OSGi Working Group
OSGi Compendium

Release 8.1
December 2022

500SGi

Copyright © 2000, 2022 Eclipse Foundation
LICENSE

Eclipse Foundation Specification License - v1.0

By using and/or copying this document, or the Eclipse Foundation document from which this statement is
linked, you (the licensee) agree that you have read, understood, and will comply with the following terms and
conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document from
which this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted, pro-
vided that you include the following on ALL copies of the document, or portions thereof, that you use:

+ link or URL to the original Eclipse Foundation document.

- All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual represen-
tation is permitted) of the form: "Copyright © [$date-of-document] Eclipse Foundation, Inc. <<url to this li-
cense>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be provided
in any software, documents, or other items or products that you create pursuant to the implementation of the
contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to this li-
cense, except anyone may prepare and distribute derivative works and portions of this document in software
that implements the specification, in supporting materials accompanying such software, and in documentation
of such software, PROVIDED that all such works include the notice below. HOWEVER, the publication of deriva-
tive works of this document for use as a technical specification is expressly prohibited.

The notice is:

"Copyright © [$date-of-document] Eclipse Foundation. This software or document includes material copied from
or derived from [title and URI of the Eclipse Foundation specification document]."

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION
MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT,
OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOEF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in advertising
or publicity pertaining to this document or its contents without specific, written prior permission. Title to copy-
right in this document will at all times remain with copyright holders.

Preface

Implementation Requirements

An implementation of a Specification: (i) must fully implement the Specification including all its required inter-
faces and functionality; (ii) must not modify, subset, superset or otherwise extend the OSG1 Name Space, or in-
clude any public or protected packages, classes, Java interfaces, fields or methods within the OSGi Name Space
other than those required and authorized by the Specification. An implementation that does not satisfy limi-
tations (i)-(ii) is not considered an implementation of the Specification and must not be described as an imple-
mentation of the Specification. "OSGi Name Space" shall mean the public class or interface declarations whose
names begin with "org.osgi" or any recognized successors or replacements thereof. An implementation of a Spec-
ification must not claim to be a compatible implementation of the Specification unless it passes the Technology
Compatibility Kit ("TCK") for the Specification.

Feedback

This specification can be downloaded from the OSGi Documentation web site:
https://docs.osgi.org/specification/
Comments about this specification can be raised at:

https://github.com/osgilosgilissues

https://docs.osgi.org/specification/
https://github.com/osgi/osgi/issues

Table of Contents

1 Introduction 19
1.1 REAAET LEVEL. ...ttt ettt ettt et e s 19
1.2 AT £ 1o AT 101 o710 T 4o T 19
1.3 LS 2 (=L T 22
1.4 QAN S. - . ettt e 22
100 Remote Services 25
100.1 ThE FallACIES. « v v vt ettt ettt e s 25
100.2 REMOLE SEIVICE PrOPEITIES. e ettt ettt ettt et ettt e et e eeaeeens 26
100.3 0T 30
100.4 GENETAl USEE. . . . ettt ettt e e e e e e e e e e e 32
100.5 CONFIGUIALION TYPES. . e ettt ettt et ettt et et et ettt e et e e e e e et et et e e ee e 33
100.6 Lo 1 P 36
100.7 [0S (=L T 37
103 Device Access Specification 39
103.1 13T oo X Tt) 39
103.2 DBV SBIVICES. « v ettt ettt ettt ettt e e ettt et e e e e e e s 41
103.3 Device Category SPECHICAtIONS. ut ettt ettt e ettt et et et et 43
103.4 [A Y oV o<1 45
103.5 [T Lo Y=l 4V o - N 51
103.6 The DIIVET SEIECIOT SEIVICE. ..ottt ettt ettt ettt e e e ettt e ettt eees 54
103.7 DVICE IMANAZET. . . ettt ettt et et et et et et e e 54
103.8 Lo 1 59
103.9 OTE.OSGISEIVICEABVICE. . . .ttt ettt ettt ettt e ettt e e et et et et et et e e e 60
10310 RETEIBNCES. .. ettt ettt e 64
104 Configuration Admin Service Specification 65
104.1 1310 oe X ot o) 2 A 65
104.2 CoNfIGUIALION TAIGELS. . . e .t ettt ettt et ettt et et e et ettt et et 67
104.3 The Persistent IAENTILY.ottt et 68
104.4 The ConfigUration OBJECL. uten ettt e et 71
104.5 MENAZEA SEIVICE. . .« ettt ettt et et ettt e ettt e e e et 74
104.6 Managed SErvice FACTOTY.o.uuiet it 77
104.7 Configuration AdMIN SEIVICE.ttt e 81
104.8 CONFIGUIALION EVENES. ...ttt ettt et ettt et et et e e e et et et et et e 86
104.9 CONfIGUIALION PIUGIN. .« v et ettt et e e et 87
10410 MEE TYPING. .. e ettt ettt e e 89
B oY I b R €Tl e 11 (o S]] 1o A N 90
10412 CAPADIIILIES. . . oot 90
OSGi Compendium Release 8.1 Page 3

104.13
104.14

104.15

105

105.1
105.2
105.3
105.4
105.5
105.6
105.7
105.8
105.9
105.10
105.11
105.12
105.13
105.14
105.15

105.16

106

106.1
106.2
106.3
106.4
106.5
106.6

106.7

107

107.1
107.2
107.3
107.4
107.5
107.6
107.7
107.8

107.9
108

108.1

Lol 1 PP o1

o] o = Y ol el o PP 93
OFg.0SZI.SEIVICE.CMLANNOTALIONS. ettt ettt ettt e et e e et ettt e et e et e et e e e aaaes 113
Metatype Service Specification 115
0T CoTe (Rt 4T 115
Attributes MOodel. ... e 116
Object Class DEfINIHION.ttt ettt e e e e e e e e e e e e 117
N 1oL =N =) 1T T 117
MELa TYPE SEIVICE. . . . et ettt ettt ettt ettt ettt et ettt et e e et e e e 118
Meta Type Provider SEIVICE.ttt ettt et et e e e et et e e et 120

Using the Meta Type Resources

Meta Type Resource XML Schema

Meta Type ANNOTALIONS. ettt ettt et ettt ettt e e e e e e e e et e et e e e aaaes 129
[T o TP 131
Related StANAArdS.ttt ettt ettt et 131
CAPADIITEIES. .« . ettt e ettt 131
SECUNitY CONSIABIAIONS. . .« ettt ettt ettt et e ettt e ettt e ettt e e et ettt et e e 132
o) oL R ol Tt =14 o= 132
0rg.0sgi.service.metatype.annotations. e e u ettt e 139
REETENCES. . . . e ettt ettt et e et e e 146
PreferencesService Specification 147
a1 0 Y [0] S 147
PrefEreNCES INTEITACE. . ettt ettt ettt e e 149
CONCUITEINICY. . e ettt e ettt et e et e e et e et e et e et et et et et e et e e e aeeaaenen 151
PreferencesServiCe INtEITaCE. . ..o ittt e 152
LT U T PP 152
OTBLOSEI.SEIVICE.PIETS. . . e ettt ettt e e e e e e et 152
RETEIBNCES. . . . et e e e e 162
User Admin Service Specification 163
a1 Y [0 Tex AT) S 163
LY T T a1 oY o 165
YU Yo 714 1o) 167
REPOSItOry MaiNTENANCE. . . . ettt ettt et e ettt e ettt e e 169
USer ADMIN EVENES. ..ottt ettt e e ettt e 169
LT clT 1N 170
REIGHION 10 JAAS. . . ettt ettt et e e e e e e 171
OTZ.0SEI.SEIVICEUSETAAMIN. . . ¢ ettt ettt ettt ettt et et et e et et e et et et e e eaaeens 171
RETEIBNCES. . . . ettt 182
Wire Admin Service Specification 183
LR Y [0 Tex AT) S 183

Page 4

OSGi Compendium Release 8.1

108.2 PrOAUCET SEIVICE. . . . vttt ettt ettt ettt e e et e et e e e et e e e e et e e e e e e e e e aaas 186

108.3 [AT T Y=Y V- 188
108.4 IMPlEMENLAtION ISSUES.ttt 190
108.5 WITE PIOPEITIES. . .« e ettt ettt ettt ettt et ettt e et e ettt e et e e e e e e et e e et e e et e eaaeenn 190

108.6 Composite objects

108.7 Wire Flow Control

108.8 FIaVOTS. . . e
108.9 {000 1T =TT
108.10 Wire Admin Service IMplementation.ov.uietiit e 199
108.11 Wire Admin Listener SErvICe EVENTS.uuvttttt ettt ettt et et ettt e e et e et 199
10812 Connecting EXternal ENLILIES. e uuente ettt ettt e 201
108.13 Related Standards.oo.ueereet s 202
10814 SBCUMIEY. v ettt ettt ettt et et e ettt e e 202
10815 OFg.0SEI.SEIVICEWITEAAMIN. . ..\ttt ettt ettt et ettt e et eee e 203
10816 REEIENMCES. . .ttt e e 218
111 Device Service Specification for UPnP™ Technology 219
111.1 0T (o [F 4o T 219
111.2 UPNP SPECIfICAIONS. . .« .t ettt et e e 221
111.3 [0 1 DY o Y 222
111.4 DVICE CALEGOTY. . . e v ettt ettt e et et et e et e e et et et et e e et e 223
111.5 [0 1Yol Y 224
111.6 WOrKing With @ UPNP DBVICE. ettt tet et e et et et et et et et et et et et e eaeanas 224
111.7 IMplementing @ UPNP DEVICE. e utte ettt ettt ettt ettt 225
111.8 T Y o 225
111.9 UPnP Events and EVent AdMIN SEIVICE.uuuueeet ettt ettt ettt ettt e e eeiees 226
111.10 [RTe 1 [7Y{o FT 227
111.11 DAtES ANA TIMES. ettt ettt ettt ettt et et e e ettt 227
111.12 L0 o e} 7o) O 227
111.13 L0 =TT L 228
11114 Networking CoNSIErations.o.ueeue ittt e 228
111.15 Yo V142 N 228
11116 OT.OSZISEIVICEUPIIP. « . ettt ettt ettt ettt et e et e et e et e et e e e et e e e et et et et et eaeeaaes 228
11117 REFEIENCES. .o 243
112 Declarative Services Specification 245
112.1 a1 Y [0 Tex A) S 245
112.2 COMPONENES. .ttt ettt 248
112.3 RETEIENCES 10 SEIVICES. . vttt ettt e ettt ettt et e e e e ettt et e et et ettt e e eeaaaas 251
112.4 COmMPONENE DESCIIPHION. . . .« e ettt ettt et e et e ettt e et et e et et e et e e s 264
112.5 ComPONENt Life CyCle. ...ttt et e 276
112.6 COMPONENE PTOPETHIES. .« e et ettt et ettt et et ettt ettt et et e et et e e e e e e e aaeeennas 285
112.7 DEPIOYMENT. . . ettt ettt e e e e e 287
112.8 o= o) 3 290

OSGi Compendium Release 8.1 Page 5

112.9 Service COMPONENt RUNTIMIE. ... vttt ettt ettt ettt e e e et e e e e e ee e e naeeennaas 208

T o T Yol U 1 N 302
11211 Component Description SChEMA.uutnt ettt 303
11212 OTE.0SEI.SEIVICE.LOMPONENT. . ..ttt ettt ettt ettt et et et et et et e et e et e et e eeeaaeens 306

112.13 org.osgi.service.component.annotations.

11214 OFg.0SZi.SErVICE.COMPONENTIUNTIMIE. ...\ttt ettt ettt et et e e e e et e et e e e e e aeeeanaae

112.15 org.osgi.service.component.runtime.dto

11216 Org.0Sgi.SerViCe.COMPONENt.PrOPEItYLYPES. ... uv ettt ettt ettt ettt et e et et et eenes 336
11217 RETEIENCES. . ot e 338
113 Event Admin Service Specification 341
1131 0T CoTe (Rt 4T 341
113.2 Event Admin ArChtECIUE.ttt ettt 342
113.3 L2 T=30 2= 1 N 343
113.4 EVENt HandIer. . .ot s 344
113.5 EVENt PUDIISRET. e s 346
113.6 SPECHIC EVENES. .+t ettt ettt ettt e et et e e e e et e 347
113.7 Y Yo [T BT T = 349
113.8 RENADIIILY. . . e e e e 351
113.9 Interoperability with Native Applications.ooiuiieii e 351
11320 CAPADIIEIES. . o oottt e e 351
113.11 LT elT 1 N 352
113.12 o)oK ol XY/ /O 353
113.13 OTg.0Sgi.SerViCe.VENt.ANNOTAtIONS.ttt ettt ettt ettt et ettt et

113.14 org.osgi.service.event.propertytypes

117 Dmt Admin Service Specification 365
117.1 a1 Y [0 Tex AT) S 365
117.2 The Device Management MOdel.ueuuiniii i 368
117.3 The DMT AdmMiN SOIVICE. . . vt vttt ettt ettt ettt ettt et e e et ettt et et eiieees 371
117.4 Manipulating the DMT. ...ttt ettt ettt et e 371
117.5 L3 - 379
117.6 PIUBINS. ettt e e 382
117.7 R 0= T Y P 388
117.8 YT ol N 395
117.9 [N o] 1] 1T T3 399
11700 EXCEPHONS. ¢t ettt ettt ettt ettt e e e e e e e 401
117.11 =] 3£ 401
11712 OSGi Object MOdeling. ettt e e 407
117.13 Yo F 142 N 415
117.14 Lol o R Y Tor= N o | 419
117.15 oo o= 1 k=) P 467
11716 Org.0sgi.service.dmt.NOtifiCation.ttt 481
117.17 0rg.05g1.5ervice.dmtNOtifICatioN.SPi. ettt 484

Page 6 OSGi Compendium Release 8.1

11718 OTE.0SEI.SEIVICEAME.SECUILY. . . o . e ettt ettt ettt et e 485
11719 REfEIONCES. .o et 490
122 Remote Service Admin Service Specification 493
122.1 a1 Y [0 Tex A) S 493
122.2 2V (o) £ U 496
122.3 TOPOIOZY MANAGETS. . .« e e ettt ettt ettt e e e e e e e e e et e e et 497
122.4 ENdPOINt DESCHPHION. .« . ettt ettt e e ettt e et et e aaas 498
122.5 REMOLE SEIVICE AMIN. ...ttt ettt ettt et e et e et e e e e et e e e e e e e enaeans 502
122.6 DISCOVETY. . .« e ettt ettt et e et e ettt e ettt e et et et 507
122.7 =] 3T 511
122.8 Endpoint Description Extender FOrMat.veeneeiee et e e e aaaens 513
122.9 Capability NAMESPACES.ttt ettt et e e e e 518
12210 Advice to IMplEMENTAtioNs.t 520
12281 SEOUMIEY. ¢ ettt et ettt ettt ettt et e et 521
12212 OFg.0Sgi.SerVice.remMOteSErVICEAAMIN.ttt ettt et ettt ettt 522
12213 Org.0sgi.service.remoteserviceadminNAMESPACE. uueenueenee et et et e eeteeeteateeeneeaneenaeaneenn 538
12234 RETEIENCES. . ..ottt 539
123 |TA Transaction Services Specification 541
123.1 a1 Y [0 x]RS 541
123.2 JTA OVEIVIBW. . . . e e ettt e et ettt e e et e e e e et e e et e et et e e e aeeen 543
123.3 oo o PN 545
123.4 RESOUICE IMANAZETS. e e ettt ettt ettt et ettt ettt et ettt ettt 548
123.5 TRE JTA PrOVIAET. . ..ottt ettt et ettt e e e e e e e e e e e e et et et et et e 548
123.6 [7 o L PP 549
123.7 LT 1 N 550
123.8 RETEIBICES. . . . ettt e e e 550
125 Data Service Specification for [DBC™ Technology 551
125.1 0T (o [F 4o T 551
125.2 DAtADASE DIIVET. . . v vttt ettt ettt e e ettt et 552
125.3 Yo7 1o o) P 553
125.4 Lol 1T PPN 555
125.5 OTE.OSGISEIVICEJADC. . . . e ettt e 555
125.6 [0S (=L TN 558
125.7 CRANEES. . . ettt 558
126 |NDI Services Specification 559
126.1 a1 Y [0 A S 559
126.2 JNDI OVEIVIBW. . .« e e ettt ettt et e et e e et e et et et e e e et et e e et et et e e e e eaaeann 562
126.3 JNDI Context Manager SEIVICE. uu ettt ettt ettt e ettt et et et et et et e e eaaeens 564
126.4 JNDI Provider AdMin SEIVICE.u ettt ettt e ettt e e ettt e et e e et e e e te e e e e e eareeeanaeeannaaeanns 566
126.5 JNDI PrOVIETS. . . ettt et e et et e e e et et et et et et e e 567
OSGi Compendium Release 8.1 Page 7

126.6 OS G URL SCREME. . ettt ettt et e 570

126.7 Traditional Client MOdel.oiii it e s 572
126.8 Yo F 142 N 574
126.9 OTZ.OSZISEIVICENAI . e et ettt ettt e e e e e e e e e e 575
126,10 RETEIENCES. . ottt e 577
127 |PA Service Specification 579
127.1 LR Y [0 Tex AT) S 579
127.2 15O T 581
127.3 BUNIES With PEISISEENCE. . .\t vttt ettt ettt ettt e et ettt e et e et ettt 584
127.4 Extending a Persistence BUNIE.oueiet e 587
127.5 152 7o L= S 591
127.6 B Tl ela =11 593
127.7 CAPADIITIES. .« . e ettt ettt et e e 504
127.8 Lol 1T PPN 595
127.9 oo ol T Y 596
127.10 OFE.0SEL.SEIVICE.JPA.ANNMOTALIONS. . . . ettt ettt ettt ettt ettt e et e e e et e e e eaaes 597
127.11 REETENCES. . . .o ettt ettt ettt e e 598
128 Web Applications Specification 599
128.1 a1 0 Y [0] S 599
128.2 WED CONEAINET. . ..ttt e e e e e e 601
1283 Web Application BUNIE. ettt ettt ettt e 602
128.4 WED URL HaNAIEr. .. oottt e ettt e 606
1285 [T T U 609
128.6 Interacting with the OSGi ENVIFONMENt.oiuiiuiitiiii e 610
128.7 LT clT 1 N 611
128.8 RETEIEINCES. . . .t ettt ettt ettt et et e e e 611
130 Coordinator Service Specification 613
130.1 0 CoTe (Rt 4T P 613
130.2 L0 614
130.3 COOTAINALOT SEIVICE. .ottt ettt ettt ettt e e e e e e e et et e e e e e ettt 623
130.4 Lol 1T PN 628
130.5 oo R ol ateTo] e 1T P 629
131 TRo69 Connector Service Specification 641
1311 a1 Y [0 Tex AT) S 641
131.2 TR-060 PrOtOCOl PriME. . .ottt ettt ettt ettt e et et ettt e e e e e et ieeeeas 642
131.3 30 e T o =T o 647
131.4 RS, ettt ettt e e e 657
131.5 Error and Fault COdeS.nuutttt ettt ettt ettt ettt e ettt 660
131.6 Managing the RMT.ttt et e 661
131.7 Native TR-069 ObJECt MOGEIS. v ettt et e 662

Page 8 OSGi Compendium Release 8.1

131.8 OTg.0SgI.SEIVICEATOBGTOAML. e ettt ettt 663

131.9 RETEIBNCES. . . . et e 670
132 Repository Service Specification 671
132.1 a1 Y [0 Tex A) S 671
132.2 USING @ REPOSIOTY. . .« ettt ettt et et et et et e e et et e et 672
132.3 REPOSIEOTY. . . e e ettt ettt et et ettt e e e e e 676
132.4 0SZI.CONTENT NAMESPACE. . ¢« et ettt ettt ettt e ettt e ettt ettt et e e aee e aaaeens 676
132.5 XML REPOSILOTY FOMMAL. .o et ettt et e e e ettt e e e et e e e e e et ee e e e aaeeanas 677
132.6 XML REPOSILOrY SCHEMA. ... ettt et 681
132.7 CAPADIITIES. .+ e e et ettt ettt et e
132.8 Lol 1T PPN
132.9 org.osgi.service.repository.

13220 RETEIENCES. .ottt e e
133 Service Loader Mediator Specification 693
133.1 0T (o [F 4o T 693
133.2 JaVa SEIVICE LOBART APl ...ttt ettt ettt et ettt e et e e aaaaaan 695
133.3 [@0e] 1510 1) £ 696
133.4 Service Provider BUNAIES.vueeetee ettt et et 698
133.5 Service Loader MEAIatOr.ttt ettt ettt 700
133.6 05gi.5erviceloader NaMESPACE. ... euut ittt ettt e e e e 703
133.7 Use of the 0sgi.extender NameSPACE. e tn ettt ettt et et e et e e e eaeans 703
133.8 LT 1 N 704
133.9 OTg.0SEI.SEIVICE.SEIVICRIOATRT. ettt ettt ettt e e et eaaes 704
13320 RETEIENCES. . ..ottt 705
135 Common Namespaces Specification 707
135.1 a1 A Y [V x]RS 707
135.2 0SgI.XLENAET NAMESPACE. .+ . et e ettt ettt et et et et et et et et et ettt et et et e et e e eaene 707
135.3 0SZI.CONTACE NAMESPACE. . . .« e .ve ettt ettt e ettt et et ettt e eaaens 709
135.4 oI ol o Tt o Tl N 711
135.5 05gi.iMplementation NaMESPACE. uutt ettt ettt et 711
135.6 05gi.uNresolvable NaMESPACE. euutt ettt e 712
135.7 OTg.0SgI.NAMESPACE.LCONEIACT. . .+ u ettt ettt ettt et et et ettt e et et et e et et et e e e e eneenenae 712
135.8 OT8.0SZI.NAMESPACEEXEENAE. . .« .ttt ettt ettt et e ettt ettt e et et e et e e e e eaeeaenae 713
135.9 OTE.0SZI.NAMESPACE.SEIVICE. . . ¢« v ettt ettt ettt et e et e et e et e et et et et et et et et e naeeaeen 714
135.10 OFg.0Sgi.NAMESPACEIMPIEMENTALION.\ttt ettt ettt et et et e eee e 714
13511 org.osgi.namespace.unresolvable. ... o 715
13542 RETEIENCES. . ..ottt 716
137 REST Management Service Specification 717
137.1 a1 Y [0 A S 717
137.2 Interacting with the REST Management SEIVICE.uenuientt ettt et e eaeanas 718

OSGi Compendium Release 8.1 Page 9

137.3 RESOUICES. .« et ettt et e et et et et e e et e et e et e ettt e et et e e et e et e et e e e et e et 720

137.4 REPIESENEALIONS. . .« v e v ettt ettt et ettt ettt et e e e e et et 725
137.5 [7=] 1) 3 730
137.6 Extending the REST Management SEIVICE.uutuutintt ettt 731
137.7 DY 3= - S 732
137.8 CAPADIITEIES. .« . v ettt ettt et e 736
137.9 Lol 1T PPN 736
137.10 OFLOSEISEIVICETESE. . .ottt ettt ettt ettt et et e e et e et e et et e e et et e e e anaes 736
137.11 OTg.0SGI.SEIVICETESL.ClIENT.t 737
137.12 JaVaSCript CHENt APL ... ettt ettt e e et e e e e e 743
13713 REfEIENCES. ..o 746
138 Asynchronous Service Specification 747
138.1 LR Y [0 Tex A) S 747
138.2 L0 7N 748
138.3 ASYNC SEIVICE. . et ettt ettt et ettt e et ettt e et e e e et et 751
138.4 The ASYNC MEAIALOT.ttt ettt et e et et et et 752
138.5 Fire and FOrget INVOCALIONS. v ettt ettt ettt e 753
138.6 Delegating to Asynchronous Implementations.o.ueeeieeiii e 754
138.7 CAPADIITEIES. .+ . et et e et et et 755
138.8 Lol 1T PPN 755
138.9 o] Ao L ol 1Y T 756
13810 Org.0Sgi.SerViCe.asyNC.AEIBALE.ttt ettt et e 758
139 Device Service Specification for EnOcean™ Technology 761
139.1 0T Coe (Rt 4T 761
139.2 [T L 761
139.3 [1T 762
139.4 OPETation SUMIMAIY. ... e ettt ettt et ettt e ettt et et et et et e et e eaneas 763
139.5 ENOCEAN BaSE DIIVET. . ..ttt ettt ettt e ettt ettt ettt e et e et ettt ettt e e e e e e et 765
139.6 [@ el Lo oL P 765
139.7 ENOCEAN DVICE. . . ettt ettt ettt ettt et e ettt et e e et e s 766
139.8 ENOCEAN MESSAZES. e e e ee ittt ettt et ettt et ettt e e ettt 767
139.9 EnOcean Message DesCriPtion.ttt et e e et 768
130.10 ENOCEAN Channel.oiiiiii e e 768
139.11 EnOcean Channel DESCTIPLION.ttt et 769
139.12 EnOcean Remote Management.ooouinnnnn ettt ettt ettt 770
139.13 Working With an ENOCEaN DEVICE. nuitt ittt e 771
139.14 T Y o 771
139.15 ENOCEAN EXCEPLIONS. . ..ttt ettt ettt e ettt e et ettt e ettt e et e et e e e e s 772
130.16 SBCUMIEY. v ettt ettt et ettt et e ettt e e e e e 772
139.17 OFE.0SEI.SEIVICE.ENOCEAN. . . e ettt ettt ettt ettt et ettt e et e e e et e aae et et e enaee e anneeeannes 772
139.18 Org.0Sgi.Service.eN0CEaN.dESCTIPHIONS. e ettt ettt et et et e et et e et et et et e eneenees 780
139.19 REETENCES. . . .o ettt ettt et et e 783

Page 10 OSGi Compendium Release 8.1

140

140.1
140.2
140.3
140.4
140.5
140.6
140.7
140.8
140.9
140.10
140.11
140.12
140.13
140.14
140.15
140.16
140.17
140.18
140.19
140.20
141
141.1
141.2
141.3
141.4
1415
141.6
141.7

142
142.1
142.2
142.3
142.4
142.5

143

143.1
143.2
143.3
143.4
143.5

Jakarta Servlet Whiteboard 785
a1 0o Y [0t i) S 785
THE SEIVIEE CONEEXL. 4 v vttt ettt ettt ettt ettt et ettt et et et ettt et 786
Common Whiteboard Properties.eeneeteeett ettt et e et e e e e e e aaans 791
REGISTENNG SEIVIBLS. . ..ttt ettt 792
Registering Servlet FIKETs.uu et 797
REGISTENING RESOUMCES. . . . e ettt et et et ettt e e e et et et eaees 800
REGISLENING LISLENETS. e e ettt ettt ettt ettt ettt et et e et e e e e eaeenns 801
[o 1 PP 802
The Http Service RUNLIME SEIVICE. v ittt ettt et et et e e e e e e aeeeenaens 803
CONFIGUIALION PrOPETLIES. . . . e et ettt ettt e ettt e et et e e et et et et et e et e e aees 804
CAPADIIILIES. .+« e ettt e et e e e 805
Lo T 1 806
OTg.0SEI.SEIVICE.SEIVIEL.CONTEXL. . . .ttt ettt ettt et e eeeaaas 807
OTg.0SgI.SEIVICR.SEIVIEL.IUNTIME.ttt e e 811
0rg.05gi.service.servlet.runtime.dlo. oot 812
org.osgi.service.servietwhiteboard.ooii i 823
org.osgi.service.servletwhiteboard.annotations. ..o 830
org.osgi.service.servletwhiteboard.propertytypes.eeueiiiii 831
[0S (=LA TN 838
CRANEES. . . et 839
Device Abstraction Layer Specification 841
110 X Tor o) 2 841
[o == VN 842
DBVICE SIVICE. . ettt ettt ettt ettt ettt ettt e e e s 842
FUNCHION SBIVICE. . .\ttt ettt ettt ettt ettt e et ettt et ettt et ettt ettt 852
LTV 142 N 856
OTE.OSGISEIVICR.AAL. . .. vttt 857
RETEIEBNCES. . .ot e 882
Device Abstraction Layer Functions Specification 883
R0 Y [0t 1) S 883
[T 1 1o) - S 883
FUNCHONS DALa. ... e ettt et et e 888
0Org.05gi.serViCe.dal.fUNCIONS.t 890
org.osgi.service.dal functions.data.oouere et 901
Network Interface Information Service Specification 911
a1 Y U o) TS 911
NEtWOTKAGAPIET SEIVICE. . ..t ettt ettt et et ettt e et et e e eae e 912
NEtWOTKAAIESS SEIVICE.ttt ettt ettt ettt e e et ettt e e e et e e et e e e e eaeaans 914
A CONtrOller EXAMPIE. .o e ettt ettt e e e ettt e e e e e e et e aaes 915
LTV 142 N 916

