
The OSGi Alliance
OSGi Residential

Release 6 Supplement
April 2018

Copyright © OSGi Alliance (2000, 2018).
All Rights Reserved.

OSGi Specification License, Version 2.0

License Grant
OSGi Alliance ("OSGi") hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited li-
cense (without the right to sublicense), under OSGi's applicable intellectual property rights to view, download,
and reproduce this OSGi Specification ("Specification") which follows this License Agreement ("Agreement"). You
are not authorized to create any derivative work of the Specification. However, to the extent that an implemen-
tation of the Specification would necessarily be a derivative work of the Specification, OSGi also grants you a
perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license (without the right to sublicense)
under any applicable copyrights, to create and/or distribute an implementation of the Specification that: (i) ful-
ly implements the Specification including all its required interfaces and functionality; (ii) does not modify, sub-
set, superset or otherwise extend the OSGi Name Space, or include any public or protected packages, classes, Ja-
va interfaces, fields or methods within the OSGi Name Space other than those required and authorized by the
Specification. An implementation that does not satisfy limitations (i)-(ii) is not considered an implementation
of the Specification, does not receive the benefits of this license, and must not be described as an implementa-
tion of the Specification. An implementation of the Specification must not claim to be a compliant implementa-
tion of the Specification unless it passes the OSGi Compliance Tests for the Specification in accordance with OS-
Gi processes. "OSGi Name Space" shall mean the public class or interface declarations whose names begin with
"org.osgi" or any recognized successors or replacements thereof.

OSGi Participants (as such term is defined in the OSGi Intellectual Property Rights Policy) have made non-as-
sert and licensing commitments regarding patent claims necessary to implement the Specification, if any, un-
der the OSGi Intellectual Property Rights Policy which is available for examination on the OSGi public web site
(www.osgi.org).

No Warranties and Limitation of Liability
THE SPECIFICATION IS PROVIDED "AS IS," AND OSGi AND ANY OTHER AUTHORS MAKE NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE
CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION
OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS
OR OTHER RIGHTS. OSGi AND ANY OTHER AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SPECIFICATION
OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

Covenant Not to Assert
As a material condition to this license you hereby agree, to the extent that you have any patent claims which are
necessarily infringed by an implementation of the Specification, not to assert any such patent claims against the
creation, distribution or use of an implementation of the Specification.

General
The name and trademarks of OSGi or any other Authors may NOT be used in any manner, including advertis-
ing or publicity pertaining to the Specification or its contents without specific, written prior permission. Title to
copyright in the Specification will at all times remain with OSGi.

No other rights are granted by implication, estoppel or otherwise.

Trademarks
OSGi™ is a trademark, registered trademark, or service mark of the OSGi Alliance in the US and other countries.
Java is a trademark, registered trademark, or service mark of Oracle Corporation in the US and other countries.
All other trademarks, registered trademarks, or service marks used in this document are the property of their re-
spective owners and are hereby recognized.

Feedback
This specification can be downloaded from the OSGi Alliance web site:

https://www.osgi.org

Comments about this specification can be raised at:

https://osgi.org/bugzilla/

OSGi Residential Release 6 Supplement Page 3

Table of Contents

1 Introduction 5
1.1 Overview of the Residential Supplement Specification. 5

1.2 Version Information. 5

1.3 References. 6

149 Device Service Specification for ZigBee™ Technology 7
149.1 Introduction. 7

149.2 Essentials. 7

149.3 Entities. 7

149.4 Operation Summary. 9

149.5 ZigBee Base Driver. 11

149.6 ZigBee Node. 12

149.7 ZigBee Endpoint. 14

149.8 ZigBee Device Description. 15

149.9 ZigBee Device Description Set. 15

149.10 ZCL Cluster. 16

149.11 ZCL Cluster Description. 16

149.12 ZCL Global Cluster Description. 16

149.13 ZigBee Command Description. 17

149.14 ZigBee Attribute. 17

149.15 ZigBee Attribute Description. 17

149.16 ZCL Data Type Description. 17

149.17 ZCL Simple Type Description. 17

149.18 Promise and Response Stream objects. 18

149.19 ZigBee Data Types. 18

149.20 Implementing a ZigBee Endpoint. 20

149.21 Event API. 21

149.22 Monitoring Events and Sending Commands. 22

149.23 ZCL Exception. 24

149.24 ZDP Exception. 24

149.25 APS Exception. 24

149.26 ZigBee Exception. 24

149.27 ZCL Frame. 24

149.28 ZigBee Group. 24

149.29 ZigBee Networking. 25

149.30 Security. 26

149.31 org.osgi.service.zigbee. 26

149.32 org.osgi.service.zigbee.descriptions. 63

149.33 org.osgi.service.zigbee.descriptors. 69

149.34 org.osgi.service.zigbee.types. 76

Page 4 OSGi Residential Release 6 Supplement

149.35 References. 131

Introduction Overview of the Residential Supplement Specification

OSGi Residential Release 6 Supplement Page 5

1 Introduction
Subsequent to the release of OSGi Residential Specification Release 6, an additional specification has
been completed and is presented in this supplement.

1.1 Overview of the Residential Supplement
Specification

1.1.1 Device Interoperability
A residential gateway can directly attach devices, for example via a USB adapter, through a home
network. There is therefore a need to have a unified device abstraction, discovery and control model.
For this purpose, this Specification contains the following services:

• Device Service Specification for ZigBee™ Technology - This specification defines how OSGi bundles
can be developed to discover and control ZigBee devices on the one hand, and act as ZigBee de-
vices and interoperate with ZigBee clients on the other hand. In particular, a Java mapping is pro-
vided for the standard representation of ZigBee devices and ZigBee clusters. See Device Service
Specification for ZigBee™ Technology on page 7.

1.2 Version Information
This document is the OSGi Residential Release 6 Supplement.

1.2.1 OSGi Core Release 6
This specification is based on the OSGi Core Release 6. This specification can be downloaded from:

https://www.osgi.org/developer/specifications/

1.2.2 Component Versions
Components in this specification have their own specification version, independent of this speci-
fication. The following table summarizes the packages and specification versions for the different
subjects.

Table 1.1 Packages and versions

Item Package(s) Version
149 Device Service Specification for ZigBee™ Technology org.osgi .service.z igbee

org.osgi .service.z igbee.descr ipt ions

org.osgi .service.z igbee.descr iptors

org.osgi .service.z igbee.types

Version 1.0

When a component is represented in a bundle, a version attribute is needed in the declaration of the
Import-Package or Export-Package manifest headers.

References Introduction

Page 6 OSGi Residential Release 6 Supplement

1.3 References

[1] Bradner, S., Key words for use in RFCs to Indicate Requirement Levels
http://www.ietf.org/rfc/rfc2119.txt, March 1997.

http://www.ietf.org/rfc/rfc2119.txt

Device Service Specification for ZigBee™ Technology Version 1.0 Introduction

OSGi Residential Release 6 Supplement Page 7

149 Device Service Specification for
ZigBee™ Technology

Version 1.0

149.1 Introduction
The [1] ZigBee Specification is a standard wireless communication protocol designed for low-cost and
low-power devices from the ZigBee Alliance. ZigBee is widely supported by various types of devices
such as smart meters, lights and many kinds of sensors in the residential area. OSGi applications
need to communicate with those ZigBee devices.

This specification defines how OSGi bundles can be developed to discover and control ZigBee de-
vices on the one hand, and act as ZigBee devices and interoperate with ZigBee clients on the other
hand. In particular, a Java mapping is provided for the standard hierarchical representation of Zig-
Bee devices called the ZigBee Cluster Library. The [2] ZigBee Cluster Library Specification also describes
the external API of a ZigBee Base Driver based upon the OSGi Device Access Specification.

149.2 Essentials
• Scope – This specification is limited to general device discovery and control aspects of the ZigBee

and the ZigBee Cluster Library specifications. Aspects concerning the representation of specific
ZigBee profiles are not addressed.

• Transparency – ZigBee devices discovered on the network and devices locally implemented on
the platform are represented in the OSGi service registry with the same API.

• Lightweight implementation option – The full description of ZigBee device services on the OSGi plat-
form is optional. Some base driver implementations may implement all the classes including
ZigBee device description classes while implementations targeting constrained devices are able
to implement only the part that is necessary for ZigBee device discovery and control.

• Network Selection – It must be possible to restrict the use of the ZigBee protocols to a selection of
the connected networks.

• Logical node type selection – It is possible to make an OSGi-based device appearing as a ZigBee end
device, a ZigBee router or a ZigBee coordinator.

• Event handling – Bundles are able to listen to ZigBee events.
• Discover and Control ZigBee Endpoints as OSGi services – available ZigBee endpoints are dynamical-

ly reified as OSGi services in the service registry.
• Export OSGi services as ZigBee Endpoints – available ZigBee endpoints are dynamically reified as

OSGi services in the service registry.

149.3 Entities
• ZigBee Base Driver – The bundle that implements the bridge between OSGi and ZigBee networks.

Entities Device Service Specification for ZigBee™ Technology Version 1.0

Page 8 OSGi Residential Release 6 Supplement

• ZigBee Node – A physical ZigBee node. This entity is represented by a ZigBeeNode object. It is reg-
istered as an OSGi service by the Base Driver.

• ZigBee Endpoint – A logical device that defines a communication entity within a ZigBee node
through which a specific application profile is carried. This concept is represented by a Zig-
BeeEndpoint object. Registered as an OSGi service, an endpoint can be local (implemented on the
Framework) or external (implemented by another device on the network).

• ZigBee Device Description – Statically describes a ZigBee endpoint by providing its input/output
clusters and specifies which of described commands and attributes are mandatory or not. This
entity is represented by a ZigBeeDeviceDescription object.

• ZigBee Device Description Set – A service representing a set of ZigBeeDeviceDescription objects.
• ZigBee Cluster – Represents a ZigBee cluster entity, that is, a set of attributes and commands. It al-

lows the read and write of attribute values, and allows command invocation. This concept is rep-
resented by a ZCLCluster object.

• ZigBee Cluster Description – Cluster description provides details about available commands and
attributes for a specific Cluster. A cluster description should be constant. A cluster description
holds either a Client or a Server Cluster description and refers to a global cluster description.

• ZigBee Global Cluster Description – Global cluster description holds the server and client cluster de-
scription as well as common information such as cluster id, description and name. This concept
is represented by a ZCLGlobalClusterDescription object.

• ZigBee Command Description – Statically describes a specific cluster command by giving its name,
id, parameters. This entity is represented by a ZCLCommandDescription object.

• ZigBee Parameter Description – A ZigBee parameter description has a name, a range and a data type.
This entity description is represented by a ZCLParameterDescription object.

• ZigBee Attribute – Holds the current value of an existing cluster attribute, it allows easy
(de)encoding. This concept is represented by a ZCLAttribute object.

• ZigBee Attribute Description – Statically describes a ZigBee Attributes (data type, name, default val-
ue). It does not hold any current value. This concept is represented by a ZCLAttributeDescription
object.

• ZigBee Event Listener Service – A service that listens to events coming from ZigBee devices.
• ZigBee Event – An event generated by a ZigBee node. It contains a modified attribute value of a

specific cluster. This concept is represented by a ZigBeeEvent object.
• ZigBee Command Response Stream – A stream is a helper that manages asynchronous responses

from several endpoints that received a same request message. This entity is represented by a Zig-
BeeCommandResponseStream. For methods that generates a message to a unique endpoint, a
Promise is used instead.

• ZigBee Host – The machine that hosts the code to run a ZigBee device or client. It contains infor-
mation related to the Host. If the host is in the coordinator logical node type, it enables network-
ing configuration. It is registered as an OSGi service. This concept is represented by ZigBeeHost.

• ZigBee Client – An application that is intended to control ZigBee devices services.
• ZigBee Group – Enables group management. It is registered as an OSGi service.

Device Service Specification for ZigBee™ Technology Version 1.0 Operation Summary

OSGi Residential Release 6 Supplement Page 9

Figure 149.1 ZigBee Service Specification class Diagram org.osgi.service.zigbee package

0..n

0..n

0..n

0..n

<<Interface>>
ZCLGlobalCluster
Description

<<Interface>>
ZCLCommand
Description

<<Interface>>
ZCLParameter
Description

<<Interface>>
ZCLCluster

<<Interface>>
ZCLCluster
Description

<<Interface>>
ZigBeeEndpoint

<<Interface>>
ZigBeeNode

<<Interface>>
ZigBeeGroup

<<Interface>>
ZigBeeHost

<<Interface>>
ZigBeeDevice
DescriptionSet

<<Interface>>
ZigBeeDevice
Description

A ZigBee Endpoint
Implementer

Implementation
A ZigBee EndpointA ZigBee Client

Implementation

A ZigBee Device
Descriptor

<<Interface>>
ZCLDataType
Description

<<Interface>>
ZCLAttribute
Description

<<Interface>>
ZCLAttribute

<<Interface>>
ZCLEventListener

A Listener

0..n

1

1..n

1

0..n

0..n 0..n

0..n

1

0..n

0..1

0..n 0..1

1

0..n

0..n

0..1

0..n

0..1

0..n

0..n

1 owns

is owned by is owned by

is owned by

is owned by

is owned by

is owned bytransmits events to

transmits events to

is owned by

is associated with

is owned by

gets

is associated to

describes describes

describes

has

1 0..n

1

1 1

1

1

1

1

1

1

0..n

0..n

creates
1

is discovered or owned by

A ZigBee Node

ZigBee Base Driver

149.4 Operation Summary
OSGi applications interact with ZigBee devices through their object representation (proxies) regis-
tered in OSGi service registry. To make a ZigBee device available as an OSGi service to ZigBee clients
on the framework, an OSGi service object must be registered under the ZigBeeNode interface with
the OSGi framework and an OSGi service must be registered under the ZigBeeEndpoint interface
with the OSGi framework for every endpoint that is contained by the ZigBee node.

The ZigBee Base Driver is responsible for mapping networked devices into ZigBeeNode and Zig-
BeeEndpoint objects, through the use of a ZigBee radio chip. The latter is represented on the OSGi
framework as an object implementing ZigBeeHost interface. This is called a device import situation
(see Figure 149.2 on page 10).

Operation Summary Device Service Specification for ZigBee™ Technology Version 1.0

Page 10 OSGi Residential Release 6 Supplement

Figure 149.2 ZigBee device import

ZigBee Base Driver

< < Interface> >
ZigBeeEndpoint

A ZigBee client

< < Interface> >
ZigBeeHost

A ZigBee endpoint
implementat ion

1
0..n

A listener

0..n1

< < Interface> >
ZCLEventListener

10..n
is used by

1 1

imports

1 0..nexposes 10..n
is requested by

0..nnot if ies
0..n is registered by

0..n

1
exposes

OSGi bundles may also expose framework-internal (local) ZigBeeEndpoint instances, registered
within the framework (see Figure 149.3 on page 10). The Base Driver then should emulate those
objects as ZigBee endpoints associated to the ZigBee node represented by the underlying ZigBee host
(ZigBee chip) on the ZigBee network. This is a device export situation. For more information about
this process, please report to section Implementing a ZigBee Endpoint on page 20.

Figure 149.3 ZigBee device export

ZigBee Base Driver

< < Interface> >
ZigBeeEndpoint

< < Interface> >
ZCLEventListener

A ZigBee endpoint
implementer

< < Interface> >
ZigBeeHost

1
0..n

A listener

1 0..nexposes

10..n
is exposed by

1 0..nexports

1 0..nregisters 0..n is not if ied by

0..n

10..n
is requested by

To control ZigBee devices, a bundle should track ZigBeeEndpoint services in the OSGi service reg-
istry and control them appropriately. OSGi applications can browse the clusters (ZCLCluster ob-
jects) that are discovered on every registered ZigBeeEndpoint and attributes (ZCLAttribute objects)
that are discovered on every ZCLCluster . They can invoke commands on these clusters and get the
current value of attributes.

Several methods obey an asynchronous mechanism. For instance, ZigBee command invocation is
made through the call to ZCLCluster invoke method that returns a Promise . When the command
response is received, the Promise is resolved and Promise.getValue() returns the expected response
value. The Promise is resolved by the base driver in the device import situation and by the invoked
local ZCLCluster in the device export situation. A ZCLCommandResponseStream is used instead of a
Promise in case of a method that generates a message broadcast (or groupcast) to potentially several
endpoints.

OSGi bundles – called listeners in Figure 149.1 – subscribe to attribute value changes through the
Whiteboard Pattern ([6] Listeners considered harmful: The whiteboard pattern). They register an ob-
ject under the ZCLEventListener interface with properties identifying a ZigBee attribute and a spe-
cial event filter. This registration is conveyed as a ZigBee configure report command on the ZigBee
network in the device import situation. Reports are received by the base driver and transmitted as
notifyEvent(ZigBeeEvent) method calls on relevant ZCLEventListener services in this situation. Lo-
cal ZigBeeEndpoint objects directly call these methods to notify listeners with reports in the export
situation. The Base Driver conveys events received through a ZCLEventListener to networked the
ZigBee endpoints that have subscribed to relevant reports.

Endpoints, clusters, commands and attributes are specified by ZigBee Alliance or vendor-specific de-
scriptions. Those descriptions may be provided on the OSGi platform by any bundle through the
registration of ZigBeeDeviceDescr ipt ionSet services (see Figure 149.4 on page 11). Every ser-
vice is a set of descriptions that enables applications to retrieve information about the clusters, com-
mands, attributes supported by the described type of endpoint.

Device Service Specification for ZigBee™ Technology Version 1.0 ZigBee Base Driver

OSGi Residential Release 6 Supplement Page 11

Figure 149.4 Using a set of device descriptions

0..n

[Object] 0..n0..n

< < Interface> >
ZigBeeDevice
DescriptionSet

[Object]

< < Interface> >
ZigBeeDevice
Description

has

1

A ZigBee Device
Descriptor

A ZigBee Client

informs0..n1 registers

149.5 ZigBee Base Driver
Most of the functionality described in the operation summary is implemented in a ZigBee base dri-
ver. A ZigBee base driver is a bundle that implements the ZigBee protocols and handles the inter-
action with bundles that use the ZigBee devices. It must discover ZigBee devices on the ZigBee net-
work and map each discovered device into an OSGi registered ZigBeeNode service. It must also ex-
port, on the ZigBee Network, ZigBeeEndpoint services (programmatically registered as OSGi ser-
vices).

ZigBeeNode object also provides simple methods to handle standard ZigBee Device Object network-
ing features: getLinksQual ity() , getRoutingTable() , and leave() .

Figure 149.5 ZigBee Cluster Library model

N ode

A ttribu te

E ndp oint

C lus te r

C om m a nd IO P a ra m e te r

R e port (S ubs c ribe)

R e a d / W rite

All interfaces corresponding to the ZigBee Cluster Library model (see Figure 149.5 on page 11)
must be implemented in order to discover and control asynchronously ZigBee devices. Classes relat-
ed to the description of these entities named with suffix Descript ion may optionally be implement-
ed. This rule follows the fact that ZigBee device descriptions are not downloadable on the device it-
self and are often given to developers in an out-of-band manner.

Several base drivers may be deployed on a residential OSGi device, one for every supported network
technology. An OSGi device abstraction layer may then be implemented as a layer of refining dri-
vers above a layer of base drivers. The refining driver is responsible for adapting technology-specif-
ic device services registered by the base driver into device services of another model (see Abstract-
Device interface in Figure 149.6 on page 12). In the case of a generic device abstraction layer, the
model is agnostic to technologies.

ZigBee Node Device Service Specification for ZigBee™ Technology Version 1.0

Page 12 OSGi Residential Release 6 Supplement

Figure 149.6 The ZigBee Base Driver and a refining driver representing devices in an abstract model

ZigBee Base Driver < < Interface> >
ZigBeeEndpoint

< < Interface> >
AbstractDevice

Applicat ion interact ing
with an abstract ion layer

Refining Driver

Applicat ion interact ing
with the base driver

1 0..nimports 1 0..nis used by

1

0..n

is used by

1 0..nreif ies 1 0..nis used by

The ZigBee Alliance defines their own abstract model with ZigBee Profiles, for example, Home Au-
tomation, Lighting, and refining drivers may provide the implementation of all ZigBee standard
devices with ZigBee-specific Java interfaces. The AbstractDevice interface of Figure 149.6 on page
12 is then replaced by a ZigBee-specific Java interface in that case. The need and the choice of the
abstraction depends on the targeted application domain.

149.6 ZigBee Node
A ZigBee node represents a physical ZigBee device and should adhere to a specific application pro-
file that can be either public or private. Profiles define the environment of the application, the type
of devices and the clusters used for them to communicate.

A physical device is reified and registered as a ZigBeeNode service in the Framework. A ZigBee node
holds several ZigBee endpoints that are registered as ZigBeeEndpoint objects.

ZigBee nodes properties are defined in the ZigBee Specification. These properties must be registered
in the OSGi Framework services registry so they are searchable. ZigBeeNode must be registered with
the following properties:

• IEEE_ADDRESS – (zigbee.node. ieee.address/BigInteger) specifies the IEEE Address of a ZigBee
node.

• LOGICAL_TYPE – (zigbee.node.descr ipt ion.node.type/Short) specifies a device logical type.
• MANUFACTURER_CODE – (zigbee.node.descr ipt ion.manufacturer.code/Integer) specifies a

manufacturer code that is allocated by the ZigBee Alliance, relating to the device manufacturer.
• POWER_SOURCE – (zigbee.node.power.source/Boolean) is the ZigBee power source, that is,

3rd bit of "MAC Capabilities" in Node Descriptor, which is set to 1 if the current power source is
mains power, set to 0 otherwise.

• RECEIVER_ON_WHEN_IDLE – (zigbee.node.receiver.on.when. idle/Boolean) represents the Zig-
Bee receiver on when idle, that is, 4th bit of "MAC Capabilities" in Node Descriptor, which is set
to 1 if the device does not disable its receiver to conserve power during idle periods, set to 0 oth-
erwise.

• PAN_ID – (zigbee.node.pan. id/ Integer) (Personal Area Network Identifier) is a 16-bit value that
identifies a ZigBee network. Every ZigBeeNode object is associated to a PAN ID, which can be re-
trieved through the getPanId() method.

• EXTENDED_PAN_ID – (zigbee.node.pan.extended. id/BigInteger) Extended PAN ID is a 64-bit
numbers that uniquely identify a PAN. It is intended to enhance selection of a PAN and enable
recognition of network after PAN ID change (due to a previous conflict). getExtendedPanId() re-
turns the network extended PAN ID if specified.

Note: PAN_ID and EXTENDED_PAN_ID are optional, but at least one of these properties MUST be
specified.

• DEVICE_CATEGORY (see the OSGi Device Access Specification) – (DEVICE_CATEGORY) de-
scribes a table of the categories to which the device belongs. One of the values MUST be
“ZigBee” (DEVICE_CATEGORY).

Device Service Specification for ZigBee™ Technology Version 1.0 ZigBee Node

OSGi Residential Release 6 Supplement Page 13

Additional properties (defined in the OSGi Device Access Specification) may be set:

• DEVICE_DESCRIPTION – if the complex descriptor of the device is available, the value MUST be
set and MUST be the value returned by getModelName() .

• DEVICE_SERIAL – if the complex descriptor of the device is available, the value MUST be set and
MUST be the value returned by getSeria lNumber() .

Finally, service.pid property MUST be set.

ZigBee nodes describes themselves using descriptor data structures:

• getNodeDescr iptor() – Returns a Promise object that is asynchronously resolved with a Zig-
BeeNodeDescr iptor object representing the Node Descriptor which contains information about
the node capabilities. On failure, the promise is resolved with an exception instead.

• getComplexDescr iptor() – Returns a Promise object that is asynchronously resolved with a Zig-
BeeComplexDescr iptor object representing the Complex Descriptor which contains extended in-
formation for each device description contained in this node. On failure, the promise is resolved
with an exception instead, especially an exception with NO_DESCRIPTOR error code if no Com-
plex Descriptor is provided.

• getPowerDescr iptor() – Returns a Promise object that is asynchronously resolved with a Zig-
BeePowerDescr iptor object representing the Power Descriptor which contains power-related in-
formation of this node. On failure, the promise is resolved with an exception instead, especially
an exception with NO_DESCRIPTOR error code if no Power Descriptor is provided.

• getUserDescr ipt ion() – Returns a Promise object that is asynchronously resolved with the
unique field named “User description” of the User Descriptor, which contains information that
allows the user to identify the device using user-friendly character string. On failure, the promise
is resolved with an exception instead, especially an exception with NO_DESCRIPTOR error code
if no User Descriptor is provided.

ZigBeeNode objects provide invoke methods to send network frames within ZDP layer, while in-
voking ZigBee Cluster Library (ZCL) commands is enabled on ZCLCluster objects. ZCL commands
can be however broadcast on a ZigBee node thanks to broadcast methods. Broadcasting enables the
sending of a ZCL command to all clusters identified with an identifier of all endpoints available on
the targeted ZigBee node.

All discovered ZigBee nodes in the local networks are registered under the ZigBeeNode interface
within the OSGi Framework. Every time a ZigBee node appears or quits the network, the associat-
ed OSGi service is registered or unregistered in the OSGi service registry. Thanks to the ZigBee Base
Driver, the OSGi service availability in the registry mirrors ZigBee device availability on ZigBee net-
works. Using a remote ZigBee node thus involves tracking ZigBeeNode services in the OSGi service
registry. The following code illustrates how this can be done. The sample Control ler class extends
the ServiceTracker class so that it can track all ZigBeeNode services and add them to a user interface,
such as a remote controller application. The friendly name of this node is retrieved in order to be
printed on the user interface.

class Controller extends ServiceTracker {
 UI ui;
 Controller(BundleContext context) {
 super(context, ZigBeeNode.class, null);
 }
 public Object addingService(ServiceReference ref) {
 ZigBeeNode node = (ZigBeeNode)super.addingService(ref);
 ui.addNode(node);
 return node;
 }
 public void removedService(ServiceReference ref, Object endpoint) {
 ui.removeNode((ZigBeeNode) node);

ZigBee Endpoint Device Service Specification for ZigBee™ Technology Version 1.0

Page 14 OSGi Residential Release 6 Supplement

 super.removedService(ref);
 }
 ...
}

public class UI {
 public void addNode(ZigBeeNode node) {
 final Promise p = node.getUserDescription();
 p.onResolve(new Runnable() {
 public void run() {
 try {
 String friendlyName = (String) p.getValue();
 createUINode(node, friendlyName);
 } catch (InvocationTargetException e) {
 log.info("Get User Description command returned "
 + "a failure: " + e.getCause() + ”.”);
 createUINode(node, "No friendly name");
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 });
 }
...
}

149.7 ZigBee Endpoint
Communication between devices is done through an addressable component called ZigBee end-
point which holds a number of ZigBee clusters. A ZigBee cluster represents a functional unit in a de-
vice.

An endpoint defines a communication entity within a device through which a specific application
is carried. So, it represents a logical device object used for communication.

For example, a remote control light might allocate Endpoint 7 for the control of lights in the master
bedroom, Endpoint 9 to manage the heating and air conditioning system, and Endpoint 14 for con-
trolling the security system.

The ZigBee specification defines that a maximum of 240 Endpoints is allowed per ZigBeeNode . End-
point 0, also called the ZigBee Device Object (ZDO), is reserved for the management operations on
both ZigBee node and ZigBee endpoints, endpoint 255 is reserved for broadcasting to all endpoints,
endpoints 241-254 are reserved for future use.

Endpoint 0 and endpoint 255 capabilities are not exposed, only endpoints 1-240 should be registered
as services. Endpoints are registered under the ZigBeeEndpoint interface with the following proper-
ties:

• IEEE_ADDRESS – (zigbee.node. ieee.address/BigInteger) specifies the IEEE Address of the parent
node.

• ENDPOINT_ID – (zigbee.endpoint. id/Short) specifies the endpoint address within the node. Ap-
plications shall only use endpoints 1-240.

• PROFILE_ID – (zigbee.device.profi le . id/ Integer) identifies the profile that the endpoint belongs
to. The profile can be either a ZigBee Alliance standard profile or a vendor-specific profile. The
ZigBee specification defines several profile identifiers, and some others are vendor specific.

Device Service Specification for ZigBee™ Technology Version 1.0 ZigBee Device Description

OSGi Residential Release 6 Supplement Page 15

• HOST_PID – (zigbee.endpoint.host.pid/Str ing) – The ZigBee local host identifier is intended to
uniquely identify the ZigBee local host, since there could be many hosts on the same platform.
All the endpoints that belong to a specific network MUST specify the value of the associated host
number.

• DEVICE_ID – (zigbee.device. id/ Integer) identifies the device description supported by this end-
point. Like for profile identifiers, the ZigBee specification defines several device identifiers. Ven-
dors are also able to define specific device identifiers.

• DEVICE_VERSION – (zigbee.device.version/Integer) specifies the device description version sup-
ported by this endpoint.

• INPUT_CLUSTERS – (zigbee.endpoint.c lusters. input/ Integer[]) specifies the list of input cluster
ids supported by this endpoint. Input cluster are called Server cluster.

• OUTPUT_CLUSTERS – (zigbee.endpoint.c lusters.output/ Integer[]) specifies the list of output
cluster ids supported by this endpoint. Output cluster are called Client cluster.

• DEVICE_CATEGORY (see the OSGi Device Access Specification) – (DEVICE_CATEGORY) de-
scribes a table of the categories to which the device belongs. One of the values MUST be
“ZigBee” (DEVICE_CATEGORY).

Finally, service.pid property MUST be set. In device import case, it is a free unique identifier that en-
ables OSGi ZigBee clients to identify any imported endpoint across node reboots. It may concate-
nate the endpoint IEEE address, a separator, for example, '_', and the endpoint ID. In endpoint ex-
port case, it is a free unique identifier that enables the base driver to identify any exported endpoint
across local bundle restarts. In this case, service.pid property may concatenate bundle identifier, a
separator, for example, '_', and a number.

A ZigBeeEndpoint may contain a number of input or output clusters. ZigBeeEndpoint provides
getServerCluster(int) and getCl ientCluster(int) to return a specific server input or client output
cluster.

Every endpoint must provide a simple descriptor. getSimpleDescr iptor() returns a Promise object
that is asynchronously resolved with a ZigBeeSimpleDescr iptor object which contains general in-
formation about the endpoint or with an exception in case of a failure.

ZigBeeEndpoint interface provides two methods to bind and unbind ZigBee clusters:
bind(Str ing, int) and unbind(Str ing, int) . The entity that wants to bind clusters is responsible for ini-
tializing, maintaining and removing the bindings across ZigBeeEndpoint service events. This enti-
ty is the local OSGi Application that asked this binding or the ZigBee Base Driver if the binding has
been requested by a remote ZigBee node.

ZigBeeEndpoint interface provides a getBoundEndPoints(int) method that provides the table of
bound ZigBeeEndpoint objects identified by their service PIDs.

149.8 ZigBee Device Description
A ZigBee endpoint may have a description used to describe his input and output clusters, and which
of these clusters are mandatory or optional. A ZigBeeDeviceDescr ipt ion object provides associated
information about an endpoint.

