The OSGi Alliance
OSGi Core

Release 6
June 2014

.TM

0SGI

N?) Alliance

Copyright © OSGi Alliance (2000, 2014).
All Rights Reserved.

OSGi Specification License, Version 2.0

License Grant

OSGi Alliance ("OSGi") hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited li-
cense (without the right to sublicense), under OSGi's applicable intellectual property rights to view, download,
and reproduce this OSGi Specification ("Specification") which follows this License Agreement ("Agreement"). You
are not authorized to create any derivative work of the Specification. However, to the extent that an implemen-
tation of the Specification would necessarily be a derivative work of the Specification, OSGi also grants you a
perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license (without the right to sublicense)
under any applicable copyrights, to create and/or distribute an implementation of the Specification that: (i) ful-
ly implements the Specification including all its required interfaces and functionality; (i) does not modify, sub-
set, superset or otherwise extend the OSGi Name Space, or include any public or protected packages, classes, Ja-
va interfaces, fields or methods within the OSGi Name Space other than those required and authorized by the
Specification. An implementation that does not satisfy limitations (i)-(ii) is not considered an implementation
of the Specification, does not receive the benefits of this license, and must not be described as an implementa-
tion of the Specification. An implementation of the Specification must not claim to be a compliant implementa-
tion of the Specification unless it passes the OSGi Compliance Tests for the Specification in accordance with OS-
Gi processes. "OSGi Name Space" shall mean the public class or interface declarations whose names begin with
"org.osgi" or any recognized successors or replacements thereof.

OSGi Participants (as such term is defined in the OSGi Intellectual Property Rights Policy) have made non-as-
sert and licensing commitments regarding patent claims necessary to implement the Specification, if any, un-
der the OSGi Intellectual Property Rights Policy which is available for examination on the OSGi public web site
(WWW.0sgi.0rg).

No Warranties and Limitation of Liability

THE SPECIFICATION IS PROVIDED "AS IS," AND OSGi AND ANY OTHER AUTHORS MAKE NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE
CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION
OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS

OR OTHER RIGHTS. OSGi AND ANY OTHER AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SPECIFICATION
OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOEF.

Covenant Not to Assert
As amaterial condition to this license you hereby agree, to the extent that you have any patent claims which are

necessarily infringed by an implementation of the Specification, not to assert any such patent claims against the
creation, distribution or use of an implementation of the Specification.

General
The name and trademarks of OSGi or any other Authors may NOT be used in any manner, including advertis-

ing or publicity pertaining to the Specification or its contents without specific, written prior permission. Title to
copyright in the Specification will at all times remain with OSGi.

No other rights are granted by implication, estoppel or otherwise.

Trademarks

OSGi™ is a trademark, registered trademark, or service mark of the OSGi Alliance in the US and other countries.
Java is a trademark, registered trademark, or service mark of Oracle Corporation in the US and other countries.
All other trademarks, registered trademarks, or service marks used in this document are the property of their re-
spective owners and are hereby recognized.

Feedback

This specification can be downloaded from the OSGi Alliance web site:
http: //www.o0sgi.org
Comments about this specification can be raised at:

https://www.osgi.org/bugzilla/

Table of Contents

1 Introduction 9
1.1 OSGi FrameWOork OVEIVIEW.ttt ettt ettt ettt ettt e ettt ettt e e et e e et eieeeeeeeens 9
1.2 REAAET LOVEL . . et e et e 11
1.3 CONVENLIONS AN TEIMMIS. .ttt vttt ettt ettt ettt e et ettt ettt ettt et e e e ettt e e e e e eeaaaas 11
1.4 VEISION INfOIMATION. . ettt ettt ettt e e 15
15 [0S (=L T 16
1.6 CRANEES. . . et 16
2 Security Layer 17
21 0T A oY [V) T 17
2.2 SECUMLY OVEIVIEW. e e ettt ettt et e ettt et ettt ettt e et et et e et e e et e e e e e e e aannae 17
2.3 Digitally Signed JAR FIles. nueet et e 18
2.4 L= A TE31 TN 27
2.5 [0S (=L T 28
3 Module Layer 31
31 13T oo X Tt) 31
3.2 BUNAIES. . .ottt ettt et 31
3.3 DEPENABNCIES. . . . e et ettt ettt e et ettt e et e e e e 38
3.4 EXECULION ENVITONMENT. .ottt ettt ettt ettt e ettt ettt ettt e eeeens 44
3.5 Class Loading ArChItECLUTE. u ettt ettt 46
3.6 RESOIVING MEEAAALA. . . . e .t ettt ettt 48
3.7 CONSErAINE SOIVING. . . ettt e e e 52
3.8 RESOIVING PIOCESS. . . . e et ettt e et 60
3.9 RUNtimME Class LOAING. ettt e e e e et 62
3.10 Loading Native Code LIbraries.ovuuiet ittt 71
3.11 [T 171 77
3.12 BUNIE Validity. e e 78
3.13 ReQUINING BUNAIES. ...ttt 79
3.14 Fragment BUNIES.ot 82
3.15 EXTENSION BUNGIES. .ottt ettt ettt e ettt 85
3.16 Yo 12 PP 87
3.17 RETEIENCES. .. .ot 90
3.18 QAN - . ettt et e e 92
4 Life Cycle Layer 93
4.1 1318y oTe X Tt) 93
4.2 FrAIMIEWOTKS. .« v v vttt ettt ettt ettt et e e s 94
4.3 BUNAIES. . ..ottt s 106
4.4 The BUNAIE OBJECL. . .. ettt ettt e et 106

OSGi Core Release 6 Page 3

4.5
4.6
4.7
4.8
49

4.10

5.1
5.2
53
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
513
5.14

6.1
6.2
6.3
6.4
6.5

7.1
7.2
73
7-4
75
7.6
7.7
7.8

8.1
8.2
83

Lol 1P
REEIENCES. . v ettt et et e e et

CRANEES. . . ettt e

Service Layer

Introduction. ..o
SEIVICES. . vttt et
SEIVICE SCOPE. . - .ttt ettt ettt e et e et e et et e e e
Getting Service ODbJECES.vvuuiiiei i
Releasing Service ODbJECES.vvnueint et
SEIVICE EVENTS. .ttt
Stale References.ouvuet it
FIOTS. - ettt e
SEIVICE FACOTY. . .. ettt ettt e e
Prototype Service Factory.o.ovuiiiiiiiiii i
UNregistering SEIVICES. uueee ettt ettt e e e e e e aaaes
Multiple Version Export Considerations.ovueeveeeneeeiaeneannann.
Lol 1P

CRANEES. . . ettt e

Resource API Specification

INETOUCHION. Lttt ettt e e e e e
RESOUICES. . ..ttt ettt ettt ettt ettt
NAMESPACES. . . . ettt ettt ettt e et
RESOIULION. L oottt et e e

WG, « e

Bundle Wiring API Specification

INErOdUCHION. .. oot
Using the WIring APL ...ttt
Bundle WIKING.eene it
Fragments. . ..ottt e
Framework ACHIONS. uuee ettt ettt e
Container SCANNING. ...« ..ttt
LT elT 1

CRANEES. . . ettt e e

Framework Namespaces Specification

INErOdUCHION. ... et
058168 NAMESPACE. . . . e ettt ettt ettt e e e ee e

osgiwiring.package NameSPace.ueeueiieteit e ie e eeeaaaans

Page 4

OSGi Core Release 6

8.4 0SgIWIrNG.bundle NAMESPACE. ettt ettt e 166

85 OSZIWIMNG.NOST NAMESPACE. . .« et ettt ettt ettt e e ettt e et et et e e e 167
8.6 0SZIIAENtItY NAMESPACE. . .« .t ettt ettt ettt et ettt et et et et ettt 168
8.7 0SZI.NALIVE NAMESPACE. - .. ettt ettt ettt et e ettt ettt e et et 169
8.8 [0S (=L LTS 171
8.9 QAN S, - . ettt ettt e 171
9 Start Level API Specification 173
9.1 a1 Y [V o) T 173
9.2 L] ==L 173
9.3 The Concept of @ STart LEVELottt e e 174
9.4 Example ApplICAtiONS.ttt e e 177
9.5 LT eT 1 N 178
10 Framework API 179
101 OT.OSGIATAMEBWOTK. . . . ¢+t ettt ettt et e e e e e e e et e et e s 179
10.2 0rg.osgiframework.aunch. 269
10.3 oo (<o 1T o Y 275
10.4 OTg.0SZIATAMEWOTKWITING.ttt et e nas 281
10.5 org.osgiframework.startlevel. i 295
10.6 OTg.0SIATAMEWOTK.NAMESPACE. . .« et ettt ettt ettt e et et e ettt et et eaens 298
10.7 Org.0SgI.aNNOTAtIONVEISIONING. . . . ¢ ettt ettt ettt ettt e et e e e e e et e e e eaaaenn 305
5o ConditionalPermission Admin Service Specification 307
50.1 a1 Ao Y [T i) T 307
50.2 Permission Management MOdel. ...ttt 310
50.3 EffECtIVE PEIMISSIONS. . ..ottt et ettt ettt et et ettt 315
50.4 CoNAItIoNal PEIMISSIONS.ttt ettt ettt ettt ettt ettt et e e et e 316
50.5 [T 1T 1T 317
50.6 The Permission ChECK.vueeet ettt e e e s 318
50.7 Permission ManagEIMENT.ttt 325
50.8 Implementing CoNdItioNs.ttt 326
50.9 Standard CONAITIONS. ...ttt ettt ettt ettt e e et 328
50.10 Bundle PErmiSSion RESOUICE.ttt ettt et e ettt e e e e e e e e et e e e e e enaeeenns 329
50.11 Relation 10 Permission AdMiN.oiei e ettt ettt et et ettt e 330
50.12 IMPlEMENLAtION ISSUES.ttt ettt 331
50.13 LoV 1T PN 333
50.14 OTg.0SgI.SEIVICE.CONAPETMAAMIN. . .. ¢ttt ettt ettt e e e et e et et et et e e 333
50.15 RETEIBICES. . . e ettt e e e e e 342
51 Permission Admin Service Specification 343
51.1 0T (o [F 4o T 343
51.2 Permission AdMIN SEIVICE.ttt ettt ettt ettt et et e e et ettt et et e e ettt 344
51.3 YoV 142 N 345

OSGi Core Release 6 Page 5

51.4 OTg.0Sgi.SEIVICE.PEIMISSIONAAMIN. . . .« u ettt ettt ettt ettt et et et ettt et et eaaeeaae 345

52 URL Handlers Service Specification 349
52.1 a1 Ao Y [0 i) S 349
52.2 FaCtOMIES N JAVAMEL. . . .t ettt ettt e et 352
52.3 FrameWOrK PrOCEAUIES. ...ttt ettt ettt et et e e ettt e e ettt eeee e 352
52.4 Providing @ New SCREME.t 356
52.5 Providing @ Content HandIr.ottt e 357
52.6 SECUMitY CONSIABIATIONS. . .« e ettt ettt et ettt ettt e et e ettt e et e ettt et et e e ae e 357
52.7 OTGLOSZISEIVICELUIL. . ..o e e 358
52.8 [0S (=L TS 361
53 Resolver Hook Service Specification 363
53.1 0T CoTe (Rt 4T 363
53.2 RESOIVE OPEIALION. ... ettt ettt e ettt e e et 364
53.3 The RESOIVE OPEIALION.t ettt et ettt et e e et et et et et e et e e naeanas 368
53.4 Lol 1T PPN 370
53.5 0rg.05gi.frameWOrk.NOOKS.FESOIVET.ttt 370
54 Bundle Hook Service Specification 375
54.1 LR Y [0 Tex AT) S 375
54.2 ADOUL the HOOKS. . ..ottt et et ettt 376
54.3 BUNdle EVENE HOOK. . ..ottt ettt e ettt 376
54.4 Bundle FINA HOOK.ot 377
54.5 Bundle Collision HOOK.vettt ettt ettt e e e ettt ettt e 378
54.6 LT elT 1 N 379
54.7 org.osgiframework.hooks.bundle.o 379
54.8 CRANEES. . . et et 381
55 Service Hook Service Specification 383
55.1 a1 0 Y [0] S 383
55.2 GBIVICE HOOKS. « v vttt ettt ettt e 384
55.3 USBZE SCENAMOS. - .+ e et ettt ettt et ettt et et et e ettt et e et ettt 385
55.4 =L Y Y Y=Ll o oY) 389
55.5 FINA HOOK. . . oo ettt e e 390
55.6 [N L= o oo T 391
55.7 ArChItECEUrAl NOTES. .. oottt ettt e ettt et 393
55.8 Yo V142 N 394
55.9 0rg.05gi.frameWork.NOOKS.SEIVICE. . ..o ettt 394
55.10 [0S =L TS 397
55.11 QAN S, . . ettt ettt e e 397
56 Weaving Hook Service Specification 399
56.1 a1 Ao Y (Vi) T 399
56.2 L0 400

Page 6 OSGi Core Release 6

56.3
56.4
56.5
56.6
56.7
56.8

57

571
57.2
573
57.4
575
57.6
57.7
57.8
57.9
57.10
57.11

701

701.1
701.2
701.3
701.4
7015
701.6

WEAVING HOOK. . . . e ettt 402

o WO T R = 1) 404
Yol 142 N 406
0rg.05gi.framework.nOOKS.WEAVING. u ettt 407
References

QAN S, . . ettt ettt e
Data Transfer Objects Specification 413
0T (o [F 4o T 413
[0T =Y O <Y S 414
Core Data Transfer ODJECES. ute ettt ettt ettt e e e et e e 415

Obtaining Core Data Transfer Objects.

LT eT 1 N

oL 1o N 417
Org.0SgIfTAMEWOTK.ALO.ttt 418
org.osgiframework.startlevel.dto.o 420
Org.0SgiframeWOrk WIrING.ALO. e ettt 421
Lol o R = o U o= L (o N 424
[0S (=L LTS 428
Tracker Specification 429
1R Y [0 Tex A) S 429
L= 1= Pt 430
Y= 7o =T (=] 432
BUNAIE TraCKET. . ..ttt ettt ettt e et 434
Lol 1T PPN 438
OT.OSGIULILITACKET. . ..ot 438

OSGi Core Release 6

Page 7

Page 8 OSGi Core Release 6

Introduction

OSGi Framework Overview

1

1.1

Introduction

The OSGi™ Alliance was founded in March 1999. Its mission is to create open specifications for
the network delivery of managed services to local networks and devices. The OSGi organization is
the leading standard for next-generation Internet services to homes, cars, mobile phones, desktops,
small offices, and other environments.

The OSGi Core specification delivers an open, common architecture for service providers, develop-
ers, software vendors, gateway operators and equipment vendors to develop, deploy and manage ser-
vices in a coordinated fashion. It enables an entirely new category of smart devices due to its flexi-
ble and managed deployment of services. OSGi specifications target set-top boxes, service gateways,
cable modems, consumer electronics, PCs, industrial computers, cars, mobile phones, and more. De-
vices that implement the OSGi specifications will enable service providers like telcos, cable opera-
tors, utilities, and others to deliver differentiated and valuable services over their networks.

This is the sixth release of the OSGi Core specification developed by representatives from OSGi
member companies. The OSGi Core Release 6 mostly extends the existing APIs into new areas. The
few modifications to existing APIs are backward compatible so that applications for previous releas-
es should run unmodified on Release 6 Frameworks. The built-in version management mechanisms
allow bundles written for the new release to adapt to the old Framework implementations, if neces-
sary.

OSGi Framework Overview

The Framework forms the core of the OSGi Specifications. It provides a general-purpose, secure, and
managed Java framework that supports the deployment of extensible and downloadable applica-
tions known as bundles.

OSGi-compliant devices can download and install OSGi bundles, and remove them when they are
no longer required. The Framework manages the installation and update of bundles in an OSGi en-
vironment in a dynamic and scalable fashion. To achieve this, it manages the dependencies between
bundles and services in detail.

It provides the bundle developer with the resources necessary to take advantage of Java's platform
independence and dynamic code-loading capability in order to easily develop services for small-
memory devices that can be deployed on a large scale.

The functionality of the Framework is divided in the following layers:

Security Layer
Module Layer
Life Cycle Layer
Service Layer

- Actual Services

This layering is depicted in Figure 1.1.

OSGi Core Release 6

Page 9

OSGi Framework Overview Introduction

Figure 1.1

Layering

Bundles | Service |

| Life cycle |

Security

| Module |

| Execution Environment |

| Hardware/OS |

The Security Layer is based on Java 2 security but adds a number of constraints and fills in some of
the blanks that standard Java leaves open. It defines a secure packaging format as well as the run-
time interaction with the Java 2 security layer. The Security Layer is described in Security Layer on
page 17.

The Module Layer defines a modularization model for Java. It addresses some of the shortcomings
of Java's deployment model. The modularization layer has strict rules for sharing Java packages be-
tween bundles or hiding packages from other bundles. The Module Layer can be used without the
life cycle and Service Layer. The Life Cycle Layer provides an API to manage the bundles in the Mod-
ule Layer, while the Service Layer provides a communication model for the bundles. The Module
Layer is described in Module Layer on page 31.

The Life Cycle Layer provides a life cycle API to bundles. This API provides a runtime model for bun-
dles. It defines how bundles are started and stopped as well as how bundles are installed, updated
and uninstalled. Additionally, it provides a comprehensive event API to allow a management bun-
dle to control the operations of the OSGi framework. The Life Cycle Layer requires the Module Layer
but the Security Layer is optional. A more extensive description of the Life Cycle layer can be found
at Life Cycle Layer on page 93.

The Service Layer provides a dynamic, concise and consistent programming model for Java bun-

dle developers, simplifying the development and deployment of service bundles by de-coupling the
service's specification (Java interface) from its implementations. This model allows bundle develop-
ers to bind to services only using their interface specifications. The selection of a specific implemen-
tation, optimized for a specific need or from a specific vendor, can thus be deferred to run-time.

The framework uses the service layer to provide an extension mechanism, called hooks. Hooks are
services that are used by the framework to provide additional functionality.

A consistent programming model helps bundle developers cope with scalability issues in many dif-
ferent dimensions - critical because the Framework is intended to run on a variety of devices whose
differing hardware characteristics may affect many aspects of a service implementation. Consistent
interfaces insure that the software components can be mixed and matched and still result in stable
systems.

The Framework allows bundles to select an available implementation at run-time through the
Framework service registry. Bundles register new services, receive notifications about the state of
services, or look up existing services to adapt to the current capabilities of the device. This aspect
of the Framework makes an installed bundle extensible after deployment: new bundles can be in-
stalled for added features or existing bundles can be modified and updated without requiring the
system to be restarted.

The Service Layer is described in Service Layer on page 127.

The interactions between the layers is depicted in Figure 1.2.

Page 10

OSGi Core Release 6

Introduction

Reader Level

Figure 1.2

1.2

1.3

1.3.1

Interactions between layers

— register

get
unget

manage
SETiE Life Cycle
stop
]
= !nstall
a uninstall

class load

execute

Reader Level

This specification is written for the following audiences:

- Application developers
- Framework and system service developers (system developers)
- Architects

The OSGi Specifications assume that the reader has at least one year of practical experience in writ-
ing Java programs. Experience with embedded systems and server environments is a plus. Applica-
tion developers must be aware that the OSGi environment is significantly more dynamic than tradi-
tional desktop or server environments.

System developers require a very deep understanding of Java. At least three years of Java coding ex-
perience in a system environment is recommended. A Framework implementation will use areas
of Java that are not normally encountered in traditional applications. Detailed understanding is re-
quired of class loaders, garbage collection, Java 2 security, and Java native library loading.

Architects should focus on the introduction of each subject. This introduction contains a general
overview of the subject, the requirements that influenced its design, and a short description of its
operation as well as the entities that are used. The introductory sections require knowledge of Java
concepts like classes and interfaces, but should not require coding experience.

Most of these specifications are equally applicable to application developers and system developers.

Conventions and Terms

Typography
A fixed width, non-serif typeface (sample) indicates the term is a Java package, class, interface, or
member name. Text written in this typeface is always related to coding.

Emphasis (sample) is used the first time an important concept is introduced. Its explanation usually
follows directly after the introduction.

OSGi Core Release 6

Page 11

Conventions and Terms

Introduction

1.3.2

When an example contains a line that must be broken into multiple lines, the « character is used.
Spaces must be ignored in this case. For example:

http: //www.acme.com/sp/ «

file?abc=12

is equivalent to:

http: //www.acme.com/sp/file?abc=12

General Syntax Definitions

In many cases in these specifications, a syntax must be described. This syntax is based on the follow-

ing symbols:

* Repetition of the previous element zero or
more times, e.g. (',' element)x

+ Repetition one or more times

? Previous element is optional

(...) Grouping

L Literal

| Or

[...] Set (one of)

.. list, e.g. 1..5 is the list 123 45

<> Externally defined token

- Not

The following terminals are pre defined and used throughout the specifications:

ws

digit
alpha
alphanum
token
number
jletter

jletterordigit

gname

identifier
extended
quoted-string
argument
parameter
directive
attribute

unique-name
symbolic-name
package-name

path
special-chars

<see Character.isWhitespace>

[0..9]

[a..zA..Z]

alpha | digit

(alphanum | ' " | "-')+
digit+

<see [1] JavaLanguage Specification Third Edition
for Javaletter>

<see [1] JavaLanguage Specification Third Edition
for TavalLetterOrDigit>

<see [1] JavaLanguage Specification Third Edition
for fully qualified class names>
jletter jletterordigit *

(alphanum | '_" | "-' | .

)+

= """ (-["\#xOD#x0A#x00] | "\"" | "\\')% ""'

extended | quoted-string
directive | attribute
extended ':=' argument
extended '=' argument

identifier ('.' identifier)%
token ('.' token)x
unique-name

special-chars+ | quoted-string
~ ["\#x0D#x0A#x00: =; , <see [1] JavaLanguage Specification Third Edition

Page 12

OSGi Core Release 6

Introduction

Conventions and Terms

1.3.3

1.3.4

for whitespace>]

Whitespaces between terminals are ignored unless specifically noted. Any value that contains a
space, a comma, colon, semi-colon, equal sign or any other character that is part of a terminal in the
grammar must be quoted.

Object Oriented Terminology

Concepts like classes, interfaces, objects, and services are distinct but subtly different. For example,
"LogService" could mean an instance of the class LogService, could refer to the class LogService, or
could indicate the functionality of the overall Log Service. Experts usually understand the mean-
ing from the context, but this understanding requires mental effort. To highlight these subtle differ-
ences, the following conventions are used.

When the class is intended, its name is spelled exactly as in the Java source code and displayed

in a fixed-width typeface: for example, the "HttpService class", "a method in the HttpContext

class" or "ajavax.servlet.Servlet object". A class name is used in its fully qualified form, like
javax.servlet.Servlet, when the package is not obvious from the context, nor is it in one of the well
known java packages like java.lang,java.io, java.util and java.net. Otherwise, the package is omitted
like in String.

In many cases, a type can be used as a scalar but also a collection of that type or an array of that type.
In those cases, a simple + will be suffixed to the type. For example String+, indicates that a String, a
String[], and a Collection<String> are all valid forms.

Exception and permission classes are not followed by the word "object". Readability is improved
when the "object" suffix is avoided. For example, "to throw a Security Exception" and to "to have File
Permission” is more readable then "to have a FilePermission object".

Permissions can further be qualified with their actions. ServicePermission[com.acme.*,GET]|
REGISTER] means a ServicePermission with the action GET and REGISTER for all service names start-
ing with com.acme. A ServicePermission[Producer|Consumer, REGISTER] means the ServicePer-
mission for the Producer or Consumer class with REGISTER action.

When discussing functionality of a class rather than the implementation details, the class name is
written as normal text. This convention is often used when discussing services. For example, "the
User Admin service" is more readable.

Some services have the word "Service" embedded in their class name. In those cases, the word "ser-
vice" is only used once but is written with an upper case S. For example, "the Log Service performs".

Service objects are registered with the OSGi Framework. Registration consists of the service object,
a set of properties, and a list of classes and interfaces implemented by this service object. The classes
and interfaces are used for type safety and naming. Therefore, it is said that a service object is regis-
tered under a class/interface. For example, "This service object is registered under PermissionAdmin."

Diagrams

The diagrams in this document illustrate the specification and are not normative. Their purpose is
to provide a high-level overview on a single page. The following paragraphs describe the symbols
and conventions used in these diagrams.

Classes or interfaces are depicted as rectangles, as in Figure 1.3. Interfaces are indicated with the
qualifier <<interface»> as the first line. The name of the class/interface is indicated in bold when it
is part of the specification. Implementation classes are sometimes shown to demonstrate a possible
implementation. Implementation class names are shown in plain text. In certain cases class names
are abbreviated. This is indicated by ending the abbreviation with a full stop.

OSGi Core Release 6

Page 13

Conventions and Terms Introduction

Figure 1.3

Figure 1.4

Figure 1.5

Figure 1.6

Figure 1.7

Class and interface symbol

«class>> «interface>> UserAdmin
Admin Bundle Implementation
Permission Context

class interface implementation class

If an interface or class is used as a service object, it will have a black triangle in the bottom right cor-
ner.

Service symbol

«interface>>
Permission
Admin

Service are crucial interaction elements and they can occur many times in diagrams describing ser-
vices. Therefore, an alternative service symbol is the triangle. Triangles can be connected in differ-
ent ways, representing different meanings:

. Point- Connections to the point of a triangle indicate the registration. This makes the point of the
triangle point to the object that receives the method calls from the service users.

. Straight Side - Connections to the straight side indicate service clients. Clients call the methods of
the service.

- Angled Side- The angled side is reserved for service listeners.

Alternative Service symbol

WI Call Direction -> Service
Client I~ Provider
I get register

listen

Service
Listener

Inheritance (the extends orimplements keyword in Java class definitions) is indicated with an ar-
row. Figure 1.6 shows that the AdminPermission class implements or extends the Permission class.

Inheritance (implements or extends) symbol

«classy>

«classy>>
Admin P Permission
Permission

Relations are depicted with a line. The cardinality of the relation is given explicitly when relevant.
Figure 1.7 shows that each (1) BundleContext object is related to 0 or more BundleListener objects,
and that each Bundlelistener object is related to a single BundleContext object. Relations usually
have some description associated with them. This description should be read from left to right and
top to bottom, and includes the classes on both sides. For example: "A BundleContext object delivers
bundle events to zero or more BundleListener objects.”

Relations symbol
«interface>> . «interface>>
1 delivers bundle events 0.
Bundle Bundle
Context Listener

Page 14

OSGi Core Release 6

Introduction

Version Information

Figure 1.8

Figure 1.9

1.3.5

1.4

Associations are depicted with a dashed line. Associations are between classes, and an association
can be placed on a relation. For example, "every ServiceRegistration object has an associated Ser-
viceReference object.” This association does not have to be a hard relationship, but could be derived
in some way.

When a relationship is qualified by a name or an object, it is indicated by drawing a dotted line per-
pendicular to the relation and connecting this line to a class box or a description. Figure 1.8 shows
that the relationship between a UserAdmin class and a Role class is qualified by a name. Such an as-
sociation is usually implemented with a Dictionary or Map object.

Associations symbol

«interface»>
Role

«interface>»
UserAdmin

|
name

Bundles are entities that are visible in normal application programming. For example, when a bun-
dle is stopped, all its services will be unregistered. Therefore, the classes/interfaces that are grouped
in bundles are shown on a grey rectangle as is shown in Figure 1.9.

Bundles
Permission «interface>> h «interface>>
UserAdmin 1 asl 0-N | Role
|
0..n
|
name
1
Implementation UserAdminimpl Rolelmpl
bundle
Key Words

This specification consistently uses the words can, should, and must. Their meaning is well-defined
in:

must - An absolute requirement. Both the Framework implementation and bundles have obliga-
tions that are required to be fulfilled to conform to this specification.

should - Recommended. It is strongly recommended to follow the description, but reasons may
exist to deviate from this recommendation.

may or can - Optional. Implementations must still be interoperable when these items are not im-
plemented.

Version Information

This document specifies OSGi Core Release 6. This specification is backward compatible to all prior
releases.

All Security, Module, Life Cycle and Service Layers are part of the Framework Specification

Components in this specification have their own specification version, independent of the docu-
ment release number. The following table summarizes the packages and specification versions for
the different subjects.

OSGi Core Release 6

Page 15

References

Introduction

Table 1.1 Packages and versions OSGi Core

Item Package Version
Framework Specification (all layers) org.osgi.framework Version 1.8
Framework Launching org.osgi.framework.launch Version 1.2
6 Resource API Specification org.osgi.resource Version 1.0
7 Bundle Wiring API Specification org.osgi.framework.wiring Version 1.2
8 Framework Namespaces Specification org.osgi.framework.namespace Version 1.1
9 Start Level API Specification org.osgi.framework.startlevel Version 1.0
50 ConditionalPermission Admin Service Specifi- org.osgi.service.condpermadmin Version 1.1
cation

51 Permission Admin Service Specification org.osgi.service.permissionadmin Version 1.2
52 URL Handlers Service Specification org.osgi.service.url Version 1.0
53 Resolver Hook Service Specification org.osgi.framework.hooks.resolver ~ Version 1.0
54 Bundle Hook Service Specification org.osgi.framework.hooks.bundle Version 1.1
55 Service Hook Service Specification org.osgi.framework.hooks.service Version 1.1
56 Weaving Hook Service Specification org.osgi.framework.hooks.weaving ~ Version 1.1
57 Data Transfer Objects Specification org.osgi.dto Version 1.0
701 Tracker Specification org.osgi.util.tracker Version 1.5
Versioning Annotations org.osgi.annotation.versioning Version 1.0

When a component is represented in a bundle, a version is needed in the declaration of the Im-
port-Package or Export-Package manifest headers.

A compliant framework implementation must implement all of the specifications in this document
except as outlined below.

50 ConditionalPermission Admin Service Specification and 51 Permission Admin Service Specification are
mandatory only if 2 Security Layer is supported and a Security Manager is installed.

52 URL Handlers Service Specification is mandatory if the framework implementation system bun-
dle exports the org.osgi.service.url package.

701 Tracker Specification is optional.

1.5 References

[1] Java Language Specification Third Edition
http://docs.oracle.com/javase/specs/

1.6 Changes

Added Type Roles for Semantic Versioning on page 54 and Versioning Annotations to document
version and type role information for packages.

Added 57 Data Transfer Objects Specification.
«Added Service Scope on page 134 and Prototype Service Factory on page 140.

Page 16 OSGi Core Release 6

Security Layer Version 1.8 Introduction

2

2.1

2.1.1

2.2

2.2.1

2.2.2

Security Layer

\ersion 1.8

Introduction

The OSGi Security Layer is an optional layer that underlies the OSGi framework. The layer is based
on the Java 2 security architecture. It provides the infrastructure to deploy and manage applications
that must run in fine-grained controlled environments.

Essentials

« Fine-grained - The control of applications running in an OSGi Framework must allow for detailed
control of those applications.

« Manageable- The security layer itself does not define an API to control the applications. The man-
agement of the security layer is left to the life cycle layer.

Optional - The security layer is optional.

Security Overview

The Framework security model is based on the Java 2 specification. If security checks are performed,
they must be done according to [3] Java 2 Security Architecture. It is assumed that the reader is famil-
iar with this specification. The security layer is optional, see Optional Security on page 17.

Code Authentication

The OSGi framework can authenticate code in the following ways:
By location
By signer

At higher layers there are defined services that can manage the permissions that are associated with
the authenticated unit of code. These services are:

Permission Admin service - Manages the permission based on full location strings.

- Conditional Permission Admin service - Manages the permissions based on a comprehensive condi-
tional model, where the conditions can test for location or signer.

For signing, this requires the JAR files to be signed; this is described in Digitally Signed JAR Files on
page 18.

Optional Security

The Java platform on which the Framework runs must provide the Java Security APIs necessary for
Java 2 permissions. On resource-constrained platforms, these Java Security APIs may be stubs that
allow the bundle classes to be loaded and executed, but the stubs never actually perform the securi-
ty checks. The behavior of these stubs must be as follows:

checkPermission - Return without throwing a SecurityException.

OSGi Core Release 6

Page 17

Digitally Signed |AR Files Security Layer Version 1.8

2.3

Figure 2.1

. checkGuard- Return without throwing a SecurityException.
implies-Return true.

This behavior allows code to run as if all bundles have AllPermission.

Digitally Signed |AR Files

This section defines in detail how JAR files must be signed. This section therefore overlaps with the
different JAR file specifications that are part of the different versions of Java. The reason for this du-
plication is that there are many aspects left as optional or not well-defined in these specifications. A
reference was therefore insufficient.

Digitally signing is a security feature that verifies the following:

- Authenticates the signer
Ensures that the content has not been modified after it was signed by the principal.

In an OSGi Framework, the principals that signed a JAR become associated with that JAR. This asso-
ciation is then used to:

Grant permissions to a JAR based on the authenticated principal
Target a set of bundles by principal for a permission to operate on or with those bundles

For example, an Operator can grant the ACME company the right to use networking on their de-
vices. The ACME company can then use networking in every bundle they digitally sign and deploy
on the Operator's device. Also, a specific bundle can be granted permission to only manage the life
cycle of bundles that are signed by the ACME company.

Signing provides a powerful delegation model. It allows an Operator to grant a restricted set of per-
missions to a company, after which the company can create JARs that can use those permissions,
without requiring any intervention of, or communication with, the Operator for each particular
JAR. This delegation model is shown graphically in Figure 2.1.

Delegation model

5]
e B 2

Developer Enterprise

installsl @

L 0SGi . %
LSRN : Framework | 4&
permissions
Employee ! ' Operator

Digital signing is based on public key cryptography. Public key cryptography uses a system where
there are two mathematically related keys: a public and a private key. The public key is shared with
the world and can be dispersed freely, usually in the form of a certificate. The private key must be
kept a secret.

Messages signed with the private key can only be verified correctly with the public key. This can be
used to authenticate the signer of a message (assuming the public key is trusted, this is discussed in
Certificates on page 22).

Page 18

OSGi Core Release 6

Security Layer Version 1.8 Digitally Signed |AR Files

2.3.1

Figure 2.2

The digital signing process used is based on Java 2 JAR signing. The process of signing is repeated, re-
stricted and augmented here to improve the inter-operability of OSGi bundles.

JAR Structure and Manifest

ATJAR can be signed by multiple signers. Each signer must store two resources in the JAR file. These
resources are:

- Asignature instruction resource that has a similar format like the Manifest. It must have a .SF ex-
tension. This file provides digests for the complete manifest file.
A PKCS#7 resource that contains the digital signature of the signature instruction resource. See
[11] Public Key Cryptography Standard #7 for information about its format.

These JAR file signing resources must be placed in the META-INF directory. For signing, the META-
INF directory is special because files in there are not signed in the normal way. These signing re-
sources must come directly after the MANIFEST.MF file, and before any other resources in a JAR
stream. If this is not the case, then a Framework should not accept the signatures and must treat
the bundle as unsigned. This ordering is important because it allows the receiver of the JAR file

to stream the contents without buffering. All the security information is available before any re-
sources are loaded. This model is shown in Figure 2.2.

Signer files in JAR
MANIFEST.MF

META-INF/ ACME.SF
... other files ACME.RSA
———— DAFFY.SF
— DAFFY.DSA
 —
—
———

The signature instruction resource contains digests of the Manifest resource, not the actual resource
data itself. A digest is a one way function that computes a value from the bytes of a resource in such
a way that it is very difficult to create a set of bytes that matches that digest value.

The JAR Manifest must therefore contain one or more digests of the actual resources. These digests
must be placed in their name section of the manifest. The name of the digest header is constructed
with its algorithm followed by -Digest. An example is the SHA1-Digest. It is recommended that OS-
Gi Framework implementations support the following digest algorithms.

MD5 - Message Digest 5, an improved version of MD4. It generates a 128-bit hash. It is described
at page 436 in [7] RFC 1321 The MD5 Message-Digest Algorithm.

SHAI - An improved version of SHA, delivers a 160 bit hash. It is defined in [6] Secure Hash Algo-
rithm 1.

The hash must be encoded with a Base 64 encoding. Base 64 encoding is defined in [8] RFC 1421 Pri-
vacy Enhancement for Internet Electronic Mail.

For example, a manifest could look like:

Manifest-Version: 1.0

Bundle-Name: DisplayManifest

d

Name: x/A.class

SHA1-Digest: RTpDp+igo]lkxs8CSFeDtMbMq78=

OSGi Core Release 6

Page 19

Digitally Signed |AR Files Security Layer Version 1.8

Figure 2.3

d

Name: x/B.class
SHA1-Digest: 3EuIPcx414w2QfFSXSZEBfLgKYA=
d

Graphically this looks like Figure 2.3.

Signer files in JAR
META-INF/ Manifest-Version: 1.0
... other files
| — / Name: x{A.cIass ;
:/ SHA1—D1gest: RTpr+1gOT1k ..
x/A.class
Name: x/B.class
C———1 | —— |SHA1-Digest: 3EuIPcx414w2. ..
x/B.class — | B

MANIFEST.MF

OSGi JARs must be signed by one or more signers that sign all resources except the ones in the
META-INF directory; the default behavior of the jarsigner tool. This is a restriction with respect to
standard Java JAR signing; there is no partial signing for an OSGi JAR. The OSGi specification only
supports fully signed bundles. The reason for this restriction is because partially signing can break
the protection of private packages. It also simplifies the security API because all code of a bundle is
using the same protection domain.

Signature files in nested JAR files (For example JARs on the Bundle-ClassPath) must be ignored.
These nested JAR files must share the same protection domain as their containing bundle. They
must be treated as if their resources were stored directly in the outer JAR.

Each signature is based on two resources. The first file is the signature instruction file; this file must
have a file name with an extension .SF. A signature file has the same syntax as the manifest, except
that it starts with Signature-Version: 1.0 instead of Manifest-Version: 1.0.

The only relevant part of the signature resource is the digest of the Manifest resource. The name of
the header must be the name algorithm (e.g. SHA1) followed by -Digest-Manifest. For example:

Signature-Version: 1.0
SHAl-Digest-Manifest: RTpDp+igo]lkxs8CSFeDtMbMq78=
MD5-Digest-Manifest: IIsI6HranRNHMY27SK8M5gMunR4=

The signature resource can contain name sections as well. However, these name sections should be
ignored.

If there are multiple signers, then their signature instruction resources can be identical if they use
the same digest algorithms. However, each signer must still have its own signature instruction file.
That is, it is not allowed to share the signature resource between signers.

The indirection of the signature instruction files digests is depicted in Figure 2.4 for two signers:
ACME and DAFFY.

Page 20

OSGi Core Release 6

Security Layer Version 1.8

Digitally Signed]AR Files

Figure 2.4

2.3.2

2.3.3

2.3.4

Manifest, signature instruction files and digests in JAR

| — ™ =
signature
with private key
META-INF/ ——)
... other files —— certificates
[—
(I | — ACME.SF
— —
- — signature
; MANIFEST.MF with private key
certificates
e Manifest entry DAFFY.DSA
—— Digest functions DAFFY.SF

[Resource

Java AR File Restrictions

OSGi bundles are always valid JAR files. However, there are a few restrictions that apply to bundles
that do not apply to JAR files.

Bundles do not support partially signed bundles. The manifest must contain name sections for
all resources but should not have entries for resources in the META-INF directory. Signed entries
in the META-INF directory must be verified. Sub directories of META-INF must be treated like
any other JAR directory.

The name sections in the signature files are ignored. Only the Manifest digest is used.

Valid Signature

A bundle can be signed with a signature by multiple signers. A signature contains a pair of a signa-
ture file, with a SF extension and a PKCS#7 resource that has the same name as the signature file but
with either an RSA or DSA extension.

Such a signature is valid when:

The signature file has an entry for the META-INF/MANIFEST.MF resource.
« The manifest entry must contain an SHA1 and/or MD5 digest for the complete manifest.
All listed digests match the manifest.

The PCKS#7 resource is a valid signature (either signed using RSA or DSA as indicated by the ex-
tension) for the signature resource.

For a complete bundle to be validly signed it is necessary that all signatures are valid. That is, if one
of the signatures is invalid, the whole bundle must be treated as unsigned.

Signing Algorithms

Several different available algorithms can perform digital signing. OSGi Framework implementa-
tions should support the following algorithms:

DSA - The Digital Signature Algorithm. This standard is defined in [9] DSA. This is a USA govern-
ment standard for Digital Signature Standard. The signature resource name must have an exten-
sion of .DSA.