OSGi Compendium Release 8.1

143.6 OTg.05gi.SEIVICE.NEIWOTKAAPLET.o e ettt ettt e e 916

143.7 STl Tl 922
144 Resource Monitoring Specification 923
144.1 LR Y [0 Tex AT) N 923
144.2 ESSONtIAlS. . . ettt 923
144.3 o =TS 923
144.4 OPEIAtioN SUMMEAIY.ttt e ettt ettt et ettt e e et e et e ettt e e ettt et e e aeeeanaaeenn 924
144.5 2T ol I o] 4 7 925
144.6 System ResoUTCe COMEEXL. . ..ottt ettt ettt ettt 925
144.7 Framework RESOUICE COMEEXL.ttt ettt ettt ettt e et et ettt eeiiaaes 925

144.8 Resource Monitor

144.9 Resource Monitor Factory

L Lo T € U Y/ To} 11 o A 927
144.11 LY 1T 0 Te) VT 1o 927
144.12 Yoo Il 1 927
14413 Disk StOrage MONIOT. ... utte ettt ettt ettt et et e e et et et 928
L R 1 o1 £=Y: Ve 1Y o1 c) 928
144.15 RESOUICE LIS BN, . .ttt e ettt ettt et ettt e et ettt et e et e ettt e e e ee e 928
144.16 RESOUICE EVONt. ..ottt e et et e it et ettt e e et et et 931
144.17 RESOUICE CONEEXE LISTENET. .ottt ettt ettt ettt ettt et ettt e et e et eeees 932
144.18 RESOUICE CONEXE EVENL. ...ttt ettt ettt ettt ettt et et e e e e e ie e e e iaeaeannns 932
144.19 Resource MONITONING SEIVICE. ... nuut ettt ettt ettt et e et et et e et e et e e ee e aaeeans 933

144.20 Resource Monitoring Client

T Tl U1 1 N

144.22 OFg.0SEI.SEIVICE.TESOUNCEMOMILOTINE. . ¢ u ettt ettt ettt e ettt e et e e et e e ettt e et e e eeeeeaaeeanns 933
144.23 Org.0Sgi.Service.resourcemMONItOTINGMONILOT. ...t .t tut ettt ettt ettt et et et et et e eaeaas 945
144.24 REFEIENCES. .. ettt 947
145 USB Information Device Category Specification 949
145.1 10T Y [0 Tex A] 949
145.2 USBINODEVICE SEIVICE. . .ttt eete ettt et e et e et e et e et e et et e et e e e et e et e et e et e e e eaeeaneennees 950
145.3 LT TclT 1 N 952
145.4 OTg.0SGISEIVICEUSDINTO. . .. ottt e 953
145.5 RETEIEIICES. . ..ttt ettt ettt ettt e e et e e e e 956
146 Serial Device Service Specification 957
146.1 a1 A Y [V i) S 957
146.2 SEITAIDEVICE SEIVICE. . .ttt ettt ettt ettt e e e e ettt e e e 958
146.3 SrIAlEVENE LISt MBI SEIVICE. . . ottt ettt ettt ettt ettt ettt e e et ettt e e et e aaaas 959
146.4 USB Serial EXAMPIE. ..ottt et e 959
146.5 Yo F 142 N 959
146.6 OTZ.OSZISEIVICESEITAL. . .« ot ettt ettt et e e e 959

Page 12 OSGi Compendium Release 8.1

147

1471
147.2
1473
147.4
147.5
147.6
147.7
147.8
147.9
147.10
147.11
147.12
148
148.1
148.2
148.3
148.4
148.5
148.6

148.7
148.8

149
149.1
149.2
149.3
149.4
149.5
149.6
149.7
149.8
149.9
149.10
149.11
149.12
149.13
149.14
149.15
149.16
149.17
149.18

Transaction Control Service Specification 965

Transaction Recovery.
CAPADIITEIES. .« e e ettt ettt e e

YoV 112 N

org.osgi.service.transaction.control

0rg.0sgi.service.transaction.Control.jdbe. e e 996
Org.05gi.SerVice.transaction.CONrOLIPa. vuueut ettt 998
OTg.05gi.SerViCe.transaction.CONTrOLIBCOVETY. uut ettt ettt 1001
Cluster Information Specification 1003
1310 oY [0 xS 1003
OSGi frameWorks 1N @ CUSET.ottt ettt ettt et et 1004
NOAE SHAEUS SBIVICE. . .ttt ettt ettt ettt et ettt ettt e et et ettt e e e e eeeeeinaas 1005
Framework NOde SEAtUS SEIVICE.u ettt ettt ettt ettt et ettt e e e e ieeens 1007
Application-specific Node Status Metadata.vveeiiniiietii i 1008
Lo 1 P 1008
OTg.0SGI.SEIVICE.CIUSENINTO. et 1009
0rg.05g1.ervice.clusterinfo.dto. ee et 1013
Device Service Specification for ZigBee™ Technology 1017
a1 e Y [V i) 1017
BSOS IEIAlS. . v vttt ettt 1017
o 1= 1017
OPETAtioN SUMMAIY. ... e ettt ettt et et ettt e et et et et et et et e e e e e 1019
ZiGBEE BASE DIIVET. . ..ttt ettt ettt e et e 1021
ZIBEE NOE. . . . ettt et e
ZigBee Endpoint

ZigBee DeviCe DESCPLION. . . . e ettt ettt et ettt et e e s 1025
ZigBee Device DesCriPtion Set.ttt 1025
ZCL CIUSERT. . ettt ettt e e e e e e e e e e 1026
ZCL ClUSEET DESCIIPLION. - .« e ettt et et et ettt et e et e et et et e e e aaeans 1026
ZCL Global Cluster DESCIIPLION. e et uttte ettt e ettt e e e e et e e et e e e e et et e e eaaeeanns 1026
ZigBee Command DESCTIPHION.ttt ettt et et ettt e 1027
ZigBee AHIIIDULE. . ..ot 1027
ZigBee Attribute DesCriPtion.cuu ettt 1027
ZCL Data Type DESCTIPLION. . . . e ee et ettt ettt et et et et et e et et et e et e 1027
ZCL Simple Type DESCHPHION. . .. et ettt ettt et e e e e ettt et et et et e aaas 1027
Promise and Response Stream ObJECES. vee et 1028

OSGi Compendium Release 8.1

149.19
149.20
149.21
149.22
149.23
149.24
149.25
149.26
149.27
149.28
149.29
149.30
149.31
149.32
149.33
149.34
149.35

150

150.1
150.2
150.3
150.4
150.5
150.6
150.7
150.8
150.9
150.10
150.11
150.12
150.13
150.14

150.15
151
151.1
151.2
151.3
151.4
151.5
151.6
151.7
151.8

ZigBEE Data TYPES. . . e ettt et et et e 1028

Implementing a ZigBee ENAPOINT.uennet et 1030
BN APl o e e, 1031
Monitoring Events and Sending Commands.couueinuiitiiit e 1032
4G Yo o] N

ZDP Exception

AP S EXCEPLION. ettt ettt ettt et ettt et e e et e et e e e et 1034
ZiGBEE EXCEPLION.t e ettt ettt ettt ettt e e e e e 1034
4G 5 12 1T T O P 1034
ZIGBEE GTOUP. . . . e ettt ettt et et et e et et ettt e et 1034
ZigBee NELWOTKING. . . e ettt e e e 1035
YoV 142 N 1036
OTE.OSZI.SEIVICR.ZIEDER. e ettt e 1036
OTg.05gi.SerVICe.ZIgHEE.dESCIIPLIONS. . . .o\ e ettt e 1074
OTg.0SgI.SEIVICE.ZIGDEE.ABSCIIPLONS.ttt ettt e e 1079
OTg.0SgI.SEIVICE.ZIGDEELYPES. . . . e ettt ettt 1086
[0S =1L T 1144
Configurator Specification 1145
10T Y [0 Tex A] 1145
o 1 T=T3 1145
CoNfIGUIALION RESOUICES. e ettt et ettt 1146
Bundle Configuration RESOUCES. u ettt ettt e e e 1151
Initial CoNfIGUrAtIONS. euvt ettt 1152
LifE Gl ettt s 1152
Grouping and COOTAINALIONS.ttt ettt et et et e ettt e et e e e et e e e e ite e e eeeeaeenees 1153
Lol 1P 1153
CAPADIITEIES. .« . e ettt et e 1154
0Sg1.CONAIGUIALION NAMESPACE. . ..ttt ettt ettt ettt e e e e e e e e e e eeeaaaans 1155
Configuration RESOUTCES iN @ REPOSILOTY. . .. v uv ettt ettt ettt ettt e e e 1155
OTg.0SEI.SEIVICE.CONTIGUTALON. . .« . ettt ettt et et et 1155
Org.0Sgi.SerViCe.CONfigUrator.annOtatiONS.ut ettt ettt ettt ettt e eae e 1157
Org.05gi.Service.configUrator.NAMESPACE.uueuit ettt et ettt et e 1158
RO EMCES. . . vttt ettt ettt ettt e e 1158
Jakarta RESTful Web Services Whiteboard 1159
13T [0 Tex A] 1159
The Jakarta RESTful Web Services Whiteboard.uiiuiiiiii i as 1160
Common Whiteboard ProPerties. cuu ettt 1163
Registering RESTIUI RESOUICES. v utt ettt ettt et ettt et et et et et et et et et e e eaees 1165
REGISTENING EXTENSIONS. ... e ettt ettt et e et e et e e e e ettt e 1169
Registering RESTful Web Service Applications.eeuiirne i 1174
Whiteboard Error Handling.t 1176
The Jakarta RESTful Web Services Cent APLouuieti ettt et e aaeaes 1176

Page 14

OSGi Compendium Release 8.1

151.9
151.10
151.11
151.12
151.13
151.14
151.15
151.16
151.17
151.18

151.19
152

152.1
152.2
152.3
152.4
152.5
152.6
152.7
152.8
152.9
152.10
152.11
152.12
152.13
152.14
152.15
152.16
152.17
152.18
152.19
152.20
152.21
152.22
152.23
152.24

152.25

153

153.1
153.2
153.3
153.4

Portability and Interoperability.co.eoiuiiii i 1178

CAPADIITLIES. .« . e ettt et e e 1180
Yol 142 N 1181
org.osgi.servicejakartars.Client.oou oot 1182
OTg.0SgI1.SEIVICEJaKAMTArS.TUNLIMIE. ettt ettt ettt et e 1184
org.osgi.service.jakartars.runtime.dto.ueeuu et 1185
org.osgi.servicejakartarswhiteboard. 1191
org.osgi.service.jakartars.whiteboard.annotations.o 1193
org.osgi.service.jakartars.whiteboard.propertytypes.ooueiuiii i 1194
L L o TP 1198
CRANEES. - . ettt 1198
CDI Integration Specification 1199
13T [0 Ter A) 1199
[e T3 4704 3 1202
COMPONENE SCOPE. ettt eett ettt ettt et et ettt ettt ettt e e et e e eeees 1203
ContaiNer COMPONENT. ettt ettt e ettt et e ettt e e et e e et e et e e e e e eaeeanas 1206
Standard Definitions.o.vueuini i 1206
SINGIE COMPONENT. . . ettt ettt et ettt e et e et et et et et et et e e e e e 1207
Factory COMPONENL.ttt ettt et ettt ettt ettt et eeeees 1209
COMPONENT PTOPETTIES. .+ ettt ee ettt ettt e ettt e et e e e ettt e et e e et e e et e e tee e eaeeennaeeenns 1211
Bean Property TYPeS.ttt ettt e 1213
PrOVIING SEIVICES. . . v e ettt ettt ettt ettt et e e e e et e e et et et et et e 1217
Component Property INJECtion POINES.« e.u ettt 1221
Reference INJECHION POINES.ttt et e ettt e et e e e e e e e e e e e e anaeans 1222
Interacting with SErvICe EVENTS.ttt 1229
CDI CompOonent RUNEIME. . ..ottt ettt ettt et e et e e et e et e et e e e e e ee e eaeeennaas 1230
CAPADIITLIES. .« . e et e et et et e 1233
Relationship 10 CDI fEAIUTES.ttt ettt ettt et et et et et et e e e e e e e eaeeaens 1235
Lo 1 1238
oo o= N 1238
OTg.0SgI.SEIVICE.CALANNOTALIONS. ettt ettt ettt et ettt et et et et et et et e e eaeenaans 1242
OTg.05gi.SEIVICE.CAiPrOPEITYIYPES. . .« e ettt ettt et et e 1251
OTg.0SgI.SEIVICE.CAI.TEfETBNCE.ttt 1254
OTg.0SI.SEIVICE.CAITUNTIME.ttt ettt ettt et et et et et et e et et e aeenaes 1258
0rg.05gi.5erVice.Cdi.rUNTIME.AO. vttt 1259
org.osgi.service.cdi.runtime.dto.template.t 1263
REIEIENMCES. . . . vttt ettt ettt ettt e e 1267
Service Layer API for oneM2M™ 1269
INtroduction of ONEM2M. u it 1269
Application Portability Problem of oneMaM.oouiiii e 1269
Introduction of Service Layer APl for oneM2M.uiutinie it 1269
BSOS ONtIAlS. . . ettt ettt 1270

OSGi Compendium Release 8.1

153.5
153.6
153.7
153.8
153.9
153.10
153.11

153.12

154

154.1
154.2
154.3
154.4
154.5
154.6
154.7
154.8
154.9

155

155.1
155.2
155.3

157

157.1
157.2
157.3
157.4
157.5
157.6
157.7
157.8
157.9
157.10
157.11

157.12
158
158.1
158.2

158.3
158.4

o 1 T=T3 1270

ONEM2M SEIVICELAYEN. ettt ettt ettt e e et 1271
[N o] 1] e YT K1 1<) = P 1273
5 1274
LT 1 P 1274
o)y oLy R ol K] a1=1 2 o O P 1275
OTg.0SgI.SEIVICE.OMEM2MLALO. .« vttt ettt ettt ettt ettt 1277
[0S =1L T 1302
Residential Device Management Tree Specification 1303
13T Y [0 ex A) 1303
The Residential Management Tree. ouut ittt e 1304
Managing BUNAIES.ot 1304
] 1= 1308
LOg ACCESS. ettt ettt 1309
0SgILWINNG.ME.SErVICE NAMESPACE. ... vttt ettt ettt et e e et e e e e 1310
TrEE SUMIMIAIY. . .. et ettt ettt ettt ettt ettt ettt e ettt ettt ettt e e e e et e e e eeees 1310
org.osgidmtresidential.o 1312
OTG.OSGIAMESEIVICEIOZ. .« e e ettt ettt e e e e e e 1323
TR-157 Amendment 3 Software Module Guidelines 1325
Management AeNt. oo e 1325
Parameter MAPPING. . . .« .v ettt ettt ettt e et 1326
[0S =1L T 1332
Typed Event Service Specification 1333
10T Y [0 Tex A] 1333
o 1334
PUDIISING EVENTS. . . .« e et ettt et e e e e e e e e 1336
RECRIVING EVENTS. ettt ettt ettt et et e et et e e e e e e 1338
The Typed EVENt BUS SEIVICE. vttt ettt 1343
MONItOTING EVENES. . . . e ettt ettt ettt et e e e et e et e et e e e e eaaee 1343
CAPADIITIES. .« . e et et ettt et 1343
Lol 1 1344
OTZ.0SZI.SEIVICEAYPEABVENL.ttt ettt et e et e 1345
org.osgi.service.typedevent.annotations.ue ettt 1349
OTg.05gi.SerVICe.tyPEdEVENT.IMONITON.\ttt ettt ettt e et 1350
OTg.0Sgi.SerVice.typedevent.proPertytyPES. uu ettt ettt ettt ettt 1351
Log Stream Provider Service Specification 1353
13T Y [0 Tex A) 1353
LOg SErEAM PrOVIAET. ettt et e 1354
CAPADIITLIES. .« . e et et ettt e 1354
YoV 142 N 1354

Page 16

OSGi Compendium Release 8.1

158.5
158.6

159
159.1
159.2
159.3
159.4
159.5
159.6
159.7
159.8
159.9
159.10
159.11
159.12

15913

702

702.1
702.2
702.3
702.4
702.5
702.6
702.7
702.8
702.9

702.10

705
705.1
705.2
705.3
705.4
705.5
705.6
705.7
705.8
705.9
705.10
705.11
705.12

705.13

OTZ.0SEI.SEIVICEIOZ.SIIBAM. .. .o e ettt ettt e et 1354

[0S 2 =1L T 1355

Feature Service Specification 1357

0T oY ¥ o o TS
FEatUTE.
COMIMENES. . . ettt ettt ettt ettt ettt ettt ettt e et e
BUNAIES. . .t
L0000 =TT T3
VaADIES. . . e
EXEENSIONS. . . . e e ettt ettt et et et et

Framework Launching Properties

RESOUICE VEISIONING. .« e eeee ettt ettt ettt ettt e e e ettt e e et e e ettt e e aneeeannas

CAPADIITEIES. .« e ettt ettt et

OTZ.0SEI.SEIVICESBATUNE. ettt ettt ettt e e et e

0Org.0sgi.service.feature.annotation. ettt 1378
REIEIENMCES. . . . v vttt ettt ettt ettt 1378
XML Parser Service Specification 1379
a1 Ao Y [V i) 1379
AR P, e e e 1380
XML ParSEI SEIVICE. . . vt vvtteeee ettt ettt ettt et e et ettt et ettt e et e e et ettt iee e e e e e ans 1381
PrOPEITIES. . . . v e ettt ettt e et e 1381
Getting @ Parser FACTOTY. . . . ettt ettt ettt et 1381
Adapting @ JAXP Parser 10 OSGi.ute ettt et ettt et 1382
USBEE O JAXP. . ettt ettt e e e 1383
LT 11 1384
OT.OSGLULILXML. L e 1384
L L o T TP 1387
Promises Specification 1389
a1 Y [Vt i) T 1389
[0 111V U 1390
[1= 1Y R 1390
CallDACKS. v v v vttt ettt s 1391
ChaiNiNg PrOMISES.ttt ettt ettt ettt e ettt e e e e e e e e e e et e e e e e 1392
1Y T TS 1393
L8102 1395
FUNCHONA INEEITACES. . . . vttt ettt ettt e e e 1395
ULility MEEROAS. . . .ottt e e e e e 1395
LT 11 1396
OT.OSGIULILPIOMISE.ttt ettt et et e e et e et 1396
OFg.OSEIULILIUNCHION. ..ottt e e e 1413
[0S =1L T 1418

OSGi Compendium Release 8.1

70504 CRaMEES. . ettt e 1419

706 Push Stream Specification 1421
706.1 a1 0o Y IV i) 1421
706.2 AsyNchronous EVENT SETEAMS.t ettt ettt et et et et et et et et et et e e e e eae e e 1422
706.3 The PUSH SErBAM.ottt ettt ettt ettt et et e e et e et e e e e e e e enaas 1423
706.4 The PUSh StrEaM PrOVIAET.ttt ettt ettt e e ettt et eeiies 1432
706.5 SImple PUSH EVENE SOUTCES.ttt ettt et e et et et e et et e e et et e e e e e e e e e eeeaaas 1433
706.6 Lol 1 1434
706.7 OTg.OSGIULILPUSRSLIEAM. e 1434
706.8 REIEIENMCES. . . v vttt ettt ettt ettt e 1455
706.9 CRANEES. . . et e 1456
707 Converter Specification 1457
707.1 1010 Y [0 i) 1457
707.2 1= 1457
707.3 L A Te T fe J o] 1YY o =Y 1458
707.4 (@313 T 1458
707.5 Repeated or Deferred CONVEISIONS.ttt et et et et et e et et et et et et e aeenaeanas 1469
707.6 CUSEOMIZING COMVETERTS. . . o .ttt et ettt et et e e e e e e e et et et e e e e e eaaeas 1469
707.7 CONVEISION TaIIUIES. ettt ettt ettt 1470
707.8 Yo V142 N 1471
707.9 OTE.OSZIULILCONVETLET.ottt e 1471
707.10 [0S =1L T 1478

Page 18 OSGi Compendium Release 8.1

Introduction

Reader Level

1

1.1

1.2

1.2.1

1.2.2

Table 1.1

Item
100 Remote Services

Introduction

This compendium contains the specifications of all current OSGi services.

Reader Level

This specification is written for the following audiences:

- Application developers
. Framework and system service developers (system developers)
Architects

This specification assumes that the reader has at least one year of practical experience in writing Ja-
va programs. Experience with embedded systems and server-environments is a plus. Application de-
velopers must be aware that the OSGi environment is significantly more dynamic than traditional
desktop or server environments.

System developers require a very deep understanding of Java. At least three years of Java coding ex-
perience in a system environment is recommended. A Framework implementation will use areas
of Java that are not normally encountered in traditional applications. Detailed understanding is re-
quired of class loaders, garbage collection, Java 2 security, and Java native library loading.

Architects should focus on the introduction of each subject. This introduction contains a general
overview of the subject, the requirements that influenced its design, and a short description of its
operation as well as the entities that are used. The introductory sections require knowledge of Java
concepts like classes and interfaces, but should not require coding experience.

Most of these specifications are equally applicable to application developers and system developers.

Version Information

This document is the Compendium Specification for the OSGi Compendium Release 8.1.

OSGi Core Release 8

This specification is based on OSGi Core Release 8. This specification can be downloaded from:

https://docs.osgi.org/specification/

Component Versions

Components in this specification have their own specification version, independent of this speci-
fication. The following table summarizes the packages and specification versions for the different
subjects.

Packages and versions

Package Version
- Version 1.1

103 Device Access Specification org.osgi.service.device Version 1.1
104 Configuration Admin Service Specification org.osgi.service.cm Version 1.6

org.osgi.service.cm.annotations

OSGi Compendium Release 8.1 Page 19

https://docs.osgi.org/specification/

Version Information Introduction

Item Package Version
105 Metatype Service Specification org.osgi.service.metatype Version 1.4

org.osgi.service.metatype.annotations

106 PreferencesService Specification org.osgi.service.prefs Version 1.1
107 User Admin Service Specification org.osgi.service.useradmin Version 1.1
108 Wire Admin Service Specification org.osgi.service.wireadmin Version 1.0
111 Device Service Specification for UPnP™ Tech- org.osgi.service.upnp Version 1.2
nology

112 Declarative Services Specification org.osgi.service.component Version 1.5

org.osgi.service.component.annotations
org.osgi.service.component.propertytypes
org.osgi.service.component.runtime

org.osgi.service.component.runtime.dto
113 Event Admin Service Specification org.osgi.service.event Version 1.4

org.osgi.service.event.annotations

org.osgi.service.event.propertytypes
117 Dmt Admin Service Specification org.osgi.service.dmt Version 2.0

org.osgi.service.dmt.notification
org.osgi.service.dmt.notification.spi
org.osgi.service.dmt.security

org.osgi.service.dmt.spi
122 Remote Service Admin Service Specification org.osgi.service.remoteserviceadmin Version 1.1

org.osgi.service.remoteserviceadmin.namespace

123 JTA Transaction Services Specification - Version 1.0
125 Data Service Specification for [DBC™ Technol- org.osgi.service.jdbc Version 1.1
09y

126 JNDI Services Specification org.osgi.service.jndi Version 1.0
127 JPA Service Specification org.osgi.service.jpa Version 1.1

org.osgi.service.jpa.annotations

128 Web Applications Specification - Version 1.0
130 Coordinator Service Specification org.osgi.service.coordinator Version 1.0
131 TR069 Connector Service Specification org.osgi.service.tro6gtodmt Version 1.0
132 Repository Service Specification org.osgi.service.repository Version 1.1
133 Service Loader Mediator Specification org.osgi.service.serviceloader Version 1.0
135 Common Namespaces Specification org.osgi.namespace.contract Version 1.2
org.osgi.namespace.extender
org.osgi.namespace.implementation
org.osgi.namespace.service
org.osgi.namespace.unresolvable
137 REST Management Service Specification org.osgi.service.rest Version 1.0

org.osgi.service.rest.client

Page 20 OSGi Compendium Release 8.1

Introduction Version Information

Item Package Version
138 Asynchronous Service Specification org.osgi.service.async Version 1.0

org.osgi.service.async.delegate

139 Device Service Specification for EnOcean™ org.osgi.service.enocean Version 1.0

Technology org.osgi.service.enocean.descriptions

140 Jakarta Servlet Whiteboard org.osgi.service.servlet.whiteboard Version 2.0
org.osgi.service.servlet.whiteboard.annotations
org.osgi.service.servlet.whiteboard.propertytypes
org.osgi.service.servlet.context
org.osgi.service.servlet.runtime

org.osgi.service.servlet.runtime.dto

141 Device Abstraction Layer Specification org.osgi.service.dal Version 1.0
142 Device Abstraction Layer Functions Specifica- org.osgi.service.dal.functions Version 1.0
tion org.osgi.service.dal.functions.data

143 Network Interface Information Service Specifi- org.osgi.service.networkadapter Version 1.0
cation

144 Resource Monitoring Specification org.osgi.service.resourcemonitoring Version 1.0

org.osgi.service.resourcemonitoring.monitor

145 USB Information Device Category Specification org.osgi.service.usbinfo Version 1.0
146 Serial Device Service Specification org.osgi.service.serial Version 1.0
147 Transaction Control Service Specification org.osgi.service.transaction.control Version 1.0

org.osgi.service.transaction.control.jdbc
org.osgi.service.transaction.control.jpa

org.osgi.service.transaction.control.recovery
148 Cluster Information Specification org.osgi.service.clusterinfo Version 1.0

org.osgi.service.clusterinfo.dto

149 Device Service Specification for ZigBee™ Tech- org.osgi.service.zigbee Version 1.0
nology org.osgi.service.zigbee.descriptions
org.osgi.service.zigbee.descriptors

org.osgi.service.zigbee.types
150 Configurator Specification org.osgi.service.configurator Version 1.0

org.osgi.service.configurator.annotations

org.osgi.service.configurator.namespace
151 Jakarta RESTful Web Services Whiteboard org.osgi.service.jakartars.runtime Version 2.0

org.osgi.service.jakartars.runtime.dto
org.osgi.service.jakartars.whiteboard
org.osgi.service.jakartars.whiteboard.annotations
org.osgi.service.jakartars.whiteboard.propertytypes

org.osgi.service.jakartars.client

OSGi Compendium Release 8.1 Page 21

References Introduction

Item Package Version
152 CDI Integration Specification org.osgi.service.cdi Version 1.0

org.osgi.service.cdi.annotations
org.osgi.service.cdi.propertytypes
org.osgi.service.cdi.reference
org.osgi.service.cdi.runtime
org.osgi.service.cdi.runtime.dto

org.osgi.service.cdi.runtime.dto.template

153 Service Layer API for oneM2M™ org.osgi.service.onem2m Version 1.0
org.osgi.service.onema2m.dto

154 Residential Device Management Tree Specifica- org.osgi.dmt.residential® Version 1.0

tion

155 TR-157 Amendment 3 Software Module Guide- - Version 1.0

lines

157 Typed Event Service Specification org.osgi.service.typedevent Version 1.0

org.osgi.service.typedevent.annotations
org.osgi.service.typedevent.monitor

org.osgi.service.typedevent.propertytypes

158 Log Stream Provider Service Specification org.osgi.service.log.stream Version 1.0

159 Feature Service Specification org.osgi.service.feature Version 1.0

702 XML Parser Service Specification org.osgi.util.xml Version 1.0

705 Promises Specification org.osgi.util.promise Version 1.3
org.osgi.util.function

706 Push Stream Specification org.osgi.util.pushstream Version 1.1

707 Converter Specification org.osgi.util.converter Version 1.0

When a component is represented in a bundle, a version attribute is needed in the declaration of the
Import-Package or Export-Package manifest headers.

1.2.3 Notes

1. ThisisnotaJava package but contains DMT Types.
1.3 References

[1] OSGi Specifications
https://docs.osgi.org/specification/

1.4 Changes

Updated 705 Promises Specification.
- Updated 125 Data Service Specification for [JDBC™ Technology.
« Updated 706 Push Stream Specification.

Page 22 OSGi Compendium Release 8.1

https://docs.osgi.org/specification/

Introduction Changes

« 140 Jakarta Servlet Whiteboard updated for Jakarta EE and replaces the Http Whiteboard specifi-
cation which is based upon the javax-namespace Servlet API. The old Http Service specification
was also removed as it is based upon the old version 2.1 of the javax-namespace Servlet API.

151 Jakarta RESTful Web Services Whiteboard updated for Jakarta EE and replaces the JaxRS White-
board specification which is based upon the javax-namespace JAX-RS APL

OSGi Compendium Release 8.1 Page 23

Changes Introduction

Page 24 OSGi Compendium Release 8.1

Remote Services Version 1.1 The Fallacies

100

Figure 100.1

100.1

to an endpoint

D service.imported

Remote Services

\ersion 1.1

The OSGi framework provides a local service registry for bundles to communicate through service
objects, where a service is an object that one bundle registers and another bundle gets. A distribution
provider can use this loose coupling between bundles to export a registered service by creating an
endpoint. Vice versa, the distribution provider can create a proxy that accesses an endpoint and then
registers this proxy as an imported service. A Framework can contain multiple distribution providers
simultaneously, each independently importing and exporting services.

An endpoint is a communications access mechanisms to a service in another framework, a (web)
service, another process, or a queue or topic destination, etc., requiring some protocol for commu-
nications. The constellation of the mapping between services and endpoints as well as their com-
munication characteristics is called the topology. A common case for distribution providers is to be
present on multiple frameworks importing and exporting services; effectively distributing the ser-
vice registry.

