describes which topics the handler is
interested in. A wildcard (’*’ \u002A) may be used as the last token of a topic name, for example com/
action/* . This matches any topic that shares the same first tokens. For example, com/act ion/*
matches com/action/l isten .

Event Handlers which have not specified the EVENT_TOPIC service property must not receive events.

The value of each entry in the EVENT_TOPIC service registration property must conform to the fol-
lowing grammar:

topic-scope ::= ’*’ | (topic ’/*’)

Event handlers can also be registered with a service property named EVENT_FILTER . The value of this
property must be a string containing a Framework filter specification. Any of the event's properties
can be used in the filter expression.

event-filter ::= filter // 3.2.7 Core book

Each Event Handler is notified for any event which belongs to the topics the handler has expressed
an interest in. If the handler has defined a EVENT_FILTER service property then the event properties
must also match the filter expression. If the filter is an error, then the Event Admin service should log
a warning and further ignore the Event Handler.

For example, a bundle wants to see all Log Service events with a level of WARNING or ERROR , but it
must ignore the INFO and DEBUG events. Additionally, the only events of interest are when the bun-
dle symbolic name starts with com.acme .

public AcmeWatchDog implements BundleActivator,
EventHandler {

final static String [] topics = new String[] {
"org/osgi/service/log/LogEntry/LOG_WARNING",
"org/osgi/service/log/LogEntry/LOG_ERROR" };

public void start(BundleContext context) {
Dictionary d = new Hashtable();
d.put(EventConstants.EVENT_TOPIC, topics);
d.put(EventConstants.EVENT_FILTER,

"(bundle.symbolicName=com.acme.*)");
context.registerService(EventHandler.class.getName(),

this, d);
}
public void stop(BundleContext context) {}

public void handleEvent(Event event) {
//...
Page 180 OSGi Service Platform Release 4, Version 4.2

Event Admin Service Specification Version 1.2 Event Publisher
}
}

If there are multiple Event Admin services registered with the Framework then all Event Admin ser-
vices must send their published events to all registered Event Handlers.

113.5 Event Publisher
To fire an event, the event source must retrieve the Event Admin service from the OSGi service regis-
try. Then it creates the event object and calls one of the Event Admin service's methods to fire the
event either synchronously or asynchronously.

The following example is a class that publishes a time event every 60 seconds.

public class TimerEvent extends Thread
implements BundleActivator {
Hashtable time = new Hashtable();
ServiceTracker tracker;

public TimerEvent() { super("TimerEvent"); }

public void start(BundleContext context) {
tracker = new ServiceTracker(context,

EventAdmin.class.getName(), null);
tracker.open();
start();

}

public void stop(BundleContext context) {
interrupt();
tracker.close();

}

public void run() {
while (! Thread.interrupted()) try {

Calendar c = Calendar.getInstance();
set(c,Calendar.MINUTE,"minutes");
set(c,Calendar.HOUR,"hours");
set(c,Calendar.DAY_OF_MONTH,"day");
set(c,Calendar.MONTH,"month");
set(c,Calendar.YEAR,"year");

EventAdmin ea =
(EventAdmin) tracker.getService();

if (ea != null)
ea.sendEvent(new Event("com/acme/timer",

time));
Thread.sleep(60000-c.get(Calendar.SECOND)*1000);

} catch(InterruptedException e) {
return;

}
}

void set(Calendar c, int field, String key) {
time.put(key, new Integer(c.get(field)));

}

OSGi Service Platform Release 4, Version 4.2 Page 181

Specific Events Event Admin Service Specification Version 1.2
}

113.6 Specific Events

113.6.1 General Conventions
Some handlers are more interested in the contents of an event rather than what actually happened.
For example, a handler wants to be notified whenever an Exception is thrown anywhere in the sys-
tem. Both Framework Events and Log Entry events may contain an exception that would be of inter-
est to this hypothetical handler. If both Framework Events and Log Entries use the same property
names then the handler can access the Exception in exactly the same way. If some future event type
follows the same conventions then the handler can receive and process the new event type even
though it had no knowledge of it when it was compiled.

The following properties are suggested as conventions. When new event types are defined they
should use these names with the corresponding types and values where appropriate. These values
should be set only if they are not null

A list of these property names can be found in Table 113.1..

The topic of an OSGi event is constructed by taking the fully qualified name of the event class, substi-
tuting a slash for every period, and appending a slash followed by the name of the constant that
defines the event type. For example, the topic of

BundleEvent.STARTED

Event becomes

Table 113.1 General property names for events
Name Type Notes

BUNDLE_SIGNER Str ing |
Col lect ion
<Str ing>

A bundle’s signers DN

BUNDLE_VERSION Version A bundle’s version

BUNDLE_SYMBOLICNAME String A bundle’s symbolic name

EVENT Object The actual event object. Used when rebroadcasting
an event that was sent via some other event mecha-
nism

EXCEPTION Throwable An exception or error

EXCEPTION_MESSAGE String Must be equal to exception.getMessage().

EXCEPTION_CLASS Str ing Must be equal to the name of the Exception class.

MESSAGE String A human-readable message that is usually not local-
ized.

SERVICE Service
Reference

A Service Reference

SERVICE_ID Long A service’s id

SERVICE_OBJECTCLASS Str ing[] A service's objectClass

SERVICE_PID Str ing |
Col lect ion
<Str ing>

A service’s persistent identity. A PID that is specified
with a Str ing[] must be coerced into a
Collect ion<Str ing> .

TIMESTAMP Long The time when the event occurred, as reported by
System.currentTimeMil l is()
Page 182 OSGi Service Platform Release 4, Version 4.2

Event Admin Service Specification Version 1.2 Specific Events
org/osgi/framework/BundleEvent/STARTED

If a type code for the event is unknown then the event must be ignored.

113.6.2 OSGi Events
In order to present a consistent view of all the events occurring in the system, the existing Frame-
work-level events are mapped to the Event Admin’s publish-subscribe model. This allows event sub-
scribers to treat framework events exactly the same as other events.

It is the responsibility of the Event Admin service implementation to map these Framework events
to its queue.

The properties associated with the event depends on its class as outlined in the following sections.

113.6.3 Framework Event
Framework Events must be delivered asynchronously with a topic of:

org/osgi/framework/FrameworkEvent/<event type>

The following event types are supported:

STARTED
ERROR
PACKAGES_REFRESHED
STARTLEVEL_CHANGED
WARNING
INFO

Other events are ignored, no event will be send by the Event Admin. The following event properties
must be set for a Framework Event.

• event – (FrameworkEvent) The original event object.

If the FrameworkEvent getBundle method returns a non-null value, the following fields must be set:

• bundle. id – (Long) The source’s bundle id.
• bundle.symbol icName – (Str ing) The source bundle's symbolic name. Only set if the bundle’s

symbolic name is not null .
• bundle.vers ion – (Vers ion) The version of the bundle, if set.
• bundle.s igner – (Str ing|Collect ion<Str ing>) The DNs of the signers.
• bundle – (Bundle) The source bundle.

If the FrameworkEvent getThrowable method returns a non- nul l value:

• exception.class – (Str ing) The fully-qualified class name of the attached Exception.
• exception.message –(Str ing) The message of the attached exception. Only set if the Exception

message is not null .
• exception – (Throwable) The Exception returned by the getThrowable method.

113.6.4 Bundle Event
Framework Events must be delivered asynchronously with a topic of:

org/osgi/framework/BundleEvent/<event type>

The following event types are supported:

INSTALLED
STARTED
STOPPED
UPDATED
UNINSTALLED
RESOLVED
OSGi Service Platform Release 4, Version 4.2 Page 183

Event Admin Service Event Admin Service Specification Version 1.2
UNRESOLVED

Unknown events must be ignored.

The following event properties must be set for a Bundle Event. If listeners require synchronous deliv-
ery then they should register a Synchronous Bundle Listener with the Framework.

• event – (BundleEvent) The original event object.
• bundle. id – (Long) The source’s bundle id.
• bundle.symbol icName – (Str ing) The source bundle's symbolic name. Only set if the bundle’s

symbolic name is not null .
• bundle.version – (Version) The version of the bundle, if set.
• bundle.s igner – (Str ing|Collect ion<Str ing>) The DNs of the signers.
• bundle – (Bundle) The source bundle.

113.6.5 Service Event
Service Events must be delivered asynchronously with the topic:

org/osgi/framework/ServiceEvent/<event type>

The following event types are supported:

REGISTERED
MODIFIED
UNREGISTERING

Unknown events must be ignored.

• event – (ServiceEvent) The original Service Event object.
• service – (ServiceReference) The result of the getServiceReference method
• service. id – (Long) The service's ID.
• service.pid – (String or Col lection<String>) The service's persistent identity. Only set if not nul l . If

the PID is specified as a Str ing[] then it must be coerced into a Collection<String> .
• service.objectClass – (Str ing[]) The service's object class.

113.6.6 Other Event Sources
Several OSGi service specifications define their own event model. It is the responsibility of these ser-
vices to map their events to Event Admin events. Event Admin is seen as a core service that will be
present in most devices. However, if there is no Event Admin service present, applications are not
mandated to buffer events.

113.7 Event Admin Service
The Event Admin service must be registered as a service with the object class
org.osgi .serv ice.event.EventAdmin . Multiple Event Admin services can be registered. Publishers
should publish their event on the Event Admin service with the highest value for the
SERVICE_RANKING service property. This is the service selected by the getServiceReference method.

The Event Admin service is responsible for tracking the registered handlers, handling event notifica-
tions and providing at least one thread for asynchronous event delivery.

113.7.1 Synchronous Event Delivery
Synchronous event delivery is initiated by the sendEvent method. When this method is invoked, the
Event Admin service determines which handlers must be notified of the event and then notifies each
one in turn. The handlers can be notified in the caller's thread or in an event-delivery thread, depend-
ing on the implementation. In either case, all notifications must be completely handled before the
sendEvent method returns to the caller.
Page 184 OSGi Service Platform Release 4, Version 4.2

Event Admin Service Specification Version 1.2 Reliability
Synchronous event delivery is significantly more expensive than asynchronous delivery. All things
considered equal, the asynchronous delivery should be preferred over the synchronous delivery.

Callers of this method will need to be coded defensively and assume that synchronous event notifica-
tions could be handled in a separate thread. That entails that they must not be holding any monitors
when they invoke the sendEvent method. Otherwise they significantly increase the likelihood of
deadlocks because Java monitors are not reentrant from another thread by definition. Not holding
monitors is good practice even when the event is dispatched in the same thread.

113.7.2 Asynchronous Event Delivery
Asynchronous event delivery is initiated by the postEvent method. When this method is invoked,
the Event Admin service must determine which handlers are interested in the event. By collecting
this list of handlers during the method invocation, the Event Admin service ensures that only han-
dlers that were registered at the time the event was posted will receive the event notification. This is
the same as described in Delivering Events on page 116 of the Core specification.

The Event Admin service can use more than one thread to deliver events. If it does then it must guar-
antee that each handler receives the events in the same order as the events were posted. This ensures
that handlers see events in the expected order. For example, it would be an error to see a destroyed
event before the corresponding created event.

Before notifying each handler, the event delivery thread must ensure that the handler is still regis-
tered in the service registry. If it has been unregistered then the handler must not be notified.

The Event Admin service ensures that events are delivered in a well-defined order. For example, if a
thread posts events A and B in the same thread then the handlers should not receive them in the
order B , A . if A and B are posted by different threads at about the same time then no guarantees about
the order of delivery are made.

113.7.3 Order of Event Delivery
Asynchronous events are delivered in the order in which they arrive in the event queue. Thus if two
events are posted by the same thread then they will be delivered in the same order (though other
events may come between them). However, if two or more events are posted by different threads then
the order in which they arrive in the queue (and therefore the order in which they are delivered) will
depend very much on subtle timing issues. The event delivery system cannot make any guarantees in
this case.

Synchronous events are delivered as soon as they are sent. If two events are sent by the same thread,
one after the other, then they must be guaranteed to be processed serially and in the same order.
However, if two events are sent by different threads then no guarantees can be made. The events can
be processed in parallel or serially, depending on whether or not the Event Admin service dispatches
synchronous events in the caller's thread or in a separate thread.

Note that if the actions of a handler trigger a synchronous event, then the delivery of the first event
will be paused and delivery of the second event will begin. Once delivery of the second event has
completed, delivery of the first event will resume. Thus some handlers may observe the second event
before they observe the first one.

113.8 Reliability

113.8.1 Exceptions in callbacks
If a handler throws an Exception during delivery of an event, it must be caught by the Event Admin
service and handled in some implementation specific way. If a Log Service is available the exception
should be logged. Once the exception has been caught and dealt with, the event delivery must con-
tinue with the next handlers to be notified, if any.
OSGi Service Platform Release 4, Version 4.2 Page 185

Inter-operability with Native Applications Event Admin Service Specification Version 1.2
113.8.2 Dealing with Stalled Handlers
Event handlers should not spend too long in the handleEvent method. Doing so will prevent other
handlers in the system from being notified. If a handler needs to do something that can take a while,
it should do it in a different thread.

An event admin implementation can attempt to detect stalled or deadlocked handlers and deal with
them appropriately. Exactly how it deals with this situation is left as implementation specific. One
allowed implementation is to mark the current event delivery thread as invalid and spawn a new
event delivery thread. Event delivery must resume with the next handler to be notified.

Implementations can choose to blacklist any handlers that they determine are misbehaving. Black-
listed handlers must not be notified of any events. If a handler is blacklisted, the event admin should
log a message that explains the reason for it.

113.9 Inter-operability with Native Applications
Implementations of the Event Admin service can support passing events to, and/or receiving events
from native applications.

If the implementation supports native inter-operability, it must be able to pass the topic of the event
and its properties to/from native code. Implementations must be able to support property values of
the following types:

• Str ing objects, including full Unicode support
• Integer, Long, Byte, Short , F loat, Double, Boolean, Character objects
• Single-dimension arrays of the above types (including Str ing)
• Single-dimension arrays of Java's eight primitive types (int, long, byte, short , f loat, double,

boolean, char)

Implementations can support additional types. Property values of unsupported types must be
silently discarded.

113.10 Security

113.10.1 Topic Permission
The TopicPermission class allows fine-grained control over which bundles may post events to a given
topic and which bundles may receive those events.

The target parameter for the permission is the topic name. TopicPermission classes uses a wildcard
matching algorithm similar to the BasicPermission class, except that slashes are used as separators
instead of periods. For example, a name of a/b/* implies a/b/c but not x/y/z or a/b .

There are two available actions: PUBLISH and SUBSCRIBE . These control a bundle's ability to either
publish or receive events, respectively. Neither one implies the other.

113.10.2 Required Permissions
Bundles that need to register an event handler must be granted
ServicePermission [org.osgi .service.event.EventHandler , REGISTER]. In addition, handlers require
TopicPermission[<topic>, SUBSCRIBE] for each topic they want to be notified about.

Bundles that need to publish an event must be granted ServicePermission[
org.osgi .serv ice.event.EventAdmin, GET] so that they may retrieve the Event Admin service and use
it. In addition, event sources require TopicPermission[<topic>, PUBLISH] for each topic they want to
send events to.
Page 186 OSGi Service Platform Release 4, Version 4.2

Event Admin Service Specification Version 1.2 org.osgi.service.event
Bundles that need to iterate the handlers registered with the system must be granted
ServicePermission[org.osgi .service.event.EventHandler , GET] to retrieve the event handlers from
the service registry.

Only a bundle that contains an Event Admin service implementation should be granted
ServicePermission[org.osgi .service.event.EventAdmin, REGISTER] to register the event channel
admin service.

113.10.3 Security Context During Event Callbacks
During an event notification, the Event Admin service's Protection Domain will be on the stack
above the handler's Protection Domain. In the case of a synchronous event, the event publisher's pro-
tection domain can also be on the stack.

Therefore, if a handler needs to perform a secure operation using its own privileges, it must invoke
the doPriv i leged method to isolate its security context from that of its caller.

The event delivery mechanism must not wrap event notifications in a doPriv i leged call.

113.11 org.osgi.service.event
Event Admin Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. For example:

Import-Package: org.osgi.service.event; version=”[1.2,2.0)”

113.11.1 Summary
• Event - An event.
• EventAdmin - The Event Admin service.
• EventConstants - Defines standard names for EventHandler properties.
• EventHandler - Listener for Events.
• TopicPermission - A bundle’s authority to publish or subscribe to event on a topic.
Event

113.11.2 public class Event
An event. Event objects are delivered to EventHandler services which subscribe to the topic of the
event.

Concurrency Immutable
Event(String,Map)

113.11.2.1 public Event(String topic, Map properties)

topic The topic of the event.

properties The event’s properties (may be nul l). A property whose key is not of type Str ing will be ignored.

Constructs an event.

Throws IllegalArgumentException – If topic is not a valid topic name.

Since 1.2
Event(String,Dictionary)

113.11.2.2 public Event(String topic, Dictionary properties)

topic The topic of the event.

properties The event’s properties (may be nul l). A property whose key is not of type Str ing will be ignored.

Constructs an event.

Throws IllegalArgumentException – If topic is not a valid topic name.
equals(Object)
OSGi Service Platform Release 4, Version 4.2 Page 187

org.osgi.service.event Event Admin Service Specification Version 1.2
113.11.2.3 public boolean equals(Object object)

object The Event object to be compared.

Compares this Event object to another object.

An event is considered to be equal to another event if the topic is equal and the properties are equal.
The properties are compared using the java.ut i l .Map.equals() rules which includes identity compar-
ison for array values.

Returns true if object is a Event and is equal to this object; fa lse otherwise.
getProperty(String)

113.11.2.4 public final Object getProperty(String name)

name the name of the property to retrieve

Retrieves a property.

Returns The value of the property, or nul l if not found.
getPropertyNames()

113.11.2.5 public final String[] getPropertyNames()

Returns a list of this event’s property names.

Returns A non-empty array with one element per property.
getTopic()

113.11.2.6 public final String getTopic()

Returns the topic of this event.

Returns The topic of this event.
hashCode()

113.11.2.7 public int hashCode()

Returns a hash code value for the object.

Returns An integer which is a hash code value for this object.
matches(Filter)

113.11.2.8 public final boolean matches(Filter filter)

filter The filter to test.

Tests this event’s properties against the given filter using a case sensitive match.

Returns true If this event’s properties match the filter, false otherwise.
toString()

113.11.2.9 public String toString()

Returns the string representation of this event.

Returns The string representation of this event.
EventAdmin

113.11.3 public interface EventAdmin
The Event Admin service. Bundles wishing to publish events must obtain the Event Admin service
and call one of the event delivery methods.

Concurrency Thread-safe
postEvent(Event)

113.11.3.1 public void postEvent(Event event)

event The event to send to all listeners which subscribe to the topic of the event.

Initiate asynchronous delivery of an event. This method returns to the caller before delivery of the
event is completed.

Throws SecurityException – If the caller does not have TopicPermiss ion[topic,PUBLISH] for the topic spec-
ified in the event.
sendEvent(Event)

113.11.3.2 public void sendEvent(Event event)

event The event to send to all listeners which subscribe to the topic of the event.
Page 188 OSGi Service Platform Release 4, Version 4.2

Event Admin Service Specification Version 1.2 org.osgi.service.event
Initiate synchronous delivery of an event. This method does not return to the caller until delivery of
the event is completed.

Throws SecurityException – If the caller does not have TopicPermiss ion[topic,PUBLISH] for the topic spec-
ified in the event.
EventConstants

113.11.4 public interface EventConstants
Defines standard names for EventHandler properties.
BUNDLE

113.11.4.1 public static final String BUNDLE = “bundle”

The Bundle object of the bundle relevant to the event. The type of the value for this event property is
Bundle .

Since 1.1
BUNDLE_ID

113.11.4.2 public static final String BUNDLE_ID = “bundle.id”

The Bundle id of the bundle relevant to the event. The type of the value for this event property is
Long .

Since 1.1
BUNDLE_SIGNER

113.11.4.3 public static final String BUNDLE_SIGNER = “bundle.signer”

The Distinguished Names of the signers of the bundle relevant to the event. The type of the value for
this event property is Str ing or Collection of Str ing .
BUNDLE_SYMBOLICNAME

113.11.4.4 public static final String BUNDLE_SYMBOLICNAME = “bundle.symbolicName”

The Bundle Symbolic Name of the bundle relevant to the event. The type of the value for this event
property is Str ing .
BUNDLE_VERSION

113.11.4.5 public static final String BUNDLE_VERSION = “bundle.version”

The version of the bundle relevant to the event. The type of the value for this event property is Ver-
sion .

Since 1.2
EVENT

113.11.4.6 public static final String EVENT = “event”

The forwarded event object. Used when rebroadcasting an event that was sent via some other event
mechanism. The type of the value for this event property is Object .
EVENT_FILTER

113.11.4.7 public static final String EVENT_FILTER = “event.filter”

Service Registration property (named event.f i l ter) specifying a filter to further select Event s of inter-
est to a Event Handler service.

Event handlers MAY be registered with this property. The value of this property is a string containing
an LDAP-style filter specification. Any of the event’s properties may be used in the filter expression.
Each event handler is notified for any event which belongs to the topics in which the handler has
expressed an interest. If the event handler is also registered with this service property, then the prop-
erties of the event must also match the filter for the event to be delivered to the event handler.

If the filter syntax is invalid, then the Event Handler must be ignored and a warning should be
logged.

See Also Event, Filter
EVENT_TOPIC

113.11.4.8 public static final String EVENT_TOPIC = “event.topics”

Service registration property (named event.topics) specifying the Event topics of interest to a Event
Handler service.
OSGi Service Platform Release 4, Version 4.2 Page 189

org.osgi.service.event Event Admin Service Specification Version 1.2
Event handlers SHOULD be registered with this property. The value of the property is a string or an
array of strings that describe the topics in which the handler is interested. An asterisk (’*’) may be
used as a trailing wildcard. Event Handlers which do not have a value for this property must not
receive events. More precisely, the value of each string must conform to the following grammar:

topic-description := ‘*’ | topic (‘/*’)?
topic := token (‘/’ token)*

See Also Event
EXCEPTION

113.11.4.9 public static final String EXCEPTION = “exception”

An exception or error. The type of the value for this event property is Throwable .
EXCEPTION_CLASS

113.11.4.10 public static final String EXCEPTION_CLASS = “exception.class”

The name of the exception type. Must be equal to the name of the class of the exception in the event
property EXCEPTION . The type of the value for this event property is Str ing .

Since 1.1
EXCEPTION_MESSAGE

113.11.4.11 public static final String EXCEPTION_MESSAGE = “exception.message”

The exception message. Must be equal to the result of calling getMessage() on the exception in the
event property EXCEPTION . The type of the value for this event property is Str ing .
EXECPTION_CLASS

113.11.4.12 public static final String EXECPTION_CLASS = “exception.class”

This constant was released with an incorrectly spelled name. It has been replaced by
EXCEPTION_CLASS

Deprecated As of 1.1, replaced by EXCEPTION_CLASS
MESSAGE

113.11.4.13 public static final String MESSAGE = “message”

A human-readable message that is usually not localized. The type of the value for this event property
is Str ing .
SERVICE

113.11.4.14 public static final String SERVICE = “service”

A service reference. The type of the value for this event property is ServiceReference .
SERVICE_ID

113.11.4.15 public static final String SERVICE_ID = “service.id”

A service’s id. The type of the value for this event property is Long .
SERVICE_OBJECTCLASS

113.11.4.16 public static final String SERVICE_OBJECTCLASS = “service.objectClass”

A service’s objectClass. The type of the value for this event property is Str ing[] .
SERVICE_PID

113.11.4.17 public static final String SERVICE_PID = “service.pid”

A service’s persistent identity. The type of the value for this event property is Str ing .
TIMESTAMP

113.11.4.18 public static final String TIMESTAMP = “timestamp”

The time when the event occurred, as reported by System.currentTimeMil l is() . The type of the value
for this event property is Long .
EventHandler

113.11.5 public interface EventHandler
Listener for Events.

EventHandler objects are registered with the Framework service registry and are notified with an
Event object when an event is sent or posted.
Page 190 OSGi Service Platform Release 4, Version 4.2

Event Admin Service Specification Version 1.2 org.osgi.service.event
EventHandler objects can inspect the received Event object to determine its topic and properties.

EventHandler objects must be registered with a service property EventConstants.EVENT_TOPIC
whose value is the list of topics in which the event handler is interested.

For example:

String[] topics = new String[] {”com/isv/*”};
Hashtable ht = new Hashtable();
ht.put(EventConstants.EVENT_TOPIC, topics);
context.registerService(EventHandler.class.getName(), this, ht);

Event Handler services can also be registered with an EventConstants.EVENT_FILTER service prop-
erty to further filter the events. If the syntax of this filter is invalid, then the Event Handler must be
ignored by the Event Admin service. The Event Admin service should log a warning.

Security Considerations. Bundles wishing to monitor Event objects will require
ServicePermission[EventHandler ,REGISTER] to register an EventHandler service. The bundle must
also have TopicPermission[topic,SUBSCRIBE] for the topic specified in the event in order to receive
the event.

See Also Event

Concurrency Thread-safe
handleEvent(Event)

113.11.5.1 public void handleEvent(Event event)

event The event that occurred.

Called by the EventAdmin service to notify the listener of an event.
TopicPermission

113.11.6 public final class TopicPermission
extends Permission
A bundle’s authority to publish or subscribe to event on a topic.

A topic is a slash-separated string that defines a topic.

For example:

org / osgi / service / foo / FooEvent / ACTION

TopicPermission has two actions: publ ish and subscribe .

Concurrency Thread-safe
PUBLISH

113.11.6.1 public static final String PUBLISH = “publish”

The action string publish .
SUBSCRIBE

113.11.6.2 public static final String SUBSCRIBE = “subscribe”

The action string subscribe .
TopicPermission(String,String)

113.11.6.3 public TopicPermission(String name, String actions)

name Topic name.

actions publish ,subscribe (canonical order).

Defines the authority to publich and/or subscribe to a topic within the EventAdmin service.

The name is specified as a slash-separated string. Wildcards may be used. For example:

org/osgi/service/fooFooEvent/ACTION
com/isv/*
*

OSGi Service Platform Release 4, Version 4.2 Page 191

org.osgi.service.event Event Admin Service Specification Version 1.2
A bundle that needs to publish events on a topic must have the appropriate TopicPermission for that
topic; similarly, a bundle that needs to subscribe to events on a topic must have the appropriate
TopicPermssion for that topic.
equals(Object)

113.11.6.4 public boolean equals(Object obj)

obj The object to test for equality with this TopicPermission object.

Determines the equality of two TopicPermission objects. This method checks that specified
TopicPermission has the same topic name and actions as this TopicPermission object.

Returns true if obj is a TopicPermiss ion , and has the same topic name and actions as this TopicPermission ob-
ject; false otherwise.
getActions()

113.11.6.5 public String getActions()

Returns the canonical string representation of the TopicPermission actions.

Always returns present TopicPermission actions in the following order: publ ish ,subscr ibe .

Returns Canonical string representation of the TopicPermiss ion actions.
hashCode()

113.11.6.6 public int hashCode()

Returns the hash code value for this object.

Returns A hash code value for this object.
implies(Permission)

113.11.6.7 public boolean implies(Permission p)

p The target permission to interrogate.

Determines if the specified permission is implied by this object.

This method checks that the topic name of the target is implied by the topic name of this object. The
list of TopicPermiss ion actions must either match or allow for the list of the target object to imply the
target TopicPermission action.

x/y/*,”publish” -> x/y/z,”publish” is true
*,”subscribe” -> x/y,”subscribe” is true
*,”publish” -> x/y,”subscribe” is false
x/y,”publish” -> x/y/z,”publish” is false

Returns true if the specified TopicPermission action is implied by this object; false otherwise.
newPermissionCollection()

113.11.6.8 public PermissionCollection newPermissionCollection()

Returns a new PermissionCol lect ion object suitable for storing TopicPermission objects.

Returns A new PermissionCollection object.
Page 192 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Introduction
121 Blueprint Container
Specification
Version 1.0

121.1 Introduction
One of the great promises of object oriented languages was the greater reuse it should enable. How-
ever, over time it turned out that reuse was still hard. One of the key reasons was coupling. Trying to
reuse a few classes usually ended up in dragging in many more classes, that in their turn dragged in
even more classes, ad nauseum.

One of the key innovations in the Java language to address this coupling issue were interfaces. Inter-
faces significantly could minimize coupling because they were void of any implementation details.
Any class can use an interface, where that interface can be implemented by any other class. However,
coupling was still necessary because objects need to be created, and for creating an object its concrete
class is necessary.

One of the most successful insights in the software industry of late has been inversion of control, or
more specific dependency injection. With dependency injection, an object is given the collaborators
that it needs to work with. By not creating these dependencies itself, the object is not coupled to the
concrete type of these implementations and their transitive implementation dependencies. How-
ever, these objects are not useful on their own, they can only function when an external party pro-
vides these objects with their collaborating objects.

An injection framework creates these objects, and also their concrete dependencies, and wires them
together. Injection frameworks can significantly increase reuse and provide increased flexibility. For
example, during testing it is possible to inject mocked up objects instead of the actual objects.

There exists a number of these injection frameworks in the market, for example [2] Spring Framework,
[4] Guice, and [5] Picocontainer. These containers are configured with XML, Java annotations, or provide
automatic configuration based on types.

Decoupling is one of the primary drivers for the OSGi specifications. The module layer provides
many mechanisms to hide implementation details and explicitly defines any dependencies. The ser-
vice layer provides a mechanism to collaborate with other bundles without caring about who that
other bundle is. However, using the OSGi APIs to construct an application out of services and objects
also implies coupling to these OSGi APIs.

This specification therefore defines a dependency injection framework, specifically for OSGi bundles,
that understands the unique dynamic nature of services. It provides an OSGi bundle programming
model with minimal implementation dependencies and virtually no accidental complexity in the
Java code. Bundles in this programming model contain a number of XML definition resources which
are used by the Blueprint Container to wire the application together and start it when the bundle is
active.

This Blueprint Container specification is derived from the [3] Spring Dynamic Modules project.

121.1.1 Essentials
• Dependency Injection Framework – Provide an advanced dependency injection framework for

bundles that can create and wire objects and services together into an application.
OSGi Service Platform Release 4, Version 4.2 Page 193

Introduction Blueprint Container Specification Version 1.0
• Inversion of Control – (IOC) A pattern in which a framework/library provides the control over the
component instances instead of the other way around. Dependency injection is a form of IOC.

• Extender Model – Enable the configuration of components inside a bundle based on configuration
data provided by the bundle developer. The life cycle of these components is controlled by the
extender based on the extended bundle’s state.

• Unencumbered – Do not require any special bundle activator or other code to be written inside the
bundle in order to have components instantiated and configured.

• Services – Enable the usage of OSGi services as injected dependencies.
• Dependencies – Allow components to depend on other components like services and beans as well

as register as services, with the full breadth of the OSGi capabilities.
• Dynamicity – Minimize the complexity of using the dynamicity of services
• Business Logic – A focus on writing business logic in regular Java classes that are not required to

implement certain framework APIs or contracts in order to integrate with a container.
• Declarative – This facilitates independent testing of components and reduces environment depen-

dencies.
• Familiarity – Familiar to enterprise Java developers.

121.1.2 Entities
• Blueprint Extender – The bundle that creates and injects component instances for a Blueprint

bundle as configured in that Blueprint bundle’s XML definition resources.
• Blueprint Container – Represents the activities of the Blueprint Extender for a specific Blueprint

Bundle.
• Blueprint Bundle – A bundle that is being constructed by the Blueprint Container because it has a

Bundle-Blueprint header or it contains XML resources in the OSGI-INF/blueprint directory.
• Manager – A manager is responsible for the life cycle of all component instances for one component

definition. There are the following types of managers. A manager is a bean manager, a service ref-
erence manager, or a service manager. A manager can have explicit and implicit dependencies on other
manager. During instantiation and runtime, a manager can provide a component instance to be
injected or used in other ways.

• Component – A loosely defined term for the application building blocks and their infrastructure.
Components are instantiated into component instances by a manager that is configured with a Com-
ponent Metadata subclass that is derived from a Component Definition.

• Component Instance – An object that is part of the application. Component Instances are created
and managed by their component manager.

• Component Definition – Configuration data used by a manager to construct and manage component
instances. This configuration data is represented in Metadata, an interface hierarchy starting with
the Metadata interface.

• Bean Manager – A manager that has metadata for creating Java objects and injecting them with
objects and component instances that come from other managers it implicitly depends on.

• Service Manager – A manager that handles the registration of a service object that is provided by a
component instance.

• Service Reference Manager – The general name for the reference and reference-list managers.
• Reference Manager– A manager that handles the dependency on a single OSGi service.
• Reference-list Manager – A manager that handles the dependency on a list of OSGi services.
• Environment Manager – A manager that can provide information from the Bundle’s environment.

For example, the BlueprintContainer object is made available through an environment manager.
• Target – A manager type useful in a callback context. These are the ref (which is an indirection to),

a reference, and a bean manager.
• Property – A conceptual instance variable of a component instance provided by a bean manager

that is set on the component instance with a corresponding set<Name> method.
• Argument – Metadata for an argument in a constructor or method.
• Type Converter – A component instance defined, or referenced, in the type-converters section

implementing the Converter interface.
Page 194 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Introduction
Figure 121.1 Blueprint Class and Service Overview

121.1.3 Synopsis
The Blueprint Extender bundle waits for Blueprint bundles. These are bundles that contain Blueprint
XML resources called the definitions. These XML resources can be found in a fixed location or
pointed to from a manifest header. When a Blueprint extender bundle detects that a Blueprint bundle
is ready, it creates a Blueprint Container to manage that Blueprint bundle.

The Blueprint Container then parses the definitions into metadata objects. All top-level elements in
the definitions are ComponentMetadata objects and are registered in the Blueprint Container by
their id.

For each of the ComponentMetadata objects, the Blueprint Container has a corresponding compo-
nent manager. For example, a BeanMetadata object relates to a Bean Manager instance. There are the
following types of managers:

• Bean Managers – Can provide general objects that are properly constructed and configured
• Service Managers – Can register services
• Service Reference Managers – Provide proxies to one or more services. there are two sub-types: ref-

erence-list and reference.
• Environment Managers – Holding environment values like the Blueprint Bundle object

After creation, all managers are not yet activated. A manager is activated on demand when it has to
provide a component instance for the first time.

All service reference managers track services in the service registry in order to determine if they are
satisfied or not. If not, the Blueprint Container can optionally start a grace period. During the grace
period, the Blueprint Container waits for all mandatory service reference managers to become satis-
fied. If this does not happen during the grace period, the Blueprint Container must abort the initial-
ization.

From now on, the Blueprint Container is ready to provide component instances. Whenever a man-
ager is asked to provide a component instance for the first time, the manager is activated. This activa-
tion will first request all its dependencies to provide a component instance, activating these
managers if not already activated, recursively.

However, the activation needs a trigger to start. There are two triggers.

blueprint

Blueprint
Container Impl

xml
component
instances ...

Blueprint
Container

cr
ea

te
 &

 w
ire

ex
te

nd

inject
*

*

**

11

*

1*

1*

11

Ev
en

t
Ad

m
in

1Blueprint
Listener Impl

Blueprint
Container
Listener

Blueprint
Bundle

Blueprint
Extender

service reference

service

0,1

**
OSGi Service Platform Release 4, Version 4.2 Page 195

Managers Blueprint Container Specification Version 1.0
• Service Request – All service managers must have a Service Factory registered with the OSGi service
registry whenever that service manager is enabled, see Enabled on page 225.

• Eager Managers – To kick start the application in the bundle, the Blueprint Container must ask all
eager managers to provide a component instance, thereby activating these managers, see Eager
Instantiation on page 208.

Service references must actuate their reference listeners when they are activated.

Bean managers have a scope. This scope can be singleton , where the manager always provides the
same object, or prototype , where the manager creates a new object for each request.

Service reference managers provide proxies to the actual service objects and fetch the service object
lazily. They provide a constant reference that dampen the dynamics of the underlying service objects.

If the Blueprint Container has successfully activated the eager managers, it will register a Blueprint
Container service.

When the Blueprint Container must be destroyed because: the Blueprint bundle has stopped, there is
a failure, or the Blueprint extender is stopped, then the Blueprint Container service is unregistered
and all managers are deactivated. This will unregister any services and disable listeners, which
release the component instances. Then all component instances are destroyed in reverse dependency
order. That is, a component instance is destroyed when no other component instances depend on it.

121.2 Managers
The key feature of the Blueprint Container specification is to let the application in the bundle be con-
structed in the proper order from objects that are not required to be aware of Blueprint, OSGi, or even
each other. These objects are called component instances. The active entity that orchestrates the life
cycle of the bundle application is the Blueprint Container. It is configured by XML resources in the
Blueprint bundle. The Blueprint Container is responsible for construction and configuration of the
component instances as well as the interaction with the service registry.

Inside the Blueprint Container, component instances are managed by a manager. A manager is config-
ured with one Component Definition, for example a bean definition, and can then provide one or
more component instances. Such a configured manager instance is also loosely called a component.

A manager can have additional behavior associated with it. This behavior is controlled by the man-
ager’s type. This specification defines a number of manager types: bean, service, environment, refer-
ence, and reference-list. These types are further defined in the next section.

These managers are conceptual, they are not visible in the API of this specification. That is, an imple-
mentation is free to implement the specification without these objects as long as the externally
observable behavior is the same.

As an example, a trivial echo service:

<blueprint>
 <service id="echoService"

interface="com.acme.Echo" ref="echo"/>
 <bean id="echo" class="com.acme.EchoImpl">
 <property name="message" value="Echo: "/>
 </bean>
</blueprint>

public interface Echo {
 public String echo(String m);
}
public class EchoImpl implements Echo {
 String message;
Page 196 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Managers
 public void setMessage(String m) {
 this.message= m;
 }
 public void echo(String s) { return message + s; }
}

The example defines two top-level managers: echoService and echo . The echoService manager is of
type service, and the echo manager is of type bean. The service manager is responsible for registering
an OSGi service, where the service object will be the component instance provided by the echo man-
ager. The echo component instance gets a message injected.

As seen from the example, managers can use component instances from other managers to construct
their component instances. The use of other managers creates an implicit dependency. Managers can
also declare explicit dependencies. Dependencies are transitive, see Manager Dependencies on page 199
for more information. In the previous example, the echoService service manager depends on the
echo manager, this is an implicit dependency.

Managers have their own life cycle. They are conceptually created after the Blueprint Container has
decided to run the application, see Blueprint Life-Cycle on page 203. However, the intention of this
specification is to allow the bundle application to lazily activate. That is, no application code is used
until there is a trigger like a service request or a service manager has an explicit dependency. A man-
ager must always be atomically activated before it provides its first component instance. During acti-
vation, listeners are actuated and notified, service objects are requested, etc. The details are described
in the appropriate manager’s type description.

Each manager type has an associated component metadata type. Component Metadata is used to con-
figure a manager. XML definition resources in the bundle define the source for this Metadata. In the
previous example, the service and bean XML element are translated to a ServiceMetadata and
BeanMetadata object respectively.

The Blueprint Container maintains a registry of managers by their id. These are the managers that are
called the top-level managers. Top level managers are managers defined as child elements of the top
XML blueprint element or bean managers in the type-converters element. Their Metadata is regis-
tered under their id (or calculated id) in the Blueprint Container. All top level managers share a single
namespace. That is, it is an error if the same id is used multiple times or attempts to override the
built-in environment managers.

Top level managers can depend on other top level managers but there are many places where a man-
ager can depend on an inlined manager. In these places, a complete manager can be defined inside
another manager. Such inlined managers are always anonymous: they must not have an id and must
not be registered as a top-level manager. Inlined beans are further constrained to always have
prototype scope. That is, every time they are asked to provide a component instance, they must
return a different object.

When the Blueprint Container must be destroyed, all singleton component instances that have been
created must be destroyed. This must first deactivate all activated managers. All these managers must
release their dependencies on any component instances they hold. Then the Blueprint Container
must destroy all singleton component instances. The order of this destruction must be such that a
component instance is only destroyed if there are no other component instances depending on it. See
Reverse Dependency Order on page 200.

The relations between manager types, component instances, metadata and the Blueprint Container is
schematically depicted in Figure 121.2 on page 198.
OSGi Service Platform Release 4, Version 4.2 Page 197

Managers Blueprint Container Specification Version 1.0
Figure 121.2 Managers and Metadata

121.2.1 Manager Types
Blueprint only supports a fixed set of the following manager types:

• Bean – A bean manager provides regular Java objects as component instances. It has the following
features:
• Construction via class name, static factory method, or a factory method on a target. A target is a

reference to a top level manager of type bean or service reference, or a referral to a top level
manager of those types.

• Can have arguments for a constructor or factory method.
• Can have properties that are injected.
• Manages a singleton or creates objects on demand depending on its scope.
• Life cycle callbacks for end of initialization and destruction.
See Bean Manager on page 214 for more details.

• Reference – Reference managers track a service in the OSGi service registry. When activated, they
provide a proxy to a service object. See Service Reference Managers on page 226 for more details. A
reference is satisfied when its selection matches a service in the registry.

• Reference-list – Reference-list managers track multiple services. A reference-list is satisfied when its
selection matches one or more services in the registry. See Service Reference Managers on page 226
for more details.

• Service – Service managers maintain the registration of an OSGi service object. Service managers
provide a proxied ServiceRegistrat ion object so that the application code has a constant reference,
even if the service is unregistered and then registered again. A service manager is enabled if all the
mandatory service references in its dependencies are satisfied. See Service Manager on page 219.

• Environment – Environment managers provide access to the environment of the Blueprint bundle,
for example its Bundle Context. See Blueprint Container on page 247 for more details.

Component
Metadata

Manager
Impl

Blueprint
Container

Bean Impl
Service Impl

 Reference Impl

component
instance

Metadata

 Reference-list
ImplEnvironment

Impl

blueprint
xml

1

0,1

1

*

*

1

manages

*1

1 *

id
Page 198 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Managers
121.2.2 Metadata Objects
Metadata objects hold the configuration information (from the Component Definition) for the man-
agers. These metadata objects represent the element structure found in the XML definitions in canon-
ical form. Each element in the XML has a corresponding Metadata sub-type that has a name that
maps directly to the element. For example, the bean element represents the bean manager that has its
configuration data defined in the BeanMetadata interface.

There are Metadata interfaces for all the manager types, except the environment type. Some depen-
dency injections require the construction of arrays, maps, properties, simple objects, etc. For these
type of objects, additional Metadata sub-interfaces are defined; these interfaces provide the informa-
tion to construct the basic programming types. For example, the Collect ionMetadata interface con-
tains the information to construct an Array or Collection of a given type, where its member values
are defined by other Metadata objects.

The set of Metadata types is fixed in this specification, just like the set of manager types. It is impossi-
ble to extend this set with user defined Metadata types. For more information about Metadata, see
Metadata on page 251.

121.2.3 Activation and Deactivation
Managers are created after all the definitions are parsed. Some managers can already show some
activity, for example service managers always activate explicit dependencies and register a Service
Factory with the OSGi service registry. However, in this state a manager should attempt to not use
any resources from the Blueprint bundle until it is activated itself.

A manager must be atomically activated when it has to provide its first component instance. During
activation it can perform a manager specific initialization that will actually consume resources from
the Blueprint bundle. This activation must be atomic. That is, if a manager is being activated then
other threads must block until the activation is completed.

Deactivation only happens during the destruction of the Blueprint Container. During deactivation, a
manager must release any dependencies on resources of the Blueprint bundle. No components
instances are destroyed during deactivation because the singleton component instance destruction
must happen after all managers are deactivated.

Each manager type has a dedicated section that describes what must happen during its activation and
deactivation.

121.2.4 Manager Dependencies
Managers that refer to other managers depend on these managers transitively. For example, a service
manager depends directly on the manager that provides the service object. In its turn, that service
object could depend on any provided objects that were used to construct and inject this service object,
and so on. This transitive set of dependencies are called implicit dependencies because these dependen-
cies are implicitly created by the use of other managers in the Component Definitions.

Managers can also be configured with explicit dependencies. The XML definitions for all managers have
a depends-on attribute with a whitespace delimited list of manager ids. Each of these depends-on
managers must provide an object, that will be ignored. The timing of activation of dependencies
depends on the specific managers but in general should happen before any observable behavior.

There is no ordering guarantee between independent sets of dependencies. The dependency graph is
based on the managers, not the component instances. For example, the following definition:

<blueprint default-activation=’eager’>
 <bean id=’A’...> <argument ref=’B’> </bean>
 <bean id=’B’ depends-on=’C E’...>
 <argument ref=’C’>
 </bean>
 <bean id=’C’ scope=’prototype’ ...>
OSGi Service Platform Release 4, Version 4.2 Page 199

Managers Blueprint Container Specification Version 1.0
 <argument ref=’D’>
 </bean>
 <bean id=’D’ .../>
 <bean id=’E’ ...> <argument ref=’C’/> </bean>
 <bean id=’F’ depends-on=’B’ activation="lazy"/>
</blueprint>

After initialization, there will be the following component instances: a , b , d , e , and three c ’s. Lower
case names are used for instances, the corresponding upper case is its manager. The ordering guaran-
tee is that manager D is activated before manager C , manager C is activated before manager E and B ,
manager E is activated before manager B , and manager B is activated before manager A . There will be
no component instance f created because F is a lazy manager. There are three c ’s because manager E
and B have an implicit dependency on C and manager B has an additional explicit dependency, total-
ling 3 dependencies. One of these c ’s is an orphan and will be garbage collected over time because it is
not referred to by any component instance.

The example is depicted in Figure 121.3 on page 200.

Figure 121.3 Dependency Graph after initialization

121.2.5 Reverse Dependency Order
The destruction of component instances must be done in reverse dependency order. This concept is
defined as only destroying a singleton component instance (in a manager specific way) when no
other activated singleton component instance has an implicit or explicit dependency on it. That is, a
component instance has no more field references to other component instances. A component that
never was activated does not have any dependencies.

This strategy will ensure that a component instance cannot have an instance field that refers to an
component instance that has been destroyed.

Deactivating the manager will release its dependencies, which then frees up other component
instances until all component instances are destroyed, or there are cyclic references. In the case of
cyclic dependencies, the order of destruction is undefined.

In the example depicted in Figure 121.3 on page 200, the previous rules imply that component
instance a can be immediately destroyed first because it has no clients. After component instance a is
destroyed, component instance b becomes free because no other component instances refer to it. The
explicit dependency from manager F to manager B was never activated, so it is not taken into account.
The destruction of component instance b frees up component instance e and c because now the
explicit dependency from manager B to manager E and manager B to manager C have been released.
Manager C is deactivated but no component instances are destructed because it has prototype scope;
these managers do not destroy their component instances. Then component instance d can be
destructed.

A B

C

D

Explicit Dependency
Implicit Dependency

Prototype Manager

Component Instance

E
Singleton Manager

a b

d

e c

c’

F

Lazy Singleton Man.

c’’
Page 200 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Managers
121.2.6 Cyclic Dependencies
The implicit and explicit dependencies of a component form a dependency graph. In the ideal case,
this graph should be free from cycles. A cycle occurs when a set of one or more managers find them-
selves in their own implicit or explicit dependencies. For example:

public class A { public A(B b); }
public class B { public void setA(A a); }

<bean id="a" class="A"> <argument ref="b"/> </bean>
<bean id="b" class="B"> <property name="a" ref="a"/> </bean>

In this example, the cycle is the set {a,b} . Managers can be part of multiple cycles.

When a member of a cycle is requested to provide a component instance, the Blueprint Container
must break the cycle by finding one breaking member in the cycle’s members. A breaking member
must be a singleton bean and use property injection for the dependency that causes the cycle. The
Blueprint Container can pick any suitable member of the cycle for breaking member, if no such
member can be found, then initialization fails or the getComponentInstance method must throw a
Component Definition Exception.

In the previous example, manager b can be a breaking member because it uses the property injection
for the cyclic dependency on manager a . Manager a cannot be a breaking member because the cyclic
dependency is caused by a constructor argument, a breaking member must use property injection for
the cyclic dependency to be broken.

A breaking member must return a partially initialized component instance when it is asked to pro-
vide an object. A partially initialized object has done all possible initialization but has not yet been
called with the in itMethod (if specified) nor has it been injected any of the properties that causes a
cycle. The finalization of the partially initialized component instance must be delayed until the break-
ing member has been injected in all referring members of the cycles. Finalization means injecting
any remaining unset properties and calling of the in itMethod, if specified.

The consequence of partially initialized component instances is that they can be used before they
have all properties set, applications must be aware of this.

All partially initialized component instances must be finalized before the Blueprint Container enters
the Runtime phase and before a call to the getComponentInstance method returns a component
instance.

All detected cycles should be logged.

Consider the following example:

public class A {
 public A(B b) {}
}
public class B {
 public B(A a) {}
}

And the configuration:

<bean id="a" class="A"> <argument ref="b"/> </bean>
<bean id="b" class="B"> <argument ref="a"/> </bean>

In this case, the cycle cannot be broken because neither manager qualifies as breaking manager
because they have a constructor/factory argument dependency. That is, it is impossible to construct
an object without using the dependency. However, consider the following example:

public class A {
 public A(B b) {}
}

OSGi Service Platform Release 4, Version 4.2 Page 201

Managers Blueprint Container Specification Version 1.0
public class B {
 public B(C c) {}
}
public class C {
 public void setA(A a) {}
}

And the configuration:

<bean id="a" class="A"> <argument ref="b"/> </bean>
<bean id="b" class="B"> <argument ref="c"/> </bean>
<bean id="c" class="C" init-method="done">

<property name="a" ref="a"/>
</bean>

This configuration is depicted in Figure 121.4 on page 202. This cycle {a,b,c} can be broken by select-
ing manager c as the breaking member. If manager a is requested to provide a component instance
for the first time, then the following sequence takes place:

activate a
 activate b
 activate c
 c = new C()
 b = new B(c)
 a = new A(b)
 c.seta(a)
 c.done()
return a

Figure 121.4 Cyclic Dependency

Cycles must be broken, if possible, both for s ingleton managers as well as prototype beans, although
a breaking manager must always be a singleton bean because a prototype bean must always return a
new object, making it impossible to break the cycle by returning a partially initialized component
instance. That is, the following definition is not allowed to attempt to create an infinite loop:

<bean id="a" scope="singleton" class="A">
 <property name="a" ref="a">
</bean>

The previous definition must create an A object that refers to itself. However, if the example had used
a prototype scope, it would be an unbreakable cycle.

121.2.7 Eager Managers
The Blueprint Container can force the activation of the application in the Blueprint bundle with
eager managers. An eager manager is a manager that has the act ivation set to eager . A bean manager
can only be eager if it has singleton scope .

Eager managers are explicitly activated by asking them to provide a component instance after all
other initialization is done. A bundle that wants to be lazily initialized should not define any eager
managers.

a b c

Implicit Dependency
Managerbreaking

manager
Page 202 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Blueprint Life-Cycle
121.3 Blueprint Life-Cycle
A bundle is a Blueprint bundle if it contains one or more blueprint XML definition resources in the
OSGI-INF/blueprint directory or it contains the Bundle-Blueprint manifest header referring to exist-
ing resources.

A Blueprint extender is an implementation of this specification and must track blueprint bundles that
are type compatible for the Blueprint packages and initialize them appropriately. The timing and
ordering of the initialization process is detailed in the following section.

There should be only one Blueprint extender present in an OSGi framework because this specifica-
tion does not specify a way to resolve the conflicts that arise when two Blueprint extenders extend
the same Blueprint bundle.

121.3.1 Class Space Compatibility
A Blueprint extender must not manage a Blueprint bundle if there is a class space incompatibility for
the org.osgi .service.blueprint packages. For example, if the Blueprint bundle uses the
BlueprintContainer class, then it must import the org.osgi .service.blueprint.container package. The
Blueprint extender and the Blueprint bundle must then share the same class space for this package.
Type compatibility can be verified by loading a class from the blueprint packages via the Blueprint
extender bundle and the Blueprint bundle’s loadClass methods. If the Blueprint bundle cannot load
the class or the class is identical to the class loaded from the extender, then the two bundles are com-
patible for the given package. If the Blueprint extender is not class space compatible with the Blue-
print bundle, then Blueprint extender must not start to manage the Blueprint bundle.

121.3.2 Initialization of a Blueprint Container
A Blueprint extender manages the application life cycle of Blueprint bundles based on:

• The Blueprint bundle state,
• The Blueprint definitions,
• The Blueprint extender’s bundle state
• The class space compatibility

All activities on behalf of the Blueprint bundle must use the Bundle Context of the Blueprint bundle.
All dynamic class loads must use the Blueprint bundle’s Bundle loadClass method.

The following sections describe a linear process that handles one Blueprint bundle as if it was man-
aged by a special thread, that is, waits are specified if the thread waits. Implementations are likely to
use a state machine instead for each managed Blueprint bundle, the linear description is only used for
simplicity.

In the following description of the initialization steps, the Blueprint Container will update its state.
State changes are broadcast as events, see Events on page 248.

If any failure occurs during initialization, or the Blueprint bundle or Blueprint extender bundle is
stopped, the Blueprint Container must be destroyed, see Failure on page 204. These checks are not
indicated in the normal flow for clarity.

121.3.2.1 Initialization Steps

The initialization process of a Blueprint Container is defined in the following steps:

1 Wait until a blueprint bundle is ready. A blueprint bundle is ready when it is in the ACTIVE state,
and for blueprint bundles that have a lazy activation policy, also in the STARTING state.

2 Prepare, verify if this Blueprint bundle must be managed, see Preparing on page 206.
3 State = CREATING
4 Parse the XML definition resources.
5 Service reference managers must start tracking their satisfiablity without actually activating. See

Tracking References on page 207.
OSGi Service Platform Release 4, Version 4.2 Page 203

Blueprint Life-Cycle Blueprint Container Specification Version 1.0
6 If all mandatory service references are satisfied, or the blueprint.graceperiod is fa lse , then go to
step 9.

7 State = GRACE_PERIOD
8 Perform the grace period. This period waits until all mandatory service references are satisfied. See

Grace Period on page 207. This step fails if the mandatory dependencies are not satisfied at the end
of the grace period.

9 The Blueprint Container is now ready to provide component instances.
10 Service managers must initialize their explicit dependencies and have a Service Factory registered

during the periods that they are enabled. See Service Registration on page 207.
11 Ask all eager managers to provide a component instance. See Eager Instantiation on page 208.
12 State = CREATED
13 Register the Blueprint Container
14 The components are now active and perform their function until the Blueprint bundle or the

Blueprint extender bundle are stopped.
15 State = DESTROYING
16 Perform the Destroy phase, see Destroy the Blueprint Container on page 208.
17 State = DESTROYED

121.3.2.2 Failure

If at any time there is a failure, the Blueprint Container must:

1 State = FAILURE
2 Unregister the Blueprint Container service.
3 Destroy the Blueprint Container.
4 Wait for the Blueprint bundle to be stopped.

121.3.2.3 Diagram

This initialization process is depicted in Figure 121.5 on page 205.
Page 204 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Blueprint Life-Cycle
Figure 121.5 Blueprint Bundle Initialization

121.3.3 Extensions
A compliant implementation of this specification must follow the rules as outlined. However, imple-
mentations can provide functional extensions by including attributes or elements of other
namespaces. For example, a Blueprint extender implementation that supports proxying of certain
classes and a number of additional type converters could include a http://www.acme.com/
extensions namespace that adds an extensions attribute on the blueprint element:

<xml version="1.0" encoding="UTF-8">
<blueprint
 xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:ext="http://www.acme.com/extensions"

 ext:extensions="proxyClasses"
>
 ...
</blueprint>

Parsing

Grace Period

Register

wait for bundle or
extender to stopDestroy

satisfied

Destroy

CREATING

wait bundle
state=ACTIVE

wait bundle state=
ACTIVE|STARTING

lazy
bundle

wait for bundle or
extender to stop

wait &&

no wait ||

CREATED

DESTROYING

DESTROYED

FAILURE

not

yesno

GRACE_PERIOD

failed

Event
Wait

Process

Entry/Exit

Decision

Track

not satisfied

satisfied

Instantiate

satisfied

References

Services

Preparing
OSGi Service Platform Release 4, Version 4.2 Page 205

Blueprint Life-Cycle Blueprint Container Specification Version 1.0
Blueprint extenders that detect the use of an unrecognized namespace must fail to signal a portabil-
ity problem.

121.3.4 Preparing
Blueprint definitions are stored as resources in the Blueprint bundle. If a Bundle-Blueprint manifest
header is defined, then this header contains a list of paths. The Bundle-Blueprint header has the fol-
lowing syntax:

Bundle-Blueprint ::= header
 // Core 3.2.4 Common Header Syntax

This specification does not define any attributes or directives for this header. Implementations can
provide proprietary parameters that should be registered with the OSGi Alliance to prevent name
collisions. The non-localized version of the header must be used.

The last component of each path in the Bundle-Blueprint header may use wildcards so that
Bundle.f indEntries can be used to locate the XML document within the bundle and its fragments. The
f indEndtr ies method must always be used in the non-recursive mode. Valid paths in the header have
one of the following forms:

• absolute path – The path to a resource in the fragment or directory, this resource must exist. For
example cnf/start .xml .

• directory – The path to directory in a fragment or main bundle, the path must end in a slash (’ / ’).
The pattern used in the f indEntries method must then be *.xml . The directory is allowed to be
empty.

• pattern – The last component of the path specifies a filename with optional wildcards. The part
before is the path of directory in the bundle or one of its fragments. These two parts specify the
parameter to f indEntries . It is allowed to have no matching resources. An example of a pattern is:
cnf/*.xml .

If no resources can be found, then the Blueprint bundle will not be managed and the initialization
exits.

For example, the following header will read the resources / l ib/account.xml , /security.bp , and all
resources which path ends in .xml in the /cnf directory:

Bundle-Blueprint: lib/account.xml, security.bp, cnf/*.xml

If the Bundle-Blueprint header is not defined, then its default value is:

OSGI-INF/blueprint/*.xml

A Bundle-Blueprint manifest header specified in a fragment is ignored by the Blueprint Container.
However, XML documents referenced by a bundle’s Bundle-Blueprint manifest header, or its default,
may be contained in attached fragments, as defined by the f indEntr ies method.

If the Bundle-Blueprint header is specified but empty, then the Blueprint bundle must not be man-
aged. This can be used to temporarily disable a Blueprint bundle.

121.3.5 Parsing
The Blueprint Container must parse the XML definitions into the Blueprint Container’s metadata
registry. Parsing fails if:

• A path from the Bundle-Blueprint header cannot be found in the bundle or any of its fragments.
• An XML definition does not validate against its schema.
• The XML elements do not meet one or more of their constraints
• Any errors occur

For failure, see Failure on page 209.
Page 206 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Blueprint Life-Cycle
121.3.6 Tracking References
Service reference managers must track the service registry to see if they are satisfied or not. These
managers must not be activated to register these service listeners nor must they activate any depen-
dencies until they are activated. That is, no component instances for the reference listeners are
obtained until the service reference manager is activated.

121.3.7 Grace Period
A Blueprint Container by default will wait for its dependencies in the grace period. However, this can
be overridden with a directive on the Bundle-SymbolicName header of the Blueprint bundle:

• blueprint .graceperiod (true |false) – If set to true , then the Blueprint Container must enter the
grace period and wait for dependencies, this is the default. Otherwise, it must skip the grace
period and progress to the next phase regardless if there are any unsatisfied service references.

The purpose of the grace period is to handle the initialization of multiple bundles gracefully. The
grace period will first wait a configurable time for all mandatory service references to become satis-
fied, or for the bundle to stop. If these mandatory services are satisfied, then the grace period suc-
ceeds, otherwise it will fail. If the bundle is stopped during the grace period, then the Blueprint
Container must be destroyed.

During the waiting period services can come and go. Each time such a service event takes place that
involves any of the mandatory service references, the Blueprint Container must send out another
GRACE_PERIOD event if that event does not result in ending the grace period. The event contains the
complete filters of the unsatisfied service references, see Blueprint Event on page 248.

The wait time for the grace period is defined in a directive on the Bundle-SymbolicName header of
the Blueprint bundle:

• blueprint. t imeout (Integer >= 0) – The time to wait in the grace period for dependencies to
become satisfied in milliseconds. The default is 300000, which is 5 minutes. If the t imeout is 0, an
indefinite wait will take place.

OSGi services are dynamic, therefore the grace period does not guarantee that all mandatory service
references are still available. It only guarantees that at one moment in time they were available. A
mandatory reference can become unsatisfied at any moment in time when a service is not available.
See the Service Dynamics on page 245 for a description of how this is handled.

For example, the following header will make the bundle wait a maximum of 10 seconds for its man-
datory service references to be satisfied. These dependencies must be satisfied, or a failure occurs.

Bundle-SymbolicName: com.acme.foo;
blueprint.graceperiod:=true;
blueprint.timeout:= 10000

121.3.8 Service Registration
A service manager must first activate all its explicit dependencies but it must not activate. It must
then ensure that a Service Factory object is registered as a service when that service is enabled.
Enabled means that all of the mandatory service references in its dependencies are satisfied.

Once the Service Factory is registered, any bundle can get the corresponding service object. Such a
request must activate the service manager, if it is not already activated. Activation of a service man-
ager must obtain a component instance from the Blueprint Container for the service object and any
registration listeners. The registration listeners are then actuated and notified of the initial state.
OSGi Service Platform Release 4, Version 4.2 Page 207

Blueprint Life-Cycle Blueprint Container Specification Version 1.0
121.3.9 Eager Instantiation
After all initialization is done, the Blueprint Container is ready. It is now possible to request compo-
nent instances. If a bundle needs immediate startup because they cannot wait until they are trig-
gered, then it should set the activation of its bean managers to eager . The Blueprint Container must
request all eager managers to provide a component instance in this instantiation phase, see also Lazy
and Eager on page 213.

121.3.10 Runtime Phase
The Blueprint Container must be registered as a service with the following service properties:

• osgi .blueprint .container.symbol icname – The bundle symbolic name of the Blueprint bundle
• osgi .blueprint .container.version – The version of the Blueprint bundle

The Blueprint Container service must only be available during the runtime phase when initialization
has succeeded.

As long as the Blueprint extender and the Blueprint bundle are active, the application is in the runt-
ime phase. The component instances perform their requested functionality in collaboration. The
Blueprint Container can be used to provide objects from the defined managers, get information about
the configuration, and general state information, see Blueprint Container on page 247.

121.3.11 Destroy the Blueprint Container
The Blueprint Container must be destroyed when any of the following conditions becomes true:

• The Blueprint bundle is stopped, that is, it is no longer ready.
• The Blueprint extender is stopped
• One of the initialization phases failed.

Destroying the Blueprint Container must occur synchronously with the Bundle STOPPING event if
that caused any of the previous conditions. For example, if the Blueprint extender is stopped, it must
synchronously destroy all Blueprint Containers it has created.

Destroying the Blueprint Container means:

1 Unregistering the Blueprint Container service
2 Deactivating all managers.
3 Destroying all component instances in reverse dependency order, see Reverse Dependency Order on

page 200.

A Blueprint Container must continue to follow the destruction even when component instances
throw exceptions or other problems occur. These errors should be logged.

If the Blueprint extender is stopped, then all its active Blueprint Containers must be destroyed in an
orderly fashion, synchronously with the stopping of the Blueprint extender bundle. Blueprint Con-
tainers must use the following algorithm to destroy multiple Blueprint Containers:

1 Destroy Blueprint Containers that do not have any services registered that are in use by other
bundles. More recently installed bundles must be destroyed before later installed bundles, that is,
reverse bundle id order.

2 The previous step can have released services, therefore, repeat step 1 until no more Blueprint Con-
tainers can be destroyed.

3 If there are still Blueprint Containers that are not destroyed, then destroy the Blueprint Container
with:
• The registered service that is in use with the lowest ranking number, or if a tie
• The highest registered service id
If there are still Bundle Containers to be destroyed, retry step 1
Page 208 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Blueprint Definitions
During the shutting down of an OSGi framework, it is likely that many bundles are stopped near
simultaneously. The Blueprint extender should be able to handle this case, without deadlock, when
the stop of a Blueprint bundle overlaps with the stop of the Blueprint extender bundle.

121.3.12 Failure
If a failure occurs during the initialization of the Blueprint bundle, then first a FAILURE event must be
posted, see Events on page 248. Then the Blueprint Container should be destroyed, ensuring that no
uninitialized or half initialized objects are destroyed. Failures should be logged if a Log Service is
present.

121.3.13 Lazy
The Blueprint Container specification specifically allows lazy initialization of the application in the
Blueprint bundle. No component instances are created until an eager manager is activated, or a ser-
vice request comes in.

If no eager managers are defined and no service has explicit dependencies, then no component
instances are provided until an external trigger occurs. This trigger can be a service request or a call to
the getComponentInstance method of the Blueprint Container, which is registered as a service. This
allows a Blueprint bundle to not create component instances, and thereby load classes, until they are
really needed. This can significantly reduce startup time.

Some features of the component definitions can only be verified by inspecting a class. This class load-
ing can break the lazy initialization of a Blueprint bundle. It is therefore allowed to delay this kind of
verification until the activation of a manager.

This lazy behavior is independent of the bundle’s lazy activation policy. Though the Blueprint
extender recognizes this policy to detect when the bundle is ready (for a lazy activated bundle the
STARTING state is like the ACTIVE state), it is further ignored. That is, the relation between a Bundle
Activator that is lazily activated and the Blueprint Container is not defined.

121.4 Blueprint Definitions
The Blueprint XML resources in a bundle are the definitions. Each definition can include multiple
namespaces. Implementations of the Blueprint core namespace must strictly follow this specifica-
tion, if they add additional behavior they must add additional namespaces that are actually used in
the definitions to signal the deviation from this specification.

The namespace for the core Blueprint definition resources is:

http://www.osgi.org/xmlns/blueprint/v1.0.0

Blueprint resources that use this core specification must have as top the blueprint element. The fol-
lowing example shows the body of a Blueprint definition:

<xml version="1.0" encoding="UTF-8">
<blueprint
 xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
 ...
</blueprint>

The recommended prefix for the Blueprint core namespace is bp .

All elements in the Blueprint namespace are prepared for future extensions and provide a
descript ion child element in most positions.
OSGi Service Platform Release 4, Version 4.2 Page 209

Blueprint Definitions Blueprint Container Specification Version 1.0
121.4.1 XML
In the following sections, the XML is explained using the normal syntax notation used for headers.
There is, however, one addition to the normal usage specific to XML, and that is the use of the angled
brackets (<>). A term enclosed in angled brackets, indicates the use of a real element. Without the
angled brackets it is the definition of a term that is expanded later to a one or more other terms or ele-
ments. For example:

people ::= <person> *
person ::= <child>* address
address ::= <fr> | <us> | <nl>

Describes for example the following XML:

<people>
<person id="mieke">

<child name="mischa"/>
<child name="thomas"/>
<fr zip="34160"/>

</person>
</people>

Attributes are described in tables that define how they map to their corresponding Metadata. As a
rule, the XML elements and attributes are expressed directly in the Metadata.

The text in the following sections is a normative description of the semantics of the schema. How-
ever, the structure information is illustrative. For example, all descr ipt ion elements have been
ignored for brevity. The exact structure is described by the XML schema, see Blueprint XML Schema on
page 252.

There are a number of convenient XML types used in the following sections. There schema types are
defined here:

• fqn – A fully qualified Java class name in dotted form, for example java. lang.Str ing .
• method – A valid Java method name, for example setFoo .
• NCName – A string syntax for names defined in [9] XML Schema.
• ID – A string syntax for ids defined in [9] XML Schema.
• type – A name of a Java type including arrays, see the next section Syntax for Java types on page

210.
• target – An inline bean, reference, or ref, see Target on page 213.
• object – An object value, see Object Values on page 232

In several cases, the actual syntax depends on the type conversion. This type of syntax is indicated
with <<type>> indicates that the syntax of the string depends on the type conversion, where ten type
is usually given as a parameter on the same Metadata.

121.4.2 Syntax for Java types
A number of elements can refer to a Java type, for example the value element has a type attribute and
a map element has a key-type attribute. The syntax for these types is as follows:

type ::= fqn array
array ::= ’[]’ *

Where fqn is the fully qualified name of a Java class or interface, or the name of a primitive type.

For example:

<value type="java.lang.String[]"/>

It is not possible to specify generic information in this syntax.
Page 210 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Blueprint Definitions
121.4.3 XML and Metadata
The Blueprint Container parses the XML into Metadata objects, see Metadata on page 251. During
parsing, the XML parser validates against the detailed Blueprint schema and will therefore catch
many errors. However, the XML schema and the Metadata type are not equivalent. The XML contains
many conveniences that the Blueprint Container must convert to the canonical type in the Metadata.
A number of general rules apply for this conversion:

• An absent attribute will result in null , unless the schema element provides a default value. In that
case, the default must be returned from the Metadata object. That is, a default is indistinguishable
from a specifically set value.

• Defaults from the blueprint element are filled in the Metadata objects, they are not available in
any other way.

• Strings are trimmed from extraneous whitespace, as described in XML normalization.
• Child elements are represented by List objects, in the order of their definition. If no child elements

are specified, the list will be empty.

For example, the act ivat ion feature reflects the total of default-activat ion and act ivation attributes
but does not reflect that a prototype scope always makes a bean lazy. That is, even if act ivat ion is
eager , the bean must still have lazy activation when it has prototype scope.

121.4.4 <blueprint>
The blueprint element is the top element. The definitions consist of two sections: the type-converter
section and the managers section.

blueprint ::= <type-converters> manager*
manager ::= <bean> | <service>

| service-reference
service-reference ::= <reference> | <reference-list>
type-converters ::= <bean> | <ref>

In this specification, the reference and reference-list managers are referred to as service references
when their differences are irrelevant. The blueprint element structure is visualized in Figure 121.6.

Figure 121.6 Managers (bold = element name, plain=base type)

121.4.5 Metadata
The blueprint element has no corresponding Metadata class.

blueprint

type-
converters

bean ref

*
0..1

*

= choice

manager
(top level)
OSGi Service Platform Release 4, Version 4.2 Page 211

Blueprint Definitions Blueprint Container Specification Version 1.0
121.4.6 Defaults
The blueprint element supports the setting of the diverse defaults for the current definition resource
with the following attributes:

• default-activat ion – Controls the default for the activat ion attribute on a manager. See Lazy and
Eager on page 213. The default for this attribute is eager .

• default-avai labi l i ty – The default availability of the service reference elements, see Service Ref-
erence Managers on page 226. The default for this attribute is mandatory .

• default-t imeout – The default for the reference element t imeout attribute, see Service Reference
Managers on page 226. The default for this attribute is is 30000, or 5 minutes.

These defaults are specific for one definition resource, they apply only to elements enclosed to any
depth in the blueprint element. These defaults are not visible in the Metadata.

121.4.7 <type-converters>
The Blueprint definitions are text based but the component instances require actual classes for their
construction and dependency injection. Component instances are injected with general objects the
target type is not always compatible with the source type. This specification therefore allows for type
conversion. Type conversion rules are specified in Type Conversion on page 240. This section provides
beans, or referrals to beans, that can be used in this type conversion process. They are listed in a sepa-
rate section so they can be registered as a type converter, pre-instantiated, and preventing dependen-
cies that easily become cyclic. Beans defined in the type-converters element must be registered as
top-level managers.

The structure of the type-converters element is:

type-converters ::= (<bean> | <ref>)*

Type converters defined with the ref element can refer to bean managers or reference managers. Type
converters must have ids distinct from any other manager and are available through the Blueprint
Container’s getComponentInstance method.

121.4.8 manager
The component XML schema type is the base type of the bean , service , reference-l ist , and reference
elements. All manager sub-types share the following attributes:

• id – The manager and its Metadata are identified by its id as defined in its Component Definition.
In general this id is therefore referred to as the component id. This is an optional attribute. If it is not
defined, a default calculated unique id will be assigned to it for top-level managers. For inlined
managers, the id attribute cannot be set, their Metadata must return null . All top level manager ids
must be unique in a Blueprint Container.
The id attribute must be of type ID as defined in XML Schema, see [9] XML Schema. The syntax for
an id is therefore:

id ::= ID // See [9] XML Schema #ID

Ids generally use camel case, like myComponent , and they are case sensitive. That is, component
id madHatter and madhatter are distinct ids. Applications should not use ids starting with the
prefix blueprint .
Ids are not required, if no component id is specified, the Blueprint Container must assign a unique
id when it is a configured in a top level element. This calculated id must start with a dot (’ . ’
\u002E).

• activat ion – Defines the activation mode to be lazy or eager. See Eager Instantiation on page 208.
• dependsOn – The list of explicit dependencies that must be activated. See Explicit Dependencies on

page 213.
Page 212 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Blueprint Definitions
The Metadata interface of top level managers will be a sub-interface of ComponentMetadata and is
available from the Blueprint Container by its component id.

Figure 121.7 Inheritance hierarchy for managers

121.4.9 Explicit Dependencies
The dependsOn list contains the ids of the top-level managers the bean explicitly depends on. Unless
stated otherwise in the specific manager description, explicit dependencies must be activated before
their manager is activated.

For example:

<bean id="alice" class="com.acme.MadHatter"
depends-on="cheshire rabbit queen"/>

This example will ask the top level managers cheshire , rabbit , and queen to provide an object before
al ice is activated. For a discussion about dependencies see Manager Dependencies on page 199.

121.4.10 Lazy and Eager
During initialization, all eager top level managers are requested to provide a component instance.
Applications can use this request as an indication to start providing their intended functionality.

Managers that are lazy, that is, not singleton scope , act ivation is lazy , or inlined, are activated when
they are first asked to provide a component instance. Therefore, even lazy managers can activate dur-
ing initialization when they happen to be a dependency of another manager that activates its depen-
dencies.

Services and service references can also have lazy or eager activation. The eager activation will
ensure that all listeners are properly actuated during the corresponding activation. For services, the
service object is then also requested at startup.

The following example defines an eager bean by making it a singleton and setting the activat ion to
eager :

<bean id="eager" scope="singleton"
class="com.acme.FooImpl" act ivat ion="eager"/>

121.4.11 Target
In several places in the Blueprint schema it is necessary to refer to a target. A target is a:

• ref – Must reference one of the following managers
• reference – An inlined reference manager
• bean – An inlined bean manager

service-referencebean service

manager

reference reference-list

extends
OSGi Service Platform Release 4, Version 4.2 Page 213

Bean Manager Blueprint Container Specification Version 1.0
The target type is normally used for listeners, service objects, and other places where a general appli-
cation component instance is required.

121.5 Bean Manager
A bean manager provides an arbitrary Java object. It constructs this object from a given class or fac-
tory and then configures the object by injecting its properties with other component instances or
more general object values.

The provided component instance can be a singleton or a new object can be returned on every invo-
cation (prototype), this behavior is defined with the scope attribute, see Scope on page 217.

The provided object can optionally be notified when all of its properties have been injected, and
when the providing bean manager will be deactivated, see Life Cycle Callbacks on page 219.

121.5.1 Bean Component XML
The structure of a bean element is:

bean ::= (<argument> | <property>)*

Figure 121.8 Bean Structure

121.5.2 <bean>
The Metadata for a bean manager is represented in the BeanMetadata interface, which extends
ComponentMetadata . Table 121.1 on page 214 provides an overview of the related XML definitions
and the BeanMetadata interface. The table only provides a summary, the sometimes subtle interac-
tions between the different features are discussed in later sections.

bean

argument property

*

Table 121.1 Bean Manager Features

Attribute or Element Syntax Bean Metadata Description

id ID id
: Str ing

The id of a top level manager, must
be unique in the Blueprint Con-
tainer. All inlined managers must
return nul l for their id.

act ivat ion lazy
| eager

act ivat ion
: int

Defines if this bean is lazily or
eagerly activated. If not explicitly
set, the blueprint element’s value
for the default-activat ion
attributes is used. If this is also not
set, the value is eager . See Lazy and
Eager on page 213.
Page 214 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Bean Manager
The bean element has the following constraints that are not enforced by the schema but must be
enforced by the Blueprint Container:

depends-on NCName* dependsOn
: L ist<String>

Explicit list of ids that are the
dependencies. These referred man-
agers must be activated before this
bean can provide an object. See
Explicit Dependencies on page 213.
This is a whitespace separated list.

class fqn className
: Str ing

Class name of the object to be pro-
vided or the class name for a static
factory. See Construction on page
217.

scope s ingleton
| prototype

scope
: Str ing

The scope defines the construc-
tion strategy for the component
instance. The default is singleton
except for inlined bean managers,
where it is prototype . There is no
schema default, so if it is not
explicitly set, the Metadata will be
nul l . See Scope on page 217.

in it-method method initMethod
: Str ing

The name of a method to invoke
when a provided object has been
injected with all its properties. If
this is not set, it is nul l . See Life
Cycle Callbacks on page 219.

destroy-method method destroyMethod
: Str ing

A name of a method to invoke on
the provided objects with
singleton scope when the Blue-
print Container is destroyed. If this
is not set, it is nul l . See Life Cycle
Callbacks on page 219.

factory-method method factoryMethod
: Str ing

The name of the method on a static
or component instance factory. See
Construction on page 217.

factory-ref NCName factoryComponent
: Str ing

A reference to a manager that acts
as the factory. See Construction on
page 217.

<argument> Table arguments
: L ist<BeanArgument>

Defined as sub-elements of the
bean element. A BeanArgument
object contains the value of an
argument in the factory method or
constructor. The order of the argu-
ments is declaration order. See Con-
struction on page 217.

<property> Table propert ies
: L ist<BeanPropert ies>

Defined as sub-elements of the
bean element. A BeanProperty
object provides the property name
and injection value. See Properties
on page 218.

Table 121.1 Bean Manager Features

Attribute or Element Syntax Bean Metadata Description
OSGi Service Platform Release 4, Version 4.2 Page 215

Bean Manager Blueprint Container Specification Version 1.0
• The destroyMethod must not be set when the scope is prototype .
• The act ivat ion must not be set to eager if the bean also has prototype scope.
• The following combinations of arguments are valid, all other combinations are invalid:

• className
• className , factory-method
• factory-ref , factory-method

121.5.3 <argument>
The argument element holds a value for a constructor or factory method’s parameters.

The argument element has the following additional constraints:

• Either all arguments have a specified index or none have a specified index.
• If indexes are specified, they must be unique and run from 0. .(n-1) , where n is the number of argu-

ments.
• The following attributes and elements are mutually exclusive:

• ref
• value
• An inlined object value

121.5.4 <property>
The property element holds the information to inject a bean property with an object value.

Table 121.2 Bean Argument Features

Attribute or Element Syntax Bean Argument Description

index int >= 0 index
: int

The index of the argument in the
constructor or factory-method sig-
nature. If this is not set, the Blue-
print Container must use the type
information to calculate it to
match the disambiguation algo-
rithm. The index will be -1 when
not explicitly set.

type fqn valueType
: Str ing

The fully qualified class name of a
Java type to match the argument to
the signature against.

ref NCName value
: RefMetadata

A reference to a top level manager
that provides the value for the
argument .

value <<type>> value
: ValueMetadata

The Value Metadata based on the
value property.

<. . .> object value
: Metadata

An inlined value.

Table 121.3 Bean Property Features

Attribute or Element Syntax Bean Property Description

name method
(’ . ’ method
)*

name
: Str ing

The property name, for example
foo . The method name can consist
of dot separated method names,
indicating nested property access.

ref NCName value
: RefMetadata

A reference to a top level manager.
Page 216 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Bean Manager
The argument element has the following additional constraints:

• The following attributes/elements are mutually exclusive
• ref
• value
• An inlined object value

121.5.5 Scope
A bean manager has a recipe for the construction and injection of an object value. However, there can
be different strategies in constructing its component instance, this strategy is reflected in the scope .
The following scopes are architected for this specification:

• singleton – The bean manager only holds a single component instance. This object is created and
set when the bean is activated. Subsequent requests must provide the same instance. Singleton is
the default scope. It is usually used for core component instances as well as stateless services.

• prototype – The object is created and configured anew each time the bean is requested to provide
a component instance, that is, every call to getComponentInstance must result in a new com-
ponent instance. This is usually the only possible scope for stateful objects. All inlined beans are
always prototype scope.

Implementations can provide additional scope types. However, these types must only be allowed
when a defining namespace is included in the definitions and is actually used in the definitions to
specify the dependency on this feature.

121.5.6 Construction
The Blueprint specification supports a number of ways for a bean manager to construct an object.
Each possibility is a combination of the following Metadata properties:

• className – Defines the fully qualified name of a class to construct, or the name of a class with a
static factory method. The class must be loadable from the Blueprint bundle loadClass method.

• factoryMethod – A static or instance factory method name that corresponds to a publicly acces-
sible method on the given class or factory manager.

• factoryComponent – The id of a top-level target manager in the Blueprint Container that is an
instance factory.

The Bean manager can have a number of BeanArgument objects that specify arguments for the con-
structor or for the factory class/object method. The matching constructor or method must be publicly
accessible. The argument’s valueType can be used to disambiguate between multiple signatures of
constructors or methods. See Signature Disambiguation on page 238.

The value of the argument is always a Metadata object. Such an object can be converted into a gen-
eral object value, see Object Values on page 232.

The construction properties can be used in a rather large number of combinations, however, not all
combinations are valid. Table 121.4 shows the different valid combinations. If none of the combina-
tions matches, then the Bean Metadata is erroneous.

In Table 121.4, a variation of the following bean definition is assumed:

<bean class="C" factory-method="f" factory-ref="fc">
<argument value="1"/>
<argument value="2"/>

</bean>

value <<type>> value
: ValueMetadata

A Value Metadata where the type
is nul l .

<. . .> object value
: Metadata

An inlined object value.

Table 121.3 Bean Property Features
OSGi Service Platform Release 4, Version 4.2 Page 217

Bean Manager Blueprint Container Specification Version 1.0
This definition is invalid because it specifies an invalid combination of metadata properties. The only
valid combinations are subsets, they are all specified in the following table.

The object created this way will be the provided object of the bean after any properties are injected. If
the factoryMethod returns a primitive type, then this primitive must be converted to the correspond-
ing wrapper type before any usage.

121.5.7 Properties
Dependency injection configures a constructed object with the help of the propert ies , which is a a
List of BeanProperty objects. A Bean Property has the following features:

• name – The name of the bean property. This name refers to the set method on the constructed
object as specified in the design pattern for beans getters and setters, see [6] Java Beans Specification.
For example, if the property name is foo , then the public method setFoo(arg) will be used to set
the value. There should only be one set method with a single argument for a specific property. If
overloaded properties are encountered, the chosen set method is unspecified.
Nested property names are allowed when setting bean properties, as long as all parts of the path,
except the property that is set, result in a non-nul l value. The parts of the path are separated with a
dot (’ . ’ \u002E). For example:

<property name="foo.bar.baz" value="42"/>

This example gets the foo property, from the constructed object, it then gets the bar property and
then sets the baz property on that object with the given value.

• value – The value of the property is always a Metadata object. This Metadata object can be con-
verted to a value object, see Object Values on page 232.

After the Metadata object is converted to an object value, it must be injected into the property. If the
value object is not directly assignable to the property type (as defined by its only set method and the
rules in Type Compatibility on page 239), then the Blueprint Container must use the type conversion
mechanism to create a new object that matches the desired type, or fail. See Dependency Injection on
page 238 for more information about dependency injection.

For example, the following bean creates an instance and then injects a three into a the foo property
that it gets from the bar property. The string that holds the three is converted to a double :

<bean id="foo" class="com.acme.Foo">
 <property name="bar.foo" value="3"/>
</bean>

// Classes
package com.acme;
public class Bar {

double v;

Table 121.4 Component Attributes and Construction

className factory-
method

factory-ref argument Corresponding Java Code

C new C
C f C.f()
C 1,2 new C(1,2)
C f 1,2 C.f(1,2)

f $fc $fc. f()
f $fc 1,2 $fc. f(1 ,2)

* * * * fai lure
Page 218 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Service Manager
 public void setFoo(double v) { this.v = v; }
}
public class Foo {

Bar bar = new Bar();
public void getBar() { return bar; }

}

// Corresponding Java code
Foo foo = new Foo();
foo.getBar().setFoo(3.0);

121.5.8 Life Cycle Callbacks
The bean element provides two attributes that define the callback method names for initialization
and destruction. A callback must be implemented as a publicly accessible method without any argu-
ments. The callback method names must exist as void() methods.

The in itMethod specifies the name of an initialization method that is called after all properties have
been injected. The destroyMethod specifies the name of a destroy method that is called when the
Blueprint Container has destroyed a component instance. Only bean managers with singleton scope
support the destroyMethod . The destroy callback cannot be used for beans that have prototype
scope, the responsibility for destroying those instances lies with the application.

121.5.9 Activation and Deactivation
A singleton bean manager must construct its single object during activation and then callback its
in itMethod method. Prototype scoped beans are created after activation and also have their
in itMethod invoked. The destroy method is called during the destruction of all the beans in s ingleton
scope, this happens after deactivation.

A prototype bean manager has no special activities for deactivation.

121.6 Service Manager
The service manager defined by a service element is responsible for registering a service object with
the service registry. It must ensure that this service is only registered when it is enabled. Where
enabled means that all its mandatory service reference managers in its dependencies are satisfied.

121.6.1 <service>
The XML structure of the <service> manager is:

service ::= <interfaces>
<service-properties>
<registration-listener>*
target

interfaces ::= <value>+
service-properties ::= <entry>+
registration-listener ::= target

The service manager has the features outlined in Table 121.5 on page 220. The following additional
constraints apply:

• The interface attribute and interfaces element are mutually exclusive.
• If the auto-export attribute is set to anything else but disabled , neither the interface attribute nor

the interfaces element must be used.
• The ref attribute and in l ined element are mutually exclusive
OSGi Service Platform Release 4, Version 4.2 Page 219

Service Manager Blueprint Container Specification Version 1.0
Table 121.5 Service Manager Features

Attribute or Element Type Service Metadata Description

id ID id
: Str ing

Optional component id of the
manager, if it is a top level man-
ager.

act ivat ion lazy
| eager

activat ion
: int

Defines if this service is lazily or
eagerly initialized. If not explic-
itly set, the blueprint element’s
value for the default-act ivat ion
attributes is used. If this is also
not set, the value is eager . See
also Lazy and Eager on page 213.

depends-on NCName* dependsOn
: L ist<Str ing>

Explicit list of ids that are the
dependencies. These managers
must be activated at the start of
the registration phase. See
Explicit Dependencies on page 213.
This is a whitespace separated
list.

interface fqn interfaces
: L ist<Str ing>

Name of the interface under
which this service should be reg-
istered. See Service Interfaces on
page 222.

auto-export d isabled
| interfaces
| c lass-
 hierarchy
| a l l-c lasses

autoExport
: int

Defines the way the class must
be analyzed to find the interfaces
under which the service must be
registered. The schema default is
disabled . See Service Interfaces on
page 222

ranking int ranking
: int

The service.ranking value. The
schema default is 0, which
implies no service property. See
Ranking on page 224.

ref NCName value
: RefMetadata

Reference to the manager that
provides the service object. See
Service Object on page 223.

<service-
propert ies>

See <map>
on page 235.

servicePropert ies
: L ist<MapEntry>

The service properties for this
service. See Service Properties on
page 222.

<registration-
l istener>

See Table
121.6

registrat ionListeners
: L ist<Registrat ion
 L istener>

The registration listeners. See
Registration Listener on page 224.
Page 220 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Service Manager
121.6.2 <registration-listener>
The service element can contain zero or more registration-l istener elements, that define registration
listeners to be notified of service registration and unregistration events. This element has the follow-
ing structure:

registration-listener ::= target*

The registrat ion-l istener element defines the callback methods for registration and unregistration.

The additional constraint is:

• The ref attribute and the inlined manager are mutually exclusive.
• Either or both of the registrationMethod and unregistrat ionMethod must be set.
• For each method name set, there must be at least one method matching the possible prototypes in

the registration listener object, see Registration Listener on page 224.

<interfaces> <value>* interfaces
: L ist<String>

Names of interfaces under
which this service should be reg-
istered. Each interface name
must be listed as a child value
element. This value element has
no attributes. For example:

<interfaces>
 <value>com.acme.Foo</value>
 <value>com.acme.Bar</value>
</ interfaces>

The value element must only
hold a string value. See Service
Interfaces on page 222

<. . .> target value
: Target

An inlined target manager that
is used for the service object. See
Service Object on page 223

Table 121.5 Service Manager Features

Attribute or Element Type Service Metadata Description

Table 121.6 Registration Listener Features

Attribute or Element Type Registration Listener Description

ref NCName registrationListener
: Target

A reference to a top level man-
ager.

registrat ion-method method registrationMethod
: Str ing

The name of the method to
call after the service has been
registered. See Registration Lis-
tener on page 224.

unregistrat ion-method method unregistrationMethod
: Str ing

The name of the method to
call before the service will be
unregistered. See Registration
Listener on page 224.

<. . .> target registrationListener
: Target

An inlined target manager
OSGi Service Platform Release 4, Version 4.2 Page 221

Service Manager Blueprint Container Specification Version 1.0
121.6.3 Explicit Dependencies
A service manager must initialize any explicit dependencies in the start of its registration phase, even
before it tracks its enabled state. The presence of explicit dependencies will not activate the service
manager.

121.6.4 Provided Object
A service manager provides a proxy to a ServiceRegistrat ion object. If this proxy is used when the
dependencies are not met, and the service is therefore unregistered, an Illegal State Exception must
be thrown. In all other cases, the proxy acts as if it was the ServiceRegistrat ion object associated with
the registration of its service object.