149.9 ZigBee Device Description Set
ZigBeeDeviceDescr ipt ionSet objects may be registered as OSGi services by any bundle. A Zig-
BeeDeviceDescr ipt ionSet provides getDeviceSpecif icat ion(int ,short) which returns the device de-
scription, if provided, for the identified endpoint, or nul l otherwise. A ZigBeeDeviceDescr ipt ionSet
service should be registered with the following properties:

ZCL Cluster Device Service Specification for ZigBee™ Technology Version 1.0

Page 16 OSGi Residential Release 6 Supplement

• VERSION – (zigbee.profi le .vers ion/Short) The application profile version.
• PROFILE_ID – see ZigBeeEndpoint .PROFILE_ID property.
• PROFILE_NAME – (zigbee.profi le .name/Str ing) The profile name.
• MANUFACTURER_CODE – see ZigBeeNode .MANUFACTURER_CODE property.
• DEVICES – (zigbee.profi le .devices/ Integer[]) comma separated list of devices identifiers sup-

ported by the set.

149.10 ZCL Cluster
Devices communicate with each other by means of clusters, which may be inputs to or outputs of
the device. For example, ZigBee Home Automation profile provides a cluster dedicated to the control
of lighting subsystems. Clusters are represented under ZCLCluster interface.

ZCLCluster objects combine one or more ZigBee commands (or frames) and ZCLAttr ibute objects.

ZCLCluster provides some methods for reading and writing attributes values:

• readAttr ibutes(ZCLAttr ibuteInfo[]) – The ZigBee Base driver MAY generate the read attributes
command on behalf of the OSGi application that is invoking this method. The latter returns a
Promise object that is asynchronously resolved with a Map of ZCLReadStatusRecord identified
by their attribute identifiers. On failure, the promise is resolved with an exception instead.

• writeAttr ibutes(boolean,Map) – The ZigBee Base driver generates the write attributes command
on behalf of the OSGi application that is invoking this method. The boolean undivided para-
meter specifies that if any attribute cannot be written, for example, if an attribute is not imple-
mented on the device, or a value to be written is outside the valid range, no attribute values are
changed.

ZCLCluster objects use ZCLFrame to invoke ZigBee commands :

• invoke(ZCLFrame) – a sequence of bytes represents the command frame. The source endpoint is
not specified in this method call. To send the appropriate message on the network, the base dri-
ver must generate a source endpoint. The latter must not correspond to any exported endpoint.

• invoke(ZCLFrame,Str ing) – a sequence of bytes represents the command frame, and exportedSer-
vicePID is the source endpoint of the command request. In targeted situations, the source end-
point is the valid service PID of an exported endpoint.

A Promise is returned and manages the command response asynchronously.

149.11 ZCL Cluster Description
A ZCLClusterDescr ipt ion describes the server or client part of a ZCLCluster . It lists the available
commands and attributes for this client or server cluster.

Every cluster client and server may have attributes (see [2] ZigBee Cluster Library Specification, Chap-
ter 2.2.1), received and generated commands. ZCLClusterDescr ipt ion provides methods to describe
commands, attributes and retrieve general cluster information.

149.12 ZCL Global Cluster Description
ZCLGlobalClusterDescr ipt ion describes a cluster general information: id, name, description. It pro-
vides the ZCLClusterDescr ipt ion for both client and server part of this cluster.

Device Service Specification for ZigBee™ Technology Version 1.0 ZigBee Command Description

OSGi Residential Release 6 Supplement Page 17

149.13 ZigBee Command Description
ZCLCommandDescr ipt ion describes a ZigBee command.

ZCLCommandDescr ipt ion contains ZCLParameterDescr ipt ion objects which describe the command
parameters.

All clusters (server and client) shall support generation, reception and execution of the default re-
sponse command.

Every cluster (server or client) that implements attributes shall support reception of, execution of,
and response to all commands to discover, read, write, report, configure reporting of, and read re-
porting configuration of these attributes. Generation of these commands is application dependent.

149.14 ZigBee Attribute
A ZigBee cluster is associated with a set of attributes. Every attribute is represented by an object im-
plementing ZCLAttr ibute interface extending ZCLAttr ibuteInfo . ZCLAttr ibute provides getValue()
and setValue(Object) to retrieve and set the current attribute value with the use of a Promise , which
returns the response asynchronously.

149.15 ZigBee Attribute Description
A ZCLAttr ibuteDescr ipt ion also extends ZCLAttr ibuteInfo and describes information about a specif-
ic ZCLAttr ibute .

149.16 ZCL Data Type Description
ZCLAttr ibuteInfo and ZCLParameterDescr ipt ion provide getDataType() and getDataTypeDescr ip-
t ion() methods, respectively, which return ZCLDataTypeDescr ipt ion objects. One object is associat-
ed to every ZigBee data type, see ZigBeeDataTypes constants in ZigBee Data Types section below.

149.17 ZCL Simple Type Description
ZCLSimpleTypeDescr ipt ion extends ZCLDataTypeDescr ipt ion interface to provide the following
methods:

• ser ia l ize(ZigBeeDataOutput,Object) – Serializes a Java object corresponding to the Java data
type given by getJavaDataType() , and adds the result to the given ZigBeeDataOutput according
to ZigBee Cluster Library.

• deseria l ize(ZigBeeDataInput) – Deserializes the given data into a Java object of the Java data
type given by getJavaDataType() .

Every ZigBee data type is associated to a ZCLSimpleTypeDescr ipt ion implementation, except ZigBee
Array, Bag, Set, and Structure types.

Promise and Response Stream objects Device Service Specification for ZigBee™ Technology Version 1.0

Page 18 OSGi Residential Release 6 Supplement

149.18 Promise and Response Stream objects
Promise and ZCLCommandResponseStream objects handle ZigBee network communication la-
tency and errors. An org.osgi .ut i l .promise.Promise is immediately returned by every method that
generates a message exchange with one ZigBee endpoint, that is, the sending of a message to this
endpoint and the handling of a unique response from this endpoint. No exception is thrown by
this method. The Promise handles the expected result and any occurring error asynchronously.
The caller can either get a callback when the Promise is resolved with a value or an error, or the
Promise can be used in chaining. Both onResolve(Runnable) callbacks and then(Success, Fai lure)
chaining can be repeated any number of times, even after the Promise has been resolved. When
the Promise is resolved, callbacks and chaining are called, Promise. isDone() returns true, and ei-
ther Promise.getValue() returns a value or Promise.getFai lure() returns a relevant Throwable . The
type of the value and the type of Throwable are specific to the method returning the Promise . In
import situations, the base driver fails the Promise when a timeout is reached before any response
is received on the network. The returned failure is then a ZigBeeException with TIMEOUT error
code. The associated timeout is given by getCommunicat ionTimeout() . It can be set by calling
setCommunicat ionTimeout(long) on the appropriate ZigBeeHost object.

A ZCLCommandResponseStream is immediately returned by every method that generates the
sending of a message to potentially several endpoints with the expectation of a response from
several of them. No exception is thrown by this method. The caller can register a handler with
forEach(Predicate) . The unique method of the handler is called with a ZCLCommandResponse
every time a response is received from one of the targeted endpoints until the ZCLComman-
dResponseStream is closed. The latter is closed either when the handler returns false to the test
method or close() is called. ZCLCommandResponseStream is used for the following message invoca-
tion types:

• Broadcasting: Sending a message to all available endpoints of a specific type and receiving re-
sponses from each of them, see broadcast(int ,ZCLFrame,Str ing) .

• Groupcasting: Sending a message to the endpoints of a specific type in a group of endpoints and
receiving responses from each of them, see groupcast(int ,ZCLFrame,Str ing) .

• Nodecasting: Sending a message to the endpoints of a specific type on a node and receiving re-
sponses from each of them, see broadcast(int ,ZCLFrame,Str ing) .

149.19 ZigBee Data Types
The ZigBeeDataTypes class provides all standard ZigBee data type identifiers as constants. It should
be noted that actual value of these constants do not necessarily match the values assigned in the
ZCL specification for these data types.

The org.osgi .service.z igbee.types package contains an implementation class for each of the ZCL
scalar data types, with the exception of NO_DATA and UNKNOWN . Each of these classes declares a
static getInstance() method, that returns a singleton of the class itself. Moreover, because they im-
plement the ZCLSimpleTypeDescr ipt ion interface, they provide methods for getting some metada-
ta information about the ZCL data type they represent, like the relative ZigBeeDataTypes constant
(getId() method) and the Java class the ZCL data type is mapped to. Methods to marshal and unmar-
shal the data type into a ZigBeeDataInput stream and from a ZigBeeDataOutput stream according
to the ZigBee specification, are provided as well.

Here is the table of encoding relations between ZigBee types and Java types, used in this specifica-
tion:

Device Service Specification for ZigBee™ Technology Version 1.0 ZigBee Data Types

OSGi Residential Release 6 Supplement Page 19

Table 149.1 Mapping of ZCL Data Types to Java

ZigBeeDataType constant ZigBee type Java Type
NO_DATA No data
GENERAL_DATA_8 8-bit data Byte
GENERAL_DATA_16 16-bit data Short
GENERAL_DATA_24 24-bit data Integer
GENERAL_DATA_32 32-bit data Integer
GENERAL_DATA_40 40-bit data Long
GENERAL_DATA_48 48-bit data Long
GENERAL_DATA_56 56-bit data Long
GENERAL_DATA_64 64-bit data Long
BOOLEAN Boolean Boolean
BITMAP_8 8-bit bitmap Byte
BITMAP_16 16-bit bitmap Short
BITMAP_24 24-bit bitmap Integer
BITMAP_32 32-bit bitmap Integer
BITMAP_40 40-bit bitmap Long
BITMAP_48 48-bit bitmap Long
BITMAP_56 56-bit bitmap Long
BITMAP_64 64-bit bitmap Long
UNSIGNED_INTEGER_8 Unsigned 8-bit integer Short
UNSIGNED_INTEGER_16 Unsigned 16-bit integer Integer
UNSIGNED_INTEGER_24 Unsigned 24-bit integer Integer
UNSIGNED_INTEGER_32 Unsigned 32-bit integer Long
UNSIGNED_INTEGER_40 Unsigned 40-bit integer Long
UNSIGNED_INTEGER_48 Unsigned 48-bit integer Long
UNSIGNED_INTEGER_56 Unsigned 56-bit integer Long
UNSIGNED_INTEGER_64 Unsigned 64-bit integer BigInteger
SIGNED_INTEGER_8 Signed 8-bit integer Byte
SIGNED_INTEGER_16 Signed 16-bit integer Short
SIGNED_INTEGER_24 Signed 24-bit integer Integer
SIGNED_INTEGER_32 Signed 32-bit integer Integer
SIGNED_INTEGER_40 Signed 40-bit integer Long
SIGNED_INTEGER_48 Signed 48-bit integer Long
SIGNED_INTEGER_56 Signed 56-bit integer Long
SIGNED_INTEGER_64 Signed 64-bit integer Long
ENUMERATION_8 8-bit enumeration Short
ENUMERATION_16 16-bit enumeration Integer
FLOATING_SEMI Semi-precision float Float
FLOATING_SINGLE Single precision float Float
FLOATING_DOUBLE Double Double
CHARACTER_STRING Character string Str ing
OCTET_STRING Octet string byte[]
LONG_CHARACTER_STRING Character string Str ing
LONG_OCTET_STRING Octet string byte[]
ARRAY Array

Implementing a ZigBee Endpoint Device Service Specification for ZigBee™ Technology Version 1.0

Page 20 OSGi Residential Release 6 Supplement

ZigBeeDataType constant ZigBee type Java Type
STRUCTURE Structure
SET Set
BAG Bag
CLUSTER_ID Cluster ID Integer
ATTRIBUTE_ID Attribute ID Integer
BACNET_OID BACnet OID1

(Unsigned 32-bit integer)

Long

TIME_OF_DAY Time of day byte[4]
DATE Date byte[4]
UTC_TIME UTC Time Long
IEEE_ADDRESS IEEE address (MAC-48,EUI-48/64) BigInteger
SECURITY_KEY_128 128-bit Security Key byte[8]
UNKNOWN Unknown

1 BACnet OID (Object identifier) data type is included to allow interworking with BACnet (see [5]
ASHRAE 135-2004 Standard). The format is described in the referenced standard.

149.20 Implementing a ZigBee Endpoint
OSGi services can also be exported as ZigBee endpoints to the local networks, in a way that is trans-
parent to typical ZigBee devices endpoints. This allows developers to bridge legacy devices to ZigBee
networks. A ZigBeeEndpoint MUST be registered with the following properties to export an OSGi
service as a ZigBee endpoint:

• ZIGBEE_EXPORT – To indicate that the endpoint is an exportable endpoint.

An OSGi platform can be connected to multiple ZigBee networks. HOST_PID , PAN_ID and
EXTENDED_PAN_ID are used to select the appropriate network. At least one of these properties
MUST be specified. If provided, HOST_PID has priority over PAN_ID and EXTENDED_PAN_ID to iden-
tify the host that is targeted for export.

In addition, the ZigBeeEndpoint service MUST declare the same properties as an imported endpoint.
The bundle registering endpoint services must make sure these properties are set accordingly or
that none of these properties are set. In case a ZigBee host is not initialized yet or the base driver is
not active on the OSGi framework, an endpoint implementation MAY not have any of the above
identifiers.

If the Base Driver is active and at a ZigBee host is started, then the Base Driver makes an attempt
to export the endpoint on the ZigBee network associated to the ZigBee HOST_PID , PAN_ID or
EXTENDED_PAN_ID . The associated ZigBeeNode object MUST be one of the available ZigBeeHost ob-
jects. Every time an endpoint is registered or unregistered with both ZIGBEE_EXPORT and PAN_ID
and/or EXTENDED_PAN_ID properties set, the associated ZigBeeHost service is modified accordingly
(getEndpoints() returns a different array of ZigBeeEndpoint objects).

If - and only if - an error is detected on the properties of the ZigBee endpoint to be exported, then the
Base Driver calls the notExported(ZigBeeException) method with a relevant ZigBeeException object
as the input argument. The method SHOULD be called even if a ZigBee Host is not started.

The endpoint has to be registered with an ID that is unique. If the chosen ID already exists as a prop-
erty of a local endpoint with the same host or if it already exists in an optional cache of the base dri-
ver, the base driver calls the notExported(ZigBeeException) method with the ZigBeeException ob-
ject as the input argument with OSGI_EXISTING_ID error code. The base driver may keep IDs in a

Device Service Specification for ZigBee™ Technology Version 1.0 Event API

OSGi Residential Release 6 Supplement Page 21

cache for endpoints that might come back in the registry. The range of potential IDs is 1-240 accord-
ing to [1] ZigBee Specification.

The reader must note that a same ZigBeeEndpoint object cannot be registered several times with dis-
tinct PAN IDs since thegetNodeAddress() method can only return one ZigBee node address.

If the PAN ID corresponds to more than one ZigBeeHost service, the ZigBeeEndpoint MUST define
the Extended PAN ID property which uniquely identifies a ZigBee network. The base driver will call
notExported(ZigBeeException) with the error code OSGI_MULTIPLE_HOSTS if the Extended PAN ID
property is not properly defined in this specific situation.

Moreover, if the HOST PID corresponds to more than one ZigBeeHost, the base driver will also call
notExported(ZigBeeException) with the error code OSGI_MULTIPLE_HOSTS .

149.21 Event API
Eventing is available in import and export situations:

• External events from the network must be dispatched to listeners inside the OSGi Service Plat-
form. The ZigBee Base driver is responsible for mapping the network events to internal listener
events.

• Implementations of ZigBee endpoints must send out events to local listeners. The ZigBee Base
driver dispatches events to the network from its own listeners.

ZigBee events are sent using the whiteboard pattern, [6] Listeners considered harmful: The white-
board pattern, in which a bundle interested in receiving the ZigBee events registers an object im-
plementing the ZCLEventListener interface. The service MUST be registered with PAN_ID and/or
EXTENDED_PAN_ID properties. These properties indicate the network targeted by the listener since
an OSGi platform can host multiple ZigBee networks.

A filter can be set to limit the events for which a bundle is notified. The ZigBee Base driver must reg-
ister a ZCLEventListener service for every attribute report configured in the configure reporting
commands it receives from the network.

The filter refers to the combination of the properties registered with the ZCLEventListener service.
Each ZCLEventListener MUST be registered with all the following mandatory properties:

• ID – (zigbee.cluster. id/ Integer) Only events generated by endpoints matching a specific cluster
are delivered.

• ID – (zigbee.attr ibute. id/ Integer) Only events generated by endpoints matching a specific at-
tribute are delivered.

• ATTRIBUTE_DATA_TYPE – (zigbee.attr ibute.datatype/Short) The Attribute data type field con-
tains the data type of the attribute that is to be reported (see [2] ZigBee Cluster Library Specification
2.4.7.1.4 Attribute Data Type Field).

The optional properties are:

• IEEE_ADDRESS – (zigbee.node. ieee.address/BigInteger) Only events generated by endpoints
matching the specific node are delivered.

• ENDPOINT_ID – (zigbee.endpoint. id/Short) Only events matching a specific endpoint are deliv-
ered.

• MIN_REPORT_INTERVAL – (zigbee.attr ibute.min.report . interval/ Integer) The minimum inter-
val, in seconds, between issuing reports of the specified attribute (see [2] ZigBee Cluster Library
Specification. – 2.4.7.1.5).

• MAX_REPORT_INTERVAL – (zigbee.attr ibute.max.report . interval/ Integer) The maximum inter-
val, in seconds, between issuing reports of the specified attribute (see [2] ZigBee Cluster Library
Specification. 2.4.7.1.6).

Monitoring Events and Sending Commands Device Service Specification for ZigBee™ Technology Version 1.0

Page 22 OSGi Residential Release 6 Supplement

• REPORTABLE_CHANGE – (zigbee.attr ibute.reportable.change/Double) The minimum change to
the attribute that will result in a report being issued. This property is mandatory if the data type
is analog . If the data type is digital , the base driver will ignore it.

If the endpoint sets a timeout between two attribute reports, the notifyTimeOut(int) method is then
called with the timeout argument. In the import situation, the base driver calls this method on the
relevant listeners when it receives a configure reporting command with a set TIMEOUT_PERIOD
field (see [2] ZigBee Cluster Library Specification 2.4.7 Configure Reporting Command). In the ex-
port situation, the local endpoint calls this method on relevant listeners and, in case the base dri-
ver is one of the notified listeners, it sends a configure reporting request with the appropriate
TIMEOUT_PERIOD field to interested endpoints on the network.

A ZigBee event is represented by a ZigBeeEvent object.

If an event is generated by either the local endpoint or via the base driver for an external device, the
notifyEvent(ZigBeeEvent) method is called on all registered ZCLEventListener services for which
the source event matches the service properties. The way events must be delivered is the same as de-
scribed in Delivering Events in the Life Cycle Layer chapter of the OSGi Core Release 6 specification.

The ZigBee base driver SHOULD group subscriptions into one configure reporting request to the tar-
geted ZigBee device. It SHOULD also notify every listener with respect to their specific expectations.

149.22 Monitoring Events and Sending Commands
In the example below, a button of the user interface monitors the state (on or off) of a smart plug
and enables the user to switch the plug on and off. To monitor the plug state, a ZCLEventListener is
registered with the properties related to the node, endpoint, cluster and attribute representing the
plug and its state. When an appropriate event is sent on the network, the base driver (or a local end-
point implementer) notifies the listener. The listener then changes the state value shown by the but-
ton. When the user clicks on the button, a command is invoked on the plug.

public class UIOnOffButton implements ZCLEventListener {
 public UIOnOffButton(BigInteger ieeeAddress, Short endpointId, Integer
 clusterId, Integer attributeId, Short dataType,
 BundleContext bc) {
 Dictionary properties = new Hashtable();
 properties.put(ZigBeeNode.IEEE_ADDRESS, ieeeAddress);
 properties.put(ZigBeeEndpoint.ENDPOINT_ID, endpointId);
 properties.put(ZCLCluster.ID, clusterId);
 properties.put(ZCLAttribute.ID, attributeId);
 properties.put(ZCLEventListener.ATTRIBUTE_DATA_TYPE, dataType);
 // events will be filtered by the basedriver call notifyEvent() method
 // only when the event comes from a node, endpoint, cluster, attribute
 // matching these properties
 bc.registerService(ZCLEventListener.class.getName(), this, properties);
 }

 public void notifyEvent(ZigBeeEvent event) {
 // change the attribute value of the UICluster
 Object value = event.getValue();
 changeUIValue(value);
 }

 public void notifyTimeOut(int timeout) {
 log.info("Timeout notified");

Device Service Specification for ZigBee™ Technology Version 1.0 Monitoring Events and Sending Commands

OSGi Residential Release 6 Supplement Page 23

 }

 public void onFailure(ZCLException e) {
 log.info("Failure registering the listener: " + e);
 }

 public void changeUIValue(Object value) {

 }

 public void onClick() {
 // the button has been clicked
 // get the ZCLCluster
 ServiceReference[] srs = bundleContext.getServiceReferences(
 ZigBeeEndpoint.class.getName(),
 "(&(" + ZigBeeNode.IEEE_ADDRESS + "=" + ieeeAddress
 + ")(" + ZigBeeEndpoint.ENDPOINT_ID + "=" + endpointID
 + "))");
 if (srs.length>0){
 ZCLCluster onOffCluster =
 ((ZigBeeEndpoint) bundleContext.getService(srs[0]))
 .getServerCluster(ZCL_ONOFF_CLUSTER_ID);
 if (onOffCluster != null) {
 final Promise p = onOffCluster.invoke(new ToggleCommand());
 p.onResolve(new Runnable() {
 public void run(){
 try {
 ZCLFrame frame = (ZCLFrame) p.getValue();
 log.info("toggle command returned success.");
 } catch (InvocationTargetException e) {
 log.info("toggle command returned a failure: "
 + e + ”.”);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 });
 }
 }
 }

 class ToggleCommand implements ZCLFrame {
 ...
 }
...
}

ZCL Exception Device Service Specification for ZigBee™ Technology Version 1.0

Page 24 OSGi Residential Release 6 Supplement

149.23 ZCL Exception
The ZCLException extends the ZigBeeException . It holds information about the different ZigBee
ZCL layers. Error codes specified by ZigBee Alliance are conveyed by the errorCode field of ZCLEx-
ception objects.

149.24 ZDP Exception
The ZDPException extends the ZigBeeException . It holds information about the ZigBee ZDP layer.
Error codes specified by ZigBee Alliance are conveyed by the errorCode field of ZDPException ob-
jects.

149.25 APS Exception
The APSException extends the ZigBeeException . It holds information about the ZigBee APS layer.
Error codes specified by ZigBee Alliance are conveyed by the errorCode field of APSException ob-
jects.

149.26 ZigBee Exception
Some error codes are specified by the OSGi Alliance:

• OSGI_EXISTING_ID– another endpoint exists with the same ID.
• OSGI_MULTIPLE_HOSTS– several hosts exist for this PAN ID target or HOST_PID target.

149.27 ZCL Frame
The ZCLFrame contains a ZCLHeader , and a payload. It must used when invoking a command.

The ZCLHeader describes the header of a ZCLFrame .

The transaction id of each ZCLHeader must be managed by the base driver.

Only getters (not setters) are shared by client applications, the base driver and endpoint implemen-
tations. Therefore only getters are specified.

149.28 ZigBee Group
ZigBeeGroup enables group management (that is, it provides jo inGroup(Str ing) and
leaveGroup(Str ing) methods).

The creation of groups is made through the createGroupService(int) method.

A ZigBeeGroup service should be registered with the following property:

• ID – (zigbee.group.id/Integer) The 16-bit group address of the device.

And, the following ZigBeeEndpoint properties:

• DEVICE_CATEGORY

Device Service Specification for ZigBee™ Technology Version 1.0 ZigBee Networking

OSGi Residential Release 6 Supplement Page 25

• INPUT_CLUSTERS
• HOST_PID

A ZigBeeGroup service enables the ZigBee groupcasting of command invocation thanks to the
groupcast(int ,ZCLFrame) and groupcast(int ,ZCLFrame,Str ing) methods. A groupcast message is re-
ceived by the endpoints that are members of the targeted group.

149.29 ZigBee Networking

149.29.1 Logical node type
The ZigBee specification defines three types of ZigBee nodes on the network:

• ZigBee Coordinator (ZC) – The most capable device, the coordinator forms the root of the net-
work. There is exactly one ZigBee coordinator in every network. It is able to store information
about the network, to act as the Trust Center and repository for security keys. COORDINATOR
represents the ZigBee coordinator.

• ZigBee Router (ZR) – A router is capable of extending a ZigBee network by routing data from oth-
er ZigBee devices. ROUTER represents a ZigBee router.

• ZigBee End Device (ZED) – An end device contains just enough functionality to talk to the parent
node (either the coordinator or a router); it cannot relay data from other devices. ZED represents
a ZigBee end device.

Every discovered ZigBeeNode on the network has a logical node type returned by calling the get-
LogicalType() method on the node's ZigBeeNodeDescr iptor .

149.29.2 Network selection
The base driver provides a ZigBeeHost object for every available ZigBee local host. A ZigBee local
host can represent a ZigBee chip on a USB dongle, a ZigBee built-in chip or a ZigBee Gateway Device
(see [7] ZigBee Gateway). This object must be registered as a ZigBeeHost service. The ZigBeeHost in-
terface has methods to start and stop the host, to store the networking configuration information
(channel, channel mask, logical type, PAN ID, Extended PAN ID, security level, network key), and to
open the network for devices to join it (permit Join(short)).

ZigBeeHost also enables the broadcast of ZCL commands on a ZigBee network thanks to the
broadcast(int ,ZCLFrame) and broadcast(int ,ZCLFrame,Str ing) methods. Broadcasting enables the
sending of a ZCL command to all clusters identified with an identifier of all endpoints available on
the nodes of a ZigBee network within a number of hops defined by the broadcast radius of the coor-
dinator (see the getBroadcastRadius() and setBroadcastRadius(short) methods).

In ZigBee networks, the coordinator must select a PAN identifier and a channel to start a network.
After that, it behaves essentially like a router. The coordinator and routers can allow other devices to
join the network and route data.

After an end device joins a router or coordinator, it is able to transmit or receive data through that
router or coordinator. The router or coordinator that allowed an end device to join becomes the par-
ent of the end device. Since the end device can sleep, the parent must be able to buffer or retain in-
coming data packets targeting the end device until the end device is able to wake up and receive the
data.

149.29.3 Network coordination
When the ZigBeeHost is configured as the network coordinator, the getLogicalType() method on
the node's ZigBeeNodeDescr iptor MUST return COORDINATOR . The ZigBeeHost object will then
be able to use the following operations for managing the network:

Security Device Service Specification for ZigBee™ Technology Version 1.0

Page 26 OSGi Residential Release 6 Supplement

• updateNetworkChannel(byte) - Updates the network channel.
• setChannelMask(int) - Sets a new configured channel mask.
• refreshNetwork() – Requests the base driver to launch new discovery requests and refresh de-

vices service registration according to current devices availability. This method is made manda-
tory since ZigBee specification allows devices not to notify the network when they leave it.

149.29.4 Networking considerations
The Network Address is a 16-bit address that is assigned by the coordinator when a node has joined a
network and that must be unique for a given network in order for the node to be identified uniquely.
ZigBeeNode provides getNetworkAddress() and getIEEEAddress() which returns device network ad-
dress and device IEEE MAC address.

149.30 Security

149.30.1 Security management
ZigBee security is based on a 128-bit algorithm built on the security model provided by IEEE
802.15.4. ZigBee specification which defines the Trust Center.

The Trust Center is the device trusted by devices within a network to distribute keys for the purpose
of network and end-to-end application configuration management. All members of the network
shall recognize exactly one Trust Center, and there shall be exactly one Trust Center in each secure
network.

The security of a network of ZigBee devices is based on link keys and a network key. Unicast com-
munication between entities is secured by means of a 128-bit link key shared by two devices, one
of those is normally the Trust Center. Broadcast communications are secured by means of a 128-
bit network key shared among all devices in the network. The master key is only used as an initial
shared secret between two devices when they perform the Key Establishment to generate Link Keys.

Security configuration is provided by the getSecurityLevel() method returning whether the securi-
ty mode is activated or not on the ZigBee network.

A ZigBeeHost with a COORDINATOR logical node type will acts as a the Trust Center according to
the ZigBee specification. It can also be any other device on the network. The Trust Center stores all
the shared network keys. The getPreconfiguredLinkKey() method returns the network master key.

149.30.2 Conditional permission
When a bundle registers a ZigBeeEndpoint OSGi service, then the base driver exposes this end-
point on the outside ZigBee network and this endpoint has the ability to communicate with the
other network devices. The base driver also provides an equivalent behavior when discovering a
ZigBee endpoint from the outside network and exposing it as an OSGi Service in the OSGi Frame-
work service registry. It is therefore recommended that ServicePermission[ZigBeeHost|ZigBeeEnd-
point|ZCLEventListener, REGISTER|GET] be used sparingly and only for trusted bundles.

149.31 org.osgi.service.zigbee

Device Service Specification for ZigBee Technology.

This is the main package of this specification. It defines the interfaces that models the ZigBee con-
cepts, like the ZigBee node and the ZigBee endpoint.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Residential Release 6 Supplement Page 27

Each time a new ZigBee node is discovered, the driver will register a
org.osgi.service.zigbee.ZigBeeNode service and then one org.osgi.service.zigbee.ZigBeeEndpoint ser-
vice for each ZigBee endpoint discovered on the node.

org.osgi.service.zigbee.ZigBeeEndpoint interface provides the
org.osgi.service.zigbee.ZigBeeEndpoint.getServerCluster(int) method to get an interface reference to
a ZCLCluster object.

org.osgi.service.zigbee.ZCLCluster interface contains methods that directly maps to the ZCL pro-
file-wide commands, like Read Attributes and Write Attributes, and allow the developer to forge its
own commands and send them through the invoke() methods.

ZCL Attribute reportings are configured, registering a org.osgi.service.zigbee.ZCLEventListener, pro-
vided that this service is registered with the right service properties.

In addition to ZCL frames, the current specification allows also to send ZDP frames. Broadcasting
and endpoint broadcasting is also supported for ZCL frames.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.z igbee; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.z igbee; vers ion="[1.0,1.1)"

149.31.1 Summary

• APSException - This exception class is specialized for the APS errors.
• ZCLAttr ibute - This interface represents a ZCLAttribute.
• ZCLAttr ibuteInfo - This interface provides information about the attribute, like its ZCL attribute

ID, if it manufacturer specific and about its data type (see getDataType).
• ZCLCluster - This interface represents a ZCL Cluster.
• ZCLCommandResponse - A response event for a ZCLCommandResponseStream.
• ZCLCommandResponseStream - This type represents a stream of responses to a broadcast opera-

tion.
• ZCLEventListener - This interface represents a listener to events from ZigBee Device nodes.
• ZCLException - This class represents root exception for all the code related to ZigBee/ZCL.
• ZCLFrame - This interface models the ZigBee Cluster Library Frame.
• ZCLHeader - This interface represents the ZCL Frame Header.
• ZCLReadStatusRecord - This interface the reading result of

ZCLCluster.readAttributes(ZCLAttributeInfo[]).
• ZDPException - This class represents root exception for all the code related to ZDP.
• ZDPFrame - This interface represents a ZDP frame.
• ZDPResponse - This type represents a successful ZDP invocation.
• ZigBeeDataInput - The ZigBeeDataInput interface is designed for converting a series of bytes in

Java data types.
• ZigBeeDataOutput - The ZigBeeDataOutput interface is designed for converting Java data types

into a series of bytes.
• ZigBeeDataTypes - This class contains the constants that are used internally by these API to rep-

resent the ZCL data types.
• ZigBeeEndpoint - This interface represents a ZigBee EndPoint.
• ZigBeeEvent - This interface represents events generated by a ZigBee Device node.