The local architecture for remote services is depicted in Figure 100.1 on page 25.

Architecture

Service Producer
Impl

Service Consumer
Impl

service.exported.interfaces
imported exported | =*

service service

Distribution
Provider Impl
ﬁ

Local services imply in-VM call semantics. Many of these semantics cannot be supported over a
communications connection, or require special configuration of the communications connection. It
is therefore necessary to define a mechanism for bundles to convey their assumptions and require-
ments to the distribution provider. This chapter defines a number of service properties that a distrib-
ution provider can use to establish a topology while adhering to the given constraints.

The Fallacies

General abstractions for distributed systems have been tried before and often failed. Well known are
the fallacies described in [1] The Fallacies of Distributed Computing Explained:

+ The network is reliable

OSGi Compendium Release 8.1 Page 25

Remote Service Properties

Remote Services Version 1.1

100.2

Table 100.1

. Latencyis zero

- Bandwidth is infinite

- The network is secure

- Topology doesn't change

- There is one administrator

. Transport cost is zero

« The network is homogeneous

Most fallacies represent non-functional trade-offs that should be considered by administrators, their
decisions can then be reflected in the topology. For example, in certain cases limited bandwidth is
acceptable and the latency in a datacenter is near zero. However, the reliability fallacy is the hard-
est because it intrudes into the application code. If a communication channel is lost, the application
code needs to take specific actions to recover from this failure.

This reliability aspect is also addressed with OSGi services because services are dynamic. Failures in
the communications layer can be mapped to the unregistration of the imported service. OSGi bun-
dles are already well aware of these dynamics, and a number of programming models have been de-
veloped to minimize the complexity of writing these dynamic applications.

Remote Service Properties

This section introduces a number of properties that participating bundles can use to convey infor-
mation to the distribution provider according to this Remote Service specification.

The following table lists the properties that must be listed by a distribution provider.

Remote Service Properties registered by the Distribution Provider

Service Property Name Type
remote.configs.supported String+
remote.intents.supported String+
service.imported *
service.imported.configs String+

Description

Registered by the distribution provider on one of
its services to indicate the supported configuration
types. See Configuration Types on page 33 and De-
pendencies on page 36.

Registered by the distribution provider on one of its
services to indicate the vocabulary of implemented
intents. See Dependencies on page 36.

Must be set by a distribution provider to any value
when it registers the endpoint proxy as an imported
service. A bundle can use this property to filter out
imported services.

The configuration information used to import this
service, as described in service.exported.configs.
Any associated properties for this configuration
types must be properly mapped to the importing
system. For example, a URL in these properties must
point to a valid resource when used in the importing
framework.

If multiple configuration types are listed in this
property, then they must be synonyms for exactly
the same remote endpoint that is used to export this
service.

Page 26

OSGi Compendium Release 8.1

Remote Services Version 1.1 Remote Service Properties

Service Property Name Type Description

service.intents String+ A distribution provider must use this property to
convey the combined intents of:

- The exporting service, and
. The intents that the exporting distribution
provider adds.

. Theintents that the importing distribution
provider adds.

The properties for bundles providing services to be exported or require services to be imported are
listed alphabetically in the following table. The scenarios that these properties are used in are dis-
cussed in later sections.

Table 100.2 Remote Service Properties registered by Exporting bundles
Service Property Name Type Description
service.exported.configs String+ A list of configuration types that should be used to

export the service. Each configuration type repre-
sents the configuration parameters for one or more
Endpoints. A distribution provider should create
endpoints for each configuration type that it sup-
ports. See Configuration Types on page 33 for
more details. If this property is not set or empty a
distribution provider is free to choose a default con-
figuration type for the service.

service.exported.intents String+ A list of intents that the distribution provider must
implement to distribute the service. Intents listed in
this property are reserved for intents that are critical
for the code to function correctly, for example, order-
ing of messages. These intents should not be config-
urable. For more information about intents, see In-
tents on page 30. This property is optional.

service.exported.intents.extra String+ This property is merged with the
service.exported.intents property before the dis-
tribution provider interprets the listed intents; it
has therefore the same semantics but the proper-
ty should be configurable so the administrator can
choose the intents based on the topology. Bundles
should therefore make this property configurable,
for example through the Configuration Admin ser-
vice. See Intents on page 30. This property is op-
tional. If absent or empty no specific intents are re-
quired.

service.exported.interfaces String+ Setting this property marks this service for export. It
defines the interfaces under which this service can
be exported. This list must be a subset of the types
listed in the objectClass service property. The single
value of an asterisk ('x' \uoo2A) indicates all inter-
faces in the registration's objectClass property and
ignore the classes. It is strongly recommended to on-
ly export interfaces and not concrete classes due to
the complexity of creating proxies for some type of
concrete classes. See Registering a Service for Export on
page 28.

OSGi Compendium Release 8.1 Page 27

Remote Service Properties Remote Services Version 1.1

Service Property Name Type Description

service.intents String+ A list of intents that this service implements. A dis-
tribution provider must use this property to convey
the combined intents of:

- The exporting service, and

- Theintents that the exporting distribution
provider adds.

. Theintents that the importing distribution
provider adds.

To export a service, a distribution provider must ex-
pand any qualified intents to include those support-
ed by the endpoint. This can be a subset of all known
qualified intents. See Intents on page 30. This
property is optional for registering bundles.
service.pid String+ Services that are exported should have a service.pid
property. The service.pid (PID) is a unique persistent
identity for the service, the PID is defined in Persis-
tent Identifier (PID) of OSGi Core Release 8. This prop-
erty enables a distribution provider to associate per-
sistent proprietary data with a service registration.

The properties and their treatment by the distribution provider is depicted in Figure 100.2.

Figure 100.2 Distribution Service Properties
Aexpo - Framework A endpoint Framework B G v
B —
<other service properties> B I | T <other service properties>

service.intents

service.exported.intents service.intents

service.exported.intents.extra | - D Service.imported=...

service.exported.interfaces objectClass

service.exported.configs service.imported.configs

remote.intents.supported

remote.configs.supported

AN

100.2.1 Registering a Service for Export

A distribution provider should create one or more endpoints for an exported service when the fol-
lowing conditions are met:

- The service has the service property service.exported.interfaces set.

. Allintents listed in service.exported.intents, service.exported.intents.extraand service.intents
are part of the distributed provider's vocabulary

- None of the intents are mutually exclusive.

- The distribution provider can use the configuration types in service.exported.configs to create
one or more endpoints.

Page 28 OSGi Compendium Release 8.1

Remote Services Version 1.1 Remote Service Properties

100.2.2

100.2.3

The endpoint must at least implement all the intents that are listed in the service.exported.intents
and service.exported.intents.extra properties.

The configuration types listed in the service.exported.configs can contain alternatives and/or syn-
onyms. Alternatives describe different endpoints for the same service while a synonym describes a
different configuration type for the same endpoint.

A distribution provider should create endpoints for each of the configuration types it supports;
these configuration types should be alternatives. Synonyms are allowed.

If no configuration types are recognized, the distribution provider should create an endpoint with a
default configuration type except when one of the listed configuration typesis <<nodefault>>.

For more information about the configuration types, see further Configuration Types on page 33.

Getting an Imported Service

An imported service must be a normal service, there are therefore no special rules for getting it.
An imported service has a number of additional properties that must be set by the distribution
provider.

If the endpoint for an exported service is imported as an OSGi service in another framework, then
the following properties must be treated as special.

. service.imported- Must be set to some value.
. service.intents- This must be the combination of the following:
- Theservice.intents property on the exported service
- Theservice.exported.intentsand service.exported.intents.extra properties on the exported
service
- Any additional intents implemented by the distribution providers on both sides.

- service.imported.configs - Contains the configuration types that can be used to import this ser-
vice. The types listed in this property must be synonymous, that is, they must refer to exactly the
same endpoint that is exporting the service. See Configuration Types on page 33.

. service.exported. - Properties starting with service.exported. must not be set on the imported
service.

. service.exported.interfaces - This property must not be set, its content is reflected in the object-
Class property.

All other public service properties (not starting with a full stop (' \uoo2E)) must be listed on the im-
ported service if they use the basic service property types. If the service property cannot be commu-
nicated because, for example, it uses a type that can not be marshaled by the distribution provider
then the distribution provider must ignore this property.

The service.imported property indicates that a service is an imported service. If this service proper-
ty is set to any value, then the imported service is a proxy for an endpoint. If a bundle wants to filter
out imported services, then it can add the following filter:

(&(! (service.imported=x)) <previousfilters)

Distribution providers can also use the Service Hook Service Specification of OSGi Core Release 8 to hide
services from specific bundles.

On Demand Import

The Service Hooks Service Specification of OSGi Core Release 8, allows a distribution provider to de-
tect when a bundle is listening for specific services. Bundles can request imported services with spe-
cific intents by building an appropriate filter. The distribution provider can use this information to
import a service on demand.

OSGi Compendium Release 8.1 Page 29

Intents

Remote Services Version 1.1

100.3

100.3.1

The following example creates a Service Tracker that is interested in an imported service.
Filter f = context.createFilter(

" (&(objectClasss=com. acme. Foo)
"(service.intents=confidentiality))

+
);
ServiceTracker tracker =

new ServiceTracker (context, f, null);
tracker.open();

Such a Service Tracker will inform the Listener Hook and will give it the filter expression. If the dis-
tribution provider has registered such a hook, it will be informed about the need for an imported
com.acme.Foo service that has a confidentiality intent. It can then use some proprietary means to
find a service to import that matches the given object class and intent.

How the distribution provider finds an appropriate endpoint is out of scope for this specification.

Intents

An intent is a name for an abstract distribution capability. An intent can be implemented by a service;
this can then be reflected in the service.intents property. An intent can also constrain the possible
communication mechanisms that a distribution provider can choose to distribute a service. This is
reflected in the service.exported.intents and service.exported.intents.extra properties.

The purpose of the intents is to have a vocabulary that is shared between distribution aware bundles
and the distribution provider. This vocabulary allows the bundles to express constraints on the ex-
port of their services as well as providing information on what intents are implemented by a service.

Intents have the following syntax
intent ::= token ('.' token)?

Qualified intents use a full stop (. \uoo2E) to separate the intent from the qualifier. A qualifier pro-
vides additional details, however, it implies its prefix. For example:

confidentiality.message

This example, can be expanded into confidentiality and confidentiality.message. Qualified in-

tents can be used to provide additional details how an intent is achieved. However, a Distribution
Provider must expand any qualified intents to include those supported by the endpoint. This can be
a subset of all known qualified intents.

The concept of intents is derived from the [3] SCA Policy Framework specification. When designing a
vocabulary for a distribution provider it is recommended to closely follow the vocabulary of intents
defined in the SCA Policy Framework.

Basic Remote Services: osgi.basic

Remote Services implementations have a large amount of freedom. For example, they may use

any mechanism that they choose to transmit data between the caller of the remote service and the
provider of the service. This freedom means that there can be a large variation in the behaviors sup-
ported by different Remote Services implementations.

The purpose of the osgi.basicintent is to provide a common set of rules that can be relied upon
when exporting a simple remote service. This includes rules about the service interface, including
supported parameter and return types, as well as a means of configuring a timeout for remote invo-
cations.

Page 30

OSGi Compendium Release 8.1

Remote Services Version 1.1 Intents

100.3.1.1

100.3.1.2

100.3.2

Minimum Supported Service Signature

Remote Services implementations which offer the osgi.basic intent must support remote services
which advertise a single Java interface containing zero or more methods.

The following types must be supported as declared parameters or returns from methods on the re-
mote service:

. Primitive values

- The OSGi scalar types, OSGi Version objects, Java enums, and types which conform to the OS-
Gi DTO rules as described in the OSGi core specification. In the rest of this section these will be
known as the basic types.

. Arrays of primitive values or the basic types

. Lists, Collections or Iterables of the basic types, however the implementation of the collection
may not be preserved in transit. For example a LinkedList may be converted to an ArrayList.

- Sets of the OSGi basic types where equals is used to determine identity. SortedSet is not required
to be supported due to the difficulties associated with serializing comparators. The implementa-
tion of the set may not be preserved in transit. For example a LinkedHashSet may be converted to
aHashSet.

- Maps where the keys and values are the OSGi basic types, and equals is used to determine identi-
ty for the keys. SortedMap is not required to be supported due to the difficulties associated with
serializing comparators. The implementation of the map may not be preserved in transit. For ex-
ample a LinkedHashMap may be converted to a HashMap.

- Methods with no arguments, and methods with a void return

Remote Invocation Timeout

The implementation of a Remote Services provider is entirely opaque. In many cases there will be
no feedback mechanism if the remote call hangs, or if the remote node fails. The local client must
therefore decide at what point to fail after a certain amount of time has elapsed.

A single Remote Services implementation must be able to handle a wide variety of different remote
service invocations across many services, therefore it is difficult to identify a sensible timeout for
the remote service invocation. Some calls may be quick, and so a ten second timeout is desirable for
rapid failure detection, other calls may be long-running, and a two minute timeout too short. The re-
mote service must therefore be able to declare its own timeout.

To declare a timeout the remoteable service may provide a service property osgi.basic.timeout
which provides a timeout value in milliseconds. The value may be declared as a String orasa Num-
ber, which will be converted into a Long. The timeout value is used to limit the maximum time for
which a remote service client will be blocked waiting for a response. The same timeout value ap-
plies to all methods on the service. In the event that the invocation reaches the timeout value the
client must fail the method call with a ServiceException with its type set to REMOTE.

Asynchronous Remote Services: osgi.async

Some service invocations operate asynchronously, returning quickly and continuing to process in
the background. For void methods with no completion notifications this is simple to achieve re-
motely, but more useful scenarios are difficult to support without using higher-level abstractions to
represent the eventual result.

The purpose of the osgi.asyncintent is to provide a common set of rules that can be relied upon for
remote services which return types representing an asynchronously executing method.

The osgi.asyncintent makes no guarantees about the service interface(s) or method parameters sup-
ported by the remote services implementation. It is therefore recommended that it be used in con-
junction with another intent, such as the osgi.basic intent.

OSGi Compendium Release 8.1 Page 31

General Usage

Remote Services Version 1.1

100.3.2.1

100.3.2.2

100.3.3

100.3.4

100.4

100.4.1

Supported Return Types

Asynchronous returns are implemented using a holder type. The holder represents the state of the
asynchronous execution, and can be queried for its completion state. When the execution is com-
plete the holder can be queried for the result of the execution, or for its failure.

The following holder types must be supported as return types from methods on the remote service:

org.osgi.util.promise.Promise
java.util.concurrent.Future
java.util.concurrent.CompletionStage
java.util.concurrent.CompletableFuture

The full set of supported types for the eventual return value encapsulated by the holder object are
not defined by the osgi.asyncintent. Instead the full set of supported types can be inferred from
the other supported intents supported by the Remote Services implementation. For example the
osgi.basic intent would ensure support for a return value of Promise<List<String>>

Asynchronous Failures

If an asynchronous remote execution fails then the holder type must be failed with the same excep-
tion that would have been thrown in a synchronous call.

The reason for the failure may be as a result of a failure in communications, a timeout, or because
the remote invocation resulted in an exception

Confidential Remote Services: osgi.confidential

The osgi.confidential intent can be used to state that the remote service communications must only
be readable by the intended recipient, for example, through the use of TLS-based transport encryp-
tion.

If a Remote Services implementation does not support confidential communications, or is not con-
figured as such, it must not expose the service remotely.

Private Remote Services: osgi.private

In many deployment scenarios, including cloud, embedded or IoT deployments, hosts may be acces-
sible via a public network and via a private network. In such cases hosts will have multiple IP ad-
dresses to separate public network access from private network access. Private IP addresses normal-
ly in one of the following blocks: 10.0.0.0/8,172.16.0.0/120r192.168.0.0/16.

In many cases it is desirable to expose remote services only on the private network so that these ser-
vices cannot be accessed from the outside world. This is especially useful if this service is used as a
microservice within a larger application. The osgi.private intent can be specified for this purpose.

If the osgi.private intent is required on the remote service, it will only be exposed as a remote ser-
vice on a private network on the host. If the host does not support a private IP address or if the Re-
mote Services implementation does not have the information to decide whether a host IP is private,
the service should not be exposed.

General Usage

Call by Value

Normal service semantics are call-by-reference. An object passed as an argument in a service call is a
direct reference to that object. Any changes to this object will be shared on both sides of the service
registry.

Page 32

OSGi Compendium Release 8.1

Remote Services Version 1.1 Configuration Types

100.4.2

100.4.3

100.4.4

100.4.5

100.5

Distributed services are different. Arguments are normally passed by value, which means that a
copy is sent to the remote system, changes to this value are not reflected in the originating frame-
work. When using distributed services, call-by-value should always be assumed by all participants
in the distribution chain.

Data Fencing

Services are syntactically defined by their Java interfaces. When exposing a service over a remote
protocol, typically such an interface is mapped to a protocol-specific interface definition. For exam-
ple, in CORBA the Java interfaces would be converted to a corresponding IDL definition. This map-
ping does not always result in a complete solution.

Therefore, for many practical distributed applications it will be necessary to constrain the possible
usage of data types in service interfaces. A distribution provider must at least support interfaces (not
classes) that only use the basic types as defined for the service properties. These are the primitive
types and their wrappers as well as arrays and collections. See Filter Syntax of OSGi Core Release 8 for
a list of service property types.

Distribution providers will in general provide a richer set of types that can be distributed.

Remote Services Life Cycle

A distributed service must closely track any modifications on the corresponding service registra-
tion. If service properties are modified, these modifications should be propagated to the distributed
service and associated service proxies. If the exported service is unregistered, the endpoint must be
withdrawn as soon as possible and any imported service proxies unregistered.

Runtime

An imported service is just like any other service and can be used as such. However, certain non-
functional characteristics of this service can differ significantly from what is normal for an in-VM
object call. Many of these characteristics can be mapped to the normal service operations. That is,
if the connection fails in any way, the service can be unregistered. According to the standard OSGi
contract, this means that the users of that service must perform the appropriate cleanup to prevent
stale references.

Exceptions

It is impossible to guarantee that a service is not used when it is no longer valid. Even with the syn-
chronous callbacks from the Service Listeners, there is always a finite window where a service can
be used while the underlying implementation has failed. In a distributed environment, this window
can actually be quite large for an imported service.

Such failure situations must be exposed to the application code that uses a failing imported service.
In these occasions, the distribution provider must notify the application by throwing a Service Ex-
ception, or subclass thereof, with the reason REMOTE. The Service Exception is a Runtime Excep-
tion, it can be handled higher up in the call chain. The cause of this Service Exception must be the
Exception that caused the problem.

A distribution provider should log any problems with the communications layer to the Log Service,
if available.

Configuration Types

An exported service can have a service.exported.configs service property. This property lists config-
uration types for endpoints that are provided for this service. Each type provides a specification that
defines how the configuration data for one or more endpoints is provided. For example, a hypotheti-
cal configuration type could use a service property to hold a URL for the RMI naming registry.

OSGi Compendium Release 8.1 Page 33

Configuration Types Remote Services Version 1.1

100.5.1

Table 100.3

Configuration types that are not defined by the OSGi Working Group should use a name that fol-
lows the reverse capabilities domain name scheme defined in [4] Java Language Specification for Ja-
va packages. For example, com.acme.wsdl would be the proprietary way for the ACME company to
specify a WSDL configuration type.

Configuration Type Properties

The service.exported.configs and service.imported.configs use the configuration types
in very different ways. That is, the service.imported.configs property is not a copy of the
service.exported.configs as the name might seem to imply.

An exporting service can list its desired configuration types in the service.exported.configs prop-
erty. This property is potentially seen and interpreted by multiple distribution providers. Each of
these providers can independently create endpoints from the configuration types. In principle, the
service.exported.configs lists alternatives for a single distribution provider and can list synonyms to
support alternative distribution providers. If only one of the synonyms is useful, there is an implic-
it assumption that when the service is exported, only one of the synonyms should be supported by
the installed distribution providers. If it is detected that this assumption is violated, then an error
should be logged and the conflicting configuration is further ignored.

The interplay of synonyms and alternatives is depicted in Table 100.3. In this table, the first columns
on the left list different combinations of the configuration types in the service.exported.configs
property. The next two columns list two distribution providers that each support an overlapping set
of configuration types. The x's in this table indicate if a configuration type or distribution provider
isactive in a line. The description then outlines the issues, if any. It is assumed in this table that
hypothetical configuration types net.rmiand com.rmix map to an identical endpoint, just like
net.soap and net.soapx.

Synonyms and Alternatives in Exported Configurations

service.exported. Distribution Distribution Description
configs Provider A Provider B

Supports: Supports:
net.rmi net.rmi

com.rmix net.soap

<<no default>>

com.soapx

com.soapx

X OK, A will create an endpoint for the RMI and
SOAP alternatives.

X X X Configuration error. There is a clash for net.rmi be-

cause A and B can both create an endpoint for the

same configuration. It is likely that one will fail.

=< net.rmi
com.rmix
> net.soap

X X X OK, exported on com.soapx by A, the net.soap is ig-
nored.

X X X X Synonym error because A and B export to same
SOAP endpoint, it is likely that one will fail.

X X X X OK, two alternative endpoints over RMI (by A) and
SOAP (by B) are created. This is a typical use case.

X X X OK. Synonyms are used to allow frameworks that
have either A or B installed. In this case A exports
over SOAP.

X X X OK. Synonyms are used to allow frameworks that
have either A or B installed. In this case B exports.

X OK. A creates an endpoint with default configura-
tion type.

Page 34

OSGi Compendium Release 8.1

Remote Services Version 1.1 Configuration Types

service.exported. Distribution Distribution Description

configs Provider A Provider B
X X OK. Both A and B each create an endpoint with
their default configuration type.
X X OK. No endpoint is created.
X X X Provider B does not recognize the configuration
types it should therefore use a default configura-
tion type.

To summarize, the following rules apply for a single distribution provider:

Only configuration types that are supported by this distribution provider must be used. All other
configuration types must be ignored.

All of the supported configuration types must be alternatives, that is, they must map to different
endpoints. Synonyms for the same distribution provider should be logged as errors.

If a configuration type results in an endpoint that is already in use, then an error should be
logged. It is likely then that another distribution provider already had created that endpoint.

An export of a service can therefore result in multiple endpoints being created. For example, a ser-
vice can be exported over RMI as well as SOAP. Creating an endpoint can fail, in that case the distrib-
ution provider must log this information in the Log Service, if available, and not export the service
to that endpoint. Such a failure can, for example, occur when two configuration types are synonym
and multiple distribution providers are installed that supporting this type.

On the importing side, the service.imported.configs property lists configuration types that must re-
fer to the same endpoint. That is, it can list alternative configuration types for this endpoint but all
configuration types must result in the same endpoint.

For example, there are two distribution providers installed at the exporting and importing frame-
works. Distribution provider A supports the hypothetical configuration type net.rmiand net.soap.
Distribution provider B supports the hypothetical configuration type net.smart. A service is regis-
tered that list all three of those configuration types.

Distribution provider A will create two endpoints, one for RMI and one for SOAP. Distribution
provider B will create one endpoint for the smart protocol. The distribution provider A knows how
to create the configuration data for the com.acme.rmi configuration type as well and can therefore
create a synonymous description of the endpoint in that configuration type. It will therefore set the
imported configuration type for the RMI endpoint to:

service.imported.configs = net.rmi, com.acme.rmi
net.rmi.url = rmi://172.25.25.109:1099/service-id/24
com. acme. rmi.address = 172.25.25.109

com. acme. rmi.port = 1099

com.acme. rmi.path = service-id/24

]

OSGi Compendium Release 8.1 Page 35

Security

Remote Services Version 1.1

Figure 100.3

100.5.2

100.6

Relation between imported and exported configuration types

service.exported.configs=[net.rmi,net.soap,net.smart]
net.rmi.url=rmi://172.25.25.109:1099/service-id/ 24
net.soap.wsdl=/wsdl/remote.xml
net.smart.name=remote

service.imported.configs=smart
net.smart.name=remote

service.imported.configs=[net.rmi,com.acme.rmi]
net.rmi.url=rmi://172.25.25.109:1099/service-id/ 24

D _____ service.imported.configs=net.soap
s0ap net.soap.wsdl=http://172.25.25.109/wsdls/24.wsd|

service.imported.configs=[net.rmi,com.acme.rmi]
-------------- net.rmi.url=rmi://172.25.25.109:1099/service-id/ 24
COM.acme.rmi.x=...

Dependencies

A bundle that uses a configuration type has an implicit dependency on the distribution provider. To
make this dependency explicit, the distribution provider must register a service with the following
properties:

remote.intents.supported - (String+) The vocabulary of the given distribution provider.

remote.configs.supported- (String+) The configuration types that are implemented by the dis-
tribution provider.

A bundle that depends on the availability of specific intents or configuration types can create a ser-
vice dependency on an anonymous service with the given properties. The following filter is an ex-
ample of depending on a hypothetical net.rmi configuration type:

(remote.configs.supported=net.rmi)

Security

The distribution provider will be required to invoke methods on any exported service. This implies
that it must have the combined set of permissions of all methods it can call. It also implies that the
distribution provider is responsible for ensuring that a bundle that calls an imported service is not
granted additional permissions through the fact that the distribution provider will call the exported
service, not the original invoker.

The actual mechanism to ensure that bundles can get additional permissions through the distrib-
ution is out of scope for this specification. However, distribution providers should provide mecha-
nisms to limit the set of available permissions for a remote invocation, preferably on a small granu-
larity basis.

One possible means is to use the getAccessControlContext method on the Conditional Permission
Admin service to get an Access Control Context that is used in a doPrivileged block where the invo-
cation takes place. The getAccessControlContext method takes a list of signers which could repre-

Page 36

OSGi Compendium Release 8.1

Remote Services Version 1.1 References

100.6.1

100.7

sent the remote bundles that cause an invocation. How these are authenticated is up to the distribu-
tion provider.

A distribution provider is a potential attack point for intruders. Great care should be taken to prop-
erly setup the permissions or topology in an environment that requires security.

Limiting Exports and Imports

Service registration and getting services is controlled through the ServicePermission class. This per-
mission supports a filter based constructor that can assert service properties. This facility can be
used to limit bundles from being able to register exported services or get imported services if they
are combined with Conditional Permission Admin's ALLOW facility. The following example shows
how all bundles except from www.acme.com are denied the registration and getting of distributed
services.

DENY {
[...BundlelLocationCondition("http: //www.acme.com/x" "I")]
(...ServicePermission "(service.imported=«)" "GET")
(...ServicePermission "(service.exported.interfaces=x)
"REGISTER")

References

The Fallacies of Distributed Computing Explained
https://www.researchgate.net/
publication/322500050 Fallacies of Distributed Computing Explained

Service Component Architecture (SCA)
https://www.osoa.org/

SCA Policy Framework specification
https://www.osoa.org/

Java Language Specification
https://docs.oracle.com/javase/specs/

OSGi Compendium Release 8.1 Page 37

https://www.researchgate.net/publication/322500050_Fallacies_of_Distributed_Computing_Explained
https://www.researchgate.net/publication/322500050_Fallacies_of_Distributed_Computing_Explained
https://www.osoa.org/
https://www.osoa.org/
https://docs.oracle.com/javase/specs/

References Remote Services Version 1.1

Page 38 OSGi Compendium Release 8.1

Device Access Specification Version 1.1 Introduction

103

103.1

103.1.1

Device Access Specification

\ersion 1.1

Introduction

A Framework is a meeting point for services and devices from many different vendors: a meeting
point where users add and cancel service subscriptions, newly installed services find their corre-
sponding input and output devices, and device drivers connect to their hardware.

In an OSGi Framework, these activities will dynamically take place while the Framework is run-
ning. Technologies such as USB and IEEE 1394 explicitly support plugging and unplugging devices
at any time, and wireless technologies are even more dynamic.

This flexibility makes it hard to configure all aspects of an OSGi Framework, particularly those re-
lating to devices. When all of the possible services and device requirements are factored in, each OS-
Gi Framework will be unique. Therefore, automated mechanisms are needed that can be extended
and customized, in order to minimize the configuration needs of the OSGi environment.

The Device Access specification supports the coordination of automatic detection and attachment
of existing devices on an OSGi Framework, facilitates hot-plugging and -unplugging of new devices,
and downloads and installs device drivers on demand.

This specification, however, deliberately does not prescribe any particular device or network tech-
nology, and mentioned technologies are used as examples only. Nor does it specify a particular de-
vice discovery method. Rather, this specification focuses on the attachment of devices supplied by
different vendors. It emphasizes the development of standardized device interfaces to be defined in
device categories, although no such device categories are defined in this specification.

Essentials

Embedded Devices - OSGi bundles will likely run in embedded devices. This environment implies
limited possibility for user interaction, and low-end devices will probably have resource limita-
tions.

Remote Administration - OSGi environments must support administration by a remote service
provider.

Vendor Neutrality - OSGi-compliant driver bundles will be supplied by different vendors; each dri-
ver bundle must be well-defined, documented, and replaceable.

Continuous Operation - OSGi environments will be running for extended periods without being
restarted, possibly continuously, requiring stable operation and stable resource consumption.
Dynamic Updates - As much as possible, driver bundles must be individually replaceable without
affecting unrelated bundles. In particular, the process of updating a bundle should not require a
restart of the whole OSGi Framework or disrupt operation of connected devices.