The unregister method on the returned object must not be used. If the application code calls unregis-
ter then this must result in an Unsupported Operation Exception.

121.6.5 Service Interfaces
Each service object is registered under one or more interface names. The list of interface names is pro-
vided by interfaces or autoExport .

The autoExport tells the Blueprint Container to calculate the interface(s) from the type of the service
object. The autoExport can have the following values:

• disabled – No auto-detection of service interface names is undertaken, the interface names must
be found in interfaces . This is the default mode.

• interfaces – The service object will be registered using all of its implemented public Java interface
types, including any interfaces implemented by super classes.

• class-hierarchy – The service object will be registered using its actual type and any public super-
types up to the Object class (not included).

• al l-classes – The service object will be registered using its actual type, all public super-types up to
the Object class (not including), as well as all public interfaces implemented by the service object
and any of its super classes.

The autoExport requires the actual class object for introspection for all its modes except disabled ,
which can cause a bundle with a lazy activation policy to activate because a class will be loaded from
the Blueprint bundle.

As an example:

<bean id="fooImpl" class="FooImpl"/>

public class FooImpl implements Foo { ... }

Then the following service definitions are equivalent:

<service id="foo">
<interfaces>

<value>com.acme.Foo</value>
</interface>

</service>
<service id="foo" interface="com.acme.Foo" ref="fooImpl"/>
<service id="foo" auto-export="interfaces" ref="fooImpl"/>

121.6.6 Service Properties
Each service can optionally be registered with service properties. The servicePropert ies is a list of
MapEntry , see <entry> on page 236. This metadata must be used to create the service properties. Ser-
vice properties creation can have side effects because they can use component instances. The service
properties must therefore be created once before the first time the first time the service is registered.
Page 222 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Service Manager
The service manager adds the following automatic service properties that cannot be overridden.
When these properties are explicitly set, they must be ignored.

• osgi .service.bluepr int .compname – This will reflect the id of the manager that provides the
service object, unless it is inlined. Inlined beans are always anonymous and must not have this
property set.

• service.ranking – If the ranking attribute is not zero, this property will be set and hold an Integer
object with the given value, see Ranking on page 224.

For example, the following definition is followed by equivalent Java code needed to register the ser-
vice:

<service ref="fooImpl" interface="com.acme.Foo">
 <service-properties>
 <entry key="size" value="42"/>
 </service-properties>
</service>

Dictionary d = new Hashtable();
d.put("size", "42");
d.put("osgi.service.blueprint.compname", "fooImpl");
ServiceRegistration sr =

bundleContext.registerService("com.acme.Foo",
 blueprintContainer.getComponentInstance("fooImpl"),
 d);

Service properties should specify the valueType of the entry unless the value to be registered needs to
be a Str ing object. The service property types should be one of:

• Primitives Number – int , long, f loat, double, byte, short , char, boolean
• Scalar – Str ing, Integer, Long, F loat, Double, Byte, Short, Character, Boolean .
• Array – An array of either the allowable primitive or scalar types.
• Collection – An object implementing the Collect ion interface that contains scalar types.

See <entry> on page 236 types for information how to create these types.

121.6.7 Service Object
The service manager must not request the Blueprint Container for the service object until it is actu-
ally needed because a bundle requests it. The service object is represented in the value . This is a Meta-
data object that can be used to construct an object value, see Object Values on page 232.

For example:

<service id="fooService" ref="fooImpl" .../>

<service id="fooService" ... >
 <bean class="com.acme.fooImpl"/>
</service>

121.6.8 Scope
A service manager must always register a Service Factory as service object and then dispatch the ser-
vice requests to the service object. A service manager must obtain a single component instance as ser-
vice object. This component instance is shared between all bundles. That is, even if the service object
comes from a prototype scoped manager, only one instance is ever created per service manager.

If this component instance implements Service Factory, then all incoming service requests are for-
warded to this single component instance.
OSGi Service Platform Release 4, Version 4.2 Page 223

Service Manager Blueprint Container Specification Version 1.0
121.6.9 Ranking
When registering a service with the service registry, an optional service ranking can be specified that
orders service references. The service ranking is registered as the SERVICE_RANKING property defined
in the OSGi service layer. When a bundle looks up a service in the service registry, given two or more
matching services, then the one with the highest number will be returned. The default ranking value
for the OSGi service registry is zero, therefore, this property must not be registered when ranking is
zero, which is also the default value.

For example:

<service ref="fooImpl" interface="com.acme.FooImpl"
 ranking="900" />

This will result in the following service property:

service.ranking=new Integer(900)

121.6.10 Registration Listener
The registrationListeners represent the objects that need to be called back after the service has been
registered and just before it will be unregistered.

The l istenerComponent must be a Target object; it is the target for the following callbacks:

• registrat ionMethod – The name of the notification method that is called after this service has
been registered.

• unregistrat ionMethod – This method is called when this service will be unregistered.

The signatures for the callback methods depend on the scope and if the service object implements the
ServiceFactory interface. The different possibilities are outlined in Table 121.7 on page 224.

If multiple signatures match, then all methods must be called in indeterminate order. At least one
method must match.

The service manager must provide the registration listener with the current registration state when
the listener is registered. This initial notification must take place before any other callback methods
are called on this listener on other threads. That is, if the service is registered at that time, it must call
the registration method and otherwise the unregistration method.

Table 121.7 Interaction scopes and types for callback signature.

Scope Type Signature Comment

singleton ServiceFactory void(ServiceFactory,Map) All service requests are han-
dled by the component
instance.

singleton T void(super T,Map) T is assignable from the service
object’s type.

prototype ServiceFactory void(ServiceFactory,Map) All service requests are han-
dled by the first component
instance.

prototype T void(,Map) The first argument must be
nul l because for prototype ser-
vice objects, the component
instance is created when a bun-
dle requests the service. There-
fore, at registration time there
is no service object available.
Page 224 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Service Manager
The following example shows two registration listeners, one with a referred bean and another one
with an inlined bean.

<service ref="fooImpl" interface="com.acme.Foo">
 <registration-listener registration-method="reg"

unregistration-method="unreg">
<bean class="com.acme.FooListener"/>

</registration-listener>
</service>

<service ref="fooImpl" interface="com.acme.Foo">
 <registration-listener registration-method="reg"

unregistration-method="unreg" ref="fooListener"/>
</service>
<bean id="fooListener" class="com.acme.FooListener"/>

package com.acme;
public class FooListener {
 public void reg(Foo foo, Map properties) { ... }
 public void unreg(Foo foo, Map properties) { ... }
}

The manager that provides the registration listener object is an implicit dependency of the enclosing
service manager. However, the registration listener component instance is specifically allowed to use
to the service manager though this is technically a cyclic dependency. Therefore, a bean is allowed to
be both be injected with a ServiceRegistrat ion object from the service manager as well as being a reg-
istered listener to the same service manager.

In the following example, the foo service manager uses manager main, both as a registration listener
as well as top-level bean main being injected with reference foo .

<service id="foo" interface="com.acme.Foo" ref="main">
 <registration-listener

registration-method="register" ref="main"/>
</service>

<bean id="main" class="com.acme.Main" init-method="done">
<property name="foo" ref="foo"/>

</bean>

121.6.11 Enabled
A service manager needs a service object that is referred to by the valueMetadata property. This value
can in its turn depend on other managers transitively. If any of these managers are service reference
managers, then they can be satisfied or not. If these service reference managers are marked to be man-
datory, then they influence the enabled state of the first service manager. Only if all of these manda-
tory service reference managers in the dependency graph are satisfied, then the first service manager
is enabled.

A service manager must have a Service Factory registered with the OSGi service registry after the pri-
mary initialization of the Blueprint Container has been done until the Blueprint Container is
destroyed while it is enabled. See see Service Registration on page 207.
OSGi Service Platform Release 4, Version 4.2 Page 225

Service Reference Managers Blueprint Container Specification Version 1.0
121.6.12 Activation and Deactivation
When a service manager is activated, it must actuate its registration listeners. Each registration lis-
tener must be called back during its actuation with the current service registration state as described
in the Registration Listener on page 224. Normally, this will also request the container for a service
object but this can be further delayed in certain circumstances. See Service Object on page 223 for
more details.

During deactivation, a service manager must disable any registration listeners and release any depen-
dencies it has on these component instances.

121.7 Service Reference Managers
The reference , and reference-l ist elements are all service references. They select a number of services
in the service registry. The structure of these elements is as follows:

reference ::= <reference-listener>*
reference-list ::= <reference-listener>*

The inheritance hierarchy for service references is depicted in Figure 121.9 on page 226.

Figure 121.9 Inheritance hierarchy for service references

121.7.1 Service Reference
The service reference managers have almost identical Metadata and share most behavior. The only
schema differences between a reference manager and a reference-list manager are:

• t imeout – A reference manager supports a t imeout .
• memberType – The reference-list can define its member-type

The features of the service references are explained in Table 121.8 on page 226.

service-reference

reference reference-list

Table 121.8 Service Reference Manager Features

Attribute or
Element

Type ServiceReference-
Metadata

Description

id ID id
: Str ing

The component id of a top level
manager

act ivat ion lazy
| eager

act ivation
: int

Defines if this service reference is
lazily of eagerly initialized. If not
explicitly set, the blueprint ele-
ment’s value for the default-
act ivat ion attributes is used. If this
is also not set, the value is eager . See
also Lazy and Eager on page 213.
Page 226 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Service Reference Managers
The additional constraints for service references are:

• The interface , if set, must refer to a public interface.

121.7.2 <reference>
A reference manager, selecting a single service, has the additional feature explained in Table 121.9 on
page 227.

An additional constraint on the reference is:

• The t imeout must be equal or larger than zero.

121.7.3 <reference-list>
A reference-list manager, selecting multiple services, has the additional feature explained in Table
121.10 on page 228.

depends-on NCName* dependsOn
: L ist<Str ing>

Explicit list of component ids that
are the dependencies. These manag-
ers must be activated before this ser-
vice reference’s activation. See
Explicit Dependencies on page 213.
This is a whitespace separated List.

avai labi l i ty mandatory
| optional

avai labi l i ty
: int

Defines if a service reference is man-
datory or optional. The default for
the avai labi l ity attribute is defined
by the default-avai labi l ity attribute
in the blueprint element. If the
default-avai labi l i ty attribute is not
defined, the value is mandatory .

interface fqn interface
: Str ing

A single name of an interface class. It
is allowed to not specify an interface
name.

component-
name

NCName componentName
: Str ing

Points to another manager in
another Blueprint Container regis-
tered in the service registry. If set,
the component name must be part
of the effective filter.

f i l ter f i l ter f i lter
: Str ing

The given filter string, can be null .

<reference-
l istener>

See <refer-
ence-lis-
tener> on
page 228

referenceListeners
: L ist<Listener>

The Metadata of the reference listen-
ers

Table 121.8 Service Reference Manager Features

Attribute or
Element

Type ServiceReference-
Metadata

Description

Table 121.9 Reference Features

Attribute or
Element

Type Reference Metadata Description

t imeout long >= 0 t imeout
: long

The t imeout in ms. Zero is indefi-
nite.
OSGi Service Platform Release 4, Version 4.2 Page 227

Service Reference Managers Blueprint Container Specification Version 1.0
121.7.4 <reference-listener>
The reference element can notify reference listeners of the service selection changes with the
referenceListeners . The reference-l istener element has the following structure:

reference-listener ::= target*

The reference-l istener element defines the callback methods for binding and unbinding a service.

The additional constraints are:

• The ref attribute and the inlined manager are mutually exclusive.
• Either or both bindMethod and unbindMethod must be specified.
• At least one specified method must exist with each given method name, see Reference Listeners on

page 230.

121.7.5 Provided Object For a Reference
The provided object for a service reference manager is a proxy backed by a service object from the ser-
vice registry. Therefore, even though the injected object will remain constant, it can change its refer-
ence to a backing service at any time, implying it can only be used with stateful services if reference
listeners are used. If use when no suitable backing service is available, it will wait until it times out.
See Service Dynamics on page 245 for more details. The model is depicted in Figure 121.10.

Figure 121.10 Constant references with dynamic selection

Table 121.10 Reference-list Features

Attribute or
Element

Type Reference List
Metadata

Description

member-type service-
 object
| service-
 reference

memberType
: int

Defines if the members of the list are
ServiceReference objects or the
proxies to the actual service objects.

Table 121.11 Reference Listener Features

Attribute or Element Type Reference Listener Description

ref NCName listenerComponent
: Target

A reference to a top level target
manager.

bind-method method bindMethod
: Str ing

The name of the method to call
after the service has been bound.
See Reference Listeners on page 230.

unbind-method method unbindMethod
: Str ing

The name of the method to call
before the service will be
unbound. See Reference Listeners on
page 230.

<. . .> target l istenerComponent
: Target

An inlined target manager

injected beans

backing
proxy

service providers

services service
instance

service
lazily
fetched
Page 228 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Service Reference Managers
The following example shows how a property can be set to the service object.

public class C {
public void setProxy(T ref) { ... }

}
<reference id="p" interface="T"/>
<bean id="c" class="C">

<property name="proxy" ref="p"/>
</bean>

121.7.6 Provided Object For a Reference-list
The reference-list provided object implements the List interface; this List contains proxies to the
backing services. These proxies do not have a t imeout . That is, when a proxy from a reference-list is
used, it must not wait when the backing service is no longer available but it must immediately throw
a Service Unavailable Exception.

Changes to the list are dynamic. When a backing service is unregistered, the corresponding proxy is
removed from the list synchronously with the service event. When a new service enters the selection,
it is added synchronously with the service event. Proxies to newly discovered services must be added
at the end of the list. The structure is depicted in Figure 121.11.

Figure 121.11 Constant reference to list with dynamic selection

The member type of the list depends on the memberType . If this is set to:

• service-object – Inject a List of service objects, this is the default.
• service-reference – Inject a list of ServiceReference objects

If generics information is available, then it is an error if the generic member type of the target list is
not assignable with the memberType . If the member target type is in itself specified with generic
arguments, like List<T<U>> , then the assignment must fail because this would require conversion
and no conversion can take place for this assignment. For information about generics, see Generics on
page 243.

121.7.7 Read Only Lists
The list is a read-only view on the actual set of proxies to the service objects. This List object must
only support the following methods:

contains(Object)
containsAll(Collection)
equals(Object)
get(int)
hashCode()
indexOf(Object)
isEmpty()
iterator() // no remove method
lastIndexOf(Object)
listIterator() // not supported
listIterator(int) // not supported

injected beans

backing

proxies service providers

services

service
list
OSGi Service Platform Release 4, Version 4.2 Page 229

Service Reference Managers Blueprint Container Specification Version 1.0
size()
subList(int, int) // same list type as parent
toArray()
toArray(T[])

All other methods must throw an Unsupported Operation Exception. The List Iterator is not sup-
ported for these lists.

121.7.8 Selection
A service reference must provide a selection of services from the service registry. The Blueprint Con-
tainer must logically use a filter for the selection that is the and (&) of the following assertions:

• The interface , if specified
• If componentName is not null, a filter that asserts osgi.blueprint.compname=$componentName

This is a convenience function to easily refer to managers in other Blueprint Containers. Regis-
tered Blueprint services will automatically get this property set to their blueprint name.

• If f i l ter is not nul l , the f i l ter

The selection is defined as the set of Service References selected by the given filter.

121.7.9 Availability
A service reference is satisfied when one or more services match the selection. The avai labi l ity is used
to specify whether a service reference needs to be satisfied before initialization, see Grace Period on
page 207, or if it controls the registration state of any service managers that depend on this service ref-
erence manager (explicit and implicit), see Mandatory Dependencies on page 246. The avai labi l i ty can
have the following values:

• mandatory – Mandatory indicates that the service reference needs to be satisfied.
• optional – Optional indicates that the satisfaction of this reference is not relevant for any regis-

tered services, or for the grace period.

It is an error to declare a mandatory reference to a service that is registered by the same bundle. Such
a definition could cause either deadlock or a timeout.

The fact that Blueprint specification has mandatory service references gives no guarantee that a valid
service object is available when the service reference is used, in the dynamic world of OSGi, services
can get unregistered at any time.

The following example declares a mandatory service reference for a single service. The usage of the
reference can stall a maximum of 5 seconds if no service matches the selection.

<reference
id ="log"
interface ="org.osgi.service.log.LogService"
availability ="mandatory"
timeout ="5000" />

121.7.10 Reference Listeners
The referenceListeners are represented as ReferenceListener objects. They define the following call-
backs:

• bindMethod – Called after a service is selected by the service reference manager. For a reference
manager, this method can be called repeatedly without an intermediate unbind callback. This
happens when a service is unregistered but a replacement can be found immediately.

• unbindMethod – Called when the service is no longer used by the service reference manager but
before it has been returned to the service registry with the unget method. For a reference manager,
no unbind method is called when the service can immediately be replaced with an alternative
service when the service goes away.
Page 230 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Service Reference Managers
A reference listener callback can have any of the following signatures:

• publ ic void(ServiceReference) – Provide the ServiceReference object associated with this service
reference. This callback type provides access to the service’s properties without actually getting
the service.

• public void(super T) – Provide the proxy to the service object, where T is on of the types imple-
mented by the service object proxy.

• public void (super T,Map) – Provide the proxy to the service object. T is a type that is assignable
from the service object. The Map object provides the service properties of the corresponding
ServiceReference object.

All signatures must be supported regardless of the value of memberType that was specified in the ref-
erence-list. The service object given to the reference listeners must be the proxy to the service object.

The callbacks must be made synchronously with the corresponding OSGi service event. For refer-
ence-list callbacks, the service proxy is guaranteed to be available in the collection before a bind call-
back is invoked, and to remain in the collection until after an unbind callback has completed.

If a service listener defines multiple overloaded methods for a callback, then every method with a
matching signature is invoked in an undefined order.

For example, the following definition will result in calling all the setLog methods on a FooImpl
object:

<reference id="log"
 interface="org.osgi.service.log.LogService">
 <reference-listener

bind-method="setLog">
<bean class="com.acme.FooImpl"/>

</reference-listener>
</reference>

public class FooImpl {
public void setLog(Object o, Map m) { ... }
public void setLog(LogService l, Map m) { ... }
public void setLog(ServiceReference ref) { ... }

}

The manager that provides the reference listener object is treated as an implicit dependency of the
enclosing service reference. This manager is specifically allowed to use to the service reference in a
property injection or constructor argument, though this is technically a cyclic dependency. There-
fore, a bean must be allowed to both be injected with a reference as well as listening to the bind and
unbind callbacks of that same reference.

In the following example, the foo reference manager uses manager main, both as a reference listener
as well as manager main being injected with reference foo .

<reference id="foo" interface="com.acme.Foo">
 <reference-listener bind-method="setL" ref="main"/>
</reference>
<bean id="main" class="com.acme.Main">

<property name="r" ref="foo"/>
</bean>

121.7.11 Service Proxies
The Blueprint extender must generate proxies for the service reference managers. Reference manag-
ers provide proxies that dynamically select a backing service, which can change over time. A refer-
ence-list provides a list of proxies that have a fixed backing service, these proxies are added and
removed from the list. based on the selection, they do not have a time-out.
OSGi Service Platform Release 4, Version 4.2 Page 231

Object Values Blueprint Container Specification Version 1.0
The backing service for a reference proxy must not be gotten from the OSGi service registry until an
actual service object is needed, that is, when an actual method is called on the proxy. If the backing
service becomes unregistered, then the proxy must unget the reference to the backing service (if it
had gotten it) and get another service object the next time a method on the proxy is called. If a
replacement can be found immediately, the reference listener’s bind method must be called without
calling the unbind method. Other threads that need the same service object must block until the ser-
vice object has become available or times out.

The proxies must implement all the methods that are defined in the interface . The interface must
refer to an interface, not a class. The proxy must only support the methods in the given interface.
That is, it must not proxy methods available on the service object that are not available in the given
interface. If no interface is defined, the proxy must be implemented as if the interface had no meth-
ods defined.

Blueprint bundles must ensure that the proper semantics are maintained for hashCode and equals
methods. If these methods are not defined in the interface, then the proxy must use the default
semantics of the Object class for equals and hashCode methods.

121.7.12 Activation and Deactivation
Service reference managers are active before activation because they must handle the enable status of
service managers.

During activation, a service reference must actuate its listeners and provide these listeners with the
initial state of the reference. For a reference, if there is a selected object, the bind method must be
called with the proxy object, otherwise the unbind method must be called with a null as proxy object.
For a reference-list, the bind method must be called for each member of the list. If the list is empty,
the unbind method must be called with a nul l as proxy object.

During deactivation, the listeners must be disabled.

121.8 Object Values
Top-level managers can use object values in different places. These object values are defined with XML
elements and attributes. After parsing, they are all converted to sub-interfaces of the Metadata inter-
face, transitively reachable from top-level managers. For example, the following definition creates a
bean that is injected with the byte array: byte[] {7,42} :

<bean class="com.acme.FooImpl">
<property name="array">

<array value-type="byte">
<value>7</value>
<value>42</value>

</array>
</property>

</bean>

This definition provides the configuration data for an array value, which is represented by the
Collect ionMetadata interface. A Metadata object can be used to construct its object value during
runtime whenever a new object must be constructed.

In most places where an object value can be used, it can be anything, including objects provided by a
managers and even nul l . However, maps require non-null keys. The object values are therefore split
in value and nonNullValue types.

The syntax for object values has the following structure:

nonNullValue::= <ref>
| <idref>
Page 232 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Object Values
| <value>
 | <map>
 | <props>

| collection
| manager // see manager on page 212

value ::= nonNullValue | <null>
collection ::= <list> | <set> | <array>

Object values also include inlined managers. The use of an inlined manager for an object value means
that manager will provide a value every time the object value is constructed. Each of the object values
is created anew and the types are mutable, except for the service references. The use of managers in
object values must create an implicit dependency between the top level managers and any transi-
tively reachable manager from their Metadata.

121.8.1 <ref>
The ref element is a reference to a top-level manager in the same Blueprint Container. The ref ele-
ment has a single attribute component- id .

For example, the following definition uses the foo manager to instantiate the service object.

<service id="fooService" interface="com.acme.Foo">
<ref component-id="fooImpl"/>

</service>
<bean id="fooImpl" class="com.acme.FooImpl"/>

public class FooImpl implements Foo { }

121.8.2 <idref>
The idref element provides the component id of another manager in the same Blueprint Container.
This reference can then be used by the application to look up a manager in the Blueprint Container
during runtime. The idref element is a safe way to provide a component id because the Blueprint
Container will verify that the component id exists, thereby showing errors early. The idref does not
create an implicit dependency on the given manager.

The following example provides the foo object with the reference to the database.

<bean id="foo" class="com.acme.FooImpl">
 <property name="db">

<idref component-id="jdbc"/>
</property>

</bean>

<bean id="jdbc" ... />

Table 121.12 Ref Features

Attribute Type Ref Metadata Description

component-id NCName componentId
: Str ing

A reference to a top level manager.

Table 121.13 IdRef Features

Attribute Type Id Ref Metadata Description

component-id NCName componentId
: Str ing

A reference to a top level manager.
OSGi Service Platform Release 4, Version 4.2 Page 233

Object Values Blueprint Container Specification Version 1.0
The following definition is equivalent to except that a non existent component id will not be
detected until the foo object access the Blueprint Container. In the previous example this was
detected directly after the definitions were parsed.

<bean id="foo" class="com.acme.FooImpl">
 <property name="db" value="jdbc"/>
</bean>
<bean id="jdbc" ... />

121.8.3 <value>
A value element represents an object that can directly be constructed from a string formed by its text
contents.

If a value element is used as a member in a l ist , map , array , or set then the enclosing collection can
define a default value for the type attribute of its value elements.

The following example creates a list of two OSGi version objects.

<list value-type="org.osgi.framework.Version">
<value>1.3.4</value>
<value>5.6.2.v200911121020</value>

</list>

The corresponding Java code is:

Arrays.asList(new Version("1.3.4"),
new Version("5.6.2.v200911121020"))

121.8.4 <null>
A null element results in a Java nul l . It has no attributes and no elements. It corresponds to Null Meta-
data.

121.8.5 <list>, <set>, <array>
Lists, sets, and arrays are referred to as collections. List and array are ordered sequences of objects,
where equal objects can occur multiple times. A set discards equal objects.

The structure of a collection element is:

collection ::= value *

Table 121.14 Value Features

Attribute, Element Type Value Metadata Description

type type type
: Str ing

The optional type name to be
used in type converting the
given string to a target type. This
type can commit the conversion
to a specific choice. If this type is
not set, then it must return nul l .
For the type syntax, see Syntax
for Java types on page 210.

. . . <<type>> str ingValue
: Str ing

The string value that must be
converted to the target type, if
set.
Page 234 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Object Values
The valueType sets the default for any contained ValueMetadata objects. The result of a collection
element is an object that implements the given collection interface or is an Object[] . That is, the
resulting object is mutable and can be used by the application. However, type conversion can create a
copy of this list.

The following example creates a List of Lists of 2x2 of int values:

<list>
<list value-type="int">

<value >2</value>
<value >7</value>

</list>
<list value-type="int">

<value >9</value>
<value >5</value>

</list>
</list>

The corresponding Java code is:

Arrays.asList(
new int[] {2,7},
new int[]{9,5},

)

121.8.6 <map>
A map is a sequence of associations between a key and some object., this association is called an entry.
The structure of a map element is therefore:

map ::= <entry> *

There are no additional constraints.

Table 121.15 Collection Features

Attribute or Element Type Collection Metadata Description

value-type type valueType
: Str ing

Optionally set the type for
ValueMetadata children.

col lect ionClass
: Class<
 L ist | Set | Object[] >

The actual collection class to be
used, derived from the appropri-
ate definition.

<. . .> object* values
: L ist<Metadata>

The Metadata for the children of
the collection

Table 121.16 Map Features

Attribute or Element Type Map Metadata Description

key-type type keyType
: Str ing

Optional default type for keys.
For the syntax see Syntax for Java
types on page 210.

value-type type valueType
: Str ing

Optional default type for values.
For the syntax see Syntax for Java
types on page 210.

<entry> See <entry>
on page 236

values
: L ist<MapEntry>

The MapEntry object for the chil-
dren of the map or properties.
OSGi Service Platform Release 4, Version 4.2 Page 235

Object Values Blueprint Container Specification Version 1.0
121.8.7 <entry>
The entry element provides an association between a key and a value. The structure of the element is:

entry ::= <key> object
key ::= nonNullValue

Additional constraints:

• key , key-ref attributes and key element are mutually exclusive.
• value, value-ref attributes and value element are mutually exclusive.
• The resulting object of a key must not be a primitive type.

The following example shows the different way an entry can get its key. In this case the value is
always a string.

<map>
<entry key="bar" value="..."/> // 1
<entry key-ref="bar" value="..."/> // 2
<entry value="..."> // 3

<key>
<value type="org.osgi.framework.Version">

2.71
</value>

</key>
</entry>

</map>

The previous example is equivalent to the following Java code:

Map m = new HashMap();
m.put("bar", "...");
m.put(container.getComponentInstance("bar"), "...");
m.put(new Version("2.71"), "...");

The following examples shows the different ways a value of an entry can be defined.

<map>
<entry key="1" value="1"/>
<entry key="2" value-ref="foo"/>
<entry key="3">

<value type="org.osgi.framework.Version">3.14</value>
</entry>

Table 121.17 Entry Features

Attribute Type Map Entry Description

key <<type>> key
: NonNul lMetadata

Specify the key of the entry.

key-ref NCName key
: NonNul lMetadata

Reference to a top-level manager

<key> nonNull-
Value

key
: NonNul lMetadata

Contains an inlined value that is
never null.

value <<type>> value
: Metadata

Specify the value directly, this
will be a string type.

value-ref NCName value
: RefMetadata

A reference to a top-level man-
ager

<. . .> object value
: Metadata

An inlined manager
Page 236 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Object Values
</map>

The previous code is equivalent to the following Java code.

Map m = new HashMap()
m.put("1", "1");
m.put("2", container.getComponentInstance("foo"))
m.put("3", new Version("3.14"));

121.8.8 <props>
The props element specifies a Propert ies object. The structure of a props element is as follows:

 props ::= prop *

Each prop element is an association between two strings. It defines the following attributes:

• key – A string specifying the property key. This attribute is required.
• value – A string specifying the property value.

The following example initializes the same Propert ies object in two s ways.

<props>
<prop key="1">one</prop>
<prop key="2">two</prop>

</props>

<props>
<prop key="1" value="one"/>
<prop key="2" value="two"/>

</props>

This is equivalent to the following Java code:

Properties p = new Properties();
p.setProperty("1", "one");
p.setProperty("2", "two");

121.8.9 Manager as Value
Each manager can be the provider of component instances that act as object values. When a manager
is used in an object value, then that is the manager asked to provide a component instance. The man-
agers are specified in manager on page 212. The simple example is a bean. Any inlined bean can act as
an object value. For example:

<list>
<bean class="com.acme.FooImpl"/>

</list>

Some managers have side effects when they are instantiated. For example, a service manager will
result in a ServiceRegistrat ion object but it will also register a service.

<map>
<entry key="foo">

<service interface="com.acme.Foo">
<bean class="com.acme.FooImpl"/>

</service>
</entry>

</map>
OSGi Service Platform Release 4, Version 4.2 Page 237

Dependency Injection Blueprint Container Specification Version 1.0
121.9 Dependency Injection
A bean has a recipe for constructing a component instance with a constructor or factory and then
providing it with its properties. These properties are then injected with object values, see Object Values
on page 232.

The following types of dependencies can be injected:

• Constructor arguments – The arguments specify the parameters for a constructor.
• Static Factory arguments – The arguments specify the parameters for a static method.
• Instance Factory arguments – The arguments specify the parameters for a method on an object pro-

vided by another manager.
• Properties – The value of the Bean Property specifies the single parameter for the property’s set

method.

In all the previous cases, the Blueprint Container must find an appropriate method or constructor to
inject the dependent objects into the bean. The process of selecting the correct method or constructor
is described in the following section, which assumes a Bean Argument as context, where a Bean Prop-
erty acts as a Bean Argument without an index or type set.

121.9.1 Signature Disambiguation
Constructors, factory methods, and property set methods are described with Metadata. The Blueprint
Container must map these descriptions to an actual method or constructor. In practice, there can be
multiple methods/constructors that could potentially map to the same description. It is therefore
necessary to disambiguate this selection. Both factory methods and constructors have the same con-
cept of signatures. A signature consists of an ordered sequence of zero or more types. For methods,
only publicly accessible methods with the appropriate name are considered. For constructors, all
publicly accessible constructors are considered. The disambiguation process described here is valid
for all constructors and methods because the signature concept applies to both of them.

1 Discard any signatures that have the wrong cardinality
2 Find the list of signatures that have assignable types for each argument in their corresponding

positions. Assignable is defined in Type Compatibility on page 239. If a type was specified for an
argument, then this type must match the name of the corresponding reified type in the signature
exactly.

3 If this result list has one element, then this element is the answer. If this list has more than one
element, then the disambiguation fails.

4 Otherwise, find the list of signatures that have compatible types for each argument in their corre-
sponding positions. Compatibility is defined in Type Compatibility on page 239.

5 If this result list has one element, then this element is the answer. If the list has more than one
element, then the disambiguation fails.

6 If the arguments cannot be reordered (the index of the argument is used and is thus not -1, or there
are less than two arguments) then the disambiguation fails.

7 Find all signatures that match a re-ordered combination of the arguments. Reordering must begin
with the first argument and match this argument against the first assignable types in a signature,
going from position 0 to n . If the type is assignable from the argument, then it is locked in that
position. If the argument has a type , then it must exactly match the name of the selected signature
type. The same is done for the subsequent arguments. If all arguments can find an exclusive
position in the signature this way, than the signature is added to the result.

8 If the result list contains one signature, then this is the resulting signature. If the list has more
than one element, then the disambiguation fails.

9 Repeat step 6, but now look for compatible types instead of assignable types.
10 If the result list contains one signature, then this is the resulting signature.
11 Otherwise, the disambiguation fails
Page 238 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Dependency Injection
An example elucidates how the disambiguation works. Assuming the following definition and
classes:

<bean ...>
<argument>

<bean class="Bar"/>
</argument>
<argument>

<bean class="Foo"/>
</argument>

<bean>

public class Bar extends Foo {}
public class Foo {}

The following bullets provide examples how signatures are matched against the previous definition.

• (Bar ,Foo) – The arguments will be in the given order and the orderd match will succeed. This is
the normal case.

• (Foo,Bar) – This will not match because in the re-ordered match, the Bar argument (which is a Foo
sub-type) is matched against the first argument. The second Foo argument can then no longer find
a compatible type because that slot is taken by the Bar instance.

• (Object ,Object) – This will be called with (aBar ,aFoo) .

Multiple constructors on a class can require disambiguation with the arguments type . In the follow-
ing example, the Mult iple class has two constructors that would both match the constructor argu-
ments because a Str ing object can be converted to both a Fi le object and a URL object.

public class Multiple {
public Multiple(URL a);
public Multiple(File a);

}

An attempt to configure a Multiple object without the type will fail, because it is not possible to
determine the correct constructor. Therefore, the type should be set to disambiguate this:

<bean class=”Multiple”>
 <argument type="java.net.URL" value=”http://www.acme.us”/>
</bean>

121.9.2 Type Compatibility
During injection, it is necessary to decide about type assignability or type compatibility in several
places. If generics are present, a type must be reified in its class, see Generics on page 243. In this speci-
fication, the canonical representation for a type is T<P1. .Pn> , where n is zero for a non-parameterized
type, which is always true in a VM less than Java 5. The Reif iedType class models this kind of type.

If type T or S is primitive, then they are treated as their corresponding wrapper class for deciding
assignability and compatibility. Therefore, a type T<P1. .Pn> (target) is assignable from an object s of
type S (source) when the following is true:

• n == 0, and
• T. isAssignableFrom(S)

T<P1. .Pn>is compatible with an object s of type S when it is assignable or it can be converted using the
Blueprint built-in type converter. The convertability must be verified with the canConvert(s,
T<P1. .Pn>) method. That is, type compatibility is defined as:

• assignable(T<P1. .Pn>,S), and
• cs.canConvert(s,T<P1. .Pn>) returns true

Where cs is the Blueprint built in type converter that also uses the custom type converters.
OSGi Service Platform Release 4, Version 4.2 Page 239

Dependency Injection Blueprint Container Specification Version 1.0
121.9.3 Type Conversion
Strings in Blueprint definitions, object values, and component instances must be made compatible
with the type expected by an injection target (method or constructor argument, or property) before
being injected, which can require type conversion. The Blueprint Container supports a number of
built-in type conversions, and provides an extension mechanism for configuring additional type con-
verters. Custom type converters have priority over built-in converters.

The goal of the type conversion is to convert a source object s with type S to a target type T<P1. .Pn> .
The conversion of the Blueprint built-in type converter must take place in the following order:

1 If T<P1. .Pn> is assignable from S , which implies n=0, then no conversion is necessary, except that
primitives must be converted to their wrapper types.

2 Try all type converters in declaration order with the canConvert(s,T<P1. .Pn>) method, exceptions
are ignored and logged. The first converter that returns true is considered the converter, its result
is obtained by calling convert(s ,T<P1. .Pn>) . Exceptions in this method must be treated as an error.

3 If T is an array, then S must be an array or it must implement Collection , otherwise the con-
version fails. Each member of array s must be type converted to the component type of T using the
generics information if available, see the getComponentType method on Class. This is a
recursive process. The result must be stored in an array of type T .

4 If T implements Collection , then S must be an array or implement Collection , otherwise the con-
version fails. If the platform supports generics, the members of object s must be converted to the
member type of the collection if this is available from the generics information, or to Object oth-
erwise. The Blueprint Container must create a target collection and add all members of s to this
new object in the iteration order of s . The target collection depends on type T :
• If T is one of the interfaces listed in Concrete Types for Interfaces on page 243, then the target col-

lection must be the corresponding concrete class.
• T must represent a public concrete class with an empty publicly accessible constructor, the tar-

get collection is then a new instance of T .
• Otherwise T represents an interface and the conversion must fail.

5 If T implements Map or extends Dict ionary , then S must implement Map or extend Dictionary as
well, otherwise the conversion fails. If the platform supports generics, the members of map s must
be converted to the key and value type of the target map. This is a recursive process. Without
generics, the members are not converted and put as is.
The target map depends on T:
• If T is a public concrete class (not interface) with an empty publicly accessible constructor

then the target map must be a new instance of T .
• If T is one of the Map interfaces or Dictionary listed in Concrete Types for Interfaces on page 243,

then the target map must be the corresponding concrete class.
• Otherwise, the conversion fails.

6 If T is one of the primitive types (byte, char , short, int , long, f loat, double, boolean) then treat T
as the corresponding wrapper class.

7 If T extends class Number and S extends also class Number then convert the source to a number of
type T . If the target type cannot hold the value then the conversion fails. However, precision may
be lost if a double or f loat is converted to one of the integer types.

8 If source type S is not class Str ing , then the conversion fails.
9 The conversion is attempted based on the target type T from the string s . The following target

types are supported:
• boolean or Boolean – Construct the appropriate boolean type while accepting the following

additional values for true and fa lse respectively:
• yes , no
• on , of f

• Character – The string s must have a length of 1, this single character is then converted to a
Character object.

• Locale – The string s is converted to a Locale using the following syntax (no spaces are allowed
between terms).
Page 240 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Dependency Injection
locale ::= <java language-code> (’_’ country)+
country ::= <java country-code>

(’_’ <java variant-code>)+

• Pattern – Create the Pattern object with Pattern.compile(Str ing) .
• Propert ies – Create a new Propert ies object and load the properties from the string. The string

must follow the format described with the Propert ies. load method .
• Enum subclass – Convert the string s to the appropriate member of the given enum with the

Enum.valueOf method. If the string is not one of the enum values, then the conversion must
fail.

• Class – The string s must conform to the syntax in Syntax for Java types on page 210. This type
must be loaded through the Bundle’s loadClass method. The resulting class must match any
generic constraints on T . If this fails, the conversion fails.

10 If target type T has a constructor (Str ing) , then use this constructor to create an instance with the
source string s . This convention caters for many of the built-in Java types such as BigDecimal ,
BigInteger , Fi le , URL , and so on, as well as for custom types.

If none of the above steps has found a proper conversion than the conversion fails. Failing a conver-
sion must end with throwing an Illegal Argument Exception.

121.9.4 Type Converters
A type converter converts a source type to a target type. The source type for a type converter is not
constrained. A type converter must support the following methods:

• canConvert(Object,Reif iedType) – A light weight method that inspects the object and returns
true if it can convert it to the given Reified Type, fa lse otherwise. Converters normally can
convert a type S to a type T<. . .> . However, converters can convert to multiple types and the value
of the source object can influence the returned type. For example, a converter could convert a
string to a type based on its content.

• convert(Object,Reif iedType) – The actual conversion method. This method should not fail if the
canConvert method has returned true .

The Reif iedType class provides access to the target class. In a Java 1.4 environment, the Reif iedType
object will provide a Class object for conversion and no type arguments. In a Java 5 environment, the
Reif iedType object provides access to the reified class as well as the type arguments. Generics and rei-
fied types are described in Generics on page 243.

Type converters are normal managers with some limitations due to the dependency handling. If they
depend on general managers or services then there is a change that cyclic dependencies are created.

Converters must be defined in the type-converters element, see <type-converters> on page 212, to be
registered as a converter. Component instances of managers in this section must implement the
Converter interface. Converters must also only transitively depend on built-in converters. It must be
possible to initialize all converters before any of them are used. Type converters should not use the
type conversion before all type converters are fully configured.

Converters are ordered within one definition resource but there is no resource ordering, so the over-
all ordering is not defined, making it a good practice to concentrate all converters in a single XML def-
inition. The definition ordering is used during type conversion. That is, converters are not ordered by
their specialization, a converter that is earlier can convert a more general type will override a con-
verter that is later in the list but could have converted to a more specific type.

Converters must always use the type arguments of the given Reified Type, even if they are running
on Java 1.4. The default behavior of the Reified Type will automatically work.

The following example demonstrates how a converter can use generics to use an
AtomicReference<T> whenever type T is supported. Such a type could be for a property like:
OSGi Service Platform Release 4, Version 4.2 Page 241

Dependency Injection Blueprint Container Specification Version 1.0
public void setInteger(AtomicReference<Integer> atomic);

The Atomic Converter uses the generic argument to convert a source object to an Integer and then
creates an AtomicReference with this converted object. The definition of the type converter looks
like:

<type-converters>
 <bean class="AtomicConverter">
 <argument ref="blueprintConverter"/>
 </bean>
</type-converters>

The Blueprint converter is injected in the constructor of the AtomicInteger class, in order to allow
the conversion of the generic arguments. The Blueprint built-in type converter must not be used
before all type converters are registered because a needed type converter might not have been regis-
tered yet. This is the reason type converters should not require type conversion in their initialization
because the state of this converter is not well defined at this time.

The conversion class looks like:

public class AtomicConverter {
 Converter bpc;
 public AtomicConverter(Converter bpc) { this.bpc=bpc; }

 public boolean canConvert(Object s,ReifiedType T) {
 return T.getRawClass() == AtomicReference.class
 && bpc.canConvert(s, T.getActualTypeArgument(0));
 }

 public Object convert(Object s, ReifiedType T)
 throws Exception {
 Object obj = bpc.convert(

s,T.getActualTypeArgument(0));

 return new AtomicReference<Object>(obj);
 }
}

Any injection that now targets an AtomicReference<T> value will automatically be converted into an
AtomicReference of the appropriate type because of the example converter. The following defini-
tions test this behavior:

public class Foo<T extends Integer> {
 public Foo(AtomicReference<T> v) {}
}

<bean id="foo" class="Foo"> <argument value="6"/> </bean>

This definition will create an foo object with the Foo(AtomicReference<T>) constructor. The source
type is a string and there is no assignability for an Atomic Reference, so the registered type converters
are consulted. The Atomic Converter recognizes that the target T is an AtomicReference class and
indicates it can convert. The convert method then uses the generic argument information, which is
an Integer object in the example, to convert the string "6" to an Integer object and return the appro-
priate AtomicReference object.

121.9.5 Built-in Converter
A Blueprint Container must contain an environment manager called blueprintConverter . The
related component instance must implement the Converter interface.
Page 242 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Dependency Injection
The built-in Converter provides access to the provided type converters as well as the built in types.
This service provides the type conversion as defined in Type Conversion on page 240.

Injecting a reference to the blueprintConverter environment manager into a bean provides access to
all the type conversions that the Blueprint Container and registered type converters are able to per-
form. However, if this converter is injected in a type converter, then by definition, not all custom type
converters are yet registered with the built-in converter. Type converters should therefore in general
not rely on type conversion during their construction.

121.9.6 Concrete Types for Interfaces
The Blueprint extender can choose an implementation class when it provides an instance during
conversion to an interface as well as when it natively provides an object. The actual implementation
class can make a noticeable difference in disambiguation, type conversion, and general behavior.
Therefore this sections describe the concrete types an implementation must use for specific inter-
faces if the platform allows this.

If possible, the instances of these types must preserve the definition ordering.

121.9.7 Generics
Java 5 introduced the concept of generics. Before Java 5, a type, was simply a class or interface, both rep-
resented by the Class object. Generics augment these classes and interfaces with additional type con-
straints. These type constraints are not available on an instance because an instance always references
a raw Class . For an instance all generic type constraints are erased. That is, a List< Integer> object is
indistinguishable from a List<String> object, which are indistinguishable from a List object. Objects
always refer to a raw Class object, this is the one returned from the getClass method. This Class
object is shared between all instances and can therefore not have the actual type constraints (like
Str ing , Integer in the list examples).

When a class is used the compiler captures the type constraints and associates them with the specific
use and encodes them in a Type object. For example, a field declaration captures the full generic type
information:

List<String> strings;

A field has a getGenericType method that provides access to a Type object, which is a super interface
for all type information in the Java 5 and later runtime. In the previous example, this would be a
Parameterized Type that has a raw class of List and a type argument that is the Str ing class. These con-
straints are reflectively available for:

• A superclass
• Implemented interfaces

Table 121.18 Implementation types for interfaces

Interface/Abstract class Implementation class

Col lect ion ArrayList

L ist ArrayList

Java 5 Queue LinkedList

Set LinkedHashSet

SortedSet TreeSet

Map LinkedHashMap

SortedMap TreeMap

Java 5 ConcurrentMap ConcurrentHashMap

Dict ionary Hashtable
OSGi Service Platform Release 4, Version 4.2 Page 243

Dependency Injection Blueprint Container Specification Version 1.0
• Fields
• For each method or constructor:

• Return type
• Exception types
• Parameter types

Generics influence the type conversion rules because most of the time the Blueprint extender knows
the actual Type object for an injection. Therefore, conversion must take place to a type like T<P1. .Pn> ,
where T is a raw Class object and P1. .Pn form the available type parameters. For a non-parametrized
class and for other VMs than 1.4, n is always zero, that is no type arguments are available. The P argu-
ments are in itself instances of Type . The form T<P1. .Pn> is called the reified form. It can be con-
structed by traversing the Type graph and calculating a class that matches the constraints. For
example < extends List<T>> defines a wild card constraint, that has a List<T> as reified type, where T is
a Type Variable defined elsewhere that can have additional constraints. The resulting type must be
an instance of List<T> . A reified type will use an object implementing List for such an example
because that is the only class that is guaranteed to be compatible. The rules to reify the different Type
interfaces are:

• Class – A Class represents unparameterized raw type and is reified into T<>. For example:

 String string;

• ParameterizedType – A Parameterized Type defines a raw type and 1..n typed parameters. The
raw type of the Parameterized Type is also reified and represents T . The arguments map directly to
the arguments of the reified form. An example of a Parameterized Type is:

 Map<String,Object> map;

• TypeVariable – Represents a Type Variable. A type variable is listed in a generics type declaration,
for example in Map<K,V> , the K and V are the type variables. A type variable is bounded by a
number of types because it is possible to declare a bounded type like: <A extends
Readable&Closeable> . A Type Variable is reified by taking its first bound in reified form, this is
the same as in Java 5 where the first bounds is the erasure type. However, this can fail if multiple
bounds are present. An example of a Type Variable is:

 public <T extends ServiceTracker> void setMap(T st) {}

In this example, the parameter st will have a reified type of ServiceTracker .

• WildcardType – A Wildcard Type constrains a type to a set of lower bounds and a set of upper
bounds, at least in the reflective API. In the Java 5 and later syntax a Wildcard Type can only
specify 0 or one lower and one upper bound, for example <T extends Number> constraints the
Type Variable T to at least extend the Number class. A Wildcard Type is reified into its reified
upper bound when no lower bound is set, and otherwise it is reified into its reified lower bound.
An example of a Wildcard Type is seen in the example of a Type Variable.

• GenericArrayType – A Generic Array Type represents an array. Its component type is reified and
then converted to an array. The Reified Type will have the array class as reified class and the type
arguments reflect the type arguments of the component type. For example:

 public void setLists(List<String>[] lists) {}

This example will have a Reified Type of List[]<Str ing> .
Page 244 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Service Dynamics
This specification is written to allow Java 1.4 implementations and clients, the API therefore has no
generics. Therefore, the Type class in Java 5 and later cannot be used in the API. However, even if it
could use the Type class, using the type classes to create the reified form is non-trivial and error
prone. The API therefore provides a concrete class that gives convenient access to the reified form
without requiring the usage of the Type class.

The Reif iedType class provides access to the reified form of Class , which is itself and has no type
arguments. However, Blueprint extender implementations that recognize Java 5 generics should sub-
class the Reif iedType class and use this in the conversion process. The subclass can calculate the rei-
fied form of any Type subclasses.

121.10 Service Dynamics
The Blueprint Container specification handles the complexities of the dynamic nature of OSGi by
hiding the dynamic behavior of the OSGi service registry, at least temporarily. This dynamic behavior
is caused by service references that select one or more services that can come and go at runtime.

The Blueprint Container must handle the dynamics in the following way:

• Proxied references – Service reference managers must provide a proxy implementing the specified
interfaces, instead of the actual service object it refers to. The proxy must fetch the real service
lazily. For reference managers, when a proxy is used, and no candidate is available, a candidate
must be found within a limited time. If no candidate service is available during this time, a Service
Unavailable Exception must be thrown. The reference-list manager also maintains proxies but
these proxies must throw a Service Unavailable Exception immediately when the proxy is used
and the backing service is no longer available.
When proxied references are used with stateful services, then the application code must register a
reference listener to perform the necessary initialization and cleanup when a new backing service
is bound.

• Conditional Service Registrations – The service manager is responsible for registering a service with
the OSGi service registry. A service manager is statically dependent on the transitive set of man-
agers that it depends on. If these static dependencies contain mandatory service references, then
the manager’s service must not be registered when any of these mandatory service references is
unsatisfied, see Enabled on page 225.

121.10.1 Damping
When an operation is invoked on an unsatisfied proxy from a reference manager (either optional or
mandatory), the invocation must block until either the reference becomes satisfied or a time-out
expires (whichever comes first). During this wait, a WAITING event must be broadcast, see Events on
page 248.

The default t imeout for service invocations is 5 minutes. The optional t imeout of the reference ele-
ment specifies an alternate t imeout (in milliseconds). If no matching service becomes available
within the t imeout , then a Service Unavailable Exception must be thrown. A t imeout of zero means
infinite and a negative t imeout is an error.

For example:

<reference id="logService"
 interface="org.osgi.service.log.LogService"
 timeout="100000" />

<bean id="bar" class="BarImpl">
 <property name="log" ref="logService"/>
</bean>
OSGi Service Platform Release 4, Version 4.2 Page 245

Service Dynamics Blueprint Container Specification Version 1.0
When this Blueprint Container is instantiated, the reference manager provides a proxy for the Log
Service, which gets injected in the log property. If no Log Service is available, then the proxy will
have no backing service. If the bar object attempts to log, it will block and if the t imeout expires the
proxy must throw a Service Unavailable Exception.

If at some later point in time, a Log Service is registered then it becomes satisfied again. If bar now
logs a message, the proxy will get the service object again and forward the method invocation to the
actual Log Service implementation.

The damping ensures that a mandatory service reference that becomes unsatisfied does not cause the
Blueprint Container to be destroyed. Temporary absences of mandatory services are tolerated to
allow for administrative operations and continuous operation of as much of the system as possible.

A reference-list manager does not provide damping. It only removes the service proxy from the col-
lection if its service goes away. Using a collection reference manager will never block, it will just have
no members if its selection is empty. A t imeout attribute is therefore not supported by the reference-
l ist elements. However, the elements are proxied and it is possible that they throw a Service Unavail-
able Exception when used and the backing service has disappeared. The exceptions for a reference-
list proxy will be thrown immediately when the proxy is used.

121.10.2 Iteration
The provided object of a reference-list manager implements the List interface. Depending on the
memberType or the optional generics information, it provides a collection that contains the member
objects, that is, either proxies to the service object, or ServiceReference objects. These collections are
read-only for the receiver, however, their contents can dynamically change due to changes in the
selection. The access to these collections with iterators must give a number of guarantees:

• Safe – All iterators of reference-list managers must be safe to traverse according to the I terator
interface contract, even while the underlying collection is being modified locally or in another
thread. If the hasNext method returns true , the iterator must return a member object on the sub-
sequent next method invocation. If there is no longer a service object available when requested,
then a dummy proxy must be returned that throws a Service Unavailable Exception whenever it
is used.

• Visibility – All the changes made to the collection that affect member objects not yet returned by
the iterator must be visible in the iteration. Proxies for new services must be added at the end of
the List. Proxies already returned can be affected by changes in the service registry after the
iterator has returned them.

After the iterator has returned fa lse for the hasNext method, no more objects can be obtained from it.
A List Iterator must not be supported.

121.10.3 Mandatory Dependencies
A service manager can have mandatory service reference managers in its transitive dependencies.
Such a service manager must ensure that the service object is registered with the OSGi service regis-
try during the runtime phase when all its mandatory service references that it depends on are satis-
fied. This called tracking the dependency. A service manager is enabled when all its mandatory
references in its dependencies are satisfied.

This tracking only works for dependencies declared directly in the definitions; dependencies estab-
lished during runtime by calling the getComponentInstance method are not tracked.

In the following example, service manager S has a transitive dependency on the mandatory reference
manager M , which means the Blueprint Container must ensure that the service object provided by
bean A is registered when reference manager M is satisfied.

<service id="S" ref="A" interface="com.acme.Foo"/>
<bean id="A" class="com.acme.FooImpl">
 <property name="bar" ref="m"/>
Page 246 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Blueprint Container
</bean>
<reference id="M" interface="com.acme.Bar"
 availability="mandatory"/>

However, if the dependency from manager A on manager M is not declared but created through code
that manipulates the Blueprint Container then the dependency is not tracked.

121.11 Blueprint Container
The Blueprint Container has a registry where all top-level managers, as well as environment managers,
are registered by their component id. The Blueprint Container can be injected in application code
with the environment blueprintContainer manager. For example:

<bean class="com.acme.FooImpl">
<property name="container" ref="blueprintContainer"/>

</bean>

The Blueprint Container allows application code to get objects that are provided by the top-level
managers through the getComponentInstance method. However, the Blueprint Container should
not be required to get a component instance; the proper way to use Blueprint is to inject them. This
declarative approach makes the Blueprint Container aware of any dependencies; one of the primary
goals of a dependency injection framework. The Blueprint Container’s introspective features are
commonly used for management and other non-application purposes.

The Blueprint Container is registered as a service during the runtime phase so that other bundles can
use it for these, and other, purposes.

121.11.1 Environment Managers
The Blueprint Container provides a number of environment managers. These managers have defined
names and provide convenient access to information about the environment. Environment manag-
ers cannot be overridden by explicitly defined managers because it is invalid to define a manager
with an existing component id. All component ids starting with blueprint are reserved for this speci-
fication and future incarnations.

There is no XML definition for environment managers but their Metadata must be provided as
ComponentMetadata objects.

The following ids are used for the environment managers:

• blueprintContainer – The Blueprint Container.
• blueprintBundle – A manager that provides the Blueprint bundle’s Bundle object.
• blueprintBundleContext – A manager that provides the Blueprint bundle’s BundleContext

object.
• blueprintConverter – A manager that provides an object implementing the Converter interface.

This represents the built-in conversion facility that the Blueprint Container uses to convert
objects. See Built-in Converter on page 242.

121.11.2 Component Instances
The Blueprint Container provides access to the component instances that the top level managers can
provide, as well as their Metadata. The Blueprint Container has the following methods for requesting
a component instance and to find out what managers are available:

• getComponentInstance(Str ing) – This method will provide a component instance from the com-
ponent id. If the manager has not been activated yet, it must atomically activate and ensure its
explicit and implicit dependencies are activated transitively.

• getComponentIds() – Returns a set of component ids in this Blueprint Container. These ids must
consist of all top level managers (including calculated ids) and environment managers.
OSGi Service Platform Release 4, Version 4.2 Page 247

Events Blueprint Container Specification Version 1.0
121.11.3 Access to Component Metadata
Each of the manager types has specific Component Metadata subtypes associated with it, except
Environment managers that use Component Metadata. The Blueprint Container provides access by
component id to the Component Metadata of the top level managers. However, managers can also be
defined inline, in which case they do not have a component id. Therefore, the Blueprint Container
can also enumerate all the managers that are represented by a Metadata sub-interface.

• getComponentMetadata(Str ing) – Answer the Component Metadata sub-type for the given com-
ponent id. Environment managers will return a ComponentMetadata object, the other managers
each have their own specific Metadata type.

• getMetadata(Class) – Answer a collection with the Metadata of the given type, regardless if it is
defined as/in a top-level or inlined manager. For example, getMetadata(Serv iceMetadata.class)
returns all Service Metadata in the Blueprint container. This includes all top level managers as
well as any inlined managers. For Environment Managers, this method returns a
ComponentMetadata object.

121.11.4 Concurrency
A Blueprint Container must be thread safe. Each method must handle the case when multiple
threads access the underlying registry of managers. Activation of managers must be atomic. That is,
other threads must be blocked until a manager is completely activated.

The Blueprint Container must handle reentrant calls.

121.12 Events
The Blueprint Container must track all Blueprint Listener services and keep these listeners updated
of the progress or failure of all its managed bundles. The Blueprint Listener is kept informed by send-
ing it events synchronously. These events are therefore normally delivered in order but in excep-
tional cases this can be seen out of order for a listener when new events are initiated synchronously
from within a callback. Therefore, Blueprint Listener services should see the event as a notification,
where actual work should be processed on another thread.

Blueprint Events must be sent to each registered Blueprint Listener service. This service has the fol-
lowing method:

• blueprintEvent(BlueprintEvent) – Notify the listener of a new Blueprint Event. These events are
send synchronously with their cause. That is, all listeners must be notified before the Blueprint
Container continues to the next step.

The events must be delivered as BlueprintEvent objects. The event types that they represent, and the
data that these objects carry, is further described in Blueprint Event on page 248.

A Blueprint Listener services must be given the initial state of all managed bundles before normal
processing starts, see Replay on page 249.

Blueprint Listener services that throw Exceptions or do not return in a reasonable time as judged by
the Blueprint extender implementation, should be logged, if possible, and further ignored.

121.12.1 Blueprint Event
The Blueprint Event supports the following event types:

• CREATING – The Blueprint extender has started creating a Blueprint Container for the bundle.
• GRACE_PERIOD – The Blueprint Container enters the grace period. This event can be repeated

multiple times when the list of dependencies changes due to changes in the service registry.
• CREATED – The Blueprint Container is ready. The application is now running.
Page 248 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Events
• WAITING – A service reference is blocking because of unsatisfied mandatory dependencies. This
event can happen multiple times in a row.

• DESTROYING – The Blueprint Container is being destroyed because the Blueprint bundle or Blue-
print extender has stopped.

• DESTROYED – The Blueprint Container is completely destroyed.
• FAILURE – An error occurred during the creation of the Blueprint Container.

The Blueprint Event provides the following methods:

• getBundle() – The Blueprint bundle
• getCause() – Any occurred exception or nul l
• getDependencies() – A list of filters that specify the unsatisfied mandatory references.
• getExtenderBundle() – The Blueprint extender bundle.
• getTimestamp() – The time the event occurred
• getType() – The type of the event.
• isReplay() – Indicates if the event is a replay (true) or if it is a new event (fa lse), see Replay on page

249.

121.12.2 Replay
The Blueprint Extender must remember the last Blueprint Event for each ready bundle that it man-
ages, see Initialization Steps on page 203. During the (synchronous) service registration event of a Blue-
print Listener service, the Blueprint extender must inform the Blueprint Listener service about all its
managed bundles by sending it the last known event for each bundle the Blueprint extender man-
ages. This initial event is called the replay event, and is marked as such.

The replay event must be delivered to the Blueprint Listener service as the first event, before any
other event is delivered, during the registration of the Blueprint Listener service. That is, the
blueprintEvent method must have returned before the first non-replay event can be delivered and no
events must be lost. The replay events must be sent every time a Blueprint Listener service is regis-
tered.

The set of managed bundles is defined by bundles that are active and are managed by the Blueprint
extender, even if their initialization ended in failure.

The BlueprintEvent object for a replay event must return true for the isReplay() method in this situa-
tion, and false in all other situations.

121.12.3 Event Admin Mapping
When the Event Admin service is present, the Blueprint extender must create an Event Admin event
for each defined Blueprint Event. This Event Admin event must be asynchronously given to the
Event Admin service with the postEvent method.

The topic of the Event Admin event is derived from the Blueprint event type with a fixed prefix. All
topics must have the prefix of:

TOPIC_BLUEPRINT_EVENTS

After this prefix, the name of the Blueprint Event type must be used as the suffix. That is, CREATING ,
GRACE_PERIOD , etc. For example, org/osgi/service/blueprint/container/GRACE_PERIOD.

For each Blueprint event the following properties must be included:

• TYPE – The type of the Event, see Blueprint Event on page 248.
• BUNDLE– (Bundle) The Bundle object of the Blueprint bundle
• BUNDLE_ID – (Long) The id of the Blueprint bundle.
• BUNDLE_SYMBOLICNAME – (Str ing) The Bundle Symbolic Name of the Blueprint bundle.
• BUNDLE_VERSION - (Version) The version of the Blueprint bundle.
• EXTENDER_BUNDLE – (Bundle) the Bundle object of the Blueprint extender bundle.
• EXTENDER_BUNDLE_ID – (Long) The id of the Blueprint extender bundle
OSGi Service Platform Release 4, Version 4.2 Page 249

Class Loading Blueprint Container Specification Version 1.0
• EXTENDER_BUNDLE_SYMBOLICNAME – (Str ing) The Bundle Symbolic Name of the Blueprint
extender bundle.

• EXTENDER_BUNDLE_VERSION – (Version) The version of the Blueprint extender bundle
• TIMESTAMP – (Long) The time when the event occurred
• CAUSE – (Throwable) The failure cause, only included for a FAILURE event.
• DEPENDENCIES – (Str ing[]) The filter of an unsatisfied service reference. Can only appear in a

GRACE_PERIOD , WAITING or FAILURE event caused by a time-out.
• EVENT – (BlueprintEvent) The BlueprintEvent object that caused this event.

The property names for Blueprint Listener events may be conveniently referenced using the con-
stants defined in the org.osgi .service.event.EventConstants and EventConstants interfaces.

The Event Admin events do not follow the replay model in use for Blueprint Listener services. That is,
the Event Admin must only be kept informed about events as they occur.

121.13 Class Loading
The module layer in OSGi provides advanced class loading rules that potentially can cause bundles to
live in different class spaces. This means that not all bundles can collaborate because the classes
involved in the collaboration can come from different class loaders, which results in confusing Class
Cast Exceptions on classes with the same name. It is therefore crucial that the Blueprint Container
uses the Bundle Context and the bundle class loader of the Blueprint bundle for all actions that are
made on behalf of the Blueprint bundle. Especially, access to the OSGi service registry must use the
Bundle Context of the Blueprint bundle. Any dynamic class loading must use the Blueprint bundle’s
loadClass method. The normal OSGi mechanics will then ensure class space consistency for resolved
bundles.

121.13.1 Blueprint Extender and Bundle Compatibility
For many Blueprint bundles, there is no class space compatibility issue. These bundles do not use any
Blueprint classes and are therefore by definition compatible with any extender. However, if the Blue-
print bundle uses some of the Blueprint packages, it must import these packages. Blueprint Contain-
ers must verify that they are type compatible with the Blueprint bundle before they attempt to manage
it. See Type Compatibility on page 251.

121.13.2 XML and Class Loading
The Blueprint definition resources contain textual references to classes. These textual references will
be loaded with the class loader of the Blueprint bundle. This implies that all the classes of provided
component instances must be either imported or available from the bundle.

The Blueprint specification has the following attributes and elements that can cause imports:

• class
• value-type
• interface
• interfaces
• type
• key-type

All these attributes and elements are defined with the Tclass and Ttype XML Schema type for the
Blueprint namespace. The Tclass defines simple class names, and Ttype defines types defined in Syn-
tax for Java types on page 210.

121.13.3 Foreign Bundle Context
When using the Blueprint Container in its Blueprint bundle, the types that the managers provide are
guaranteed to be compatible with the caller.
Page 250 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Metadata
When using a Blueprint Container service in another bundle (for example, getting it as a service)
then there is no guarantee of type compatibility or even visibility between the versions of the types of
the returned managers, and the versions of the types visible to the caller. Care must therefore be
taken when casting the return value of the getComponentInstance method to a more specific type.

121.13.4 Converters and Class Loading
A converter is closely coupled to its target class. If the converter comes from another bundle, then the
converter bundle must ensure class space consistency between the converter implementation and
the target class. This can be achieved by specifying the target class in the uses directive.

For example:

Export-Package:
 com.converters.ac;uses:="com.converters.dc"

A bundle that references a type converter defined in the Blueprint bundle does not need to export
that type. When creating a Blueprint Container, the extender bundle uses the class loader of the Blue-
print bundle.

121.13.5 Type Compatibility
Two bundles are type compatible for a given class if they both load the same class object, or if either
bundle cannot load the given class.

To mitigate type incompatibility problems, a Blueprint extender must export the
org.osgi .service.blueprint package. In the uses: directive, it should list any packages of classes that
can be shared between the Blueprint extender and the Blueprint bundle. Blueprint bundles should
import this package.

121.13.6 Visibility and Accessibility
The Blueprint Container must load any classes it needs through the Blueprint bundle’s loadClass
method. If a class can not be loaded, then the initialization fails. Class loading issues are further dis-
cussed in Class Loading on page 250.

The Blueprint Container must respect the accessibility of the class and any of its members. That is,
the Blueprint Container must not use the setAccessibi l i ty method. All classes and reflected members
must therefore be declared publ ic or be implicitly publ ic like the default constructor.

121.14 Metadata
An important aspect of the Blueprint specification is the so called metadata interfaces. These inter-
faces are used in the Blueprint Container to enable programmatic access to the XML definitions. Dur-
ing the parsing phase the Blueprint Container reads the XML and converts it to an object
implementing the appropriate interface.

The XML elements and XML Schema types map to the Metadata interfaces. For example, <bean>
maps to BeanMetadata . However, in several cases, the attributes and/or sub-elements in the
Metadata interfaces are merged when possible. For example, the interface attribute and interfaces
element in the service element are merged in the ServiceMetadata class’ getInterfaces() method.

The interfaces are arranged in a comprehensive hierarchy that reflects their usage and constraints.
This hierarchy is depicted inFigure 121.12 on page 252.

The hierarchy can roughly be divided in two parts. The first part is the sub-interfaces of the
ComponentMetadata interface. These interfaces are defining the configuration data of the top-level
and inlined managers. The manager’s component instance(s) are injected with values during runt-
ime. The configuration of how to create a specific value is also described with Metadata interfaces.
OSGi Service Platform Release 4, Version 4.2 Page 251

Blueprint XML Schema Blueprint Container Specification Version 1.0
For example, a Map object is described with configuration information in the MapMetadata inter-
face. The hierarchy makes it clear that Component Metadata is also a value that can be injected. Keys
in maps or properties can not be nul l . This is the reason the hierarchy is split at the top into a nul l
value branch and a branch that can only generates non-nul l values.

The Target interface describes managers that can be used as the target for the reference listener or the
registration listener, or a ref.

Figure 121.12 Metadata Interfaces Hierarchy

121.15 Blueprint XML Schema
The Blueprint schema included in this specification can be found in digital form at [10] OSGi XML
Schemas. The schema listed here is not annotated, the digital form has annotations.

<xml version="1.0" encoding="UTF-8">
<xsd:schema

xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.osgi.org/xmlns/blueprint/v1.0.0"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
version="1.0.0">

 <xsd:complexType name="Tcomponent" abstract="true">
 <xsd:attribute name="id" type="xsd:ID"/>
 <xsd:attribute name="activation" type="Tactivation"/>
 <xsd:attribute name="depends-on" type="TdependsOn"/>
 </xsd:complexType>
 <xsd:element name="blueprint" type="Tblueprint"/>
 <xsd:complexType name="Tblueprint">
 <xsd:sequence>
 <xsd:element name="description" type="Tdescription" minOccurs="0"/>
 <xsd:element name="type-converters" type="Ttype-converters"

minOccurs="0" maxOccurs="1"/>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="service" type="Tservice"/>
 <xsd:element name="reference-list" type="Treference-list"/>
 <xsd:element name="bean" type="Tbean"/>
 <xsd:element name="reference" type="Treference"/>
 <xsd:any namespace="##other" processContents="strict"/>

Metadata

NonNull
Metadata

Null
Metadata

Component
Metadata

Collection
Metadata

Map
Metadata

Value
Metadata

IdRef
Metadata

Map
Entry

Props
Metadata

Bean
Metadata

Ref
Metadata

Service
Metadata

Service Ref.
Metadata

Ref List
Metadata

Reference
Metadata

Target

Bean
Property

Bean
Argument

Registration
Listener

Reference
Listener
Page 252 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Blueprint XML Schema
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="default-activation" default="eager" type="Tactivation"/>
 <xsd:attribute name="default-timeout" type="Ttimeout" default="300000"/>
 <xsd:attribute name="default-availability" type="Tavailability" default="mandatory"/>
 <xsd:anyAttribute namespace="##other" processContents="strict"/>
 </xsd:complexType>
 <xsd:complexType name="Ttype-converters">
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="bean" type="Tbean"/>
 <xsd:element name="reference" type="Treference"/>
 <xsd:element name="ref" type="Tref"/>
 <xsd:any namespace="##other" processContents="strict"/>
 </xsd:choice>
 </xsd:complexType>
 <xsd:group name="GtargetComponent">
 <xsd:choice>
 <xsd:element name="bean" type="Tinlined-bean"/>
 <xsd:element name="reference" type="Tinlined-reference"/>
 <xsd:element name="ref" type="Tref"/>
 <xsd:any namespace="##other" processContents="strict"/>
 </xsd:choice>
 </xsd:group>
 <xsd:group name="GallComponents">
 <xsd:choice>
 <xsd:element name="service" type="Tinlined-service"/>
 <xsd:element name="reference-list" type="Tinlined-reference-list"/>
 <xsd:group ref="GtargetComponent"/>
 </xsd:choice>
 </xsd:group>
 <xsd:group name="GbeanElements">
 <xsd:sequence>
 <xsd:element name="description" type="Tdescription" minOccurs="0"/>
 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="argument" type="Targument"/>
 <xsd:element name="property" type="Tproperty"/>
 <xsd:any namespace="##other" processContents="strict"/>
 </xsd:choice>
 </xsd:sequence>
 </xsd:group>
 <xsd:complexType name="Tbean">
 <xsd:complexContent>
 <xsd:extension base="Tcomponent">
 <xsd:group ref="GbeanElements"/>
 <xsd:attribute name="class" type="Tclass"/>
 <xsd:attribute name="init-method" type="Tmethod"/>
 <xsd:attribute name="destroy-method" type="Tmethod"/>
 <xsd:attribute name="factory-method" type="Tmethod"/>
 <xsd:attribute name="factory-ref" type="Tidref"/>
 <xsd:attribute name="scope" type="Tscope"/>
 <xsd:anyAttribute namespace="##other" processContents="strict"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="Tinlined-bean">
 <xsd:complexContent>
 <xsd:restriction base="Tbean">
 <xsd:group ref="GbeanElements"/>
 <xsd:attribute name="id" use="prohibited"/>
 <xsd:attribute name="depends-on" type="TdependsOn"/>
 <xsd:attribute name="activation" use="prohibited" fixed="lazy"/>
 <xsd:attribute name="class" type="Tclass"/>
 <xsd:attribute name="init-method" type="Tmethod"/>
 <xsd:attribute name="destroy-method" use="prohibited"/>
 <xsd:attribute name="factory-method" type="Tmethod"/>
 <xsd:attribute name="factory-ref" type="Tidref"/>
 <xsd:attribute name="scope" use="prohibited" fixed="prototype"/>
 <xsd:anyAttribute namespace="##other" processContents="strict"/>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="Targument">
 <xsd:sequence>
 <xsd:element name="description" type="Tdescription" minOccurs="0"/>
 <xsd:group ref="Gvalue" minOccurs="0"/>
OSGi Service Platform Release 4, Version 4.2 Page 253

Blueprint XML Schema Blueprint Container Specification Version 1.0
 </xsd:sequence>
 <xsd:attribute name="index" type="xsd:nonNegativeInteger"/>
 <xsd:attribute name="type" type="Ttype"/>
 <xsd:attribute name="ref" type="Tidref"/>
 <xsd:attribute name="value" type="TstringValue"/>
 </xsd:complexType>
 <xsd:complexType name="Tproperty">
 <xsd:sequence>
 <xsd:element name="description" type="Tdescription" minOccurs="0"/>
 <xsd:group ref="Gvalue" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="Tmethod" use="required"/>
 <xsd:attribute name="ref" type="Tidref"/>
 <xsd:attribute name="value" type="TstringValue"/>
 </xsd:complexType>
 <xsd:complexType name="Tkey">
 <xsd:group ref="GnonNullValue"/>
 </xsd:complexType>
 <xsd:complexType name="Treference">
 <xsd:complexContent>
 <xsd:extension base="TserviceReference">
 <xsd:sequence>
 <xsd:any namespace="##other"

minOccurs="0" maxOccurs="unbounded" processContents="strict"/>
 </xsd:sequence>
 <xsd:attribute name="timeout" type="Ttimeout"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="Tinlined-reference">
 <xsd:complexContent>
 <xsd:restriction base="Treference">
 <xsd:sequence>
 <xsd:group ref="GserviceReferenceElements"/>
 <xsd:any namespace="##other"

minOccurs="0" maxOccurs="unbounded" processContents="strict"/>
 </xsd:sequence>
 <xsd:attribute name="id" use="prohibited"/>
 <xsd:attribute name="depends-on" type="TdependsOn"/>
 <xsd:attribute name="activation" use="prohibited" fixed="lazy"/>
 <xsd:attribute name="interface" type="Tclass"/>
 <xsd:attribute name="filter" type="xsd:normalizedString"/>
 <xsd:attribute name="component-name" type="Tidref"/>
 <xsd:attribute name="availability" type="Tavailability"/>
 <xsd:attribute name="timeout" type="Ttimeout"/>
 <xsd:anyAttribute namespace="##other" processContents="strict"/>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="Treference-list">
 <xsd:complexContent>
 <xsd:extension base="TserviceReference">
 <xsd:sequence>
 <xsd:any namespace="##other"

minOccurs="0" maxOccurs="unbounded" processContents="strict"/>
 </xsd:sequence>
 <xsd:attribute name="member-type" type="Tservice-use" default="service-object"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="Tinlined-reference-list">
 <xsd:complexContent>
 <xsd:restriction base="Treference-list">
 <xsd:sequence>
 <xsd:group ref="GserviceReferenceElements"/>
 <xsd:any namespace="##other"

minOccurs="0" maxOccurs="unbounded" processContents="strict"/>
 </xsd:sequence>
 <xsd:attribute name="id" use="prohibited"/>
 <xsd:attribute name="depends-on" type="TdependsOn"/>
 <xsd:attribute name="activation" use="prohibited" fixed="lazy"/>
 <xsd:attribute name="interface" type="Tclass"/>
 <xsd:attribute name="filter" type="xsd:normalizedString"/>
 <xsd:attribute name="component-name" type="Tidref"/>
 <xsd:attribute name="availability" type="Tavailability"/>
Page 254 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Blueprint XML Schema
 <xsd:attribute name="member-type" type="Tservice-use" default="service-object"/>
 <xsd:anyAttribute namespace="##other" processContents="strict"/>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="TserviceReference">
 <xsd:complexContent>
 <xsd:extension base="Tcomponent">
 <xsd:sequence>
 <xsd:group ref="GserviceReferenceElements"/>
 </xsd:sequence>
 <xsd:attribute name="interface" type="Tclass"/>
 <xsd:attribute name="filter" type="xsd:normalizedString"/>
 <xsd:attribute name="component-name" type="Tidref"/>
 <xsd:attribute name="availability" type="Tavailability"/>
 <xsd:anyAttribute namespace="##other" processContents="strict"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:group name="GserviceReferenceElements">
 <xsd:sequence>
 <xsd:element name="description" type="Tdescription" minOccurs="0"/>
 <xsd:element name="reference-listener"

type="TreferenceListener" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:group>
 <xsd:complexType name="TreferenceListener">
 <xsd:sequence>
 <xsd:group ref="GtargetComponent" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="ref" type="Tidref"/>
 <xsd:attribute name="bind-method" type="Tmethod"/>
 <xsd:attribute name="unbind-method" type="Tmethod"/>
 </xsd:complexType>
 <xsd:simpleType name="Tactivation">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="eager"/>
 <xsd:enumeration value="lazy"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="Tavailability">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="mandatory"/>
 <xsd:enumeration value="optional"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="Tservice">
 <xsd:complexContent>
 <xsd:extension base="Tcomponent">
 <xsd:sequence>
 <xsd:group ref="GserviceElements"/>
 </xsd:sequence>
 <xsd:attribute name="interface" type="Tclass"/>
 <xsd:attribute name="ref" type="Tidref"/>
 <xsd:attribute name="auto-export" type="TautoExportModes" default="disabled"/>
 <xsd:attribute name="ranking" type="xsd:int" default="0"/>
 <xsd:anyAttribute namespace="##other" processContents="strict"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="Tinlined-service">
 <xsd:complexContent>
 <xsd:restriction base="Tservice">
 <xsd:sequence>
 <xsd:group ref="GserviceElements"/>
 </xsd:sequence>
 <xsd:attribute name="id" use="prohibited"/>
 <xsd:attribute name="depends-on" type="TdependsOn"/>
 <xsd:attribute name="activation" use="prohibited" fixed="lazy"/>
 <xsd:attribute name="interface" type="Tclass"/>
 <xsd:attribute name="ref" type="Tidref"/>
 <xsd:attribute name="auto-export" type="TautoExportModes" default="disabled"/>
 <xsd:attribute name="ranking" type="xsd:int" default="0"/>
 <xsd:anyAttribute namespace="##other" processContents="strict"/>
 </xsd:restriction>
OSGi Service Platform Release 4, Version 4.2 Page 255

Blueprint XML Schema Blueprint Container Specification Version 1.0
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:group name="GbaseServiceElements">
 <xsd:sequence>
 <xsd:element name="description" type="Tdescription" minOccurs="0"/>
 <xsd:element name="interfaces" type="Tinterfaces" minOccurs="0"/>
 <xsd:element name="service-properties" type="TserviceProperties" minOccurs="0"/>
 <xsd:element name="registration-listener"

type="TregistrationListener" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:group>
 <xsd:group name="GserviceElements">
 <xsd:sequence>
 <xsd:group ref="GbaseServiceElements"/>
 <xsd:group ref="GtargetComponent" minOccurs="0"/>
 </xsd:sequence>
 </xsd:group>
 <xsd:complexType name="TregistrationListener">
 <xsd:sequence>
 <xsd:group ref="GtargetComponent" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="ref" type="Tidref"/>
 <xsd:attribute name="registration-method" type="Tmethod"/>
 <xsd:attribute name="unregistration-method" type="Tmethod"/>
 </xsd:complexType>
 <xsd:group name="Gvalue">
 <xsd:choice>
 <xsd:group ref="GnonNullValue"/>
 <xsd:element name="null" type="Tnull"/>
 </xsd:choice>
 </xsd:group>
 <xsd:complexType name="Tnull"/>
 <xsd:group name="GnonNullValue">
 <xsd:choice>
 <xsd:group ref="GallComponents"/>
 <xsd:element name="idref" type="Tref"/>
 <xsd:element name="value" type="Tvalue"/>
 <xsd:element name="list" type="Tcollection"/>
 <xsd:element name="set" type="Tcollection"/>
 <xsd:element name="map" type="Tmap"/>
 <xsd:element name="array" type="Tcollection"/>
 <xsd:element name="props" type="Tprops"/>
 </xsd:choice>
 </xsd:group>
 <xsd:complexType name="Tref">
 <xsd:attribute name="component-id" type="Tidref" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="Tvalue" mixed="true">
 <xsd:attribute name="type" type="Ttype"/>
 </xsd:complexType>
 <xsd:complexType name="TtypedCollection">
 <xsd:attribute name="value-type" type="Ttype"/>
 </xsd:complexType>
 <xsd:complexType name="Tcollection">
 <xsd:complexContent>
 <xsd:extension base="TtypedCollection">
 <xsd:group ref="Gvalue" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="Tprops">
 <xsd:sequence>
 <xsd:element name="prop" type="Tprop" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Tprop" mixed="true">
 <xsd:attribute name="key" type="TstringValue" use="required"/>
 <xsd:attribute name="value" type="TstringValue"/>
 </xsd:complexType>
 <xsd:complexType name="Tmap">
 <xsd:complexContent>
 <xsd:extension base="TtypedCollection">
 <xsd:sequence>
 <xsd:element name="entry" type="TmapEntry" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
Page 256 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 Blueprint XML Schema
 <xsd:attribute name="key-type" type="Ttype"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:complexType name="TmapEntry">
 <xsd:sequence>
 <xsd:element name="key" type="Tkey" minOccurs="0"/>
 <xsd:group ref="Gvalue" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="key" type="TstringValue"/>
 <xsd:attribute name="key-ref" type="Tidref"/>
 <xsd:attribute name="value" type="TstringValue"/>
 <xsd:attribute name="value-ref" type="Tidref"/>
 </xsd:complexType>
 <xsd:complexType name="TserviceProperties">
 <xsd:sequence>
 <xsd:element name="entry"

type="TservicePropertyEntry" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:any namespace="##other"

processContents="strict" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="TservicePropertyEntry">
 <xsd:sequence>
 <xsd:group ref="Gvalue" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="key" type="TstringValue" use="required"/>
 <xsd:attribute name="value" type="TstringValue"/>
 </xsd:complexType>
 <xsd:complexType name="Tdescription" mixed="true">
 <xsd:choice minOccurs="0" maxOccurs="unbounded"/>
 </xsd:complexType>
 <xsd:complexType name="Tinterfaces">
 <xsd:choice minOccurs="1" maxOccurs="unbounded">
 <xsd:element name="value" type="TinterfaceValue"/>
 </xsd:choice>
 </xsd:complexType>
 <xsd:simpleType name="TinterfaceValue">
 <xsd:restriction base="Tclass"/>
 </xsd:simpleType>
 <xsd:simpleType name="Tclass">
 <xsd:restriction base="xsd:NCName"/>
 </xsd:simpleType>
 <xsd:simpleType name="Ttype">
 <xsd:restriction base="xsd:token">
 <xsd:pattern value="[\i-[:]][\c-[:]]*(\[\])*"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="Tmethod">
 <xsd:restriction base="xsd:NCName"/>
 </xsd:simpleType>
 <xsd:simpleType name="Tidref">
 <xsd:restriction base="xsd:NCName"/>
 </xsd:simpleType>
 <xsd:simpleType name="TstringValue">
 <xsd:restriction base="xsd:normalizedString"/>
 </xsd:simpleType>
 <xsd:simpleType name="TautoExportModes">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="disabled"/>
 <xsd:enumeration value="interfaces"/>
 <xsd:enumeration value="class-hierarchy"/>
 <xsd:enumeration value="all-classes"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="Ttimeout">
 <xsd:restriction base="xsd:unsignedLong"/>
 </xsd:simpleType>
 <xsd:simpleType name="TdependsOn">
 <xsd:restriction>
 <xsd:simpleType>
 <xsd:list itemType="Tidref"/>
 </xsd:simpleType>
 <xsd:minLength value="1"/>
 </xsd:restriction>
OSGi Service Platform Release 4, Version 4.2 Page 257

Security Blueprint Container Specification Version 1.0
 </xsd:simpleType>
 <xsd:simpleType name="Tscope">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="singleton"/>
 <xsd:enumeration value="prototype"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="Tservice-use">
 <xsd:restriction base="xsd:NMTOKEN">
 <xsd:enumeration value="service-object"/>
 <xsd:enumeration value="service-reference"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

121.16 Security

121.16.1 Blueprint Extender
A Blueprint Extender must use the Bundle Context of the Blueprint bundle. This will ensure that
much of the resources allocated will be used on behalf of the Blueprint bundle. However, most Java 2
permissions will also verify the stack and this will inevitably include the Blueprint extender’s code.
Therefore, the Blueprint extender will require the combined set of permissions needed by all Blue-
print bundles. It is therefore likely that in practical situations the Blueprint extender requires All Per-
mission.

The Blueprint bundle requires permission for all actions that are done by the Blueprint Container on
behalf of this bundle. That is, the Blueprint Container must not give any extra permissions to the
Blueprint bundle because it is being extended.

A Blueprint Container must therefore use a doPriv i l iged block around all actions that execute code
on behalf of the Blueprint bundle. This doPriv i leged block must use an Access Control Context that
represents the permissions of the Blueprint bundle.

For example, if a Blueprint bundle defines the following bean:

<bean class="java.lang.System" factory-method="exit">
<argument value="1"/>

</bean>

Then the Blueprint bundle must have the proper permission to exit the system or the Blueprint bun-
dle must fail when the bean is constructed. At the same time, a Blueprint bundle must not be required
to have any permission needed by the Blueprint Container to performs its tasks.

A Blueprint Container must never use the setAccessibi l i ty method on a returned member. Only pub-
licly accessible members must be used. Using a non-publicly accessible member must initiate failure,
resulting in the destruction of the container.

121.16.2 Blueprint Bundle
A Blueprint Bundle must have all the permissions required by its code. There is one additional per-
mission required for the Blueprint Bundle. The Blueprint extender will register a Blueprint Container
service on behalf of the Blueprint bundle, and the Blueprint bundle must therefore have:

ServicePermission(...BlueprintContainer,[REGISTER])

121.17 org.osgi.service.blueprint.container
Blueprint Container Package Version 1.0.
Page 258 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 org.osgi.service.blueprint.container
Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. For example:

Import-Package: org.osgi.service.blueprint.container; version=”[1.0,2.0)”

This package defines the primary interface to a Blueprint Container, BlueprintContainer . An
instance of this type is available inside a Blueprint Container as an implicitly defined component
with the name “blueprintContainer”.

This package also declares the supporting exception types, listener, and constants for working with a
Blueprint Container.

121.17.1 Summary
• BlueprintContainer - A Blueprint Container represents the managed state of a Blueprint bundle.
• BlueprintEvent - A Blueprint Event.
• BlueprintListener - A BlueprintEvent Listener.
• ComponentDefinitionException - A Blueprint exception indicating that a component definition is in

error.
• Converter - Type converter to convert an object to a target type.
• EventConstants - Event property names used in Event Admin events published by a Blueprint Con-

tainer.
• NoSuchComponentException - A Blueprint exception indicating that a component does not exist in

a Blueprint Container.
• ReifiedType - Provides access to a concrete type and its optional generic type parameters.
• ServiceUnavailableException - A Blueprint exception indicating that a service is unavailable.
BlueprintContainer

121.17.2 public interface BlueprintContainer
A Blueprint Container represents the managed state of a Blueprint bundle. A Blueprint Container
provides access to all managed components. These are the beans, services, and service references.
Only bundles in the ACTIVE state (and also the STARTING state for bundles awaiting lazy activation)
can have an associated Blueprint Container. A given Bundle Context has at most one associated Blue-
print Container. A Blueprint Container can be obtained by injecting the predefined “blueprintCon-
tainer” component id. The Blueprint Container is also registered as a service and its managed
components can be queried.

Concurrency Thread-safe
getComponentIds()

121.17.2.1 public Set<String> getComponentIds()

Returns the set of component ids managed by this Blueprint Container.

Returns An immutable Set of Strings, containing the ids of all of the components managed within this Blue-
print Container.
getComponentInstance(String)

121.17.2.2 public Object getComponentInstance(String id)

id The component id for the requested component instance.

Return the component instance for the specified component id. If the component’s manager has not
yet been activated, calling this operation will atomically activate it. If the component has singleton
scope, the activation will cause the component instance to be created and initialized. If the compo-
nent has prototype scope, then each call to this method will return a new component instance.

Returns A component instance for the component with the specified component id.

Throws NoSuchComponentException – If no component with the specified component id is managed by this
Blueprint Container.
getComponentMetadata(String)

121.17.2.3 public ComponentMetadata getComponentMetadata(String id)

id The component id for the requested Component Metadata.
OSGi Service Platform Release 4, Version 4.2 Page 259

org.osgi.service.blueprint.container Blueprint Container Specification Version 1.0
Return the Component Metadata object for the component with the specified component id.

Returns The Component Metadata object for the component with the specified component id.

Throws NoSuchComponentException – If no component with the specified component id is managed by this
Blueprint Container.
getMetadata(Class)

121.17.2.4 public Collection<T> getMetadata(Class<T> type)

Type Arguments <T extends ComponentMetadata>

<T> Type of Component Metadata.

type The super type or type of the requested Component Metadata objects.

Return all ComponentMetadata objects of the specified Component Metadata type. The supported
Component Metadata types are ComponentMetadata (which returns the Component Metadata for
all defined manager types), BeanMetadata , ServiceReferenceMetadata (which returns both Refer-
enceMetadata and ReferenceListMetadata objects), and ServiceMetadata . The collection will
include all Component Metadata objects of the requested type, including components that are
declared inline.

Returns An immutable collection of Component Metadata objects of the specified type.
BlueprintEvent

121.17.3 public class BlueprintEvent
A Blueprint Event.

BlueprintEvent objects are delivered to all registered BlueprintListener services. Blueprint Events
must be asynchronously delivered in chronological order with respect to each listener.

In addition, after a Blueprint Listener is registered, the Blueprint extender will synchronously send to
this Blueprint Listener the last Blueprint Event for each ready Blueprint bundle managed by this
extender. This replay of Blueprint Events is designed so that the new Blueprint Listener can be
informed of the state of each Blueprint bundle. Blueprint Events sent during this replay will have the
isReplay() flag set. The Blueprint extender must ensure that this replay phase does not interfere with
new Blueprint Events so that the chronological order of all Blueprint Events received by the Blue-
print Listener is preserved. If the last Blueprint Event for a given Blueprint bundle is DESTROYED , the
extender must not send it during this replay phase.

A type code is used to identify the type of event. The following event types are defined:

• CREATING
• CREATED
• DESTROYING
• DESTROYED
• FAILURE
• GRACE_PERIOD
• WAITING

In addition to calling the registered BlueprintListener services, the Blueprint extender must also send
those events to the Event Admin service, if it is available.