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 28 OSGi Residential Release 6 Supplement

• ZigBeeException - This class represents root exception for all the code related to ZigBee.
• ZigBeeGroup - This interface represents a ZigBee Group.
• ZigBeeHost - This interface represents the machine that hosts the code to run a ZigBee device or

client.
• ZigBeeLinkQual ity - This interface represents an entry of the NeighborTableList.
• ZigBeeNode - This interface represents a ZigBee node, means a physical device that can commu-

nicate using the ZigBee protocol.
• ZigBeeRoute - This interface represents an entry of the RoutingTableList

149.31.2 public class APSException
extends ZigBeeException
This exception class is specialized for the APS errors. See "Table 2.26 APS Sub-layer Status Values" of
the ZigBee specification 1_053474r17ZB_TSC-ZigBee-Specification.pdf.

149.31.2.1 public static final int ASDU_TOO_LONG = 65

A transmit request failed since the ASDU is too large and fragmentation is not supported.

149.31.2.2 public static final int DEFRAG_DEFERRED = 66

A received fragmented frame could not be defragmented at the current time.

149.31.2.3 public static final int DEFRAG_UNSUPPORTED = 67

A received fragmented frame could not be defragmented since the device does not support fragmen-
tation.

149.31.2.4 public static final int ILLEGAL_REQUEST = 68

A parameter value was out of range.

149.31.2.5 public static final int INVALID_BINDING = 69

An APSME-UNBIND.request failed due to the requested binding link not existing in the binding ta-
ble.

149.31.2.6 public static final int INVALID_GROUP = 70

An APSME-REMOVE-GROUP.request has been issued with a group identifier that does not appear in
the group table.

149.31.2.7 public static final int INVALID_PARAMETER = 71

A parameter value was invalid or out of range.

149.31.2.8 public static final int NO_ACK = 72

An APSDE-DATA.request requesting acknowledged transmission failed due to no acknowledgment
being received.

149.31.2.9 public static final int NO_BOUND_DEVICE = 73

An APSDE-DATA.request with a destination addressing mode set to 0x00 failed due to there being
no devices bound to this device.

149.31.2.10 public static final int NO_SHORT_ADDRESS = 74

An APSDE-DATA.request with a destination addressing mode set to 0x03 failed due to no corre-
sponding short address found in the address map table.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Residential Release 6 Supplement Page 29

149.31.2.11 public static final int NOT_SUPPORTED = 75

An APSDE-DATA.request with a destination addressing mode set to 0x00 failed due to a binding ta-
ble not being supported on the device.

149.31.2.12 public static final int SECURED_LINK_KEY = 76

An ASDU was received that was secured using a link key.

149.31.2.13 public static final int SECURED_NWK_KEY = 77

An ASDU was received that was secured using a network key.

149.31.2.14 public static final int SECURITY_FAIL = 78

An APSDE-DATA.request requesting security has resulted in an error during the corresponding secu-
rity processing.

149.31.2.15 public static final int SUCCESS = 0

A request has been executed successfully.

149.31.2.16 public static final int TABLE_FULL = 79

An APSME-BIND.request or APSME.ADDGROUP. request issued when the binding or group tables,
respectively, were full.

149.31.2.17 public static final int UNSECURED = 80

An ASDU was received without any security.

149.31.2.18 public static final int UNSUPPORTED_ATTRIBUTE = 81

An APSME-GET.request or APSMESET. request has been issued with an unknown attribute identifi-
er.

149.31.2.19 public APSException(String errorDesc)

errorDesc exception an error description.

□ Creates a APSException containing only a description, but no error codes. If issued on this exception
the getErrorCode() and getZigBeeErrorCode() methods return the UNKNOWN_ERROR constant.

149.31.2.20 public APSException(int errorCode,String errorDesc)

errorCode One of the error codes defined in this interface or UNKNOWN_ERROR if the actual error is not list-
ed in this interface. In this case if the native ZigBee error code is known, it is preferred to use the
APSException(int, int, String) constructor, passing UNKNOWN_ERROR as first parameter and the
native ZigBee error as the second.

errorDesc An error description which explain the type of problem.

□ Creates a APSException containing a specific errorCode . Using this constructor with errorCode set
to UNKNOWN_ERROR is equivalent to call APSException(String).

149.31.2.21 public APSException(int errorCode,int zigBeeErrorCode,String errorDesc)

errorCode One of the error codes defined in this interface or UNKNOWN_ERROR the actual error is not cov-
ered in this interface. In this case the zigBeeErrorCode parameter must be the actual status code re-
turned by the ZigBee stack.

zigBeeErrorCode The actual APS status code or UNKNOWN_ERROR if this status is unknown.

errorDesc An error description which explain the type of problem.

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 30 OSGi Residential Release 6 Supplement

□ Creates a APSException containing a specific errorCode or zigBeeErrorCode . Using this construc-
tor with both the errorCode and zigBeeErrorCode set to UNKNOWN_ERROR is equivalent to call
APSException(String).

149.31.3 public interface ZCLAttribute
extends ZCLAttributeInfo
This interface represents a ZCLAttribute.

Its extends ZCLAttributeInfo to add methods to read and write the ZCL attribute from and to the
ZigBee node with respectively the getValue() and setValue(Object) methods.

149.31.3.1 public static final String ID = "zigbee.attribute.id"

Property key for the optional attribute id of a ZigBee Event Listener.

149.31.3.2 public Promise getValue()

□ Gets the current value of the attribute.

As described in section 2.4.1.3 Effect on Receipt of the ZCL specification, a Read
attributes command can have the following status: ZCLException.SUCCESS,
ZCLException.UNSUPPORTED_ATTRIBUTE, or ZCLException.INVALID_VALUE.

Returns A promise representing the completion of this asynchronous call. The response object returned
by Promise.getValue() is the requested attribute value in the relevant Java data type (see get-
DataType() method and ZCLDataTypeDescription.getJavaDataType()) or in byte[] if getDataType()
returns null. The response object is null if an ZCLException.UNSUPPORTED_ATTRIBUTE or
ZCLException.INVALID_VALUE error occurs and the adequate ZCLException is returned by
Promise.getFailure() .

149.31.3.3 public Promise setValue(Object value)

value the Java value to set.

□ Sets the current value of the attribute.

As described in section 2.4.3.3 Effect on Receipt of the ZCL specification, a Write at-
tributes command may return the following status: ZCLException.SUCCESS,
ZCLException.UNSUPPORTED_ATTRIBUTE, ZCLException.INVALID_DATA_TYPE,
ZCLException.READ_ONLY, ZCLException.INVALID_VALUE, or
ZDPException.NOT_AUTHORIZED.

Returns A promise representing the completion of this asynchronous call. Promise.getFailure() returns null
if the attribute value has been successfully written. The adequate ZigBeeException is returned other-
wise.

149.31.4 public interface ZCLAttributeInfo
This interface provides information about the attribute, like its ZCL attribute ID, if it manufacturer
specific and about its data type (see getDataType).

149.31.4.1 public static final String ID = "zigbee.attribute.id"

Property key for the optional attribute id of a ZigBee Event Listener.

149.31.4.2 public ZCLDataTypeDescription getDataType()

□ Returns the data type of this attribute.

Returns The attribute data type. It may be null if the data type is not retrievable (issue with read attribute
and discover attributes commands).

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Residential Release 6 Supplement Page 31

149.31.4.3 public int getId()

□ Returns the ID of this attribute.

Returns the attribute identifier (that is, the attribute's ID).

149.31.4.4 public int getManufacturerCode()

□ Returns the manufacturer code of this attribute.

Returns The manufacturer code that defined this attribute, if the attribute does not belong to any manufac-
ture extension then it returns -1.

149.31.4.5 public boolean isManufacturerSpecific()

□ Checks if the attribute is manufacturer specific.

Returns true if and only if this attribute is related to a manufacturer extension.

149.31.5 public interface ZCLCluster
This interface represents a ZCL Cluster. Along with methods to retrieve the cluster information, like
its ID, it provides methods to asynchronously send commands to the cluster and other methods that
wrap most of the ZCL general commands.

Every asynchronous method defined in this interface returns back its result through the use of a
Promise.

149.31.5.1 public static final String DOMAIN = "zigbee.cluster.domain"

Property key for the optional cluster domain. A ZigBee Event Listener service can announce for
what ZigBee clusters domains it wants notifications.

149.31.5.2 public static final String ID = "zigbee.cluster.id"

Property key for the optional cluster id. A ZigBee Event Listener service can announce for what Zig-
Bee clusters it wants notifications.

149.31.5.3 public static final String NAME = "zigbee.cluster.name"

Property key for the optional cluster name. A ZigBee Event Listener service can announce for what
ZigBee clusters it wants notifications.

149.31.5.4 public Promise getAttribute(int attributeId)

attributeId the ZCL attribute identifier.

□ Returns the cluster ZCLAttribute identifying that matches the given attributeId.
ZCLCluster.getAttribute(int, int) method retrieves manufacturer-specific attributes.

Returns A promise representing the completion of this asynchronous call. In case of success in get-
ting the attribute, the promise will be resolved with a ZCLAttribute instance. If attribut-
eId do not exist in the cluster, then the promise fails with a ZCLException with status code
ZCLException.UNSUPPORTED_ATTRIBUTE.

149.31.5.5 public Promise getAttribute(int attributeId,int code)

attributeId the ZCL attribute identifier

code the manufacturer code of the attribute to be retrieved. If -1 is used, the method behaves exactly like
ZCLCluster.getAttribute(int)

□ Retrieves a ZCLAttribute object for a manufacturer specific attribute. If the code parameter is -1 it
behaves like the ZCLCluster.getAttribute(int) and retrieves the non-manufacturer specific attribute
attr ibuteId .

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 32 OSGi Residential Release 6 Supplement

Returns A Promise representing the completion of this asynchronous call. The promise will be resolved with
the requested ZCLAttribute. If a command such as ZCL Read Attributes or Discover Attributes has
already been called once by the ZigBee host, the Promise can be quickly resolved. The resolution
may be longer the first time one of the ZCLCluster methods to get one or all attributes is successful-
ly called. If attributeId do not exist in the cluster, then the promise fails with a ZCLException with
status code ZCLException.UNSUPPORTED_ATTRIBUTE

149.31.5.6 public Promise getAttributes()

□ Returns an array of ZCLAttribute objects representing all this cluster's attributes.

This method returns only standard attributes. To retrieve manufacturer specific attributes use
method ZCLCluster.getAttributes(int)

Returns A Promise representing the completion of this asynchronous call. The promise will be resolved with
an array of ZCLAttribute objects.

149.31.5.7 public Promise getAttributes(int code)

code The the manufacturer code. Pass -1 to retrieve standard (that is, non-manufacturer specific) attribut-
es.

□ Returns an array of ZCLAttribute objects representing all the specific manufacturer attributes avail-
able on the cluster.

This method behaves like the ZCLCluster.getAttributes() method if the passed value is -1.

Returns A Promise representing the completion of this asynchronous call. The promise will be resolved with
an array of ZCLAttribute objects. If a command such as ZCL Read Attributes or Discover Attributes
has already been called once by the ZigBee host, the Promise can be quickly resolved. The resolution
may be longer the first time one of the ZCLCluster methods to get one or all attributes is successful-
ly called.

149.31.5.8 public Promise getCommandIds()

□ Returns an array of all the commandIds of the ZCLCluster.

This method is implemented for ZCL devices compliant version equal or later than
1.2 of the Home Automation Profile or other profiles that adds a general command
that enables discovery of command identifiers. When the device implements a pro-
file that does not support this feature, the promise fails with a ZCLException with code
ZCLException.GENERAL_COMMAND_NOT_SUPPORTED.

Returns A Promise representing the completion of this asynchronous call. The promise will be resolved with
short[] containing the command identifiers supported by the cluster.

149.31.5.9 public int getId()

□ Returns the identifier of this cluster.

Returns the cluster identifier.

149.31.5.10 public Promise invoke(ZCLFrame frame)

frame The frame containing the command to issue.

□ Invokes a command on this cluster with a ZCLFrame. The returned promise provides the invocation
response in an asynchronous way. The source endpoint is not specified in this method call. To send
the appropriate message on the network, the base driver must generate a source endpoint. The latter
must not correspond to any exported endpoint.

Returns A promise representing the completion of this asynchronous call. Promise.getValue() returns the re-
sponse ZCLFrame.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Residential Release 6 Supplement Page 33

149.31.5.11 public Promise invoke(ZCLFrame frame,String exportedServicePID)

frame The frame containing the command to issue.

exportedServi-
cePID

: the source endpoint of the command request. In targeted situations, the source endpoint is the
valid service PID of an exported endpoint.

□ Invokes a command on this cluster. This method is to be used by applications when the targeted de-
vice has to distinguish between source endpoints of the message. For instance, alarms cluster (see
3.11 Alarms Cluster in [ZCL]) generated events are differently interpreted if they come from the
oven or from the intrusion alert system.

Returns A promise representing the completion of this asynchronous call. Promise.getValue() returns the re-
sponse ZCLFrame.

149.31.5.12 public Promise readAttributes(ZCLAttributeInfo[] attributes)

attributes An array of ZCLAttributeInfo.

□ Reads a list of attributes by issuing a ZCL Read Attributes command. The attribute list is provided in
terms of an array of ZCLAttributeInfo objects.

As described in section 2.4.1.3 Effect on Receipt of the ZCL specification, a Read Attributes command re-
sults in a list of attribute status records comprising a mix of successful and unsuccessful attribute
reads.

The method returns a promise. The object used to resolve the Promise is a Map<Integer, ZCLRead-
StatusRecord> . For each Map entry, the key contains the attribute identifier and the value, a ZigBee
Read Attributes Status Record, which is made of the status of the read of this attribute, the ZigBee
data type of the attribute and the attribute value in the corresponding Java wrapper type (or null in
case of an unsupported attribute or in case of an invalid value). For attributes which data type serial-
ization is not supported (that is, ZCLDataTypeDescription.getJavaDataType() returns null), the val-
ue is of type byte[].

When the list of attributes do not fit into a single ZCLFrame, ZigBee clusters truncate the list of at-
tributes returned in the response. The client has to check the Map of results to send a new request
for the attributes which values are missing. In export situations, the base driver may truncate the
read attribute command response sent to networked devices in order to obey the rules.

NOTE: According to the ZigBee Specification all the attributes must be standard attributes or belong
to the same manufacturer code, otherwise the promise must fail with a IllegalArgumentException
exception.

Returns A promise representing the completion of this asynchronous call. The promise may fail with an Il-
legalArgumentException if the array size is 0 or if one of the array entries is nul l or not valid. An Il-
legalArgumentException is also thrown if some of ZCLAttributeInfo are manufacturer specific and
other are standard, or even if there are mix of attributes with different manufacturer specific code. If
the passed argument is nul l the promise must fail with a NullPointerException .

149.31.5.13 public Promise writeAttributes(boolean undivided,Map attributesAndValues)

undivided true if an undivided write attributes command is requested, fa lse if not.

attributesAndVal-
ues

A Map<ZCLAttr ibuteInfo, Object> of attributes and values to be written. For ZCLAttributeInfo ob-
jects which serialization is not supported (that is, getDataType() .getJavaDataType() returns null),
the value must be of type byte[].

□ Writes a set of attributes on the cluster using the ZCL Write Attributes or the Write Attributes Undivid-
ed commands, according to the passed undivided parameter.

The promise resolves with a Map<Integer, Integer> . If all the attributes have been written success-
fully, the map is empty. In case of failure in writing specific attribute(s), the map is filled with en-
tries related to those attributes. Every key is set with the id of an attribute that was not written suc-

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 34 OSGi Residential Release 6 Supplement

cessfully, every value with the status returned in the associated write attribute response record accord-
ingly re-mapped to one of the constants defined in the ZCLException class.

According to the ZigBee Specification all the attributes must be standard attributes or, if manufac-
turer-specific they must have the same manufacturer code, otherwise an IllegalArgumentException
occurs.

Returns A promise representing the completion of this asynchronous call. If resolved successfully the
promise may return an empty Map<Integer, Integer> . Otherwise the map will be filled with the sta-
tus information about the attributes that were not written. The key represents the attributeID and
the value the status present in the corresponding attribute record returned by the ZCL Write Attrib-
utes response message. The original ZCL status values must be re-mapped to the list of status values
listed in the ZCLException class. The promise may fail with an IllegalArgumentException if some of
ZCLAttributeInfo are manufacturer specific and other are standard, or even if there are mix of attrib-
utes with different manufacturer specific code.

149.31.6 public interface ZCLCommandResponse
A response event for a ZCLCommandResponseStream.

149.31.6.1 public Promise getResponse()

□ Returns a promise holding the response.

Returns A Promise holding the ZCLFrame response, or a failure exception if this is not a success response.

149.31.6.2 public boolean isEnd()

□ Checks if this is a terminal close event.

Returns true if this is a terminal close event.

149.31.7 public interface ZCLCommandResponseStream
This type represents a stream of responses to a broadcast operation. It can be closed by the client
using the close method is called. The ZCLCommandResponseStream is used to process a stream
of responses from a ZigBee network. Responses are consumed by registering a handler with
forEach(Predicate). Responses received before a handler is registered are buffered until a handler is
registered, or until the close method is called. A handler consumes events returning true to contin-
ue delivery. At some point the ZigBee service invocation will terminate event delivery by sending a
close event (a ZCLCommandResponse which returns true from ZCLCommandResponse.isEnd(). Af-
ter a close event the handler function will be dereferenced.

149.31.7.1 public void close()

□ Closes this response, indicating that no further responses are needed. Any buffered responses will be
discarded, and a close event will be sent to a handler if it is registered.

149.31.7.2 public void forEach(Predicate handler)

handler A handler to process ZCLCommandResponse objects

□ Registers a handler that will be called for each of the received responses. Only one handler may be
registered. Any responses that arrive before a handler is registered will be buffered and pushed into
the handler when it is registered. If the handler returns fa lse from its accept method then the han-
dler will be released and no further events will be delivered. Any remaining buffered events will be
discarded, and this object marked as closed. If the handler does not close the stream early then the
ZigBee service implementation will eventually send a close event.

Throws I l legalStateException– if a handler has already been registered, or if this object has been closed
(a ZCLCommandResponse which returns true from ZCLCommandResponse.isEnd(). After a close
event the handler function will be dereferenced.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Residential Release 6 Supplement Page 35

149.31.8 public interface ZCLEventListener
This interface represents a listener to events from ZigBee Device nodes.

149.31.8.1 public static final String ATTRIBUTE_DATA_TYPE = "zigbee.attribute.datatype"

Property key for the optional attribute data type of an attribute reporting configuration record, cf.
ZCL Figure 2.16 Format of the Attribute Reporting Configuration Record.

149.31.8.2 public static final String MAX_REPORT_INTERVAL = "zigbee.attribute.max.report.interval"

Property key for the optional maximum interval, in seconds between issuing reports of the at-
tribute. A ZigBee Event Listener service can declare the maximum frequency at which events it
wants notifications.

149.31.8.3 public static final String MIN_REPORT_INTERVAL = "zigbee.attribute.min.report.interval"

Property key for the optional minimum interval, in seconds between issuing reports of the attribute.
A ZigBee Event Listener service can declare the minimum frequency at which events it wants notifi-
cations.

149.31.8.4 public static final String REPORTABLE_CHANGE = "zigbee.attribute.reportable.change"

Property key for the optional maximum change to the attribute that will result in a report being is-
sued. A ZigBee Event Listener service can declare the maximum frequency at which events it wants
notifications.

149.31.8.5 public void notifyEvent(ZigBeeEvent event)

event a set of events.

□ Notifies the reception of an event. This method is called asynchronously.

149.31.8.6 public void notifyTimeOut(int timeout)

timeout the timeout in seconds.

□ Notifies that the timeout is elapsed. No event will be received in the interval.

149.31.8.7 public void onFailure(ZCLException e)

e the ZCLException.

□ Notifies that a failure has occurred.

That is, when either a ZCLException.UNSUPPORTED_ATTRIBUTE,
ZCLException.UNREPORTABLE_TYPE, ZCLException.INVALID_VALUE, or
ZCLException.INVALID_DATA_TYPE status occurs.

149.31.9 public class ZCLException
extends ZigBeeException
This class represents root exception for all the code related to ZigBee/ZCL. The provided constants
names, but not the values, maps to the ZCL error codes defined in the ZCL specification.

149.31.9.1 public static final int CALIBRATION_ERROR = 18

ZCL Calibration Error error code.

149.31.9.2 public static final int CLUSTER_COMMAND_NOT_SUPPORTED = 3

ZCL Cluster Command Not Supported error code.

149.31.9.3 public static final int DUPLICATE_EXISTS = 12

ZCL Duplicate Exists error code.

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 36 OSGi Residential Release 6 Supplement

149.31.9.4 public static final int FAILURE = 1

ZCL Failure error code.

149.31.9.5 public static final int GENERAL_COMMAND_NOT_SUPPORTED = 4

ZCL General Command Not Supported error code.

149.31.9.6 public static final int HARDWARE_FAILURE = 16

HARDWARE_FAILURE - in this case, an additional exception describing the problem can be nested.

149.31.9.7 public static final int INSUFFICIENT_SPACE = 11

ZCL Insufficient Space error code.

149.31.9.8 public static final int INVALID_DATA_TYPE = 15

ZCL Invalid Data Type error code.

149.31.9.9 public static final int INVALID_FIELD = 7

ZCL Invalid Field error code.

149.31.9.10 public static final int INVALID_VALUE = 9

ZCL Invalid Value error code.

149.31.9.11 public static final int MALFORMED_COMMAND = 2

ZCL Malformed Command error code.

149.31.9.12 public static final int MANUF_CLUSTER_COMMAND_NOT_SUPPORTED = 5

ZCL Manuf Cluster Command Not Supported error code.

149.31.9.13 public static final int MANUF_GENERAL_COMMAND_NOT_SUPPORTED = 6

ZCL Manuf General Command Not Supported error code.

149.31.9.14 public static final int NOT_FOUND = 13

ZCL Not Found error code.

149.31.9.15 public static final int READ_ONLY = 10

ZCL Read Only error code.

149.31.9.16 public static final int SOFTWARE_FAILURE = 17

Software Failure error code - in this case, an additional exception describing the problem can be
nested.

149.31.9.17 public static final int SUCCESS = 0

ZCL Success error code.

149.31.9.18 public static final int UNREPORTABLE_TYPE = 14

Unreportable Type error code.

149.31.9.19 public static final int UNSUPPORTED_ATTRIBUTE = 8

ZCL Unsupported Attribute error code.

149.31.9.20 public ZCLException(String errorDesc)

errorDesc exception error description.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Residential Release 6 Supplement Page 37

□ Creates a ZCLException containing only a description, but no error codes. If issued on this exception
the getErrorCode() and getZigBeeErrorCode() methods return the UNKNOWN_ERROR constant.

149.31.9.21 public ZCLException(int errorCode,String errorDesc)

errorCode One of the error codes defined in this interface or UNKNOWN_ERROR if the actual error is not list-
ed in this interface. In this case if the native ZigBee error code is known, it is preferred to use the
ZCLException(int, int, String) constructor, passing UNKNOWN_ERROR as first parameter and the
native ZigBee error as the second.

errorDesc An error description which explain the type of problem.

□ Creates a ZCLException containing a specific errorCode . Using this constructor with errorCode set
to UNKNOWN_ERROR is equivalent to call ZCLException(String).

149.31.9.22 public ZCLException(int errorCode,int zigBeeErrorCode,String errorDesc)

errorCode One of the error codes defined in this interface or UNKNOWN_ERROR the actual error is not cov-
ered in this interface. In this case the zigBeeErrorCode parameter must be the actual status code re-
turned by the ZigBee stack.

zigBeeErrorCode The actual ZCL status code or UNKNOWN_ERROR if this status is unknown.

errorDesc An error description which explain the type of problem.

□ Creates a ZCLException containing a specific errorCode or zigBeeErrorCode . Using this construc-
tor with both the errorCode and zigBeeErrorCode set to UNKNOWN_ERROR is equivalent to call
ZCLException(String).

149.31.10 public interface ZCLFrame
This interface models the ZigBee Cluster Library Frame.

149.31.10.1 public byte[] getBytes()

□ Returns a byte array containing the raw ZCL frame, suitable to be sent on the wire. The returned
byte array contains the whole ZCL Frame, including the ZCL Frame Header and the ZCL Frame pay-
load.

Returns a byte array containing a raw ZCL frame, suitable to be sent on the wire. Any modifications issued
on the returned array must not affect the internal representation of the ZCLFrame interface imple-
mentation.

149.31.10.2 public int getBytes(byte[] buffer)

buffer The buffer where to copy the raw ZCL frame.

□ Copy in the passed array the internal raw ZCLFrame.

Returns The actual number of bytes copied.

149.31.10.3 public ZigBeeDataInput getDataInput()

□ Returns ZigBeeDataInput for reading the ZCLFrame payload content. Every call to this method re-
turns a different instance. The returned instances must not share the current position to the under-
lying ZCLFrame payload.

Returns a DataInput for the payload of the ZCLFrame. This method does not generate a copy of the payload.

Throws I l legalStateException– if the InputStream is not available.

149.31.10.4 public ZCLHeader getHeader()

□ Returns the header of this frame.

Returns the header of this frame.

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 38 OSGi Residential Release 6 Supplement

149.31.10.5 public int getSize()

□ Retrieve the current size of the internal raw frame (that is the size of the byte[] that would be re-
turned if calling the getBytes() method.

Returns The size of the raw ZCL frame.

149.31.11 public interface ZCLHeader
This interface represents the ZCL Frame Header.

149.31.11.1 public short getCommandId()

□ Returns the command identifier of this frame.

Returns the command identifier of this frame.

149.31.11.2 public short getFrameControlField()

□ Returns the Frame Control field of this frame.

Returns the frame control field of this frame.

149.31.11.3 public int getManufacturerCode()

□ Returns the manufacturer code of this frame.

Returns the manufacturer code if the ZCL Frame is manufacturer specific, otherwise returns -1.

149.31.11.4 public byte getSequenceNumber()

□ Returns the transaction Sequence Number of this frame.

Returns the transaction sequence number of this frame.

149.31.11.5 public boolean isClientServerDirection()

□ Checks the client server direction of the frame.

Returns the isClientServerDirection value.

149.31.11.6 public boolean isClusterSpecificCommand()

□ Checks the frame Type Sub-field of the frame control field.

Returns true if the frame control field states that the command is cluster specific. Returns false otherwise.

149.31.11.7 public boolean isDefaultResponseDisabled()

□ Checks if the default response is disabled.

Returns true if the ZCL Header Frame Control Field "Disable Default Response Sub-field" is 1. Returns fa lse
otherwise.

149.31.11.8 public boolean isManufacturerSpecific()

□ Checks if the frame is manufacturer specific.

Returns true if the ZCL frame is manufacturer specific (that is, the Manufacturer Specific Sub-field of the
ZCL Frame Control Field is 1.

149.31.12 public interface ZCLReadStatusRecord
This interface the reading result of ZCLCluster.readAttributes(ZCLAttributeInfo[]).

149.31.12.1 public ZCLAttributeInfo getAttributeInfo()

□ Returns the ZCLAttributeInfo related to the reading operation.

Returns the ZCLAttributeInfo related to the reading operation.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Residential Release 6 Supplement Page 39

149.31.12.2 public ZigBeeException getFailure()

□ Returns the potential failure of the reading operation.

Returns null in case of success, otherwise the ZigBeeException specifying the failing of the reading.

149.31.12.3 public Object getValue()

□ Returns the value of the related read attribute.

Returns null in case of failure or invalid data, otherwise the Java Object representing the ZigBee value.

149.31.13 public class ZDPException
extends ZigBeeException
This class represents root exception for all the code related to ZDP.

See Table 2.137 ZDP Enumerations Description in ZIGBEE SPECIFICATION: 1_053474r17ZB_TSC-
ZigBee-Specification.pdf.

149.31.13.1 public static final int DEVICE_NOT_FOUND = 34

The requested device did not exist on a device following a child descriptor request to a parent.

149.31.13.2 public static final int INSUFFICIENT_SPACE = 42

The device does not have storage space to support the requested operation.

149.31.13.3 public static final int INV_REQUESTTYPE = 33

The supplied request type was invalid.

149.31.13.4 public static final int INVALID_EP = 35

The supplied endpoint was equal to 0x00 or between 0xf1 and 0xff.

149.31.13.5 public static final int NO_DESCRIPTOR = 41

A child descriptor was not available following a discovery request to a parent.

149.31.13.6 public static final int NO_ENTRY = 40

The unbind request was unsuccessful due to the coordinator or source device not having an entry in
its binding table to unbind.

149.31.13.7 public static final int NO_MATCH = 39

The end device bind request was unsuccessful due to a failure to match any suitable clusters.

149.31.13.8 public static final int NOT_ACTIVE = 36

The requested endpoint is not described by a simple descriptor.

149.31.13.9 public static final int NOT_AUTHORIZED = 45

The permissions configuration table on the target indicates that the request is not authorized from
this device.

149.31.13.10 public static final int NOT_PERMITTED = 43

The device is not in the proper state to support the requested operation.

149.31.13.11 public static final int NOT_SUPPORTED = 37

The requested optional feature is not supported on the target device.

149.31.13.12 public static final int SUCCESS = 0

The requested operation or transmission was completed successfully.

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 40 OSGi Residential Release 6 Supplement

149.31.13.13 public static final int TABLE_FULL = 44

The device does not have table space to support the operation.

149.31.13.14 public static final int TIMEOUT = 38

A timeout has occurred with the requested operation.

149.31.13.15 public ZDPException(String errorDesc)

errorDesc exception error description.

□ Creates a ZDPException containing only a description, but no error codes. If issued on this excep-
tion the getErrorCode() and getZigBeeErrorCode() methods return the UNKNOWN_ERROR con-
stant.

149.31.13.16 public ZDPException(int errorCode,String errorDesc)

errorCode One of the error codes defined in this interface or UNKNOWN_ERROR if the actual error is not list-
ed in this interface. In this case if the native ZigBee error code is known, it is preferred to use the
ZDPException(int, int, String) constructor, passing UNKNOWN_ERROR as first parameter and the
native ZigBee error as the second.

errorDesc An error description which explain the type of problem.

□ Creates a ZDPException containing a specific errorCode . Using this constructor with errorCode set
to UNKNOWN_ERROR is equivalent to call ZDPException(String).

149.31.13.17 public ZDPException(int errorCode,int zigBeeErrorCode,String errorDesc)

errorCode One of the error codes defined in this interface or UNKNOWN_ERROR the actual error is not cov-
ered in this interface. In this case the zigBeeErrorCode parameter must be the actual status code re-
turned by the ZigBee stack.

zigBeeErrorCode The actual ZDP status code or UNKNOWN_ERROR if this status is unknown.

errorDesc An error description which explain the type of problem.

□ Creates a ZDPException containing a specific errorCode or zigBeeErrorCode . Using this construc-
tor with both the errorCode and zigBeeErrorCode set to UNKNOWN_ERROR is equivalent to call
ZDPException(String).

149.31.14 public interface ZDPFrame
This interface represents a ZDP frame.