A number of requirements must be satisfied by Device Access implementations in order for them to
be OSGi-compliant. Implementations must support the following capabilities:

Hot-Plugging - Plugging and unplugging of devices at any time if the underlying hardware and
drivers allow it.

Legacy Systems - Device technologies which do not implement the automatic detection of
plugged and unplugged devices.

OSGi Compendium Release 8.1 Page 39

Introduction

Device Access Specification Version 1.1

103.1.2

103.1.3

« Dynamic Device Driver Loading - Loading new driver bundles on demand with no prior device-spe-
cific knowledge of the Device service.

«Multiple Device Representations - Devices to be accessed from multiple levels of abstraction.

- Deep Trees- Connections of devices in a tree of mixed network technologies of arbitrary depth.

- Topology Independence - Separation of the interfaces of a device from where and how it is attached.

- Complex Devices - Multifunction devices and devices that have multiple configurations.

Operation

This specification defines the behavior of a device manager (which is not a service as might be ex-
pected). This device manager detects registration of Device services and is responsible for associat-
ing these devices with an appropriate Driver service. These tasks are done with the help of Driver
Locator services and the Driver Selector service that allow a device manager to find a Driver bundle
and install it.

Entities

The main entities of the Device Access specification are:

« Device Manager - The bundle that controls the initiation of the attachment process behind the
scenes.

- Device Category - Defines how a Driver service and a Device service can cooperate.

- Driver- Competes for attaching Device services of its recognized device category. See Driver Ser-
vices on page 45.

- Device- A representation of a physical device or other entity that can be attached by a Driver ser-
vice. See Device Services on page 41.

« DriverLocator - Assists in locating bundles that provide a Driver service. See Driver Locator Service
on page 51.

« DriverSelector - Assists in selecting which Driver service is best suited to a Device service. See The
Driver Selector Service on page 54.

Figure 103.1 show the classes and their relationships.

Page 40

OSGi Compendium Release 8.1

Device Access Specification Version 1.1 Device Services

Figure 103.1 Device Access Class Overview
device driver | a Driver impl a Device impl

bundle 1 refines or uses external o0..n -
(provided by application or I
vendor specific) 0.1 1 :
attaches device and ‘ I
possible refines 0. |1 '
«interface>> Device or |
Driver Device_ I
Category set I
1 |o.n 0.n :
collects all drivers . listens to all :
associates and matche§ Device Manager ‘ device registrations |
driver with them to devices impl device manager |
match value (provided by vendor) !
. I

for d 1 1
ordevice downloads!
2 T a bundle:
;;l:s:ace» ______ best driver river located by |
selected by I
0.1 0..n :
«interface>> «interfaces> |
Driver Driver |
Selector Locator |
I
I
I
I
Driver Selector [a Driver Driver Locator | a Driver |
bundle | Selector impl bundle | Locator impl . -

(provided by operator)
L] L]
103.2 Device Services

A Device service represents some form of a device. It can represent a hardware device, but that is not
arequirement. Device services differ widely: some represent individual physical devices and others
represent complete networks. Several Device services can even simultaneously represent the same
physical device at different levels of abstraction. For example:

- ATUSBnetwork.

« Adevice attached on the USB network.

. The same device recognized as a USB to Ethernet bridge.
- Adevice discovered on the Ethernet using Salutation.

. The same device recognized as a simple printer.

- The same printer refined to a PostScript printer.

A device can also be represented in different ways. For example, a USB mouse can be considered as:

- A TUSBdevice which delivers information over the USB bus.
- A mouse device which delivers x and y coordinates and information about the state of its buttons.

Each representation has specific implications:

OSGi Compendium Release 8.1 Page 41

Device Services

Device Access Specification Version 1.1

103.2.1

103.2.2

- That a particular device is a mouse is irrelevant to an application which provides management of
USB devices.

- Thatamouse is attached to a USB bus or a serial port would be inconsequential to applications
that respond to mouse-like input.

Device services must belong to a defined device category, or else they can implement a generic service
which models a particular device, independent of its underlying technology. Examples of this type
of implementation could be Sensor or Actuator services.

A device category specifies the methods for communicating with a Device service, and enables in-
teroperability between bundles that are based on the same underlying technology. Generic Device
services will allow interoperability between bundles that are not coupled to specific device tech-
nologies.

For example, a device category is required for the USB, so that Driver bundles can be written that
communicate to the devices that are attached to the USB. If a printer is attached, it should also be
available as a generic Printer service defined in a Printer service specification, indistinguishable
from a Printer service attached to a parallel port. Generic categories, such as a Printer service, should
also be described in a Device Category.

It is expected that most Device service objects will actually represent a physical device in some
form, but that is not a requirement of this specification. A Device service is represented as a normal
service in the OSGi Framework and all coordination and activities are performed upon Framework
services. This specification does not limit a bundle developer from using Framework mechanisms
for services that are not related to physical devices.

Device Service Registration
A Device service is defined as a normal service registered with the Framework that either:

- Registers a service object under the interface org.osgi.service.Device with the Framework, or

Sets the DEVICE_CATEGORY property in the registration. The value of DEVICE_CATEGORY is an
array of String objects of all the device categories that the device belongs to. These strings are de-
fined in the associated device category.

If this document mentions a Device service, it is meant to refer to services registered with the name
org.osgi.service.device.Device orservices registered with the DEVICE_CATEGORY property set.

When a Device service is registered, additional properties may be set that describe the device to the
device manager and potentially to the end users. The following properties have their semantics de-
fined in this specification:

DEVICE_CATEGORY - A marker property indicating that this service must be regarded as a Device
service by the device manager. Its value is of type String[], and its meaning is defined in the asso-
ciated device category specification.

- DEVICE_DESCRIPTION - Describes the device to an end user. Its value is of type String.

DEVICE_SERIAL - A unique serial number for this device. If the device hardware contains a ser-
ial number, the driver bundle is encouraged to specify it as this property. Different Device ser-
vices representing the same physical hardware at different abstraction levels should set the same
DEVICE_SERIAL, thus simplifying identification. Its value is of type String.

service.pid - Service Persistent ID (PID), defined in org.osgi.framework.Constants. Device ser-
vices should set this property. It must be unique among all registered services. Even different
abstraction levels of the same device must use different PIDs. The service PIDs must be repro-
ducible, so that every time the same hardware is plugged in, the same PIDs are used.

Device Service Attachment

When a Device service is registered with the Framework, the device manager is responsible for find-
ing a suitable Driver service and instructing it to attach to the newly registered Device service. The

Page 42

OSGi Compendium Release 8.1

Device Access Specification Version 1.1 Device Category Specifications

103.2.2.1

103.2.2.2

103.3

103.3.1

Device service itself is passive: it only registers a Device service with the Framework and then waits
until it is called.

The actual communication with the underlying physical device is not defined in the Device in-
terface because it differs significantly between different types of devices. The Driver service is re-
sponsible for attaching the device in a device type-specific manner. The rules and interfaces for this
process must be defined in the appropriate device category.

If the device manager is unable to find a suitable Driver service, the Device service remains unat-
tached. In that case, if the service object implements the Device interface, it must receive a call to
the noDriverFound() method. The Device service can wait until a new driver is installed, or it can
unregister and attempt to register again with different properties that describe a more generic de-
vice or try a different configuration.

Idle Device Service

The main purpose of the device manager is to try to attach drivers to idle devices. For this purpose,
a Device service is considered idle if no bundle that itself has registered a Driver service is using the
Device service.

Device Service Unregistration

‘When a Device service is unregistered, no immediate action is required by the device manager. The
normal service of unregistering events, provided by the Framework, takes care of propagating the
unregistration information to affected drivers. Drivers must take the appropriate action to release
this Device service and perform any necessary cleanup, as described in their device category specifi-
cation.

The device manager may, however, take a device unregistration as an indication that driver bundles
may have become idle and are thus eligible for removal. It is therefore important for Device services
to unregister their service object when the underlying entity becomes unavailable.

Device Category Specifications

A device category specifies the rules and interfaces needed for the communication between a Device
service and a Driver service. Only Device services and Driver services of the same device category
can communicate and cooperate.

The Device Access service specification is limited to the attachment of Device services by Driver ser-
vices, and does not enumerate different device categories.

Other specifications must specify a number of device categories before this specification can be
made operational. Without a set of defined device categories, no interoperability can be achieved.

Device categories are related to a specific device technology, such as USB, IEEE 1394, JINI, UPnP, Sa-
lutation, CEBus, Lonworks, and others. The purpose of a device category specification is to make all
Device services of that category conform to an agreed interface, so that, for example, a USB Driver
service of vendor A can control Device services from vendor B attached to a USB bus.

This specification is limited to defining the guidelines for device category definitions only. Device
categories may be defined by the OSGi organization or by external specification bodies - for exam-
ple, when these bodies are associated with a specific device technology.

Device Category Guidelines
A device category definition comprises the following elements:

- Aninterface that all devices belonging to this category must implement. This interface should
lay out the rules of how to communicate with the underlying device. The specification body may
define its own device interfaces (or classes) or leverage existing ones. For example, a serial port

OSGi Compendium Release 8.1 Page 43

Device Category Specifications Device Access Specification Version 1.1

103.3.2

Table 103.1

103.3.3

device category could use the javax.comm.SerialPort interface which is defined in [1] Java Com-
munications APL

When registering a device belonging to this category with the Framework, the interface or class
name for this category must be included in the registration.

A set of service registration properties, their data types, and semantics, each of which must be de-
clared as either MANDATORY or OPTIONAL for this device category.

A range of match values specific to this device category. Matching is explained later in The Device
Attachment Algorithm on page 55.

Sample Device Category Specification

The following is a partial example of a fictitious device category:

public interface /x com.acme.widget./ WidgetDevice{

int MATCH SERIAL - 10;
int MATCH_VERSION = 8
int MATCH_MODEL - 6
int MATCH_MAKE = 4
int MATCH_CLASS = 2

void sendPacket(byte [] data);
byte [] receivePacket(long timeout);

}

Devices in this category must implement the interface com.acme.widget.WidgetDevice to receive
attachments from Driver services in this category.

Device properties for this fictitious category are defined in the following table.

Example Device Category Properties, M=Mandatory, O=Optional

Property name M/O0 Type Value
DEVICE_CATEGORY M String[] {"Widget"}
com.acme.class M String A class description of this device. For

example "audio”, "video", "serial", etc.

An actual device category specification
should contain an exhaustive list and de-
fine a process to add new classes.

com.acme.model M String A definition of the model. This is usually
vendor specific. For example "Mouse".
com.acme.manufacturer M String Manufacturer of this device, for example
"ACME Widget Division".
com.acme.revision o String Revision number. For example, "42".
com.acme.serial o String A serial number. For example

"SN6751293-12-2112/A".

Match Example

Driver services and Device services are connected via a matching process that is explained in The
Device Attachment Algorithm on page 55. The Driver service plays a pivotal role in this matching
process. It must inspect the Device service (from its ServiceReference object) that has just been reg-
istered and decide if it potentially could cooperate with this Device service.

It must be able to answer a value indicating the quality of the match. The scale of this match value
must be defined in the device category so as to allow Driver services to match on a fair basis. The
scale must start at least at 1 and go upwards.

Page 44

OSGi Compendium Release 8.1

Device Access Specification Version 1.1 Driver Services

Table 103.2

103.4

103.4.1

103.4.2

Driver services for this sample device category must return one of the match codes defined in the
com.acme.widget.WidgetDevice interface or Device. MATCH_NONE if the Device service is not rec-
ognized. The device category must define the exact rules for the match codes in the device category
specification. In this example, a small range from 2 to 10 (MATCH_NONE is 0) is defined for Widget-
Device devices. They are named in the WidgetDevice interface for convenience and have the follow-
ing semantics.

Sample Device Category Match Scale

Match name Value Description

MATCH_SERIAL 10 An exact match, including the serial number.
MATCH_VERSION 8 Matches the right class, make model, and version.
MATCH_MODEL 6 Matches the right class and make model.
MATCH_MAKE 4 Matches the make.

MATCH_CLASS 2 Only matches the class.

A Driver service should use the constants to return when it decides how closely the Device ser-
vice matches its suitability. For example, if it matches the exact serial number, it should return
MATCH_SERIAL.

Driver Services

A Driver service is responsible for attaching to suitable Device services under control of the device
manager. Before it can attach a Device service, however, it must compete with other Driver services
for control.

If a Driver service wins the competition, it must attach the device in a device category-specific way.
After that, it can perform its intended functionality. This functionality is not defined here nor in the
device category; this specification only describes the behavior of the Device service, not how the
Driver service uses it to implement its intended functionality. A Driver service may register one or
more new Device services of another device category or a generic service which models a more re-
fined form of the device.

Both refined Device services as well as generic services should be defined in a Device Category. See
Device Category Specifications on page 43.

Driver Bundles

A Driver service is, like all services, implemented in a bundle, and is recognized by the device man-
ager by registering one or more Driver service objects with the Framework.

Such bundles containing one or more Driver services are called driver bundles. The device manager
must be aware of the fact that the cardinality of the relationship between bundles and Driver ser-
vicesis 1:1..x.

A driver bundle must register at least one Driver service in its BundleActivator.start implementa-
tion.

Driver Taxonomy

Device Drivers may belong to one of the following categories:

« Base Drivers (Discovery, Pure Discovery and Normal)

Refining Drivers

Network Drivers

OSGi Compendium Release 8.1 Page 45

Driver Services

Device Access Specification Version 1.1

Figure 103.2

103.4.2.1

Figure 103.3

« Composite Drivers
Referring Drivers
Bridging Drivers
Multiplexing Drivers
Pure Consuming Drivers

This list is not definitive, and a Driver service is not required to fit into one of these categories. The

purpose of this taxonomy is to show the different topologies that have been considered for the De-
vice Access service specification.

Legend for Device Driver Services Taxonomy

Device service D) Key part bold
Hardware D lllustrative plain
Driver

[
Association Network

Base Drivers

The first category of device drivers are called base drivers because they provide the lowest-level rep-
resentation of a physical device. The distinguishing factor is that they are not registered as Driver
services because they do not have to compete for access to their underlying technology.

Base Driver Types
Parallel port service Printer service Printer service
Base driver Discovery Pure Discovery
Base driver Base driver
Physical hardware Hardware with JINI, Salutation,
SLP, UPnP discovery: USB, SLP, UPnP
IEEE 1394,

Base drivers discover physical devices using code not specified here (for example, through notifica-
tions from a device driver in native code) and then register corresponding Device services.

When the hardware supports a discovery mechanism and reports a physical device, a Device service
is then registered. Drivers supporting a discovery mechanism are called discovery base drivers.

An example of a discovery base driver is a USB driver. Discovered USB devices are registered with
the Framework as a generic USB Device service. The USB specification (see [2] USB Specification) de-
fines a tightly integrated discovery method. Further, devices are individually addressed; no provi-
sion exists for broadcasting a message to all devices attached to the USB bus. Therefore, there is no
reason to expose the USB network itself; instead, a discovery base driver can register the individual
devices as they are discovered.

Not all technologies support a discovery mechanism. For example, most serial ports do not support
detection, and it is often not even possible to detect whether a device is attached to a serial port.

Page 46

OSGi Compendium Release 8.1

Device Access Specification Version 1.1 Driver Services

103.4.2.2

Figure 103.4

103.4.2.3

Figure 103.5

103.4.2.4

Although each driver bundle should perform discovery on its own, a driver for a non-discoverable
serial port requires external help - either through a user interface or by allowing the Configuration
Admin service to configure it.

It is possible for the driver bundle to combine automatic discovery of Plug and Play-compliant de-
vices with manual configuration when non-compliant devices are plugged in.

Refining Drivers

The second category of device drivers are called refining drivers. Refining drivers provide a refined
view of a physical device that is already represented by another Device service registered with the
Framework. Refining drivers register a Driver service with the Framework. This Driver service is
used by the device manager to attach the refining driver to a less refined Device service that is regis-
tered as a result of events within the Framework itself.

Refining Driver Diagram
Mouse service (D

Refining driver

USB Device (D

Base driver

An example of a refining driver is a mouse driver, which is attached to the generic USB Device ser-
vice representing a physical mouse. It then registers a new Device service which represents it as a
Mouse service, defined elsewhere.

The majority of drivers fall into the refining driver type.

Network Drivers

An Internet Protocol (IP) capable network such as Ethernet supports individually addressable de-
vices and allows broadcasts, but does not define an intrinsic discovery protocol. In this case, the en-
tire network should be exposed as a single Device service.

Network Driver diagram
-
| drivers and other services
that use the network service
| to discover devices
Associated with |
(also for other | IP Network driver
devices) |
I

network

-
P

Composite Drivers

Complex devices can often be broken down into several parts. Drivers that attach to a single service
and then register multiple Device services are called composite drivers. For example, a USB speaker

OSGi Compendium Release 8.1 Page 47

Driver Services Device Access Specification Version 1.1

containing software-accessible buttons can be registered by its driver as two separate Device ser-
vices: an Audio Device service and a Button Device service.

Figure 103.6 Composite Driver structure

Audio Device Button Device

Composite driver

USB Device

Base driver

Physical USB bus

This approach can greatly reduce the number of interfaces needed, as well as enhance reusability.

103.4.2.5 Referring Drivers

A referring driver is actually not a driver in the sense that it controls Device services. Instead, it acts
as an intermediary to help locate the correct driver bundle. This process is explained in detail in The
Device Attachment Algorithm on page 55.

A referring driver implements the call to the attach method to inspect the Device service, and de-
cides which Driver bundle would be able to attach to the device. This process can actually involve
connecting to the physical device and communicating with it. The attach method then returns a
String object that indicates the DRIVER_ID of another driver bundle. This process is called a referral.

For example, a vendor ACME can implement one driver bundle that specializes in recognizing all
of the devices the vendor produces. The referring driver bundle does not contain code to control the
device - it contains only sufficient logic to recognize the assortment of devices. This referring dri-
ver can be small, yet can still identify a large product line. This approach can drastically reduce the
amount of downloading and matching needed to find the correct driver bundle.

103.4.2.6 Bridging Drivers

A bridging driver registers a Device service from one device category but attaches it to a Device ser-
vice from another device category.

Figure 103.7 Bridging Driver Structure

-

Ethernet device drivers

Ethernet Device
Bridging driver

USB device O

For example, USB to Ethernet bridges exist that allow connection to an Ethernet network through a
USB device. In this case, the top level of the USB part of the Device service stack would be an Ether-
net Device service. But the same Ethernet Device service can also be the bottom layer of an Ethernet
layer of the Device service stack. A few layers up, a bridge could connect into yet another network.

Page 48 OSGi Compendium Release 8.1

Device Access Specification Version 1.1 Driver Services

103.4.2.7

Figure 103.8

103.4.2.8

Figure 103.9

103.4.2.9

The stacking depth of Device services has no limit, and the same drivers could in fact appear at dif-
ferent levels in the same Device service stack. The graph of drivers-to-Device services roughly mir-
rors the hardware connections.

Multiplexing Drivers

A multiplexing driver attaches a number of Device services and aggregates them in a new Device ser-
vice.

Multiplexing Driver Structure

Cursor Position O

Multiplexing Driver

USB Mouse Graphic Tablet

USB Network Serial Port

For example, assume that a system has a mouse on USB, a graphic tablet on a serial port, and a re-
mote control facility. Each of these would be registered as a service with the Framework. A multi-
plexing driver can attach all three, and can merge the different positions in a central Cursor Position
service.

Pure Consuming Drivers

A pure consuming driver bundle will attach to devices without registering a refined version.

Pure Consuming Driver Structure

Pure Consuming Driver

USB Serial Port (D

USB Base Driver

USB Network (D

For example, one driver bundle could decide to handle all serial ports through javax.comm instead
of registering them as services. When a USB serial port is plugged in, one or more Driver services
are attached, resulting in a Device service stack with a Serial Port Device service. A pure consum-
ing driver may then attach to the Serial Port Device service and register a new serial port with the
javax.comm.* registry instead of the Framework service registry. This registration effectively trans-
fers the device from the OSGi environment into another environment.

Other Driver Types

It should be noted that any bundle installed in the OSGi environment may get and use a Device ser-
vice without having to register a Driver service.

The following functionality is offered to those bundles that do register a Driver service and conform
to the this specification:

OSGi Compendium Release 8.1 Page 49

Driver Services

Device Access Specification Version 1.1

103.4.3

103.4.4

103.4.5

« The bundles can be installed and uninstalled on demand.

- Attachment to the Device service is only initiated after the winning the competition with other
drivers.

Driver Service Registration

Drivers are recognized by registering a Driver service with the Framework. This event makes the
device manager aware of the existence of the Driver service. A Driver service registration must
have a DRIVER_ID property whose value is a String object, uniquely identifying the driver to the de-
vice manager. The device manager must use the DRIVER_ID to prevent the installation of duplicate
copies of the same driver bundle.

Therefore, this DRIVER_ID must:

- Depend only on the specific behavior of the driver, and thus be independent of unrelated aspects
like its location or mechanism of downloading.

. Start with the reversed form of the domain name of the company that implements it: for exam-
ple,com.acme.widget.1.1.

- Differ from the DRIVER_ID of drivers with different behavior. Thus, it must also be different for
each revision of the same driver bundle so they may be distinguished.

‘When a new Driver service is registered, the Device Attachment Algorithm must be applied to each
idle Device service. This requirement gives the new Driver service a chance to compete with other
Driver services for attaching to idle devices. The techniques outlined in Optimizations on page 58
can provide significant shortcuts for this situation.

As a result, the Driver service object can receive match and attach requests before the method which
registered the service has returned.

This specification does not define any method for new Driver services to steal already attached de-
vices. Once a Device service has been attached by a Driver service, it can only be released by the Dri-
ver service itself.

Driver Service Unregistration

When a Driver service is unregistered, it must release all Device services to which it is attached.
Thus, allits attached Device services become idle. The device manager must gather all of these idle
Device services and try to re-attach them. This condition gives other Driver services a chance to take
over the refinement of devices after the unregistering driver. The techniques outlined in Optimiza-
tions on page 58 can provide significant shortcuts for this situation.

A Driver service that is installed by the device manager must remain registered as long as the dri-
ver bundle is active. Therefore, a Driver service should only be unregistered if the driver bundle is
stopping, an occurrence which may precede its being uninstalled or updated. Driver services should
thus not unregister in an attempt to minimize resource consumption. Such optimizations can easily
introduce race conditions with the device manager.

Driver Service Methods

The Driver interface consists of the following methods:

. match(ServiceReference) - This method is called by the device manager to find out how well this
Driver service matches the Device service as indicated by the ServiceReference argument. The
value returned here is specific for a device category. If this Device service is of another device cat-
egory, the value Device. MATCH_NONE must be returned. Higher values indicate a better match.
For the exact matching algorithm, see The Device Attachment Algorithm on page 55.

Driver match values and referrals must be deterministic, in that repeated calls for the same De-
vice service must return the same results so that results can be cached by the device manager.

Page 5o

OSGi Compendium Release 8.1

Device Access Specification Version 1.1 Driver Locator Service

103.4.6

103.5

103.5.1

- attach(ServiceReference) - If the device manager decides that a Driver service should be attached
to a Device service, it must call this method on the Driver service object. Once this method is
called, the Device service is regarded as attached to that Driver service, and no other Driver ser-
vice must be called to attach to the Device service. The Device service must remain owned by the
Driver service until the Driver bundle is stopped. No unattach method exists.

The attach method should return null when the Device service is correctly attached. A refer-

ring driver (see Referring Drivers on page 48) can return a String object that specifies the
DRIVER_ID of a driver that can handle this Device service. In this case, the Device service is not at-
tached and the device manager must attempt to install a Driver service with the same DRIVER_ID
via a Driver Locator service. The attach method must be deterministic as described in the previ-
ous method.

Idle Driver Bundles

An idle Driver bundle is a bundle with a registered Driver service, and is not attached to any Device
service. Idle Driver bundles are consuming resources in the OSGi Framework. The device manager
should uninstall bundles that it has installed and which are idle.

Driver Locator Service

The device manager must automatically install Driver bundles, which are obtained from Driver Lo-
cator services, when new Device services are registered.

A Driver Locator service encapsulates the knowledge of how to fetch the Driver bundles needed for
a specific Device service. This selection is made on the properties that are registered with a device:
for example, DEVICE_CATEGORY and any other properties registered with the Device service regis-
tration.

The purpose of the Driver Locator service is to separate the mechanism from the policy. The deci-
sion to install a new bundle is made by the device manager (the mechanism), but a Driver Locator
service decides which bundle to install and from where the bundle is downloaded (the policy).

Installing bundles has many consequences for the security of the system, and this process is also
sensitive to network setup and other configuration details. Using Driver Locator services allows the
Operator to choose a strategy that best fits its needs.

Driver services are identified by the DRIVER_ID property. Driver Locator services use this particular
ID to identify the bundles that can be installed. Driver ID properties have uniqueness requirements
as specified in Device Service Registration on page 42. This uniqueness allows the device manager

to maintain a list of Driver services and prevent unnecessary installs.

An OSGi Framework can have several different Driver Locator services installed. The device manag-
er must consult all of them and use the combined result set, after pruning duplicates based on the
DRIVER_ID values.

The DriverLocator Interface

The DriverLocator interface allows suitable driver bundles to be located, downloaded, and installed
on demand, even when completely unknown devices are detected.

It has the following methods:

findDrivers(Dictionary) - This method returns an array of driver IDs that potentially match a ser-
vice described by the properties in the Dictionary object. A driver ID is the String object that is
registered by a Driver service under the DRIVER_ID property.

loadDriver(String) - This method returns an InputStream object that can be used to download
the bundle containing the Driver service as specified by the driver ID argument. If the Driver Lo-

OSGi Compendium Release 8.1 Page 51

Driver Locator Service Device Access Specification Version 1.1

103.5.2

cator service cannot download such a bundle, it should return null. Once this bundle is down-
loaded and installed in the Framework, it must register a Driver service with the DRIVER_ID prop-
erty set to the value of the String argument.

A Driver Example

The following example shows a very minimal Driver service implementation. It consists of two
classes. The first class is Serial Widget. This class tracks a single WidgetDevice from Sample Device
Category Specification on page 44. It registers a javax.comm.SerialPort service, which is a gener-

al serial port specification that could also be implemented from other device categories like USB, a
COM port, etc. It is created when the SerialWidgetDriver object is requested to attach a WidgetDe-
vice by the device manager. It registers a new javax.comm.SerialPort service in its constructor.

The org.osgi.util.tracker.ServiceTracker is extended to handle the Framework events that are need-
ed to simplify tracking this service. The removedService method of this class is overridden to unreg-
ister the SerialPort when the underlying WidgetDevice is unregistered.

package com.acme.widget;

import org.osgi.service.device. x;
import org.osgi. framework. *;
import org.osgi.util. tracker.x;

class Serialwidget extends ServiceTracker
implements javax.comm.SerialPort,
org.osgi.service.device.Constants {
ServiceRegistration registration;

Serialwidget(BundleContext c, ServiceReference r) {
super(c, r, null);
open();

}

public Object addingService(ServiceReference ref) {
WidgetDevice dev = (WidgetDevice)
context.getService(ref);
registration = context.registerService(
javax.comm.SerialPort.class.getName(),
this,
null);
return dev;

}

public void removedService(ServiceReference ref,
Object service) {
registration.unregister();
context.ungetService(ref);

. methods for javax.comm.SerialPort that are
. converted to underlying WidgetDevice

}

A SerialWidgetDriver object is registered with the Framework in the Bundle Activator start method
under the Driver interface. The device manager must call the match method for each idle Device ser-
vice that is registered. If it is chosen by the device manager to control this Device service, a new Se-
rialWidget is created that offers serial port functionality to other bundles.

public class SerialWidgetDriver implementsDriver {

Page 52

OSGi Compendium Release 8.1

Device Access Specification Version 1.1 Driver Locator Service

BundleContext context;

String spec =
(8"
+" (objectclass=com.acme.widget.WidgetDevice)"
+" (DEVICE_CATEGORY=WidgetDevice)"
+" (com.acme.class=Serial)"
+")"

Filter filter;

SerialWidgetDriver(BundleContext context)
throws Exception {
this.context = context;
filter = context.createFilter(spec);
}
public int match(ServiceReference d) {
if (filter.match(d))
return WidgetDevice.MATCH_CLASS;
else
return Device.MATCH_NONE;
}
public synchronized String attach(ServiceReference r){
new SerialWidget(context, r);

}

OSGi Compendium Release 8.1 Page 53

The Driver Selector Service Device Access Specification Version 1.1

103.6

103.7

The Driver Selector Service

The purpose of the Driver Selector service is to customize the selection of the best Driver service
from a set of suitable Driver bundles. The device manager has a default algorithm as described in
The Device Attachment Algorithm on page 55. When this algorithm is not sufficient and requires
customizing by the operator, a bundle providing a Driver Selector service can be installed in the
Framework. This service must be used by the device manager as the final arbiter when selecting the
best match for a Device service.

The Driver Selector service is a singleton; only one such service is recognized by the device man-
ager. The Framework method BundleContext.getServiceReference must be used to obtain a Dri-
ver Selector service. In the erroneous case that multiple Driver Selector services are registered, the
service.ranking property will thus define which service is actually used.