See Also BlueprintListener, EventConstants

Concurrency Immutable
CREATED

121.17.3.1 public static final int CREATED = 2

The Blueprint extender has created a Blueprint Container for the bundle. This event is sent after the
Blueprint Container has been registered as a service.
CREATING

121.17.3.2 public static final int CREATING = 1

The Blueprint extender has started creating a Blueprint Container for the bundle.
Page 260 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 org.osgi.service.blueprint.container
DESTROYED

121.17.3.3 public static final int DESTROYED = 4

The Blueprint Container for the bundle has been completely destroyed. This event is sent after the
Blueprint Container has been unregistered as a service.
DESTROYING

121.17.3.4 public static final int DESTROYING = 3

The Blueprint extender has started destroying the Blueprint Container for the bundle.
FAILURE

121.17.3.5 public static final int FAILURE = 5

The Blueprint Container creation for the bundle has failed. If this event is sent after a timeout in the
Grace Period, the getDependencies() method must return an array of missing mandatory dependen-
cies. The event must also contain the cause of the failure as a Throwable through the getCause()
method.
GRACE_PERIOD

121.17.3.6 public static final int GRACE_PERIOD = 6

The Blueprint Container has entered the grace period. The list of missing dependencies must be made
available through the getDependencies() method. During the grace period, a GRACE_PERIOD event
is sent each time the set of unsatisfied dependencies changes.
WAITING

121.17.3.7 public static final int WAITING = 7

The Blueprint Container is waiting on the availability of a service to satisfy an invocation on a refer-
enced service. The missing dependency must be made available through the getDependencies()
method which will return an array containing one filter object as a String.
BlueprintEvent(int,Bundle,Bundle)

121.17.3.8 public BlueprintEvent(int type, Bundle bundle, Bundle extenderBundle)

type The type of this event.

bundle The Blueprint bundle associated with this event. This parameter must not be null .

extenderBundle The Blueprint extender bundle that is generating this event. This parameter must not be null .

Create a simple BlueprintEvent object.
BlueprintEvent(int,Bundle,Bundle,String[])

121.17.3.9 public BlueprintEvent(int type, Bundle bundle, Bundle extenderBundle, String[] dependencies)

type The type of this event.

bundle The Blueprint bundle associated with this event. This parameter must not be null .

extenderBundle The Blueprint extender bundle that is generating this event. This parameter must not be null .

dependencies An array of Str ing filters for each dependency associated with this event. Must be a non-empty array
for event types GRACE_PERIOD and WAITING . It is optional for event type FAILURE . Must be nul l for
other event types.

Create a BlueprintEvent object associated with a set of dependencies.
BlueprintEvent(int,Bundle,Bundle,Throwable)

121.17.3.10 public BlueprintEvent(int type, Bundle bundle, Bundle extenderBundle, Throwable cause)

type The type of this event.

bundle The Blueprint bundle associated with this event. This parameter must not be null .

extenderBundle The Blueprint extender bundle that is generating this event. This parameter must not be null .

cause A Throwable object describing the root cause of the event. May be nul l .

Create a BlueprintEvent object associated with a failure cause.
BlueprintEvent(int,Bundle,Bundle,String[],Throwable)

121.17.3.11 public BlueprintEvent(int type, Bundle bundle, Bundle extenderBundle, String[] dependencies,
OSGi Service Platform Release 4, Version 4.2 Page 261

org.osgi.service.blueprint.container Blueprint Container Specification Version 1.0
Throwable cause)

type The type of this event.

bundle The Blueprint bundle associated with this event. This parameter must not be null .

extenderBundle The Blueprint extender bundle that is generating this event. This parameter must not be nul l .

dependencies An array of Str ing filters for each dependency associated with this event. Must be a non-empty array
for event types GRACE_PERIOD and WAITING . It is optional for event type FAILURE . Must be nul l for
other event types.

cause A Throwable object describing the root cause of this event. May be nul l .

Create a BlueprintEvent object associated with a failure cause and a set of dependencies.
BlueprintEvent(BlueprintEvent,boolean)

121.17.3.12 public BlueprintEvent(BlueprintEvent event, boolean replay)

event The original BlueprintEvent to copy. Must not be null .

replay true if this event should be used as a replay event.

Create a new BlueprintEvent from the specified BlueprintEvent . The t imestamp property will be cop-
ied from the original event and only the replay property will be overridden with the given value.
getBundle()

121.17.3.13 public Bundle getBundle()

Return the Blueprint bundle associated with this event.

Returns The Blueprint bundle associated with this event.
getCause()

121.17.3.14 public Throwable getCause()

Return the cause for this FAILURE event.

Returns The cause of the failure for this event. May be nul l .
getDependencies()

121.17.3.15 public String[] getDependencies()

Return the filters identifying the missing dependencies that caused this event.

Returns The filters identifying the missing dependencies that caused this event if the event type is one of
WAITING , GRACE_PERIOD or FAILURE or null for the other event types.
getExtenderBundle()

121.17.3.16 public Bundle getExtenderBundle()

Return the Blueprint extender bundle that is generating this event.

Returns The Blueprint extender bundle that is generating this event.
getTimestamp()

121.17.3.17 public long getTimestamp()

Return the time at which this event was created.

Returns The time at which this event was created.
getType()

121.17.3.18 public int getType()

Return the type of this event.

The type values are:

• CREATING
• CREATED
• DESTROYING
• DESTROYED
• FAILURE
• GRACE_PERIOD
• WAITING
Page 262 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 org.osgi.service.blueprint.container
Returns The type of this event.
isReplay()

121.17.3.19 public boolean isReplay()

Return whether this event is a replay event.

Returns true if this event is a replay event and fa lse otherwise.
BlueprintListener

121.17.4 public interface BlueprintListener
A BlueprintEvent Listener.

To receive Blueprint Events, a bundle must register a Blueprint Listener service. After a Blueprint Lis-
tener is registered, the Blueprint extender must synchronously send to this Blueprint Listener the last
Blueprint Event for each ready Blueprint bundle managed by this extender. This replay of Blueprint
Events is designed so that the new Blueprint Listener can be informed of the state of each Blueprint
bundle. Blueprint Events sent during this replay will have the isReplay() flag set. The Blueprint
extender must ensure that this replay phase does not interfere with new Blueprint Events so that the
chronological order of all Blueprint Events received by the Blueprint Listener is preserved. If the last
Blueprint Event for a given Blueprint bundle is DESTROYED , the extender must not send it during
this replay phase.

See Also BlueprintEvent

Concurrency Thread-safe
blueprintEvent(BlueprintEvent)

121.17.4.1 public void blueprintEvent(BlueprintEvent event)

event The BlueprintEvent .

Receives notifications of a Blueprint Event. Implementers should quickly process the event and
return.
ComponentDefinitionException

121.17.5 public class ComponentDefinitionException
extends RuntimeException
A Blueprint exception indicating that a component definition is in error. This exception is thrown
when a configuration-related error occurs during creation of a Blueprint Container.
ComponentDefinitionException()

121.17.5.1 public ComponentDefinitionException()

Creates a Component Definition Exception with no message or exception cause.
ComponentDefinitionException(String)

121.17.5.2 public ComponentDefinitionException(String explanation)

explanation The associated message.

Creates a Component Definition Exception with the specified message
ComponentDefinitionException(String,Throwable)

121.17.5.3 public ComponentDefinitionException(String explanation, Throwable cause)

explanation The associated message.

cause The cause of this exception.

Creates a Component Definition Exception with the specified message and exception cause.
ComponentDefinitionException(Throwable)

121.17.5.4 public ComponentDefinitionException(Throwable cause)

cause The cause of this exception.

Creates a Component Definition Exception with the exception cause.
Converter
OSGi Service Platform Release 4, Version 4.2 Page 263

org.osgi.service.blueprint.container Blueprint Container Specification Version 1.0
121.17.6 public interface Converter
Type converter to convert an object to a target type.

Concurrency Thread-safe
canConvert(Object,ReifiedType)

121.17.6.1 public boolean canConvert(Object sourceObject, ReifiedType targetType)

sourceObject The source object s to convert.

targetType The target type T .

Return if this converter is able to convert the specified object to the specified type.

Returns true if the conversion is possible, false otherwise.
convert(Object,ReifiedType)

121.17.6.2 public Object convert(Object sourceObject, ReifiedType targetType) throws Exception

sourceObject The source object s to convert.

targetType The target type T .

Convert the specified object to an instance of the specified type.

Returns An instance with a type that is assignable from targetType’s raw class

Throws Exception – If the conversion cannot succeed. This exception should not be thrown when the can-
Convert method has returned true .
EventConstants

121.17.7 public class EventConstants
Event property names used in Event Admin events published by a Blueprint Container.

Each type of event is sent to a different topic:

org/osgi/service/blueprint/container/<event-type>

where <event-type> can have the values CREATING , CREATED , DESTROYING , DESTROYED , FAILURE ,
GRACE_PERIOD , or WAITING .

Such events have the following properties:

• type
• event
• t imestamp
• bundle
• bundle.symbol icName
• bundle. id
• bundle.version
• extender.bundle.symbol icName
• extender.bundle. id
• extender.bundle.vers ion
• dependencies
• cause

Concurrency Immutable
BUNDLE

121.17.7.1 public static final String BUNDLE = “bundle”

The Blueprint bundle associated with this event. This property is of type Bundle .
BUNDLE_ID

121.17.7.2 public static final String BUNDLE_ID = “bundle.id”

The bundle id of the Blueprint bundle associated with this event. This property is of type Long .
BUNDLE_SYMBOLICNAME
Page 264 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 org.osgi.service.blueprint.container
121.17.7.3 public static final String BUNDLE_SYMBOLICNAME = “bundle.symbolicName”

The bundle symbolic name of the Blueprint bundle associated with this event. This property is of
type Str ing .
BUNDLE_VERSION

121.17.7.4 public static final String BUNDLE_VERSION = “bundle.version”

The bundle version of the Blueprint bundle associated with this event. This property is of type
Version .
CAUSE

121.17.7.5 public static final String CAUSE = “cause”

The cause for a FAILURE event. This property is of type Throwable .
DEPENDENCIES

121.17.7.6 public static final String DEPENDENCIES = “dependencies”

The filters identifying the missing dependencies that caused this event for a FAILURE ,
GRACE_PERIOD , or WAITING event. This property type is an array of Str ing .
EVENT

121.17.7.7 public static final String EVENT = “event”

The BlueprintEvent object that caused this event. This property is of type BlueprintEvent .
EXTENDER_BUNDLE

121.17.7.8 public static final String EXTENDER_BUNDLE = “extender.bundle”

The Blueprint extender bundle that is generating this event. This property is of type Bundle .
EXTENDER_BUNDLE_ID

121.17.7.9 public static final String EXTENDER_BUNDLE_ID = “extender.bundle.id”

The bundle id of the Blueprint extender bundle that is generating this event. This property is of type
Long .
EXTENDER_BUNDLE_SYMBOLICNAME

121.17.7.10 public static final String EXTENDER_BUNDLE_SYMBOLICNAME =
“extender.bundle.symbolicName”

The bundle symbolic of the Blueprint extender bundle that is generating this event. This property is
of type Str ing .
EXTENDER_BUNDLE_VERSION

121.17.7.11 public static final String EXTENDER_BUNDLE_VERSION = “extender.bundle.version”

The bundle version of the Blueprint extender bundle that is generating this event. This property is of
type Version .
TIMESTAMP

121.17.7.12 public static final String TIMESTAMP = “timestamp”

The time the event was created. This property is of type Long .
TOPIC_BLUEPRINT_EVENTS

121.17.7.13 public static final String TOPIC_BLUEPRINT_EVENTS = “org/osgi/service/blueprint/container”

Topic prefix for all events issued by the Blueprint Container
TOPIC_CREATED

121.17.7.14 public static final String TOPIC_CREATED = “org/osgi/service/blueprint/container/CREATED”

Topic for Blueprint Container CREATED events
TOPIC_CREATING

121.17.7.15 public static final String TOPIC_CREATING = “org/osgi/service/blueprint/container/CREATING”

Topic for Blueprint Container CREATING events
TOPIC_DESTROYED

121.17.7.16 public static final String TOPIC_DESTROYED = “org/osgi/service/blueprint/container/
DESTROYED”

Topic for Blueprint Container DESTROYED events
TOPIC_DESTROYING
OSGi Service Platform Release 4, Version 4.2 Page 265

org.osgi.service.blueprint.container Blueprint Container Specification Version 1.0
121.17.7.17 public static final String TOPIC_DESTROYING = “org/osgi/service/blueprint/container/
DESTROYING”

Topic for Blueprint Container DESTROYING events
TOPIC_FAILURE

121.17.7.18 public static final String TOPIC_FAILURE = “org/osgi/service/blueprint/container/FAILURE”

Topic for Blueprint Container FAILURE events
TOPIC_GRACE_PERIOD

121.17.7.19 public static final String TOPIC_GRACE_PERIOD = “org/osgi/service/blueprint/container/
GRACE_PERIOD”

Topic for Blueprint Container GRACE_PERIOD events
TOPIC_WAITING

121.17.7.20 public static final String TOPIC_WAITING = “org/osgi/service/blueprint/container/WAITING”

Topic for Blueprint Container WAITING events
TYPE

121.17.7.21 public static final String TYPE = “type”

The type of the event that has been issued. This property is of type Integer and can take one of the val-
ues defined in BlueprintEvent .
NoSuchComponentException

121.17.8 public class NoSuchComponentException
extends RuntimeException
A Blueprint exception indicating that a component does not exist in a Blueprint Container. This
exception is thrown when an attempt is made to create a component instance or lookup Component
Metadata using a component id that does not exist in the Blueprint Container.
NoSuchComponentException(String,String)

121.17.8.1 public NoSuchComponentException(String msg, String id)

msg The associated message.

id The id of the non-existent component.

Create a No Such Component Exception for a non-existent component.
NoSuchComponentException(String)

121.17.8.2 public NoSuchComponentException(String id)

id The id of the non-existent component.

Create a No Such Component Exception for a non-existent component.
getComponentId()

121.17.8.3 public String getComponentId()

Returns the id of the non-existent component.

Returns The id of the non-existent component.
ReifiedType

121.17.9 public class ReifiedType
Provides access to a concrete type and its optional generic type parameters.

Java 5 and later support generic types. These types consist of a raw class with type parameters. This
class models such a Type class but ensures that the type is reified. Reification means that the Type
graph associated with a Java 5 Type instance is traversed until the type becomes a concrete class. This
class is available with the getRawClass() method. The optional type parameters are recursively repre-
sented as Reified Types.

In Java 1.4, a class has by definition no type parameters. This class implementation provides the Rei-
fied Type for Java 1.4 by making the raw class the Java 1.4 class and using a Reified Type based on the
Object class for any requested type parameter.
Page 266 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 org.osgi.service.blueprint.container
A Blueprint extender implementations can subclass this class and provide access to the generic type
parameter graph for conversion. Such a subclass must reify the different Java 5 Type instances into
the reified form. That is, a form where the raw Class is available with its optional type parameters as
Reified Types.

Concurrency Immutable
ReifiedType(Class)

121.17.9.1 public ReifiedType(Class<?> clazz)

clazz The raw class of the Reified Type.

Create a Reified Type for a raw Java class without any generic type parameters. Subclasses can pro-
vide the optional generic type parameter information. Without subclassing, this instance has no type
parameters.
getActualTypeArgument(int)

121.17.9.2 public ReifiedType getActualTypeArgument(int i)

i The zero-based index of the requested type parameter.

Return a type parameter for this type. The type parameter refers to a parameter in a generic type dec-
laration given by the zero-based index i . For example, in the following example:

Map<String, ? extends Metadata>

type parameter 0 is Str ing , and type parameter 1 is Metadata .

This implementation returns a Reified Type that has Object as class. Any object is assignable to
Object and therefore no conversion is then necessary. This is compatible with versions of Java lan-
guage prior to Java 5. This method should be overridden by a subclass that provides access to the
generic type parameter information for Java 5 and later.

Returns The Reif iedType for the generic type parameter at the specified index.
getRawClass()

121.17.9.3 public Class<?> getRawClass()

Return the raw class represented by this type. The raw class represents the concrete class that is asso-
ciated with a type declaration. This class could have been deduced from the generics type parameter
graph of the declaration. For example, in the following example:

Map<String, ? extends Metadata>

The raw class is the Map class.

Returns The raw class represented by this type.
size()

121.17.9.4 public int size()

Return the number of type parameters for this type.

This implementation returns 0 . This method should be overridden by a subclass that provides access
to the generic type parameter information for Java 5 and later.

Returns The number of type parameters for this type.
ServiceUnavailableException

121.17.10 public class ServiceUnavailableException
extends ServiceException
A Blueprint exception indicating that a service is unavailable. This exception is thrown when an
invocation is made on a service reference and a backing service is not available.
ServiceUnavailableException(String,String)

121.17.10.1 public ServiceUnavailableException(String message, String filter)

message The associated message.

filter The filter used for the service lookup.

Creates a Service Unavailable Exception with the specified message.
OSGi Service Platform Release 4, Version 4.2 Page 267

org.osgi.service.blueprint.reflect Blueprint Container Specification Version 1.0
ServiceUnavailableException(String,String,Throwable)

121.17.10.2 public ServiceUnavailableException(String message, String filter, Throwable cause)

message The associated message.

filter The filter used for the service lookup.

cause The cause of this exception.

Creates a Service Unavailable Exception with the specified message and exception cause.
getFilter()

121.17.10.3 public String getFilter()

Returns the filter expression that a service would have needed to satisfy in order for the invocation to
proceed.

Returns The failing filter.

121.18 org.osgi.service.blueprint.reflect
Blueprint Reflection Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. For example:

Import-Package: org.osgi.service.blueprint.reflect; version=”[1.0,2.0)”

This package provides a reflection-based view of the configuration information for a Blueprint Con-
tainer.

121.18.1 Summary
• BeanArgument - Metadata for a factory method or constructor argument of a bean.
• BeanMetadata - Metadata for a Bean component.
• BeanProperty - Metadata for a property to be injected into a bean.
• CollectionMetadata - Metadata for a collection based value.
• ComponentMetadata - Metadata for managed components.
• IdRefMetadata - Metadata for the verified id of another component managed by the Blueprint Con-

tainer.
• MapEntry - Metadata for a map entry.
• MapMetadata - Metadata for a Map based value.
• Metadata - Top level Metadata type.
• NonNullMetadata - Metadata for a value that cannot nul l .
• NullMetadata - Metadata for a value specified to be nul l via the <null> element.
• PropsMetadata - Metadata for a java.ut i l .Propert ies based value.
• ReferenceListener - Metadata for a reference listener interested in the reference bind and unbind

events for a service reference.
• ReferenceListMetadata - Metadata for a list of service references.
• ReferenceMetadata - Metadata for a reference that will bind to a single matching service in the

service registry.
• RefMetadata - Metadata for a reference to another component managed by the Blueprint Con-

tainer.
• RegistrationListener - Metadata for a registration listener interested in service registration and

unregistration events for a service.
• ServiceMetadata - Metadata for a service to be registered by the Blueprint Container when enabled.
• ServiceReferenceMetadata - Metadata for a reference to an OSGi service.
• Target - A common interface for managed components that can be used as a direct target for

method calls.
Page 268 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 org.osgi.service.blueprint.reflect
• ValueMetadata - Metadata for a simple Str ing value that will be type-converted if necessary before
injecting.

BeanArgument

121.18.2 public interface BeanArgument
Metadata for a factory method or constructor argument of a bean. The arguments of a bean are
obtained from BeanMetadata.getArguments() . This is specified by the argument elements of a bean.

Concurrency Thread-safe
getIndex()

121.18.2.1 public int getIndex()

Return the zero-based index into the parameter list of the factory method or constructor to be
invoked for this argument. This is determined by specifying the index attribute for the bean. If not
explicitly set, this will return -1 and the initial ordering is defined by its position in the BeanMeta-
data.getArguments() list. This is specified by the index attribute.

Returns The zero-based index of the parameter, or -1 if no index is specified.
getValue()

121.18.2.2 public Metadata getValue()

Return the Metadata for the argument value. This is specified by the value attribute.

Returns The Metadata for the argument value.
getValueType()

121.18.2.3 public String getValueType()

Return the name of the value type to match the argument and convert the value into when invoking
the constructor or factory method. This is specified by the type attribute.

Returns The name of the value type to convert the value into, or null if no type is specified.
BeanMetadata

121.18.3 public interface BeanMetadata
extends Target , ComponentMetadata
Metadata for a Bean component.

This is specified by the bean element.

Concurrency Thread-safe
SCOPE_PROTOTYPE

121.18.3.1 public static final String SCOPE_PROTOTYPE = “prototype”

The bean has prototype scope.

See Also getScope()
SCOPE_SINGLETON

121.18.3.2 public static final String SCOPE_SINGLETON = “singleton”

The bean has singleton scope.

See Also getScope()
getArguments()

121.18.3.3 public List<BeanArgument> getArguments()

Return the arguments for the factory method or constructor of the bean. This is specified by the child
argument elements.

Returns An immutable List of BeanArgument objects for the factory method or constructor of the bean. The
List is empty if no arguments are specified for the bean.
getClassName()

121.18.3.4 public String getClassName()

Return the name of the class specified for the bean. This is specified by the class attribute of the bean
definition.

Returns The name of the class specified for the bean. If no class is specified in the bean definition, because the
a factory component is used instead, then this method will return nul l .
getDestroyMethod()
OSGi Service Platform Release 4, Version 4.2 Page 269

org.osgi.service.blueprint.reflect Blueprint Container Specification Version 1.0
121.18.3.5 public String getDestroyMethod()

Return the name of the destroy method specified for the bean. This is specified by the destroy-
method attribute of the bean definition.

Returns The name of the destroy method specified for the bean, or nul l if no destroy method is specified.
getFactoryComponent()

121.18.3.6 public Target getFactoryComponent()

Return the Metadata for the factory component on which to invoke the factory method for the bean.
This is specified by the factory-ref attribute of the bean.

When a factory method and factory component have been specified for the bean, this method returns
the factory component on which to invoke the factory method for the bean. When no factory compo-
nent has been specified this method will return null . When a factory method has been specified for
the bean but a factory component has not been specified, the factory method must be invoked as a
static method on the bean’s class.

Returns The Metadata for the factory component on which to invoke the factory method for the bean or nul l
if no factory component is specified.
getFactoryMethod()

121.18.3.7 public String getFactoryMethod()

Return the name of the factory method for the bean. This is specified by the factory-method
attribute of the bean.

Returns The name of the factory method of the bean or null if no factory method is specified for the bean.
getInitMethod()

121.18.3.8 public String getInitMethod()

Return the name of the init method specified for the bean. This is specified by the in it-method
attribute of the bean definition.

Returns The name of the init method specified for the bean, or nul l if no init method is specified.
getProperties()

121.18.3.9 public List<BeanProperty> getProperties()

Return the properties for the bean. This is specified by the child property elements.

Returns An immutable List of BeanProperty objects, with one entry for each property to be injected in the
bean. The List is empty if no property injection is specified for the bean.
getScope()

121.18.3.10 public String getScope()

Return the scope for the bean.

Returns The scope for the bean. Returns nul l if the scope has not been explicitly specified in the bean defini-
tion.

See Also SCOPE_SINGLETON, SCOPE_PROTOTYPE
BeanProperty

121.18.4 public interface BeanProperty
Metadata for a property to be injected into a bean. The properties of a bean are obtained from Bean-
Metadata.getPropert ies() . This is specified by the property elements of a bean. Properties are
defined according to the Java Beans conventions.

Concurrency Thread-safe
getName()

121.18.4.1 public String getName()

Return the name of the property to be injected. The name follows Java Beans conventions. This is
specified by the name attribute.

Returns The name of the property to be injected.
getValue()
Page 270 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 org.osgi.service.blueprint.reflect
121.18.4.2 public Metadata getValue()

Return the Metadata for the value to be injected into a bean. This is specified by the value attribute or
in inlined text.

Returns The Metadata for the value to be injected into a bean.
CollectionMetadata

121.18.5 public interface CollectionMetadata
extends NonNullMetadata
Metadata for a collection based value. Values of the collection are defined by Metadata objects. This
Collection Metadata can constrain the values of the collection to a specific type.

Concurrency Thread-safe
getCollectionClass()

121.18.5.1 public Class<?> getCollectionClass()

Return the type of the collection. The possible types are: array (Object[]), Set , and List . This informa-
tion is specified in the element name.

Returns The type of the collection. Object[] is returned to indicate an array.
getValues()

121.18.5.2 public List<Metadata> getValues()

Return Metadata for the values of the collection.

Returns A List of Metadata for the values of the collection.
getValueType()

121.18.5.3 public String getValueType()

Return the type specified for the values of the collection. The value-type attribute specified this
information.

Returns The type specified for the values of the collection.
ComponentMetadata

121.18.6 public interface ComponentMetadata
extends NonNullMetadata
Metadata for managed components. This is the base type for BeanMetadata , ServiceMetadata and
ServiceReferenceMetadata .

Concurrency Thread-safe
ACTIVATION_EAGER

121.18.6.1 public static final int ACTIVATION_EAGER = 1

The component’s manager must eagerly activate the component.

See Also getActivation()
ACTIVATION_LAZY

121.18.6.2 public static final int ACTIVATION_LAZY = 2

The component’s manager must lazily activate the component.

See Also getActivation()
getActivation()

121.18.6.3 public int getActivation()

Return the activation strategy for the component. This is specified by the act ivat ion attribute of a
component definition. If this is not set, then the default-act ivation in the blueprint element is used.
If that is also not set, then the activation strategy is ACTIVATION_EAGER .

Returns The activation strategy for the component.

See Also ACTIVATION_EAGER, ACTIVATION_LAZY
getDependsOn()

121.18.6.4 public List<String> getDependsOn()

Return the ids of any components listed in a depends-on attribute for the component.
OSGi Service Platform Release 4, Version 4.2 Page 271

org.osgi.service.blueprint.reflect Blueprint Container Specification Version 1.0
Returns An immutable List of component ids that are explicitly declared as a dependency, or an empty List if
none.
getId()

121.18.6.5 public String getId()

Return the id of the component.

Returns The id of the component. The component id can be nul l if this is an anonymously defined and/or in-
lined component.
IdRefMetadata

121.18.7 public interface IdRefMetadata
extends NonNullMetadata
Metadata for the verified id of another component managed by the Blueprint Container. The id itself
will be injected, not the component to which the id refers. No implicit dependency is created.

Concurrency Thread-safe
getComponentId()

121.18.7.1 public String getComponentId()

Return the id of the referenced component. This is specified by the component-id attribute of a com-
ponent.

Returns The id of the referenced component.
MapEntry

121.18.8 public interface MapEntry
Metadata for a map entry. This type is used by MapMetadata , PropsMetadata and ServiceMetadata .

Concurrency Thread-safe
getKey()

121.18.8.1 public NonNullMetadata getKey()

Return the Metadata for the key of the map entry. This is specified by the key attribute or element.

Returns The Metadata for the key of the map entry. This must not be nul l .
getValue()

121.18.8.2 public Metadata getValue()

Return the Metadata for the value of the map entry. This is specified by the value attribute or ele-
ment.

Returns The Metadata for the value of the map entry. This must not be nul l .
MapMetadata

121.18.9 public interface MapMetadata
extends NonNullMetadata
Metadata for a Map based value.

This is specified by the map element.

Concurrency Thread-safe
getEntries()

121.18.9.1 public List<MapEntry> getEntries()

Return the entries for the map.

Returns An immutable List of MapEntry objects for each entry in the map. The List is empty if no entries are
specified for the map.
getKeyType()

121.18.9.2 public String getKeyType()

Return the name of the type of the map keys. This is specified by the key-type attribute of the map.

Returns The name of the type of the map keys, or nul l if none is specified.
getValueType()
Page 272 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 org.osgi.service.blueprint.reflect
121.18.9.3 public String getValueType()

Return the name of the type of the map values. This is specified by the value-type attribute of the
map.

Returns The name of the type of the map values, or nul l if none is specified.
Metadata

121.18.10 public interface Metadata
Top level Metadata type. All Metdata types extends this base type.

Concurrency Thread-safe
NonNullMetadata

121.18.11 public interface NonNullMetadata
extends Metadata
Metadata for a value that cannot nul l . All Metadata subtypes extend this type except for NullMeta-
data .

This Metadata type is used for keys in Maps because they cannot be nul l .

Concurrency Thread-safe
NullMetadata

121.18.12 public interface NullMetadata
extends Metadata
Metadata for a value specified to be nul l via the <null> element.

Concurrency Thread-safe
NULL

121.18.12.1 public static final NullMetadata NULL

Singleton instance of NullMetadata .
PropsMetadata

121.18.13 public interface PropsMetadata
extends NonNullMetadata
Metadata for a java.ut i l .Propert ies based value.

The MapEntry objects of properties are defined with keys and values of type Str ing .

This is specified by the props element.

Concurrency Thread-safe
getEntries()

121.18.13.1 public List<MapEntry> getEntries()

Return the entries for the properties.

Returns An immutable List of MapEntry objects for each entry in the properties. The List is empty if no entries
are specified for the properties.
ReferenceListener

121.18.14 public interface ReferenceListener
Metadata for a reference listener interested in the reference bind and unbind events for a service ref-
erence.

Concurrency Thread-safe
getBindMethod()

121.18.14.1 public String getBindMethod()

Return the name of the bind method. The bind method will be invoked when a matching service is
bound to the reference. This is specified by the bind-method attribute of the reference listener.

Returns The name of the bind method.
getListenerComponent()
OSGi Service Platform Release 4, Version 4.2 Page 273

org.osgi.service.blueprint.reflect Blueprint Container Specification Version 1.0
121.18.14.2 public Target getListenerComponent()

Return the Metadata for the component that will receive bind and unbind events. This is specified by
the ref attribute or via an inlined component.

Returns The Metadata for the component that will receive bind and unbind events.
getUnbindMethod()

121.18.14.3 public String getUnbindMethod()

Return the name of the unbind method. The unbind method will be invoked when a matching ser-
vice is unbound from the reference. This is specified by the unbind-method attribute of the reference
listener.

Returns The name of the unbind method.
ReferenceListMetadata

121.18.15 public interface ReferenceListMetadata
extends ServiceReferenceMetadata
Metadata for a list of service references.

This is specified by the reference-l ist element.

Concurrency Thread-safe
USE_SERVICE_OBJECT

121.18.15.1 public static final int USE_SERVICE_OBJECT = 1

Reference list values must be proxies to the actual service objects.

See Also getMemberType()
USE_SERVICE_REFERENCE

121.18.15.2 public static final int USE_SERVICE_REFERENCE = 2

Reference list values must be ServiceReference objects.

See Also getMemberType()
getMemberType()

121.18.15.3 public int getMemberType()

Return whether the List will contain service object proxies or ServiceReference objects. This is spec-
ified by the member-type attribute of the reference list.

Returns Whether the List will contain service object proxies or ServiceReference objects.

See Also USE_SERVICE_OBJECT, USE_SERVICE_REFERENCE
ReferenceMetadata

121.18.16 public interface ReferenceMetadata
extends Target , ServiceReferenceMetadata
Metadata for a reference that will bind to a single matching service in the service registry.

This is specified by the reference element.

Concurrency Thread-safe
getTimeout()

121.18.16.1 public long getTimeout()

Return the timeout for service invocations when a backing service is is unavailable. This is specified
by the t imeout attribute of the reference.

Returns The timeout, in milliseconds, for service invocations when a backing service is is unavailable.
RefMetadata

121.18.17 public interface RefMetadata
extends Target , NonNullMetadata
Metadata for a reference to another component managed by the Blueprint Container.

Concurrency Thread-safe
getComponentId()
Page 274 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 org.osgi.service.blueprint.reflect
121.18.17.1 public String getComponentId()

Return the id of the referenced component. This is specified by the component- id attribute of a com-
ponent.

Returns The id of the referenced component.
RegistrationListener

121.18.18 public interface RegistrationListener
Metadata for a registration listener interested in service registration and unregistration events for a
service.

The registration listener is called with the initial state of the service when the registration listener is
actuated.

Concurrency Thread-safe
getListenerComponent()

121.18.18.1 public Target getListenerComponent()

Return the Metadata for the component that will receive registration and unregistration events. This
is specified by the ref attribute or via an inlined component.

Returns The Metadata for the component that will receive registration and unregistration events.
getRegistrationMethod()

121.18.18.2 public String getRegistrationMethod()

Return the name of the registration method. The registration method will be invoked when the asso-
ciated service is registered with the service registry. This is specified by the registrat ion-method
attribute of the registration listener.

Returns The name of the registration method.
getUnregistrationMethod()

121.18.18.3 public String getUnregistrationMethod()

Return the name of the unregistration method. The unregistration method will be invoked when the
associated service is unregistered from the service registry. This is specified by the unregistration-
method attribute of the registration listener.

Returns The name of the unregistration method.
ServiceMetadata

121.18.19 public interface ServiceMetadata
extends ComponentMetadata
Metadata for a service to be registered by the Blueprint Container when enabled.

This is specified by the service element.

Concurrency Thread-safe
AUTO_EXPORT_ALL_CLASSES

121.18.19.1 public static final int AUTO_EXPORT_ALL_CLASSES = 4

Advertise all Java classes and interfaces in the component instance type as service interfaces.

See Also getAutoExport()
AUTO_EXPORT_CLASS_HIERARCHY

121.18.19.2 public static final int AUTO_EXPORT_CLASS_HIERARCHY = 3

Advertise all Java classes in the hierarchy of the component instance type as service interfaces.

See Also getAutoExport()
AUTO_EXPORT_DISABLED

121.18.19.3 public static final int AUTO_EXPORT_DISABLED = 1

Do not auto-detect types for advertised service interfaces

See Also getAutoExport()
AUTO_EXPORT_INTERFACES

121.18.19.4 public static final int AUTO_EXPORT_INTERFACES = 2

Advertise all Java interfaces implemented by the component instance type as service interfaces.
OSGi Service Platform Release 4, Version 4.2 Page 275

org.osgi.service.blueprint.reflect Blueprint Container Specification Version 1.0
See Also getAutoExport()
getAutoExport()

121.18.19.5 public int getAutoExport()

Return the auto-export mode for the service. This is specified by the auto-export attribute of the ser-
vice.

Returns The auto-export mode for the service.

See Also AUTO_EXPORT_DISABLED, AUTO_EXPORT_INTERFACES, AUTO_EXPORT_CLASS_HIERARCHY,
AUTO_EXPORT_ALL_CLASSES
getInterfaces()

121.18.19.6 public List<String> getInterfaces()

Return the type names of the interfaces that the service should be advertised as supporting. This is
specified in the interface attribute or child interfaces element of the service.

Returns An immutable List of Str ing for the type names of the interfaces that the service should be advertised
as supporting. The List is empty if using auto-export or no interface names are specified for the serv-
ice.
getRanking()

121.18.19.7 public int getRanking()

Return the ranking value to use when advertising the service. If the ranking value is zero, the service
must be registered without a service.ranking service property. This is specified by the ranking
attribute of the service.

Returns The ranking value to use when advertising the service.
getRegistrationListeners()

121.18.19.8 public Collection<RegistrationListener> getRegistrationListeners()

Return the registration listeners to be notified when the service is registered and unregistered with
the framework. This is specified by the registrat ion-l istener elements of the service.

Returns An immutable Collection of Registrat ionListener objects to be notified when the service is registered
and unregistered with the framework. The Collection is empty if no registration listeners are specified
for the service.
getServiceComponent()

121.18.19.9 public Target getServiceComponent()

Return the Metadata for the component to be exported as a service. This is specified inline or via the
ref attribute of the service.

Returns The Metadata for the component to be exported as a service.
getServiceProperties()

121.18.19.10 public List<MapEntry> getServiceProperties()

Return the user declared properties to be advertised with the service. This is specified by the service-
propert ies element of the service.

Returns An immutable List of MapEntry objects for the user declared properties to be advertised with the serv-
ice. The List is empty if no service properties are specified for the service.
ServiceReferenceMetadata

121.18.20 public interface ServiceReferenceMetadata
extends ComponentMetadata
Metadata for a reference to an OSGi service. This is the base type for ReferenceListMetadata and Ref-
erenceMetadata .

Concurrency Thread-safe
AVAILABILITY_MANDATORY

121.18.20.1 public static final int AVAILABILITY_MANDATORY = 1

A matching service is required at all times.

See Also getAvailability()
AVAILABILITY_OPTIONAL
Page 276 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 org.osgi.service.blueprint.reflect
121.18.20.2 public static final int AVAILABILITY_OPTIONAL = 2

A matching service is not required to be present.

See Also getAvailability()
getAvailability()

121.18.20.3 public int getAvailability()

Return whether or not a matching service is required at all times. This is specified in the avai labi l ity
attribute of the service reference.

Returns Whether or not a matching service is required at all times.

See Also AVAILABILITY_MANDATORY, AVAILABILITY_OPTIONAL
getComponentName()

121.18.20.4 public String getComponentName()

Return the value of the component-name attribute of the service reference. This specifies the id of a
component that is registered in the service registry. This will create an automatic filter, appended
with the filter if set, to select this component based on its automatic id attribute.

Returns The value of the component-name attribute of the service reference or null if the attribute is not spec-
ified.
getFilter()

121.18.20.5 public String getFilter()

Return the filter expression that a matching service must match. This is specified by the f i l ter
attribute of the service reference.

Returns The filter expression that a matching service must match or nul l if a filter is not specified.
getInterface()

121.18.20.6 public String getInterface()

Return the name of the interface type that a matching service must support. This is specified in the
interface attribute of the service reference.

Returns The name of the interface type that a matching service must support or nul l when no interface name
is specified.
getReferenceListeners()

121.18.20.7 public Collection<ReferenceListener> getReferenceListeners()

Return the reference listeners to receive bind and unbind events. This is specified by the reference-
l istener elements of the service reference.

Returns An immutable Collection of ReferenceListener objects to receive bind and unbind events. The Collec-
tion is empty if no reference listeners are specified for the service reference.
Target

121.18.21 public interface Target
extends NonNullMetadata
A common interface for managed components that can be used as a direct target for method calls.
These are bean , reference , and ref , where the ref must refer to a bean or reference component.

See Also BeanMetadata, ReferenceMetadata, RefMetadata

Concurrency Thread-safe
ValueMetadata

121.18.22 public interface ValueMetadata
extends NonNullMetadata
Metadata for a simple Str ing value that will be type-converted if necessary before injecting.

Concurrency Thread-safe
getStringValue()

121.18.22.1 public String getStringValue()

Return the unconverted string representation of the value. This is specified by the value attribute or
text part of the value element.
OSGi Service Platform Release 4, Version 4.2 Page 277

Changes Blueprint Container Specification Version 1.0
Returns The unconverted string representation of the value.
getType()

121.18.22.2 public String getType()

Return the name of the type to which the value should be converted. This is specified by the type
attribute.

Returns The name of the type to which the value should be converted or nul l if no type is specified.

121.19 Changes
• API augmented with generic signatures
• Clarified that step 3 in Destroy the Blueprint Container on page 208 is the lowest ranking.
• Table 121.14, “Value Features,” on page 234, the type element row, indicated that it returns the

collection's value type if available. This is wrong, null must be returned when not set and the col-
lection's value type must be obtained through the appropriate Collection Metadata. The table is
updated.

• A service manager can get component instances for its service properties while its explicit depen-
dencies are not yet activated. A service manager must therefore activate its explicit dependencies
at the beginning of the service registration phase. This does not have to cause the activation of the
service manager itself. This was unclear in the previous version. This change caused a signifcant a
rather large number of sections to change.

• Removed mandatory detection of cycles caused by user code.
• The previous specification mandated the creation of service properties for each registration.

However, service properties can use arbitrary component instances and this noticeable side
effects. Therefore, the specification now mandates the creation of the service properties to happen
once before the first registration. See Service Properties on page 222.

• Clarified the relationship between Component Metadata and Environment managers. Envi-
ronment are represented a Component Metadata, all other managers use a sub-class of the
ComponentMetadata interface.

121.20 References
[1] OSGi Core Specifications

http://www.osgi.org/Specifications/HomePage

[2] Spring Framework
http://www.springsource.org/

[3] Spring Dynamic Modules
http://www.springsource.org/osgi

[4] Guice
http://code.google.com/p/google-guice/

[5] Picocontainer
http://www.picocontainer.org/

[6] Java Beans Specification
http://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html

[7] XML Namespaces
http://www.w3.org/TR/REC-xml-names

[8] Properties format
http://tiny.cc/uu2Js

[9] XML Schema
http://www.w3.org/XML/Schema
Page 278 OSGi Service Platform Release 4, Version 4.2

Blueprint Container Specification Version 1.0 References
[10] OSGi XML Schemas
http://www.osgi.org/Release4/XMLSchemas
OSGi Service Platform Release 4, Version 4.2 Page 279

References Blueprint Container Specification Version 1.0
Page 280 OSGi Service Platform Release 4, Version 4.2

Remote Service Admin Service Specification Version 1.0 Introduction
122 Remote Service Admin Service
Specification
Version 1.0

122.1 Introduction
The OSGi core framework specifies a model where bundles can use distributed services, see [1] OSGi
Core Specifications. The basic model for OSGi remote services is that a bundle can register services that
are exported to a communication Endpoint and use services that are imported from a communication
Endpoint. However, the remote services chapter does not explain what services are exported and/or
imported; it leaves such decisions to the distribution provider. The distribution provider therefore
performs multiple roles and cannot be leveraged by other bundles in scenarios that the distribution
provider had not foreseen.

The primary role of the distribution provider is purely mechanical; it creates Endpoints and registers
service proxies and enables their communication. The second role is about the policies around the
desired topology. The third role is discovery. To establish a specific topology it is necessary to find out
about exported services in other frameworks.

This specification therefore defines an API for the distribution provider and discovery of services in a
network. A management agent can use this API to provide an actual distribution policy. This man-
agement agent, called the Topology Manager, can control the export and import of services delegat-
ing the intrinsic knowledge of the low level details of communication protocols, proxying of services,
and discovering services in the network to services defined in this specification.

This specification is an extension of the Remote Service chapter, see chapter13 on page 7. Though
some aspects are repeated in this specification, a full understanding of the Remote Services chapter is
required for full understanding of this document.

122.1.1 Essentials
• Simple – Make it as simple as possible for a Topology Manager to implement distribution policies.
• Dynamic – Discover available Endpoints dynamically, for example through a discovery protocol

like [4] Service Location Protocol (SLP) or [5] JGroups.
• Inform – Provide a mechanism to inform other parties about created and removed Endpoints.
• Configuration – Allow bundles to describe Endpoints as a bundle resource that are provided to the

Distribution Provider.
• Selective – Not all parties are interested in all services. Endpoint registries must be able to express

the scope of services they are interested in.
• Multiple – Allow the collaboration of multiple Topology Managers, Remote Service Admin ser-

vices, and Discovery Providers.
• Dynamic – Allow the dynamic discovery of Endpoints.
• Federated –Enable a global view of all available services in a distributed environment.

122.1.2 Entities
• Remote Service Admin – An implementation of this specification provides the mechanisms to

import and export services through a set of configuration types. The Remote Service Admin
service is a passive Distribution Provider, not taking any action to export or import itself.

• Topology Manager – The Topology Manager provides the policy for importing and exporting ser-
vices through the Remote Service Admin service.
OSGi Service Platform Release 4, Version 4.2 Page 281

Introduction Remote Service Admin Service Specification Version 1.0
• Endpoint – An Endpoint is a communications access mechanism to a service in another
framework, a (web) service, another process, or a queue or topic destination, etc., requiring some
protocol for communications.

• Endpoint Description – A properties based description of an Endpoint. Endpoint Descriptions can be
exchanged between different frameworks to create connections to each other’s services. Endpoint
Descriptions can also be created to Endpoints not originating in an OSGi Framework.

• Endpoint Description Provider – A party that can inform others about the existence of Endpoints.
• Endpoint Listener – A listener service that receives updates of Endpoints that match its scope. This

Endpoint Listener is used symmetrically to implement a federated registry. The Topology
Manager can use it to notify interested parties about created and removed Endpoints, as well as to
receive notifications from other parties, potentially remote, about their available Endpoints.

• Remote Service Admin Listener – A listener service that is informed of all the primitive actions that
the Remote Service Admin performs like importing and exporting as well as errors.

• Endpoint Configuration Extender – A bundle that can detect configuration data describing an End-
point Description in a bundle resource, using the extender pattern.

• Discovery – An Endpoint Listener that detects the Endpoint Descriptions through some discovery
protocol.

• Cluster – A group of computing systems that closely work together, usually in a fast network.

Figure 122.1 Remote Service Admin Entities

122.1.3 Synopsis
Topology Managers are responsible for the distribution policies of a service platform. To implement
a policy, a Topology Manager must be aware of the environment, for this reason, it can register:

• Service listeners to detect services that can be exported according to the Remote Services chapter.
• Listener and Find Hook services to detect bundles that have an interest in specific services that

potentially could be imported.
• A Remote Service Admin Listener service to detect the activity of other Topology Managers.
• An Endpoint Listener service to detect Endpoints that are made available through discovery pro-

tocols, configuration data, or other means.

Using this information, the manager implements a topology using the Remote Service Admin ser-
vice. A Topology Manager that wants to export a service can create an Export Registration by providing
one or more Remote Service Admin services a Service Reference plus a Map with the required proper-
ties. A Remote Service Admin service then creates a number of Endpoints based on the available con-

Topology
Manager Impl

configured

XML

Remote Service
Admin Impl

Client impl Discovery Impl

Endpoint
Listener

Endpoint
ListenerRemote

Remote
Service
Admin Service

Imported &
Exported
Services

Endpoint
to an
Endpoint

1

0..n

0..n

discovered by

network/

discovers/discovers

announces

Listener Admin

announces

1

cluster
Page 282 OSGi Service Platform Release 4, Version 4.2

Remote Service Admin Service Specification Version 1.0 Actors
figuration types and returns a collection of ExportRegistrat ion objects. A collection is returned
because a single service can be exported to multiple Endpoints depending on the available configura-
tion type properties.

Each Export Registration is specific for the caller and represents an existing or newly created End-
point. The Export Registration associates the exported Service Reference with an Endpoint Description.
If there are problems with the export operation, the Remote Service Admin service reports these on
the Export Registration objects. That is, not all the returned Export Registrations have to be valid.

An Endpoint Description is a property based description of an Endpoint. Some of these properties are
defined in this specification, other properties are defined by configuration types. These configuration
types must follow the same rules as the configuration types defined in the Remote Services chapter.
Remote Service Admin services that support the configuration types in the Endpoint Description can
import a service from that Endpoint solely based on that Endpoint Description.

In similar vein, the Topology Manager can import a service from a remote system by creating an
Import Registration out of an Endpoint Description. The Remote Service Admin service then regis-
ters a service that is a proxy for the remote Endpoint and returns an ImportRegistrat ion object. If
there are problems with the import, the Remote Service Admin service that cannot be detected early,
then the Remote Service Admin service reports these on the returned ImportRegistrat ion object.

For introspection, the Remote Service Admin can list its current set of Import and Export References
so that a Topology Manager can get the current state. The Remote Service Admin service also informs
all Topology Managers and observers of the creation, deletion, and errors of Import and Export Regis-
trations through the Remote Service Admin Listener service. Interested parties like the Topology
Manager can register such a service and will be called back with the initial state as well as any subse-
quent changes.

An important aspect of the Topology Manager is the distributed nature of the scenarios it plays an
orchestrating role in. A Topology Manager needs to be aware of Endpoints in the network, not just
the ones provided by Remote Service Admin services in its local framework. The Endpoint Listener
service is specified for this purpose. This service is provided for both directions, symmetrically. That
is, it is used by the Topology Manager to inform any observers about the existence of Endpoints that
are locally available, as well as for parties that represent a discovery mechanism. For example End-
points available on other systems, Endpoint Descriptions embedded in resources in bundles, or End-
point Descriptions that are available in some other form.

Endpoint Listener services are not always interested in the complete set of available Endpoints
because this set can potentially be very large. For example, if a remote registry like [6] UDDI is used
then the number of Endpoints can run into the thousands or more. An Endpoint Listener service can
therefore scope the set of Endpoints with an OSGi LDAP style filter. Parties that can provide informa-
tion about Endpoints must only notify Endpoint Listener services when the Endpoint Description
falls within the scope of the Endpoint Listener service. Parties that use some discovery mechanism
can use the scope to trigger directed searches across the network.

122.2 Actors
The OSGi Remote Services specification is about the distribution of services. The core specification
does not outline the details of how the distribution provider knows the desired topology, this policy
aspect is left up to implementations. In many situations, this is a desirable architecture because it
provides freedom of implementation to the distribution provider. However, such an architecture
does not enable a separation of the mechanisms and policy. Therefore, this Remote Service Admin
specification provides an architecture that enables a separate bundle from the distribution provider
to define the topology. It splits the responsibility of the Remote Service specification in a number of
roles. These roles can all have different implementations but they can collaborate through the ser-
vices defined in this specification. These roles are:
OSGi Service Platform Release 4, Version 4.2 Page 283

Topology Managers Remote Service Admin Service Specification Version 1.0
• Topology Managers – Topology Managers are the (anonymous) players that implement the policies
for distributing services; they are closely aligned with the concept of an OSGi management agent. It
is expected that Topology Managers will be developed for scenarios like import/export all appli-
cable services, configuration based imports- and exports, and scenarios like fail-over, load-bal-
ancing, as well as standards like domain managers for the [7] Service Component Architecture (SCA).

• Remote Service Admin – The Remote Service Admin service provides the basic mechanism to
import and export services. This service is policy free; it will not distribute services without
explicitly being told so. A service platform can host multiple Remote Service Admin services that,
for example, support different configuration types.

• Discovery – To implement a distribution policy, a Topology Manager must be aware of what End-
points are available. This specification provides an abstraction of a federated Endpoint registry. This
registry can be used to both publish as well as consume Endpoints from many different sources.
The federated registry is defined for local services but is intended to be used with standard and
proprietary service discovery protocols. The federated registry is implemented with the Endpoint
Listener service.

These roles are depicted in Figure 122.2 on page 284.

Figure 122.2 Roles

122.3 Topology Managers
Distributed processing has become mainstream because of the massive scale required for Internet
applications. Only with distributed architectures is it possible to scale systems to Internet size with
hundreds of millions of users. To allow a system to scale, servers are grouped in clusters where they
can work in unison or geographically dispersed in even larger configurations. The distribution of the
work-load is crucial for the amount of scalability provided by an architecture and often has domain
specific dispatching techniques. For example, the hash of a user id can be used to select the correct
profile database server. In this fast moving world it is very unlikely that a single architecture or distri-
bution policy would be sufficient to satisfy many users. It is therefore that this specification separates
the how from the what. The complex mechanics of importing and exporting services are managed by
a Remote Service Admin service (the how) while the different policies are implemented by Topology
Managers (the what). This separation of concerns enables the development of Topology Managers
that can run on many different systems, providing high user functionality. For example, a Topology
Manager could implement a fail-over policy where some strategic services are redirected when their
connections fail. Other Topology Managers could use a discovery protocol like SLP to find out about
other systems in a cluster and automatically configure the cluster.

The key value of this architecture is demonstrated by the example of an SCA domain controller. An
SCA domain controller receives a description of a domain (a set of systems and modules) and must
ensure that the proper connections are made between the participating SCA modules. By splitting
the roles, an SCA domain manager can be developed that can run on any compatible Remote Service
Admin service implementation.

Topology
Manager

Remote Service
Admin

Discovery

instructs

informs
and learns from
Page 284 OSGi Service Platform Release 4, Version 4.2

Remote Service Admin Service Specification Version 1.0 Topology Managers
122.3.1 Multiple Topology Managers
There is no restriction on the number of Topology Managers, nor is there a restriction on the number
of Remote Service Admin service implementations. It is up to the deployer of the service platform to
select the appropriate set of these service implementations. It is the responsibility of the Topology
Managers to listen to the Remote Service Admin Listener and track Endpoints created and deleted by
other Topology Managers and act appropriately.

122.3.2 Example Use Cases
122.3.2.1 Promiscuous Policy

A cluster is a set of machines that are connected in a network. The simplest policy for a Topology
Manager is to share exported services in such a cluster. Such a policy is very easy to implement with
the Remote Services Admin service. In the most basic form, this Topology Manager would use some
multicast protocol to communicate with its peers. These peers would exchange EndpointDescript ion
objects of exported services. Each Topology Manager would then import any exported service.

This scenario can be improved by separating the promiscuous policy from the discovery. Instead of
embedding the multicast protocol, a Topology manager could use the Endpoint Listener service. This
service allows the discovery of remote services. At the same time, the Topology Manager could tell all
other Endpoint Listener services about the services it has created, allowing them to be used by others
in the network.

Splitting the Topology Manager and discovery in two bundles allows different implementations of
the discovery bundle, for example, to use different protocols.

122.3.2.2 Fail Over

A more elaborate scheme is a fail-over policy. In such a policy a service can be replaced by a service
from another machine. There are many ways to implement such a policy, an simple example strategy
is provided here for illustration.

A Fail-Over Topology Manager is given a list of stateless services that require fail-over, for example
through the Configuration Admin Service Specification on page 45. The Fail-Over Manager tracks the sys-
tems in the its cluster that provide such services. This tracking can use an embedded protocol or it
can be based on the Endpoint Listener service model.

In the Fail-Over policy, the fail-over manager only imports a single service and then tracks the error
status of the imported service through the Remote Service Admin Listener service. If it detects the
service is becoming unavailable, it closes the corresponding Import Registration and imports a ser-
vice from an alternative system instead. In Figure 122.3 Fail Over Scenario in a cluster, there are 4 sys-
tems in a cluster. The topology/fail-over manager ensures that there is always one of the services in
system A , B , or C available in D .

Figure 122.3 Fail Over Scenario in a cluster

System

A

Topology
Manager

B C

D

OSGi Service Platform Release 4, Version 4.2 Page 285

Endpoint Description Remote Service Admin Service Specification Version 1.0
There are many possible variations on this scenario. The managers could exchange load information,
allowing the service switch to be influenced by the load of the target systems. The important aspect is
that the Topology Manager can ignore the complex details of discovery protocols, communication
protocols, and service proxying and instead focus on the topology.

122.4 Endpoint Description
An Endpoint is a point of rendezvous of distribution providers. It is created by an exporting distribu-
tion provider or some other party, and is used by importing distribution providers to create a connec-
tion. An Endpoint Description describes an Endpoint in such a way that an importing Remote Service
Admin service can create this connection if it recognizes the configuration type that is used for that
Endpoint. The configuration type consists of a name and a set of properties associated with that
name.

The core concept of the Endpoint Description is a Map of properties. The structure of this map is the
same as service properties, and the defined properties are closely aligned with the properties of an
imported service. An EndpointDescr ipt ion object must only consist of the data types that are sup-
ported for service properties. This makes the property map serializable with many different mecha-
nisms. The EndpointDescr iption class provides a convenient way to access the properties in a type
safe way.

An Endpoint Description has case insensitive keys, just like the Service Reference’s properties.

The properties map must contain all the prescribed service properties of the exported service after
intents have been processed, as if the service was registered as an imported service. That is, the map
must not contain any properties that start with service.exported.* but it must contain the
service. imported .* variation of these properties. The Endpoint Description must reflect the
imported service properties because this simplifies the use of filters from the service hooks. Filters
applied to the Endpoint Description can then be the same filters as applied by a bundle to select an
imported service from the service registry.

The properties that can be used in an Endpoint Description are listed in Table 122.1 on page 286. The
RemoteConstants class contains the constants for all of these property names.

Table 122.1 Endpoint Properties

Endpoint Property Name Type Description

service.exported.* Must not be set
service. imported * Must always be set to some value. See

SERVICE_IMPORTED on page 314.
objectClass String[] Must be set to the value of

service.exported. interfaces , of the exported ser-
vice after expanding any wildcards. Though this
property will be overridden by the framework for
the corresponding service registration, it must be
set in the Endpoint Description to simplify the fil-
ter matching. These interface names are available
with the getInterfaces() method.

service. intents String+ Intents implemented by the exporting distribu-
tion provider and, if applicable, the exported ser-
vice itself. Any qualified intents must have their
expanded form present. These expanded intents
are available with the getIntents() method. See
SERVICE_INTENTS on page 314.
Page 286 OSGi Service Platform Release 4, Version 4.2

Remote Service Admin Service Specification Version 1.0 Endpoint Description
The EndpointDescr iption class has a number of constructors that make it convenient to instantiate it
for different purposes:

endpoint.serv ice. id Long The service id of the exported service. Can be
absent or 0 if the corresponding Endpoint is not for
an OSGi service. The remote service id is available
as getServiceId() . See also
ENDPOINT_SERVICE_ID on page 313.

endpoint . framework.uuid String A universally unique id identifying the instance of
the exporting framework. Can be absent if the cor-
responding Endpoint is not for an OSGi service.
See Framework UUID on page 289. The remote
framework UUID is available with the getFrame-
workUUID() method. See also
ENDPOINT_FRAMEWORK_UUID on page 312.

endpoint . id String The Id for this Endpoint, can never be nul l . This
information is available with the getId() . See End-
point Id on page 288 and also ENDPOINT_ID on
page 312.

endpoint.package.
 vers ion.<package-name>

Str ing The Java package version for the embedded <pack-
age>. For example, the property
endpoint.package.version.com.acme=1.3
describes the version for the com.acme package.
The version for a package can be obtained with the
getPackageVersion(Str ing) .
The version does not have to be set, if not set, the
value must be assumed to be 0.

serv ice. imported.configs Str ing+ The configuration types that can be used to imple-
ment the corresponding Endpoint. This property
maps to the corresponding property in the Remote
Services chapter. This property can be obtained
with the getConfigurat ionTypes() method.
The Export Registration has all the possible config-
uration types, where the Import Registration
reports the configuration type actually used.
SERVICE_IMPORTED_CONFIGS on page 314.

<config>.* * Where <config> is one of the configuration type
names listed in service. imported.configs . The
content of these properties must be valid for creat-
ing a connection to the Endpoint in another frame-
work. That is, any locally readable URLs from
bundles must be converted in such a form that
they can be read by the importing framework.
How this is done is configuration type specific.

* * All remaining public service properties must be
present (that is, not starting with dot (’ . ’ \u002e)).
If the values can not be marshalled by the Distribu-
tion Provider then they must be ignored.

Table 122.1 Endpoint Properties

Endpoint Property Name Type Description
OSGi Service Platform Release 4, Version 4.2 Page 287

Endpoint Description Remote Service Admin Service Specification Version 1.0
• EndpointDescript ion(Map) – Instantiate the Endpoint Description from a Map object.
• EndpointDescript ion(ServiceReference,Map) – Instantiate an Endpoint Description based on a

Service Reference and a Map. The base properties of this Endpoint Description are the Service Ref-
erence properties but the properties in the given Map must override any of their case variants in
the Service Reference. This allows the construction of an Endpoint Description from an
exportable service while still allowing overrides of specific properties by the Topology Manager.

The Endpoint Description must use the allowed properties as given in Table 122.1 on page 286. The
Endpoint Description must automatically skip any service.exported.* properties.

The Endpoint Description provides the following methods to access the properties in a more conve-
nient way:

• getInterfaces() – Answers a list of Java interface names. These are the interfaces under which the
services must be registered. These interface names can also be found at the objectClass property.
A service can only be imported when there is at least one Java interface name available.

• getConfigurat ionTypes() – Answer the configuration types that are used for exporting this End-
point. The configuration types are associated with a number of properties.

• getId() – Returns an Id uniquely identifying an Endpoint. The syntax of this Id should be defined
in the specification for the associated configuration type. Two Endpoint Descriptions with the
same Id describe the same Endpoint.

• getFrameworkUUID() – Get a Universally Unique Identifier (UUID) for the framework instance
that has created the Endpoint, Framework UUID on page 289.

• getServiceId() – Get the service id for the framework instance that has created the Endpoint. If
there is no service on the remote side the value must be 0.

• getPackageVersion(String) – Get the version for the given package.
• getIntents() – Get the list of specified intents.
• getPropert ies() – Get all the properties.

Two Endpoint Descriptions are deemed equal when their Endpoint Id is equal. The Endpoint Id is a
mandatory property of an Endpoint Description, it is further described at Endpoint Id on page 288.
The hash code is therefore also based on the Endpoint Id.

122.4.1 Validity
A valid Endpoint Description must at least satisfy the following assertions:

• It must have a non-nul l Id that uniquely identifies the Endpoint
• It must at least have one Java interface name
• It must at least have one configuration type set
• Any version for the packages must have a valid version syntax.

122.4.2 Mutability
An EndpointDescr ipt ion object is immutable and with all final fields. It can be freely used between
different threads.

122.4.3 Endpoint Id
An Endpoint Id is an opaque unique identifier for an Endpoint. There is no syntax defined for this
string except that whitespace at the beginning and ending must be ignored. The actual syntax for this
Endpoint Id must be defined by the actual configuration type.

Two Endpoint Descriptions are deemed identical when their Endpoint Id is equal. The Endpoint Ids
must be compared as string compares with leading and trailing spaces removed. The Endpoint
Description class must use the Str ing class’ hash Code from the Endpoint Id as its own hashCode .
Page 288 OSGi Service Platform Release 4, Version 4.2

Remote Service Admin Service Specification Version 1.0 Endpoint Description
122.4.4 Framework UUID
Each framework registers its services with a service id that is only unique for that specific framework.
The OSGi framework is not a singleton, making it possible that a single VM process holds multiple
OSGi frameworks. Therefore, to identify an OSGi service uniquely it is necessary to identify the
framework that has registered it. This identifier is a Universally Unique IDentifier (UUID) that is set for
each framework. This UUID is contained in the following framework property:

org.osgi.framework.uuid

If an Endpoint Description has no associated OSGi service then the UUID of that Endpoint Descrip-
tion must not be set and its service id must be 0.

The deployer should ensure that this property is set properly before the framework is started as either
a framework property in the launch, a system property, or the use of a framework implementation
that automatically sets this property. If no such property is set, a Remote Service Admin must:

1 Start a synchronized block on the class literal Str ing object org.osgi . framework.uuid . This can be
done like:

synchronized("org.osgi . f ramework.uuid") { ... }

2 Check if the framework UUID is set in the Framework properties, if so, use this one and exit the
synchronized block.

3 Create a new UUID.
4 Set the UUID property in the System properties.
5 leave the synchronized block.

These steps ensure that the same UUID is consistently used for all exported services. The Remote Ser-
vice Admin implementation must have the proper permissions to read and write the System proper-
ties if the UUID is not set.

The framework UUID must be constructed according to the java.uti l .UUID class in the form returned
from its toStr ing method.

A local Endpoint Description will have its framework UUID set to the local framework. This makes it
straightforward to filter for Endpoint Descriptions that are describing local Endpoints or that
describe remote Endpoints. For example, a manager can take the filter from a listener and ensure that
it is only getting remote Endpoint Descriptions:

(&
 (!
 (service.remote.framework.uuid
 =72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72)
)
 (objectClass=org.osgi.service.log.LogService)
)

Where 72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72 is the UUID of the local framework. A discovery
bundle can register the following filter in its scope to receive all locally generated Endpoints:

(service.remote.framework.uuid
 =72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72)
OSGi Service Platform Release 4, Version 4.2 Page 289

Remote Service Admin Remote Service Admin Service Specification Version 1.0
122.4.5 Resource Containment
Configuration types can, and usually do, use URLs to point to local resources describing in detail the
Endpoint parameters for specific protocols. However, the purpose of an Endpoint Description is to
describe an Endpoint to a remote system. This implies that there is some marshalling process that
will transfer the Endpoint Description to another process. This other process is unlikely to be able to
access resource URLs. Local bundle resource URLs are only usable in the framework that originates
them but even HTTP based URLs can easily run into problems due to firewalls or lack of routing.

Therefore, the properties for a configuration type should be stored in such a way that the receiving
process can access them. One way to achieve this is to contain the configuration properties com-
pletely in the Endpoint Description and ensure they only use the basic data types that the remote ser-
vices chapter in the core requires every Distribution Provider to support.

The Endpoint Description XML format provides an xml element that is specifically added to make it
easy to embed XML based configuration documents. The XML Schema is defined in Endpoint Descrip-
tion Extender Format on page 300.

122.5 Remote Service Admin
The Remote Service Admin service abstracts the core functionality of a distribution provider: export-
ing a service to an Endpoint and importing services from an Endpoint. However, in contrast with the
distribution provider of the Remote Services specification, the Remote Service Admin service must
be told explicitly what services to import and export.

122.5.1 Exporting
An exportable service can be exported with the exportService(ServiceReference,Map)method. This
method creates a number of Endpoints by inspecting the merged properties from the Service Refer-
ence and the given Map. Any property in the Map overrides the Service Reference properties, regard-
less of case. That is, if the map contains a key then it will override any case variant of this key in the
Service Reference. However, if the Map contains the objectClass or service. id property key in any
case variant, then these properties must not override the Service Reference’s value.

The Remote Service Admin service must interpret the merged properties according to the Remote
Services chapter. This means that it must look at the following properties (as defined in chapter 13 on
page 7):

• service.exported.configs – (Str ing+) A list of configuration types that should be used to export
this service. Each configuration type represents the configuration parameters for an Endpoint. A
Remote Service Admin service should create an Endpoint for each configuration type that it sup-
ports and ignore the types it does not recognize. If this property is not set, then the Remote Service
Admin implementation must choose a convenient configuration type that then must be reported
on the Endpoint Description with the serv ice. imported.configs associated with the returned
Export Registration.

• service.exported. intents – (Str ing+) A list of intents that the Remote Service Admin service must
implement to distribute the given service.

• service.exported. intents.extra – (Str ing+) This property is merged with the
service.exported. intents property.

• service.exported. interfaces – (Str ing+) This property must be set; it marks this service for export
and defines the interfaces. The list members must all be contained in the types listed in the
objectClass service property from the Service Reference. The single value of an asterisk (’* ’ ,
\u002A) indicates all interfaces in the registration’s objectClass property and ignore the classes.
Being able to set this property outside the Service Reference implies that the Topology Manager
can export any registered service, also services not specifically marked to be exported.

• service. intents – (Str ing+) A list of intents that this service has implemented.
Page 290 OSGi Service Platform Release 4, Version 4.2

Remote Service Admin Service Specification Version 1.0 Remote Service Admin
A Topology Manager cannot remove properties, nul l is invalid as a property value.

The Remote Service Admin returns a collection of ExportRegistrat ion objects. This collection must
contain an entry for each configuration type the Remote Service Admin has recognized. Unrecog-
nized configuration types must be ignored. However, it is possible that this list contains invalid regis-
trations, see Invalid Registrations on page 294.

If a Service was already exported then the Remote Service Admin must still return a new
ExportRegistrat ion object that is linked with the earlier registrations. That is, an Endpoint can be
shared between multiple Export Registrations. The Remote Service Admin service must ensure that
the corresponding Endpoint remains available as long as there is at least one open Export Registra-
tion for that Endpoint.

For each successful creation of an export registration, the Remote Service Admin service must pub-
lish an EXPORT_REGISTRATION event, see Events on page 299. This event must be emitted, even if the
Endpoint already existed and is thus shared with another Export Registration. If the creation of an
Endpoint runs into an error, an EXPORT_ERROR event must be emitted.

Each valid Export Registration corresponds to an Endpoint for the given service. This Endpoint must
remain active until all of the Export Registrations are closed that share this Endpoint.

The Endpoint can now be published so that other processes or systems can import this Endpoint. To
aid with this import, the Export Registration has a getExportReference() method that returns an
ExportReference object. This reference provides the following information:

• getExportedEndpoint() – This is the associated Endpoint Description. This Endpoint Description
is a properties based description of an Endpoint. The property keys and their semantics are out-
lined in Endpoint Description on page 286. It can be used to inform other systems of the availability
of an Endpoint.

• getExportedService() – The Service Reference to the exported service.

Both methods must return nul l when the associated Export Registration is closed.

A Distribution Provider that recognizes the configuration type in an Endpoint can create a connec-
tion to an Endpoint on other systems as long as firewalls and networks permit. The Endpoint
Description can therefore be communicated to other systems to announce the availability of an End-
point. The Topology Manager can optionally announce the availability of an Endpoint to the End-
point Listener services, see Discovery on page 295. The decision to announce the availability of an
Endpoint is one of the policies that is provided by a specific Topology Manager.

The Export Registrations remain open until:

• Explicitly closed by the Topology Manager, or
• The Remote Service Admin service is no longer used by the Topology Manager that created the

Export Registration.

If the Remote Service Admin service can no longer maintain the corresponding Endpoint due to fail-
ures than these should be reported through the events. However, the registrations should remain
open until explicitly closed by the Topology Manager.

See Registration Life Cycle on page 293 for more information.

The Export Registrations are not permanent; persistence is in the realm of the Topology Manager.

122.5.2 Importing
To import a service, a Topology Manager must have an Endpoint Description that describes the End-
point the imported service should connect to. With this Endpoint Description, a Remote Service
Admin service can then import the corresponding Endpoint. A Topology Manager can obtain these
Endpoint Descriptions through internal configuration; it can use the discovery model enabled by the
Endpoint Listener service, see Discovery on page 295, or some alternate means.
OSGi Service Platform Release 4, Version 4.2 Page 291

Remote Service Admin Remote Service Admin Service Specification Version 1.0
A service can be imported with the Remote Service Admin importService(EndpointDescr ipt ion)
method. This method takes an Endpoint Description and picks one of the embedded configuration
types to establish a connection with the corresponding Endpoint to create a local service proxy. This
proxy can then be mapped to either a remote OSGi service or an alternative, for example a web ser-
vice. In certain cases the service proxy can be lazy, only verifying the reachability of the Endpoint
when it is actually invoked for the first time. This implies that a service proxy can block when
invoked until the proper communication setup has taken place.

If the Remote Service Admin service does not recognize any of the configuration types then it must
return null . If there are multiple configuration types recognized then the Remote Service Admin is
free to select any one of the recognized types.

If an Endpoint was already imported as a service proxy, then the Remote Service Admin service must
return a new Import Registration that is associated with the existing service proxy/Endpoint combi-
nation. The Remote Service Admin service must ensure that the imported service proxy remains
available as long as there is at least one open Import Registration that refers to it and the correspond-
ing remote Endpoint is still valid.

The Remote Service Admin service must ensure that service properties are according to the Remote
Services chapter for an imported service. This means that it must register the following properties:

• service. imported – (*) Must be set to any value.
• service. imported.conf igs – (Str ing+) The configuration information used to import this service.

Any associated properties for this configuration types must be properly mapped to the importing
system. For example, a URL in these properties must point to a valid resource when used in the
importing framework, see Resource Containment on page 290. Multiple configuration types can be
listed if they are synonyms for exactly the same Endpoint that is used to export this service.

• service. intents – (Str ing+) The Remote Service Admin must set this property to convey the com-
bined intents of:
• The exporting service, and
• The intents that the exporting distribution provider adds, and
• The intents that the importing distribution provider adds.

• Any additional properties listed in the Endpoint Description that should not be excluded. See End-
point Description on page 286 for more details about the properties in the Endpoint Description.

A Remote Service Admin service must strictly follow the rules for importing a service as outlined in
the Remote Services chapter.

The Remote Service Admin must return an ImportRegistration object or nul l . Even if an Import Reg-
istration is returned, it can still be an invalid registration, see Invalid Registrations on page 294 if the
setup of the connection failed asynchronously. The Import Registration must always be a new object.
Each valid Import Registration corresponds to a proxy service, potentially shared, that was created
for the given Endpoint. The issues around proxying are described in Proxying on page 294.

For each successful creation of an import registration, the Remote Service Admin service must pub-
lish an IMPORT_REGISTRATION event, if there is an error it must publish an IMPORT_ERROR , see
Events on page 299.

For more information see Registration Life Cycle on page 293.

The Import Registration provides access to an ImportReference object with the getImportRefer-
ence() . This object has the following methods:

• getImportedEndpoint() – Provides the Endpoint Description for this imported service.
• getImportedService() – Provides the Service Reference for the service proxy.

The Import Registration will remain open as long as:

• The corresponding remote Endpoint remains available, and
• The Remote Service Admin service is still in use by the Topology Manager that created the Import

Registration.
Page 292 OSGi Service Platform Release 4, Version 4.2

Remote Service Admin Service Specification Version 1.0 Remote Service Admin
That is, the Import Registrations are not permanent, any persistence is in the realm of the Topology
Manager. See Registration Life Cycle on page 293 for more details.

122.5.3 Reflection
The Remote Service Admin service provides the following methods to get the list of the current
exported and imported services:

• getExportedServices() – List the Export References for services that are exported by this Remote
Service Admin service as directed by any of the Topology Managers.

• getImportedEndpoints() – List the Import References for services that have been imported by this
Remote Service Admin service as directed by any of the Topology Managers.

122.5.4 Registration Life Cycle
The registration life cycle of imported and exported services is non-trivial because:

• Multiple Export Registrations can use to the same Endpoint.
• Multiple Import Registrations can use to the same service proxy

For example, Topology Manager A could create an Export Registration for service S to Endpoint E .
Topology Manager B could attempt to create exactly the same Endpoint E for service S . However, an
Endpoint occupies a unique address and it is often not possible to create multiple Endpoints for the
same address. A Remote Service Admin service must therefore detect the case that multiple registra-
tions share the same Endpoint between Topology Manager A ’s registration and B ’s registration. How-
ever, if Topology Manager B now closes its Export Registration then Topology Manager A still
assumes the availability of the Endpoint. This scenario is depicted in Figure 122.4 on page 293. A sim-
ilar example can be made for an Import Registration. In that case the same service proxy can be
shared between multiple Import Registrations.

Figure 122.4 Sharing Endpoints and proxies

To simplify the implementation of Topology Managers, the Remote Service Admin must make this
sharing of Endpoints and proxies between different registrations transparent. Both the Import and
Export Registrations must be unique objects for every registration call. That is, even if the same
Topology Manager creates a registration for the same Endpoint/proxy then it must still receive a new
registration. Though reference counting of the close operations could be used to detect when an End-
point or proxy can be cleared, it would require that the Topology Manager exactly matches the close
calls with the creation of the registrations. However, it is very hard to ensure that the close method is
only called once in certain error and cleanup scenarios. The Remote Service Admin must therefore
return unique objects for all registrations and manage the cleanup of proxies and Endpoints inter-
nally, even if the close method is called multiple times on a registration.

Topology
Manager A

Topology
Manager B

Export
Registration

Export
Registration

export
service S

export
service S

Endpoint
E

service S
OSGi Service Platform Release 4, Version 4.2 Page 293

Remote Service Admin Remote Service Admin Service Specification Version 1.0
A Remote Service Admin service must use a Service Factory for its service object to maintain separa-
tion between Topology Managers. All registrations obtained through a Remote Service Admin ser-
vice are life cycle bound to the Topology Manager that created it. That is, if a Topology Manager
ungets its Remote Service Admin service, all registrations obtained through this service must auto-
matically be closed. This model ensures that all registrations are properly closed if either the Remote
Service Admin or the Topology Manager stops because in both cases the framework performs the
unget automatically.

122.5.5 Invalid Registrations
The Remote Service Admin service is explicitly allowed to return invalid Import and Export Registra-
tions. First, in a communications stack it can take time to discover that there are issues, allowing the
registration to return before it has completed can potentially save time. Second, it allows the Topol-
ogy Manager to discover problems with the configuration information. Without the invalid Export
Registrations, the Topology Manager would have to scan the log or associate the Remote Service
Admin Events with a specific import/export method call, something that can be difficult to do.

If the registration is invalid, the getException() method must return a Throwable object. If the regis-
tration has initialized correctly, this method will return nul l . The getExportReference() and getIm-
portReference() methods must throw an Illegal State Exception when the registration is invalid. A
Remote Service Admin service is allowed to block for a reasonable amount of time when any of these
methods is called, including the getException method, to finish initialization.

An invalid registration can be considered as never having been opened, it is therefore not necessary
to close it; however, closing an invalid or closed registration must be a dummy operation and never
throw an Exception. However, a failed registration must generate a corresponding error event.

122.5.6 Proxying
It is the responsibility of the Remote Service Admin service to properly proxy an imported service.
This specification does not mandate the technique used to proxy an Endpoint as a service in the ser-
vice platform. The OSGi Remote Services specification allows a distribution provider to limit what it
can proxy.

One of the primary aspects of a proxy is to ensure class space consistency between the exporting bun-
dle and importing bundles. This can require the generation of a proxy-per-bundle to match the
proper class spaces. It is the responsibility of the Remote Service Admin to ensure that no Class Cast
Exceptions occur.

A common technique to achieve maximum class space compatibility is to use a Service Factory. A
Service Factory provides the calling bundle when it first gets the service, making it straightforward to
verify the package version of the interface that the calling bundle uses. Knowing the bundle that
requests the service allows the creation of specialized proxies for each bundle. The interface class(es)
for the proxy can then be loaded directly from the bundle, ensuring class compatibility. Interfaces
should be loadable by the bundle otherwise that bundle can not use the interface in its code. If an
interface cannot be loaded then it can be skipped. A dedicated class loader can then be created that
has visibility to all these interfaces and is used to define the proxy class. This design ensures proper
visibility and consistency. Implementations can optimize this model by sharing compatible class
loaders between bundles.

The proxy will have to call arbitrary methods on arbitrary services. This has a large number of secu-
rity implications, see Security on page 304.
Page 294 OSGi Service Platform Release 4, Version 4.2

Remote Service Admin Service Specification Version 1.0 Discovery
122.6 Discovery
The topology of the distributed system is decided by the Topology Manager. However, in a distrib-
uted environment, the Topology Manager needs to discover Endpoints in other frameworks. There is a
very large number of ways how a Topology Manager could learn about other Endpoints, ranging
from static configuration, a centralized administration, all the way to fully dynamic discovery proto-
cols like the Service Location Protocol (SLP) or JGroups. To support the required flexibility, this spec-
ification defines an Endpoint Listener service that allows the dissemination of Endpoint information.
This service provides a symmetric solution because the problem is symmetric: it is used by a Topol-
ogy Manager to announce changes in its local topology as well as find out about other Endpoint
Descriptions. Where those other Endpoint Descriptions come from can vary widely. This design is
depicted in Figure 122.5 on page 295.

Figure 122.5 Topology Information Dissemination Examples

The design of the Endpoint Listener allows a federated registry of Endpoint Descriptions. Any party
that is interested in Endpoint Descriptions should register an Endpoint Listener service. This will sig-
nal that it is interested in topology information to any Endpoint Description Providers. Each Endpoint
Listener service must be registered with a service property that holds a set of filter strings to indicate
the scope of its interest. These filters must match an Endpoint Description before the corresponding
Endpoint Listener service is notified of the availability of an Endpoint Description. Scoping is
intended to limit the delivery of unnecessary Endpoint Descriptions as well as signal the need for spe-
cific Endpoints.

A Topology Manager has knowledge of its local Endpoints and is likely to be only interested in
remote Endpoints. It can therefore set the scope to only match remote Endpoint Descriptions. See
Framework UUID on page 289 for how to limit the scope to local or remote Endpoints. At the same
time, a Topology manager should inform any locally registered Endpoint Listener services with End-
points that it has created or deleted.

This architecture allows many different use cases. For example, a bundle could display a map of the
topology by registering an Endpoint Listener with a scope for local Endpoints. Another example is
the use of SLP to announce local Endpoints to a network and to discover remote Endpoints from
other parties on this network.

Topology
Manager

Static
Configuration

Endpoint

discovers/
discovers

announces
announces

Listener

Network
Discovery

Configuration
Extender

Managed
Service Factory

Topology
Map

networks

displays
display

extends

Endpoint
Listener
OSGi Service Platform Release 4, Version 4.2 Page 295

Discovery Remote Service Admin Service Specification Version 1.0
An instance of this design is shown in Figure 122.6 on page 296. In this figure, there are 3 frameworks
that collaborate through some discovery bundle. The Top framework has created an Endpoint and
decides to notify all Endpoint Listeners registered in this framework that are scoped to this new End-
point. Local bundle D has set its scope to all Endpoint Descriptions that originate from its local
framework, it therefore receives the Endpoint Description from T . Bundle D then sends the Endpoint
Description to all its peers on the network.

In the Quark framework, the manager bundle T has expressed an interest by setting its scope to a fil-
ter that matches the Endpoint Description from the Top framework. When the bundle D on the
Quark framework receives the Endpoint Description from bundle D on the Top framework, it
matches it against all local Endpoint Listener’s scope. In this case, the local manager bundle T
matches and is given the Endpoint Description. The manager then uses the Remote Service Admin
service to import the exported service described by the given Endpoint Description.

Figure 122.6 Endpoint Discovery Architecture. T=Topology Manager, D=Discovery

The previous description is just one of the possible usages of the Endpoint Listener. For example, the
discovery bundles could communicate the scopes to their peers. These peers could then register an
Endpoint Listener per peer, minimizing the network traffic because Endpoint Descriptions do not
have to be broadcast to all peers.

Another alternative usage is described in Endpoint Description Extender Format on page 300. In this
chapter the extender pattern is used to retrieve Endpoint Descriptions from resources in locally
active bundles.

122.6.1 Scope and Filters
An Endpoint Listener service is registered with the ENDPOINT_LISTENER_SCOPE service property.
This property, which is Str ing+ , must be set and must contain at least one filter. If there is not at least
one filter, then that Endpoint Listener must not receive any Endpoint Descriptions.

Each filter in the scope is applied against the properties of the Endpoint Description until one suc-
ceeds. Only if one succeeds is the Endpoint informed about the existence of an Endpoint.

The Endpoint Description is designed to reflect the properties of the imported service, there is there-
fore a correspondence with the filters that are used by bundles that are listening for service registra-
tions. The purpose of this design is to match the filter available through Listener Hook services, see
On Demand on page 298.

D

DD T

T

T

Framework

Bundle

EndpointListenerService

Endpoint

Endpoint connection

Service connection

Framework

Framework Quark Framework Charm

Imported/Exported-Service

Top

Network
Page 296 OSGi Service Platform Release 4, Version 4.2

Remote Service Admin Service Specification Version 1.0 Discovery
However, the purpose of the filters is more generic than just this use case. It can also be used to spec-
ify the interest in local Endpoints or remote Endpoints. For example, Topology Managers are only
interested in remote Endpoints while discoverers are only interested in local Endpoints. It is easy to
discriminate between local and remote by filtering on the endpoint.f ramework.uuid property. End-
point Descriptions contain the Universally Unique ID (UUID) of the originating framework.This
UUID must be available from the local framework as well. See Framework UUID on page 289.

122.6.2 Endpoint Listener Interface
The EndpointListener interface has the following methods:

• endpointAdded(EndpointDescription,Str ing) – Notify the Endpoint Listener of a new Endpoint
Description. The second parameter is the filter that matched the Endpoint Description. Regis-
tering the same Endpoint multiple times counts as a single registration.

• endpointRemoved(EndpointDescript ion,Str ing) – Notify the Endpoint Listener that the provided
Endpoint Description is no longer available.

These methods must only be called if the Endpoint Listener service has a filter in its scope that
matches the Endpoint Description properties. The reason for the filter string in the methods is to sim-
plify and speed up matching an Endpoint Description to the cause of interest. For example, if the Lis-
tener Hook is used to do on demand import of services, then the filter can be associated with the
Listener Info of the hook, see On Demand on page 298. If multiple filters in the scope match the End-
point Description than the first filter in the scope must be passed.

The Endpoint Listener interface is idempotent. Endpoint Description Providers must inform an End-
point Listener service that is registered of all their matching Endpoints. The only way to find out
about all available Endpoints is to register an Endpoint Listener that is then informed by all available
Endpoint Description Providers of their known Endpoint Descriptions that match their scope.

122.6.3 Endpoint Listener Implementations
An Endpoint Listener service tracks the known Endpoints in its given scope. There are potentially a
large number of bundles involved in creating this federated registry of Endpoints. To ensure that no
Endpoint Descriptions are orphaned or unnecessarily missed, an Endpoint Listener implementation
must follow the following rules:

• Registration – An Endpoint Listener service is called with an endpointAdded(EndpointDe-
script ion,Str ing) method for all known Endpoint Descriptions that the bundles in the local
framework are aware of.

• Tracking providers – An Endpoint Listener must track the bundles that provide it with Endpoint
Descriptions. If a bundle that provided Endpoint Descriptions is stopped, all Endpoint Descrip-
tions that were provided by that bundle must be removed. This can be implemented straightfor-
wardly with a Service Factory.

• Scope modification – An Endpoint Listener is allowed to modify the set of filters in its scope through
a service property modification. This modification must result in new and/or existing Endpoint
Descriptions to be added, however, existing Endpoints that are no longer in scope are not required
to be explicitly removed by the their sources. It is the responsibility for the Endpoint Listener to
remove these orphaned Endpoint Description from its view.

Endpoint Descriptions can be added from different sources and providers of Endpoint Descriptions
often use asynchronous and potentially unreliable communications. An implementation must
therefore handle the addition of multiple equal Endpoint Descriptions from different sources as well
as from the same source. Implementations must not count the number of registrations, a remove
operation of an Endpoint Description is final for each source. That is, if source A added Endpoint
Description e , then it can only be removed by source A . However, if source A added e multiple times,
then it only needs to be removed once. Removals of Endpoint Descriptions that have not been added
(or were removed before) should be ignored.
OSGi Service Platform Release 4, Version 4.2 Page 297

Discovery Remote Service Admin Service Specification Version 1.0
The discovery of Endpoints is a fundamentally indeterministic process and implementations of End-
point Listener services should realize that there are no guarantees that an added Endpoint Descrip-
tion is always describing a valid Endpoint.

122.6.4 Endpoint Description Providers
The Endpoint Listener service is based on an asynchronous, unreliable, best effort model because
there are few guarantees in a distributed world. It is the task of an Endpoint Description Provider, for
example a discovery bundle, to keep the Endpoint Listener services up to date of any Endpoint
Descriptions the provider is aware of and that match the tracked service’s scope.

If an Endpoint Listener service is registered, a provider must add all matching Endpoint Descriptions
that it is aware of and match the tracked Endpoint Listener’s scope. This can be done during registra-
tion or asynchronously later. For example, it is possible to use the filters in the scope to request
remote systems for any Endpoint Descriptions that match those filters. For expediency reasons, the
service registration event should not be delayed until those results return; it is therefore applicable to
add these Endpoint Descriptions later when the returns from the remote systems finally arrive.

A tracked Endpoint Listener is allowed to modify its scope by setting new properties on its Service
Registration. An Endpoint Description provider must process the new scope and add any newly
matching Endpoint Descriptions. It is not necessary to remove any Endpoint Descriptions that were
added before but no longer match the new scope. Removing those orphaned descriptions is the
responsibility of the Endpoint Listener implementation.

It is not necessary to remove any registered Endpoint Descriptions when the Endpoint Listener is
unregistered; also here it is the responsibility of the Endpoint Listener to do the proper cleanup.

122.6.5 On Demand
A common distribution policy is to import services that are being listened for by local bundles. For
example, when a bundle opens a Service Tracker on the Log Service, a Topology Manager could be
notified and attempt to find a Log Service in the local cluster and then import this service in the local
Service Registry.

The OSGi framework provides service hooks for exactly this purpose. A Topology Manager can regis-
ter a Listener Hook service and receive the information about bundles that have specified an interests
in specific services.

For example, a bundle creates the following Service Tracker:

ServiceTracker st = new ServiceTracker(context,
LogService.class.getName());

st.open();

This Service Tracker will register a Service Listener with the OSGi framework. This will cause the
framework to add a ListenerInfo to any Listener Hook services. The getFi l ter method on a
ListenerInfo object provides a filter that is directly applicable for the Endpoint Listener’s scope. In the
previous example, this would be the filter:

(objectClass=org.osgi.service.log.LogService)

A Topology Manager could verify if this listener is satisfied. That is, if it has at least one service. If no
such service could be found, it could then add this filter to its Endpoint Listener’s scope to detect
remote implementations of this service. If such an Endpoint is detected, it could then request the
import of this service through the Remote Service Admin service.
Page 298 OSGi Service Platform Release 4, Version 4.2

Remote Service Admin Service Specification Version 1.0 Events
122.7 Events
The Remote Service Admin service must synchronously inform any Remote Service Admin Listener
services of events as they happen. Client of the events should return quickly and not perform any but
trivial processing in the same thread.

The following event types are defined:

• EXPORT_ERROR – An exported service has run into an unrecoverable error, although the Export
Registration has not been closed yet. The event carries the Export Registration as well as the
Exception that caused the problem, if present.

• EXPORT_REGISTRATION – The Remote Service Admin has registered a new Export Registration.
• EXPORT_UNREGISTRATION – An Export Registration has been closed, the service is no longer

exported and the Endpoint is no longer active when this was the last registration for that service/
Endpoint combination.

• EXPORT_WARNING – An exported service is experiencing problems but the Endpoint is still
available.

• IMPORT_ERROR – An imported service has run into a fatal error and has been shut down. The
Import Registration should be closed by the Topology Manager that created them.

• IMPORT_REGISTRATION – A new Import Registration was created for a potentially existing
service/Endpoint combination.

• IMPORT_UNREGISTRATION – An Import Registration was closed, removing the proxy if this was
the last registration.

• IMPORT_WARNING – An imported service is experiencing problems but can continue to function.

The following properties are available on the event:

• getType() – The type of the event.
• getException() – Any exception, if present.
• getExportReference() – An export reference, if applicable.
• getImportReference() – An import reference, if applicable.
• getSource() – The source of the event, the Remote Service Admin service.

122.7.1 Event Admin Mapping
All Remote Service Admin events must be posted, which is asynchronously, to the Event Admin ser-
vice, if present, under the following topic:

org/osgi/service/remoteserviceadmin/<type>

Where <type> represents the type of the event, for example IMPORT_ERROR .