RSA - Rivest, Shamir and Adleman. A public key algorithm that is very popular. It is defined in
[10] RSA. The extension of the signature resource name must be .RSA.

The signature files for RSA and DSA are stored in a PCKS#7 format. This is a format that has a struc-
ture as defined in [11] Public Key Cryptography Standard #7. The PKCS#7 standard provides access to

OSGi Core Release 6

Page 21

Digitally Signed |AR Files Security Layer Version 1.8

2.3.5

Figure 2.5

the algorithm specific signing information as well as the certificate with the public key of the sign-
er. The verification algorithm uses the public key to verify that:

- The digital signature matches the signature instruction resource.
- The signature was created with the private key associated with the certificate.

The complete signing structure is shown in Figure 2.4.

Certificates

A certificate is a general term for a signed document containing a name and public key information.
Such a certificate can take many forms but the OSGi JAR signing is based on the X.509 certificate for-
mat. It has been around for many years and is part of the OSI group of standards. X.509 is defined in
[2] X.509 Certificates.

An X.509 certificate contains the following elements:

« Subject Name - The subject name is a unique identifier for the object being certified. In the case of
a person this might include the name, nationality and e-mail address, the organization, and the
department within that organization. This identifier is a Distinguished Name, which is defined
in Distinguished Names on page 23.

« Issuer Name- The Issuer name is a Distinguished Name for the principal that signed this certifi-
cate.

- Certificate Extensions - A certificate can also include pictures, codification of fingerprints, passport
number, and other extensions.

- Public Key Information - A public key can be used with an encryption technique that requires its
private counterpart to decrypt, and vice versa. The public key can be shared freely, the private
key must be kept secret. The public key information specifies an algorithm identifier (such as
DSA or RSA) and the subject's public key.

. Validity - A Certificate can be valid for only a limited time.

- Certifying Authority Signature - The Certificate Authority signs the first elements and thereby adds
credibility to the certificate. The receiver of a certificate can check the signature against a set of
trusted certifying authorities. If the receiver trusts that certifying authority, it can trust the state-
ment that the certificate makes.

The structure of a certificate is depicted in Figure 2.5.

Structure of a certificate

subject DN Q digital signing algorithm

issuer DN

validity

extensions digest

public key

private key from other certificate

signature

Certificates can be freely dispersed; they do not contain any secret information. Therefore, the
PKCS#7 resource contains the signing certificate. It cannot be trusted at face value because the cer-
tificate is carried in the bundle itself. A perpetrator can easily create its own certificate with any con-
tent. The receiver can only verify that the certificate was signed by the owner of the public key (the
issuer) and that it has not been tampered with. However, before the statement in the certificate can
be trusted, it is necessary to authenticate the certificate itself. It is therefore necessary to establish a
trust model.

Page 22

OSGi Core Release 6

Security Layer Version 1.8 Digitally Signed |AR Files

Figure 2.6

2.3.6

Figure 2.7

One trust model, supported but not required by the OSGi specifications, is placing the signing cer-
tificate in a repository. Any certificate in this repository is treated as trusted by default. However,
placing all possible certificates in this repository does not scale well. In an open model, a device
would have to contain hundreds of thousands of certificates. The management of the certificates
could easily become overwhelming.

The solution is to sign a certificate by another certificate, and this process can be repeated several
times. This delegation process forms a chain of certificates. All certificates for this chain are carried in
the PKCS#7 file: if one of those certificates can be found in the trusted repository, the other depen-
dent ones can be trusted, on the condition that all the certificates are valid. This model scales very
well because only a few certificates of trusted signers need to be maintained. This is the model used
in web browsers, as depicted in Figure 2.6.

Certificate authorities fan out

App

—> Signs Cert

Thawte
Signing

Thawte

Trusted Repository
Root

This specification does not specify access to the trusted repository. It is implementation specific
how this repository is populated and maintained.

Distinguished Names

An X.509 name is a Distinguished Name (DN). A DN is a highly structured name, officially identifying
anode in an hierarchical namespace. The DN concept was developed for the X.500 directory service
which envisioned a world wide namespace managed by PTTs. Today, the DN is used as an identifier
in a local namespace, as in a namespace designed by an Operator. For example, given a namespace
that looks like Figure 2.7, the DN identifying Bugs looks like:

cn=Bug, 0o=ACME, c=US

Country, Company, Person based namespace.

Root |
T

*
C = Country I

1

Orgamzatlon I

CN= Common
Name

OSGi Core Release 6

Page 23

Digitally Signed |AR Files Security Layer Version 1.8

The traversal of the namespace is reversed from the order in the DN, the first part specifies the least
significant but most specific part. That is, the order of the attribute assertions is significant. Two
DNs with the same attributes but different order are different DNs.

In the example, a node is searched in the root that has an attribute c (countryName) with a value
that is US. This node is searched for a child that has an attribute o (organizationName) with a value
of ACME. And the ACME node is searched for a child node with an attribute cn (commonName) that
has a value "Bugs Bunny".

The tree based model is the official definition of a DN from the X.500 standards. However, in prac-
tice today, many DNs contain attributes that have no relation to a tree. For example, many DNs con-
tain comments and copyrights in the ou (organizationalUnit) attribute.

The DN from an X.509 certificate is expressed in a binary structure defined by ASN.1 (a type lan-
guage defined by ISO). However, the Distinguished Name is often used in interaction with hu-
mans. Sometimes, users of a system have to acknowledge the use of a certificate or an employ-
ee of an Operator must grant permissions based on a Distinguished Name of a customer. It is
therefore paramount that the Distinguished Name has a good human readable string represen-
tation. The expressiveness of the ASN.1 type language makes this non-trivial. This specification
only uses DN strings as defined in [1] RFC 2253Lightweight Directory Access Protocol (v3): UTF-8
String Representation of Distinguished Names with a number of extensions that are specified by the
javax.security.auth.xsoo.X5ooPrincipal class in CANONICAL form.

However, the complexity of the encoding/decoding is caused by the use of rarely used types and fea-
tures (binary data, multi-valued RDNs, foreign alphabets, and attributes that have special matching
rules). These features must be supported by a compliant implementation but should be avoided by
users. In practice, these features are rarely used today.

The format of a string DN is as follows:

dn si=rdn (', rdn) %

rdn ::= attribute ('+' attribute) *
attribute ::= name '=' value

name ::= readable | oid

oid ::= number ('.' number) % // See 1.3.2
readable ::= <see attribute table>

value ::= <escaped string»

Spaces before and after the separators are ignored, spaces inside a value are significant but multiple
embedded spaces are collapsed into a single space. Wildcard asterisks ('*' \uoo2A) are not allowed
in a value part. The following characters must be escaped with a reverse solidus (\' \uoosC):

comma o \u002C
plus 4! \u0028B
double quote o \u0022
reverse solidus ! \u005C
less then ! \u003C
greater then ' \u003E
semicolon e \u003B

Reverse solidi (\' \uoos5C) must already be escaped in Java strings, requiring 2 reverse solidi in Java
source code. For example:

DN: cn = Bugs Bunny, o = ACME++, C=US
Canonical form: cn=bugs bunny,o=acme\+\+, c=us
Java String: "cn=Bugs Bunny, o=ACME\\+\\+, c=US"

The full unicode character set is available and can be used in DNs. String objects must be normal-
ized and put in canonical form before being compared.

Page 24

OSGi Core Release 6

Security Layer Version 1.8 Digitally Signed |AR Files

2.3.7

DN: cn = Bugs Bunny, o = b b, C=US
Canonical form: cn=bugs bunny,o=d p,c=us
JTava String: “cn = Bugs Bunny, o = D p, C=US"

The names of attributes (attributes types as they are also called) are actually translated into an Ob-
ject IDentifier (OID). An OID is a dotted decimal number, like 2.5.4.3 for the cn (commonName) at-
tribute name. It is therefore not possible to use any attribute name because the implementation
must know the aliasing as well as the comparison rules. Therefore only the attributes that are listed
in the following table are allowed (in short or long form):

commonName cn 2.5.4.3 ITU X.520
surName sn 2.5.4.4

countryName c 2.5.4.6

localityName 1 2.5.4.7
stateOrProvinceName st 2.5.4.8
organizationName 0 2.5.4.10
organizationalUnitName ou 2.5.4.11

title 2.5.4.12

givenName 2.5.4.42

initials 2.5.4.43
generationQualifier 2.5.4.44

dnQualifier 2.5.4.46
streetAddress street RFC 2256
domainComponent dc RFC 1274
userid uid RFC 1274727987
emailAddress RFC 2985
serialNumber RFC 2985
The following DN:

2.5.4.3=Bugs Bunny,organizationName=ACME,2.5. 4. 6=US
Is therefore identical to:
cn=Bugs Bunny, 0=ACME, c=US

The attribute types officially define a matching rule, potentially allowing cases sensitive and case
insensitive. The attributes in the previous list all match case insensitive. Therefore, an OSGi DN
must not depend on case sensitivity.

The X.500 standard supports multi-valued RDNs, however, their use is not recommended. See [13]
Understanding and Deploying LDAP Directory Services for the rationale of this recommendation. Mul-
ti-valued RDNs separate their constituents with a plus sign ('+' \uoo2B). Their order is not signifi-
cant. For example:

cn=Bugs Bunny+dc=x.com+title=Manager, o=ACME, c=US
Which is the same as
dc=x.com+cn=Bugs Bunny+title=Manager, o0=ACME, c=US

Certificate Matching

Certificates are matched by their Subject DN. Before matching, DNs, they must first be put in canon-
ical form according to the algorithm specified in javax.security.auth.x500.X500Principal.

DNs can also be compared using wildcards. A wildcard asterisk (‘' \uoo2A) replaces all possible val-
ues. Due to the structure of the DN, the comparison is more complicated than string-based wildcard
matching.

OSGi Core Release 6

Page 25

Digitally Signed |AR Files Security Layer Version 1.8

A wildcard can stand for a number of RDNs, or the value of a single RDN. DNs with a wildcard must
be canonicalized before they are compared. This means, among other things, that spaces must be ig-
nored, except in values.

The format of a wildcard DN match is:

CertificateMatch = dn-match (';' dn-match) *
dn-match = ('x'" | rdn-match)
('," rdn-match) % | '-'
rdn-match = name '=' value-match
value-match = 'x' | value-star
value-star = < value, requires escaped 'x' and'-' >

The most simple case is a single wildcard; it must match any DN. A wildcard can also replace the
first list of RDNs of a DN. The first RDNs are the least significant. Such lists of matched RDNs can be
empty.

For example, a DN with a wildcard that matches all nodes descendant from the ACME node in Figure
2.7 on page 23, looks like:

*, 0=ACME, c=US
This wildcard DN matches the following DNs:

cn = Bugs Bunny, o = ACME, ¢ = US

ou = Carots, cn=Daffy Duck, o=ACME, c=US
street = 9C\, Avenue St. Drézéry, o=ACME, c=US
dc=www, dc=acme, dc=com, o=ACME, c=US

0=ACME, c=US

The following DNs must not match:

street = 9C\, Avenue St. Drézéry, o=ACME,c=FR
dc=www, dc=acme, dc=com, c=US

If a wildcard is used for a value of an RDN, the value must be exactly *. The wildcard must match
any value, and no substring matching must be done. For example:

cn=%, 0=ACME, c=x*
This DN with wildcard must match the following DNs:

cn=Bugs Bunny, 0=ACME, c=US
cn = Daffy Duck , o = ACME , ¢ = US
cn=Road Runner, 0=ACME, c=NL

But not:

0=ACME, c=NL
dc=acme.com, cn=Bugs Bunny, o0=ACME, c=US

Both forms of wildcard usage can be combined in a single matching DN. For example, to match any
DN that is from the ACME company worldwide, use:

*, 0=ACME, c=%

Matching of a DN takes place in the context of a certificate. This certificate is part of a certificate
chain, see Certificates on page 22. Each certificate has a Subject DN and an Issuer DN. The Issuer

DN is the Subject DN used to sign the first certificate of the chain. DN matching can therefore be ex-
tended to match the signer. The semicolon (';' \uoo3B) must be used to separate DNs in a chain.

Page 26

OSGi Core Release 6

Security Layer Version 1.8 Permissions

2.4

2.4.1

2.4.2

The following example matches a certificate signed by Tweety Inc. in the US.
* ; ou=S & V, o=Tweety Inc., c=US

The wildcard matches zero or one certificates, however, sometimes it is necessary to match a longer
chain. The minus sign ('-' \uoo2D) represents zero or more certificates, whereas the asterisk only
represents a single certificate. For example, to match a certificate where the Tweety Inc.is in the cer-
tificate chain, use the following expression:

- ; %, o=Tweety Inc., c=US

The previous example matched if the Tweety Inc. certificate was trusted, or was signed by a trusted
certificate. Certain certificates are trusted because they are known by the Framework, how they are
known is implementation-defined.

Permissions

The OSGi Framework uses Java 2 permissions for securing bundles. Each bundle is associated with
a set of permissions. During runtime, the permissions are queried when a permission is requested
through the Security Manager. If a Framework uses postponed conditions, then it must install its
own security manager, otherwise it can use any Security Manager.

The management of the bundle's permissions is handled through Conditional Permission Admin,
Permission Admin, or another security agent.

Implied Permissions

Implied permissions are permissions that the framework grants a bundle without any specific ac-
tion. These permissions are necessary for normal operation. For example, each bundle gets permis-
sions to read, write, and delete the bundle persistent storage area. The standard list of implied per-
missions is as follows:

- File Permission for the bundle persistent storage area, for the READ, WRITE, and DELETE actions
Property Permission with the READ action for org.osgi.framework.x

Admin Permission with the RESOURCE, METADATA, CLASS, and CONTEXT actions for the bundle
itself.

Capability Permission REQUIRE for the osgi.ee capability.

Filter Based Permissions

OSGi supports a number of permissions that are granted when the target of the permissions is relat-
ed to a bundle. For example, Admin Permission can grant a bundle the permission to manage other
bundles. This is expressed by using a filter expression for the name of the permission. When the per-
mission is checked, the filter is evaluated with specific permission attributes as well as attributes
that describe the bundle's identity. For example, a bundle can get permission to get all services regis-
tered by bundles coming from a specific location:

ServicePermission(" (location=https: //www.acme.com/*)",GET)

This provides a very powerful model because it allows operators to let a group of bundles closely
collaborate without requiring ad hoc namespaces for services, packages, and bundles. Using the
signer or location as the target for a permission, will allow the maintenance of the permission man-
agement to be significantly reduced. It is not necessary to configure for individual bundles: the sign-
er or location is effectively used as a grouping mechanism.

The filter can contain the following keys:

OSGi Core Release 6

Page 27

References

Security Layer Version 1.8

2.4.2.1

2.5

. id- The bundle ID of a bundle. For example:
(1d=256)

location - The location of a bundle. Filter wildcards for Strings are supported, allowing the value
to specify a set of bundles. For example:

(location=https: //www.acme.com/download/x*)

signer - A Distinguished Name chain. See Certificate Matching on page 25 for more informa-

tion how Distinguished Names are matched. Wildcards in a DN are not matched according to
the filter string rules, but according to the rules defined for a DN chain. The wildcard asterisk (‘*'
\uoo2A) must be escaped with a reverse solidus (\' \uoosC) to avoid being interpreted as a filter
wildcard. For example:

(signer=\%, 0=ACME, c=NL)

name - The symbolic name of a bundle. Filter wildcards for Strings are supported allowing the
value to specify a set of bundles. A single symbolic name may also map to a set of bundles. For ex-
ample:

(name=com. acme.)

The name parameter of the permission can also be a single wildcard asterisk ('*' \uoo2A). In that
case all bundles must match.

Multiple Signers

A bundle can be signed by multiple signers, in that case the signer will match against any of the
signers' DN. Using multiple signers is both a feature as well as it is a possible threat. From a man-
agement perspective it is beneficial to be able to use signatures to handle the grouping. However, it
could also be used to maliciously manage a trusted bundle.

For example a trusted bundle signed by T, could later have a signature added by an untrusted par-
ty U. This will grant the bundle the permissions of both T and U, which ordinarily is a desirable fea-
ture. However, If the permissions associated with signer U also allow the management of bundles
signed by U, then U could unexpectedly gain the permission to manage this trusted bundle. For ex-
ample, it could now start and stop this trusted bundle. This unexpected effect of becoming eligible
to be managed should be carefully considered when multiple signers are used. The deny policies in
Conditional Permission Admin can be used to prevent this case from causing harm.

References

RFC 2253Lightweight Directory Access Protocol (v3): UTF-8 String Representation of Distinguished Names
http://www.ietf.org/rfc/rfc2253.txt

X.509 Certificates
http://www.ietf.org/rfc/rfc2459.txt

Java 2 Security Architecture
Version 1.2, Sun Microsystems, March 2002

The Java 2 Package Versioning Specification
http://docs.oracle.com/javase/1.4.2/docs/guide/versioning/index.html

Manifest Format
http://docs.oracle.com/javase/1.4.2/docs/guide/jar/jar.html#]AR%20Manifest

Secure Hash Algorithm 1

Page 28

OSGi Core Release 6

Security Layer Version 1.8

References

[7)

(8]

9]

(10]

(11]

(12]

(13]

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

RFC 1321 The MD5 Message-Digest Algorithm
http://www.ietf.org/rfc/rfc1321.txt

RFC 1421 Privacy Enhancement for Internet Electronic Mail
http://www.ietf.org/rfc/rfc1421.txt

DSA
http://www.itl.nist.gov/fipspubs/fip186.htm

RSA
http://www.ietf.org/rfc/rfc2313.txt which is superseded by http://www.ietf.org/rfc/rfc2437.txt

Public Key Cryptography Standard #7
http://www.rsasecurity.com/rsalabs/node.asp?id=2129

Unicode Normalization UAX # 15
http://www.unicode.org/reports/trl5/

Understanding and Deploying LDAP Directory Services
ISBN 1-57870-070-1

OSGi Core Release 6

Page 29

References Security Layer Version 1.8

Page 30 OSGi Core Release 6

Module Layer Version 1.8 Introduction

3

3.1

3.2

3.2.1

Module Layer

\ersion 1.8

Introduction

The standard Java platform provides only limited support for packaging, deploying, and validating
Java-based applications and components. Because of this, many Java-based projects, such as JBoss
and NetBeans, have resorted to creating custom module-oriented layers with specialized class load-
ers for packaging, deploying, and validating applications and components. The OSGi Framework
provides a generic and standardized solution for Java modularization.

Bundles

The Framework defines a unit of modularization, called a bundle. A bundle is comprised of Java
classes and other resources, which together can provide functions to end users. Bundles can share
Java packages among an exporter bundle and an importer bundle in a well-defined way. In the OSGi
framework, bundles are the only entities for deploying Java-based applications.

A bundle is deployed as a Java ARchive (JAR) file. JAR files are used to store applications and their re-
sources in a standard ZIP-based file format. This format is defined by [9] Zip File Format. Bundles nor-
mally share the Java Archive extension of .jar. However, there is a special MIME type reserved for
OSGi bundles that can be used to distinguish bundles from normal JAR files. This MIME type is:

application/vnd.osgi.bundle

The type is defined in [15] OSGi IANA Mime Type.
A bundle is a JAR file that:

Contains the resources necessary to provide some functionality. These resources may be class
files for the Java programming language, as well as other data such as HTML files, help files,
icons, and so on. A bundle JAR file can also embed additional JAR files that are available as re-
sources and classes. This is however not recursive.

Contains a manifest file describing the contents of the JAR file and providing information about
the bundle. This file uses headers to specify information that the Framework needs to install cor-
rectly and activate a bundle. For example, it states dependencies on other resources, such as Java
packages, that must be available to the bundle before it can run.

. Can contain optional documentation in the OSGI-OPT directory of the JAR file or one of its sub-
directories. Any information in this directory is optional. For example, the OSGI-OPT directory is
useful to store the source code of a bundle. Management systems may remove this information
to save storage space in the OSGi framework.

Once a bundle is started, its functionality is provided and services are exposed to other bundles in-
stalled in the OSGi framework.

Bundle Manifest Headers

A bundle can carry descriptive information about itself in the manifest file that is contained in its
JAR file under the name of META-INF/ MANIFEST.MF.

OSGi Core Release 6 Page 31

Bundles

Module Layer Version 1.8

3.2.1.1

3.2.1.2

3.2.1.3

3.2.1.4

3.2.1.5

3.2.1.6

3.2.1.7

3.2.1.8

3.2.1.9

The Framework defines OSGi manifest headers such as Export-Package and Bundle-ClassPath,
which bundle developers use to supply descriptive information about a bundle. Manifest headers
must strictly follow the rules for manifest headers as defined in [10] Manifest Format.

A Framework implementation must:

Process the main section of the manifest. Individual sections of the manifest are only used dur-
ing bundle signature verification.

Ignore unrecognized manifest headers. The bundle developer can define additional manifest
headers as needed.

Ignore unknown attributes and directives.

All specified manifest headers are listed in the following sections. All headers are optional, unless
specifically indicated.

Bundle-ActivationPolicy: lazy

The Bundle-ActivationPolicy specifies how the framework should activate the bundle once started.
See Activation Policies on page 110.

Bundle-Activator: com.acme.fw.Activator

The Bundle-Activator header specifies the name of the class used to start and stop the bundle. See
Starting Bundles on page 108.

Bundle-Category: osgi, test, nursery

The Bundle-Category header holds a comma-separated list of category names.

Bundle-ClassPath: /jar/http.jar,.

The Bundle-ClassPath header defines a comma-separated list of JAR file path names or directories
(inside the bundle) containing classes and resources. The full stop (. \uoo2E) specifies the root di-
rectory of the bundle's JAR. The full stop is also the default. See Bundle Class Path on page 62.
Bundle-ContactAddress: 2400 Oswego Road, Austin, TX 74563

The Bundle-ContactAddress header provides the contact address of the vendor.

Bundle-Copyright: OSGi (c) 2002
The Bundle-Copyright header contains the copyright specification for this bundle.

Bundle-Description: Network Firewall

The Bundle-Description header defines a short description of this bundle.

Bundle-DocURL: http://www.example.com/Firewall/doc

The Bundle-DocURL headers must contain a URL pointing to documentation about this bundle.

Bundle-Icon: /icons/acme-logo.png;size=64

The optional Bundle-Icon header provides a list of URLs to icons representing this bundle in differ-
ent sizes. The following attribute is permitted:

size - (integer) Specifies the size of the icon in pixels horizontal. It is recommended to always in-
clude a 64x64 icon.

The URLs are interpreted as relative to the bundle. That is, if a URL with a scheme is provided, then
this is taken as an absolute URL. Otherwise, the path points to an entry in the JAR file, taking any at-
tached fragments into account. Implementations that want to use this header should at least sup-

Page 32

OSGi Core Release 6

Module Layer Version 1.8 Bundles

3.2.1.10

3.2.1.11

3.2.1.12

port the Portable Network Graphics (PNG) format, see [18] Portable Network Graphics (PNG) Specifica-
tion (Second Edition).

Bundle-License: http://www.opensource.org/licenses/jabberpl.php

The Bundle-License header provides an optional machine readable form of license information. The
purpose of this header is to automate some of the license processing required by many organiza-
tions like for example license acceptance before a bundle is used. The header is structured to pro-
vide the use of unique license naming to merge acceptance requests, as well as links to human read-
able information about the included licenses. This header is purely informational for management
agents and must not be processed by the OSGi Framework.

The syntax for this header is as follows:

Bundle-License ::= '<<EXTERNAL>>" |

(license (',' license) %)
license ::=name (';' license-attr) *
license-attr ::= description | link
description ::= 'description’ '=' string
link ::= 'link' '=' <urls

This header has the following attributes:

- name- Provides a globally unique name for this license, preferably world wide, but it should at
least be unique with respect to the other clauses. The magic name <<EXTERNAL>> is used to indi-
cate that this artifact does not contain any license information but that licensing information is
provided in some other way. This is also the default contents of this header.

Clients of this bundle can assume that licenses with the same name refer to the same license.
This can for example be used to minimize the click through licenses. This name should be the
canonical URL of the license, it must not be localized by the translator. This URL does not have to
exist but must not be used for later versions of the license. It is recommended to use URLs from
[19] Open Source Initiative. Other licenses should use the following structure, but this is not man-
dated:

http://<domain-name>/licenses/
<license-name>-<version>.<extension>

- description - (optional) Provide the description of the license. This is a short description that is
usable in a list box on a Ul to select more information about the license.

- link- (optional) Provide a URL to a page that defines or explains the license. If this link is absent,
the name field is used for this purpose. The URL is relative to the root of the bundle. That is, it is
possible to refer to a file inside the bundle.

If the Bundle-License statement is absent, then this does not mean that the bundle is not licensed.
Licensing could be handled outside the bundle and the <<EXTERNAL>> form should be assumed.
This header is informational and may not have any legal bearing. Consult a lawyer before using this
header to automate licensing processing.

Bundle-Localization: OSGI-INF/lron/bundle

The Bundle-Localization header contains the location in the bundle where localization files can be
found. The default value is OSGI-INF/l1on/bundle. Translations are by default therefore OSGI-INF/
lzon/bundle_de.properties, OSGI-INF/lion/bundle_nl.properties, etc. See Manifest Localization on
page 78.

Bundle-ManifestVersion: 2

The Bundle-ManifestVersion header defines that the bundle follows the rules of this specification.
The Bundle-ManifestVersion header determines whether the bundle follows the rules of this specifi-

OSGi Core Release 6

Page 33

Bundles

Module Layer Version 1.8

3.2.1.13

3.2.1.14

3.2.1.15

3.2.1.16

3.2.1.17

3.2.1.18

3.2.1.19

3.2.1.20

3.2.1.21

3.2.1.22

3.2.1.23

3.2.1.24

cation. It is 1 (the default) for Release 3 Bundles, 2 for Release 4 and later. Future version of the OSGi
framework can define higher numbers for this header.

Bundle-Name: Firewall

The Bundle-Name header defines a readable name for this bundle. This should be a short, hu-
man-readable name that can contain spaces.

Bundle-NativeCode: /lib/http.DLL; osname = QNX; osversion = 3.1

The Bundle-NativeCode header contains a specification of native code libraries contained in this
bundle. See Loading Native Code Libraries on page 71.

Bundle-RequiredExecutionEnvironment: CDC-1.0/Foundation-1.0

The Bundle-RequiredExecutionEnvironment contains a comma-separated list of execution environ-
ments that must be present on the OSGi framework. See Execution Environment on page 44. This
header is deprecated.

Bundle-SymbolicName: com.acme.daffy

The Bundle-SymbolicName header specifies a non-localizable name for this bundle. The bundle
symbolic name together with a version must identify a unique bundle though it can be installed
multiple times in a framework. The bundle symbolic name should be based on the reverse domain
name convention, see Bundle-SymbolicName on page 48. This header must be set.
Bundle-UpdateLocation: http://www.acme.com/Firewall/bundle.jar

The Bundle-UpdateLocation header specifies a URL where an update for this bundle should come
from. If the bundle is updated, this location should be used, if present, to retrieve the updated JAR
file.

Bundle-Vendor: OSGi Alliance

The Bundle-Vendor header contains a human-readable description of the bundle vendor.

Bundle-Version: 1.1

The Bundle-Version header specifies the version of this bundle. See Version on page 35. The de-

fault valueiso.0.0

Dynamiclmport-Package: com.acme.plugin.*

The DynamicImport-Package header contains a comma-separated list of package names that should
be dynamically imported when needed. See Dynamic Import Package on page 64.

Export-Package: org.osgi.util.tracker;version=1.3

The Export-Package header contains a declaration of exported packages. See Export-Package on page
50.

Export-Service: org.osgi.service.log.LogService

Deprecated.

Fragment-Host: org.eclipse.swt; bundle-version="[3.0.0,4.0.0)"

The Fragment-Host header defines the host bundles for this fragment. See Fragment-Host on page
83

Import-Package: org.osgi.util.tracker,org.osgi.service.io;version=1.4

The Import-Package header declares the imported packages for this bundle. See Import-Package on
page 49.

Page 34

OSGi Core Release 6

Module Layer Version 1.8 Bundles

3.2.1.25

3.2.1.26

3.2.1.27

3.2.1.28

3.2.2

3.2.3

3.2.4

3.2.5

Import-Service: org.osgi.service.log.LogService

Deprecated

Provide-Capability: com.acme.dict; from=nl; to=de; version:Version=1.2

Specifies that a bundle provides a set of Capabilities, see Dependencies on page 38.

Require-Bundle: com.acme.chess

The Require-Bundle header specifies that all exported packages from another bundle must be im-
ported, effectively requiring the public interface of another bundle. See Require-Bundle on page
79

Require-Capability: osgi.ee; filter:="(&(osgi.ee=AcmeMin)(version=1.1))"

Specifies that a bundle requires other bundles to provide a capability, see Dependencies on page
38.

Custom Headers

The manifest is an excellent place to provide metadata belonging to a bundle. This is true for the OS-
Gi Alliance but it is also valid for other organizations. For historic reasons, the OSGi Alliance claims
the default namespace, specifically headers that indicate OSGi related matters like names that con-
tain Bundle, Import, Export, etc. Organizations that want to use headers that do not clash with OS-
Gi Alliance defined names or bundle header names from other organizations should prefix custom
headers with x-, for example x-LazyStart.

Organizations external to the OSGi Alliance can request header names in the OSGi namespace. The
OSGi Alliance maintains a registry of such names at [16] OSGi Header Registry.

Header Value Syntax

Each Manifest header has its own syntax. In all descriptions, the syntax is defined with [11] W3C
EBNF. These following sections define a number of commonly used terminals.

Common Header Syntax

Many Manifest header values share a common syntax. This syntax consists of:

header ::= clause (',' clause) x*
clause ::= path (';' path) %
(';" parameter) % /] See 1.3.2

A parameter can be either a directive or an attribute. A directive is an instruction that has some im-
plied semantics for the Framework. An attribute is used for matching and comparison purposes.

Version

Version specifications are used in several places. A version has the following grammar:

version ti=
major('." minor (".' micro ('.' qualifier)?)?)?
major = number /] See 1.3.2
minor = number
micro = number
qualifier = (alphanum | "_" | '-")+

A version must not contain any white space. The default value for a version is 0.0.0.

OSGi Core Release 6

Page 35

Bundles

Module Layer Version 1.8

3.2.6

Table 3.1

3.2.7

Versions are supported in the API with the Version class.

The Version annotation can be used in package-info.java source files to document the version of a
package. This annotation can be processed by bundle assembly tools when generating the version
information for a bundle's Export-Package manifest header.

Version Ranges

A version range describes a range of versions using a mathematical interval notation. See [12] Mathe-
matical Convention for Interval Notation. The syntax of a version range is:

version-range ::= interval | atleast

interval = ('["| "() floor '," ceiling ('1" |)")
atleast = version
floor = version
ceiling = version

If a version range is specified as a single version, it must be interpreted as the range [version,«=). The
default for a non-specified version range is 0, which maps to [0.0.0,x).

Note that the use of a comma in the version range requires it to be enclosed in double quotes. For ex-
ample:

Import-Package: com.acme.foo;version="[1.23,2)", «

com. acme. bar;version="[4.0, 5.0)

In the following table, for each specified range in the left-hand column, a version xis considered to
be a member of the range if the predicate in the right-hand column is true.

Examples of version ranges

Example Predicate

[1.2.3, 4.5.6) 1.2.3 <= X < 4.5.6
[1.2.3, 4.5.6] 1.2.3 <= X <= 4.5.6
(1.2.3, 4.5.6) 1.2.3 <X < 4.5.6
(1.2.3, 4.5.6] 1.2.3 < X <= 4.5.6
1.2.3 1.2.3 <= X

Version Ranges are supported in the API with the VersionRange class.

Filter Syntax

The OSGi specifications use filter expressions extensively. Filter expressions allow for a concise de-
scription of a constraint. The syntax of a filter string is based upon the string representation of LDAP
search filters as defined in [5] A String Representation of LDAP Search Filters. It should be noted that
RFC 2254: A String Representation of LDAP Search Filters supersedes RFC 1960, but only adds exten-
sible matching and is not applicable to this OSGi Framework APL

The string representation of an LDAP search filter uses a prefix format and is defined by the follow-
ing grammar:

filter = '(' filter-comp ")’
filter-comp ::= and | or | not | operation
and ii= &' filter-list

or c:=] filter-list

not co= 1 filter

Page 36

OSGi Core Release 6

Module Layer Version 1.8 Bundles

Figure 3.1

filter-list ::= filter | filter filter-list
operation ::= simple | present | substring
simple ::= attr filter-type value
filter-type ::= equal | approx | greater-eq | less-eq
equal = s’

approx i est

greater-eq ::= '>='

less-eq R

present si= attr =k

substring ::= attr '=' initial any final
initial ::= () | value

any ;1= '%' star-value

star-value ::= () | value 'x' star-value
final ::= () | value

value 1= <see text>

attr 1i= <see text»

attris a string representing an attribute key or name. Attribute names are not case sensitive; that is,
cnand CN both refer to the same attribute. attr must not contain the characters'=,'>','<','~','('or")".
attr may contain embedded spaces but leading and trailing spaces must be ignored.

valueis a string representing the value, or part of one, which will be compared against a value in the
filtered properties.

If value must contain one of the characters reverse solidus (\' \uoosC), asterisk (‘*' \uoo2A), paren-
theses open (‘'(' \uo028) or parentheses close (')’ \uo029), then these characters should be preceded
with the reverse solidus (\' \uoosC) character. Spaces are significant in value. Space characters are
defined by Character.isWhiteSpace().

Although both the substring and present productions can produce the attr=* construct, this con-
struct is used only to denote a presence filter.

The substring production only works for attributes that are of type String, Collection of String or
String[]. In all other cases the result must be false.

The evaluation of the approximate match ('-=") filter type is implementation specific but should at
least ignore case and white space differences. Codes such as soundex or other smart closeness com-
parisons could be used.

Values specified in the filter are compared to values in the properties against which the filter is eval-
uated. The comparison of these values is not straightforward. Strings compare differently than num-
bers, and it is also possible for a property to have multiple values.

Property keys are case insensitive. The object class of the property's value defines the comparison
type. The properties values should be of the following types:

Primary Property Types

type = scalar | collection | array
scalar = String | Integer | Long | Float
| Double | Byte | Short
| Character | Boolean
primitive = int | long | float | double | byte
| short | char | boolean
array = <Array of primitive>
| <Array of scalar»
collection ::= <Collection of scalar>

The following rules apply for comparison:

OSGi Core Release 6

Page 37

Dependencies

Module Layer Version 1.8

« String - Use String comparison

Integer, Long, Float, Double, Byte, Short, Character objects and primitives - Use numerical comparison.
The value should be trimmed of any extraneous white space before the comparison.

« Boolean objects - Use comparison defined by Boolean.valueOf(value).booleanValue(). The value
should be trimmed of any extraneous white space before this conversion is applied.

. Array or Collection elements - Comparison is determined by the object type of the element

Array and Collection elements may be a mix of scalar types. Array and Collection elements may al-
so be null. If the type of the property value is not one of the above types, then it could be possible to
create an instance of the above type. The following conversions must be tried in the given order:

1. A public static method on the required type called valueOf that returns an instance of the given
type and takes a single String argument.

2. Apublic constructor taking a single String argument.

If one of these methods is available then the Framework must construct a temporary object by pass-
ing the value as the String argument. If the constructor/function is not directly accessible then the
invocation should use the setAccessible method to make it accessible.

The resulting object must be used to compare with the property value according to the following
comparison rules:

Comparable objects - Comparison through the Comparable interface
Other objects - Equality comparison

If none of the above comparison rules apply, then the result of the comparison is false.

A filter matches a property with multiple values if it matches at least one of those values. For exam-
ple:

Dictionary dict = new Hashtable();
dict.put("cn", new String[] { "a", "b", "c¢" });

The dict will match against a filter with (cn=a) as well as (cn=b).

Service properties are often defined to take a type, a collection of that type, or an array of that type.
In those cases, a simple + will be suffixed to the type name. For example String+, indicates thata
String,aString[], and a Collection<String> are all valid forms.

Filters are supported in the API with the Filter type. Filters can be created with the
FrameworkUtil.createFilter(String) method or the BundleContext.createFilter(String) method.

Dependencies

OSGi dependency handling is based on a very general model that describes the dependency relation-
ships. This model consists of a small number of primitive concepts:

Environment - A container or framework that installs Resources.

Resource- An abstraction for an artifact that needs to become installed in some way to provide its
intended function. A Bundle is modeled by a Resource but for example a display or secure USB
key store can also be Resources.

Namespace - Defines what it means for the Environment when a requirement and capability
match in a given Namespace.

Capability - Describing a feature or function of the Resource when installed in the Environment.
A capability has attributes and directives.

Page 38

OSGi Core Release 6

Module Layer Version 1.8 Dependencies

« Requirement- An assertion on the availability of a capability in the Environment. A requirement
has attributes and directives. The filter directive contains the filter to assert the attributes of the
capability in the same Namespace.

The relations between these entities are depicted in Figure 3.2.

Figure 3.2 Core Requirement/Capability model

Environment |
«interface>>
requirement §---------.

«interface>> I Namespace

Resource

«interface>>
Capability — J---------.

A Resource in general has dependencies on other Resources or can satisfy other Resource's depen-
dencies. Dependency types can vary wildly, a Bundle can require packages from another Bundle (Im-
port-Package), or a Fragment needs a host Bundle (Fragment-Host), or a Bundle requires access to

a high resolution display. The OSGi Core specification demonstrates that it is possible to describe
these varying types of dependencies with dedicated headers, optimized for each case. However, this
model requires that every type of dependency will go through a specification process, limiting the
usefulness for parties not participating in this process. Therefore, this specification provides a gener-
ic dependency model based on Namespaces. A Namespace is the type of a dependency. For example,
the osgi.wiring.package Namespace defines the semantics for Import-Package and Export-Package
headers by specifying a number of attributes and directives. Attributes are used for matching and di-
rectives provide information about the semantics of the Namespace. For example, in the case of the
osgi.wiring.host Namespace (Fragments) the capability's attributes are:

- osgi.wiring.host-(String) The host's name.
« bundle-version- (Version) The host's version.
* - Any other attributes are allowed.

The OSGi Framework Namespaces are defined in classes, see Framework Namespaces Specification on
page 163.

The purpose of a Namespace is to create an attribute/directive based language that describes a de-
pendency in a generic way unrelated to the specific dependency type. A number of Namespaces
have been defined by the OSGi Alliance in this and other specifications. OSGi namespaces start with
the reserved osgi. prefix. For example, the osgi.ee namespace defines a capability for specifying an
execution environment. A Namespace can also be defined by other organizations and individuals.
To minimize name clashes it is recommended to use the reverse domain name rule used for pack-
ages and bundle symbolic names. It is also recommended to register these Namespaces with the OS-
Gi Alliance, see [17] OSGi Namespace Registry to prevent clashes.

Given a Namespace, it is possible to declare a capability of that Namespace. A capability provides the
values for the attributes and directives defined in the Namespace. For example, it is possible to trans-
late the Export-Package header to a capability in the osgi.wiring package Namespace.

OSGi Core Release 6 Page 39

Dependencies

Module Layer Version 1.8

3.3.1

Given a capability, it is possible to specify a requirement. A requirement has a filter that can match
the attributes of the capability, if so, the requirement is satisfied. Requirements are always associat-
ed with a given Namespace, like the capability, and can therefore only be satisfied by Capabilities

in the same Namespace. A requirement is satisfied when its filter, as specified with the filter direc-
tive, matches a capability's attributes. The filter language specification can be found in Filter Syntax
on page 36. A requirement can be mandatory or optional, as set with its resolution directive. A re-
quirement can have single or multiple cardinality, indicating it requires at least one or more Capabil-
ities.

A Resource that declares requirements can only provide its intended functionality when its manda-
tory requirements are satisfied by one or more Capabilities, which in general means they come from
other Resources. A Resource that has all its mandatory requirements satisfied is said to be resolved
and must provide the functionality described by its Capabilities. A capability can only satisfy a re-
quirement if its Resource is resolved.

The process of matching up requirements to capabilities is called resolving. In this process, the re-
solver must create Wires that link requirements to Capabilities. Both the Wire and the requirement/
Capability have a reference to a Resource. In certain cases the requirement/ capability can be de-
clared in one Resource but wired from another Resource. Therefore, a requirement/ capability can
have a declared Resource, which is the Resource that declares it. However, when a Resource is wired
the Wire has a provider or requirer Resource which can differ from the corresponding declared Re-
source. When the declared Resource differs from the provider/requirer it is called hosting. This sepa-
ration is caused by Fragments; with Fragments some requirements and Capabilities are hosted and
others remain part of the Fragment.