A device manager implementation must invoke the method select(ServiceReference,Match[]).
This method receives a Service Reference to the Device service and an array of Match objects. Each
Match object contains a link to the ServiceReference object of a Driver service and the result of the
match value returned from a previous call to Driver.match. The Driver Selector service should in-
spect the array of Match objects and use some means to decide which Driver service is best suited.
The index of the best match should be returned. If none of the Match objects describe a possible Dri-
ver service, the implementation must return DriverSelector.SELECT_NONE (-1).

Device Manager

Device Access is controlled by the device manager in the background. The device manager is respon-
sible for initiating all actions in response to the registration, modification, and unregistration of
Device services and Driver services, using Driver Locator services and a Driver Selector service as
helpers.

The device manager detects the registration of Device services and coordinates their attachment
with a suitable Driver service. Potential Driver services do not have to be active in the Framework to
be eligible. The device manager must use Driver Locator services to find bundles that might be suit-
able for the detected Device service and that are not currently installed. This selection is done via a
DRIVER_ID property that is unique for each Driver service.

The device manager must install and start these bundles with the help of a Driver Locator service.
This activity must result in the registration of one or more Driver services. All available Driver ser-
vices, installed by the device manager and also others, then participate in a bidding process. The Dri-
ver service can inspect the Device service through its ServiceReference object to find out how well
this Driver service matches the Device service.

If a Driver Selector service is available in the Framework service registry, it is used to decide which
of the eligible Driver services is the best match.

If no Driver Selector service is available, the highest bidder must win, with tie breaks defined on the
service.ranking and service.id properties. The selected Driver service is then asked to attach the De-
vice service.

If no Driver service is suitable, the Device service remains idle. When new Driver bundles are in-
stalled, these idle Device services must be reattached.

The device manager must reattach a Device service if, at a later time, a Driver service is unregistered
due to an uninstallation or update. At the same time, however, it should prevent superfluous and
non-optimal reattachments. The device manager should also garbage-collect driver bundles it in-
stalled which are no longer used.

Page 54

OSGi Compendium Release 8.1

Device Access Specification Version 1.1 Device Manager

The device manager is a singleton. Only one device manager may exist, and it must have no public
interface.

103.7.1 Device Manager Startup

To prevent race conditions during Framework startup, the device manager must monitor the state
of Device services and Driver services immediately when it is started. The device manager must not,
however, begin attaching Device services until the Framework has been fully started, to prevent su-
perfluous or non-optimal attachments.

The Framework has completed starting when the FrameworkEvent.STARTED event has been pub-
lished. Publication of that event indicates that Framework has finished all its initialization and
all bundles are started. If the device manager is started after the Framework has been initialized, it
should detect the state of the Framework by examining the state of the system bundle.

103.7.2 The Device Attachment Algorithm

A key responsibility of the device manager is to attach refining drivers to idle devices. The following
diagram illustrates the device attachment algorithm.

OSGi Compendium Release 8.1 Page 55

Device Manager Device Access Specification Version 1.1

Figure 103.10 Device Attachment Algorithm
Idle Device

For each DriverLocator

}

A findDrivers

A
> For each DRIVER ID
For each Driver not excluded B| Trytoload
match
H C
Add the driver to)
the exclusion list (€1 Nothing
A |
|
|
| Selector
|
| 5 y
| ¢« — — — - Tryselector } — — — — —»
|
G |) 4
Try to load | E | Default selection — Device
4 |
| | <
| | F y
L — — L — 4 Attach 1| noDriverFound
K| Cleanup K| Cleanup
v h 4

Attach completed Nothing attached

Page 56 OSGi Compendium Release 8.1

Device Access Specification Version 1.1 Device Manager

103.7.3 Legend

Table 103.3 Driver attachment algorithm

Step
A

Description

DriverLocator.findDrivers is called for each registered Driver Locator service, passing
the properties of the newly detected Device service. Each method call returns zero or
more DRIVER_ID values (identifiers of particular driver bundles).

If the findDrivers method throws an exception, it is ignored, and processing contin-
ues with the next Driver Locator service. See Optimizations on page 58 for further
guidance on handling exceptions.

For each found DRIVER_ID that does not correspond to an already registered Driver
service, the device manager calls DriverLocator.loadDriver to return an InputStream
containing the driver bundle. Each call to loadDriver is directed to one of the Driver
Locator services that mentioned the DRIVER_ID in step A. If the loadDriver method
fails, the other Driver Locator objects are tried. If they all fail, the driver bundle is ig-
nored.

If this method succeeds, the device manager installs and starts the driver bundle. Dri-
ver bundles must register their Driver services synchronously during bundle activa-
tion.

For each Driver service, except those on the exclusion list, call its Driver.match
method, passing the ServiceReference object to the Device service.

Collect all successful matches - that is, those whose return values are greater than
Device.MATCH_NONE - in a list of active matches. A match call that throws an ex-
ception is considered unsuccessful and is not added to the list.

If there is a Driver Selector service, the device manager calls the
DriverSelector.select method, passing the array of active Match objects.

If the Driver Selector service returns the index of one of the Match objects from the
array, its associated Driver service is selected for attaching the Device service. If the
Driver Selector service returns DriverSelector.SELECT_NONE, no Driver service
must be considered for attaching the Device service.

If the Driver Selector service throws an exception or returns an invalid result, the de-
fault selection algorithm is used.

Only one Driver Selector service is used, even if there is more than one registered in
the Framework. See The Driver Selector Service on page 54.
The winner is the one with the highest match value. Tie breakers are respectively:

- Highestservice.ranking property.

- Lowest service.id property.

The selected Driver service's attach method is called. If the attach method returns
null, the Device service has been successfully attached. If the attach method returns
a String object, it is interpreted as a referral to another Driver service and processing
continues at G. See Referring Drivers on page 48.

If an exception is thrown, the Driver service has failed, and the algorithm proceeds
to try another Driver service after excluding this one from further consideration at
Step H.

OSGi Compendium Release 8.1

Page 57

Device Manager

Device Access Specification Version 1.1

103.7.4

103.7.5

Step Description

G The device manager attempts to load the referred driver bundle in a manner simi-
lar to Step B, except that it is unknown which Driver Locator service to use. There-
fore, the loadDriver method must be called on each Driver Locator service until one
succeeds (or they all fail). If one succeeds, the device manager installs and starts the
driver bundle. The driver bundle must register a Driver service during its activation
which must be added to the list of Driver services in this algorithm.

H The referring driver bundle is added to the exclusion list. Because each new referral
adds an entry to the exclusion list, which in turn disqualifies another driver from
further matching, the algorithm cannot loop indefinitely. This list is maintained for
the duration of this algorithm. The next time a new Device service is processed, the
exclusion list starts out empty.

I If no Driver service attached the Device service, the Device service is checked to
see whether it implements the Device interface. If so, the noDriverFound method is
called. Note that this action may cause the Device service to unregister and possibly
anew Device service (or services) to be registered in its place. Each new Device ser-
vice registration must restart the algorithm from the beginning.

K Whether an attachment was successful or not, the algorithm may have installed a
number of driver bundles. The device manager should remove any idle driver bun-
dles that it installed.

Optimizations

Optimizations are explicitly allowed and even recommended for an implementation of a device
manager. Implementations may use the following assumptions:

. Driver match values and referrals must be deterministic, in that repeated calls for the same De-
vice service must return the same results.

. The device manager may cache match values and referrals. Therefore, optimizations in the de-
vice attachment algorithm based on this assumption are allowed.

- The device manager may delay loading a driver bundle until it is needed. For example, a delay
could occur when that DRIVER_ID's match values are cached.

- The results of calls to DriverLocator and DriverSelector methods are not required to be determin-
istic, and must not be cached by the device manager.

. Thrown exceptions must not be cached. Exceptions are considered transient failures, and the de-
vice manager must always retry a method call even if it has thrown an exception on a previous
invocation with the same arguments.

Driver Bundle Reclamation

The device manager may remove driver bundles it has installed at any time, provided that all the
Driver services in that bundle are idle. This recommended practice prevents unused driver bundles
from accumulating over time. Removing driver bundles too soon, however, may cause unnecessary
installs and associated delays when driver bundles are needed again.

If a device manager implements driver bundle reclamation, the specified matching algorithm is not
guaranteed to terminate unless the device manager takes reclamation into account.

For example, assume that a new Device service triggers the attachment algorithm. A driver bundle
recommended by a Driver Locator service is loaded. It does not match, so the Device service remains
idle. The device manager is eager to reclaim space, and unloads the driver bundle. The disappear-
ance of the Driver service causes the device manager to reattach idle devices. Because it has not kept
arecord of its previous activities, it tries to reattach the same device, which closes the loop.

On systems where the device manager implements driver bundle reclamation, all refining drivers
should be loaded through Driver Locator services. This recommendation is intended to prevent the

Page 58

OSGi Compendium Release 8.1

Device Access Specification Version 1.1 Security

103.7.6

103.7.7

103.8

device manager from erroneously uninstalling pre-installed driver bundles that cannot later be rein-
stalled when needed.

The device manager can be updated or restarted. It cannot, however, rely on previously stored infor-
mation to determine which driver bundles were pre-installed and which were dynamically installed
and thus are eligible for removal. The device manager may persistently store cachable information
for optimization, but must be able to cold start without any persistent information and still be able
to manage an existing connection state, satisfying all of the requirements in this specification.

Handling Driver Bundle Updates

It is not straightforward to determine whether a driver bundle is being updated when the UN-
REGISTER event for a Driver service is received. In order to facilitate this distinction, the device man-
ager should wait for a period of time after the unregistration for one of the following events to oc-
cur:

- ABundleEvent.UNINSTALLED event for the driver bundle.
A ServiceEvent.REGISTERED event for another Driver service registered by the driver bundle.

If the driver bundle is uninstalled, or if neither of the above events are received within the allotted
time period, the driver is assumed to be inactive. The appropriate waiting period is implementa-
tion-dependent and will vary for different installations. As a general rule, this period should be long
enough to allow a driver to be stopped, updated, and restarted under normal conditions, and short
enough not to cause unnecessary delays in reattaching devices. The actual time should be config-
urable.

Simultaneous Device Service and Driver Service Registration

The device attachment algorithm may discover new driver bundles that were installed outside its
direct control, which requires executing the device attachment algorithm recursively. However, in
this case, the appearance of the new driver bundles should be queued until completion of the cur-
rent device attachment algorithm.

Only one device attachment algorithm may be in progress at any moment in time.

The following example sequence illustrates this process when a Driver service is registered:

Collect the set of all idle devices.
- Apply the device attachment algorithm to each device in the set.

- Ifno Driver services were registered during the execution of the device attachment algorithm,
processing terminates.

. Otherwise, restart this process.

Security

The device manager is the only privileged bundle in the Device Access specification and requires
the org.osgi.framework.AdminPermission with the LIFECYCLE action to install and uninstall driver
bundles.

The device manager itself should be free from any knowledge of policies and should not actively set
bundle permissions. Rather, if permissions must be set, it is up to the Management Agent to listen to
synchronous bundle events and set the appropriate permissions.

Driver Locator services can trigger the download of any bundle, because they deliver the content of
a bundle to the privileged device manager and could potentially insert a Trojan horse into the envi-
ronment. Therefore, Driver Locator bundles need the ServicePermission[DriverLocator, REGISTER]

OSGi Compendium Release 8.1 Page 59

org.osgi.service.device Device Access Specification Version 1.1

103.9

103.9.1

103.9.2

See Also
Since

No Implement

103.9.2.1

103.9.2.2

to register Driver Locator services, and the operator should exercise prudence in assigning this Ser-
vicePermission.

Bundles with Driver Selector services only require ServicePermission[DriverSelector, REGISTER]
to register the DriverSelector service. The Driver Selector service can play a crucial role in the selec-
tion of a suitable Driver service, but it has no means to define a specific bundle itself.

org.osgi.service.device

Device Access Package Version 1.1.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:
Import-Package: org.osgi.service.device; version="[1.1,2.0)"
Example import for providers implementing the API in this package:

Import-Package: org.osgi.service.device; version="[1.1,1.2)"

Summary

. Constants - This interface defines standard names for property keys associated with Device and
Driver services.

. Device - Interface for identifying device services.

- Driver - A Driver service object must be registered by each Driver bundle wishing to attach to
Device services provided by other drivers.

. DriverLocator - A Driver Locator service can find and load device driver bundles given a proper-
ty set.

. DriverSelector - When the device manager detects a new Device service, it calls all registered
Driver services to determine if anyone matches the Device service.

- Match -Instances of Match are used in the DriverSelector.select(ServiceReference, Match[])
method to identify Driver services matching a Device service.

public interface Constants

This interface defines standard names for property keys associated with Device and Driver services.

The values associated with these keys are of type java.lang.String, unless otherwise stated.

Device, Driver

1.1

Consumers of this API must not implement this interface

public static final String DEVICE_CATEGORY = "DEVICE_CATEGORY"

Property (named "DEVICE_CATEGORY") containing a human readable description of the device cat-
egories implemented by a device. This property is of type String[]

Services registered with this property will be treated as devices and discovered by the device manag-
er

public static final String DEVICE_DESCRIPTION = "DEVICE_DESCRIPTION"

Property (named "DEVICE_DESCRIPTION") containing a human readable string describing the ac-
tual hardware device.

Page 60

OSGi Compendium Release 8.1

Device Access Specification Version 1.1 org.osgi.service.device

103.9.2.3

103.9.2.4

103.9.3

See Also

Concurrency

103.9.3.1

103.9.3.2

103.9.4

See Also

Concurrency

103.9.4.1

reference

]

public static final String DEVICE_SERIAL = "DEVICE_SERIAL"
Property (named "DEVICE SERIAL'") specifying a device's serial number.

public static final String DRIVER_ID = "DRIVER_ID"
Property (named "DRIVER_ID") identifying a driver.
ADRIVER_ID should start with the reversed domain name of the company that implemented the

driver (e.g., com.acme), and must meet the following requirements:

- It must be independent of the location from where it is obtained.

- It must be independent of the DriverLocator service that downloaded it.
It must be unique.
It must be different for different revisions of the same driver.

This property is mandatory, i.e., every Driver service must be registered with it.

public interface Device
Interface for identifying device services.

A service must implement this interface or use the Constants. DEVICE_CATEGORY registration
property to indicate that it is a device. Any services implementing this interface or registered with
the DEVICE_CATEGORY property will be discovered by the device manager.

Device services implementing this interface give the device manager the opportunity to indicate to
the device that no drivers were found that could (further) refine it. In this case, the device manager
calls the noDriverFound() method on the Device object.

Specialized device implementations will extend this interface by adding methods appropriate to
their device category to it.

Driver

Thread-safe

public static final int MATCH_NONE = o

Return value from Driver.match(ServiceReference) indicating that the driver cannot refine the de-
vice presented to it by the device manager. The value is zero.

public void noDriverFound()

Indicates to this Device object that the device manager has failed to attach any drivers to it.

If this Device object can be configured differently, the driver that registered this Device object may
unregister it and register a different Device service instead.

public interface Driver

A Driver service object must be registered by each Driver bundle wishing to attach to Device ser-
vices provided by other drivers. For each newly discovered Device object, the device manager enters
a bidding phase. The Driver object whose match(ServiceReference) method bids the highest for a
particular Device object will be instructed by the device manager to attach to the Device object.

Device, DriverLocator

Thread-safe

public String attach(ServiceReference<?> reference) throws Exception
the ServiceReference object of the device to attach to

Attaches this Driver service to the Device service represented by the given ServiceReference object.

OSGi Compendium Release 8.1 Page 61

org.osgi.service.device Device Access Specification Version 1.1

103.9.4.2

103.9.5

Returns

Throws

reference

]

Returns

Throws

See Also

Concurrency

103.9.5.1

props

A return value of null indicates that this Driver service has successfully attached to the given Device
service. If this Driver service is unable to attach to the given Device service, but knows of a more
suitable Driver service, it must return the DRIVER_ID of that Driver service. This allows for the im-
plementation of referring drivers whose only purpose is to refer to other drivers capable of handling
a given Device service.

After having attached to the Device service, this driver may register the underlying device as a new
service exposing driver-specific functionality.

This method is called by the device manager.

nullif this Driver service has successfully attached to the given Device service, or the DRIVER_ID of a
more suitable driver

Exception—if the driver cannot attach to the given device and does not know of a more suitable dri-
ver

public int match(ServiceReference<?s reference) throws Exception
the ServiceReference object of the device to match

Checks whether this Driver service can be attached to the Device service. The Device service is rep-
resented by the given ServiceReference and returns a value indicating how well this driver can sup-
port the given Device service, or Device MATCH NONE if it cannot support the given Device ser-
vice atall.

The return value must be one of the possible match values defined in the device category definition
for the given Device service, or Device. MATCH_NONE if the category of the Device service is not rec-
ognized.

In order to make its decision, this Driver service may examine the properties associated with the
given Device service, or may get the referenced service object (representing the actual physical de-
vice) to talk to it, as long as it ungets the service and returns the physical device to a normal state be-
fore this method returns.

A Driver service must always return the same match code whenever it is presented with the same
Device service.

The match function is called by the device manager during the matching process.

value indicating how well this driver can support the given Device service, or
Device.MATCH_NONE if it cannot support the Device service at all

Exception—if this Driver service cannot examine the Device service

public interface DriverLocator

A Driver Locator service can find and load device driver bundles given a property set. Each driver is
represented by a unique DRIVER_ID.

Driver Locator services provide the mechanism for dynamically downloading new device driver
bundles into an OSGi environment. They are supplied by providers and encapsulate all provider-
specific details related to the location and acquisition of driver bundles.

Driver

Thread-safe

public String[] findDrivers(Dictionary<String, ?> props)
the properties of the device for which a driver is sought

Returns an array of DRIVER_ID strings of drivers capable of attaching to a device with the given
properties.

The property keys in the specified Dictionary objects are case-insensitive.

Page 62

OSGi Compendium Release 8.1

Device Access Specification Version 1.1

org.osgi.service.device

Returns

103.9.5.2

Returns

Throws

103.9.6

Since

Concurrency

103.9.6.1

103.9.6.2
reference
matches

[m}

Returns

103.9.7

See Also
Since
Concurrency
No Implement
103.9.7.1
[m]
Returns
103.9.7.2
O

Returns

array of driver DRIVER_ID strings of drivers capable of attaching to a Device service with the given
properties, or nullif this Driver Locator service does not know of any such drivers

public InputStream loadDriver(String id) throws IOException
the DRIVER_ID of the driver that needs to be installed.

Get an InputStream from which the driver bundle providing a driver with the giving DRIVER_ID can
be installed.

An InputStream object from which the driver bundle can be installed or null if the driver with the
given ID cannot be located

IOException—the input stream for the bundle cannot be created

public interface DriverSelector

When the device manager detects a new Device service, it calls all registered Driver services to de-
termine if anyone matches the Device service. If at least one Driver service matches, the device man-
ager must choose one. If there is a Driver Selector service registered with the Framework, the device
manager will ask it to make the selection. If there is no Driver Selector service, or if it returns an in-
valid result, or throws an Exception, the device manager uses the default selection strategy.

1.1
Thread-safe

public static final int SELECT_NONE = -1

Return value from DriverSelector.select, if no Driver service should be attached to the Device ser-
vice. The value is-1.

public int select(ServiceReference<?» reference, Match[] matches)
the ServiceReference object of the Device service.
the array of all non-zero matches.

Select one of the matching Driver services. The device manager calls this method if there is at
least one driver bidding for a device. Only Driver services that have responded with nonzero (not
Device MATCH NONE) match values will be included in the list.

index into the array of Match objects, or SELECT_NONE if no Driver service should be attached

public interface Match

Instances of Match are used in the DriverSelector.select(ServiceReference, Match[]) method to identi-
fy Driver services matching a Device service.

DriverSelector
1.1
Thread-safe

Consumers of this API must not implement this interface

public ServiceReference<?> getDriver()
Return the reference to a Driver service.

ServiceReference object to a Driver service.
public int getMatchValue()

Return the match value of this object.

the match value returned by this Driver service.

OSGi Compendium Release 8.1

Page 63

References Device Access Specification Version 1.1

103.10 References

(1] Java Communications API
https://www.oracle.com/java/technologies/java-communications-api.html
[2] USB Specification
https://www.usb.org

3] Universal Plug and Play
https://openconnectivity.org/developer/specifications/upnp-resources/upnp/

[4] [Jini, Service Discovery and Usage
https://en.wikipedia.org/wiki/Jini

Page 64 OSGi Compendium Release 8.1

https://www.oracle.com/java/technologies/java-communications-api.html
https://www.usb.org
https://openconnectivity.org/developer/specifications/upnp-resources/upnp/
https://en.wikipedia.org/wiki/Jini

Configuration Admin Service Specification Version 1.6 Introduction

104

104.1

Figure 104.1

104.1.1

Configuration Admin Service
Specification

\ersion 1.6

Introduction

The Configuration Admin service is an important aspect of the deployment of an OSGi framework.
It allows an Operator to configure deployed bundles. Configuring is the process of defining the con-
figuration data for bundles and assuring that those bundles receive that data when they are active in
the OSGi framework.

Configuration Admin Service Overview

bundle
developer writes
abundle
bundle is
port= deployed port= 80
secure= > secure= true

configuration
data

Configuration
Admin

Essentials

The following requirements and patterns are associated with the Configuration Admin service spec-
ification:

« Local Configuration - The Configuration Admin service must support bundles that have their own
user interface to change their configurations.

« Reflection - The Configuration Admin service must be able to deduce the names and types of the
needed configuration data.

« Legacy- The Configuration Admin service must support configuration data of existing entities
(such as devices).

« Object Oriented - The Configuration Admin service must support the creation and deletion of in-
stances of configuration information so that a bundle can create the appropriate number of ser-
vices under the control of the Configuration Admin service.

« Embedded Devices - The Configuration Admin service must be deployable on a wide range of plat-
forms. This requirement means that the interface should not assume file storage on the platform.
The choice to use file storage should be left to the implementation of the Configuration Admin
service.

OSGi Compendium Release 8.1 Page 65

Introduction

Configuration Admin Service Specification Version 1.6

104.1.2

« Remote versus Local Management - The Configuration Admin service must allow for a remotely
managed OSGi framework, and must not assume that con-figuration information is stored local-
ly. Nor should it assume that the Configuration Admin service is always done remotely. Both im-
plementation approaches should be viable.

« Availability - The OSGi environment is a dynamic environment that must run continuously
(24/7/365). Configuration updates must happen dynamically and should not require restarting of
the system or bundles.

- Immediate Response - Changes in configuration should be reflected immediately.

- Execution Environment - The Configuration Admin service will not require more than an environ-
ment that fulfills the minimal execution requirements.

« Communications - The Configuration Admin service should not assume "always-on" connectivity,
so the APIis also applicable for mobile applications in cars, phones, or boats.

- Extendability - The Configuration Admin service should expose the process of configuration to
other bundles. This exposure should at a minimum encompass initiating an update, removing
certain configuration properties, adding properties, and modifying the value of properties poten-
tially based on existing property or service values.

. Complexity Trade-offs - Bundles in need of configuration data should have a simple way of obtain-
ing it. Most bundles have this need and the code to accept this data. Additionally, updates should
be simple from the perspective of the receiver.

Trade-offs in simplicity should be made at the expense of the bundle implementing the Config-
uration Admin service and in favor of bundles that need configuration information. The reason
for this choice is that normal bundles will outnumber Configuration Admin bundles.

« Regions - It should be possible to create groups of bundles and a manager in a single system that
share configuration data that is not accessible outside the region.

- Shared Information - It should be possible to share configuration data between bundles.

Entities

- Configuration information - The information needed by a bundle before it can provide its intended
functionality.

- Configuration dictionary - The configuration information when it is passed to the target service. It
consists of a Dictionary object with a number of properties and identifiers.

- Configuring Bundle - A bundle that modifies the configuration information through the Config-
uration Admin service. This bundle is either a management bundle or the bundle for which the
configuration information is intended.

- Configuration Target - The target service that will receive the configuration information. For ser-
vices, there are two types of targets: ManagedServiceFactory or ManagedService objects.

- Configuration Admin Service - This service is responsible for supplying configuration target bun-
dles with their configuration information. It maintains a database with configuration informa-
tion, keyed on the service.pid of configuration target services. These services receive their con-
figuration dictionary/dictionaries when they are registered with the Framework. Configurations
can be modified or extended using Configuration Plugin services before they reach the target
bundle.

- Managed Service - A Managed Service represents a client of the Configuration Admin service, and
is thus a configuration target. Bundles should register a Managed Service to receive the configu-
ration data from the Configuration Admin service. A Managed Service adds one or more unique
service.pid service properties as a primary key for the configuration information.

« Managed Service Factory - A Managed Service Factory can receive a number of configuration dic-
tionaries from the Configuration Admin service, and is thus also a configuration target service. It
should register with one or more service.pid strings and receives zero or more configuration dic-
tionaries. Each dictionary has its own PID that is distinct from the factory PID.

Page 66

OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6 Configuration Targets

Figure 104.2

104.1.3

104.2

- Configuration Object - Implements the Configuration interface and contains the configuration dic-
tionary for a Managed Service or one of the configuration dictionaries for a Managed Service Fac-
tory. These objects are manipulated by configuring bundles.

- Configuration Plugin Services - Configuration Plugin services are called before the configuration
dictionary is given to the configuration targets. The plug-in can modify the configuration dictio-
nary, which is passed to the Configuration Target.

QOverall Service Diagram
Configuration
Plugin
Managed
Configuration Configuration Service
i > — Admin Impl.
Admn Managed

Service Factory

Configuration
Listener

Synopsis

This specification is based on the concept of a Configuration Admin service that manages the con-
figuration of an OSGi framework. It maintains a database of Configuration objects, locally or re-
motely. This service monitors the service registry and provides configuration information to ser-
vices that are registered with a service.pid property, the Persistent IDentity (PID), and implement
one of the following interfaces:

« Managed Service - A service registered with this interface receives its configuration dictionary from
the database or receives null when no such configuration exists.

« Managed Service Factory - Services registered with this interface can receive several configuration
dictionaries when registered. The database contains zero or more configuration dictionaries for
this service. Each configuration dictionary is given sequentially to the service.

The database can be manipulated either by the Management Agent or bundles that configure them-
selves. Other parties can provide Configuration Plugin services. Such services participate in the con-
figuration process. They can inspect the configuration dictionary and modify it before it reaches the
target service.

Configuration Targets

One of the more complicated aspects of this specification is the subtle distinction between the Man-
agedService and ManagedServiceFactory classes. Both receive configuration information from the
Configuration Admin service and are treated similarly in most respects. Therefore, this specification
refers to configuration targets or simply targets when the distinction is irrelevant.

The difference between these types is related to the cardinality of the configuration dictionary. A
Managed Service is used when an existing entity needs a configuration dictionary. Thus, a one-to-
one relationship always exists between the configuration dictionary and the configurable entity in
the Managed Service. There can be multiple Managed Service targets registered with the same PID
but a Managed Service can only configure a single entity in each given Managed Service.

OSGi Compendium Release 8.1 Page 67

The Persistent Identity Configuration Admin Service Specification Version 1.6

Figure 104.3

104.3

104.3.1

A Managed Service Factory is used when part of the configuration is to define how many instances are
required for a given Managed Service Factory. A management bundle can create, modify, and delete
any number of instances for a Managed Service Factory through the Configuration Admin service.
Each instance is configured by a single Configuration object. Therefore, a Managed Service Factory
can have multiple associated Configuration objects.

Differentiation of ManagedService and ManagedServiceFactory Classes

Service layer

Framework Service
Registry

Management layer

A Configuration target updates the target when the underlying Configuration object is created, up-
dated, or deleted. However, it is not called back when the Configuration Admin service is shutdown
or the service is ungotten.

To summarize:

A Managed Service must receive a single configuration dictionary when it is registered or when
its configuration is modified.

A Managed Service Factory must receive from zero to n configuration dictionaries when it regis-
ters, depending on the current configuration. The Managed Service Factory is informed of config-
uration dictionary changes: modifications, creations, and deletions.

The Persistent Identity

A crucial concept in the Configuration Admin service specification is the Persistent IDentity (PID)
as defined in the Framework's service layer. Its purpose is to act as a primary key for objects that
need a configuration dictionary. The name of the service property for PID is defined in the Frame-
work in org.osgi.framework.Constants.SERVICE_PID.

The Configuration Admin service requires the use of one or more PIDs with Managed Service and
Managed Service Factory registrations because it associates its configuration data with PIDs.

A service can register with multiple PIDs and PIDs can be shared between multiple targets (both
Managed Service and Managed Service Factory targets) to receive the same information. If PIDs are
to be shared between Bundles then the location of the Configuration must be a multi-location, see
Location Binding on page 71.

The Configuration Admin must track the configuration targets on their actual PID. That is, if the
service.pid service property is modified then the Configuration Admin must treat it as if the service
was unregistered and then re-registered with the new PID.

PID Syntax

PIDs are intended for use by other bundles, not by people, but sometimes the user is confronted
with a PID. For example, when installing an alarm system, the user needs to identify the different
components to a wiring application. This type of application exposes the PID to end users.