The Event Admin event must have the following properties:

• bundle – (Bundle) The Remote Service Admin bundle
• bundle. id – (Long) The id of the Remote Service Admin bundle.
• bundle.symbol icname – (Str ing) The Bundle Symbolic Name of the Remote Service Admin

bundle.vers ion – (Version) The version of the Remote Service Admin bundle.
• bundle.s igner – (Str ing[]) Signer of the Remote Service Admin bundle
• cause – The exception, if present.
• endpoint.service. id – (Long) Remote service id, if present
• endpoint. framework.uuid – (Str ing) Remote service’s Framework UUID, if present
• endpoint. id – (Str ing) The id of the Endpoint, if present
• objectClass – (Str ing[]) The interface names, if present
• service. imported.conf igs – (Str ing+) The configuration types of the imported services, if present
• t imestamp – (Long) The time when the event occurred
• event – (RemoteServiceAdminEvent) The RemoteServiceAdminEvent object that caused this

event.
OSGi Service Platform Release 4, Version 4.2 Page 299

Endpoint Description Extender Format Remote Service Admin Service Specification Version 1.0
122.8 Endpoint Description Extender Format
The Endpoint Description Extender format is a possibility to deliver Endpoint Descriptions in bun-
dles. This section defines an XML schema and how to locate XML definition resources that use this
schema to define Endpoint Descriptions. The definition resource is a simple property based model
that can define the same information as the properties on an imported service. If a bundle with the
description is ready (ACTIVE or lazy activation and in the STARTING state), then this static descrip-
tion can be disseminated through the Endpoint Listeners that have specified an interest in this
description. If the bundle is stopped, the corresponding Endpoints must be removed.

XML documents containing remote service descriptions must be specified by the Remote-Service
header in the manifest. The structure of the Remote Service header is:

Remote-Service ::= header // Core 3.2.4

The value of the header is a comma separated list of paths. A path is:

• A directory if it ends with a slash (’ / ’). A directory is scanned for *.xml files.
• A path with wildcards. Such a path can use the wildcards in its last component, as defined in the

f indEntries method.
• A complete path, not having wildcards not ending in a slash (’ / ’).

The Remote-Service header has no architected directives or attributes, unrecognized attributes and
directives must be ignored.

A Remote-Service manifest header specified in a fragment must be ignored. However, XML docu-
ments referenced by a bundle’s Remote-Service manifest header can be contained in attached frag-
ments. The required behavior for this is implemented in the f indEntr ies method.

The extender must process each XML document specified in this header. If an XML document speci-
fied by the header cannot be located in the bundle and its attached fragments, the extender must log
an error message with the Log Service, if present, and continue.

For example:

Remote-Service: lib/, remote/osgi/*.dsc, cnf/google.xml

This matches all resources in the lib directory matching *.xml , all resources in the /remote/osgi
directory that end with .dsc , as well as the google.xml resource in the cnf directory.

The namespace of these XML resources must be:

 http://www.osgi.org/xmlns/rsa/v1.0.0

This namespace describes a set of Endpoint Descriptions, where each Endpoint Description can pro-
vide a set of properties. The structure of this schema is:

endpoint-descriptions ::= <endpoint-description>*
endpoint-description ::= <property>*
property ::= (<array> | <list> | <set> | <xml>)?
array ::= <value> *
list ::= <value> *
set ::= <value> *
xml ::= <*> *

This structure is depicted in Figure 122.7 on page 301.
Page 300 OSGi Service Platform Release 4, Version 4.2

Remote Service Admin Service Specification Version 1.0 Endpoint Description Extender Format
Figure 122.7 Endpoint Description XML Structure

The property element has the attributes listed in table 122.3.

A property can have an array , l ist , set , or xml child element. If a child element is present then it is an
error if the value attribute is defined. It is also an error of there is no child element and no value
attribute.

endpoint-
descriptions

endpoint-
description

property

0..n

0..n

list setarray xml

0,1

<any>value

1

1

1

0..n

1 1 1 1

0..n

Table 122.2 Property Attributes

Attribute Type Description

name Str ing The required name of the property. The type maps to the XML
Schema xsd:str ing type.

value-type Str ing
| long
| Long
| double
| Double
| f loat
| F loat
| int
| Integer
| byte
| Byte
| char
| Character
| boolean
| Boolean
| short
| Short

The optional type name of the property, the default is Str ing .
Any value in the value attribute or the value element when
collections are used must be converted to the corresponding
Java types. If the primitive form, for example byte , is specified
for non-array types, then the value must be silently converted
to the corresponding wrapper type.

value Str ing The value. Must be converted to the specified type if this is
not the Str ing type. The value attribute must not be used
when the property element has a child element.
OSGi Service Platform Release 4, Version 4.2 Page 301

Endpoint Description Extender Format Remote Service Admin Service Specification Version 1.0
The array , l ist , or set are multi-valued. That is, they contain 0 or more value elements. A value element
contains text (a string) that must be converted to the given value-type or if not specified, left as is.
Conversion must trim the leading and trailing white space characters as defined in the
Character. isWhitespace method. No trimming must be done for strings. An array of primitive inte-
gers like int[] {1,42,97} can be encoded as follows:

<property name="integers" value-type="int">
<array>

<value> 1</value>
<value>42</value>
<value>97</value>

</array>
</property>

The xml element is used to convey XML from other namespaces, it is allowed to contain one foreign
Xml root element, with any number of children, that will act as the root element of an XML docu-
ment. This root element will be included in the corresponding property as a string. The XML element
must be a valid XML document but not contain the XML processing instructions, the part between
the <? and ?> . The value-type of the property must be Str ing or not set when an xml element is used,
using another type is invalid.

The xml element can be used to embed configuration information, making the Endpoint Description
self contained. For example, the SCA Configuration Type Specification on page 431 uses this xml ele-
ment to provide an embedded SCA Configuration Document in a Str ing object.

The following is an example of an endpoint-descr ipt ions resource.

<?xml version="1.0" encoding="UTF-8"?>
<endpoint-descriptions

xmlns="http://www.osgi.org/xmlns/rsa/v1.0.0">
 <endpoint-description>
 <property name="service.intents">

<list>
<value>SOAP</value>
<value>HTTP</value>

</list>
</property>

 <property name="endpoint.id" value="http://ws.acme.com:9000/hello"/>
 <property name="objectClass" value="com.acme.Foo"/>
 <property name="endpoint.package.version.com.acme" value="4.2"/>

<property name="service.imported.configs" value="com.acme"/>
<property name="com.acme.ws.xml">

 <xml>
 <config xmlns="http://acme.com/defs">
 <port>1029</port>
 <host>www.acme.com</host>
 </config>
 </xml>
 </property>
 </endpoint-description>
</endpoint-descriptions>

Besides being in a separate resource, the static configuration as described here could also be part of a
larger XML file. In that case the parser must ignore elements not part of the http://www.osgi .org/
xmlns/rsa/v1.0.0 namespace schema.
Page 302 OSGi Service Platform Release 4, Version 4.2

Remote Service Admin Service Specification Version 1.0 Endpoint Description Extender Format
122.8.1 XML Schema
This name space of the schema is:

http://www.osgi .org/xmlns/rsa/v1.0.0

<schema
xmlns ="http://www.w3.org/2001/XMLSchema"
xmlns:rsa ="http://www.osgi.org/xmlns/rsa/v1.0.0"
targetNamespace ="http://www.osgi.org/xmlns/rsa/v1.0.0"
elementFormDefault ="qualified" version="1.0.0">

 <element name="endpoint-descriptions" type="rsa:Tendpoint-descriptions"/>
 <complexType name="Tendpoint-descriptions">
 <sequence>
 <element name="endpoint-description" type="rsa:Tendpoint-description" minOccurs="1" maxOccurs="unbounded"/>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded" processContents="lax"/>
 </sequence>
 <anyAttribute/>
 </complexType>

 <complexType name="Tendpoint-description">
 <sequence>
 <element name="property" type="rsa:Tproperty" minOccurs="1" maxOccurs="unbounded"/>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded" processContents="lax"/>
 </sequence>
 <anyAttribute/>
 </complexType>

 <complexType name="Tproperty" mixed="true">
 <sequence>
 <choice minOccurs="0" maxOccurs="1">
 <element name="array" type="rsa:Tmulti-value"/>
 <element name="list" type="rsa:Tmulti-value"/>
 <element name="set" type="rsa:Tmulti-value"/>
 <element name="xml" type="rsa:Txml"/>
 </choice>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded" processContents="lax"/>
 </sequence>
 <attribute name="name" type="string" use="required"/>
 <attribute name="value" type="string" use="optional"/>
 <attribute name="value-type" type="rsa:Tvalue-types" default="String" use="optional"/>
 <anyAttribute/>
 </complexType>

 <complexType name="Tmulti-value">
 <sequence>
 <element name="value" minOccurs="0" maxOccurs="unbounded" type="rsa:Tvalue"/>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded" processContents="lax"/>
 </sequence>
 <anyAttribute/>
 </complexType>

 <complexType name="Tvalue" mixed="true">
 <sequence>
 <element name="xml" minOccurs="0" maxOccurs="1" type="rsa:Txml"/>
 <any namespace="##other" minOccurs="0" maxOccurs="unbounded" processContents="lax"/>
 </sequence>
 <anyAttribute/>
 </complexType>

 <simpleType name="Tvalue-types">
 <restriction base="string">
 <enumeration value="String"/>
 <enumeration value="long"/>
 <enumeration value="Long"/>
 <enumeration value="double"/>
 <enumeration value="Double"/>
 <enumeration value="float"/>
 <enumeration value="Float"/>
 <enumeration value="int"/>
 <enumeration value="Integer"/>
 <enumeration value="byte"/>
 <enumeration value="Byte"/>
 <enumeration value="char"/>
OSGi Service Platform Release 4, Version 4.2 Page 303

Security Remote Service Admin Service Specification Version 1.0
 <enumeration value="Character"/>
 <enumeration value="boolean"/>
 <enumeration value="Boolean"/>
 <enumeration value="short"/>
 <enumeration value="Short"/>
 </restriction>
 </simpleType>

 <complexType name="Txml">
 <sequence>
 <any namespace="##other" minOccurs="1" maxOccurs="1" processContents="lax"/>
 </sequence>
 <anyAttribute/>
 </complexType>

 <attribute name="must-understand" type="boolean" default="false"/>
</schema>

122.9 Security
From a security point of view distribution is a significant threat. A Distribution Provider requires
very significant capabilities to be able to proxy services. In many situations it will be required to
grant the distribution provider All Permission. It is therefore highly recommended that Distribution
Providers use trusted links and ensure that it is not possible to attack a system through the Remote
Services Admin service and used discovery protocols.

122.9.1 Import and Export Registrations
Import and Export Registrations are capabilities. That is, they can only be obtained when the caller has
the proper permissions but once obtained they are no longer checked. The caller should therefore be
careful to share those objects with other bundles. Export and Import References are free to share.

122.9.2 Framework UUID Runtime Permission
The Remote Service Admin bundle can have the need for reading and writing the System property or
the Framework UUID when this is not set by the deployer, the launcher, or the framework. This
requires the following permission:

PropertyPermission[
"org.osgi.framework.uuid","read,write"]

122.9.3 Endpoint Permission
The Remote Service Admin implementation requires a large set of permissions because it must be
able to distribute potentially any service. Giving these extensive capabilities to all Topology Manag-
ers would make it harder to developer general Topology Managers that implements specific scenar-
ios. For this reason, this specification provides an Endpoint Permission.

When an Endpoint Permission must be verified, it must be created with an Endpoint Description as
argument, like:

sm.checkPermission(new EndpointPermission(anEndpoint,localUUID, READ));

The standard name and action constructor is used to define a permission. The name argument is a fil-
ter expression. The filter for an Endpoint Permission is applied to the properties of an Endpoint
Description. The localUUID must map to the UUID of the framework of the caller of this constructor,
see Framework UUID on page 289. This localUUID is used to allow a the permissions to use the
<<LOCAL>> magic name in the permission filter to refer to the local framework.

The filter expression can use the following magic value:

• <<LOCAL>> – This value represents the framework UUID of the framework that this bundle
belongs to. The following example restricts the visibility to descriptions of local Endpoints:
Page 304 OSGi Service Platform Release 4, Version 4.2

Remote Service Admin Service Specification Version 1.0 org.osgi.service.remoteserviceadmin
 ALLOW {
...EndpointPermission
 "(endpoint.framework.uuid=<<LOCAL>>)"
 "READ" }

An Endpoint Permission that has the actions listed in Table 122.3 on page 305.

122.10 org.osgi.service.remoteserviceadmin
Remote Service Admin Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. For example:

Import-Package: org.osgi.service.remoteserviceadmin; version=”[1.0,2.0)”

122.10.1 Summary
• EndpointDescription - A description of an endpoint that provides sufficient information for a com-

patible distribution provider to create a connection to this endpoint An Endpoint Description is
easy to transfer between different systems because it is property based where the property keys
are strings and the values are simple types.

• EndpointListener - A white board service that represents a listener for endpoints.
• EndpointPermission - A bundle’s authority to export, import or read an Endpoint.
• ExportReference - An Export Reference associates a service with a local endpoint.
• ExportRegistration - An Export Registration associates a service to a local endpoint.
• ImportReference - An Import Reference associates an active proxy service to a remote endpoint.
• ImportRegistration - An Import Registration associates an active proxy service to a remote end-

point.
• RemoteConstants - Provide the definition of the constants used in the Remote Service Admin speci-

fication.
• RemoteServiceAdmin - A Remote Service Admin manages the import and export of services.
• RemoteServiceAdminEvent - Provides the event information for a Remote Service Admin event.
• RemoteServiceAdminListener - A RemoteServiceAdminEvent listener is notified synchronously of

any export or import registrations and unregistrations.
EndpointDescription

Table 122.3 Endpoint Permission Actions

Action Methods Description

IMPORT importService(EndpointDescr iption) Import an Endpoint
EXPORT exportService(ServiceReference,Map) Export a service
READ getExportedServices()

getImportedEndpoints()
remoteAdminEvent(RemoteServiceAd-
minEvent)

See the presence of distributed
services. The IMPORT and
EXPORT action imply READ . Dis-
tribution of events to the Remote
Service Admin Listener. The
Remote Service Admin must ver-
ify that the listener’s bundle has
the proper permission. No events
should be delivered that are not
implied.
OSGi Service Platform Release 4, Version 4.2 Page 305

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.0
122.10.2 public class EndpointDescription
A description of an endpoint that provides sufficient information for a compatible distribution pro-
vider to create a connection to this endpoint An Endpoint Description is easy to transfer between dif-
ferent systems because it is property based where the property keys are strings and the values are
simple types. This allows it to be used as a communications device to convey available endpoint
information to nodes in a network. An Endpoint Description reflects the perspective of an importer.
That is, the property keys have been chosen to match filters that are created by client bundles that
need a service. Therefore the map must not contain any serv ice.exported.* property and must con-
tain the corresponding service. imported.* ones. The service. intents property must contain the
intents provided by the service itself combined with the intents added by the exporting distribution
provider. Qualified intents appear fully expanded on this property.

Concurrency Immutable
EndpointDescription(Map)

122.10.2.1 public EndpointDescription(Map<String,Object> properties)

properties The map from which to create the Endpoint Description. The keys in the map must be type Str ing and,
since the keys are case insensitive, there must be no duplicates with case variation.

Create an Endpoint Description from a Map.

The endpoint. id , service. imported.conf igs and objectClass properties must be set.

Throws IllegalArgumentException – When the properties are not proper for an Endpoint Description.
EndpointDescription(ServiceReference,Map)

122.10.2.2 public EndpointDescription(ServiceReference reference, Map<String,Object> properties)

reference A service reference that can be exported.

properties Map of properties. This argument can be nul l . The keys in the map must be type Str ing and, since the
keys are case insensitive, there must be no duplicates with case variation.

Create an Endpoint Description based on a Service Reference and a Map of properties. The properties
in the map take precedence over the properties in the Service Reference.

This method will automatically set the endpoint. framework.uuid and endpoint.service. id proper-
ties based on the specified Service Reference as well as the service. imported property if they are not
specified as properties.

The endpoint. id , service. imported.conf igs and objectClass properties must be set.

Throws IllegalArgumentException – When the properties are not proper for an Endpoint Description
equals(Object)

122.10.2.3 public boolean equals(Object other)

other The EndpointDescr ipt ion object to be compared.

Compares this EndpointDescr ipt ion object to another object.

An Endpoint Description is considered to be equal to another Endpoint Description if their ids are
equal.

Returns true if object is a EndpointDescript ion and is equal to this object; fa lse otherwise.
getConfigurationTypes()

122.10.2.4 public List<String> getConfigurationTypes()

Returns the configuration types. A distribution provider exports a service with an endpoint. This
endpoint uses some kind of communications protocol with a set of configuration parameters. There
are many different types but each endpoint is configured by only one configuration type. However, a
distribution provider can be aware of different configuration types and provide synonyms to increase
the change a receiving distribution provider can create a connection to this endpoint. This value of
the configuration types is stored in the RemoteConstants.SERVICE_IMPORTED_CONFIGS service
property.
Page 306 OSGi Service Platform Release 4, Version 4.2

Remote Service Admin Service Specification Version 1.0 org.osgi.service.remoteserviceadmin
Returns An unmodifiable list of the configuration types used for the associated endpoint and optionally syno-
nyms.
getFrameworkUUID()

122.10.2.5 public String getFrameworkUUID()

Return the framework UUID for the remote service, if present. The value of the remote framework
uuid is stored in the RemoteConstants.ENDPOINT_FRAMEWORK_UUID endpoint property.

Returns Remote Framework UUID, or null if this endpoint is not associated with an OSGi framework having a
framework uuid.
getId()

122.10.2.6 public String getId()

Returns the endpoint’s id. The id is an opaque id for an endpoint. No two different endpoints must
have the same id. Two Endpoint Descriptions with the same id must represent the same endpoint.
The value of the id is stored in the RemoteConstants.ENDPOINT_ID property.

Returns The id of the endpoint, never null . The returned value has leading and trailing whitespace removed.
getIntents()

122.10.2.7 public List<String> getIntents()

Return the list of intents implemented by this endpoint. The intents are based on the service.intents
on an imported service, except for any intents that are additionally provided by the importing distri-
bution provider. All qualified intents must have been expanded. This value of the intents is stored in
the RemoteConstants.SERVICE_INTENTS service property.

Returns An unmodifiable list of expanded intents that are provided by this endpoint.
getInterfaces()

122.10.2.8 public List<String> getInterfaces()

Provide the list of interfaces implemented by the exported service. The value of the interfaces is
derived from the objectClass property.

Returns An unmodifiable list of Java interface names implemented by this endpoint.
getPackageVersion(String)

122.10.2.9 public Version getPackageVersion(String packageName)

packageName The name of the package for which a version is requested.

Provide the version of the given package name. The version is encoded by prefixing the given pack-
age name with endpoint .package.version. , and then using this as an endpoint property key. For
example:

endpoint.package.version.com.acme

The value of this property is in String format and will be converted to a Version object by this
method.

Returns The version of the specified package or Version.emptyVers ion if the package has no version in this
Endpoint Description.

Throws IllegalArgumentException – If the version property value is not String.
getProperties()

122.10.2.10 public Map<String,Object> getProperties()

Returns all endpoint properties.

Returns An unmodifiable map referring to the properties of this Endpoint Description.
getServiceId()

122.10.2.11 public long getServiceId()

Returns the service id for the service exported through this endpoint. This is the service id under
which the framework has registered the service. This field together with the Framework UUID is a
globally unique id for a service. The value of the remote service id is stored in the RemoteCon-
stants.ENDPOINT_SERVICE_ID endpoint property.

Returns Service id of a service or 0 if this Endpoint Description does not relate to an OSGi service.
hashCode()
OSGi Service Platform Release 4, Version 4.2 Page 307

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.0
122.10.2.12 public int hashCode()

Returns a hash code value for the object.

Returns An integer which is a hash code value for this object.
isSameService(EndpointDescription)

122.10.2.13 public boolean isSameService(EndpointDescription other)

other The Endpoint Description to look at

Answers if this Endpoint Description refers to the same service instance as the given Endpoint
Description. Two Endpoint Descriptions point to the same service if they have the same id or their
framework UUIDs and remote service ids are equal.

Returns True if this endpoint description points to the same service as the other
matches(String)

122.10.2.14 public boolean matches(String filter)

filter The filter to test.

Tests the properties of this EndpointDescr ipt ion against the given filter using a case insensitive
match.

Returns true If the properties of this EndpointDescr iption match the filter, false otherwise.

Throws IllegalArgumentException – If f i l ter contains an invalid filter string that cannot be parsed.
toString()

122.10.2.15 public String toString()

Returns the string representation of this EndpointDescription.

Returns String form of this EndpointDescription.
EndpointListener

122.10.3 public interface EndpointListener
A white board service that represents a listener for endpoints. An Endpoint Listener represents a par-
ticipant in the distributed model that is interested in Endpoint Descriptions. This white board ser-
vice can be used in many different scenarios. However, the primary use case is to allow a remote
manager to be informed of Endpoint Descriptions available in the network and inform the network
about available Endpoint Descriptions. Both the network bundle and the manager bundle register an
Endpoint Listener service. The manager informs the network bundle about Endpoints that it creates.
The network bundles then uses a protocol like SLP to announce these local end-points to the net-
work. If the network bundle discovers a new Endpoint through its discovery protocol, then it sends
an Endpoint Description to all the Endpoint Listener services that are registered (except its own) that
have specified an interest in that endpoint. Endpoint Listener services can express their scope with
the service property ENDPOINT_LISTENER_SCOPE . This service property is a list of filters. An End-
point Description should only be given to a Endpoint Listener when there is at least one filter that
matches the Endpoint Description properties. This filter model is quite flexible. For example, a dis-
covery bundle is only interested in locally originating Endpoint Descriptions. The following filter
ensure that it only sees local endpoints.

(org.osgi.framework.uuid=72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72)

In the same vein, a manager that is only interested in remote Endpoint Descriptions can use a filter
like:

(!(org.osgi.framework.uuid=72dc5fd9-5f8f-4f8f-9821-9ebb433a5b72))

Where in both cases, the given UUID is the UUID of the local framework that can be found in the
Framework properties. The Endpoint Listener’s scope maps very well to the service hooks. A man-
ager can just register all filters found from the Listener Hook as its scope. This will automatically pro-
vide it with all known endpoints that match the given scope, without having to inspect the filter
string. In general, when an Endpoint Description is discovered, it should be dispatched to all regis-
tered Endpoint Listener services. If a new Endpoint Listener is registered, it should be informed about
all currently known Endpoints that match its scope. If a getter of the Endpoint Listener service is
Page 308 OSGi Service Platform Release 4, Version 4.2

Remote Service Admin Service Specification Version 1.0 org.osgi.service.remoteserviceadmin
unregistered, then all its registered Endpoint Description objects must be removed. The Endpoint
Listener models a best effort approach. Participating bundles should do their utmost to keep the listen-
ers up to date, but implementers should realize that many endpoints come through unreliable dis-
covery processes.

Concurrency Thread-safe
ENDPOINT_LISTENER_SCOPE

122.10.3.1 public static final String ENDPOINT_LISTENER_SCOPE = “endpoint.listener.scope”

Specifies the interest of this listener with filters. This listener is only interested in Endpoint Descrip-
tions where its properties match the given filter. The type of this property must be Str ing+ .
endpointAdded(EndpointDescription,String)

122.10.3.2 public void endpointAdded(EndpointDescription endpoint, String matchedFilter)

endpoint The Endpoint Description to be published

matchedFilter The filter from the ENDPOINT_LISTENER_SCOPE that matched the endpoint, must not be nul l .

Register an endpoint with this listener. If the endpoint matches one of the filters registered with the
ENDPOINT_LISTENER_SCOPE service property then this filter should be given as the matchedFi lter
parameter. When this service is first registered or it is modified, it should receive all known end-
points matching the filter.
endpointRemoved(EndpointDescription,String)

122.10.3.3 public void endpointRemoved(EndpointDescription endpoint, String matchedFilter)

endpoint The Endpoint Description that is no longer valid.

matchedFilter The filter from the ENDPOINT_LISTENER_SCOPE that matched the endpoint, must not be nul l .

Remove the registration of an endpoint. If an endpoint that was registered with the endpointAd-
ded(EndpointDescr ipt ion, Str ing) method is no longer available then this method should be called.
This will remove the endpoint from the listener. It is not necessary to remove endpoints when the
service is unregistered or modified in such a way that not all endpoints match the interest filter any-
more.
EndpointPermission

122.10.4 public final class EndpointPermission
extends Permission
A bundle’s authority to export, import or read an Endpoint.

• The export action allows a bundle to export a service as an Endpoint.
• The import action allows a bundle to import a service from an Endpoint.
• The read action allows a bundle to read references to an Endpoint.

Permission to read an Endpoint is required in order to detect events regarding an Endpoint.
Untrusted bundles should not be able to detect the presence of certain Endpoints unless they have
the appropriate EndpointPermission to read the specific service.

Concurrency Thread-safe
EXPORT

122.10.4.1 public static final String EXPORT = “export”

The action string export . The export action implies the read action.
IMPORT

122.10.4.2 public static final String IMPORT = “import”

The action string import . The import action implies the read action.
READ

122.10.4.3 public static final String READ = “read”

The action string read .
EndpointPermission(String,String)
OSGi Service Platform Release 4, Version 4.2 Page 309

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.0
122.10.4.4 public EndpointPermission(String filterString, String actions)

filterString The filter string or “*” to match all endpoints.

actions The actions read , import , or export .

Create a new EndpointPermission with the specified filter.

The filter will be evaluated against the endpoint properties of a requested EndpointPermission.

There are three possible actions: read , import and export . The read action allows the owner of this
permission to see the presence of distributed services. The import action allows the owner of this per-
mission to import an endpoint. The export action allows the owner of this permission to export a ser-
vice.

Throws IllegalArgumentException – If the filter has an invalid syntax or the actions are not valid.
EndpointPermission(EndpointDescription,String,String)

122.10.4.5 public EndpointPermission(EndpointDescription endpoint, String localFrameworkUUID, String
actions)

endpoint The requested endpoint.

localFrameworkUUIDThe UUID of the local framework. This is used to support matching the endpoint. framework.uuid
endpoint property to the <<LOCAL>> value in the filter expression.

actions The actions read , import , or export .

Creates a new requested EndpointPermission object to be used by code that must perform
checkPermiss ion . EndpointPermission objects created with this constructor cannot be added to an
EndpointPermission permission collection.

Throws IllegalArgumentException – If the endpoint is nul l or the actions are not valid.
equals(Object)

122.10.4.6 public boolean equals(Object obj)

obj The object to test for equality.

Determines the equality of two EndpointPermission objects. Checks that specified object has the
same name, actions and endpoint as this EndpointPermission .

Returns true If obj is a EndpointPermission , and has the same name, actions and endpoint as this
EndpointPermission object; fa lse otherwise.
getActions()

122.10.4.7 public String getActions()

Returns the canonical string representation of the actions. Always returns present actions in the fol-
lowing canonical order: read , import , export .

Returns The canonical string representation of the actions.
hashCode()

122.10.4.8 public int hashCode()

Returns the hash code value for this object.

Returns Hash code value for this object.
implies(Permission)

122.10.4.9 public boolean implies(Permission p)

p The target permission to check.

Determines if a EndpointPermission object “implies” the specified permission.

Returns true if the specified permission is implied by this object; fa lse otherwise.
newPermissionCollection()

122.10.4.10 public PermissionCollection newPermissionCollection()

Returns a new PermissionCol lect ion object for storing EndpointPermission objects.

Returns A new PermissionCollection object suitable for storing EndpointPermission objects.
ExportReference
Page 310 OSGi Service Platform Release 4, Version 4.2

Remote Service Admin Service Specification Version 1.0 org.osgi.service.remoteserviceadmin
122.10.5 public interface ExportReference
An Export Reference associates a service with a local endpoint. The Export Reference can be used to
reference an exported service. When the service is no longer exported, all methods must return nul l .

Concurrency Thread-safe
getExportedEndpoint()

122.10.5.1 public EndpointDescription getExportedEndpoint()

Return the Endpoint Description for the local endpoint.

Returns The Endpoint Description for the local endpoint. Must be nul l when the service is no longer exported.
getExportedService()

122.10.5.2 public ServiceReference getExportedService()

Return the service being exported.

Returns The service being exported. Must be nul l when the service is no longer exported.
ExportRegistration

122.10.6 public interface ExportRegistration
An Export Registration associates a service to a local endpoint. The Export Registration can be used
to delete the endpoint associated with an this registration. It is created with the RemoteServiceAd-
min.exportService(ServiceReference,Map) method. When this Export Registration has been closed,
all methods must return nul l .

Concurrency Thread-safe
close()

122.10.6.1 public void close()

Delete the local endpoint and disconnect any remote distribution providers. After this method
returns, all methods must return nul l . This method has no effect when this registration has already
been closed or is being closed.
getException()

122.10.6.2 public Throwable getException()

Return the exception for any error during the export process. If the Remote Service Admin for some
reasons is unable to properly initialize this registration, then it must return an exception from this
method. If no error occurred, this method must return nul l . The error must be set before this Export
Registration is returned. Asynchronously occurring errors must be reported to the log.

Returns The exception that occurred during the initialization of this registration or nul l if no exception oc-
curred.
getExportReference()

122.10.6.3 public ExportReference getExportReference()

Return the Export Reference for the exported service.

Returns The Export Reference for this registration.

Throws IllegalStateException – When this registration was not properly initialized. See getException() .
ImportReference

122.10.7 public interface ImportReference
An Import Reference associates an active proxy service to a remote endpoint. The Import Reference
can be used to reference an imported service. When the service is no longer imported, all methods
must return null .

Concurrency Thread-safe
getImportedEndpoint()

122.10.7.1 public EndpointDescription getImportedEndpoint()

Return the Endpoint Description for the remote endpoint.

Returns The Endpoint Description for the remote endpoint. Must be nul l when the service is no longer import-
ed.
getImportedService()
OSGi Service Platform Release 4, Version 4.2 Page 311

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.0
122.10.7.2 public ServiceReference getImportedService()

Return the Service Reference for the proxy for the endpoint.

Returns The Service Reference to the proxy for the endpoint. Must be nul l when the service is no longer import-
ed.
ImportRegistration

122.10.8 public interface ImportRegistration
An Import Registration associates an active proxy service to a remote endpoint. The Import Registra-
tion can be used to delete the proxy associated with an endpoint. It is created with the RemoteSer-
v iceAdmin. importService(EndpointDescr ipt ion) method. When this Import Registration has been
closed, all methods must return null .

Concurrency Thread-safe
close()

122.10.8.1 public void close()

Close this Import Registration. This must close the connection to the endpoint and unregister the
proxy. After this method returns, all other methods must return nul l . This method has no effect
when this registration has already been closed or is being closed.
getException()

122.10.8.2 public Throwable getException()

Return the exception for any error during the import process. If the Remote Service Admin for some
reasons is unable to properly initialize this registration, then it must return an exception from this
method. If no error occurred, this method must return nul l . The error must be set before this Import
Registration is returned. Asynchronously occurring errors must be reported to the log.

Returns The exception that occurred during the initialization of this registration or null if no exception oc-
curred.
getImportReference()

122.10.8.3 public ImportReference getImportReference()

Return the Import Reference for the imported service.

Returns The Import Reference for this registration.

Throws IllegalStateException – When this registration was not properly initialized. See getException() .
RemoteConstants

122.10.9 public class RemoteConstants
Provide the definition of the constants used in the Remote Service Admin specification.

Concurrency Immutable
ENDPOINT_FRAMEWORK_UUID

122.10.9.1 public static final String ENDPOINT_FRAMEWORK_UUID = “endpoint.framework.uuid”

Endpoint property identifying the universally unique id of the exporting framework. Can be absent if
the corresponding endpoint is not for an OSGi service.

The value of this property must be of type Str ing .
ENDPOINT_ID

122.10.9.2 public static final String ENDPOINT_ID = “endpoint.id”

Endpoint property identifying the id for this endpoint. This service property must always be set.

The value of this property must be of type Str ing .
ENDPOINT_PACKAGE_VERSION_

122.10.9.3 public static final String ENDPOINT_PACKAGE_VERSION_ = “endpoint.package.version.”

Prefix for an endpoint property identifying the interface Java package version for an interface. For
example, the property endpoint.package.vers ion.com.acme=1.3 describes the version of the pack-
age for the com.acme.Foo interface. This endpoint property for an interface package does not have to
be set. If not set, the value must be assumed to be 0.
Page 312 OSGi Service Platform Release 4, Version 4.2

Remote Service Admin Service Specification Version 1.0 org.osgi.service.remoteserviceadmin
Since endpoint properties are stored in a case insensitive map, case variants of a package name are
folded together.

The value of properties having this prefix must be of type Str ing .
ENDPOINT_SERVICE_ID

122.10.9.4 public static final String ENDPOINT_SERVICE_ID = “endpoint.service.id”

Endpoint property identifying the service id of the exported service. Can be absent or 0 if the corre-
sponding endpoint is not for an OSGi service.

The value of this property must be of type Long .
REMOTE_CONFIGS_SUPPORTED

122.10.9.5 public static final String REMOTE_CONFIGS_SUPPORTED = “remote.configs.supported”

Service property identifying the configuration types supported by a distribution provider. Registered
by the distribution provider on one of its services to indicate the supported configuration types.

The value of this property must be of type Str ing , Str ing[] , or Collection<String> .
REMOTE_INTENTS_SUPPORTED

122.10.9.6 public static final String REMOTE_INTENTS_SUPPORTED = “remote.intents.supported”

Service property identifying the intents supported by a distribution provider. Registered by the distri-
bution provider on one of its services to indicate the vocabulary of implemented intents.

The value of this property must be of type Str ing , Str ing[] , or Collection<String> .
SERVICE_EXPORTED_CONFIGS

122.10.9.7 public static final String SERVICE_EXPORTED_CONFIGS = “service.exported.configs”

Service property identifying the configuration types that should be used to export the service. Each
configuration type represents the configuration parameters for an endpoint. A distribution provider
should create an endpoint for each configuration type that it supports.

This property may be supplied in the propert iesDict ionary object passed to the
BundleContext.registerService method. The value of this property must be of type Str ing , Str ing[] ,
or Collect ion<String> .
SERVICE_EXPORTED_INTENTS

122.10.9.8 public static final String SERVICE_EXPORTED_INTENTS = “service.exported.intents”

Service property identifying the intents that the distribution provider must implement to distribute
the service. Intents listed in this property are reserved for intents that are critical for the code to func-
tion correctly, for example, ordering of messages. These intents should not be configurable.

This property may be supplied in the propert iesDict ionary object passed to the
BundleContext.registerService method. The value of this property must be of type Str ing , Str ing[] ,
or Collect ion<String> .
SERVICE_EXPORTED_INTENTS_EXTRA

122.10.9.9 public static final String SERVICE_EXPORTED_INTENTS_EXTRA = “service.exported.intents.extra”

Service property identifying the extra intents that the distribution provider must implement to dis-
tribute the service. This property is merged with the service.exported. intents property before the
distribution provider interprets the listed intents; it has therefore the same semantics but the prop-
erty should be configurable so the administrator can choose the intents based on the topology. Bun-
dles should therefore make this property configurable, for example through the Configuration
Admin service.

This property may be supplied in the propert iesDict ionary object passed to the
BundleContext.registerService method. The value of this property must be of type Str ing , Str ing[] ,
or Collect ion<String> .
SERVICE_EXPORTED_INTERFACES
OSGi Service Platform Release 4, Version 4.2 Page 313

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.0
122.10.9.10 public static final String SERVICE_EXPORTED_INTERFACES = “service.exported.interfaces”

Service property marking the service for export. It defines the interfaces under which this service can
be exported. This list must be a subset of the types under which the service was registered. The single
value of an asterisk (”*”, \u002A) indicates all the interface types under which the service was regis-
tered excluding the non-interface types. It is strongly recommended to only export interface types
and not concrete classes due to the complexity of creating proxies for some type of concrete classes.

This property may be supplied in the propert iesDict ionary object passed to the
BundleContext .registerService method. The value of this property must be of type Str ing , Str ing[] ,
or Collect ion<String> .
SERVICE_IMPORTED

122.10.9.11 public static final String SERVICE_IMPORTED = “service.imported”

Service property identifying the service as imported. This service property must be set by a distribu-
tion provider to any value when it registers the endpoint proxy as an imported service. A bundle can
use this property to filter out imported services.

The value of this property may be of any type.
SERVICE_IMPORTED_CONFIGS

122.10.9.12 public static final String SERVICE_IMPORTED_CONFIGS = “service.imported.configs”

Service property identifying the configuration types used to import the service. Any associated prop-
erties for this configuration types must be properly mapped to the importing system. For example, a
URL in these properties must point to a valid resource when used in the importing framework. If
multiple configuration types are listed in this property, then they must be synonyms for exactly the
same remote endpoint that is used to export this service.

The value of this property must be of type Str ing , Str ing[] , or Collect ion<String> .

See Also SERVICE_EXPORTED_CONFIGS
SERVICE_INTENTS

122.10.9.13 public static final String SERVICE_INTENTS = “service.intents”

Service property identifying the intents that this service implement. This property has a dual pur-
pose:

• A bundle can use this service property to notify the distribution provider that these intents are
already implemented by the exported service object.

• A distribution provider must use this property to convey the combined intents of: The exporting
service, and, the intents that the exporting distribution provider adds, and the intents that the
importing distribution provider adds.

To export a service, a distribution provider must expand any qualified intents. Both the exporting
and importing distribution providers must recognize all intents before a service can be distributed.

The value of this property must be of type Str ing , Str ing[] , or Collect ion<String> .
RemoteServiceAdmin

122.10.10 public interface RemoteServiceAdmin
A Remote Service Admin manages the import and export of services. A Distribution Provider can
expose a control interface. This interface allows a Topology Manager to control the export and
import of services. The API allows a Topology Manager to export a service, to import a service, and
find out about the current imports and exports.

Concurrency Thread-safe
exportService(ServiceReference,Map)

122.10.10.1 public Collection<ExportRegistration> exportService(ServiceReference reference, Map<String,
Object> properties)

reference The Service Reference to export.
Page 314 OSGi Service Platform Release 4, Version 4.2

Remote Service Admin Service Specification Version 1.0 org.osgi.service.remoteserviceadmin
properties The properties to create a local Endpoint that can be implemented by this Remote Service Admin. If
this is nul l , the Endpoint will be determined by the properties on the service. The properties are the
same as given for an exported service. They override any properties in the specified Service Reference
(case insensitive). The properties objectClass and service. id , in any case variant, are ignored. Those
properties in the Service Reference cannot be overridden. This parameter can be null , this should be
treated as an empty map.

Export a service to a given Endpoint. The Remote Service Admin must create an Endpoint from the
given description that can be used by other Distribution Providers to connect to this Remote Service
Admin and use the exported service. The property keys of a Service Reference are case insensitive
while the property keys of the specified propert ies map are case sensitive. A property key in the spec-
ified propert ies map must therefore override any case variant property key in the properties of the
specified Service Reference.

If the caller does not have the appropriate EndpointPermission[endpoint,EXPORT] for an Endpoint,
and the Java Runtime Environment supports permissions, then the getException method on the cor-
responding returned ExportRegistrat ion will return a SecurityException .

Returns A Col lect ion of ExportRegistrat ions for the specified Service Reference and properties. Multiple Ex-
port Registrations may be returned because a single service can be exported to multiple Endpoints de-
pending on the available configuration type properties. The result is never nul l but may be empty if
this Remove Service Admin does not recognize any of the configuration types.

Throws IllegalArgumentException – If any of the properties has a value that is not syntactically correct or
if the service properties and the overlaid properties do not contain a RemoteCon-
stants.SERVICE_EXPORTED_INTERFACES entry.

UnsupportedOperationException – If any of the intents expressed through the properties is not sup-
ported by the distribution provider.
getExportedServices()

122.10.10.2 public Collection<ExportReference> getExportedServices()

Return the currently active Export References.

If the caller does not have the appropriate EndpointPermission[endpoint,READ] for an Endpoint, and
the Java Runtime Environment supports permissions, then returned collection will not contain a ref-
erence to the exported Endpoint.

Returns A Col lect ion of ExportReferences that are currently active.
getImportedEndpoints()

122.10.10.3 public Collection<ImportReference> getImportedEndpoints()

Return the currently active Import References.

If the caller does not have the appropriate EndpointPermission[endpoint,READ] for an Endpoint, and
the Java Runtime Environment supports permissions, then returned collection will not contain a ref-
erence to the imported Endpoint.

Returns A Col lect ion of ImportReferences that are currently active.
importService(EndpointDescription)

122.10.10.4 public ImportRegistration importService(EndpointDescription endpoint)

endpoint The Endpoint Description to be used for import.

Import a service from an Endpoint. The Remote Service Admin must use the given Endpoint to create
a proxy. This method can return nul l if the service could not be imported.

Returns An Import Registration that combines the Endpoint Description and the Service Reference or nul l if
the Endpoint could not be imported.

Throws SecurityException – If the caller does not have the appropriate EndpointPermiss ion[endpoint,
IMPORT] for the Endpoint, and the Java Runtime Environment supports permissions.
RemoteServiceAdminEvent
OSGi Service Platform Release 4, Version 4.2 Page 315

org.osgi.service.remoteserviceadmin Remote Service Admin Service Specification Version 1.0
122.10.11 public class RemoteServiceAdminEvent
Provides the event information for a Remote Service Admin event.

Concurrency Immutable
EXPORT_ERROR

122.10.11.1 public static final int EXPORT_ERROR = 6

A fatal exporting error occurred. The Export Registration has been closed.
EXPORT_REGISTRATION

122.10.11.2 public static final int EXPORT_REGISTRATION = 2

Add an export registration. The Remote Service Admin will call this method when it exports a ser-
vice. When this service is registered, the Remote Service Admin must notify the listener of all exist-
ing Export Registrations.
EXPORT_UNREGISTRATION

122.10.11.3 public static final int EXPORT_UNREGISTRATION = 3

Remove an export registration. The Remote Service Admin will call this method when it removes the
export of a service.
EXPORT_WARNING

122.10.11.4 public static final int EXPORT_WARNING = 7

A problematic situation occurred, the export is still active.
IMPORT_ERROR

122.10.11.5 public static final int IMPORT_ERROR = 5

A fatal importing error occurred. The Import Registration has been closed.
IMPORT_REGISTRATION

122.10.11.6 public static final int IMPORT_REGISTRATION = 1

Add an import registration. The Remote Service Admin will call this method when it imports a ser-
vice. When this service is registered, the Remote Service Admin must notify the listener of all exist-
ing Import Registrations.
IMPORT_UNREGISTRATION

122.10.11.7 public static final int IMPORT_UNREGISTRATION = 4

Remove an import registration. The Remote Service Admin will call this method when it removes the
import of a service.
IMPORT_WARNING

122.10.11.8 public static final int IMPORT_WARNING = 8

A problematic situation occurred, the import is still active.
RemoteServiceAdminEvent(int,Bundle,ExportReference,Throwable)

122.10.11.9 public RemoteServiceAdminEvent(int type, Bundle source, ExportReference exportReference,
Throwable exception)

type The event type.

source The source bundle, must not be nul l .

exportReference The exportReference, can not be null .

exception Any exceptions encountered, can be nul l .

Create a Remote Service Admin Event for an export notification.
RemoteServiceAdminEvent(int,Bundle,ImportReference,Throwable)

122.10.11.10 public RemoteServiceAdminEvent(int type, Bundle source, ImportReference importReference,
Throwable exception)

type The event type.

source The source bundle, must not be nul l .

importReference The importReference, can not be nul l .
Page 316 OSGi Service Platform Release 4, Version 4.2

Remote Service Admin Service Specification Version 1.0 References
exception Any exceptions encountered, can be nul l .

Create a Remote Service Admin Event for an import notification.
getException()

122.10.11.11 public Throwable getException()

Return the exception for this event.

Returns The exception or nul l .
getExportReference()

122.10.11.12 public ExportReference getExportReference()

Return the Export Reference for this event.

Returns The Export Reference or nul l .
getImportReference()

122.10.11.13 public ImportReference getImportReference()

Return the Import Reference for this event.

Returns The Import Reference or nul l .
getSource()

122.10.11.14 public Bundle getSource()

Return the bundle source of this event.

Returns The bundle source of this event.
getType()

122.10.11.15 public int getType()

Return the type of this event.

Returns The type of this event.
RemoteServiceAdminListener

122.10.12 public interface RemoteServiceAdminListener
A RemoteServiceAdminEvent listener is notified synchronously of any export or import registra-
tions and unregistrations.

If the Java Runtime Environment supports permissions, then filtering is done.
RemoteServiceAdminEvent objects are only delivered to the listener if the bundle which defines the
listener object’s class has the appropriate EndpointPermission[endpoint ,READ] for the endpoint ref-
erenced by the event.

See Also RemoteServiceAdminEvent

Concurrency Thread-safe
remoteAdminEvent(RemoteServiceAdminEvent)

122.10.12.1 public void remoteAdminEvent(RemoteServiceAdminEvent event)

event The RemoteServiceAdminEvent object.

Receive notification of any export or import registrations and unregistrations as well as errors and
warnings.

122.11 References
[1] OSGi Core Specifications

http://www.osgi.org/Specifications/HomePage

[2] OSGi Service Property Namespace
http://www.osgi.org/Specifications/ServicePropertyNamespace

[3] UUIDs
http://en.wikipedia.org/wiki/Universally_Unique_Identifier
OSGi Service Platform Release 4, Version 4.2 Page 317

References Remote Service Admin Service Specification Version 1.0
[4] Service Location Protocol (SLP)
http://en.wikipedia.org/wiki/Service_Location_Protocol

[5] JGroups
http://www.jgroups.org/

[6] UDDI
http://en.wikipedia.org/wiki/Universal_Description_Discovery_and_Integration

[7] Service Component Architecture (SCA)
http://www.osoa.org/display/Main/Home

w.rgoarchitects.
Page 318 OSGi Service Platform Release 4, Version 4.2

JTA Transaction Services Specification Version 1.0 Introduction
123 JTA Transaction Services
Specification
Version 1.0

123.1 Introduction
Transactions are the key abstraction to provide reliability with large scale distributed systems and are
a primary component of enterprise systems. This specification provides an OSGi service based design
for the Java Transaction Architecture (JTA) Specification, which describes the standard transaction
model for Java applications. Providing the JTA specification as a service based model enables the use
of independent implementations. This JTA Transaction Services Specification provides a managed
model, where an Application Container (such as the Java EE EJB container) manages the transaction
and the enlistment of resources, and an unmanaged model, where each application is responsible for
these tasks itself.

This specification provides a brief overview of JTA and then the use of it through 3 transaction ser-
vices: User Transaction, Transaction Manager, and Transaction Synchronization.

This specification is based on [1] Java Transaction API Specification 1.1.

123.1.1 Essentials
• Portability – It is important that applications are easy to port from other environments that

support JTA.
• Pluggability – Allow different vendors to provide implementations of this specification.
• JTA Compatible – Support full JTA 1.1 Specification

123.1.2 Entities
• JTA Provider – Implementation of this specification. It is responsible, on request from a Trans-

action Originator, for starting and ending transactions and coordinating the work of Resource
Managers that become involved in each Transaction. This entity provides the User Transaction
service, Transaction Manager service, and the Transaction Synchronization Registry service.

• Transaction – An atomic unit of work that is associated with a thread of execution.
• Transaction Originator – An Application or its Container, that directs the JTA Provider to begin and

end Transactions.
• User Transaction – A service used by a Transaction Originator for beginning and ending transac-

tions.
• Transaction Manager – A service used by a Transaction Originator for managing both transaction

demarcation and enlistment of Durable Resources or Volatile Resources.
• Transaction Synchronization Registry – A service for enlistment of Volatile Resources for getting

notifications before and after ending Transactions.
• Application Bundle – An entity that initiates work that executes under a Transaction.
• Container – An entity that is distinct from the Application and which provides a managed envi-

ronment for Applications. Unmanaged environments do not distinguish between the Application
and Container entities.

• Resource Manager – Provides the transactional resources whose work is externally coordinated by
a JTA Provider. Examples of Resource Managers include databases, Java Message Service providers
and enterprise information systems.
OSGi Service Platform Release 4, Version 4.2 Page 319

Introduction JTA Transaction Services Specification Version 1.0
• Durable Resource – A resource whose work is made durable when the Transaction is successfully
committed. Durable Resources can be enlisted with a Transaction to ensure that work is per-
formed within the scope of the Transaction and to participate in the outcome of a Transaction.
Durable Resource enlistment is the responsibility of the Application Bundle or its Container.
Durable Resources implement the javax.transaction.xa.XAResource interface

• Volatile Resource – Resources that are associated with a Transaction but are no longer needed after
the Transaction, for example transaction-scoped caches. Volatile Resources are registered with the
JTA Provider to receive notifications before and after the outcome of the Transaction. Volatile
Resources implement the javax.transaction.Synchronizat ion interface

• Transaction Services – The triplet of the User Transaction, Transaction Manager, and Transaction
Synchronization Registry services registered by the JTA Provider.

Figure 123.1 Transaction Service Specification Entities

123.1.3 Dependencies
This specification is based on the following packages:

javax.transaction
javax.transaction.xa

These packages must be exported as version 1.1.

123.1.4 Synopsis
The JTA Provider register the Transaction Services:

• User Transaction – Offers transaction demarcation capabilities to an Application bundle.
• Transaction Manager – Offers transaction demarcation and further transaction management capa-

bilities to an Application Bundle or an Application Container.
• Transaction Synchronization Registry – Offers a callback registration service for volatile transac-

tional participants wishing to be notified of the completion of the transaction.

A JTA Provider must register these services when it is started. A JTA Provider may put restrictions on
which bundles can use these services. For example, in a Java EE environment, the JTA Provider does
not expose the Transact ionManager interface to applications. An OSGi environment which supports
the Java EE specifications will typically provide access to the Transaction Manager service only to
Java EE Containers.

JTA Provider

Managed
Application Impl

Application
Container Impl

Resource
Manager Impl

User
Transaction

Transaction
Manager

XA Protocol

Transaction
Synchronization
Registry

* a resource specific service

<<interface>>
XAResource

XA Resource Impl
Page 320 OSGi Service Platform Release 4, Version 4.2

JTA Transaction Services Specification Version 1.0 JTA Overview
A typical example of the use of a transaction is for transferring money from one bank account to
another. Two Durable Resources are involved, one provided by the database from which the money is
to be withdrawn and another provided by the database to which the money will be deposited. An
Application Bundle acting as the Transaction Originator gets the User Transaction service and uses it
to begin a transaction. This transaction is associated with the current thread (implicitly) by the JTA
Provider. On the same thread of execution, the Application Bundle connects to the database from
which the money is to be withdrawn and updates the balance in the source account by the amount to
be debited.

The database is a resource manager whose connections have associated XA Resources; the first time a
connection is used within the scope of a new transaction the Application Bundle, or a Container,
obtains the XA Resource associated with the connection and enlists it with the JTA Provider through
the Transaction Manager service. On the same thread of execution, the Application Bundle connects
to the second database and updates the balance in the target account by the amount to be credited.
An XA Resource for the second connection is enlisted with the Transaction Manager service as well
by the Application Bundle or a Container.

Now that the money has been transferred the Transaction Originator requests a commit of the Trans-
action (on the same thread of execution) via the User Transaction Service, causing the JTA Provider to
initiate the two-phase commit process with the two Resource Managers through the enlisted XA
Resources. The transaction is then atomically committed or rolled back.

123.2 JTA Overview
A transaction is a unit of work in which interactions with multiple participants can be coordinated
by a third party such that the final outcome of these interactions has well-defined transactional
semantics. A variety of well-known transaction models exist with specific characteristics; the trans-
actions described in this specification provide Atomic Consistent Isolated and Durable (ACID) semantics
as defined in [2] XA+ Specification whereby all the participants in a transaction are coordinated to an
atomic outcome in which the work of all the participants is either completely committed or com-
pletely rolled back.

The [2] XA+ Specification defines a Distributed Transaction Processing (DTP) software architecture for
transactional work that is distributed across multiple Resource Managers and coordinated externally
by a Transaction Manager using the two-phase commit XA protocol. The DTP architecture defines
the roles of the Transaction Manager and Resource Manager; this specification uses the term JTA Pro-
vider rather than Transaction Manager to distinguish it from the Transaction Manager service. Note that
Distributed Transaction Processing does not imply distribution of transactions across multiple
frameworks or JVMs.

The [1] Java Transaction API Specification 1.1 defines the Java interfaces required for the management
of transactions on the enterprise Java platform.

123.2.1 Global and Local Transactions
A transaction may be a local transaction or a global transaction. A local transaction is a unit of work that
is local to a single Resource Manager and may succeed or fail independently of the work of other
Resource Managers. A global transaction, sometimes referred to as a distributed transaction, is a unit
of work that may encompass multiple Resource Managers and is coordinated by a JTA Provider exter-
nal to the Resource Manager(s) as described in the DTP architecture. The term transaction in this spec-
ification always refers to a global transaction.
OSGi Service Platform Release 4, Version 4.2 Page 321

JTA Overview JTA Transaction Services Specification Version 1.0
The JTA Provider is responsible for servicing requests from a Transaction Originator to create and
complete transactions, it manages the state of each transaction it creates, the association of each
transaction with the thread of execution, and the coordination of any Resource Managers that
become involved in the global transaction. The JTA Provider ensures that each transaction is associ-
ated with, at most, one application thread at a time and provides the means to move that association
from one thread to another as needed.

The model for resource commit coordination is the two phase commit XA protocol, with Resource
Managers being directed by the JTA Provider. The first time an Application accesses a Resource Man-
ager within the scope of a new global transaction, the Application, or its Container, obtains an XA
Resource from the Resource Manager and enlists this XA Resource with the JTA Provider.

At the end of a transaction, the Transaction Originator must decide whether to initiate a commit or
rollback request for all the changes made within the scope of the Transaction. The Transaction Origi-
nator requests that the JTA Provider completes the transaction. The JTA Provider then negotiates
with each enlisted Resource Manager to reach a coordinated outcome. A failure in the transaction at
any point before the second phase of two-phase commit results in the transaction being rolled back.

XA is a presumed abort protocol and implementations of XA-compliant JTA Providers and Resource
Managers can be highly optimized to perform no logging of transactional state until a commit deci-
sion is required. A Resource Manager durably records its prepare decision, and a JTA Provider durably
records any commit decision it makes. Failures between a decision on the outcome of a transaction
and the enactment of that outcome are handled during transaction recovery to ensure the atomic out-
come of the transaction.

123.2.2 Durable Resource
Durable Resources are provided by Resource Managers and must implement the XAResource inter-
face described in the [1] Java Transaction API Specification 1.1. An XAResource object is enlisted with a
transaction to ensure that the work of the Resource Manager is associated with the correct transac-
tion and to participate in the two-phase commit process. The XAResource interface is driven by the
JTA Provider during the completion of the transaction and is used to direct the Resource Manager to
commit or rollback any changes made under the corresponding transaction.

123.2.3 Volatile Resource
Volatile resources are components that do not participate in the two phase commit but are called
immediately prior to and after the two phase commit. They implement the [1] Java Transaction API
Specification 1.1 Synchronizat ion interface. If a request is made to commit a transaction then the vola-
tile participants have the opportunity to perform some before completion processing such as flushing
cached updates to persistent storage. Failures during the before completion processing must cause the
transaction to rollback. In both the commit and rollback cases the volatile resources are called after
two phase commit to perform after completion processing. After completion procession cannot affect the
outcome of the transaction.

123.2.4 Threading
As noted above in Global and Local Transactions on page 321, a global transaction must not be associ-
ated with more than one application thread at a time but can be moved over time from one applica-
tion thread to another. In some environments Applications run in containers which restrict the
ability of the Application component to explicitly manage the transaction-thread association by
restricting access to the Transaction Manager. For example, Java EE application servers provide web
and EJB Containers for application components and, while the Containers themselves can explicitly
manage transaction-thread associations, these containers do not allow the Applications to do so.
Applications running in these containers are required to complete any transactions they start on that
same application thread. In general, Applications that run inside a Container must follow the rules
defined by that Container. For further details of the considerations specific to Java EE containers, see
the section Transactions and Threads in [4] Java Platform, Enterprise Edition (Java EE) Specification, v5.
Page 322 OSGi Service Platform Release 4, Version 4.2

JTA Transaction Services Specification Version 1.0 Application
123.3 Application
An Application is a bundle that may use transactions, either as a Transaction Originator or as a bundle
that is called as part of an existing transaction. A Transaction Originator Application bundle starts a
transaction and end it with a commit or rollback using the User Transaction or Transaction Manager
service.

A Transaction Originator Application bundle may not make use of Resource Managers itself but may
simply provide transaction demarcation and then call other bundles which do use Resource Manag-
ers. In such a case the Transaction Originator Application bundle requires only the use of the User
Transaction service for transaction demarcation. The called bundles may use the Transaction Man-
ager service if they use Resource Managers.

Application Bundles that use Resource Managers have to know the enlistment strategy for the
Resource Managers they use. There are two possibilities:

• Application Bundle Enlistment – The Application Bundle must enlist the Resource Managers itself.
For each Resource Manager it uses it must enlist that Resource Manager with the Transaction
Manager.

• Container-Managed Enlistment – An Application runs in a container, such as a Java EE Container,
which manages the Resource Manager enlistment on behalf of the Application.

These scenarios are explained in the following sections.

123.3.1 No Enlistment
A Transaction Originator Application bundle that uses no Resource Managers itself but starts a
Transaction before calling another bundle may use the User Transaction service to control the Trans-
action demarcation.

For example, an Application can use the User Transaction service to begin a global transaction:

UserTransact ion ut = getUserTransaction() ;
ut .begin() ;

The User Transaction service associates a transaction with the current thread until that transaction is
completed via:

UserTransact ion ut = getUserTransaction() ;
ut .commit() ;

Or the equivalent rol lback method. The getUserTransaction method implementation (not shown)
can get the User Transaction service directly from the service registry or from an injected field.

123.3.2 Application Bundle Enlistment
An Application Bundle is responsible for enlisting Resource Managers itself. That is, it must enlist
Resource Manager it uses with the Transaction Manager service. The Transaction Manager service is
an implementation of the JTA Transact ionManager interface, registered by the JTA Provider.

For example, an Application Bundle can get an XADataSource object from a Data Source Factory ser-
vice. Such a Data Source object can provide an XAConnection object that then can provide an
XAResource object. XAResource objects can then be enlisted with the Transaction Manager service.

For example:

TransactionManager tm;
XADataSource left;
XADataSource right;

void acid() throws Exception {
 tm.begin();
OSGi Service Platform Release 4, Version 4.2 Page 323

Application JTA Transaction Services Specification Version 1.0
Transaction transaction = tm.getTransact ion() ;
 try {

XAConnection left = this . left .getXAConnection();
XAConnection r ight = this . r ight.getXAConnection() ;
transaction.enlistResource(le ft.getXAResource());
transaction.enlistResource(r ight.getXAResource());
doWork(left.getConnection(), right.getConnection());
tm.commit();

} catch(Throwable t) {
tm.rollback();
throw t; } }

// ...
void setTransactionManager(TransactionManager tm) { this.tm = tm; }
void setDataSourceFactory(DataSourceFactory dsf) {

left = dsf.createXADataSource(getLeftProperties());
right = dsf.createXADataSource(getRightProperties());

}

In the previous example, the Transaction Manager service could have been injected with a compo-
nent model like Declarative Services:

<reference interface="javax.transaction.TransactionManager"
bind="setTransactionManager"/>

<reference name="dsf" interface="org.osgi.service.jdbc.DataSourceFactory"
bind="setDataSourceFactory"/>

For example, it is possible to provide a Data Source service that provides automatic enlistment of the
Connection as an XA Resource when one of its getConnection methods is called inside a transaction.
The following code contains a Declarative Service component that implement this design. The com-
ponent references a Transaction Manager service and a Data Source Factory service and provides a
Data Source service that proxies an XA Data Source. Applications depend on the Data Source service,
assuming that the Data Source service automatically enlists the connections it uses inside a transac-
tion. See for an overview Figure 123.2 on page 324.

Figure 123.2 Data Source Proxy

This general purpose Data Source Proxy component can be fully configured by the Configuration
Admin service to instantiate this component for each needed database connection. The Declarative
Services service properties can be used to select a Data Source Factory for the required database driver
(using the target), as well as provide the configuration properties for the creation of an XA Data
Source. That is, such a component could be part of a support library.

The code for such an Application component could start like:

public class DataSourceProxy implements DataSource {
Properties properties= new Properties();
TransactionManager tm;
XADataSource xads;

Data Source Proxy
Component

Data Source

Transaction
Manager

Data Source
Factory

Application Code

User Transaction
Page 324 OSGi Service Platform Release 4, Version 4.2

JTA Transaction Services Specification Version 1.0 Application
The act ivate method is called when the component’s dependencies are met, that is, there is a Transac-
tion Manager service as well as a matching Data Source Factory service. In this method, the proper-
ties of the component are copied to a Propert ies object to be compatible with the Data Source Factory
factory methods.

void activate(ComponentContext c) {
// copy the properties set by the Config Admin into properties
...

}

The relevant methods in the Data Source Proxy component are the getConnection methods. The
contract for this proxy component is that it enlists the XA Data Connection’s XA Resource when it is
called inside a transaction. This enlistment is done in the private enl ist method.

public Connection getConnection() throws SQLException {
XAConnection connection = xads.getXAConnection();
return enlist(connection); }

public Connection getConnection(String username, String password)
throws SQLException {

XAConnection connection = xads.getXAConnection(username,password);
return enlist(connection); }

The enl ist method checks if there currently is a transaction active. If not, it ignores the enlistment,
the connection will then not be connection to the transaction. If there is a current transaction, it
enlists the corresponding XA Resource.

private Connection enlist(XAConnection connection) throws SQLException {
try {

Transaction transaction = tm.getTransaction();
if (transaction != null)

transaction.enlistResource(connection.getXAResource());
} catch (Exception e) {

SQLException sqle=
new SQLException("Failed to enlist");

sqle.initCause(e);
throw sqle;

}
return connection.getConnection();

}

What remains are a number of boilerplate methods that forward to the XA Data Source or set the
dependencies.

void setTransactionManager(TransactionManager tm) { this.tm = tm;}
void setDataSourceFactory(DataSourceFactory dsf) throws Exception {

xads = dsf.createXADataSource(properties);}
public PrintWriter getLogWriter()

throws SQLException { return xads.getLogWriter(); }

public int getLoginTimeout()
throws SQLException { return xads.getLoginTimeout();}

public void setLogWriter(PrintWriter out)
throws SQLException { xads.setLogWriter(out); }

public void setLoginTimeout(int seconds)
throws SQLException { xads.setLoginTimeout(seconds);}
OSGi Service Platform Release 4, Version 4.2 Page 325

Resource Managers JTA Transaction Services Specification Version 1.0
This is a fully coded example, it only lacks the configuration definitions for the Configuration Admin
service.

This example Data Source proxy component makes it possible for an Application to depend on a
Data Source service. The connections the Application uses from this Data Source are automatically
transactional as long as there is a current transaction when the service is called. However, this
approach only works when all bundles in the service platform follow the same enlistment strategy
because this specification does not provide a common enlistment strategy.

123.3.3 Container Managed Enlistment
The Application Container is responsible for enlisting Resource Managers used by the Application.
For example, the Java EE Web and EJB Containers have a well defined model for managing resources
within a transaction. If an Application runs inside a Java EE Container then it is the responsibility of
the Java EE Container to handle the resource enlistment, the actual rules are beyond this specifica-
tion.

A Transaction Originator Application bundle running inside a Container which manages any
Resource Managers enlistment may use the User Transaction service for transaction demarcation,
assuming this service is made available by the Container.

When a Java EE Container runs inside an OSGi Service Platform then it must ensure that any services
seen by its contained Applications are the same Transaction services as other bundles on that service
platform.

123.4 Resource Managers
Resource Managers perform work that needs to be committed or rolled back in a transaction. To par-
ticipate in a transaction, a Resource Manager must have an XA Resource enlisted with the current
transaction. This specification does not define how OSGi service implementations should be
enlisted. This can be done by a Java EE Container, the Applications themselves, or through some
other unspecified means.

123.5 The JTA Provider
The JTA Provider is the entity that provides the transaction services:

• User Transaction – A service that implements the JTA UserTransact ion interface.
• Transaction Manager – A service that implements the JTA Transact ionManager interface.
• Transaction Synchronization Registry – A service that implements the JTA

Transact ionSynchronizat ionRegistry interface.

There can be at most one JTA Provider in an OSGi framework and this JTA Provider must ensure that
at most one transaction is associated with an application thread at any moment in time. All JTA Pro-
vider’s transaction services must map to the same underlying JTA implementation. All JTA services
should only be registered once.

123.5.1 User Transaction
The User Transaction service may be used by an Application bundle, acting as the Transaction Origi-
nator, to demarcate transaction boundaries when the bundle has no need to perform resource enliste-
ment.
Page 326 OSGi Service Platform Release 4, Version 4.2

JTA Transaction Services Specification Version 1.0 Life Cycle
123.5.2 Transaction Manager
The Transaction Manager service offers transaction demarcation and further transaction manage-
ment capabilities, such as Durable and Volatile resource enlistment, to an Application bundle or
Application Container.

123.5.3 Transaction Synchronization Service
The Transaction Synchronization Registry service may be used by an Application bundle or a Con-
tainer. The service provides for the registration of Volatile Resources that implement the JTA
Synchronization interface.

For example:

private class MyVolatile implements Synchronization {...}
Transact ionSynchronizat ionRegistry tsr = . . . ; // may be injected
tsr . registerInterposedSynchronizat ion(new MyVolat i le()) ;

123.6 Life Cycle

123.6.1 JTA Provider
The life cycle of the transaction services and bundles that make up the JTA Provider must be dealt
with appropriately such that implementations always ensure the atomic nature of transactions.
When the JTA Provider is stopped and its services are unregistered, the JTA Provider must make sure
that all active transactions are dealt with appropriately. A JTA Provider can decide to rollback all
active transactions or it can decide to keep track of existing active transactions and allow them to
continue to their normal conclusion but not allow any new transactions to be created. Any failures
caused by executing code outside their life cycle can be dealt with as general failures. From a transac-
tional consistency point of view, stopping the bundle(s) that implement the JTA Provider while
transactional work is in-flight, is no different from a failure of the framework hosting the JTA Pro-
vider. In either case transaction recovery is initiated by the JTA Provider after it has re-started.

There are well-defined XA semantics between a JTA Provider and Resource Managers in the event of a
failure of either at any point in a transaction. If a Resource Manager bundle is stopped while it is
involved in-flight transactions then the JTA Provider should exhibit the same external behavior it
does in the event of a communication failure with the Resource Manager. For example a JTA Provider
will respond to an XAER_RMFAIL response resulting from calling the XAResource commit method by
retrying the commit . The mechanism used by the JTA Provider to determine when to retry the
commit is a detail of the implementation.

123.6.2 Application Bundles
Applications can act in the role of the Transaction Originator. There is no guarantee that an Applica-
tion that starts a transaction will always be available to complete the transaction since the client can
fail independently of the JTA Provider. A failure of the Application Bundle to complete, in a timely
fashion, a transaction it originated must finally result in the JTA Provider rolling back the transac-
tion.

123.6.3 Error Handling
This specification does not define a specific error handling strategy. Exceptions and errors that occur
during transaction processing can result in the transaction being marked rollback-only by the con-
tainer or framework in which an Application runs or may be left for the Application to handle. An
Application which receives an error or an exception while running under a transaction can choose to
mark the transaction rollback-only.
OSGi Service Platform Release 4, Version 4.2 Page 327

Security JTA Transaction Services Specification Version 1.0
123.7 Security
This specification relies on the security model of JTA.

123.8 References
[1] Java Transaction API Specification 1.1

http://java.sun.com/javaee/technologies/jta/index.jsp

[2] XA+ Specification
Version 2, The Open Group, ISBN: 1-85912-046-6

[3] Transaction Processing
J. Gray and A. Reuter. Morgan Kaufmann Publishers, ISBN 1.55860-190-2

[4] Java Platform, Enterprise Edition (Java EE) Specification, v5
http://jcp.org/en/jsr/detail?id=244
Page 328 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 Introduction
124 JMX™ Management Model
Specification
Version 1.0

124.1 Introduction
The Java Management Extensions (JMX) is the standard API specification for providing a manage-
ment interface to Java SE and Java EE applications. The JMX specification defines the design patterns,
APIs, services and architecture for application management, network management and monitoring
in the Java programming language. The need to administer, monitor and manage a container is today
recognized as a prerequisite in the enterprise software domain.

While OSGi defines a rich API for controlling all aspects of the framework, this API is not suitable for
direct usage in the JMX framework because it was not designed to be remoted. This specification pro-
vides an interface adaptation of the existing OSGi framework, which can be used to expose an OSGi
Framework manipulation API to any JMX compliant implementation. Interfaces and system seman-
tics for a monitoring system are specified for exposing the underlying artifacts of the OSGi frame-
work such as services and bundles. Additionally, the management of a number of core and
compendium services have been standardized in this document.

Finally, a standardized JMX object naming standard is proposed so that management objects are uni-
formly named across implementations such that any JMX compliant system can find, manipulate
and interact with the framework and artifacts that it manages.

This specification requires version 1.2 or later of JMX, which imply the use of Java 5.

124.1.1 Essentials
• Life Cycle – Must allow support of full life cycle management of bundles.
• Batch – Support batch oriented operations to minimize the influence of network capacity and

latency.
• Compatible – This specification must work naturally with JMX.
• Efficient –Minimize the number of registered objects to not overload the MBean Server and com-

munication channels.
• Open MBean – Support the Open MBean layer of JMX instead of using domain specific objects.
• Core – Supports all the Framework’s operations.
• Core Services – Support the framework services if registered. Conditional Permission Admin is not

supported.

124.1.2 Entities
• MBean – A Managed Bean. The core concept of JMX to manage an entity.
• MBean Server – The MBean Server is the access point for registering MBeans.
• Manager – The entity that implements the MBeans and registers them with the registered MBean

servers.
• Object Name – A name for an MBean registered with an MBean Server.
• Bundle State MBean – Provides central access to the state of a bundle in a framework. It provides

both a general MBean interface as well as an Open Type description.
• Framework MBean – Represents the general framework’s state and can be used to manage the life

cycle of bundles.
OSGi Service Platform Release 4, Version 4.2 Page 329

JMX Overview JMX™ Management Model Specification Version 1.0
• Service State MBean – Provides access to the service information in the service registry. It provides
both a general MBean interface as well as an Open Type description.

• Configuration Admin MBean – Can be used to manipulate a Configuration Admin service.
• Permission Admin MBean – Provides access to the Permission Admin service.
• Provisioning Service MBean – Provides access to the Provisioning Service.
• User Admin MBean – Provides access to the User Admin service.
• Item – A helper class to create Open Types. This class is intended to make the Javadoc easier to nav-

igate and keep definitions close together. This is otherwise hard to do with Open Type. This class
has no utility for management applications.

• Open Type – A JMX metadata standard to describe MBeans.
• Remote Manager – The entity accessing a MBean Server remotely.
• JConsole – The default Java Remote Manager.

Figure 124.1 MBeans

124.1.3 Synopsis
This specification plays a part in both the OSGi framework as well as in a remote manager.

A JMX OSGi manager bundle obtains one or more MBean servers that are registered as services. The
JMX OSGi manager then registers all its managed beans: Framework MBean, Bundle State MBean,
Package State MBean, and the Service State MBean under their JMX object names. If a number of
optional services are registered, then the JMX OSGi bundle must also register a corresponding MBean
with the MBean server for each of the services that it can obtain.

A remote manager can access an MBean Server running in a (remote) VM. The remote manager can
then discover any MBeans. These MBeans can be manipulated as dynamic types or as specific types as
outlined in this specification.

124.2 JMX Overview
JMX is a specification which defines how arbitrary remote communication protocols and mecha-
nisms can be adapted to interact with the underlying management APIs exposed by JMX compliant
implementations. JMX is not a remote communication standard, the actual protocols can vary. The
JMX architecture is composed of three levels:

JMX OSGi
Manager

<<MBean>>
Framework
MBean

<<MBean>>
Bundle State
MBean

<<MBean>>
Service State
MBean

<<MBean>>
Package State
MBean

<<MBean>>
Configuration
Admin MBean

<<MBean>>
Permission
Admin MBean

<<MBean>>
Provisioning
ServiceMBean

<<MBean>>
User Admin
MBean

PermissionAdmin

Configuration Admin

Provisioning Service

User Admin

MBean Server
Page 330 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 JMX Overview
• Instrumentation – The managed resources of the system are instrumented using managed beans
(a.k.a. MBeans) which expose their management interfaces through a JMX agent for remote man-
agement and monitoring.

• Agent – The JMX agent layer is mainly represented by the MBean server. This is the managed object
server where the MBeans are registered. The JMX agent includes a set of functions for manipu-
lating the registered MBeans, which directly expose and control the underlying resources, and
then make them available to remote managers.

• Remote Manager – The remote management layer provides the specification for the actual remote
communication protocol adapters and defines standard connectors which make the JMX agent
accessible to remote managers outside of the Java process that hosts the agent.

The JMX Architecture is depicted in Figure 124.2.

Figure 124.2 JMX Architecture

124.2.1 Connectors and Adapters
Connectors are used to connect an agent with a remote JMX-enabled managers. This form of commu-
nication involves a connector in the JMX agent and a connector client in the management applica-
tion. Protocol adapters provide a management view of the JMX agent through a given protocol.

Remote managers that connect to a protocol adapter are usually specific to the given protocol.
Remote Managers can be generic consoles (such as JConsole; see Using JConsole to Monitor Applications
on page 373), or domain-specific monitoring applications. External applications can interact with the
MBeans through the use of JMX connectors and protocol adapters.

124.2.2 Object Name
All managed objects in JMX are referenced via JMX Object Names. Object Names are strings which can
be resolved within the context of a JMX MBean Server in order. An Object Name consists of two parts:

ObjectName ::= domain ’:’ properties
properties ::= property (’,’ property)*

To avoid collisions between MBeans supplied by different vendors, a recommended convention is to
begin the domain name with the reverse DNS name of the organization that specifies the MBeans,
followed by a period and a string whose interpretation is determined by that organization.

MBeans specified by the OSGi Alliance would have domains that start with osgi .

124.2.3 MBeans
Any object can be registered with an MBean Server and manipulated remotely over an MBean Server
Connection. An MBean Server Connection can represent the a local MBean Server or a remote MBean
Server. An MBean is always identified by an Object Name. The Object Name identifies a remote MBean
uniquely within a specific MBean Server Connection.

Resource MBean

Connector
Protocol
Adapter

Managed VM
communicates-with

Application
managed-by

Agent
(MBean Server)

Remote Manager
OSGi Service Platform Release 4, Version 4.2 Page 331

JMX Overview JMX™ Management Model Specification Version 1.0
Standard manipulations of a remote MBean are done through attributes and operations, which are sim-
ilar to properties and methods for Java beans. Not all methods on the implementation class can be
used, the registering party must specifically provide access to the methods that can be called
remotely. The registrar can define the exposed operations with the following mechanisms:

• Design Pattern – Let the registered object implement an MBean interface that has the fully qualified
name of the implementation class suffixed with MBean . The MBean server will then limit access
to attributes and properties defined in the MBean interface. For example, the com.acme.Resource
class should implement the com.acme.ResourceMBean interface. The
com.acme.ResourceMBean interface would define the properties and operations.

• Dynamic MBean – Register a Dynamic MBean, which handles the access to the operations and
attributes programmatically. The JMX specification provides the DynamicMBean interface for
this purpose. If the MBean registered with an MBean Server implements this interface, then the
MBean Server must get the MBean’s metadata through the DynamicMBean interface instead of
using reflection. Therefore, Dynamic MBeans can provide more rich metadata that describes their
operations and attributes.

• Standard MBean – Register a Standard MBean. A standard MBean works the same as the previous
bullet but does not require the implementation class name to map to the MBean interface name.

Attributes map to properties on the registered MBean interface and operations allow the invocation
of an arbitrary method on the remote MBean with arbitrary parameters. The following code example
shows how to get a the size property of a remote MBean in this way:

void drop(MBeanServerConnection mbs, ObjectName objectName) {
 Integer sizeI = (Integer)

mbs.getAttribute(objectName, "Size");
 int size = sizeI.intValue();
 if (size > desiredSize) {
 mbs.invoke(objectName,"dropOldest",

new Integer[] {new Integer(size – desiredSize)},
new String[] {"int"});

 }
}

In release 1.2 the JMX specification introduced the MBean Server Invocation Handler to simplify the
manipulation of the remote MBeans by creating a proxy for an MBean interface that implements all
the relevant methods. An MBean interface defines the methods and properties for an MBean. The
proxy has a reference to an MBean Server Connection, it can therefore automate the invocation of the
appropriate methods from the MBean interface. Therefore, by using an MBean interface, it is possible
to simplify the remote manager:

MBeanServer mbs = ...;
CacheControlMBean cacheControl = (CacheControlMBean)
 MbeanServerInvocationHandler.newProxyInstance(

mbs, objectName, CacheControlMBean.class, false);

int size = cacheControl.getSize();
if (size > desiredSize)
 cacheControl.dropOldest(size - desiredSize);

The creation of the proxy is somewhat verbose, but once it is available, the MBean can be accessed
like a local object. The proxy is much easier to use and read, and much less error-prone, than access-
ing the MBean Server method through invoking operations and getting attributes.
Page 332 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 OSGi JMX Management
The MBean interface can also ensure a certain amount of type safety. The MBean implementation
can implement the MBean interface and the remote manager uses the proxy implementing this inter-
face. However, neither is required. The MBean can directly implement the methods without imple-
menting the interface and the remote manager can directly manipulate the attributes and
invocations.

The key advantage is therefore the documentation of the management interface. Using an MBean
interface, this can be done very concisely and it allows the usage of standard tools for Java source code
and Javadoc.

124.2.4 Open Types
The distributed nature of remote management poses a number of problems for exchanging general
objects.

• Versioning – All participating parties require access to the same version of the object’s class.
• Serialization – Not all objects are easy to serialize.
• Size – Arbitrary objects can transitively link to large amounts of data.
• Descriptive – Classes provide little or no support for editing.
• Limited – Classes are Java specific, making it harder to interact with non-Java environments.

An alternative is to limit the management types to be exchanged to small, well defined set. Open
MBeans limit the used data types to small number of types called the basic types. These types are sup-
ported by all JMX 1.2 and later implementations. This basic set of types contains:

• Primitives – boolean, byte, char, short , int , long, f loat, double.
• Primitive Arrays – boolean[], byte[] , char[] , short[] , int[] , long[], f loat[] , double[] .
• Wrappers – Boolean, Byte, Character , Short , Integer , Long, F loat , Double.
• Scalars – Str ing, BigDecimal , BigInteger, Date, ObjectName.
• Complex – CompositeData, TabularData , and complex arrays.
• Return – Void, operation return only.

The Complex types are unique to JMX, they are used to provide access to complex data (like objects)
without using classes. The complex types are self describing. The metadata associated with these com-
plex types allow a remote manager to discover the structure and automatically construct a (graphic)
user interface for these complex objects.

Open MBeans must be Dynamic MBeans when registered. Furthermore, they must provide Open
MBean variations of the Info objects that describe the operations and attributes.

124.3 OSGi JMX Management
The OSGi JMX Management model is based on Open MBeans, see Open Types on page 333. This speci-
fication declares a number of MBeans for the core Framework, some of the core services, and a num-
ber of compendium services. Though Open MBeans are based on Dynamic MBeans, this specification
uses the traditional MBean interface to define the management interaction patterns. The imple-
menter of this specification must register an implementation of these interfaces as a Dynamic
MBean. An implementation should provide the additional Open MBeans Info objects for the opera-
tions and attributes.

This specification defines the following Open MBeans:

• Core Framework – FrameworkMBean , BundleStateMBean , ServiceStateMBean , and
PackageStateMBean .

• Core Services – PermissionAdminMBean . The Conditional Permission Admin is not included in
this specification.

• Compendium Services – Configurat ionAdminMBean , UserAdminMBean ,
ProvisioningServiceMbean
OSGi Service Platform Release 4, Version 4.2 Page 333

OSGi JMX Management JMX™ Management Model Specification Version 1.0
124.3.1 Naming
The MBean interfaces have been named after the service they manage. That is the
Configurat ionAdminMBean interface manages the Configuration Admin service, which is modelled
with the Configurat ionAdmin interface.

Package names are constructed from taking the corresponding resource package and inserting jmx.
after org.osgi . For example

org.osgi . f ramework org.osgi . jmx.framework
org.osgi .serv ice.cm org.osgi . jmx.service.cm

It is not possible to use the MBean interface design pattern because the MBean interfaces are in OSGi
packages. The design pattern requires the fully qualified name of the implementation suffixed with
MBean to match the MBean interface name. This would require that the implementation class
resides in an OSGi package, which would extend these packages.

However, the StandardMBean class allows the association of one of the OSGi MBean interfaces with
an arbitrary class.

124.3.2 Object Naming
Object Names for OSGi managed MBeans must follow the following structure:

object-name ::= (core | compendium) ’,version=’ version
core ::= ’osgi.core:’ framework-type
compendium ::= ’osgi.compendium:’ service-type
framework-type::= (’type=’ token) | service-type
service-type ::= ’service=’ token

There are the following additional constraints:

• Spaces – Spaces between any of the terminals are not permitted.
• Version – The version must be limited to a major and minor version part. The given version must

identify the package of the corresponding resource. For example, if the Configuration Admin
service is on version 1.3.2.200910101250 , then the version in the Object Name must be 1.3 .

• Service – The service-type should use the package name of the corresponding service. For
example, for Configuration Admin this would be service=cm . In Figure 124.3 the object names are
demonstrated in JConsole.
Page 334 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 OSGi JMX Management
Figure 124.3 JConsole demonstrating the Object Naming hierarchy

The actual object names are defined in the MBean interfaces. For example, the Object Name for the
Configuration Admin MBean is:

osgi.compendium:service=cm,version=1.3

In this specification, all management interfaces are specified to return opaque Strings or longs rather
than Object Names so that the MBean interfaces contain no JMX specific artifacts and can be used
with a variety of remote access protocols such as SNMP, etc. Non JMX use of these APIs can use these
Strings as their own opaque identifiers without any change to the interfaces themselves.

124.3.3 The MBean Server
An implementation of this specification must find all MBean Servers services that has access to. It
should then register all MBeans with each server found in the service registry.

A compliant implementation must register all the framework’s MBeans: FrameworkMBean,
BundleStateMBean, Serv iceStateMBean, and PakageStateMBean . The registration of the compen-
dium services is optional. However, if they are registered they must implement the behavior as
defined in this specification.

124.3.4 Registrations
The OSGi MBeans are designed to minimize the notifications. That is, the objects model a command
interface to access the required information. Their registration is not intended to signify anything
else than the start of the manager bundle and the availability of the underlying resource.

Implementations must always register only one of each of the Framework MBean types (Framework
MBean, Service State MBean, Bundle State MBean, and Package State MBean). All other MBean types
depend on the registered services they manage. Each service requires its unique MBean. If no corre-
sponding service is present, then no MBean should be registered. Modified events must be ignored. If
a manager supports a specific OSGi MBean for a compendium service then it must register an MBean
for each instance of that service.
OSGi Service Platform Release 4, Version 4.2 Page 335

MBeans JMX™ Management Model Specification Version 1.0
124.4 MBeans
This specification defines MBean interfaces listed in Table 124.1 on page 336 The Object Name speci-
fied in this table is broken into a number of lines for readability, however, newlines and whitespace is
not allowed in the Object Name.

124.5 Open Types
The specification of the MBeans are using the Composite Data and Tabular Data in several places.
These Open Types are typed with Composite Type and Tabular Type. This section documents the dif-
ferent instances of these types that are used in this specification.

Table 124.1 MBeans

MBean Object Name Description

FrameworkMBean osgi .core:
type=framework,
vers ion=1.5

Provides access to bundle life cycle
methods of the framework includ-
ing batch install and update opera-
tions. See FrameworkMBean on
page 352.

BundleStateMBean osgi .core:
type=bundleState
vers ion=1.5

Provides detailed access to the
state of one bundle and aggregated
state of a group of bundles. See
BundleStateMBean on page 344.

ServiceStateMBean osgi .core:
type=serviceState
vers ion=1.5

Provides detailed access to the
state of one service and aggregated
state of a group of services. Service-
StateMBean on page 359

PackageStateMBean osgi .core:
type=packageState,
vers ion=1.5

Provides detailed access to the
state of one package and aggre-
gated state of a group of packages.
See PackageStateMBean on page
358.

PermissionAdminMBean osgi .core:
service=permissionadmin,
vers ion=1.2

Based on the Permission Admin
service. See PermissionAdminM-
Bean on page 365.

Configurat ionAdminMBean osgi .compendium:
service=cm,
vers ion=1.3

Manages a Configuration Admin
service. See ConfigurationAdminM-
Bean on page 362.

Provis ioningServiceMBean osgi .compendium:
service=provis ioning,
vers ion=1.2

Manages a Provisioning Service.
See ProvisioningServiceMBean on
page 366.

UserAdminMBean osgi .compendium:
service=useradmin,
vers ion=1.1

Manages a User Admin service.
See UserAdminMBean on page 367
Page 336 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 Open Types
124.5.1 BATCH_ACTION_RESULT and BATCH_INSTALL_RESULT
A number of methods in the FrameworkMBean interface operate on multiple bundles. Each of these
bundles can succeed or fail. All these operations fail after the first bundle has failed and then return a
Composite Data that is typed by the BATCH_ACTION_RESULT_TYPE or
BATCH_INSTALL_RESULT_TYPE . The only difference between these results is that the action results
identify the bundles by their id and the install result identifies the result by the location.

The BATCH_ACTION_RESULT_TYPE and BATCH_INSTALL_RESULT_TYPE have the following fields:

• BUNDLE_IN_ERROR – (Long or Str ing) The id or location of the bundle that generated the error, if
any. For an install result, this field returns a location, for an action result the field is the id of the
bundle. This field is absent if the install or action succeeded.

• COMPLETED – (Long[] or Str ing[]) The ids/locations of the bundles that completed successfully
before an error was found. For an install result, this field returns a location, for an action result the
field is the id of the bundle. The COMPLETED field is not included after a successful operation as it
would be redundant information. After a successful operation all of the bundles have been suc-
cessfully completed.

• ERROR – (Str ing) The error message of the operation and any additional information an imple-
mentation wants to convey.

• REMAINING – (Long[] or Str ing[]) The id/locations of the bundles that were not processed
because a prior bundle generated an error. For an install result, this field returns a location, for an
action result the field is the id of the bundle. If no error occurred, this field is absent.

• SUCCESS – (Boolean) Is true if the operation succeed and false if it failed.

See BATCH_ACTION_RESULT_TYPE on page 352 and BATCH_INSTALL_RESULT_TYPE on page
352.

124.5.2 BUNDLE
A BUNDLE_TYPE Composite Type consists of the following fields:

• EXPORTED_PACKAGES – (Str ing[]) A list of exported package names.
• FRAGMENT – (Boolean) Is true when the bundle is a fragment.
• FRAGMENTS – (Long[]) The list of ids of hosted fragment bundles.
• HEADERS – (TabularData) The manifest headers in a Tabular Data object typed by

HEADERS_TYPE . This table contains the raw data; Any OSGi headers are not parsed in directives
and attributes, the table consists of the header name (KEY) and the header value (VALUE).

• HOSTS – (Long[]) If this is a fragment only, in that case it contains the hosts of this fragment.
• IDENTIFIER – (Long) Bundle id.
• IMPORTED_PACKAGES – (Str ing[]) The names of the imported packages.
• LAST_MODIFIED – (Long) The last modified time.
• LOCATION – (Str ing) The location string.
• PERSISTENTLY_STARTED – (Boolean) True if this bundle is persistently started.
• REGISTERED_SERVICES – (Long[]) A list of service ids that are registered by this bundle.
• REMOVAL_PENDING – (Boolean) True if the bundle has its removal pending after update or unin-

stall as defined by the Package Admin service.
• REQUIRED – (Boolean) True if this bundle is required as defined by the Package Admin service.
• REQUIRED_BUNDLES – (Long[]) A list of bundle ids that are required by this bundle.
• REQUIRING_BUNDLES – (Long[]) A list of bundle ids that this bundle requires.
• START_LEVEL – (Integer) The bundle’s start level.
• STATE – (Str ing) The bundle’s state. One of:

• INSTALLED
• RESOLVED
• STARTING
• ACTIVE
• STOPPING
• UNINSTALLED
OSGi Service Platform Release 4, Version 4.2 Page 337

Open Types JMX™ Management Model Specification Version 1.0
• UNKNOWN
• SERVICES_IN_USE – (Long[]) List of service ids in use by this bundle.
• SYMBOLIC_NAME – (Str ing) The Bundle Symbolic Name.
• VERSION – (Str ing) The version of the bundle.

See for detailed information the BUNDLE_TYPE on page 344.

124.5.3 HEADER
A HEADER_TYPE Composite Type provides the manifest headers of a bundle. A HEADER_TYPE is used
in the HEADERS_TYPE , which represents the type for a Tabular Data. The type consists of the follow-
ing items:

• KEY – (Str ing) The manifest header name.
• VALUE – (Str ing) The manifest header value

See HEADER_TYPE on page 345.