See Figure 2.19 Format of the ZDP Frame ZIGBEE SPECIFICATION: 1_053474r17ZB_TSC-Zig-
Bee-Specification.pdf.

This interface MUST be implemented by the developer invoking the ZigBeeNode.invoke(int, int,
ZDPFrame) method.

Notes:

• This interface hides on purpose the Transaction Sequence Number field because it MUST be han-
dled internally by the ZigBee Base Driver

• The interface does not provide any method for writing the payload because the ZigBee Base Dri-
ver needs only to read the payload.

149.31.14.1 public ZigBeeDataInput getDataInput()

□ Returns the ZigBeeDataInput of the payload of this frame.

Returns the ZigBeeDataInput of the payload of the ZDPFrame. This method, in contrary to getPayload(),
doesn't require to create a copy of the payload.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Residential Release 6 Supplement Page 41

Throws I l legalStateException– if a ZigBeeDataInput stream cannot be returned because the underlying
ZDPFrame implementation was not correctly initialized.

149.31.14.2 public byte[] getPayload()

□ Returns a copy of the payload of this frame.

Returns A copy of the payload of this frame.

149.31.15 public interface ZDPResponse
This type represents a successful ZDP invocation. Note that the underlying call may not have suc-
ceeded, The ZDPFrame frame must be introspected to identify the response from the ZigBeeNode.

149.31.15.1 public int getClusterId()

□ Returns the clusterId this response refers to.

Returns the clusterId this response refers to.

149.31.15.2 public ZDPFrame getFrame()

□ Returns the ZDPFrame containing the response.

Returns the ZDPFrame containing the response.

149.31.16 public interface ZigBeeDataInput
The ZigBeeDataInput interface is designed for converting a series of bytes in Java data types. The
purpose of this interface is the same as the DataInput interface available in the standard Java library,
with the difference that in this interface, byte ordering is little endian, whereas in the DataInput in-
terface is big endian.

Each method provided by this interface read one or more bytes from the underlying stream, com-
bine them, and return a Java data type. The pointer to the stream is then moved immediately after
the last byte read. If this pointer past the available buffer bounds, a subsequent call to one of these
methods will throw a EOFException.

149.31.16.1 public byte readByte() throws IOException

□ Reads a byte from the DataInput Stream.

Returns the byte read from the data input.

Throws EOFException– When the end of the input has been reached and there are no more data to read.

IOException– If an I/O error occurs.

149.31.16.2 public byte[] readBytes(int len) throws IOException

len the number of bytes to read.

□ Reads the specified amount of bytes from the underlying stream and return a copy of them. If the
number of available bytes is less than the requested len, it throws an EOFException.

Returns return a copy of the bytes contained in the stream.

Throws EOFException– if there are not at least len bytes left on the data input.

IOException– If an I/O error occurs.

149.31.16.3 public double readDouble() throws IOException

□ Reads a number of type Double.

Returns a decoded double.

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 42 OSGi Residential Release 6 Supplement

Throws EOFException– if there are not at least size 8 bytes left on the data input.

IOException– If an I/O error occurs.

149.31.16.4 public float readFloat(int size) throws IOException

size expected value for this parameter are 2 or 4 depending if reading
ZigBeeDataTypes.FLOATING_SEMI or ZigBeeDataTypes.FLOATING_SINGLE.

□ Reads a number of type Float.

Returns The f loat number read from the data input.

Throws EOFException– if there are not at least size bytes left on the data input.

IOException– If an I/O error occurs.

I l legalArgumentException– If the passed size is not in the allowed range.

149.31.16.5 public int readInt(int size) throws IOException

size the number of bytes that have to be read. Allowed values for this parameter are in the range [1, 4].

□ Reads an integer of the specified size . The sign bit of the size -bytes integer is left-extended. In oth-
er words if a readInt(2) is issued and the byte read are 0x01, 0x02 and 0xf0, the method returns
0xfff00201. For this reason if the 4 bytes read from the stream represent an unsigned value, to get the
expected value the and bitwise operator must be used:

int u = readInt(3) & 0xffffff ;

Returns the integer read from the data input.

Throws EOFException– When the end of the input has been reached and there are no more data to read.

IOException– If an I/O error occurs.

I l legalArgumentException– If the passed size is not in the allowed range.

149.31.16.6 public long readLong(int size) throws IOException

size the number of bytes that have to be read. Allowed values for this parameter are in the range [1, 8].

□ Reads a certain amount of bytes and returns a long. The sign bit of the read size -bytes long is left-ex-
tended. In other words if a readLong(2) is issued and the byte read are 0x01 and 0xf0, the method re-
turns 0xfffffffffffff001L. For this reason if the 2 bytes read from the stream represent an unsigned val-
ue, to get the expected value the and bitwise operator must be used:

long u = readLong(2) & 0xffff ;

Returns The long value read from the data input.

Throws EOFException– if there are not at least size bytes left on the data input.

IOException– If an I/O error occurs.

I l legalArgumentException– If the passed size is not in the allowed range.

149.31.17 public interface ZigBeeDataOutput
The ZigBeeDataOutput interface is designed for converting Java data types into a series of bytes. The
purpose of this interface is the same as the DataOutput interface provided by Java, with the differ-
ence that in this interface, the generated bytes ordering is little endian, whereas in the DataOutput
is big endian.

149.31.17.1 public void writeByte(byte value)

value The value to append.

□ Appends a byte to the data output.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Residential Release 6 Supplement Page 43

To avoid losing information, the passed value must be in the range [-128, 127] for signed numbers
and [0, 255] for unsigned numbers.

149.31.17.2 public void writeBytes(byte[] bytes,int length) throws IOException

bytes A buffer containing the bytes to append to the data output stream.

length The length in bytes that have to be actually appended.

□ Appends on the Data Output Stream a byte array. The byte array is written on the data output start-
ing from the byte at index 0.

Throws IOException– If an I/O error occurs.

I l legalArgumentException– If the passed buffer is null or shorter than length bytes.

149.31.17.3 public void writeDouble(double value) throws IOException

value The double value to append.

□ Appends on the Data Output Stream a double value.

Throws IOException– If an I/O error occurs.

149.31.17.4 public void writeFloat(float value,int size) throws IOException

value The f loat value to append.

size The size in bytes that have to be actually appended. The size must be 2 for semi precision floats or 4
for standard precision floats (see the ZigBee Cluster Library specifications).

□ Appends on the Data Output Stream a float value.

Throws IOException– If an I/O error occurs.

I l legalArgumentException– If the passed size is not within the allowed range.

149.31.17.5 public void writeInt(int value,int size) throws IOException

value The integer value to append

size The size in bytes that have to be actually appended. The size must be in the range [1,4].

□ Appends an int value to the data output.

To avoid losing information, according to the size argument, the passed long value if it represents a
signed number must fit in the range [-2^(size * 8 - 1), -2^(size * 8 - 1) - 1].

For unsigned numbers it should fit in the range [0, -2^(size * 8) - 1].

For instance if size is 2 the correct range for signed numbers is [0xffff8000, 0x7fff] (that is, [-32768,
+32767]), whereas for unsigned numbers is [0L, 0xffff].

Although this method allows write even 1 byte of the passed int value, it is suggested to use the
writeByte(byte) because this latter could be implemented in a more efficient way.

Throws IOException– If an I/O error occurs.

I l legalArgumentException– If the passed size is not within the allowed range.

149.31.17.6 public void writeLong(long value,int size) throws IOException

value The long value to append

size The size in bytes that have to be actually appended. The size must be in the range [1,8].

□ Appends a long to the data output.

To avoid losing information, according to the size argument, the passed long value if it represents a
signed number must fit in the range [-2^(size * 8 - 1), -2^(size * 8 - 1) - 1].

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 44 OSGi Residential Release 6 Supplement

For unsigned numbers it should fit in the range [0, -2^(size * 8) - 1].

For instance if size is 3 the correct range for signed numbers is [0xffffffffff800000L, 0x7fffffL] (that is,
[-21474836448, +2147483647]), whereas for unsigned numbers is [0L, 0xffffffL].

Although this method allows write even 1 byte of the passed long value, it is suggested to use the
writeByte(byte) because this latter could be implemented in a more efficient way.

Throws IOException– If an I/O error occurs.

I l legalArgumentException– If the passed size is not within the allowed range.

149.31.18 public class ZigBeeDataTypes
This class contains the constants that are used internally by these API to represent the ZCL data
types.

These constants do not match the values used in the ZigBee specification, but follow the rules be-
low:

• bit 0-3: if bit 6 is one, these bits represents the size of the data type in bytes.
• bit 6: if set to 1 bits 0-3 represents the size of the data type in bytes.

Related documentation: [1] ZigBee Cluster Library specification, Document 075123r04ZB, May 29,
2012.

149.31.18.1 public static final short ARRAY = 16

According to ZigBee Cluster Library [1], an Array is an ordered sequence of zero or more elements, all
of the same data type. This data type may be any ZCL defined data type, including Array, Structure,
Bag or Set. The total nesting depth is limited to 15.

149.31.18.2 public static final short ATTRIBUTE_ID = 6

The type of an attribute identifier.

149.31.18.3 public static final short BACNET_OID = 7

According to ZigBee Cluster Library [1], the BACnet OID data type is included to allow interworking
with BACnet. The format is described in the referenced standard.

149.31.18.4 public static final short BAG = 19

According to ZigBee Cluster Library [1], a Bag behaves exactly the same as a Set, except that two ele-
ments may have the same value.

149.31.18.5 public static final short BITMAP_16 = 89

Bitmap16-bit

149.31.18.6 public static final short BITMAP_24 = 90

Bitmap 24-bit

149.31.18.7 public static final short BITMAP_32 = 91

Bitmap 32-bit

149.31.18.8 public static final short BITMAP_40 = 92

Bitmap 40-bit

149.31.18.9 public static final short BITMAP_48 = 93

Bitmap 48-bit

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Residential Release 6 Supplement Page 45

149.31.18.10 public static final short BITMAP_56 = 94

Bitmap 56-bit

149.31.18.11 public static final short BITMAP_64 = 95

Bitmap 64-bit

149.31.18.12 public static final short BITMAP_8 = 88

According to ZigBee Cluster Library [1], the Bitmap type holds logical values, one per bit, depending
on its length. There is no value that represents an invalid value of this type. The Bitmap type is de-
fined with several sizes: 8, 16, 24, 32, 40, 48, 56 and 64 bits.

149.31.18.13 public static final short BOOLEAN = 1

According to ZigBee Cluster Library [1], the Boolean type represents a logical value, either FALSE
(0x00) or TRUE (0x01). The value 0xff represents an invalid value of this type. All other values of
this type are forbidden.

149.31.18.14 public static final short CHARACTER_STRING = 121

According to ZigBee Cluster Library [1], the Character String data type contains data octets encoding
characters according to the language and character set field of the complex descriptor.

149.31.18.15 public static final short CLUSTER_ID = 5

The type of a cluster identifier.

149.31.18.16 public static final short DATE = 3

The Date data type format is specified in section 2.5.2.20 of ZigBee Cluster Specification [1].

149.31.18.17 public static final short ENUMERATION_16 = 113

Enumeration 16-bit

149.31.18.18 public static final short ENUMERATION_8 = 112

According to ZigBee Cluster Library [1], the Enumeration type represents an index into a lookup ta-
ble to determine the final value. The values 0xff and 0xffff represent invalid values of the 8-bit and
16-bit types respectively.

149.31.18.19 public static final short FLOATING_DOUBLE = 250

According to ZigBee Cluster Library [1], the format of the double precision data type is based on the
IEEE 754 standard for binary floating-point arithmetic.

149.31.18.20 public static final short FLOATING_SEMI = 248

According to ZigBee Cluster Library [1], the ZigBee semi-precision number format is based on the
IEEE 754 standard for binary floating-point arithmetic.

149.31.18.21 public static final short FLOATING_SINGLE = 249

According to ZigBee Cluster Library [1], the format of the single precision data type is based on the
IEEE 754 standard for binary floating-point arithmetic.

149.31.18.22 public static final short GENERAL_DATA_16 = 81

General Data 16-bit

149.31.18.23 public static final short GENERAL_DATA_24 = 82

General Data 24-bit

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 46 OSGi Residential Release 6 Supplement

149.31.18.24 public static final short GENERAL_DATA_32 = 83

General Data 32-bit

149.31.18.25 public static final short GENERAL_DATA_40 = 84

General Data 40-bit

149.31.18.26 public static final short GENERAL_DATA_48 = 85

General Data 48-bit

149.31.18.27 public static final short GENERAL_DATA_56 = 86

General Data 56-bit

149.31.18.28 public static final short GENERAL_DATA_64 = 87

General Data 64-bit

149.31.18.29 public static final short GENERAL_DATA_8 = 80

According to ZigBee Cluster Library [1], the General Data type may be used when a data element is
needed but its use does not conform to any of other types. The General Data type is defined with sev-
eral sizes: 8, 16, 24, 32, 40, 48, 56 and 64 bits.

149.31.18.30 public static final short IEEE_ADDRESS = 8

According to ZigBee Cluster Library [1], the IEEE Address data type is a 64-bit IEEE address that is
unique to every ZigBee device. A value of 0xffffffffffffffff indicates that the address is unknown.

149.31.18.31 public static final short LONG_CHARACTER_STRING = 123

According to ZigBee Cluster Library [1], the Long Character String data type contains data octets en-
coding characters according to the language and character set field of the complex descriptor.

149.31.18.32 public static final short LONG_OCTET_STRING = 122

According to ZigBee Cluster Library [1], the Long Octet String data type contains data in applica-
tion-defined formats.

149.31.18.33 public static final short NO_DATA = 0

According to ZigBee Cluster Library [1], the no data type represents an attribute with no associated
data.

149.31.18.34 public static final short OCTET_STRING = 120

According to ZigBee Cluster Library [1], the Octet String data type contains data in application-de-
fined formats.

149.31.18.35 public static final short SECURITY_KEY_128 = 9

According to ZigBee Cluster Library [1], the 128-bit Security Key data type is for use in ZigBee securi-
ty, and may take any 128-bit value.

149.31.18.36 public static final short SET = 18

According to ZigBee Cluster Library [1], a Set is a collection of elements with no associated order.
Each element has the same data type, which may be any ZCL defined data type, including Array,
Structure, Bag or Set. The nesting depth is limited to 15.

149.31.18.37 public static final short SIGNED_INTEGER_16 = 225

Signed Integer 16-bit

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Residential Release 6 Supplement Page 47

149.31.18.38 public static final short SIGNED_INTEGER_24 = 226

Signed Integer 24-bit

149.31.18.39 public static final short SIGNED_INTEGER_32 = 227

Signed Integer 32-bit

149.31.18.40 public static final short SIGNED_INTEGER_40 = 228

Signed Integer 40-bit

149.31.18.41 public static final short SIGNED_INTEGER_48 = 229

Signed Integer 48-bit

149.31.18.42 public static final short SIGNED_INTEGER_56 = 230

Signed Integer 56-bit

149.31.18.43 public static final short SIGNED_INTEGER_64 = 231

Signed Integer 64-bit

149.31.18.44 public static final short SIGNED_INTEGER_8 = 224

According to ZigBee Cluster Library [1], the Signed Integer type represents a signed integer with a
decimal range of -(2^7-1) to 2^7-1, - (2^15-1) to 2^15-1, -(2^23-1) to 2^23-1, -(2^31-1) to 2^31-1, -(2^39-1)
to 2^39-1, -(2^47-1) to 2^47-1, -(2^55-1) to 2^55-1, or -(2^63-1) to 2^63-1, depending on its length.
The values that represents an invalid value of this type are 0x80, 0x8000, 0x800000, 0x80000000,
0x8000000000, 0x800000000000, 0x80000000000000 and 0x8000000000000000 respectively. This
type is defined with several sizes: 8, 16, 24, 32, 40, 48, 56 and 64 bits.

149.31.18.45 public static final short STRUCTURE = 17

According to ZigBee Cluster Library [1], a Structure is an ordered sequence of elements, which may
be of different data types. Each data type may be any ZCL defined data type, including Array, Struc-
ture, Bag or Set. The total nesting depth is limited to 15.

149.31.18.46 public static final short TIME_OF_DAY = 2

The Time of Day data type format is specified in section 2.5.2.19 of ZCL specification [1].

149.31.18.47 public static final short UNKNOWN = 255

The UNKNOWN type is used when the data type is unknown.

149.31.18.48 public static final short UNSIGNED_INTEGER_16 = 97

Unsigned Integer 16-bit

149.31.18.49 public static final short UNSIGNED_INTEGER_24 = 98

Unsigned Integer 24-bit

149.31.18.50 public static final short UNSIGNED_INTEGER_32 = 99

Unsigned Integer 32-bit

149.31.18.51 public static final short UNSIGNED_INTEGER_40 = 100

Unsigned Integer 40-bit

149.31.18.52 public static final short UNSIGNED_INTEGER_48 = 101

Unsigned Integer 48-bit

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 48 OSGi Residential Release 6 Supplement

149.31.18.53 public static final short UNSIGNED_INTEGER_56 = 102

Unsigned Integer 56-bit

149.31.18.54 public static final short UNSIGNED_INTEGER_64 = 103

Unsigned Integer 64-bit

149.31.18.55 public static final short UNSIGNED_INTEGER_8 = 96

According to ZigBee Cluster Library [1], the Unsigned Integer type represents an unsigned integer
with a decimal range of 0 to 2^8-1, 0 to 2^16-1, 0 to 2^24-1, 0 to 2^32-1, 0 to 2^40-1, 0 to 2^48-1, 0 to
2^56-1, or 0 to 2^64-1, depending on its length. The values that represents an invalid value of this
type are 0xff, 0xffff, 0xffffff, 0xffffffff, 0xffffffffff, 0xffffffffffff, 0xffffffffffffff and 0xffffffffffffffff re-
spectively. This type is defined with several sizes: 8, 16, 24, 32, 40, 48, 56 and 64 bits.

149.31.18.56 public static final short UTC_TIME = 4

According to ZigBee Cluster Library [1], UTCTime is an unsigned 32-bit value representing the num-
ber of seconds since 0 hours, 0 minutes, 0 seconds, on the 1st of January, 2000 UTC (Universal Coor-
dinated Time). The value that represents an invalid value of this type is 0xffffffffff.

149.31.19 public interface ZigBeeEndpoint
This interface represents a ZigBee EndPoint. A ZigBeeEndpoint must be registered as a OSGi service
with ZigBeeNode.IEEE_ADDRESS, and ZigBeeEndpoint.ENDPOINT_ID properties.

149.31.19.1 public static final String DEVICE_CATEGORY = "ZigBee"

Constant used by all ZigBee devices indicating the device category. It is a mandatory service proper-
ty for this service.

149.31.19.2 public static final String DEVICE_ID = "zigbee.device.id"

Property containing the application device identifier. This identifier is also contained in the ZigBee
Simple Descriptor. This property is of type Integer.

It is mandatory property for this service.

149.31.19.3 public static final String DEVICE_VERSION = "zigbee.device.version"

Property containing the application device version. The application device version is also contained
in the ZigBee endpoint Simple Descriptor. This property is of type Byte.

It is mandatory property for this service.

149.31.19.4 public static final String ENDPOINT_ID = "zigbee.endpoint.id"

Property containing the EndPoint ID of the device. This property is of type Short and its value must
be in the range allowed by the ZigBee specifications for Zigbee endpoints identifiers.

It is mandatory service property for ZigBeeEndpoint services.

149.31.19.5 public static final String HOST_PID = "zigbee.endpoint.host.pid"

Property containing the ZigBeeHost's pid. This property is of type String.

The ZigBee local host identifier is intended to uniquely identify the ZigBee local host, since there
could be many hosts on the same platform.

All the endpoints that belong to a specific network MUST specify the value of the associated host
pid. It is mandatory for imported endpoints, optional for exported endpoints.

149.31.19.6 public static final String INPUT_CLUSTERS = "zigbee.endpoint.clusters.input"

Property containing a list of input clusters. This list is contained also in the ZigBee Simple Descrip-
tor returned by the ZigBeeEndpoint service. This property is of type int[].

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Residential Release 6 Supplement Page 49

It is mandatory service property for this service.

149.31.19.7 public static final String OUTPUT_CLUSTERS = "zigbee.endpoint.clusters.output"

Property containing a list of output clusters. This list is contained also in the ZigBee Simple Descrip-
tor of the ZigBeeEndpoint service. This property is of type int[].

It is a mandatory service property for this service.

149.31.19.8 public static final String PROFILE_ID = "zigbee.device.profile.id"

Property containing the application profile identifier also contained in the ZigBee Simple Descrip-
tor. This property is of type Integer.

It is mandatory service property for this service.

149.31.19.9 public static final String ZIGBEE_EXPORT = "zigbee.export"

Property used to mark if a ZigBeeEndPoint service is an exported one or not. Imported endpoints do
not have this property set. This service property requires no specific values.

149.31.19.10 public Promise bind(String servicePid,int clusterId)

servicePid the PID of the endpoint to bind to

clusterId the cluster identifier to bind to

□ Adds the following entry in the Binding Table of the device:

this .getNodeAddress() , this .getId() , cluster Id , device.getNodeAddress() , device.getId()

As described in "Table 2.7 APSME-BIND.confirm Parameters" of the ZigBee specification
1_053474r17ZB_TSC-ZigBee-Specification.pdf, a binding request can have the following re-
sults: APSException.SUCCESS, APSException.ILLEGAL_REQUEST, APSException.TABLE_FULL,
APSException.NOT_SUPPORTED.

Returns A promise representing the completion of this asynchronous call. Promise.getFailure() returns null
if the cluster has been successfully bound. The adequate ZigBeeEndpoint is returned otherwise.

149.31.19.11 public Promise getBoundEndPoints(int clusterId)

clusterId the cluster identifier of the targeted bindings.

□ Returns bound endpoints (identified by their service PIDs) on a specific cluster ID. It is implemented
on the base driver with Mgmt_Bind_req command. It is implemented without a command request
in local endpoints.

As described in "Table 2.129 Fields of the Mgmt_Bind_rsp Command" of the ZigBee specification
1_053474r17ZB_TSC-ZigBee-Specification.pdf, a Mgmt_Bind_rsp command can have the following
status: APSException.NOT_SUPPORTED or any status code returned from the APSME-GET.confirm
primitive (see APSException).

Returns A promise representing the completion of this asynchronous call. Promise.getValue() returns a List
of the bound endpoint service PIDs if the command is successful. The response object is null and the
adequate APSException is returned by Promise.getFailure() otherwise.

149.31.19.12 public ZCLCluster getClientCluster(int clientClusterId)

clientClusterId The client(output) cluster identifier.

□ Returns the client cluster identified by the cluster identifier.

Returns the client(output) cluster identified by the cluster identifier, or null if the given id is not listed in the
simple descriptor.

Throws I l legalArgumentException– If the passed argument is outside the range [0, 0xffff].

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 50 OSGi Residential Release 6 Supplement

149.31.19.13 public ZCLCluster[] getClientClusters()

□ Returns an array of client (output) clusters.

Returns an array of client (output) clusters, returns an empty array if does not provides any clients clusters.

149.31.19.14 public short getId()

□ Returns the identifier of this endpoint, that is the Endpoint ID.

Returns the identifier of this endpoint, value ranges from 1 to 240.

149.31.19.15 public BigInteger getNodeAddress()

□ Returns the IEEE Address of the node containing this endpoint.

Returns the IEEE Address of the node containing this endpoint.

149.31.19.16 public ZCLCluster getServerCluster(int serverClusterId)

serverClusterId The server(input) cluster identifier.

□ Returns the server (input) cluster identified by the given identifier.

Returns the server (input) cluster identified by the given identifier, or null if the given id is not listed in the
simple descriptor.

Throws I l legalArgumentException– If the passed argument is outside the range [0, 0xffff].

149.31.19.17 public ZCLCluster[] getServerClusters()

□ Returns an array of server (input) clusters.

Returns an array of server (input) clusters, returns an empty array if it does not provide any server cluster.

149.31.19.18 public Promise getSimpleDescriptor()

□ Returns the simple descriptor of this endpoint. As described in "Table 2.93 Fields of
the Simple_Desc_rsp Command" of the ZigBee specification 1_053474r17ZB_TSC-Zig-
Bee-Specification.pdf, a simple_decr request can have the following status: ZDPException.SUCCESS,
ZDPException.INVALID_EP, ZDPException.NOT_ACTIVE, ZDPException.DEVICE_NOT_FOUND,
ZDPException.INV_REQUESTTYPE or ZDPException.NO_DESCRIPTOR.

Returns A promise representing the completion of this asynchronous call. Promise.getValue() returns the
node simple descriptor ZigBeeSimpleDescriptor in case of success and Promise.getFailure() returns
the adequate ZDPException otherwise.

149.31.19.19 public void notExported(ZigBeeException e)

e A device ZigBeeException the occurred exception.

□ Notifies that the base driver is unable to export this endpoint. This method is called by the base dri-
ver and used to give details about issues preventing the export of an endpoint.

149.31.19.20 public Promise unbind(String servicePid,int clusterId)

servicePid The pid of the service to unbind.

clusterId The cluster identifier to unbind.

□ Removes the following entry in the Binding Table of the device if it exists:

this .getNodeAddress() , this .getId() , cluster Id , device.getNodeAddress() , device.getId()

As described in "Table 2.9 APSME-UNBIND.confirm Parameters" of the ZigBee specification
1_053474r17ZB_TSC-ZigBee-Specification.pdf, an unbind request can have the following results:
APSException.SUCCESS, APSException.ILLEGAL_REQUEST, APSException.INVALID_BINDING.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Residential Release 6 Supplement Page 51

Returns A promise representing the completion of this asynchronous call. Promise.getFailure() returns null
if the cluster has been successfully bound. The adequate APSException is returned otherwise.

149.31.20 public interface ZigBeeEvent
This interface represents events generated by a ZigBee Device node.

149.31.20.1 public int getAttributeId()

□ Returns the attribute identifier (that is, the attribute's ID).

Returns the attribute identifier (that is, the attribute's ID).

149.31.20.2 public int getClusterId()

□ Returns the cluster id associated to this ZigBeeEvent.

Returns the cluster id.

149.31.20.3 public short getEndpointId()

□ Returns the endpoint identifier.

Returns the endpoint identifier.

149.31.20.4 public BigInteger getIEEEAddress()

□ Returns the ZigBee device node IEEE Address.

Returns the ZigBee device node IEEE Address.

149.31.20.5 public Object getValue()

□ Returns an object containing the new value of the related ZigBee attribute.

Returns an object containing the new value for the ZigBee attribute that has changed.

149.31.21 public class ZigBeeException
extends RuntimeException
This class represents root exception for all the code related to ZigBee. The provided constants
names, but not the values.

149.31.21.1 protected final int errorCode

The error code associated to this exception.

See Also getErrorCode()

149.31.21.2 public static final int OSGI_EXISTING_ID = 48

The error code used when another endpoint exists with the same ID.

149.31.21.3 public static final int OSGI_MULTIPLE_HOSTS = 49

The error code used when several hosts exist for this PAN ID target or HOST_PID target.

149.31.21.4 public static final int TIMEOUT = 50

The error code used when the timeout of ZigBee asynchronous exchange is reached.

149.31.21.5 public static final int UNKNOWN_ERROR = -1

This error code is used if the ZigBee error returned is not covered by this API specification.

149.31.21.6 protected final int zigBeeErrorCode

The actual error code returned by the ZigBee node.

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 52 OSGi Residential Release 6 Supplement

See Also ZigBeeException.getZigBeeErrorCode()

149.31.21.7 public ZigBeeException(String errorDesc)

errorDesc exception error description.

□ Creates a ZigBeeException containing only a description, but no error codes. If issued on this excep-
tion the getErrorCode() and getZigBeeErrorCode() methods return the UNKNOWN_ERROR con-
stant.

149.31.21.8 public ZigBeeException(int errorCode,String errorDesc)

errorCode One of the error codes defined in this interface or UNKNOWN_ERROR if the actual error is not list-
ed in this interface.

errorDesc An error description which explain the type of problem.

□ Creates a ZigBeeException containing a specific errorCode . Using this constructor with errorCode
set to UNKNOWN_ERROR is equivalent to call ZigBeeException(String).

149.31.21.9 public ZigBeeException(int errorCode,int zigBeeErrorCode,String errorDesc)

errorCode One of the error codes defined in this interface or UNKNOWN_ERROR the actual error is not cov-
ered in this interface.

zigBeeErrorCode The actual status code or UNKNOWN_ERROR if this status is unknown.

errorDesc An error description which explain the type of problem.

□ Creates a ZigBeeException containing a specific errorCode or zigBeeErrorCode . Using this construc-
tor with both the errorCode and zigBeeErrorCode set to UNKNOWN_ERROR is equivalent to call
ZigBeeException(String).

149.31.21.10 public int getErrorCode()

□ Returns the error code.

Returns the error code.

149.31.21.11 public int getZigBeeErrorCode()

□ Returns the potential ZigBee error code.

Returns One of the error codes defined above. If the returned error code is UNKNOWN_ERROR and the
hasZigBeeErrorCode() returns true then the getZigBeeErrorCode() provides the actual ZigBee error
code returned by the device.

149.31.21.12 public boolean hasZigBeeErrorCode()

□ Checks if this exception has a ZigBee error code.

Returns true if the ZigBeeException convey also the actual error code returned by the ZigBee stack.

149.31.22 public interface ZigBeeGroup
This interface represents a ZigBee Group.

No Implement Consumers of this API must not implement this interface

149.31.22.1 public static final String ID = "zigbee.group.id"

Key of the String containing the Group Address of the device.

It is a mandatory property for this service.

149.31.22.2 public int getGroupAddress()

□ Returns the 16-bit group address.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Residential Release 6 Supplement Page 53

Returns the 16-bit group address.

149.31.22.3 public ZCLCommandResponseStream groupcast(int clusterId,ZCLFrame frame)

clusterId a cluster identifier.

frame a command frame sequence.

□ Sends a ZCL frame to the group represented by this service. The returned stream will provide the in-
vocation response(s) in an asynchronous way.

The source endpoint is not specified in this method call. To send the appropriate message on the
network, the base driver must generate a source endpoint. The latter must not correspond to any ex-
ported endpoint.

Returns a ZCLCommandResponseStream to collect every ZCL frame one after the other in case of multiple
responses.

149.31.22.4 public ZCLCommandResponseStream groupcast(int clusterId,ZCLFrame frame,String exportedServicePID)

clusterId a cluster identifier.

frame a command frame sequence.

exportedServi-
cePID

: the source endpoint of the command request. In targeted situations, the source endpoint is the
valid service PID of an exported endpoint.

□ Sends a ZCL frame to the ZigBee group represented by this service. The returned stream will provide
the invocation response(s) in an asynchronous way.

This method is to be used by applications when the targeted device has to distinguish between
source endpoints of the message. For instance, alarms cluster (see 3.11 Alarms Cluster in [ZCL]) gen-
erated events are differently interpreted if they come from the oven or from the intrusion alert sys-
tem.

Returns a ZCLCommandResponseStream to collect every ZCL frame one after the other in case of multiple
responses.

149.31.22.5 public Promise joinGroup(String pid)

pid String representing the service PID of the ZigBeeEndpoint to add to this Group.