Only requirements that are effective must be wired. Each requirement is intended for a certain state
of the system. For example, the OSGi Framework only resolves requirements when the requirement
has the effective directive set to resolve.

Once a set of Resources are resolved the Environment, for example the OSGi Framework for bun-
dles, creates a Wiring per Resource to hold the resolved state. This state includes the Wires as well as
all Capabilities and requirements, regardless if they are wired or not.

The Wires between a requirement and a capability must be created according to the semantics im-
plied by their Namespace. The Wires coming out of a resolve operation can be used during run time
as specified in their Namespace. For example, the osgi.wiring.* Namespaces are used to control the
Class Loading, see Bundle Wiring API Specification on page 151. However, they can also serve other
purposes as outlined by their Namespace. For example, a Wire could specify a Dependency Injection
source and target.

Interfaces for the generic model are defined in Resource API Specification on page 145. The Bundle
Wiring API Specification on page 151 chapter describes the Wiring API that is based on this gener-

ic package. The generic API is intended for other specifications that want to be compatible with the
generic OSGi Core framework's Capability /Requirement model.

Bundles

All bundles depend on one or more external entities and this is expressed as requirements and Capa-
bilities. Once a bundle is resolved, it assumes that those dependencies are satisfied. The Require-Ca-
pability and Provide-Capability headers are manifest headers that declare generic requirements and
Capabilities in any Namespace. However, a number of manifest headers in the OSGi specifications
are actually requirements on Capabilities specified by other OSGi manifest headers. For example,
an Import-Package clause is a requirement on the capability specified by an Export-Package clause.
The attributes on an Import-Package clause are treated as assertions on the attributes of the corre-
sponding Export-Package clause. This specification therefore contains a number of Namespaces for
these OSGi manifest headers: osgi.wiring.bundle, osgi.wiring.package, and osgi.wiring.host. These
namespaces influence the resolver and define the class loading process. For example, a Require-Bun-
dle clause is a requirement that ensures that the exported packages of the required bundle are avail-
able to the requirer's class loader.

Page 40

OSGi Core Release 6

Module Layer Version 1.8 Dependencies

Figure 3.3
host

3.3.2

3.3:3

The OSGi resolving process is described in Resolving Process on page 60. The diagramming tech-
nique of the Requirement/Capability model is depicted in Figure 3.3, the details of the wiring are
further explained in Bundle Wiring API Specification on page 151.

Requirements and Capabilities and their Wiring

Requirement
Capability

Bundle

Requirement/Capability
u . o

 HeO

Example Use Case

A bundle has Windows 7 specific Java code and requires a display that has a resolution of at least
1000x1000 pixels. It also relies on a bundle providing an IP-number-to-location table.

These dependencies on the environment and another bundle can be expressed with the require-
ment header in the bundle as follows:

Require-Capability:
com.microsoft; filter:="(&(api=win32) (version=7))
com. acme.display; filter:="(&(width>=1000) (height>=1000))",
com. acme. ip2loc

Each clause lives in a namespace, for example com.microsoft. A namespace defines the semantics of
the attributes as well as optional rules.

The deployer of the environment sets the following launching property when starting the frame-
work:

org.osgi. framework.system. capabilities.extra= «
com. acme.display; width:Long=1920; height:Long=1080; interlace=p, «
com.microsoft; edition=home; version:Version=7; api=win32

The framework will be able to satisfy the display requirement but it cannot satisfy the ip2loc table
requirement. The deployer can then install the bundle with the ip2loc table. This bundle specifies
the following header:

Provide-Capability: com.acme.ip2loc; version:Version=1.2

After installing and resolving this bundle, the framework can resolve the original bundle because
there is now a provider of the ip2loc table.

Bundle Capabilities

A generic capability for a Bundle is defined with the Provide-Capability header. This header has the
following syntax:

Provide-Capability
capability

capability (',' capability)=
name-space
(';' directive | typed-attr)x

1]

OSGi Core Release 6

Page 41

Dependencies

Module Layer Version 1.8

3.3.4

name-space ::= symbolic-name
typed-attr ::= extended (':' type)? '=' argument
type ::= scalar | list
scalar ::= 'String’' | 'Version' | 'Long'
[‘Double’
list = 'List' ('<' scalar '>')?

The header has the following directives architected:

. effective - (resolve) Specifies the time a capability is available, either resolve (default) or another
name. The OSGi framework resolver only considers Capabilities without an effective directive or
effective:=resolve. Capabilities with other values for the effective directive can be considered by
an external agent.

uses - The uses directive lists package names that are used by this capability. This information is
intended to be used for uses constraints, see Package Constraints on page 56.

Namespaces can define additional directives and attributes.

Bundle Capability Attributes

Attributes can be typed. Typing is important because it defines how attributes compare. Comparing
two versions as strings does not provide the proper comparison semantics for versions. In similar
vein, lexicographical ordering is different than numeric ordering.

Types are specified between the attribute name and the equal sign (‘=" \uoo3D), the separatorisa
colon (:' \uoo3A). For example:, for aLong:

attr:Long=24

If no type is specified, the String type is assumed.

The parsing rules of the corresponding type's String constructor are then used to create a new in-
stance that is placed in the capability's map. Numeric types must trim white space around the value,
for other types spaces around the argument are not ignored, however, white space is skipped by the
manifest parsing rules. That is:

attr:Long= 23 , I 1ok
attr:Version=" 23 Il error
attr:Long=" 23 Il ok, because nummeric

Multi-valued attributes can be constructed with the List type. The List type can specify a scalar type
for the list elements. If no element type is specified, String is assumed. Parsing of the corresponding
argument list must be done according to the following rules:

- Element values in the list are separated by commas (', \uoo2C).
White space around an element value must be trimmed for non-String element types.

Commas or reverse solidi (\' \uoosC) that are part of an element value must be escaped by pre-
fixing them with a reverse solidus. In practice, this requires escaping with two reverse solidi be-
cause a reverse solidus must already be escaped in strings.

The whole argument must be surrounded by quotes because the comma is a significant token in the
manifest grammar.

The version attribute requires the Version type to be specified to be compared as a Version rather
than as a String:

version:Version=1.23

Page 42

OSGi Core Release 6

Module Layer Vers

ion 1.8 Dependencies

3-3:5

3.3.6

For example:

Provide-Capability: «
com.acme.dictionary; from:String=nl; to=de; version:Version=3.4, «
com.acme.dictionary; from:String=de; to=nl; version:Version=4.1, «
com. acme.ip2location; country:List="nl,be, fr,uk";version:Version=1.3, «
com. acme. seps; tokens:List<String>="\\,,;,\\\""

System Bundle Capabilities

Capabilities can also be provided by the system bundle by specifying the following launch proper-
ties:

org.osgi. framework.system.capabilities
org.osgi. framework.system.capabilities.extra

The format for these system properties is identical to the Provide-Capability header. A framework
must parse these properties and use them in the resolving process as if provided by the system bun-
dle.

There are two properties so that the framework can specify its default Capabilities in
org.osgi.framework.system.capabilities while the deployer can specify specific deployment Capa-
bilities in the org.osgi.framework.system.capabilities.extra system property. Frameworks can often
deduce many Capabilities from their environment.

The following is an example capability header for the system bundle as defined by the deployer:

map.put("org.osgi. framework.system.capabilities.extra",
"com.acme.screen; width:Long=640; height:Long=480; card=GeForce");

Bundle Requirements

The Bundle's Require-Capability header has the following grammar:

Require-Capability ::= requirement (',' requirement)x
requirement ::= name-space (';' directive | typed-attr)=

Requirements have attributes that can be set with the Require-Capability header. The purpose of
these attributes are to provide further information about the requirement; they are not assertions as
they are in the Import-Package, Require-Bundle, and Fragment-Host headers. The attributes of these
headers are mapped to the filter directive in their corresponding namespaces.

The following directives are architected for the Require-Capability header:

effective - (resolve) Specifies the time a requirement is considered, either resolve (default) or an-
other name. The OSGi framework resolver only considers requirements without an effective di-
rective or effective:=resolve. Other requirements can be considered by an external agent. Addi-
tional names for the effective directive should be registered with the OSGi Alliance.

resolution-(mandatory|optional) A mandatory requirement forbids the bundle to resolve when
the requirement is not satisfied; an optional requirement allows a bundle to resolve even if the
requirement is not satisfied. No wirings are created when this requirement cannot be resolved,
this can result in Class Not Found Exceptions when the bundle attempts to use a package that
was not resolved because it was optional. The default is mandatory.

filter- (Filter) A filter expression that is asserted on the Capabilities belonging to the given name-
space. The matching of the filter against the capability is done on one capability at a time. A fil-
ter like (& (a=1)(b=2)) matches only a capability that specifies both attributes at the required val-
ue, not two capabilities that each specify one of the attributes correctly. A filter is optional, if no
filter directive is specified the requirement always matches. The attribute names in the filter ex-
pression are used to locate capability attributes in a case sensitive manner.

OSGi Core Release 6

Page 43

Execution Environment Module Layer Version 1.8

3.4.1

- cardinality - (single|multiple) Indicates if the requirement can be wired a single time or multiple
times. The default is single.

Additional directives are ignored during resolving. Attributes on the requirement clause are also ig-
nored.

Execution Environment

The Java environment provides all packages in the java.* namespace. This namespace is not well de-
fined and can be different for different runtime environments. For example, Java SE 5 is not equal to
Java SE 7 and an Android environment has substantial differences between a Java SE environment.
However, Java SE 6 is backward compatible for Java SE 5, Java SE 1.4, Java SE 1.3 and Java SE 1.2. That
is, applications written for Java SE 1.3 must run unchanged on a Java SE 5 environment.

These differences and backward compatibilities can not be captured using versions because they are
variations. For example, [22] Google Android is a variation of a Java SE 5 environment, as is [23] Google
App Engine and [24] Google Web Toolkit. All these variations have a different set of packages, types,
and methods in the java.* namespace.

Bundles do not import the java.* packages and can therefore not specify their dependencies on
these variations in the environment using the Import-Package header. The OSGi Execution Environ-
ment defines how frameworks can inform bundles about the available execution environments. The
primary purpose of an execution environment is to define the variations in the java.x namespace,
an execution environment can also include packages in other namespaces.

Execution environments require a proper name to identify a variation so that:

- Abundle can require that a Framework provides a certain execution environment before it is re-
solved.

. To provide information about which execution environments a Framework provides.

Bundle-RequiredExecutionEnvironment

The Bundle-RequiredExecutionEnvironment manifest header provides the same function as the
generic osgi.ee capability, it allows a bundle to depend on the execution environment. This header
is deprecated but must be fully supported by a compliant framework. Bundles should not mix these
headers but use either the osgi.ee capability or this header. If both are used, both constraints must
be met to resolve.

The syntax of this header is a list of comma-separated names of execution environments.

Bundle-RequiredExecutionEnvironment ::= ee-name (',' ee-name)x*
ee-name ::= bree | <ee name>
bree = token ('-' version)? ('/' token ('-' version)?)?

For example:

Bundle-RequiredExecutionEnvironment: CDC-1.0/Foundation-1.0, «
0SGi/Minimum-1.1

If a bundle includes this header in the manifest then the bundle must only use methods with signa-
tures that are contained within a proper subset of all mentioned execution environments. Bundles
should list all (known) execution environments on which it can run the bundle.

A bundle can only resolve if the framework is running on a VM which implements one of the list-
ed required execution environments. Frameworks should recognize that the current VM can imple-

Page 44

OSGi Core Release 6

Module Layer Version 1.8 Execution Environment

ment multiple execution environments. For example, Java 6 is backward compatible with Java 5 and
a bundle requiring the Java 6 execution environment must resolve on a Java 6 VM.

The Bundle-RequiredExecutionEnvironment header can not prevent a bundle from installing.

The org.osgi.framework.executionenvironment launching property defines the current execution
environment with a comma separated list of execution environment names. If not set, the frame-
work must provide an appropriate value. This property is also deprecated, its function is replaced
with org.osgi.framework.system.capabilities[.extra].

An example:

org.osgi. framework.executionenvironment =
TavaSE-1.5, J2SE-1.4, TavaSE-1.4, TavaSE-1.3, 0SGi/Minimum-1.1

Frameworks must convert a Bundle-RequiredExecutionEnvironment header to a requirement in the
osgi.ee namespace when used in the Wiring API, see Bundle Wiring API Specification on page 151.
Since the header uses opaque names for the execution environments there is no guaranteed algo-
rithm to map the ee-name to a Require-Capability header. However, the suggested names so far for
popular execution environments do have a structure that can be used to create such a header, this
pattern was reflected in the bree term. The structure of the bree term for the existing recommenda-
tions is:

nl ('-tv)?2 (1 n2 (- v)?7)?
For example:

CDC-1.0/Foundation-1.0
0SGi/Minimum-1.2
J2SE-1.4

JavaSE-1.4

Each bree term that matches this pattern can thus be converted into an equivalent osgi.ee Re-
quire-Capability filter. First variable n1 must be replaced with JavaSE when it is |2SE since the Re-
quire-Capability header uses a single name for the Java Standard Edition. The filter directive can
then be constructed from n1, v, and n2. If n2 is not defined or v is not defined then the parenthesized
parts in which they participate are not used in the expansion.

bree-filter ::= '(&(osgi.ee=" nl (/' n2)? ")" ('(version="v ")")? ")’

If the bree term cannot be parsed into the given constituents then the filter must look like:

filter ::= '(osgi.ee=' <ee name> ')’

Some examples:

CDC-1.0/Foundation-1.0 (&(osgi.ee=CDC/Foundation) (version=1.0))
0SGi/Minimum-1.2 (&(o0sgi.ee=0SGi/Minimum) (version=1.2))
J2SE-1.4 (&(osgi.ee=TavaSE) (version=1.4))
JTavaSE-1.6 (&(osgi.ee=TavaSE) (version=1.6))
AA/BB-1.7 (&(osgi.ee=AA/BB) (version=1.7))
V1-1.5/V2-1.6 (osgi.ee=V1-1.5/V2-1.6)

MyEE-badVersion (osgi.ee=MyEE-badVersion)

Each element of the Bundle-RequiredExecutionEnvironment is ORed together in the final osgi.ee
requirement's filter directive. For example:

Bundle-RequiredExecutionEnvironment:

OSGi Core Release 6 Page 45

Class Loading Architecture Module Layer Version 1.8

Figure 3.4

CDC-1.0/Foundation-1.0,
0SGi/Minimum-1.2,
J2SE-1.4,

JavaSE-1.6,

AA/BB-1.7,
V1-1.5/V2-1.6,
MyEE-badVersion

This must be converted into the following Require-Capability:

Require-Capability:osgi.ee; filter:="(|
(&(osgi.ee=CDC/Foundation) (version=1.0))
(&(osgi.ee=0SGi/Minimum) (version=1.2))
(&(osgi.ee=TavaSE) (version=1.4))
(&(osgi.ee=TavaSE) (version=1.6))
(&(osgi.ee=AA/BB) (version=1.7))
(osgi.ee=V1-1.5/V2-1.6)
(osgi.ee=MyEE-badVersion)

X

Every org.osgi.resource.Resource representing a Bundle which has a Bundle-RequiredExecu-
tionEnvironment header must have the converted osgi.ee requirement in the list returned by
getRequirements(String) for the osgi.ee namespace. In cases where the bundle already has a re-
quirement for the osgi.ee namespace no merging is done, the bundle will simply have an additional
osgi.ee requirement added.

Class Loading Architecture

Many bundles can share a single virtual machine (VM), see [1] Java Virtual Machine Specification, Se-
cond Edition. Within this VM, bundles can hide packages and classes from other bundles, as well as
share packages with other bundles.

The key mechanism to hide and share packages is the Java class loader that loads classes from a sub-
set of the bundle-space using well-defined rules. Each bundle has a single class loader. That class
loader forms a class loading delegation network with other bundles as shown in Figure 3.4.

Delegation model

importer ——j exporter

Bundle
class loader
Bundle
class loader
Parent/System
class loader
Bundle
class loader
Bundle System Bundle
class loader class loader

Page 46

OSGi Core Release 6

Module Layer Version 1.8 Class Loading Architecture

The class loader can load classes and resources from:

Boot class path - The boot class path contains the java.* packages and its implementation pack-
ages.

Framework class path - The Framework usually has a separate class loader for the Framework im-
plementation classes as well as key service interface classes.

Bundle Space - The bundle space consists of the JAR file that is associated with the bundle, plus
any additional JAR that are closely tied to the bundle, like fragments, see Fragment Bundles on page
82.

A class spaceis then all classes reachable from a given bundle's class loader. Thus, a class space for a
given bundle can contain classes from:

. The parent class loader (normally java.* packages from the boot class path)
Imported packages
Required bundles
The bundle's class path (private packages)
Attached fragments

A class space must be consistent, such that it never contains two classes with the same fully quali-
fied name (to prevent Class Cast Exceptions). However, separate class spaces in an OSGi Platform
may contain classes with the same fully qualified name. The modularization layer supports a model
where multiple versions of the same class are loaded in the same VM.

Figure 3.5 shows the class space for a Bundle A. The right top of Bundle A is not in the class space be-
cause it illustrates that sometimes packages inside a bundle are not accessible to the Bundle itself
when an export is substituted.

Figure 3.5 Class Space

Bundle B
public

private private

Bundle A
public

Class Space for bundle A

private

Bundle C

The Framework therefore has a number of responsibilities related to class loading. Before a bundle is
used, it must resolve the constraints that a set of bundles place on the sharing of packages. Then se-
lect the best possibilities to create a wiring. See Resolving Process on page 60 for further informa-

tion. The runtime aspects are described in Runtime Class Loading on page 62.

OSGi Core Release 6 Page 47

Resolving Metadata

Module Layer Version 1.8

3.5.1

Figure 3.6

3.6.2

Bundle

Resolving

The Framework must resolve bundles. Resolving is the process where any external dependencies are
satisfied and then importers are wired to exporters. Resolving is a process of satisfying constraints;
constraints that are provided by the Dependencies on page 38 section and constraints by the dif-
ferent manifest headers like Import/Export Package, Require-Bundle, and Fragment-Host. The resolv-
ing process must take place before any code from a bundle can be loaded or executed.

A wireis an actual connection between an exporter and an importer, which are both bundles. A wire
is associated with a number of constraints that are defined by its importer's and exporter's manifest
headers. A valid wire is a wire that has satisfied all its constraints. Figure 3.6 depicts the class struc-
ture of the wiring model. Not all constraints result in a wire.

Example class structure of wiring

1 imports %

N Constraint
1 exports *

Package Instance

Resolving Metadata

The following sections define the manifest headers that provide the metadata for the resolver.

Bundle-ManifestVersion

A bundle manifest must express the version of the OSGi manifest header syntax in the Bundle-Man-
ifestVersion header. Bundles exploiting this version of the Framework specification (or later) must
specify this header. The syntax of this header is as follows:

Bundle-ManifestVersion ::= number //See 1.3.2

The Framework bundle manifest version must be '2'. Bundle manifests written to previous specifica-
tions' manifest syntax are taken to have a bundle manifest version of '1', although there is no way to
express this in such manifests. Therefore, any other value than 2 for this header is invalid unless the
Framework explicitly supports such a later version.

OSGi Framework implementations should support bundle manifests without a Bundle-ManifestVer-
sion header and assume Framework 1.2 compatibility at the appropriate places.

Version 2 bundle manifests must specify the bundle symbolic name. They need not specify the bun-
dle version because the version header has a default value.

Bundle-SymbolicName

The Bundle-SymbolicName manifest header is a mandatory header. The bundle symbolic name and
bundle version identify a unique bundle. This does not always imply that this pair is unique in a
framework, in certain cases the same bundle can be installed multiple times in the same framework,
see Bundle Identifiers on page 106.

A bundle gets its unique Bundle-SymbolicName from the developer. The Bundle-Name manifest
header provides a human-readable name for a bundle and is therefore not replaced by this header.

Page 48

OSGi Core Release 6

Module Layer Version 1.8 Resolving Metadata

3.6.3

3.6.4

The Bundle-SymbolicName manifest header must conform to the following syntax:

Bundle-SymbolicName ::= symbolic-name
(';' parameter) * // See 1.3.2

The framework must recognize the following directives for the Bundle-SymbolicName header:

singleton - Indicates that the bundle can only have a single version resolved in an environment.
A value of true indicates that the bundle is a singleton bundle. The default value is false. The
Framework must resolve at most one bundle when multiple versions of a singleton bundle with
the same symbolic name are installed. Singleton bundles do not affect the resolution of non-sin-
gleton bundles with the same symbolic name.

. fragment-attachment- Defines how fragments are allowed to be attached, see the fragments in
Fragment Bundles on page 82. The following values are valid for this directive:

. always- (Default) Fragments can attach at any time while the host is resolved or during the
process of resolving.

- never-No fragments are allowed.
resolve-time - Fragments must only be attached during resolving.

mandatory - Provide a list of mandatory attributes. If these attributes are not specifically used in
the requirement (Require-Bundle, Fragment-Host) then this bundle must not match. See Manda-
tory Attributes on page 58.

The header allows the use of arbitrary attributes that can be required by the Require-Bundle and
Fragment-Host headers. The following attribute is predefined:

. bundle-version- The value of the Bundle-Version header or 0 if no such header is present. Explic-
itly setting this attribute is an error.

For example:

Bundle-SymbolicName: com.acme. foo;singleton: =true

Bundle-Version

Bundle-Version is an optional header; the default value is 0.0.0.
Bundle-Version ::= version // See 3.2.5

If the minor or micro version components are not specified, they have a default value of o. If the

qualifier component is not specified, it has a default value of the empty string (**).

Versions are comparable. Their comparison is done numerically and sequentially on the major, mi-
nor, and micro components and lastly using the String class compareTo method for the qualifier.

A version is considered equal to another version if the major, minor, micro, and the qualifier compo-
nents are equal (using String method compareTo).

Example:

Bundle-Version: 22.3.58.build-345678

Import-Package

The Import-Package header defines the constraints on the imports of shared packages. The syntax of
the Import-Package header is:

Import-Package ::= import (',' import)=

OSGi Core Release 6

Page 49

Resolving Metadata Module Layer Version 1.8

3.6.5

import ::= package-names (';' parameter)x*
package-names ::= package-name
(';' package-name)% // See 1.3.2

The header allows many packages to be imported. An import definition is the description of a single
package for a bundle. The syntax permits multiple package names, separated by semi-colons, to be
described in a short form.

Import package directives are:

resolution - Indicates that the packages must be resolved if the value is mandatory, which is the
default. If mandatory packages cannot be resolved, then the bundle must fail to resolve. A value
of optional indicates that the packages are optional. See Optional Packages on page 55.

The developer can specify arbitrary matching attributes. See Attribute Matching on page 58. The
following arbitrary matching attributes are predefined:

version - A version-range to select the exporter's package version. The syntax must follow Ver-
sion Ranges on page 36. For more information on version selection, see Semantic Versioning on
page 54. If this attribute is not specified, it is assumed to be [0.0.0,).

specification-version - This attribute is an alias of the version attribute only to ease migration
from earlier versions. If the version attribute is present, the values must be equal.

bundle-symbolic-name - The bundle symbolic name of the exporting bundle. In the case of a
fragment bundle, this will be the host bundle's symbolic name.

bundle-version- A version-range to select the bundle version of the exporting bundle. The de-
fault value is [0.0.0, »). See Semantic Versioning on page 54. In the case of a fragment bundle,
the version is from the host bundle.

In order to be allowed to import a package (except for packages starting with java.), a bundle must
have PackagePermission[<package-name>, IMPORT]. See PackagePermission for more information.
An error aborts an installation or update when:

A directive or attribute appears multiple times, or

There are multiple import definitions for the same package, or
The version and specification-version attributes do not match.

Example of a correct definition:

Import-Package: com.acme.foo;com.acme.bar; «
version="[1.23,1.24]"; «
resolution:=mandatory

Export-Package

The syntax of the Export-Package header is similar to the Import-Package header; only the directives
and attributes are different.

Export-Package = export (',' export)x

export ::= package-names (';' parameter)x

package-names ::= package-name /] See 1.3.2
(';' package-name)x*

The header allows many packages to be exported. An export definition is the description of a single
package export for a bundle. The syntax permits the declaration of multiple packages in one clause
by separating the package names with a semi-colon. Multiple export definitions for the same pack-
age are allowed for example, when different attributes are needed for different importers.

Page 5o

OSGi Core Release 6

Module Layer Version 1.8 Resolving Metadata

3.6.6

Export directives are:

. uses-Acomma-separated list of package names that are used by the exported package. Note that
the use of a comma in the value requires it to be enclosed in double quotes. If this exported pack-
age is chosen as an export, then the resolver must ensure that importers of this package wire to
the same versions of the package in this list. See Package Constraints on page 56.
mandatory - A comma-separated list of attribute names. Note that the use of a comma in the val-
ue requires it to be enclosed in double quotes. A bundle importing the package must specify the
mandatory attributes, with a value that matches, to resolve to the exported package. See Manda-
tory Attributes on page 58.
include - A comma-separated list of class names that must be visible to an importer. Note that
the use of a comma in the value requires it to be enclosed in double quotes. For class filtering, see
Class Filtering on page 59.

- exclude -A comma-separated list of class names that must be invisible to an importer. Note that
the use of a comma in the value requires it to be enclosed in double quotes. For class filtering, see
Class Filtering on page 59.

The following attributes are part of this specification:

version - The version of the named packages with syntax as defined in Version on page 35. It
defines the version of the associated packages. The default value is 0.0.0.

specification-version - An alias for the version attribute only to ease migration from earlier ver-
sions. If the version attribute is present, the values must be equal.

Additionally, arbitrary matching attributes may be specified. See Attribute Matching on page 58.

The Framework will automatically associate each package export definition with the following at-
tributes:

bundle-symbolic-name - The bundle symbolic name of the exporting bundle. In the case of a
fragment bundle, this is the host bundle's symbolic name.

bundle-version - The bundle version of the exporting bundle. In the case of a fragment bundle,
this is the host bundle's version.

An installation or update must be aborted when any of the following conditions is true:

a directive or attribute appears multiple times
the bundle-symbolic-name or bundle-version attribute is specified in the Export-Package header.

An export definition does not imply an automatic import definition. A bundle that exports a pack-
age and does not import that package will get that package via its bundle class path. Such an export-
ed only package can be used by other bundles, but the exporting bundle does not accept a substitu-
tion for this package from another bundle.

In order to export a package, a bundle must have PackagePermission[<package>, EXPORTONLY].

Example:

Export-Package: com.acme. foo;com.acme.bar;version=1.23

Importing Exported Packages

Bundles that collaborate require the same classloader for types used in the collaboration. If multiple
bundles export packages with collaboration types then they will have to be placed in disjoint class-
spaces, making collaboration impossible. Collaboration is significantly improved when bundles are
willing to import exported packages; these imports will allow a framework to substitute exports for
imports.

OSGi Core Release 6

Page 51

Constraint Solving

Module Layer Version 1.8

3.6.7

3.7

3.7.1

Though substitution is recommended to increase collaboration, it is not always possible. Importing
exported packages can only work when those packages are pure API and not encumbered with im-
plementation details. Import of exported packages should only be done when:

The exported package does not use private packages. If an exported package uses private pack-
ages then it might not be substitutable and is therefore not clean API.

There is at least one private package that references the exported package. If no such reference
exist, there is no purpose in importing it.

In practice, importing exported packages can only be done with clean API-implementation separa-
tion. OSGi services are carefully designed to be as standalone as possible. Many libraries intertwine
API and implementation in the same package making it impossible to substitute the API packages.

Importing an exported package must use a version range according to its compatibility require-
ments, being either a consumer or a provider of that APL See Semantic Versioning on page 54 for
more information.

Interpretation of Legacy Bundles

Bundles that are not marked with a Bundle-ManifestVersion that equals 2 or more must treat the
headers according the definitions in the Release 3. More specifically, the Framework must map the
Release 3 headers to the appropriate Release 4 headers:

- Import-Package - An import definition must change the specification-version attribute to the ver-
sion attribute. An import definition without a specification version needs no replacement since
the default version value of 0.0.0 gives the same semantics as Release 3.

- Export-Package - An export definition must change the specification-version attribute to the
version attribute. The export definition must be appended with the uses directive. The uses di-
rective must contain all imported and exported packages for the given bundle. Additionally, if
there is no import definition for this package, then an import definition for this package with
the package version must be added.

DynamicImport-Package - A dynamic import definition is unmodified.

A bundle manifest which mixes legacy syntax with bundle manifest version 2 syntax is in error and
must cause the containing bundle to fail to install.

The specification-version attribute is a deprecated synonym for the version attribute in bundle
manifest version 2 headers.

Constraint Solving

The OSGi Framework package resolver provides a number of mechanisms to match imports to ex-
ports. The following sections describe these mechanisms in detail.

Diagrams and Syntax

Wires create a graph of nodes. Both the wires as well as nodes (bundles) carry a significant amount
of information. In the next sections, the following conventions are used to explain the many details.

Bundles are named A, B, C,... That is, uppercase characters starting from the character A. Packages are
namedp,q,r,s, t,... In other words, lower case characters starting from p. If a version is important, it
isindicated with a dash followed by the version: g-1.0. The syntax A.p means the package definition
(either import or export) of package p by bundle A.

Import definitions are graphically shown by a white box. Export definitions are displayed with a
black box. Packages that are not exported or imported are called private packages. They are indicat-
ed with diagonal lines.

Page 52

OSGi Core Release 6

Module Layer Version 1.8 Constraint Solving

Figure 3.7

Figure 3.8

3.7.2

Bundles are a set of connected boxes. Constraints are written on the wires, which are represented by
lines.

Legend of wiring instance diagrams, and example

—— > require bundle version=[1,2) wire
O uses import
] _P ~ 1 optionalimport B bundle name

— fragment host
bundle

For example:

A: Import-Package: p; version="[1,2)"
Export-Package: q; version=2.2.2; uses:=p
Require-Bundle: C

B: Export-Package: p; version=1.5.1

C: Export-Package: r

Figure 3.8 shows the same setup graphically.

Example bundle diagram

ot R e |

version=[1,2)

Version Constraints

Version constraints are a mechanism whereby an import definition can declare a precise version or
a version range for matching an export definition.

An import definition must specify a version range as the value for its version attribute, and the ex-
porter must specify a version as the value for its version attribute. Matching is done with the rules
for version range matches as described in Version Ranges on page 36.

For example, the following import and export definition resolve correctly because the version range
in the import definition matches the version in the export definition:

A: Import-Package: p; version="[1,2)"
B: Export-Package: p; version=1.5.1

Figure 3.9 graphically shows how a constraint can exclude an exporter.

OSGi Core Release 6 Page 53

Constraint Solving Module Layer Version 1.8

Figure 3.9 Version Constrained

o KNI S T

B
C

3.7.3 Semantic Versioning

Version ranges encode the assumptions about compatibility. Though the OSGi frameworks do not en-
force a specific encoding, for a compatibility policy, it is strongly recommended to use the following
semantics.

Traditionally, compatibility has always been between two parties. One is the consumer of the code
and the other is the provider of the code. API based design introduces a third party in the compati-
bility policy:

« The APl itself
The provider of the API
The consumer of the API

A provider of an API is closely bound to that APL Virtually any change to that API makes a provider
implementation incompatible with the new version of the API. However, API changes have more
leeway from the perspective of a consumer of that API. Many API changes can be made backward
compatible for consumers but hardly any API change can be made backward compatible for a
provider of that APL

A provider of an API should therefore import that API with a smaller range than a consumer of that
APL This policy can be encoded in a version range. The rules are summarized as follows:

- major- Changes for an incompatible update for both a consumer and a provider of an APL
- minor - Changes for a backward compatible update for a consumer but not for a provider.
micro - A change that does not affect the AP, for example, a typo in a comment.

Both consumers and providers should use the version they are compiled against as their base ver-
sion. It is recommended to ignore the micro part of the version because systems tend to become
very rigid if they require the latest bug fix to be deployed all the time. For example, when compiled
against version 4.2.1.V201007221030, the base version should be 4.2.

A consumer of an API should therefore import a range that starts with the base version and ends
with the next major change, for example: [4.2,5). A provider of an API should import a range that
starts with the base version up to the next minor change, for example: [4.2,4.3).

3.7.4 Type Roles for Semantic Versioning

As mentioned in Semantic Versioning on page 54, there are two roles for clients of an API package:
API consumers and API providers. API consumers use the API and API providers implement the API.
For the interface and abstract class types in an AP, it is important that the API clearly document
which of those types are only to be implemented by API providers and which of those types can be
implemented by API consumers. For example, listener interfaces are generally implemented by API
consumers and instances of them passed to API providers.

API providers are sensitive to changes in types implemented by both API consumers and API
providers. An API provider must implement any new changes in API provider types and must un-
derstand and likely invoke any new changes in API consumer types. An API consumer can general-

Page 54 OSGi Core Release 6

Module Layer Version 1.8 Constraint Solving

3.7:5

ly ignore compatible changes in API provider types unless it wants to invoke the new function. But
an API consumer is sensitive to changes in API consumer types and will probably need modifica-
tion to implement the new function. For example, in the org.osgi.framework package, the Bundle-
Context type is implemented by the Framework which is the API provider. Adding a new method to
BundleContext will require all Framework implementations to be updated to implement the new
method but bundles, which are the API consumers, do not have to change unless they wish to call
the new method. However, the BundleActivator type is implemented by bundles and adding a new
method to BundleActivator will require all bundles implementing this interface to be modified to
implement the new method and will also require all Framework implementations to be modified to
utilize the new method. Thus the BundleContext type has an API provider role and the BundleActi-
vator type has an API consumer role in the org.osgi.framework package.

Since there are generally many API consumer and few API providers, API evolution must be very
careful when considering changes to API consumer types while being more relaxed about changes
to API provider types. This is because you will need to change the few API providers to support an
updated API but you do not want to require the many existing API consumers to change when an
APIis updated. API consumers should only need to change when the API consumer wants to take
advantage of new APL

The ProviderType and ConsumerType annotations can be used in source files to document the roles
of interface and abstract class types in a package. These annotation can be processed by bundle as-
sembly tools that support Semantic Versioning when generating the version range information for a
bundle's Import-Package manifest header.

Optional Packages

A bundle can indicate that it does not require a package to resolve correctly, but it may use the pack-
age if it is available. For example, logging is important, but the absence of a log service should not
prevent a bundle from running.

Optional imports can be specified in the following ways:

« Dynamic Imports - The DynamicImport-Package header is intended to look for an exported pack-
age when that package is needed. The key use case for dynamic import is the Class forName
method when a bundle does not know in advance the class name it may be requested to load.
Resolution Directive - The resolution directive on an import definition specifying the value option-
al. A bundle may successfully resolve if a suitable optional package is not present.

The key difference between these two mechanisms is when the wires are made. An attempt is made
to establish a wire for a dynamic import every time there is an attempt to load a class in that pack-
age, whereas the wire for a resolution optional package may only be established when the bundle is
resolved.

The resolution directive of the import definition can take the value mandatory or optional.

- mandatory - (Default) Indicates that the package must be wired for the bundle to resolve.

- optional - Indicates that the importing bundle may resolve without the package being wired. If
the package is not wired, the class loading will treat this package as if it is not imported.

The following example will resolve even though bundle B does not provide the correct version (the
package will not be available to the code when bundle A is resolved).

A: Import-Package: p; «
resolution: =optional; «
version=1.6

B: Export-Package: p; «
qg; «
version=1.5.0

OSGi Core Release 6

Page 55

Constraint Solving Module Layer Version 1.8

Figure 3.10

3.7.6

Figure 3.11

Optional import

r= - - -1 H _
T

Q-1.5.0

The implementation of a bundle that uses optional packages must be prepared to handle the fact
that the packages may not be available: that is, an exception can be thrown when there is a refer-
ence to a class from a missing package. This can be prevented by including a fallback package on the
bundle's classpath. When an optional package cannot be resolved, any attempts by the bundle to
load classes from it will follow normal bundle class loading search order as if the import never exist-
ed. It will load it from the bundle's class path or in the end through dynamic class loading when set
for that bundle and package.

Package Constraints

Classes can depend on classes in other packages. For example, when they extend classes from anoth-
er package, or these other classes appear in method signatures. It can therefore be said that a pack-
age uses other packages. These inter-package dependencies are modeled with the uses directive on
the Export-Package header.

For example, org.osgi.service.http depends on the package javax.servlet because it is used in the
API The export definition of the org.osgi.service.http must therefore contain the uses directive
with the javax.servlet package as its value.

Class space consistency can only be ensured if a bundle has only one exporter for each

package. For example, the Http Service implementation requires servlets to extend the
javax.servlet.http.HttpServlet base class. If the Http Service bundle would import version 2.4 and
the client bundle would import version 2.1 then a class cast exception is bound to happen. This is
depicted in Figure 3.11.

Uses directive in B, forces A to use javax.servlet from D

A | org.osgiservice.http org.osgi.service.http .

p javax.servlet.http

javax.servlet.http

javax.servlet.http; 2.1 javax.servlet.http; 2.4

If a bundle imports a package from an exporter then the export definition of that package can imply
constraints on a number of other packages through the uses directive. The uses directive lists the
packages that the exporter depends upon and therefore constrains the resolver for imports. These
constraints ensure that a set of bundles share the same class loader for the same package.

When an importer imports a package with uses constraints, the resolver must wire the import to
the exporter named in the uses constraint. This exporter may in turn imply additional constraints,
and so on. The act of wiring a single import of a package to an exporter can therefore imply a large
set of constraints. The term implied package constraints refers to the complete set of constraints con-
structed from recursively traversing the wires. Implied package constraints are not automatic im-
ports; rather, implied package constraints only constrain how an import definition must be wired.

Page 56

OSGi Core Release 6

Module Layer Version 1.8 Constraint Solving

Figure 3.12

For example, in Figure 3.12, bundle A imports package p. Assume this import definition is wired to
bundle B. Due to the uses directive (the ellipse symbols indicates the uses directive) this implies a
constraint on package q.

Further, assuming that the import for package q is wired to bundle C, then this implies a constraint
on the import of package r and s. Continuing, assuming C.s and C.r are wired to bundle D and E re-
spectively. These bundles both add package t to the set of implied packages for bundle A.

Implied Packages

Al p

To maintain class space consistency, the Framework must ensure that none of its bundle imports
conflicts with any of that bundle's implied packages.

For the example, this means that the Framework must ensure that the import definition of A.t is
wired to package D.t. Wiring this import definition to package F.t violates the class space consis-
tency. This violation occurs because bundle A could be confronted with objects with the same class
name but from the class loaders of bundle D and F. This would potentially create ClassCastExcep-
tions. Alternatively, if all bundles are wired to F.t, then the problem also goes away.

Another scenario with this case is depicted in Figure 3.11. Bundle A imports the Http Service classes
from bundle B. Bundle B has grouped the org.osgi.service.http and the javax.servlet and bundle A is
therefore constrained to wire javax.servlet to the same exporter as bundle B.

As an example of a situation where the uses directive makes resolving impossible consider the fol-
lowing setup that is correctly resolved:

A: Import-Package: q; version="[1.0,1.0]"
Export-Package: p; uses:="g,r",r
B: Export-Package: q; version=1.0
C: Export-Package: q; version=2.0
These specific constraints can be resolved because the import A.q can be wired to the export B.q but
not C.q due to the version constraint.

Adding a bundle D will now not be possible:
D: Import-Package: p, g; version=2.0

Package D.p must be wired to package A.p because bundle A is the only exporter. However, this im-
plies the use of package q due the uses directive in the package A.q import. Package A.q is wired to

OSGi Core Release 6

Page 57

Constraint Solving

Module Layer Version 1.8

Figure 3.13

3.7.7

3.7.8

B.g-1.0. However, import package D.q requires version 2.0 and can therefore not be resolved with-
out violating the class space constraint.

This scenario is depicted in Figure 3.13.

Uses directive and resolving

Al g version=1.0 mB
p D
: e c

Attribute Matching

Attribute matching is a generic mechanism to allow the importer and exporter to influence the
matching process in a declarative way. In order for an import definition to be resolved to an export
definition, the values of the attributes specified by the import definition must match the values of
the attributes of the export definition. By default, a match is not prevented if the export definition
contains attributes that do not occur in the import definition. The mandatory directive in the export
definition can reverse this by listing all attributes that the Framework must match in the import de-
finition. Any attributes specified in the DynamicImport-Package is ignored during the resolve phase
but can influence runtime class loading.