124.5.4 SERVICE
A SERVICE_TYPE Composite Type provides the properties of a service. A SERVICE_TYPE is used in the
SERVICES_TYPE , which represents the type for a Tabular Data. The type consists of the following
items:

• BUNDLE_IDENTIFIER – (Long) The identifier of the bundle that owns this service.
• IDENTIFIER – (Long) The service id.
• OBJECT_CLASS – (Str ing[]) The objectClass property of a service
• PROPERTIES – (TabularData) The service properties.
• USING_BUNDLES – (Long[]) The ids of the bundles using this service.

See SERVICE_TYPE on page 361.

124.5.5 PACKAGE
A PACKAGE_TYPE Composite Type provides the properties of a service. A PACKAGE_TYPE is used in
the PACKAGES_TYPE , which represents the type for a Tabular Data. The type consists of the following
items:

• EXPORTING_BUNDLES – (Long) The identifier of the bundle that exports the package.
• IMPORTING_BUNDLES – (Long) The ids of the bundles importing the package.
• NAME – (Str ing) The name of the package.
• REMOVAL_PENDING – (Boolean) True if the package is pending removal because the corre-

sponding bundle is updated or uninstalled.
• VERSION – (Str ing) The version of the package.

See PACKAGE_TYPE on page 358.

124.5.6 PROPERTY
A PROPERTY_TYPE Composite Type provides the properties of a service. A PROPERTY_TYPE is used in
the PROPERTIES_TYPE , which represents the type for a Tabular Data. The type consists of the follow-
ing items:

• KEY – (Str ing) The name of the property
• VALUE – (Str ing) The value of the property. Values that contain white space (see

Character. isWhitespace()), quote characters (both single quote (" ’ " \u0027) and double quote (’ " ’
\u0022)), or backslashes (’ \ ’ \u005C), must be quoted. A string can be quoted with single or
double quotes, any of the previously mentioned characters must be escaped with a backslash (’ \ ’
\u005C). Values must be trimmed of whitespace before usage.

• TYPE – (Str ing) The type of the property value. The type must follow the following syntax:
Page 338 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 Item
type ::= scalar | vector | array
vector ::= ’Vector of ’ scalar
array ::= ’Array of ’ (scalar | primitive)
scalar ::= ’String’ | ’BigInteger’ | ’BigDecimal’
 | ’Byte’ | ’Character’ | ’Short’

| ’Integer’ | ’Long’ | ’Float’
| ’Double’

primitive::= ’byte’ | ’char’ | ’short’
| ’int’ | ’long’ | ’float’
| ’double

This encoding does not support arrays in vectors or arrays. Arrays and vectors can only contain sca-
lars. Null is not an allowed value. For example, the encoding of a byte array like byte[] {1,2,3,5,7}
would look like:

type: ’Array of byte’
value: ’1,2,3,4,5’

Quoting can be used as follows:

type: Array of String
value: ’abc’, ’def’, ’\’quoted\’’, "’quoted’", "\\"

The PROPERTY_TYPE and PROPERTIES_TYPEare defined in the JmxConstants class because they are
shared between different MBeans, see PROPERTIES_TYPE on page 343.

124.6 Item
The MBean interfaces do not only define the Java interface, they also define the Open Types. These
types are defined with the I tem class in this specification to simplify the definitions; the Item class
has no role in a management application. The Item class is used to allow the items used in Composite
Types to be encoded in the interface. This is not possible with the standard Open Types because they
use exceptions and use parallel arrays. For example, the following code defines a static Open Type
without the Item class:

static CompositeType HEADER;
static {
 try {
 HEADER = new CompositeType("HEADER" "This is a header",

new String[] {"KEY", "VALUE"},
new String[] {"A key for a header", "A value for a header" },
new OpenType[] { SimpleType.STRING, SimpleType.STRING });

 catch(OpenDataException e) {
 ...
 }
}

This code can be replaced with the I tem class:

static Item KEY = new Item("KEY", "A key for header", SimpleType.STRING);
static Item VALUE = new Item("VALUE", "A value for header", SimpleType.STRING);
static CompositeType HEADER = Item.composite("HEADER", "This is a header",

KEY, VALUE);

The Item class also provides a number of convenience methods to construct the different Open
Types. However, the intention is to simplify the specification definitions, not as an aid in manage-
ment operations.
OSGi Service Platform Release 4, Version 4.2 Page 339

Security JMX™ Management Model Specification Version 1.0
124.7 Security
Exposing any system remotely opens up a, potentially, devastating security hole in a system. Remote
entities should establish their identity and the management system should be able to control the
access these entities have over the management system. JMX seamlessly inter operates with the Java
Authentication and Authorization Service (JAAS) and Java 2 platform Standard Edition (Java SE)
Security Architecture.

The JMX OSGi manager must have access to the services it manages and the operations it invokes. It
is likely that this bundle requires All Permission because it needs to invoke operations on the Condi-
tional Permission Admin. It is strongly advised that implementations limit the set of available per-
missions based on authenticating the remote manager.

124.8 org.osgi.jmx
OSGi JMX Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. For example:

Import-Package: org.osgi.jmx; version=”[1.0,2.0)”

124.8.1 Summary
• Item - The item class enables the definition of open types in the appropriate interfaces.
• JmxConstants - Constants for OSGi JMX Specification.
Item

124.8.2 public class Item
The item class enables the definition of open types in the appropriate interfaces. This class contains a
number of methods that make it possible to create open types for CompositeType , TabularType , and
ArrayType . The normal creation throws a checked exception, making it impossible to use them in a
static initializer. The constructors are also not very suitable for static construction. An Item instance
describes an item in a Composite Type. It groups the triplet of name, description, and Open Type.
These Item instances allows the definitions of an item to stay together.

Concurrency Immutable
Item(String,String,javax.management.openmbean.OpenType,String...)

124.8.2.1 public Item(String name, String description, OpenType type, String ... restrictions)

name The name of the item.

description The description of the item.

type The Open Type of this item.

restrictions Ignored, contains list of restrictions

Create a triple of name, description, and type. This triplet is used in the creation of a Composite Type.
arrayType(int,javax.management.openmbean.OpenType)

124.8.2.2 public static ArrayType arrayType(int dim, OpenType elementType)

dim The dimension

elementType The element type

Return a new Array Type.

Returns A new Array Type
compositeType(String,String,Item...)

124.8.2.3 public static CompositeType compositeType(String name, String description, Item ... items)

name The name of the Tabular Type.
Page 340 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 org.osgi.jmx
description The description of the Tabular Type.

items The items that describe the composite type.

Create a Composite Type

Returns a new Composite Type

Throws RuntimeException – when the Tabular Type throws an OpenDataException
extend(javax.management.openmbean.CompositeType,String,String,Item...)

124.8.2.4 public static CompositeType extend(CompositeType parent, String name, String description,
Item ... items)

parent The parent type, can be null

name The name of the type

description The description of the type

items The items that should be added/override to the parent type

Extend a Composite Type by adding new items. Items can override items in the parent type.

Returns A new Composite Type that extends the parent type

Throws RuntimeException – when an OpenDataException is thrown
tabularType(String,String,javax.management.openmbean.CompositeType,String...)

124.8.2.5 public static TabularType tabularType(String name, String description, CompositeType rowType,
String ... index)

name The name of the Tabular Type.

description The description of the Tabular Type.

rowType The Open Type for a row

index The names of the items that form the index .

Create a Tabular Type.

Returns A new Tabular Type composed from the parameters.

Throws RuntimeException – when the Tabular Type throws an OpenDataException
JmxConstants

124.8.3 public class JmxConstants
Constants for OSGi JMX Specification. Additionally, this class contains a number of utility types that
are used in different places in the specification. These are LONG_ARRAY_TYPE , STRING_ARRAY_TYPE ,
and PROPERTIES_TYPE .

Concurrency Immutable
ARRAY_OF

124.8.3.1 public static final String ARRAY_OF = “Array of “

For an encoded array we need to start with ARRAY_OF. This must be followed by one of the names in
SCALAR .
BIGDECIMAL

124.8.3.2 public static final String BIGDECIMAL = “BigDecimal”

Value for PROPERTY_TYPE value in the case of java.math.BigDecimal
BIGINTEGER

124.8.3.3 public static final String BIGINTEGER = “BigInteger”

Value for PROPERTY_TYPE value in the case of java.math.BigInteger
BOOLEAN

124.8.3.4 public static final String BOOLEAN = “Boolean”

Value for PROPERTY_TYPE value in the case of java. lang.Boolean
BYTE
OSGi Service Platform Release 4, Version 4.2 Page 341

org.osgi.jmx JMX™ Management Model Specification Version 1.0
124.8.3.5 public static final String BYTE = “Byte”

Value for PROPERTY_TYPE value in the case of java. lang.Byte
CHARACTER

124.8.3.6 public static final String CHARACTER = “Character”

Value for PROPERTY_TYPE value in the case of java. lang.Character
DOUBLE

124.8.3.7 public static final String DOUBLE = “Double”

Value for PROPERTY_TYPE value in the case of java. lang.Double
FLOAT

124.8.3.8 public static final String FLOAT = “Float”

Value for PROPERTY_TYPE value in the case of java. lang.F loat
INTEGER

124.8.3.9 public static final String INTEGER = “Integer”

Value for PROPERTY_TYPE value in the case of java. lang. Integer
KEY

124.8.3.10 public static final String KEY = “Key”

The key KEY.
KEY_ITEM

124.8.3.11 public static final Item KEY_ITEM

The key of a property. The key is KEY and the type is SimpleType.STRING .
LONG

124.8.3.12 public static final String LONG = “Long”

Value for PROPERTY_TYPE value in the case of java. lang.Long
LONG_ARRAY_TYPE

124.8.3.13 public static final ArrayType LONG_ARRAY_TYPE

The MBean Open type for an array of longs
OSGI_COMPENDIUM

124.8.3.14 public static final String OSGI_COMPENDIUM = “osgi.compendium”

The domain name of the selected OSGi compendium MBeans
OSGI_CORE

124.8.3.15 public static final String OSGI_CORE = “osgi.core”

The domain name of the core OSGi MBeans
P_BOOLEAN

124.8.3.16 public static final String P_BOOLEAN = “boolean”

Value for PROPERTY_TYPE value in the case of the boolean primitive type.
P_BYTE

124.8.3.17 public static final String P_BYTE = “byte”

Value for PROPERTY_TYPE value in the case of the byte primitive type.
P_CHAR

124.8.3.18 public static final String P_CHAR = “char”

Value for PROPERTY_TYPE value in the case of the char primitive type.
P_DOUBLE

124.8.3.19 public static final String P_DOUBLE = “double”

Value for PROPERTY_TYPE value in the case of the double primitive type.
P_FLOAT

124.8.3.20 public static final String P_FLOAT = “float”

Value for PROPERTY_TYPE value in the case of the f loat primitive type.
P_INT
Page 342 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 org.osgi.jmx
124.8.3.21 public static final String P_INT = “int”

Value for PROPERTY_TYPE value in the case of the int primitive type.
P_LONG

124.8.3.22 public static final String P_LONG = “long”

Value for PROPERTY_TYPE value in the case of the long primitive type.
P_SHORT

124.8.3.23 public static final String P_SHORT = “short”

Value for PROPERTY_TYPE value in the case of the short primitive type.
PROPERTIES_TYPE

124.8.3.24 public static final TabularType PROPERTIES_TYPE

Describes a map with properties. The row type is PROPERTY_TYPE . The index is defined to the KEY of
the property.
PROPERTY_TYPE

124.8.3.25 public static final CompositeType PROPERTY_TYPE

A Composite Type describing a a single property. A property consists of the following items
KEY_ITEM , VALUE_ITEM , and TYPE_ITEM .
SCALAR

124.8.3.26 public static final List<String> SCALAR

A set of all scalars that can be used in the TYPE property of a PROPERTIES_TYPE . This contains the fol-
lowing names:

• BIGDECIMAL
• BIGINTEGER
• BOOLEAN
• BYTE
• CHARACTER
• DOUBLE
• FLOAT
• INTEGER
• LONG
• SHORT
• STRING
• P_BYTE
• P_CHAR
• P_DOUBLE
• P_FLOAT
• P_INT
• P_LONG
• P_SHORT
SHORT

124.8.3.27 public static final String SHORT = “Short”

Value for PROPERTY_TYPE value in the case of java. lang.Short
STRING

124.8.3.28 public static final String STRING = “String”

Value for PROPERTY_TYPE value in the case of java. lang.Str ing
STRING_ARRAY_TYPE

124.8.3.29 public static final ArrayType STRING_ARRAY_TYPE

The MBean Open type for an array of strings
TYPE

124.8.3.30 public static final String TYPE = “Type”

The key TYPE.
TYPE_ITEM
OSGi Service Platform Release 4, Version 4.2 Page 343

org.osgi.jmx.framework JMX™ Management Model Specification Version 1.0
124.8.3.31 public static final Item TYPE_ITEM

The type of the property. The key is TYPE and the type is SimpleType.STRING . This string must fol-
low the following syntax: TYPE ::= (‘Array of ‘| ‘Vector of ‘)? SCALAR
VALUE

124.8.3.32 public static final String VALUE = “Value”

The key VALUE.
VALUE_ITEM

124.8.3.33 public static final Item VALUE_ITEM

The value of a property. The key is VALUE and the type is SimpleType.STRING . A value will be
encoded by the string given in TYPE . The syntax for this type is given in TYPE_ITEM .
VECTOR_OF

124.8.3.34 public static final String VECTOR_OF = “Vector of “

For an encoded vector we need to start with ARRAY_OF. This must be followed by one of the names
in SCALAR .

124.9 org.osgi.jmx.framework
OSGi JMX Framework Package Version 1.5.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. For example:

Import-Package: org.osgi.jmx.framework; version=”[1.5,2.0)”

124.9.1 Summary
• BundleStateMBean - This MBean represents the Bundle state of the framework.
• FrameworkMBean - The FrameworkMbean provides mechanisms to exert control over the

framework.
• PackageStateMBean - This MBean provides information about the package state of the framework.
• ServiceStateMBean - This MBean represents the Service state of the framework.
BundleStateMBean

124.9.2 public interface BundleStateMBean
This MBean represents the Bundle state of the framework. This MBean also emits events that clients
can use to get notified of the changes in the bundle state of the framework.

Concurrency Thread-safe
ACTIVE

124.9.2.1 public static final String ACTIVE = “ACTIVE”

Constant ACTIVE for the STATE
BUNDLE_EVENT_TYPE

124.9.2.2 public static final CompositeType BUNDLE_EVENT_TYPE

The Composite Type that represents a bundle event. This composite consists of:

• IDENTIFIER
• LOCATION
• SYMBOLIC_NAME
• EVENT
BUNDLE_TYPE

124.9.2.3 public static final CompositeType BUNDLE_TYPE

The Composite Type that represents a bundle. This composite consist of:

• EXPORTED_PACKAGES
Page 344 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 org.osgi.jmx.framework
• FRAGMENT
• FRAGMENTS
• HEADERS
• HOSTS
• IDENTIFIER
• IMPORTED_PACKAGES
• LAST_MODIFIED
• LOCATION
• PERSISTENTLY_STARTED
• REGISTERED_SERVICES
• REMOVAL_PENDING
• REQUIRED
• REQUIRED_BUNDLES
• REQUIRING_BUNDLES
• START_LEVEL
• STATE
• SERVICES_IN_USE
• SYMBOLIC_NAME
• VERSION

It is used by BUNDLES_TYPE .
BUNDLES_TYPE

124.9.2.4 public static final TabularType BUNDLES_TYPE

The Tabular Type for a list of bundles. The row type is BUNDLE_TYPE .
EVENT

124.9.2.5 public static final String EVENT = “BundleEvent”

The key EVENT, used in EVENT_ITEM .
EVENT_ITEM

124.9.2.6 public static final Item EVENT_ITEM

The item containing the event type. The key is EVENT and the type is SimpleType. INTEGER
EXPORTED_PACKAGES

124.9.2.7 public static final String EXPORTED_PACKAGES = “ExportedPackages”

The key EXPORTED_PACKAGES, used in EXPORTED_PACKAGES_ITEM .
EXPORTED_PACKAGES_ITEM

124.9.2.8 public static final Item EXPORTED_PACKAGES_ITEM

The item containing the exported package names in BUNDLE_TYPE .The key is
EXPORTED_PACKAGES and the the type is JmxConstants.STRING_ARRAY_TYPE .
FRAGMENT

124.9.2.9 public static final String FRAGMENT = “Fragment”

The key FRAGMENT, used in FRAGMENT_ITEM .
FRAGMENT_ITEM

124.9.2.10 public static final Item FRAGMENT_ITEM

The item containing the fragment status in BUNDLE_TYPE . The key is FRAGMENT and the the type is
SimpleType.BOOLEAN .
FRAGMENTS

124.9.2.11 public static final String FRAGMENTS = “Fragments”

The key FRAGMENTS, used in FRAGMENTS_ITEM .
FRAGMENTS_ITEM

124.9.2.12 public static final Item FRAGMENTS_ITEM

The item containing the list of fragments the bundle is host to in BUNDLE_TYPE . The key is FRAG-
MENTS and the type is JmxConstants.LONG_ARRAY_TYPE.
HEADER_TYPE
OSGi Service Platform Release 4, Version 4.2 Page 345

org.osgi.jmx.framework JMX™ Management Model Specification Version 1.0
124.9.2.13 public static final CompositeType HEADER_TYPE

The Composite Type describing an entry in bundle headers. It consists of KEY_ITEM and
VALUE_ITEM .
HEADERS

124.9.2.14 public static final String HEADERS = “Headers”

The key HEADERS, used in HEADERS_ITEM .
HEADERS_ITEM

124.9.2.15 public static final Item HEADERS_ITEM

The item containing the bundle headers in BUNDLE_TYPE . The key is HEADERS and the the type is
HEADERS_TYPE .
HEADERS_TYPE

124.9.2.16 public static final TabularType HEADERS_TYPE

The Tabular Type describing the type of the Tabular Data value that is returned from getHead-
ers(long) method. The primary item is KEY_ITEM .
HOSTS

124.9.2.17 public static final String HOSTS = “Hosts”

The key HOSTS, used in HOSTS_ITEM .
HOSTS_ITEM

124.9.2.18 public static final Item HOSTS_ITEM

The item containing the bundle identifiers representing the hosts in BUNDLE_TYPE . The key is
HOSTS and the type is JmxConstants.LONG_ARRAY_TYPE
IDENTIFIER

124.9.2.19 public static final String IDENTIFIER = “Identifier”

The key IDENTIFIER, used in IDENTIFIER_ITEM .
IDENTIFIER_ITEM

124.9.2.20 public static final Item IDENTIFIER_ITEM

The item containing the bundle identifier in BUNDLE_TYPE . The key is IDENTIFIER and the the type is
SimpleType.LONG .
IMPORTED_PACKAGES

124.9.2.21 public static final String IMPORTED_PACKAGES = “ImportedPackages”

The key IMPORTED_PACKAGES, used in EXPORTED_PACKAGES_ITEM .
IMPORTED_PACKAGES_ITEM

124.9.2.22 public static final Item IMPORTED_PACKAGES_ITEM

The item containing the imported package names in BUNDLE_TYPE .The key is
IMPORTED_PACKAGES and the the type is JmxConstants.STRING_ARRAY_TYPE .
INSTALLED

124.9.2.23 public static final String INSTALLED = “INSTALLED”

Constant INSTALLED for the STATE
KEY

124.9.2.24 public static final String KEY = “Key”

The key KEY, used in KEY_ITEM .
KEY_ITEM

124.9.2.25 public static final Item KEY_ITEM

The item describing the key of a bundle header entry. The key is KEY and the type is Simple-
Type.STRING .
LAST_MODIFIED

124.9.2.26 public static final String LAST_MODIFIED = “LastModified”

The key LAST_MODIFIED, used in LAST_MODIFIED_ITEM .
LAST_MODIFIED_ITEM
Page 346 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 org.osgi.jmx.framework
124.9.2.27 public static final Item LAST_MODIFIED_ITEM

The item containing the last modified time in the BUNDLE_TYPE . The key is LAST_MODIFIED and the
the type is SimpleType.LONG .
LOCATION

124.9.2.28 public static final String LOCATION = “Location”

The key LOCATION, used in LOCATION_ITEM .
LOCATION_ITEM

124.9.2.29 public static final Item LOCATION_ITEM

The item containing the bundle location in BUNDLE_TYPE . The key is LOCATION and the the type is
SimpleType.STRING .
OBJECTNAME

124.9.2.30 public static final String OBJECTNAME = “osgi.core:type=bundleState,version=1.5”

The Object Name for a Bundle State MBean.
PERSISTENTLY_STARTED

124.9.2.31 public static final String PERSISTENTLY_STARTED = “PeristentlyStarted”

The key PERSISTENTLY_STARTED, used in PERSISTENTLY_STARTED_ITEM .
PERSISTENTLY_STARTED_ITEM

124.9.2.32 public static final Item PERSISTENTLY_STARTED_ITEM

The item containing the indication of persistently started in BUNDLE_TYPE . The key is
PERSISTENTLY_STARTED and the the type is SimpleType.BOOLEAN .
REGISTERED_SERVICES

124.9.2.33 public static final String REGISTERED_SERVICES = “RegisteredServices”

The key REGISTERED_SERVICES, used in REGISTERED_SERVICES_ITEM .
REGISTERED_SERVICES_ITEM

124.9.2.34 public static final Item REGISTERED_SERVICES_ITEM

The item containing the registered services of the bundle in BUNDLE_TYPE . The key is
REGISTERED_SERVICES and the the type is JmxConstants.LONG_ARRAY_TYPE .
REMOVAL_PENDING

124.9.2.35 public static final String REMOVAL_PENDING = “RemovalPending”

The key REMOVAL_PENDING, used in REMOVAL_PENDING_ITEM .
REMOVAL_PENDING_ITEM

124.9.2.36 public static final Item REMOVAL_PENDING_ITEM

The item containing the indication of removal pending in BUNDLE_TYPE . The key is
REMOVAL_PENDING and the type is SimpleType.BOOLEAN .
REQUIRED

124.9.2.37 public static final String REQUIRED = “Required”

The key REQUIRED, used in REQUIRED_ITEM .
REQUIRED_BUNDLES

124.9.2.38 public static final String REQUIRED_BUNDLES = “RequiredBundles”

The key REQUIRED_BUNDLES, used in REQUIRED_BUNDLES_ITEM .
REQUIRED_BUNDLES_ITEM

124.9.2.39 public static final Item REQUIRED_BUNDLES_ITEM

The item containing the required bundles in BUNDLE_TYPE . The key is REQUIRED_BUNDLES and the
type is JmxConstants.LONG_ARRAY_TYPE
REQUIRED_ITEM

124.9.2.40 public static final Item REQUIRED_ITEM

The item containing the required status in BUNDLE_TYPE . The key is REQUIRED and the the type is
SimpleType.BOOLEAN .
REQUIRING_BUNDLES
OSGi Service Platform Release 4, Version 4.2 Page 347

org.osgi.jmx.framework JMX™ Management Model Specification Version 1.0
124.9.2.41 public static final String REQUIRING_BUNDLES = “RequiringBundles”

The key REQUIRING_BUNDLES, used in REQUIRING_BUNDLES_ITEM .
REQUIRING_BUNDLES_ITEM

124.9.2.42 public static final Item REQUIRING_BUNDLES_ITEM

The item containing the bundles requiring this bundle in BUNDLE_TYPE . The key is
REQUIRING_BUNDLES and the type is JmxConstants.LONG_ARRAY_TYPE
RESOLVED

124.9.2.43 public static final String RESOLVED = “RESOLVED”

Constant RESOLVED for the STATE
SERVICES_IN_USE

124.9.2.44 public static final String SERVICES_IN_USE = “ServicesInUse”

The key SERVICES_IN_USE, used in SERVICES_IN_USE_ITEM .
SERVICES_IN_USE_ITEM

124.9.2.45 public static final Item SERVICES_IN_USE_ITEM

The item containing the services in use by this bundle in BUNDLE_TYPE . The key is
SERVICES_IN_USE and the the type is JmxConstants.LONG_ARRAY_TYPE .
START_LEVEL

124.9.2.46 public static final String START_LEVEL = “StartLevel”

The key START_LEVEL, used in START_LEVEL_ITEM .
START_LEVEL_ITEM

124.9.2.47 public static final Item START_LEVEL_ITEM

The item containing the start level in BUNDLE_TYPE . The key is START_LEVEL and the the type is
SimpleType. INTEGER .
STARTING

124.9.2.48 public static final String STARTING = “STARTING”

Constant STARTING for the STATE
STATE

124.9.2.49 public static final String STATE = “State”

The key STATE, used in STATE_ITEM .
STATE_ITEM

124.9.2.50 public static final Item STATE_ITEM

The item containing the bundle state in BUNDLE_TYPE . The key is STATE and the the type is Simple-
Type.STRING . The returned values must be one of the following strings:

• INSTALLED
• RESOLVED
• STARTING
• ACTIVE
• STOPPING
• UNINSTALLED
• UNKNOWN
STOPPING

124.9.2.51 public static final String STOPPING = “STOPPING”

Constant STOPPING for the STATE
SYMBOLIC_NAME

124.9.2.52 public static final String SYMBOLIC_NAME = “SymbolicName”

The key SYMBOLIC_NAME, used in SYMBOLIC_NAME_ITEM .
SYMBOLIC_NAME_ITEM

124.9.2.53 public static final Item SYMBOLIC_NAME_ITEM

The item containing the symbolic name in BUNDLE_TYPE . The key is SYMBOLIC_NAME and the the
type is SimpleType.STRING .
Page 348 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 org.osgi.jmx.framework
UNINSTALLED

124.9.2.54 public static final String UNINSTALLED = “UNINSTALLED”

Constant UNINSTALLED for the STATE
UNKNOWN

124.9.2.55 public static final String UNKNOWN = “UNKNOWN”

Constant UNKNOWN for the STATE
VALUE

124.9.2.56 public static final String VALUE = “Value”

The key VALUE, used in VALUE_ITEM .
VALUE_ITEM

124.9.2.57 public static final Item VALUE_ITEM

The item describing the value of a bundle header entry. The key is VALUE and the type is Simple-
Type.STRING .
VERSION

124.9.2.58 public static final String VERSION = “Version”

The key VERSION, used in VERSION_ITEM .
VERSION_ITEM

124.9.2.59 public static final Item VERSION_ITEM

The item containing the symbolic name in BUNDLE_TYPE . The key is SYMBOLIC_NAME and the the
type is SimpleType.STRING .
getExportedPackages(long)

124.9.2.60 public String[] getExportedPackages(long bundleId) throws IOException

bundleId

Answer the list of exported packages for this bundle.

Returns the array of package names, combined with their version in the format <packageName;version>

Throws IOException – if the operation fails

IllegalArgumentException – if the bundle indicated does not exist
getFragments(long)

124.9.2.61 public long[] getFragments(long bundleId) throws IOException

bundleId

Answer the list of the bundle ids of the fragments associated with this bundle

Returns the array of bundle identifiers

Throws IOException – if the operation fails

IllegalArgumentException – if the bundle indicated does not exist
getHeaders(long)

124.9.2.62 public TabularData getHeaders(long bundleId) throws IOException

bundleId the unique identifier of the bundle

Answer the headers for the bundle uniquely identified by the bundle id. The Tabular Data is typed by
the HEADERS_TYPE .

Returns the table of associated header key and values

Throws IOException – if the operation fails

IllegalArgumentException – if the bundle indicated does not exist
getHosts(long)

124.9.2.63 public long[] getHosts(long fragment) throws IOException

fragment the bundle id of the fragment

Answer the list of bundle ids of the bundles which host a fragment

Returns the array of bundle identifiers
OSGi Service Platform Release 4, Version 4.2 Page 349

org.osgi.jmx.framework JMX™ Management Model Specification Version 1.0
Throws IOException – if the operation fails

IllegalArgumentException – if the bundle indicated does not exist
getImportedPackages(long)

124.9.2.64 public String[] getImportedPackages(long bundleId) throws IOException

bundleId the bundle identifier

Answer the array of the packages imported by this bundle

Returns the array of package names, combined with their version in the format <packageName;version>

Throws IOException – if the operation fails

IllegalArgumentException – if the bundle indicated does not exist
getLastModified(long)

124.9.2.65 public long getLastModified(long bundleId) throws IOException

bundleId the unique identifier of a bundle

Answer the last modified time of a bundle

Returns the last modified time

Throws IOException – if the operation fails

IllegalArgumentException – if the bundle indicated does not exist
getLocation(long)

124.9.2.66 public String getLocation(long bundleId) throws IOException

bundleId the identifier of the bundle

Answer the location of the bundle.

Returns The location string of this bundle

Throws IOException – if the operation fails

IllegalArgumentException – if the bundle indicated does not exist
getRegisteredServices(long)

124.9.2.67 public long[] getRegisteredServices(long bundleId) throws IOException

bundleId the bundle identifier

Answer the list of service identifiers representing the services this bundle exports

Returns the list of service identifiers

Throws IOException – if the operation fails

IllegalArgumentException – if the bundle indicated does not exist
getRequiredBundles(long)

124.9.2.68 public long[] getRequiredBundles(long bundleIdentifier) throws IOException

bundleIdentifier the bundle identifier

Answer the list of identifiers of the bundles this bundle depends upon

Returns the list of bundle identifiers

Throws IOException – if the operation fails

IllegalArgumentException – if the bundle indicated does not exist
getRequiringBundles(long)

124.9.2.69 public long[] getRequiringBundles(long bundleIdentifier) throws IOException

bundleIdentifier the bundle identifier

Answer the list of identifiers of the bundles which require this bundle

Returns the list of bundle identifiers

Throws IOException – if the operation fails

IllegalArgumentException – if the bundle indicated does not exist
Page 350 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 org.osgi.jmx.framework
getServicesInUse(long)

124.9.2.70 public long[] getServicesInUse(long bundleIdentifier) throws IOException

bundleIdentifier the bundle identifier

Answer the list of service identifiers which refer to the the services this bundle is using

Returns the list of service identifiers

Throws IOException – if the operation fails

IllegalArgumentException – if the bundle indicated does not exist
getStartLevel(long)

124.9.2.71 public int getStartLevel(long bundleId) throws IOException

bundleId the identifier of the bundle

Answer the start level of the bundle

Returns the start level

Throws IOException – if the operation fails

IllegalArgumentException – if the bundle indicated does not exist
getState(long)

124.9.2.72 public String getState(long bundleId) throws IOException

bundleId the identifier of the bundle

Answer the symbolic name of the state of the bundle

Returns the string name of the bundle state

Throws IOException – if the operation fails

IllegalArgumentException – if the bundle indicated does not exist
getSymbolicName(long)

124.9.2.73 public String getSymbolicName(long bundleId) throws IOException

bundleId the identifier of the bundle

Answer the symbolic name of the bundle

Returns the symbolic name

Throws IOException – if the operation fails

IllegalArgumentException – if the bundle indicated does not exist
getVersion(long)

124.9.2.74 public String getVersion(long bundleId) throws IOException

bundleId the identifier of the bundle

Answer the location of the bundle.

Returns The location string of this bundle

Throws IOException – if the operation fails

IllegalArgumentException – if the bundle indicated does not exist
isFragment(long)

124.9.2.75 public boolean isFragment(long bundleId) throws IOException

bundleId the identifier of the bundle

Answer whether the bundle is a fragment or not

Returns true if the bundle is a fragment

Throws IOException – if the operation fails

IllegalArgumentException – if the bundle indicated does not exist
isPersistentlyStarted(long)

124.9.2.76 public boolean isPersistentlyStarted(long bundleId) throws IOException

bundleId the identifier of the bundle
OSGi Service Platform Release 4, Version 4.2 Page 351

org.osgi.jmx.framework JMX™ Management Model Specification Version 1.0
Answer if the bundle is persistently started when its start level is reached

Returns true if the bundle is persistently started

Throws IOException – if the operation fails

IllegalArgumentException – if the bundle indicated does not exist
isRemovalPending(long)

124.9.2.77 public boolean isRemovalPending(long bundleId) throws IOException

bundleId the identifier of the bundle

Answer true if the bundle is pending removal

Returns true if the bundle is pending removal

Throws IOException – if the operation fails

IllegalArgumentException – if the bundle indicated does not exist
isRequired(long)

124.9.2.78 public boolean isRequired(long bundleId) throws IOException

bundleId the identifier of the bundle

Answer true if the bundle is required by another bundle

Returns true if the bundle is required by another bundle

Throws IOException – if the operation fails

IllegalArgumentException – if the bundle indicated does not exist
listBundles()

124.9.2.79 public TabularData listBundles() throws IOException

Answer the bundle state of the system in tabular form. Each row of the returned table represents a
single bundle. The Tabular Data consists of Composite Data that is type by BUNDLES_TYPE .

Returns the tabular representation of the bundle state

Throws IOException –
FrameworkMBean

124.9.3 public interface FrameworkMBean
The FrameworkMbean provides mechanisms to exert control over the framework. For many opera-
tions, it provides a batch mechanism to avoid excessive message passing when interacting remotely.

Concurrency Thread-safe
BATCH_ACTION_RESULT_TYPE

124.9.3.1 public static final CompositeType BATCH_ACTION_RESULT_TYPE

The Composite Type for a batch action result. refreshBundle(long) and refreshBundles(long[]) .
Notice that a batch action result returns uses an id for the BUNDLE_IN_ERROR while the
BATCH_INSTALL_RESULT_TYPE uses a location. This Composite Type consists of the following
items:

• BUNDLE_IN_ERROR_ID_ITEM
• COMPLETED_ITEM
• ERROR_ITEM
• REMAINING_ID_ITEM
• SUCCESS_ITEM
BATCH_INSTALL_RESULT_TYPE

124.9.3.2 public static final CompositeType BATCH_INSTALL_RESULT_TYPE

The Composite Type which represents the result of a batch install operation. It is used in instal lBun-
dles(Str ing[]) and instal lBundlesFromURL(Str ing[] , Str ing[]) . This Composite Type consists of the
following items:

• BUNDLE_IN_ERROR_LOCATION_ITEM
• COMPLETED_ITEM
Page 352 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 org.osgi.jmx.framework
• ERROR_ITEM
• P
• SUCCESS_ITEM
BUNDLE_IN_ERROR

124.9.3.3 public static final String BUNDLE_IN_ERROR = “BundleInError”

The key for BUNDLE_IN_ERROR. This key is used with two different items:
BUNDLE_IN_ERROR_ID_ITEM and BUNDLE_IN_ERROR_LOCATION_ITEM that each have a different
type for this key. It is used in BATCH_ACTION_RESULT_TYPE and BATCH_INSTALL_RESULT_TYPE .
BUNDLE_IN_ERROR_ID_ITEM

124.9.3.4 public static final Item BUNDLE_IN_ERROR_ID_ITEM

The item containing the bundle which caused the error during the batch operation. This item
describes the bundle in error as an id. The key is BUNDLE_IN_ERROR and the type is Simple-
Type.LONG . It is used in BATCH_ACTION_RESULT_TYPE .

See Also for the item that has a location for the bundle in error.
BUNDLE_IN_ERROR_LOCATION_ITEM

124.9.3.5 public static final Item BUNDLE_IN_ERROR_LOCATION_ITEM

The item containing the bundle which caused the error during the batch operation. This item
describes the bundle in error as a location. The key is BUNDLE_IN_ERROR and the type is Simple-
Type.LONG . It is used in BATCH_INSTALL_RESULT_TYPE .

See Also for the item that has a location for the bundle in error.
COMPLETED

124.9.3.6 public static final String COMPLETED = “Completed”

The key COMPLETED, used in COMPLETED_ITEM .
COMPLETED_ITEM

124.9.3.7 public static final Item COMPLETED_ITEM

The item containing the list of bundles completing the batch operation. The key is COMPLETED and
the type is JmxConstants.LONG_ARRAY_TYPE . It is used in BATCH_ACTION_RESULT_TYPE and
BATCH_INSTALL_RESULT_TYPE .
ERROR

124.9.3.8 public static final String ERROR = “Error”

The key ERROR, used in ERROR_ITEM .
ERROR_ITEM

124.9.3.9 public static final Item ERROR_ITEM

The item containing the error message of the batch operation. The key is ERROR and the type is Sim-
pleType.STRING . It is used in BATCH_ACTION_RESULT_TYPE and BATCH_INSTALL_RESULT_TYPE .
OBJECTNAME

124.9.3.10 public static final String OBJECTNAME = “osgi.core:type=framework,version=1.5”

The fully qualified object name of this mbean.
REMAINING

124.9.3.11 public static final String REMAINING = “Remaining”

The key REMAINING, used in REMAINING_ID_ITEM and REMAINING_LOCATION_ITEM .
REMAINING_ID_ITEM

124.9.3.12 public static final Item REMAINING_ID_ITEM

The item containing the list of remaining bundles unprocessed by the failing batch operation. The
key is REMAINING and the type is JmxConstants.LONG_ARRAY_TYPE . It is used in
BATCH_ACTION_RESULT_TYPE and BATCH_INSTALL_RESULT_TYPE .
REMAINING_LOCATION_ITEM

124.9.3.13 public static final Item REMAINING_LOCATION_ITEM

The item containing the list of remaining bundles unprocessed by the failing batch operation. The
key is REMAINING and the type is JmxConstants.STRING_ARRAY_TYPE . It is used in
BATCH_ACTION_RESULT_TYPE and BATCH_INSTALL_RESULT_TYPE .
OSGi Service Platform Release 4, Version 4.2 Page 353

org.osgi.jmx.framework JMX™ Management Model Specification Version 1.0
SUCCESS

124.9.3.14 public static final String SUCCESS = “Success”

The SUCCESS, used in SUCCESS_ITEM .
SUCCESS_ITEM

124.9.3.15 public static final Item SUCCESS_ITEM

The item that indicates if this operation was successful. The key is SUCCESS and the type is Simple-
Type.BOOLEAN . It is used in BATCH_ACTION_RESULT_TYPE and BATCH_INSTALL_RESULT_TYPE .
getFrameworkStartLevel()

124.9.3.16 public int getFrameworkStartLevel() throws IOException

Retrieve the framework start level

Returns the framework start level

Throws IOException – if the operation failed
getInitialBundleStartLevel()

124.9.3.17 public int getInitialBundleStartLevel() throws IOException

Answer the initial start level assigned to a bundle when it is first started

Returns the start level

Throws IOException – if the operation failed
installBundle(String)

124.9.3.18 public long installBundle(String location) throws IOException

location the location of the bundle to install

Install the bundle indicated by the bundleLocations

Returns the bundle id the installed bundle

Throws IOException – if the operation does not succeed
installBundleFromURL(String,String)

124.9.3.19 public long installBundleFromURL(String location, String url) throws IOException

location the location to assign to the bundle

url the URL which will supply the bytes for the bundle

Install the bundle indicated by the bundleLocations

Returns the bundle id the installed bundle

Throws IOException – if the operation does not succeed
installBundles(String[])

124.9.3.20 public CompositeData installBundles(String[] locations) throws IOException

locations the array of locations of the bundles to install

Batch install the bundles indicated by the list of bundleLocationUrls

Returns the resulting state from executing the operation

Throws IOException – if the operation does not succeed

See Also for the precise specification of the CompositeData type representing the returned
result.
installBundlesFromURL(String[],String[])

124.9.3.21 public CompositeData installBundlesFromURL(String[] locations, String[] urls) throws
IOException

locations the array of locations to assign to the installed bundles

urls the array of urls which supply the bundle bytes

Batch install the bundles indicated by the list of bundleLocationUrls

Returns the resulting state from executing the operation

Throws IOException – if the operation does not succeed
Page 354 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 org.osgi.jmx.framework
See Also BatchBundleResult for the precise specification of the CompositeData type
representing the returned result.
refreshBundle(long)

124.9.3.22 public void refreshBundle(long bundleIdentifier) throws IOException

bundleIdentifier the bundle identifier

Force the update, replacement or removal of the packages identified by the specified bundle.

Throws IOException – if the operation failed
refreshBundles(long[])

124.9.3.23 public void refreshBundles(long[] bundleIdentifiers) throws IOException

bundleIdentifiers the array of bundle identifiers

Force the update, replacement or removal of the packages identified by the list of bundles.

Throws IOException – if the operation failed
resolveBundle(long)

124.9.3.24 public boolean resolveBundle(long bundleIdentifier) throws IOException

bundleIdentifier the bundle identifier

Resolve the bundle indicated by the unique symbolic name and version

Returns true if the bundle was resolved, false otherwise

Throws IOException – if the operation does not succeed

IllegalArgumentException – if the bundle indicated does not exist
resolveBundles(long[])

124.9.3.25 public boolean resolveBundles(long[] bundleIdentifiers) throws IOException

bundleIdentifiers = the identifiers of the bundles to resolve

Batch resolve the bundles indicated by the list of bundle identifiers

Returns true if the bundles were resolved, false otherwise

Throws IOException – if the operation does not succeed
restartFramework()

124.9.3.26 public void restartFramework() throws IOException

Restart the framework by updating the system bundle

Throws IOException – if the operation failed
setBundleStartLevel(long,int)

124.9.3.27 public void setBundleStartLevel(long bundleIdentifier, int newlevel) throws IOException

bundleIdentifier the bundle identifier

newlevel the new start level for the bundle

Set the start level for the bundle identifier

Throws IOException – if the operation failed
setBundleStartLevels(long[],int[])

124.9.3.28 public CompositeData setBundleStartLevels(long[] bundleIdentifiers, int[] newlevels) throws
IOException

bundleIdentifiers the array of bundle identifiers

newlevels the array of new start level for the bundles

Set the start levels for the list of bundles.

Returns the resulting state from executing the operation

Throws IOException – if the operation failed

See Also for the precise specification of the CompositeData type representing the returned
result.
setFrameworkStartLevel(int)
OSGi Service Platform Release 4, Version 4.2 Page 355

org.osgi.jmx.framework JMX™ Management Model Specification Version 1.0
124.9.3.29 public void setFrameworkStartLevel(int newlevel) throws IOException

newlevel the new start level

Set the start level for the framework

Throws IOException – if the operation failed
setInitialBundleStartLevel(int)

124.9.3.30 public void setInitialBundleStartLevel(int newlevel) throws IOException

newlevel the new start level

Set the initial start level assigned to a bundle when it is first started

Throws IOException – if the operation failed
shutdownFramework()

124.9.3.31 public void shutdownFramework() throws IOException

Shutdown the framework by stopping the system bundle

Throws IOException – if the operation failed
startBundle(long)

124.9.3.32 public void startBundle(long bundleIdentifier) throws IOException

bundleIdentifier the bundle identifier

Start the bundle indicated by the bundle identifier

Throws IOException – if the operation does not succeed

IllegalArgumentException – if the bundle indicated does not exist
startBundles(long[])

124.9.3.33 public CompositeData startBundles(long[] bundleIdentifiers) throws IOException

bundleIdentifiers the array of bundle identifiers

Batch start the bundles indicated by the list of bundle identifier

Returns the resulting state from executing the operation

Throws IOException – if the operation does not succeed

See Also for the precise specification of the CompositeData type representing the returned
result.
stopBundle(long)

124.9.3.34 public void stopBundle(long bundleIdentifier) throws IOException

bundleIdentifier the bundle identifier

Stop the bundle indicated by the bundle identifier

Throws IOException – if the operation does not succeed

IllegalArgumentException – if the bundle indicated does not exist
stopBundles(long[])

124.9.3.35 public CompositeData stopBundles(long[] bundleIdentifiers) throws IOException

bundleIdentifiers the array of bundle identifiers

Batch stop the bundles indicated by the list of bundle identifier

Returns the resulting state from executing the operation

Throws IOException – if the operation does not succeed

See Also for the precise specification of the CompositeData type representing the returned
result.
uninstallBundle(long)

124.9.3.36 public void uninstallBundle(long bundleIdentifier) throws IOException

bundleIdentifier the bundle identifier

Uninstall the bundle indicated by the bundle identifier
Page 356 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 org.osgi.jmx.framework
Throws IOException – if the operation does not succeed

IllegalArgumentException – if the bundle indicated does not exist
uninstallBundles(long[])

124.9.3.37 public CompositeData uninstallBundles(long[] bundleIdentifiers) throws IOException

bundleIdentifiers the array of bundle identifiers

Batch uninstall the bundles indicated by the list of bundle identifiers

Returns the resulting state from executing the operation

Throws IOException – if the operation does not succeed

See Also for the precise specification of the CompositeData type representing the returned
result.
updateBundle(long)

124.9.3.38 public void updateBundle(long bundleIdentifier) throws IOException

bundleIdentifier the bundle identifier

Update the bundle indicated by the bundle identifier

Throws IOException – if the operation does not succeed

IllegalArgumentException – if the bundle indicated does not exist
updateBundleFromURL(long,String)

124.9.3.39 public void updateBundleFromURL(long bundleIdentifier, String url) throws IOException

bundleIdentifier the bundle identifier

url the URL to use to update the bundle

Update the bundle identified by the bundle identifier

Throws IOException – if the operation does not succeed

IllegalArgumentException – if the bundle indicated does not exist
updateBundles(long[])

124.9.3.40 public CompositeData updateBundles(long[] bundleIdentifiers) throws IOException

bundleIdentifiers the array of bundle identifiers

Batch update the bundles indicated by the list of bundle identifier.

Returns the resulting state from executing the operation

Throws IOException – if the operation does not succeed

See Also for the precise specification of the CompositeData type representing the returned
result.
updateBundlesFromURL(long[],String[])

124.9.3.41 public CompositeData updateBundlesFromURL(long[] bundleIdentifiers, String[] urls) throws
IOException

bundleIdentifiers the array of bundle identifiers

urls the array of URLs to use to update the bundles

Update the bundle uniquely identified by the bundle symbolic name and version using the contents
of the supplied urls.

Returns the resulting state from executing the operation

Throws IOException – if the operation does not succeed

IllegalArgumentException – if the bundle indicated does not exist

See Also for the precise specification of the CompositeData type representing the returned
result.
updateFramework()
OSGi Service Platform Release 4, Version 4.2 Page 357

org.osgi.jmx.framework JMX™ Management Model Specification Version 1.0
124.9.3.42 public void updateFramework() throws IOException

Update the framework by updating the system bundle.

Throws IOException – if the operation failed
PackageStateMBean

124.9.4 public interface PackageStateMBean
This MBean provides information about the package state of the framework.

Concurrency Thread-safe
EXPORTING_BUNDLES

124.9.4.1 public static final String EXPORTING_BUNDLES = “ExportingBundles”

The key EXPORTING_BUNDLE, used in EXPORTING_BUNDLES_ITEM .
EXPORTING_BUNDLES_ITEM

124.9.4.2 public static final Item EXPORTING_BUNDLES_ITEM

The item containing the bundle identifier in PACKAGE_TYPE . The key is EXPORTING_BUNDLES and
the type is JmxConstants.LONG_ARRAY_TYPE .
IMPORTING_BUNDLES

124.9.4.3 public static final String IMPORTING_BUNDLES = “ImportingBundles”

The key IMPORTING_BUNDLES, used in IMPORTING_BUNDLES_ITEM .
IMPORTING_BUNDLES_ITEM

124.9.4.4 public static final Item IMPORTING_BUNDLES_ITEM

The item containing the bundle identifier in PACKAGE_TYPE . The key is IMPORTING_BUNDLES and
the type is JmxConstants.LONG_ARRAY_TYPE .
NAME

124.9.4.5 public static final String NAME = “Name”

The key NAME, used in NAME_ITEM .
NAME_ITEM

124.9.4.6 public static final Item NAME_ITEM

The item containing the name of the package in PACKAGE_TYPE . The key is NAME and the type is
SimpleType.LONG .
OBJECTNAME

124.9.4.7 public static final String OBJECTNAME = “osgi.core:type=packageState,version=1.5”

The fully qualified object name of this MBean.
PACKAGE_TYPE

124.9.4.8 public static final CompositeType PACKAGE_TYPE

The Composite Type for a CompositeData representing a package. This type consists of:

• EXPORTING_BUNDLES_ITEM
• IMPORTING_BUNDLES_ITEM
• NAME_ITEM
• REMOVAL_PENDING_ITEM
• VERSION_ITEM

The key is defined as NAME and EXPORTING_BUNDLES
PACKAGES_TYPE

124.9.4.9 public static final TabularType PACKAGES_TYPE

The Tabular Type used in l istPackages() . They key is NAME , VERSION , and EXPORTING_BUNDLES .
REMOVAL_PENDING

124.9.4.10 public static final String REMOVAL_PENDING = “RemovalPending”

The name of the item containing the pending removal status of the package in the CompositeData.
Used
REMOVAL_PENDING_ITEM
Page 358 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 org.osgi.jmx.framework
124.9.4.11 public static final Item REMOVAL_PENDING_ITEM

The item representing the removal pending status of a package. The key is REMOVAL_PENDING and
the type is SimpleType.BOOLEAN .
VERSION

124.9.4.12 public static final String VERSION = “Version”

The name of the item containing the package version in the CompositeData. Used in VERSION_ITEM .
VERSION_ITEM

124.9.4.13 public static final Item VERSION_ITEM

The item containing the version of the package in PACKAGE_TYPE . The key is VERSION and the type
is SimpleType.STRING .
getExportingBundles(String,String)

124.9.4.14 public long[] getExportingBundles(String packageName, String version) throws IOException

packageName - the package name

version - the version of the package

Answer the identifier of the bundle exporting the package

Returns the bundle identifiers exporting such a package

Throws IOException – if the operation fails

IllegalArgumentException – if the package indicated does not exist
getImportingBundles(String,String,long)

124.9.4.15 public long[] getImportingBundles(String packageName, String version, long exportingBundle)
throws IOException

packageName The package name

version The version of the package

exportingBundle The exporting bundle for the given package

Answer the list of identifiers of the bundles importing the package

Returns the list of bundle identifiers

Throws IOException – if the operation fails

IllegalArgumentException – if the package indicated does not exist
isRemovalPending(String,String,long)

124.9.4.16 public boolean isRemovalPending(String packageName, String version, long exportingBundle)
throws IOException

packageName The package name

version The version of the package

exportingBundle The bundle exporting the package

Answer if this package is exported by a bundle which has been updated or uninstalled

Returns true if this package is being exported by a bundle that has been updated or uninstalled.

Throws IOException – if the operation fails

IllegalArgumentException – if the package indicated does not exist
listPackages()

124.9.4.17 public TabularData listPackages() throws IOException

Answer the package state of the system in tabular form The Tabular Data is typed by
PACKAGES_TYPE , which has PACKAGE_TYPE as its Composite Type.

Returns the tabular representation of the package state

Throws IOException – When fails
ServiceStateMBean
OSGi Service Platform Release 4, Version 4.2 Page 359

org.osgi.jmx.framework JMX™ Management Model Specification Version 1.0
124.9.5 public interface ServiceStateMBean
This MBean represents the Service state of the framework. This MBean also emits events that clients
can use to get notified of the changes in the service state of the framework.

Concurrency Thread-safe
BUNDLE_IDENTIFIER

124.9.5.1 public static final String BUNDLE_IDENTIFIER = “BundleIdentifier”

The key BUNDLE_IDENTIFIER, used in BUNDLE_IDENTIFIER_ITEM .
BUNDLE_IDENTIFIER_ITEM

124.9.5.2 public static final Item BUNDLE_IDENTIFIER_ITEM

The item containing the bundle identifier in SERVICE_TYPE . The key is BUNDLE_IDENTIFIER and the
type is SimpleType.LONG .
BUNDLE_LOCATION

124.9.5.3 public static final String BUNDLE_LOCATION = “BundleLocation”

The key BUNDLE_LOCATION, used in SERVICE_EVENT_TYPE .
BUNDLE_LOCATION_ITEM

124.9.5.4 public static final Item BUNDLE_LOCATION_ITEM

The item containing the bundle location in EVENT_ITEM . The key is BUNDLE_LOCATION and the the
type is SimpleType.STRING .
BUNDLE_SYMBOLIC_NAME

124.9.5.5 public static final String BUNDLE_SYMBOLIC_NAME = “BundleSymbolicName”

The key BUNDLE_SYMBOLIC_NAME, used in SERVICE_EVENT_TYPE .
BUNDLE_SYMBOLIC_NAME_ITEM

124.9.5.6 public static final Item BUNDLE_SYMBOLIC_NAME_ITEM

The item containing the symbolic name in EVENT . The key is BUNDLE_SYMBOLIC_NAME and the the
type is SimpleType.STRING .
EVENT

124.9.5.7 public static final String EVENT = “ServiceEvent”

The key EVENT, used in EVENT_ITEM .
EVENT_ITEM

124.9.5.8 public static final Item EVENT_ITEM

The item containing the event type. The key is EVENT and the type is SimpleType. INTEGER
IDENTIFIER

124.9.5.9 public static final String IDENTIFIER = “Identifier”

The key IDENTIFIER, used IDENTIFIER_ITEM .
IDENTIFIER_ITEM

124.9.5.10 public static final Item IDENTIFIER_ITEM

The item containing the service identifier in SERVICE_TYPE . The key is IDENTIFIER and the type is
SimpleType.LONG .
OBJECT_CLASS

124.9.5.11 public static final String OBJECT_CLASS = “objectClass”

The key OBJECT_CLASS, used OBJECT_CLASS_ITEM .
OBJECT_CLASS_ITEM

124.9.5.12 public static final Item OBJECT_CLASS_ITEM

The item containing the interfaces of the service in SERVICE_TYPE . The key is OBJECT_CLASS and
the type is JmxConstants.STRING_ARRAY_TYPE .
OBJECTNAME

124.9.5.13 public static final String OBJECTNAME = “osgi.core:type=serviceState,version=1.5”

The fully qualified object name of this mbean.
PROPERTIES
Page 360 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 org.osgi.jmx.framework
124.9.5.14 public static final String PROPERTIES = “Properties”

The key PROPERTIES, used in PROPERTIES_ITEM .
PROPERTIES_ITEM

124.9.5.15 public static final Item PROPERTIES_ITEM

The item containing service properties. The key is PROPERTIES and the type is JmxCon-
stants.PROPERTIES_TYPE .
SERVICE_EVENT_TYPE

124.9.5.16 public static final CompositeType SERVICE_EVENT_TYPE

The Composite Type that represents a service event. This composite consists of:

• IDENTIFIER
• OBJECT_CLASS
• BUNDLE_LOCATION
• BUNDLE_SYMBOLIC_NAME
• EVENT
SERVICE_TYPE

124.9.5.17 public static final CompositeType SERVICE_TYPE

The Composite Type for a CompositeData representing a service. This type consists of:

• BUNDLE_IDENTIFIER
• IDENTIFIER
• OBJECT_CLASS
• PROPERTIES
• USING_BUNDLES
SERVICES_TYPE

124.9.5.18 public static final TabularType SERVICES_TYPE

The Tabular Type for a Service table. The rows consists of SERVICE_TYPE Composite Data and the
index is IDENTIFIER .
USING_BUNDLES

124.9.5.19 public static final String USING_BUNDLES = “UsingBundles”

The key USING_BUNDLES, used in USING_BUNDLES_ITEM .
USING_BUNDLES_ITEM

124.9.5.20 public static final Item USING_BUNDLES_ITEM

The item containing the bundles using the service in SERVICE_TYPE . The key is USING_BUNDLES
and the type is JmxConstants.LONG_ARRAY_TYPE .
getBundleIdentifier(long)

124.9.5.21 public long getBundleIdentifier(long serviceId) throws IOException

serviceId the identifier of the service

Answer the bundle identifier of the bundle which registered the service

Returns the identifier for the bundle

Throws IOException – if the operation fails

IllegalArgumentException – if the service indicated does not exist
getObjectClass(long)

124.9.5.22 public String[] getObjectClass(long serviceId) throws IOException

serviceId the identifier of the service

Answer the list of interfaces that this service implements

Returns the list of interfaces

Throws IOException – if the operation fails

IllegalArgumentException – if the service indicated does not exist
getProperties(long)
OSGi Service Platform Release 4, Version 4.2 Page 361

org.osgi.jmx.service.cm JMX™ Management Model Specification Version 1.0
124.9.5.23 public TabularData getProperties(long serviceId) throws IOException

serviceId the identifier of the service

Answer the map of properties associated with this service

Returns the table of properties. These include the standard mandatory service.id and objectClass properties as
defined in the org.osgi . f ramework.Constants interface

Throws IOException – if the operation fails

IllegalArgumentException – if the service indicated does not exist

See Also for the details of the TabularType
getUsingBundles(long)

124.9.5.24 public long[] getUsingBundles(long serviceId) throws IOException

serviceId the identifier of the service

Answer the list of identifiers of the bundles that use the service

Returns the list of bundle identifiers

Throws IOException – if the operation fails

IllegalArgumentException – if the service indicated does not exist
listServices()

124.9.5.25 public TabularData listServices() throws IOException

Answer the service state of the system in tabular form.

Returns the tabular representation of the service state

Throws IOException – If the operation fails

IllegalArgumentException – if the service indicated does not exist

See Also for the details of the TabularType

124.10 org.osgi.jmx.service.cm
OSGi JMX CM Package Version 1.3.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. For example:

Import-Package: org.osgi.jmx.service.cm; version=”[1.3,2.0)”
ConfigurationAdminMBean

124.10.1 public interface ConfigurationAdminMBean
This MBean provides the management interface to the OSGi Configuration Administration Service.

Concurrency Thread-safe
OBJECTNAME

124.10.1.1 public static final String OBJECTNAME = “osgi.compendium:service=cm,version=1.3”

The object name for this mbean.
createFactoryConfiguration(String)

124.10.1.2 public String createFactoryConfiguration(String factoryPid) throws IOException

factoryPid the persistent id of the factory

Create a new configuration instance for the supplied persistent id of the factory, answering the PID of
the created configuration

Returns the PID of the created configuration
Page 362 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 org.osgi.jmx.service.cm
Throws IOException – if the operation failed
createFactoryConfigurationForLocation(String,String)

124.10.1.3 public String createFactoryConfigurationForLocation(String factoryPid, String location) throws
IOException

factoryPid the persistent id of the factory

location the bundle location

Create a factory configuration for the supplied persistent id of the factory and the bundle location
bound to bind the created configuration to, answering the PID of the created configuration

Returns the pid of the created configuation

Throws IOException – if the operation failed
delete(String)

124.10.1.4 public void delete(String pid) throws IOException

pid the persistent identifier of the configuration

Delete the configuration

Throws IOException – if the operation fails
deleteConfigurations(String)

124.10.1.5 public void deleteConfigurations(String filter) throws IOException

filter the string representation of the org.osgi . f ramework.Fi l ter

Delete the configurations matching the filter specification.

Throws IOException – if the operation failed

IllegalArgumentException – if the filter is invalid
deleteForLocation(String,String)

124.10.1.6 public void deleteForLocation(String pid, String location) throws IOException

pid the persistent identifier of the configuration

location the bundle location

Delete the configuration

Throws IOException – if the operation fails
getBundleLocation(String)

124.10.1.7 public String getBundleLocation(String pid) throws IOException

pid the persistent identifier of the configuration

Answer the bundle location the configuration is bound to

Returns the bundle location

Throws IOException – if the operation fails
getConfigurations(String)

124.10.1.8 public String[][] getConfigurations(String filter) throws IOException

filter the string representation of the org.osgi . f ramework.Fi l ter

Answer the list of PID/Location pairs of the configurations managed by this service

Returns the list of configuration PID/Location pairs

Throws IOException – if the operation failed

IllegalArgumentException – if the filter is invalid
getFactoryPid(String)

124.10.1.9 public String getFactoryPid(String pid) throws IOException

pid the persistent identifier of the configuration

Answer the factory PID if the configuration is a factory configuration, null otherwise.

Returns the factory PID
OSGi Service Platform Release 4, Version 4.2 Page 363

org.osgi.jmx.service.cm JMX™ Management Model Specification Version 1.0
Throws IOException – if the operation fails
getFactoryPidForLocation(String,String)

124.10.1.10 public String getFactoryPidForLocation(String pid, String location) throws IOException

pid the persistent identifier of the configuration

location the bundle location

Answer the factory PID if the configuration is a factory configuration, null otherwise.

Returns the factory PID

Throws IOException – if the operation fails
getProperties(String)

124.10.1.11 public TabularData getProperties(String pid) throws IOException

pid the persistent identifier of the configuration

Answer the contents of the configuration

Returns the table of contents

Throws IOException – if the operation fails

See Also for the details of the TabularType
getPropertiesForLocation(String,String)

124.10.1.12 public TabularData getPropertiesForLocation(String pid, String location) throws IOException

pid the persistent identifier of the configuration

location the bundle location

Answer the contents of the configuration

Returns the table of contents

Throws IOException – if the operation fails

See Also for the details of the TabularType
setBundleLocation(String,String)

124.10.1.13 public void setBundleLocation(String pid, String location) throws IOException

pid the persistent identifier of the configuration

location the bundle location

Set the bundle location the configuration is bound to

Throws IOException – if the operation fails
update(String,javax.management.openmbean.TabularData)

124.10.1.14 public void update(String pid, TabularData properties) throws IOException

pid the persistent identifier of the configuration

properties the table of properties

Update the configuration with the supplied properties For each property entry, the following row is
supplied

Throws IOException – if the operation fails

See Also for the details of the TabularType
updateForLocation(String,String,javax.management.openmbean.TabularData)

124.10.1.15 public void updateForLocation(String pid, String location, TabularData properties) throws
IOException

pid the persistent identifier of the configuration

location the bundle location

properties the table of properties

Update the configuration with the supplied properties For each property entry, the following row is
supplied
Page 364 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 org.osgi.jmx.service.permissionadmin
Throws IOException – if the operation fails

See Also for the details of the TabularType

124.11 org.osgi.jmx.service.permissionadmin
OSGi JMX Permission Admin Package Admin Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. For example:

Import-Package: org.osgi.jmx.service.permission; version=”[1.2,2.0)”
PermissionAdminMBean

124.11.1 public interface PermissionAdminMBean
This MBean represents the OSGi Permission Manager Service

Concurrency Thread-safe
OBJECTNAME

124.11.1.1 public static final String OBJECTNAME = “osgi.core:service=permissionadmin,version=1.2”

Permission Admin MBean object name.
getPermissions(String)

124.11.1.2 public String[] getPermissions(String location) throws IOException

location location identifying the bundle

Answer the list of encoded permissions of the bundle specified by the bundle location

Returns the array of String encoded permissions

Throws IOException – if the operation fails
listDefaultPermissions()

124.11.1.3 public String[] listDefaultPermissions() throws IOException

Answer the list of encoded permissions representing the default permissions assigned to bundle loca-
tions that have no assigned permissions

Returns the array of String encoded permissions

Throws IOException – if the operation fails
listLocations()

124.11.1.4 public String[] listLocations() throws IOException

Answer the bundle locations that have permissions assigned to them

Returns the bundle locations

Throws IOException – if the operation fails
setDefaultPermissions(String[])

124.11.1.5 public void setDefaultPermissions(String[] encodedPermissions) throws IOException

encodedPermissions the string encoded permissions

Set the default permissions assigned to bundle locations that have no assigned permissions

Throws IOException – if the operation fails
setPermissions(String,String[])

124.11.1.6 public void setPermissions(String location, String[] encodedPermissions) throws IOException

location the location of the bundle

encodedPermissions the string encoded permissions to set

Set the permissions on the bundle specified by the bundle location

Throws IOException – if the operation fails
OSGi Service Platform Release 4, Version 4.2 Page 365

org.osgi.jmx.service.provisioning JMX™ Management Model Specification Version 1.0
124.12 org.osgi.jmx.service.provisioning
OSGi JMX Initial Provisioning Package Version 1.2.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. For example:

Import-Package: org.osgi.jmx.service.provisioning; version=”[1.2,2.0)”
ProvisioningServiceMBean

124.12.1 public interface ProvisioningServiceMBean
This MBean represents the management interface to the OSGi Initial Provisioning Service

Concurrency Thread-safe
OBJECTNAME

124.12.1.1 public static final String OBJECTNAME = “osgi.compendium:service=provisioning,version=1.2”

Provisioning MBean object name.
addInformation(javax.management.openmbean.TabularData)

124.12.1.2 public void addInformation(TabularData info) throws IOException

info the set of Provisioning Information key/value pairs to add to the Provisioning Information dictionary.
Any keys are values that are of an invalid type will be silently ignored.

Adds the key/value pairs contained in info to the Provisioning Information dictionary. This method
causes the PROVISIONING_UPDATE_COUNT to be incremented.

Throws IOException – if the operation fails

See Also for details of the Tabular Data
addInformationFromZip(String)

124.12.1.3 public void addInformationFromZip(String zipURL) throws IOException

zipURL the String form of the URL that will be resolved into a ZipInputStream which will be used to add key/
value pairs to the Provisioning Information dictionary and install and start bundles. If a ZipEntry does
not have an Extra field that corresponds to one of the four defined MIME types (MIME_STRING ,
MIME_BYTE_ARRAY ,MIME_BUNDLE , and MIME_BUNDLE_URL) in will be silently ignored.

Processes the ZipInputStream contents of the provided zipURL and extracts information to add to the
Provisioning Information dictionary, as well as, install/update and start bundles. This method causes
the PROVISIONING_UPDATE_COUNT to be incremented.

Throws IOException – if an error occurs while processing the ZipInputStream of the URL. No additions will
be made to the Provisioning Information dictionary and no bundles must be started or installed.
listInformation()

124.12.1.4 public TabularData listInformation() throws IOException

Returns a table representing the Provisioning Information Dictionary.

Returns The table representing the manager dictionary.

Throws IOException – if the operation fails

See Also for details of the Tabular Data
setInformation(javax.management.openmbean.TabularData)

124.12.1.5 public void setInformation(TabularData info) throws IOException

info the new set of Provisioning Information key/value pairs. Any keys are values that are of an invalid
type will be silently ignored.

Replaces the Provisioning Information dictionary with the entries of the supplied table. This method
causes the PROVISIONING_UPDATE_COUNT to be incremented.

Throws IOException – if the operation fails
Page 366 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 org.osgi.jmx.service.useradmin
See Also for details of the Tabular Data

124.13 org.osgi.jmx.service.useradmin
OSGi JMX User Admin Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. For example:

Import-Package: org.osgi.jmx.service.useradmin; version=”[1.1,2.0)”
UserAdminMBean

124.13.1 public interface UserAdminMBean
This MBean provides the management interface to the OSGi User Manager Service

Concurrency Thread-safe
AUTORIZATION_TYPE

124.13.1.1 public static final CompositeType AUTORIZATION_TYPE

The Composite Type for an Authorization object. It consists of the NAME_ITEM and TYPE_ITEM
items.
CREDENTIALS

124.13.1.2 public static final String CREDENTIALS = “Credentials”

The CREDENTIALS key, used in CREDENTIALS_ITEM .
CREDENTIALS_ITEM

124.13.1.3 public static final Item CREDENTIALS_ITEM

The item containing the credentials of a user. The key is CREDENTIALS and the type is JmxCon-
stants.PROPERTIES_TYPE .
GROUP_TYPE

124.13.1.4 public static final CompositeType GROUP_TYPE

The Composite Type for a Group. It extends USER_TYPE and adds MEMBERS_ITEM , and
REQUIRED_MEMBERS_ITEM . This type extends the USER_TYPE . It adds:

• MEMBERS
• REQUIRED_MEMBERS
MEMBERS

124.13.1.5 public static final String MEMBERS = “Members”

The MEMBERS key, used in MEMBERS_ITEM .
MEMBERS_ITEM

124.13.1.6 public static final Item MEMBERS_ITEM

The item containing the members of a group. The key is MEMBERS and the type is JmxCon-
stants.STRING_ARRAY_TYPE . It is used in GROUP_TYPE .
NAME

124.13.1.7 public static final String NAME = “Name”

The key NAME, used in NAME_ITEM .
NAME_ITEM

124.13.1.8 public static final Item NAME_ITEM

The item for the user name for an authorization object. The key is NAME and the type is Simple-
Type.STRING .
OBJECTNAME

124.13.1.9 public static final String OBJECTNAME = “osgi.compendium:service=useradmin,version=1.1”

User Admin MBean object name.
PROPERTIES
OSGi Service Platform Release 4, Version 4.2 Page 367

org.osgi.jmx.service.useradmin JMX™ Management Model Specification Version 1.0
124.13.1.10 public static final String PROPERTIES = “Properties”

The PROPERTIES key, used in PROPERTIES_ITEM .
PROPERTIES_ITEM

124.13.1.11 public static final Item PROPERTIES_ITEM

The item containing the properties of a Role. The key is PROPERTIES and the type is JmxCon-
stants.PROPERTIES_TYPE .
REQUIRED_MEMBERS

124.13.1.12 public static final String REQUIRED_MEMBERS = “RequiredMembers”

The REQUIRED_MEMBERS key, used in REQUIRED_MEMBERS_ITEM .
REQUIRED_MEMBERS_ITEM

124.13.1.13 public static final Item REQUIRED_MEMBERS_ITEM

The item containing the required members of a group. The key is REQUIRED_MEMBERS and the type
is JmxConstants.STRING_ARRAY_TYPE . It is used in GROUP_TYPE .
ROLE_TYPE

124.13.1.14 public static final CompositeType ROLE_TYPE

The Composite Type for a Role. It contains the following items:

• NAME
• TYPE
• PROPERTIES
ROLES

124.13.1.15 public static final String ROLES = “Roles”

The key ROLES, used in ROLES_ITEM .
ROLES_ITEM

124.13.1.16 public static final Item ROLES_ITEM

The item containing the roles for this authorization object. The key is ROLES . and the type is JmxCon-
stants.STRING_ARRAY_TYPE .
TYPE

124.13.1.17 public static final String TYPE = “Type”

The Role TYPE key, used in TYPE_ITEM .
TYPE_ITEM

124.13.1.18 public static final Item TYPE_ITEM

The item containing the type of the roles encapsulated by this authorization object. The key is TYPE
and the type is SimpleType. INTEGER .
USER_TYPE

124.13.1.19 public static final CompositeType USER_TYPE

A Composite Type for a User. A User contains its Role description and adds the credentials. It extends
ROLE_TYPE and adds CREDENTIALS_ITEM . This type extends the ROLE_TYPE . It adds:

• CREDENTIALS
addCredential(String,byte[],String)

124.13.1.20 public void addCredential(String key, byte[] value, String username) throws IOException

key The key of the credential to add

value The value of the credential to add

username The name of the user that gets the credential.

Add credentials to a user, associated with the supplied key

Throws IOException – if the operation fails

IllegalArgumentException – if the user name is not a User
addCredentialString(String,String,String)
Page 368 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 org.osgi.jmx.service.useradmin
124.13.1.21 public void addCredentialString(String key, String value, String username) throws IOException

key The key of the credential to add

value The value of the credential to add

username The name of the user that gets the credential.

Add credentials to a user, associated with the supplied key

Throws IOException – if the operation fails

IllegalArgumentException – if the username is not a User
addMember(String,String)

124.13.1.22 public boolean addMember(String groupname, String rolename) throws IOException

groupname The group name that receives the rolename as member.

rolename The rolename (User or Group) that must be added.

Add a member to the group.

Returns true if the role was added to the group

Throws IOException – if the operation fails
addProperty(String,byte[],String)

124.13.1.23 public void addProperty(String key, byte[] value, String rolename) throws IOException

key The added property key

value The added byte[] property value

rolename The role name that receives the property

Add or update a property on a role.

Throws IOException – if the operation fails
addPropertyString(String,String,String)

124.13.1.24 public void addPropertyString(String key, String value, String rolename) throws IOException

key The key of the property to add

value The value of the property to add (Str ing)

rolename The role name

Add or update a property on a role

Throws IOException – if the operation fails
addRequiredMember(String,String)

124.13.1.25 public boolean addRequiredMember(String groupname, String rolename) throws IOException

groupname The group name that is addded

rolename The role that

Add a required member to the group

Returns true if the role was added to the group

Throws IOException – if the operation fails
createGroup(String)

124.13.1.26 public void createGroup(String name) throws IOException

name Name of the group to create

Create a Group

Throws IOException – if the operation fails
createRole(String)

124.13.1.27 public void createRole(String name) throws IOException

name of the role to create

Create a Role
OSGi Service Platform Release 4, Version 4.2 Page 369

org.osgi.jmx.service.useradmin JMX™ Management Model Specification Version 1.0
Throws IOException – if the operation fails
createUser(String)

124.13.1.28 public void createUser(String name) throws IOException

name Name of the user to create

Create a User

Throws IOException – if the operation fails
getAuthorization(String)

124.13.1.29 public CompositeData getAuthorization(String user) throws IOException

user The user name

Answer the authorization for the user name. The Composite Data is typed by AUTORIZATION_TYPE .

Returns the Authorization typed by AUTORIZATION_TYPE .

Throws IOException – if the operation fails

IllegalArgumentException – if the user name is not a User
getCredentials(String)

124.13.1.30 public TabularData getCredentials(String username) throws IOException

username The user name

Answer the credentials associated with a user. The returned Tabular Data is typed by JmxCon-
stants.PROPERTIES_TYPE .

Returns the credentials associated with the user, see JmxConstants.PROPERTIES_TYPE

Throws IOException – if the operation fails

IllegalArgumentException – if the user name is not a User
getGroup(String)

124.13.1.31 public CompositeData getGroup(String groupname) throws IOException

groupname The group name

Answer the Group associated with the group name. The returned Composite Data is typed by
GROUP_TYPE

Returns the Group, see GROUP_TYPE

Throws IOException – if the operation fails

IllegalArgumentException – if the group name is not a Group
getGroups(String)

124.13.1.32 public String[] getGroups(String filter) throws IOException

filter The filter to apply

Answer the list of group names

Returns The list of group names

Throws IOException – if the operation fails
getImpliedRoles(String)

124.13.1.33 public String[] getImpliedRoles(String username) throws IOException

username The name of the user that has the implied roles

Answer the list of implied roles for a user

Returns The list of role names

Throws IOException – if the operation fails

IllegalArgumentException – if the username is not a User
getMembers(String)

124.13.1.34 public String[] getMembers(String groupname) throws IOException

groupname The name of the group to get the members from
Page 370 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 org.osgi.jmx.service.useradmin
Answer the the user names which are members of the group

Returns The list of user names

Throws IOException – if the operation fails

IllegalArgumentException – if the groupname is not a group
getProperties(String)

124.13.1.35 public TabularData getProperties(String rolename) throws IOException

rolename The name of the role to get properties from

Answer the properties associated with a role. The returned Tabular Data is typed by JmxCon-
stants.PROPERTIES_TYPE .

Returns the properties associated with the role, see JmxConstants.PROPERTIES_TYPE

Throws IOException – if the operation fails
getRequiredMembers(String)

124.13.1.36 public String[] getRequiredMembers(String groupname) throws IOException

groupname The name of the group to get the required members from

Answer the list of user names which are required members of this group

Returns The list of user names

Throws IOException – if the operation fails

IllegalArgumentException – if the group name is not a group
getRole(String)

124.13.1.37 public CompositeData getRole(String name) throws IOException

name The name of the role to get the data from

Answer the role associated with a name. The returned Composite Data is typed by ROLE_TYPE .

Returns the Role, see ROLE_TYPE

Throws IOException – if the operation fails
getRoles(String)

124.13.1.38 public String[] getRoles(String filter) throws IOException

filter The string representation of the org.osgi . f ramework.F i l ter that is used to filter the roles by applying
to the properties, if null all roles are returned.

Answer the list of role names which match the supplied filter

Returns The list the role names

Throws IOException – if the operation fails
getUser(String)

124.13.1.39 public CompositeData getUser(String username) throws IOException

username The name of the requested user

Answer the User associated with the user name. The returned Composite Data is typed by
USER_TYPE .

Returns The User, see USER_TYPE

Throws IOException – if the operation fails

IllegalArgumentException – if the username is not a User
getUsers(String)

124.13.1.40 public String[] getUsers(String filter) throws IOException

filter The filter to apply

Answer the list of user names in the User Admin database

Returns The list of user names

Throws IOException – if the operation fails
getUserWithProperty(String,String)
OSGi Service Platform Release 4, Version 4.2 Page 371

org.osgi.jmx.service.useradmin JMX™ Management Model Specification Version 1.0
124.13.1.41 public String getUserWithProperty(String key, String value) throws IOException

key The key to compare

value The value to compare

Answer the user name with the given property key-value pair from the User Admin service database.

Returns The User

Throws IOException – if the operation fails
listGroups()

124.13.1.42 public String[] listGroups() throws IOException

Answer the list of group names

Returns The list of group names

Throws IOException – if the operation fails
listRoles()

124.13.1.43 public String[] listRoles() throws IOException

Answer the list of role names in the User Admin database

Returns The list of role names

Throws IOException – if the operation fails
listUsers()

124.13.1.44 public String[] listUsers() throws IOException

Answer the list of user names in the User Admin database

Returns The list of user names

Throws IOException – if the operation fails
removeCredential(String,String)

124.13.1.45 public void removeCredential(String key, String username) throws IOException

key The key of the credential to remove

username The name of the user for which the credential must be removed

Remove the credential associated with the given user

Throws IOException – if the operation fails

IllegalArgumentException – if the username is not a User
removeGroup(String)

124.13.1.46 public boolean removeGroup(String name) throws IOException

name

Remove the Group associated with the name

Returns true if the remove succeeded

Throws IOException – if the operation fails
removeMember(String,String)

124.13.1.47 public boolean removeMember(String groupname, String rolename) throws IOException

groupname The group name

rolename

Remove a role from the group

Returns true if the role was removed from the group

Throws IOException – if the operation fails

IllegalArgumentException – if the groupname is not a Group
removeProperty(String,String)

124.13.1.48 public void removeProperty(String key, String rolename) throws IOException

key
Page 372 OSGi Service Platform Release 4, Version 4.2

JMX™ Management Model Specification Version 1.0 References
rolename

Remove a property from a role

Throws IOException – if the operation fails
removeRole(String)

124.13.1.49 public boolean removeRole(String name) throws IOException

name

Remove the Role associated with the name

Returns true if the remove succeeded

Throws IOException – if the operation fails
removeUser(String)

124.13.1.50 public boolean removeUser(String name) throws IOException

name

Remove the User associated with the name

Returns true if the remove succeeded

Throws IOException – if the operation fails

124.14 References
[1] OSGi Core Specifications

http://www.osgi.org/Specifications/HomePage

[2] JMX
http://en.wikipedia.org/wiki/JMX

[3] Java Management Extensions (JMX) Technology Overview
http://java.sun.com/j2se/1.5.0/docs/guide/jmx/overview/JMXoverviewTOC.html

[4] JSR 3: Java Management Extensions (JMX) Specification
http://www.jcp.org/en/jsr/detailid=3

[5] JSR 255: Java Management Extensions (JMX) Specification, version 2.0
http://www.jcp.org/en/jsr/detailid=255

[6] JSR 160: JavaTM Management Extensions (JMX) Remote API
http://www.jcp.org/en/jsr/detailid=160

[7] JSR 262: Web Services Connector for Java Management Extensions (JMX) Agents
http://www.jcp.org/en/jsr/detailid=262

[8] JavaTM Management Extensions (JMXTM)API Specification
http://java.sun.com/j2se/1.5.0/docs/guide/jmx/spec.html

[9] Using JConsole to Monitor Applications
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html
OSGi Service Platform Release 4, Version 4.2 Page 373

References JMX™ Management Model Specification Version 1.0
Page 374 OSGi Service Platform Release 4, Version 4.2

JDBC™ Service Specification Version 1.0 Introduction
125 JDBC™ Service Specification
Version 1.0

125.1 Introduction
The Java Database Connectivity (JDBC) standard provides an API for applications to interact with
relational database systems from different vendors. To abstract over concrete database systems and
vendor specific characteristics, the JDBC specification provides various classes and Service Provider
Interfaces (SPI) that can be used for database interaction. Implementations are database specific and
provided by the corresponding driver. This specification defines how OSGi-aware JDBC drivers can
provide access to their implementations. Applications can rely on this mechanism to transparently
access drivers and to stay independent from driver specific classes. Additionally, this mechanism
helps to use common OSGi practices and to avoid class loading problems.

This specification uses a number of packages that are defined in Java SE 1.4 or later.

125.1.1 Essentials
• Registration – Provide a mechanism for JDBC driver announcements.
• Lookup – Inspect available database drivers and provide means for driver access.
• Services – Uses a service model for getting the driver objects.
• Compatible – Minimize the amount of work needed to support this specification for existing

drivers.

125.1.2 Entities
• Relational Database Management Systems – (RDBMS) An external database system.
• Database Driver – JDBC-compliant database driver that is delivered in a bundle.
• Data Source Factory – Provides one of the different Data Sources that gives access to a database

driver.
• Application – The application that wants to access a relational database system.

Figure 125.1 JDBC Class/Service Overview

125.1.3 Dependencies
The classes and interfaces used in this specification come from the following packages:

javax.sql

Driver Impl

Application Impl

Data Source
Factory

database
OSGi Service Platform Release 4, Version 4.2 Page 375

Database Driver JDBC™ Service Specification Version 1.0
java.sql

These packages have no associated version. It is assumed they come from the runtime environment.
This specification is based on Java SE 1.4 or later.

125.1.4 Synopsis
A JDBC Database Driver is the software that maps the JDBC specification to a specific implementation
of a relational database. For OSGi, JDBC drivers are delivered as driver bundles. A driver bundle regis-
ters a Data Source Factory service when it is ACTIVE . Service properties are used to specify the data-
base driver name, version, etc. The Data Source Factory service provides methods to create
DataSource , ConnectionPoolDataSource , XADataSource , or Driver objects. These objects are then
used by an application to interact with the relational database system in the standard way.

The application can query the service registry for available Data Source Factory services. It can select
particular drivers by filtering on the service properties. This service based model is easy to use with
dependency injection frameworks like Blueprint or Declarative Services.

125.2 Database Driver
A Database Driver provides the connection between an Application and a particular database. A single
OSGi Framework can contain several Database Drivers simultaneously. To make itself available to
Applications, a Database Driver must register a Data Source Factory service. Applications must be
able to find the appropriate Database Driver. The Database Driver must therefore register the Data
Source Factory service with the following service properties:

• OSGI_JDBC_DRIVER_CLASS – (Str ing) The required name of the driver implementation class.
This property is the primary key to find a driver’s Data Source Factory. It is not required that there
is an actual class with this name.

• OSGI_JDBC_DRIVER_NAME – (Str ing) The optional driver name. This property is informational.
• OSGI_JDBC_DRIVER_VERSION – (Str ing) The driver version. The version is not required to be an

OSGi version, it should be treated as an opaque string. This version is likely not related to the
package of the implementation class or its bundle.

The previous properties are vendor-specific and are meant to further describe the Database Driver to
the Application.

Each Data Source Factory service must relate to a single Database Driver. The Database Driver imple-
mentation bundle does not necessarily need to be the registrar of the Data Source Factory service.
Any bundle can provide the Data Source Factory service and delegate to the appropriate driver spe-
cific implementation classes. However, as JDBC driver implementations evolve to include built-in
support for OSGi they can provide the Data Source Factory service themselves. This implies that the
same driver can be registered multiple times.

125.2.1 Life Cycle
A Data Source Factory service should be registered while its Driver Bundle is in the ACTIVE state or
when it has a lazy activation policy and is in the STARTING state.

What happens to the objects created by the Data Source Factory service, and the objects they created,
is undefined in this specifications. Database Drivers are not mandated to track the proper life cycle of
these objects.
Page 376 OSGi Service Platform Release 4, Version 4.2

JDBC™ Service Specification Version 1.0 Applications
125.2.2 Package Dependencies
A Database Driver must import the javax.sql package. The java.sql package that contains the Driver
and SQLException interface is automatically imported because it starts with java. . Both packages are
contained in the JRE since Java SE 1.4. These packages are not normally versioned with OSGi version
numbers. Bundles using the Data Source Factory must therefore ensure they get the proper imports,
which is usually from the JRE. Due to the lack of specified metadata, the deployer is responsible for
ensuring this.

125.3 Applications

125.3.1 Selecting the Data Source Factory Service
Applications can query the OSGi service registry for available Database Drivers by getting a list of
Data Source Factory services. Normally, the application needs access to specific drivers that match
their needed relational database type. The service properties can be used to find the desired Database
Driver. This model is well supported by dependency injection frameworks like Blueprint or Declara-
tive Services. However, it can of course also be used with the basic service methods. The following
code shows how a Service Tracker can be used to get a Database Driver called ACME DB.

Filter filter = context.createFilter(
"(&(objectClass=" +

DataSourceFactory.class.getName() +
")(" +

DataSourceFactory.OSGI_JDBC_DRIVER_CLASS + "=com.acme.db.Driver))");

ServiceTracker tracker = new ServiceTracker(context, filter, null);
tracker.open();

DataSourceFactory dsf = (DataSourceFactory) tracker.getService();

125.3.2 Using Database Drivers
The Data Source Factory service can be used to obtain instances for the following JDBC related types:

• javax.sql .DataSource
• javax.sql .ConnectionPoolDataSource
• javax.sql .XADataSource
• java.sql .Driver

Which type of Connection provider that is actually required depends on the Application and the use
case. For each type, the Data Source Factory service provides a method that returns the corresponding
instance. Each method takes a Propert ies object as a parameter to pass a configuration to the Data-
base Driver implementation. The configuration is driver-specific and can be used to specify the URL
for the database and user credentials. Common property names for these configuration properties are
also defined in the DataSourceFactory interface.

A Data Source Factory is not required to implement all of the factory methods. If an implementation
does not support a particular type then it must throw a SQL Exception. This specification does not
provide a mechanism to depend on a Data Source Factory service that implements a particular fac-
tory method.

The following code shows how a DataSource object could be created.

Properties props = new Properties();
props.put(DataSourceFactory.JDBC_URL, "jdbc:acme:ACME DB");
props.put(DataSourceFactory.JDBC_USER, "foo");
props.put(DataSourceFactory.JDBC_PASSWORD, "secret");
OSGi Service Platform Release 4, Version 4.2 Page 377

Security JDBC™ Service Specification Version 1.0
DataSource dataSource = dsf.createDataSource(props);

The DataSourceFactory interface has several static fields that represent common property keys for
the Properties instance. General properties are:

• JDBC_DATABASE_NAME
• JDBC_DATASOURCE_NAME
• JDBC_DESCRIPTION
• JDBC_NETWORK_PROTOCOL
• JDBC_PASSWORD
• JDBC_PORT_NUMBER
• JDBC_ROLE_NAME
• JDBC_SERVER_NAME
• JDBC_USER
• JDBC_URL

The following additional property keys are provided for applications that want to create a
ConnectionPoolDataSource object or a XAPoolDataSource object:

• JDBC_INITIAL_POOL_SIZE
• JDBC_MAX_IDLE_TIME
• JDBC_MAX_POOL_SIZE
• JDBC_MAX_STATEMENTS
• JDBC_MIN_POOL_SIZE
• JDBC_PROPERTY_CYCLE

Which property keys and values are supported depends on the driver implementation. Drivers can
support additional custom configuration properties.

125.4 Security
This specification depends on the JDBC specification for security.

125.5 org.osgi.service.jdbc
JDBC Service Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. For example:

Import-Package: org.osgi.service.jdbc; version=”[1.0,2.0)”
DataSourceFactory

125.5.1 public interface DataSourceFactory
A factory for JDBC connection factories. There are 3 preferred connection factories for getting JDBC
connections: javax.sql .DataSource , javax.sql .Connect ionPoolDataSource , and
javax.sql .XADataSource . DataSource providers should implement this interface and register it as an
OSGi service with the JDBC driver class name in the OSGI_JDBC_DRIVER_CLASS property.