PIDs should follow the symbolic-name syntax, which uses a very restricted character set. The fol-
lowing sections define some schemes for common cases. These schemes are not required, but bun-
dle developers are urged to use them to achieve consistency.

Page 68

OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6 The Persistent Identity

104.3.1.1 Local Bundle PIDs
As a convention, descriptions starting with the bundle identity and a full stop (. \uoo2E) are re-
served for a bundle. As an example, a PID of "65.536" would belong to the bundle with a bundle
identity of 65.
104.3.1.2 Software PIDs
Configuration target services that are singletons can use a Java package name they own as the PID
(the reverse domain name scheme) as long as they do not use characters outside the basic ASCII set.
As an example, the PID named com.acme.watchdog would represent a Watchdog service from the
ACME company.
104.3.1.3 Devices
Devices are usually organized on buses or networks. The identity of a device, such as a unique serial
number or an address, is a good component of a PID. The format of the serial number should be the
same as that printed on the housing or box, to aid in recognition.
Table 104.1 Schemes for Device-Oriented PID Names
Bus Example Format Description
USB USB.0123-0002-9909873 idVendor (hex 4) Universal Serial Bus. Use the standard
idProduct (hex 4) device descriptor.
iSerialNumber (decimal)
|P [P.172.16.28.21 IP nr (dotted decimal) Internet Protocol
802 802-00:60:97:00:9A:56 MAC address with : separators IEEE 802 MAC address (Token Ring,
Ethernet,...)
ONE ONE.06-00000021E461 Family (hex 2) and serial numberin- 1-wire bus of Dallas Semiconductor
cluding CRC (hex 6)
COM COM.krups-brewer-12323 serial number or type name of device Serial ports

104.3.2

Targeted PIDs

PIDs are defined as primary keys for the configuration object; any target that uses the PID in its ser-
vice registration (and has the proper permissions if security is on) will receive the configuration as-
sociated with it, regardless of the bundle that registered the target service. Though in general the
PID is designed to ignore the bundle, there are a number of cases where the bundle becomes rele-
vant. The most typical case is where a bundle is available in different versions. Each version will re-
quest the same PID and will get therefore configured identically.

Targeted PIDs are specially formatted PIDs that are interpreted by the Configuration Admin service.
Targeted PIDs work both as a normal Managed Service PID and as a Managed Service Factory PID. In
the case of factories, the targeted PID is the Factory PID since the other PID is chosen by CM for each
instance.

The target PID scopes the applicability of the PID to a limited set of target bundles. The syntax of a
target pid is:

target-pid ::= PID
('|" symbolic-name ('|' version ('|' location)?)?)?

Targets never register with a target PID, target PIDs should only be used when creating, getting, or
deleting a Configuration through the Configuration Admin service. The target PID is still the prima-
ry key of the Configuration and is thus in itself a PID. The distinction is only made when the Config-
uration Admin must update a target service. Instead of using the non-target PID as the primary key
it must first search if there exists a target PID in the Configuration store that matches the requested
target PID.

OSGi Compendium Release 8.1 Page 69

The Persistent Identity Configuration Admin Service Specification Version 1.6

When a target registers and needs to be updated the Configuration Admin must first find the Con-
figuration with the best matching PID. It must logically take the requested PID, append it with the
bundle symbolic name, the bundle version, and the bundle location. The version must be formatted
canonically, that is, according to the toString() method of the Version class. The rules for best match-
ing are then as follows:

Look for a Configuration, in the given order, with a key of:

<pid>|<bsn>|<versions|<location>
<pid>|<bsn>|<version>
<pid>|<bsn>

<pid>

For example:

com. example.web.WebConf|com. acme.example|3.2.0[http: //www. xyz.com/acme. jar
com. example.web.WebConf|com. acme. example|3.2.0

com. example.web.WebConf|com. acme.example

com. example.web.WebConf

If a registered target service has a PID that contains a vertical line ('|' \uoo7c)Ithen the value must
be taken as is and must not be interpreted as a targeted PID.

The service.pid configuration property for a targeted PID configuration must always be set

to the targeted PID. That is, if the PID is com.example.web.WebConfand the targeted PID
com.example.web.WebConf|com.acme.example|3.2.0 then the property in the Configuration dic-
tionary must be the targeted PID.

If a Configuration with a targeted PID is deleted or a Configuration with a new targeted PID is added
then all targets that would be stale must be reevaluated against the new situation and updated ac-
cordingly if they are no longer bound against the best matching target PID.

104.3.3 Extenders and Targeted PIDs
Extenders like Declarative Services use Configurations but bypass the general Managed Service or
Managed Service Factory method. It is the responsibility of these extenders to access the Configura-
tions using the targeted PIDs.
Since getting a Configuration tends to create that Configuration it is necessary for these extenders
to use the listConfigurations(String) method to find out if a more targeted Configuration exists.
There are many ways the extender can find the most targeted PID. For example, the following code
gets the most targeted PID for a given bundle.
String mostTargeted(String key, String pid, Bundle bundle) throws Exception {
String bsn = bundle. getSymbolicName();
Version version = bundle.getVersion();
String location = bundle.getlocation();
String f = String.format(" (| Cl$s=%2Ss) (elSsL2Ss [9BSs) " +
" (1S5 LIRSS [IRSS |FASS) (Uol$s=IRSs |35 [UASs [F55s)) ",
key, pid, bsn, version, location);
Configuration[] configurations = cm.listConfigurations(f);
if (configurations == null)
return null;
String largest = null;
for (Configuration c : configurations) {
String s = (String) c.getProperties().get(key);
Page 70 OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6 The Configuration Object

104.4

104.4.1

if ((largest == null) || (largest.length() < s.length()))
largest = s;

}

return largest;

The Configuration Object

A Configuration object contains the configuration dictionary, which is a set of properties that con-
figure an aspect of a bundle. A bundle can receive Configuration objects by registering a configura-
tion target service with a PID service property. See The Persistent Identity on page 68 for more in-
formation about PIDs.

During registration, the Configuration Admin service must detect these configuration target ser-
vices and hand over their configuration dictionary via a callback. If this configuration dictionary is
subsequently modified, the modified dictionary is handed over to the configuration target with the
same callback.

The Configuration object is primarily a set of properties that can be updated by a Management
Agent, user interfaces on the OSGi framework, or other applications. Configuration changes are first
made persistent, and then passed to the target service via a call to the updated method in the Man-
agedServiceFactory or ManagedService class.

A Configuration object must be uniquely bound to a Managed Service or Managed Service Factory.
This implies that a bundle must not register a Managed Service Factory with a PID that is the same
as the PID given to a Managed Service.

Location Binding

When a Configuration object is created with either getConfiguration(String),
getFactoryConfiguration(String,String), or createFactoryConfiguration(String), it becomes
bound to the location of the calling bundle. This location is obtained with the getBundleLocation()
method.

Location binding is a security feature that assures that only management bundles can modify con-
figuration data, and other bundles can only modify their own configuration data. A Security Excep-
tion is thrown if a bundle does not have ConfigurationPermission[location, CONFIGURE].

The two argument versions of getConfiguration(String,String) and
createFactoryConfiguration(String,String) as well as the three argument version of
getFactoryConfiguration(String,String,String) take a location String as their last argument. These
methods require the correct permission, and they create Configuration objects bound to the speci-
fied location.

Locations can be specified for a specific Bundle or use multi-locations. For a specific location the Con-
figuration location must exactly match the location of the target's Bundle. A multi-location is any
location that has the following syntax:

multi-location ::= '?' symbolic-name?
For example
?com. acme

The path after the question mark is the multi-location name, the multi-location name can be empty if
only a question mark is specified. Configurations with a multi-location are dispatched to any target
that has visibility to the Configuration. The visibility for a given Configuration c depends on the fol-
lowing rules:

OSGi Compendium Release 8.1 Page 71

The Configuration Object Configuration Admin Service Specification Version 1.6

104.4.2

104.4.3

« Single-Location - If c.location is not a multi-location then a Bundle only has visibility if the
Bundle's location exactly matches c.location. In this case there is never a security check.
« Multi-Location - If c.location is a multi-location (that is, starts with a question mark):
« Security Off- The Bundle always has visibility
Security On- The target's Bundle must have ConfigurationPermission[c.location, TARGET]

as defined by the Bundle's hasPermission method. The resource name of the permission must
include the question mark.

The permission matches on the whole name, including any leading ?. The TARGET action is only ap-
plicable in the multi-location scenario since the security is not checked for a single-location. There
is therefore no point in granting a Bundle a permission with TARGET action for anything but a mul-
ti-location (starting with a 7).

It is therefore possible to register services with the same PID from different bundles. If a multi-loca-
tion is used then each bundle will be evaluated for a corresponding configuration update. If the bun-
dle has visibility then it is updated, otherwise it is not.

If multiple targets must be updated then the order of updating is the ranking order of their services.

If a target loses visibility because the Configuration's location changes then it must immediately

be deleted from the perspective of that target. That is, the target must see a deletion (Managed Ser-
vice Factory) or an update with null (Managed Service). If a configuration target gains visibility then
the target must see a new update with the proper configuration dictionary. However, the associated
events must not be sent as the underlying Configuration is not actually deleted nor modified.

Changes in the permissions must not initiate a recalculation of the visibility. If the permissions are
changed this will not become visible until one of the other events happen that cause a recalculation
of the visibility.

If the location is changed then the Configuration Admin must send a CM_LOCATION_CHANGED
event to signal that the location has changed. It is up to the Configuration Listeners to update their
state appropriately.

Dynamic Binding

Dynamic binding is available for backward compatibility with earlier versions. It is recommended
that management agents explicitly set the location to a ? (a multi-location) to allow multiple bun-
dles to share PIDs and not use the dynamic binding facility. If a management agent uses ?, it must
atleast have ConfigurationPermission[7, CONFIGURE] when security is on, it is also possible to
use ConfigurationPermission[7%, CONFIGURE] to not limit the management agent. See Regions on
page 84 for some examples of using the locations in isolation scenarios.

A nulllocation parameter can be used to create Configuration objects that are not yet bound. In
this case, the Configuration becomes bound to a specific location the first time that it is com-
pared to a Bundle's location. If a bundle becomes dynamically bound to a Configuration then a
CM_LOCATION_CHANGED event must be dispatched.

When this dynamically bound Bundle is subsequently uninstalled, configurations that are bound to
this bundle must be released. That means that for such Configuration object's the bundle location
must be set to null again so it can be bound again to another bundle.

Configuration Properties

A configuration dictionary contains a set of properties in a Dictionary object. The value of the prop-
erty must be the same type as the set of Primary Property Types specified in OSGi Core Release 8 Fil-
ter Syntax.

The name or key of a property must always be a String object, and is not case-sensitive during look
up, but must preserve the original case. The format of a property name should be:

Page 72

OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6 The Configuration Object

104.4.4

104.4.5

public | private
symbolic-name // See General Syntax in Core Framework
"." symbolic-name

property-name ::
public
private

Properties can be used in other subsystems that have restrictions on the character set that can be
used. The symbolic-name production uses a very minimal character set.

Bundles must not use nested lists or arrays, nor must they use mixed types. Using mixed types or
nesting makes it impossible to use the meta typing specification. See Metatype Service Specification on
page 115.

Property values that are collections may have an ordering that must be preserved when persisting
the configuration so that later access to the property value will see the preserved ordering of the col-
lection.

Property Propagation

A configuration target should copy the public configuration properties (properties whose name
does not start with a ' or \uoo2E) of the Dictionary object argument in updated(Dictionary) into the
service properties on any resulting service registration.

This propagation allows the development of applications that leverage the Framework service reg-
istry more extensively, so compliance with this mechanism is advised.

A configuration target may ignore any configuration properties it does not recognize, or it may
change the values of the configuration properties before these properties are registered as service
properties. Configuration properties in the Framework service registry are not strictly related to the
configuration information.

Bundles that follow this recommendation to propagate public configuration properties can partici-
pate in horizontal applications. For example, an application that maintains physical location infor-
mation in the Framework service registry could find out where a particular device is located in the

house or car. This service could use a property dedicated to the physical location and provide func-

tions that leverage this property, such as a graphic user interface that displays these locations.

Bundles performing service registrations on behalf of other bundles (e.g. OSGi Declarative Services)
should propagate all public configuration properties and not propagate private configuration prop-
erties.

Automatic Properties

The Configuration Admin service must automatically add a number of properties to the config-
uration dictionary. If these properties are also set by a configuring bundle or a plug-in, they must
always be overridden before they are given to the target service, see Configuration Plugin on page
87. Therefore, the receiving bundle or plug-in can assume that the following properties are de-
fined by the Configuration Admin service and not by the configuring bundle:

service.pid- Set to the PID of the associated Configuration object. This is the full the targeted PID
if a targeted PID is used, see Targeted PIDs on page 69.

service.factoryPid - Only set for a Managed Service Factory. It is then set to the PID of the associ-
ated Managed Service Factory. This is the full the targeted PID if a targeted PID is used.
service.bundlelLocation - Set to the location of the Configuration object. This property can only
be used for searching, it may not appear in the configuration dictionary returned from the get-
Properties method due to security reasons, nor may it be used when the target is updated.

Constants for some of these properties can be found in org.osgi.framework.Constants and the Con-
figurationAdmin interface. These service properties are all of type String.

OSGi Compendium Release 8.1 Page 73

Managed Service

Configuration Admin Service Specification Version 1.6

104.4.6

104.5

104.5.1

104.5.2

Equality

Two different Configuration objects can actually represent the same underlying configuration. This
means that a Configuration object must implement the equals and hashCode methods in such a way
that two Configuration objects are equal when their PID is equal.

Managed Service

A Managed Service is used by a bundle that needs one or more configuration dictionaries. It there-
fore registers the Managed Service with one or more PIDs and is thus associated with one Configu-
ration object in the Configuration Admin service for each registered PID. A bundle can register any
number of ManagedService objects, but each must be identified with its own PID or PIDs.

A bundle should use a Managed Service when it needs configuration information for the following:

A Singleton - A single entity in the bundle that needs to be configured.

- Externally Detected Devices - Each device that is detected causes a registration of an associated
ManagedService object. The PID of this object is related to the identity of the device, such as the
address or serial number.

A Managed Service may be registered with more than one PID and therefore be associated with mul-
tiple Configuration objects, one for each PID. Using multiple PIDs for a Managed Service is not rec-
ommended. For example, when a configuration is deleted for a Managed Service there is no way to
identify which PID is associated with the deleted configuration.

Singletons

When an object must be instantiated only once, it is called a singleton. A singleton requires a single
configuration dictionary. Bundles may implement several different types of singletons if necessary.

For example, a Watchdog service could watch the registry for the status and presence of services in
the Framework service registry. Only one instance of a Watchdog service is needed, so only a single
configuration dictionary is required that contains the polling time and the list of services to watch.

Networks

When a device in the external world needs to be represented in the OSGi Environment, it must be
detected in some manner. The Configuration Admin service cannot know the identity and the num-
ber of instances of the device without assistance. When a device is detected, it still needs configura-
tion information in order to play a useful role.

For example, a 1-Wire network can automatically detect devices that are attached and removed.
When it detects a temperature sensor, it could register a Sensor service with the Framework service
registry. This Sensor service needs configuration information specifically for that sensor, such as
which lamps should be turned on, at what temperature the sensor is triggered, what timer should be
started, in what zone it resides, and so on. One bundle could potentially have hundreds of these sen-
sors and actuators, and each needs its own configuration information.

Each of these Sensor services should be registered as a Managed Service with a PID related to the
physical sensor (such as the address) to receive configuration information.

Other examples are services discovered on networks with protocols like Jini, UPnP, and Salutation.
They can usually be represented in the Framework service registry. A network printer, for example,
could be detected via UPnP. Once in the service registry, these services usually require local config-
uration information. A Printer service needs to be configured for its local role: location, access list,
and so on.

Page 74

OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6 Managed Service

104.5.3

Figure 104.4

This information needs to be available in the Framework service registry whenever that particular
Printer service is registered. Therefore, the Configuration Admin service must remember the config-
uration information for this Printer service.

This type of service should register with the Framework as a Managed Service in order to receive ap-
propriate configuration information.

Configuring Managed Services

Abundle that needs configuration information should register one or more ManagedService objects
with a PID service property. If it has a default set of properties for its configuration, it may include
them as service properties of the Managed Service. These properties may be used as a configuration
template when a Configuration object is created for the first time. A Managed Service optionally im-
plements the MetaTypeProvider interface to provide information about the property types. See Meta
Typing on page 89.

When this registration is detected by the Configuration Admin service, the following steps must oc-
cur:

- The configuration stored for the registered PID must be retrieved. If there is a Configuration ob-
ject for this PID and the configuration is visible for the associated bundle then it is sent to the
Managed Service with updated(Dictionary).

If a Managed Service is registered and no configuration information is available or the configu-
ration is not visible then the Configuration Admin service must call updated(Dictionary) with a
null parameter.

If the Configuration Admin service starts aftera Managed Service is registered, it must call
updated(Dictionary) on this service as soon as possible according to the prior rules. For this rea-
son, a Managed Service must always get a callback when it registers and the Configuration Ad-
min service is started.

Multiple Managed Services can register with the same PID, they are all updated as long as they have
visibility to the configuration as defined by the location, see Location Binding on page 71.

If the Managed Service is registered with more than one PID and more than one PID has no configu-
ration information available, then updated(Dictionary) will be called multiple times with a null pa-
rameter.

The updated(Dictionary) callback from the Configuration Admin service to the Managed Service
must take place asynchronously. This requirement allows the Managed Service to finish its initial-
ization in a synchronized method without interference from the Configuration Admin service call-
back. Care should be taken not to cause deadlocks by calling the Framework within a synchronized
method.

Managed Service Configuration Action Diagram
Implementor of Configuration
Client Bundle Framework Managed Service Admin Configuration
| | Y

registerService

send registered eyent

< get pid from props

updated()

Must be on anothef thread

et for PID

set the
configuration

OSGi Compendium Release 8.1 Page 75

Managed Service

Configuration Admin Service Specification Version 1.6

The updated method may throw a ConfigurationException. This object must describe the problem
and what property caused the exception.

104.5.4 Race Conditions
When a Managed Service is registered, the default properties may be visible in the service registry
for a short period before they are replaced by the properties of the actual configuration dictionary.
Care should be taken that this visibility does not cause race conditions for other bundles.
In cases where race conditions could be harmful, the Managed Service must be split into two pieces:
an object performing the actual service and a Managed Service. First, the Managed Service is regis-
tered, the configuration is received, and the actual service object is registered. In such cases, the use
of a Managed Service Factory that performs this function should be considered.
104.5.5 Examples of Managed Service
Figure 104.5 shows a Managed Service configuration example. Two services are registered under the
ManagedService interface, each with a different PID.
Figure 104.5 PIDs and External Associations
Configuration Managed Service pid=4.102
Admin Impl --na
p I L I
[
[
database pid=com.acme '
[
PID configuration :
16.1 name=_Erica - S csociated? ctered |
size=8 no associated PID registere |
com. name=Elmer | J !
acme size=42 :
4102 name=Christer '
(172 S B
The Configuration Admin service has a database containing a configuration record for each PID.
When the Managed Service with service.pid = com.acme is registered, the Configuration Admin
service will retrieve the propertiesname=Elmer and size=42 from its database. The properties are
stored in a Dictionary object and then given to the Managed Service with the updated(Dictionary)
method.
104.5.5.1 Configuring A Console Bundle
In this example, a bundle can run a single debugging console over a Telnet connection. It is a single-
ton, so it uses a ManagedService object to get its configuration information: the port and the net-
work name on which it should register.
class SampleManagedService implements ManagedService{
Dictionary properties;
ServiceRegistration registration;
Console console;
public void start(
BundleContext context) throws Exception {
properties = new Hashtable();
Page 76 OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6 Managed Service Factory

104.5.6

104.6

properties.put(Constants.SERVICE_PID,
"com. acme. console");

registration = context.registerService(
ManagedService.class. getName (),
this,
properties
);
}

public synchronized void updated(Dictionary np) {
if (np !=null) {
properties = np;
properties.put(
Constants.SERVICE_PID, "com.acme.console");

}

if (console == null)
console = new Console();

int port = ((Integer)properties.get("port"))
.intValue();

String network = (String) properties.get("network");
console.setPort(port, network);
registration.setProperties(properties);

. further methods
}

Deletion

When a Configuration object for a Managed Service is deleted, the Configuration Admin service
must call updated(Dictionary) with a null argument on a thread that is different from that on
which the Configuration.delete was executed. This deletion must send out a Configuration Event
CM_DELETED asynchronously to any registered Configuration Listener services after the updated
method is called with a null.

Managed Service Factory

A Managed Service Factory is used when configuration information is needed for a service that can
be instantiated multiple times. When a Managed Service Factory is registered with the Framework,
the Configuration Admin service consults its database and calls updated(String,Dictionary) for each
associated and visible Configuration object that matches the PIDs on the registration. It passes the
identifier of the Configuration instance, which can be used as a PID, as well as a Dictionary object
with the configuration properties.

A Managed Service Factory is useful when the bundle can provide functionality a number of times,
each time with different configuration dictionaries. In this situation, the Managed Service Factory
acts like a class and the Configuration Admin service can use this Managed Service Factory to instan-
tiate instances for that class.

In the next section, the word factory refers to this concept of creating instances of a function defined
by a bundle that registers a Managed Service Factory.

OSGi Compendium Release 8.1 Page 77

Managed Service Factory Configuration Admin Service Specification Version 1.6

104.6.1

104.6.1.1

104.6.1.2

104.6.1.3

104.6.2

When to Use a Managed Service Factory

A Managed Service Factory should be used when a bundle does not have an internal or external enti-
ty associated with the configuration information but can potentially be instantiated multiple times.

Example Email Fetcher

An email fetcher program displays the number of emails that a user has - a function likely to be re-
quired for different users. This function could be viewed as a class that needs to be instantiated for
each user. Each instance requires different parameters, including password, host, protocol, user id,
and so on.

An implementation of the Email Fetcher service should register a ManagedServiceFactory object. In
this way, the Configuration Admin service can define the configuration information for each user
separately. The Email Fetcher service will only receive a configuration dictionary for each required
instance (user).

Example Temperature Conversion Service

Assume a bundle has the code to implement a conversion service that receives a temperature and,
depending on settings, can turn an actuator on and off. This service would need to be instantiated
many times depending on where it is needed. Each instance would require its own configuration in-
formation for the following:

Upper value
. Lowervalue
« Switch Identification

Such a conversion service should register a service object under a ManagedServiceFactory interface.
A configuration program can then use this Managed Service Factory to create instances as needed.
For example, this program could use a Graphic User Interface (GUI) to create such a component and
configure it.

Serial Ports

Serial ports cannot always be used by the OSGi Device Access specification implementations. Some
environments have no means to identify available serial ports, and a device on a serial port cannot
always provide information about its type.

Therefore, each serial port requires a description of the device that is connected. The bundle manag-
ing the serial ports would need to instantiate a number of serial ports under the control of the Con-
figuration Admin service, with the appropriate DEVICE_CATEGORY property to allow it to partici-
pate in the Device Access implementation.

If the bundle cannot detect the available serial ports automatically, it should register a Managed Ser-
vice Factory. The Configuration Admin service can then, with the help of a configuration program,
define configuration information for each available serial port.

Registration

Similar to the Managed Service configuration dictionary, the configuration dictionary for a Man-
aged Service Factory is identified by a PID. The Managed Service Factory, however, also has a factory
PID, which is the PID of the associated Managed Service Factory. It is used to group all Managed Ser-
vice Factory configuration dictionaries together.

When the Configuration Admin service detects the registration of a Managed Service Factory, it
must find all visible configuration dictionaries for this factory and must then sequentially call
ManagedServiceFactory.updated(String,Dictionary) for each configuration dictionary. The first ar-
gument is the PID of the Configuration object (the one created by the Configuration Admin service)
and the second argument contains the configuration properties.

Page 78

OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6 Managed Service Factory

Figure 104.6

104.6.3

The Managed Service Factory should then create any artifacts associated with that factory. Using the
PID given in the Configuration object, the bundle may register new services (other than a Managed
Service) with the Framework, but this is not required. This may be necessary when the PID is useful
in contexts other than the Configuration Admin service.

The receiver must not register a Managed Service with this PID because this would force two Config-
uration objects to have the same PID. If a bundle attempts to do this, the Configuration Admin ser-
vice should log an error and must ignore the registration of the Managed Service.

The Configuration Admin service must guarantee that no race conditions exist between initializa-
tion, updates, and deletions.

Managed Service Factory Action Diagram

implementer of Configuration
Client bundle Framework ManagedServiceFactory Admin Configuration
I -
registerService()
send registered efent MUST be on another thread
get pid
-

set the get all for factory
configuration updated()
for anew
instance

A Managed Service Factory has only one update method: updated(String,Dictionary). This method
can be called any number of times as Configuration objects are created or updated.

The Managed Service Factory must detect whether a PID is being used for the first time, in which
case it should create a new instance, or a subsequent time, in which case it should update an existing
instance.

The Configuration Admin service must call updated(String,Dictionary) on a thread that is different
from the one that executed the registration. This requirement allows an implementation of a Man-
aged Service Factory to use a synchronized method to assure that the callbacks do not interfere with
the Managed Service Factory registration.

The updated(String,Dictionary) method may throw a ConfigurationException object. This object
describes the problem and what property caused the problem. These exceptions should be logged by
a Configuration Admin service.

Multiple Managed Service Factory services can be registered with the same PID. Each of those ser-
vices that have visibility to the corresponding configuration will be updated in service ranking or-
der.

Deletion

If a configuring bundle deletes an instance of a Managed Service Factory, the deleted(String)
method is called. The argument is the PID for this instance. The implementation of the Managed
Service Factory must remove all information and stop any behavior associated with that PID. If a
service was registered for this PID, it should be unregistered.

Deletion will asynchronously send out a Configuration Event CM_DELETED to all registered Config-
uration Listener services.

OSGi Compendium Release 8.1 Page 79

Managed Service Factory Configuration Admin Service Specification Version 1.6

104.6.4

Figure 104.7

104.6.5

Managed Service Factory Example

Figure 104.7 highlights the differences between a Managed Service and a Managed Service Factory. It
shows how a Managed Service Factory implementation receives configuration information that was
created before it was registered.

A bundle implements an EMail Fetcher service. It registers a ManagedServiceFactory object with
PID=com.acme.email.

The Configuration Admin service notices the registration and consults its database. It finds
three Configuration objects for which the factory PID is equal to com.acme.email. It must call
updated(String,Dictionary) for each of these Configuration objects on the newly registered Man-
agedServiceFactory object.

For each configuration dictionary received, the factory should create a new instance of a EMail-
Fetcher object, one for erica (PID=16.1), one for anna (PID=16.3), and one for elmer (PID=16.2).
The EMailFetcher objects are registered under the Topic interface so their results can be viewed
by an online display.

If the EMailFetcher object is registered, it may safely use the PID of the Configuration object be-
cause the Configuration Admin service must guarantee its suitability for this purpose.

Managed Service Factory Example

Configuration
Admin

Managed Service

Factory MailFetchFactory
pid=com.acme.email

I |
I _ _ |4 .
registration creates instances
Associations events OSGi Service at the request of
Registry the Config. Admin
factory pid | pid=16.1 Topic ‘
=com.acme | Name=erica [~ — 1 p|d=16‘1‘
.email pid=16.2 :— - name=erica
name=elmer - — — L .
pid=163 L 4L — — — — — — — pid=16.2
name=anna | name=peter
factory pid |
= ericmf .o pid=163
| | | name=anna
| | |

Multiple Consoles Example

This example illustrates how multiple consoles, each of which has its own port and interface can
run simultaneously. This approach is very similar to the example for the Managed Service, but high-
lights the difference by allowing multiple consoles to be created.

class ExampleFactory implements ManagedServiceFactory{
Hashtable consoles = new Hashtable();
BundleContext context;
public void start(BundleContext context)
throws Exception {
this.context = context;
Hashtable local = new Hashtable();
local. put(Constants. SERVICE_PID, "com.acme.console");
context.registerService(
ManagedServiceFactory.class. getName(),

Page 8o

OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6 Configuration Admin Service

this,
local);
}

public void updated(String pid, Dictionary config){
Console console = (Console) consoles.get(pid);
if (console == null) {
console = new Console(context);
consoles.put(pid, console);

}

int port = getInt(config, "port", 2011);
String network = getString(
config,
"network"”,
null /xallx/
);
console. setPort(port, network);

}

public void deleted(String pid) {
Console console = (Console) consoles.get(pid);
if (console != null) {
consoles. remove (pid);
console.close();

104.7 Configuration Admin Service

The ConfigurationAdmin interface provides methods to maintain configuration data in an OSGi
environment. This configuration information is defined by a number of Configuration objects as-
sociated with specific configuration targets. Configuration objects can be created, listed, modified,
and deleted through this interface. Either a remote management system or the bundles configuring
their own configuration information may perform these operations.

The ConfigurationAdmin interface has methods for creating and accessing Configuration objects for
a Managed Service, as well as methods for managing new Configuration objects for a Managed Ser-
vice Factory.