For example, the following statements will match.

A: Import-Package: com.acme. foo;company=ACME
B: Export-Package: com.acme.foo; «
company="ACME"; «
security=false

Attribute values are compared string wise except for the version and bundle-version attributes
which use version range comparisons. Leading and trailing white space in attribute values must be
ignored.

Attribute matching also works for the Require-Bundle and Fragment-Host headers; the attributes to
be matched are specified on the Bundle-SymbolicName header.

Mandatory Attributes

There are two types of attributes: mandatory and optional. Mandatory attributes must be specified in
the import definition to match. Optional attributes are ignored when they are not referenced by the
importer. Attributes are optional by default.

The exporter can specify mandatory attributes with the mandatory directive in the export defini-
tion. This directive contains a comma-separated list of attribute names that must be specified by the
importer to match.

For example, the following import definition must not match the export definition because security
is a mandatory attribute:

A: Import-Package: com.acme. foo;company=ACME

B: Export-Package: com.acme.foo; «
company="ACME"; «
security=false; «
mandatory:=security

Page 58

OSGi Core Release 6

Module Layer Version 1.8 Constraint Solving

379

Class Filtering

An exporter can limit the visibility of the classes in a package with the include and exclude direc-
tives on the export definition. The value of each of these directives is a comma-separated list of class
names. Note that the use of a comma in the value requires it to be enclosed in double quotes.

Class names must not include their package name and do not end with .class. That is, the class
com.acme.foo.Daffy is named Daffy in either list. The class name can include multiple wildcard as-
terisks ('x' \uoo2A).

The default for the include directive is an asterisk ('*' \uoo2A) (wildcard matching all names), and
for the exclude directive, so that no classes are excluded, an empty list that matches no names. If in-
clude or exclude directive are specified, the corresponding default is overridden.

A class is only visible if it is:

- Matched with an entry in the included list, and
Not matched with an entry in the excluded list.

In all other cases, loading or finding fails, and a Class Not Found Exception is thrown for a class load.
The ordering of include and exclude is not significant.

The following example shows an export statement, and a list of files with their visibility status.

Export-Package: com.acme.foo; include:="Quxx*,BarImpl"; «
exclude: =QuxImpl

com/acme/foo
QuxFoo visible
QuxBar visible
QuxImpl excluded
BarImpl visible

Care must be taken when using filters. For example, a new version of a module that is intended to be
backward compatible with an earlier version should not filter out classes that were not filtered out
by the earlier version. In addition, when modularizing existing code, filtering out classes from an ex-
ported package may break users of the package.

For example, packages defined by standard bodies often require an implementation class in the stan-
dardized package to have package access to the specification classes.

package org.acme. open;
public class Specified {
static Specified implementation;
public void foo() { implementation.foo(); }

}

package org.acme.open;
public class Implementation {
public void initialize(Specified implementation) {
Specified.implementation = implementation;
}
}

The Implementation class must not be available to external bundles because it allows the imple-
mentation to be set. By excluding the Implementation class, only the exporting bundle can see this
class. The export definition for this header could look like:

Export-Package: org.acme.open; exclude:=Implementation

OSGi Core Release 6

Page 59

Resolving Process

Module Layer Version 1.8

3.7.10

Provider Selection

Provider selection allows the importer to select which bundles can be considered as exporters.
Provider selection is used when there is no specification contract between the importer and the ex-
porter. The importer tightly couples itself to a specific exporter, typically the bundle that was used
for testing. To make the wiring less brittle, the importer can optionally specify a range of bundle ver-
sions that will match.

An importer can select an exporter with the import attributes bundle-symbolic-name and bun-
dle-version. The Framework automatically provides these attributes for each export definition.
These attributes must not be specified in an export definition.

The export definition bundle-symbolic-name attribute will contain the bundle symbolic name as
specified in the Bundle-SymbolicName header without any parameters. The export definition bun-
dle-version attribute is set to the value of the Bundle-Version header or its default of 0.0.0 when ab-
sent.

The bundle-symbolic-name is matched as an attribute. The bundle-version attribute is matched us-
ing the version range rules as defined in Version Ranges on page 36. The import definition must
be a version range and the export definition is a version.

For example, the following definitions will match:

A: Bundle-SymbolicName: A
Import-Package: com.acme.foo; «
bundle-symbolic-name=B; «
bundle-version="[1.41,2.0.0)"

B: Bundle-SymbolicName: B
Bundle-Version: 1.41
Export-Package: com.acme. foo

The following statements will not match because bundle B does not specify a version and thus de-
faults to 0.0.0:

A: Bundle-SymbolicName: A
Import-Package: com.acme.foo; «
bundle-symbolic-name=B; «
bundle-version="[1.41,2.0.0)"

B: Bundle-SymbolicName: B
Export-Package: com.acme. foo;version=1.42

Selecting an exporter by symbolic name can result in brittleness because of hard coupling of the
package to the bundle. For example, if the exporter eventually needs to be refactored into multiple
separate bundles, all importers must be changed. Other arbitrary matching attributes do not have
this disadvantage as they can be specified independently of the exporting bundle.

The brittleness problem of the bundle symbolic name in bundle refactoring can be partly overcome
by writing a fagade bundle using the same bundle symbolic name as the original bundle.

Resolving Process

Resolving is the process that creates a wiring between bundles. Constraints on the wires are statical-
ly defined by:

Any mandatory requirement must be matched to at least one capability in the same namespace
provided by any of the resolved bundles, including itself and the system bundle.

Page 60

OSGi Core Release 6

Module Layer Version 1.8 Resolving Process

3.81

. Therequired execution environments as defined by the Bundle-RequiredExecutionEnvironment
header.

- Native code
. Import and export packages (the DynamicImport-Package header is ignored in this phase)

Required bundles, which import all exported packages from a bundle as defined in Requiring Bun-
dles on page 79.

Fragments, which provide their contents and definitions to the host as defined in Fragment Bun-
dles on page 82

A bundle can only be resolved when a number of constraints are satisfied:

Execution Environment - The underlying VM implements at least one of the execution environ-
ments listed in the Bundle-RequiredExecutionEnvironment header. See osgi.ee Namespace on page
164.

Native code - The native code dependencies specified in the Bundle-NativeCode header must be re-
solved. See Loading Native Code Libraries on page 71.

The resolving process is then a constraint-solving algorithm that can be described in terms of re-
quirements on wiring relations. The resolving process is an iterative process that searches through
the solution space.

A bundle can be resolved if the following conditions are met:

. Allits mandatory requirements are satisfied
Allits mandatory imports are wired
All its mandatory required bundles are available and their exports wired

A wire is only created when the following conditions are met:

The importer's version range matches the exporter's version. See Semantic Versioning on page
54.

The importer specifies all mandatory attributes from the exporter. See Mandatory Attributes on
page 58.

All the importer's attributes match the attributes of the corresponding exporter. See Attribute
Matching on page 58

Implied packages referring to the same package as the wire are wired to the same exporter. See
Package Constraints on page 56.

The wire is connected to a valid exporter.

The following list defines the preferences, if multiple choices are possible, in order of decreasing pri-
ority:

- Aresolved exporter must be preferred over an unresolved exporter.
An exporter with a higher version is preferred over an exporter with a lower version.
An exporter with a lower bundle ID is preferred over a bundle with a higher ID.

Importing and Exporting the Same Package

If a bundle has both import and export definitions for the same package, then the Framework needs
to decide which to choose.

It must first try to resolve the overlapping import definition. The following outcomes are possible:

External - If this resolves to an export statement in another bundle, then the overlapping export
definition in this bundle is discarded.

OSGi Core Release 6

Page 61

Runtime Class Loading Module Layer Version 1.8

3.9.1

. Internal-1Ifitis resolved to an export statement in this bundle, then the overlapping import defi-
nition in this bundle is discarded.

- Unresolved- There is no matching export definition. In this case the framework is free to discard
either the overlapping export definition or overlapping import definition in this bundle. If the
export definition is discarded and the import definition is not optional then the bundle will fail
to resolve.

The above only applies to the import and export package definitions of a bundle. For namespaces
other than osgi.wiring.package, a requirement definition of a bundle may be wired to a capability
definition of that same bundle.

Runtime Class Loading

Each bundle installed in the Framework must not have an associated class loader until after it is re-
solved. After a bundle is resolved, the Framework must create one class loader for each bundle that
isnot a fragment. The framework may delay creation of the class loader until it is actually needed.

One class loader per bundle allows all resources within a bundle to have package level access to all
other resources in the bundle within the same package. This class loader provides each bundle with
its own namespace, to avoid name conflicts, and allows resource sharing with other bundles.

This class loader must use the wiring as calculated in the resolving process to find the appropriate
exporters. If a class is not found in the imports, additional headers in the manifest can control the
searching of classes and resources in additional places.

The following sections define the factors that influence the runtime class loading and then define
the exact search order the Framework must follow when a class or resource is loaded.

Bundle Class Path

JAR, ZIP, directories, etc. are called containers. Containers contain entries organized in hierarchical
paths. During runtime, an entry from a bundle can actually come from different containers because
of attached fragments. The order in which an entry can be found is significant because it can shad-
ow other entries. For a bundle, the search order for a named entry is:

First the container of the (host) bundle
Then the (optional) fragment containers in ascending id order

This search order is called the entry path. A resource (or class) is not loaded via the entry path, but it

is loaded through the bundle class path. The bundle class path provides an additional indirection on
top of the entry path. It defines an ordered list of container paths. Each container path can be found

on the entry path.

The full stop (. \uoo2E) container path is a synonym for the solidus (/' \uoo2F) or the root of a con-
tainer. The full stop is the default value for a bundle or fragment if no Bundle-ClassPath header is
specified.

The Bundle-ClassPath manifest header must conform to the following syntax:
Bundle-ClassPath ::= entry ('," entry)x*

entry target (';' target)x (';' parameter) x
target path | '."' Il See 1.3.2

The Framework must ignore any unrecognized parameters.

The content of the effective bundle class path is constructed from the bundle's Bundle-Classpath
header, concatenated with the Bundle-Classpath headers of any fragments, in ascending bundle id
order. The effective Bundle-Classpath is calculated during resolve time, however, a dynamically at-

Page 62

OSGi Core Release 6

Module Layer Version 1.8 Runtime Class Loading

tached fragment can append elements at the end if the Framework supports dynamically attached
fragments.

An element from the bundle's Bundle-ClassPath header refers to the first match when searched
through the entry path, while a fragment's Bundle-ClassPath can refer only to an entry in its own
container.

An example can illustrate this:

A: Bundle-Classpath: .,resource.jar
B: Fragment-Host: A

The previous example uses an effective bundle class path of:
/, resource.jar, B:/

The first element / is the root of a container. The bundle always has a root and can therefore always
be found in the (host) bundle. The second element is first looked up in the host bundle's container,
and if not found, the entry is looked up in the container of B. The Framework must use the first en-
try that matches. The last element in the effective bundle class path is the / from fragment B; the / is
the default because there is no Bundle-ClassPath specified. However, a fragment can only refer to an
internal entry. This full stop therefore refers to the root of the container of fragment B. Assuming,
fragment B contains an entry for resource.jar and bundle A does not, then the search order must be:

A:/
B:resource. jar
B:/

The Framework must ignore a container path in the bundle class-path if the container cannot be lo-
cated when it is needed, which can happen at any time after the bundle is resolved. However, the
Framework should publish a Framework Event of type INFO once with an appropriate message for
each entry that cannot be located at all.

An entry on the Bundle-ClassPath can refer to a directory in the container. However, it is not always
possible to establish the directory's existence. For example, directories can be omitted in JAR/ZIP
files. In such a case, a Framework must probe the directory to see if any resources can be found in
this directory. That is, even if the directory construct is absent in the container, if resources can be
found assuming this directory, than it must still be chosen for the Bundle-ClassPath.

A host bundle can allow a fragment to insert code ahead of its own code by naming a container in
its Bundle-Classpath that will be provided by a fragment. Fragments can never unilaterally insert
code ahead of their host's bundle class path. The following example illustrates the possibilities of
the bundle class path in more detail:

A: Bundle-SymbolicName: A
Bundle-ClassPath: /,required.jar,optional,default. jar

content ...
required. jar
default. jar

B: Bundle-SymbolicName: B
Bundle-ClassPath: fragment. jar
Fragment-Host: A
content ...
optional/

content ...
fragment.jar

The names of the bundle class path elements indicate their intention. The required.jar is a container
that provides mandatory functionality, it is packaged in bundle A. The optional container is a direc-

OSGi Core Release 6 Page 63

Runtime Class Loading Module Layer Version 1.8

3.9.2

tory containing optional classes, and the default.jar is a JAR entry with backup code. In this exam-
ple, the effective bundle class path is:

A:l
A:required. jar
B:optional
A:default. jar
B: fragment. jar

This will expand to the following (logical) search order for a resource X.class:

A:/X.class

A:required. jar!X.class
B:optional/X.class
A:default. jar!X.class
B: fragment.jar!X.class

The exclamation mark (!) indicates a load from a JAR resource.

Dynamic Import Package

Dynamic imports are matched to export definitions (to form package wirings) during class loading,
and therefore do not affect module resolution. Dynamic imports apply only to packages for which
no wire has been established and no definition could be found in any other way. Dynamic import is
used as a last resort.

DynamicImport-Package ::= dynamic-description

('," dynamic-description)x*
dynamic-description ::= wildcard-names (';' parameter)x*
wildcard-names = wildcard-name (';' wildcard-name)x*
wildcard-name ::= package-name

| (package-name '.x') // See 1.3.2

| "

No directives are architected by the Framework for DynamicImport-Package. Arbitrary matching at-
tributes may be specified. The following matching attributes are architected by the Framework:

version -- A version range to select the version of an export definition. The default value is 0.0.0 .
bundle-symbolic-name - The bundle symbolic name of the exporting bundle.

bundle-version - a version range to select the bundle version of the exporting bundle. The default
valueiso.0.0.

Packages may be named explicitly or by using wild-carded expressions such as org.foo.x and *. The
wildcard can stand for any suffix, including multiple sub-packages. If a wildcard is used, then the
package identified by the prefix must not be included. That is, org.foo.x will include all sub-pack-
ages of org.foo but it must not include package org.foo itself.

Dynamic imports must be searched in the order in which they are specified. The order is particular-
ly important when package names with wildcards are used. The order will then determine the order
in which matching occurs. This means that the more specific package specifications should appear
before the broader specifications. For example, the following DynamicImport-Package header indi-
cates a preference for packages supplied by ACME:

DynamicImport-Package: *;vendor=acme, *

If multiple packages need to be dynamically imported with identical parameters, the syntax permits
a list of packages, separated by semicolons, to be specified before the parameters.

Page 64

OSGi Core Release 6

Module Layer Version 1.8 Runtime Class Loading

3:9:3

3.9.4

During class loading, the package of the class being loaded is compared against the specified list

of (possibly wild-carded) package names. Each matching package name is used in turn to attempt
to wire to an export using the same rules as Import-Package. If a wiring attempt is successful (tak-
ing any uses constraints into account), the search is forwarded to the exporter's class loader where
class loading continues. The wiring must not subsequently be modified, even if the class cannot be
loaded. This implies that once a package is dynamically resolved, subsequent attempts to load class-
es or resources from that package are treated as normal imports.

In order for a DynamicImport-Package to be resolved to an export statement, all attributes of the dy-
namic import definition must match the attributes of the export statement. All mandatory arbitrary
attributes (as specified by the exporter, see Mandatory Attributes on page 58) must be specified in
the dynamic import definition and match.

Once a wire is established, any uses constraints from the exporter must be obeyed for further dy-
namic imports.

Dynamic imports are very similar to optional packages, see Optional Packages on page 55, but dif-
fer in the fact that they are handled after the bundle is resolved.

Parent Delegation

The Framework must always delegate any package that starts with java. to the parent class loader.

Certain Java virtual machines, also Oracle's VMs, appear to make the erroneous assumption that the
delegation to the parent class loader always occurs. This implicit assumption of strictly hierarchical
class loader delegation can result in NoClassDefFoundErrors. This happens if the virtual machine
implementation expects to find its own implementation classes from any arbitrary class loader, re-
quiring that packages loaded from the boot class loader not be restricted to only the java.* packages.

Other packages that must be loaded from the boot class loader can therefore be specified with the
System property:

org.osgi. framework.bootdelegation

This property must contain a list with the following format:

org.osgi. framework.bootdelegation ::= boot-description
('," boot-description)

boot-description ::= package-name /1 See 1.3.2
| (package-name '.x')
|

The .x wildcard means deep matching, that is, com.acme.*, matches any sub-package of package
com.acme, however, it does not match com.acme. Packages that match this list must be loaded from
the parent class loader. The java.* prefix is always implied; it does not have to be specified.

The single wildcard means that the Framework must always delegate to the parent class loader first,
which is the same as the Release 3 behavior. For example, when running on an Oracle JVM, it may
be necessary to specify a value like:

org.osgi. framework.bootdelegation=sun.x, com. sun.

With such a property value, the Framework must delegate all java.*, sun.*, and com.sun.* packages
to the parent class loader.

Overall Search Order

Frameworks must adhere to the following rules for class or resource loading. When a bundle's class
loader is requested to load a class or find a resource, the search must be performed in the following
order:

OSGi Core Release 6

Page 65

Runtime Class Loading Module Layer Version 1.8

1.

If the class or resource is in a java.* package, the request is delegated to the parent class loader;
otherwise, the search continues with the next step. If the request is delegated to the parent class
loader and the class or resource is not found, then the search terminates and the request fails.

If the class or resource is from a package included in the boot delegation list
(org.osgi.framework.bootdelegation), then the request is delegated to the parent class loader. If
the class or resource is found there, the search ends.

If the class or resource is in a package that is imported using Import-Package or was imported
dynamically in a previous load, then the request is delegated to the exporting bundle's class
loader; otherwise the search continues with the next step. If the request is delegated to an ex-
porting class loader and the class or resource is not found, then the search terminates and the re-
quest fails.

If the class or resource is in a package that is imported from one or more other bundles using Re-
quire-Bundle, the request is delegated to the class loaders of the other bundles, in the order in
which they are specified in this bundle's manifest. This entails a depth-first strategy; all required
bundles are searched before the bundle classpath is used. If the class or resource is not found,
then the search continues with the next step.

Search the bundle's embedded classpath, see Bundle Class Path on page 62. If the class or re-
source is not found, then continue with the next step.

If the class or resource is in a package that is exported by the bundle or the package is imported
by the bundle (using Import-Package or Require-Bundle), then the search ends and the class or
resource is not found.

Otherwise, if the class or resource is in a package that is imported using DynamicImport-Pack-
age, then a dynamic import of the package is now attempted. An exporter must conform to any
implied package constraints. If an appropriate exporter is found, a wire is established so that fu-
ture loads of the package are handled in step 3. If a dynamic wire is not established, then the re-
quest fails.

If the dynamic import of the package is established, the request is delegated to the exporting
bundle's class loader. If the request is delegated to an exporting class loader and the class or re-
source is not found, then the search terminates and the request fails.

When delegating to another bundle class loader, the delegated request enters this algorithm at step

4.

The following non-normative flow chart illustrates the search order described above:

Page 66

OSGi Core Release 6

Module Layer Version 1.8 Runtime Class Loading

Figure 3.14 Flow chart for class loading (non-normative)

no

Delegate to yes
parent class loader

no

boojt yes Delegate to yes
2 delegation? parent class loader

no
3 mported? yes Delegate to yes .
P) wire’s exporter
no
no
Search Required

yes .

4 bundles

v

Search bundle yes
5 class path @ . O Success
no
6 Search fragments yes
bundle class path @ .

no
7 package yes
exported?
no
9
3 dynamic Delegate to yes .
import? wire’s exporter
no no

OSGi Core Release 6

Page 67

Runtime Class Loading Module Layer Version 1.8

3.95

3.9.6

Parent Class Loader

The set of implicitly imported packages are all java.* packages, since these packages are required by
the Java runtime, and using multiple versions at the same time is not easy. For example, all objects
must extend the same Object class.

A bundle must not declare imports or exports for java.* packages; doing so is an error and any such
bundle must fail to install. All other packages available through the parent class loader must be hid-
den from executing bundles.

However, the Framework must explicitly export relevant packages from the parent class loader. The
system property

org.osgi.framework.system.packages

contains the export packages descriptions for the system bundle. This property employs the stan-
dard Export-Package manifest header syntax:

org.osgi. framework.system.packages ::= package-description
(',' package-description)x*

Some classes on the boot class path assume that they can use any class loader to load other class-
es on the boot class path, which is not true for a bundle class loader. Framework implementations
should attempt to load these classes from the boot class path.

The system bundle (bundle ID zero) is used to export non-java.* packages from the parent class
loader. Export definitions from the system bundle are treated like normal exports, meaning that
they can have version numbers, and are used to resolve import definitions as part of the normal
bundle resolving process. Other bundles may provide alternative implementations of the same
packages.

The set of export definitions for the parent class loader can either be set by this property or calculat-
ed by the Framework. The export definitions must have the implementation specific bundle sym-
bolic name and version value of the system bundle.

Exposing packages from the parent class loader in this fashion must also take into account any uses
directives of the underlying packages. For example, the definition of javax.crypto.spec must declare
its usage of javax.crypto.interfacesand javax.crypto.

Resource Loading

A resource in a bundle can be accessed through the class loader of that bundle but it can also be ac-
cessed with the getResource(String), getEntry(String), findEntries(String,String,boolean) and oth-
er methods or the methods on the Bundle Wiring API Specification on page 151. All these methods
return a URL object or an Enumeration object of URL objects. The URLs are called bundle entry URLs.
The schemes for the URLs returned by these methods can differ and are implementation dependent.

Bundle entry URLs are normally created by the Framework, however, in certain cases bundles need
to manipulate the URL to find related resources. The Framework is therefore required to ensure that:

Bundle entry URLs must be hierarchical (See [13] RFC 2396 Uniform Resource Identifiers URI: Gener-
ic Syntax)
Usable as a context for constructing another URL.

Thejava.net.URLStreamHandler class used for a bundle entry URL must be available to the
java.net.URL class to setup a URL that uses the protocol scheme defined by the Framework.

The getPath method for a bundle entry URL must return an absolute path (a path that starts with
'/") to a resource or entry in a bundle. For example, the URL returned from getEntry("myimages/
test.gif") must have a path of /myimages/test.gif.

Page 68

OSGi Core Release 6

Module Layer Version 1.8 Runtime Class Loading

3.9.7

Figure 3.15

For example, a class can take a URL to an index.htm| bundle resource and map URLs in this resource
to other files in the same JAR directory.

public class BundleResource implements HttpContext{
URL root; // to index.html in bundle
URL getResource(String resource) {
return new URL(root, resource);

}
}
Bundle Cycles

Multiple required bundles can export the same package. Bundles which export the same package in-
volved in a require bundle cycle can lead to lookup cycles when searching for classes and resources
from the package. Consider the following definitions:

A: Require-Bundle: B, C
C: Require-Bundle: D

These definitions are depicted in Figure 3.15.

Depth First search with Require Bundle

C

D

I
V
N

Each of the bundles exports the package p. In this example, bundle A requires bundle B, and bun-

dle C requires bundle D. When bundle A loads a class or resource from package p, then the required
bundle search order is the following: B, D, C, A. This is a depth first search order because required
bundles are searched before the bundle classpath is searched (see step 4). The required bundles are
searched in the order that they appear in the Require-Bundle header. The depth first search order can
introduce endless search cycles if the dependency graph has a cycle in it.

Using the previous setup, a cycle can be introduced if bundle D requires bundle A as depicted in Fig-
ure 3.16.

D: Require-Bundle: A

OSGi Core Release 6

Page 69

Runtime Class Loading Module Layer Version 1.8

Figure 3.16

3.9.8

3-9-9

Cuycles

When the class loader for bundle Aloads a class or resource from package p then the bundle search
order would be the following: B, B, B,... if cycles were not taken into account.

Since a cycle was introduced each time bundle D is reached the search will recurs back to A and
start over. The framework must prevent such dependency cycles from causing endless recursive
lookups.

To avoid endless looping, the Framework must mark each bundle upon first visiting it and not ex-
plore the required bundles of a previously visited bundle. Using the visited pattern on the depen-
dency graph above will result in the following bundle search order: B, D, C, A.

Code Executed Before Started

Packages exported from a bundle are exposed to other bundles as soon as the bundle has been re-
solved. This condition could mean that another bundle could call methods in an exported package
before the bundle exporting the package is started.

Finding an Object's Bundle

There are scenarios where a bundle is required in code that has no access to a Bundle Context. For
this reason, the framework provides the following methods:

Framework Util- Through the FrameworkUtil class with the getBundle(Class) method. The frame-
work provides this method to allow code to find the bundle of an object without having the per-
mission to get the class loader. The method returns null when the class does not originate from a
bundle.

Class Loader - An OSGi framework must ensure that the class loader of a class that comes from
abundle implements the BundleReference interface. This allows legacy code to find an object's
bundle by getting its class loader and casting it to a BundleReference object, which provides ac-
cess to the Bundle. However, this requires the code to have the permission to access the class
loader. The following code fragment shows how to obtain a Bundle object from any object.

ClassLoader cl = target.getClassLoader();

if (cl instanceof BundleReference) {
BundleReference ref = (BundleReference) cl;
Bundle b = ref.getBundle();

}

In an OSGi system, not all objects belong to the framework. It is therefore possible to get hold of a
class loader that does not implement the BundleReference interface, for example the boot class path
loader.

Page 70

OSGi Core Release 6

Module Layer Version 1.8 Loading Native Code Libraries

3.10

Loading Native Code Libraries

Dependency on native code is expressed in the Bundle-NativeCode header. The framework must ver-
ify this header and satisfy its dependencies before it attempts to resolve the bundle. However, a bun-
dle can be installed without an exception if the header is properly formatted according to its syntax.
If the header contains invalid information, or can not be satisfied, errors will be reported during re-
solving.

AJava VM has a special way of handling native code. When a class loaded by a bundle's class loader
attempts to load a native library, by calling System.loadLibrary, the findLibrary method of the
bundle's class loader must be called to return the file path in which the Framework has made the
requested native library available. The parameter to the findLibrary method is the name of the li-
brary in operating system independent form, like http. The bundle class loader can use the mapLi-
braryName method from the VM to map this name to an operating system dependent name, like
libhttp.so.

The bundle's class loader must attempt to find the native library by examining the selected native
code clauses, if any, of the bundle associated with the class loader and each attached fragment. Frag-
ments are examined in ascending bundle ID order. If the library is not referenced in any of the se-
lected native code clauses then null must be returned which allows the parent class loader to search
for the native library.

The bundle must have the required RuntimePermission[loadLibrary. < library name>] in order to
load native code in the OSGi framework.

The Bundle-NativeCode manifest header must conform to the following syntax:

Bundle-NativeCode ::= nativecode
('," nativecode)* (',' optional) ?
nativecode ::=path (';' path)% /] See 1.3.2
(';' parameter)x
optional i k!

When locating a path in a bundle the Framework must attempt to locate the path relative to the
root of the bundle that contains the corresponding native code clause in its manifest header.

The following attributes are architected:

osname - Name of the operating system. The value of this attribute must be the name of the op-
erating system upon which the native libraries run. A number of canonical names are defined in
Table 4.3.

osversion - The operating system version. The value of this attribute must be a version range as
defined in Version Ranges on page 36.

processor - The processor architecture. The value of this attribute must be the name of the
processor architecture upon which the native libraries run. A number of canonical names are de-
fined in Table 4.2.

. language-The ISO code for a language. The value of this attribute must be the name of the lan-
guage for which the native libraries have been localized.

- selection-filter- A selection filter. The value of this attribute must be a filter expression that in-
dicates if the native code clause should be selected or not.

If a selection-filter attribute contains an invalid filter, then the bundle must fail to install with a
Bundle Exception of type NATIVECODE_ERROR. The following is a typical example of a native code
declaration in a bundle's manifest:

Bundle-NativeCode: lib/http.dll ; lib/z1ib.d1l; «
osname = Windows95 ; «

OSGi Core Release 6

Page 71

Loading Native Code Libraries Module Layer Version 1.8

osname = Windows98 ; «
osname = WindowsNT ; «
processor = x86 ; «
selection-filter = «
" (com. acme.windowing=win32)"; «
language = en ; «
language = se , «
lib/solaris/libhttp.so ; «
osname = Solaris ; «
osname = Sun0S ; «
processor = sparc, «
lib/linux/libhttp.so ; «
osname = Linux ; «
processor = mips; «
selection-filter = «
" (com. acme.windowing=gtk)

If multiple native code libraries need to be installed on one platform, they must all be specified in
the same clause for that platform.

If a Bundle-NativeCode clause contains duplicate parameter entries, the corresponding values must
be OR'ed together. This feature must be carefully used because the result is not always obvious. This
is highlighted by the following example:

/1 The effect of this header has probably

Il not the intended effect!

Bundle-NativeCode: lib/http.DLL ; «
osname = Windows95 ; «

osversion = "3.1" ; «
osname = WindowsXP ; «
osversion = "5.1" ; «
processor = x86

The above example implies that the native library will load on Windows XP 3.1 and later, which was
probably not intended. The single clause should be split in two clauses:

Bundle-NativeCode: lib/http.DLL ; «
osname = Windows95 ; «
osversion = 3.1; «
processor = x86, «

lib/http.DLL ; «
osname = WindowsXP ; «
osversion = 5.1; «
processor = x86

Any paths specified in the matching clause must be present in the bundle or any of its attached
fragments for a bundle to resolve. The framework must report a Bundle Exception with the
NATIVECODE_ERROR as error code when the bundle can not be resolved due to a native code prob-
lem.

If the optional ' is specified at the end of the Bundle-NativeCode manifest header, the bundle will
still resolve even if the Bundle-NativeCode header has no matching clauses.

The following is a typical example of a native code declaration in a bundle's manifest with an op-
tional clause:

Bundle-NativeCode: lib/win32/winxp/optimized.dll; «
lib/win32/native.dll ; «

Page 72

OSGi Core Release 6

Module Layer Version 1.8 Loading Native Code Libraries

osname = WindowsXP ; «
processor = x86 , «
lib/win32/native.dll ; «
osname = Windows95 ; «
osname = Windows98 ; «
osname = WindowsNT ; «
osname = Windows2000; «
processor = x86 , «
*

Frameworks must convert a Bundle-NativeCode header to a requirement in the osgi.native name-
space when used in the Wiring API, see Bundle Wiring API Specification on page 151. Each native
code clause specified in a Bundle-NativeCode header is converted into a filter component for the
osgi.native requirement filter directive using the following architected matching attributes:

osgi.native.osname — Uses the approximate equals (~=) filter type to evaluate the value specified
by the osname Bundle-NativeCode attribute.

osgi.native.osversion — Create a VersionRange using the value specified by the osversion Bun-
dle-NativeCode attribute and then create a filter string out of the VersionRange.

osgi.native.processor— Uses the approximate equals (~=) filter type to evaluate the value speci-
fied by the processor Bundle-NativeCode attribute.

osgi.native.language — Uses the approximate equals (~=) filter type to evaluate the value speci-
fied by the language Bundle-NativeCode attribute.

In cases where the same Bundle-NativeCode attribute is specified multiple times within the same
clause then the filter components for each value for that attribute are ORed together. For example,
if osname attribute is specified as both "Windows95" and "Windows7" then the resulting filter will
contain:

(I
(osgi.native.osname-=Windows95)
(osgi.native.osname-=Windows7)

)

If the selection-filter Bundle-NativeCode attribute is specified then the specified filter is included as
a component of the native code clauses AND filter type. Consider the following Bundle-NativeCode
header which contains a single clause:

Bundle-NativeCode: «
lib/http.d11; 1lib/z1lib.dll; «
osname=Windows95; «
osname=Windows98; «
osname=WindowsNT; «
processor=x86; «
selection-filter="(com.acme.windowing=win32)"; «
language=en; «
language=se

This clause would get translated into the following AND filter type:

Require-Capability: «
osgi.native; «
filter:=" «

(& «
(I «

OSGi Core Release 6 Page 73

Loading Native Code Libraries Module Layer Version 1.8

(osgi.native.osname-=Windows95) «
(osgi.native.osname-=Windows98) «
(osgi.native.osname-=WindowsNT) «

) «

(osgi.native.processor-=x86) «

(] «
(osgi.native.language-=en) «
(osgi.native.language-=se) «

) «

(com.acme.windowing=win32) «
)

The Bundle-NativeCode header may specify multiple clauses, each having their own list of native
code paths and set of matching attributes. Instead of using a separate osgi.native requirement for
each Bundle-NativeCode clause, the complete Bundle-NativeCode header is specified as a single
osgi.native requirement. This is done by using an OR filter type using all of the individual Bun-
dle-NativeCode clause filter components (as specified above) as components of a single filter direc-
tive. Consider the following Bundle-NativeCode header which contains three clauses:

Bundle-NativeCode: «

lib/http.d11; 1ib/z1ib.d1l; «
osname=Windows95; «
osname=Windows98; «
osname=WindowsNT; «
processor=x86; «
selection-filter =
language=en; «
language=se, «

lib/solaris/libhttp.so; «
osname=Solaris; «
osname=5un0S; «
processor=sparc, «

lib/linux/1libhttp.so; «
osname=Linux; «
processor=mips; «
selection-filter="(com.acme.windowing=gtk)

(com.acme.windowing=win32)"; «

This Bundle-NativeCode header would get translated into the following osgi.native filter directive:

(&

(I
(osgi.native.osname-=Windows95)
(osgi.native.osname-=Windows98)
(osgi.native.osname-=WindowsNT)

)

(osgi.native.processor-=x86)

(I
(osgi.native.language-=en)
(osgi.native.language-=se)

)

(com. acme.windowing=win32)

(&
(I

(osgi.native.osname-=Solaris)

Page 74 OSGi Core Release 6

Module Layer Version 1.8 Loading Native Code Libraries

3.10.1

(osgi.native. osname-=Sun0Os)

)

(osgi.native.processor-=sparc)

)

(&
(osgi.native.osname-=Linux)
(osgi.native.processor-=mips)
(com. acme.windowing=gtk)

)

)

If the optional '« is specified at the end of the Bundle-NativeCode manifest header, then the native
code for the bundle is considered to be optional. When the Framework converts a Bundle-Native-
Code header into an osgi.native requirement which is designated as optional then the requirement
resolution directive must be set to optional

Native Code Algorithm

In the description of this algorithm, [x] represents the value of the launching property x (see Launch-
ing Properties on page 96) and ~= represents the match operation. The match operation is a case
insensitive comparison. Certain properties can be aliased. In those cases, the manifest header should
contain the generic name for that property but the Framework should attempt to include aliases
when it matches.

The Framework must select the native code clause using the following algorithm:

1. Only select the native code clauses for which the following expressions all evaluate to true.
osname -= [org.osgi.framework.os.name] or osname is not specified
. processor -= [org.osgi.framework.processor] or processor is not specified
- osversionrange includes [org.osgi.framework.os.version] or osversion is not specified
language -= [org.osgi.framework.language] or language is not specified
selection-filter evaluates to true when using the values of the launching properties or selec-
tion-filteris not specified
2. Ifnonative clauses were selected in step 1, this algorithm is terminated. A Bundle Exception is
thrown if the optional clause is not present.
3. Theselected clauses are now sorted in the following priority order:
osversion: floor of the osversion range in descending order, osversion not specified
language: language specified, language not specified
Position in the Bundle-NativeCode manifest header: lexical left to right.
4. The first clause of the sorted clauses from step 3 must be used as the selected native code clause.

If a native code library in a selected native code clause cannot be found within the bundle then the
bundle is still allowed to resolve. A missing native code library will result in an error being thrown
at runtime when the bundle attempts to load the native code (for example, by invoking the method
System.loadLibrary).

If the selected clause contains multiple libraries with the same base file name then only the lexi-
cally left most library with that base file name will be used. For example, if the selected clause con-
tains the libraries lib1/http.dll; lib2/http.dll; lib3/foo.dll; a/b/c/http.dll then only http.dllinlib1
and foo.dIl will be used.

Designing a bundle native code header can become quickly complicated when different operating
systems, libraries, and languages are used. The best practice for designing the header is to place all
parameters in a table. Every targeted environment is then a row in that table. See Table 3.2 for an ex-
ample.

OSGi Core Release 6

Page 75

Loading Native Code Libraries Module Layer Version 1.8

Table 3.2

3.10.2

Native code table

: & F ¥
_ 5 g g B &
Libraries 3] a8 5 &
nativecodewin32.dll, delta.dll ~ win32 x86 en
nativecodegtk.so linux x86 en (com.acme.windowing=gtk)
nativecodeqt.so linux x86 en (com.acme.windowing=qt)

This table makes it easier to detect missing combinations. This table is then mapped to the Bun-
dle-NativeCode header in the following code example.

Bundle-NativeCode: nativecodewin32.dll; «
delta.dll; «
osname=win32; «
processor=x86; «
language=en, «
nativecodegtk.so; «
osname=linux; «
processor=x86; «
language=en; «
selection-filter= «
" (com. acme.windowing=gtk) ", «
nativecodeqt.so; «
osname=linux; «
processor=x86; «
language=en; «
selection-filter = «
" (com.acme.windowing=qt)

Considerations Using Native Libraries

There are some restrictions on loading native libraries due to the nature of class loaders. In order
to preserve namespace separation in class loaders, only one class loader can load a native library as
specified by an absolute path. Loading of a native library file by multiple class loaders (from multi-
ple bundles, for example) will result in a linkage error.

Care should be taken to use multiple libraries with the same file name but in a different directory in
the JAR. For example, foo/http.dll and bar/http.dll. The Framework must only use the first library
and ignore later defined libraries with the same name. In the example, only foo/http.d!l will be visi-

ble.
A native library is unloaded only when the class loader that loaded it has been garbage collected.

‘When a bundle is uninstalled or updated, any native libraries loaded by the bundle remain in mem-
ory until the bundle's class loader is garbage collected. The garbage collection will not happen until
all references to objects in the bundle have been garbage collected, and all bundles importing pack-
ages from the updated or uninstalled bundle are refreshed. This implies that native libraries loaded
from the system class loader always remain in memory because the system class loader is never
garbage collected.

It is not uncommon that native code libraries have dependencies on other native code libraries. This
specification does not support these dependencies, it is assumed that native libraries delivered in
bundles should not rely on other native libraries.

Page 76

OSGi Core Release 6

Module Layer Version 1.8 Localization

3.11 Localization

A bundle contains a significant amount of information that is human-readable. Some of this infor-
mation may require different translations depending on the user's language, country, and any spe-
cial variant preferences, a.k.a. the locale. This section describes how a bundle can provide common
translations for the manifest and other configuration resources depending on a locale.

Bundle localization entries share a common base name. To find a potential localization entry, an un-
derscore ('_' \uoosF) is added plus a number of suffixes, separated by another underscore, and final-
ly appended with the suffix .properties. The suffixes are defined in java.util.Locale. The order for
the suffixes this must be:

language
country
+ variant

For example, the following files provide manifest translations for English, Dutch (Belgium and the
Netherlands) and Swedish.

0SGI-INF/110n/bundle_en.properties
0SGI-INF/110n/bundle_nl BE.properties
0SGI-INF/110n/bundle_nl_NL.properties
0SGI-INF/110n/bundle_sv.properties

The Framework searches for localization entries by appending suffixes to the localization base
name according to a specified locale and finally appending the .properties suffix. If a translation is
not found, the locale must be made more generic by first removing the variant, then the country
and finally the language until an entry is found that contains a valid translation. For example, look-
ing up a translation for the locale en_GB_welsh will search in the following order:

0SGI-INF/110n/bundle_en_GB welsh.properties
0SGI-INF/110n/bundle_en_GB.properties
0SGI-INF/110n/bundle_en.properties
0SGI-INF/110n/bundle.properties

This allows localization files for more specific locales to override localizations from less specific lo-
calization files.

3.11.1 Finding Localization Entries

Localization entries can be contained in the bundle or delivered in fragments. The framework must
search for localization entries using the following search rules based on the bundle type:

fragment bundle - If the bundle is a resolved fragment, then the search for localization data must
delegate to the attached host bundle with the highest version. If the fragment is not resolved,
then the framework must search the fragment's JAR for the localization entry.

other bundle - The framework must first search in the bundle's JAR for the localization entry. If
the entry is not found and the bundle has fragments, then the attached fragment JARs must be
searched for the localization entry.