Concurrency Thread-safe
JDBC_DATABASE_NAME

125.5.1.1 public static final String JDBC_DATABASE_NAME = “databaseName”

The “databaseName” property that DataSource clients should supply a value for when calling create-
DataSource(Propert ies) .
JDBC_DATASOURCE_NAME
Page 378 OSGi Service Platform Release 4, Version 4.2

JDBC™ Service Specification Version 1.0 org.osgi.service.jdbc
125.5.1.2 public static final String JDBC_DATASOURCE_NAME = “dataSourceName”

The “dataSourceName” property that DataSource clients should supply a value for when calling cre-
ateDataSource(Propert ies) .
JDBC_DESCRIPTION

125.5.1.3 public static final String JDBC_DESCRIPTION = “description”

The “description” property that DataSource clients should supply a value for when calling create-
DataSource(Propert ies) .
JDBC_INITIAL_POOL_SIZE

125.5.1.4 public static final String JDBC_INITIAL_POOL_SIZE = “initialPoolSize”

The “initialPoolSize” property that ConnectionPoolDataSource and XADataSource clients should
supply a value for when calling createConnectionPoolDataSource(Propert ies) or createXAData-
Source(Propert ies) .
JDBC_MAX_IDLE_TIME

125.5.1.5 public static final String JDBC_MAX_IDLE_TIME = “maxIdleTime”

The “maxIdleTime” property that ConnectionPoolDataSource and XADataSource clients should sup-
ply a value for when calling createConnectionPoolDataSource(Propert ies) or createXAData-
Source(Propert ies) .
JDBC_MAX_POOL_SIZE

125.5.1.6 public static final String JDBC_MAX_POOL_SIZE = “maxPoolSize”

The “maxPoolSize” property that ConnectionPoolDataSource and XADataSource clients should sup-
ply a value for when calling createConnectionPoolDataSource(Propert ies) or createXAData-
Source(Propert ies) .
JDBC_MAX_STATEMENTS

125.5.1.7 public static final String JDBC_MAX_STATEMENTS = “maxStatements”

The “maxStatements” property that ConnectionPoolDataSource and XADataSource clients should
supply a value for when calling createConnectionPoolDataSource(Propert ies) or createXAData-
Source(Propert ies) .
JDBC_MIN_POOL_SIZE

125.5.1.8 public static final String JDBC_MIN_POOL_SIZE = “minPoolSize”

The “minPoolSize” property that ConnectionPoolDataSource and XADataSource clients should sup-
ply a value for when calling createConnectionPoolDataSource(Propert ies) or createXAData-
Source(Propert ies) .
JDBC_NETWORK_PROTOCOL

125.5.1.9 public static final String JDBC_NETWORK_PROTOCOL = “networkProtocol”

The “networkProtocol” property that DataSource clients should supply a value for when calling cre-
ateDataSource(Propert ies) .
JDBC_PASSWORD

125.5.1.10 public static final String JDBC_PASSWORD = “password”

The “password” property that DataSource clients should supply a value for when calling createData-
Source(Propert ies) .
JDBC_PORT_NUMBER

125.5.1.11 public static final String JDBC_PORT_NUMBER = “portNumber”

The “portNumber” property that DataSource clients should supply a value for when calling create-
DataSource(Propert ies) .
JDBC_PROPERTY_CYCLE

125.5.1.12 public static final String JDBC_PROPERTY_CYCLE = “propertyCycle”

The “propertyCycle” property that ConnectionPoolDataSource and XADataSource clients should
supply a value for when calling createConnectionPoolDataSource(Propert ies) or createXAData-
Source(Propert ies) .
JDBC_ROLE_NAME
OSGi Service Platform Release 4, Version 4.2 Page 379

org.osgi.service.jdbc JDBC™ Service Specification Version 1.0
125.5.1.13 public static final String JDBC_ROLE_NAME = “roleName”

The “roleName” property that DataSource clients should supply a value for when calling create-
DataSource(Propert ies) .
JDBC_SERVER_NAME

125.5.1.14 public static final String JDBC_SERVER_NAME = “serverName”

The “serverName” property that DataSource clients should supply a value for when calling create-
DataSource(Propert ies) .
JDBC_URL

125.5.1.15 public static final String JDBC_URL = “url”

The “url” property that DataSource clients should supply a value for when calling createData-
Source(Propert ies) .
JDBC_USER

125.5.1.16 public static final String JDBC_USER = “user”

The “user” property that DataSource clients should supply a value for when calling createData-
Source(Propert ies) .
OSGI_JDBC_DRIVER_CLASS

125.5.1.17 public static final String OSGI_JDBC_DRIVER_CLASS = “osgi.jdbc.driver.class”

Service property used by a JDBC driver to declare the driver class when registering a JDBC Data-
SourceFactory service. Clients may filter or test this property to determine if the driver is suitable, or
the desired one.
OSGI_JDBC_DRIVER_NAME

125.5.1.18 public static final String OSGI_JDBC_DRIVER_NAME = “osgi.jdbc.driver.name”

Service property used by a JDBC driver to declare the driver name when registering a JDBC Data-
SourceFactory service. Clients may filter or test this property to determine if the driver is suitable, or
the desired one.
OSGI_JDBC_DRIVER_VERSION

125.5.1.19 public static final String OSGI_JDBC_DRIVER_VERSION = “osgi.jdbc.driver.version”

Service property used by a JDBC driver to declare the driver version when registering a JDBC Data-
SourceFactory service. Clients may filter or test this property to determine if the driver is suitable, or
the desired one.
createConnectionPoolDataSource(Properties)

125.5.1.20 public ConnectionPoolDataSource createConnectionPoolDataSource(Properties props) throws
SQLException

props The properties used to configure the ConnectionPoolDataSource . nul l indicates no properties. If the
property cannot be set on the ConnectionPoolDataSource being created then a SQLException must
be thrown.

Create a new Connect ionPoolDataSource using the given properties.

Returns A configured ConnectionPoolDataSource .

Throws SQLException – If the ConnectionPoolDataSource cannot be created.
createDataSource(Properties)

125.5.1.21 public DataSource createDataSource(Properties props) throws SQLException

props The properties used to configure the DataSource . nul l indicates no properties. If the property cannot
be set on the DataSource being created then a SQLException must be thrown.

Create a new DataSource using the given properties.

Returns A configured DataSource .

Throws SQLException – If the DataSource cannot be created.
createDriver(Properties)
Page 380 OSGi Service Platform Release 4, Version 4.2

JDBC™ Service Specification Version 1.0 References
125.5.1.22 public Driver createDriver(Properties props) throws SQLException

props The properties used to configure the Driver . null indicates no properties. If the property cannot be set
on the Driver being created then a SQLException must be thrown.

Create a new Driver using the given properties.

Returns A configured Driver .

Throws SQLException – If the Driver cannot be created.
createXADataSource(Properties)

125.5.1.23 public XADataSource createXADataSource(Properties props) throws SQLException

props The properties used to configure the XADataSource . nul l indicates no properties. If the property can-
not be set on the XADataSource being created then a SQLException must be thrown.

Create a new XADataSource using the given properties.

Returns A configured XADataSource .

Throws SQLException – If the XADataSource cannot be created.

125.6 References
[1] OSGi Core Specifications

http://www.osgi.org/Specifications/HomePage

[2] Java SE 1.4
http://java.sun.com/products/archive/j2se-eol.html
OSGi Service Platform Release 4, Version 4.2 Page 381

References JDBC™ Service Specification Version 1.0
Page 382 OSGi Service Platform Release 4, Version 4.2

JNDI Services Specification Version 1.0 Introduction
126 JNDI Services Specification
Version 1.0

126.1 Introduction
Naming and directory services have long been useful tools in the building of software systems. The
ability to use a programming interface to publish and consume objects can provide many benefits to
any system. The Java Naming and Directory Interface (JNDI) is a registry technology in Java applica-
tions, both in the Java SE and Java EE space. JNDI provides a vendor-neutral set of APIs that allow cli-
ents to interact with a naming service from different vendors.

The JNDI as used in the Java SE environment relies on the class loading model provided by the JDK to
find providers. By default, it attempts to load the JNDI provider class using the Thread Context Class
Loader. In an OSGi environment, this type of Context creation is not desirable since it relies on the
JNDI provider classes being visible to the JNDI client, or require it to set the Context Class Loader; in
both cases breaking modularity. For modularity reasons, it is important that clients are not required
to express a dependency on the implementation of services they use.

This specification will define how JNDI can be utilized from within an OSGi framework. The specifi-
cation consists of three key parts:

• OSGi Service Model – How clients interact with JNDI when running inside an OSGi Framework.
• JNDI Provider Model – How JNDI providers can advertise their existence so they are available to

OSGi and traditional clients.
• Traditional Model – How traditional JNDI applications and providers can continue to work in an

OSGi Framework without needing to be rewritten when certain precautions are taken.

126.1.1 Essentials
• Naming Service – Provide an integration model for JNDI API clients and providers.
• Flexible – Provide a standard mechanism for publishing and locating JNDI providers.
• Compatibility – Support the traditional JNDI programming model used by Java SE and Java EE

clients.
• Service Based – Provide a service model that clients and providers can use to leverage JNDI facil-

ities.
• Migration – Provide a mechanism to access OSGi services from a JNDI context.

126.1.2 Entities
• JNDI Implementation – The Implementer of the JNDI Context Manager, JNDI Provider Admin, and

setter of the JNDI static singletons.
• JNDI Client – Any code running within an OSGi bundle that needs to use JNDI.
• JNDI Context Manager – A service that allows clients to obtain Contexts via a service.
• JNDI Provider Admin – A service that allows the conversion of objects for providers.
• JNDI Provider – Provides a Context implementation.
• Context – A Context abstracts a namespace. Implementations are provided by JNDI providers and

the Contexts are used by JNDI clients. The corresponding interface is javax.naming.Context .
• Dir Context – A sub-type of Context that provides mechanisms for examining and updating the

attributes of an object in a directory structure, and for performing searches in an hierarchical
naming systems like LDAP. The corresponding interface is javax.naming.directory.DirContext .

• Initial Context Factory – A factory for creating instances of Context objects. This factory is used to
integrate new JNDI Providers. In general, a single Initial Context Factory constructs Context
OSGi Service Platform Release 4, Version 4.2 Page 383

Introduction JNDI Services Specification Version 1.0
objects for a single provider implementation. The corresponding interface is
javax.naming.spi . In it ialContextFactory .

• Initial Context Factory Builder – A factory for In it ialContextFactory objects. A single Initial Context
Factory Builder can construct In it ialContextFactory objects for different types of Contexts. The
interface is javax.naming.spi . In it ialContextFactoryBuilder .

• Object Factory – Used in conversion of objects. The corresponding interface is
javax.naming.spi .ObjectFactory .

• Dir Object Factory – An Object Factory that takes attribute information for object conversion. The
corresponding interface is javax.naming.spi .DirObjectFactory .

• Object Factory Builder – A factory for ObjectFactory objects. A single Object Factory Builder can
construct ObjectFactory instances for different types of conversions. The corresponding interface
is javax.naming.spi .ObjectFactoryBui lder .

• Reference – A description of an object that can be turned into an object through an Object Factory.
The associated Referenceable interface implemented on an object indicates that it can provide a
Reference object.

Figure 126.1 JNDI Service Specification Service Entities

126.1.3 Dependencies
The classes and interfaces used in this specification come from the following packages:

javax.naming
javax.naming.spi
javax.naming.directory

These packages have no associated version. It is assumed they come from the runtime environment.
This specification is based on Java SE 1.4 or later.

JNDI
Implementation

JNDI Context

JNDI ClientJNDI Client not
OSGi aware

Initial
Manager

Static connection

Initial Context
Factory Provider
Impl

Object Factory
Provider Impl

Object
Factory

Object Factory
Builder Provider
Impl

Object
Factory
Builder

Initial Context
Builder Provider
Impl

Initial
Context
Factory

Initial
Context
Factory
Builder

JNDI
Provider
Admin

Context

JNDI Provider not
OSGi aware

Naming
Manager
Page 384 OSGi Service Platform Release 4, Version 4.2

JNDI Services Specification Version 1.0 JNDI Overview
126.1.4 Synopsis
A client bundle wishing to make use of JNDI in order to access JNDI Providers such as LDAP or DNS
in OSGi should not use the Naming Manager but instead use the JNDI Context Manager service. This
service can be asked for a Context based on environment properties. The environment properties are
based on an optional argument in the newInit ialContext method, the Java System properties, and an
optional resource in the caller’s bundle.

These environment properties can specify an implementation class name for a factory that can create
a Context object. If such a class name is specified, then it is searched for in the service registry. If such
a service is found, then that service is used to create a new Context, which is subsequently returned. If
no class name is specified, the service registry is searched for Initial Context Factory services. These
services are tried in ranking order to see if they can create an appropriate Context, the first one that
can create a Context is then used.

If no class name is specified, all Initial Context Factory Builder services are tried to see if they can cre-
ate a Context, the first non-null result is used. If no Context can be found, a No Initial Context Excep-
tion is thrown. Otherwise, the JNDI Context Manager service returns an initial Context that uses the
just created Context from a provider as the backing service. This initial Context delegates all opera-
tions to this backing Context, except operations that use a name that can be interpreted as a URL, that
is, the name contains a colon. URL operations are delegated a URL Context that is associated with the
used scheme. URL Contexts are found through the general object conversion facility provided by the
JNDI Provider Admin service.

The JNDI Provider Admin service provides a general object conversion facility that can be extended
with Object Factory and Object Factory Builder services that are traditionally provided through the
Naming Manager getObject Instance method. A specific case for this conversion is the use of
Reference objects. Reference objects can be used to store objects persistently in a Context implemen-
tation. Reference objects must be converted to their corresponding object when retrieved from a Con-
text.

During the client’s use of a Context it is possible that its provider’s service is unregistered. In this case
the JNDI Context Manager must release the backing Context. If the initial Context is used and no
backing Context is available, the JNDI Context Manager must re-create a new Context, if possible.
Otherwise a Naming Exception is thrown. If subsequently a proper new backing Context can be cre-
ated, the initial Context must start operating again.

The JNDI Context Manager service must track the life cycle of a calling bundle and ensure that any
returned Context objects are closed and returned objects are properly cleaned up when the bundle is
closed or the JNDI Context Manager service is unget.

When the client bundle is stopped, any returned initial Context objects are closed and discarded. If
the Initial Context Factory, or Initial Context Factory Builder, service that created the initial Context
goes away then the JNDI Context Manager service releases the Context backing the initial Context
and attempts to create a replacement Context.

Clients and JNDI Context providers that are unaware of OSGi use static methods to connect to the
JRE JNDI implementation. The In it ia lContext class provides access to a Context from a provider and
providers use the static NamingManager methods to do object conversion and find URL Contexts.
This traditional model is not aware of OSGi and can therefore only be used reliably if the conse-
quences of this lack of OSGi awareness are managed.

126.2 JNDI Overview
The Java Naming and Directory Interface (JNDI) provides an abstraction for name spaces that is
included in Java SE. This section describes the basic concepts of JNDI as provided in Java SE. These
concepts are later used in the service model provided by this specification.
OSGi Service Platform Release 4, Version 4.2 Page 385

JNDI Overview JNDI Services Specification Version 1.0
126.2.1 Context and Dir Context
The [2] Java Naming and Directory Interface (JNDI) defines an API for namespaces. These namespaces are
abstracted with the Context interface. Namespaces that support attributes, such as a namespace as the
Lightweight Directory Access Protocol (LDAP), are represented by the DirContext class, which
extends the Context class. If applicable, a Context object can be cast to a DirContext object. The dis-
tinction is not relevant for this specification, except in places where it is especially mentioned.

The Context interface models a set of name-to-object bindings within a namespace. These bindings
can be looked-up, created, and updated through the Context interface. The Context interface can be
used for federated, flat, or hierarchical namespaces.

126.2.2 Initial Context
Obtaining a Context for a specific namespace, for example DNS, is handled through the
In it ia lContext class. Creating an instance of this class will cause the JRE to find a backing Context. The
Initial Context is only a facade for the backing Context. The facade context provides URL based look-
ups.

The backing Context is created by a JNDI Provider. How this backing Context is created is an elaborate
process using class loading techniques or a provisioning mechanism involving builders, see 126.2.6
Naming Manager Singletons for more information about the builder provisioning mechanism.

If there is no Initial Context Factory Builder set, the class name of a class implementing the
In it ia lContextFactory interface is specified as a property in the environment. The environment is a
Hashtable object that is constructed from different sources and then merged with System properties
and a resource in the calling bundle, see Environment on page 387. In a standard Java SE JNDI, the
given class name is then used to construct an In it ia lContextFactory object and this object is then
used to create the backing Context. This process is depicted in Figure 126.2 on page 386.

Figure 126.2 Initial Context and Backing Context

126.2.3 URL Context Factory
The In it ialContext class implements the Context interface. It can therefore delegate all the Context
interface methods to the backing Context object. However, it provides a special URL lookup behavior
for names that are formed like URLs, that is, names that contain a colon (’ : ’) character. This behavior
is called a URL lookup.

URL lookups are not delegated to the backing Context but are instead first tried via a URL Context
based lookup on the given scheme, like:

myscheme:foo

For example a lookup using acme:foo/javax.sql .DataSource results in a URL Context being used,
rather than the backing Context.

Client Initial Context Context

Some Context
Imploptionally specifies name of implementation in environment

new backing
Page 386 OSGi Service Platform Release 4, Version 4.2

JNDI Services Specification Version 1.0 JNDI Overview
JNDI uses class loading techniques to search for an ObjectFactory class that can be used to create this
URL Context. The Naming Manager provides a static method getURLContext for this purpose. If such
a URL Context is found, it is used with the requested operation and uses the full URL. If no such URL
Context can be found, the backing Context is asked to perform the operation with the given name.

The URL lookup behavior is only done when the backing Context was created by the JNDI imple-
mentation in the JRE. If the backing Context had been created through the singleton provisioning
mechanism, then no URL lookup is done for names that have a colon. The URL lookup responsibility
is then left to the backing Context implementation.

126.2.4 Object and Reference Conversion
The NamingManager class provides a way to create objects from a description with the
getObject Instance method. In general, it will iterate over a number of ObjectFactory objects and ask
each one of them to provide the requested object. The first non-nul l result indicates success. These
ObjectFactory objects are created from an environment property.

A special case for the description argument in the getObjectInstance method is the Reference. A Ref-
erence is a description of an object that can be stored persistently. It can be re-created into an actual
object through the static getObjectInstance method of the NamingManager class. The Reference
object describes the actual ObjectFactory implementing class that must be used to create the object.

This default behavior is completely replaced with the Object Factory Builder singleton by getting the
to be used ObjectFactory object directly from the set singleton Object Factory Builder.

126.2.5 Environment
JNDI clients need a way to set the configuration properties to select the proper JNDI Provider. For
example, a JNDI Provider might require an identity and a password in order to access the service. This
type of configuration is referred to as the environment of a Context. The environment is a set of proper-
ties. Common property names can be found in [4] JNDI Standard Property Names. The set of properties
is build from the following sources (in priority order, that is later entries are shadowed by earlier
entries):

1 Properties set in the environment Hashtable object given in the constructor argument (if any) of
the In it ia lContext class.

2 Properties from the Java System Properties
3 Properties found in $JAVA_HOME/l ib/ jndi .propert ies

There are some special rules around the handling of specific properties.

126.2.6 Naming Manager Singletons
The default behavior of the JRE implementation of JNDI can be extended in a standardized way. The
NamingManager class has two static singletons that allow JNDI Providers outside the JRE to provide
Init ia lContextFactory and ObjectFactory objects. These singletons are set with the following static
methods on the NamingManager class:

• setObjectFactoryBui lder(ObjectFactoryBui lder) – A hook to provide ObjectFactory objects.
• set Init ialContextFactoryBuilder(Init ia lContextFactoryBui lder) – A hook to provide

Init ia lContextFactory objects. This hook is consulted to create a Context object that will be asso-
ciated with an In it ialContext object the client creates.

These JNDI Provider hooks are singletons and must be set before any application code creates an
In it ia lContext object or any objects are converted. If these singletons are not set, the JNDI implemen-
tation in the JRE will provide a default behavior that is based on searching through classes defined in
an environment property.

Both singletons can only be set once. A second attempt to set these singletons results in an Illegal
State Exception being thrown.
OSGi Service Platform Release 4, Version 4.2 Page 387

JNDI Context Manager Service JNDI Services Specification Version 1.0
126.2.7 Built-In JNDI Providers
The Java Runtime Environment (JRE) defines the following default providers:

• LDAP – Lightweight Directory Access Protocol (LDAP) service provider
• COS – Corba Object Service (COS) naming service provider
• RMI – Remote Method Invocation (RMI) Registry service provider
• DNS – Domain Name System (DNS) service provider

Although these are the default JNDI Service Providers, the JNDI architecture provides a number of
mechanisms to plug-in new types of providers.

126.3 JNDI Context Manager Service
The JNDI Context Manager service allows clients to obtain a Context using the OSGi service model.
By obtaining a JNDI Context Manager service, a client can get a Context object so that it can interact
with the available JNDI Providers. This service replaces the approach where the creation of a new
In it ia lContext object provided the client with access to an In it ialContext object that was backed by a
JNDI Provider’s Context.

The JNDIContextManager interface defines the following methods for obtaining Context objects:

• newInit ialContext() – Obtain a Context object using the default environment properties.
• newInit ialContext(Map) – Get a Context object using the default environment properties merged

with the given properties.
• newInit ialDirContext() – Get a DirContext object using a default environment properties.
• newInit ialDirContext(Map) –Get a DirContext object using the default environment properties

merged with the given properties.

The JNDI Context Manager service returns Context objects that implement the same behavior as the
In it ia lContext class; the returned Context object does not actually extend the In it ia lContext class, its
only guarantee is that it implements the Context interface.

This Context object is a facade for the context that is created by the JNDI Provider. This JNDI Pro-
vider’s Context is called the backing Context. This is similar to the behavior of the In it ialContext class.
However, in this specification, the facade can change or loose the backing Context due to the dynam-
ics of the OSGi service platform.

The returned facade must also provides URL lookups, just like an Initial Context. However, the URL
Context lookup must be based on Object Factory services with a service property that defines the
scheme.

The environment properties used to create the backing Context are constructed in a similar way as
the environment properties of the Java SE JNDI, see Environment and Bundles on page 388.

The following sections define in detail how a JNDI Provider Context must be created and managed.

126.3.1 Environment and Bundles
The Java SE JNDI looks for a file in $JAVAHOME/l ib/ jndi .properties , see Environment on page 387. A
JNDI Implementation must not use this information but it must use a resource in the bundle that
uses the JNDI Context Manager service. The order is therefore:

1 Properties set in the environment Hashtable object given in the constructor argument (if any) of
the In it ia lContext class.

2 Properties from the Java System Properties
3 A properties resource from the bundle that uses the service called / jndi .properties .

The following four properties do not overwrite other properties but are merged:

• java.naming.factory.object
Page 388 OSGi Service Platform Release 4, Version 4.2

JNDI Services Specification Version 1.0 JNDI Context Manager Service
• java.naming.factory.state
• java.naming.factory.control
• java.naming.factory.ur l .pkgs

These property values are considered lists and the ultimate value used by the JNDI Providers is taken
by merging the values found in each stage into a single colon separated list. For more information see
[4] JNDI Standard Property Names.

The environment consists of the merged properties. This environment is then passed to the Initial
Context Factory Builder for the creation of an Initial Context Factory.

126.3.2 Context Creation
When a client calls one of the newInit ia lContext (or newInit ia lDirContext) methods, the JNDI Con-
text Manager service must construct an object that implements the Context interface based on the
environment properties. All factory methods in the In it ia lContextFactory and
In it ia lContextFactoryBui lder classes take a Hashtable object with the environment as an argument,
see Environment and Bundles on page 388.

The caller normally provides a specific property in the environment that specifies the class name of a
provider class. This property is named:

java.naming.factory.initial

The algorithm to find the provider of the requested Context can differ depending on the presence or
absence of the java.naming.factory.initial property in the environment.

In the following sections the cases for presence or absence of the java.naming.factory.initial
property are described. Several steps in these algorithm iterate over a set of available services. This
iteration must always take place in service ranking order. Service ranking order is achieved by sorting
on ascending service.ranking service property and then descending service. id property.

Exception handling in the following steps is as follows:

• If an Exception is thrown by an Initial Context Factory Builder service, then this Exception must
be logged but further ignored.

• Exceptions thrown by the In it ia lContextFactory objects when creating a Context must be thrown
to the caller.

126.3.2.1 Implementation Class Present in Environment

If the implementation class is specified, a JNDI Provider is searched in the service registry with the
following steps, which stop when a backing Context can be created:

1 Find a service in ranking order that has a name matching the given implementation class name as
well as the In it ia lContextFactory class name. The searching must take place through the Bundle
Context of the requesting bundle but must not require that the requesting bundle imports the
package of the implementation class. If such a matching Initial Context Factory service is found, it
must be used to construct the Context object that will act as the backing Context.

2 Get all the Initial Context Factory Builder services. For each such service, in ranking order:
• Ask the Initial Context Factory Builder service to create a new In it ialContextFactory object. If

this is nul l then continue with the next service.
• Create the Context with the found Initial Context Factory and return it.

3 If no backing Context could be found using these steps, then the JNDI Context Manager service
must throw a No Initial Context Exception.

126.3.2.2 No Implementation Class Specified

If the environment does not contain a value for the java.naming.factory. init ial property then the fol-
lowing steps must be used to find a backing Context object.

1 Get all the Initial Context Factory Builder services. For each such service, in ranking order, do:
OSGi Service Platform Release 4, Version 4.2 Page 389

JNDI Provider Admin service JNDI Services Specification Version 1.0
• Ask the Initial Context Factory Builder service to create a new In it ialContextFactory object. If
this is nul l , then continue with the next service.

• Create the backing Context object with the found Initial Context Factory service and return it.
2 Get all the Initial Context Factory services. For each such service, in ranking order, do:

• Ask the Initial Context Factory service to create a new Context object. If this is nul l then con-
tinue with the next service otherwise create a new Context with the created Context as the
backing Context.

3 If no Context has been found, an initial Context is returned without any backing. This returned
initial Context can then only be used to perform URL based lookups.

126.3.3 Rebinding
A JNDI Provider can be added or removed to the service registry at any time because it is an OSGi ser-
vice; OSGi services are by their nature dynamic. When a JNDI Provider unregisters an Initial Context
Factory that was used to create a backing service then the JNDI Context Manager service must
remove the association between any returned Contexts and their now invalid backing Contexts.

The JNDI Context Manager service must try to find a replacement whenever it is accessed and no
backing Context is available. However, if no such replacement can be found the called function must
result in throwing a No Initial Context Exception.

126.3.4 Life Cycle and Dynamism
When a client has finished with a Context object, then the client must close this Context object by
calling the close method. When a Context object is closed, the resources held by the JNDI Implemen-
tation on the client's behalf for that Context must all be released. Releasing these resources must not
affect other, independent, Context objects returned to the same client.

If a client ungets the JNDI Context Manager service, all the Context objects returned through that
service instance must automatically be closed by the JNDI Context Manager. When the JNDI Context
Manager service is unregistered, the JNDI Context Manager must automatically close all Contexts
held.

For more information about life cycle issues, see also Life Cycle Mismatch on page 397.

126.4 JNDI Provider Admin service
JNDI provides a general object conversion service, see Object and Reference Conversion on page 387. For
this specification, the responsibility of the static method on the NamingManager getObject Instance
is replaced with the JNDI Provider Admin service. The JNDIProviderAdmin interface provides the fol-
lowing methods that can be used to convert a description object to an object:

• getObject Instance(Object , javax.naming.Name,javax.naming.Context,Map) – Used by Context
implementations to convert a description object to another object.

• getObject Instance(Object , javax.naming.Name,javax.naming.Context,Map,
javax.naming.directory.Attr ibutes) – Used by a Dir Context implementations to convert a
description object to another object.

In either case, the first argument is an object, called the description. JNDI allows a number of different
Java types here. When either method is called, the following algorithm is followed to find a matching
Object Factory to find/create the requested object. This algorithm is identical for both methods,
except that the call that takes the Attr ibutes argument consults Dir Object Factory services first and
then Object Factory services while the method without the Attributes parameter only consults
Object Factory services.

1 If the description object is an instance of Referenceable , then get the corresponding Reference
object and use this as the description object.

2 If the description object is not a Reference object then goto step 5.
Page 390 OSGi Service Platform Release 4, Version 4.2

JNDI Services Specification Version 1.0 JNDI Providers
3 If a factory class name is specified, the JNDI Provider Admin service uses its own Bundle Context
to search for a service registered under the Reference’s factory class name. If a matching Object
Factory is found then it is used to create the object from the Reference object and the algorithm
stops here.

4 If no factory class name is specified, iterate over all the Reference object’s Str ingRefAddrs objects
with the address type of URL . For each matching address type, use the value to find a matching
URL Context, see URL Context Provider on page 393, and use it to recreate the object. See the
Naming Manager for details. If an object is created then it is returned and the algorithm stops
here.

5 Iterate over the Object Factory Builder services in ranking order. Attempt to use each such service
to create an ObjectFactory or DirObjectFactory instance. If this succeeds (non nul l) then use this
ObjectFactory or DirObjectFactory instance to recreate the object. If successful, the algorithm
stops here.

6 If the description was a Reference and without a factory class name specified, or if the description
was not of type Reference, then attempt to convert the object with each Object Factory service (or
Dir Object Factory service for directories) service in ranking order until a non-nul l value is
returned.

7 If no ObjectFactory implementations can be located to resolve the given description object, the
description object is returned.

If an Exception occurs during the use of an Object Factory Builder service then this exception should
be logged but must be ignored. If, however, an Exception occurs during the calling of a found
ObjectFactory or DirObjecFactory object then this Exception must be re-thrown to the caller of the
JNDI Provider Admin service.

126.5 JNDI Providers
JNDI Providers can be registered by registering an appropriate service. These services are consulted
by the JNDI Implementation for creating a Context as well as creating/finding/converting general
objects.

126.5.1 Initial Context Factory Builder Provider
An Initial Context Factory Builder provider is asked to provide an Initial Context Factory when no
implementation class is specified or no such implementation can be found. An Initial Context Fac-
tory Builder service can be used by containers for other bundles to control the initial Context their
applications receive.

An Initial Context Factory Builder provider must register an Initial Context Factory Builder service.
The service.ranking property defines the iteration ordering of multiple Initial Context Factory
Builder services. Implementations must be careful to correctly provide defaults.

For example, a container could use a thread local variable to mark the stack for a specific application.
The implementation of the Initial Context Factory Builder can then detect specific calls from this
application. To make the next code example work, an instance must be registered as an Initial Con-
text Factory Builder service.

public class Container implements InitialContextFactoryBuilder {
ThreadLocal<Application> apps;

void startApp(final Application app) {
Thread appThread = new Thread(app.getName()) {

public void run() {
apps.set(app);

app.run();
}}}
OSGi Service Platform Release 4, Version 4.2 Page 391

JNDI Providers JNDI Services Specification Version 1.0
 public InitialContextFactory
createInitialContextFactory(Hashtable<?,?> ht){
final Application app = apps.get();
if (app == null)
 return null;

return new InitialContextFactory() {
 public Context getInitialContext(Hashtable<?,?> env) {

return app.getContext(env);
}

};
 } }

126.5.2 Initial Context Factory Provider
An Initial Context Factory provides Contexts of a specific type. For example, those contexts allow
communications with an LDAP server. An Initial Context Factory Provider must register the its Ini-
tial Context Factory service under the following names:

• Implementation Class – An Initial Context Factory provider must register a service under the name
of the implementation class. This allows the JNDI Context Manager to find implementations
specified in the environment properties.

• Initial Context Factory – As a general Initial Context Factory. If registered as such, it can be con-
sulted for a default Initial Context. Implementations must be careful to only return a Context
when the environment properties are appropriate. See No Implementation Class Specified on page
389

An Initial Context Factory service can create both DirContext as well as Context objects.

For example, SUN JREs for Java SE provide an implementation of a Context that can answer DNS
questions. The name of the implementation class is a well known constant. The following class can
be used with Declarative Services to provide a lazy implementation of a DNS Context:

public class DNSProvider implements InitialContextFactory {
public Context createInitialContextFactory(Hashtable<?,?> env) throws

NamingException {
try {

Class<InitialContextFactory> cf = (Class<InitialContextFactory>)
 l.loadClass("com.sun.jndi.dns.DnsContextFactory");

InitialContextFactory icf = cf.newInstance();
return icf.createInitialContextFactory(env);

} catch(Throwable t) {
return null;

}
}

}

126.5.3 Object Factory Builder Provider
An Object Factory Builder provider must register an Object Factory Builder service. Such a service can
be used to provide ObjectFactory and/or DirObjectFactory objects. An Object Factory Builder service
is requested for such an object when no specific converter can be found. This service can be leveraged
by bundles that act as a container for other bundles to control the object conversion for their subjects.

126.5.4 Object Factory Provider
An Object Factory provider can participate in the conversion of objects. It must register a service
under the following names:
Page 392 OSGi Service Platform Release 4, Version 4.2

JNDI Services Specification Version 1.0 JNDI Providers
• Implementation Class – A service registered under its implementation class can be leveraged by a
description that is a Reference object. Such an object can contain the name of the factory class.
The implementation class can implement the DirObjectFactory interface or the ObjectFactory
interface.

• Object Factory – The ObjectFactory interface is necessary to ensure class space consistency.
• Dir Object Factory – If the Object Factory provider can accept the additional Attributes argument in

the getObject Instance method of the JNDI Provider Admin service than it must also register as a
Dir Object Factory service.

126.5.5 URL Context Provider
A URL Context Factory is a special type of an Object Factory service. A URL Context Factory must be
registered as an Object Factory service with the following service property:

• osgi. jndi .ur l .scheme – The URL scheme associated with this URL Context, for example acme . The
scheme must not contain the colon (’ : ’).

A URL Context is used for URL based operations on an initial Context. For example, a lookup to
acme:foo/javax.sql .DataSource must not use the provider based lookup mechanism of the backing
Context but instead causes a lookup for the requested URL Context. A URL Context also provides a
secondary mechanism for restoring Reference objects.

When an initial Context returned by the JNDI Context Manager service is given a URL based opera-
tion, it searches in the service registry for an Object Factory service that is published with the URL
scheme property that matches the scheme used from the lookup request.

It then calls the getInstance method on the Object Factory service with the following parameters:

• Object – Should be either a Str ing , Str ing[] , or null .
• Name – must be null
• Context – must be null
• Hashtable – The environment properties.

Calling the getInstance method must return a Context object. This context is then used to perform
the lookup.

The life cycle of the Object Factory used to create the URL Context is tied to the JNDI context that was
used to perform the URL based JNDI operation. By the time JNDI context is closed any ObjectFactory
objects held to process the URL lookups must be released (unget).

126.5.6 JRE Context Providers
The Java Runtime Environment (JRE) defines a number default naming providers., see Built-In JNDI
Providers on page 388. These naming providers are not OSGi aware, but are commonly used and are
provided by the JRE. These naming providers rely on the NamingManager class for object conversion
and finding URL Contexts.

The JRE default providers are made available by the JNDI Implementation. This JNDI Implementa-
tion must register a built-in Initial Context Factory Builder service that is capable of loading any
Init ia lContextFactory classes of the JRE providers.

When this built-in Initial Context Factory Builder is called to create an In it ia lContextFactory object
it must look in the environment properties that were given as an argument and extract the
java.naming.factory. init ia l property; this property contains the name of the class of a provider. The
built-in Initial Context Factory Builder then must use the bootstrap class loader to load the given
Init ia lContextFactory class and creates a new instance with the no arguments constructor and return
it. If this fails, it must return null . This mechanism will allow loading of any built-in providers.

This built-in Initial Context Factory Builder service must be registered with no service.ranking prop-
erty. This will give it the default ranking and allows other providers to override the default.
OSGi Service Platform Release 4, Version 4.2 Page 393

OSGi URL Scheme JNDI Services Specification Version 1.0
126.6 OSGi URL Scheme
A URL scheme is available that allows JNDI based applications to access services in the service regis-
try, see Services and State on page 395 about restrictions on these services. The URL scheme is specified
as follows:

service ::= ’osgi:service/’ interface (’/’ filter)?
interface ::= <jndi-service-name> | fqn

No spaces are allowed between the terms.

This OSGi URL scheme can be used to perform a lookup of a single matching service using the inter-
face name and filter. The URL Context must use the owning bundle to perform the service queries. The
owning bundle is the bundle that requested the initial Context from the JNDI Context Manager ser-
vice or received its Context through the In it ialContext class. The returned objects must not be incom-
patible with the class space of the owning bundle.

The lookup for a URL with the osgi : scheme and service path returns the service with highest
service.ranking and the lowest service. id . This scheme only allows a single service to be found. Mul-
tiple services can be obtained with the osgi : scheme and servicel ist path:

servicelist ::= ’osgi:servicelist/’ (interface (’/’ filter)?)?

If this osgi :servicel ist scheme is used from a lookup method then a Context object is returned
instead of a service object. Calling the l istBindings method will produce a NamingEnumeration
object that provides Binding objects. A Binding object contains the name, class of the service, and the
service object. The bound object is the service object contained in the given Context.

When the Context class l ist method is called, the Naming Enumeration object provides a
NameClassPair object. This NameClassPair object will include the name and class of each service in
the Context. The l ist method can be useful in cases where a client wishes to iterate over the available
services without actually getting them. If the service itself is required, then l istBindings method
should be used.

If multiple services matched the criteria listed in the URL, there would be more than one service
available in the Context, and the corresponding Naming Enumeration would contain the same num-
ber of services.

If multiple services match, a call to l istBindings on this Context would return a list of bindings whose
name are a string with the service. id number, for example:

1283

Thus the following lookup is valid:

osgi:servicelist/javax.sql.DataSource/(&(db=mydb)(version=3.1))

A service can provide a JNDI service name if it provides the following service property:

• osgi . jndi .service.name – An alternative name that the service can be looked up by when the osgi :
URL scheme is used.

If a service is published with a JNDI service name then the service matches any URL that has this ser-
vice name in the place of interface . For example, if the JNDI service name is foo , then the following
URL selects this service:

osgi:service/foo

Using a JNDI service name that can be interpreted as an interface name must be avoided, if this hap-
pens the result is undefined.

A JNDI client can also obtain the Bundle Context of the owning bundle by using the osgi : scheme
namespace with the framework/bundleContext name. The following URL must return the Bundle
Context of the owning bundle:
Page 394 OSGi Service Platform Release 4, Version 4.2

JNDI Services Specification Version 1.0 Traditional Client Model
osgi:framework/bundleContext

After the NamingEnumeration object has been used it must be closed by the client. Implementations
must then unget any gotten services or perform other cleanup.

126.6.1 Service Proxies
The OSGi URL Context handles the complexities by hiding the dynamic nature of OSGi. The OSGi
URL Context must handle the dynamics by proxying the service objects. This proxy must implement
the interface given in the URL. If the JNDI service name instead of a class name is used, then all inter-
faces under which the service is registered must be implemented. If an interface is not compatible
with the owning bundle’s class space then it must not be implemented on the proxy, it must then be
ignored. If this results in no implemented interfaces then an Illegal Argument Exception must be
thrown.

Interfaces can always be proxied but classes are much harder. For this reason, an implementation is
free to throw an Illegal Argument Exception when a class is used in the URL or in one of the registra-
tion names.

Getting the actual service object can be delayed until the proxy is actually used to call a method. If a
method is called and the actual service has been unregistered, then the OSGi URL Context must
attempt to rebind it to another service that matches the criteria given in the URL the next time it is
called. When no alternative service is available, a Service Exception with the UNREGISTERED type
code must be thrown. Services obtained with the osgi : URL scheme must therefore be stateless
because the rebinding to alternative services is not visible to the caller; there are no listeners defined
for this rebinding, see Services and State on page 395.

If the reference was looked up using osgi :servicel ist then proxies must still be used, however, these
proxies must not rebind when their underlying service is unregistered. Instead, they must throw a
Service Exception with the UNREGISTERED type whenever the proxy is used and the proxied service
is no longer available.

126.6.2 Services and State
A service obtained through a URL Context lookup is proxied. During the usage of this service, the
JNDI Implementation can be forced to transparently rebind this service to another instance. The
JNDI specification is largely intended for portability. For this reason, it has no mechanism archi-
tected to receive notifications about this rebinding. The client code is therefore unable to handle the
dynamics.

The consequence of this model is that stateful services require extra care because applications cannot
rely on the fact that they always communicate with the same service. Virtually all OSGi specified ser-
vices have state.

126.7 Traditional Client Model
A JNDI Implementation must at startup register the In it ialContextFactoryBui lder object and the
ObjectFactoryBui lder object with the NamingManager class. As described in JNDI Overview on page
385, the JNDI code in the JRE will then delegate all Context related requests to the JNDI Implementa-
tion. Setting these singletons allows code that is not aware of the OSGi service platform to use
Context implementations from JNDI Providers registered with the OSGi service registry and that are
managed as bundles. The JNDI Implementation therefore acts as a broker to the service registry for
OSGi unaware code.

This brokering role can only be played when the JNDI Implementation can set the singletons as spec-
ified in Naming Manager Singletons on page 387. If the JNDI Implementation cannot set these single-
tons then it should log an error with the Log Service, if available. It can then not perform the
following sections.
OSGi Service Platform Release 4, Version 4.2 Page 395

Traditional Client Model JNDI Services Specification Version 1.0
126.7.1 New Initial Context
The client typically requests a Context using the following code:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, “com.sun.jndi.ldap.LdapCtxFactory”);
InitialContext ctx = new InitialContext(env);

The created In it ia lContext object is a facade for the real Context that is requested by the caller. It pro-
vides the bootstrapping mechanism for JNDI Provider plugability. In order to obtain the provider’s
Context, the In it ia lContext class makes a call to the static getContext method on the
NamingManager class. The JNDI code in the JRE then delegates any request for an initial Context
object to the JNDI Implementation through the registered In it ialContextFactoryBui lder singleton.
The JNDI Implementation then determines the Bundle Context of the caller as described in Caller’s
Bundle Context on page 396. If no such Bundle Context can be found, a No Initial Context Exception is
thrown to the caller. This Bundle Context must be from an ACTIVE bundle.

This Bundle Context is then used to get the JNDI Context Manager service. This service is then used
as described in Context Creation on page 389 to get an initial Context. This initial Context is then used
in the In it ia lContext object as the default initial context. In this specification this is normally called the
backing context. An In it ialContext object constructed through an Initial Context Factory Builder
will not use the URL lookup mechanism, it must delegate all operations to the its backing context. A
Context obtained through the JNDI Context Manager provides the URL lookup behavior instead.

126.7.2 Static Conversion
JNDI provides a general object conversion facility that is used by the URL Context and the process of
restoring an object from a Reference object, see Object and Reference Conversion on page 387. A JNDI
Implementation must take over this conversion by setting the static Object Factory Builder singleton,
see Naming Manager Singletons on page 387. Non-OSGi aware Context implementations will use the
NamingManager static getObject Instance method for object conversion. This method then delegates
to the set singleton Object Factory Builder to obtain an ObjectFactory object that understands how to
convert the given description to an object. The JNDI Implementation must return an Object Factory
that understands the OSGi service registry. If the getObject Instance method is called on this object it
must use the same rules as defined for the JNDI Provider Admin service getObject Instance(Object,
javax.naming.Name,javax.naming.Context,Map) method, see JNDI Provider Admin service on page
390. The Bundle Context that must be used with respect to this service is the caller’s Bundle Context,
see Caller’s Bundle Context on page 396. If the Bundle Context is not found, the description object must
be returned. The calling bundle must not be required to import the org.osgi .service. jndi package.

126.7.3 Caller’s Bundle Context
The following mechanisms are used to determine the callers Bundle Context:

1 Look in the JNDI environment properties for a property called

osgi.service.jndi.bundleContext

If a value for this property exists then use it as the Bundle Context. If the Bundle Context has been
found stop.

2 Obtain the Thread Context Class Loader; if it, or an ancestor class loader, implements the
BundleReference interface, call its getBundle method to get the client’s Bundle; then call
getBundleContext on the Bundle object to get the client’s Bundle Context. If the Bundle Context
has been found stop.

3 Walk the call stack until the invoker is found. The invoker can be the caller of the In it ia lContext
class constructor or the NamingManager or DirectoryManager getObject Instance methods.
• Get the class loader of the caller and see if it, or an ancestor, implements the BundleReference

interface.
Page 396 OSGi Service Platform Release 4, Version 4.2

JNDI Services Specification Version 1.0 Security
• If a Class Loader implementing the BundleReference interface is found call the getBundle
method to get the clients Bundle; then call the getBundleContext method on the Bundle to get
the clients Bundle Context.

• If the Bundle Context has been found stop, else continue with the next stack frame.

126.7.4 Life Cycle Mismatch
The use of static access to the JNDI mechanisms, NamingManager and In it ialContext class methods,
in the traditional client programming model produces several problems with regard to the OSGi life
cycle. The primary problem being that there is no dependency management in place when static
methods are used. These problems do not exist for the JNDI Context Manager service. Therefore,
OSGi applications are strongly encouraged to use the JNDI Context Manager service.

The traditional programming model approach relies on two JVM singletons in the Naming Manager,
see Naming Manager Singletons on page 387. The JNDI Implementation bundle must set both single-
tons before it registers its JNDI Context Manager service and JNDI Provider Admin service. However,
in OSGi there is no defined start ordering, primarily because bundles can be updated at any moment
in time and will at such time not be available to provide their function anyway. For this reason, OSGi
bundles express their dependencies with services.

The lack of start ordering means that a bundle could create an In it ia lContext object before the JNDI
Implementation has had the chance to set the static Initial Context Factory Builder singleton. This
means that the JNDI implementation inside the JRE will provide its default behavior and likely have
to throw an exception. A similar exception is thrown for the Object Factory Builder singleton.

There is a also a (small) possibility that a client will call new Init ia lContext() after the singletons
have been set, but before the JNDI Context Manager and JNDI Provider Admin services have been
registered. This specification requires that these services are set after the singletons are set. In this
race condition the JNDI Implementation should throw a No Initial Context Exception, explaining
that the JNDI services are not available yet.

126.8 Security

126.8.1 JNDI Implementation
A JNDI Implementation may wish to assert that the user of the provider has some relevant Java 2
security permission. Since the JNDI implementation is an intermediary between the JNDI client and
provider this means that the JNDI implementation needs to have any permissions required to access
any JNDI Provider. As a result the JNDI implementation needs All Permission. This will result in the
JNDI clients permissions being checked to see if it has the relevant permission to access the JNDI Pro-
vider.

The JNDI Implementation must make any invocation to access these services in a doPriv i ledged
check. A JNDI client must therefore not be required to have the following permissions, which are
needed by a JNDI Implementation:

ServicePermission ..ObjectFactory REGISTER,GET
ServicePermission ..DirObjectFactory REGISTER,GET
ServicePermission ..ObjectFactoryBuilder REGISTER,GET
ServicePermission ..InitialContextFactory REGISTER,GET
ServicePermission ..InitialContextFactoryBuilder REGISTER,GET
ServicePermission ..JNDIProviderAdmin REGISTER,GET

The JNDI Implementation bundle must have the appropriate permissions to install the
In it ia lContextFactoryBui lder and ObjectFactoryBui lder instances using the appropriate methods on
the NamingManager class. This requires the following permission:

RuntimePermission "setFactory"
OSGi Service Platform Release 4, Version 4.2 Page 397

org.osgi.service.jndi JNDI Services Specification Version 1.0
126.8.2 JNDI Clients
A JNDI client using the JNDI Context Manager service must have the following permissions:

ServicePermission ..JNDIContextManager GET

Obtaining a reference to a JNDI Context Manager service should be considered a privileged operation
and should be guarded by permissions.

126.8.3 OSGi URL namespace
A JNDI client must not be able to obtain services or a Bundle Contexts that the client bundle would
not be able to get via the core OSGi API. To allow a client to use the osgi namespace to get a service
the bundle must have the corresponding Service Permission. When using the osgi namespace to
obtain the Bundle Context the client bundle must have Admin Permission for the Bundle Context.
These permissions must be enforced by the osgi URL namespace handler.

126.9 org.osgi.service.jndi
JNDI Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. For example:

Import-Package: org.osgi.service.jndi; version=”[1.0,2.0)”

126.9.1 Summary
• JNDIConstants - Constants for the JNDI implementation.
• JNDIContextManager - This interface defines the OSGi service interface for the JNDIContext-

Manager.
• JNDIProviderAdmin - This interface defines the OSGi service interface for the JNDIProviderAdmin

service.
JNDIConstants

126.9.2 public class JNDIConstants
Constants for the JNDI implementation.

Concurrency Immutable
BUNDLE_CONTEXT

126.9.2.1 public static final String BUNDLE_CONTEXT = “osgi.service.jndi.bundleContext”

This JNDI environment property can be used by a JNDI client to indicate the caller’s BundleContext.
This property can be set and passed to an InitialContext constructor. This property is only useful in
the “traditional” mode of JNDI.
JNDI_SERVICENAME

126.9.2.2 public static final String JNDI_SERVICENAME = “osgi.jndi.service.name”

This service property is set on an OSGi service to provide a name that can be used to locate the service
other than the service interface name.
JNDI_URLSCHEME

126.9.2.3 public static final String JNDI_URLSCHEME = “osgi.jndi.url.scheme”

This service property is set by JNDI Providers that publish URL Context Factories as OSGi Services.
The value of this property should be the URL scheme that is supported by the published service.
JNDIContextManager

126.9.3 public interface JNDIContextManager
This interface defines the OSGi service interface for the JNDIContextManager. This service provides
the ability to create new JNDI Context instances without relying on the InitialContext constructor.
Page 398 OSGi Service Platform Release 4, Version 4.2

JNDI Services Specification Version 1.0 org.osgi.service.jndi
Concurrency Thread-safe
newInitialContext()

126.9.3.1 public Context newInitialContext() throws NamingException

Creates a new JNDI initial context with the default JNDI environment properties.

Returns an instance of javax.naming.Context

Throws NamingException – upon any error that occurs during context creation
newInitialContext(Map)

126.9.3.2 public Context newInitialContext(Map environment) throws NamingException

environment JNDI environment properties specified by caller

Creates a new JNDI initial context with the specified JNDI environment properties.

Returns an instance of javax.naming.Context

Throws NamingException – upon any error that occurs during context creation
newInitialDirContext()

126.9.3.3 public DirContext newInitialDirContext() throws NamingException

Creates a new initial DirContext with the default JNDI environment properties.

Returns an instance of javax.naming.directory.DirContext

Throws NamingException – upon any error that occurs during context creation
newInitialDirContext(Map)

126.9.3.4 public DirContext newInitialDirContext(Map environment) throws NamingException

environment JNDI environment properties specified by the caller

Creates a new initial DirContext with the specified JNDI environment properties.

Returns an instance of javax.naming.directory.DirContext

Throws NamingException – upon any error that occurs during context creation
JNDIProviderAdmin

126.9.4 public interface JNDIProviderAdmin
This interface defines the OSGi service interface for the JNDIProviderAdmin service. This service
provides the ability to resolve JNDI References in a dynamic fashion that does not require calls to
NamingManager.getObjectInstance() . The methods of this service provide similar reference resolu-
tion, but rely on the OSGi Service Registry in order to find ObjectFactory instances that can convert a
Reference to an Object. This service will typically be used by OSGi-aware JNDI Service Providers.

Concurrency Thread-safe
getObjectInstance(Object,javax.naming.Name,javax.naming.Context,Map)

126.9.4.1 public Object getObjectInstance(Object refInfo, Name name, Context context, Map
environment) throws Exception

refInfo Reference info

name the JNDI name associated with this reference

context the JNDI context associated with this reference

environment the JNDI environment associated with this JNDI context

Resolve the object from the given reference.

Returns an Object based on the reference passed in, or the original reference object if the reference could not
be resolved.

Throws Exception – in the event that an error occurs while attempting to resolve the JNDI reference.
getObjectInstance(Object,javax.naming.Name,javax.naming.Context,Map,javax.naming.directory.Attributes)

126.9.4.2 public Object getObjectInstance(Object refInfo, Name name, Context context, Map
environment, Attributes attributes) throws Exception

refInfo Reference info

name the JNDI name associated with this reference
OSGi Service Platform Release 4, Version 4.2 Page 399

References JNDI Services Specification Version 1.0
context the JNDI context associated with this reference

environment the JNDI environment associated with this JNDI context

attributes the naming attributes to use when resolving this object

Resolve the object from the given reference.

Returns an Object based on the reference passed in, or the original reference object if the reference could not
be resolved.

Throws Exception – in the event that an error occurs while attempting to resolve the JNDI reference.

126.10 References
[1] OSGi Core Specifications

http://www.osgi.org/Specifications/HomePage

[2] Java Naming and Directory Interface
http://java.sun.com/javase/6/docs/technotes/guides/jndi/index.html

[3] Java Naming and Directory Interface Tutorial from Sun Microsystems
http://java.sun.com/products/jndi/tutorial/index.html

[4] JNDI Standard Property Names
http://java.sun.com/j2se/1.5.0/docs/api/javax/naming/Context.html
Page 400 OSGi Service Platform Release 4, Version 4.2

JPA Service Specification Version 1.0 Introduction
127 JPA Service Specification
Version 1.0

127.1 Introduction
The Java Persistence API (JPA) is a specification that sets a standard for persistently storing objects in
enterprise and non-enterprise Java based environments. JPA provides an Object Relational Mapping
(ORM) model that is configured through persistence descriptors. This Java Persistence Service specifi-
cation defines how persistence units can be published in an OSGi service platform, how client bun-
dles can find these persistence units, how database drivers are found with the OSGi JDBC
Specification, as well as how JPA providers can be made available within an OSGi framework.

Applications can be managed or they can be unmanaged. Managed applications run inside a Java EE
Container and unmanaged applications run in a Java SE environment. The managed case requires a
provider interface that can be used by the container, while in the unmanaged case the JPA provider is
responsible for supporting the client directly. This specification is about the unmanaged model of
JPA except in the areas where the managed model is explicitly mentioned. Additionally, multiple
concurrent providers for the unmanaged case are not supported.

This JPA Specification supports both [2] JPA 1.0 and [3] JPA 2.0.

127.1.1 Essentials
• Dependencies – There must be a way for persistence clients, if they so require, to manage their

dependencies on a compatible persistence unit.
• Compatibility – The Persistence Unit service must be able to function in non-managed mode

according to existing standards and interfaces outlined in the JPA specification.
• Modularity – Persistent classes and their accompanying configuration can exist in a separate

bundle from the client that is operating on them using the Persistence Unit service.
• JDBC – Leverage the OSGi JDBC Specification for access to the database.

127.1.2 Entities
• JPA – The Java Persistence API, [2] JPA 1.0 and [3] JPA 2.0.
• JPA Provider – An implementation of JPA, providing the Persistence Provider and JPA Services to

Java EE Containers and Client Bundles.
• Interface Bundle – A bundle containing the interfaces and classes in the javax.pers istence

namespace (and its sub-namespaces) that are defined by the JPA specification.
• Persistence Bundle – A bundle that includes, a Meta-Persistence header, one or more Persistence

Descriptor resources, and the entity classes specified by the Persistence Units in those resources.
• Client Bundle – The bundle that uses the Persistence Bundle to retrieve and store objects.
• Persistence Descriptor – A resource describing one or more Persistence Units.
• Persistence Unit – A named configuration for the object-relational mappings and database access as

defined in a Persistence Descriptor.
• Entity Manager – The interface that provides the control point of retrieving and persisting objects

in a relational database based on a single Persistence Unit for a single session.
• Entity Manager Factory – A service that can create Entity Managers based on a Persistence Unit for

different sessions.
• Entity Manager Factory Builder – A service that can build an Entity Manager Factory for a specific

Persistence Unit with extra configuration parameters.
• Managed Client – A Client Bundle that is managed by a Container
OSGi Service Platform Release 4, Version 4.2 Page 401

Introduction JPA Service Specification Version 1.0
• Static Client – A Client that uses the static factory methods in the Persistence class instead of ser-
vices.

• Static Persistence – The actor that enables the use of the Persistence class static factory methods to
obtain an Entity Manager Factory.

• JDBC Provider – The bundle providing a Data Source Factory service.

Figure 127.1 JPA Service overview

127.1.3 Dependencies
This specification is based on JPA 1.0 and JPA 2.0. JPA 2.0 is backward compatible with JPA 1.0. For
this reason, the versions of the packages follow the OSGi recommended version policy with the addi-
tion of a special JPA marker that annotates the specification version for JPA. All JPA Packages must
also have an attribute called jpa that specifies the JPA version. The purpose of this attribute is to
make it clear what JPA version belongs to this package.

For example, JPA should have an export declaration like:

Export-Package: javax.persistence; version=1.1; jpa=2.0, ...

JPA Provider Impl

Client Impl

in
je

ct
s

Container Impl

Entity Classes
Impl

Persistence

Entity

Persistence
Descriptor

Managed
Client Impl

Provider

Manager
Factory

unit
name

*

*

1

Static Persistence
Impl

Persistence

Static Client Impl

Data Source Factory

Entity
Manager
Factory

osgi.unit.name=...
osgi.unit.version=...
osgi.unit.provider=...

Builder

Table 127.1 Dependency versions

JPA Packages Export Version Client Import Range Provider Imp. Range

JPA 1.0 javax.persistence 1.0 [1.0,2.0) [1.0,1.1)
javax.persistence.spi 1 .0 [1.0,2.0) [1.0,1.1)

JPA 2.0 javax.pers istence 1.1 [1.1 ,2.0) [1.1,1.2)
javax.pers istence.spi 1 .1 [1.1 ,2.0) [1.1,1.2)
Page 402 OSGi Service Platform Release 4, Version 4.2

JPA Service Specification Version 1.0 JPA Overview
127.1.4 Synopsis
A JPA Provider tracks Persistence Bundles; a Persistence Bundle contains a Meta-Persistence manifest
header. This manifest header enumerates the Persistence Descriptor resources in the Persistence Bun-
dle. Each resource’s XML schema is defined by the JPA 1.0 or JPA 2.0 specification. The JPA Provider
reads the resource accordingly and extracts the information for one or more Persistence Units. For
each found Persistence Unit, the JPA Provider registers an Entity Manager Factory Builder service. If
the database is defined in the Persistence Unit, then the JPA Provider registers an Entity Manager Fac-
tory service during the availability of the corresponding Data Source Factory.

The identification of these services is handled through a number of service properties. The Entity
Manager Factory service is named by the standard JPA interface, the Builder version is OSGi specific;
it is used when the Client Bundle needs to create an Entity Manager Factory based on configuration
properties.

A Client Bundle that wants to persist or retrieve its entity classes depends on an Entity Manager Fac-
tory (Builder) service that corresponds to a Persistence Unit that lists the entity classes. If such a ser-
vice is available, the client can use this service to get an Entity Manager, allowing the client to
retrieve and persist objects as long as the originating Entity Manager Factory (Builder) service is regis-
tered.

In a non-OSGi environment, it is customary to get an Entity Manager Factory through the
Pers istence class. This Persistence class provides a number of static methods that give access to any
locally available JPA providers. This approach is not recommended in an OSGi environment due to
class loading and start ordering issues. However, OSGi environments can support access through this
static factory with a Static Persistence bundle.

127.2 JPA Overview
Java Persistence API (JPA) is a specification that is part of [4] Java EE 5. This OSGi Specification is
based on [2] JPA 1.0 and [3] JPA 2.0. This section provides an overview of JPA as specified in the JCP.
The purpose of this section is to introduce the concepts behind JPA and define the terminology that
will be used in the remainder of the chapter.

The purpose of JPA is to simplify access to relational databases for applications on the object-oriented
Java platform. JPA provides support for storing and retrieving objects in a relational database. The
JPA specification defines in detail how objects are mapped to tables and columns under the full con-
trol of the application. The core classes involved are depicted in Figure 127.2.

Figure 127.2 JPA Client View

Client CodeEntity Class
Entity Class

Entity Manager
Factory

Entity Manager Connection

Data SourcePersistence
Descriptor

persists
with

created by

mapped by

db

db

mappings for
Mapping
Descriptor

db

from
OSGi Service Platform Release 4, Version 4.2 Page 403

JPA Overview JPA Service Specification Version 1.0
The JPA specifications define a number of concepts that are defined in this section for the purpose of
this OSGi specification. However, the full syntax and semantics are defined in the JPA specifications.

127.2.1 Persistence
Classes that are stored and retrieved through JPA are called the entity classes. In this specification, the
concept of entity classes includes the embeddable classes, which are classes that do not have any per-
sistent identity, and mapped superclasses that allow mappings, but are not themselves persistent.
Entity classes are not required to implement any interface or extend a specific superclass, they are
Plain Old Java Objects (POJOs). It is the responsibility of the JPA Provider to connect to a database and
map the store and retrieve operations of the entity classes to their tables and columns. For perfor-
mance reasons, the entity classes are sometimes enhanced. This enhancement can take place during
build time, deploy time, or during class loading time. Some enhancements use byte code weaving,
some enhancements are based on sub-classing.

The JPA Provider cannot automatically perform its persistence tasks; it requires configuration infor-
mation. This configuration information is stored in the Persistence Descriptor. A Persistence Descriptor
is an XML file according of one of the two following namespaces:

http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd

The JPA standard Persistence Descriptor must be stored in META-INF/persistence.xml . It is usually in
the same class path entry (like a JAR or directory) as the entity classes.

The JPA Provider parses the Persistence Descriptor and extracts one or more Persistence Units. A Persis-
tence Unit includes the following aspects:

• Name – Every Persistence Unit must have a name to identify it to clients. For example:
Accounting .

• Provider Selection – Restriction to a specific JPA Provider, usually because there are dependencies in
the application code on provider specific functionality.

• JDBC Driver Selection – Selects the JDBC driver, the principal and the credentials for selecting and
accessing a relational database. See 127.2.4 JDBC Access in JPA.

• Properties – Standard and JPA Provider specific properties.

The object-relational mappings are stored in special mapping resources or are specified in annota-
tions.

A Persistence Unit can be complete or incomplete. A complete Persistence Unit identifies the database
driver that is needed for the Persistence Unit, though it does not have to contain the credentials. An
incomplete Persistence Unit lacks this information.

The relations between the class path, its entries, the entity classes, the Persistence Descriptor and the
Persistence Unit is depicted in Figure 127.3 on page 404.

Figure 127.3 JPA Configuration

Class path entry
(JAR/directory)

Entity Classes

Persistence
Descriptor
persistence.xml

Persistence Unit

JDBC Driver

lists
1 * 1 0,1 1 *

contains contains

depends on
*

0,1

Class Path

persisted by
* *

*

Page 404 OSGi Service Platform Release 4, Version 4.2

JPA Service Specification Version 1.0 JPA Overview
JPA recognizes the concept of a persistence root. The persistence root is the root of the JAR (or direc-
tory) on the class path that contains the META-INF/persistence.xml resource.

127.2.2 JPA Provider
The JPA specifications provide support for multiple JPA Providers in the same application. An Appli-
cation selects a JPA Provider through the Persistence class, using static factory methods. One of these
methods accepts a map with configuration properties. Configuration properties can override informa-
tion specified in a Persistence Unit or these properties add new information to the Persistence Unit.

The default implementation of the Persistence class discovers providers through the Java EE services
model, this model requires a text resource in the class path entry called:

 META-INF/services/ javax.persistence.PersistenceProvider

This text resource contains the name of the JPA Provider implementation class.

The Pers istence class createEntityManagerFactory method provides the JPA Provider with the name
of a Persistence Unit. The JPA Provider must then scan the class path for any META-INF/
pers istence.xml entries, these are the available Persistence Descriptors. It then extracts the Persis-
tence Units to find the requested Persistence Unit. If no such Persistence Unit can be found, or the JPA
Provider is restricted from servicing this Persistence Unit, then nul l is returned. The Persistence class
will then continue to try the next found or registered JPA Provider.

A Persistence Unit can restrict JPA Providers by specifying a JPA Provider class, this introduces a pro-
vider dependency. The specified JPA Provider class must implement the PersistenceProvider interface.
This implementation class name must be available from the JPA Provider’s documentation. JPA Provid-
ers that do not own the specified JPA Provider class must ignore such a Persistence Unit.

Otherwise, if the Persistence Unit is not restricted, the JPA Provider is assigned to this Persistence
Unit; it must be ready to provide an EntityManagerFactory object when the application requests one.

The JPA Provider uses the Persistence Unit, together with any additional configuration properties, to
construct an Entity Manager Factory. The application then uses this Entity Manager Factory to con-
struct an Entity Manager, optionally providing additional configuration properties. The Entity Man-
ager then provides the operations for the application to store and retrieve entity classes from the
database.

The additional configuration properties provided with the creation of the Entity Manager Factory or
the Entity Manager are often used to specify the database driver and the credentials. This allows the
Persistence Unit to be specified without committing to a specific database, leaving the choice to the
application at runtime.

The relations between the application, Entity Manager, Entity Manager Factory and the JPA Provider
are depicted in Figure 127.4 on page 406.
OSGi Service Platform Release 4, Version 4.2 Page 405

Bundles with Persistence JPA Service Specification Version 1.0
Figure 127.4 JPA Dynamic Model

127.2.3 Managed and Unmanaged
The JPA specifications make a distinction between a managed and an unmanaged mode. In the man-
aged mode the presence of a Java EE Container is assumed. Such a container provides many services
for its contained applications like transaction handling, dependency injection, etc. One of these
aspects can be the interface to the relational database. The JPA specifications therefore have defined a
special method for Java EE Containers to manage the persistence aspects of their Managed Clients.
This method is the createContainerEntityManagerFactory method on the PersistenceProvider inter-
face. This method is purely intended for Java EE Containers and should not be used in other environ-
ments.

The other method on the PersistenceProvider interface is intended to be used by the Persistence
class static factory methods. The Persistence class searches for an appropriate JPA Provider by asking
all available JPA Providers to create an Entity Manager Factory based on configuration properties.
The first JPA Provider that is capable of providing an Entity Manager Factory wins. The use of these
static factory methods is called the unmanaged mode. It requires a JPA Provider to scan the class path
to find the assigned Persistence Units.

127.2.4 JDBC Access in JPA
A Persistence Unit is configured to work with a relational database. JPA Providers communicate with
a relational database through compliant JDBC database drivers. The database and driver parameters
are specified in the Persistence Unit or configured during Entity Manager Factory or Entity Manager
creation with the configuration properties. The configuration properties for selecting a database in
non-managed mode were proprietary in JPA 1.0 but have been standardized in version 2.0 of JPA:

• javax.persistence. jdbc.dr iver – Fully-qualified name of the driver class
• javax.persistence. jdbc.ur l – Driver-specific URL to indicate database information
• javax.persistence. jdbc.user – User name to use when obtaining connections
• javax.pers istence. jdbc.password – Password to use when obtaining connections

127.3 Bundles with Persistence
The primary goal of this specification is to simplify the programming model for bundles that need
persistence. In this specification there are two application roles:

• Persistence Bundle – A Persistence Bundle contains the entity classes and one or more Persistence
Descriptors, each providing one or more Persistence Units.

Entity Manager Entity Manager
Factory

JPA Provider

Persistence Unit

uses
1 * * 1 * 1

implementedApplication

Data Source
Factory

by
created

by

provides db
connections

*

1 1

1

discovers

Persistence
Descriptor

1

*

0,1 *
specified

by

1

*

Page 406 OSGi Service Platform Release 4, Version 4.2

JPA Service Specification Version 1.0 Bundles with Persistence
• Client Bundle –A Client Bundle contains the code that manipulates the entity classes and uses an
Entity Manager to store and retrieve these entity classes with a relational database. The Client
Bundle obtains the required Entity Manager(s) via a service based model.

These roles can be combined in a single bundle.

127.3.1 Services
A JPA Provider uses Persistence Units to provide Client Bundles with a configured Entity Manager Fac-
tory service and/or an Entity Manager Factory Builder service for each assigned Persistence Unit:

• Entity Manager Factory service – Provides an EntityManagerFactory object that depends on a com-
plete Persistence Unit. That is, it is associated with a registered Data Source Factory service.

• Entity Manager Factory Builder service – The Entity Manager Factory Builder service provides the
capability of creating an EntityManagerFactory object with additional configuration properties.

These services are collectively called the JPA Services. Entity Managers obtained from such JPA Ser-
vices can only be used to operate on entity classes associated with their corresponding Persistence
Unit.

127.3.2 Persistence Bundle
A Persistence Bundle is a bundle that specifies the Meta-Persistence header, see Meta Persistence Header
on page 409. This header refers to one or more Persistence Descriptors in the Persistence Bundle.
Commonly, this is the META-INF/persistence.xml resource. This location is the standard for non-
OSGi environments, however an OSGi bundle can also use other locations as well as multiple
resources.

For example, the contents of a simple Persistence Bundle with a single Person entity class could look
like:

META-INF/
META-INF/MANIFEST.MF
OSGI-INF/address.xml
com/acme/Person.class

The corresponding manifest would then look like:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Meta-Persistence: OSGI-INF/address.xml
Bundle-SymbolicName: com.acme.simple.persistence
Bundle-Version: 3.2.4.200912231004

A Persistence Bundle is a normal bundle; it must follow all the rules of OSGi and can use all OSGi con-
structs like Bundle-Classpath, fragment bundles, import packages, export packages, etc. However,
there is one limitation: any entity classes must originate in the bundle’s JAR, it cannot come from a
fragment. This requirement is necessary to simplify enhancing entity classes.

127.3.3 Client Bundles
A Client Bundle uses the entity classes from a Persistence Bundle to provide its required functional-
ity. To store and retrieve these entity classes a Client Bundle requires an Entity Manager that is con-
figured for the corresponding Persistence Unit.

An Entity Manager is intended to be used by a single session, it is not thread safe. Therefore, a client
needs an Entity Manager Factory to create an Entity Manager. In an OSGi environment, there are
multiple routes to obtain an Entity Manager Factory.
OSGi Service Platform Release 4, Version 4.2 Page 407

Bundles with Persistence JPA Service Specification Version 1.0
A JPA Provider must register an Entity Manager Factory service for each assigned Persistence Unit
that is complete. Complete means that it is a configured Persistence Unit, including the reference to
the relational database. The Entity Manager Factory service is therefore bound to a Data Source Fac-
tory service and Client Bundles should not attempt to rebind the Data Source Factory with the config-
uration properties of the createEntityManager(Map) method. See Rebinding on page 413 for the
consequences. If the Data Source Factory must be bound by the Client Bundle then the Client Bundle
should use the Custom Configured Entity Manager on page 408.

The Entity Manager Factory service must be registered with the service properties as defined in Ser-
vice Registrations on page 411. These are:

• osgi .unit .name – (Str ing) The name of the Persistence Unit
• osgi .unit .vers ion – (Str ing) The version of the associated Persistence Bundle
• osgi .unit .provider – (Str ing) The implementation class name of the JPA Provider

The life cycle of the Entity Manager Factory service is bound to the Persistence Bundle, the JPA Pro-
vider, and the selected Data Source Factory service.

A Client Bundle that wants to use an Entity Manager Factory service should therefore use an appro-
priate filter to select the Entity Manager Factory service that corresponds to its required Persistence
Unit. For example, the following snippet uses Declarative Services, see Declarative Services Specification
on page 141, to statically depend on such a service:

<reference name="accounting"
 target="(&(osgi.unit.name=Accounting)(osgi.unit.version=3.2.*))"

interface="javax.persistence.EntityManagerFactory"/>

127.3.4 Custom Configured Entity Manager
If a Client Bundle needs to provide configuration properties for the creation of an Entity Manager
Factory it should use the Entity Manager Factory Builder service. This can for example be used to pro-
vide the database selection properties when the Persistence Unit is incomplete or if the database
selection needs to be overridden.

The Entity Manager Factory Builder service’s life cycle must not depend on the availability of any
Data Source Factory, even if a JDBC driver class name is specified in the Persistence Descriptor. The
Entity Manager Factory Builder service is registered with the same service properties as the corre-
sponding Entity Factory service, see Service Registrations on page 411.

The following method is defined on the EntityManagerFactoryBui lder interface:

• createEntityManagerFactory(Map) - Returns a custom configured EntityManagerFactory
instance for the Persistence Unit associated with the service. Accepts a map with the configu-
ration properties to be applied during Entity Manager Factory creation. The method must return a
proper Entity Manager Factory or throw an Exception.

The createEntityManagerFactory method allows standard and vendor-specific properties to be
passed in and applied to the Entity Manager Factory being created. However, some properties cannot
be honored by the aforementioned method. For example, the javax.pers istence.provider JPA prop-
erty, as a means to specify a specific JPA Provider at runtime, cannot be supported because the JPA
Provider has already been decided; it is the JPA Provider that registered the Entity Manager Factory
Builder service. A JPA Provider should throw an Exception if it recognizes the property but it cannot
use the property when specified through the builder. Unrecognized properties must be ignored.

Once an Entity Manager Factory is created the specified Data Source becomes associated with the
Entity Manager Factory. It is therefore not possible to re-associate an Entity Manager Factory with
another Data Source by providing different properties. A JPA Provider must throw an Exception
when an attempt is made to re-specify the database properties. See Rebinding on page 413 for further
information.
Page 408 OSGi Service Platform Release 4, Version 4.2

JPA Service Specification Version 1.0 Extending a Persistence Bundle
As an example, a sample snippet of a client that wants to operate on a persistence unit named
Accounting and pass in the JDBC user name and password properties is:

ServiceReference[] refs = context.getServiceReferences(
EntityManagerFactoryBuilder.class.getName(),
"(osgi.unit.name=Accounting)");

if (refs != null) {
EntityManagerFactoryBuilder emfBuilder =

(EntityManagerFactoryBuilder) context.getService(refs[0]);
 if (emfBuilder != null) {
 Map<String,Object> props = new HashMap<String,Object>();

 props.put("javax.persistence. jdbc.user", userString);
 props.put("javax.persistence. jdbc.password", passwordString);
 EntityManagerFactory emf = emfBuilder.createEntityManagerFactory(props);
 EntityManager em = emf.createEntityManager();
 ...

}

The example does not handle the dynamic dependencies on the associated Data Source Factory ser-
vice.

127.4 Extending a Persistence Bundle
A Persistence Bundle is identified by its Meta-Persistence manifest header that references a number of
Persistence Descriptor resources. Persistence bundles must be detected by a JPA Provider. The JPA
Provider must parse any Persistence Descriptors in these bundles and detect the assigned Persistence
Units. For each assigned Persistence Unit, the JPA Provider must register an Entity Manager Factory
Builder service when the Persistence Bundle is ready, see Ready Phase on page 411.

For complete and assigned Persistence Units, the JPA Provider must find the required Data Source
Factory service based on the driver name. When the Persistence Bundle is ready and the selected Data
Source Factory is available, the JPA Provider must have an Entity Manager Factory service registered
that is linked to that Data Source Factory.

When the Persistence Bundle is stopped (or the JPA Provider stops), the JPA Provider must close all
connections and cleanup any resources associated with the Persistence Bundle.

This process is outlined in detail in the following sections.

127.4.1 Class Space Consistency
A JPA Provider must ignore Persistence Bundles that are in another class space for the
javax.pers istence.* packages. Such a JPA Provider cannot create JPA Services that would be visible
and usable by the Client Bundles.

127.4.2 Meta Persistence Header
A Persistence Bundle is a bundle that contains the Meta-Persistence header. If this header is not present,
then this specification does not apply and a JPA Provider should ignore the corresponding bundle.

The persistence root of a Persistence Unit is the root of the Persistence Bundle's JAR

The Meta-Persistence header has a syntax of:

Meta-Persistence ::= (jar-path (',' jar-path)*)?
jar-path ::= path (’!/’ spath)?
spath ::= path // must not start with slash (’/’)
OSGi Service Platform Release 4, Version 4.2 Page 409

Extending a Persistence Bundle JPA Service Specification Version 1.0
The header may include zero or more comma-separated jar-paths , each a path to a Persistence
Descriptor resource in the bundle. Paths may optionally be prefixed with the slash (’ / ’) character. The
JPA Provider must always include the META-INF/persistence.xml first if it is not one of the listed
paths. Wildcards in directories are not supported. The META-INF/persistence.xml is therefore the
default location for an empty header.

For example:

Meta-Persistence: META-INF/jpa.xml, persistence/jpa.xml

The previous example will instruct the JPA Provider to process the META-INF/persistence.xml
resource first, even though it is not explicitly listed. The JPA Provider must then subsequently pro-
cess META-INF/jpa.xml and the persistence/jpa.xml resources.

The paths in the Meta-Persistence header must be used with the Bundle.getEntry() method, or a
mechanism with similar semantics, to obtain the corresponding resource. The getEntry method does
not force the bundle to resolve when still unresolved; resolving might interfere with the efficiency of
any required entity class enhancements. However, the use of the getEntry method implies that frag-
ment bundles cannot be used to contain Persistence Descriptors nor entity classes.

Paths in the Meta-Persistence header can reference JAR files that are nested in the bundle by using the
! / jar : URL syntax to separate the JAR file from the path within the JAR, for example:

Meta-Persistence: embedded.jar!/META-INF/persistence.xml

This example refers to a resource in the embedded. jar resource, located in the META-INF directory of
embedded. jar .

The ! / splits the jar-path in a prefix and a suffix:

• Prefix – The prefix is a path to a JAR resource in the bundle.
• Suffix – The suffix is a path to a resource in the JAR identified by the prefix.

For example:

embedded.jar!/META-INF/persistence.xml
prefix: embedded.jar
suffix: META-INF/persistence.xml

It is not required that all listed or implied resources are present in the bundle’s JAR. For example, it is
valid that the default META-INF/pers istence.xml resource is absent. However, if no Persistence Units
are found at all then the absence of any Persistence Unit is regarded as an error that should be logged.
In this case, the Persistence Bundle is further ignored.

127.4.3 Processing
A JPA Provider can detect a Persistence Bundle as early as its installation time. This early detection
allows the JPA Provider to validate the Persistence Bundle as well as prepare any mechanisms to
enhance the classes for better performance. However, this process can also be delayed until the bun-
dle is started.

The JPA Provider must validate the Persistence Bundle. A valid Persistence Bundle must:

• Have no parsing errors of the Persistence Descriptors
• Validate all Persistence Descriptors against their schemas
• Have at least one assigned Persistence Unit
• Have all entity classes mentioned in the assigned Persistence Units on the Persistence Bundle’s

JAR.

A Persistence Bundle that uses multiple providers for its Persistence Units could become incompati-
ble with future versions of this specification.
Page 410 OSGi Service Platform Release 4, Version 4.2

JPA Service Specification Version 1.0 Extending a Persistence Bundle
If any validation fails, then this is an error and should be logged. Such a bundle is ignored completely
even if it also contains valid assigned Persistence Units. Only a bundle update can recover from this
state.

Persistence Units can restrict JPA Providers by specifying a provider dependency. JPA Providers that
do not own this JPA Provider implementation class must ignore such a Persistence Unit completely.
Otherwise, if the JPA Provider can service a Persistence Unit, it assigns itself to this Persistence Unit.

If after the processing of all Persistence Descriptors, the JPA Provider has no assigned Persistence
Units, then the JPA Provider must further ignore the Persistence Bundle.

127.4.4 Ready Phase
A Persistence Bundle is ready when its state is ACTIVE or, when a lazy activation policy is used,
STARTING . A JPA Provider must track the ready state of Persistence Bundles that contain assigned
Persistence Units.

While a Persistence Bundle is ready, the JPA Provider must have, for each assigned Persistence Unit,
an Entity Manager Factory Builder service registered to allow Client Bundles to create new
EntityManagerFactory objects. The JPA Provider must also register an Entity Manager Factory for
each assigned and complete Persistence Unit that has its corresponding Data Source available in the
service registry.

The service registration process is asynchronous with the Persistence Bundle start because a JPA Pro-
vider could start after a Persistence Bundle became ready.

127.4.5 Service Registrations
The JPA Services must be registered through the Bundle Context of the corresponding Persistence
Bundle to ensure proper class space consistency checks by the OSGi Framework.

JPA Services are always related to an assigned Persistence Unit. To identify this Persistence Unit and
the assigned JPA Provider, each JPA Service must have the following service properties:

• osgi.unit .name – (Str ing) The name of the Persistence Unit. This property corresponds to the
name attribute of the persistence-unit element in the Persistence Descriptor. It is used by Client
Bundles as the primary filter criterion to obtain a JPA Service for a required Persistence Unit.
There can be multiple JPA Services registered under the same osgi .unit .name , each representing a
different version of the Persistence Unit.

• osgi.unit .vers ion – (Str ing) The version of the Persistence Bundle, as specified in Bundle-Version
header, that provides the corresponding Persistence Unit. Client Bundles can filter their required
JPA Services based on a particular Persistence Unit version.

• osgi .unit .provider – (Str ing) The JPA Provider implementation class name that registered the
service. The osgi .unit .provider property allows Client Bundles to know the JPA Provider that is
servicing the Persistence Unit. Client Bundles should be careful when filtering on this property,
however, since the JPA Provider that is assigned a Persistence Unit may not be known by the
Client Bundle ahead of time. If there is a JPA Provider dependency, it is better to specify this
dependency in the Persistence Unit because other JPA Providers are then not allowed to assign
such a Persistence Unit and will therefore not register a service.

127.4.6 Registering the Entity Manager Factory Builder Service
Once the Persistence Bundle is ready, a JPA Provider must register an Entity Manager Factory Builder
service for each assigned Persistence Unit from that Persistence Bundle.

The Entity Manager Factory Builder service must be registered with the service properties listed in
Service Registrations on page 411. The Entity Manager Factory Builder service is registered under the
org.osgi .service. jpa.EntityManagerFactoryBui lder name. This interface is using the JPA packages
and is therefore bound to one of the two supported versions, see Dependencies on page 402.
OSGi Service Platform Release 4, Version 4.2 Page 411

JPA Provider JPA Service Specification Version 1.0
The Entity Manager Factory Builder service enables the creation of a parameterized version of an
Entity Factory Manager by allowing the caller to specify configuration properties. This approach is
necessary if, for example, the Persistence Unit is not complete.

127.4.7 Registering the Entity Manager Factory
A complete Persistence Unit is configured with a specific relational database driver, see JDBC Access
in JPA on page 406. A JPA Provider must have an Entity Manager Factory service registered for each
assigned and complete Persistence Unit when:

• The originating Persistence Bundle is ready, and
• A matching Data Source Factory service is available. Matching a Data Source Factory service to a

Persistence Unit is discussed in Database Access on page 413.

A JPA Provider must track the life cycle of the matching Data Source Factory service; while this ser-
vice is unavailable the Entity Manager Factory service must also be unavailable. Any active Entity
Managers created by the Entity Manager Factory service become invalid to use at that time.

The Entity Manager Factory service must be registered with the same service properties as described
for the Entity Manager Factory Builder service, see Service Registrations on page 411. It should be regis-
tered under the following name:

 javax.pers istence.EntityManagerFactory

The EntityManagerFactory interface is from the JPA packages and is therefore bound to one of the
two supported versions, see Dependencies on page 402.

An Entity Manager Factory is bound to a Data Source Factory service because its assigned Persistence
Unit was complete. However, a Client Bundle could still provide JDBC configuration properties for
the createEntityManager(Map) method. This not always possible, see Rebinding on page 413.

127.4.8 Stopping
If a Persistence Bundle is being stopped, then the JPA Provider must ensure that any resources allo-
cated on behalf of the Persistence Bundle are cleaned up and all open connections are closed. This
cleanup must happen synchronously with the STOPPING event. Any Exceptions being thrown while
cleaning up should be logged but must not stop any further clean up.

If the JPA Provider is being stopped, the JPA Provider must unregister all JPA Services that it regis-
tered through the Persistence Bundles and clean up as if those bundles were stopped.

127.5 JPA Provider
JPA Providers supply the implementation of the JPA Services and the Persistence Provider service. It
is the responsibility of a JPA Provider to store and retrieve the entity classes from a relational data-
base. It is the responsibility of the JPA Provider to register a Persistence Provider and start tracking
Persistence Bundles, see Extending a Persistence Bundle on page 409.

127.5.1 Managed Model
A JPA Provider that supports running in managed mode should register a specific service for the Java
EE Containers: the Persistence Provider service. The interface is the standard JPA Pers istenceProvider
interface. See Dependencies on page 402 for the issues around the multiple versions that this specifica-
tion supports.

The service must be registered with the following service property:

• javax.persistence.provider – The JPA Provider implementation class name, a documented name
for all JPA Providers.
Page 412 OSGi Service Platform Release 4, Version 4.2

JPA Service Specification Version 1.0 JPA Provider
The Persistence Provider service enables a Java EE Container to find a particular JPA Provider. This
service is intended for containers only, not for Client Bundles because there are implicit assumptions
in the JPA Providers about the Java EE environment. A Java EE Container must obey the life cycle of
the Persistence Provider service. If this service is unregistered then it must close all connections and
clean up the corresponding resources.

127.5.2 Database Access
A Persistence Unit is configured to work with a relational database. JPA Providers must communicate
with a relational database through a compliant JDBC database driver. The database and driver param-
eters are specified with properties in the Persistence Unit or the configuration properties when a
Entity Manager Factory Builder is used to build an Entity Manager Factory. All JPA Providers, regard-
less of version, in an OSGi environment must support the following properties for database access:

• javax.pers istence. jdbc.dr iver – Fully-qualified name of the driver class.
• javax.pers istence. jdbc.ur l – Driver-specific URL to indicate database information
• javax.pers istence. jdbc.user – User name to use when obtaining connections
• javax.pers istence. jdbc.password – Password to use when obtaining connections

There are severe limitations in specifying these properties after the Entity Manager Factory is created
for the first time, see Rebinding on page 413.

127.5.3 Data Source Factory Service Matching
Providers must use the javax.persistence. jdbc.dr iver property, as defined in JDBC Access in JPA on
page 406, to obtain a Data Source Factory service. The Data Source Factory is specified in JDBC™ Ser-
vice Specification on page 375. The javax.pers istence. jdbc.dr iver property must be matched with the
value of the Data Source Factory service property named osgi . jdbc.dr iver.class .

The Data Source Factory service is registered with the osgi . jdbc.dr iver .c lass service property that
holds the class name of the driver. This property must match the javax.persistence. jdbc.dr iver ser-
vice property of the Persistence Unit.

For example, if the Persistence Unit specifies the com.acme.db.Driver database driver in the
javax.pers istence. jdbc.dr iver property (or in the Persistence Descriptor property element), then the
following filter would select an appropriate Data Source Factory:

(&(objectClass=org.osgi.service.jdbc.DataSourceFactory)
 (osgi . jdbc.dr iver .c lass=com.acme.db.Driver))

Once the Data Source Factory is obtained, the JPA Provider must obtain a DataSource object. This
Data Source object must then be used for all relational database access.

In [2] JPA 1.0 the JPA JDBC properties were not standardized. JPA Providers typically defined a set of
JDBC properties, similar to those defined in JPA 2.0, to configure JDBC driver access. JPA 1.0 JPA Pro-
viders must look up the Data Source Factory service first using the JPA 2.0 JDBC properties. If these
properties are not defined then they should fall back to their proprietary driver properties.

127.5.4 Rebinding
In this specification, the Entity Manager Factory service is only registered when the Persistence Unit
is complete and a matching Data Source Factory service is available. However, the API of the Entity
Manager Factory allows the creation of an Entity Manager with configuration properties. Those con-
figuration properties could contain the JDBC properties to bind to another Data Source Factory ser-
vice than it had already selected.

This case must not be supported by a JPA Provider, an Illegal Argument Exception must be thrown. If
such a case would be supported then the life cycle of the Entity Manager Factory service would still
be bound to the first Data Source Factory. There would be no way for the JPA Provider to signal to the
Client Bundle that the returned Entity Manager is no longer valid because the rebound Data Source
Factory was unregistered.
OSGi Service Platform Release 4, Version 4.2 Page 413

Static Access JPA Service Specification Version 1.0
Therefore, after an Entity Manager Factory has been created, a JPA Provider must verify that the new
properties are compatible with the properties of the already created Entity Manager Factory. If no,
then an Exception must be thrown. If they are compatible, then an instance of the previous Entity
Manager Factory should be returned.

127.5.5 Enhancing Entity Classes
JPA Providers may choose to implement the JPA specifications using various implementation
approaches and techniques. This promotes innovation in the area, but also opens the door to limita-
tions and constraints arising due to implementation choices. For example, there are JPA Providers
that perform byte code weaving during the entity class loading. Dynamic byte code weaving requires
that the entity classes are not loaded until the JPA Provider is first able to intercept the loading of the
entity class and be given an opportunity to do its weaving. It also implies that the Persistence Bundle
and any other bundles that import packages from that bundle must be refreshed if the JPA Provider
needs to be changed.

This is necessary because the JPA Services are registered against the Bundle Contexts of the Persis-
tence Bundles and not the Bundle Context of the JPA Providers. Client Bundles must then unget the
service to unbind themselves from the uninstalled JPA Provider. However, since most JPA Providers
perform some kind of weaving or class transformation on the entity classes, the Persistence Bundle
will likely need to be refreshed. This will cause the Client Bundles to be refreshed also because they
depend on the packages of the entity classes.

127.5.6 Class Loading
JPA Providers cannot have package dependencies on entity classes in Persistence Bundles because
they cannot know at install time what Persistence Bundles they will be servicing. However, when a
JPA Provider is servicing a Persistence Bundle, it must be able to load classes and resources from that
Persistence Bundle according to the OSGi bundle rules. To do this class loading it must obtain a class
loader that has the same visibility as the Persistence Bundle’s bundle class loader. This will also allow
it to load and manage metadata for the entity classes and resources for that Persistence Bundle’s
assigned Persistence Units. These resources and entity classes must reside directly in the Persistence
Bundle, they must be accessed using the getEntry method. Entity classes and resources must not
reside in fragments.

127.5.7 Validation
There is not yet an OSGi service specification defined for validation providers. If validation is
required, the validation implementation will need to be included with the JPA Provider bundle.

127.6 Static Access
Non-managed client usage of JPA has traditionally been achieved through the Pers istence class.
Invoking a static method on the Persistence class is a dependency on the returned JPA Provider that
cannot be managed by the OSGi framework.

However, such an unmanaged dependency is supported in this specification by the Static Persistence
bundle. This bundle provides backwards compatibility for programs that use existing JPA access pat-
terns. However, usage of this static model requires that the deployer ensures that the actors needed
are in place at the appropriate times by controlling the life cycles of all participating bundles. The
normal OSGi safe-guards and dependency handling do not work in the case of static access.

A Static Persistence Bundle must provide static access from the Persistence class to the JPA Services.

127.6.1 Access
There are two methods on the Persistence class:
Page 414 OSGi Service Platform Release 4, Version 4.2

JPA Service Specification Version 1.0 Security
• createEntityManagerFactory(Str ing)
• createEntityManagerFactory(Str ing,Map)

Both methods take the name of a Persistence Unit. The last method also takes a map that contains
extra configuration properties. To support the usage of the static methods on the Persistence class,
the implementation of the Persistence.createEntityManagerFactory method family must do a
lookup of one of the JPA Services associated with the selected Persistence Unit.

If no configuration properties are specified, the Static Persistence Bundle must look for an Entity
Manager Factory service with the osgi .unit .name property set to the given name. The default service
should be used because no selector for a version is provided. If no such service is available, null must
be returned. Provisioning of multiple versioned Persistence Units is not supported. Deployers should
ensure only a single version of a Persistence Unit with the same name is present in an OSGi frame-
work at any moment in time.