□ Requests an endpoint to join this group. This method may be invoked on exported and imported
endpoints. In the former case, the ZigBee Base Driver should rely on the APSME-ADD-GROUP API
defined by the ZigBee Specification, or it will use the proper commands of the Groups cluster of the
ZigBee Specification Library. As described in "Table 2.15 APSME-ADD-GROUP.confirm Parameters"
of the ZigBee specification 1_053474r17ZB_TSC-ZigBee-Specification.pdf, an add_group request
can have the following status: APSException.SUCCESS, APSException.INVALID_PARAMETER or
APSException.TABLE_FULL. When the joining is performed remotely on an imported ZigBeeEnd-
point, it may also fail because the command is not supported by the remote endpoint, or because the
remote device cannot perform the operation at the moment (see ZCLException).

Returns A promise representing the completion of this asynchronous call. Promise.getFailure() returns null
if the cluster has been successfully bound. The adequate ZigBeeException is returned otherwise.

149.31.22.6 public Promise leaveGroup(String pid)

pid String representing the service PID of the ZigBeeEndpoint to remove from this Group.

□ Requests an endpoint to leave this group. This method may be invoked on exported and imported
endpoints. In the former case, the ZigBee Base Driver should rely on the APSME-REMOVE-GROUP
API defined by the ZigBee Specification, or it will use the proper commands of the Groups cluster of
the ZigBee Specification Library. As described in "Table 2.17 APSME-REMOVE-GROUP.confirm Para-
meters" of the ZigBee specification 1_053474r17ZB_TSC-ZigBee-Specification.pdf, a remove_group
request can have the following status: APSException.SUCCESS, APSException.INVALID_GROUP or

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 54 OSGi Residential Release 6 Supplement

APSException.INVALID_PARAMETER. When the command is invoked remotely on an imported
ZigBeeEndpoint, it may also fail because the command is not supported by the remote endpoint, or
because the remote device cannot perform the operation at the moment (see ZCLException).

Returns A promise representing the completion of this asynchronous call. Promise.getFailure() returns null
if the cluster has been successfully bound. The adequate ZigBeeException is returned otherwise.

149.31.23 public interface ZigBeeHost
extends ZigBeeNode
This interface represents the machine that hosts the code to run a ZigBee device or client. This ma-
chine is, for example, the ZigBee chip/dongle that is controlled by the base driver (below/under the
OSGi execution environment).

ZigBeeHost is more than a ZigBeeNode.

It must be registered as a OSGi service.

Even if not specified explicitly in the javadoc, any method of this interface must throw an Ille-
galArgumentException exception if a or one of the passed arguments has a value not admitted by
the method.

No Implement Consumers of this API must not implement this interface

149.31.23.1 public static final short UNLIMITED_BROADCAST_RADIUS = 255

Value constant to set an unlimited broadcast radius.

149.31.23.2 public ZCLCommandResponseStream broadcast(int clusterID,ZCLFrame frame)

clusterID The cluster ID this ZCL frame must be sent to.

frame A ZCL Frame.

□ Broadcasts a ZCL frame to the cluster ID of all the nodes of the ZigBee network. The
setBroadcastRadius(short) method, may be used to limit the broadcast radius used in the subsequent
broadcast calls.

Returns a response stream instance that collects and allows the caller to be asynchronously notified about
the ZCLFrame responses sent back by the ZigBee nodes.

149.31.23.3 public ZCLCommandResponseStream broadcast(int clusterID,ZCLFrame frame,String exportedServicePID)

clusterID The cluster ID.

frame A ZCL Frame.

exportedServi-
cePID

the source endpoint of the command request. In targeted situations, the source endpoint is the valid
service PID of an exported endpoint.

□ Broadcasts a ZCL frame to the cluster ID of all the nodes of the ZigBee network. The passed export-
edServicePID allows to force the source endpoint of the message sent to be the endpoint id of the ex-
ported ZigBeeEndPoint service having the specified service.pid property.

Returns a response stream instance that collects and allows the caller to be asynchronously notified about
the ZCLFrame responses sent back by the ZigBee nodes.

See Also Setting the broadcast radius.

149.31.23.4 public void createGroupService(int groupAddress) throws Exception

groupAddress the address of the group to create.

□ Creates a ZigBeeGroup service that has not yet been discovered by the ZigBee Base Driver or that
does not exist on the ZigBee network yet.

Throws Exception– when a ZigBeeGroup service with the same groupAddress already exists.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Residential Release 6 Supplement Page 55

149.31.23.5 public short getBroadcastRadius()

□ Returns the current broadcast radius value.

Returns the current broadcast radius value.

149.31.23.6 public int getChannel() throws Exception

□ Returns the current network channel.

Returns the current network channel.

Throws Exception– Any exception related to the communication with the chip.

149.31.23.7 public int getChannelMask() throws Exception

□ Returns the currently configured channel mask.

Returns the currently configured channel mask.

Throws Exception– Any exception related to the communication with the chip.

149.31.23.8 public long getCommunicationTimeout()

□ Returns the current value set for the communication timeout.

Returns the current value set for the communication timeout expressed in milliseconds.

149.31.23.9 public String getPreconfiguredLinkKey() throws Exception

□ Returns the current preconfigured link key.

Returns the current preconfigured link key.

Throws Exception– Any exception related to the communication with the chip.

149.31.23.10 public int getSecurityLevel() throws Exception

□ Returns the network security level.

Returns the network security level, that is, 0 if security is disabled, an int code if enabled (see "Table 4.38 Se-
curity Levels Available to the NWK, and APS Layers" of the ZigBee specification").

Throws Exception– Any exception related to the communication with the chip.

149.31.23.11 public boolean isStarted()

□ Checks the host's start/stop state.

Returns true if the host is started.

149.31.23.12 public void permitJoin(short duration) throws Exception

duration The time during which associations are permitted.

□ Indicates if a ZigBee device can join the network.

Broadcasts a Mgmt_Permit_req to all routers and the coordinator. If the duration argument is
not equal to zero or 0xFF, the argument is a number of seconds and joining is permitted un-
til it counts down to zero, after which time, joining is not permitted. If the duration is set to
zero, joining is not permitted. If set to 0xFF, joining is permitted indefinitely or until another
Mgmt_Permit_Joining_req is received by the coordinator.

As described in "Table 2.133 Fields of the Mgmt_Permit_Joining_rsp Command" of the Zig-
Bee specification 1_053474r17ZB_TSC-ZigBee-Specification.pdf, a permitJoin request can
have the following status: ZDPException.SUCCESS, ZDPException.INV_REQUESTTYPE,
ZDPException.NOT_AUTHORIZED or any status code returned from the
NLMEPERMITJOINING.confirm primitive.

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 56 OSGi Residential Release 6 Supplement

Throws Exception– Any exception related to the communication with the chip.

149.31.23.13 public Promise refreshNetwork() throws Exception

□ Forces a new network scan. It checks that the ZigBeeNode services are still representing an available
node on the network. It also updates the whole representation of all nodes (endpoints, clusters, de-
scriptors, attributes).

Returns A promise representing the completion of this asynchronous call. In case of success the promise
will resolve with Boolean.TRUE otherwise the promise is failed with an exception.

Throws Exception– Any exception related to the communication with the chip.

149.31.23.14 public void setBroadcastRadius(short broadcastRadius)

broadcastRadius - is the number of routers that the messages are allowed to cross. Radius value is in the range from 0
to 0xff.

□ Sets the broadcast radius value. By default the ZigBeeHost must use
UNLIMITED_BROADCAST_RADIUS as default value for the broadcast.

Throws I l legalArgumentException– if set with a value out of the expected range.

I l legalStateException– if set when the ZigBeeHost is "running".

149.31.23.15 public void setChannelMask(int mask) throws IOException

mask A value representing the channel mask.

□ Sets a new configured channel mask.

As described in "Table 2.13 APSME-SET.confirm Parameters" of the ZigBee specifi-
cation 1_053474r17ZB_TSC-ZigBee-Specification.pdf, a set request can have the fol-
lowing status: APSException.SUCCESS, APSException.INVALID_PARAMETER or
APSException.UNSUPPORTED_ATTRIBUTE.

Throws I l legalStateException– If the host is already started.

IOException– for serial communication exception.

149.31.23.16 public void setCommunicationTimeout(long timeout)

timeout the number of milliseconds before firing a timeout exception.

□ Sets the timeout for the communication sent through this device.

149.31.23.17 public void setExtendedPanId(BigInteger extendedPanId)

extendedPanId The network Extended PAN identifier(EPID)

□ Sets the extendedPanId.

Throws I l legalStateException– If the host is already started.

149.31.23.18 public void setLogicalType(short logicalNodeType) throws Exception

logicalNodeType The logical node type.

□ Sets the host logical node type. ZigBee defines three different types of node:
ZigBeeNode.COORDINATOR, ZigBeeNode.ROUTER and ZigBeeNode.ZED.

Throws I l legalStateException– If the host is already started.

Exception– Any exception related to the communication with the chip.

149.31.23.19 public void setPanId(int panId)

panId The network Personal Area Network identifier (PAN ID)

□ Sets the panId.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Residential Release 6 Supplement Page 57

Throws I l legalArgumentException– if set with a value out of the expected range [0x0000, 0xffff].

I l legalStateException– If the host is already started.

149.31.23.20 public void start() throws Exception

□ Starts the host. If the host is a ZigBeeNode.COORDINATOR, then it can be started with or without
ZigBeeNode.PAN_ID and ZigBeeNode.EXTENDED_PAN_ID (that is, if no PAN_ID, and Extended
PAN_ID are given, then they will be automatically generated and then added to the service proper-
ties).

If the host is a ZigBeeNode.ROUTER, or a ZigBeeNode.ZED, then the host may start without a regis-
tered ZigBeeNode.PAN_ID property; the property will be set when the host will find and join a Zig-
Bee network.

The host status must be persistent, that is, if the host was started, then the host must starts again
when the bundle restarts. In addition, the values of channel, pan id, extended pan id, and host PID
must remain the same.

Throws Exception– Any exception related to the communication with the chip.

149.31.23.21 public void stop() throws Exception

□ Stops the host.

Throws Exception– Any exception related to the communication with the chip.

149.31.23.22 public void updateNetworkChannel(byte channel) throws IOException

channel The network channel.

□ Updates the network channel. 802.15.4 and ZigBee divide the 2.4GHz band into 16 channels, num-
bered from 11 to 26.

As described in "Table 2.4.3.3.9 Mgmt_NWK_Update_req" of the ZigBee specification
1_053474r17ZB_TSC-ZigBee-Specification.pdf, this request is sent as broadcast by the network man-
ager with a ScanDuration to be set with the channel parameter.

Throws I l legalStateException– If the host is started, or the host is not a network manager.

IOException– for serial communication exception.

149.31.24 public interface ZigBeeLinkQuality
This interface represents an entry of the NeighborTableList.

See Table 2.126 NeighborTableList Record Format in ZIGBEE SPECIFICATION: 1_053474r17ZB_TSC-
ZigBee-Specification.pdf.

No Implement Consumers of this API must not implement this interface

149.31.24.1 public static final int CHILD_NEIGHBOR = 241

Constant value representing a child relationship between current ZigBeeNode and the neighbor.

149.31.24.2 public static final int OTHERS_NEIGHBOR = 243

Constant value representing a others relationship between current ZigBeeNode and the neighbor.

149.31.24.3 public static final int PARENT_NEIGHBOR = 240

Constant value representing a parent relationship between current ZigBeeNode and the neighbor.

149.31.24.4 public static final int PREVIOUS_CHILD_NEIGHBOR = 244

Constant value representing a previous child relationship between current ZigBeeNode and the
neighbor.

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 58 OSGi Residential Release 6 Supplement

149.31.24.5 public static final int SIBLING_NEIGHBOR = 242

Constant value representing a sibling relationship between current ZigBeeNode and the neighbor.

149.31.24.6 public int getDepth()

□ Returns the depth field of the NeighborTableList Record Format.

Returns the tree-depth of device.

149.31.24.7 public int getLQI()

□ Returns the Link Quality Indicator. See the LQI field of the NeighborTableList Record Format.

Returns the Link Quality Indicator estimated by ZigBeeNode returning this for communicating with Zig-
BeeNode identified by the getNeighbor().

149.31.24.8 public String getNeighbor()

□ Returns the Service.PID referring to the ZigBeeNode representing a neighbor.

Returns the Service.PID referring to the ZigBeeNode representing a neighbor.

149.31.24.9 public int getRelationship()

□ Returns the relationship with the neighbor. See the Relationship field of the NeighborTableList
Record Format.

Returns the relationship between ZigBeeNode returning this LQI and the ZigBeeNode identified by the get-
Neighbor().

149.31.25 public interface ZigBeeNode
This interface represents a ZigBee node, means a physical device that can communicate using the
ZigBee protocol.

Each physical device may contain up 240 logical devices which are represented by the ZigBeeEnd-
point class.

Each logical device is identified by an EndPoint address, but shares:

• either the 64-bit 802.15.4 IEEE Address
• or the 16-bit ZigBee Network Address.

No Implement Consumers of this API must not implement this interface

149.31.25.1 public static final short COORDINATOR = 2

Constant value used as logical type value when the ZigBee device is a Coordinator.

149.31.25.2 public static final String EXTENDED_PAN_ID = "zigbee.node.extended.pan.id"

Key of String containing the device node network extended PAN ID. If the device type is "Coordina-
tor", the extended pan id may be available only after the network is started. It means that internally
the ZigBeeHost interface must update the service properties.

This property is of type BigInteger

149.31.25.3 public static final String IEEE_ADDRESS = "zigbee.node.ieee.address"

Property key for the mandatory node IEEE Address representing node MAC address. MAC Address is
a 12-digit(48-bit) or 16-digit(64-bit) hexadecimal numbers.

149.31.25.4 public static final String LOGICAL_TYPE = "zigbee.node.description.node.type"

Property name for the device logical type. The property value is of type Short.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Residential Release 6 Supplement Page 59

149.31.25.5 public static final String MANUFACTURER_CODE = "zigbee.node.description.manufacturer.code"

Property name for a manufacturer code that is allocated by the ZigBee Alliance, relating the manu-
facturer to the device. The property is of type Integer.

149.31.25.6 public static final String PAN_ID = "zigbee.node.pan.id"

Property containing the ZigBee network PAN ID. The property is of type Integer.

149.31.25.7 public static final String POWER_SOURCE = "zigbee.node.power.source"

ZigBee power source, that is, 3rd bit of "MAC Capabilities" in Node Descriptor. Set to true if the cur-
rent power source is mains power, set to fa lse , otherwise.

This property is of type Boolean.

149.31.25.8 public static final String RECEIVER_ON_WHEN_IDLE = "zigbee.node.receiver.on.when.idle"

ZigBee receiver on when idle, that is, 4th bit of "MAC Capabilities" in Node Descriptor. Set to true if
the device does not disable its receiver to conserve power during idle periods, set to fa lse otherwise.

This property is of type Boolean.

149.31.25.9 public static final short ROUTER = 3

Constant value used as logical type value when the ZigBee device is a Router.

149.31.25.10 public static final short ZED = 1

Constant value used as logical type value when the ZigBee device is an End Device.

149.31.25.11 public ZCLCommandResponseStream broadcast(int clusterID,ZCLFrame frame)

clusterID the cluster ID the broadcast message is directed.

frame a ZCL Frame that contains the command that have to be broadcast to the specific cluster of all the
endpoints running on the node.

□ Broadcasts a given ZCL Frame to cluster cluster ID on all the ZigBeeEndpoint that are running on
this node (endpoint broadcasting).

Returns a response stream instance that collects and allows a client to be asynchronously notified about the
ZCLFrame responses sent back by the ZigBee nodes.

149.31.25.12 public ZCLCommandResponseStream broadcast(int clusterID,ZCLFrame frame,String exportedServicePID)

clusterID the cluster ID the broadcast message is directed.

frame a ZCL Frame that contains the command that have to be broadcast to the specific cluster of all the
endpoints running on the node.

exportedServi-
cePID

the source endpoint of the command request. In targeted situations, the source endpoint is the valid
service PID of an exported endpoint.

□ Broadcasts a given ZCL Frame to cluster cluster ID on all the ZigBeeEndpoint that are running on
this node (endpoint broadcasting). The source endpoint of the APS message sent, is set to the end-
point identifier of the exportedServicePID service.

Returns a response stream instance that collects and allows the caller to be asynchronously notified about
the ZCLFrame responses sent back by the ZigBee nodes.

149.31.25.13 public Promise getComplexDescriptor()

□ Retrieves the ZigBee node Complex Descriptor.

As described in Table 2.92 Fields of the Complex_Desc_rsp Command of the ZigBee specification, a
Complex_Desc_rsp command can return with the following status codes:

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 60 OSGi Residential Release 6 Supplement

• ZDPException.SUCCESS
• ZDPException.DEVICE_NOT_FOUND
• ZDPException.INV_REQUESTTYPE
• ZDPException.NO_DESCRIPTOR

Returns A promise representing the completion of this asynchronous call. It will be used in order to return
the complex descriptor ZigBeeComplexDescriptor. If the ZDP Complex_Desc_rsp do not return suc-
cess, the promise must fail with a ZDPException exception with the correct status code.

149.31.25.14 public ZigBeeEndpoint[] getEndpoints()

□ Returns the array of the endpoints hosted by this node.

Returns the array of the endpoints hosted by this node, returns an empty array if this node does not host any
endpoint.

149.31.25.15 public BigInteger getExtendedPanId()

□ Returns the network Extended PAN identifier (EPID).

Returns the network Extended PAN identifier (EPID).

149.31.25.16 public String getHostPid()

□ Returns the OSGi service PID of the ZigBee Host that is on the network of this node.

Returns the OSGi service PID of the ZigBee Host that is on the network of this node.

149.31.25.17 public BigInteger getIEEEAddress()

□ Returns the ZigBee device node IEEE Address of this node.

Returns the ZigBee device node IEEE Address of this node.

149.31.25.18 public Promise getLinksQuality()

□ Retrieves the link quality information to the neighbor nodes.

An implementation of this method may use the Mgmt_Lqi_req and Mgmt_Lqi_rsp messages to re-
trieve the Link Quality table (also known as NeighborTableList in the ZigBee Specification).

The method limit the Link Quality table to the ZigBeeNode service discovered.

In case of failure, the target device may report error code ZDPException.NOT_SUPPORTED.

Returns A promise representing the completion of this asynchronous call. It will be resolved with the result
of this operation. In case of success the resolved value will be a Map containing the Service.PID as
String key of the ZigBeeNode service and the value the ZigBeeLinkQuality for that node. In case of
errors the promise must fail with the correct ZDPException.

149.31.25.19 public int getNetworkAddress()

□ Returns the current network address (alias short-address) of this node.

Returns the current network address of this node.

149.31.25.20 public Promise getNodeDescriptor()

□ Retrieves the ZigBee node Node Descriptor. As described in Table 2.91 Fields of the Node_Desc_rsp Com-
mand of the ZigBee specification, a Node_Desc_rsp command can return with the following status
codes:

• ZDPException.SUCCESS
• ZDPException.DEVICE_NOT_FOUND
• ZDPException.INV_REQUESTTYPE

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee

OSGi Residential Release 6 Supplement Page 61

• ZDPException.NO_DESCRIPTOR

Returns A promise representing the completion of this asynchronous call. It will be used in order to return
the node descriptor ZigBeeNodeDescriptor. If the ZDP Node_Desc_rsp do not return success, the
promise must fail with a ZDPException exception with the correct status code.

149.31.25.21 public int getPanId()

□ Returns the network Personal Area Network identifier (PAN ID).

Returns the network Personal Area Network identifier (PAN ID).

149.31.25.22 public Promise getPowerDescriptor()

□ Retrieves the ZigBee node Power Descriptor. As described in Table 2.92 Fields of the Power_Desc_rsp
Command of the ZigBee specification, a Power_Desc_rsp command can return with the following sta-
tus codes:

• ZDPException.SUCCESS
• ZDPException.DEVICE_NOT_FOUND
• ZDPException.INV_REQUESTTYPE
• ZDPException.NO_DESCRIPTOR

Returns A promise representing the completion of this asynchronous call. It will be used in order to return
the node power descriptor ZigBeePowerDescriptor. If the ZDP Power_Desc_rsp do not return success,
the promise must fail with a ZDPException exception with the correct status code.

149.31.25.23 public Promise getRoutingTable()

□ Retrieves the routing table information of the node. This routing table is also known as Rout-
ingTableList in the ZigBee Specification.

An implementation of this method may use the Mgmt_Rtg_req ZDP command to retrieve the Rout-
ing Table .

The target device may report a status code ZDPException.NOT_SUPPORTED in case of failure.

Returns A promise representing the completion of this asynchronous call. In case of success, the resolved
value will be a Map containing the Service.PID as String key of the ZigBeeNode service and the val-
ue the ZigBeeRoute for that node. In case of failure a ZDPException exception with the correct status
code must be used to fail the promise.

149.31.25.24 public Promise getUserDescription()

□ Returns the user description of this node. As described in Table 2.97 Fields of the User_Desc_rsp Com-
mand of the ZigBee specification, a User_Desc_rsp may return the following status:

• ZDPException.SUCCESS
• ZDPException.NOT_SUPPORTED
• ZDPException.DEVICE_NOT_FOUND
• ZDPException.INV_REQUESTTYPE
• ZDPException.NO_DESCRIPTOR

Returns A promise representing the completion of this asynchronous call. It will be used in order to return
the node user description (String). In case of errors the promise will fail with a ZDPException excep-
tion containing the response status code value.

149.31.25.25 public Promise invoke(int clusterIdReq,int expectedClusterIdRsp,ZDPFrame message)

clusterIdReq the cluster Id of the ZDPFrame that will be sent to the device.

org.osgi.service.zigbee Device Service Specification for ZigBee™ Technology Version 1.0

Page 62 OSGi Residential Release 6 Supplement

expectedClusterI-
dRsp

the expected cluster Id of the response to the ZDPFrame sent.

message the ZDPFrame containing the message.

□ Sends the ZDPFrame to this ZigBeeNode with the specified cluster id. This method expects a specific
cluster in the response to the request.

Returns A promise representing the completion of this asynchronous call. In case of success the promise re-
solves with the response ZDPFrame.

149.31.25.26 public Promise invoke(int clusterIdReq,ZDPFrame message)

clusterIdReq the cluster Id of the ZDPFrame that will be sent to the device.

message the ZDPFrame containing the message.

□ Sends the ZDPFrame to this ZigBeeNode with the specified cluster id. This method expects a specif-
ic cluster in the response to the request. This method considers that the 0x8000 + clusterIdReq is the
clusterId expected from messaged received for the message sent by this request.

Returns A promise representing the completion of this asynchronous call. In case of success the promise re-
solves with the response ZDPFrame.

149.31.25.27 public Promise leave()

□ Requests this node to leave the ZigBee network.

As described in Table 2.131 Fields of the Mgmt_Leave_rsp Command of the ZigBee specification, a
Mgmt_Leave_rsp ZDP command may return the following status values:

• ZDPException.SUCCESS
• ZDPException.NOT_SUPPORTED
• ZDPException.NOT_AUTHORIZED
• any status code returned from the NLMELEAVE.confirm primitive

Returns A promise representing the completion of this asynchronous call. In case of success, the promise is
resolved with a nul l value, otherwise with the correct ZDPException exception.

149.31.25.28 public Promise leave(boolean rejoin,boolean removeChildren)

rejoin true if the device being asked to leave from the current parent is requested to rejoin the network.
Otherwise, fa lse .

removeChildren true if the device being asked to leave the network is also being asked to remove its child devices, if
any. Otherwise, fa lse .

□ Requests the device to leave the network.

As described in Table 2.131 Fields of the Mgmt_Leave_rsp Command of the ZigBee specification, a
Mgmt_Leave_rsp command could return the following status values:

• ZDPException.SUCCESS
• ZDPException.NOT_SUPPORTED
• ZDPException.NOT_AUTHORIZED
• any status code returned from the NLMELEAVE.confirm primitive

Returns A promise representing the completion of this asynchronous call. In case of success, the ZigBeeN-
ode service must be unregistered, first and then the promise may be resolved with a nul l value, oth-
erwise with the correct ZDPException exception.

149.31.25.29 public Promise setUserDescription(String userDescription)

userDescription the user description.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.descriptions

OSGi Residential Release 6 Supplement Page 63

□ Sets the user description of this node. As described in Table 2.137 ZDP Enumerations Description of the
ZigBee specification, a Set_User_Desc_rsp request may return the following status:

• ZDPException.SUCCESS
• ZDPException.DEVICE_NOT_FOUND
• ZDPException.INV_REQUESTTYPE
• ZDPException.NO_DESCRIPTOR

Returns A promise representing the completion of this asynchronous call. In case of success the promise re-
turns a nul l value. In case of errors the promise must fail with a ZDPException exception containing
the response status code value.

149.31.26 public interface ZigBeeRoute
This interface represents an entry of the RoutingTableList

See Table 2.128 RoutingTableList Record Format in ZIGBEE SPECIFICATION: 1_053474r17ZB_TSC-
ZigBee-Specification.pdf.

No Implement Consumers of this API must not implement this interface

149.31.26.1 public static final int ACTIVE = 240

Constant value representing an active route.

149.31.26.2 public static final int DISCOVERY_FAILED = 242

Constant value representing a failed route discovery.

149.31.26.3 public static final int DISCOVERY_UNDERWAY = 241

Constant value representing a route that is under discovery.

149.31.26.4 public static final int INACTIVE = 243

Constant value representing an inactive route.

149.31.26.5 public static final int VALIDATION_UNDERWAY = 244

Constant value representing a route which is under validation.

149.31.26.6 public String getDestination()

□ Returns the service PID of the ZigBeeNode as destination of this route entry.

Returns the service PID of the ZigBeeNode as destination of this route entry.

149.31.26.7 public String getNextHop()

□ Returns the service PID of the ZigBeeNode to send the data for reaching the destination.

Returns the service PID of the ZigBeeNode to send the data for reaching the destination.

149.31.26.8 public int getStatus()

□ Returns the status of this route.

Returns the status of this route (or routing link) as defined by ZigBee Specification: ACTIVE,
DISCOVERY_UNDERWAY, DISCOVERY_FAILED, INACTIVE, VALIDATION_UNDERWAY.

149.32 org.osgi.service.zigbee.descriptions

Device Service Specification for ZigBee Technology Descriptions.

org.osgi.service.zigbee.descriptions Device Service Specification for ZigBee™ Technology Version 1.0

Page 64 OSGi Residential Release 6 Supplement

This package contains the interfaces for descriptions. The latter may be used to embed meta infor-
mation about the ZigBee devices, and in other words a meta description of each device type present
in a ZCL profile, or even custom devices.

It is not mandatory to provide this meta model for being able to interact with a specific device, but
the presence of this meta model would make much easier to implement, for example user inter-
faces.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.z igbee.descr ipt ions; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.z igbee.descr ipt ions; vers ion="[1.0,1.1)"

149.32.1 Summary

• ZCLAttr ibuteDescr ipt ion - This interface represents a ZCLAttributeDescription.
• ZCLClusterDescr ipt ion - This interface represents a ZCL Cluster description.
• ZCLCommandDescr ipt ion - This interface represents a ZCLCommandDescription.
• ZCLDataTypeDescr ipt ion - This interface is used for representing any of the ZigBee Data Types

defined in the ZCL.
• ZCLGlobalClusterDescr ipt ion - This interface represents Cluster global description.
• ZCLParameterDescr ipt ion - This interface represents a ZigBee parameter description.
• ZCLSimpleTypeDescr ipt ion - This interface is used for representing any of the simple ZigBee

Data Types defined in the ZCL.
• ZigBeeDeviceDescr ipt ion - This interface represents a ZigBee device description.
• ZigBeeDeviceDescr ipt ionSet - This interface represents a ZigBee Device description Set.

149.32.2 public interface ZCLAttributeDescription
extends ZCLAttributeInfo
This interface represents a ZCLAttributeDescription.

149.32.2.1 public Object getDefaultValue()

□ Returns the attribute default value.

Returns the attribute default value.

149.32.2.2 public String getName()

□ Returns the attribute name.

Returns the attribute name.

149.32.2.3 public String getShortDescription()

□ Returns the attribute functional description.

Returns the attribute functional description.

149.32.2.4 public boolean isMandatory()

□ Checks if this attribute is mandatory.

Returns true, if and only if the attribute is mandatory.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.descriptions

OSGi Residential Release 6 Supplement Page 65

149.32.2.5 public boolean isPartOfAScene()

□ Checks if this attribute is part of a scene.

Returns true if the attribute is part of a scene (cluster), false otherwise.

149.32.2.6 public boolean isReadOnly()

□ Checks if this attribute is read-only.

Returns true if the attribute is read only, false otherwise (that is, if the attribute is read/write or optionally
writable (R*W)).

149.32.2.7 public boolean isReportable()

□ Checks if this attribute is reportable.

Returns true if and only if the attribute support subscription.

149.32.3 public interface ZCLClusterDescription
This interface represents a ZCL Cluster description.

149.32.3.1 public ZCLAttributeDescription[] getAttributeDescriptions()

□ Returns an array of the attribute descriptions.

Returns an array of the attribute descriptions.

149.32.3.2 public ZCLCommandDescription[] getGeneratedCommandDescriptions()

□ Returns an array of the generated command descriptions.

Returns an array of the generated command descriptions.

149.32.3.3 public ZCLGlobalClusterDescription getGlobalClusterDescription()

□ Returns an array of the command descriptions.

Returns an array of the command descriptions.

149.32.3.4 public int getId()

Returns the cluster identifier.

149.32.3.5 public ZCLCommandDescription[] getReceivedCommandDescriptions()

□ Returns an array of the received command description.

Returns an array of the received command description.

149.32.4 public interface ZCLCommandDescription
This interface represents a ZCLCommandDescription.

149.32.4.1 public short getId()

□ Returns the command identifier.

Returns the command identifier.

149.32.4.2 public int getManufacturerCode()

□ Returns the manufacturer code. Default value is: -1 (no code).

Returns the manufacturer code.

149.32.4.3 public String getName()

□ Returns the command name.

org.osgi.service.zigbee.descriptions Device Service Specification for ZigBee™ Technology Version 1.0

Page 66 OSGi Residential Release 6 Supplement

Returns the command name.

149.32.4.4 public ZCLParameterDescription[] getParameterDescriptions()

□ Returns an array of the parameter descriptions.

Returns an array of the parameter descriptions.

149.32.4.5 public String getShortDescription()

□ Returns the command functional description.

Returns the command functional description.

149.32.4.6 public boolean isClientServerDirection()

□ Checks if this is a server-side command (that is going from the client to server direction).

Returns the isClientServerDirection value.

149.32.4.7 public boolean isClusterSpecificCommand()

Returns the isClusterSpecificCommand value.

149.32.4.8 public boolean isMandatory()

□ Checks if this command it mandatory.

Returns true, if and only if the command is mandatory.

149.32.4.9 public boolean isManufacturerSpecific()

□ Checks if the command is manufacturer specific.

Returns true if end only if getManufacturerCode() is not. -1.

149.32.5 public interface ZCLDataTypeDescription
This interface is used for representing any of the ZigBee Data Types defined in the ZCL. Each of these
data types has a set of associated information that this interface definition permits to retrieve using
the specific methods.

• The data type identifier
• The data type name
• The data type is analog or digital
• The Java class used to represent the data type.

No Implement Consumers of this API must not implement this interface

149.32.5.1 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.32.5.2 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.32.5.3 public String getName()

□ Returns the associated data type name.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.descriptions

OSGi Residential Release 6 Supplement Page 67

Returns the associated data type name string.