The bundle's class loader is not used to search for localization entries. Only the contents of the bun-
dle and its attached fragments are searched. The bundle will still be searched for localization entries
even if the full stop (' \uoo2E) is not in the bundle class path.

OSGi Core Release 6 Page 77

Bundle Validity

Module Layer Version 1.8

3.11.2

3.12

Manifest Localization

Localized values are stored in property resources within the bundle. The default base name of the
bundle localization property files is OSGI-INF/Izon/bundle. The Bundle-Localization manifest head-
er can be used to override the default base name for the localization files. This location is relative to
the root of the bundle and bundle fragments.

A localization entry contains key/value entries for localized information. All headers in a bundle's
manifest can be localized. However, the Framework must always use the non-localized versions of
headers that have Framework semantics.

A localization key can be specified as the value of a bundle's manifest header using the following
syntax:

header-value ::= "% text
text ::= < any value which is both a valid manifest headervalue
and a valid property key name >

For example, consider the following bundle manifest entries:

Bundle-Name: %acme bundle

Bundle-Vendor: %acme corporation
Bundle-Description: %acme description
Bundle-Activator: com.acme.bundle.Activator
Acme-Defined-Header: %acme special header

User-defined headers can also be localized. Spaces in the localization keys are explicitly allowed.

The previous example manifest entries could be localized by the following entries in the manifest
localization entry OSGI-INF/110n/bundle.properties.

bundle.properties

acme\ bundle=The ACME Bundle

acme\ corporation=The ACME Corporation

acme\ description=The ACME Bundle provides all of the ACME\ services
acme\ special\ header=user-defined Acme Data

The above manifest entries could also have French localizations in the manifest localization entry
OSGI-INF/lzon/bundle_fr_FR.properties.

Bundle Validity

If the Bundle-ManifestVersion is not specified, then the bundle manifest version defaults to 1, and
certain Release 4 syntax, such as a new manifest header, is ignored rather than causing an error. Re-
lease 3 bundles must be treated according to the Release 3 specification.

The following (non-exhaustive) list of errors causes a bundle to fail to install:

- Missing Bundle-SymbolicName.

- Duplicate attribute or duplicate directive (except in the Bundle-Native code clause).
Multiple imports of a given package.
Export or import of java.x.

Export-Package, Bundle-SymbolicName, or Fragment-Host with a mandatory attribute that is not
defined.

Installing or updating a bundle to a bundle that has the same symbolic name and version as an-
other installed bundle (unless this is allowed, see Bundle Identifiers on page 106).

Page 78

OSGi Core Release 6

Module Layer Version 1.8 Requiring Bundles

3:13

3.13.1

- Any syntactic error (for example, improperly formatted version or bundle symbolic name, unrec-
ognized directive value, etc.).

- Specification-version and version specified together (for the same package(s)) but with different
values on manifest headers that treat them as synonyms. For example:

Import-Package p;specification-version=1;version=2
would fail to install, but:
Import-Package p;specification-version=1,q;version=2

would not be an error.
The manifest lists a OSGI-INF/permission.perm file but no such file is present.

- Bundle-ManifestVersion value not equal to 2, unless the Framework specifically recognizes the
semantics of a later release.

Requiring the same bundle symbolic name more than once.

Requiring Bundles

The Framework supports a mechanism where bundles can be directly wired to other bundles. The
following sections define the relevant headers and then discuss the possible scenarios. At the end,
some of the (sometimes unexpected) consequences of using Require-Bundle are discussed.

Require-Bundle

The Require-Bundle manifest header contains a list of required bundle symbolic names, with op-
tional attribute assertions. These bundles are searched after the imports are searched but before the
bundle's class path is searched. Fragment or extension bundles cannot be required.

The framework must take all exported packages from a required bundle, including any packages ex-
ported by attached fragments, and wire these packages to the requiring bundle.

The Require-Bundle manifest header must conform to the following syntax:

Require-Bundle ::= bundle-description
('," bundle-description)x*

bundle-description ::= symbolic-name Il See 1.3.2
(";' parameter)x

The following directives can be used in the Require-Bundle header:

visibility - If the value is private (default), then all visible packages from the required bundles
are not re-exported. If the value isreexport then bundles that require this bundle will transitive-
ly have access to these required bundle's exported packages. That is, if bundle A requires bundle
B, and bundle B requires bundle C with visibility:=reexport then bundle A will have access to all
bundle C's exported packages as if bundle A had required bundle C.

resolution - If the value is mandatory (default) then the required bundle must exist for this bun-
dle to resolve. If the value is optional, the bundle will resolve even if the required bundle does
not exist.

The following matching attribute is architected by the Framework:

bundle-version - The value of this attribute is a version range to select the bundle version of the
required bundle. See Version Ranges on page 36. The default value is [0.0.0,x).

The Bundle-SymbolicName header can specify further arbitrary attributes that must be matched be-
fore a bundle is eligible.

OSGi Core Release 6

Page 79

Requiring Bundles Module Layer Version 1.8

A specific symbolic name can only be required once, listing the same symbolic name multiple times
must be regarded as an install error.

Requiring bundles must get wired to all exported packages of all their required bundles including
exported packages from their attached fragments. This means that any mandatory attributes on
these exports must be ignored. However, if a required bundle's exported package is substituted for
an imported package, then the requiring bundles must get wired to the same exported package that
the required bundle is wired to ensure class space consistency.

For example, assume that bundle A exports and imports package p and bundle B requires bundle A:

Bundle A
Export-Package: p;x=1;mandatory:=x
Import-Package: p

Bundle B
Require-Bundle: A

In this constellation, bundle B will get package p from the same source as bundle A. Bundle A can

get the package from itself if it is chosen as an exporter for p, but it can also get the package from an-
other bundle because it also imports it. In all cases, bundle B must use exactly the same exporter for
package p as bundle A.

A given package may be available from more than one of the required bundles. Such packages are
named split packages because they derive their contents from different bundles. If these different
bundles provide the same classes unpredictable shadowing of classes can arise, see Issues With Re-
quiring Bundles on page 81. However, split packages without shadowing are explicitly permitted.

For example, take the following setup:

A: Require-Bundle: B
Export-Package: p
B: Export-Package: p;partial=true;mandatory:=partial

If bundle C imports package p, it will be wired to package A.p, however the contents will come from
B.p > A.p. The mandatory attribute on bundle B's export definition ensures that bundle B is not ac-
cidentally selected as exporter for package p. Split packages have a number drawbacks that are dis-
cussed in Issues With Requiring Bundles on page 81.

Resources and classes from a split package must be searched in the order in which the required bun-
dles are specified in the Require-Bundle header.

Asan example, assume that a bundle requires a number of required bundles and a number of lan-
guage resources (also bundles) that are optional.

Require-Bundle: com.acme.facade;visibility:=reexport, «

com. acme.bar.one;visibility:=reexport, «
com.acme.bar. two; visibility:=reexport, «
com.acme.bar._nl;visibility:=reexport;resolution:=optional, «
com. acme.bar._en;visibility:=reexport;resolution:=optional

A bundle may both import packages (via Import-Package) and require one or more bundles (via Re-
quire-Bundle), but if a package is imported via Import-Package, it is not also visible via Require-Bun-
dle: Import-Package takes priority over Require-Bundle, and packages which are exported by a re-
quired bundle and imported via Import-Package must not be treated as split packages.

In order to be allowed to require a named bundle, the requiring bundle must have
BundlePermission[<bundle symbolic name>, REQUIRE], where the bundle symbolic name is the
name of the bundle that is required. The required bundle must be able to provide the bundle and
must therefore have BundlePermission[<bundle symbolic name>, PROVIDE], where the name des-

Page 80 OSGi Core Release 6

Module Layer Version 1.8 Requiring Bundles

3.13.2

3.13.3

Figure 3.17

ignates the requiring bundle. In the case a fragment bundle requires another bundle, the Bundle Per-
mission must be checked against the fragment bundle's Protection Domain.

Split Package Compatibility

A package is a split package whenever there are multiple sources for the package; only bundles using
the Require-Bundle header can have split packages.

A source is a bundle that provides the given package. Both the required bundles as well as the re-
quiring bundle can act as a source. The required bundles and the requiring bundle can only con-
tribute their exported packages.

Exported split packages from two bundles are compatible if the package sources for one are a subset
of the other.

Issues With Requiring Bundles

The preferred way of wiring bundles is to use the Import-Package and Export-Package headers be-
cause they couple the importer and exporter to a much lesser extent. Bundles can be refactored to
have a different package composition without causing other bundles to fail.

The Require-Bundle header provides a way for a bundle to bind to all the exports of another bundle,
regardless of what those exports are. Though this can seem convenient at first, it has a number of
drawbacks:

Split Packages - Classes from the same package can come from different bundles with Require

bundle, such a package is called a split package. Split packages have the following drawbacks:
Completeness - Split packages are open ended, it is difficult to guarantee that all the intended
pieces of a split package have actually been included.

« Ordering - If the same classes are present in more than one required bundle, then the ordering
of Require-Bundle is significant. A wrong ordering can cause hard to trace errors, similar to
the traditional class path model of Java.

« Performance- A class must be searched in all providers when packages are split. This potential-
ly increases the number of times that a ClassNotFoundException must be thrown which can
potentially introduce a significant overhead.

Confusing - It is easy to find a setup where there is lots of potential for confusion. For example,
the following setup is non-intuitive.

A: Export-Package: p;uses:=q
Import-Package: q

B: Export-Package:

C: Export-Package:

D: Require-Bundle:
Import-Package:

T Wo o
(@]

Split packages and package constraints

A
: . &

Potential

&conﬂict
D|
SN

OSGi Core Release 6

Page 81

Fragment Bundles

Module Layer Version 1.8

3.14

In this example, bundle D merges the split package q from bundles B and bundle C, however, im-
porting package p from bundle A puts a uses constraint on package p for package q. This implies
that bundle D can see the valid package q from bundle B but also the invalid package q from bun-
dle C. This wiring is allowed because in almost all cases there will be no problem. However, the
consistency can be violated in the rare case when package C.q contains classes that are also in
package B.q.

Mutable Exports - The feature of visibility:=reexport that the export signature of the requiring
bundle can unexpectedly change depending on the export signature of the required bundle.
Shadowing - The classes in the requiring bundle that are shadowed by those in a required bundle
depend on the export signature of the required bundle and the classes the required bundle con-
tains. (By contrast, Import-Package, except with resolution:=optional, shadows whole packages
regardless of the exporter.)

Fragment Bundles

Fragments are bundles that can be attached to one or more host bundles by the Framework. Attaching
is done as part of resolving: the Framework appends the relevant definitions of the fragment bun-
dles to the host's definitions before the host is resolved. Fragments are therefore treated as part of
the host, including any permitted headers; they must not have their own class loader though frag-
ments must have their own Protection Domain.

Fragments can be attached to multiple hosts with the same symbolic name but different versions. If
multiple fragments with the same symbolic name match the same host, then the Framework must
only select one fragment, this must be the fragment with the highest version.

A key use case for fragments is providing translation files for different locales. This allows the trans-
lation files to be treated and shipped independently from the main application bundle.

When an attached fragment is updated, the content of the previous fragment must remain attached
to its host bundles. The new content of the updated fragment must not be allowed to attach to the
host bundles until the Framework is restarted or the host bundle is refreshed. During this time, an
attached fragment will have two versions: the old version, attached to the old version of the host,
and a new fragment bundle that can get attached to a new version or to a different host bundle. The
exact configuration can be discovered with the Bundle Wiring API Specification on page 151.

When attaching a fragment bundle to a host bundle the Framework must perform the following
steps:

1. Append the import definitions for the Fragment bundle that do not conflict with an import def-
inition of the host to the import definitions of the host bundle. A Fragment can provide an im-
port statement for a private package of the host. The private package in the host is hidden in
that case.

2. Append the Require-Bundle entries of the fragment bundle that do not conflict with a Re-
quire-Bundle entry of the host to the Require-Bundle entries of the host bundle.

3. Append the export definitions of a Fragment bundle to the export definitions of the host bundle
unless the exact definition (directives and attributes must match) is already present in the host.
Fragment bundles can therefore add additional exports for the same package name. The bun-
dle-version attributes and bundle-symbolic-name attributes will reflect the host bundle.

4. Append the Provide-Capability clauses of the fragment to the Provide-Capability clauses of the
host

5. Append the Require-Capability clauses of the fragment to the Require-Capability clauses of the
host

Page 82

OSGi Core Release 6

Module Layer Version 1.8 Fragment Bundles

3.14.1

3.14.2

A host and a fragment conflict when they cannot resolve to provide a consistent class space. If a con-
flict is found, the Fragment bundle is not attached to the host bundle.

A Fragment bundle must enter the resolved state only if it has been successfully attached to at least
one host bundle.

During runtime, the fragment's JAR is searched after the host's bundle class path as described in
Fragments During Runtime on page 83.

A Fragment bundle can not be required by another bundle with the Require-Bundle header.

Fragment-Host

The Fragment-Host manifest header links the fragment to its potential hosts. It must conform to the
following syntax:

Fragment-Host
bundle-description

bundle-description
symbolic-name
(';' parameter)% // See 1.3.2

The following directives are architected by the Framework for Fragment-Host:

extension - Indicates this extension is a system or boot class path extension. It is only applica-
ble when the Fragment-Host is the System Bundle. This is discussed in Extension Bundles on page
85. The following values are supported:

framework - The fragment bundle is a Framework extension bundle (default).
bootclasspath - The fragment bundle is a boot class path extension bundle.

The fragment must be the bundle symbolic name of the implementation specific system bundle
or the alias system.bundle. The Framework should fail to install an extension bundle when the
bundle symbolic name is not referring to the system bundle.

The following attributes are architected by the Framework for Fragment-Host:

bundle-version - The version range to select the host bundle. If a range is used, then the frag-
ment can attach to multiple hosts. See Semantic Versioning on page 54. The default value is
[0.0.0,%).

The Fragment-Host header can assert arbitrary attributes that must be matched before a host is eligi-
ble.

When a fragment bundle is attached to a host bundle, it logically becomes part of it. All classes and
resources within the fragment bundle must be loaded using the class loader (or Bunde object) of its
host bundle. The fragment bundles of a host bundle must be attached to a host bundle in the order
that the fragment bundles are installed, which is in ascending bundle ID order. If an error occurs
during the attachment of a fragment bundle then the fragment bundle must not be attached to the
host. A fragment bundle must enter the resolved state only if it has been successfully attached to
one or more host bundles.

In order for a host bundle to allow fragments to attach, the host bundle must have
BundlePermission[<bundle symbolic name>,HOST]. In order to be allowed to attach to a host bun-
dle, a fragment bundle must have BundlePermission[<bundle symbolic name>,FRAGMENT].

Fragments During Runtime

All class or resource loading of a fragment is handled through the host's class loader or Bundle ob-
ject, a fragment must never have its own class loader, it therefore fails the class and resource loading
methods of the Bundle object. Fragment bundles are treated as if they are an intrinsic part of their
hosts.

OSGi Core Release 6

Page 83

Fragment Bundles Module Layer Version 1.8

Though a fragment bundle does not have its own class loader, it still must have a separate Protection
Domain when it is not an extension fragment. Each fragment can have its own permissions linked
to the fragment bundle's location and signer.

A host bundle's class path is searched before a fragment's class path. This implies that packages can
be split over the host and any of its fragments. Searching the fragments must be done in ascending
bundle ID order. This is the order that the fragment bundles were installed.

Figure 3.18 Resource/class searching with fragments

/ A.p export is chosen
; "I

q

1 \
Bl p C q
r S
t t

Figure 3.18 shows a setup with two fragments. Bundle B is installed before bundle C and both bundle
B and bundle C attach to bundle A. The following table shows where different packages originate in
this setup. Note that the order of the append (>) is significant.

Table 3.3 Effect of fragments on searching

Package Requested ~ From Remark

p A.p>B.p Bundle A exports package p, therefore, it will search its
class path for p. This class path consists of the JAR and
then its Fragment bundles.

q D.q The import does not handle split packages and pack-
age qis imported from bundle D. Therefore, C.qis not
found.

r Ar>Bur Package ris not imported and therefore comes from
the class path.

s C.s

t B.t>C.t

In the example above, if package p had been imported from bundle D, the table would have looked
quite different. Package p would have come from bundle D, and bundle A's own contents as well as
the contents of bundle B would have been ignored.

If package q had bundle D, then the class path would have to be searched, and A.q would have con-
sisted of A.q > C.q.

Fragments must remain attached to a host as long as the host remains resolved. When a host bundle
becomes unresolved, then all its attached Fragment bundles must be detached from the host bundle.
When a fragment bundle becomes unresolved the Framework must:

Detach it from the host

Page 84 OSGi Core Release 6

Module Layer Version 1.8 Extension Bundles

3.14.3

3-15

« Re-resolve the host bundles
Reattach the remaining attached fragment bundles.

A Fragment bundle can become unresolved by calling the
refreshBundles(Collection,FrameworkListener...) method.

lllegal Manifest Header for Fragment Bundles

The following list contains the headers that must not be used in a fragment bundle:

Bundle-Activator

Extension Bundles

Extension bundles can deliver optional parts of the Framework implementation or provide func-
tionality that must reside on the boot class path. These packages cannot be provided by the normal
import/export mechanisms.

Boot class path extensions are necessary because certain package implementations assume that they
are on the boot class path or are required to be available to all clients. An example of a boot class
path extension is an implementation of java.sql such as JSR 169. Boot class path extensions are not
required to be implemented by a compliant framework.

Framework extensions are necessary to provide implementation aspects of the Framework. For ex-
ample, a Framework vendor could supply the optional services like Permission Admin service and
Start Level API with Framework extension bundles.

An extension bundle should use the bundle symbolic name of the implementation system bundle,
or it can use the alias of the system bundle, which is system.bundle.

The following example uses the Fragment-Host manifest header to specify an extension bundle for a
specific Framework implementation.

Fragment-Host: com.acme.impl. framework; extension:=framework

The following example uses the Fragment-Host manifest header to specify a boot class path exten-
sion bundle.

Fragment-Host: system.bundle; extension:=bootclasspath
The following steps describe the life cycle of an extension bundle:

1. When an extension bundle is installed it enters the INSTALLED state.

2. The extension bundle is allowed to enter the RESOLVED state at the Frameworks discretion,
which can require a Framework re-launch.

3. IfaRESOLVED extension bundle is refreshed then the Framework must shutdown; the host VM
must terminate and framework must be re-launched.

4. When a RESOLVED extension bundle is updated or UNINSTALLED, it is not allowed to re-enter
the RESOLVED state. If the extension bundle is refreshed then the Framework must shutdown;
the host VM must terminate and framework must be re-launched.

It is valid to update an extension bundle to a bundle of another type. If the old extension bundle is
resolved then it must be attached as a fragment to the system bundle. When this bundle is updated
the old content of the bundle must remain attached to the system bundle until the system bundle is
refreshed or the extension bundle is refreshed (using the Wiring API). This must initiate a VM and
Framework restart. When the framework comes back up the new content of the bundle may be re-
solved.

OSGi Core Release 6

Page 85

Extension Bundles Module Layer Version 1.8

All Bundle events should be dispatched for extension bundles as for ordinary bundles.

3.15.1 lllegal Manifest Headers for Extension Bundles

An extension bundle must throw a Bundle Exception if it is installed or updated and it specifies any
of the following headers.

- Import-Package

- Require-Bundle
Bundle-NativeCode
Dynamiclmport-Package
Bundle-Activator

Require-Capability (only requirements in the osgi.ee namespace are allowed since these are not
hosted)

Both boot class path and framework extension bundles are permitted to specify an Export-Package
header. Any exported packages specified by a framework extension bundle must be exported by the
System Bundle when the extension bundle is resolved.

3.15.2 Class Path Treatment

A boot class path extension bundle's JAR file must be appended to the boot class path of the host
VM. A framework extension bundle's JAR is appended to the class path of the Framework.

Extension bundles must be appended to their class path in the order in which the extension bundles
are installed: that is, ascending bundle ID order.

How a framework configures itself or the boot class path to append the extension bundle's JAR is
implementation specific. In some execution environments, it may be impossible to support exten-
sion bundles. In such environments, the Framework must throw a Bundle Exception when such an
extension bundle is installed. The resulting Bundle Exception must have a cause of type Unsupport-
edOperationException.

3.15.3 Framework Extension Activator

A framework extension may hook into the Framework initialization and shutdown process by
specifying an Extension Bundle Activator. The BundleActivator interface defines methods that the
Framework invokes when the Framework is initialized and shutdown.

To inform the OSGi environment of a fully qualified class name serving as its Extension Bundle
Activator, a framework extension developer must declare an ExtensionBundle-Activator manifest
header in the framework extension bundle's manifest file. The following is an example of an Exten-
sionBundle-Activator:

ExtensionBundle-Activator: com.acme.Activator

The class acting as an Extension Bundle Activator must implement the BundleActivator interface,
be declared public, and have a public default constructor so an instance of it may be created with
Class.newlnstance.

Supplying an Extension Bundle Activator is optional and only valid for Extension Bundles of type
framework. For normal Bundles and Fragments, the ExtensionBundle-Activator must be ignored.

3.15.3.1 Framework Initialization and Shutdown

An Extension Bundle Activator allows a framework extension to hook into the Framework initial-
ization and shutdown process. Initializing the Framework on page 102 describes how the start
method for Extension Bundle Activators is called during Framework initialization. Stopping a Frame-
work on page 103 describes how the stop method for Extension Bundle Activators is called during
Framework shutdown.

Page 86 OSGi Core Release 6

Module Layer Version 1.8 Security

3.15.3.2

3.15.3.3

3.15.4

3.16

3.16.1

3.16.2

Installing

When a framework extension is installed, a Framework may allow the extension to become re-
solved dynamically, without a Framework restart. If a framework extension is allowed to install
and resolve dynamically after Framework initialization, then the Extension Bundle Activator start
method must be called as soon as the extension bundle is resolved. This must happen before the
Bundle Event of type RESOLVED is fired for the extension bundle.

Update and Uninstall

Unlike normal bundles, updating or uninstalling an extension bundle does not take effect until the
Framework is shutdown and restarted. The original content of the extension bundle must remain
attached to the system bundle and the Extension Bundle Activator must not have its stop method
called until the Framework is shutdown.

Optionality Boot Class Path Extension

This specification provides for one optional mechanism: the boot class path extension. The reason
to make this mechanism optional is that it is not possible to implement this in a portable way. A
compliant framework must set the following property to true or false depending on the implemen-
tation of the boot class path extension:

org.osgi.supports.bootclasspath.extension

If the property is not set or the value is unrecognized, then the value defaults to false. A Framework
that does not implement the bootclasspath extension must refuse to install or update a bundle that
carries this option. It must then throw an exception at install or update time.

Additionally, frameworks must implement fragments, require bundle, and extensions. They must
therefore set the following properties to true.

org.osgi.supports.framework.requirebundle
org.osgi.supports.framework.fragments
org.osgi.supports.framework.extension

Security

Extension Bundles

In an environment that has Java 2 security enabled the Framework must perform an additional se-
curity check before allowing an extension bundle to be installed. In order for an extension bundle
to successfully install, the Framework must check that the extension bundle has All Permissions as-
signed to it. This means that the permissions of an extension bundle must be setup before the exten-
sion bundle is installed.

AllPermission must be granted to extension bundles because they will be loaded under the Protec-
tion Domain of either the boot class path or the Framework implementation. Both of these Protec-
tion Domains have All Permissions granted to them. Attempting to install an extension bundle that
has not already been granted All Permissions must result in a Bundle Exception.

The installer of an extension bundle must have AdminPermission[<extension
bundle>,EXTENSIONLIFECYCLE] to install an extension bundle.
Bundle Permission

Most package sharing permissions are based on Package Permission. However, fragments and re-
quired bundles use the bundle symbolic name to handle sharing. The Bundle Permission is used to
control this type of package sharing.

OSGi Core Release 6

Page 87

Security

Module Layer Version 1.8

Figure 3.19

3.16.3

3.16.4

The name parameter of the Bundle Permission is a bundle symbolic name. The symbolic name is
used as the identifier for the target bundle. A wild card (".*" \uoo2E,\uoo2A) is permitted at the end
of the name.

For example, for fragment bundle A to attach to its host bundle B then fragment bundle A requires
BundlePermission("B", "fragment") so that A is permitted to target host bundle B. The direction of
the actions is depicted in Figure 3.19.

Permissions and bundle sharing

C .
C, provide B| q
" —~A A, fragment
_ A, require _ - S

P B, host

The following actions are architected:

provide - Permission to provide packages to the target bundle.

require - Permission to require packages from the target bundle.

host - Permission to attach to the target fragment bundle.

fragment - Permission to attach as a fragment to the target host bundle.

When a fragment contains a Require-Bundle header, the Framework must check the permission
against the domain of the fragment.

Package Permission

Bundles can only import and export packages for which they have the required permission. A Pack-
agePermission must be valid across all versions of a package.

A PackagePermission has two parameters:

The name, either the name of the target package (with a possible wildcard character at the end)
or a filter expression that can verify the exporting bundle. A filter expression can test for the
package name with the package.name key. A filter can only be used for an IMPORT action. Filters
are described in Filter Based Permissions on page 27.

The action, either IMPORT or EXPORTONLY.

For example, the following Package Permission permits to import any package from a bundle down-
loaded from ACME:

PackagePermission(" (location=http://www.acme.com/*", IMPORT)

When a fragment adds imports and exports to the host, the framework must check the protection
domain of the fragment and not of the related host.

Resource Permissions

A Framework must always give a bundle the RESOURCE, METADATA, and CLASS AdminPermission
actions to access the resources contained within:

Itself
Any attached fragments
Any resources from imported packages

A resource in a bundle may also be accessed by using certain methods on Bundle. The caller of these
methods must have AdminPermission[bundle, RESOURCE].

If the caller does not have the necessary permission, a resource is not accessible and null must be re-
turned. Otherwise, a URL object to the resource must be returned. These URLs are called bundle re-

Page 88

OSGi Core Release 6

Module Layer Version 1.8 Security

3.16.5

source URLs. Once the URL object is returned, no further permission checks are performed when the
contents of the resource are accessed. The URL object must use a scheme defined by the Framework
implementation.

Bundle resource URLs are normally created by the Framework, however, in certain cases bundles
need to manipulate the URL to find related resources. For example, a URL can be constructed to a re-
source that is in the same directory as a given resource.

URLs that are not constructed by the Framework must follow slightly different security rules due
to the design of the java.net.URL class. Not all constructors of the URL class interact with the URL
Stream Handler classes (the implementation specific part). Other constructors call at least the
parseURL method in the URL Stream Handler where the security check can take place. This design
makes it impossible for the Framework check the permissions during construction of a bundle re-
source URL.

The following constructors use the parseURL method and are therefore checked when a bundle re-
source URL is constructed.

URL (String spec)
URL (URL context, String spec)
URL (URL context, String spec, URLStreamHandler handler)

When one of these constructors is called for a bundle resource URL, the implementation of the
Framework must check the caller for the necessary permissions in the parseURL method. If the
caller does not have the necessary permissions then the parseURL method must throw a Securi-

ty Exception. This will cause a Malformed URL Exception to be thrown by the URL constructor. If
the caller has the necessary permissions, then the URL object is setup to access the bundle resource
without further checks.

The following java.net.URL constructors do not call the parseURL method in the URL Stream Han-
dler, making it impossible for the Framework to verify the permission during construction.

URL (String protocol, String host, int port,String file)
URL (String protocol, String host, int port, String file, URLStreamHandlerhandler)
URL (String protocol, String host, String file)

Bundle resource URLs that are created with these constructors cannot perform the permission
check during creation and must therefore delay the permission check. When the content of
the URLis accessed, the Framework must throw a Security Exception if the caller does not have
AdminPermission[bundle, RESOURCE] for the bundle referenced by the URL.

Capability Permission

The Capability Permission provides a means to limit access to certain Capabilities when security is
on. A Capability Permission is a Filter based Permission, as described in Filter Based Permissions on
page 27, giving access to the following additional property:

. capability.namespace - The namespace of the requirement or provided capability.

The filter can also assert information from the target bundle. The target bundle is always the bundle
that provides the capability. This means that a requirer can be restricted to receive a capability from
a specific bundle.

Capabilities in a namespace for which the resolving bundle has no permission are not available to
other bundles. Requirements in a namespace for which a bundle has no permission can never be sat-
isfied.

The Capability Permission has the following actions:

REQUIRE - Imply permission to require the given namespace. The target bundle that can be as-
serted in the filter is the bundle providing the capability.

OSGi Core Release 6

Page 89

References Module Layer Version 1.8
- PROVIDE- Imply permission to provide a capability in the given namespace, the target bundle is
the bundle that is checked for the permission.
The Capability Permission has the following constructors:
CapabilityPermission(String,String) - Constructor to set the filter and actions. This constructor is
also used to verify the provide action.
CapabilityPermission(String,Map,Bundle,String) - Special constructor to verify the permission
against the namespace. The bundle is the bundle providing the capability.
3.16.6 Permission Checks

3.17

(1]

Since multiple bundles can export permission classes with the same class name, the Framework
must make sure that permission checks are performed using the correct class. For example, a bundle
that calls the checkPermission method provides an instance of the Permission class:

void foo(String name) {
checkPermission(new FooPermission(name, "foo"));

}

This class of this Permission instance comes from a particular source. Permissions can only be tested
against instances that come from the same source.

Therefore, the Framework needs to look up permissions based on class rather than class name. When
it needs to instantiate a permission it must use the class of the permission being checked to do the
instantiation. This is a complication for Framework implementers; bundle programmers are not af-
fected.

Consider the following example:

Bundle A
Import-Package: p
Export-Package: q

Bundle B
Import-Package: p

Bundle A uses a p.FooService. Usage of this class checks q.FooPermission whenever one of its
methods is invoked.

Bundle B has a FooPermission in its Protection Domain in a (Conditional) Permission Info object.
Bundle B invokes a method in the FooService that was given by bundle A.
- TheFooService calls the checkPermission method with a new FooPermission instance.

« The Framework must use a FooPermission object that is from the same class loader as the given
FooPermission object before it can call the implies method. In this case, the FooPermission class
comes from package A.q.

After the permission check, bundle B will have a FooPermission instantiated using a class from a
package it does not import. It is therefore possible that the Framework has to instantiate multiple
variations of the FooPermission class to satisfy the needs of different bundles.

References

Java Virtual Machine Specification, Second Edition
http://docs.oracle.com/javase/specs/jvms/se5.0/html/VMSpecTOC.doc.html

The Standard for the Format of ARPA Internet Text Messages
STD 11, RFC 822, UDEL, August 1982
http://www.ietf.org/rfc/rfc822.txt

Page 9o

OSGi Core Release 6

Module Layer Version 1.8

References

3]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

The Hypertext Transfer Protocol - HTTP/1.1
RFC 2068 DEC, MIT/LCS, UC Irvine, January 1997
http://www.ietf.org/rfc/rfc2068.txt

The Java Language Specification, Second Edition, Sun Microsystems, 2000
http://docs.oracle.com/javase/specs/

A String Representation of LDAP Search Filters
RFC 1960, UMich, 1996
http://www.ietf.org/rfc/rfc1960.txt

The Java Security Architecture for JDK 1.2
Version 1.0, Sun Microsystems, October 1998

The Java 2 Package Versioning Specification
http://docs.oracle.com/javase/1.4.2/docs/guide/versioning/index.html

Codes for the Representation of Names of Languages
ISO 639, International Standards Organization
http://lcweb.loc.gov/standards/iso639-2/langhome.html

Zip File Format
The Zip file format as defined by the java.util.zip package.

Manifest Format
http://docs.oracle.com/javase/1.4.2/docs/guide/jar/jar.html#]AR%20Manifest

W3C EBNF
http://www.w3c.org/TR/REC-xml#sec-notation

Mathematical Convention for Interval Notation
http://planetmath.org/encyclopedia/Interval.html

RFC 2396 Uniform Resource Identifiers URIL: Generic Syntax
http://www.ietf.org/rfc/rfc2396.txt

Codes for the Representation of Names of Languages
ISO 639, International Standards Organization
http://lcweb.loc.gov/standards/iso639-2/langhome. html

OSGi IANA Mime Type
http://www.iana.org/assignments/media-types/application/vnd.osgi.bundle

OSGi Header Registry
http://www.osgi.org/Specifications/ReferenceHeaders

OSGi Namespace Registry
http://www.osgi.org/Specifications/ReferenceNamespaces

Portable Network Graphics (PNG) Specification (Second Edition)
http://www.w3.0rg/TR/2003/REC-PNG-20031110/

Open Source Initiative
http://www.opensource.org/

OSGi Semantic Versioning
http://www.osgi.org/wiki/uploads/Links/SemanticVersioning.pdf

Specification References
http://www.osgi.org/Specifications/Reference

Google Android
http://developer.android.com/index.html

Google App Engine
http://developer.android.com/index.html

OSGi Core Release 6

Page o1

Changes Module Layer Version 1.8

[24] Google Web Toolkit
http://code.google.com/webtoolkit/

3.18 Changes

- Clarified Importing and Exporting the Same Package on page 61.

- Added support for the new osgi.native namespace in Loading Native Code Libraries on page 71.
Added support for Extension Bundle Activators in Framework Extension Activator on page 86.
Added Type Roles for Semantic Versioning on page 54.

Updated the Bundle-NativeCode grammar in Loading Native Code Libraries on page 71 to not
require a parameter on the nativecode clause.

Page 92 OSGi Core Release 6

Life Cycle Layer Version 1.8 Introduction

4 Life Cycle Layer

\ersion 1.8

4.1 Introduction

The Life Cycle Layer provides an API to control the security and life cycle operations of bundles. The
layer is based on the module and security layer.

4.1.1 Essentials

4.1.2

Complete - The Life Cycle layer must implement an API that fully covers the installation, starting,
stopping, updating, uninstallation, and monitoring of bundles.

Reflective - The API must provide full insight into the actual state of the Framework.

Secure - It must be possible to use the API in a secure environment using fine-grained permis-
sions. However, security must be optional.

Manageable - It must be possible to manage a OSGi framework remotely.

Launching - It must be able to launch an implementation of a framework in a standardized way.

Entities

Bundle - Represents an installed bundle in the Framework.

Bundle Context- A bundle's execution context within the Framework. The Framework passes this
to a Bundle Activator when a bundle is started or stopped.

Bundle Activator - An interface implemented by a class in a bundle that is used to start and stop
that bundle.

Bundle Event - An event that signals a life cycle operation on a bundle. This event is received via a
(Synchronous) Bundle Listener.

Framework Event - An event that signals an error or Framework state change. The event is re-
ceived via a Framework Listener.

Bundle Listener - A listener to Bundle Events.

Synchronous Bundle Listener - A listener to synchronously delivered Bundle Events.

Framework Listener - A listener to Framework events.

Bundle Exception - An Exception thrown when Framework operations fail.

System Bundle - A bundle that represents the Framework.

Framework - An interface implemented by an object that represents the actual framework. It al-
lows external management of a Framework.

Framework Factory - An interface implemented by Framework providers that allows the creation
of a framework object.

OSGi Core Release 6

Page 93

Frameworks Life Cycle Layer Version 1.8

Figure 4.1 Class diagramorg.osgi.framework Life Cycle Layer
implementation
code of bundle — dlassloaded by
activated with
«class>> «interface>> «interface>> class loader
Bundle Bundle Bundle
Exception Activator Context
0,1 1
: activated by
<B<lllrrl‘t§|r£ace>> : Bun;jle Controller | code mngmt
management representation Imp
'ﬁ 1
1.0
1
«interface>> «interface>> Framework Impl «class»>
Constants Framework l— Framework
Event
1| o.n 1
_____ |
«interface>> «interface>> «interface>>
Synchr.Bundle Bundle o..nl O-Nl Framework
Listener Listener | Listener
|
| 1
«class>> Framework «interface>>
Bundle Event |} - Factory Impl Framework
Factor
4.2 Frameworks
This section outlines how a launcher can launch a framework implementation and then manage it,
regardless of the implementation type of the framework. This allows a launcher to embed an OSGi
framework without having to provide code that differs between different implementations.
4.2.1 Launching and Controlling a Framework

Code that wants to use one of the OSGi Framework implementations must provide the chosen
framework implementation on the class path, or create a special class loader that loads the code and
resources from that implementation. How this is achieved, is outside this specification.

A framework implementation must provide a factory class. A factory class is an indirection to create
a framework implementation object. The implementation factory class must implement the Frame-
workFactory interface. The launcher can use the following ways to get this class name:

- Service Provider Configuration model, see Java Service Provider Configuration Support on page
105,

Page 94 OSGi Core Release 6

Life Cycle Layer Version 1.8 Frameworks

Figure 4.2

- Getit from some configuration and use Class.forName, or
Hardcode the name.

The FrameworkFactory interface has a single method: newFramework(Map). The map provides the
sole configuration properties for the framework object. The result of this method is a framework ob-
ject, this object implements the Framework interface. The Framework interface extends the Bundle
interface and adds methods to handle the issues unique to launching a framework. The framework
object can be seen as the system bundle, though the framework object and the system bundle do not
have to be identical, implementations are allowed to implement them in different objects.

Before the framework object can be used, the launcher must first initialize it by calling the init
method. After initialization, the framework object can provide a valid Bundle Context and has
registered any framework services, but any installed bundles must be in the INSTALLED state. The
launcher can then configure the framework object by installing bundles, interacting with the frame-
work services, or registering launcher services. The launcher can also start bundles, but these bun-
dles will not be started until the framework object becomes ACTIVE.

After the framework object is properly configured, the launcher can startit by calling the start
method. The framework object will become ACTIVE, and it will move the startlevel (if present) to
the configured start level. This can then resolve and start any installed bundle. After a framework
has become ACTIVE, it can be stopped from the framework object, or through the system bundle.

The launcher can wait for a framework object to be stopped with the waitForStop method. This
method will block until the framework is completely stopped and return a Framework event indi-
cating the cause of the stop. After the framework object has been shutdown, and the waitForStop
method has returned, all installed bundles will be in the INSTALLED state. The same framework ob-
ject can be re-initialized, and started again, any number of times.

The action diagram in Figure 4.2 shows a typical session. A new framework is created and initial-
ized. The launcher then gets the Bundle Context, installs a bundle and starts the framework. It then
gets a service, calls a method and then waits for the framework to stop. The service waits some time
and calls stop on the System Bundle. The dotted lines indicate some non-specified interactions that
are implementation dependent.

Action Diagram for Framework Launching

launcher a Framework Framework Bundle a Service
Factory Context

getBundleContext

installBundle

start

getServiceReference

getService

foo()
waitForStop

—am y wi

OSGi Core Release 6

Page 95

Frameworks

Life Cycle Layer Version 1.8

4.2.2

Table 4.1

If security is enabled, then the launcher and the framework require All Permission. If All Permission
isnot available, then the framework must throw a Security Exception.

The following code shows how a framework can be launched.

void launch(String factoryName, File[] bundles)
throws Exception {
Map p = new HashMap();
p.put("org.osgi.framework.storage",
System.getProperty("user.home")
+ File.separator+"osgi");

FrameworkFactory factory =
(FrameworkFactory) Class.forName(factoryName)
.newInstance();
Framework framework = factory.newFramework (p);
framework.init();

BundleContext context = framework.getBundleContext();

for (File bundle : bundles)
context.installBundle(bundle.toURL().toString());

framework.start();
framework.waitForStop(0);

}

Launching Properties

The Map object given as a parameter to the newFramework method provides the configuration proper-
ties to the framework. This parameter may be null, in that case the framework must be started with
reasonable defaults for the environment it is started in. For example, the framework should export
the JRE packages as system packages and it should store its bundles in an appropriate place. The
framework must not look in the System properties for configuration properties, the specified con-
figuration properties are complete.

The configuration properties may contain any implementation specific properties. The properties
in Table 4.1 must be supported by all conformant frameworks.

The configuration properties plus any defaults set by the framework and the fixed properties set by
the framework all together form the launching properties for the framework.