Otherwise, if configuration properties are provided, the Static Access implementation must look for
an Entity Manager Factory Builder service with the osgi.unit .name property set to the given Persis-
tence Unit name. If no such service exists, nul l must be returned. Otherwise, the default service must
be used to create an Entity Manager Factory with the given configuration properties. The result must
be returned to the caller.

For service lookups, the Static Persistence Bundle must use its own Bundle Context, it must not
attempt to use the Bundle Context of the caller. All exceptions should be passed to the caller.

The class space of the Entity Manager Factory and the class space of the client cannot be enforced to
be consistent by the framework because it is the Persistence class that is doing the lookup of the ser-
vice, and not the actual calling Client Bundle that will be using the Entity Manager Factory. The
framework cannot make the connection and therefore cannot enforce that the class spaces corre-
spond. Deployers should therefore ensure that the involved class spaces are correctly wired.

127.7 Security
The security for this specification is based on the JPA specification.

127.8 org.osgi.service.jpa
JPA Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. For example:

Import-Package: org.osgi.service.jpa; version=”[1.0,2.0)”
EntityManagerFactoryBuilder

127.8.1 public interface EntityManagerFactoryBuilder
This service interface offers JPA clients the ability to create instances of EntityManagerFactory for a
given named persistence unit. A service instance will be created for each named persistence unit and
can be filtered by comparing the value of the osgi.unit.name property containing the persistence
unit name. This service is used specifically when the caller wants to pass in factory-scoped proper-
ties as arguments. If no properties are being used in the creation of the EntityManagerFactory then
the basic EntityManagerFactory service should be used.
JPA_UNIT_NAME

127.8.1.1 public static final String JPA_UNIT_NAME = “osgi.unit.name”

The name of the persistence unit.
JPA_UNIT_PROVIDER
OSGi Service Platform Release 4, Version 4.2 Page 415

References JPA Service Specification Version 1.0
127.8.1.2 public static final String JPA_UNIT_PROVIDER = “osgi.unit.provider”

The class name of the provider that registered the service and implements the JPA javax.persis-
tence.PersistenceProvider interface.
JPA_UNIT_VERSION

127.8.1.3 public static final String JPA_UNIT_VERSION = “osgi.unit.version”

The version of the persistence unit bundle.
createEntityManagerFactory(Map)

127.8.1.4 public EntityManagerFactory createEntityManagerFactory(Map<String,Object> props)

props Properties to be used, in addition to those in the persistence descriptor, for configuring the EntityMan-
agerFactory for the persistence unit.

Return an EntityManagerFactory instance configured according to the properties defined in the cor-
responding persistence descriptor, as well as the properties passed into the method.

Returns An EntityManagerFactory for the persistence unit associated with this service. Must not be null.

127.9 References
[1] OSGi Core Specifications

http://www.osgi.org/Specifications/HomePage

[2] JPA 1.0
http://jcp.org/en/jsr/summary?id=220

[3] JPA 2.0
http://jcp.org/en/jsr/summary?id=317

[4] Java EE 5
http://java.sun.com/javaee/technologies/javaee5.jsp
Page 416 OSGi Service Platform Release 4, Version 4.2

Web Applications Specification Version 1.0 Introduction
128 Web Applications Specification
Version 1.0

128.1 Introduction
The Java EE Servlet model has provided the backbone of web based applications written in Java.
Given the popularity of the Servlet model, it is desirable to provide a seamless experience for deploy-
ing existing and new web applications to Servlet containers operating on the OSGi service platform.
Previously, the Http Service in the catalogue of OSGi compendium services was the only model spec-
ified in OSGi to support the Servlet programming model. However, the Http Service, as defined in
that specification, is focused on the run time, as well as manual construction of the servlet context,
and thus does not actually support the standard Servlet packaging and deployment model based on
the Web Application Archive, or WAR format.

This specification defines the Web Application Bundle, which is a bundle that performs the same
role as the WAR in Java EE. A WAB uses the OSGi life cycle and class/resource loading rules instead of
the standard Java EE environment. WABs are normal bundles and can leverage the full set of features
of the OSGi Service Platform.

Web applications can also be installed as traditional WARs through a manifest rewriting process.
During the install, a WAR is transformed into a WAB. This specification was based on ideas devel-
oped in PAX Web Extender on page 429.

This Web Application Specification provides support for web applications written to the Servlet 2.5
specification, or later. Given that Java Server Pages, or JSPs, are an integral part of the Java EE web
application framework, this specification also supports the JSP 2.1 specification or greater if present.
This specification details how a web application packaged as a WAR may be installed into an OSGi
Service Platform, as well as how this application may interact with, and obtain, OSGi services.

128.1.1 Essentials
• Extender – Enable the configuration of components inside a bundle based on configuration data

provided by the bundle developer.
• Services – Enable the use of OSGi services within a Web Application.
• Deployment – Define a mechanism to deploy Web Applications, both OSGi aware and non OSGi

aware, in the OSGi environment.
• WAR File Support – Transparently enhance the contents of a WAR's manifest during installation

to add any headers necessary to deploy a WAR as an OSGi bundle.

128.1.2 Entities
• Web Container – The implementation of this specification. Consists of a Web Extender, a Web

URL Handler and a Servlet and Java Server Pages Web Runtime environment.
• Web Application – A program that has web accessible content. A Web Application is defined by

Java EE Web Applications on page 429.
• Web Application Archive (WAR) – The Java EE standard resource format layout of a JAR file that

contains a deployable Web Application.
• Web Application Bundle – A Web Application deployed as an OSGi bundle, also called a WAB.
• WAB – The acronym for a Web Application Bundle.
• Web Extender – An extender bundle that deploys the Web Application Bundle to the Web

Runtime based on the Web Application Bundle's state.
OSGi Service Platform Release 4, Version 4.2 Page 417

Introduction Web Applications Specification Version 1.0
• Web URL Handler – A URL handler which transforms a Web Application Archive (WAR) to
conform to the OSGi specifications during installation by installing the WAR through a special
URL so that it becomes a Web Application Bundle.

• Web Runtime – A Java Server Pages and Servlet environment, receiving the web requests and trans-
lating them to servlet calls, either from Web Application servlets or other classes.

• Web Component – A Servlet or Java Server Page (JSP).
• Servlet – An object implementing the Servlet interface; this is for the request handler model in the

Servlet Specification.
• Servlet Context – The model representing the Web Application in the Servlet Specification.
• Java Server Page (JSP) – A declarative, template based model for generating content through

Servlets that is optionally supported by the Web Runtime.
• Context Path – The URI path prefix of any content accessible in a Web Application.

Figure 128.1 Web Container Entities

128.1.3 Dependencies
The package dependencies for the clients of this specification are listed in Table 128.1.

JSP is optional for the Web Runtime.

Web URL Handler
Impl

Web Application

URL Stream
Handler Service
url.handler.protocol=webbundle

Web Extender
Impl

Web Runtime
Impl

Web ARchive

Event Admin

Web Container

co
nf

ig
ur

ed
 b

y

invoke

re
w

rit
es

m
an

ife
st

install bundle

Servlet Context

web.xml

servlets

 g
et

 co
nt

en
t

Web
Server

transformer

0,1

Table 128.1 Dependency versions

Packages Export Version Client Import Range

javax.servlet 2.5 [2.5,3.0)
javax.servlet .http 2.5 [2.5,3.0)
javax.servlet . jsp.el 2.1 [2.1,3.0)
javax.servlet.jsp.jstl.core 1.2 [1.2,2.0)
javax.servlet.jsp.jstl.fmt 1.2 [1.2,2.0)
javax.servlet.jsp.jstl.sql 1.2 [1.2,2.0)
javax.servlet.jsp.jstl.tlv 1.2 [1.2,2.0)
javax.servlet.jsp.resources 2.1 [2.1,3.0)
javax.servlet.jsp.tagext 2.1 [2.1,3.0)
javax.servlet.jsp 2.1 [2.1,3.0)
Page 418 OSGi Service Platform Release 4, Version 4.2

Web Applications Specification Version 1.0 Web Container
128.1.4 Synopsis
The Web Application Specification is composed of a number of cooperating parts, which are imple-
mented by a Web Container. A Web Container consists of:

• Web Extender – Responsible for deploying Web Application Bundles (WAB) to a Web Runtime,
• Web Runtime – Provides support for Servlet and optionally for JSPs, and
• Web URL Handler – Provides on-the-fly enhancements of non-OSGi aware Web ARchives (WAR)

so that they can be installed as a WAB.

WABs are standard OSGi bundles with additional headers in the manifest that serve as deployment
instructions to the Web Extender. WABs can also contain the Java EE defined web.xml descriptor in
the WEB-INF/ directory. When the Web Extender detects that a WAB is ready the Web Extender
deploys the WAB to the Web Runtime using information contained in the web.xml descriptor and
the appropriate manifest headers. The Bundle Context of the WAB is made available as a Servlet Con-
text attribute. From that point, the Web Runtime will use the information in the WAB to serve con-
tent to any requests. Both dynamic as well as static content can be provided.

The Web URL Handler allows the deployment of an unmodified WAR as a WAB into the OSGi frame-
work. This Web URL Handler provides a URL stream handler with the webbundle: scheme. Installing
a WAR with this scheme allows the Web URL Handler to interpose itself as a filter on the input
stream of the contents of the WAR, transforming the contents of the WAR into a WAB. The Web URL
Handler rewrites the manifest by adding necessary headers to turn the WAR into a valid WAB. Addi-
tional headers can be added to the manifest that serve as instructions to the Web Extender.

After a WAB has been deployed to the Web Runtime, the Web Application can interact with the
OSGi framework via the provided Bundle Context. The Servlet Context associated with this WAB fol-
lows the same life cycle as the WAB. That is, when the underlying Web Application Bundle is started,
the Web Application is deployed to the Web Runtime. When the underlying Web Application Bun-
dle is stopped because of a failure or other reason, the Web Application is undeployed from the Web
Runtime.

128.2 Web Container
A Web Container is the implementation of this specification. It consists of the following parts:

• Web Extender – Detects Web Application Bundles (WAB) and tracks their life cycle. Ready WABs
are deployed to the Web Runtime.

• Web Runtime – A runtime environment for a Web Application that supports the [4] Servlet 2.5 spec-
ification and [5] JSP 2.1 specification or later. The Web Runtime receives web requests and calls the
appropriate methods on servlets. Servlets can be implemented by classes or Java Server Pages.

• Web URL Handler – A URL stream handler providing the webbundle: scheme. This scheme can be
used to install WARs in an OSGi Service Platform. The Web URL Handler will then automatically
add the required OSGi manifest headers.

The extender, runtime, and handler can all be implemented in the same or different bundles and use
unspecified mechanisms to communicate. This specification uses the defined names of the sub-parts
as the actor; the term Web Container is the general name for this collection of actors.

128.3 Web Application Bundle
Bundles are the deployment and management entities under OSGi. A Web Application Bundle (WAB)
is deployed as an OSGi bundle in an OSGi framework, where each WAB provides a single Web Appli-
cation. A Web Application can make use of the [4] Servlet 2.5 specification and [5] JSP 2.1 specification pro-
gramming models, or later, to provide content for the web.
OSGi Service Platform Release 4, Version 4.2 Page 419

Web Application Bundle Web Applications Specification Version 1.0
A WAB is defined as a normal OSGi bundle that contains web accessible content, both static and
dynamic. There are no restrictions on bundles. A Web Application can be packaged as a WAB during
application development, or it can be transparently created at bundle install time from a standard
Web Application aRchive (WAR) via transformation by the Web URL Handler, see Web URL Handler
on page 424.

A WAB is a valid OSGi bundle and as such must fully describe its dependencies and exports (if any).
As Web Applications are modularized further into multiple bundles (and not deployed as WAR files
only) it is possible that a WAB can have dependencies on other bundles.

A WAB may be installed into the framework using the BundleContext . instal lBundle methods. Once
installed, a WAB’s life cycle is managed just like any other bundle in the framework. This life cycle is
tracked by the Web Extender who will then deploy the Web Application to the Web Runtime when
the WAB is ready and will undeploy it when the WAB is no longer ready. This state is depicted in Fig-
ure 128.2.

Figure 128.2 State diagram Web Application

128.3.1 WAB Definition
A WAB is differentiated from non Web Application bundles through the specification of the addi-
tional manifest header:

Web-ContextPath : := path

The Web-ContextPath header specifies the value of the Context Path of the Web Application. All web
accessible content of the Web Application is available on the web server relative to this Context Path.
For example, if the context path is /sales , then the URL would be something like: http://
www.acme.com/sales . The Context Path must always begin with a forward slash (‘ / ’) .

The Web Extender must not recognize a bundle as a Web Application unless the Web-ContextPath
header is present in its manifest and the header value is a valid path for the bundle.

A WAB can optionally contain a web.xml resource to specify additional configuration. This web.xml
must be found with the Bundle f indEntries method at the path:

 WEB-INF/web.xml

The f indEntries method includes fragments, allowing the web.xml to be provided by a fragment. The
Web Extender must fully support a web.xml descriptor that specifies Servlets, Filters, or Listeners
whose classes are required by the WAB.

DEPLOYING

init

collision resolved

DEPLOYED UNDEPLOYING

UNDEPLOYEDFAILED

Web Application
deployed to runtime

WAB or Web
Extender stopped

Web Application
no longer available

WAB started

failure
Page 420 OSGi Service Platform Release 4, Version 4.2

Web Applications Specification Version 1.0 Web Application Bundle
128.3.2 Starting the Web Application Bundle
A WAB’s Web Application must be deployed while the WAB is ready. Deployed means that the Web
Application is available for web requests. Once deployed, a WAB can serve its web content on the
given Context Path. Ready is when the WAB:

• Is in the ACTIVE state, or
• Has a lazy activation policy and is in the STARTING state.

The Web Extender should ensure that serving static content from the WAB does not activate the
WAB when it has a lazy activation policy.

To deploy the WAB, the Web Extender must initiate the deploying of the Web Application into a
Web Runtime. This is outlined in the following steps:

1 Wait for the WAB to become ready. The following steps can take place asynchronously with the
starting of the WAB.

2 Post an org/osgi/service/web/DEPLOYING event. See Events on page 426.
3 Validate that the Web-ContextPath manifest header does not match the Context Path of any

other currently deployed web application. If the Context Path value is already in use by another
Web Application, then the Web Application must not be deployed, and the deployment fails, see
Failure on page 421. The Web Extender should log the collision. If the prior Web Application with
the same Context Path is undeployed later, this Web Application should be considered as a can-
didate, see Stopping the Web Application Bundle on page 423.

4 The Web Runtime processes deployment information by processing the web.xml descriptor, if
present. The Web Container must perform the necessary initialization of Web Components in the
WAB as described in the [4] Servlet 2.5 specification. This involves the following sub-steps in the
given order:
• Create a Servlet Context for the Web Application.
• Instantiate configured Servlet event listeners.
• Instantiate configured application filter instances etc.
The Web Runtime is required to complete instantiation of listeners prior to the start of execution
of the first request into the Web Application by the Web Runtime. Attribute changes to the Serv-
let Context and Http Session objects can occur concurrently. The Servlet Container is not required
to synchronize the resulting notifications to attribute listener classes. Listener classes that main-
tain state are responsible for the integrity of the data and should handle this case explicitly.
If event listeners or filters are used in the web.xml , then the Web Runtime will load the corre-
sponding classes from the bundle activating the bundle if it was lazily started. Such a configura-
tion will therefore not act lazily.

5 Publish the Servlet Context as a service with identifying service properties, see Publishing the
Servlet Context on page 421.

6 Post an org/osgi/service/web/DEPLOYED event to indicate that the web application is now
available. See Events on page 426.

If at any moment before the org/osgi/service/web/DEPLOYED event is published the deployment of
the WAB fails, then the WAB deployment fails, see Failure on page 421.

128.3.3 Failure
Any validation failures must prevent the Web Application from being accessible via HTTP, and must
result in a org/osgi/service/web/FAILED event being posted. See Events on page 426. The situation
after the failure must be as if the WAB was never deployed.

128.3.4 Publishing the Servlet Context
To help management agents with tracking the state of Web Applications, the Web Extender must
register the Servlet Context of the WAB as a service, using the Bundle Context of the WAB. The Serv-
let Context service must be registered with the service properties listed in Table 128.2.
OSGi Service Platform Release 4, Version 4.2 Page 421

Web Application Bundle Web Applications Specification Version 1.0
128.3.5 Static Content
A deployed WAB provides content on requests from the web. For certain access paths, this can serve
content from the resources of the web application: this is called static content. A Web Runtime must
use the Servlet Context resource access methods to service static content, the resource loading strat-
egy for these methods is based on the f indEntr ies method, see Resource Lookup on page 428. For confi-
dentiality reasons, a Web Runtime must not return any static content for paths that start with one of
the following prefixes:

WEB-INF/
OSGI-INF/
META-INF/
OSGI-OPT/

These protected directories are intended to shield code content used for dynamic content generation
from accidentally being served over the web, which is a potential attack route. In the servlet specifica-
tion, the WEB-INF/ directory in the WAR is protected in such a way. However, this protection is not
complete. A dependent JAR can actually be placed outside the WEB-INF directory that can then be
served as static content. The same is true for a WAB. Though the protected directories must never be
served over the web, there are no other checks required to verify that no content can be served that is
also available from the Bundle class path.

It is the responsibility of the author of the WAB to ensure that confidential information remains con-
fidential by placing it in one of the protected directories. WAB bundles should be constructed in such
a way that they do not accidentally expose code or confidential information. The simplest way to
achieve this is to follow the WAR model where code is placed in the WEB-INF/classes directory and
this directory is placed on the Bundle’s class path as the first entry. For example:

Bundle-ClassPath: WEB-INF/classes, WEB-INF/lib/acme.jar

128.3.6 Dynamic Content
Dynamic content is content that uses code to generate the content, for example a servlet. This code
must be loaded from the bundle with the Bundle loadClass method, following all the Bundle class
path rules.

Unlike a WAR, a WAB is not constrained to package classes and code resources in the WEB-INF/
classes/ directory or dependent JARs in WEB-INF/l ib/ only. These entries can be packaged in any way
that's valid for an OSGi bundle as long as such directories and JARs are part of bundle class path as set
with the Bundle-ClassPath header and any attached fragments. JARs that are specified in the Bundle-
ClassPath header are treated like JARs in the WEB-INF/ l ib/ directory of the Servlet specification. Simi-
larly, any directory that is part of the Bundle-ClassPath header is treated like WEB-INF/classes/ direc-
tory of the Servlet specification.

Like WARs, code content that is placed outside the protected directories can be served up to clients as
static content.

Table 128.2 Servlet Context Service Properties

Property Name Type Description

osgi .web.symbolicname Str ing The symbolic name for the Web Application
Bundle

osgi .web.version Str ing The version of the Web Application Bundle. If
no Bundle-Version is specified in the manifest
then this property must not be set.

osgi .web.contextpath Str ing The Context Path from which the WAB’s con-
tent will be served.
Page 422 OSGi Service Platform Release 4, Version 4.2

Web Applications Specification Version 1.0 Web Application Bundle
128.3.7 Content Serving Example
This example consists of a WAB with the following contents:

acme.jar:
Bundle-ClassPath: WEB-INF/classes, LIB/bar.jar
Web-ContextPath: /acme

WEB-INF/lib/foo.jar
LIB/bar.jar
index.html
favicon.ico

The content of the embedded JARs foo. jar and bar. jar is:

foo.jar: bar.jar:
META-INF/foo.tld META-INF/bar.tld
foo/FooTag.class bar/BarTag.class

Assuming there are no special rules in place then the following lists specifies the result of a number
of web requests for static content:

/acme/index.html acme.wab:index.html
/acme/favicon.ico acme.wab:favicon.ico
/acme/WEB-INF/lib/foo.jar not found because protected directory
/acme/LIB/bar.jar acme.wab:LIB/bar.jar (code, but not not protected)

In this example, the tag classes in bar. jar must be found (if JSP is supported) but the tag classes in
foo. jar must not because foo. jar is not part of the bundle class path.

128.3.8 Stopping the Web Application Bundle
A web application is stopped by stopping the corresponding WAB. In response to a WAB STOPPING
event, the Web Extender must undeploy the corresponding Web Application from the Servlet Con-
tainer and clean up any resources. This undeploying must occur synchronously with the WAB’s stop-
ping event. This will involve the following steps:

1 An org/osgi/service/web/UNDEPLOYING event is posted to signal that a Web Application will be
removed. See Events on page 426.

2 Unregister the corresponding Servlet Context service
3 The Web Runtime must stop serving content from the Web Application.
4 The Web Runtime must clean up any Web Application specific resources as per servlet 2.5 specifi-

cation.
5 Emit an org/osgi/serv ice/web/UNDEPLOYED event. See Events on page 426.
6 It is possible that there are one or more colliding WABs because they had the same Context Path as

this stopped WAB. If such colliding WABs exists then the Web Extender must attempt to deploy
the colliding WAB with the lowest bundle id.

Any failure during undeploying should be logged but must not stop the cleaning up of resources and
notification of (other) listeners as well as handling any collisions.

128.3.9 Uninstalling the Web Application Bundle
A web application can be uninstalled by uninstalling the corresponding WAB. The WAB will be
uninstalled from the OSGi framework.

128.3.10 Stopping of the Web Extender
When the Web Extender is stopped all deployed WABs are undeployed as described in Stopping the
Web Application Bundle on page 423. Although the WAB is undeployed it remains in the ACTIVE state.
When the Web Extender leaves the STOPPING state all WABs will have been undeployed.
OSGi Service Platform Release 4, Version 4.2 Page 423

Web URL Handler Web Applications Specification Version 1.0
128.4 Web URL Handler
The Web URL Handler acts as a filter on the Input Stream of an install operation. It receives the WAB
or WAR and it then generates a JAR that conforms to the WAB specification by rewriting the mani-
fest resource. This process is depicted in Figure 128.3 Web URL Handler.

Figure 128.3 Web URL Handler

When the Web Container bundle is installed it must provide the webbundle: scheme to the URL
class. The Web URL Handler has two primary responsibilities:

• WAB – If the source is already a bundle then only the Web-ContextPath can be set or overwritten.
• WAR – If the source is a WAR (that is, it must not contain any OSGi defined headers) then convert

the WAR into a WAB.

The Web URL Handler can take parameters from the query arguments of the install URL, see 128.4.3
URL Parameters.

The URL handler must validate query parameters, and ensure that the manifest rewriting results in
valid OSGi headers. Any validation failures must result in Bundle Exception being thrown and the
bundle install must fail.

Once a WAB is generated and installed, its life cycle is managed just like any other bundle in the
framework.

128.4.1 URL Scheme
The Web URL Handler’s scheme is defined to be:

scheme ::= ’webbundle:" embedded ’?’ web-params
embedded ::= <embedded URL according to RFC 1738>
web-params ::= (web-param (’&’ web-param)*)?
web-param ::= <key> ’=’ <value>

The web-param <key> and <value> as well as the <embedded ur l> must follow [7] Uniform Resource
Locators, RFC 1738 for their escaping and character set rules.A Web URL must further follow all the
rules of a URL. Whitespaces are not allowed between terms.

An example for a webbundle: URL:

webbundle:http://www.acme.com:8021/sales.war?

Web URL Handler
Impl

URL Stream
Handler Service
url.handler.protocol=webbundle

Web ARchive

en
ha

nc
es

m
an

ife
st

install bundle

= transformer

WAB
or

WAB
Page 424 OSGi Service Platform Release 4, Version 4.2

Web Applications Specification Version 1.0 Web URL Handler
Any URL scheme understood by the framework can be embedded, such as an http: , or f i le : URL. Some
forms of embedded URL also contain URL query parameters and this must be supported. The embed-
ded URL most be encoded as a standard URL. That is, the control characters like colon (’ : ’), slash (’ / ’),
percent (’%’), and ampersand (’? ’) must not be encoded. Thus the value returned from the getPath
method may contain a query part. Any implementation must take care to preserve both the query
parameters for the embedded URL, and for the complete webbundle: URL. A question mark must
always follow the embedded URL to simplify this processing. The following example shows an HTTP
URL with some query parameters:

webbundle:http://www.acme.com/sales?id=123?Bundle-SymoblicName=com.example

128.4.2 URL Parsing
The URL object for a webbundle: URL must return the following values for the given methods:

• getProtocol – webbundle
• getPath – The complete embedded URL
• getQuery – The parameters for processing of the manifest.

For the following example:

webbundle:http://acme.com/repo?war=example.war?Bundle-SymoblicName=com.example

The aforementioned methods must return:

• getProtocol – webbundle
• getPath – http://acme.com/repo?war=example.war
• getQuery – Bundle-SymoblicName=com.example

128.4.3 URL Parameters
All the parameters in the webbundle: URL are optional except for the Web-ContextPath parameter.
The parameter names are case insensitive, but their values must be treated as case sensitive. Table
128.3 describes the parameters that must be supported by any webbundle: URL Stream handler. A
Web URL Handler is allowed to support additional parameters.

128.4.4 WAB Modification
The Web URL Handler can set or modify the Web-ContextPath of a WAB if the input source is
already a bundle. It must be considered as a bundle when any of the OSGi defined headers listed in
Table 128.3 is present in the bundle.

For WAB Modification, the Web URL Handler must only support the Web-ContextPath parameter
and it must not modify any existing headers other than the Web-ContextPath. Any other parameter
given must result in a Bundle Exception.

Table 128.3 Web bundle URL Parameters

Parameter Name Description

Bundle-SymbolicName The desired symbolic name for the resulting WAB.
Bundle-Version The version of the resulting WAB. The value of this parameter must

follow the OSGi versioning syntax.
Bundle-ManifestVersion The desired bundle manifest version. Currently, the only valid value

for this parameter is 2.
Import-Package A list of packages that the war file depends on.
Web-ContextPath The Context Path from which the Servlet Container should serve con-

tent from the resulting WAB. This is the only valid parameter when
the input JAR is already a bundle. This parameter must be specified.
OSGi Service Platform Release 4, Version 4.2 Page 425

Events Web Applications Specification Version 1.0
128.4.5 WAR Manifest Processing
The Web URL Handler is designed to support the transparent deployment of Java EE Web ARchives
(WAR). Such WARs are ignorant of the requirements of the underlying OSGi service platform that
hosts the Web Runtime. These WARs are not proper OSGi bundles because they do not contain the
necessary metadata in the manifest. For example, a WAR without a Bundle-ManifestVersion, Import-
Package, and other headers cannot operate in an OSGi service platform.

The Web URL Handler implementation copies the contents of the embedded URL to the output and
rewrites the manifest headers based on the given parameters. The result must be a WAB.

Any parameters specified must be treated as manifest headers for the web. The following manifest
headers must be set to the following values if not specified:

• Bundle-ManifestVersion – Must be set to 2.
• Bundle-SymbolicName – Generated in an implementation specific way.
• Bundle-ClassPath – Must consist of:

• WEB-INF/classes/
• All JARs from the WEB-INF/l ib directory in the WAR. The order of these embedded JARs is

unspecified.
• If these JARs declare dependencies in their manifest on other JARs in the bundle, then these

jars must also be appended to the Bundle-ClassPath header. The process of detecting JAR
dependencies must be performed recursively as indicated in the Servlet Specification.

• Web-ContextPath – The Web-ContextPath must be specified as a parameter. This Context Path
should start with a leading slash (’ / ’). The Web URL handler must add the preceding slash it if it is
not present.

The Web URL Handler is responsible for managing the import dependencies of the WAR. Implemen-
tations are free to handle the import dependencies in an implementation defined way. They can aug-
ment the Import-Package header with byte-code analysis information, add a fixed set of clauses, and/
or use the Dynamic-ImportPackage header as last resort.

Any other manifest headers defined as a parameter or WAR manifest header not described in this sec-
tion must be copied to the WAB manifest by the Web URL Handler. Such an header must not be mod-
ified.

128.4.6 Signed WAR files
When a signed WAR file is installed using the Web URL Handler, then the manifest rewriting pro-
cess invalidates the signatures in the bundle. The OSGi specification requires fully signed bundles for
security reasons, security resources in partially signed bundles are ignored.

If the use of the signing metadata is required, the WAR must be converted to a WAB during develop-
ment and then signed. In this case, the Web URL Handler cannot be used. If the Web URL Handler is
presented with a signed WAR, the manifest name sections that contain the resource’s check sums
must be stripped out by the URL stream handler. Any signer files (*.SF and their corresponding DSA/
RSA signature files) must also be removed.

128.5 Events
The Web Extender must track all WABs in the OSGi service platform in which the Web Extender is
installed. The Web Extender must post Event Admin events, which is asynchronous, at crucial points
in its processing. The topic of the event must be one of the following values:

• org/osgi/service/web/DEPLOYING – The Web Extender has accepted a WAB and started the
process of deploying a Web Application.

• org/osgi/service/web/DEPLOYED – The Web Extender has finished deploying a Web Appli-
cation, and the Web Application is now available for web requests on its Context Path.
Page 426 OSGi Service Platform Release 4, Version 4.2

Web Applications Specification Version 1.0 Interacting with the OSGi Environment
• org/osgi/service/web/UNDEPLOYING – The web extender started undeploying the Web Appli-
cation in response to its corresponding WAB being stopped or the Web Extender is stopped.

• org/osgi/service/web/UNDEPLOYED – The Web Extender has undeployed the Web Application.
The application is no longer available for web requests.

• org/osgi/service/web/FAILED – The Web Extender has failed to deploy the Web Application, this
event can be fired after the DEPLOYING event has fired and indicates that no DEPLOYED event
will be fired.

For each event topic above, the following properties must be published:

• bundle.symbol icName – (Str ing) The bundle symbolic name of the WAB.
• bundle. id – (Long) The bundle id of the WAB.
• bundle – (Bundle) The Bundle object of the WAB.
• bundle.vers ion – (Version) The version of the WAB.
• context.path – (Str ing) The Context Path of the Web Application.
• t imestamp – (Long) The time when the event occurred
• extender.bundle – (Bundle) The Bundle object of the Web Extender Bundle
• extender.bundle. id – (Long) The id of the Web Extender Bundle.
• extender.bundle.symbol icName – (Str ing) The symbolic name of the Web Extender Bundle.
• extender.bundle.vers ion – (Version) The version of the Web Extender Bundle.

In addition, the org/osgi/service/web/FAILED event must also have the following property:

• exception – (Throwable) If an exception caused the failure, an exception detailing the error that
occurred during the deployment of the WAB.

• coll is ion – (Str ing) If a name collision occurred, the Web-ContextPath that had a collision
• col l is ion.bundles – (Long) If a name collision occurred, a list of bundle ids that all have the same

value for the Web-ContextPath manifest header.

128.6 Interacting with the OSGi Environment

128.6.1 Bundle Context Access
In order to properly integrate in an OSGi environment, a Web Application can access the OSGi ser-
vice registry for publishing its services, accessing services provided by other bundles, and listening to
bundle and service events to track the life cycle of these artifacts. This requires access to the Bundle
Context of the WAB.

The Web Extender must make the Bundle Context of the corresponding WAB available to the Web
Application via the Servlet Context osgi-bundlecontext attribute. A Servlet can obtain a Bundle Con-
text as follows:

BundleContext ctxt = (BundleContext)
servletContext.getAttribute(“osgi-bundlecontext”);

128.6.2 Other Component Models
Web Applications sometimes need to inter-operate with services provided by other component mod-
els, such as a Declarative Services or Blueprint. Per the Servlet specification, the Servlet Container
owns the life cycle of a Servlet; the life cycle of the Servlet must be subordinate to the life cycle of the
Servlet Context, which is only dependent on the life cycle of the WAB. Interactions between different
bundles are facilitated by the OSGi service registry. This interaction can be managed in several ways:

• A Servlet can obtain a Bundle Context from the Servlet Context for performing service registry
operations.

• Via the JNDI Specification and the osgi :service JNDI namespace. The OSGi JNDI specification
describes how OSGi services can be made available via the JNDI URL Context. It defines an
OSGi Service Platform Release 4, Version 4.2 Page 427

Interacting with the OSGi Environment Web Applications Specification Version 1.0
osgi :service namespace and leverages URL Context factories to facilitate JNDI integration with
the OSGi service registry.

Per this specification, it is not possible to make the Servlet life cycle dependent on the availability of
specific services. Any synchronization and service dependency management must therefore be done
by the Web Application itself.

128.6.3 Resource Lookup
The getResource and getResourceAsStream methods of the ServletContext interface are used to
access resources in the web application. For a WAB, these resources must be found according to the
f indEntries method, this method includes fragments. For the getResource and
getResourceAsStream method, if multiple resources are found, then the first one must be used.

The getResourcePaths method must map to the Bundle getEntryPaths method, its return type is a
Set and can not handle multiples. However, the paths from the getEntryPaths method are relative
while the methods of the getResourcePaths must be absolute.

For example, assume the following manifest for a bundle:

Bundle-ClassPath: localized, WEB-INF
...

This WAB has an attached fragment acme-de. jar with the following content:

META-INF/MANIFEST.MF
localized/logo.png

The getResource method for local ized/logo.png uses the f indEntries method to find a resource in
the directory / local ized and the resource logo.png . Assuming the host bundle has no local ized/
directory, the Web Runtime must serve the logo.png resource from the acme-de. jar .

128.6.4 Resource Injection and Annotations
The Web Application web.xml descriptor can specify the metadata-complete attribute on the web-
app element. This attribute defines whether the web.xml descriptor is complete, or whether the classes
in the bundle should be examined for deployment annotations. If the metadata-completeattribute is
set to true , the Web Runtime must ignore any servlet annotations present in the class files of the
Web Application. Otherwise, if the metadata-complete attribute is not specified, or is set to false ,
the container should process the class files of the Web Application for annotations, if supported.

A WAB can make use of the annotations defined by [8] JSR 250 Common Annotations for the Java Plat-
form if supported by the Web Extender. Such a WAB must import the packages the annotations are
contained in. A Web Extender that does not support the use of JSR 250 annotations must not process
a WAB that imports the annotations package.

128.6.5 JavaServer Pages Support
Java Server Pages (JSP) is a rendering technology for template based web page construction. This spec-
ification supports [5] JSP 2.1 specification if available with the Web Runtime. The serv let element in a
web.xml descriptor is used to describe both types of Web Components. JSP components are defined
implicitly in the web.xml descriptor through the use of an implicit . jsp extension mapping, or explic-
itly through the use of a jsp-group element.
Page 428 OSGi Service Platform Release 4, Version 4.2

Web Applications Specification Version 1.0 Security
128.6.6 Compilation
A Web Runtime compiles a JSP page into a Servlet, either during the deployment phase, or at the time
of request processing, and dispatches the request to an instance of such a dynamically created class.
Often times, the compilation task is delegated to a separate JSP compiler that will be responsible for
identifying the necessary tag libraries, and generating the corresponding Servlet. The container then
proceeds to load the dynamically generated class, creates an instance and dispatches the servlet
request to that instance.

Supporting in-line compilation of a JSP inside a bundle will require that the Web Runtime maintains
a private area where it can store such compiled classes. The Web Runtime can leverage its private
bundle storage area. The Web Runtime can construct a special class loader to load generated JSP
classes such that classes from the bundle class path are visible to newly compiled JSP classes.

The JSP specification does not describe how JSP pages are dynamically compiled or reloaded. Various
Web Runtime implementations handle the aspects in proprietary ways. This specification does not
bring forward any explicit requirements for supporting dynamic aspects of JSP pages.

128.7 Security
The security aspects of this specification are defined by the Servlet 2.5 specification on page 429.

128.8 References
[1] OSGi Core Specifications

http://www.osgi.org/Specifications/HomePage

[2] Jave Enterprise Edition Release 5
http://java.sun.com/javaee/technologies/javaee5.jsp
Java 1.5.0 Packages

[3] Java EE Web Applications
http://java.sun.com/javaee/technologies/webapps/

[4] Servlet 2.5 specification
http://jcp.org/aboutJava/communityprocess/mrel/jsr154/index.html

[5] JSP 2.1 specification
http://jcp.org/aboutJava/communityprocess/final/jsr245/index.html

[6] PAX Web Extender
http://wiki.ops4j.org/display/ops4j/Pax+Web+Extender

[7] Uniform Resource Locators, RFC 1738
http://www.ietf.org/rfc/rfc1738.txt

[8] JSR 250 Common Annotations for the Java Platform
http://jcp.org/aboutJava/communityprocess/pfd/jsr250/index.html
OSGi Service Platform Release 4, Version 4.2 Page 429

References Web Applications Specification Version 1.0
Page 430 OSGi Service Platform Release 4, Version 4.2

SCA Configuration Type Specification Version 1.0 Introduction
129 SCA Configuration Type
Specification
Version 1.0

129.1 Introduction
The [3] Service Component Architecture (SCA) provides an assembly model for distributed applications
and systems using a service oriented architecture. The components that are assembled can be written
in different technologies for example Java EE, BPEL, C++, and scripting languages. They can execute
on different machines, and can communicate through different protocols and technologies. For
example SOAP/HTTP as well as JMS and JCA. SCA enables the precise configuration of the communi-
cations between its components allowing the configuration to be deployed to different SCA runtimes
without change. SCA enables inter-operability when used with interoperable protocols, such as
HTTP.

The OSGi Remote Services model, which is based on the chapter about Remote Services on page 7,
describes how to distribute OSGi services in general. The Remote Services specification provides an
extendable model for configuration types, enabling the use of a wide array of technologies. This SCA
Configuration Type Specification defines such a configuration type. It provides a mapping of the
SCA distribution configuration to the OSGi Remote Services model, as well as the Remote Service
Admin Endpoint Description, thus enabling OSGi runtimes to be configured for portability and
inter-operability.

This specification is based on the [4] SCA Assembly specification v1.1 CD03 and [5] SCA Policy Frame-
work specification v1.1 CD02.

129.1.1 Essentials
• Portable – Allow an exported or imported service to be configured once for Distribution Providers

from different origins.
• Interoperable – Allow two Distribution Providers to be configured such that they can commu-

nicate with each other. This is achieved through the use of an interoperable Binding.
• Extensible – Allow the configuration to be extended in new ways, for example, adding new Bindings

Intents and Policy Sets.
• Compatible – Compatible with the SCA standards.

129.1.2 Entities
• Distribution Provider – An implementation of the communications stack that distributes services

according to the chapter about Remote Services on page 7.
• SCA Distribution Provider – A Distribution Provider that supports the SCA configuration type.
• Web Service – A communications stack to provide services available over HTTP, typically used to

refer to a service using the SOAP/HTTP protocol.
• Communications Stack – The software that enables the communication between different systems.
• Binding Type – An XML schema type that defines the configuration details of an Endpoint. Dif-

ferent Binding Types are needed for different protocols and require different configuration details.
• Binding – An XML element of a particular Binding Type detailing an actual Endpoint.
• Intent – An abstract policy requirement on the interaction between a service provider and a service

client. For example the conf identia l i ty Intent could be implemented by encrypting the communi-
cations between the provider and the client.
OSGi Service Platform Release 4, Version 4.2 Page 431

Introduction SCA Configuration Type Specification Version 1.0
• Policy Set – An implementation of an Intent, optionally restricted to a specific Binding Type. A
Policy Set is expressed in a language such as [7] WS-Policy specification. For example, a Policy Set
might configure Triple-DES encryption as the implementation for the conf identia l i ty Intent
when applied to the sca:binding.ws (web service) Binding Type.

• SCA Configuration Bundle – A bundle containing Intents, Policy Sets, and Bindings in one or more
of its resources.

• SCA Configuration Extender – A bundle that can detect SCA configuration data in an SCA Configu-
ration Bundle using the extender pattern.

• SCA Configuration Document – An XML document containing SCA Configuration.
• Endpoint – An Endpoint is a communications access mechanism to a service in another

framework, a (web) service, another process, a queue or topic destination, etc., requiring some pro-
tocol for communications.

• Endpoint Description – A description of an Endpoint, defined in Endpoint Description on page 286.

Figure 129.1 Class and Service overview

129.1.3 Synopsis
Endpoints are created using metadata descriptions, the SCA Configuration, that are typed by the SCA
specifications. This configuration defines the Bindings and policy information used to configure an
exported Endpoint or describe the Endpoint to an importing framework. SCA Configurations can be
installed into a framework through an SCA Configuration Bundle. An SCA Configuration Bundle is a
bundle containing one or more SCA Configuration Documents. The Distribution Provider manages
an internal registry based on these SCA Configurations. The internal registry is representing a view
on the SCA domain; clusters of computers can potentially share this internal registry. However, the
life cycle of the information in this registry is tied to the life cycle of the bundle that provides the SCA
Configuration.

A Distribution Provider is responsible for managing remote services; remote services can be exported
and imported. For exporting a service, an Endpoint can be created when the following criteria are met
on an active service:

• Ready – A service is registered and satisfies the rules necessary for it to be considered available for
exporting.

Service Consumer
Impl

Service Producer
Impl

Distribution
Provider Impl

to an endpoint endpoint

remote.configs.supported
= org.osgi.sca, ...

ex
te

nd
s

SCA
Configuration

bindings
intents

bindings
intents

policy sets policy sets
Page 432 OSGi Service Platform Release 4, Version 4.2

SCA Configuration Type Specification Version 1.0 SCA Overview
• Configured – The configuration the service refers to in its properties, both directly and indirectly, is
available, correct, and complete.

The satisfaction of these criteria can change over time, for example, due to new SCA Configuration
Bundles becoming ready, being uninstalled, services being registered, services being unregistered, or
having their configuration changed. The Distribution Provider is responsible for tracking all such
changes and managing the Endpoint life cycle of an exported service accordingly.

A Remote Service Admin service can also import Endpoints that are configured with the SCA Config-
uration Type. An SCA Distribution Provider must be able to import such a service.

129.2 SCA Overview
The Service Component Architecture (SCA) is a programming model for assembling applications
and systems using a service oriented architecture. The specifications for SCA are developed at [2] OASIS.
The core SCA specification is the [4] SCA Assembly specification v1.1 CD03 that defines how compo-
nents of different implementation technologies, such as Java EE, BPEL, and scripting languages, can
be assembled and deployed.

129.2.1 Bindings and Binding Types
To assist the deployment, the assembly contains XML descriptions of the required topology. An
important aspect of this description is the Binding. A Binding provides the details of an Endpoint.
Bindings can be attached to SCA services or SCA references (dependencies) of the assembled compo-
nents in order to enable communications. For example, an RMI Binding would need the server and
port number of an RMI Registry.

Binding details vary significantly per protocol. This is the reason that the SCA model recognizes Bind-
ing Types. A Binding Type is defined as an XML Schema type in an XML namespace. Such a type must
be substitutable for the sca:binding element. Vendors can also define Binding Types that are not spec-
ified by SCA. For example, a Binding Type for RMI authored by the ACME company could look like:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:sca="http://www.osoa.org/xmlns/sca/1.0"
 xmlns:acme="http://acme.com/defs" >
 targetNamespace="http://acme.com/defs">

 <element name="binding.rmi" type="RMIBinding"
 substitutionGroup="sca:binding"/>

 <complexType name="RMIBinding">
 <complexContent>
 <extension base="sca:Binding">
 <attribute name="host" type="string" use="required"/>
 <attribute name="port" type="string" use="optional"/>
 </extension>
 </complexContent>
 </complexType>
</schema>

The details for a Binding are therefore configured in an element of a specific Binding Type. The Bind-
ing Type sca:binding.ws is quite common; this type defines the configuration for a web service.
Therefore, an sca:binding.ws element details the particulars for a concrete web services Binding.

A set of standard Binding Types are specified in SCA for web services, JMS, EJB, and JCA. All these
bindings are optional for implementations of SCA. Any Binding Type must be supported by the run-
time on which an assembly is deployed.
OSGi Service Platform Release 4, Version 4.2 Page 433

SCA Overview SCA Configuration Type Specification Version 1.0
Though Bindings provide the primary details of a Communication Stack, there are usually many
options for a particular service to define. SCA specifies a Policy Framework that allows constraints,
capabilities and quality requirements to be described for such a service.

129.2.2 Policy Framework
The SCA policy framework is defined with Intents and Policy Sets.

Intents give a name to abstract concepts such as integrity and confidential i ty . The indirection of
Intents allows the authors of services to specify their abstract communications requirements and not
be concerned how these requirements are actually implemented. These Intents must then be satis-
fied by the deployer with a specific implementation. For example, a service author could have specified
the conf identia l i ty Intent which is then provided by the deployer by ensuring that the communica-
tions are encrypted with the Blowfish encryption algorithm, using a 442 bits key.

Intents can be suffixed with a dot (’ . ’ \u002E) and a qualifier to create a qualified Intent. For example,
integr ity .message qualifies the integrity Intent.

Qualifiers have only one level and there must always be one qualifier that is the default qualifier. A ser-
vice author that requires an Intent can be satisfied by a Distribution Provider that provides that
Intent or any of its qualified forms. That is, requiring the SOAP Intent on an exported service is satis-
fied by the SOAP.v1_2 qualified Intent of a Distribution Provider. Providing a qualified Intent implies
all the semantics of its unqualified Intent. Requiring a qualified Intent can only be satisfied with that
specific qualified Intent. Each Intent can mark one qualified Intent as its default, if only one qualified
Intent is specified then this is the default. The default qualified Intent is used to resolve a choice
when no other information is available. For example, the SOAP intent could mark the v1_2 qualifier
as default. In such a case, a Distribution Provider must use the SOAP.v1_2 qualified Intent, even
though an exported service only required the SOAP Intent.

Intents can also be grouped in profile Intents.

A Binding Type can state Intents that it inherently provides. For example, a web service Binding
inherently provides the SOAP Intent. An instance of a Binding Type, a Binding, can configure require-
ments for additional Intents. This allows the Binding to configure-in additional aspects of the com-
munications that were not inherently provided by the Binding Type, or the Intents required by the
service. For example, a Binding could add the conf identia l ity Intent.

The implementation of an Intent is provided by a Policy Set. A Policy Set uses a policy language to define
this implementation. A Policy Set can apply to all Binding Types or it can apply to a specific Binding
Type. For example, an SCA service could be configured with the SCA web services Binding (binding.
ws element) and the conf identia l i ty Intent. A Policy Set that matches the tuple (conf identia l i ty ,
b inding.ws) then defines that the implementation is the Triple-DES encryption algorithm.

SCA provides a mechanism to define Policy Sets using standard policy languages, such as the [7] WS-
Policy specification.

In order for a service to be correctly configured, the relationships between Intents, Bindings and Pol-
icy Sets must be consistent. For example, a Policy Set could state that it provides the confidential i ty
Intent and applies to the binding.ws Binding. However, if the Intent does not also state it applies to
the web service Binding then the relationships do not match and the configuration is invalid or
incomplete.

129.2.3 Relationships
Intents and Policy Sets are configured in the intent and policySet elements as well as the elements
and attributes defined by the Binding Types. Figure 129.2 shows these elements and XML Schema
Type from the SCA Policy Framework that are applicable to this specification. The relationships
between these elements and types are described in Table 129.1 on page 435. The relationships in Fig-
ure 129.2 and Table 129.1 are named after their corresponding element or attribute in the SCA
Schema.
Page 434 OSGi Service Platform Release 4, Version 4.2

SCA Configuration Type Specification Version 1.0 SCA Overview
Figure 129.2 Policy Framework Model

An overview of the policy framework elements and relationships is given below, and an example pro-
vided in the sections that describe each of the entities. See sca-config Element on page 441, policySet Ele-
ment on page 444, and intent Element on page 442.

<<XML type>>
binding type

<<binding>>

<<XML element>>
intent

<<XML element>>
policy Setrequires

qualifies
excludes

provides

reference

instance of

*

1

in
st

an
ce

of

cardinalities are n:m
unless otherwise noted

requires

policySets

provides co
ns

tra
in

s

ap
pl

ies
To

Table 129.1 Policy Framework Relationships

From Relationship To Description

Binding Type provides Intent Binding Types can provide (either
always, or optionally) Intents. Such
Intents do not require additional Policy
Set configuration. For example, the web
service Binding always provides the
SOAP Intent and can optionally provide
the SOAP.v1_1 or SOAP.v1_2 Intents.

Binding requires Intent A Binding can be configured to require
additional Intents that were not
expressed on the services that refer to it.

pol icySets Pol icy Set A Binding can refer directly to Policy
Sets, short-cutting the need to define an
Intent.

Intent constrains Binding Type An Intent can constrain a Binding Type.
This makes the Intent only applicable
for Bindings of the given type.

requires Intent An Intent can require another Intent.
This mechanism enables the creation of
profile Intents. A profile Intent is an
Intent defined in terms of other Intents.
For example, a
communicat ionProtect ion Intent could
be defined as the combination of the
confidential i ty and integr ity Intents.
OSGi Service Platform Release 4, Version 4.2 Page 435

SCA Configuration Bundles SCA Configuration Type Specification Version 1.0
129.3 SCA Configuration Bundles
An OSGi Distribution Provider that supports SCA configuration types must track SCA Configuration
Bundles. These are bundles that are marked to have SCA Configuration Documents, this detection is
explained in Detection of SCA Configuration Bundles on page 437. If such an SCA Configuration Bundle
is found, then its resources are parsed as SCA Configuration Documents and, when found to be cor-
rect, their configuration placed in an internal registry. This internal registry contains the defined Bind-
ings, Intents, and Policy Sets indexed by their names. The Intents, Policy Sets, and Bindings are then
available for bundles that want to export or import services. If the SCA Configuration Bundle is
stopped, the internal registry must be purged from any of the information that was derived from the
bundle’s resources.

For example, if an SCA Configuration Bundle defines the acme:FooRMI Binding together with the
acme:protected Intent, then the following service properties could be used to export a service:

service.exported.configs= org.osgi.sca
org.osgi.sca.bindings = FooRMI
service.exported.intents= protected

129.3.1 Naming
Service properties can export a service with a qualified name or the short name for Bindings and
Intents. These names have the following structure:

name ::= NCName | QName

Both QName and NCName are defined by [8] XML Schema. The structure for a QName is:

QName ::= ’{’ <namespace> ’}’ NCName

Spaces are not allowed in a name .

quali f ies Intent A qualified Intent is an Intent that pro-
vides further qualification of another
Intent. For example the Intent
SOAP.v1_2 qualifies SOAP further by
constraining it to a specific version of
the SOAP protocol.

excludes Intent An Intent can exclude another Intent.
Exclusion of an Intent states that the
two cannot be used together; such
Intents are mutually exclusive.

Pol icy Set provides Intent A Policy Set can provide concrete con-
figuration for Intents. For example, a
Policy Set could define a specific
encryption algorithm to use for the
confidential i ty Intent.

appl iesTo Binding Type A Policy Set can apply to a Binding Type
or all types of Binding. Applying to a
Binding Type means it is valid to config-
ure the Policy Set on Bindings of that
Binding Type. Configuration can either
be done indirectly through the use of an
Intent that the Policy Set provides, or
directly by referring to the Policy Set by
name in the Binding configuration.

Table 129.1 Policy Framework Relationships
Page 436 OSGi Service Platform Release 4, Version 4.2

SCA Configuration Type Specification Version 1.0 SCA Configuration Bundles
For example, a new Intent named protected , defined in an SCA Configuration Resource and a
targetNamespace of http://acme.com, would be identifiable through the qualified name:

 {http://acme.com}protected

There is no specific support for versioning. A name defined in a namespace must be treated as identi-
cal if it appears in multiple documents. Namespaces can implement versioning by suffixing the
namespace with a version number.

129.3.2 Internal Registry
The Distribution Provider must maintain an internal registry that contains the following types:

• Intent Vocabulary – The vocabulary of the Intents. These Intents must become available on the Dis-
tribution Provider’s remote. intents.supported service property once they are available in the
internal registry and have an appropriate implementation.

• Policy Set Dictionary – A dictionary of Policy Sets. These Policy Sets define the implementations of
the Intents.

• Binding Dictionary –Maps the defined Bindings. These Bindings must be of Binding Types that are
supported by the Distribution Provider. Adding new Binding Types is out of scope for this specifi-
cation.

The internal registry must maintain the items by their qualified name but it must be possible to find
entries with short names. There is no requirement that the internal registry is internally consistent
nor complete (see Complete on page 448) at all times. Duplicate qualified names for the same type are,
however, never allowed. It is legal to refer to names that have not been defined, however, such refer-
rers cannot be used in configuration types until they are complete.

The Internal SCA Registry should, at any moment in time, only contain the error-free definitions of
ready SCA Configuration Bundles. Due to the asynchronous nature of processing the definitions, it is
likely that some time lag will happen, users of this specification must take this lag into account.

129.3.3 Detection of SCA Configuration Bundles
A bundle is an SCA Configuration Bundle if its manifest contains an SCA-Configuration header and it
has one or more SCA Configuration Documents. The structure of an SCA Configuration Document is
defined in SCA Configuration Document on page 440. A Distribution Provider is responsible for obtain-
ing and releasing configurations based on the bundle life cycle of SCA Configuration Bundles.

The SCA-Configuration header has the following syntax:

SCA-Configuration ::= header
 // Core 3.2.4 Common Header Syntax

If the header is present, but no value is provided, then its default value is:

OSGI-INF/sca-config/*.xml

This specification does not define any attributes or directives for this header, implementations of this
specification must ignore unrecognized attributes and directives. Implementations can provide pro-
prietary parameters that should be registered with the OSGi Alliance to prevent name collisions. The
non-localized version of the SCA-Configuration header must be used.

The last component of each path in the SCA-Configuration clauses may use wildcards so that the
Bundle f indEntr ies method can be used to locate the SCA Configuration resource within the bundle
and its fragments. The f indEndtr ies method must always be used in the non-recursive mode. Valid
paths in the header have one of the following forms:

• Absolute path – The path to a resource in the fragment or directory, this resource must exist. For
example cnf/start .xml .
OSGi Service Platform Release 4, Version 4.2 Page 437

SCA Configuration Bundles SCA Configuration Type Specification Version 1.0
• Directory – The path to directory in a fragment or the bundle’s JAR; the path must end in a slash (’ /
’). The pattern used in the f indEntr ies method must then be *.xml . The directory is allowed to be
empty.

• Pattern – The last component of the path specifies a resource name with optional wildcards. The
part before is the path of a directory in the bundle or one of its fragments. These two parts specify
the parameter to the f indEntr ies method. It is allowed to have no matching resources. An example
of a pattern is: cnf/*.xml .

If the SCA-Configuration header is not present, then the bundle must not be searched for SCA Config-
uration Documents. An SCA-Configuration manifest header specified in a fragment must be ignored
by the Distribution Provider.

If no SCA Configuration Documents can be found, then the SCA Configuration Bundle is ignored for
the purpose of SCA Configuration data. SCA Configuration Documents referenced by an SCA-Config-
uration manifest header, or its default, may be contained in attached fragments; this is the normal
mode for the f indEntries method.

For example, the following header will read the resources /bindings/acme.xml , pol icy/security .xml ,
and all resources whose path ends in .xml in the /other bundle directory:

SCA-Configuration: bindings/acme.xml, policy/security.xml, other/*.xml

129.3.4 Parsing
The Distribution Provider must parse the specified SCA Configuration Documents and place the
found definitions in the internal registry. Parsing fails if:

• The XML is not well formed.
• An SCA Configuration Document does not validate against its schema.
• The contained elements do not meet one or more of their constraints as defined in this specifi-

cation.
• Any error occurs.

A failure invalidates all SCA configuration for the entire SCA Configuration Bundle. Failures should
be logged if a Log Service is present. The Distribution Provider must cease processing of the SCA Con-
figuration Bundle and discard any configuration information it has already processed. That is, either
all information from an SCA Configuration Bundle is in the internal registry or none.

129.3.5 Activation of New SCA Configuration
When a new SCA Configuration Bundle is detected, a Distribution Provider must:

1 Wait until the configuration bundle is ready. A configuration bundle is ready when it is in the
ACTIVE state. In the case where the configuration bundle has a lazy activation policy, ready must
also include the STARTING state.

2 Verify that the bundle is an SCA Configuration Bundle, see Detection of SCA Configuration Bundles
on page 437.

3 Parse the SCA Configuration Documents as defined in SCA Configuration Document on page 440.
4 Validate the new Intent, Policy Set and Binding definitions against the current internal registry.

Multiple Intent definitions with the same qualified name are not permitted, just as Bindings and
Policy Sets must have unique qualified names within the internal SCA registry. Duplications
(same qualified name) are treated as a failure.

5 Process any additional Distribution Provider specific configuration. If the Distribution Provider
encounters any configuration that it does not understand and the must-understand attribute is
set to true , then this is a failure. The must-understand attribute is an OSGi specific extension.

6 Add new Intents to the Distribution Providers’s vocabulary. See intent Element on page 442 for the
rules on when Intents should be added to the Distribution Provider’s vocabulary.

7 Add new Policy Sets to the internal SCA registry Policy Set dictionary.
8 Add any new Bindings to the internal SCA registry Binding dictionary.
Page 438 OSGi Service Platform Release 4, Version 4.2

SCA Configuration Type Specification Version 1.0 SCA Configuration Bundles
9 Perform any service export or import changes resulting from the updates to the Distribution Pro-
vider’s internal registry. This can result in new Endpoints being created, existing Endpoints being
modified, or new proxies to remote services being registered. See Registering a Service for Export on
page 449 and Getting an Imported Service on page 449.

The previous steps can happen in parallel for different bundles.

129.3.6 Deactivation of an SCA Configuration
When an SCA Configuration Bundle is stopped then the Distribution Provider must:

1 Remove the bundle's Intents, Policy Sets and Bindings from the internal registry.
2 Remove any additional configuration that the bundle contributed.
3 Update the remote.supported.configs service property with the currently complete Intents.
4 Remove any Endpoints for exported services that are now no longer fully configured. See Regis-

tering a Service for Export on page 449, for the steps used to determine when an Endpoint is fully
configured for an exported service.

5 Remove any proxies for imported services that were configured information from the SCA Con-
figuration Bundle.

129.3.7 Example SCA Configuration
The following example shows an extract of an SCA Configuration that contributes a number of Bind-
ings. The first Binding describes a web service Endpoint of the type binding.ws and the next Binding
configuration describes the vendor specific acme configuration for an RMI Endpoint. Such a vendor
specific Binding Type can only be used when the Distribution Provider has built-in supports for this
hypothetical type.

<sca:binding.ws
name ="FooWS"
uri ="http://acme.com/Foo" requires="sca:SOAP.v1_2"

/>
<acme:binding.rmi

name ="FooRMI"
host ="acme.com"
port ="8099"
serviceName="Foo"

/>

The service property values used to reference both Bindings from the previous example SCA configu-
ration look as follows:

service.exported.configs= org.osgi.sca
org.osgi.sca.bindings = [FooWS,{http://acme.com/defs}FooRMI]

The relationships of this example between these Binding Types, Bindings, service and Endpoints are
illustrated in Figure 129.3.
OSGi Service Platform Release 4, Version 4.2 Page 439

SCA Configuration Document SCA Configuration Type Specification Version 1.0
Figure 129.3 Example SCA Configuration Schema

A Distribution Provider that supports one or more Binding Types like sca:binding.ws or
acme:binding.rmi must uses the rules described in Registering a Service for Export on page 449 to
decide whether or not to create an Endpoint for any services that reference the Bindings. A Binding
can be referred to either through its NCName or QName , see Naming on page 436. In the previous
example, The FooWS Binding value is using a short NCName , the {http://acme.com/defs}FooRMI
Binding uses the longer QName . The QName form is more verbose but reduces the risk of name
clashes. A Distribution Provider must support matching both forms.

If an NCName can be matched against multiple bindings then this is considered an error. Such an
error should be logged if a Log Service is available. This error does not affect the use of other bindings
listed in the org.osgi .sca.bindings property.

129.4 SCA Configuration Document
An SCA Configuration Document defines the Bindings, Policy Sets and Intents for exporting and
importing OSGi services. It is an XML document that is typed by the schema defined in XML Schema
on page 451.

129.4.1 XML
In the following sections, the XML is explained using the normal regular expression based syntax
notation used for headers. There is, however, one addition to the normal usage specific to XML, and
that is the use of the angled brackets (<>) . A term enclosed in angled brackets, indicates the use of an
actual element, similar to a literal. Without the angled brackets it is the definition of a term that is
expanded later to a one or more other terms or elements. For example:

people ::= <person> *
person ::= <child>* address
address ::= <fr> | <us> | <nl>

This example uses <person> as a literal for the person element and address as a term that is defined
later. The following XML is an instance of the previous example definition:

<people>
<person id="mieke">

<<binding-type>>
acme:binding.rmi

<<binding-type>>
sca:binding.ws

<<binding-inst>>
Foo WS

<<binding-inst>>
Foo RMI

Foo Service
Impl

Foo WS Foo RMI

service.exported.configs=org.osgi.sca

Distribution
Provider Impl

org.osgi.sca.bindings=
[FooWS,{http://acme.com/defs}FooRMI]

endpointendpoint

configures configured by
Page 440 OSGi Service Platform Release 4, Version 4.2

SCA Configuration Type Specification Version 1.0 SCA Configuration Document
<child name="mischa"/>
<child name="thomas"/>
<fr zip="34160"/>

</person>
</people>

Attributes are described in tables or in text. The following sections are a normative description of the
semantics of the schema. However, the structure information is illustrative. The actual XML Schema
is defined in XML Schema on page 451.

The reason many attributes that refer to other elements are typed with xsd:str ing and not QName or
NCName is done to align the schema with its source, the SCA Schema. In SCA, these attributes can
contain XPath expressions and must therefore be strings. This specifications only supports QName
and NCName though.

A number of attributes contain XPath expressions. The expressions are ran against a virtual XML tree
that has an top element with an undefined name and contains all the binding elements of the inter-
nal registry. For example, the XPath expression //sca:binding.ws is guaranteed to select all web ser-
vice bindings in the internal registry.

The @ sign is used to indicate an XML attribute. An XML type for an attribute can be suffixed with a
plus sign (’+’). This indicates a list of whitespace separated elements.

129.4.2 sca-config Element
An SCA Configuration Document root element is the sca-config element. The schema structure is
depicted in Figure 129.4; it is summarized as follows:

sca-config ::= (<intent> | <policySet> | <<binding>>)*

The intent, and policySet elements (and their child nodes) are defined in the SCA specification. How-
ever, the actual Binding Instances are defined in elements from the SCA or other namespaces. This
distinction is indicated by using it as an element with double angled brackets: <<binding>> . The
actual Binding Type XML schema must be supported by the Distribution Provider.

Figure 129.4 SCA Configuration Schema

129.4.3 Default Example Definitions
In the following sections, the sca-config element and its namespace definitions are omitted for brev-
ity. However, the use of the prefixes is consistent. Further, it is assumed that the target namespace of
the example is the ACME company’s namespace. All examples therefore are assumed to be contained
in the following XML fragment:

<?xml version="1.0" encoding="UTF-8"?>
<scact:sca-config

targetNamespace ="http://acme.com/defs"
xmlns:scact ="http://www.osgi.org/xmlns/scact/v1.0.0"
xmlns:sca ="http://docs.oasis-open.org/ns/opencsa/sca/200912"

sca-config
@target-
 Namespace

intent policySet<<binding>>

choice

*

OSGi Service Platform Release 4, Version 4.2 Page 441

SCA Configuration Document SCA Configuration Type Specification Version 1.0
xmlns:acme ="http://acme.com/defs">
 <!-- example goes here -->
 </scact:sca-config>

There are many types used in this specification that are defined in the XML Schema specification.
These types are prefixes with the xsd prefix which stands for:

http://www.w3.org/2001/XMLSchema

129.4.4 intent Element
The intent element defines an Intent. Its structure is:

intent ::= <qualifier> *

Intents contributed in an intent element must become part of the Distribution Provider's Intent
vocabulary once they are complete, see Complete on page 448. This includes the Intent name itself as
well as all its defined qualified variations. These Intent names must include the NCName form, allow-
ing the occurrence of duplicates.

The Distribution Provider is responsible for ensuring its Intent vocabulary reflects the Intents it is
configured to support. For example, if an SCA Configuration Bundle with a Policy Set that provides
the conf identia l i ty Intent is uninstalled, and there are no other implementations of that Intent avail-
able, then it must be removed from the Distribution Provider's Intent vocabulary. Intents can apply
to specific binding types only. It is therefore possible that an Intent is part of a Distribution Provider’s
vocabulary but is not available for a specific Binding Instance.

The details of how Intents are defined is described in the[5] SCA Policy Framework specification v1.1
CD02. This OSGi Specification only uses the constrains attribute for all, or specific Binding Types,
such as the Binding Type sca:binding.ws . A Distribution Provider can choose to support other
constrains attribute values. If a Distribution Provider encounters a value it does not understand then
it must not use any of the information defined in the offending SCA Configuration Bundle.

An intent element can have a number of qualifiers. This allows the specification of qualified Intents
The qual i f ier element is explained in qualifier Element on page 444. The intent element structure is
illustrated in Figure 129.5.

Figure 129.5 intent Element

The attributes and sub-elements of the intent element are described in table Table 129.2 on page 442.

intent
@name
@constrains
@requires
@excludes
@mutually-
 Exclusive
@intentType

qualifier
@name
@default

1

0..*

Table 129.2 Intent Attributes

Attribute Type Description

name NCName The name of the Intent being defined.
Page 442 OSGi Service Platform Release 4, Version 4.2

SCA Configuration Type Specification Version 1.0 SCA Configuration Document
The following example shows how a Distribution Provider is configured with a new Intent called
acme:protect ion . This new Intent definition states that it constrains the sca:binding.ws Binding
Type. The protect ion Intent is in the acme namespace because of the targetNamespace attribute set
for all examples, see Default Example Definitions on page 441. The XML for this example XML fragment
looks like:

<sca:intent
name ="protection"
constrains ="sca:binding.ws"

/>

This example could also have stated it applied to all Bindings by omitting the constrains attribute or
specifying sca:binding in the constrains attribute. Figure 129.6 shows an illustration of the
acme:protect ion Intent’s relationship with sca:binding.ws .

Figure 129.6 The acme:protection Intent

constrains QName+ (optional) In SCA, intent elements can apply to many specific
SCA artifacts. In this specification an intent element
can either constrain a specific Binding Type, for exam-
ple acme:binding.rmi , or all Binding Types:
sca:binding . The sca:binding type is the substitution
type of all Binding Type. This attribute must be used
with a whitespace separated list.

If the constrains attribute is omitted then it is
assumed that the use of the intent element is unre-
stricted.

requires QName+ (optional) An intent element can require other intent elements.
The requires attribute enables the creation of profile
Intents. This attribute must be used with a whitespace
separated list.

excludes QName+
(optional)

A list of Intents that are incompatible with this Intent.
It is an error to register a service with incompatible
Intents; a Distribution Provider must not distribute
such a service. This attribute must be used with a
whitespace separated list.

mutuallyExclusive xsd:boolean
(optional)

true signifies that the qualified Intents defined in chil-
dren elements are mutually exclusive and must not be
used together. If fa lse or not set then any of the
defined qualified Intents can be used together.

intentType sca: Interact ion
| sca: Implementation
(optional)

SCA allows Intents to configure the Distribution Pro-
viders as well as any interaction policies. OSGi only uses
interaction Intents (the default) and therefore this ele-
ment can be omitted. A Distribution Provider that
does not recognize Implementation Intents must fail
if such an Implement Intent is specified. Implementa-
tion Intents must not become part of the Distribution
Provider’s vocabulary.

descr ipt ion xsd:str ing
(optional)

A human readable text description of the Intent.

Table 129.2 Intent Attributes

<<binding-type>>
sca:binding.ws

<<intent>>
acme:protection

constrains
OSGi Service Platform Release 4, Version 4.2 Page 443

SCA Configuration Document SCA Configuration Type Specification Version 1.0
129.4.5 qualifier Element
The qual i f ier element allows an intent element to have qualifiers. An intent element can contain any
number of qual i f ier elements, each quali f ier element specifies a suffix for the parent Intent. These
qualifiers are used to make an Intent more specific. For example, the qualified Intent
confidentiality.message would be have an intent@name of confidentia l i ty and a qualifier with
the name set to message . One, and only one, of the qualifier elements must be set to be the default
qualifier. If only one qualifier element is defined then this is the default by definition.

Table 129.3 on page 444 is the description of the qual if ier element. See Remote Services on page 7 for
the definition of qualified Intents.

129.4.6 policySet Element
A pol icySet element defines how Intents are implemented. The structure of the pol icySet element is:

policySet ::= (<policySetReference> | <intentMap> | policy)*
policy ::= << policy defined in some policy language >>

The Policy Sets provide a place to insert policy using various policy languages. They allow multiple
entries, but the ways in which those are combined are defined by the policy language being used. For
example, WS-Policy allows these to be additive or alternatives.

A pol icySetReference element contains a reference to another pol icySet element, see 129.4.7 policy-
SetReference Element. A pol icySetReference element enables pol icySet elements to be defined in
terms of other pol icySet elements.

An intentMap sub-element is used to define the implementation for a qualified Intent. See [5] SCA
Policy Framework specification v1.1 CD02 for more details. See also intentMap Element on page 446.

Figure 129.7 illustrates the schema for pol icySet elements.

Table 129.3 qualifier Element

Attribute Type Description

name NCName The name of the qualifier. For example, transport for the
qualified Intent conf idential i ty .transport .

default xsd:boolean
(optional)

true if this qualifier is the default, false if not. The default
for the default attribute is false . One qualifer element
must set the default attribute to true . If there is only one
qualifier than it is by default the default and does not have
to be explicitly set. In this case, if it is explicitly set to false
then this is invalid.

descr ipt ion xsd:str ing
(optional)

A human readable text description of the qualified Intent.
Page 444 OSGi Service Platform Release 4, Version 4.2

SCA Configuration Type Specification Version 1.0 SCA Configuration Document
Figure 129.7 policySet element

 The attributes of the pol icySet element are described in Table 129.4.

The following example shows the contribution of a Policy Set. In this example, the policySet element
describes the particular encryption options to be used to implement the acme:protect ion Intent on
the web service binding binding.ws . Each time a service with this Intent is exported to an Endpoint
using binding.ws , then this is the encryption policy the Distribution Provider must use.

service.exported.configs= org.osgi.sca
org.osgi.sca.bindings = FooWS
service.intents = {http://acme.com/defs}protection

The pol icySet element is defined using [7] WS-Policy specification. The Policy Set is named
acme:Encrypted ; it provides the acme:protect ion Intent, and applies it to the sca:binding.ws Binding
Type only.

policySet
@name
@provides
@appliesTo
@attachTo

policySet
 Reference
@name

1..*

intentMap
@provides

qualifier
@name

0..*

<<policy>>

<<policy>>
1..*

Table 129.4 policySet Element

Attribute Type Description

name NCName The name of the Policy Set. This name can be used to refer to
the Policy Set from a Binding. The name must be combined
with the targetNamespace of the sca-configelement to give
the QName for the Policy Set.

provides QName+
(optional)

A list of QName values (whitespace separated) declaring the
Intents the Policy Set provides (implements).

appl iesTo xsd:str ing Identifies what Bindings the Policy Set applies to. Can be
either a specific Binding (e.g. acme:binding.rmi) or all Bind-
ing Types (sca:binding). This attribute is an XPath expres-
sion in SCA.

attachTo xsd:str ing
(optional)

Not used. If a value is specified and a Distribution Provider
does not understand attachTo then it must not use the SCA
Configuration Bundle.
OSGi Service Platform Release 4, Version 4.2 Page 445

SCA Configuration Document SCA Configuration Type Specification Version 1.0
<sca:binding.ws name="FooWS" ... />
<sca:intent

name ="protection"
constrains ="sca:binding.ws"

/>
<sca:policySet

name ="Encrypted"
provides ="acme:protection"
appliesTo ="sca:binding.ws"
xmlns:wsp ="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:sp ="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
<wsp:Policy>

<wsp:ExactlyOne>
<sp:Basic256Rsa15 />
<sp:TripleDesRsa15 />

</wsp:ExactlyOne>
</wsp:Policy>

</sca:policySet>

 These relationships are illustrated in figure Figure 129.8.

Figure 129.8 acme:Encrypted policySet

129.4.7 policySetReference Element
A reference to another Policy Set to enable policySet elements to be defined in terms of other Policy
Sets. Table 129.5 defines the attribute in a pol icySetReference element.

129.4.8 intentMap Element
An intentMap element is used to provide additional policy information of a qualifier. An intentMap
element has the following structure:

intentMap ::= <qualifier>*
qualifier ::= policy (policy) *

See Table 129.6 for the intentMap element’s attribute.

See [5] SCA Policy Framework specification v1.1 CD02 for more details.

The qualifier sub-element intentMap has an attributes as defined in Table 129.7

<sca:binding.ws>
acme:FooWS

co
ns

tra
in

s

<<intent>>
acme:protection

<<policySet>>
acme:Encrypted provides

ap
pl

ie
sT

o

Table 129.5 policySetReference Element

Attribute Type Description

name QName A QName identifying a pol icySet element being refer-
enced. See policySet Element on page 444.
Page 446 OSGi Service Platform Release 4, Version 4.2

SCA Configuration Type Specification Version 1.0 Exporting and Importing Services
The following example shows a Policy Set that implements the confidential i ty Intent with two qual-
ifiers transport and message .

<sca:policySet
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

name="SecureMessaging"
provides="confidentiality"
appliesTo="//binding.ws">

<sca:intentMap provides="confidentiality" >
<sca:qualifier name="transport">

<wsp:PolicyAttachment ... />
</sca:qualifier>
<sca:qualifier name="message">

<wsp:PolicyAttachment ... />
</sca:qualifier>

</sca:intentMap>
</sca:policySet>

129.5 Exporting and Importing Services

129.5.1 Service Configuration Properties
The following properties are used to convey SCA configuration information from the service import-
ers and exporters to the Distribution Provider. Some rows define property values for properties
defined in the Remote Services specification, other rows are properties whose names follow conven-
tions defined in the Remote Services specification but whose specific values are defined in this speci-
fication, these are put in bold. Because these properties define an additional level of detail on the
properties specified in Remote Services chapter, any Remote Service properties must be supported in
conjunction with those defined here.

Table 129.6 intentMap Element

Attribute Type Description

provides QName Identifying the Intent whose qualifiers are configured by
this intentMap . The Intent must also be listed in the
provides attribute of the containing pol icySet . For exam-
ple, confidential i ty , and the qualifiers configured by the
intentMap element, could be message and transport .

Table 129.7 qualifier Element

Member Type Description

name xsd:str ing The name of the intent qualifier to which the policy
applies.

Table 129.8 Configuration Properties

Service Property Name Type Description

remote.configs.supported Str ing+ For the SCA configuration type, this prop-
erty must include the value org.osgi .sca

remote. intents.supported Str ing+ All supported Intents in their unqualified as
well as their qualified form.
OSGi Service Platform Release 4, Version 4.2 Page 447

Exporting and Importing Services SCA Configuration Type Specification Version 1.0
129.5.2 Complete
Services can only be imported and exported when their SCA Configuration information is complete.
This information is complete when all necessary named Bindings, Policy Sets, and Intents can be
found in the internal registry or when scoped, in the scoped configuration.

Complete is dynamic because the life cycles of the donating SCA Configuration Bundles are dynamic
and starting and stopping bundles can cause changes in the internal registry. It is therefore possible
that the completeness of an exported service or imported Endpoint changes over time. The Distribu-
tion Provider must ensure that the configuration of exports and imports is complete when they are
active. If the configuration becomes incomplete, then the Distribution Provider must do a rebinding
based the new configuration situation.

129.5.3 Scoped Configurations
The org.osgi .sca.configs.ur l or org.osgi .sca.conf igs .xml service properties can provide scoped SCA
Configuration. Scoped configuration is additional SCA Configuration over and above the configura-
tion in the internal registry.

This scoped configuration has the following additional rules:

• Scoped configuration can only contain bindings. It can not contain Policy Set or Intent defini-
tions.

• Scoped Configurations must never be stored in the internal registry, the configuration only
applies to the corresponding service.

service.exported.configs Str ing+ A list of configuration types that should be
used to export the service. For the SCA con-
figuration type, this property must include
the value org.osgi .sca .

service. imported.configs String+ For the SCA configuration type, this prop-
erty must include the value org.osgi .sca .

org.osgi .sca.binding Str ing+ Each value is an XML Schema NCName or
QName identifying an individual Binding.
Each Binding defines the configuration for
an Endpoint. These names refer to the inter-
nal registry or the scoped configuration. See
Internal Registry on page 437 and Scoped Con-
figurations on page 448.

org.osgi .sca.binding.types Str ing+ Registered by a Distribution Provider to indi-
cate the Binding Types supported. The Bind-
ing Types must be listed with their NCName
as well as their QName . See Dependencies on
page 450.

org.osgi .sca.conf ig.ur l Str ing+
(optional)

A URL to an SCA Configuration Document
with a scoped configuration, see Scoped Con-
figurations on page 448. The URL must be
accessible from the importing framework. If
the org.osgi .sca.conf ig .xml property is also
present, then this property must be ignored.

org.osgi .sca.conf ig.xml Str ing
(optional)

An SCA Configuration Document that pro-
vides a scoped configuration, see Scoped Con-
figurations on page 448.

Table 129.8 Configuration Properties
Page 448 OSGi Service Platform Release 4, Version 4.2

SCA Configuration Type Specification Version 1.0 Exporting and Importing Services
The scoped bindings can refer to the internal registry, it can contain more definitions than required,
and it can use the same names for Bindings but not for Intents, and Policy Sets that reside in the inter-
nal registry.

If a named Bindings exists in the internal registry and the scoped configuration, then the scoped
information takes priority for the corresponding service.

References from the internal registry must not have access to the scoped configuration, even if they
were referred to from a scoped configuration or a service property. For example, a Binding found in
the internal registry must not have access to an Intent or Policy Set defined in the scoped configura-
tion.

129.5.4 Registering a Service for Export
 The rules covering the registration of a service for export are described in the Remote Service chap-
ter. The SCA Configuration Type adds the following conditions that must be met:

• The service property service.exported.configs must contain the value org.osgi .sca .
• The Distribution Provider’s internal registry, or a scoped configuration, contains complete defini-

tions for all of the Bindings referred to the service property org.osgi .sca.bindings . Bindings can be
referred to by either their NCName or QName .

• All Intents and/or Policy Sets listed in a supported Binding's requires or pol icySets attributes are
part of the Distribution Provider’s internal registry or, if scoped, in the optional scoped configu-
ration.

• All Intents must be implemented by the selected Binding Type or in an available and applicable
Policy Set.

• The Endpoint must implement at least all of the Intents listed in the service.exported. intents ,
service.exported. intents.extra service properties. The Endpoint must also implement the Intents
and Policy Sets listed in the requires and pol icySets attributes of the used Binding.

For example, if a service were registered with the following property:

service.exported.intents.extra=integrity

And is then configured with a Binding with the attribute requires like:

 <acme:binding.rmi requires="confidentiality" ... />

Then the Endpoint must implement both the integrity and conf idential i ty Intents.

A Distribution Provider must create an Endpoint for each of the Bindings it supports, including any
constraints on Intents and Policy Sets; these Bindings must be alternatives. Synonyms are allowed
within the SCA configuration type and are handled in the same way as synonyms from multiple con-
figuration types.

129.5.5 Getting an Imported Service
The Remote Services specification defines the properties which must be treated as special when the
Endpoint for an exported service is imported as an OSGi service in another framework. An imported
service configured with the SCA Configuration Type must also have the following properties:

• service. imported.conf igs – Contains the configuration types that can be used to import this
service. This must include the org.osgi .sca value. Any other types included must be synonymous
and therefore refer to exactly the same Endpoint as the org.osgi .sca configuration.

• org.osgi .sca.bindings – Names Bindings from the internal registry for a specific Endpoint. If mul-
tiple Bindings are listed in this property then they must be synonyms for the same Endpoint. The
named bindings can refer to the internal registry or the scoped bindings.

• A Distribution Provider can optionally list the scoped configuration for this service with the
org.osgi .sca.configs.ur l or org.osgi .conf igs.xml service properties, see Scoped Configurations on
page 448.
OSGi Service Platform Release 4, Version 4.2 Page 449

SCA and Remote Service Admin SCA Configuration Type Specification Version 1.0
129.5.6 Dependencies
A bundle that uses the SCA Configuration Type has an implicit dependency on the Distribution Pro-
vider to support that type. To make this dependency explicit, the Distribution Provider must register
a service with the following property and value

remote.configs.supported=org.osgi.sca

A Distribution Provider must also list other configuration types it supports in addition to
org.osgi .sca , the type of this property is Str ing+ .

A bundle that uses a specific Binding Type also has an implicit dependency on a Distribution Pro-
vider that supports this type. To make this dependency explicit, the Distribution Provider must regis-
ter a service property with the name:

 org.osgi .sca.binding.types

The value must be set to the list of Binding Types supported by the Distribution Provider. This prop-
erty is of type Str ing+ . This property must list both the NCName and the QName for each Binding
Types it supports.

For example

org.osgi.sca.binding.types = [binding.ws, «
{http://docs.oasis-open.org/ns/opencsa/sca/200912}binding.ws, «

 binding.rmi, «
{http://acme.com/defs}binding.rmi]

129.6 SCA and Remote Service Admin
The Remote Service Admin Service Specification on page 281 provides an API for the Distribution Pro-
vider; it enables a topology manager to import and export services. A discovery mechanism is also
provided to discover Endpoint Descriptions through different protocols. Endpoint Descriptions are
property based and provide the details for a specific Endpoint. Using these properties it must be pos-
sible to create a connection to the corresponding Endpoint and import a service, if the used configu-
ration type is recognized. The Endpoint Description properties are typically set by the Remote
Service Admin that created the Endpoint and describe the Endpoint details to importers of that End-
point.

The Endpoint Description is therefore extensible for different configuration types. This section
describes the mapping of the SCA Configuration Type into the Endpoint Description. This mapping
must be used by any Remote Service Admin that supports the SCA Configuration Type. The proper-
ties and values specified here are in addition to those defined in the Remote Service Admin Service
Specification.

129.6.1 Configuration
An Endpoint Description is moved between systems and can therefore not refer to an internal regis-
try. However, the SCA Configuration Type allows scoped configurations, see, see Scoped Configura-
tions on page 448. Scoped configurations allow the Endpoint Description to describe all the necessary
Bindings, Policy Sets, and Intents.

Scoped configuration can be provided through:

• org.osgi .sca.conf igs.ur l – A URL to an SCA Configuration Document. This URL must be acces-
sible by an importing framework.

• org.osgi .sca.conf igs.xml – Embedded XML contained in the property. The embedded XML is sup-
ported with the Str ing data type for properties and using an xml element to define it.
Page 450 OSGi Service Platform Release 4, Version 4.2

SCA Configuration Type Specification Version 1.0 XML Schema
When a Remote Service Admin service creates an Endpoint Description it must ensure that at least a
complete SCA Configuration for that Endpoint is included in that Endpoint Description as either a
URL or embedded XML.

A Remote Service Admin must recognize the scoped configuration in the properties used to create an
Import Registration or an Export Registration.

129.6.2 Example Endpoint Description
The following example shows how a remote Foo service is described using the Endpoint Description
XML format, including the SCA configuration type configuration. In this example, the embedded
form is chosen.

<?xml version="1.0" encoding="UTF-8"?>
<rsa:endpoint-descriptions

xmlns:rsa="http://www.osgi.org/xmlns/rsa/v1.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <endpoint-description>
 <property name ="objectClass" value ="com.acme.Foo" />
 <property name ="service.intents" value ="confidentiality" />
 <property name ="service.imported.configs" value="org.osgi.sca" />
 <property name ="org.osgi.sca.bindings" type="String">

<array>
 <value>FooWS</value>
 <value>{http://acme.com/defs}FooRMI</value>

</array>
 </property>
 <property name ="org.osgi.sca.config.xml" type="String">

<xml>
 <scact:sca-config targetNamespace="http://acme.com/defintions"
 xmlns:scact ="http://www.osgi.org/xmlns/scact/v1.0.0"
 xmlns:sca ="http://docs.oasis-open.org/ns/opencsa/sca/200912"
 xmlns:acme ="http://acme.com/defintions">
 <sca:binding.ws name="FooWS"
 uri="http://acme.com/Foo" requires="sca:soap.v1_2" />
 <acme:binding.rmi name="FooRMI"
 host="acme.com" port="8099" serviceName="Foo" />
 <sca:intent>
 ...
 </sca:intent>
 <sca:policySet>
 ...
 </sca:policySet>
 </scact:sca-config>

</xml>
 </property>
 </endpoint-description>
</rsa:endpoint-descriptions>

129.7 XML Schema
Below is the full XML schema for the SCA Configuration Documents used by the SCA Configuration
Type. The namespace for this XML Schema is:

http://www.osgi.org/xmlns/scact/v1.0.0

<schema
OSGi Service Platform Release 4, Version 4.2 Page 451

Security SCA Configuration Type Specification Version 1.0
xmlns ="http://www.w3.org/2001/XMLSchema"
xmlns:sca ="http://docs.oasis-open.org/ns/opencsa/sca/200912"

 xmlns:scact ="http://www.osgi.org/xmlns/scact/v1.0.0"
targetNamespace ="http://www.osgi.org/xmlns/scact/v1.0.0"

 version ="1.0.0"
elementFormDefault ="qualified">

 <import
namespace="http://docs.oasis-open.org/ns/opencsa/sca/200912"
schemaLocation="http://docs.oasis-open.org/opencsa/sca-assembly/sca-policy-1.1-cd02.xsd"/>

 <import
namespace="http://docs.oasis-open.org/ns/opencsa/sca/200912"
schemaLocation="http://docs.oasis-open.org/opencsa/sca-assembly/sca-core-1.1-cd03.xsd"/>

 <element name="sca-config" type="scact:Tsca-config" />

 <complexType name="Tsca-config">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element ref="sca:binding" />
 <element ref="sca:intent" />
 <element ref="sca:policySet" />
 </choice>
 <attribute name="targetNamespace" type="anyURI" use="required" />
 </complexType>

 <attribute name="must-understand" type="boolean" default="false"/>
</schema>

129.8 Security
There are no extra security rules for this specification.

129.9 References
[1] OSGi Core Specifications

http://www.osgi.org/Specifications/Download

[2] OASIS
http://www.oasis-open.org

[3] Service Component Architecture (SCA)
http://www.oasis-opencsa.org/

[4] SCA Assembly specification v1.1 CD03
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.pdf

[5] SCA Policy Framework specification v1.1 CD02
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd02.pdf
http://www.oasis-open.org/committees/sca-policy/

[6] SCA Bindings specifications
http://www.oasis-open.org/committees/sca-bindings/

[7] WS-Policy specification
http://www.w3.org/Submission/WS-Policy/

[8] XML Schema
http://www.w3.org/XML/Schema
Page 452 OSGi Service Platform Release 4, Version 4.2

Tracker Specification Version 1.4 Introduction
701 Tracker Specification
Version 1.4

701.1 Introduction
The Framework provides a powerful and very dynamic programming environment: Bundles are
installed, started, stopped, updated, and uninstalled without shutting down the Framework. Depen-
dencies between bundles are monitored by the Framework, but bundles must cooperate in handling
these dependencies correctly. Two important dynamic aspects of the Framework are the service regis-
try and the set of installed bundles.

Bundle developers must be careful not to use service objects that have been unregistered and are
therefore stale. The dynamic nature of the Framework service registry makes it necessary to track the
service objects as they are registered and unregistered to prevent problems. It is easy to overlook race
conditions or boundary conditions that will lead to random errors. Similar problems exist when
tracking the set of installed bundles and their state.

This specification defines two utility classes, ServiceTracker and BundleTracker , that make tracking
services and bundles easier. A ServiceTracker class can be customized by implementing the
ServiceTrackerCustomizer interface or by sub-classing the ServiceTracker class. Similarly, a
BundleTracker class can be customized by sub-classing or implementing the
BundleTrackerCustomizer interface.

These utility classes significantly reduce the complexity of tracking services in the service registry
and the set of installed bundles.

701.1.1 Essentials
• Simplify – Simplify the tracking of services or bundles.
• Customizable – Allow a default implementation to be customized so that bundle developers can

start simply and later extend the implementation to meet their needs.
• Small – Every Framework implementation should have this utility implemented. It should

therefore be very small because some Framework implementations target minimal OSGi Service
Platforms.

• Services – Track a set of services, optionally filtered, or track a single service.
• Bundles – Track bundles based on their state.
• Cleanup – Properly clean up when tracking is no longer necessary

701.1.2 Operation
The fundamental tasks of a tracker are:

• To create an initial list of targets (service or bundle).
• To listen to the appropriate events so that the targets are properly tracked.
• To allow the client to customize the tracking process through programmatic selection of the ser-

vices/bundles to be tracked, as well as to perform client code when a service/bundle is added or
removed.
OSGi Service Platform Release 4, Version 4.2 Page 453

Tracking Tracker Specification Version 1.4
A ServiceTracker object is populated with a set of services that match given search criteria, and then
listens to ServiceEvent objects which correspond to those services. A Bundle Tracker is populated
with the set of installed bundles and then listens to BundleEvent objects to notify the customizer of
changes in the state of the bundles.

701.1.3 Entities

Figure 701.1 Class diagram of org.osgi.util.tracker

701.2 Tracking
The OSGi Framework is a dynamic multi-threaded environment. In such an environments callbacks
can occur on different threads at the same time. This dynamism causes many complexities. One of
the surprisingly hard aspects of this environment is to reliably track services and bundles (called tar-
gets from now on).

The complexity is caused by the fact that the BundleListener and ServiceListener interfaces are only
providing access to the changed state, not to the existing state when the listener is registered. This
leaves the programmer with the problem to merge the set of existing targets with the changes to the
state as signified by the events, without unwantedly duplicating a target or missing a remove event
that would leave a target in the tracked map while it is in reality gone. These problems are caused by
the multi-threaded nature of an OSGi service platform.