149.32.5.4 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.32.6 public interface ZCLGlobalClusterDescription
This interface represents Cluster global description.

149.32.6.1 public ZCLClusterDescription getClientClusterDescription()

□ Returns the client cluster description.

Returns the client cluster description.

149.32.6.2 public String getClusterDescription()

□ Returns the cluster functional description.

Returns the cluster functional description.

149.32.6.3 public String getClusterFunctionalDomain()

□ Returns the cluster functional domain.

Returns the cluster functional domain.

149.32.6.4 public int getClusterId()

□ Returns the cluster identifier.

Returns the cluster identifier.

149.32.6.5 public String getClusterName()

□ Returns the cluster name.

Returns the cluster name.

149.32.6.6 public ZCLClusterDescription getServerClusterDescription()

□ Returns the server cluster description.

Returns the server cluster description.

149.32.7 public interface ZCLParameterDescription
This interface represents a ZigBee parameter description.

149.32.7.1 public ZCLDataTypeDescription getDataTypeDescription()

□ Returns the parameter data type.

Returns the parameter data type.

149.32.8 public interface ZCLSimpleTypeDescription
extends ZCLDataTypeDescription
This interface is used for representing any of the simple ZigBee Data Types defined in the ZCL.

The interface extends the ZCLDataTypeDescription by providing serialize and deserialize methods
to marshal and unmarshal the data into the ZigBeeDataInput and from ZigBeeDataOutput streams.

Related documentation: [1] ZigBee Cluster Library specification, Document 075123r04ZB, May 29,
2012.

org.osgi.service.zigbee.descriptions Device Service Specification for ZigBee™ Technology Version 1.0

Page 68 OSGi Residential Release 6 Supplement

No Implement Consumers of this API must not implement this interface

149.32.8.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws NullPointerException– If ZigBeeDataInput parameter is nul l .

IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.32.8.2 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

NullPointerException– If ZigBeeDataOutput parameter is nul l .

I l legalArgumentException– If the passed value parameter does not belong to the expected class or
its value exceeds the possible values allowed (range or length).

149.32.9 public interface ZigBeeDeviceDescription
This interface represents a ZigBee device description.

149.32.9.1 public ZCLClusterDescription[] getClientClustersDescriptions()

□ Returns an array of client cluster descriptions.

Returns an array of client cluster descriptions.

149.32.9.2 public int getId()

□ Returns the device identifier.

Returns the device identifier.

149.32.9.3 public String getName()

□ Returns the device name.

Returns the device name.

149.32.9.4 public int getProfileId()

□ Returns the profile identifier.

Returns the profile identifier.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.descriptors

OSGi Residential Release 6 Supplement Page 69

149.32.9.5 public ZCLClusterDescription[] getServerClustersDescriptions()

□ Returns an array of server cluster descriptions.

Returns an array of server cluster descriptions.

149.32.9.6 public Integer getVersion()

□ Returns the device version.

Returns the device version.

149.32.10 public interface ZigBeeDeviceDescriptionSet
This interface represents a ZigBee Device description Set. A Set is registered as an OSGi Service that
provides method to retrieve endpoint descriptions. In addition to the ZigBeeDeviceDescriptionSet's
(OSGi service) properties; ZigBeeDeviceDescriptionSet is also expected to be registered as an OSGi
service with the following ZigBeeEndpoint.PROFILE_ID, and ZigBeeNode.MANUFACTURER_CODE
properties.

149.32.10.1 public static final String DEVICES = "zigbee.profile.devices"

Property key for a comma separated list of devices identifiers supported by the set. This property is
mandatory.

149.32.10.2 public static final String PROFILE_NAME = "zigbee.profile.name"

Property key for a profile name. This property is mandatory.

149.32.10.3 public static final String VERSION = "zigbee.profile.version"

Property key for a version of the application profile. The format is 'major.minor' with major and mi-
nor being integers. This property is mandatory.

149.32.10.4 public ZigBeeDeviceDescription getDeviceSpecification(int deviceId,short version)

deviceId Identifier of the device.

version The version of the application profile.

□ Returns the description of a device identified by its identifier and its version.

Returns The associated device description.

149.33 org.osgi.service.zigbee.descriptors

Device Service Specification for ZigBee Technology Descriptors.

This package contains the interfaces representing the ZigBee descriptors and the fields defined in-
side some of them.

An interface for modeling the ZigBee User Descriptor is missing because this descrip-
tor has only one field (the UserDescription). Therefore this field can be read and written
using respectively the org.osgi.service.zigbee.ZigBeeNode.getUserDescription() and the
org.osgi.service.zigbee.ZigBeeNode.setUserDescription(String) methods.

The org.osgi.service.zigbee.descriptors.ZigBeeNodeDescriptor,
org.osgi.service.zigbee.descriptors.ZigBeePowerDescriptor and the
org.osgi.service.zigbee.descriptors.ZigBeeComplexDescriptor are read using the appropriate meth-
ods in the org.osgi.service.zigbee.ZigBeeNode interface, whereas the ZigBeeSimpleDescriptor can be
read using the appropriate method of the org.osgi.service.zigbee.ZigBeeEndpoint services registered
in the framework.

org.osgi.service.zigbee.descriptors Device Service Specification for ZigBee™ Technology Version 1.0

Page 70 OSGi Residential Release 6 Supplement

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.z igbee.descr iptors; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.z igbee.descr iptors; vers ion="[1.0,1.1)"

149.33.1 Summary

• ZigBeeComplexDescr iptor - This interface represents a Complex Descriptor as described in the
ZigBee Specification.

• ZigBeeFrequencyBand - This interface represents a the frequency band field.
• ZigBeeMacCapabi l iyFlags - This interface represents the Node Descriptor MAC Capability Flags

as described in the ZigBee Specification.
• ZigBeeNodeDescr iptor - This interface represents a Node Descriptor as described in the ZigBee

Specification.
• ZigBeePowerDescr iptor - This interface represents a power descriptor as described in the ZigBee

Specification.
• ZigBeeServerMask - Represents the ZigBee Server Mask field of the ZigBee Node Descriptor.
• ZigBeeSimpleDescr iptor - This interface represents a simple descriptor as described in the Zig-

Bee Specification.

149.33.2 public interface ZigBeeComplexDescriptor
This interface represents a Complex Descriptor as described in the ZigBee Specification.

The Complex Descriptor contains extended information for each of the device descriptions con-
tained in the node. The use of the Complex Descriptor is optional.

No Implement Consumers of this API must not implement this interface

149.33.2.1 public String getCharacterSetIdentifier()

□ Returns the encoding used by characters in the character set.

Returns the encoding used by characters in the character set.

149.33.2.2 public String getDeviceURL()

□ Returns the Device URL.

Returns the Device URL.

149.33.2.3 public byte[] getIcon()

□ Returns the icon field.

Returns the icon field.

149.33.2.4 public String getIconURL()

□ Returns the icon URL.

Returns the icon URL.

149.33.2.5 public String getLanguageCode()

□ Returns the language code used for character strings.

Returns the language code used for character strings.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.descriptors

OSGi Residential Release 6 Supplement Page 71

149.33.2.6 public String getManufacturerName()

□ Returns the manufacturer name.

Returns the manufacturer name.

149.33.2.7 public String getModelName()

□ Returns the model name.

Returns the model name.

149.33.2.8 public String getSerialNumber()

□ Returns the serial number.

Returns the serial number.

149.33.3 public interface ZigBeeFrequencyBand
This interface represents a the frequency band field.

No Implement Consumers of this API must not implement this interface

149.33.3.1 public boolean is2400()

□ Checks if the radio band is 2.4GHz.

Returns true if and only if the radio is operating in the frequency band 2400MHz to 2483MHz.

149.33.3.2 public boolean is868()

□ Checks if the radio band is 868MHz.

Returns true if and only if the radio is operating in the frequency band 868 to 868.6 MHz.

149.33.3.3 public boolean is915()

□ Checks if the radio band is 900MHz.

Returns true if and only if the radio is operating in the frequency band 908MHz to 928MHz.

149.33.4 public interface ZigBeeMacCapabiliyFlags
This interface represents the Node Descriptor MAC Capability Flags as described in the ZigBee Spec-
ification.

No Implement Consumers of this API must not implement this interface

149.33.4.1 public boolean isAddressAllocate()

□ Checks if the device is address allocate.

Returns true if the device is address allocate or false otherwise.

149.33.4.2 public boolean isAlternatePANCoordinator()

□ Checks if this node is capable of becoming PAN coordinator.

Returns true if this node is capable of becoming PAN coordinator or false otherwise.

149.33.4.3 public boolean isFullFunctionDevice()

□ Checks if this node a Full Function Device (FFD).

Returns true if this node a Full Function Device (FFD), false otherwise (it is a Reduced Function Device, RFD).

149.33.4.4 public boolean isMainsPower()

□ Checks if the current power source is mains power.

org.osgi.service.zigbee.descriptors Device Service Specification for ZigBee™ Technology Version 1.0

Page 72 OSGi Residential Release 6 Supplement

Returns true if the current power source is mains power or false otherwise.

149.33.4.5 public boolean isReceiverOnWhenIdle()

□ Checks if the device does not disable its receiver to conserve power during idle periods.

Returns true if the device does not disable its receiver to conserve power during idle periods or false other-
wise.

149.33.4.6 public boolean isSecurityCapable()

□ Checks if the device is capable of sending and receiving secured frames

Returns true if the device is capable of sending and receiving secured frames or false otherwise.

149.33.5 public interface ZigBeeNodeDescriptor
This interface represents a Node Descriptor as described in the ZigBee Specification.

The Node Descriptor contains information about the capabilities of the node.

No Implement Consumers of this API must not implement this interface

149.33.5.1 public ZigBeeFrequencyBand getFrequencyBand()

□ Returns the radio frequency band the node is currently operating on.

Returns returns the information about the radio frequency band the node is currently operating on.

149.33.5.2 public short getLogicalType()

□ Returns the logical type of the described node.

Returns one of: ZigBeeNode.COORDINATOR, ZigBeeNode.ROUTER, ZigBeeNode.ZED.

149.33.5.3 public ZigBeeMacCapabiliyFlags getMacCapabilityFlags()

□ Returns the MAC Capability Flags field information.

Returns the MAC Capability Flags field information.

149.33.5.4 public int getManufacturerCode()

□ Returns the manufacturer code of the described node.

Returns the manufacturer code of the described node.

149.33.5.5 public int getMaxBufferSize()

□ Returns the maximum buffer size of the described node.

Returns the maximum buffer size of the described node.

149.33.5.6 public int getMaxIncomingTransferSize()

□ Returns the maximum incoming transfer size of the described node.

Returns the maximum incoming transfer size of the described node.

149.33.5.7 public int getMaxOutgoingTransferSize()

□ Returns the maximum outgoing transfer size of the described node.

Returns the maximum outgoing transfer size of the described node.

149.33.5.8 public ZigBeeServerMask getServerMask()

□ Returns the server mask of the described node.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.descriptors

OSGi Residential Release 6 Supplement Page 73

Returns the server mask of the described node.

149.33.5.9 public boolean isComplexDescriptorAvailable()

□ Checks if a complex descriptor is available.

Returns true if a complex descriptor is available or false otherwise.

149.33.5.10 public boolean isExtendedActiveEndpointListAvailable()

□ Checks if extended active endpoint list is available.

Returns true if extended active endpoint list is available or false otherwise.

149.33.5.11 public boolean isExtendedSimpleDescriptorListAvailable()

□ Checks if extended simple descriptor is available.

Returns true if extended simple descriptor is available or false otherwise.

149.33.5.12 public boolean isUserDescriptorAvailable()

□ Checks if a user descriptor is available.

Returns true if a user descriptor is available or false otherwise.

149.33.6 public interface ZigBeePowerDescriptor
This interface represents a power descriptor as described in the ZigBee Specification.

The Power Descriptor gives a dynamic indication of the power status of the node.

No Implement Consumers of this API must not implement this interface

149.33.6.1 public static final short CRITICAL_LEVEL = 0

Current power source level: critical.

149.33.6.2 public static final short FULL_LEVEL = 3

Current power source level: 100%.

149.33.6.3 public static final short LOW_LEVEL = 1

Current power source level: 33%.

149.33.6.4 public static final short MIDDLE_LEVEL = 2

Current power source level: 66%.

149.33.6.5 public short getCurrentPowerMode()

□ Returns the current power mode.

Returns the current power mode.

149.33.6.6 public short getCurrentPowerSource()

□ Returns the current power source field of the Power Descriptor.

Returns the current power source field of the Power Descriptor.

149.33.6.7 public short getCurrentPowerSourceLevel()

□ Returns the current power source level.

Returns the current power source level. May be one of CRITICAL_LEVEL, LOW_LEVEL, MIDDLE_LEVEL,
FULL_LEVEL.

org.osgi.service.zigbee.descriptors Device Service Specification for ZigBee™ Technology Version 1.0

Page 74 OSGi Residential Release 6 Supplement

149.33.6.8 public boolean isConstantMainsPowerAvailable()

□ Checks if constant (mains) power is available.

Returns true if constant (mains) power is available or false otherwise.

149.33.6.9 public boolean isDisposableBattery()

□ Checks if the currently selected power source is the disposable battery.

Returns true if the currently selected power source is the disposable battery.

149.33.6.10 public boolean isDisposableBatteryAvailable()

□ Checks if a disposable battery is available.

Returns true if a disposable battery is available or false otherwise.

149.33.6.11 public boolean isMainsPower()

□ Checks if the currently selected power source is the mains power.

Returns true if the currently selected power source is the mains power.

149.33.6.12 public boolean isOnWhenStimulated()

□ Checks if the receiver is on when the device is simulated.

Returns true if the Current Power Mode field tells that the receiver is on when the device is stimulated by
pressing a button, for instance.

149.33.6.13 public boolean isPeriodicallyOn()

□ Checks if the Current Power Mode field is periodically on.

Returns true if the Current Power Mode field is periodically on.

149.33.6.14 public boolean isRechargableBattery()

□ Checks if the currently selected power source is the rechargeable battery.

Returns true if the currently selected power source is the rechargeable battery.

149.33.6.15 public boolean isRechargableBatteryAvailable()

□ Checks if a rechargeable battery is available.

Returns true if a rechargeable battery is available or false otherwise.

149.33.6.16 public boolean isSyncronizedWithOnIdle()

□ Checks if synchronized with the receiver on-when-idle subfield of the node descriptor.

Returns true if the Current Power Mode field is synchronized on idle.

149.33.7 public interface ZigBeeServerMask
Represents the ZigBee Server Mask field of the ZigBee Node Descriptor.

No Implement Consumers of this API must not implement this interface

149.33.7.1 public boolean isBackupBindingTableCache()

□ Checks if the server is a Backup Binding Table Cache.

Returns true if and only if the server is a Backup Binding Table Cache.

149.33.7.2 public boolean isBackupDiscoveryCache()

□ Checks if the server is a Backup Discovery Cache.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.descriptors

OSGi Residential Release 6 Supplement Page 75

Returns true if and only if the server is a Backup Discovery Cache.

149.33.7.3 public boolean isBackupTrustCenter()

□ Checks if the server is a Backup Trust Center.

Returns true if and only if the server is a Backup Trust Center.

149.33.7.4 public boolean isNetworkManager()

□ Checks if the server is a Network Manager.

Returns true if and only if the server is a Network Manager.

149.33.7.5 public boolean isPrimaryBindingTableCache()

□ Checks if the server is a Primary Binding Table Cache.

Returns true if and only if the server is a Primary Binding Table Cache.

149.33.7.6 public boolean isPrimaryDiscoveryCache()

□ Checks if the server is a Primary Discovery Cache.

Returns true if and only if the server is a Primary Discovery Cache.

149.33.7.7 public boolean isPrimaryTrustCenter()

□ Checks if the server is a Primary Trust Center.

Returns true if and only if the server is a Primary Trust Center.

149.33.8 public interface ZigBeeSimpleDescriptor
This interface represents a simple descriptor as described in the ZigBee Specification.

The Simple Descriptor contains information specific to each endpoint present in the node.

149.33.8.1 public int getApplicationDeviceId()

□ Returns the application device id as defined per profile.

Returns the application device id as defined per profile.

149.33.8.2 public byte getApplicationDeviceVersion()

□ Returns the version of the endpoint application.

Returns the version of the endpoint application.

149.33.8.3 public int getApplicationProfileId()

□ Returns the application profile id.

Returns the application profile id.

149.33.8.4 public short getEndpoint()

□ Returns the endpoint for which this descriptor is defined.

Returns the endpoint for which this descriptor is defined.

149.33.8.5 public int[] getInputClusters()

□ Returns an array of input (server) cluster identifiers.

Returns an array of input (server) cluster identifiers, returns an empty array if does not provides any input
(server) clusters.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 76 OSGi Residential Release 6 Supplement

149.33.8.6 public int[] getOutputClusters()

□ Returns an array of output (client) cluster identifiers.

Returns an array of output (client) cluster identifiers, returns an empty array if does not provides any output
(client) clusters.

149.33.8.7 public boolean providesInputCluster(int clusterId)

clusterId the cluster identifier.

□ Checks if this endpoint implements the given cluster id as an input cluster.

Returns true if and only if this endpoint implements the given cluster id as an input cluster.

149.33.8.8 public boolean providesOutputCluster(int clusterId)

clusterId the cluster identifier.

□ Checks if this endpoint implements the given cluster id as an output cluster.

Returns true if and only if this endpoint implements the given cluster id as an output cluster.

149.34 org.osgi.service.zigbee.types

Device Service Specification for ZigBee Technology Data Types.

Utility classes modeling the ZCL data types. Each class provides the static getInstance() method for
retrieving a singleton instance of the class itself.

Every class contains methods for getting information about the data type like its ID and name. It is
also possible to know if the data type is analog or digital or get the Java class it is mapped in.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:

Import-Package: org.osgi .service.z igbee.types; vers ion="[1.0,2.0)"

Example import for providers implementing the API in this package:

Import-Package: org.osgi .service.z igbee.types; vers ion="[1.0,1.1)"

See Also org.osgi.service.zigbee.descriptions.ZCLDataTypeDescription

149.34.1 Summary

• ZigBeeArray - A singleton class that represents the 'Array' data type, as it is defined in the ZigBee
Cluster Library specification.

• ZigBeeAttr ibuteID - A singleton class that represents the 'Attribute ID' data type, as it is defined
in the ZigBee Cluster Library specification.

• ZigBeeBACnet - A singleton class that represents the 'Unsigned Integer 32-bit' data type, as it is
defined in the ZigBee Cluster Library specification.

• ZigBeeBag - A singleton class that represents the 'Bag' data type, as it is defined in the ZigBee
Cluster Library specification.

• ZigBeeBitmap16 - A singleton class that represents the 'Bitmap 16-bit' data type, as it is defined
in the ZigBee Cluster Library specification.

• ZigBeeBitmap24 - A singleton class that represents the 'Bitmap 24-bit' data type, as it is defined
in the ZigBee Cluster Library specification.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 77

• ZigBeeBitmap32 - A singleton class that represents the 'Bitmap 32-bit' data type, as it is defined
in the ZigBee Cluster Library specification.

• ZigBeeBitmap40 - A singleton class that represents the 'Bitmap 40-bit' data type, as it is defined
in the ZigBee Cluster Library specification.

• ZigBeeBitmap48 - A singleton class that represents the 'Bitmap 48-bit' data type, as it is defined
in the ZigBee Cluster Library specification.

• ZigBeeBitmap56 - A singleton class that represents the 'Bitmap 56-bit' data type, as it is defined
in the ZigBee Cluster Library specification.

• ZigBeeBitmap64 - A singleton class that represents the 'Bitmap 64-bit' data type, as it is defined
in the ZigBee Cluster Library specification.

• ZigBeeBitmap8 - A singleton class that represents the 'Bitmap 8-bit' data type, as it is defined in
the ZigBee Cluster Library specification.

• ZigBeeBoolean - A singleton class that represents the 'Boolean' data type, as it is defined in the
ZigBee Cluster Library specification.

• ZigBeeCharacterStr ing - A singleton class that represents the 'Character String' data type, as it is
defined in the ZigBee Cluster Library specification.

• ZigBeeCluster ID - A singleton class that represents the 'Cluster ID' data type, as it is defined in
the ZigBee Cluster Library specification.

• ZigBeeDate - A singleton class that represents the 'Date' data type, as it is defined in the ZigBee
Cluster Library specification.

• ZigBeeEnumeration16 - A singleton class that represents the 'Enumeration 16-bit' data type, as it
is defined in the ZigBee Cluster Library specification.

• ZigBeeEnumeration8 - A singleton class that represents the 'Enumeration 8-bit' data type, as it is
defined in the ZigBee Cluster Library specification.

• ZigBeeFloatingDouble - A singleton class that represents the 'Floating Double' data type, as it is
defined in the ZigBee Cluster Library specification.

• ZigBeeFloatingSemi - A singleton class that represents the 'Floating Semi' data type, as it is de-
fined in the ZigBee Cluster Library specification.

• ZigBeeFloatingSingle - A singleton class that represents the 'Floating Single' data type, as it is
defined in the ZigBee Cluster Library specification.

• ZigBeeGeneralData16 - A singleton class that represents the 'General Data 16-bit' data type, as it
is defined in the ZigBee Cluster Library specification.

• ZigBeeGeneralData24 - A singleton class that represents the 'General Data 24-bit' data type, as it
is defined in the ZigBee Cluster Library specification.

• ZigBeeGeneralData32 - A singleton class that represents the 'General Data 32-bit' data type, as it
is defined in the ZigBee Cluster Library specification.

• ZigBeeGeneralData40 - A singleton class that represents the 'General Data 40-bit' data type, as it
is defined in the ZigBee Cluster Library specification.

• ZigBeeGeneralData48 - A singleton class that represents the 'General Data 48-bit' data type, as it
is defined in the ZigBee Cluster Library specification.

• ZigBeeGeneralData56 - A singleton class that represents the 'General Data 56-bit' data type, as it
is defined in the ZigBee Cluster Library specification.

• ZigBeeGeneralData64 - A singleton class that represents the 'General Data 64-bit' data type, as it
is defined in the ZigBee Cluster Library specification.

• ZigBeeGeneralData8 - A singleton class that represents the 'General Data 8-bit' data type, as it is
defined in the ZigBee Cluster Library specification.

• ZigBeeIEEE_ADDRESS - A singleton class that represents the 'IEEE ADDRESS' data type, as it is
defined in the ZigBee Cluster Library specification.

• ZigBeeLongCharacterStr ing - A singleton class that represents the 'Long Character String' data
type, as it is defined in the ZigBee Cluster Library specification.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 78 OSGi Residential Release 6 Supplement

• ZigBeeLongOctetStr ing - A singleton class that represents the 'Long Octet String' data type, as it
is defined in the ZigBee Cluster Library specification.

• ZigBeeOctetStr ing - A singleton class that represents the 'Octet String' data type, as it is defined
in the ZigBee Cluster Library specification.

• ZigBeeSecurityKey128 - A singleton class that represents the 'Security Key 128' data type, as it is
defined in the ZigBee Cluster Library specification.

• ZigBeeSet - A singleton class that represents the 'Set' data type, as it is defined in the ZigBee
Cluster Library specification.

• ZigBeeSignedInteger16 - A singleton class that represents the 'Signed Integer 16-bit' data type,
as it is defined in the ZigBee Cluster Library specification.

• ZigBeeSignedInteger24 - A singleton class that represents the 'Signed Integer 24-bit' data type,
as it is defined in the ZigBee Cluster Library specification.

• ZigBeeSignedInteger32 - A singleton class that represents the 'Signed Integer 32-bit' data type,
as it is defined in the ZigBee Cluster Library specification.

• ZigBeeSignedInteger40 - A singleton class that represents the 'Signed Integer 40-bit' data type,
as it is defined in the ZigBee Cluster Library specification.

• ZigBeeSignedInteger48 - A singleton class that represents the 'Signed Integer 48-bit' data type,
as it is defined in the ZigBee Cluster Library specification.

• ZigBeeSignedInteger56 - A singleton class that represents the 'Signed Integer 56-bit' data type,
as it is defined in the ZigBee Cluster Library specification.

• ZigBeeSignedInteger64 - A singleton class that represents the 'Signed Integer 64-bit' data type,
as it is defined in the ZigBee Cluster Library specification.

• ZigBeeSignedInteger8 - A singleton class that represents the 'Signed Integer 8-bit' data type, as it
is defined in the ZigBee Cluster Library specification.

• ZigBeeStructure - A singleton class that represents the 'Structure' data type, as it is defined in
the ZigBee Cluster Library specification.

• ZigBeeTimeOfDay - A singleton class that represents the 'Time Of Day' data type, as it is defined
in the ZigBee Cluster Library specification.

• ZigBeeUnsignedInteger16 - A singleton class that represents the 'Unsigned Integer 16-bit' data
type, as it is defined in the ZigBee Cluster Library specification.

• ZigBeeUnsignedInteger24 - A singleton class that represents the 'Unsigned Integer 24-bit' data
type, as it is defined in the ZigBee Cluster Library specification.

• ZigBeeUnsignedInteger32 - A singleton class that represents the 'Unsigned Integer 32-bit' data
type, as it is defined in the ZigBee Cluster Library specification.

• ZigBeeUnsignedInteger40 - A singleton class that represents the 'Unsigned Integer 40-bit' data
type, as it is defined in the ZigBee Cluster Library specification.

• ZigBeeUnsignedInteger48 - A singleton class that represents the 'Unsigned Integer 48-bit' data
type, as it is defined in the ZigBee Cluster Library specification.

• ZigBeeUnsignedInteger56 - A singleton class that represents the 'Unsigned Integer 56-bit' data
type, as it is defined in the ZigBee Cluster Library specification.

• ZigBeeUnsignedInteger64 - A singleton class that represents the 'Unsigned Integer 64-bit' data
type, as it is defined in the ZigBee Cluster Library specification.

• ZigBeeUnsignedInteger8 - A singleton class that represents the 'Unsigned Integer 8-bit' data
type, as it is defined in the ZigBee Cluster Library specification.

• ZigBeeUTCTime - A singleton class that represents the 'UTC Time' data type, as it is defined in
the ZigBee Cluster Library specification.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 79

149.34.2 public class ZigBeeArray
implements ZCLDataTypeDescription
A singleton class that represents the 'Array' data type, as it is defined in the ZigBee Cluster Library
specification.

149.34.2.1 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.2.2 public static ZigBeeArray getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.2.3 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.2.4 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.2.5 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.3 public class ZigBeeAttributeID
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Attribute ID' data type, as it is defined in the ZigBee Cluster Li-
brary specification.

149.34.3.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.3.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.3.3 public static ZigBeeAttributeID getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 80 OSGi Residential Release 6 Supplement

149.34.3.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.3.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.3.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.3.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.4 public class ZigBeeBACnet
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Unsigned Integer 32-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.4.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.4.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.4.3 public static ZigBeeBACnet getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 81

149.34.4.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.4.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.4.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.4.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.5 public class ZigBeeBag
implements ZCLDataTypeDescription
A singleton class that represents the 'Bag' data type, as it is defined in the ZigBee Cluster Library
specification.

149.34.5.1 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.5.2 public static ZigBeeBag getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.5.3 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.5.4 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 82 OSGi Residential Release 6 Supplement

149.34.5.5 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.6 public class ZigBeeBitmap16
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Bitmap 16-bit' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.6.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.6.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.6.3 public static ZigBeeBitmap16 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.6.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.6.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.6.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.6.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 83

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.7 public class ZigBeeBitmap24
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Bitmap 24-bit' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.7.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.7.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.7.3 public static ZigBeeBitmap24 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.7.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.7.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.7.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.7.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 84 OSGi Residential Release 6 Supplement

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.8 public class ZigBeeBitmap32
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Bitmap 32-bit' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.8.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.8.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.8.3 public static ZigBeeBitmap32 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.8.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.8.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.8.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.8.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 85

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.9 public class ZigBeeBitmap40
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Bitmap 40-bit' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.9.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.9.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.9.3 public static ZigBeeBitmap40 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.9.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.9.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.9.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.9.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 86 OSGi Residential Release 6 Supplement

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.10 public class ZigBeeBitmap48
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Bitmap 48-bit' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.10.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.10.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.10.3 public static ZigBeeBitmap48 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.10.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.10.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.10.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.10.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 87

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.11 public class ZigBeeBitmap56
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Bitmap 56-bit' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.11.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.11.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.11.3 public static ZigBeeBitmap56 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.11.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.11.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.11.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.11.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 88 OSGi Residential Release 6 Supplement

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.12 public class ZigBeeBitmap64
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Bitmap 64-bit' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.12.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.12.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.12.3 public static ZigBeeBitmap64 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.12.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.12.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.12.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.12.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 89

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.13 public class ZigBeeBitmap8
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Bitmap 8-bit' data type, as it is defined in the ZigBee Cluster Li-
brary specification.

149.34.13.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.13.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.13.3 public static ZigBeeBitmap8 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.13.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.13.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.13.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.13.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 90 OSGi Residential Release 6 Supplement

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.14 public class ZigBeeBoolean
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Boolean' data type, as it is defined in the ZigBee Cluster Library
specification.

149.34.14.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.14.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.14.3 public static ZigBeeBoolean getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.14.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.14.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.14.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.14.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 91

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.15 public class ZigBeeCharacterString
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Character String' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.15.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.15.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.15.3 public static ZigBeeCharacterString getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.15.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.15.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.15.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.15.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 92 OSGi Residential Release 6 Supplement

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.16 public class ZigBeeClusterID
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Cluster ID' data type, as it is defined in the ZigBee Cluster Li-
brary specification.

149.34.16.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.16.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.16.3 public static ZigBeeClusterID getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.16.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.16.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.16.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.16.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 93

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.17 public class ZigBeeDate
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Date' data type, as it is defined in the ZigBee Cluster Library
specification.

The ZigBee data type is mapped to a byte[4] array where byte[0] must contain the Year field (be care-
ful that in the ZCL specification this byte do not contain the actual year, but an offset) whereas
byte[3] the Day of Week. The array is marshaled/unmarshaled starting from byte[0].

149.34.17.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.17.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.17.3 public static ZigBeeDate getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.17.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.17.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.17.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.17.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 94 OSGi Residential Release 6 Supplement

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.18 public class ZigBeeEnumeration16
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Enumeration 16-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.18.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.18.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.18.3 public static ZigBeeEnumeration16 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.18.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.18.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.18.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.18.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 95

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.19 public class ZigBeeEnumeration8
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Enumeration 8-bit' data type, as it is defined in the ZigBee Clus-
ter Library specification.