Framework Launching Properties

Property Name Description
org.osgi.framework.« Set the boot delegation mask, see Parent Delegation on page 65.

bootdelegation

Page 96

OSGi Core Release 6

Life Cycle Layer Version 1.8 Frameworks

Property Name Description
org.osgi.framework.« Allow installation of multiple bundles with the same bundle
b . symbolic name or restrict this. The property can have the fol-
snversion .
lowing values:

. single- A combination of equal bundle symbolic name and
equal version is unique in the framework. Installing a sec-
ond bundle with the same bundle symbolic name and ver-
sion is an error.

« multiple - The combination of bundle symbolic name and
version is not unique in the framework.

- managed - (Default) Using a Bundle Collision Hook to filter
any non-colliding bundles, see Bundle Hook Service Specifica-
tion on page 375.

org.osgi.framework.« This property is used to specify what class loader is used for
boot delegation. That is, java.* and the packages specified on
the org.osgi.framework.bootdelegation. All other packages
must be accessed through a wire.

bundle.parent

This property can have the following values:

. boot-The boot class loader of the VM. This is the default.
. app-The applicaton class loader

. ext-The extension class loader

. framework - The class loader of the framework

org.osgi.framework.« Specifies an optional OS specific command to set file permis-
sions on a bundle's native code. This is required on some oper-
ating systems to use native libraries. For example, on a UNIX
style OS you could have the following value:

command.execpermission

org.osgi. framework. command. execpermission=«
"chmod +rx ${abspath}"

The ${abspath} macro will be substituted for the actual file
path.

org.osgi.framework.« A comma-separated list of provided execution environments
(EE). All methods of each listed EE must be present on the OSGi

executionenvironment . .
framework. For example, this property could contain:

CDC-1.1/Foundation-1.1,0SGi/Minimum-1.2

A OSGi framework implementation must provide all the sig-
natures that are defined in the mentioned EEs. Thus, the ex-
ecution environment for a specific OSGi framework Server
must be the combined set of all signatures of all EEs in the
org.osgi.framework.executionenvironment property.

This property is deprecated; its function is replaced with

org.osgi.framework.system.capabilities[.extra].
org.osgi.framework.language The language used by the framework for the selection of na-

tive code. If not set, the framework must provide a value. See

[7] Codes for the Representation of Names of Languages for valid val-

ues.

OSGi Core Release 6 Page 97

Frameworks

Life Cycle Layer Version 1.8

Property Name
org.osgi.framework.library.«

extensions

org.osgi.framework.os.name

org.osgi.framework.os.version

org.osgi.framework.processor

org.osgi.framework.security

org.osgi.framework.startlevel.«

beginning

Description

A comma separated list of additional library file ex-

tensions that must be used when searching for native

code. If not set, then only the library name returned by
System.mapLibraryName(String) will be used. This list of ex-
tensions is needed for certain operating systems which allow
more than one extension for native libraries. For example, the
AIX operating system allows library extensions of .a and .so,
but System.mapLibraryName(String) will only return names
with the .a extension. For example:

org.osgi. framework.library.extensions= a,so,dll

The name of the operating system as used in the native code
clause. If not set, then the framework must provide a default
value. Table 4.3 defines a list of operating system names. New
operating system names are made available on the OSGi web
site, see [11] OSGi Reference Names. Names should be matched
case insensitive.

The version of the operating system as used in the native code
clause. If not set, then the framework must provide a default
value. If the operating system reported version does not fit the
standard version syntax (e.g. 2.4.32-kwt), then the launcher
should define this launching property with a valid version val-
ue.

The name of the processor as used in the native code clause. If
not set, then the framework must provide a value. Table 4.2 de-
fines a list of processor names. New processors are made avail-
able on the OSGi web site, see [11] OSGi Reference Names. Names
should be matched case insensitive.

Specifies the type of security manager the framework must use.
If not specified then the framework will not set the VM securi-
ty manager. The following type is architected:

.+ osgi-Enables a security manager that supports all securi-
ty aspects of the OSGi Core specifications (including post-
poned conditions).

If specified, and there is a security manager already installed,
then a SecurityException must be thrown when the Frame-
work is initialized.

For example:

org.osgi. framework. security = osgi

Specifies the beginning start level of the framework. See Start
Level API Specification on page 173 for more information.

org.osgi.framework.startlevel.beginning = 3

Page 98

OSGi Core Release 6

Life Cycle Layer Version 1.8

Frameworks

Property Name
org.osgi.framework.storage

org.osgi.framework.storage.«

clean

org.osgi.framework.system.«

capabilities

org.osgi.framework.system.«

capabilities.extra

org.osgi.framework.system.«
packages
org.osgi.framework.system.«

packages.extra

Description

A valid file path in the file system to a directory. If the speci-
fied directory does not exist then the framework must create
the directory. If the specified path exists, but is not a directory,
or if the framework fails to create the storage directory, then
the framework initialization must fail with an exception being
thrown. The framework is free to use this directory as it sees
fit, for example, completely erase all files and directories in it.
If this property is not set, it must use a reasonable platform de-
fault.

Specifies if and when the storage area for the framework
should be cleaned. If no value is specified, the framework stor-
age area will not be cleaned. The possible values is:

- onFirstinit- The framework storage area will be cleaned be-
fore the Framework bundle is initialized for the first time.
Subsequent inits, starts or updates of the Framework bundle
will not result in cleaning the framework storage area.

For example:
org.osgi.framework.storage.clean = onFirstInit

It could seem logical to provide delete on exit and clean at ini-
tialization. However, restrictions in common Java VM imple-
mentations make it impossible to provide this functionality re-
liably.

Specifies the capabilities of the environment in the grammar
specified for the Provide-Capability header, see Dependencies on
page 38. These capabilities will be provided from the system
bundle. If this property is not set, the framework must calcu-
late this header based on the environment. It should at least set
the following namespace:

. osgi.ee

Deployers should use the
org.osgi.framework.system.capabilities.extra property.
Capabilities defined in this property are added to the
org.osgi.framework.system.capabilities property. The purpose
of the extra property is to be set by the deployer. The grammar
for this property is identical to the other capabilities property.
The packages that should be exported from the System Bundle.
If not set, the framework must provide a reasonable default for
the current VM.

Packages specified in this property are added to the
org.osgi.framework.system.packages property and therefore
have the same syntax. This allows the configurator to only de-
fine the additional packages and leave the standard VM pack-
ages to be defined by the framework. For example:

org.osgi. framework.system.packages.extra=«
org.acme. foo; version=1.2, org.acme. foo.impl

OSGi Core Release 6

Page 99

Frameworks Life Cycle Layer Version 1.8
Property Name Description
org.osgi.framework.trust.« This property is used to configure trust repositories for the
repositories framework. The value is path of files.Thg file paths are s.eparat—
ed by the pathSeparator defined in the File class. Each file path
should point to a key store. The Framework must support the
JKS type but can support other key store types. The framework
will use the key stores as trust repositories to authenticate cer-
tificates of trusted signers. The key stores must only be used as
read-only trust repositories to access public keys. The keystore
must not have a password. For example:
org.osgi. framework. trust.repositories = «
/var/trust/keystore. jks:-/.cert/certs.jks
org.osgi.framework.« Provide the name of the current window system. This can be
windowsystem used by the native code clause, Native Coc?e Algorithm on page
75. If not set, the framework should provide a value that de-
pends on the current environment.
Table 4.2 Processor Names
Name Aliases Description
68k Motorola 68000
ARM Intel Strong ARM. Deprecated because
it does not specify the endianness. See
the following two rows.
arm_le Intel Strong ARM Little Endian
mode
arm_be Intel String ARM Big Endian mode
Alpha Compagq (ex DEC)
ja64n Hewlett Packard 32 bit
iab4w Hewlett Packard 64 bit mode
Ignite pscik PTSC
Mips SGI
PArisc Hewlett Packard
PowerPC power ppc Motorola/IBM Power PC
Sh4 Hitachi
Sparc Sun Microsystems
Sparcvg Sun Microsystems
S390 IBM Mainframe 31 bit
S390x IBM Mainframe 64-bit
V8s0E NEC V850E
x86 pentium i386 1486 i586 1686 Intel & AMD 32 bit
x86-64 amd64 em64t x86_64 AMD/Intel 64 bit x86 architecture
Table 4.3 Operating System Names
Name Aliases Description
AIX IBM
DigitalUnix Compaq
Embos Segger Embedded Software Solu-

tions

Page 100

OSGi Core Release 6

Life Cycle Layer Version 1.8

Frameworks

Name
Epoc32
FreeBSD
HPUX

IRIX

Linux
MacOS
MacOSX
NetBSD
Netware
OpenBSD
0S2

QNX

Solaris
SunOS
VxWorks
Windowsgs
Windowsg8
WindowsNT
WindowsCE
Windows2000
Windows2003

WindowsXP
WindowsVista
Windows7

WindowsServer2008

Aliases
SymbianOS

hp-ux

"Mac OS"
"Mac OS X"

0S/2
procnto

Wings "Windows 95" Win32
Wing8 "Windows 98" Win32
WinNT "Windows NT"Win32
WinCE"Windows CE"

Win2000 "Windows 2000"Win32

Win2003"Windows 2003"Win32
"Windows Server 2003"

WinXP"Windows XP"Win32
WinVista "Windows Vista"Win32
"Windows 7" Win32

"Windows Server 2008"

Description

Symbian OS

Free BSD

Hewlett Packard

Silicon Graphics

Open source

Apple

Apple

Open source

Novell

Open source

IBM

QNX

Sun (almost an alias of SunOS)
Sun Microsystems
WindRiver Systems
Microsoft Windows 95
Microsoft Windows 98
Microsoft Windows NT
Microsoft Windows CE
Microsoft Windows 2000
Microsoft Windows 2003

Microsoft Windows XP
Microsoft Windows Vista
Microsoft Windows 7

Microsoft Windows Server 2008

The properties in the following table are the fixed properties of the framework. The values of these
properties are established by the framework implementation and added to the launching properties.
If these properties are set in the configuration properies, the framework must ignore them.

Table 4.4

Property name

org.osgi.framework.version

org.osgi.framework.vendor
org.osgi.framework.uuid

Fixed Framework Launching Properties

Description

The specification version number implemented by the Frame-

work implementation. The specification version number of this

specification is 1.8.

The vendor of the Framework implementation.

Unique id for the framework instance, see Framework UUID on

page 105.

org.osgi.supports.«

framework.extension

org.osgi.supports.«

bootclasspath.extension

org.osgi.supports.«

framework.fragment

org.osgi.supports.«

framework.requirebundle

Support for framework extensions is mandatory, must therefore
be set to true, see Extension Bundles on page 85.

Must be set to true or false, see Requiring Bundles on page 79.

Support for fragment bundles is mandatory, must therefore be set
totrue, see Fragment Bundles on page 82.

Support for Require Bundle is mandatory, must therefore be set to
true, see Requiring Bundles on page 79.

OSGi Core Release 6

Page 101

Frameworks Life Cycle Layer Version 1.8

Alllaunching properties are available through the getProperty(String) method. See Environment

Properties on page 118.

4.2.3 Life Cycle of a Framework

Once the frameworks is created, it must be in the INSTALLED state. In this state, the framework is

not active and there is no valid Bundle Context. From this point on, the framework object can go

through its life cycle with the following methods.

- init-If the framework object is not active, then this method moves the framework object into the
STARTING state.

. start-Ensure that the framework is in the ACTIVE state. This method can be called only on the
framework because there are no bundles running yet.

- update- Stop the framework. This returns the Framework event STOPPED_UPDATE or
STOPPED_BOOTCLASSPATH_MODIFIED to the waitForStop method and then restarts the frame-
work to its previous state. The launcher should then take the appropriate action and then call
the waitForStop method again or reboot the VM. The update method can be called on the frame-
work or on the system bundle. If the framework is not active, this has no effect.
stop - Move the framework into the RESOLVED state via the STOPPING state. This will return a
Framework STOPPED event from the waitForStop method. The Framework's Bundle Context is
no longer valid. The framework must be initialized again to get a new, valid Bundle Context. The
stop method can be called on the framework or on the system bundle.

- uninstall- Must not be called, will throw an Exception when called.

Figure 4.3 on page 102 shows how the previous methods traverse the state diagram.

Figure 4.3 State diagram Framework
newFramework ‘
update
stop
INSTALLED .
init
init STARTING
start
update init, start
stop RESOLVED start
stop
update CACTIVE
stop
start update
init
STOPPING
4.2.4 Initializing the Framework

Before the framework can be used, it must be initialized. Initialization is caused by one of the init
methods or implicitly by the start method. An initialized framework is operational, but none of its
bundles are active. This is reflected in the STARTING state. As long as the framework is in this state,
new bundles can be installed without any installed code interfering. Existing bundles must all be in
the INSTALLED or RESOLVED state. In this state, the framework will run at start level 0.

Page 102

OSGi Core Release 6

Life Cycle Layer Version 1.8 Frameworks

4.2.4.1

4.2.4.2

4.2.5

4.2.6

A framework object can be initialized multiple times. After initialization:

Event handling is enabled
The security manager is configured
Start level isset to 0
The framework object has a valid Bundle Context
- Any installed bundle is in the INSTALLED or RESOLVED state
. Framework services are available
The framework state is STARTING
Has a valid UUID
The system bundle can adapt to any of its defined types
All resolved extension bundle activators start methods have been called

Start Extension Activators

The Extension Bundle Activator start method is called to inform the framework extension that the
Framework is initializing, see Framework Extension Activator on page 86.

During the initialization process a framework must attempt to resolve all installed Framework Ex-
tensions. All resolve operations that occur during initialization must be scoped to only include the
system bundle and the extension bundles. This is necessary to avoid resolution operations which
change the wiring of normal bundles before all of the Extension Bundle Activators have been called.

The last step during Framework initialization is to call the start method of each Extension Bundle
Activator declared by resolved framework extensions. While calling Extension Bundle Activator
start methods the framework must be in the STARTING state and have a valid bundle context. Any
exception thrown by an Extension Bundle Activator start method must be wrapped in a BundleEx-
ception and broadcast as an ERROR.

Init Framework Listeners

The Framework init(FrameworkListener...) method may be called with a list of framework listeners.
Any framework events broadcast during the initialization process must be delivered to the speci-
fied framework listeners in the order they are specified before returning from the init method. After
returning from init, the specified listeners are no longer notified of framework events. This allows

a launcher to initialize a Framework with an init framework listener in order to detect errors from
framework extension activators.

Starting the Framework

After the framework has been initialized, it can be started with the start method. This start method
must be called on the framework object. The start method moves the framework into the ACTIVE
state. If the framework was not initialized, it must be initialized first.

In the active state, all installed bundles previously recorded as being started must be started as de-
scribed in the Bundle.start method. Any exceptions that occur during startup must be wrapped in
aBundleException and then published as a Framework ERROR event. Bundles, and their different
states, are discussed in The Bundle Object on page 106. If the Framework implements the option-

al Start Level specification, this behavior can be different. See Start Level API Specification on page
173. Any bundles that specify an activation policy must be treated according to their activation
policy, see Activation Policies on page 110.

After the system bundle enters the ACTIVE state, a Framework STARTED event is broadcast.

Stopping a Framework

Shutdown can be initiated by stopping the system bundle, covered in The System Bundle on page
118 or calling the stop method on the framework object. When the framework is shut down,
it first enters the STOPPING state. Al ACTIVE bundles are stopped as described in the Bundle.stop

OSGi Core Release 6

Page 103

Frameworks

Life Cycle Layer Version 1.8

4.2.6.1

4.2.7

method, except that their persistently recorded start state is kept unchanged. Any exceptions that
occur during shutdown must be wrapped in a BundleException and then published as a Frame-
work event of type FrameworkEvent.ERROR. If the Framework implements the optional Start Level
specification, this behavior can be different. See Start Level API Specification on page 173. During
the shutdown, bundles with a lazy policy must not be activated even when classes are loaded from
them and they are not yet activated.

The framework then moves to start level 0, calls stop on the Extension Bundle Activators (see Stop
Extension Activators on page 104), stops event handling and releases any resources (like threads,
class loaders, etc.) it held. The framework then enters the RESOLVED state and destroys the Bundle
Context. The last action is to notify any threads that are waiting in the waitForStop method. The
Framework must be re-initialized if it needs to be used again.

After a framework object is stopped and in the resolved state, it can be initialized and started again.
Framework implementations must ensure that holding on to a framework object does not consume
significant resources.

Stop Extension Activators

The Extension Bundle Activator stop method is called to inform the framework extension that the
Framework is shutting down, see Framework Extension Activator on page 86. Before disabling event
handling during the Framework shutdown process, the framework must call the stop method for
each Extension Bundle Activator that was started successfully. While calling Extension Bundle Ac-
tivator stop methods, the framework must be in the STOPPING state and have a valid bundle con-
text. Any exception thrown by an Extension Bundle Activator stop method must be wrappedin a
BundleException and broadcast as an ERROR.

The framework must guarantee that if the start method has executed successfully for an Extension
Bundle Activator, that same BundleActivator object must be called on its stop method when the
framework is shutdown. After calling the stop method, that particular BundleActivator object must
never be used again. An Extension Bundle Activators that threw an exception during start must not
be called on shutdown.

Embedding a Framework

The launcher is not running as an OSGi bundle, it is a plain Java application. However, often this
launcher needs to communicate with the bundles inside the framework. The launcher can use the
Bundle Context of the framework object to get and register services. However, it must ensure that
there is class compatibility between its objects and objects from the bundle. A framework will not
automatically share packages between the launcher code and the bundles. Packages must be explic-
itly exported from the parent class loader. The org.osgi.framework.system.packages.extra is specif-
ically designed to hold any application packages that needs to be shared between the OSGi bundles
and the application. Packages in that property are added to the system packages of the framework,
which are packages exported by the system bundle from its parent loader. Care should be taken to
ensure that all these system packages are visible to the class loader that loaded the framework.

The OSGi Framework is running in a multi-threaded environment. After the framework is started, it
will start bundles and these bundles will be activated. Activated bundles normally start background
threads or react on events from other bundles. That is, after the start method returns, the framework
has moved to the ACTIVE state and many bundles can be busy on different threads. At this point,

the framework object can be stopped by the launcher through the framework object, or by a bundle

through the System Bundle's stop method.

The waitForStop(long) method on the framework object is included to handle any launcher
cleanup that is required after the framework has completely stopped. It blocks until the framework
has been completely shutdown. It returns one of the following Framework events to indicate the
reason for stopping:

STOPPED - This framework object has been shutdown. It can be restarted.

Page 104

OSGi Core Release 6

Life Cycle Layer Version 1.8 Frameworks

4.2.8

4.2.9

4.2.10

- STOPPED_UPDATE - This Framework object has been updated. The framework will begin to
restart. The framework will return to its state before it was updated, either ACTIVE or STARTING.

. STOPPED_BOOTCLASSPATH_MODIFIED - This framework object has been stopped because a
boot class path extension bundle has been installed or updated. The VM must be restarted in or-
der for the changed boot class path to take affect.

ERROR - The Framework encountered an error while shutting down or an error has occurred that
forced the framework to shutdown.

WAIT_TIMEDOUT - This method has timed out and returned before this Framework has stopped.

Framework UUID

Each framework must have a unique identity every time before the framework is started. This iden-
tity is reflected in the framework property:

org.osgi. framework.uuid

The value of this property must reflect a string defined in [14] IETF RFC 1422 A Universally Unique
IDentifier (UUID) URN Namespace with the urn:uuid: prefix. For example:

f81d4fae-7dec-11d0-a765-00a0c91e6bf6

The Java UUID class is capable of generating such a UUID. However, as long as the external repre-
sentation is maintained frameworks are free to create a unique global id in another way.

Setting this property in the configuration properties has no effect, the framework must override it.

Daemon Threads

ATJava VM will automatically exit when there are only daemon threads running. This can create the
situation where the VM exits when the Framework uses only daemon threads and all threads creat-
ed by bundles are also daemon threads. A Framework must therefore ensure that the VM does not
exit when there are still active bundles. One way to achieve this, is to keep at least one non-daemon
thread alive at all times.

Java Service Provider Configuration Support

The Java Service Provider Configuration model, as described in [13] Java Service Provider Configura-
tion, provides a way to obtain the name of the framework factory by reading a resource in the JAR.
In this specification, it is assumed that the framework implementation is on the class path. The
name is obtained by reading the content of the configuration resource with the path META-INF/ser-
vices/org.osgi.framework.launch.FrameworkFactory.

For example, if the com.acme.osgi framework has a factory class com.acme.osgi.Factory, then it
should have the following resource:

META-INF/services/org.osgi. framework.launch. FrameworkFactory
And the contents should be:

ACME Impl. for 0SGi framework
com. acme.osgi.Factory

In contrast with the [13] Java Service Provider Configuration, there must only be one class name listed
in the resource. However, launchers should be aware that the class path could contain multiple re-
sources with the same name.

Java 6 has introduced the java.util.ServiceLoader class that simplifies creating objects through these
types of factories. The following code assumes there is a framework implementation JAR on the
class path:

ServicelLoader<FrameworkFactory> sl =

OSGi Core Release 6

Page 105

Bundles

Life Cycle Layer Version 1.8

4.3

4.4.1

Serviceloader. load(FrameworkFactory.class);

Iterator<FrameworkFactory> it = sl.iterator();
if (it.hasNext()) {
Framework fw = it.next().newFramework (null);

Bundles

A bundle represents a JAR file that is executed in an OSGi Framework. The class loading aspects of
this concept were specified in the Module Layer. However, the Module Layer does not define how a
bundle is installed, updated, and uninstalled. These life cycle operations are defined here.

The installation of a bundle can only be performed by another bundle or through implementation
specific means (for example as a command line parameter of the Framework implementation).

A Bundle is started through its Bundle Activator. Its Bundle Activator is identified by the Bundle-Ac-
tivator manifest header. The given class must implement the BundleActivator interface. This inter-
face hasastart and stop method that is used by the bundle programmer to register itself as listener
and start any necessary threads. The stop method must clean up and stop any running threads.

Upon the activation of a bundle, it receives a Bundle Context. The Bundle Context interface's meth-
ods can roughly be divided in the following categories:

Information - Access to information about the rest of the Framework.
Life Cycle - The possibility to install other bundles.
Service Registry - The service registry is discussed in Service Layer on page 127.

The Bundle Object

For each bundle installed in the OSGi framework, there is an associated Bundle object. The Bundle
object for a bundle can be used to manage the bundle's life cycle. This is usually done with a Man-
agement Agent, which is also a Bundle.

Bundle Identifiers

A bundle is identified by a number of names that vary in their scope:

Bundle identifier - A long that is a Framework assigned unique identifier for the full lifetime of a
bundle, even if it is updated or the Framework is restarted. Its purpose is to distinguish bundles
in a Framework. Bundle identifiers are assigned in ascending order to bundles when they are in-
stalled. The method getBundleld() returns a bundle's identifier.

Bundle location - A name assigned by the management agent (Operator) to a bundle during the in-
stallation. This string is normally interpreted as a URL to the JAR file but this is not mandatory.
Within a particular Framework, a location must be unique. A location string uniquely identifies
a bundle and must not change when a bundle is updated. The getLocation() method retrieves
the location of a bundle.

Bundle Symbolic Name and Bundle Version- A name and version assigned by the developer. The
combination of Bundle Version and Bundle Symbolic Name is a globally unique identifier for a
bundle. The getSymbolicName() method returns the assigned bundle name. The Bundle getVer-
sion() method returns the version. Though the pair is unique, it is possible to install the same
bundle multiple times if the org.osgi.framework.bsnversion framework launching property is
set tomanaged or multiple, see also Bundle Collision Hook on page 378.

Page 106

OSGi Core Release 6

Life Cycle Layer Version 1.8 The Bundle Object

4.4.2 Bundle State

A bundle can be in one of the following states:

INSTALLED - The bundle has been successfully installed.

RESOLVED - All Java classes that the bundle needs are available. This state indicates that the bun-
dle is either ready to be started or has stopped.

STARTING - The bundle is being started, the BundleActivator.start method will be called, and this
method has not yet returned. When the bundle has a lazy activation policy, the bundle will re-
main in the STARTING state until the bundle is activated. See Activation Policies on page 110 for
more information.

« ACTIVE- The bundle has been successfully activated and is running; its Bundle Activator start
method has been called and returned.

- STOPPING - The bundle is being stopped. The BundleActivator.stop method has been called but
the stop method has not yet returned.

« UNINSTALLED - The bundle has been uninstalled. It cannot move into another state.

Figure 4.4 State diagram Bundle

update
refresh

uninstall

UNINSTALLED

STARTING

" lazy activation

ACTIVE

stop

STOPPING

resolve
uninstall

refresh
update

start

=
m
[
(]
=
<
m
o

When a bundle is installed, it is stored in the persistent storage of the Framework and remains there
until it is explicitly uninstalled. Whether a bundle has been started or stopped must be recorded

in the persistent storage of the Framework. A bundle that has been persistently recorded as started
must be started whenever the Framework starts until the bundle is explicitly stopped. The Start Lev-

el API influences the actual starting and stopping of bundles. See Start Level API Specification on page
173.

The Bundle interface defines a getState() method for returning a bundle's state.

If this specification uses the term active to describe a state, then this includes the STARTING and
STOPPING states.

Bundle states are expressed as a bit-mask though a bundle can only be in one state at any time. The
following code sample can be used to determine if a bundle is in the STARTING, ACTIVE, or STOP-
PING state:

if ((b.getState() & (STARTING | ACTIVE| STOPPING)) != 0)
doActive()

4.4.3 Installing Bundles

The BundleContext interface, which is given to the Bundle Activator of a bundle, defines the follow-
ing methods for installing a bundle:

OSGi Core Release 6 Page 107

The Bundle Object Life Cycle Layer Version 1.8

4.4.4

4.4.5

- installBundle(String) - Installs a bundle from the specified location string (which should be a
URL).
- installBundle(String,InputStream) - Installs a bundle from the specified InputStream object.

A bundle must be valid before it is installed, otherwise the install must fail. The validity of a bundle
is discussed in Bundle Validity on page 78.

If the to be installed bundle has a bundle symbolic name and version pair that is already installed in
the framework then the installation is only valid when the org.osgi.framework.bsnversion frame-
work launching property is set to multiple or managed. See Bundle Collision Hook on page 378 for
more information.

Every bundle is uniquely identified by its location string. If an installed bundle is using the specified
location, the installBundle methods must return the Bundle object for that installed bundle and not
install a new bundle.

The Framework must assign a unique bundle identifier that is higher than any previous bundle
identifier.

The installation of a bundle in the Framework must be:

Persistent - The bundle must remain installed across Framework and Java VM invocations until it
is explicitly uninstalled.

Atomic- The install method must completely install the bundle or, if the installation fails, the OS-
Gi framework must be left in the same state as it was in before the method was called.

Once a bundle has been installed, a Bundle object is created and all remaining life cycle operations
must be performed upon this object. The returned Bundle object can be used to start, stop, update,
and uninstall the bundle.

Resolving Bundles

A bundle can enter the RESOLVED state when the Framework has successfully resolved the bundle's
dependencies as described in the manifest. These dependencies are described in Resolving Process on
page 60.

Starting Bundles

A bundle can be started by calling one of the start methods on its Bundle object or the Framework
can automatically start the bundle if the bundle is ready and the autostart setting of the bundle indi-
cates that it must be started.

A bundle is ready if following conditions are all met:

« The bundle can be resolved
- Ifthe optional Start Level API is used, then the bundle's start level is met.

Once a bundle is started, a bundle must be activated, see Activation on page 109, to give control

to the bundle so that it can initialize. This activation can take place immediately (eager activation),
or upon the first class load from the bundle (lazy activation). A started bundle may need to be auto-
matically started again by the framework after a restart or changes in the start level. The framework
therefore maintains a persistent autostart setting for each bundle. This autostart setting can have the
following values:

Stopped - The bundle should not be started.

Started with eager activation - The bundle must be started once it is ready and it must then be ea-
gerly activated.

Started with declared activation - The bundle must be started once it is ready and it must then be ac-
tivated according to its declared activation policy. See Activation Policies on page 110.

Page 108

OSGi Core Release 6

Life Cycle Layer Version 1.8 The Bundle Object

4.4.6

The Bundle interface defines the start(int) method for starting a bundle and controlling the au-
tostart setting. The start(int) method takes an integer option, the following values have been de-
fined for this option:

« 0-Start the bundle with eager activation and set the autostart setting to Started with eager activa-
tion. If the bundle was already started with the lazy activation policy and is awaiting activation,
then it must be activated immediately.

START_TRANSIENT - Identical to 0 in behavior, however, the autostart setting must not be altered.
If the bundle can not be started, for example, the bundle is not ready, then a Bundle Exception
must be thrown.

START_ACTIVATION_POLICY - Start the bundle using the activation policy declared in the
manifest's Bundle-ActivationPolicy header and set the autostart setting to Started with declared ac-
tivation.

START_ACTIVATION_POLICY | START_TRANSIENT - Start the bundle with the bundle's declared
activation policy but do not alter the autostart setting.

The Framework must attempt to resolve the bundle, if not already resolved, when trying to start the
bundle. If the bundle fails to resolve, the start method must throw a BundleException. In this case,
the bundle's autostart setting must still be set unless START_TRANSIENT is used.

When the start method returns without an exception, the state of the bundle will either be AC-
TIVE or STARTING, depending on the declared activation policy and whether it was used. If the
start method throws an exception, then the bundle will not be in either of these states and the stop
method will not be called for this Bundle Activator instance.

The start() method calls start(o).

The optional Start Level API influences the actual order of starting and stopping of bundles. See
Start Level API Specification on page 173' Fragment bundles can not be started and must cause a
Bundle Exception when there is an attempt to start them.

Activation

A bundle is activated by calling its Bundle Activator object, if one exists. The BundleActivator inter-
face defines methods that the Framework invokes when it starts and stops the bundle.

To inform the OSGi environment of the fully qualified class name serving as its Bundle Activator, a
bundle developer must declare a Bundle-Activator manifest header in the bundle's manifest file. The
Framework must instantiate a new object of this class and cast it to a BundleActivator instance. It
must then call the BundleActivator.start method to start the bundle.

The following is an example of a Bundle-Activator manifest header:
Bundle-Activator: com.acme.Activator

A class acting as a Bundle Activator must implement the BundleActivator interface, be de-
clared public, and have a public default constructor so an instance of it may be created with
Class.newlnstance.

Supplying a Bundle Activator is optional. For example, a library bundle that only exports a number
of packages does not need to define a Bundle Activator. In addition, other mechanism exists to ob-
tain control and get a Bundle Context, like for example the Service Component Runtime.

The BundleActivator interface defines these methods for starting and stopping a bundle:

. start(BundleContext) - This method can allocate resources that a bundle needs, start threads, reg-
ister services, and more. If this method does not register any services, the bundle can register ser-
vices it needs later: for example, in a callback or an external event, as long as it is in the ACTIVE
state. If the start(BundleContext) method throws an exception, the Framework must mark the

OSGi Core Release 6

Page 109

The Bundle Object Life Cycle Layer Version 1.8

4.4.6.1

4.4.6.2

bundle as stopped and send out STOPPING and STOPPED events but it must not call the Bundle
Activator stop(BundleContext) method. The start method must therefore be careful to clean up
any resources it creates in the start method when it throws an exception.

stop(BundleContext) - This method must undo all the actions of the
BundleActivator.start(BundleContext) method. However, it is unnecessary to unregister ser-
vices or Framework listeners, because they must be cleaned up by the Framework anyway. This
method is only called when the bundle has reached the ACTIVE state. That is, when the start
method has thrown exception, the stop method is never called for the same instance.

A Bundle Activator must be created when a Bundle is started, implying the creation of a class loader.
For larger systems, this greedy strategy can significantly increase startup times and unnecessarily in-
crease the memory footprint. Mechanisms such as the Service Component Runtime and activation
policies can mitigate these problems.

Fragment bundles must not have a Bundle Activator specified.

Activation Policies

The activation of a bundle can also be deferred to a later time from its start using an activation policy.
This policy is specified in the Bundle-ActivationPolicy header with the following syntax:

Bundle-ActivationPolicy ::= policy (';' directive)*
policy ::= 'lazy'

The only policy defined is the lazy activation policy. If no Bundle-ActivationPolicy header is speci-
fied, the bundle will use eager activation.

Lazy Activation Policy

A lazy activation policy indicates that the bundle, once started, must not be activated until it re-
ceives the first request to load a class. This request can originate either during normal class load-
ing or via the Bundle loadClass method. Resource loading and a request for a class that is re-direct-
ed to another bundle must not trigger the activation. The first request is relative to the bundle class
loader, a bundle will not be lazily started if it is stopped and then started again without being re-
freshed in the mean time.

This change from the default eager activation policy is reflected in the state of the bundle and its
events. When a bundle is started using a lazy activation policy, the following steps must be taken:

A Bundle Context is created for the bundle.
The bundle state is moved to the STARTING state.
- TheLAZY_ACTIVATION event is fired.
« The system waits for a class load from the bundle to occur.
The normal STARTING event is fired.
The bundle is activated.
The bundle state is moved to ACTIVE.
The STARTED event is fired.

If the activation fails because the Bundle Activator start method has thrown an exception, the bun-
dle must be stopped without calling the Bundle Activator stop method. These steps are pictured in a
flow chart in Figure 4.5. This flow chart also shows the difference in activation policy of the normal
eager activation and the lazy activation.

Page 110

OSGi Core Release 6

Life Cycle Layer Version 1.8 The Bundle Object

Figure 4.5

Starting with eager activation versus lazy activation

started?
yes
no

state=STARTING

lazy activation?
no
|

event Wait for class
LAZY_ACTIVATION load trigger

event
STARTING
[
activate
the bundle
state=STOPPING state=ACTIVE
event event
STOPPING STARTED
state=RESOLVED
event
STOPPED
[

O

The lazy activation policy allows a Framework implementation to defer the creation of the bundle
class loader and activation of the bundle until the bundle is first used; potentially saving resources
and initialization time during startup.

By default, any class loaded from the bundle can trigger the lazy activation, however, resource loads
must not trigger the activation. The lazy activation policy can define which classes cause the activa-
tion with the following directives:

- include- Alist of package names that must trigger the activation when a class is loaded from any
of these packages. The default is all package names present in the bundle.

- exclude - A list of package names that must not trigger the activation of the bundle when a class
is loaded from any of these packages. The default is no package names.

For example:

Bundle-ActivationPolicy: lazy; «
include:="com. acme.service.base, com.acme. service.help"

When a class load triggers the lazy activation, the Framework must first define the triggering class.
This definition can trigger additional lazy activations. These activations must be deferred until all
transitive class loads and defines have finished. Thereafter, the activations must be executed in the
reverse order of detection. That is, the last detected activation must be executed first. Only after

OSGi Core Release 6

Page 111

The Bundle Object Life Cycle Layer Version 1.8

4.4.6.3

4.4.7

all deferred activations are finished must the class load that triggered the activation return with
the loaded class. If an error occurs during this process, it should be reported as a Framework ERROR
event. However, the class load must succeed normally. A bundle that fails its lazy activation should
not be activated again until the framework is restarted or the bundle is explicitly started by calling
the Bundle start method.

Restoring State After Refresh or Update

The refresh operation, see Refreshing on page 161, and the update methods can cause other bun-
dles to be stopped. Started bundles can be in the ACTIVE state or waiting to be activated, depending
on their activation policy. The following rules must be applied when restoring the state after an up-
date or refresh:

An ACTIVE or STARTING bundle must be started transiently after an update or refresh operation to
not change its persistent autostart state.

If the bundle was in the STARTING state due to lazy activation, the bundle's activation policy
should be used when starting the bundle.

Stopping Bundles

The Bundle interface defines the stop(int) method for stopping a bundle. This calls the stop method
when the bundle is in the ACTIVE state and sets the bundle's state to RESOLVED. The stop(int) takes
an integer option. The following value has been defined for this option:

o-If the bundle was activated, then deactivate the bundle and sets the autostart setting for this
bundle to Stopped.

STOP_TRANSIENT - If the bundle was activated, then deactivate the bundle. Does not alter the au-
tostart setting for this bundle.

The stop() method calls stop(o).

The optional Start Level API influences the actual order of starting and stopping of bundles. See
Start Level API Specification on page 173.

Attempting to stop a Fragment bundle must result in a Bundle Exception.

Deactivation

The BundleActivator interface defines a stop(BundleContext) method, which is invoked by the
Framework to stop a bundle. This method must release any resources allocated since activation.

All threads associated with the stopping bundle should be stopped immediately. The threaded code
may no longer use Framework-related objects (such as services and BundleContext objects) once the
stop method returns.

If the stopping bundle had registered any services or Framework listeners during its lifetime, then
the Framework must automatically unregister all registered services and Framework listeners when
the bundle is stopped. It is therefore unnecessary from the Framework's point of view to unregister
any services or Framework listeners in the stop method.

The Framework must guarantee that if a BundleActivator. start method has executed successfully,
that same BundleActivator object must be called with its BundleActivator.stop method when the
bundle is deactivated. After calling the stop method, that particular BundleActivator object must
never be used again.

Packages exported by a stopped bundle continue to be available to other bundles. This continued ex-
port implies that other bundles can execute code from a stopped bundle, and the designer of a bun-
dle should assure that this is not harmful. Exporting interfaces only is one way to prevent such un-
wanted execution when the bundle is not started. Generally, to ensure they cannot be executed, in-
terfaces should not contain executable code.

Page 112

OSGi Core Release 6

Life Cycle Layer Version 1.8 The Bundle Object

4.4.9

4.4.10

4.4.11

4.4.12

Updating Bundles

The Bundle interface defines two methods for updating a bundle:

update() - This method updates a bundle.
update(InputStream) - This method updates a bundle from the specified InputStream object.

The update process supports migration from one revision of a bundle to a newer revision of the
same bundle. The capabilities provided by the new revision must be immediately available to the
Framework. If the old bundle revision has an isInUse() bundle wiring then all capabilities provided
by the old bundle wiring must remain available for existing bundles and future resolves until the
bundle is refreshed, see Refreshing on page 161, or the Framework is restarted. Otherwise the capa-
bilities provided by the old revision must be removed.

After the update operation is complete, the framework must attempt to move the bundle to the
same state as it was before the operation taking the activation policy into account, without chang-
ing the autostart setting. This is described in more detail in Restoring State After Refresh or Update on
page 112.

An updater of a bundle must have AdminPermission[<bundle>,LIFECYCLE] for both the installed
bundle as well as the new bundle. The parameters of AdminPermission are explained in Admin Per-
mission on page 122.

Uninstalling Bundles

The Bundle interface defines the uninstall() method for uninstalling a bundle from the Framework.
This method causes the Framework to notify other bundles that the bundle is being uninstalled, and
sets the bundle's state to UNINSTALLED. To whatever extent possible, the Framework must remove
any resources related to the bundle. This method must always uninstall the bundle from the persis-
tent storage of the Framework.

If the uninstalled bundle has one or more revisions with isinUse() bundle wirings then all capabili-
ties provided by the old in use bundle wirings must remain available for existing bundles and future
resolves until the bundle is refreshed, see Refreshing on page 161, or the Framework is restarted.
Otherwise the capabilities provided by the old revision must be removed.

Detecting Bundle Changes

The Bundle object provides a convenient way to detect changes in a bundle. The Framework must
keep the time that a bundle is changed by any of the life cycle operations. The getLastModified()
method will return the last time the bundle was installed, updated, or uninstalled. This last modi-
fied time must be stored persistently.

The method must return the number of milliseconds since midnight Jan. 1, 1970 UTC with the con-
dition that a change must always result in a higher value than the previous last modified time of
any bundle.

The getLastModified() is very useful when a bundle is caching resources from another bundle and
needs to refresh the cache when the bundle changes. This life cycle change of the target bundle can
happen while the caching bundle is not active. The last modified time is therefore a convenient way
to track these target bundles.

Retrieving Manifest Headers

The Bundle interface defines two methods to return manifest header information: getHeaders() and
getHeaders(String).

getHeaders() - Returns a Dictionary object that contains the bundle's manifest headers and val-
ues as key/value pairs. The values returned are localized according to the default locale returned
by java.util.Locale.getDefault.

OSGi Core Release 6

Page 113

The Bundle Object Life Cycle Layer Version 1.8

4.4.13

4.4.14

- getHeaders(String) - Returns a Dictionary object that contains the bundle's manifest headers and
values as key/value pairs. The returned values are localized using the specified locale. The locale
may take the following values:

null- The default locale returned by java.util.Locale.getDefault is used. This makes this
method identical to the getHeaders() method.

Empty string - The dictionary will contain the raw (unlocalized) manifest headers including
any leading '%".

A Specific Locale- The given locale is used to localize the manifest headers.