The problem is illustrated with the following (quite popular) code:

// Bad Example! Do not do this!
Bundle[] bundles = context.getBundles();
for (Bundle bundle : bundles) {

map.put(bundle.getLocation(), bundle);
}

context.addBundleListener(new BundleListener() {
public void bundleChanged(BundleEvent event) {

Bundle bundle = event.getBundle();
switch(event.getType()) {
case BundleEvent.INSTALLED:

map.put(bundle.getLocation(), bundle);
break;

case BundleEvent.UNINSTALLED:
map.remove(bundle.getLocation());
break;

default:
// ignore

}
}

Service
Tracker

customized by

Service
Tracker
Customizer1 0,1

Bundle
Tracker

customized by

Bundle
Tracker
Customizer1 0,1
Page 454 OSGi Service Platform Release 4, Version 4.2

Tracker Specification Version 1.4 Tracking
});

Assume the code runs the first part, getting the existing targets. If during this time a targets state
changes, for example bundle is installed or uninstalled, then the event is missed and the map will
miss a bundle or it will contain a bundle that is already gone. An easy solution seems to be to first reg-
ister the listener and then get the existing targets. This solves the earlier problem but will be intro-
duce other problems. In this case, an uninstall event can occur before the bundle has been discovered.

Proper locking can alleviate the problem but it turns out that this easily create solutions that are very
prone to deadlocks. Solving this tracking problem is surprisingly hard. For this reason, the OSGi spec-
ifications contain a bundle tracker and a service tracker that are properly implemented. These classes
significantly reduce the complexity of the dynamics in an OSGi Service Platform.

701.2.1 Usage
Trackers can be used with the following patterns:

• As-is – Each tracker can be used without further customizing. A tracker actively tracks a map of
targets and this map can be consulted with a number of methods when the information is needed.
This is especially useful for the Service Tracker because it provides convenience methods to wait
for services to arrive.

• Callback object – Each tracker provides a call back interface that can be implemented by the client
code.

• Sub-classing – The trackers are designed to be sub-classed. Sub-classes have access to the bundle
context and only have to override the callback methods they need.

701.2.2 General API
A tracker hides the mechanisms in the way the targets are stored and evented. From a high level, a
tracker maintains a map of targets to wrapper objects. The wrapper object can be defined by the client,
though the Bundle Tracker uses the Bundle object and the Service Tracker uses the service object as
default wrapper. The tracker notifies the client of any changes in the state of the target.

A tracker must be constructed with a Bundle Context. This context is used to register listeners and
obtain the initial list of targets during the call to the open method. At the end of the life of a tracker it
must be closed to release any remaining objects. It is advised to properly close all trackers in the bun-
dle activator’s stop method.

A tracker provides a uniform callback interface, which has 3 different methods.

• Adding – Provide a new object, obtained from the store or from an event and return the wrapper or
a related object. The adding method can decide not to track the target by returning a null object.
When null is returned, no modified or remove methods are further called. However, it is possible
that the adding method is called again for the same target.

• Modified –The target is modified. For example, the service properties have changed or the bundle
has changed state. This callback provides a mechanism for the client to update its internal struc-
tures. The callback provides the wrapper object.

• Removing – The target is no longer tracked. This callback is provided the wrapper object returned
from the adding method. This allows for simplified cleanup if the client maintains state about the
target.

Each tracker is associated with a callback interface, which it implements itself. That is, a Service
Tracker implements the ServiceTrackerCustomizer interface. By implementing this customizer, the
tracker can also be sub-classed, this can be quite useful in many cases. Sub-classing can override only
one or two of the methods instead of having to implement all methods. When overriding the call-
back methods, it must be ensured that the wrapper object is treated accordingly to the base imple-
mentation in all methods. For example, the Service Tracker’s default implementation for the adding
OSGi Service Platform Release 4, Version 4.2 Page 455

Service Tracker Class Tracker Specification Version 1.4
method checks out the service and therefore the remove method must unget this same service.
Changing the wrapper object type to something else can therefore clash with the default implemen-
tations.

Trackers can provide all the objects that are tracked, return the mapped wrapper from the target, and
deliver the number of tracked targets.

701.2.3 Tracking Count
The tracker also maintains a count that is updated each time that an object is added, modified, or
removed, that is any change to the implied map. This tracking count makes it straightforward to ver-
ify that a tracker has changed; just store the tracking count and compare it later to see if it has
changed.

701.2.4 Multi Threading
The dynamic environment of OSGi requires that tracker are thread safe. However, the tracker closely
interacts with the client through a callback interface. The tracker implementation must provide the
following guarantees:

• The tracker code calling a callback must not hold any locks

Clients must be aware that their callbacks are reentrant though the tracker implementations guaran-
tee that the add/modified/remove methods can only called in this order for a specific target. A tracker
must not call these methods out of order.

701.2.5 Synchronous
Trackers use synchronous listeners; the callbacks are called on the same thread as that of the initiating
event. Care should be taken to not linger in the callback and perform non-trivial work. Callbacks
should return immediately and move substantial work to other threads.

701.3 Service Tracker Class
The purpose of a Service Tracker is to track service references, that is, the target is the ServiceReference
object. The ServiceTracker interface defines three constructors to create ServiceTracker objects, each
providing different search criteria:

• ServiceTracker(BundleContext,Str ing,ServiceTrackerCustomizer) – This constructor takes a
service interface name as the search criterion. The ServiceTracker object must then track all ser-
vices that are registered under the specified service interface name.

• ServiceTracker(BundleContext ,F i l ter,ServiceTrackerCustomizer) – This constructor uses a Fi lter
object to specify the services to be tracked. The ServiceTracker must then track all services that
match the specified filter.

• ServiceTracker(BundleContext,ServiceReference,ServiceTrackerCustomizer) – This con-
structor takes a ServiceReference object as the search criterion. The ServiceTracker must then
track only the service that corresponds to the specified ServiceReference . Using this constructor,
no more than one service must ever be tracked, because a ServiceReference refers to a specific
service.

Each of the ServiceTracker constructors takes a BundleContext object as a parameter. This
BundleContext object must be used by a ServiceTracker object to track, get, and unget services.

A new ServiceTracker object must not begin tracking services until its open method is called. There
are 2 versions of the open method:

• open() – This method is identical to open(false) . It is provided for backward compatibility
reasons.
Page 456 OSGi Service Platform Release 4, Version 4.2

Tracker Specification Version 1.4 Service Tracker Class
• open(boolean) – The tracker must start tracking the services as were specified in its constructor.
If the boolean parameter is true , it must track all services, regardless if they are compatible with
the bundle that created the Service Tracker or not. See Section 5.9 “Multiple Version Export Con-
siderations” for a description of the compatibility issues when multiple variations of the same
package can exist. If the parameter is false , the Service Tracker must only track compatible ver-
sions.

701.3.1 Using a Service Tracker
Once a ServiceTracker object is opened, it begins tracking services immediately. A number of meth-
ods are available to the bundle developer to monitor the services that are being tracked, including the
ones that are in the service registry at that time. The ServiceTracker class defines these methods:

• getService() – Returns one of the services being tracked or nul l if there are no active services being
tracked.

• getServices() – Returns an array of all the tracked services. The number of tracked services is
returned by the size method.

• getServiceReference() – Returns a ServiceReference object for one of the services being tracked.
The service object for this service may be returned by calling the ServiceTracker object’s
getService() method.

• getServiceReferences() – Returns a list of the ServiceReference objects for services being tracked.
The service object for a specific tracked service may be returned by calling the ServiceTracker
object’s getService(ServiceReference) method.

• waitForServ ice(long) – Allows the caller to wait until at least one instance of a service is tracked
or until the time-out expires. If the time-out is zero, the caller must wait until at least one instance
of a service is tracked. waitForService must not used within the BundleActivator methods, as
these methods are expected to complete in a short period of time. A Framework could wait for the
start method to complete before starting the bundle that registers the service for which the caller
is waiting, creating a deadlock situation.

• remove(ServiceReference) – This method may be used to remove a specific service from being
tracked by the ServiceTracker object, causing removedService to be called for that service.

• close() – This method must remove all services being tracked by the ServiceTracker object,
causing removedService to be called for all tracked services.

• getTrackingCount() – A Service Tracker can have services added, modified, or removed at any
moment in time. The getTrackingCount method is intended to efficiently detect changes in a
Service Tracker. Every time the Service Tracker is changed, it must increase the tracking count.

701.3.2 Customizing the Service Tracker class
The behavior of the ServiceTracker class can be customized either by providing a
ServiceTrackerCustomizer object, implementing the desired behavior when the ServiceTracker
object is constructed, or by sub-classing the ServiceTracker class and overriding the
ServiceTrackerCustomizer methods.

The ServiceTrackerCustomizer interface defines these methods:

• addingService(ServiceReference) – Called whenever a service is being added to the
ServiceTracker object.

• modifiedService(ServiceReference,Object) – Called whenever a tracked service is modified.
• removedService(ServiceReference,Object) – Called whenever a tracked service is removed from

the ServiceTracker object.

When a service is being added to the ServiceTracker object or when a tracked service is modified or
removed from the ServiceTracker object, it must call addingService , modif iedService , or
removedService , respectively, on the ServiceTrackerCustomizer object (if specified when the
ServiceTracker object was created); otherwise it must call these methods on itself.
OSGi Service Platform Release 4, Version 4.2 Page 457

Bundle Tracker Tracker Specification Version 1.4
A bundle developer may customize the action when a service is tracked. Another reason for custom-
izing the ServiceTracker class is to programmatically select which services are tracked. A filter may
not sufficiently specify the services that the bundle developer is interested in tracking. By imple-
menting addingService , the bundle developer can use additional runtime information to determine
if the service should be tracked. If nul l is returned by the addingService method, the service must not
be tracked.

Finally, the bundle developer can return a specialized object from addingService that differs from the
service object. This specialized object could contain the service object and any associated informa-
tion. This returned object is then tracked instead of the service object. When the removedService
method is called, the object that is passed along with the ServiceReference object is the one that was
returned from the earlier call to the addingService method.

701.3.3 Customizing Example
An example of customizing the action taken when a service is tracked might be registering a Servlet
object with each Http Service that is tracked. This customization could be done by sub-classing the
ServiceTracker class and overriding the addingService and removedService methods as follows:

public Object addingService(ServiceReference reference) {
Object obj = context.getService(reference);
HttpService svc = (HttpService)obj;
// Register the Servlet using svc
...
return svc;

}
public void removedService(ServiceReference reference,

Object obj){
HttpService svc = (HttpService)obj;
// Unregister the Servlet using svc
...
context.ungetService(reference);

}

701.4 Bundle Tracker
The purpose of the Bundle Tracker is to simplify tracking bundles. A popular example where bundles
need to be tracked is the extender pattern. An extender uses information in other bundles to provide
its function. For example, a Declarative Services implementation reads the component XML file from
the bundle to learn of the presence of any components in that bundle.

There are, however, other places where it is necessary to track bundles. The Bundle Tracker signifi-
cantly simplifies this task.

701.4.1 Bundle States
The state diagram of a Bundle is significantly more complex than that of a service. However, the
interface is simpler because there is only a need to specify for which states the bundle tracker should
track a service.

Bundle states are defined as a bit in an integer, allowing the specifications of multiple states by set-
ting multiple bits. The Bundle Tracker therefore uses a bit mask to specify which states are of interest.
For example, if a client is interested in active and resolved bundles, it is possible to specify the Bundle
ACTIVE | RESOLVED | STARTING states in the mask.
Page 458 OSGi Service Platform Release 4, Version 4.2

Tracker Specification Version 1.4 Bundle Tracker
The Bundle Tracker tracks bundles whose state matches the mask. That is, when a bundle is not
tracked it adds that bundle to the tracked map when its state matches the mask. If the bundle reaches
a new state that is not listed in the mask, the bundle will be removed from the tracked map. If the
state changes but the bundle should still be tracked, then the bundle is considered to be modified.

701.4.2 Constructor
The BundleTracker interface defines the following constructors to create BundleTracker objects:

• BundleTracker(BundleContext, int ,BundleTrackerCustomizer) – Create a Bundle Tracker that
tracks the bundles which state is listed in the mask. The customizer may be nul l , in that case the
callbacks can be implemented in a subclass.

A new BundleTracker object must not begin tracking services until its open method is called.

• open() – Start tracking the bundles, callbacks can occur before this method is called.

701.4.3 Using a Bundle Tracker
Once a BundleTracker object is opened, it begins tracking bundles immediately. A number of meth-
ods are available to the bundle developer to monitor the bundles that are being tracked. The
BundleTracker class defines the following methods:

• getBundles() – Returns an array of all the tracked bundles.
• getObject(Bundle) – Returns the wrapper object that was returned from the addingBundle

method.
• remove(Bundle) – Removes the bundle from the tracked bundles. The removedBundle method is

called when the bundle is not in the tracked map.
• size() – Returns the number of bundles being tracked.
• getTrackingCount() – A Bundle Tracker can have bundles added, modified, or removed at any

moment in time. The getTrackingCount method is intended to efficiently detect changes in a
Bundle Tracker. Every time the Bundle Tracker is changed, it must increase the tracking count.

701.4.4 Customizing the Bundle Tracker class
The behavior of the BundleTracker class can be customized either by providing a
BundleTrackerCustomizer object when the BundleTracker object is constructed, or by sub-classing
the BundleTracker class and overriding the BundleTrackerCustomizer methods on the
BundleTracker class.

The BundleTrackerCustomizer interface defines these methods:

• addingBundle(Bundle,BundleEvent) – Called whenever a bundle is being added to the
BundleTracker object. This method should return a wrapper object, which can be the Bundle
object itself. If nul l is returned, the Bundle must not be further tracked.

• modifiedBundle(Bundle,BundleEvent,Object) – Called whenever a tracked bundle is modified.
The object that is passed is the object returned from the addingBundle method, the wrapper
object.

• removedBundle(Bundle,BundleEvent,Object) – Called whenever a tracked bundle is removed
from the BundleTracker object. The passed object is the wrapper returned from the addingBundle
method.

The BundleEvent object in the previous methods can be nul l .

When a bundle is being added the OSGi Framework, or when a tracked bundle is modified or unin-
stalled from the OSGi Framework, the Bundle Tracker must call addingBundle , modif iedBundle , or
removedBundle , respectively, on the BundleTrackerCustomizer object (if specified when the
BundleTracker object was created); otherwise it must call these methods on itself, allowing them to
be overridden in a subclass.
OSGi Service Platform Release 4, Version 4.2 Page 459

Bundle Tracker Tracker Specification Version 1.4
The bundle developer can return a specialized object from addingBundle that differs from the Bundle
object. This wrapper object could contain the Bundle object and any associated client specific infor-
mation. This returned object is then used as the wrapper instead of the Bundle object. When the
removedBundle method is called, the wrapper is passed as an argument.

701.4.5 Extender Model
The Bundle Tracker allows the implementation of extenders with surprisingly little effort. The fol-
lowing example checks a manifest header (Http-Mapper) in all active bundles to see if the bundle has
resources that need to be mapped to the HTTP service. This extender enables bundles that have no
code, just content.

This example is implemented with a BundleTrackerCustomizer implementation, though sub-class-
ing the BundleTracker class is slightly simpler because the open/close methods would be inherited,
the tracker field is not necessary and it is not necessary to provide a dummy implementation of
modif iedBundle method. However, the Service Tracker example already showed how to use inherit-
ance.

The Extender class must implement the customizer and declare fields for the Http Service and a Bun-
dle Tracker.

public class Extender implements BundleTrackerCustomizer {
final HttpService http;
final BundleTracker tracker;

It is necessary to parse the Http-Mapper header. Regular expression allow this to be done very con-
cise.

final static Pattern HTTPMAPPER=
Pattern.compile(

"\\s*([-/\\w.]+)\\s*=\\s*([-/\\w.]+)\\s*");

The Bundle Tracker requires a specialized constructor. This example only works for active bundles.
This implies that a bundle only provides contents when it is started, enabling an administrator to
control the availability.

Extender(BundleContext context, HttpService http) {
tracker = new BundleTracker(

context,Bundle.ACTIVE, this);
this.http = http;

}

The following method implements the callback from the Bundle Tracker when a new bundle is dis-
covered. In this method a specialized HttpContext object is created that knows how to retrieve its
resources from the bundle that was just discovered. This context is registered with the Http Service. If
no header is found nul l is returned so that non-participating bundles are no longer tracked.

public Object addingBundle(Bundle bundle,
BundleEvent event) {
String header = bundle.getHeaders()

.get("Http-Mapper") + "";
Matcher match = HTTPMAPPER.matcher(header);
if (match.matches()) {

try {
ExtenderContext wrapper =

new ExtenderContext(bundle, match.group(1));
http.registerResources(

match.group(1), // alias
Page 460 OSGi Service Platform Release 4, Version 4.2

Tracker Specification Version 1.4 Bundle Tracker
match.group(2), // resource path
wrapper // the http context

);
return wrapper;

} catch (NamespaceException nspe) {
// error is handled in the fall through

}
}

 System.err.println(
 "Invalid header for Http-Mapper: " + header);

 return null;
}

The modif iedBundle method does not have to be implemented because this example is not interested
in state changes because the only state of interest is the ACTIVE state. Therefore, the remaining
method left to implement is the removedBundle method. If the wrapper object is non-null then we
need to unregister the alias to prevent collisions in the http namespace when the bundle is rein-
stalled or updated.

public void removedBundle(
Bundle bundle, BundleEvent event,
Object object) {

ExtenderContext wrapper = (ExtenderContext) object;
http.unregister(wrapper.alias);

}

The remaining methods would be unnecessary if the Extender class had extended the BundleTracker
class. The BundleTrackerCustomizer interface requires a dummy implementation of the
modif iedBundle method:

public void modifiedBundle(
Bundle bundle, BundleEvent event, Object object) {
// Nothing to do

}

It is usually not a good idea to start a tracker in a constructor because opening a service tracker will
immediately cause a number of callbacks for the existing bundles. If the Extender class was sub-
classed, then this could call back the uninitialized sub class methods. It is therefore better to separate
the initialization from the opening. There is therefore a need for an open and close method.

public void close() {
tracker.close();

}
public void open() {

tracker.open();
}

}

The previous example uses an HttpContext subclass that can retrieve resources from the target bun-
dle:

public class ExtenderContext implements HttpContext {
final Bundle bundle;
final String alias;

ExtenderContext(Bundle bundle, String alias) {
this.bundle = bundle;
this.alias = alias;

}

OSGi Service Platform Release 4, Version 4.2 Page 461

Security Tracker Specification Version 1.4
public boolean handleSecurity(
HttpServletRequest rq, HttpServletResponse rsp) {
return true;

}
public String getMimeType(String name) {

return null;
}
public URL getResource(String name) {

return bundle.getResource(name);
}

}

701.5 Security
A tracker contains a BundleContext instance variable that is accessible to the methods in a subclass.
A BundleContext object should never be given to other bundles because it is a capability. The frame-
work makes allocations based on the bundle context with respect to security and resource manage-
ment.

The tracker implementations do not have a method to get the BundleContext object, however, sub-
classes should be careful not to provide such a method if the tracker is given to other bundles.

The services that are being tracked are available via a ServiceTracker . These services are dependent
on the BundleContext as well. It is therefore necessary to do a careful security analysis when
ServiceTracker objects are given to other bundles. The same counts for the Bundle Tracker. It is
strongly advised to not pass trackers to other bundles.

701.5.1 Synchronous Bundle Listener
The Bundle Tracker uses the synchronous bundle listener because it is impossible to provide some of
the guarantees the Bundle Tracker provides without handling the events synchronously. Synchro-
nous events can block the complete system, therefore Synchronous Bundle Listeners require
AdminPermission[*,L ISTENER] . The wildcard * can be replaced with a specifier for the bundles that
should be visible to the Bundle Tracker. See Admin Permission on page 118 for more information.

Code that calls the open and close methods of Bundle Trackers must therefore have the appropriate
Admin Permission.

701.6 org.osgi.util.tracker
Tracker Package Version 1.4.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. For example:

Import-Package: org.osgi.util.tracker; version=”[1.4,2.0)”

701.6.1 Summary
• BundleTracker - The BundleTracker class simplifies tracking bundles much like the

ServiceTracker simplifies tracking services.
• BundleTrackerCustomizer - The BundleTrackerCustomizer interface allows a BundleTracker to cus-

tomize the Bundles that are tracked.
• ServiceTracker - The ServiceTracker class simplifies using services from the Framework’s service

registry.
Page 462 OSGi Service Platform Release 4, Version 4.2

Tracker Specification Version 1.4 org.osgi.util.tracker
• ServiceTrackerCustomizer - The ServiceTrackerCustomizer interface allows a ServiceTracker to
customize the service objects that are tracked.

BundleTracker

701.6.2 public class BundleTracker
implements BundleTrackerCustomizer
The BundleTracker class simplifies tracking bundles much like the ServiceTracker simplifies track-
ing services.

A BundleTracker is constructed with state criteria and a BundleTrackerCustomizer object. A
BundleTracker can use the BundleTrackerCustomizer to select which bundles are tracked and to cre-
ate a customized object to be tracked with the bundle. The BundleTracker can then be opened to
begin tracking all bundles whose state matches the specified state criteria.

The getBundles method can be called to get the Bundle objects of the bundles being tracked. The
getObject method can be called to get the customized object for a tracked bundle.

The BundleTracker class is thread-safe. It does not call a BundleTrackerCustomizer while holding
any locks. BundleTrackerCustomizer implementations must also be thread-safe.

Since 1.4

Concurrency Thread-safe
context

701.6.2.1 protected final BundleContext context

The Bundle Context used by this BundleTracker .
BundleTracker(BundleContext,int,BundleTrackerCustomizer)

701.6.2.2 public BundleTracker(BundleContext context, int stateMask, BundleTrackerCustomizer
customizer)

context The BundleContext against which the tracking is done.

stateMask The bit mask of the ORing of the bundle states to be tracked.

customizer The customizer object to call when bundles are added, modified, or removed in this BundleTracker . If
customizer is null , then this BundleTracker will be used as the BundleTrackerCustomizer and this
BundleTracker will call the BundleTrackerCustomizer methods on itself.

Create a BundleTracker for bundles whose state is present in the specified state mask.

Bundles whose state is present on the specified state mask will be tracked by this BundleTracker .

See Also Bundle.getState()
addingBundle(Bundle,BundleEvent)

701.6.2.3 public Object addingBundle(Bundle bundle, BundleEvent event)

bundle The Bundle being added to this BundleTracker object.

event The bundle event which caused this customizer method to be called or null if there is no bundle event
associated with the call to this method.

Default implementation of the BundleTrackerCustomizer .addingBundle method.

This method is only called when this BundleTracker has been constructed with a null
BundleTrackerCustomizer argument.

This implementation simply returns the specified Bundle .

This method can be overridden in a subclass to customize the object to be tracked for the bundle
being added.

Returns The specified bundle.

See Also BundleTrackerCustomizer.addingBundle(Bundle, BundleEvent)
close()
OSGi Service Platform Release 4, Version 4.2 Page 463

org.osgi.util.tracker Tracker Specification Version 1.4
701.6.2.4 public void close()

Close this BundleTracker .

This method should be called when this BundleTracker should end the tracking of bundles.

This implementation calls getBundles() to get the list of tracked bundles to remove.
getBundles()

701.6.2.5 public Bundle[] getBundles()

Return an array of Bundles for all bundles being tracked by this BundleTracker .

Returns An array of Bundles or nul l if no bundles are being tracked.
getObject(Bundle)

701.6.2.6 public Object getObject(Bundle bundle)

bundle The Bundle being tracked.

Returns the customized object for the specified Bundle if the specified bundle is being tracked by this
BundleTracker .

Returns The customized object for the specified Bundle or nul l if the specified Bundle is not being tracked.
getTrackingCount()

701.6.2.7 public int getTrackingCount()

Returns the tracking count for this BundleTracker . The tracking count is initialized to 0 when this
BundleTracker is opened. Every time a bundle is added, modified or removed from this
BundleTracker the tracking count is incremented.

The tracking count can be used to determine if this BundleTracker has added, modified or removed a
bundle by comparing a tracking count value previously collected with the current tracking count
value. If the value has not changed, then no bundle has been added, modified or removed from this
BundleTracker since the previous tracking count was collected.

Returns The tracking count for this BundleTracker or -1 if this BundleTracker is not open.
modifiedBundle(Bundle,BundleEvent,Object)

701.6.2.8 public void modifiedBundle(Bundle bundle, BundleEvent event, Object object)

bundle The Bundle whose state has been modified.

event The bundle event which caused this customizer method to be called or null if there is no bundle event
associated with the call to this method.

object The customized object for the specified Bundle.

Default implementation of the BundleTrackerCustomizer .modif iedBundle method.

This method is only called when this BundleTracker has been constructed with a null
BundleTrackerCustomizer argument.

This implementation does nothing.

See Also BundleTrackerCustomizer.modifiedBundle(Bundle, BundleEvent, Object)
open()

701.6.2.9 public void open()

Open this BundleTracker and begin tracking bundles.

Bundle which match the state criteria specified when this BundleTracker was created are now
tracked by this BundleTracker .

Throws IllegalStateException – If the BundleContext with which this BundleTracker was created is no
longer valid.

SecurityException – If the caller and this class do not have the appropriate
AdminPermission[context bundle,L ISTENER] , and the Java Runtime Environment supports permis-
sions.
remove(Bundle)
Page 464 OSGi Service Platform Release 4, Version 4.2

Tracker Specification Version 1.4 org.osgi.util.tracker
701.6.2.10 public void remove(Bundle bundle)

bundle The Bundle to be removed.

Remove a bundle from this BundleTracker . The specified bundle will be removed from this
BundleTracker . If the specified bundle was being tracked then the
BundleTrackerCustomizer .removedBundle method will be called for that bundle.
removedBundle(Bundle,BundleEvent,Object)

701.6.2.11 public void removedBundle(Bundle bundle, BundleEvent event, Object object)

bundle The Bundle being removed.

event The bundle event which caused this customizer method to be called or null if there is no bundle event
associated with the call to this method.

object The customized object for the specified bundle.

Default implementation of the BundleTrackerCustomizer .removedBundle method.

This method is only called when this BundleTracker has been constructed with a null
BundleTrackerCustomizer argument.

This implementation does nothing.

See Also BundleTrackerCustomizer.removedBundle(Bundle, BundleEvent, Object)
size()

701.6.2.12 public int size()

Return the number of bundles being tracked by this BundleTracker .

Returns The number of bundles being tracked.
BundleTrackerCustomizer

701.6.3 public interface BundleTrackerCustomizer
The BundleTrackerCustomizer interface allows a BundleTracker to customize the Bundles that are
tracked. A BundleTrackerCustomizer is called when a bundle is being added to a BundleTracker . The
BundleTrackerCustomizer can then return an object for the tracked bundle. A
BundleTrackerCustomizer is also called when a tracked bundle is modified or has been removed
from a BundleTracker .

The methods in this interface may be called as the result of a BundleEvent being received by a
BundleTracker . Since BundleEvents are received synchronously by the BundleTracker , it is highly
recommended that implementations of these methods do not alter bundle states while being syn-
chronized on any object.

The BundleTracker class is thread-safe. It does not call a BundleTrackerCustomizer while holding
any locks. BundleTrackerCustomizer implementations must also be thread-safe.

Since 1.4

Concurrency Thread-safe
addingBundle(Bundle,BundleEvent)

701.6.3.1 public Object addingBundle(Bundle bundle, BundleEvent event)

bundle The Bundle being added to the BundleTracker .

event The bundle event which caused this customizer method to be called or null if there is no bundle event
associated with the call to this method.

A bundle is being added to the BundleTracker .

This method is called before a bundle which matched the search parameters of the BundleTracker is
added to the BundleTracker . This method should return the object to be tracked for the specified
Bundle . The returned object is stored in the BundleTracker and is available from the getObject
method.
OSGi Service Platform Release 4, Version 4.2 Page 465

org.osgi.util.tracker Tracker Specification Version 1.4
Returns The object to be tracked for the specified Bundle object or null if the specified Bundle object should not
be tracked.
modifiedBundle(Bundle,BundleEvent,Object)

701.6.3.2 public void modifiedBundle(Bundle bundle, BundleEvent event, Object object)

bundle The Bundle whose state has been modified.

event The bundle event which caused this customizer method to be called or null if there is no bundle event
associated with the call to this method.

object The tracked object for the specified bundle.

A bundle tracked by the BundleTracker has been modified.

This method is called when a bundle being tracked by the BundleTracker has had its state modified.
removedBundle(Bundle,BundleEvent,Object)

701.6.3.3 public void removedBundle(Bundle bundle, BundleEvent event, Object object)

bundle The Bundle that has been removed.

event The bundle event which caused this customizer method to be called or null if there is no bundle event
associated with the call to this method.

object The tracked object for the specified bundle.

A bundle tracked by the BundleTracker has been removed.

This method is called after a bundle is no longer being tracked by the BundleTracker .
ServiceTracker

701.6.4 public class ServiceTracker
implements ServiceTrackerCustomizer
The ServiceTracker class simplifies using services from the Framework’s service registry.

A ServiceTracker object is constructed with search criteria and a ServiceTrackerCustomizer object.
A ServiceTracker can use a ServiceTrackerCustomizer to customize the service objects to be tracked.
The ServiceTracker can then be opened to begin tracking all services in the Framework’s service reg-
istry that match the specified search criteria. The ServiceTracker correctly handles all of the details
of listening to ServiceEvents and getting and ungetting services.

The getServ iceReferences method can be called to get references to the services being tracked. The
getService and getServices methods can be called to get the service objects for the tracked service.

The ServiceTracker class is thread-safe. It does not call a ServiceTrackerCustomizer while holding
any locks. ServiceTrackerCustomizer implementations must also be thread-safe.

Concurrency Thread-safe
context

701.6.4.1 protected final BundleContext context

The Bundle Context used by this ServiceTracker .
filter

701.6.4.2 protected final Filter filter

The Filter used by this ServiceTracker which specifies the search criteria for the services to track.

Since 1.1
ServiceTracker(BundleContext,ServiceReference,ServiceTrackerCustomizer)

701.6.4.3 public ServiceTracker(BundleContext context, ServiceReference reference,
ServiceTrackerCustomizer customizer)

context The BundleContext against which the tracking is done.

reference The ServiceReference for the service to be tracked.
Page 466 OSGi Service Platform Release 4, Version 4.2

Tracker Specification Version 1.4 org.osgi.util.tracker
customizer The customizer object to call when services are added, modified, or removed in this ServiceTracker . If
customizer is null , then this ServiceTracker will be used as the ServiceTrackerCustomizer and this
ServiceTracker will call the ServiceTrackerCustomizer methods on itself.

Create a ServiceTracker on the specified ServiceReference .

The service referenced by the specified ServiceReference will be tracked by this ServiceTracker .
ServiceTracker(BundleContext,String,ServiceTrackerCustomizer)

701.6.4.4 public ServiceTracker(BundleContext context, String clazz, ServiceTrackerCustomizer
customizer)

context The BundleContext against which the tracking is done.

clazz The class name of the services to be tracked.

customizer The customizer object to call when services are added, modified, or removed in this ServiceTracker . If
customizer is null , then this ServiceTracker will be used as the ServiceTrackerCustomizer and this
ServiceTracker will call the ServiceTrackerCustomizer methods on itself.

Create a ServiceTracker on the specified class name.

Services registered under the specified class name will be tracked by this ServiceTracker .
ServiceTracker(BundleContext,Filter,ServiceTrackerCustomizer)

701.6.4.5 public ServiceTracker(BundleContext context, Filter filter, ServiceTrackerCustomizer
customizer)

context The BundleContext against which the tracking is done.

filter The Fi lter to select the services to be tracked.

customizer The customizer object to call when services are added, modified, or removed in this ServiceTracker . If
customizer is null, then this ServiceTracker will be used as the ServiceTrackerCustomizer and this
ServiceTracker will call the ServiceTrackerCustomizer methods on itself.

Create a ServiceTracker on the specified Fi lter object.

Services which match the specified Fi lter object will be tracked by this ServiceTracker .

Since 1.1
addingService(ServiceReference)

701.6.4.6 public Object addingService(ServiceReference reference)

reference The reference to the service being added to this ServiceTracker .

Default implementation of the ServiceTrackerCustomizer.addingService method.

This method is only called when this ServiceTracker has been constructed with a null
Serv iceTrackerCustomizer argument.

This implementation returns the result of calling getService on the BundleContext with which this
ServiceTracker was created passing the specified ServiceReference .

This method can be overridden in a subclass to customize the service object to be tracked for the ser-
vice being added. In that case, take care not to rely on the default implementation of removedService
to unget the service.

Returns The service object to be tracked for the service added to this ServiceTracker .

See Also ServiceTrackerCustomizer.addingService(ServiceReference)
close()

701.6.4.7 public void close()

Close this ServiceTracker .

This method should be called when this ServiceTracker should end the tracking of services.

This implementation calls getServiceReferences() to get the list of tracked services to remove.
getService(ServiceReference)
OSGi Service Platform Release 4, Version 4.2 Page 467

org.osgi.util.tracker Tracker Specification Version 1.4
701.6.4.8 public Object getService(ServiceReference reference)

reference The reference to the desired service.

Returns the service object for the specified ServiceReference if the specified referenced service is
being tracked by this ServiceTracker .

Returns A service object or nul l if the service referenced by the specified ServiceReference is not being tracked.
getService()

701.6.4.9 public Object getService()

Returns a service object for one of the services being tracked by this ServiceTracker .

If any services are being tracked, this implementation returns the result of calling
getService(getServiceReference()) .

Returns A service object or null if no services are being tracked.
getServiceReference()

701.6.4.10 public ServiceReference getServiceReference()

Returns a ServiceReference for one of the services being tracked by this ServiceTracker .

If multiple services are being tracked, the service with the highest ranking (as specified in its
service.ranking property) is returned. If there is a tie in ranking, the service with the lowest service
ID (as specified in its service. id property); that is, the service that was registered first is returned. This
is the same algorithm used by BundleContext.getServiceReference .

This implementation calls getServ iceReferences() to get the list of references for the tracked ser-
vices.

Returns A ServiceReference or nul l if no services are being tracked.

Since 1.1
getServiceReferences()

701.6.4.11 public ServiceReference[] getServiceReferences()

Return an array of ServiceReferences for all services being tracked by this ServiceTracker .

Returns Array of ServiceReferences or nul l if no services are being tracked.
getServices()

701.6.4.12 public Object[] getServices()

Return an array of service objects for all services being tracked by this ServiceTracker .

This implementation calls getServ iceReferences() to get the list of references for the tracked ser-
vices and then calls getService(Serv iceReference) for each reference to get the tracked service
object.

Returns An array of service objects or nul l if no services are being tracked.
getTrackingCount()

701.6.4.13 public int getTrackingCount()

Returns the tracking count for this ServiceTracker . The tracking count is initialized to 0 when this
ServiceTracker is opened. Every time a service is added, modified or removed from this
ServiceTracker , the tracking count is incremented.

The tracking count can be used to determine if this ServiceTracker has added, modified or removed a
service by comparing a tracking count value previously collected with the current tracking count
value. If the value has not changed, then no service has been added, modified or removed from this
ServiceTracker since the previous tracking count was collected.

Returns The tracking count for this ServiceTracker or -1 if this ServiceTracker is not open.

Since 1.2
modifiedService(ServiceReference,Object)

701.6.4.14 public void modifiedService(ServiceReference reference, Object service)

reference The reference to modified service.

service The service object for the modified service.
Page 468 OSGi Service Platform Release 4, Version 4.2

Tracker Specification Version 1.4 org.osgi.util.tracker
Default implementation of the ServiceTrackerCustomizer .modif iedService method.

This method is only called when this ServiceTracker has been constructed with a null
Serv iceTrackerCustomizer argument.

This implementation does nothing.

See Also ServiceTrackerCustomizer.modifiedService(ServiceReference, Object)
open()

701.6.4.15 public void open()

Open this ServiceTracker and begin tracking services.

This implementation calls open(false) .

Throws IllegalStateException – If the BundleContext with which this ServiceTracker was created is no
longer valid.

See Also open(boolean)
open(boolean)

701.6.4.16 public void open(boolean trackAllServices)

trackAllServices If true , then this ServiceTracker will track all matching services regardless of class loader accessibility.
If false , then this ServiceTracker will only track matching services which are class loader accessible
to the bundle whose BundleContext is used by this ServiceTracker .

Open this ServiceTracker and begin tracking services.

Services which match the search criteria specified when this ServiceTracker was created are now
tracked by this ServiceTracker .

Throws IllegalStateException – If the BundleContext with which this ServiceTracker was created is no
longer valid.

Since 1.3
remove(ServiceReference)

701.6.4.17 public void remove(ServiceReference reference)

reference The reference to the service to be removed.

Remove a service from this ServiceTracker . The specified service will be removed from this
ServiceTracker . If the specified service was being tracked then the
ServiceTrackerCustomizer. removedService method will be called for that service.
removedService(ServiceReference,Object)

701.6.4.18 public void removedService(ServiceReference reference, Object service)

reference The reference to removed service.

service The service object for the removed service.

Default implementation of the ServiceTrackerCustomizer.removedService method.

This method is only called when this ServiceTracker has been constructed with a null
Serv iceTrackerCustomizer argument.

This implementation calls ungetService , on the BundleContext with which this ServiceTracker was
created, passing the specified ServiceReference .

This method can be overridden in a subclass. If the default implementation of addingService method
was used, this method must unget the service.

See Also ServiceTrackerCustomizer.removedService(ServiceReference, Object)
size()

701.6.4.19 public int size()

Return the number of services being tracked by this ServiceTracker .

Returns The number of services being tracked.
waitForService(long)
OSGi Service Platform Release 4, Version 4.2 Page 469

org.osgi.util.tracker Tracker Specification Version 1.4
701.6.4.20 public Object waitForService(long timeout) throws InterruptedException

timeout The time interval in milliseconds to wait. If zero, the method will wait indefinitely.

Wait for at least one service to be tracked by this ServiceTracker . This method will also return when
this ServiceTracker is closed.

It is strongly recommended that waitForService is not used during the calling of the BundleActivator
methods. BundleActivator methods are expected to complete in a short period of time.

This implementation calls getService() to determine if a service is being tracked.

Returns Returns the result of getService() .

Throws InterruptedException – If another thread has interrupted the current thread.

IllegalArgumentException – If the value of timeout is negative.
ServiceTrackerCustomizer

701.6.5 public interface ServiceTrackerCustomizer
The ServiceTrackerCustomizer interface allows a ServiceTracker to customize the service objects
that are tracked. A ServiceTrackerCustomizer is called when a service is being added to a
ServiceTracker . The ServiceTrackerCustomizer can then return an object for the tracked service. A
ServiceTrackerCustomizer is also called when a tracked service is modified or has been removed
from a ServiceTracker .

The methods in this interface may be called as the result of a ServiceEvent being received by a
ServiceTracker . Since ServiceEvents are synchronously delivered by the Framework, it is highly rec-
ommended that implementations of these methods do not register (BundleContext. registerService),
modify (ServiceRegistrat ion.setPropert ies) or unregister (ServiceRegistrat ion.unregister) a service
while being synchronized on any object.

The ServiceTracker class is thread-safe. It does not call a ServiceTrackerCustomizer while holding
any locks. ServiceTrackerCustomizer implementations must also be thread-safe.

Concurrency Thread-safe
addingService(ServiceReference)

701.6.5.1 public Object addingService(ServiceReference reference)

reference The reference to the service being added to the ServiceTracker .

A service is being added to the ServiceTracker .

This method is called before a service which matched the search parameters of the ServiceTracker is
added to the ServiceTracker . This method should return the service object to be tracked for the speci-
fied ServiceReference . The returned service object is stored in the ServiceTracker and is available
from the getService and getServices methods.

Returns The service object to be tracked for the specified referenced service or nul l if the specified referenced
service should not be tracked.
modifiedService(ServiceReference,Object)

701.6.5.2 public void modifiedService(ServiceReference reference, Object service)

reference The reference to the service that has been modified.

service The service object for the specified referenced service.

A service tracked by the ServiceTracker has been modified.

This method is called when a service being tracked by the ServiceTracker has had it properties modi-
fied.
removedService(ServiceReference,Object)

701.6.5.3 public void removedService(ServiceReference reference, Object service)

reference The reference to the service that has been removed.

service The service object for the specified referenced service.
Page 470 OSGi Service Platform Release 4, Version 4.2

Tracker Specification Version 1.4 org.osgi.util.tracker
A service tracked by the ServiceTracker has been removed.

This method is called after a service is no longer being tracked by the ServiceTracker .
OSGi Service Platform Release 4, Version 4.2 Page 471

org.osgi.util.tracker Tracker Specification Version 1.4
Page 472 OSGi Service Platform Release 4, Version 4.2

XML Parser Service Specification Version 1.0 Introduction
702 XML Parser Service
Specification
Version 1.0

702.1 Introduction
The Extensible Markup Language (XML) has become a popular method of describing data. As more
bundles use XML to describe their data, a common XML Parser becomes necessary in an embedded
environment in order to reduce the need for space. Not all XML Parsers are equivalent in function,
however, and not all bundles have the same requirements on an XML parser.

This problem was addressed in the Java API for XML Processing, see [4] JAXP for Java 2 Standard Edi-
tion and Enterprise Edition. This specification addresses how the classes defined in JAXP can be used
in an OSGi Service Platform. It defines how:

• Implementations of XML parsers can become available to other bundles
• Bundles can find a suitable parser
• A standard parser in a JAR can be transformed to a bundle

702.1.1 Essentials
• Standards – Leverage existing standards in Java based XML parsing: JAXP, SAX and DOM
• Unmodified JAXP code – Run unmodified JAXP code
• Simple – It should be easy to provide a SAX or DOM parser as well as easy to find a matching parser
• Multiple – It should be possible to have multiple implementations of parsers available
• Extendable – It is likely that parsers will be extended in the future with more functionality

702.1.2 Entities
• XMLParserActivator – A utility class that registers a parser factory from declarative information in

the Manifest file.
• SAXParserFactory – A class that can create an instance of a SAXParser class.
• DocumentBuilderFactory – A class that can create an instance of a DocumentBui lder class.
• SAXParser – A parser, instantiated by a SaxParserFactory object, that parses according to the SAX

specifications.
• DocumentBuilder – A parser, instantiated by a DocumentBui lderFactory , that parses according to

the DOM specifications.
OSGi Service Platform Release 4, Version 4.2 Page 473

JAXP XML Parser Service Specification Version 1.0
Figure 702.1 XML Parsing diagram

702.1.3 Operations
A bundle containing a SAX or DOM parser is started. This bundle registers a SAXParserFactory and/or
a DocumentBui lderFactory service object with the Framework. Service registration properties
describe the features of the parsers to other bundles. A bundle that needs an XML parser will get a
SAXParserFactory or DocumentBuilderFactory service object from the Framework service registry.
This object is then used to instantiate the requested parsers according to their specifications.

702.2 JAXP
XML has become very popular in the last few years because it allows the interchange of complex
information between different parties. Though only a single XML standard exists, there are multiple
APIs to XML parsers, primarily of two types:

• The Simple API for XML (SAX1 and SAX2)
• Based on the Document Object Model (DOM 1 and 2)

Both standards, however, define an abstract API that can be implemented by different vendors.

A given XML Parser implementation may support either or both of these parser types by implement-
ing the org.w3c.dom and/or org.xml.sax packages. In addition, parsers have characteristics such as
whether they are validating or non-validating parsers and whether or not they are name-space aware.

An application which uses a specific XML Parser must code to that specific parser and become cou-
pled to that specific implementation. If the parser has implemented [4] JAXP, however, the applica-
tion developer can code against SAX or DOM and let the runtime environment decide which parser
implementation is used.

JAXP uses the concept of a factory. A factory object is an object that abstracts the creation of another
object. JAXP defines a DocumentBui lderFactory and a SAXParserFactory class for this purpose.

SAXParser
Factory

Document
Builder
Factory

XMLParser
Activator

SAXParser
user

Document
Builder user

Subclass impl.

SAXParser Document
Builder

Document Builder
impl.

SAXParser impl.

parses withparses with

registered by registered by

instantiatesinstant. by

reads bundle META-INF
Parser Implementation
Bundle

getsgets

0..* 0..*

0..*0..*

0..* 0..*

0..*0..*

0,1 0,1

0,10,1

0..* 1 0..*1
Page 474 OSGi Service Platform Release 4, Version 4.2

XML Parser Service Specification Version 1.0 XML Parser service
JAXP is implemented in the javax.xml.parsers package and provides an abstraction layer between an
application and a specific XML Parser implementation. Using JAXP, applications can choose to use
any JAXP compliant parser without changing any code, simply by changing a System property which
specifies the SAX- and DOM factory class names.

In JAXP, the default factory is obtained with a static method in the SAXParserFactory or
DocumentBui lderFactory class. This method will inspect the associated System property and create a
new instance of that class.

702.3 XML Parser service
The current specification of JAXP has the limitation that only one of each type of parser factories can
be registered. This specification specifies how multiple SAXParserFactory objects and
DocumentBui lderFactory objects can be made available to bundles simultaneously.

Providers of parsers should register a JAXP factory object with the OSGi service registry under the fac-
tory class name. Service properties are used to describe whether the parser:

• Is validating
• Is name-space aware
• Has additional features

With this functionality, bundles can query the OSGi service registry for parsers supporting the spe-
cific functionality that they require.

702.4 Properties
Parsers must be registered with a number of properties that qualify the service. In this specification,
the following properties are specified:

• PARSER_NAMESPACEAWARE – The registered parser is aware of name-spaces. Name-spaces allow
an XML document to consist of independently developed DTDs. In an XML document, they are
recognized by the xmlns attribute and names prefixed with an abbreviated name-space identifier,
like: <xsl : i f . . .> . The type is a Boolean object that must be true when the parser supports name-
spaces. All other values, or the absence of the property, indicate that the parser does not
implement name-spaces.

• PARSER_VALIDATING – The registered parser can read the DTD and can validate the XML accord-
ingly. The type is a Boolean object that must true when the parser is validating. All other values,
or the absence of the property, indicate that the parser does not validate.

702.5 Getting a Parser Factory
Getting a parser factory requires a bundle to get the appropriate factory from the service registry. In a
simple case in which a non-validating, non-name-space aware parser would suffice, it is best to use
getServiceReference(Str ing) .

DocumentBui lder getParser(BundleContext context)
throws Exception {
Serv iceReference ref = context.getServiceReference(

DocumentBui lderFactory.c lass.getName()) ;
if (ref == null)

return null;
DocumentBuilderFactory factory =

(DocumentBuilderFactory) context.getService(ref);
return factory.newDocumentBuilder();

}

OSGi Service Platform Release 4, Version 4.2 Page 475

Adapting a JAXP Parser to OSGi XML Parser Service Specification Version 1.0
In a more demanding case, the filtered version allows the bundle to select a parser that is validating
and name-space aware:

SAXParser getParser(BundleContext context)
throws Exception {
Serv iceReference refs[] = context.getServiceReferences(

SAXParserFactory.class .getName(),
"(&(parser.namespaceAware=true)"

+ "(parser .val idat ing=true))") ;
if (refs == null)

return null;
SAXParserFactory factory =

(SAXParserFactory) context.getService(refs[O]);
return factory.newSAXParser();

}

702.6 Adapting a JAXP Parser to OSGi
If an XML Parser supports JAXP, then it can be converted to an OSGi aware bundle by adding a
BundleActivator class which registers an XML Parser Service. The utility
org.osgi .ut i l .xml.XMLParserActivator class provides this function and can be added (copied, not ref-
erenced) to any XML Parser bundle, or it can be extended and customized if desired.

702.6.1 JAR Based Services
Its functionality is based on the definition of the [5] JAR File specification, services directory. This specifi-
cation defines a concept for service providers. A JAR file can contain an implementation of an
abstractly defined service. The class (or classes) implementing the service are designated from a file in
the META-INF/services directory. The name of this file is the same as the abstract service class.

The content of the UTF-8 encoded file is a list of class names separated by new lines. White space is
ignored and the number sign (’#’ or \u0023) is the comment character.

JAXP uses this service provider mechanism. It is therefore likely that vendors will place these service
files in the META-INF/services directory.

702.6.2 XMLParserActivator
To support this mechanism, the XML Parser service provides a utility class that should be normally
delivered with the OSGi Service Platform implementation. This class is a Bundle Activator and must
start when the bundle is started. This class is copied into the parser bundle, and not imported.

The start method of the utility BundleActivator class will look in the META-INF/services service pro-
vider directory for the files javax.xml.parsers.SAXParserFactory (SAXFACTORYNAME) or
javax.xml.parsers.DocumentBui lderFactory (DOMFACTORYNAME). The full path name is specified
in the constants SAXCLASSFILE and DOMCLASSFILE respectively.

If either of these files exist, the utility BundleActivator class will parse the contents according to the
specification. A service provider file can contain multiple class names. Each name is read and a new
instance is created. The following example shows the possible content of such a file:

ACME example SAXParserFactory file
com.acme.saxparser.SAXParserFast # Fast
com.acme.saxparser.SAXParserValidating # Validates
Page 476 OSGi Service Platform Release 4, Version 4.2

XML Parser Service Specification Version 1.0 Usage of JAXP
Both the javax.xml.parsers.SAXParserFactory and the javax.xml.parsers.DocumentBui lderFactory
provide methods that describe the features of the parsers they can create. The XMLParserAct ivator
activator will use these methods to set the values of the properties, as defined in Properties on page
475, that describe the instances.

702.6.3 Adapting an Existing JAXP Compatible Parser
 To incorporate this bundle activator into a XML Parser Bundle, do the following:

• If SAX parsing is supported, create a /META-INF/services/ javax.xml.parsers .SAXParserFactory
resource file containing the class names of the SAXParserFactory classes.

• If DOM parsing is supported, create a /META-INF/services/
javax.xml.parsers .DocumentBui lderFactory file containing the fully qualified class names of the
DocumentBui lderFactory classes.

• Create manifest file which imports the packages org.w3c.dom , org.xml.sax , and
javax.xml.parsers .

• Add a Bundle-Activator header to the manifest pointing to the XMLParserAct ivator , the sub-class
that was created, or a fully custom one.

• If the parsers support attributes, properties, or features that should be registered as properties so
they can be searched, extend the XMLParserAct ivator class and override setSAXProp-
ert ies(javax.xml.parsers.SAXParserFactory,Hashtable) and setDOMProp-
ert ies(javax.xml.parsers .DocumentBui lderFactory,Hashtable) .

• Ensure that custom properties are put into the Hashtable object. JAXP does not provide a way for
XMLParserAct ivator to query the parser to find out what properties were added.

• Bundles that extend the XMLParserAct ivator class must call the original methods via super to cor-
rectly initialize the XML Parser Service properties.

• Compile this class into the bundle.
• Install the new XML Parser Service bundle.
• Ensure that the org.osgi .ut i l .xml.XMLParserActivator class is contained in the bundle.

702.7 Usage of JAXP
A single bundle should export the JAXP, SAX, and DOM APIs. The version of contained packages
must be appropriately labeled. JAXP 1.1 or later is required which references SAX 2 and DOM 2. See [4]
JAXP for the exact version dependencies.

This specification is related to related packages as defined in the JAXP 1.1 document. Table 702.1 con-

tains the expected minimum versions.

The Xerces project from the Apache group, [6] Xerces 2 Java Parser, contains a number libraries that
implement the necessary APIs. These libraries can be wrapped in a bundle to provide the relevant
packages.

Table 702.1 JAXP 1.1 minimum package versions

Package Minimum Version

javax.xml.parsers 1.1

org.xml.sax 2.0

org.xml.sax.helpers 2.0

org.xsml.sax.ext 1.0

org.w3c.dom 2.0
OSGi Service Platform Release 4, Version 4.2 Page 477

Security XML Parser Service Specification Version 1.0
702.8 Security
A centralized XML parser is likely to see sensitive information from other bundles. Provisioning an
XML parser should therefore be limited to trusted bundles. This security can be achieved by provid-
ing ServicePermission[javax.xml.parsers .DocumentBui lderFactory | javax.xml.parsers .SAXFactory,
REGISTER] to only trusted bundles.

Using an XML parser is a common function, and
ServicePermiss ion[javax.xml.parsers .DOMParserFactory | javax.xml.parsers.SAXFactory, GET]
should not be restricted.

The XML parser bundle will need Fi lePermission[<<ALL FILES>>,READ] for parsing of files because it
is not known beforehand where those files will be located. This requirement further implies that the
XML parser is a system bundle that must be fully trusted.

702.9 org.osgi.util.xml
XML Parser Package Version 1.0.

Bundles wishing to use this package must list the package in the Import-Package header of the bun-
dle’s manifest. For example:

Import-Package: org.osgi.util.xml; version=”[1.0,2.0)”
XMLParserActivator

702.9.1 public class XMLParserActivator
implements BundleActivator , ServiceFactory
A BundleActivator class that allows any JAXP compliant XML Parser to register itself as an OSGi
parser service. Multiple JAXP compliant parsers can concurrently register by using this BundleActi-
vator class. Bundles who wish to use an XML parser can then use the framework’s service registry to
locate available XML Parsers with the desired characteristics such as validating and namespace-
aware.

The services that this bundle activator enables a bundle to provide are:

• javax.xml.parsers.SAXParserFactory(SAXFACTORYNAME)
• javax.xml.parsers.DocumentBui lderFactory(DOMFACTORYNAME)

The algorithm to find the implementations of the abstract parsers is derived from the JAR file specifi-
cations, specifically the Services API.

An XMLParserActivator assumes that it can find the class file names of the factory classes in the fol-
lowing files:

• /META-INF/services/ javax.xml.parsers .SAXParserFactory is a file contained in a jar available to
the runtime which contains the implementation class name(s) of the SAXParserFactory.

• /META-INF/services/ javax.xml.parsers .DocumentBui lderFactory is a file contained in a jar
available to the runtime which contains the implementation class name(s) of the
DocumentBui lderFactory

If either of the files does not exist, XMLParserActivator assumes that the parser does not support that
parser type.

XMLParserAct ivator attempts to instantiate both the SAXParserFactory and the
DocumentBui lderFactory . It registers each factory with the framework along with service properties:

• PARSER_VALIDATING- indicates if this factory supports validating parsers. It’s value is a Boolean .
• PARSER_NAMESPACEAWARE- indicates if this factory supports namespace aware parsers It’s value

is a Boolean .
Page 478 OSGi Service Platform Release 4, Version 4.2

XML Parser Service Specification Version 1.0 org.osgi.util.xml
Individual parser implementations may have additional features, properties, or attributes which
could be used to select a parser with a filter. These can be added by extending this class and overrid-
ing the setSAXPropert ies and setDOMPropert ies methods.

Concurrency Thread-safe
DOMCLASSFILE

702.9.1.1 public static final String DOMCLASSFILE = “/META-INF/services/
javax.xml.parsers.DocumentBuilderFactory”

Fully qualified path name of DOM Parser Factory Class Name file
DOMFACTORYNAME

702.9.1.2 public static final String DOMFACTORYNAME = “javax.xml.parsers.DocumentBuilderFactory”

Filename containing the DOM Parser Factory Class name. Also used as the basis for the SERVICE_PID
registration property.
PARSER_NAMESPACEAWARE

702.9.1.3 public static final String PARSER_NAMESPACEAWARE = “parser.namespaceAware”

Service property specifying if factory is configured to support namespace aware parsers. The value is
of type Boolean .
PARSER_VALIDATING

702.9.1.4 public static final String PARSER_VALIDATING = “parser.validating”

Service property specifying if factory is configured to support validating parsers. The value is of type
Boolean .
SAXCLASSFILE

702.9.1.5 public static final String SAXCLASSFILE = “/META-INF/services/
javax.xml.parsers.SAXParserFactory”

Fully qualified path name of SAX Parser Factory Class Name file
SAXFACTORYNAME

702.9.1.6 public static final String SAXFACTORYNAME = “javax.xml.parsers.SAXParserFactory”

Filename containing the SAX Parser Factory Class name. Also used as the basis for the SERVICE_PID
registration property.
XMLParserActivator()

702.9.1.7 public XMLParserActivator()
getService(Bundle,ServiceRegistration)

702.9.1.8 public Object getService(Bundle bundle, ServiceRegistration registration)

bundle The bundle using the service.

registration The ServiceRegistrat ion object for the service.

Creates a new XML Parser Factory object.

A unique XML Parser Factory object is returned for each call to this method.

The returned XML Parser Factory object will be configured for validating and namespace aware sup-
port as specified in the service properties of the specified ServiceRegistration object. This method can
be overridden to configure additional features in the returned XML Parser Factory object.

Returns A new, configured XML Parser Factory object or null if a configuration error was encountered
setDOMProperties(javax.xml.parsers.DocumentBuilderFactory,Hashtable)

702.9.1.9 public void setDOMProperties(DocumentBuilderFactory factory, Hashtable props)

factory - the DocumentBuilderFactory object

props - Hashtable of service properties.

Set the customizable DOM Parser Service Properties.

This method attempts to instantiate a validating parser and a namespace aware parser to determine if
the parser can support those features. The appropriate properties are then set in the specified props
object.
OSGi Service Platform Release 4, Version 4.2 Page 479

References XML Parser Service Specification Version 1.0
This method can be overridden to add additional DOM2 features and properties. If you want to be
able to filter searches of the OSGi service registry, this method must put a key, value pair into the
properties object for each feature or property. For example, properties.put(”http://www.acme.com/
features/foo”, Boolean.TRUE);
setSAXProperties(javax.xml.parsers.SAXParserFactory,Hashtable)

702.9.1.10 public void setSAXProperties(SAXParserFactory factory, Hashtable properties)

factory - the SAXParserFactory object

properties - the properties object for the service

Set the customizable SAX Parser Service Properties.

This method attempts to instantiate a validating parser and a namespace aware parser to determine if
the parser can support those features. The appropriate properties are then set in the specified proper-
ties object.

This method can be overridden to add additional SAX2 features and properties. If you want to be able
to filter searches of the OSGi service registry, this method must put a key, value pair into the proper-
ties object for each feature or property. For example, properties.put(”http://www.acme.com/features/
foo”, Boolean.TRUE);
start(BundleContext)

702.9.1.11 public void start(BundleContext context) throws Exception

context The execution context of the bundle being started.

Called when this bundle is started so the Framework can perform the bundle-specific activities neces-
sary to start this bundle. This method can be used to register services or to allocate any resources that
this bundle needs.

This method must complete and return to its caller in a timely manner.

This method attempts to register a SAX and DOM parser with the Framework’s service registry.

Throws Exception – If this method throws an exception, this bundle is marked as stopped and the Framework
will remove this bundle’s listeners, unregister all services registered by this bundle, and release all
services used by this bundle.
stop(BundleContext)

702.9.1.12 public void stop(BundleContext context) throws Exception

context The execution context of the bundle being stopped.

This method has nothing to do as all active service registrations will automatically get unregistered
when the bundle stops.

Throws Exception – If this method throws an exception, the bundle is still marked as stopped, and the Frame-
work will remove the bundle’s listeners, unregister all services registered by the bundle, and release
all services used by the bundle.
ungetService(Bundle,ServiceRegistration,Object)

702.9.1.13 public void ungetService(Bundle bundle, ServiceRegistration registration, Object service)

bundle The bundle releasing the service.

registration The ServiceRegistration object for the service.

service The XML Parser Factory object returned by a previous call to the getService method.

Releases a XML Parser Factory object.

702.10 References
[1] XML

http://www.w3.org/XML
Page 480 OSGi Service Platform Release 4, Version 4.2

XML Parser Service Specification Version 1.0 References
[2] SAX
http://www.saxproject.org/

[3] DOM Java Language Binding
http://www.w3.org/TR/REC-DOM-Level-1/java-language-binding.html

[4] JAXP
http://java.sun.com/xml/jaxp

[5] JAR File specification, services directory
http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html

[6] Xerces 2 Java Parser
http://xml.apache.org/xerces2-j
OSGi Service Platform Release 4, Version 4.2 Page 481

References XML Parser Service Specification Version 1.0
Page 482 OSGi Service Platform Release 4, Version 4.2

OSGi Service Platform Release 4, Version 4.2 Page 483

Page 484 OSGi Service Platform Release 4, Version 4.2

End Of Document

	Table Of Contents
	1 Introduction
	1.1 Overview of Services
	1.1.1 Component Models
	1.1.2 Distributed Services
	1.1.3 Web Applications and HTTP Servlets
	1.1.4 Event models
	1.1.5 Management and Configuration services
	1.1.6 Naming and Directory services
	1.1.7 Database Access
	1.1.8 Transaction Support
	1.1.9 Miscellaneous Supporting Services

	1.2 Reader Level
	1.3 Version Information
	1.3.1 Note

	1.4 References

	13 Remote Services
	13.1 The Fallacies
	13.2 Remote Service Properties
	13.2.1 Registering a Service for Export
	13.2.2 Getting an Imported Service
	13.2.3 On Demand Import

	13.3 Intents
	13.4 General Usage
	13.4.1 Call by Value
	13.4.2 Data Fencing
	13.4.3 Remote Services Life Cycle
	13.4.4 Runtime
	13.4.5 Exceptions

	13.5 Configuration Types
	13.5.1 Configuration Type Properties
	13.5.2 Dependencies

	13.6 Security
	13.6.1 Limiting Exports and Imports

	13.7 Changes
	13.8 References

	101 Log Service Specification
	101.1 Introduction
	101.1.1 Entities

	101.2 The Log Service Interface
	101.3 Log Level and Error Severity
	101.4 Log Reader Service
	101.5 Log Entry Interface
	101.6 Mapping of Events
	101.6.1 Bundle Events Mapping
	101.6.2 Service Events Mapping
	101.6.3 Framework Events Mapping
	101.6.4 Log Events

	101.7 Security
	101.8 org.osgi.service.log
	101.8.1 Summary
	101.8.2 public interface LogEntry
	101.8.3 public interface LogListener extends EventListener
	101.8.4 public interface LogReaderService
	101.8.5 public interface LogService

	102 Http Service Specification
	102.1 Introduction
	102.1.1 Entities

	102.2 Registering Servlets
	102.3 Registering Resources
	102.4 Mapping HTTP Requests to Servlet and Resource Registrations
	102.5 The Default Http Context Object
	102.6 Multipurpose Internet Mail Extension (MIME) Types
	102.7 Authentication
	102.8 Security
	102.8.1 Accessing Resources in Bundles
	102.8.2 Accessing Other Types of Resources

	102.9 Configuration Properties
	102.10 org.osgi.service.http
	102.10.1 Summary
	102.10.2 public interface HttpContext
	102.10.3 public interface HttpService
	102.10.4 public class NamespaceException extends Exception

	102.11 References

	104 Configuration Admin Service Specification
	104.1 Introduction
	104.1.1 Essentials
	104.1.2 Operation
	104.1.3 Entities

	104.2 Configuration Targets
	104.3 The Persistent Identity
	104.3.1 PID Syntax

	104.4 The Configuration Object
	104.4.1 Location Binding
	104.4.2 Configuration Properties
	104.4.3 Property Propagation
	104.4.4 Automatic Properties
	104.4.5 Equality

	104.5 Managed Service
	104.5.1 Singletons
	104.5.2 Networks
	104.5.3 Configuring Managed Services
	104.5.4 Race Conditions
	104.5.5 Examples of Managed Service
	104.5.6 Deletion

	104.6 Managed Service Factory
	104.6.1 When to Use a Managed Service Factory
	104.6.2 Registration
	104.6.3 Deletion
	104.6.4 Managed Service Factory Example
	104.6.5 Multiple Consoles Example

	104.7 Configuration Admin Service
	104.7.1 Creating a Managed Service Configuration Object
	104.7.2 Creating a Managed Service Factory Configuration Object
	104.7.3 Accessing Existing Configurations
	104.7.4 Deletion
	104.7.5 Updating a Bundle’s Own Configuration

	104.8 Configuration Events
	104.8.1 Event Admin Service and Configuration Change Events

	104.9 Configuration Plugin
	104.9.1 Limiting The Targets
	104.9.2 Example of Property Expansion
	104.9.3 Configuration Data Modifications
	104.9.4 Forcing a Callback
	104.9.5 Calling Order

	104.10 Remote Management
	104.10.1 Common Information Model
	104.10.2 Simple Network Management Protocol

	104.11 Meta Typing
	104.12 Security
	104.12.1 Configuration Permission
	104.12.2 Permissions Summary
	104.12.3 Forging PIDs
	104.12.4 Configuration and Permission Administration

	104.13 Configurable Service
	104.14 org.osgi.service.cm
	104.14.1 Summary
	104.14.2 public interface Configuration
	104.14.3 public interface ConfigurationAdmin
	104.14.4 public class ConfigurationEvent
	104.14.5 public class ConfigurationException extends Exception
	104.14.6 public interface ConfigurationListener
	104.14.7 public final class ConfigurationPermission extends BasicPermission
	104.14.8 public interface ConfigurationPlugin
	104.14.9 public interface ManagedService
	104.14.10 public interface ManagedServiceFactory

	104.15 References

	105 Metatype Service Specification
	105.1 Introduction
	105.1.1 Essentials
	105.1.2 Entities
	105.1.3 Operation

	105.2 Attributes Model
	105.3 Object Class Definition
	105.4 Attribute Definition
	105.5 Meta Type Service
	105.6 Using the Meta Type Resources
	105.6.1 XML Schema of a Meta Type Resource
	105.6.2 Use of the Designate Element
	105.6.3 Example Metadata File

	105.7 Object
	105.8 XML Schema
	105.9 Limitations
	105.10 Related Standards
	105.11 Security Considerations
	105.12 org.osgi.service.metatype
	105.12.1 Summary
	105.12.2 public interface AttributeDefinition
	105.12.3 public interface MetaTypeInformation extends MetaTypeProvider
	105.12.4 public interface MetaTypeProvider
	105.12.5 public interface MetaTypeService
	105.12.6 public interface ObjectClassDefinition

	105.13 References

	107 User Admin Service Specification
	107.1 Introduction
	107.1.1 Essentials
	107.1.2 Entities
	107.1.3 Operation

	107.2 Authentication
	107.2.1 Repository
	107.2.2 Basic Authentication
	107.2.3 Certificates

	107.3 Authorization
	107.3.1 The Authorization Object
	107.3.2 Authorization Example

	107.4 Repository Maintenance
	107.5 User Admin Events
	107.5.1 Event Admin and User Admin Change Events

	107.6 Security
	107.6.1 UserAdminPermission

	107.7 Relation to JAAS
	107.7.1 JDK 1.3 Dependencies
	107.7.2 Existing OSGi Mechanism
	107.7.3 Future Road Map

	107.8 org.osgi.service.useradmin
	107.8.1 Summary
	107.8.2 public interface Authorization
	107.8.3 public interface Group extends User
	107.8.4 public interface Role
	107.8.5 public interface User extends Role
	107.8.6 public interface UserAdmin
	107.8.7 public class UserAdminEvent
	107.8.8 public interface UserAdminListener
	107.8.9 public final class UserAdminPermission extends BasicPermission

	107.9 References

	110 Initial Provisioning Specification
	110.1 Introduction
	110.1.1 Essentials
	110.1.2 Entities

	110.2 Procedure
	110.2.1 InitialProvisioning-Entries Manifest Header

	110.3 Special Configurations
	110.3.1 Branded Service Platform Server
	110.3.2 Non-connected Service Platform

	110.4 The Provisioning Service
	110.5 Management Agent Environment
	110.6 Mapping To File Scheme
	110.6.1 Example With File Scheme

	110.7 Mapping To HTTP(S) Scheme
	110.7.1 HTTPS Certificates
	110.7.2 Certificate Encoding
	110.7.3 URL Encoding

	110.8 Mapping To RSH Scheme
	110.8.1 Shared Secret
	110.8.2 Request Coding
	110.8.3 Response Coding
	110.8.4 RSH URL
	110.8.5 Extensions to the Provisioning Service Dictionary
	110.8.6 RSH Transport

	110.9 Exception Handling
	110.10 Security
	110.10.1 Concerns
	110.10.2 Service Platform Long-Term Security
	110.10.3 Permissions

	110.11 org.osgi.service.provisioning
	110.11.1 public interface ProvisioningService

	110.12 References

	112 Declarative Services Specification
	112.1 Introduction
	112.1.1 Essentials
	112.1.2 Entities
	112.1.3 Synopsis
	112.1.4 Readers

	112.2 Components
	112.2.1 Declaring a Component
	112.2.2 Immediate Component
	112.2.3 Delayed Component
	112.2.4 Factory Component

	112.3 References to Services
	112.3.1 Accessing Services
	112.3.2 Reference Cardinality
	112.3.3 Reference Policy
	112.3.4 Selecting Target Services
	112.3.5 Circular References

	112.4 Component Description
	112.4.1 Service Component Header
	112.4.2 XML Document
	112.4.3 Component Element
	112.4.4 Implementation Element
	112.4.5 Properties and Property Elements
	112.4.6 Service Element
	112.4.7 Reference Element

	112.5 Component Life Cycle
	112.5.1 Enabled
	112.5.2 Satisfied
	112.5.3 Immediate Component
	112.5.4 Delayed Component
	112.5.5 Factory Component
	112.5.6 Activation
	112.5.7 Binding Services
	112.5.8 Activate Method
	112.5.9 Component Context
	112.5.10 Bound Service Replacement
	112.5.11 Modification
	112.5.12 Modified Method
	112.5.13 Deactivation
	112.5.14 Deactivate Method
	112.5.15 Unbinding
	112.5.16 Life Cycle Example

	112.6 Component Properties
	112.6.1 Service Properties

	112.7 Deployment
	112.7.1 Modified Configurations

	112.8 Service Component Runtime
	112.8.1 Relationship to OSGi Framework
	112.8.2 Starting and Stopping SCR
	112.8.3 Logging Error Messages
	112.8.4 Locating Component Methods

	112.9 Security
	112.9.1 Service Permissions
	112.9.2 Required Admin Permission
	112.9.3 Using hasPermission

	112.10 Component Description Schema
	112.11 org.osgi.service.component
	112.11.1 Summary
	112.11.2 public interface ComponentConstants
	112.11.3 public interface ComponentContext
	112.11.4 public class ComponentException extends RuntimeException
	112.11.5 public interface ComponentFactory
	112.11.6 public interface ComponentInstance

	112.12 References

	113 Event Admin Service Specification
	113.1 Introduction
	113.1.1 Essentials
	113.1.2 Entities
	113.1.3 Synopsis
	113.1.4 What To Read

	113.2 Event Admin Architecture
	113.3 The Event
	113.3.1 Topics
	113.3.2 Properties

	113.4 Event Handler
	113.5 Event Publisher
	113.6 Specific Events
	113.6.1 General Conventions
	113.6.2 OSGi Events
	113.6.3 Framework Event
	113.6.4 Bundle Event
	113.6.5 Service Event
	113.6.6 Other Event Sources

	113.7 Event Admin Service
	113.7.1 Synchronous Event Delivery
	113.7.2 Asynchronous Event Delivery
	113.7.3 Order of Event Delivery

	113.8 Reliability
	113.8.1 Exceptions in callbacks
	113.8.2 Dealing with Stalled Handlers

	113.9 Inter-operability with Native Applications
	113.10 Security
	113.10.1 Topic Permission
	113.10.2 Required Permissions
	113.10.3 Security Context During Event Callbacks

	113.11 org.osgi.service.event
	113.11.1 Summary
	113.11.2 public class Event
	113.11.3 public interface EventAdmin
	113.11.4 public interface EventConstants
	113.11.5 public interface EventHandler
	113.11.6 public final class TopicPermission extends Permission

	121 Blueprint Container Specification
	121.1 Introduction
	121.1.1 Essentials
	121.1.2 Entities
	121.1.3 Synopsis

	121.2 Managers
	121.2.1 Manager Types
	121.2.2 Metadata Objects
	121.2.3 Activation and Deactivation
	121.2.4 Manager Dependencies
	121.2.5 Reverse Dependency Order
	121.2.6 Cyclic Dependencies
	121.2.7 Eager Managers

	121.3 Blueprint Life-Cycle
	121.3.1 Class Space Compatibility
	121.3.2 Initialization of a Blueprint Container
	121.3.3 Extensions
	121.3.4 Preparing
	121.3.5 Parsing
	121.3.6 Tracking References
	121.3.7 Grace Period
	121.3.8 Service Registration
	121.3.9 Eager Instantiation
	121.3.10 Runtime Phase
	121.3.11 Destroy the Blueprint Container
	121.3.12 Failure
	121.3.13 Lazy

	121.4 Blueprint Definitions
	121.4.1 XML
	121.4.2 Syntax for Java types
	121.4.3 XML and Metadata
	121.4.4 <blueprint>
	121.4.5 Metadata
	121.4.6 Defaults
	121.4.7 <type-converters>
	121.4.8 manager
	121.4.9 Explicit Dependencies
	121.4.10 Lazy and Eager
	121.4.11 Target

	121.5 Bean Manager
	121.5.1 Bean Component XML
	121.5.2 <bean>
	121.5.3 <argument>
	121.5.4 <property>
	121.5.5 Scope
	121.5.6 Construction
	121.5.7 Properties
	121.5.8 Life Cycle Callbacks
	121.5.9 Activation and Deactivation

	121.6 Service Manager
	121.6.1 <service>
	121.6.2 <registration-listener>
	121.6.3 Explicit Dependencies
	121.6.4 Provided Object
	121.6.5 Service Interfaces
	121.6.6 Service Properties
	121.6.7 Service Object
	121.6.8 Scope
	121.6.9 Ranking
	121.6.10 Registration Listener
	121.6.11 Enabled
	121.6.12 Activation and Deactivation

	121.7 Service Reference Managers
	121.7.1 Service Reference
	121.7.2 <reference>
	121.7.3 <reference-list>
	121.7.4 <reference-listener>
	121.7.5 Provided Object For a Reference
	121.7.6 Provided Object For a Reference-list
	121.7.7 Read Only Lists
	121.7.8 Selection
	121.7.9 Availability
	121.7.10 Reference Listeners
	121.7.11 Service Proxies
	121.7.12 Activation and Deactivation

	121.8 Object Values
	121.8.1 <ref>
	121.8.2 <idref>
	121.8.3 <value>
	121.8.4 <null>
	121.8.5 <list>, <set>, <array>
	121.8.6 <map>
	121.8.7 <entry>
	121.8.8 <props>
	121.8.9 Manager as Value

	121.9 Dependency Injection
	121.9.1 Signature Disambiguation
	121.9.2 Type Compatibility
	121.9.3 Type Conversion
	121.9.4 Type Converters
	121.9.5 Built-in Converter
	121.9.6 Concrete Types for Interfaces
	121.9.7 Generics

	121.10 Service Dynamics
	121.10.1 Damping
	121.10.2 Iteration
	121.10.3 Mandatory Dependencies

	121.11 Blueprint Container
	121.11.1 Environment Managers
	121.11.2 Component Instances
	121.11.3 Access to Component Metadata
	121.11.4 Concurrency

	121.12 Events
	121.12.1 Blueprint Event
	121.12.2 Replay
	121.12.3 Event Admin Mapping

	121.13 Class Loading
	121.13.1 Blueprint Extender and Bundle Compatibility
	121.13.2 XML and Class Loading
	121.13.3 Foreign Bundle Context
	121.13.4 Converters and Class Loading
	121.13.5 Type Compatibility
	121.13.6 Visibility and Accessibility

	121.14 Metadata
	121.15 Blueprint XML Schema
	121.16 Security
	121.16.1 Blueprint Extender
	121.16.2 Blueprint Bundle

	121.17 org.osgi.service.blueprint.container
	121.17.1 Summary
	121.17.2 public interface BlueprintContainer
	121.17.3 public class BlueprintEvent
	121.17.4 public interface BlueprintListener
	121.17.5 public class ComponentDefinitionException extends RuntimeException
	121.17.6 public interface Converter
	121.17.7 public class EventConstants
	121.17.8 public class NoSuchComponentException extends RuntimeException
	121.17.9 public class ReifiedType
	121.17.10 public class ServiceUnavailableException extends ServiceException

	121.18 org.osgi.service.blueprint.reflect
	121.18.1 Summary
	121.18.2 public interface BeanArgument
	121.18.3 public interface BeanMetadata extends Target , ComponentMetadata
	121.18.4 public interface BeanProperty
	121.18.5 public interface CollectionMetadata extends NonNullMetadata
	121.18.6 public interface ComponentMetadata extends NonNullMetadata
	121.18.7 public interface IdRefMetadata extends NonNullMetadata
	121.18.8 public interface MapEntry
	121.18.9 public interface MapMetadata extends NonNullMetadata
	121.18.10 public interface Metadata
	121.18.11 public interface NonNullMetadata extends Metadata
	121.18.12 public interface NullMetadata extends Metadata
	121.18.13 public interface PropsMetadata extends NonNullMetadata
	121.18.14 public interface ReferenceListener
	121.18.15 public interface ReferenceListMetadata extends ServiceReferenceMetadata
	121.18.16 public interface ReferenceMetadata extends Target , ServiceReferenceMetadata
	121.18.17 public interface RefMetadata extends Target , NonNullMetadata
	121.18.18 public interface RegistrationListener
	121.18.19 public interface ServiceMetadata extends ComponentMetadata
	121.18.20 public interface ServiceReferenceMetadata extends ComponentMetadata
	121.18.21 public interface Target extends NonNullMetadata
	121.18.22 public interface ValueMetadata extends NonNullMetadata

	121.19 Changes
	121.20 References

	122 Remote Service Admin Service Specification
	122.1 Introduction
	122.1.1 Essentials
	122.1.2 Entities
	122.1.3 Synopsis

	122.2 Actors
	122.3 Topology Managers
	122.3.1 Multiple Topology Managers
	122.3.2 Example Use Cases

	122.4 Endpoint Description
	122.4.1 Validity
	122.4.2 Mutability
	122.4.3 Endpoint Id
	122.4.4 Framework UUID
	122.4.5 Resource Containment

	122.5 Remote Service Admin
	122.5.1 Exporting
	122.5.2 Importing
	122.5.3 Reflection
	122.5.4 Registration Life Cycle
	122.5.5 Invalid Registrations
	122.5.6 Proxying

	122.6 Discovery
	122.6.1 Scope and Filters
	122.6.2 Endpoint Listener Interface
	122.6.3 Endpoint Listener Implementations
	122.6.4 Endpoint Description Providers
	122.6.5 On Demand

	122.7 Events
	122.7.1 Event Admin Mapping

	122.8 Endpoint Description Extender Format
	122.8.1 XML Schema

	122.9 Security
	122.9.1 Import and Export Registrations
	122.9.2 Framework UUID Runtime Permission
	122.9.3 Endpoint Permission

	122.10 org.osgi.service.remoteserviceadmin
	122.10.1 Summary
	122.10.2 public class EndpointDescription
	122.10.3 public interface EndpointListener
	122.10.4 public final class EndpointPermission extends Permission
	122.10.5 public interface ExportReference
	122.10.6 public interface ExportRegistration
	122.10.7 public interface ImportReference
	122.10.8 public interface ImportRegistration
	122.10.9 public class RemoteConstants
	122.10.10 public interface RemoteServiceAdmin
	122.10.11 public class RemoteServiceAdminEvent
	122.10.12 public interface RemoteServiceAdminListener

	122.11 References

	123 JTA Transaction Services Specification
	123.1 Introduction
	123.1.1 Essentials
	123.1.2 Entities
	123.1.3 Dependencies
	123.1.4 Synopsis

	123.2 JTA Overview
	123.2.1 Global and Local Transactions
	123.2.2 Durable Resource
	123.2.3 Volatile Resource
	123.2.4 Threading

	123.3 Application
	123.3.1 No Enlistment
	123.3.2 Application Bundle Enlistment
	123.3.3 Container Managed Enlistment

	123.4 Resource Managers
	123.5 The JTA Provider
	123.5.1 User Transaction
	123.5.2 Transaction Manager
	123.5.3 Transaction Synchronization Service

	123.6 Life Cycle
	123.6.1 JTA Provider
	123.6.2 Application Bundles
	123.6.3 Error Handling

	123.7 Security
	123.8 References

	124 JMX™ Management Model Specification
	124.1 Introduction
	124.1.1 Essentials
	124.1.2 Entities
	124.1.3 Synopsis

	124.2 JMX Overview
	124.2.1 Connectors and Adapters
	124.2.2 Object Name
	124.2.3 MBeans
	124.2.4 Open Types

	124.3 OSGi JMX Management
	124.3.1 Naming
	124.3.2 Object Naming
	124.3.3 The MBean Server
	124.3.4 Registrations

	124.4 MBeans
	124.5 Open Types
	124.5.1 BATCH_ACTION_RESULT and BATCH_INSTALL_RESULT
	124.5.2 BUNDLE
	124.5.3 HEADER
	124.5.4 SERVICE
	124.5.5 PACKAGE
	124.5.6 PROPERTY

	124.6 Item
	124.7 Security
	124.8 org.osgi.jmx
	124.8.1 Summary
	124.8.2 public class Item
	124.8.3 public class JmxConstants

	124.9 org.osgi.jmx.framework
	124.9.1 Summary
	124.9.2 public interface BundleStateMBean
	124.9.3 public interface FrameworkMBean
	124.9.4 public interface PackageStateMBean
	124.9.5 public interface ServiceStateMBean

	124.10 org.osgi.jmx.service.cm
	124.10.1 public interface ConfigurationAdminMBean

	124.11 org.osgi.jmx.service.permissionadmin
	124.11.1 public interface PermissionAdminMBean

	124.12 org.osgi.jmx.service.provisioning
	124.12.1 public interface ProvisioningServiceMBean

	124.13 org.osgi.jmx.service.useradmin
	124.13.1 public interface UserAdminMBean

	124.14 References

	125 JDBC™ Service Specification
	125.1 Introduction
	125.1.1 Essentials
	125.1.2 Entities
	125.1.3 Dependencies
	125.1.4 Synopsis

	125.2 Database Driver
	125.2.1 Life Cycle
	125.2.2 Package Dependencies

	125.3 Applications
	125.3.1 Selecting the Data Source Factory Service
	125.3.2 Using Database Drivers

	125.4 Security
	125.5 org.osgi.service.jdbc
	125.5.1 public interface DataSourceFactory

	125.6 References

	126 JNDI Services Specification
	126.1 Introduction
	126.1.1 Essentials
	126.1.2 Entities
	126.1.3 Dependencies
	126.1.4 Synopsis

	126.2 JNDI Overview
	126.2.1 Context and Dir Context
	126.2.2 Initial Context
	126.2.3 URL Context Factory
	126.2.4 Object and Reference Conversion
	126.2.5 Environment
	126.2.6 Naming Manager Singletons
	126.2.7 Built-In JNDI Providers

	126.3 JNDI Context Manager Service
	126.3.1 Environment and Bundles
	126.3.2 Context Creation
	126.3.3 Rebinding
	126.3.4 Life Cycle and Dynamism

	126.4 JNDI Provider Admin service
	126.5 JNDI Providers
	126.5.1 Initial Context Factory Builder Provider
	126.5.2 Initial Context Factory Provider
	126.5.3 Object Factory Builder Provider
	126.5.4 Object Factory Provider
	126.5.5 URL Context Provider
	126.5.6 JRE Context Providers

	126.6 OSGi URL Scheme
	126.6.1 Service Proxies
	126.6.2 Services and State

	126.7 Traditional Client Model
	126.7.1 New Initial Context
	126.7.2 Static Conversion
	126.7.3 Caller’s Bundle Context
	126.7.4 Life Cycle Mismatch

	126.8 Security
	126.8.1 JNDI Implementation
	126.8.2 JNDI Clients
	126.8.3 OSGi URL namespace

	126.9 org.osgi.service.jndi
	126.9.1 Summary
	126.9.2 public class JNDIConstants
	126.9.3 public interface JNDIContextManager
	126.9.4 public interface JNDIProviderAdmin

	126.10 References

	127 JPA Service Specification
	127.1 Introduction
	127.1.1 Essentials
	127.1.2 Entities
	127.1.3 Dependencies
	127.1.4 Synopsis

	127.2 JPA Overview
	127.2.1 Persistence
	127.2.2 JPA Provider
	127.2.3 Managed and Unmanaged
	127.2.4 JDBC Access in JPA

	127.3 Bundles with Persistence
	127.3.1 Services
	127.3.2 Persistence Bundle
	127.3.3 Client Bundles
	127.3.4 Custom Configured Entity Manager

	127.4 Extending a Persistence Bundle
	127.4.1 Class Space Consistency
	127.4.2 Meta Persistence Header
	127.4.3 Processing
	127.4.4 Ready Phase
	127.4.5 Service Registrations
	127.4.6 Registering the Entity Manager Factory Builder Service
	127.4.7 Registering the Entity Manager Factory
	127.4.8 Stopping

	127.5 JPA Provider
	127.5.1 Managed Model
	127.5.2 Database Access
	127.5.3 Data Source Factory Service Matching
	127.5.4 Rebinding
	127.5.5 Enhancing Entity Classes
	127.5.6 Class Loading
	127.5.7 Validation

	127.6 Static Access
	127.6.1 Access

	127.7 Security
	127.8 org.osgi.service.jpa
	127.8.1 public interface EntityManagerFactoryBuilder

	127.9 References

	128 Web Applications Specification
	128.1 Introduction
	128.1.1 Essentials
	128.1.2 Entities
	128.1.3 Dependencies
	128.1.4 Synopsis

	128.2 Web Container
	128.3 Web Application Bundle
	128.3.1 WAB Definition
	128.3.2 Starting the Web Application Bundle
	128.3.3 Failure
	128.3.4 Publishing the Servlet Context
	128.3.5 Static Content
	128.3.6 Dynamic Content
	128.3.7 Content Serving Example
	128.3.8 Stopping the Web Application Bundle
	128.3.9 Uninstalling the Web Application Bundle
	128.3.10 Stopping of the Web Extender

	128.4 Web URL Handler
	128.4.1 URL Scheme
	128.4.2 URL Parsing
	128.4.3 URL Parameters
	128.4.4 WAB Modification
	128.4.5 WAR Manifest Processing
	128.4.6 Signed WAR files

	128.5 Events
	128.6 Interacting with the OSGi Environment
	128.6.1 Bundle Context Access
	128.6.2 Other Component Models
	128.6.3 Resource Lookup
	128.6.4 Resource Injection and Annotations
	128.6.5 JavaServer Pages Support
	128.6.6 Compilation

	128.7 Security
	128.8 References

	129 SCA Configuration Type Specification
	129.1 Introduction
	129.1.1 Essentials
	129.1.2 Entities
	129.1.3 Synopsis

	129.2 SCA Overview
	129.2.1 Bindings and Binding Types
	129.2.2 Policy Framework
	129.2.3 Relationships

	129.3 SCA Configuration Bundles
	129.3.1 Naming
	129.3.2 Internal Registry
	129.3.3 Detection of SCA Configuration Bundles
	129.3.4 Parsing
	129.3.5 Activation of New SCA Configuration
	129.3.6 Deactivation of an SCA Configuration
	129.3.7 Example SCA Configuration

	129.4 SCA Configuration Document
	129.4.1 XML
	129.4.2 sca-config Element
	129.4.3 Default Example Definitions
	129.4.4 intent Element
	129.4.5 qualifier Element
	129.4.6 policySet Element
	129.4.7 policySetReference Element
	129.4.8 intentMap Element

	129.5 Exporting and Importing Services
	129.5.1 Service Configuration Properties
	129.5.2 Complete
	129.5.3 Scoped Configurations
	129.5.4 Registering a Service for Export
	129.5.5 Getting an Imported Service
	129.5.6 Dependencies

	129.6 SCA and Remote Service Admin
	129.6.1 Configuration
	129.6.2 Example Endpoint Description

	129.7 XML Schema
	129.8 Security
	129.9 References

	701 Tracker Specification
	701.1 Introduction
	701.1.1 Essentials
	701.1.2 Operation
	701.1.3 Entities

	701.2 Tracking
	701.2.1 Usage
	701.2.2 General API
	701.2.3 Tracking Count
	701.2.4 Multi Threading
	701.2.5 Synchronous

	701.3 Service Tracker Class
	701.3.1 Using a Service Tracker
	701.3.2 Customizing the Service Tracker class
	701.3.3 Customizing Example

	701.4 Bundle Tracker
	701.4.1 Bundle States
	701.4.2 Constructor
	701.4.3 Using a Bundle Tracker
	701.4.4 Customizing the Bundle Tracker class
	701.4.5 Extender Model

	701.5 Security
	701.5.1 Synchronous Bundle Listener

	701.6 org.osgi.util.tracker
	701.6.1 Summary
	701.6.2 public class BundleTracker implements BundleTrackerCustomizer
	701.6.3 public interface BundleTrackerCustomizer
	701.6.4 public class ServiceTracker implements ServiceTrackerCustomizer
	701.6.5 public interface ServiceTrackerCustomizer

	702 XML Parser Service Specification
	702.1 Introduction
	702.1.1 Essentials
	702.1.2 Entities
	702.1.3 Operations

	702.2 JAXP
	702.3 XML Parser service
	702.4 Properties
	702.5 Getting a Parser Factory
	702.6 Adapting a JAXP Parser to OSGi
	702.6.1 JAR Based Services
	702.6.2 XMLParserActivator
	702.6.3 Adapting an Existing JAXP Compatible Parser

	702.7 Usage of JAXP
	702.8 Security
	702.9 org.osgi.util.xml
	702.9.1 public class XMLParserActivator implements BundleActivator , ServiceFactory

	702.10 References

		2010-01-25T16:33:33-0500
	OSGi Alliance
	I am the author of this document