149.34.19.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.19.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.19.3 public static ZigBeeEnumeration8 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.19.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.19.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.19.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.19.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 96 OSGi Residential Release 6 Supplement

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.20 public class ZigBeeFloatingDouble
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Floating Double' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.20.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.20.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.20.3 public static ZigBeeFloatingDouble getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.20.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.20.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.20.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.20.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 97

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.21 public class ZigBeeFloatingSemi
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Floating Semi' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.21.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.21.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.21.3 public static ZigBeeFloatingSemi getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.21.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.21.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.21.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.21.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 98 OSGi Residential Release 6 Supplement

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.22 public class ZigBeeFloatingSingle
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Floating Single' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.22.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.22.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.22.3 public static ZigBeeFloatingSingle getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.22.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.22.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.22.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.22.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 99

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.23 public class ZigBeeGeneralData16
implements ZCLSimpleTypeDescription
A singleton class that represents the 'General Data 16-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.23.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.23.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.23.3 public static ZigBeeGeneralData16 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.23.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.23.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.23.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.23.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 100 OSGi Residential Release 6 Supplement

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.24 public class ZigBeeGeneralData24
implements ZCLSimpleTypeDescription
A singleton class that represents the 'General Data 24-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.24.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.24.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.24.3 public static ZigBeeGeneralData24 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.24.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.24.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.24.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.24.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 101

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.25 public class ZigBeeGeneralData32
implements ZCLSimpleTypeDescription
A singleton class that represents the 'General Data 32-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.25.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.25.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.25.3 public static ZigBeeGeneralData32 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.25.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.25.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.25.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.25.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 102 OSGi Residential Release 6 Supplement

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.26 public class ZigBeeGeneralData40
implements ZCLSimpleTypeDescription
A singleton class that represents the 'General Data 40-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.26.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.26.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.26.3 public static ZigBeeGeneralData40 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.26.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.26.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.26.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.26.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 103

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.27 public class ZigBeeGeneralData48
implements ZCLSimpleTypeDescription
A singleton class that represents the 'General Data 48-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.27.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.27.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.27.3 public static ZigBeeGeneralData48 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.27.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.27.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.27.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.27.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 104 OSGi Residential Release 6 Supplement

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.28 public class ZigBeeGeneralData56
implements ZCLSimpleTypeDescription
A singleton class that represents the 'General Data 56-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.28.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.28.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.28.3 public static ZigBeeGeneralData56 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.28.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.28.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.28.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.28.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 105

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.29 public class ZigBeeGeneralData64
implements ZCLSimpleTypeDescription
A singleton class that represents the 'General Data 64-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.29.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.29.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.29.3 public static ZigBeeGeneralData64 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.29.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.29.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.29.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.29.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 106 OSGi Residential Release 6 Supplement

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.30 public class ZigBeeGeneralData8
implements ZCLSimpleTypeDescription
A singleton class that represents the 'General Data 8-bit' data type, as it is defined in the ZigBee Clus-
ter Library specification.

149.34.30.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.30.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.30.3 public static ZigBeeGeneralData8 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.30.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.30.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.30.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.30.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 107

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.31 public class ZigBeeIEEE_ADDRESS
implements ZCLSimpleTypeDescription
A singleton class that represents the 'IEEE ADDRESS' data type, as it is defined in the ZigBee Cluster
Library specification.

149.34.31.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.31.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.31.3 public static ZigBeeIEEE_ADDRESS getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.31.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.31.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.31.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.31.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 108 OSGi Residential Release 6 Supplement

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.32 public class ZigBeeLongCharacterString
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Long Character String' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.32.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.32.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.32.3 public static ZigBeeLongCharacterString getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.32.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.32.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.32.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.32.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 109

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.33 public class ZigBeeLongOctetString
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Long Octet String' data type, as it is defined in the ZigBee Clus-
ter Library specification.

149.34.33.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.33.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.33.3 public static ZigBeeLongOctetString getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.33.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.33.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.33.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.33.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 110 OSGi Residential Release 6 Supplement

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.34 public class ZigBeeOctetString
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Octet String' data type, as it is defined in the ZigBee Cluster Li-
brary specification.

149.34.34.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.34.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.34.3 public static ZigBeeOctetString getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.34.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.34.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.34.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.34.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 111

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.35 public class ZigBeeSecurityKey128
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Security Key 128' data type, as it is defined in the ZigBee Clus-
ter Library specification.

149.34.35.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.35.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.35.3 public static ZigBeeSecurityKey128 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.35.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.35.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.35.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.35.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 112 OSGi Residential Release 6 Supplement

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.36 public class ZigBeeSet
implements ZCLDataTypeDescription
A singleton class that represents the 'Set' data type, as it is defined in the ZigBee Cluster Library spec-
ification.

149.34.36.1 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.36.2 public static ZigBeeSet getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.36.3 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.36.4 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.36.5 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.37 public class ZigBeeSignedInteger16
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Signed Integer 16-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.37.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 113

149.34.37.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.37.3 public static ZigBeeSignedInteger16 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.37.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.37.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.37.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.37.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.38 public class ZigBeeSignedInteger24
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Signed Integer 24-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.38.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 114 OSGi Residential Release 6 Supplement

149.34.38.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.38.3 public static ZigBeeSignedInteger24 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.38.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.38.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.38.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.38.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.39 public class ZigBeeSignedInteger32
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Signed Integer 32-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.39.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 115

149.34.39.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.39.3 public static ZigBeeSignedInteger32 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.39.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.39.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.39.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.39.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.40 public class ZigBeeSignedInteger40
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Signed Integer 40-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.40.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 116 OSGi Residential Release 6 Supplement

149.34.40.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.40.3 public static ZigBeeSignedInteger40 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.40.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.40.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.40.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.40.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.41 public class ZigBeeSignedInteger48
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Signed Integer 48-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.41.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 117

149.34.41.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.41.3 public static ZigBeeSignedInteger48 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.41.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.41.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.41.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.41.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.42 public class ZigBeeSignedInteger56
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Signed Integer 56-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.42.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 118 OSGi Residential Release 6 Supplement

149.34.42.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.42.3 public static ZigBeeSignedInteger56 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.42.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.42.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.42.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.42.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.43 public class ZigBeeSignedInteger64
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Signed Integer 64-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.43.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 119

149.34.43.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.43.3 public static ZigBeeSignedInteger64 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.43.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.43.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.43.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.43.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.44 public class ZigBeeSignedInteger8
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Signed Integer 8-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.44.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 120 OSGi Residential Release 6 Supplement

149.34.44.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.44.3 public static ZigBeeSignedInteger8 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.44.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.44.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.44.6 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.44.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.45 public class ZigBeeStructure
implements ZCLDataTypeDescription
A singleton class that represents the 'Structure' data type, as it is defined in the ZigBee Cluster Li-
brary specification.

149.34.45.1 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.45.2 public static ZigBeeStructure getInstance()

□ Gets a singleton instance of this class.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 121

Returns the singleton instance.

149.34.45.3 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.45.4 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.45.5 public boolean isAnalog()

□ Checks if the data type is analog.

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.46 public class ZigBeeTimeOfDay
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Time Of Day' data type, as it is defined in the ZigBee Cluster
Library specification. The ZigBee data type is mapped to a byte[4] array where byte[0] must contain
the Hour field and byte[3] the Hundredths of seconds. The array is marshaled/unmarshaled starting
from byte[0].

149.34.46.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.46.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.46.3 public static ZigBeeTimeOfDay getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.46.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.46.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.46.6 public boolean isAnalog()

□ Checks if the data type is analog.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 122 OSGi Residential Release 6 Supplement

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.46.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.47 public class ZigBeeUnsignedInteger16
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Unsigned Integer 16-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.47.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.47.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.47.3 public static ZigBeeUnsignedInteger16 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.47.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.47.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.47.6 public boolean isAnalog()

□ Checks if the data type is analog.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 123

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.47.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.48 public class ZigBeeUnsignedInteger24
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Unsigned Integer 24-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.48.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.48.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.48.3 public static ZigBeeUnsignedInteger24 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.48.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.48.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.48.6 public boolean isAnalog()

□ Checks if the data type is analog.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 124 OSGi Residential Release 6 Supplement

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.48.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.49 public class ZigBeeUnsignedInteger32
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Unsigned Integer 32-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.49.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.49.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.49.3 public static ZigBeeUnsignedInteger32 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.49.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.49.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.49.6 public boolean isAnalog()

□ Checks if the data type is analog.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 125

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.49.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.50 public class ZigBeeUnsignedInteger40
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Unsigned Integer 40-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.50.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.50.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.50.3 public static ZigBeeUnsignedInteger40 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.50.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.50.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.50.6 public boolean isAnalog()

□ Checks if the data type is analog.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 126 OSGi Residential Release 6 Supplement

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.50.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.51 public class ZigBeeUnsignedInteger48
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Unsigned Integer 48-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.51.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.51.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.51.3 public static ZigBeeUnsignedInteger48 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.51.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.51.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.51.6 public boolean isAnalog()

□ Checks if the data type is analog.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 127

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.51.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.52 public class ZigBeeUnsignedInteger56
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Unsigned Integer 56-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.52.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.52.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.52.3 public static ZigBeeUnsignedInteger56 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.52.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.52.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.52.6 public boolean isAnalog()

□ Checks if the data type is analog.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 128 OSGi Residential Release 6 Supplement

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.52.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.53 public class ZigBeeUnsignedInteger64
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Unsigned Integer 64-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.53.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.53.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.53.3 public static ZigBeeUnsignedInteger64 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.53.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.53.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.53.6 public boolean isAnalog()

□ Checks if the data type is analog.

Device Service Specification for ZigBee™ Technology Version 1.0 org.osgi.service.zigbee.types

OSGi Residential Release 6 Supplement Page 129

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.53.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.54 public class ZigBeeUnsignedInteger8
implements ZCLSimpleTypeDescription
A singleton class that represents the 'Unsigned Integer 8-bit' data type, as it is defined in the ZigBee
Cluster Library specification.

149.34.54.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.54.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.54.3 public static ZigBeeUnsignedInteger8 getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.54.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.54.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.54.6 public boolean isAnalog()

□ Checks if the data type is analog.

org.osgi.service.zigbee.types Device Service Specification for ZigBee™ Technology Version 1.0

Page 130 OSGi Residential Release 6 Supplement

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.54.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.34.55 public class ZigBeeUTCTime
implements ZCLSimpleTypeDescription
A singleton class that represents the 'UTC Time' data type, as it is defined in the ZigBee Cluster Li-
brary specification.

149.34.55.1 public Object deserialize(ZigBeeDataInput is) throws IOException

is the ZigBeeDataInput from where the value of data type is read from.

□ Deserializes a value from the passed ZigBeeDataInput stream.

Returns An object that represents the deserialized value of data. Returns nul l if the read value represents the
Invalid Value for the specific ZigBee data type.

Throws IOException– If an I/O error occurs while reading the ZigBeeDataInput. An EOFException is thrown
if the data input stream end is reached while deserializing the data type.

149.34.55.2 public short getId()

□ Returns the data type identifier.

Returns the data type identifier. The data types identifiers supported by this specification are defined in the
ZigBeeDataTypes interface.

149.34.55.3 public static ZigBeeUTCTime getInstance()

□ Gets a singleton instance of this class.

Returns the singleton instance.

149.34.55.4 public Class getJavaDataType()

□ Returns the corresponding Java type class.

Returns the corresponding Java type class.

149.34.55.5 public String getName()

□ Returns the associated data type name.

Returns the associated data type name string.

149.34.55.6 public boolean isAnalog()

□ Checks if the data type is analog.

Device Service Specification for ZigBee™ Technology Version 1.0 References

OSGi Residential Release 6 Supplement Page 131

Returns true, if the data type is Analog, otherwise is Discrete.

149.34.55.7 public void serialize(ZigBeeDataOutput os,Object value) throws IOException

os a ZigBeeDataOutput stream where to the passed value will be appended. This parameter cannot be
nul l . If nul l a NullPointerException must be thrown.

value The value that have to be serialized on the output stream. If null is passed this method outputs on
the stream the ZigBee invalid value related the specific data type. If the data type do not allow any
invalid value and the passed value is null an IllegalArgumentException is thrown.

□ Serializes a ZigBee data type into a ZigBeeDataOutput stream. An implementation of this method
must throw an IllegalArgumentException if the passed value does not belong to the expected class
or its value exceeds the possible values allowed (in terms of range or length).

An implementation of this method must interpret (where it makes sense) a nul l value as the request
to serialize the so called Invalid Value.

Throws IOException– If an I/O error occurs while writing on the ZigBeeDataOutput. The EOFException may
be thrown if there is no more space on the data output for serializing the passed value.

149.35 References

[1] ZigBee Specification
Document 053474r17, ZigBee Alliance, October 19, 2007.

[2] ZigBee Cluster Library Specification
Document 075123r04ZB, ZigBee Alliance, May 29, 2012.

[3] Pervasive Service Composition in the Home Network
André Bottaro, Anne Gérodolle, Philippe Lalanda, 21st IEEE International Conference on Advanced
Information Networking and Applications (AINA-07), Niagara Falls, Canada, May 2007.

[4] Device and Service Discovery in Home Networks with OSGi
Pavlin Dobrev, David Famolari, Christian Kurzke, Brent A. Miller, IEEE Communications magazine,
Volume 40, Issue 8, pp. 86-92, August 2002.

[5] ASHRAE 135-2004 Standard
Data Communication Protocol for Building Automation and Control Networks.

[6] Listeners considered harmful: The whiteboard pattern
Peter Kriens, BJ Hargrave for the OSGi Alliance, Technical Whitepaper, August 2004.
https://www.osgi.org/wp-content/uploads/whiteboard1.pdf

[7] ZigBee Gateway
ZigBee Alliance, 2011.

https://www.osgi.org/wp-content/uploads/whiteboard1.pdf

References Device Service Specification for ZigBee™ Technology Version 1.0

Page 132 OSGi Residential Release 6 Supplement

OSGi Residential Release 6 Supplement

OSGi Residential Release 6 Supplement Page 133

OSGi Residential Release 6 Supplement

Page 134 OSGi Residential Release 6 Supplement

End Of Document

	OSGi Residential
	Table of Contents
	Chapter 1. Introduction
	1.1. Overview of the Residential Supplement Specification
	1.1.1. Device Interoperability

	1.2. Version Information
	1.2.1. OSGi Core Release 6
	1.2.2. Component Versions

	1.3. References

	Chapter 149. Device Service Specification for ZigBee™ Technology
	149.1. Introduction
	149.2. Essentials
	149.3. Entities
	149.4. Operation Summary
	149.5. ZigBee Base Driver
	149.6. ZigBee Node
	149.7. ZigBee Endpoint
	149.8. ZigBee Device Description
	149.9. ZigBee Device Description Set
	149.10. ZCL Cluster
	149.11. ZCL Cluster Description
	149.12. ZCL Global Cluster Description
	149.13. ZigBee Command Description
	149.14. ZigBee Attribute
	149.15. ZigBee Attribute Description
	149.16. ZCL Data Type Description
	149.17. ZCL Simple Type Description
	149.18. Promise and Response Stream objects
	149.19. ZigBee Data Types
	149.20. Implementing a ZigBee Endpoint
	149.21. Event API
	149.22. Monitoring Events and Sending Commands
	149.23. ZCL Exception
	149.24. ZDP Exception
	149.25. APS Exception
	149.26. ZigBee Exception
	149.27. ZCL Frame
	149.28. ZigBee Group
	149.29. ZigBee Networking
	149.29.1. Logical node type
	149.29.2. Network selection
	149.29.3. Network coordination
	149.29.4. Networking considerations

	149.30. Security
	149.30.1. Security management
	149.30.2. Conditional permission

	149.31. org.osgi.service.zigbee
	149.31.1. Summary
	149.31.2. public class APSException extends ZigBeeException
	149.31.2.1. public static final int ASDU_TOO_LONG = 65
	149.31.2.2. public static final int DEFRAG_DEFERRED = 66
	149.31.2.3. public static final int DEFRAG_UNSUPPORTED = 67
	149.31.2.4. public static final int ILLEGAL_REQUEST = 68
	149.31.2.5. public static final int INVALID_BINDING = 69
	149.31.2.6. public static final int INVALID_GROUP = 70
	149.31.2.7. public static final int INVALID_PARAMETER = 71
	149.31.2.8. public static final int NO_ACK = 72
	149.31.2.9. public static final int NO_BOUND_DEVICE = 73
	149.31.2.10. public static final int NO_SHORT_ADDRESS = 74
	149.31.2.11. public static final int NOT_SUPPORTED = 75
	149.31.2.12. public static final int SECURED_LINK_KEY = 76
	149.31.2.13. public static final int SECURED_NWK_KEY = 77
	149.31.2.14. public static final int SECURITY_FAIL = 78
	149.31.2.15. public static final int SUCCESS = 0
	149.31.2.16. public static final int TABLE_FULL = 79
	149.31.2.17. public static final int UNSECURED = 80
	149.31.2.18. public static final int UNSUPPORTED_ATTRIBUTE = 81
	149.31.2.19. public APSException(String errorDesc)
	149.31.2.20. public APSException(int errorCode,String errorDesc)
	149.31.2.21. public APSException(int errorCode,int zigBeeErrorCode,String errorDesc)

	149.31.3. public interface ZCLAttribute extends ZCLAttributeInfo
	149.31.3.1. public static final String ID = "zigbee.attribute.id"
	149.31.3.2. public Promise getValue()
	149.31.3.3. public Promise setValue(Object value)

	149.31.4. public interface ZCLAttributeInfo
	149.31.4.1. public static final String ID = "zigbee.attribute.id"
	149.31.4.2. public ZCLDataTypeDescription getDataType()
	149.31.4.3. public int getId()
	149.31.4.4. public int getManufacturerCode()
	149.31.4.5. public boolean isManufacturerSpecific()

	149.31.5. public interface ZCLCluster
	149.31.5.1. public static final String DOMAIN = "zigbee.cluster.domain"
	149.31.5.2. public static final String ID = "zigbee.cluster.id"
	149.31.5.3. public static final String NAME = "zigbee.cluster.name"
	149.31.5.4. public Promise getAttribute(int attributeId)
	149.31.5.5. public Promise getAttribute(int attributeId,int code)
	149.31.5.6. public Promise getAttributes()
	149.31.5.7. public Promise getAttributes(int code)
	149.31.5.8. public Promise getCommandIds()
	149.31.5.9. public int getId()
	149.31.5.10. public Promise invoke(ZCLFrame frame)
	149.31.5.11. public Promise invoke(ZCLFrame frame,String exportedServicePID)
	149.31.5.12. public Promise readAttributes(ZCLAttributeInfo[] attributes)
	149.31.5.13. public Promise writeAttributes(boolean undivided,Map attributesAndValues)

	149.31.6. public interface ZCLCommandResponse
	149.31.6.1. public Promise getResponse()
	149.31.6.2. public boolean isEnd()

	149.31.7. public interface ZCLCommandResponseStream
	149.31.7.1. public void close()
	149.31.7.2. public void forEach(Predicate handler)

	149.31.8. public interface ZCLEventListener
	149.31.8.1. public static final String ATTRIBUTE_DATA_TYPE = "zigbee.attribute.datatype"
	149.31.8.2. public static final String MAX_REPORT_INTERVAL = "zigbee.attribute.max.report.interval"
	149.31.8.3. public static final String MIN_REPORT_INTERVAL = "zigbee.attribute.min.report.interval"
	149.31.8.4. public static final String REPORTABLE_CHANGE = "zigbee.attribute.reportable.change"
	149.31.8.5. public void notifyEvent(ZigBeeEvent event)
	149.31.8.6. public void notifyTimeOut(int timeout)
	149.31.8.7. public void onFailure(ZCLException e)

	149.31.9. public class ZCLException extends ZigBeeException
	149.31.9.1. public static final int CALIBRATION_ERROR = 18
	149.31.9.2. public static final int CLUSTER_COMMAND_NOT_SUPPORTED = 3
	149.31.9.3. public static final int DUPLICATE_EXISTS = 12
	149.31.9.4. public static final int FAILURE = 1
	149.31.9.5. public static final int GENERAL_COMMAND_NOT_SUPPORTED = 4
	149.31.9.6. public static final int HARDWARE_FAILURE = 16
	149.31.9.7. public static final int INSUFFICIENT_SPACE = 11
	149.31.9.8. public static final int INVALID_DATA_TYPE = 15
	149.31.9.9. public static final int INVALID_FIELD = 7
	149.31.9.10. public static final int INVALID_VALUE = 9
	149.31.9.11. public static final int MALFORMED_COMMAND = 2
	149.31.9.12. public static final int MANUF_CLUSTER_COMMAND_NOT_SUPPORTED = 5
	149.31.9.13. public static final int MANUF_GENERAL_COMMAND_NOT_SUPPORTED = 6
	149.31.9.14. public static final int NOT_FOUND = 13
	149.31.9.15. public static final int READ_ONLY = 10
	149.31.9.16. public static final int SOFTWARE_FAILURE = 17
	149.31.9.17. public static final int SUCCESS = 0
	149.31.9.18. public static final int UNREPORTABLE_TYPE = 14
	149.31.9.19. public static final int UNSUPPORTED_ATTRIBUTE = 8
	149.31.9.20. public ZCLException(String errorDesc)
	149.31.9.21. public ZCLException(int errorCode,String errorDesc)
	149.31.9.22. public ZCLException(int errorCode,int zigBeeErrorCode,String errorDesc)

	149.31.10. public interface ZCLFrame
	149.31.10.1. public byte[] getBytes()
	149.31.10.2. public int getBytes(byte[] buffer)
	149.31.10.3. public ZigBeeDataInput getDataInput()
	149.31.10.4. public ZCLHeader getHeader()
	149.31.10.5. public int getSize()

	149.31.11. public interface ZCLHeader
	149.31.11.1. public short getCommandId()
	149.31.11.2. public short getFrameControlField()
	149.31.11.3. public int getManufacturerCode()
	149.31.11.4. public byte getSequenceNumber()
	149.31.11.5. public boolean isClientServerDirection()
	149.31.11.6. public boolean isClusterSpecificCommand()
	149.31.11.7. public boolean isDefaultResponseDisabled()
	149.31.11.8. public boolean isManufacturerSpecific()

	149.31.12. public interface ZCLReadStatusRecord
	149.31.12.1. public ZCLAttributeInfo getAttributeInfo()
	149.31.12.2. public ZigBeeException getFailure()
	149.31.12.3. public Object getValue()

	149.31.13. public class ZDPException extends ZigBeeException
	149.31.13.1. public static final int DEVICE_NOT_FOUND = 34
	149.31.13.2. public static final int INSUFFICIENT_SPACE = 42
	149.31.13.3. public static final int INV_REQUESTTYPE = 33
	149.31.13.4. public static final int INVALID_EP = 35
	149.31.13.5. public static final int NO_DESCRIPTOR = 41
	149.31.13.6. public static final int NO_ENTRY = 40
	149.31.13.7. public static final int NO_MATCH = 39
	149.31.13.8. public static final int NOT_ACTIVE = 36
	149.31.13.9. public static final int NOT_AUTHORIZED = 45
	149.31.13.10. public static final int NOT_PERMITTED = 43
	149.31.13.11. public static final int NOT_SUPPORTED = 37
	149.31.13.12. public static final int SUCCESS = 0
	149.31.13.13. public static final int TABLE_FULL = 44
	149.31.13.14. public static final int TIMEOUT = 38
	149.31.13.15. public ZDPException(String errorDesc)
	149.31.13.16. public ZDPException(int errorCode,String errorDesc)
	149.31.13.17. public ZDPException(int errorCode,int zigBeeErrorCode,String errorDesc)

	149.31.14. public interface ZDPFrame
	149.31.14.1. public ZigBeeDataInput getDataInput()
	149.31.14.2. public byte[] getPayload()

	149.31.15. public interface ZDPResponse
	149.31.15.1. public int getClusterId()
	149.31.15.2. public ZDPFrame getFrame()

	149.31.16. public interface ZigBeeDataInput
	149.31.16.1. public byte readByte() throws IOException
	149.31.16.2. public byte[] readBytes(int len) throws IOException
	149.31.16.3. public double readDouble() throws IOException
	149.31.16.4. public float readFloat(int size) throws IOException
	149.31.16.5. public int readInt(int size) throws IOException
	149.31.16.6. public long readLong(int size) throws IOException

	149.31.17. public interface ZigBeeDataOutput
	149.31.17.1. public void writeByte(byte value)
	149.31.17.2. public void writeBytes(byte[] bytes,int length) throws IOException
	149.31.17.3. public void writeDouble(double value) throws IOException
	149.31.17.4. public void writeFloat(float value,int size) throws IOException
	149.31.17.5. public void writeInt(int value,int size) throws IOException
	149.31.17.6. public void writeLong(long value,int size) throws IOException

	149.31.18. public class ZigBeeDataTypes
	149.31.18.1. public static final short ARRAY = 16
	149.31.18.2. public static final short ATTRIBUTE_ID = 6
	149.31.18.3. public static final short BACNET_OID = 7
	149.31.18.4. public static final short BAG = 19
	149.31.18.5. public static final short BITMAP_16 = 89
	149.31.18.6. public static final short BITMAP_24 = 90
	149.31.18.7. public static final short BITMAP_32 = 91
	149.31.18.8. public static final short BITMAP_40 = 92
	149.31.18.9. public static final short BITMAP_48 = 93
	149.31.18.10. public static final short BITMAP_56 = 94
	149.31.18.11. public static final short BITMAP_64 = 95
	149.31.18.12. public static final short BITMAP_8 = 88
	149.31.18.13. public static final short BOOLEAN = 1
	149.31.18.14. public static final short CHARACTER_STRING = 121
	149.31.18.15. public static final short CLUSTER_ID = 5
	149.31.18.16. public static final short DATE = 3
	149.31.18.17. public static final short ENUMERATION_16 = 113
	149.31.18.18. public static final short ENUMERATION_8 = 112
	149.31.18.19. public static final short FLOATING_DOUBLE = 250
	149.31.18.20. public static final short FLOATING_SEMI = 248
	149.31.18.21. public static final short FLOATING_SINGLE = 249
	149.31.18.22. public static final short GENERAL_DATA_16 = 81
	149.31.18.23. public static final short GENERAL_DATA_24 = 82
	149.31.18.24. public static final short GENERAL_DATA_32 = 83
	149.31.18.25. public static final short GENERAL_DATA_40 = 84
	149.31.18.26. public static final short GENERAL_DATA_48 = 85
	149.31.18.27. public static final short GENERAL_DATA_56 = 86
	149.31.18.28. public static final short GENERAL_DATA_64 = 87
	149.31.18.29. public static final short GENERAL_DATA_8 = 80
	149.31.18.30. public static final short IEEE_ADDRESS = 8
	149.31.18.31. public static final short LONG_CHARACTER_STRING = 123
	149.31.18.32. public static final short LONG_OCTET_STRING = 122
	149.31.18.33. public static final short NO_DATA = 0
	149.31.18.34. public static final short OCTET_STRING = 120
	149.31.18.35. public static final short SECURITY_KEY_128 = 9
	149.31.18.36. public static final short SET = 18
	149.31.18.37. public static final short SIGNED_INTEGER_16 = 225
	149.31.18.38. public static final short SIGNED_INTEGER_24 = 226
	149.31.18.39. public static final short SIGNED_INTEGER_32 = 227
	149.31.18.40. public static final short SIGNED_INTEGER_40 = 228
	149.31.18.41. public static final short SIGNED_INTEGER_48 = 229
	149.31.18.42. public static final short SIGNED_INTEGER_56 = 230
	149.31.18.43. public static final short SIGNED_INTEGER_64 = 231
	149.31.18.44. public static final short SIGNED_INTEGER_8 = 224
	149.31.18.45. public static final short STRUCTURE = 17
	149.31.18.46. public static final short TIME_OF_DAY = 2
	149.31.18.47. public static final short UNKNOWN = 255
	149.31.18.48. public static final short UNSIGNED_INTEGER_16 = 97
	149.31.18.49. public static final short UNSIGNED_INTEGER_24 = 98
	149.31.18.50. public static final short UNSIGNED_INTEGER_32 = 99
	149.31.18.51. public static final short UNSIGNED_INTEGER_40 = 100
	149.31.18.52. public static final short UNSIGNED_INTEGER_48 = 101
	149.31.18.53. public static final short UNSIGNED_INTEGER_56 = 102
	149.31.18.54. public static final short UNSIGNED_INTEGER_64 = 103
	149.31.18.55. public static final short UNSIGNED_INTEGER_8 = 96
	149.31.18.56. public static final short UTC_TIME = 4

	149.31.19. public interface ZigBeeEndpoint
	149.31.19.1. public static final String DEVICE_CATEGORY = "ZigBee"
	149.31.19.2. public static final String DEVICE_ID = "zigbee.device.id"
	149.31.19.3. public static final String DEVICE_VERSION = "zigbee.device.version"
	149.31.19.4. public static final String ENDPOINT_ID = "zigbee.endpoint.id"
	149.31.19.5. public static final String HOST_PID = "zigbee.endpoint.host.pid"
	149.31.19.6. public static final String INPUT_CLUSTERS = "zigbee.endpoint.clusters.input"
	149.31.19.7. public static final String OUTPUT_CLUSTERS = "zigbee.endpoint.clusters.output"
	149.31.19.8. public static final String PROFILE_ID = "zigbee.device.profile.id"
	149.31.19.9. public static final String ZIGBEE_EXPORT = "zigbee.export"
	149.31.19.10. public Promise bind(String servicePid,int clusterId)
	149.31.19.11. public Promise getBoundEndPoints(int clusterId)
	149.31.19.12. public ZCLCluster getClientCluster(int clientClusterId)
	149.31.19.13. public ZCLCluster[] getClientClusters()
	149.31.19.14. public short getId()
	149.31.19.15. public BigInteger getNodeAddress()
	149.31.19.16. public ZCLCluster getServerCluster(int serverClusterId)
	149.31.19.17. public ZCLCluster[] getServerClusters()
	149.31.19.18. public Promise getSimpleDescriptor()
	149.31.19.19. public void notExported(ZigBeeException e)
	149.31.19.20. public Promise unbind(String servicePid,int clusterId)

	149.31.20. public interface ZigBeeEvent
	149.31.20.1. public int getAttributeId()
	149.31.20.2. public int getClusterId()
	149.31.20.3. public short getEndpointId()
	149.31.20.4. public BigInteger getIEEEAddress()
	149.31.20.5. public Object getValue()

	149.31.21. public class ZigBeeException extends RuntimeException
	149.31.21.1. protected final int errorCode
	149.31.21.2. public static final int OSGI_EXISTING_ID = 48
	149.31.21.3. public static final int OSGI_MULTIPLE_HOSTS = 49
	149.31.21.4. public static final int TIMEOUT = 50
	149.31.21.5. public static final int UNKNOWN_ERROR = -1
	149.31.21.6. protected final int zigBeeErrorCode
	149.31.21.7. public ZigBeeException(String errorDesc)
	149.31.21.8. public ZigBeeException(int errorCode,String errorDesc)
	149.31.21.9. public ZigBeeException(int errorCode,int zigBeeErrorCode,String errorDesc)
	149.31.21.10. public int getErrorCode()
	149.31.21.11. public int getZigBeeErrorCode()
	149.31.21.12. public boolean hasZigBeeErrorCode()

	149.31.22. public interface ZigBeeGroup
	149.31.22.1. public static final String ID = "zigbee.group.id"
	149.31.22.2. public int getGroupAddress()
	149.31.22.3. public ZCLCommandResponseStream groupcast(int clusterId,ZCLFrame frame)
	149.31.22.4. public ZCLCommandResponseStream groupcast(int clusterId,ZCLFrame frame,String exportedServicePID)
	149.31.22.5. public Promise joinGroup(String pid)
	149.31.22.6. public Promise leaveGroup(String pid)