Localization is performed according to the description in Localization on page 77. If no translation is
found for a specific key, the Dictionary returned by Bundle.getHeaders will return the raw values as
specified in the manifest header values without the leading '%' character.

These methods require AdminPermission[<bundle>, METADATA] because some of the manifest head-
er information may be sensitive, such as the packages listed in the Export-Package header. Bundles
always have permission to read their own headers.

The getHeaders methods must continue to provide the manifest header information after the bun-
dle enters the UNINSTALLED state. After the bundle has been uninstalled, this method will only re-
turn manifest headers that are raw or localized for the default locale at the time the bundle was
uninstalled.

A framework implementation must use only the raw (unlocalized) manifest headers when process-
ing manifest headers. Localizations must not influence the operations of the Framework.

Loading Classes

In certain cases, it is necessary to load classes as if they were loaded from inside the bundle. The
loadClass(String) method gives access to the bundle class loader. This method can be used to:

- Load plugins from another bundle
Start an application model activator
Interact with legacy code

For example, an application model could use this feature to load the initial class from the bundle
and start it according to the rules of the application model.

void appStart() {
Class initializer = bundle.loadClass(activator);
if (initializer != null) {
App app = (App) initializer.newInstance();
app.activate();
}
}

Loading a class from a bundle can cause it to be activated if the bundle uses a lazy activation policy.

Access to Resources

The resources from a bundle can come from different sources. They can come from the raw JAR file,
Fragment bundles, imported packages, or the bundle class path. Different use cases require a dif-
ferent resource search strategy. The Bundle interface provides a number of methods that access re-
sources but use different strategies. The following search strategies are supported:

- Class Space- The getResource(String) and getResources(String) provide access to resources that
is consistent with the class space as described in Overall Search Order on page 65. Following the
search order can make certain parts of the JAR files inaccessible. These methods require that the
bundle is resolved. If the bundle is not resolved, the Framework must attempt to resolve it.

Page 114

OSGi Core Release 6

Life Cycle Layer Version 1.8 The Bundle Object

Figure 4.6

Table 4.5

Table 4.6

The search order can hide certain directories of the JAR file. Split packages are taken into ac-
count; therefore, resources with the same package names can come from different JARs. If the
bundle is unresolved (or cannot be resolved), the getResource and getResources methods must
only load resources from the bundle class path. This search strategy should be used by code that
wants to access its own resources. Calling either method can cause the creation of a class loader
and force the bundle to become resolved.

JAR File- The getEntry(String) and getEntryPaths(String) methods provide access to the re-
sources in the bundle's JAR file. No searching is involved, only the raw JAR file is taken into ac-
count. The purpose of these methods is to provide low-level access without requiring that the
bundle is resolved.

- Bundle Space- The findEntries(String,String,boolean) is an intermediate form. Useful when con-
figuration or setup information is needed from another bundle. It considers Fragment bundles
but it must never create a class loader. The method provides access to all directories in the associ-
ated JAR files.

For example, consider the following setup:

A: Require-Bundle: D
Import-Package: q,t
Export-Package: t

B: Export-Package: g,t

C: Fragment-Host: A

D: Export-Package: s

This setup is depicted in Figure 4.6.

Setup for showing the difference between getResource and getEntry

fl 0|

= -

p C

r

The following table shows the effect of getting a resource from this setup when bundle A is resolved.

Differences between getResource, getEntry, and findEntries for resolved bundle A

Resource getResource getEntry findEntries
q B.q null null
p Ap>Cp A.p Ap>C.p
r C.r null Cr
s D.s null null
t B.t A.t A.t

The following table shows the same cases as the previous table but now for an unresolved bundle A.
Differences between getResource, getEntry, and findEntries for an unresolved bundle A

Resource getResource getEntry findEntries
q null null null

OSGi Core Release 6

Page 115

The Bundle Object Life Cycle Layer Version 1.8

4.4.15

4.4.16

4.4.17

Table 4.7

Resource getResource getEntry findEntries
p A.p A.p A.p

r null null null

s null null null

t At A.t A.t

Permissions of a Bundle

The Bundle interface defines a method for returning information pertaining to a bundle's permis-
sions: hasPermission(Object). This method returns true if the bundle's Protection Domain has the
specified permission, and false if it does not, or if the object specified by the argument is not an in-
stance of java.security.Permission. Fragments also have their own Protection Domain.

The parameter type is Object so that the Framework can be implemented on Java platforms that do
not support Java 2 based security.

See The Permission Check on page 318 for more information about the permission checks.

Access to a Bundle's Bundle Context

Bundles that have been started have a Bundle Context. This object is a capability; it is intended to be
used only by the bundle. However, there are a number of cases where bundles must act on behalf of
other bundles. For example, the Service Component Runtime registers services on behalf of other
bundles. The framework therefore provides access to another bundle's context via the getBundle-
Context() method. If there is no Bundle Context for that Bundle because the bundle is a fragment
bundle or the bundle state is not in { STARTING, ACTIVE, STOPPING }, then null must be returned.

This method is potentially harmful because it allows any bundle to act as any other bundle. In a se-
cure system, the method is protected by requiring AdminPermission[+,CONTEXT].
Adaptations

The adapt(Class) method allows the Bundle to be adapted to different types. The purpose of this
method is to provide more specialized access to the Bundle object, access that is not always needed
by most clients of the interface. For example, the adapt method can be used to adapt a Bundle object
to the current BundleWiring object (if resolved). The adapt method is used as follows:

BundleWiring bw = aBundle.adapt(BundleWiring.class);

The following table shows the minimum list of types that can be used in the adapt method. Howev-
er,implementations and specifications can extend this list.

Minimum set of classes that can be adapted from Bundle

Class Description

AccessControlContext The Access Control Context for this bundle according to Permis-
sions of a Bundle on page 116.

BundleContext The Bundle Context for this bundle.

BundleRevision The current Bundle Revision for this bundle, see Bundle Wiring
API Specification on page 151.

BundleRevisions All existing Bundle Revision objects for this bundle, see Bundle
Wiring API Specification on page 151.

BundleStartLevel The Bundle Start Level for this bundle, see Start Level API Specifi-

cation on page 173.

BundleWiring The Bundle Wiring for the current Bundle Revision, see Bundle
Wiring API Specification on page 151.

Page 116

OSGi Core Release 6

Life Cycle Layer Version 1.8 The Bundle Context

4.5.1

Class Description

Framework The Framework object from the launching API if this bundle is
the System Bundle, see Frameworks on page 94.

FrameworkStartLevel The Framework Start Level if this is the System Bundle, see Start
Level API Specification on page 173.

FrameworkWiring The Framework Wiring if this bundle is the System Bundle. See

Bundle Wiring API Specification on page 151.

The Bundle Context

The relationship between the Framework and its installed bundles is realized by the use of Bundle-
Context objects. A BundleContext object represents the execution context of a single bundle within
the OSGi framework, and acts as a proxy to the underlying Framework.

ABundleContext object is created by the Framework when a bundle is started. The bundle can use
this private BundleContext object for the following purposes:

- Installing new bundles into the OSGi environment. See Installing Bundles on page 107.
- Interrogating other bundles installed in the OSGi environment. See Getting Bundle Information on
page 117.
- Obtaining a persistent storage area. See Persistent Storage on page 118.
Retrieving service objects of registered services. See Service References on page 129.
Registering services in the Framework service. See Registering Services on page 129.
Subscribing or unsubscribing to events broadcast by the Framework. See Listeners on page 120.

When a bundle is started, the Framework creates a BundleContext object and provides this object as
an argument to the start(BundleContext) method of the bundle's Bundle Activator. Each bundle is
provided with its own BundleContext object; these objects should not be passed between bundles,
since the BundleContext object is related to the security and resource allocation aspects of a bundle.

After the stop(BundleContext) method has returned, the BundleContext object must no longer be
used. Framework implementations must throw an exception if the BundleContext object is used af-
ter a bundle is stopped.

The BundleContext object is only valid during the { STARTING, ACTIVE, STOPPING } states of a bun-
dle. However, the BundleContext object becomes invalid after stop(BundleContext) returns (if the
bundle has a Bundle Activator). The BundleContext object becomes invalid before disposing of any
remaining registered services and releasing any remaining services in use. Since those activities can
result in other bundles being called (for example, Service Listeners for UNREGISTERING events and
Service Factories for unget operations), those other bundles can observe the stopping bundle in the
STOPPING state but with an invalid BundleContext object.

Getting Bundle Information

The BundleContext interface defines methods to retrieve information about bundles installed in the
OSGi framework:

getBundle() - Returns the single Bundle object associated with the BundleContext object.
getBundles() - Returns an array of the bundles currently installed in the Framework.

getBundle(long) - Returns the Bundle object specified by the unique identifier, or null if no
matching bundle is found.

Bundle access is not restricted; any bundle can enumerate the set of installed bundles. Information
that can identify a bundle, however (such as its location, or its header information), is only provided
to callers that have AdminPermission[<bundle>,METADATA].

OSGi Core Release 6

Page 117

The System Bundle Life Cycle Layer Version 1.8

4.5.2

4.5.3

Persistent Storage

The Framework should provide a private persistent storage area for each installed bundle on plat-
forms with some form of file system support.

The BundleContext interface defines access to this storage in terms of the File class, which supports
platform-independent definitions of file and directory names.

The BundleContext interface defines a method to access the private persistent storage area:
getDataFile(String). This method takes a relative file name as an argument. It translates this file
name into an absolute file name in the bundle's persistent storage area. It then returns a File object.
This method returns null if there is no support for persistent storage.

The Framework must automatically provide the bundle with FilePermission[<storage area>, READ
| WRITE | DELETE] to allow the bundle to read, write, and delete files in that storage area.

If EXECUTE permissions is required, then a relative path name can be used in the File Permission
definition. For example, FilePermission[bin/*,EXECUTE] specifies that the sub-directory in the
bundle's private data area may contain executables. This only provides execute permission within
the Java environment and does not handle the potential underlying operating system issues related
to executables.

This special treatment applies only to FilePermission objects assigned to a bundle. Default permis-
sions must not receive this special treatment. A FilePermission for a relative path name assigned via
the setDefaultPermission method must be ignored.

Environment Properties

The BundleContext interface defines a method for returning information pertaining to Framework
properties: getProperty(String). This method can be used to return the Framework launching prop-
erties; see Launching Properties on page 96. This method will examine the System properties if the
requested property is not available in the launching properties.

The System Bundle

In addition to normal bundles, the Framework itself is represented as a bundle. The bundle repre-
senting the Framework is referred to as the system bundle. Through the system bundle, the Frame-
work may register services that can be used by other bundles. Examples of such a service is the Per-
mission Admin service.

The system bundle resembles the framework object when a framework is launched, but implemen-
tations are not required to use the same object for the framework object and the system bundle.
However, both objects must have bundle id 0, same location, and bundle symbolic name.

The system bundle is listed in the set of installed bundles returned by BundleContext.getBundles(),
although it differs from other bundles in the following ways:

- The system bundle is always assigned a bundle identifier of zero (o).

« The system bundle getLocation method returns the string: "System Bundle", as defined in the
Constants interface.

. The system bundle has a bundle symbolic name that is unique for a specific version. However,
the name system.bundle must be recognized as an alias to this implementation-defined name.

- The system bundle's life cycle cannot be managed like normal bundles. Its life cycle methods
must behave as follows:

. start- Does nothing because the system bundle is already started.
stop - Returns immediately and shuts down the Framework on another thread.
update - Returns immediately, then stops and restarts the Framework on another thread.

Page 118

OSGi Core Release 6

Life Cycle Layer Version 1.8

Events

4.6.1

Table 4.8

4.7

« uninstall- The Framework must throw a BundleException indicating that the system bundle

cannot be uninstalled.

See Frameworks on page 94 for more information about the starting and stopping of the

Framework.

System Bundle Headers

The system bundle's Bundle.getHeaders method returns a Dictionary object with implementa-
tion-specific manifest headers. The following headers of this OSGi specification can be returned in
this dictionary. Headers not mentioned in this table should not be used.

Supported headers in the system bundle getHeaders method

Header
Bundle-ContactAddress

Bundle-Copyright

Bundle-Description
Bundle-DocURL

Bundle-lcon

Bundle-Localization
Bundle-License

Bundle-ManifestVersion
Bundle-Name

Bundle-Required«
ExecutionEnvironment

Bundle-SymbolicName

Bundle-Vendor

Bundle-Version
Export-Package

Events

Type
optional

optional

optional
optional

optional

optional
optional

mandatory
optional
mandatory
mandatory
optional

mandatory
mandatory

Description

Recommended to provide the framework
vendor's contact address.

Recommended to provide the framework's copy-
right information.

Recommended description of the framework.
Recommended documentation URL pointing to
further information about the framework.
Recommended pointer to a preferably PNG icon
representing this framework.

Recommended localization information.
License information about this framework im-
plementation.

The maximum version of the manifest version
understood by this framework.

Recommended human readable name of this
framework.

Mandatory: the list of execution environments
supported by this framework. This header is dep-
recated, see osgi.ece Namespace on page 164.

The implementation name for this framework.
Recommended vendor information

The version of this framework implementation.
Contains packages that are exported by the
Framework like org.osgi.framework but al-

so the packages listed in the framework prop-
erty org.osgi.framework.system.packages or
org.osgi.framework.system.packages.extra.

The OSGi Framework Life Cycle layer supports the following types of events:

BundleEvent- Reports changes in the life cycle of bundles.

- FrameworkEvent - Reports that the Framework is started, start level has changed, packages have
been refreshed, or that an error has been encountered.

OSGi Core Release 6

Page 119

Events

Life Cycle Layer Version 1.8

4.7.1

The actual event that is reported is available with the getType method. The integer that is returned
from this method can be one of the constant names that are described in the class. However, events
can, and will be, extended in the future. Unrecognized event types should be ignored.

Listeners

A listener interface is associated with each type of event. The following list describes these listeners.

Bundlelistenerand SynchronousBundleListener- Called with an event of type BundleEvent
when a bundle's life cycle information has been changed.

SynchronousBundleListener objects are called synchronously during the processing of the event
and must be called before any BundleListener object is called. The following events are sent by
the Framework after it has moved to a different state:
INSTALLED - Sent after a bundle is installed. The state is now Bundle INSTALLED state.
RESOLVED - Sent when the Framework has resolved a bundle. The state is now the Bundle
RESOLVED state.
LAZY_ACTIVATION - The bundle has specified an activation policy; its activation is deferred
to alater point in time. The state is set to the Bundle STARTING state. This is only sent to Syn-
chronousBundleListener objects.
STARTING - Sent when the Framework is about to activate a bundle. This is only sent to Syn-
chronousBundleListener objects. The state is now the Bundle STARTING state.
STARTED - Sent when the Framework has started a bundle. The state is now the Bundle AC-
TIVE state.
STOPPING - Sent when the Framework is about to stop a bundle or the start method of the
Bundle Activator has thrown an exception and the bundle is stopped. This event indicates
that the Bundle Context will be destroyed. This event is only sent to SynchronousBundleLis-
tener objects.
- STOPPED - Sent when the Framework has stopped a bundle.
UNINSTALLED - Sent when the Framework has uninstalled a bundle
UNRESOLVED - Sent when the Framework detects that a bundle becomes unresolved; this
could happen when the bundle is refreshed or updated. When a set of bundles are refreshed
using the Wiring API then each bundle in the set must have an UNRESOLVED BundleEvent
published. The UNRESOLVED BundleEvent must be published after all the bundles in the set
have been stopped and, in the case of a synchronous bundle listener, before any of the bundles
in the set are re-started. RESOLVED and UNRESOLVED do not have to paired.
UPDATED - Sent after a bundle is updated.

FrameworkListener - Called with an event of type FrameworkEvent. Framework events are of
type:
ERROR - Important error that requires the immediate attention of an operator.
- INFO - General information that is of interest in special situations.
- PACKAGES_REFRESHED - The Framework has refreshed the packages.
STARTED - The Framework has performed all initialization and is running in normal mode.
STARTLEVEL_CHANGED - Is sent by the Framework after a new start level has been set and
processed.
STOPPED - Sent by the Framework because of a stop operation on the system bundle.

STOPPED_BOOTCLASSPATH_MODIFIED - Sent by the Framework because of a stop operation
on the system bundle and a boot class path extension bundle has been installed or updated.

STOPPED_UPDATE - Sent by the Framework because of an update operation on the system
bundle. The Framework will be restarted after this event is fired.

WARNING - A warning to the operator that is not crucial but may indicate a potential error sit-
uation.

Page 120

OSGi Core Release 6

Life Cycle Layer Version 1.8 Events

4.7.2

- WAIT_TIMEDOUT - Returned from the waitForStop method when the Framework did not stop
before the given wait time-out expired.

BundleContext interface methods are defined which can be used to add and remove each type of lis-
tener.

Events can be asynchronously delivered, unless otherwise stated, meaning that they are not neces-
sarily delivered by the same thread that generated the event. The thread used to call an event listen-
eris not defined.

The Framework must publish a FrameworkEvent.ERROR if a callback to an event listener
generates an unchecked exception - except when the callback happens while delivering a
FrameworkEvent.ERROR (to prevent an infinite loop).

Synchronous events have the unfortunate effect that, in rare cases, events can be delivered out of
order to a listener. For example, a Service Event UNREGISTERING can be delivered before its corre-
sponding Service Event REGISTERED. One pathological case is when a service listener (for example a
Service Tracker) unregisters a service that it receives in the REGISTERED event for. If there are listen-
ers queued behind the pathological listener then they see the unregistering before they see the regis-
tration.

Delivering Events

If the Framework delivers an event asynchronously, it must:

Collect a snapshot of the listener list at the time the event is published (rather than doing so in
the future just prior to event delivery), but before the event is delivered, so that listeners do not
enter the list after the event happened.

Ensure, at the time the snapshot is taken, that listeners on the list still belong to active bundles at
the time the event is delivered.

It is possible to use more than one thread to deliver events. If this is the case then each handler
must receive the events in the same order as the events were posted. This ensures that handlers
see events in the expected order.

If the Framework did not capture the current listener list when the event was published, but instead
waited until just prior to event delivery, then the following error could occur: a bundle could have
started and registered a listener, and then the bundle could see its own BundleEvent.INSTALLED
event.

The following three scenarios illustrate this concept.

1. Scenario one event sequence:
Event A is published.
- Listener 1 is registered.
. Asynchronous delivery of Event A is attempted.
Expected Behavior: Listener 1 must not receive Event A, because it was not registered at the time
the event was published.
2. Scenario two event sequence:
. Listener 2 is registered.
- EventBis published.
Listener 2 is unregistered.
Asynchronous delivery of Event B is attempted.
Expected Behavior: Listener 2 receives Event B, because Listener 2 was registered at the time
Event B was published.
3. Scenario three event sequence:

OSGi Core Release 6

Page 121

Security Life Cycle Layer Version 1.8
. Listener 3 is registered.
Event C is published.
The bundle that registered Listener 3 is stopped.
Asynchronous delivery of Event C is attempted.
Expected Behavior: Listener 3 must not receive Event C, because its Bundle Context object is in-
valid.
4.7.3 Synchronization Pitfalls

4.8

4.81

Generally, a bundle that calls a listener should not hold any Java monitors. This means that neither
the Framework nor the originator of a synchronous event should be in a monitor when a callback is
initiated.

The purpose of a Java monitor is to protect the update of data structures. This should be a small
region of code that does not call any code the effect of which cannot be overseen. Calling the OS-
Gi Framework from synchronized code can cause unexpected side effects. One of these side effects
might be deadlock. A deadlock is the situation where two threads are blocked because they are wait-
ing for each other.

Time-outs can be used to break deadlocks, but Java monitors do not have time-outs. Therefore, the
code will hang forever until the system is reset (Java has deprecated all methods that can stop a
thread). This type of deadlock is prevented by not calling the Framework (or other code that might
cause callbacks) in a synchronized block.

If locks are necessary when calling other code, use the Java monitor to create semaphores that can
time-out and thus provide an opportunity to escape a deadlocked situation.

Security

Admin Permission

The Admin Permission is a permission used to grant the right to manage the Framework with the
option to restrict this right to a subset of bundles, called targets. For example, an Operator can give a
bundle the right to only manage bundles of a signer that has a subject name of ACME:

org.osgi. framework.AdminPermission(
"(signer=\x%, 0=ACME, c=us)", ...)

The actions of the Admin Permission are fine-grained. They allow the deployer to assign only the
permissions that are necessary for a bundle. For example, an HTTP implementation could be grant-
ed access to all resources of all bundles.

org.osgi. framework.AdminPermission("x",
“resource”)

Code that needs to check Admin Permission must always use the constructor that takes a bundle as
parameter: AdminPermission(Bundle,String) with a single action.
For example, the implementation of the loadClass method must check that the caller has access to

the class space:

public class BundleImpl implements Bundle{

Class loadClass(String name) {
securityManager. checkPermission(
new AdminPermission(this, "class"));

Page 122

OSGi Core Release 6

Life Cycle Layer Version 1.8 Security

}

The Admin Permission takes a filter as its name. Filter based permissions are described in Filter Based
Permissions on page 27.

4.8.1.1 Actions

The action parameter of Admin Permission will specify the subset of privileged administrative op-
erations that are allowed by the Framework. The actions that are architected are listed in the follow-
ing table. Future versions of the specification, as well as additional system services, can add addi-
tional actions. The given set should therefore not be assumed to be a closed set.

Table 4.9 Admin Permission actions

Action Used in

METADATA Bundle.getHeaders
Bundle.getLocation

RESOURCE Bundle.getResource
Bundle.getResources
Bundle.getEntry
Bundle.getEntryPaths
Bundle.findEntries
Bundle resource/entry URL creation

CLASS Bundle.loadClass

LIFECYCLE BundleContext.installBundle
Bundle.update
Bundle.uninstall

EXECUTE Bundle.start
Bundle.stop
BundleStartLevel.setBundleStartLevel

LISTENER BundleContext.addBundleListener for SynchronousBundleListener

BundleContext.removeBundleListener for SynchronousBundleListener
EXTENSIONLIFECYLE BundleContext.installBundle for extension bundles

Bundle.update for extension bundles

Bundle.uninstall for extension bundles

RESOLVE FrameworkWiring.refreshBundles
FrameworkWiring.resolveBundles

STARTLEVEL FrameworkStartLevel.setStartLevel
FrameworkStartLevel.setInitialBundleStartLevel

CONTEXT Bundle.getBundleContext

WEAVE WovenClass.setBytes

WovenClass.getDynamiclmports

The special action "x" will represent all actions.

OSGi Core Release 6 Page 123

References

Life Cycle Layer Version 1.8

4.8.2

4.9

(1]

Each bundle must be given AdminPermission(<bundle identifiers,
"resource,metadata,class,context") so that it can access its own resources and context. This is an
implicit permission that must be automatically given to all bundles by the Framework.

Privileged Callbacks

The following interfaces define bundle callbacks that are invoked by the Framework:

BundleActivator

ServiceFactory
. Bundlelistener, Servicelistener, and FrameworkListener
« Framework hook services

When any of these callbacks are invoked by the Framework, the bundle that caused the callback
may still be on the stack. For example, when one bundle installs and then starts another bundle, the
installer bundle may be on the stack when the BundleActivator.start method of the installed bundle
is called. Likewise, when a bundle registers a service object, it may be on the stack when the Frame-
work calls back the serviceChanged method of all qualifying ServiceListener objects.

Whenever any of these bundle callbacks try to access a protected resource or operation, the access

control mechanism should consider not only the permissions of the bundle receiving the callback,
but also those of the Framework and any other bundles on the stack. This means that in these call-
backs, bundle programmers normally would use doPrivileged calls around any methods protected
by a permission check (such as getting or registering service objects).

In order to reduce the number of doPrivileged calls by bundle programmers, the Framework

must perform a doPrivileged call around any bundle callbacks. The Framework should have
java.security.AllPermission. Therefore, a bundle programmer can assume that the bundle is not fur-
ther restricted except for its own permissions.

Bundle programmers do not need to use doPrivileged calls in their implementations of any call-
backs registered with and invoked by the Framework.

For any other callbacks that are registered with a service object and therefore get invoked by the ser-
vice-providing bundle directly, doPrivileged calls must be used in the callback implementation if
the bundle's own privileges are to be exercised. Otherwise, the callback must fail if the bundle that
initiated the callback lacks the required permissions.

A framework must never load classes in a doPrivileged region, but must instead use the current
stack. This means that static initializers and constructors must not assume that they are privileged.
Any privileged code in a static initializer must be guarded with a doPrivileged region in the static
initializer. Likewise, a framework must not instantiate a BundleActivator object in a doPrivileged re-
gion, but must instead use the current stack. This means that the BundleActivator constructor must
not assume that it is privileged.

Lazy Activation

The activation policy, see Activation Policies on page 110, can indirectly cause the activation of
abundle. AdminPermission[*,CLASS] therefore implies the EXECUTE action during a loadClass
method call.

Normal class loading caused by executing Java class code must not require
AdminPermission[*,EXECUTE].

References

The Standard for the Format of ARPA Internet Text Messages
STD 11, RFC 822, UDEL, August 1982

Page 124

OSGi Core Release 6

Life Cycle Layer Version 1.8

Changes

(2]

(10]
(11]
(12]
(13]

(14]

4.10

http://www.ietf.org/rfc/rfc822.txt

The Hypertext Transfer Protocol - HTTP/1.1
RFC 2068 DEC, MIT/LCS, UC Irvine, January 1997
http://www.ietf.org/rfc/rfc2068.txt

The Java Language Specification, Second Edition
http://docs.oracle.com/javase/specs/

A String Representation of LDAP Search Filters
RFC 1960, UMich, 1996
http://www.ietf.org/rfc/rfc1960.txt

The Java Security Architecture for JDK 1.2
Version 1.0, Sun Microsystems, October 1998

The Java 2 Package Versioning Specification
http://docs.oracle.com/javase/1.4.2/docs/guide/versioning/index.html

Codes for the Representation of Names of Languages
ISO 639, International Standards Organization
http://lcweb.loc.gov/standards/iso639-2/langhome.html

Manifest Format
http://docs.oracle.com/javase/1.4.2/docs/guide/jar/jar.html#JAR%20Manifest

W3C EBNF
http://www.w3c.org/TR/REC-xml#sec-notation

Interval Notation
http://www.math.ohio-state.edu/courses/math104/interval.pdf

OSGi Reference Names
http://www.osgi.org/Specifications/Reference

JKS Keystore Format (reverse engineered)
http://metastatic.org/source/JKS.html

Java Service Provider Configuration
http://docs.oracle.com/javase/6/docs/technotes/guides/jar/jar.html#Service%20Provider

IETF RFC 1422 A Universally Unique IDentifier (UUID) URN Namespace
http://www.ietf.org/rfc/rfc4122.txt

Changes

Launching Properties on page 96 is updated to include the Environment Properties.

- New Framework.init(FrameworkListener...) method to allow FrameworkListeners to be specified

to observe events during Framework initialization.

. Added support for Extension Bundle Activators in Initializing the Framework on page 102.

- Clarified that BundleContext may be observable as invalid during delivery of UNREGISTERING
event for services registered by the bundle being stopped in The Bundle Context on page 117.

OSGi Core Release 6

Page 125

Changes Life Cycle Layer Version 1.8

Page 126 OSGi Core Release 6

Service Layer Version 1.8 Introduction

5

5.1

5.1.1

5.1.2

Service Layer

\ersion 1.8

Introduction

The OSGi Service Layer defines a dynamic collaborative model that is highly integrated with the
Life Cycle Layer. The service model is a publish, find and bind model. A service is a normal Java ob-
ject that is registered under one or more Java interfaces with the service registry. Bundles can regis-
ter services, search for them, or receive notifications when their registration state changes.

Essentials

« Collaborative - The service layer must provide a mechanism for bundles to publish, find, and bind
to each other's services without having a priori knowledge of those bundles.

« Dynamic- The service mechanism must be able to handle changes in the outside world and un-
derlying structures directly.

. Secure-It must be possible to restrict access to services.
« Reflective- Provide full access to the Service Layer's internal state.

« Versioning - Provide mechanisms that make it possible to handle the fact that bundles and their
services evolve over time.

- Persistent Identifier - Provide a means for bundles to track services across Framework restarts.

Entities

- Service- An object registered with the service registry under one or more interfaces together with
properties. The service can be discovered and used by bundles.

- Service Registry - Holds the service registrations.

- Service Reference - A reference to a service. Provides access to the service's properties but not the
actual service object. The service object must be acquired through a bundle's Bundle Context.

« Service Registration - The receipt provided when a service is registered. The service registration al-
lows the update of the service properties and the unregistration of the service.

- Service Permission - The permission to use an interface name when registering or using a service.

« Service Scope - Indicates how service objects are obtained when requesting a service object. The
following service scopes are defined: singleton, bundle, and prototype. The default service scope is
singleton.

- Service Factory - A facility to let the registering bundle customize the service object for each using
bundle. When using a Service Factory, the service scope of the service is bundle.

- Prototype Service Factory - A facility to let the registering bundle customize the service object for
each caller. When using a Prototype Service Factory, the service scope of the service is prototype.

- Service Objects - A facility to let the using bundle obtain multiple service objects for a service with
prototype service scope.

« Service Listener - A listener to Service Events.

- Service Event- An event holding information about the registration, modification, or unregistra-
tion of a service object.

OSGi Core Release 6

Page 127

Services Service Layer Version 1.8

. Filter- An object that implements a simple but powerful filter language. It can select on proper-
ties.

« Invalid Syntax Exception - The exception thrown when a filter expression contains an error.

Figure 5.1 Class Diagramorg.osgi.framework Service Layer
Service Factory Bundle Impl Service Impl
Impl
registers
service
«interface>» «interfaces> Object
Service Factory Bundle Context
0,1 1 0,1
1|0.n 1 i
«interfaces> Service Registry on <interface>>
Prototype Impl 0 Service Listener
Service Factory |
1
|
|
x |
«interfaces>> 1 «interfaces> «interfaces>
Service Service | All Service
Reference Registration | Listener
|
|
«class>> «interfaces> | «class»>
Invalid Syntax Filter L — |Service Event
Exception
o
5.2 Services

In the OSGi framework, bundles are built around a set of cooperating services available from a
shared service registry. Such an OSGi service is defined semantically by its service interface and imple-
mented as a service object.

The service interface should be specified with as few implementation details as possible. OSGi has
specified many service interfaces for common needs and will specify more in the future.

The service object is owned by, and runs within, a bundle. This bundle must register the service ob-
ject with the Framework service registry so that the service's functionality is available to other bun-
dles under control of the Framework.

Dependencies between the bundle owning the service and the bundles using it are managed by the
Framework. For example, when a bundle is stopped, all the services registered with the Framework
by that bundle must be automatically unregistered.

The Framework maps services to their underlying service objects, and provides a simple but power-
ful query mechanism that enables a bundle to request the services it needs. The Framework also pro-

Page 128 OSGi Core Release 6

Service Layer Version 1.8 Services

5.2.1

5.2.2

5.2.3

vides an event mechanism so that bundles can receive events of services that are registered, modi-
fied, or unregistered.

Service References

In general, registered service objects are referenced through ServiceReference objects. This avoids
creating unnecessary dynamic service dependencies between bundles when a bundle needs to know
about a service but does not require the service object itself.

A ServiceReference object can be stored and passed on to other bundles without the implications of
dependencies. A ServiceReference object encapsulates the properties and other meta-information
about the service object it represents. This meta-information can be queried by a bundle to assist in
the selection of a service that best suits its needs.

When a bundle queries the Framework service registry for services, the Framework must provide
the requesting bundle with the ServiceReference objects of the requested services, rather than with
the services themselves. See Locating Services on page 133.

A ServiceReference object may also be obtained from a ServiceRegistration object.

A ServiceReference object is valid only as long as the service is registered. However, its properties
must remain available as long as the ServiceReference object exists.

When a bundle wishes to use the service object, it can be obtained by using the ServiceReference.
See Getting Service Objects on page 135.

Service Interfaces
A service interface is the specification of the service's public methods.

In practice, a bundle developer creates a service object by implementing its service interface and reg-
isters the service object with the Framework service registry. Once a bundle has registered a service
object under an interface name, the associated service can be acquired by bundles under that inter-
face name, and its methods can be accessed by way of its service interface. The Framework also sup-
ports registering service objects under a class name, so references to service interface in this specifi-
cation can be interpreted to be an interface or class.

When requesting a service object from the Framework, a bundle can specify the name of the ser-
vice interface that the requested service object must implement. In the request, the bundle may also
specify a filter string to narrow the search.

Many service interfaces are defined and specified by organizations such as the OSGi Alliance. A ser-
vice interface that has been accepted as a standard can be implemented and used by any number of
bundle developers.

Registering Services

A bundle publishes a service by registering a service object with the Framework service registry. A
service object registered with the Framework is exposed to other bundles installed in the OSGi envi-
ronment.

Every registered service has a unique ServiceRegistration object, and has one or more ServiceRef-
erence objects that refer to it. These ServiceReference objects expose the registration properties of
the service, including the set of service interfaces they implement. The ServiceReference object can
then be used to acquire a service object that implements the desired service interface.

The Framework permits bundles to register and unregister service objects dynamically. Therefore,
a bundle is permitted to register service objects at any time during the STARTING, ACTIVE or STOP-
PING states.

A bundle registers a service object with the Framework by calling one of the
BundleContext.registerService methods on its BundleContext object:

OSGi Core Release 6

Page 129

Services

Service Layer Version 1.8

5.2.4

. registerService(String,Object,Dictionary) - For a service object registered under a single service
interface.

- registerService(String[],Object,Dictionary) - For a service object registered under multiple ser-
vice interfaces.

- registerService(Class,S,Dictionary) - For a service object registered under a single service inter-
face using the class object for the interface name.

The names of the service interfaces under which a bundle wants to register its service are provided
as arguments to the registerService methods. The Framework must ensure that the service object
actually is an instance of each specified service interfaces, unless the object is a Service Factory. See
Service Factory on page 140 and Prototype Service Factory on page 140.

To perform this check, the Framework must load the Class object for each specified service interface
from either the bundle or a shared package. For each Class object, Class.isInstance must be called
and return true on the Class object with the service object as the argument.

The service object being registered may be further described by a Dictionary object, which contains
the properties of the service as a collection of key/value pairs.

The service interface names under which a service object has been successfully registered are auto-
matically added to the service's properties under the key objectClass. This value must be set auto-
matically by the Framework and any value provided by the bundle must be overridden.

If the service object is successfully registered, the Framework must return a ServiceRegistration ob-
ject to the caller. A service object can be unregistered only by the holder of its ServiceRegistration
object (see the unregister() method). Every successful service object registration must yield a unique
ServiceRegistration object even if the same service object is registered multiple times.

Using the ServiceRegistration object is the only way to reliably change the service's properties after
it has been registered (see the setProperties(Dictionary) method). Modifying a service's Dictionary
object after the service object is registered may not have any effect on the service's properties.

The process of registering a service object is subject to a permission check. The registering bundle
must have ServicePermission[<name>,REGISTER] to register the service object under all the service
interfaces specified. Otherwise, the service object must not be registered, and a SecurityException
must be thrown.

Early Need for ServiceRegistration Object

The registration of a service object will cause all registered ServiceListener objects to be notified.
This is a synchronous notification. This means that such a listener can get access to the service and
call its methods before the registerService method has returned the ServiceRegistration object. In
certain cases, access to the ServiceRegistration object is necessary in such a callback. However, the
registering bundle has not yet received the ServiceRegistration object. Figure 5.2 on page 131
shows such a sequence.

Page 130

OSGi Core Release 6

Service Layer Version 1.8 Services

Figure 5.2

5.2.5

Service Registration and registration

T1 Framework (not a thread) T2
I In method

registerService
deliver event
The registerService
method has not get service
returned yet, so there
is no ServiceRegistration
object

callback
—

Teturn

—
I
return

In a case as described previously, access to the registration object can be obtained via a ServiceFac-
tory object or PrototypeServiceFactory object. If a ServiceFactory object or PrototypeServiceFac-
tory object is registered, the Framework must call-back the registering bundle with the Service-
Factory method getService(Bundle,ServiceRegistration) or the PrototypeServiceFactory method
getService(Bundle,ServiceRegistration). The required ServiceRegistration object is passed as a pa-
rameter to these methods.

Service Properties

Properties hold information as key/value pairs. The key must be a String object and the value should
be a type recognized by Filter objects (see Filters on page 138 for a list). Multiple values for the
same key are supported with arrays ([]) and Collection objects.

The values of properties should be limited to primitive or standard Java types to prevent unwanted
inter bundle dependencies. The Framework cannot detect dependencies that are created by the ex-
change of objects between bundles via the service properties.

The key of a property is not case sensitive. ObjectClass, OBJECTCLASS and objectclass all are the
same property key. A Framework must return the key in ServiceReference.getPropertyKeys in ex-
actly the same case as it was last set. When a Dictionary object that contains keys that only differ in
case is passed, the Framework must raise an exception.

The service properties are intended to provide information about the service. The properties should
not be used to participate in the actual function of the service. Modifying the properties for the ser-
vice registration is a potentially expensive operation. For example, a Framework may pre-process
the properties into an index during registration to speed up later look-ups.

The Filter interface supports complex filtering; it can be used to find matching services. Therefore,
all properties share a single namespace in the Framework service registry. As a result, it is important
to use descriptive names or formal definitions of shorter names to prevent conflicts. Several OSGi
specifications reserve parts of this namespace. All properties starting with the prefix service. and
the property objectClass are reserved for use by OSGi specifications.

Table 5.1 contains a list of pre-defined properties.

OSGi Core Release 6

Page 131

Services Service Layer Version 1.8

Table 5.1 Standard Service Properties (+ indicates scalar, array of, or collection of)
Property Key Type Constants Property Description
objectClass’ String[] OBJECTCLASS The objectClass property contains the

set of interface names under which

a service object is registered with the
Framework. The Framework must

set this property automatically. The
Framework must guarantee that

when a service object is retrieved with
getService(ServiceReference), it can be
cast to any of the interface names.

service.bundleid’ Long SERVICE_BUNDLEID The service.bundleid property identifies
the bundle registering the service. The
Framework must set this property auto-
matically with the value of the bundle id
of the registering bundle.

service.description String SERVICE_DESCRIPTION The service.description property is in-
tended to be used as documentation and
is optional. Frameworks and bundles can
use this property to provide a short de-
scription of a registered service object.
The purpose is mainly for debugging be-
cause there is no support for localization.

service.id’ Long SERVICE_ID Every registered service object is assigned
a unique, non-negative service.id by the
Framework. This number is added to the
service's properties. The Framework as-
signs a unique, non-negative value to
every registered service object that is
larger than values provided to all previ-
ously registered service objects.

service.pid String+ SERVICE_PID The service.pid property optionally iden-
tifies a persistent, unique identifier for
the service object. See Persistent Identifier
(PID) on page 133.

service.scope’ String SERVICE_SCOPE The service.scope property identifies the
service's scope. The Framework must set
this property automatically. If the regis-
tered service object implements Proto-
typeServiceFactory, then the value will
be prototype. Otherwise, if the registered
service object implements ServiceFacto-
ry, then the value will be bundle. Other-
wise, the value will be singleton. See Ser-

vice Scope on page 134.
service.ranking Integer SERVICE_RANKING See Service Ranking Order on page 133.
service.vendor String SERVICE_VENDOR This optional property can be used by the

bundle registering the service object to
indicate the vendor.

" The values for these service properties must be set by the Framework. Any values specified for
these service properties during service registration or service properties update must be ignored.

Page 132 OSGi Core Release 6

Service Layer Version 1.8 Services

5.2.6

5.2.7

5.2.8

Service Ranking Order

When registering a service object, a bundle may optionally specify a SERVICE_RANKING service
property of type Integer. This number specifies a ranking order between services. The highest num-
ber has the highest ranking and the lowest number (including negative numbers) has the lowest
ranking. If no service.ranking service property is specified or its type is not Integer then a ranking of
0 must be used.

The ranking order is defined as follows:

- Sorted on descending ranking number (highest first)
- Ifthe ranking numbers are equal, sorted on ascending service.id property (oldest first).

This ordering is complete because service ids are never reused and handed out in order of their reg-
istration time. That is, a service that is registered later will have a higher service id. Therefore, the
ranking order is in descending service.ranking numeric order where ties give a preference to the ear-
lier registrant.

The ranking order is the reverse of the natural ordering of a ServiceReference object.