104.7.1 Creating a Managed Service Configuration Object

A bundle can create a new Managed Service Configuration object with
ConfigurationAdmin.getConfiguration. No create method is offered because doing so could intro-
duce race conditions between different bundles trying to create a Configuration object for the same
Managed Service. The getConfiguration method must atomically create and persistently store an ob-
jectif it does not yet exist.

Two variants of this method are:

getConfiguration(String) - This method is used by a bundle with a given location to configure its
ownManagedService objects. The argument specifies the PID of the targeted service.

getConfiguration(String,String) - This method is used by a management bundle to configure an-
other bundle. Therefore, this management bundle needs the right permission. The first argument

OSGi Compendium Release 8.1 Page 81

Configuration Admin Service Configuration Admin Service Specification Version 1.6

104.7.2

104.7.3

is the PID and the second argument is the location identifier of the targeted ManagedService ob-
ject.

All Configuration objects have a method, getFactoryPid(), which in this case must return null be-
cause the Configuration object is associated with a Managed Service.

Creating a new Configuration object must not initiate a callback to the Managed Service updated
method until the properties are set in the Configuration with the update method.

Creating a Managed Service Factory Configuration Object

The ConfigurationAdmin class provides two sets of methods to create a new Configuration for a
Managed Service Factory. The first set delegates the creation of the unique PID to the Configuration
Admin service. The second set allows the caller to influence the generation of the PID.

The ConfigurationAdmin class provides the following two methods which generate a unique PID
when creating a new Configuration for a Managed Service Factory. A new, unique PID is created for
the Configuration object by the Configuration Admin service. The scheme used for this PID is de-
fined by the Configuration Admin service and is unrelated to the factory PID, which is chosen by
the registering bundle.

createFactoryConfiguration(String) - This method is used by a bundle with a given location to
configure its own ManagedServiceFactory objects. The argument specifies the PID of the target-
ed ManagedServiceFactory object. This factory PID can be obtained from the returned Configura-
tion object with the getFactoryPid() method.

createFactoryConfiguration(String,String) - This method is used by a management bundle to
configure another bundle's ManagedServiceFactory object. The first argument is the PID and the
second is the location identifier of the targeted ManagedServiceFactory object. The factory PID
can be obtained from the returned Configuration object with getFactoryPid method.

The ConfigurationAdmin class provides the following two methods allowing the caller to influence
the generation of the PID when creating a new Configuration for a Managed Service Factory. The
PID for the Configuration object is generated from the provided factory PID and the provided name
by starting with the factory PID, appending a tilde (-' \uoo7e), and then appending the name. The
getFactoryConfiguration methods must atomically create and persistently store a Configuration ob-
jectif it does not yet exist.

getFactoryConfiguration(String,String) - This method is used by a bundle with a given location
to configure its own ManagedServiceFactory objects. The first argument specifies the PID of the
targeted ManagedServiceFactory object. This factory PID can be obtained from the returned Con-
figuration object with the getFactoryPid() method. The second argument specifies the name of
the factory configuration. The generated PID can be obtained from the returned Configuration
object with the getPid() method.

. getFactoryConfiguration(String,String,String) - This method is used by a management bun-
dle to configure another bundle's ManagedServiceFactory object. The first argument is the PID,
the second argument is the name, and the third is the location identifier of the targeted Man-
agedServiceFactory object. The factory PID can be obtained from the returned Configuration ob-
ject with getFactoryPid method. The generated PID can be obtained from the returned Configu-
ration object with the getPid() method.

Creating a new Configuration must not initiate a callback to the Managed Service Factory updated
method until the properties are set in the Configuration object with the update method.

Accessing Existing Configurations

The existing set of Configuration objects can be listed with listConfigurations(String). The argu-
ment is a String object with a filter expression. This filter expression has the same syntax as the
Framework Filter class. For example:

Page 82

OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6 Configuration Admin Service

104.7.4

104.7.5

(&(size=42) (service. factoryPid=xosgix))

The Configuration Admin service must only return Configurations that are visible to the calling
bundle, see Location Binding on page 71.

A single Configuration object is identified with a PID, and can be obtained with
listConfigurations(String) if it is visible. null is returned in both cases when there are no visible
Configuration objects.

The PIDs that are filtered on can be targeted PIDs, see Targeted PIDs on page 69.

Updating a Configuration

The process of updating a Configuration object is the same for Managed Services and

Managed Service Factories. First, listConfigurations(String), getConfiguration(String) or
getFactoryConfiguration(String,String) should be used to get a Configuration object. The properties
can be obtained with Configuration.getProperties. When no update has occurred since this object
was created, getProperties returns null.

New properties can be set by calling Configuration.update. The Configuration Admin ser-

vice must first store the configuration information and then call all configuration targets that

have visibility with the updated method: either the ManagedService.updated(Dictionary) or
ManagedServiceFactory.updated(String,Dictionary) method. If a target service is not registered, the
fresh configuration information must be given to the target when the configuration target service
registers and it has visibility. Each update of the Configuration properties must update a counter in
the Configuration object after the data has been persisted but before the target(s) have been updated
and any events are sent out. This counter is available from the getChangeCount() method.

The update methods in Configuration objects are not executed synchronously with the related tar-
get services updated method. The updated method must be called asynchronously. The Configura-
tion Admin service, however, must have updated the persistent storage before the update method
returns.

The update methods must also asynchronously send out a Configuration Event CM_UPDATED to all
registered Configuration Listeners.

Invoking the update(Dictionary) method results in Configuration Admin service blindly updating
the Configuration object and performing the above outlined actions. This even happens if the updat-
ed set of properties is the same as the already existing properties in the Configuration object.

To optimize configuration updates if the caller does not know whether properties of a Configura-
tion object have changed, the updatelfDifferent(Dictionary) method can be used. The provided dic-
tionary is compared with the existing properties. If there is no change, no action is taken. If there is
any change detected, updatelfDifferent(Dictionary) acts exactly as update(Dictionary). Properties
are compared as follows:

Scalars are compared using equals
Arrays are compared using Arrays.equals
Collections are compared using equals

The boolean result of updatelfDifferent(Dictionary) is true if the Configuration object has been up-
dated.

If the Configuration object has the READ_ONLY attribute set, calling one of the update methods re-
sults in aReadOnlyConfigurationException and the configuration is not changed.

Using Multi-Locations

Sharing configuration between different bundles can be done using multi-locations, see Location
Binding on page 71. A multi-location for a Configuration enables this Configuration to be deliv-

OSGi Compendium Release 8.1 Page 83

Configuration Admin Service Configuration Admin Service Specification Version 1.6

104.7.6

ered to any bundle that has visibility to that configuration. It is also possible that Bundles are inter-
ested in multiple PIDs for one target service, for this reason they can register multiple PIDs for one
service.

For example, a number of bundles require access to the URL of a remote host, associated with the
PID com.acme.host. A manager, aware that this PID is used by different bundles, would need to
specify a location for the Configuration that allows delivery to any bundle. A multi-location, any lo-
cation starting with a question mark achieves this. The part after the question mark has only use if
the system runs with security, it allows the implementation of regions, see Regions on page 84. In
this example a single question mark is used because any Bundle can receive this Configuration. The
manager's code could look like:

Configuration c = admin.getConfiguration("com.acme.host", "?");
Hashtable ht = new Hashtable();

ht.put("host", hostURL);

c.update(ht);

A Bundle interested in the host configuration would register a Managed Service with the following
properties:

service.pid = ["com.acme.host", "com.acme.system"]

The Bundle would be called back for both the com.acme.host and com.acme.system PID and must
therefore discriminate between these two cases. This Managed Service therefore would have a call-
back like:

volatile URL url;
public void updated(Dictionary d) {
if (d.get("service.pid").equals("com.acme.host"))
this.url = new URL(d.get("host"));
if (d.get("service.pid").equals("com.acme.system"))

}

Regions

In certain cases it is necessary to isolate bundles from each other. This will require that the configu-
ration can be separated in regions. Each region can then be configured by a separate manager that is
only allowed to manage bundles in its own region. Bundles can then only see configurations from
their own region. Such a region based system can only be achieved with Java security as this is the
only way to place bundles in a sandbox. This section describes how the Configuration's location
binding can be used to implement regions if Java security is active.

Regions are groups of bundles that share location information among each other but are not willing
to share this information with others. Using the multi-locations, see Location Binding on page 71,
and security it is possible to limit access to a Configuration by using a location name. A Bundle can
only receive a Configuration when it has ConfigurationPermission [location name, TARGET]. It is
therefore possible to create region by choosing a region name for the location. A management agent
then requires ConfigurationPermission [?region-name, CONFIGURE] and a Bundle in the region re-
quires ConfigurationPermission [?region-name, TARGET].

To implement regions, the management agent is required to use multi-locations; without the ques-
tion mark a Configuration is only visible to a Bundle that has the exact location of the Configura-
tion. With a multi-location, the Configuration is delivered to any bundle that has the appropriate
permission. Therefore, if regions are used, no manager should have ConfigurationPermission[,
CONFIGURE] because it would be able to configure anybody. This permission would enable the
manager to set the location to any region or set the location to null. All managers must be restrict-
ed to a permission like ConfigurationPermission[?com.acme.region.x,CONFIGURE]. The resource

Page 84

OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6 Configuration Admin Service

104.7.7

104.7.8

name for a Configuration Permission uses substring matching as in the OSGi Filter, this facility can
be used to simplify the administrative setup and implement more complex sharing schemes.

For example, a management agent works for the region com.acme. It has the following permission:
ConfigurationPermission [?com. acme. x, CONFIGURE]

The manager requires multi-location updates for com.acme.x* (the last full stop is required in this
wildcarding). For the CONFIGURE action the question mark must be specified in the resource name.
The bundles in the region have the permission:

ConfigurationPermission ["?com. acme. alpha”, TARGET]

The question mark must be specified for the TARGET permission. A management agent that needs to
configure Bundles in a region must then do this as follows:

Configuration ¢ = admin.getConfiguration("com.acme.host", "?com.acme.alpha");
Hashtable ht = new Hashtable();

ht.put("host", hostURL);

c.update (ht);

Another, similar, example with two regions:

« system

- application

There is only one manager that manages all bundles. Its permissions look like:

ConfigurationPermission[?system, CONFIGURE]
ConfigurationPermission[?application, CONFIGURE]

A Bundle in the application region can have the following permissions:
ConfigurationPermission[?application, TARGET]

This managed bundle therefore has only visibility to configurations in the application region.

Deletion

A Configuration object that is no longer needed can be deleted with Configuration.delete, which
removes the Configuration object from the database. The database must be updated before the tar-
get service'supdated or deleted method is called. Only services that have received the configuration
dictionary before must be called.

If the target service is a Managed Service Factory, the factory is informed of the deleted Configura-
tion object by a call to ManagedServiceFactory.deleted(String) method. It should then remove the
associated instance. The ManagedServiceFactory.deleted(String) call must be done asynchronously
with respect to Configuration.delete().

When a Configuration object of a Managed Service is deleted, ManagedService.updated is called
with null for the properties argument. This method may be used for clean-up, to revert to default
values, or to unregister a service. This method is called asynchronously from the delete method.

The delete method must also asynchronously send out a Configuration Event CM_DELETED to all
registered Configuration Listeners.

If the Configuration object has the READ_ONLY attribute set, calling the delete method resultsin a
ReadOnlyConfigurationException and the configuration is not deleted.

Updating a Bundle's Own Configuration

The Configuration Admin service specification does not distinguish between updates via a Manage-
ment Agent and a bundle updating its own configuration information (as defined by its location).

OSGi Compendium Release 8.1 Page 85

Configuration Events Configuration Admin Service Specification Version 1.6

104.7.9

104.8

104.8.1

Even if a bundle updates its own configuration information, the Configuration Admin service must
callback the associated target service's updated method.

As a rule, to update its own configuration, a bundle's user interface should only update the config-

uration information and never its internal structures directly. This rule has the advantage that the
events, from the bundle implementation's perspective, appear similar for internal updates, remote
management updates, and initialization.

Configuration Attributes

The Configuration object supports attributes, similar to setting attributes on files in a file system.
Currently only the READ_ONLY attribute is supported.

Attributes can be set by calling the addAttributes(ConfigurationAttribute...) method and
listing the attributes to be added. In the same way attributes can be removed by calling
removeAttributes(ConfigurationAttribute...). Each successful change in attributes is persisted.

A Bundle can only change the attributes if it has Configuration Permission with the ATTRIBUTE ac-
tion. Otherwise a Security Exception is thrown.

The currently set attributes can be queried using the getAttributes() method.

Configuration Events

Configuration Admin can update interested parties of changes in its repository. The model is based
on the white board pattern where Configuration Listener services are registered with the service

registry.

There are two types of Configuration Listener services:

- ConfigurationListener- The default Configuration Listener receives events asynchronously from
the method that initiated the event and on another thread.

- SynchronousConfigurationListener- A Synchronous Configuration Listener is guaranteed to be
called on the same thread as the method call that initiated the event.

The Configuration Listener service will receive ConfigurationEvent objects if important changes
take place. The Configuration Admin service must call the configurationEvent(ConfigurationEvent)
method with such an event. Configuration Events must be delivered in order for each listener as
they are generated. The way events must be delivered is the same as described in Delivering Events of
OSGi Core Release 8.

The ConfigurationEvent object carries a factory PID (getFactoryPid()) and a PID (getPid()). If the
factory PID is null, the event is related to a Managed Service Configuration object, else the event is
related to a Managed Service Factory Configuration object.

The ConfigurationEvent object can deliver the following events from the getType() method:
- CM_DELETED - The Configuration object is deleted.

CM_UPDATED - The Configuration object is updated.
CM_LOCATION_CHANGED - The location of the Configuration object changed.

The Configuration Event also carries the ServiceReference object of the Configuration Admin ser-
vice that generated the event.
Event Admin Service and Configuration Change Events

Configuration events must be delivered asynchronously via the Event Admin service, if present. The
topic of a configuration event must be:

Page 86

OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6 Configuration Plugin

104.9

orgl/osgi/service/cm/ConfigurationEvent/<eventtype>
The <event type> can be any of the following:

CM_DELETED
CM_UPDATED
CM_LOCATION_CHANGED

The properties of a configuration event are:

- cm.factoryPid- (String) The factory PID of the associated Configuration object, if the targetisa
Managed Service Factory. Otherwise not set.

« cm.pid-(String) The PID of the associated Configuration object.
- service-(ServiceReference) The Service Reference of the Configuration Admin service.
service.id - (Long) The Configuration Admin service's ID.

service.objectClass- (String[]) The Configuration Admin service's object class (which must in-
clude org.osgi.service.cm.ConfigurationAdmin)

service.pid- (String) The Configuration Admin service's persistent identity, if set.

Configuration Plugin

The Configuration Admin service allows third-party applications to participate in the configuration
process. Bundles that register a service object under a ConfigurationPlugin interface can process the
configuration dictionary just before it reaches the configuration target service.

Plug-ins allow sufficiently privileged bundles to intercept configuration dictionaries just before they
must be passed to the intended Managed Service or Managed Service Factory but affer the properties
are stored. The changes the plug-in makes are dynamic and must not be stored. The plug-in must on-
ly be called when an update takes place while it is registered and there is a valid dictionary. The plu-
gin is not called when a configuration is deleted.

The ConfigurationPlugin interface has only one method:
modifyConfiguration(ServiceReference,Dictionary). This method inspects or modifies configura-
tion data.

All plug-ins in the service registry must be traversed and called before the properties are passed to
the configuration target service. Each Configuration Plugin object gets a chance to inspect the exist-
ing data, look at the target object, which can be a ManagedService object ora ManagedServiceFac-
tory object, and modify the properties of the configuration dictionary. The changes made by a plug-
in must be visible to plugins that are called later.

ConfigurationPlugin objects should not modify properties that belong to the configuration proper-
ties of the target service unless the implications are understood. This functionality is mainly intend-
ed to provide functions that leverage the Framework service registry. The changes made by the plug-
in should normally not be validated. However, the Configuration Admin must ignore changes to the
automatic properties as described in Automatic Properties on page 73.

For example, a Configuration Plugin service may add a physical location property to a service. This
property can be leveraged by applications that want to know where a service is physically located.
This scenario could be carried out without any further support of the service itself, except for the
general requirement that the service should propagate the public properties it receives from the
Configuration Admin service to the service registry.

OSGi Compendium Release 8.1 Page 87

Configuration Plugin Configuration Admin Service Specification Version 1.6

Figure 104.8

104.9.1

104.9.2

104.9.3

Order of Configuration Plugin Services

a Configuration
object

a Configuration
Admin

4y dated() 2 M§naged
Service
updated-

Factory()

update() modifyConfiguration()
1 2 3

Configuration Configuration Configuration
Plugin A Plugin B Plugin C

Any time when B needs to change a property

Limiting The Targets

A ConfigurationPlugin object may optionally specify a cm.target registration property. This value
is the PID of the configuration target whose configuration updates the ConfigurationPlugin object
wants to intercept.

The ConfigurationPlugin object must then only be called with updates for the configuration target
service with the specified PID. For a factory target service, the factory PID is used and the plugin will
see all instances of the factory. Omitting the cm.target registration property means that it is called
for all configuration updates.

Example of Property Expansion

Consider a Managed Service that has a configuration property service.to with the value
(objectclass=com.acme.Alarm). When the Configuration Admin service sets this property on the
target service, a ConfigurationPlugin object may replace the (objectclass=com.acme.Alarm) filter
with an array of existing alarm systems' PIDs as follows:

ID "service.to=[32434,232,12421,1212]"

A new Alarm Service with service.pid=343 is registered, requiring that the list of the target ser-
vice be updated. The bundle which registered the Configuration Plugin service, therefore, wants
to set the service.to registration property on the target service. It does not do this by calling
ManagedService.updated directly for several reasons:

In a securely configured system, it should not have the permission to make this call or even ob-
tain the target service.

It could get into race conditions with the Configuration Admin service if it had the permissions
in the previous bullet. Both services would compete for access simultaneously.

Instead, it must get the Configuration object from the Configuration Admin service and call the up-
date method on it.

The Configuration Admin service must schedule a new update cycle on another thread, and some-
time in the future must call ConfigurationPlugin.modifyProperties. The ConfigurationPlugin object
could then set the service.to property to [32434,232,12421,1212, 343]. After that, the Configura-
tion Admin service must call updated on the target service with the new service.to list.

Configuration Data Modifications

Modifications to the configuration dictionary are still under the control of the Configuration Admin
service, which must determine whether to accept the changes, hide critical variables, or deny the
changes for other reasons.

Page 88

OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6 Meta Typing

104.9.4

104.9.5

Table 104.2

104.9.6

104.10

The ConfigurationPlugin interface must also allow plugins to detect configuration updates to the
service via the callback. This ability allows them to synchronize the configuration updates with
transient information.

Forcing a Callback

If a bundle needs to force a Configuration Plugin service to be called again, it must fetch the appro-
priate Configuration object from the Configuration Admin service and call the update() method
(the no parameter version) on this object. This call forces an update with the current configuration
dictionary so that all applicable plug-ins get called again.

Calling Order

The order in which the ConfigurationPlugin objects are called must depend on the
service.cmRanking configuration property of the ConfigurationPlugin object. Table 104.2 shows the
usage of the service.cmRanking property for the order of calling the Configuration Plugin services.
In the event of more than one plugin having the same value of service.cmRanking, then the order in
which these are called is undefined.

service.cmRanking Usage For Ordering

service.cmRanking value Description

e The Configuration Plugin service should not modify properties and must
be called before any modifications are made. Any modification from the
Configuration Plugin service is ignored.

>= 0 && <= 1000 The Configuration Plugin service modifies the configuration data. The
calling order should be based on the value of the service.cmRanking prop-
erty.

> 1000 The Configuration Plugin service should not modify data and is called af-

ter all modifications are made. Any modification from the Configuration
Plugin service is ignored.

Manual Invocation

The Configuration Admin service ensures that Configuration Plugin services are automati-
cally called for a Managed Service or a Managed Service Factory as outlined above. If a bundle
needs to get the configuration properties processed by the Configuration Plugin services, the
getProcessedProperties(ServiceReference) method provides this view.

The service reference passed into the method must either point to a Managed Service or Managed
Service Factory registered on behalf of the bundle getting the processed properties. If that service
should not be called by the Configuration Admin service, that service must be registered without a
PID service property.

Meta Typing

This section discusses how the Metatype specification is used in the context of a Configuration Ad-
min service.

When a Managed Service or Managed Service Factory is registered, the service object may also im-
plement the MetaTypeProvider interface.

If the Managed Service or Managed Service Factory object implements the MetaTypeProvider inter-
face, a management bundle may assume that the associated ObjectClassDefinition object can be
used to configure the service.

OSGi Compendium Release 8.1 Page 89

Coordinator Support Configuration Admin Service Specification Version 1.6

104.11

104.12

104.12.1

104.12.2

The ObjectClassDefinition and AttributeDefinition objects contain sufficient information to auto-
matically build simple user interfaces. They can also be used to augment dedicated interfaces with
accurate validations.

When the Metatype specification is used, care should be taken to match the capabilities of the
metatype package to the capabilities of the Configuration Admin service specification. Specifically:

The metatype specification cannot describe nested arrays and lists or arrays/lists of mixed type.

This specification does not address how the metatype is made available to a management system
due to the many open issues regarding remote management.

Coordinator Support

The Coordinator Service Specification on page 613 defines a mechanism for multiple parties to col-
laborate on a common task without a priori knowledge of who will collaborate in that task. The
Configuration Admin service must participate in such scenarios to coordinate with provisioning or
configuration tasks.

If configurations are created, updated or deleted and an implicit coordination exists, the Configura-
tion Admin service must delay notifications until the coordination terminates. However the config-
uration changes must be persisted immediately. Updating a Managed Service or Managed Service
Factory and informing asynchronous listeners is delayed until the coordination terminates, regard-
less of whether the coordination fails or terminates regularly. Registered synchronous listeners will
be informed immediately when the change happens regardless of a coordination.

Capabilities

osgi.implementation Capability

The Configuration Admin implementation bundle must provide the osgi.implementation capabil-
ity with the name osgi.cm. This capability can be used by provisioning tools and during resolution
to ensure that a Configuration Admin implementation is present to manage configurations. The ca-
pability must also declare a uses constraint for the org.osgi.service.cm package and provide the ver-
sion of this specification:

Provide-Capability: osgi.implementation;
osgi.implementation="osgi.cm";
uses:="org.osgi.service.cm";
version:Version="1.6"

This capability must follow the rules defined for the osgi.implementation Namespace on page 711.

Bundles relying on the Configuration Admin service should require the osgi.implementation capa-
bility from the Configuration Admin Service.

Require-Capability: osgi.implementation;
filter:="(&(osgi.implementation=osgi.cm) (version>=1.6) (! (version>=2.0)))

This requirement can be easily generated using the RequireConfigurationAdmin annotation.

osgi.service Capability

The bundle providing the Configuration Admin service must provide a capability in the
osgi.service namespace representing this service. This capability must also declare a uses constraint
for the org.osgi.service.cm package:

Page 9o

OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6 Security

104.13

104.13.1

104.13.2

Provide-Capability: osgi.service;
objectClass:List<String>="org.osgi.service.cm.ConfigurationAdmin";
uses:="org.osgi.service.cm"

This capability must follow the rules defined for the osgi.service Namespace on page 711.

Security

Configuration Permission

Every bundle has the implicit right to receive and configure configurations with a location that ex-
actly matches the Bundle's location or that is null. For all other situations the Configuration Admin
must verify that the configuring and to be updated bundles have a Configuration Permission that
matches the Configuration's location.

The resource name of this permission maps to the location of the Configuration, the location can
control the visibility of a Configuration for a bundle. The resource name is compared with the actu-
al configuration location using the OSGi Filter sub-string matching. The question mark for multi-lo-
cations is part of the given resource name. The Configure Permission has the following actions:

- CONFIGURE - Can manage matching configurations
- TARGET - Can be updated with a matching configuration
ATTRIBUTE - Can manage attributes for matching configuration

To be able to set the location to null requires a ConfigurationPermission[*, CONFIGURE].

It is possible to deny bundles the use of multi-locations by using Conditional Permission Admin's
deny model.

Permissions Summary

Configuration Admin service security is implemented using Service Permission and Configuration
Permission. The following table summarizes the permissions needed by the Configuration Admin
bundle itself, as well as the typical permissions needed by the bundles with which it interacts.

Configuration Admin:

ServicePermission[..ConfigurationAdmin, REGISTER]
ServicePermission[..ManagedService, GET]
ServicePermission[..ManagedServiceFactory, GET]
ServicePermission[..ConfigurationPlugin, GET]
ConfigurationPermission[x, CONFIGURE]
AdminPermission[%, METADATA]

Managed Service:

ServicePermission[..ConfigurationAdmin, GET]
ServicePermission[..ManagedService, REGISTER]
ConfigurationPermission[... , TARGET]
Managed Service Factory:

ServicePermission[..ConfigurationAdmin, GET]

ServicePermission[..ManagedServiceFactory, REGISTER]
ConfigurationPermission[... , TARGET]

OSGi Compendium Release 8.1 Page 91

Security

Configuration Admin Service Specification Version 1.6

104.13.3

Configuration Plugin:

ServicePermission[..ConfigurationPlugin, REGISTER]
Configuration Listener:

ServicePermission[..ConfigurationListener, REGISTER]

The Configuration Admin service must have ServicePermission[ConfigurationAdmin, REGISTER].
It will also be the only bundle that needs the ServicePermission[ManagedService | Man-
agedServiceFactory | ConfigurationPlugin, GET]. No other bundle should be allowed to

have GET permission for these interfaces. The Configuration Admin bundle must also hold
ConfigurationPermission[*,CONFIGURE].

Bundles that can be configured must have the ServicePermission[ManagedService | Man-
agedServiceFactory, REGISTER]. Bundles registering ConfigurationPlugin objects must have
ServicePermission[ConfigurationPlugin, REGISTER]. The Configuration Admin service must trust
all services registered with the ConfigurationPlugin interface. Only the Configuration Admin service
should have ServicePermission[ConfigurationPlugin, GET].

If a Managed Service or Managed Service Factory is implemented by an object that is also reg-
istered under another interface, it is possible, although inappropriate, for a bundle other than
the Configuration Admin service implementation to call the updated method. Security-aware
bundles can avoid this problem by having their updated methods check that the caller has
ConfigurationPermission[*,CONFIGURE].

Bundles that want to change their own configuration need ServicePermission[ConfigurationAdmin,
GET]. A bundle with ConfigurationPermission[*,CONFIGURE] is allowed to access and modify any
Configuration object.

Pre-configuration of bundles requires ConfigurationPermission[location, CONFIGURE] (location can
use the sub-string matching rules of the Filter) because the methods that specify a location require
this permission.

Configuration and Permission Administration

Configuration information has a direct influence on the permissions needed by a bundle. For exam-
ple, when the Configuration Admin Bundle orders a bundle to use port 2011 for a console, that bun-
dle also needs permission for listening to incoming connections on that port.

Both a simple and a complex solution exist for this situation.

The simple solution for this situation provides the bundle with a set of permissions that do not de-
fine specific values but allow a range of values. For example, a bundle could listen to ports above
1024 freely. All these ports could then be used for configuration.

The other solution is more complicated. In an environment where there is very strong security, the
bundle would only be allowed access to a specific port. This situation requires an atomic update of
both the configuration data and the permissions. If this update was not atomic, a potential security
hole would exist during the period of time that the set of permissions did not match the configura-
tion.

The following scenario can be used to update a configuration and the security permissions:

Stop the bundle.

Update the appropriate Configuration object via the Configuration Admin service.
Update the permissions in the Framework.

Start the bundle.

Ll e

This scenario would achieve atomicity from the point of view of the bundle.

Page 92

OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

104.14

104.14.1

104.14.2

104.14.2.1

org.osgi.service.cm

Configuration Admin Package Version 1.6.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the APIin this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:
Import-Package: org.osgi.service.cm; version="[1.6,2.0)"
Example import for providers implementing the API in this package:

Import-Package: org.osgi.service.cm; version="[1.6,1.7)"

Summary

Configuration - The configuration information for a ManagedService or ManagedServiceFacto-
ry object.

Configuration.ConfigurationAttribute - Configuration Attributes.

ConfigurationAdmin - Service for administering configuration data.

ConfigurationConstants - Defines standard constants for the Configuration Admin service.
ConfigurationEvent - A Configuration Event.

ConfigurationException - An Exception class to inform the Configuration Admin service of
problems with configuration data.

ConfigurationListener - Listener for Configuration Events.

ConfigurationPermission - Indicates a bundle's authority to configure bundles or be updated by
Configuration Admin.

ConfigurationPlugin - A service interface for processing configuration dictionary before the up-
date.

ManagedService - A service that can receive configuration data from a Configuration Admin
service.

ManagedServiceFactory - Manage multiple service instances.

ReadOnlyConfigurationException - An Exception class to inform the client of a Configuration
about the read only state of a configuration object.

SynchronousConfigurationListener - Synchronous Listener for Configuration Events.