	149.31.23. public interface ZigBeeHost extends ZigBeeNode
	149.31.23.1. public static final short UNLIMITED_BROADCAST_RADIUS = 255
	149.31.23.2. public ZCLCommandResponseStream broadcast(int clusterID,ZCLFrame frame)
	149.31.23.3. public ZCLCommandResponseStream broadcast(int clusterID,ZCLFrame frame,String exportedServicePID)
	149.31.23.4. public void createGroupService(int groupAddress) throws Exception
	149.31.23.5. public short getBroadcastRadius()
	149.31.23.6. public int getChannel() throws Exception
	149.31.23.7. public int getChannelMask() throws Exception
	149.31.23.8. public long getCommunicationTimeout()
	149.31.23.9. public String getPreconfiguredLinkKey() throws Exception
	149.31.23.10. public int getSecurityLevel() throws Exception
	149.31.23.11. public boolean isStarted()
	149.31.23.12. public void permitJoin(short duration) throws Exception
	149.31.23.13. public Promise refreshNetwork() throws Exception
	149.31.23.14. public void setBroadcastRadius(short broadcastRadius)
	149.31.23.15. public void setChannelMask(int mask) throws IOException
	149.31.23.16. public void setCommunicationTimeout(long timeout)
	149.31.23.17. public void setExtendedPanId(BigInteger extendedPanId)
	149.31.23.18. public void setLogicalType(short logicalNodeType) throws Exception
	149.31.23.19. public void setPanId(int panId)
	149.31.23.20. public void start() throws Exception
	149.31.23.21. public void stop() throws Exception
	149.31.23.22. public void updateNetworkChannel(byte channel) throws IOException

	149.31.24. public interface ZigBeeLinkQuality
	149.31.24.1. public static final int CHILD_NEIGHBOR = 241
	149.31.24.2. public static final int OTHERS_NEIGHBOR = 243
	149.31.24.3. public static final int PARENT_NEIGHBOR = 240
	149.31.24.4. public static final int PREVIOUS_CHILD_NEIGHBOR = 244
	149.31.24.5. public static final int SIBLING_NEIGHBOR = 242
	149.31.24.6. public int getDepth()
	149.31.24.7. public int getLQI()
	149.31.24.8. public String getNeighbor()
	149.31.24.9. public int getRelationship()

	149.31.25. public interface ZigBeeNode
	149.31.25.1. public static final short COORDINATOR = 2
	149.31.25.2. public static final String EXTENDED_PAN_ID = "zigbee.node.extended.pan.id"
	149.31.25.3. public static final String IEEE_ADDRESS = "zigbee.node.ieee.address"
	149.31.25.4. public static final String LOGICAL_TYPE = "zigbee.node.description.node.type"
	149.31.25.5. public static final String MANUFACTURER_CODE = "zigbee.node.description.manufacturer.code"
	149.31.25.6. public static final String PAN_ID = "zigbee.node.pan.id"
	149.31.25.7. public static final String POWER_SOURCE = "zigbee.node.power.source"
	149.31.25.8. public static final String RECEIVER_ON_WHEN_IDLE = "zigbee.node.receiver.on.when.idle"
	149.31.25.9. public static final short ROUTER = 3
	149.31.25.10. public static final short ZED = 1
	149.31.25.11. public ZCLCommandResponseStream broadcast(int clusterID,ZCLFrame frame)
	149.31.25.12. public ZCLCommandResponseStream broadcast(int clusterID,ZCLFrame frame,String exportedServicePID)
	149.31.25.13. public Promise getComplexDescriptor()
	149.31.25.14. public ZigBeeEndpoint[] getEndpoints()
	149.31.25.15. public BigInteger getExtendedPanId()
	149.31.25.16. public String getHostPid()
	149.31.25.17. public BigInteger getIEEEAddress()
	149.31.25.18. public Promise getLinksQuality()
	149.31.25.19. public int getNetworkAddress()
	149.31.25.20. public Promise getNodeDescriptor()
	149.31.25.21. public int getPanId()
	149.31.25.22. public Promise getPowerDescriptor()
	149.31.25.23. public Promise getRoutingTable()
	149.31.25.24. public Promise getUserDescription()
	149.31.25.25. public Promise invoke(int clusterIdReq,int expectedClusterIdRsp,ZDPFrame message)
	149.31.25.26. public Promise invoke(int clusterIdReq,ZDPFrame message)
	149.31.25.27. public Promise leave()
	149.31.25.28. public Promise leave(boolean rejoin,boolean removeChildren)
	149.31.25.29. public Promise setUserDescription(String userDescription)

	149.31.26. public interface ZigBeeRoute
	149.31.26.1. public static final int ACTIVE = 240
	149.31.26.2. public static final int DISCOVERY_FAILED = 242
	149.31.26.3. public static final int DISCOVERY_UNDERWAY = 241
	149.31.26.4. public static final int INACTIVE = 243
	149.31.26.5. public static final int VALIDATION_UNDERWAY = 244
	149.31.26.6. public String getDestination()
	149.31.26.7. public String getNextHop()
	149.31.26.8. public int getStatus()

	149.32. org.osgi.service.zigbee.descriptions
	149.32.1. Summary
	149.32.2. public interface ZCLAttributeDescription extends ZCLAttributeInfo
	149.32.2.1. public Object getDefaultValue()
	149.32.2.2. public String getName()
	149.32.2.3. public String getShortDescription()
	149.32.2.4. public boolean isMandatory()
	149.32.2.5. public boolean isPartOfAScene()
	149.32.2.6. public boolean isReadOnly()
	149.32.2.7. public boolean isReportable()

	149.32.3. public interface ZCLClusterDescription
	149.32.3.1. public ZCLAttributeDescription[] getAttributeDescriptions()
	149.32.3.2. public ZCLCommandDescription[] getGeneratedCommandDescriptions()
	149.32.3.3. public ZCLGlobalClusterDescription getGlobalClusterDescription()
	149.32.3.4. public int getId()
	149.32.3.5. public ZCLCommandDescription[] getReceivedCommandDescriptions()

	149.32.4. public interface ZCLCommandDescription
	149.32.4.1. public short getId()
	149.32.4.2. public int getManufacturerCode()
	149.32.4.3. public String getName()
	149.32.4.4. public ZCLParameterDescription[] getParameterDescriptions()
	149.32.4.5. public String getShortDescription()
	149.32.4.6. public boolean isClientServerDirection()
	149.32.4.7. public boolean isClusterSpecificCommand()
	149.32.4.8. public boolean isMandatory()
	149.32.4.9. public boolean isManufacturerSpecific()

	149.32.5. public interface ZCLDataTypeDescription
	149.32.5.1. public short getId()
	149.32.5.2. public Class getJavaDataType()
	149.32.5.3. public String getName()
	149.32.5.4. public boolean isAnalog()

	149.32.6. public interface ZCLGlobalClusterDescription
	149.32.6.1. public ZCLClusterDescription getClientClusterDescription()
	149.32.6.2. public String getClusterDescription()
	149.32.6.3. public String getClusterFunctionalDomain()
	149.32.6.4. public int getClusterId()
	149.32.6.5. public String getClusterName()
	149.32.6.6. public ZCLClusterDescription getServerClusterDescription()

	149.32.7. public interface ZCLParameterDescription
	149.32.7.1. public ZCLDataTypeDescription getDataTypeDescription()

	149.32.8. public interface ZCLSimpleTypeDescription extends ZCLDataTypeDescription
	149.32.8.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.32.8.2. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.32.9. public interface ZigBeeDeviceDescription
	149.32.9.1. public ZCLClusterDescription[] getClientClustersDescriptions()
	149.32.9.2. public int getId()
	149.32.9.3. public String getName()
	149.32.9.4. public int getProfileId()
	149.32.9.5. public ZCLClusterDescription[] getServerClustersDescriptions()
	149.32.9.6. public Integer getVersion()

	149.32.10. public interface ZigBeeDeviceDescriptionSet
	149.32.10.1. public static final String DEVICES = "zigbee.profile.devices"
	149.32.10.2. public static final String PROFILE_NAME = "zigbee.profile.name"
	149.32.10.3. public static final String VERSION = "zigbee.profile.version"
	149.32.10.4. public ZigBeeDeviceDescription getDeviceSpecification(int deviceId,short version)

	149.33. org.osgi.service.zigbee.descriptors
	149.33.1. Summary
	149.33.2. public interface ZigBeeComplexDescriptor
	149.33.2.1. public String getCharacterSetIdentifier()
	149.33.2.2. public String getDeviceURL()
	149.33.2.3. public byte[] getIcon()
	149.33.2.4. public String getIconURL()
	149.33.2.5. public String getLanguageCode()
	149.33.2.6. public String getManufacturerName()
	149.33.2.7. public String getModelName()
	149.33.2.8. public String getSerialNumber()

	149.33.3. public interface ZigBeeFrequencyBand
	149.33.3.1. public boolean is2400()
	149.33.3.2. public boolean is868()
	149.33.3.3. public boolean is915()

	149.33.4. public interface ZigBeeMacCapabiliyFlags
	149.33.4.1. public boolean isAddressAllocate()
	149.33.4.2. public boolean isAlternatePANCoordinator()
	149.33.4.3. public boolean isFullFunctionDevice()
	149.33.4.4. public boolean isMainsPower()
	149.33.4.5. public boolean isReceiverOnWhenIdle()
	149.33.4.6. public boolean isSecurityCapable()

	149.33.5. public interface ZigBeeNodeDescriptor
	149.33.5.1. public ZigBeeFrequencyBand getFrequencyBand()
	149.33.5.2. public short getLogicalType()
	149.33.5.3. public ZigBeeMacCapabiliyFlags getMacCapabilityFlags()
	149.33.5.4. public int getManufacturerCode()
	149.33.5.5. public int getMaxBufferSize()
	149.33.5.6. public int getMaxIncomingTransferSize()
	149.33.5.7. public int getMaxOutgoingTransferSize()
	149.33.5.8. public ZigBeeServerMask getServerMask()
	149.33.5.9. public boolean isComplexDescriptorAvailable()
	149.33.5.10. public boolean isExtendedActiveEndpointListAvailable()
	149.33.5.11. public boolean isExtendedSimpleDescriptorListAvailable()
	149.33.5.12. public boolean isUserDescriptorAvailable()

	149.33.6. public interface ZigBeePowerDescriptor
	149.33.6.1. public static final short CRITICAL_LEVEL = 0
	149.33.6.2. public static final short FULL_LEVEL = 3
	149.33.6.3. public static final short LOW_LEVEL = 1
	149.33.6.4. public static final short MIDDLE_LEVEL = 2
	149.33.6.5. public short getCurrentPowerMode()
	149.33.6.6. public short getCurrentPowerSource()
	149.33.6.7. public short getCurrentPowerSourceLevel()
	149.33.6.8. public boolean isConstantMainsPowerAvailable()
	149.33.6.9. public boolean isDisposableBattery()
	149.33.6.10. public boolean isDisposableBatteryAvailable()
	149.33.6.11. public boolean isMainsPower()
	149.33.6.12. public boolean isOnWhenStimulated()
	149.33.6.13. public boolean isPeriodicallyOn()
	149.33.6.14. public boolean isRechargableBattery()
	149.33.6.15. public boolean isRechargableBatteryAvailable()
	149.33.6.16. public boolean isSyncronizedWithOnIdle()

	149.33.7. public interface ZigBeeServerMask
	149.33.7.1. public boolean isBackupBindingTableCache()
	149.33.7.2. public boolean isBackupDiscoveryCache()
	149.33.7.3. public boolean isBackupTrustCenter()
	149.33.7.4. public boolean isNetworkManager()
	149.33.7.5. public boolean isPrimaryBindingTableCache()
	149.33.7.6. public boolean isPrimaryDiscoveryCache()
	149.33.7.7. public boolean isPrimaryTrustCenter()

	149.33.8. public interface ZigBeeSimpleDescriptor
	149.33.8.1. public int getApplicationDeviceId()
	149.33.8.2. public byte getApplicationDeviceVersion()
	149.33.8.3. public int getApplicationProfileId()
	149.33.8.4. public short getEndpoint()
	149.33.8.5. public int[] getInputClusters()
	149.33.8.6. public int[] getOutputClusters()
	149.33.8.7. public boolean providesInputCluster(int clusterId)
	149.33.8.8. public boolean providesOutputCluster(int clusterId)

	149.34. org.osgi.service.zigbee.types
	149.34.1. Summary
	149.34.2. public class ZigBeeArray implements ZCLDataTypeDescription
	149.34.2.1. public short getId()
	149.34.2.2. public static ZigBeeArray getInstance()
	149.34.2.3. public Class getJavaDataType()
	149.34.2.4. public String getName()
	149.34.2.5. public boolean isAnalog()

	149.34.3. public class ZigBeeAttributeID implements ZCLSimpleTypeDescription
	149.34.3.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.3.2. public short getId()
	149.34.3.3. public static ZigBeeAttributeID getInstance()
	149.34.3.4. public Class getJavaDataType()
	149.34.3.5. public String getName()
	149.34.3.6. public boolean isAnalog()
	149.34.3.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.4. public class ZigBeeBACnet implements ZCLSimpleTypeDescription
	149.34.4.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.4.2. public short getId()
	149.34.4.3. public static ZigBeeBACnet getInstance()
	149.34.4.4. public Class getJavaDataType()
	149.34.4.5. public String getName()
	149.34.4.6. public boolean isAnalog()
	149.34.4.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.5. public class ZigBeeBag implements ZCLDataTypeDescription
	149.34.5.1. public short getId()
	149.34.5.2. public static ZigBeeBag getInstance()
	149.34.5.3. public Class getJavaDataType()
	149.34.5.4. public String getName()
	149.34.5.5. public boolean isAnalog()

	149.34.6. public class ZigBeeBitmap16 implements ZCLSimpleTypeDescription
	149.34.6.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.6.2. public short getId()
	149.34.6.3. public static ZigBeeBitmap16 getInstance()
	149.34.6.4. public Class getJavaDataType()
	149.34.6.5. public String getName()
	149.34.6.6. public boolean isAnalog()
	149.34.6.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.7. public class ZigBeeBitmap24 implements ZCLSimpleTypeDescription
	149.34.7.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.7.2. public short getId()
	149.34.7.3. public static ZigBeeBitmap24 getInstance()
	149.34.7.4. public Class getJavaDataType()
	149.34.7.5. public String getName()
	149.34.7.6. public boolean isAnalog()
	149.34.7.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.8. public class ZigBeeBitmap32 implements ZCLSimpleTypeDescription
	149.34.8.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.8.2. public short getId()
	149.34.8.3. public static ZigBeeBitmap32 getInstance()
	149.34.8.4. public Class getJavaDataType()
	149.34.8.5. public String getName()
	149.34.8.6. public boolean isAnalog()
	149.34.8.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.9. public class ZigBeeBitmap40 implements ZCLSimpleTypeDescription
	149.34.9.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.9.2. public short getId()
	149.34.9.3. public static ZigBeeBitmap40 getInstance()
	149.34.9.4. public Class getJavaDataType()
	149.34.9.5. public String getName()
	149.34.9.6. public boolean isAnalog()
	149.34.9.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.10. public class ZigBeeBitmap48 implements ZCLSimpleTypeDescription
	149.34.10.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.10.2. public short getId()
	149.34.10.3. public static ZigBeeBitmap48 getInstance()
	149.34.10.4. public Class getJavaDataType()
	149.34.10.5. public String getName()
	149.34.10.6. public boolean isAnalog()
	149.34.10.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.11. public class ZigBeeBitmap56 implements ZCLSimpleTypeDescription
	149.34.11.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.11.2. public short getId()
	149.34.11.3. public static ZigBeeBitmap56 getInstance()
	149.34.11.4. public Class getJavaDataType()
	149.34.11.5. public String getName()
	149.34.11.6. public boolean isAnalog()
	149.34.11.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.12. public class ZigBeeBitmap64 implements ZCLSimpleTypeDescription
	149.34.12.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.12.2. public short getId()
	149.34.12.3. public static ZigBeeBitmap64 getInstance()
	149.34.12.4. public Class getJavaDataType()
	149.34.12.5. public String getName()
	149.34.12.6. public boolean isAnalog()
	149.34.12.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.13. public class ZigBeeBitmap8 implements ZCLSimpleTypeDescription
	149.34.13.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.13.2. public short getId()
	149.34.13.3. public static ZigBeeBitmap8 getInstance()
	149.34.13.4. public Class getJavaDataType()
	149.34.13.5. public String getName()
	149.34.13.6. public boolean isAnalog()
	149.34.13.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.14. public class ZigBeeBoolean implements ZCLSimpleTypeDescription
	149.34.14.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.14.2. public short getId()
	149.34.14.3. public static ZigBeeBoolean getInstance()
	149.34.14.4. public Class getJavaDataType()
	149.34.14.5. public String getName()
	149.34.14.6. public boolean isAnalog()
	149.34.14.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.15. public class ZigBeeCharacterString implements ZCLSimpleTypeDescription
	149.34.15.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.15.2. public short getId()
	149.34.15.3. public static ZigBeeCharacterString getInstance()
	149.34.15.4. public Class getJavaDataType()
	149.34.15.5. public String getName()
	149.34.15.6. public boolean isAnalog()
	149.34.15.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.16. public class ZigBeeClusterID implements ZCLSimpleTypeDescription
	149.34.16.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.16.2. public short getId()
	149.34.16.3. public static ZigBeeClusterID getInstance()
	149.34.16.4. public Class getJavaDataType()
	149.34.16.5. public String getName()
	149.34.16.6. public boolean isAnalog()
	149.34.16.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.17. public class ZigBeeDate implements ZCLSimpleTypeDescription
	149.34.17.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.17.2. public short getId()
	149.34.17.3. public static ZigBeeDate getInstance()
	149.34.17.4. public Class getJavaDataType()
	149.34.17.5. public String getName()
	149.34.17.6. public boolean isAnalog()
	149.34.17.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.18. public class ZigBeeEnumeration16 implements ZCLSimpleTypeDescription
	149.34.18.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.18.2. public short getId()
	149.34.18.3. public static ZigBeeEnumeration16 getInstance()
	149.34.18.4. public Class getJavaDataType()
	149.34.18.5. public String getName()
	149.34.18.6. public boolean isAnalog()
	149.34.18.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.19. public class ZigBeeEnumeration8 implements ZCLSimpleTypeDescription
	149.34.19.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.19.2. public short getId()
	149.34.19.3. public static ZigBeeEnumeration8 getInstance()
	149.34.19.4. public Class getJavaDataType()
	149.34.19.5. public String getName()
	149.34.19.6. public boolean isAnalog()
	149.34.19.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.20. public class ZigBeeFloatingDouble implements ZCLSimpleTypeDescription
	149.34.20.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.20.2. public short getId()
	149.34.20.3. public static ZigBeeFloatingDouble getInstance()
	149.34.20.4. public Class getJavaDataType()
	149.34.20.5. public String getName()
	149.34.20.6. public boolean isAnalog()
	149.34.20.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.21. public class ZigBeeFloatingSemi implements ZCLSimpleTypeDescription
	149.34.21.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.21.2. public short getId()
	149.34.21.3. public static ZigBeeFloatingSemi getInstance()
	149.34.21.4. public Class getJavaDataType()
	149.34.21.5. public String getName()
	149.34.21.6. public boolean isAnalog()
	149.34.21.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.22. public class ZigBeeFloatingSingle implements ZCLSimpleTypeDescription
	149.34.22.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.22.2. public short getId()
	149.34.22.3. public static ZigBeeFloatingSingle getInstance()
	149.34.22.4. public Class getJavaDataType()
	149.34.22.5. public String getName()
	149.34.22.6. public boolean isAnalog()
	149.34.22.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.23. public class ZigBeeGeneralData16 implements ZCLSimpleTypeDescription
	149.34.23.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.23.2. public short getId()
	149.34.23.3. public static ZigBeeGeneralData16 getInstance()
	149.34.23.4. public Class getJavaDataType()
	149.34.23.5. public String getName()
	149.34.23.6. public boolean isAnalog()
	149.34.23.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.24. public class ZigBeeGeneralData24 implements ZCLSimpleTypeDescription
	149.34.24.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.24.2. public short getId()
	149.34.24.3. public static ZigBeeGeneralData24 getInstance()
	149.34.24.4. public Class getJavaDataType()
	149.34.24.5. public String getName()
	149.34.24.6. public boolean isAnalog()
	149.34.24.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.25. public class ZigBeeGeneralData32 implements ZCLSimpleTypeDescription
	149.34.25.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.25.2. public short getId()
	149.34.25.3. public static ZigBeeGeneralData32 getInstance()
	149.34.25.4. public Class getJavaDataType()
	149.34.25.5. public String getName()
	149.34.25.6. public boolean isAnalog()
	149.34.25.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.26. public class ZigBeeGeneralData40 implements ZCLSimpleTypeDescription
	149.34.26.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.26.2. public short getId()
	149.34.26.3. public static ZigBeeGeneralData40 getInstance()
	149.34.26.4. public Class getJavaDataType()
	149.34.26.5. public String getName()
	149.34.26.6. public boolean isAnalog()
	149.34.26.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.27. public class ZigBeeGeneralData48 implements ZCLSimpleTypeDescription
	149.34.27.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.27.2. public short getId()
	149.34.27.3. public static ZigBeeGeneralData48 getInstance()
	149.34.27.4. public Class getJavaDataType()
	149.34.27.5. public String getName()
	149.34.27.6. public boolean isAnalog()
	149.34.27.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.28. public class ZigBeeGeneralData56 implements ZCLSimpleTypeDescription
	149.34.28.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.28.2. public short getId()
	149.34.28.3. public static ZigBeeGeneralData56 getInstance()
	149.34.28.4. public Class getJavaDataType()
	149.34.28.5. public String getName()
	149.34.28.6. public boolean isAnalog()
	149.34.28.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.29. public class ZigBeeGeneralData64 implements ZCLSimpleTypeDescription
	149.34.29.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.29.2. public short getId()
	149.34.29.3. public static ZigBeeGeneralData64 getInstance()
	149.34.29.4. public Class getJavaDataType()
	149.34.29.5. public String getName()
	149.34.29.6. public boolean isAnalog()
	149.34.29.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.30. public class ZigBeeGeneralData8 implements ZCLSimpleTypeDescription
	149.34.30.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.30.2. public short getId()
	149.34.30.3. public static ZigBeeGeneralData8 getInstance()
	149.34.30.4. public Class getJavaDataType()
	149.34.30.5. public String getName()
	149.34.30.6. public boolean isAnalog()
	149.34.30.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.31. public class ZigBeeIEEE_ADDRESS implements ZCLSimpleTypeDescription
	149.34.31.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.31.2. public short getId()
	149.34.31.3. public static ZigBeeIEEE_ADDRESS getInstance()
	149.34.31.4. public Class getJavaDataType()
	149.34.31.5. public String getName()
	149.34.31.6. public boolean isAnalog()
	149.34.31.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.32. public class ZigBeeLongCharacterString implements ZCLSimpleTypeDescription
	149.34.32.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.32.2. public short getId()
	149.34.32.3. public static ZigBeeLongCharacterString getInstance()
	149.34.32.4. public Class getJavaDataType()
	149.34.32.5. public String getName()
	149.34.32.6. public boolean isAnalog()
	149.34.32.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.33. public class ZigBeeLongOctetString implements ZCLSimpleTypeDescription
	149.34.33.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.33.2. public short getId()
	149.34.33.3. public static ZigBeeLongOctetString getInstance()
	149.34.33.4. public Class getJavaDataType()
	149.34.33.5. public String getName()
	149.34.33.6. public boolean isAnalog()
	149.34.33.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.34. public class ZigBeeOctetString implements ZCLSimpleTypeDescription
	149.34.34.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.34.2. public short getId()
	149.34.34.3. public static ZigBeeOctetString getInstance()
	149.34.34.4. public Class getJavaDataType()
	149.34.34.5. public String getName()
	149.34.34.6. public boolean isAnalog()
	149.34.34.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.35. public class ZigBeeSecurityKey128 implements ZCLSimpleTypeDescription
	149.34.35.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.35.2. public short getId()
	149.34.35.3. public static ZigBeeSecurityKey128 getInstance()
	149.34.35.4. public Class getJavaDataType()
	149.34.35.5. public String getName()
	149.34.35.6. public boolean isAnalog()
	149.34.35.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.36. public class ZigBeeSet implements ZCLDataTypeDescription
	149.34.36.1. public short getId()
	149.34.36.2. public static ZigBeeSet getInstance()
	149.34.36.3. public Class getJavaDataType()
	149.34.36.4. public String getName()
	149.34.36.5. public boolean isAnalog()

	149.34.37. public class ZigBeeSignedInteger16 implements ZCLSimpleTypeDescription
	149.34.37.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.37.2. public short getId()
	149.34.37.3. public static ZigBeeSignedInteger16 getInstance()
	149.34.37.4. public Class getJavaDataType()
	149.34.37.5. public String getName()
	149.34.37.6. public boolean isAnalog()
	149.34.37.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.38. public class ZigBeeSignedInteger24 implements ZCLSimpleTypeDescription
	149.34.38.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.38.2. public short getId()
	149.34.38.3. public static ZigBeeSignedInteger24 getInstance()
	149.34.38.4. public Class getJavaDataType()
	149.34.38.5. public String getName()
	149.34.38.6. public boolean isAnalog()
	149.34.38.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.39. public class ZigBeeSignedInteger32 implements ZCLSimpleTypeDescription
	149.34.39.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.39.2. public short getId()
	149.34.39.3. public static ZigBeeSignedInteger32 getInstance()
	149.34.39.4. public Class getJavaDataType()
	149.34.39.5. public String getName()
	149.34.39.6. public boolean isAnalog()
	149.34.39.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.40. public class ZigBeeSignedInteger40 implements ZCLSimpleTypeDescription
	149.34.40.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.40.2. public short getId()
	149.34.40.3. public static ZigBeeSignedInteger40 getInstance()
	149.34.40.4. public Class getJavaDataType()
	149.34.40.5. public String getName()
	149.34.40.6. public boolean isAnalog()
	149.34.40.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.41. public class ZigBeeSignedInteger48 implements ZCLSimpleTypeDescription
	149.34.41.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.41.2. public short getId()
	149.34.41.3. public static ZigBeeSignedInteger48 getInstance()
	149.34.41.4. public Class getJavaDataType()
	149.34.41.5. public String getName()
	149.34.41.6. public boolean isAnalog()
	149.34.41.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.42. public class ZigBeeSignedInteger56 implements ZCLSimpleTypeDescription
	149.34.42.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.42.2. public short getId()
	149.34.42.3. public static ZigBeeSignedInteger56 getInstance()
	149.34.42.4. public Class getJavaDataType()
	149.34.42.5. public String getName()
	149.34.42.6. public boolean isAnalog()
	149.34.42.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.43. public class ZigBeeSignedInteger64 implements ZCLSimpleTypeDescription
	149.34.43.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.43.2. public short getId()
	149.34.43.3. public static ZigBeeSignedInteger64 getInstance()
	149.34.43.4. public Class getJavaDataType()
	149.34.43.5. public String getName()
	149.34.43.6. public boolean isAnalog()
	149.34.43.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.44. public class ZigBeeSignedInteger8 implements ZCLSimpleTypeDescription
	149.34.44.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.44.2. public short getId()
	149.34.44.3. public static ZigBeeSignedInteger8 getInstance()
	149.34.44.4. public Class getJavaDataType()
	149.34.44.5. public String getName()
	149.34.44.6. public boolean isAnalog()
	149.34.44.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.45. public class ZigBeeStructure implements ZCLDataTypeDescription
	149.34.45.1. public short getId()
	149.34.45.2. public static ZigBeeStructure getInstance()
	149.34.45.3. public Class getJavaDataType()
	149.34.45.4. public String getName()
	149.34.45.5. public boolean isAnalog()

	149.34.46. public class ZigBeeTimeOfDay implements ZCLSimpleTypeDescription
	149.34.46.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.46.2. public short getId()
	149.34.46.3. public static ZigBeeTimeOfDay getInstance()
	149.34.46.4. public Class getJavaDataType()
	149.34.46.5. public String getName()
	149.34.46.6. public boolean isAnalog()
	149.34.46.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.47. public class ZigBeeUnsignedInteger16 implements ZCLSimpleTypeDescription
	149.34.47.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.47.2. public short getId()
	149.34.47.3. public static ZigBeeUnsignedInteger16 getInstance()
	149.34.47.4. public Class getJavaDataType()
	149.34.47.5. public String getName()
	149.34.47.6. public boolean isAnalog()
	149.34.47.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.48. public class ZigBeeUnsignedInteger24 implements ZCLSimpleTypeDescription
	149.34.48.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.48.2. public short getId()
	149.34.48.3. public static ZigBeeUnsignedInteger24 getInstance()
	149.34.48.4. public Class getJavaDataType()
	149.34.48.5. public String getName()
	149.34.48.6. public boolean isAnalog()
	149.34.48.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.49. public class ZigBeeUnsignedInteger32 implements ZCLSimpleTypeDescription
	149.34.49.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.49.2. public short getId()
	149.34.49.3. public static ZigBeeUnsignedInteger32 getInstance()
	149.34.49.4. public Class getJavaDataType()
	149.34.49.5. public String getName()
	149.34.49.6. public boolean isAnalog()
	149.34.49.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.50. public class ZigBeeUnsignedInteger40 implements ZCLSimpleTypeDescription
	149.34.50.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.50.2. public short getId()
	149.34.50.3. public static ZigBeeUnsignedInteger40 getInstance()
	149.34.50.4. public Class getJavaDataType()
	149.34.50.5. public String getName()
	149.34.50.6. public boolean isAnalog()
	149.34.50.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.51. public class ZigBeeUnsignedInteger48 implements ZCLSimpleTypeDescription
	149.34.51.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.51.2. public short getId()
	149.34.51.3. public static ZigBeeUnsignedInteger48 getInstance()
	149.34.51.4. public Class getJavaDataType()
	149.34.51.5. public String getName()
	149.34.51.6. public boolean isAnalog()
	149.34.51.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.52. public class ZigBeeUnsignedInteger56 implements ZCLSimpleTypeDescription
	149.34.52.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.52.2. public short getId()
	149.34.52.3. public static ZigBeeUnsignedInteger56 getInstance()
	149.34.52.4. public Class getJavaDataType()
	149.34.52.5. public String getName()
	149.34.52.6. public boolean isAnalog()
	149.34.52.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.53. public class ZigBeeUnsignedInteger64 implements ZCLSimpleTypeDescription
	149.34.53.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.53.2. public short getId()
	149.34.53.3. public static ZigBeeUnsignedInteger64 getInstance()
	149.34.53.4. public Class getJavaDataType()
	149.34.53.5. public String getName()
	149.34.53.6. public boolean isAnalog()
	149.34.53.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.54. public class ZigBeeUnsignedInteger8 implements ZCLSimpleTypeDescription
	149.34.54.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.54.2. public short getId()
	149.34.54.3. public static ZigBeeUnsignedInteger8 getInstance()
	149.34.54.4. public Class getJavaDataType()
	149.34.54.5. public String getName()
	149.34.54.6. public boolean isAnalog()
	149.34.54.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.34.55. public class ZigBeeUTCTime implements ZCLSimpleTypeDescription
	149.34.55.1. public Object deserialize(ZigBeeDataInput is) throws IOException
	149.34.55.2. public short getId()
	149.34.55.3. public static ZigBeeUTCTime getInstance()
	149.34.55.4. public Class getJavaDataType()
	149.34.55.5. public String getName()
	149.34.55.6. public boolean isAnalog()
	149.34.55.7. public void serialize(ZigBeeDataOutput os,Object value) throws IOException

	149.35. References