The purpose of the ranking order is to allow:

Selection- When a single service must be chosen but multiple services qualify then the service
with the highest ranking must be selected.

Ordering - When multiple services must be used in a specified order.

Persistent Identifier (PID)

The purpose of a Persistent Identifier (PID) is to identify a service across Framework restarts. Ser-
vices that can reference the same underlying entity every time they are registered should therefore
use a service property that contains a PID. The name of the service property for PID is defined as
service.pid. The PID is a unique identifier for a service that persists over multiple invocations of the
Framework. For a given service, the same PID should always be used. If the bundle is stopped and
later started, the same PID must always be used.

The format of the PID should be:

pid ::= symbolic-name Il See 1.3.2

Locating Services

In order to use a service object and call its methods, a bundle must first obtain a ServiceReference
object. The BundleContext interface defines a number of methods a bundle can call to obtain Ser-
viceReference objects from the Framework:

getServiceReference(String), getServiceReference(Class) - These methods returns a ServiceRef-
erence object to a service object that implements, and was registered under, the name of the spec-
ified service interface. If multiple such service objects exist, a ServiceReference object to the
service object with the highest SERVICE_RANKING is returned. If there is a tie in ranking, a Ser-
viceReference object to the service object with the lowest SERVICE_ID (the service object that
was registered first) is returned. If no matching service objects are registered then null must be re-
turned.

getServiceReferences(String,String), getServiceReferences(Class,String) - These methods re-
turns an array or collection, respectively, of ServiceReference objects for service objects that:

Implement and were registered under the specified service interface.

Satisfy the search filter specified. The filter syntax is further explained in Filters on page
138.

OSGi Core Release 6

Page 133

Service Scope

Service Layer Version 1.8

5.2.9

5.2.10

5.2.11

5.2.12

53

If no matching service objects are registered then null must be returned by the
getServiceReferences(String,String) method and an empty collection must be returned by the
getServiceReferences(Class,String) method.

The caller receives zero or more ServiceReference objects. These objects can be used to retrieve
properties of the underlying service, or they can be used to obtain the actual service object. See Get-
ting Service Objects on page 135.

The above methods require that the caller has the necessary ServicePermission[ServiceReference,
GET] to get the service object for the returned Service Reference. If the caller lacks the required per-
mission, these methods must not include that Service Reference in the result.

Getting Service Properties

To allow for interrogation of service properties, the ServiceReference interface defines these two
methods:

getPropertyKeys() - Returns an array of the property keys that are available.
getProperty(String) - Returns the value of a property.

Both of these methods must continue to provide information about the referenced service object,
even after it has been unregistered from the Framework. This requirement can be useful when a
ServiceReference object is stored with the Log Service.

Information About Services

The Bundle interface defines these two methods for returning information pertaining to service us-
age of the bundles:

. getRegisteredServices() - Returns the ServiceReference objects for the service objects that the
bundle has registered with the Framework.

. getServicesinUse() - Returns the ServiceReference objects for the service objects that the bundle
is currently using.

Service Exceptions

The Service Exception is a Run Time exception that can be used by the Framework to report errors
or by user code that needs to signal a problem with a service. An exception type available from this
exception provides the detailed information about the problem that caused the exception to be
thrown.

Implementations of the framework or user code are allowed to throw sub classes of the ServiceEx-
ception class. If a sub class is thrown for a reason other than one of the specified types, then the type
should be set to SUBCLASSED. Sub classes that provide additional information for a specified type
should use the specified type.

Services and Concurrency

Services published on one thread and obtained on another thread must be safe to use. That is, the
Framework must guarantee that there is a happens-before relationship between the time a service is
registered and the time a service object or Service Reference is obtained. That is both the registering
and obtaining threads must be properly synchronized with each other.

Service Scope

The SERVICE_SCOPE service property identifies the scope of the registered service object. The fol-
lowing service scopes are supported by the Framework:

Page 134

OSGi Core Release 6

Service Layer Vers

jon 1.8 Getting Service Objects

5.4.1

- SCOPE_SINGLETON - Identifies the registered service object as a single service object which will
be used by all bundles requesting the service object.

- SCOPE_BUNDLE - Identifies the registered service object as a Service Factory. A Service Factory
allows the registering bundle to customize the service object for each bundle requesting the ser-
vice object. See Service Factory on page 140
SCOPE_PROTOTYPE - Identifies the registered service object as a Prototype Service Factory. A Pro-
totype Service Factory allows the registering bundle to customize the service object for each re-
quest for the service object. See Prototype Service Factory on page 140.

The Framework must set the SERVICE_SCOPE service property automatically depending on the
type of registered service object. If the registered service object implements PrototypeServiceFac-
tory, then the value must be SCOPE_PROTOTYPE. Otherwise, if the registered service object im-
plements ServiceFactory, then the value must be SCOPE_BUNDLE. Otherwise, the value must be
SCOPE_SINGLETON. The SERVICE_SCOPE service property allows bundles to determine whether
multiple service objects can be obtained for the service. Component models like Declarative Ser-
vices and Blueprint need to know if they can properly obtain multiple service objects for referenced
services.

Getting Service Objects

There are two methods available to get service objects from the service registry:

- BundleContext.getService(ServiceReference) - This method should be used if the using bundle
only needs a single service object.

. ServiceObjects.getService() - This method should be used if the service has SCOPE_PROTOTYPE
scope and the using bundle needs multiple service objects.

These methods are used to obtain an actual service object so that the Framework can manage depen-
dencies. If a bundle retrieves a service object, that bundle becomes dependent upon the life cycle of
the registered service object. This dependency is tracked by the BundleContext object used to obtain
the service object, directly or indirectly by a ServiceObjects object, and is one reason that it is im-
portant to be careful when sharing BundleContext and ServiceObjects objects with other bundles.

Getting a Single Service Object

The BundleContext is used when a bundle only needs a single service object. The
BundleContext.getService(ServiceReference) method returns an object that implements the inter-
faces as defined by the objectClass property. A bundle making multiple calls to this method, with-
out releasing the service object, will receive the same service object.

This method has the following characteristics:

Returns null if the underlying service object has been unregistered.

- Determines if the caller has ServicePermission[ServiceReference,GET], to get a service object
associated with the specified Service Reference. This permission check is necessary so that Ser-
viceReference objects can be passed around freely without compromising security.

Increments the usage count of the service by one for this BundleContext object.

. Ifthe service has SCOPE_SINGLETON scope then the registered service object is returned. Oth-
erwise, if the bundle context's usage count of the service is one, the registered service object is
cast to a ServiceFactory object and the getService(Bundle,ServiceRegistration) method is called
to create a customized service object for the calling bundle which is then cached and returned.
Otherwise, a cached copy of this customized service object is returned. See Service Factory on page
140 for more information about ServiceFactory objects.

OSGi Core Release 6

Page 135

Releasing Service Objects Service Layer Version 1.8

5.4.2

5.5.1

The BundleContext.getService(ServiceReference) method will only return a single service object
for the bundle even if the service has SCOPE_PROTOTYPE scope. See Getting Multiple Service Ob-
jects on page 136 for information on how to obtain multiple service objects for a service with
SCOPE_PROTOTYPE scope.

Getting Multiple Service Objects

A ServiceObjects object is used when the service has SCOPE_PROTOTYPE scope and a bundle
needs multiple service objects. A ServiceObjects object is associated with a single service and

is obtained by calling the BundleContext.getServiceObjects(ServiceReference) method. The
ServiceObjects.getService() method can be used to obtain multiple service objects for the associat-
ed service.

This method has the following characteristics for a service with SCOPE_PROTOTYPE scope:

« Returns nullif the underlying service object has been unregistered.

Determines if the caller has ServicePermission[ServiceReference,GET], to get a service object for
the associated service. This permission check is necessary so that ServiceReference objects can
be passed around freely without compromising security.

- The registered service object is cast to a PrototypeServiceFactory object and the
getService(Bundle,ServiceRegistration) method is called to create a customized service object
which is then returned. See Prototype Service Factory on page 140 for more information
about PrototypeServiceFactory objects.

The ServiceObjects.getService() method will only return a single service object for the bundle

if the service has SCOPE_SINGLETON or SCOPE_BUNDLE scope. That is, the method behaves the
same as the BundleContext.getService(ServiceReference) method and only a single service object is
available. See Getting a Single Service Object on page 135.

Releasing Service Objects

A bundle must release a service object to remove the dynamic dependency on the bundle that reg-
istered the service object. Depending on how a service object was obtained, one of the following
methods is used to release a service object:

BundleContext.ungetService(ServiceReference) - This method should be used if the bundle is
using a single service object and needs to release the single service object. See Getting a Single Ser-
vice Object on page 135.

- ServiceObjects.ungetService(S) - This method should be used if the bundle is using multiple
service objects and needs to release one of the service objects. See Getting Multiple Service Objects
on page 136.

Releasing a Single Service Object

The BundleContext interface defines a method to release a single service object:
ungetService(ServiceReference)

This method has the following characteristics:

If the usage count of the service for this BundleContext object is zero or the service has been un-
registered, false is returned.
The usage count of the service for this BundleContext object is decremented by one.

- Ifthe usage count of the service for this BundleContext object is now zero and the service has
SCOPE_BUNDLE or SCOPE_PROTOTYPE scope, the registered service object is cast to a Service-
Factory object and the ungetService(Bundle,ServiceRegistration,S) method is called to release
the previously cached customized service object for the calling bundle. The cached customized

Page 136

OSGi Core Release 6

Service Layer Version 1.8 Service Events

5.5.2

5.6.1

service object must be unreferenced by the Framework so it may be garbage collected. See Service
Factory on page 140 for more information about ServiceFactory objects.

. trueisreturned.

Releasing Multiple Service Objects

The ServiceObjects object can be used to obtain multiple service objects for the associated ser-
vice if the service has SCOPE_PROTOTYPE scope. The ServiceObjects interface defines a method

to release one of the service objects obtained by a bundle: ungetService(S). If the associated ser-
vice has SCOPE_SINGLETON or SCOPE_BUNDLE scope, this method behaves the same as calling the
BundleContext.ungetService(ServiceReference) method.

For a service with SCOPE_PROTOTYPE scope, the following steps are required to release the specified
service object:

If the associated service has been unregistered, this method returns without doing anything.

If the specified service object was not provided by the called ServiceObjects, then an IllegalArgu-
mentException is thrown.

The registered service object is cast to a PrototypeServiceFactory object and the
ungetService(Bundle,ServiceRegistration,S) method is called to release the specified service ob-
ject. The specified service object must be unreferenced by the Framework so it may be garbage
collected. See Prototype Service Factory on page 140 for more information about PrototypeSer-
viceFactory objects.

Service Events

ServiceEvent - Reports registration, unregistration, and property changes for service objects. All
events of this kind must be delivered synchronously. The type of the event is given by the get-
Type() method, which returns an int. Event types can be extended in the future; unknown event
types should be ignored.

Servicelistener- Called with a ServiceEvent when a service object has been registered or modi-
fied, or is in the process of unregistering. A security check must be performed for each registered
listener when a ServiceEvent occurs. The listener must not be called unless the bundle which
registered the listener has the required ServicePermission[ServiceReference,GET] for the corre-
sponding Service Reference.

AllServiceListener- Services can only be seen when the service interface/class is not incompat-
ible with the getter. The AllServicelistener is a marker interface that indicates that the getter
wants to receive events for all services even if they are incompatible. See Multiple Version Export
Considerations on page 141.

UnfilteredServicelistener - Extenders (bundles that can act on behalf of other bundles) frequent-
ly require unfiltered access to the service events for efficiency reasons. However, when they reg-
ister without a filter then the Service Hooks, see Service Hook Service Specification on page 383,
cannot provide the filter expression to the hooks. This filter information is sometimes necessary
to detect when certain services are needed. Therefore, the UnfilteredServicelistener interface is
a marker interface that instructs the framework to never filter service events but still pass the fil-
ter to the Service Hooks. Extenders should use a single UnfilteredServiceListener object with a
compound filter.

A bundle that uses a service object should register a Servicelistener object to track the availability
of the service object, and take appropriate action when the service object is unregistering.

Service Event Types

The following service events are defined:

OSGi Core Release 6

Page 137

Stale References

Service Layer Version 1.8

5.7

- REGISTERED - A service object has been registered. This event is synchronously delivered after
the service object has been registered with the Framework.

- MODIFIED - The properties of a service have been modified. This event is synchronously deliv-
ered after the service properties have been modified.

- MODIFIED_ENDMATCH - Listeners registered with a filter can not see the MODIFIED event when
a modification makes the filter no longer match. The lack of this notification complicates track-
ing a service with a filter. The MODIFIED_ENDMATCH event is therefore delivered if the old ser-
vice properties matched the given filter but the modified properties do not. This event is syn-
chronously delivered after the service properties have been modified.

UNREGISTERING - A service object is in the process of being unregistered. This event is synchro-
nously delivered before the service object has completed unregistering. That is, during the deliv-
ery of this event, the service object is still valid. The bundle receiving this event must release all
references to this service before this method returns.

New service event types can be added in future specifications

Stale References

The Framework must manage the dependencies between bundles. This management is, however,
restricted to Framework structures. Bundles must listen to events generated by the Framework to
clean up and remove stale references.

A stale reference is a reference to a Java object that belongs to the class loader of a bundle that is
stopped or is associated with a service object that is unregistered. Standard Java does not provide
any generic means to clean up stale references, and bundle developers must analyze their code care-
fully to ensure that stale references are deleted.

Stale references are potentially harmful because they hinder the Java garbage collector from har-
vesting the classes, and possibly the instances, of stopped bundles. This may result in significantly
increased memory usage and can cause updating native code libraries to fail. Bundles using services
are strongly recommended to use either the Service Tracker or Declarative Services.

Service developers can minimize the consequences of (but not completely prevent) stale references
by using the following mechanisms:

Implement service objects using the ServiceFactory or PrototypeServiceFactory interface. The
methods in the ServiceFactory and PrototypeServiceFactory interface simplify tracking bundles
that use their service objects. See Service Factory on page 140 and Prototype Service Factory on

page 140.

Use indirection in the service object implementations. Service objects handed out to other bun-
dles should use a pointer to the actual service implementation. When the service object becomes
invalid, the pointer is set to null, effectively removing the reference to the actual service imple-
mentation.

The behavior of a service object that becomes unregistered is undefined. Such service objects may
continue to work properly or throw an exception at their discretion. This type of error should be
logged.

Filters

The Framework provides a Filter interface, and uses a filter syntax in the getServiceRefer-

ences methods that is defined in Filter Syntax on page 36. Filter objects can be created by calling
BundleContext.createFilter(String) or FrameworkUtil.createFilter(String) with the chosen filter
string. The filter supports the following match methods:

Page 138

OSGi Core Release 6

Service Layer Version 1.8 Filters

- match(ServiceReference) - Match the properties of the Service Reference performing key lookup
in a case insensitive way.

- match(Dictionary) - Match the entries in the given Dictionary object performing key lookup in a
case insensitive way.

- matchCase(Dictionary) - Match the entries in the given Dictionary object performing key lookup
in a case sensitive way.

- matches(Map) - Match the entries in the given Map object. The map defines the
case sensitivity of the match, standard maps are case sensitive but for example a
TreeMap(String.CASE_INSENSITIVE_ORDER) provides a case insensitive map.

AFilter object can be used numerous times to determine if the match argument, a ServiceReference
object, a Map object, or a Dictionary object, matches the filter string that was used to create the Filter
object.

This matching requires comparing the value string in the filter to a target object from the service
properties or dictionary. This comparison can be executed with the Comparable interface if the tar-
get object's class implements the Comparable interface. If the target object's class does not imple-
ment Comparable, the =, ~=, <= >= operators must return only true when the objects are equal (using
the equals(Object) method).

The value string in the filter can be converted into an object suitable for comparison with the tar-
get object if the target object's class implements either a static valueOf method taking a single String
object or a constructor taking a single String object. That is, if the target object is of class Target, the
class Target must implement one of the following methods:

A static valueOf(String) method whose return type is assignable to Target
A Target(String)constructor

The Target class does not need to be a public class.

If during the evaluation of the filter a target object throws an exception, then this exception must
not be re-thrown but caught. The result of the evaluation must then be interpreted as false.

The following example shows how a class can verify the ordering of an enumeration with a filter.

public class B implements Comparable {
String keys[] = {"bugs", "daffy", "elmer", "pepe"};
int index;

public B(String s) {
for (index=0; index<keys.length; index++)
if (keys[index].equals(s))
return;

}

public int compareTo(Object other) {
B vother = (B) other;
return index - vother.index;

}
The class could be used with the following filter:
(! (enum>=elmer)) -> matches bugs and daffy

The Filter.toString method must always return the filter string with unnecessary white space re-
moved.

OSGi Core Release 6 Page 139

Service Factory

Service Layer Version 1.8

59

5.10

Service Factory

A Service Factory allows customization of the service object that is returned to a calling bundle. See
Getting a Single Service Object on page 135. See also Prototype Service Factory on page 140.

Often, the service object that is registered by a bundle is returned directly to all using bundles. Such
aservice has SCOPE_SINGLETON scope. If, however, the registered service object implements the
ServiceFactory interface, the service has SCOPE_BUNDLE scope and the Framework must call meth-
ods on the registered object to obtain a customized service object for each distinct bundle that gets
the service.

When the customized service object is no longer used by a bundle - for example, when that bundle
is stopped - then the Framework must notify the ServiceFactory object to release the customized ser-
vice object.

ServiceFactory objects help manage bundle dependencies that are not explicitly managed by the
Framework. By binding a returned service object to the requesting bundle, the service can be noti-
fied when that bundle ceases to use the customized service object, such as when it is stopped, and re-
lease resources associated with providing the service to that bundle.

The ServiceFactory interface defines the following methods:

. getService(Bundle,ServiceRegistration) - This method is called by the Framework when it needs
to obtain a customized service object for a requesting bundle. See Getting Service Objects on page
135.

The Framework must check the customized service object returned by this method. If it is not an
instance of all the classes named when the Service Factory was registered, null is returned to the
requesting bundle. This check must be done as specified in Registering Services on page 129.

If this method is called recursively for the same bundle then it must return null to break the re-
cursion.

ungetService(Bundle,ServiceRegistration,S) - This method is called by the Framework when it
needs to release a customized service object for a requesting bundle. See Releasing Service Objects
on page 136.

Prototype Service Factory

A Prototype Service Factory allows customization of service objects and allows multiple service ob-
jects to be used by a bundle. See Getting Multiple Service Objects on page 136. See also Service Factory
on page 140.

Often, the service object that is registered by a bundle is returned directly to all using bundles. Such
aservice has SCOPE_SINGLETON scope. If, however, the registered service object implements the
PrototypeServiceFactory interface, the service has SCOPE_PROTOTYPE scope and the Framework
must call methods on the registered service object to create customized service object instances for
each call to ServiceObjects.getService(). Services with SCOPE_PROTOTYPE are useful for service
objects that maintain state for the duration of usage and the using bundles require multiple service
objects at the same time.

When the customized service objects are no longer used by a bundle - for example, when that bun-
dle is stopped - then the Framework must notify the PrototypeServiceFactory object to release all
the customized service objects.

PrototypeServiceFactory objects help manage bundle dependencies that are not explicitly man-
aged by the Framework. By binding a returned service object to the requesting bundle and optional-
ly some other stateful information, the Prototype Service Factory can be notified when that bundle

Page 140

OSGi Core Release 6

Service Layer Version 1.8 Unregistering Services

5.11

5.12

ceases to use a customized service object, such as when it is stopped, and release resources associat-
ed with providing a customized service object to that bundle.

The PrototypeServiceFactory interface defines the following methods:

getService(Bundle,ServiceRegistration) - This method is called by the Framework when it needs
to obtain a customized service object for a requesting bundle. See Getting Service Objects on page
135.

The Framework must check the customized service object returned by this method. If it is not an
instance of all the classes named when the Service Factory was registered, null is returned to the
requesting bundle. This check must be done as specified in Registering Services on page 129.

For each customized services object returned by this method, the Framework must hold a refer-
ence to it until it is released. This is necessary so the Framework can release all unused and unre-
leased customized service objects - for example, when a requesting bundle is stopped or the ser-
vice object is unregistered.

ungetService(Bundle,ServiceRegistration,S) - This method is called by the Framework when it
needs to release a customized service object for a requesting bundle. See Releasing Service Objects
on page 136.

Unregistering Services

The ServiceRegistration interface defines the unregister() method to unregister the service object.
This must remove the service object from the Framework service registry. Any ServiceReference ob-
ject for this ServiceRegistration object can no longer be used to access the service object.

The fact that this method is on the ServiceRegistration object ensures that only the bundle hold-
ing this object can unregister the associated service object. The bundle that unregisters a service ob-
ject, however, might not be the same bundle that registered it. As an example, the registering bun-
dle could have passed the ServiceRegistration object to another bundle, endowing that bundle with
the responsibility of unregistering the service object. Passing ServiceRegistration objects should be
done with caution.

After unregister() successfully completes, the service objects must be:

Completely removed from the Framework service registry. Therefore, ServiceReference objects
obtained for that service object can no longer be used to access a service object. Attempts to get a
service object must return null.

. Unregistered, even if other bundles had dependencies upon it. Bundles must be notified of the
unregistration through the publishing of a ServiceEvent of type UNREGISTERING. This event is
sent synchronously in order to give bundles the opportunity to release service objects.

After receiving an event of type UNREGISTERING, a bundle should release the service objects and
release any references it has to the service objects, so that the service objects can be garbage col-
lected by the Java VM.

« Released by all using bundles. For each bundle with unreleased service objects after all invoked
Servicelistener objects have returned, the Framework must release all the service objects.

Multiple Version Export Considerations

Allowing multiple bundles to export a package with a given name causes some complications for
Framework implementers and bundle programmers: The class name no longer uniquely identifies
the exported class. This affects the service registry and permission checking.

OSGi Core Release 6

Page 141

Security

Service Layer Version 1.8

5.12.1

5.12.2

5:13

5.13.1

Service Registry

Bundles must not be exposed to service objects for which there are conflicting class loaders. A bun-
dle that gets a service object should be able to expect that it can safely cast the service object to any
of the associated interfaces or classes under which the service object was registered and that it can
access. No ClassCastExceptions should occur because those interfaces do not come from the same
class loader. The service registry must therefore ensure that bundles can only see service objects that
are not incompatible with the bundle. A service object is not incompatible with the bundle getting the
service object when that bundle is not wired to another source class loader for this interface pack-
age than the bundle registering the service object. That is, it is either wired to the same source class
loader or it has no wire for that package at all.

It is paramount that bundles are not accidentally confronted with incompatible service objects.
Therefore, the following methods need to filter ServiceReference objects depending on the incom-
patibility of the interfaces with the calling bundle and only return Service Reference objects for ser-
vices object that are not incompatible with the calling bundle for the specified interface. The bundle
isidentified by the used Bundle Context:

getServiceReference(String)
getServiceReference(Class)
getServiceReferences(String,String)
getServiceReferences(Class,String)

The getAllServiceReferences(String,String) method provides access to the service registry with-
out any compatibility restrictions. Service References acquired through this method can be used to
obtain service objects which can cause a Class Cast Exception when casting to the specified class
name.

The ServiceReference.isAssignableTo(Bundle,String) method is also available to test if the bundle
that registered the service object referenced by this ServiceReference and the specified bundle are
both wired to same source for the specified interface.

Service Events

Service events must only be delivered to event listeners registered by bundles that are not incompat-
ible with the referenced service object.

Some bundles need to listen to all service events regardless of any compatibility issues. A special
type of ServiceListener can therefore be used: AllServicelistener. This is a marker interface; it ex-
tends ServiceListener. Listeners that use this marker interface indicate to the Framework that the
bundle registering the event listener wants to see events for all services, including for service objects
that are incompatible with the bundle.

Security

Service Permission

A ServicePermission has the following parameters.

target - Either the interface name or a filter expression for the GET action. The interface name
may end with a wildcard to match multiple interface names. See java.security.BasicPermission
for a discussion of wildcards. Filters are explained in Filter Based Permissions on page 27. The fil-
ter expression can additionally test for the service interface name with the objectClass key. Ad-
ditionally, a service permission can also test for service properties that are part of the service reg-
istration. In general, all the service properties are usable in the filter expression. However, when
there is a name conflict with the bundle identification properties, then the key can be prefixed

Page 142

OSGi Core Release 6

Service Layer Version 1.8 Changes

5.14

with the commercial at sign (@' \uoo40). For example, @id will refer to a service property with
the name id.

. action- Supported actions are:
- REGISTER-Indicates that the permission holder may register the service object
GET - Indicates that the holder may get the service.

When an object is being registered as a service object using BundleContext.registerService, the reg-
istering bundle must have the ServicePermission to register all the named classes. See Registering
Services on page 129.

When a ServiceReference object is obtained from the service registry, see Locating Services on page
133, the calling bundle must have the required ServicePermission[ServiceReference, GET] to get
the service object for each returned Service Reference.

When a service object is obtained using a ServiceReference object, see Getting Service Objects on page
135, the calling code must have the required ServicePermission[ServiceReference, GET] to get
the service object associated with the Service Reference.

ServicePermission must be used as a filter for the service events received by the Service Listener,

as well as for the methods to enumerate services, including Bundle.getRegisteredServices and
Bundle.getServicesinUse. The Framework must assure that a bundle must not be able to detect the
presence of a service that it does not have permission to access.

Changes

«Added Service Scope on page 134 and Prototype Service Factory on page 140.

Updated service.id description in Service Properties on page 131 to state that the values are non-
negative.

Added service.bundleid service property in Service Properties on page 131.

OSGi Core Release 6

Page 143

Changes Service Layer Version 1.8

Page 144 OSGi Core Release 6

Resource API Specification Version 1.0 Introduction

6 Resource API Specification

\ersion 1.0

6.1 Introduction

This section describes the API for the generic Requirement-Capability model as introduced in the
Dependencies on page 38. This API is not used directly by the Framework, the purpose of specifying
this base API is to allow it to be used as building block for other specifications.

6.1.1 Entities

Resource - An entity that can be installed in an Environment where it will provide its Capabilities
when all its Requirements are satisfied.

Environment - A framework or container that contains one or more Resources.

Namespace - Defines the semantics of the Requirements and Capabilities; a Requirement can only
match a Capability when they are in the same Namespace. A Namespace is similar to a type in an
object oriented language.

Requirement - An assertion on a Capability in a Namespace. The assertion uses the OSGi filter lan-
guage to match the attributes of a Capability. The filter is specified as a directive; a Requirement
can also have other directives and attributes.

Capability - An attribute based description of a quality of a Resource when installed in an Envi-
ronment.

Wiring - The wired state of a Resource.

Wire - Connects a Requirement to a matching Capability.

Figure 6.1 Class diagram for org.osgi.resource
requirer for
«interface>> .
declares 0.n Requirement 1 requirer for
0.n
1 1)
Namespace «interface>> h 0.1 | «cinterface>> provided 0-N| «interface>>
R ce 3s "~ Wiring o.n| Wire
- - required
0.n
«interface>> ider f
declares o.n Capability - PR
provider for
6.2 Resources

The OSGi dependency model is introduced in Dependencies on page 38 ; it is based on a generic Re-
quirements/Capability model. In this model a Resource models something that can be installed in an
Environment but has Requirements that must be satisfied by Capabilities available in that the Envi-

OSGi Core Release 6 Page 145

Namespaces

Resource API Specification Version 1.0

ronment. However, once it is installed and resolved into the Environment it provides its declared
Capabilities to that Environment. Bundles are Resources, an example of a Requirement is an Im-
port-Package clause, and an example of a Capability is an Export-Package clause.

The org.osgi.resource package contains a base API that defines a number of interfaces that model
this generic model.

The org.osgi.framework.wiring package provides an API for reflecting the wiring of an OSGi Frame-
work. The purpose of the separation is to allow the management agents to treat the system in a uni-
form way. That is, it allows a wide array of resources and environments to be modeled, and thus
managed, in a uniform way. The Resource API is therefore primarily a building block for other speci-
fications.

The Capability and Requirement class are almost identical in their signature. They both provide the
following methods:

getAttributes() - Return a map with the attributes
getDirectives() - Return a map with the directives
getNamespace() - Return the Namespace

. getResource() - Return the Resource

The key difference between a Requirement and a Capability is that a Capability provides attributes
that are matched by an OSGi filter specified in a Requirement's filter directive.

Namespaces

The Namespace acts as the type of a Capability and Requirement. A Capability and a Requirement
can only match when they are in the same Namespace. The Namespaces in use by the OSGi Core
specification are defined in Framework Namespaces Specification on page 163. Other specifications
can, however, define their own Namespaces.

A Namespace defines:

Requirement Attributes - Any attributes that are allowed to be used on a Requirement declaration.
Requirement Directives - Any directives that are allowed to be used on a Requirement declaration.

« Capability Attributes - Any attributes that are allowed to be used on a Capability, these attributes
are available for matching.

Capability Directives - Any defined directives that are allowed to be used on the Capability

« Semantics - The Namespace definition defines what the meaning is of a Capability. This can in-
clude actions in the Environment like for example being wired with certain rules.

Matching
A Requirement matches a Capability when:

They have the same Namespace, and
The Requirement's filter matches the Capability's attributes, and

- If the Namespace is an osgi.wiring.* Namespace then the mandatory directive must be support-
ed.

Other Namespaces must not introduce additional matching rules.

Page 146

OSGi Core Release 6

Resource API Specification Version 1.0 Resolution

6.4

Figure 6.2

6.4.1

Figure 6.3

Resolution

Before a Resource can provide its functionality it must be resolved against the Environment. The
Environment can provide a number of Capabilities of its own but in general the Capabilities come
from the of the installed Resources. The resolver must find a set of Wires between Requirements and
Capabilities in an Environment such that each mandatory Requirement is satisfied with at least one
Capability, and the constraints of the involved Namespaces are all met.

Resolving is an NP-complete problem since there are many solutions, it is easy to test if a solution is
right, but there is no algorithm to calculate a solution. In practice, for the OSGi resolvers it is possi-
ble to find solutions in a reasonable amount of time. However, the nature of NP-complete problems
makes it difficult to set exact rules: many solutions are correct. Constraining the resolvers too much
would stifle innovation and likely cause performance problems.

In general the Environment has an existing Wiring state for already installed Resources. The re-
solver then calculates a resolution, which is a set of Wires that should be added to the existing
Wiring state by installing the Resources. A Wire is a connection from a Requirement to a Capability.
A Requirement or Capability is declared in a Resource. This is depicted in Figure 6.2.

Wire and declared Resources

wire (O Requirement
__________ — declared @ Capability
[Resource

Hosted Requirements and Capabilities

Though each Capability and Requirement is declared in a Resource, it can however be hosted by an-
other Resource. For example, when a Fragment has an Export-Package header it is in reality its host
that will provide that package. There is therefore a clear distinction between the Resource that de-
clares the Capability/Requirement and the run time Wiring state that hosts that Capability. For this
reason, a Wire connects a Requirement and a Capability but links separately to the Resources that
host the Requirement and the Capability. Figure 6.3 depicts a hosted Capability. The Capability from
the Fragment bundle is hosted by Host A and Host B.

Hosted Capability Example

Host A Fragment Host B

For this reason, the Wire class provides the following methods:

getRequirement() - The Requirement wired from.

OSGi Core Release 6 Page 147

Resolution

Resource API Specification Version 1.0

6.4.2

6.4.3

6.4.4

6.4.6

. getRequirer() - The Resource that hosts the Requirement.
getCapability() - The Capability that is wired to.
getProvider() - The Resource that hosts the Capability.

Resolution

Requirements can be optional or mandatory, as specified in the resolution directive, which is only
available on the Requirement. Optional Requirements do not have to be satisfied by the Resolver.
Environments can be eager or relaxed in finding Resources to resolve optional Requirements. All
mandatory Requirements of a Resource must be satisfied before that Resource's Capabilities can be
provided to the Environment.

The syntax of the resolution directive is therefore:
resolution ::= 'optional' | 'mandatory’

The default ismandatory.

Effectiveness

Both Requirements and Capabilities support the effective directive. This directive provides a name
that can be used by the Environment to control the resolving process. During a resolve process, the
Environment can then decide one or more names that must match the effective directive.

For the OSGi Framework, the name resolve is reserved, this is also the default. The syntax is there-
fore:

effective ::= <name>

Mandatory Attributes

If a Capability has declared a mandatory directive and the Namespace starts with osgi.wiring then
it mandates that the names listed directive are used in the filter and must match. The syntax for the
mandatory attribute is:

mandatory ::= extended (',' extended)=x

Cardinality

The cardinality directive defines if a Requirement can be wired to multiple Capabilities or must be
wired to at most one. The syntax for the directive is:

cardinality ::= 'single' | 'multiple’
The defaultissingle.

Class Space Consistency

Though the Requirement/Capability model is generic it is linked closely with the class loading ar-
chitecture of OSGi frameworks, particularly class space consistency, see Constraint Solving on page
52. For this reason, each Capability can specify its uses constraints with the uses Capability directive.
The uses directive always contains a comma separated list of package names. The resolver must en-
sure that any resolution does not violate the class space consistency based on these constraints. Uses
constraints can be specified on any Capability, not just Capabilities related to class loading, and are
always about Java packages. The syntax of the directive is:

uses ::= package-name (',' package-name)x*

Page 148

OSGi Core Release 6

Resource APl Specification Version 1.0 Wiring

6.5

Wiring

A resolver calculates a set of Wires between Requirements and Capabilities based on an existing, po-
tentially empty, state. The existing state in the Environment is represented in a set of Wiring objects.
Such an object represents the Wiring state of a Resource in an Environment. It provides access to all
hosted Requirements and Capabilities as well as existing Wires. It has the following methods to con-
veniently provide access to the state:

getResource() - The related Resource.

- getProvidedResourceWires(String) - Get any Wires, in the given Namespace, where the related
Resource is the provider.

- getRequiredResourceWires(String) - Get any Wires, in the given Namespace, where the related
Resource is the requirer.

. getResourceCapabilities(String) - Get the hosted Capabilities of the related Resource.
. getResourceRequirements(String) - Get the hosted Requirements of the Related Resource.

OSGi Core Release 6

Page 149

Wiring Resource API Specification Version 1.0

Page 150 OSGi Core Release 6

Bundle Wiring API Specification Version 1.2 Introduction

7

7.1

7.1.1

Bundle Wiring API Specification

\ersion 1.2

Introduction

A key aspect of the OSGi framework is managing the dependencies between the bundles. These de-
pendencies are expressed as manifest headers that can be grouped into requirements and capabilities
as defined in Resource API Specification on page 145. For example, an Export-Package clause is a capa-
bility and an Import-Package clause is a requirement. During the resolving phase the requirements
are resolved to matching capabilities by creating a Bundle Wire. Some of the wires can influence how
the classes are loaded from bundles during runtime.

This section outlines the API to introspect the wiring between the requirements and capabilities of
resolved bundles.

Entities

- Bundle Revision - Represents the class/resource container of an install or update (i.e. the JAR, di-
rectory, or other form of archive). Each update creates a new Bundle Revision and an uninstall re-
moves the Bundle Revisions. A Bundle Revision is modeled after a Resource.

Namespace - Bundle Requirements and Bundle Capabilities are defined in a namespace, name-
spaces define the semantics of the requirements and capabilities. The osgi.wiring.bundle,
osgi.wiring.host and osgi.wiring.package from the Framework Namespaces are defined in Frame-
work Namespaces Specification on page 163.

Bundle Requirement - Represents a requirement header, either the Require-Capability header or
any of the manifest headers referred to in the Framework Namespaces Specification on page 163
that map to a requirement.

Bundle Capability - A quality of a Bundle Revision that is provided when the revision is installed.
Implemented as a set of attributes that are part of a namespace. A Bundle Capability represents
either the Provide-Capability manifest header clauses, or any headers defined in the OSGi name-
spaces that map to a capability.

« Bundle Wiring - Created each time when a Bundle Revision is resolved for holding the wires to
other Bundle Wirings as well as maintaining the run time state. Used by the framework to con-
trol class loading depending on the semantics of the OSGi namespaces.

Bundle Wire - Connects a Bundle Requirement to a Bundle Capability as well as the requirer Bun-
dle Wiring and provider Bundle Wiring.

Framework Wiring - Provides access to manage and initiate refresh and resolving.

OSGi Core Release 6 Page 151

Using the Wiring AP

Bundle Wiring API Specification Version 1.2

Figure 7.1

<«system
bundle>>

7.2

7.2.1

Class Diagram org.osqgi.framework.wiring (with relations to org.osgi.resource)

«interface>> I «interface>>
Framework adapted 1 Bundle
Wiring I from
1 1
adapt adapt from Bundle Revisions
0.1 0..n
«interface>> «interface>>
Bundle | Resource
Revision
0..n 0.1 (whenresolved) o.n
«interfaces> «interfaces> «interface>>
Bundle T Bundle Wiring T Bundle
Requirement Capability
1 1

Y

«interface>> requirer «interface>> rovider «interface>>
Requirement q Wiring p Capability
O-N| «interfaces> o.n
oun Bundle Wire on

«interface>>
Wire

Using the Wiring API

This section explains how the wiring API can be used without fully explaining all the concepts in
depth. The next sections outline the formal specification.

Synopsis

The Bundle Context installBundle method installs a bundle and returns a Bundle object. This install
provides the classes and resources in a JAR, directory or some other form, as an environment. This re-
source is represented as a Bundle Revision.

A Bundle Revision declares a number of Bundle Capabilities as well as a number of Bundle Require-
ments. A capability represents a set of attributes and a requirement is a filter on those attributes. For
arequirement to be applicable to a capability, they must reside in the same namespace. The name-
space groups requirements and capabilities and defines the semantics for a resolved requirement/ca-
pability pair. This pair is represented as a Bundle Wire.

Capabilities can be anything: certificates, screen size, the packages, the bundle itself or the capabili-
ty to act as host for a fragment. Some capabilities and requirements are from the Provide-Capability

Page 152

OSGi Core Release 6

Bundle Wiring API Specification Version 1.2 Using the Wiring API

Figure 7.2

and Require-Capability headers, others are defined by the OSGi headers defined in Module Layer on
page 31, the namespaces for these OSGi specific headers are defined in Framework Namespaces Speci-
fication on page 163.

The framework wires the Bundle Requirements to Bundle Capabilities during the resolving opera-
tion. The framework must resolve all the requirements to matching capabilities according to the se-
mantics of their namespaces before it can declare a bundle to be resolved. For generic namespaces

it is sufficient to find a matching capability for each requirement. However, for the OSGi name-
spaces additional rules are implied. For example, the osgi.wiring.host namespace implies all the
rules around OSGi fragment bundles.

Once a bundle is in the RESOLVED state it gets a Bundle Wiring, the Bundle Wiring represents the
run time state of the Bundle Revision. The Bundle Wiring holds the Bundle Wires. A Bundle Wire ties
a single Bundle Requirement to a single Bundle Capability as well as tying the Bundle Wiring that
holds the requirement to the Bundle Wiring that holds the capability. The Bundle Wires that flow
from a Bundle Wiring's Requirement to a capability are the required wires, they can be obtained with
getRequiredWires(String). Bundle Wires that come from a Bundle Wiring's Capability to a require-
ment are the provided wires, they can be obtained with getProvidedWires(String). The same require-
ments and capabilities can be used in different wires.

Namespace rules can be complex. For example, in the case of fragments they imply that any ca-
pabilities from the fragment are actually available from its hosts. In the case of exported pack-
ages that are also imported the resolver can choose to pick either. These examples demonstrate
that the resolver must be able to differentiate between the Bundle Revision's declared require-
ments and capabilities and the run time state, the Bundle Wiring, of the corresponding Bundle Re-
vision. A Bundle Revision's Bundle Wiring therefore provides the actual run time requirements
and capabilities as chosen by the resolver with the Bundle Wiring's getRequirements(String) and
getCapabilities(String) methods. Any optional declared requirements that were not satisfied are
not in the list of requirements. All dynamic requirements that can potentially be satisfied at run
time are in this requirements list.

The BundleWiring objects are therefore not necessarily associated with the same Bundle Revisions
that originate the declared Bundle Requirement and the declared Bundle Capability. It is therefore
that the diagramming technique used in Figure 7.2 uses dotted lines for the Bundle Wiring connec-
tion. That is, the connections from the Bundle Wire to the requirer BundleWiring object and to the
provider BundleWiring object. It then uses solid lines for the connection to the declared require-
ment and capability in their Bundle Revisions. This technique ma