Permissions

Configuration

setBundleLocation(String)

. ConfigurationPermission[this.location, CONFIGURE] - if this.location is not null

- ConfigurationPermission[location, CONFIGURE] - if location is not null
ConfigurationPermission["x",CONFIGURE] - if this.location is null or if location is null

getBundleLocation()
ConfigurationPermission[this.location,CONFIGURE] - if this.location is not null
ConfigurationPermission["x",CONFIGURE] - if this.location is null

addAttributes(ConfigurationAttribute...)

. ConfigurationPermission[this.location,ATTRIBUTE] - if this.location is not null
ConfigurationPermission["",ATTRIBUTE] - if this.location is null

removeAttributes(ConfigurationAttribute...)

OSGi Compendium Release 8.1 Page 93

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

. ConfigurationPermission[this.location,ATTRIBUTE] - if this.location is not null
ConfigurationPermission["",ATTRIBUTE] - if this.location is null

104.14.2.2 ConfigurationAdmin

createFactoryConfiguration(String,String)
ConfigurationPermission[location,CONFIGURE] - if location is not null
. ConfigurationPermission["x",CONFIGURE] - if location is null
. getConfiguration(String,String)

ConfigurationPermission[*,CONFIGURE] - if location is null or if the returned configuration c
already exists and c.location is null

ConfigurationPermission[location,CONFIGURE] - if location is not null

ConfigurationPermission[c.location,CONFIGURE] - if the returned configuration c already ex-
ists and c.location is not null

getConfiguration(String)

ConfigurationPermission[c.location,CONFIGURE] - If the configuration c already exists and
clocation is not null

getFactoryConfiguration(String,String,String)

ConfigurationPermission[*,CONFIGURE] - if location is null or if the returned configuration ¢
already exists and c.location is null

ConfigurationPermission[location,CONFIGURE] - if location is not null

ConfigurationPermission[c.location,CONFIGURE] - if the returned configuration c already ex-
ists and c.location is not null

getFactoryConfiguration(String,String)

- ConfigurationPermission[c.location,CONFIGURE] - If the configuration c already exists and
clocation is not null

. listConfigurations(String)

- ConfigurationPermission[c.location,CONFIGURE] - Only configurations c are returned for
which the caller has this permission

104.14.2.3 ManagedService

updated(Dictionary)

ConfigurationPermission[c.location,TARGET] - Required by the bundle that registered this
service

104.14.2.4 ManagedServiceFactory

. updated(String,Dictionary)
- ConfigurationPermission[c.location,TARGET] - Required by the bundle that registered this
service

104.14.3 public interface Configuration

The configuration information for a ManagedService or ManagedServiceFactory object. The Con-
figuration Admin service uses this interface to represent the configuration information for a Man-
agedService or for a service instance of a ManagedServiceFactory.

A Configuration object contains a configuration dictionary and allows the properties to be updated
via this object. Bundles wishing to receive configuration dictionaries do not need to use this class -
they register a ManagedService or ManagedServiceFactory. Only administrative bundles, and bun-
dles wishing to update their own configurations need to use this class.

The properties handled in this configuration have case insensitive String objects as keys. However,
case must be preserved from the last set key/value.

Page 94 OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

Concurrency

Provider Type

104.14.3.1

104.14.3.2

104.14.3.3

attrs
m]

Throws

Security

Since

Throws

other

Returns

A configuration can be bound to a specific bundle or to a region of bundles using the location. In
its simplest form the location is the location of the target bundle that registered a Managed Ser-
vice or a Managed Service Factory. However, if the location starts with ? then the location indi-
cates multiple delivery. In such a case the configuration must be delivered to all targets. If securi-
ty is on, the Configuration Permission can be used to restrict the targets that receive updates. The
Configuration Admin must only update a target when the configuration location matches the lo-
cation of the target's bundle or the target bundle has a Configuration Permission with the action
ConfigurationPermission.TARGET and a name that matches the configuration location. The name
in the permission may contain wildcards ('*') to match the location using the same substring
matching rules as Filter. Bundles can always create, manipulate, and be updated from configura-
tions that have a location that matches their bundle location.

If a configuration's location is null, it is not yet bound to a location. It will become bound to the loca-
tion of the first bundle that registers a ManagedService or ManagedServiceFactory object with the
corresponding PID.

The same Configuration object is used for configuring both a Managed Service Factory and a Man-
aged Service. When it is important to differentiate between these two the term "factory configura-
tion"is used.

Thread-safe

Consumers of this API must not implement this type

public void addAttributes(Configuration.ConfigurationAttribute... attrs) throws IOException
The attributes to add.

Add attributes to the configuration.

|OException—If the new state cannot be persisted.

IllegalStateException—If this configuration has been deleted.

SecurityException— when the required permissions are not available
ConfigurationPermission[this.location,ATTRIBUTE]] — if this.location is not null
ConfigurationPermission["*",ATTRIBUTE]] — if this.location is null

1.6

public void delete() throws IOException
Delete this Configuration object.

Removes this configuration object from the persistent store. Notify asynchronously the correspond-
ing Managed Service or Managed Service Factory. A ManagedService object is notified by a call to its
updated method with a null properties argument. A ManagedServiceFactory object is notified by a
call to its deleted method.

Also notifies all Configuration Listeners with a ConfigurationEvent.CM_DELETED event.
ReadOnlyConfigurationException—If the configuration is read only.
|OException—If delete fails.

IllegalStateException—If this configuration has been deleted.

public boolean equals(Object other)
Configuration object to compare against

Equality is defined to have equal PIDs Two Configuration objects are equal when their PIDs are
equal.

trueif equal, false if not a Configuration object or one with a different PID.

OSGi Compendium Release 8.1 Page 95

org.osgi.service.cm

Configuration Admin Service Specification Version 1.6

104.14.3.4
m]
Returns
Throws

Since

104.14.3.5

Returns

Throws

Security

104.14.3.6

Returns
Throws

Since

104.14.3.7

Returns

Throws

104.14.3.8
m]
Returns

Throws

104.14.3.9

reference

public Set<Configuration.ConfigurationAttribute> getAttributes()
Get the attributes of this configuration.

The set of attributes.

IllegalStateException—If this configuration has been deleted.

1.6

public String getBundleLocation()

Get the bundle location. Returns the bundle location or region to which this configuration is bound,
or nullif it is not yet bound to a bundle location or region. If the location starts with ? then the con-
figuration is delivered to all targets and not restricted to a single bundle.

location to which this configuration is bound, or null.

IllegalStateException—If this configuration has been deleted.
SecurityException—when the required permissions are not available
ConfigurationPermission[this.location,CONFIGURE]] — if this.location is not null
ConfigurationPermission["x",CONFIGURE]] — if this.location is null

public long getChangeCount()

Get the change count. Each Configuration must maintain a change counter that is incremented
with a positive value every time the configuration is updated and its properties are stored. The
counter must be incremented before the targets are updated and events are sent out.

A monotonically increasing value reflecting changes in this Configuration.
IllegalStateException—If this configuration has been deleted.

15

public String getFactoryPid()

For a factory configuration return the PID of the corresponding Managed Service Factory, else return
null.

factory PID or null

IllegalStateException—If this configuration has been deleted.

public String getPid()
Get the PID for this Configuration object.
the PID for this Configuration object.

IllegalStateException—if this configuration has been deleted

public Dictionary<String, Object> getProcessedProperties(ServiceReference<?> reference)

The reference to the Managed Service or Managed Service Factory to pass to the registered Configu-
rationPlugins handling this configuration. Must not be null.

Return the processed properties of this Configuration object.

The Dictionary object returned is a private copy for the caller and may be changed without influenc-
ing the stored configuration. The keys in the returned dictionary are case insensitive and are always
of type String.

Before the properties are returned they are processed by all the registered ConfigurationPlugins han-
dling this configuration.

Page 96

OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6

org.osgi.service.cm

Returns

Throws

Since

104.14.3.10

Returns

Throws

104.14.3.11

Returns

104.14.3.12
attrs
o

Throws

Security

Since

104.14.3.13
location

[}

If called just after the configuration is created and before update has been called, this method re-
turns null.

A private copy of the processed properties for the caller or null. These properties must not contain
the "service.bundleLocation" property. The value of this property may be obtained from the get-
BundleLocation() method.

IllegalStateException—1If this configuration has been deleted.

1.6

public Dictionary<String, Object> getProperties()

Return the properties of this Configuration object. The Dictionary object returned is a private copy
for the caller and may be changed without influencing the stored configuration. The keys in the re-
turned dictionary are case insensitive and are always of type String.

If called just after the configuration is created and before update has been called, this method re-
turns null.

A private copy of the properties for the caller or null. These properties must not contain the
"service.bundleLocation" property. The value of this property may be obtained from the getBundle-
Location() method.

IllegalStateException—If this configuration has been deleted.

public int hashCode()

Hash code is based on PID. The hash code for two Configuration objects must be the same when the
Configuration PID's are the same.

hash code for this Configuration object

public void removeAttributes(Configuration.ConfigurationAttribute... attrs) throws IOException
The attributes to remove.

Remove attributes from this configuration.

|OException—If the new state cannot be persisted.

IllegalStateException—If this configuration has been deleted.

SecurityException— when the required permissions are not available
ConfigurationPermission[this.location,ATTRIBUTE]] — if this.location is not null
ConfigurationPermission["x",ATTRIBUTE]] — if this.location is null

1.6

public void setBundleLocation(String location)
a location, region, or null

Bind this Configuration object to the specified location. If the location parameter is null then the
Configuration object will not be bound to a location/region. It will be set to the bundle's location be-
fore the first time a Managed Service/Managed Service Factory receives this Configuration object via
the updated method and before any plugins are called. The bundle location or region will be set per-
sistently.

If the location starts with ? then all targets registered with the given PID must be updated.

If the location is changed then existing targets must be informed. If they can no longer see this con-
figuration, the configuration must be deleted or updated with null. If this configuration becomes
visible then they must be updated with this configuration.

OSGi Compendium Release 8.1

Page 97

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Throws

Security

104.14.3.14

properties

]

Throws

104.14.3.15

Throws

See Also

104.14.3.16

properties

O

Also notifies all Configuration Listeners with a ConfigurationEvent.CM_LOCATION_CHANGED
event.

IllegalStateException—If this configuration has been deleted.
SecurityException— when the required permissions are not available
ConfigurationPermission[this.location, CONFIGURE]] — if this.location is not null
ConfigurationPermission[location,CONFIGURE]] — if location is not null

ConfigurationPermission["x",CONFIGURE]] — if this.location is null or if location is null

public void update(Dictionary<String, ?> properties) throws IOException
the new set of properties for this configuration
Update the properties of this Configuration object.

Stores the properties in persistent storage after adding or overwriting the following properties:

"service.pid":is set to be the PID of this configuration.
. "service.factoryPid":if this is a factory configuration it is set to the factory PID else it is not set.

These system properties are all of type String.

If the corresponding Managed Service/Managed Service Factory is registered, its updated method
must be called asynchronously. Else, this callback is delayed until aforementioned registration oc-
curs.

Also notifies all Configuration Listeners with a ConfigurationEvent.CM_UPDATED event.
ReadOnlyConfigurationException—If the configuration is read only.
|OException—if update cannot be made persistent

IllegalArgumentException—if the Dictionary object contains invalid configuration types or contains
case variants of the same key name.

IllegalStateException—If this configuration has been deleted.

public void update() throws IOException

Update the Configuration object with the current properties. Initiate the updated callback to the
Managed Service or Managed Service Factory with the current properties asynchronously.

This is the only way for a bundle that uses a Configuration Plugin service to initiate a callback. For
example, when that bundle detects a change that requires an update of the Managed Service or Man-
aged Service Factory via its ConfigurationPlugin object.

|IOException—if update cannot access the properties in persistent storage
IllegalStateException—If this configuration has been deleted.

ConfigurationPlugin

public boolean updatelfDifferent(Dictionary<String, ?> properties) throws IOException
The new set of properties for this configuration.
Update the properties of this Configuration object if the provided properties are different than the

currently stored set. Properties are compared as follows.

Scalars are compared using equals
Arrays are compared using Arrays.equals
- Collections are compared using equals

Page 98

OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

Returns

Throws

Since
104.14.4

Since
104.14.4.1
104.14.4.2
104.14.4.3
104.14.5

If the new properties are not different than the current properties, no operation is performed. Other-
wise, the behavior of this method is identical to the update(Dictionary) method.

If the properties are different and the configuration is updated true is returned. If the properties are
the same, false is returned.

ReadOnlyConfigurationException—If the configuration is read only.
|OException—If update cannot be made persistent.

IllegalArgumentException—If the Dictionary object contains invalid configuration types or contains
case variants of the same key name.

IllegalStateException—If this configuration has been deleted.

1.6

enum Configuration.ConfigurationAttribute
Configuration Attributes.

1.6

READ_ONLY

The configuration is read only.

public static Configuration.ConfigurationAttribute valueOf(String name)

public static Configuration.ConfigurationAttribute[] values()

public interface ConfigurationAdmin
Service for administering configuration data.

The main purpose of this interface is to store bundle configuration data persistently. This informa-
tion is represented in Configuration objects. The actual configuration data is a Dictionary of proper-
ties inside a Configuration object.

There are two principally different ways to manage configurations. First there is the concept of a
Managed Service, where configuration data is uniquely associated with an object registered with the
service registry.

Next, there is the concept of a factory where the Configuration Admin service will maintain 0 or
more Configuration objects for a Managed Service Factory that is registered with the Framework.

The first concept is intended for configuration data about "things/services” whose existence is de-
fined externally, e.g. a specific printer. Factories are intended for "things/services" that can be created
any number of times, e.g. a configuration for a DHCP server for different networks.

Bundles that require configuration should register a Managed Service or a Managed Service Factory
in the service registry. A registration property named service.pid (persistent identifier or PID) must
be used to identify this Managed Service or Managed Service Factory to the Configuration Admin
service.

When the ConfigurationAdmin detects the registration of a Managed Service, it checks its persis-
tent storage for a configuration object whose service.pid property matches the PID service property
(service.pid) of the Managed Service. If found, it calls ManagedService.updated(Dictionary) method
with the new properties. The implementation of a Configuration Admin service must run these call-
backs asynchronously to allow proper synchronization.

When the Configuration Admin service detects a Managed Service Factory registration, it checks
its storage for configuration objects whose service.factoryPid property matches the PID ser-
vice property of the Managed Service Factory. For each such Configuration objects, it calls the

OSGi Compendium Release 8.1 Page 99

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Concurrency

ManagedServiceFactory.updated method asynchronously with the new properties. The calls to
the updated method of a ManagedServiceFactory must be executed sequentially and not overlap in
time.

In general, bundles having permission to use the Configuration Admin service can only access and
modify their own configuration information. Accessing or modifying the configuration of other
bundles requires ConfigurationPermission[location, CONFIGURE], where location is the configura-
tion location.

Configuration objects can be bound to a specified bundle location or to a region (configuration loca-
tion starts with ?). If a location is not set, it will be learned the first time a target is registered. If the
location is learned this way, the Configuration Admin service must detect if the bundle correspond-
ing to the location is uninstalled. If this occurs, the Configuration object must be unbound, that is
its location field is set back to null.

If target's bundle location matches the configuration location it is always updated.

If the configuration location starts with ?, that is, the location is a region, then the configuration
must be delivered to all targets registered with the given PID. If security is on, the target bundle
must have Configuration Permission[location, TARGET], where location matches given the configu-
ration location with wildcards as in the Filter substring match. The security must be verified using
the org.osgi.framework.Bundle hasPermission(Object) method on the target bundle.

If a target cannot be updated because the location does not match or it has no permission and securi-
ty is active then the Configuration Admin service must not do the normal callback.

The method descriptions of this class refer to a concept of "the calling bundle". This is a loose way of
referring to the bundle which obtained the Configuration Admin service from the service registry.
Implementations of ConfigurationAdmin must use a org.osgi.framework.ServiceFactory to support
this concept.

Thread-safe

Provider Type Consumers of this API must not implement this type

104.14.5.1

104.14.5.2

104.14.5.3

Since

Since

public static final String SERVICE_BUNDLELOCATION = "service.bundleLocation"

Configuration property naming the location of the bundle that is associated with a Configuration
object. This property can be searched for but must not appear in the configuration dictionary for se-
curity reason. The property's value is of type String.

1.1
public static final String SERVICE_FACTORYPID = "service.factoryPid"

Configuration property naming the Factory PID in the configuration dictionary. The property's val-
ue is of type String.

1.1

public Configuration createFactoryConfiguration(String factoryPid) throws IOException

factoryPid PID of factory (not null).

]

Returns

Throws

Create a new factory Configuration object with a new PID. The properties of the new Configuration
object are null until the first time that its Configuration.update(Dictionary) method is called.

It is not required that the factoryPid maps to a registered Managed Service Factory.

The Configuration object is bound to the location of the calling bundle. It is possible that the same
factoryPid has associated configurations that are bound to different bundles. Bundles should only
see the factory configurations that they are bound to or have the proper permission.

A new Configuration object.

|OException—if access to persistent storage fails.

Page 100

OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

104.14.5.4
factoryPid
location

[m}

Returns

Throws

Security

104.14.5.5
pid
location

[m}

Returns

Throws

Security

104.14.5.6
pid

public Configuration createFactoryConfiguration(String factoryPid, String location) throws IOException
PID of factory (not null).
A bundle location string, or null.

Create a new factory Configuration object with a new PID. The properties of the new Configuration
object are null until the first time that its Configuration.update(Dictionary) method is called.

Itis not required that the factoryPid maps to a registered Managed Service Factory.

The Configuration is bound to the location specified. If this location is null it will be bound to the
location of the first bundle that registers a Managed Service Factory with a corresponding PID. It is
possible that the same factoryPid has associated configurations that are bound to different bundles.
Bundles should only see the factory configurations that they are bound to or have the proper per-
mission.

If the location starts with ? then the configuration must be delivered to all targets with the corre-
sponding PID.

anew Configuration object.

IOException—if access to persistent storage fails.
SecurityException—when the require permissions are not available
ConfigurationPermission[location,CONFIGURE]] — if location is not null

ConfigurationPermission["x",CONFIGURE]] — if location is null

public Configuration getConfiguration(String pid, String location) throws IOException

Persistent identifier.

The bundle location string, or null.

Get an existing Configuration object from the persistent store, or create a new Configuration object.

If a Configuration with this PID already exists in Configuration Admin service return it. The loca-
tion parameter is ignored in this case though it is still used for a security check.

Else, return a new Configuration object. This new object is bound to the location and the properties
are set to null. If the location parameter is null, it will be set when a Managed Service with the cor-
responding PID is registered for the first time. If the location starts with ? then the configuration is
bound to all targets that are registered with the corresponding PID.

An existing or new Configuration object.
IOException—if access to persistent storage fails.
SecurityException—when the require permissions are not available

ConfigurationPermission[*,CONFIGURE]] — if location is null or if the returned configuration c al-
ready exists and c.location is null

ConfigurationPermission[location,CONFIGURE]] — if location is not null
ConfigurationPermission[c.location,CONFIGURE]] — if the returned configuration c already exists
and c.location is not null

public Configuration getConfiguration(String pid) throws IOException

persistent identifier.

Get an existing or new Configuration object from the persistent store. If the Configuration object
for this PID does not exist, create a new Configuration object for that PID, where properties are null.
Bind its location to the calling bundle's location.

OSGi Compendium Release 8.1 Page 101

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

104.14.5.7

Returns

Throws

Security

factoryPid

104.14.5.8

name
location

]

Returns

Throws

Security

Since

factoryPid

name

O

Returns

Throws

Otherwise, if the location of the existing Configuration object is null, set it to the calling bundle's lo-
cation.

an existing or new Configuration matching the PID.

IOException—if access to persistent storage fails.

SecurityException— when the required permission is not available
ConfigurationPermission[c.location,CONFIGURE]] — If the configuration c already exists and
c.location is not null

public Configuration getFactoryConfiguration(String factoryPid, String name, String location) throws
IOException

PID of factory (not null).

A name for Configuration (not null).

The bundle location string, or null.

Get an existing or new Configuration object from the persistent store. The PID for this Configuration
object is generated from the provided factory PID and the name by starting with the factory PID ap-
pending a tilde ('-'\uOO7E), and then appending the name.

If a Configuration with this PID already exists in Configuration Admin service return it. The loca-
tion parameter is ignored in this case though it is still used for a security check.

Else, return a new Configuration object. This new object is bound to the location and the properties
are set to null. If the location parameter is null, it will be set when a Managed Service with the cor-
responding PID is registered for the first time. If the location starts with ? then the configuration is
bound to all targets that are registered with the corresponding PID.

An existing or new Configuration object.
IOException—if access to persistent storage fails.
SecurityException—when the require permissions are not available

ConfigurationPermission[*,CONFIGURE]] — if location is null or if the returned configuration c al-
ready exists and c.location is null

ConfigurationPermission[location,CONFIGURE]] — if location is not null

ConfigurationPermission[c.location,CONFIGURE]] — if the returned configuration c already exists
and c.location is not null

1.6

public Configuration getFactoryConfiguration(String factoryPid, String name) throws IOException
PID of factory (not null).
A name for Configuration (not null).

Get an existing or new Configuration object from the persistent store. The PID for this Configuration
object is generated from the provided factory PID and the name by starting with the factory PID ap-
pending a tilde (-'\uOO7E), and then appending the name.

If a Configuration object for this PID does not exist, create a new Configuration object for that PID,
where properties are null. Bind its location to the calling bundle's location.

Otherwise, if the location of the existing Configuration object is null, set it to the calling bundle's lo-
cation.

an existing or new Configuration matching the PID.

|IOException—if access to persistent storage fails.

Page 102

OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

Security
Since
104.14.5.9
filter
o
Returns
Throws
Security
104.14.6
104.14.6.1
Since
104.14.6.2
Since
104.14.7

SecurityException— when the required permission is not available

ConfigurationPermission[c.location,CONFIGURE]] — If the configuration c already exists and
c.location is not null

1.6

public Configuration[] listConfigurations(String filter) throws IOException, InvalidSyntaxException
A filter string, or null to retrieve all Configuration objects.
List the current Configuration objects which match the filter.

Only Configuration objects with non- null properties are considered current. That is,
Configuration.getProperties() is guaranteed not to return null for each of the returned Configura-
tion objects.

When there is no security on then all configurations can be returned. If security is on, the caller
must have ConfigurationPermission[location, CONFIGURE].

The syntax of the filter string is as defined in the Filter class. The filter can test any configuration
properties including the following:

service.pid - the persistent identity
. service.factoryPid - the factory PID, if applicable
service.bundleLocation - the bundle location
The filter can also be null, meaning that all Configuration objects should be returned.
All matching Configuration objects, or null if there aren't any.
|IOException—if access to persistent storage fails
InvalidSyntaxException—if the filter string is invalid
ConfigurationPermission[c.location,CONFIGURE]] — Only configurations c are returned for which
the caller has this permission
public final class ConfigurationConstants

Defines standard constants for the Configuration Admin service.

public static final String CONFIGURATION_ADMIN_IMPLEMENTATION = "osgi.cm"
The name of the implementation capability for the Configuration Admin specification

1.6

public static final String CONFIGURATION_ADMIN_SPECIFICATION_VERSION = "1.6"
The version of the implementation capability for the Configuration Admin specification

1.6

public class ConfigurationEvent
A Configuration Event.

ConfigurationEvent objects are delivered to all registered ConfigurationListener service objects.
ConfigurationEvents must be delivered in chronological order with respect to each listener.

A type code is used to identify the type of event. The following event types are defined:
. CM_UPDATED

CM_DELETED
CM_LOCATION_CHANGED

OSGi Compendium Release 8.1 Page 103

org.osgi.service.cm

Configuration Admin Service Specification Version 1.6

See Also
Since
Concurrency
104.14.7.1
104.14.7.2
Since
104.14.7.3
104.14.7.4
reference
type
factoryPid
pid
o
104.14.7.5
m]
Returns
104.14.7.6
m]
Returns
104.14.7.7
m]

Additional event types may be defined in the future.

Security Considerations. ConfigurationEvent objects do not provide Configuration objects, so no
sensitive configuration information is available from the event. If the listener wants to locate the
Configuration object for the specified pid, it must use ConfigurationAdmin.

ConfigurationListener
1.2

Immutable

public static final int CM_DELETED = 2

A Configuration has been deleted.

This ConfigurationEvent type that indicates that a Configuration object has been deleted. An event
is fired when a call to Configuration.delete() successfully deletes a configuration.

public static final int CM_LOCATION_CHANGED = 3

The location of a Configuration has been changed.

This ConfigurationEvent type that indicates that the location of a Configuration object has been
changed. An event is fired when a call to Configuration.setBundleLocation(String) successfully
changes the location.

14

public static final int CM_UPDATED =1
A Configuration has been updated.

This ConfigurationEvent type that indicates that a Configuration object has been updated with new
properties. An event is fired when a call to Configuration.update(Dictionary) successfully changes a
configuration.

public ConfigurationEvent(ServiceReference<ConfigurationAdmin> reference, int type, String factoryPid,
String pid)

The ServiceReference object of the Configuration Admin service that created this event.

The event type. See getType().

The factory pid of the associated configuration if the target of the configuration is a ManagedSer-
viceFactory. Otherwise nullif the target of the configuration is a ManagedService.

The pid of the associated configuration.

Constructs a ConfigurationEvent object from the given ServiceReference object, event type, and
pids.

public String getFactoryPid()

Returns the factory pid of the associated configuration.

Returns the factory pid of the associated configuration if the target of the configuration is a Man-
agedServiceFactory. Otherwise null if the target of the configuration is a ManagedService.

public String getPid()

Returns the pid of the associated configuration.

Returns the pid of the associated configuration.

public ServiceReference<ConfigurationAdmin> getReference()

Return the ServiceReference object of the Configuration Admin service that created this event.

Page 104

OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6

org.osgi.service.cm

Returns

104.14.7.8

Returns

104.14.8

104.14.8.1
property
reason

]

104.14.8.2
property
reason
cause
m]

Since

104.14.8.3
m]
Returns

Since

104.14.8.4
m]

Returns

104.14.8.5
m]

Returns

104.14.8.6
cause
o
Returns

Throws

The ServiceReference object for the Configuration Admin service that created this event.
public int getType()
Return the type of this event.
The type values are:
CM_UPDATED

CM_DELETED
CM_LOCATION CHANGED

The type of this event.

public class ConfigurationException
extends Exception

An Exception class to inform the Configuration Admin service of problems with configuration data.

public ConfigurationException(String property, String reason)
name of the property that caused the problem, nullif no specific property was the cause
reason for failure

Create a ConfigurationException object.

public ConfigurationException(String property, String reason, Throwable cause)

name of the property that caused the problem, nullif no specific property was the cause
reason for failure

The cause of this exception.

Create a ConfigurationException object.

1.2

public Throwable getCause()
Returns the cause of this exception or null if no cause was set.
The cause of this exception or null if no cause was set.

1.2

public String getProperty()
Return the property name that caused the failure or null.

name of property or null if no specific property caused the problem

public String getReason()
Return the reason for this exception.

reason of the failure

public Throwable initCause(Throwable cause)

The cause of this exception.

Initializes the cause of this exception to the specified value.
This exception.

IllegalArgumentException—If the specified cause is this exception.

OSGi Compendium Release 8.1

Page 105

org.osgi.service.cm

Configuration Admin Service Specification Version 1.6

Since

104.14.9

Since

Concurrency

104.14.9.1

event

104.14.10

Since

Concurrency

104.14.10.1

Since

104.14.10.2

104.14.10.3

Since

104.14.10.4

name

actions
m]
104.14.10.5

obj

IllegalStateException—If the cause of this exception has already been set.

1.2

public interface ConfigurationListener

Listener for Configuration Events. When a ConfigurationEvent is fired, it is asynchronously deliv-
ered to all ConfigurationListeners.

ConfigurationListener objects are registered with the Framework service registry and are notified
with a ConfigurationEvent object when an event is fired.

ConfigurationListener objects can inspect the received ConfigurationEvent object to determine its
type, the pid of the Configuration object with which it is associated, and the Configuration Admin
service that fired the event.

Security Considerations. Bundles wishing to monitor configuration events will require
ServicePermission[ConfigurationListener,REGISTER] to register a ConfigurationListener service.

1.2
Thread-safe

public void configurationEvent(ConfigurationEvent event)
The ConfigurationEvent.

Receives notification of a Configuration that has changed.

public final class ConfigurationPermission
extends BasicPermission

Indicates a bundle's authority to configure bundles or be updated by Configuration Admin.
1.2
Thread-safe

public static final String ATTRIBUTE = "attribute"
Provides permission to set or remove an attribute on the configuration. The action string "attribute".

1.6

public static final String CONFIGURE = "configure"

Provides permission to create new configurations for other bundles as well as manipulate them. The
action string "configure".

public static final String TARGET = "target"

The permission to be updated, that is, act as a Managed Service or Managed Service Factory. The ac-
tion string "target".

14
public ConfigurationPermission(String name, String actions)

Name of the permission. Wildcards (*') are allowed in the name. During implies(Permission), the
name is matched to the requested permission using the substring matching rules used by Filters.

Comma separated list of CONFIGURE, TARGET, ATTRIBUTE (case insensitive).
Create a new ConfigurationPermission.
public boolean equals(Object obj)

The object being compared for equality with this object.

Page 106

OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6

org.osgi.service.cm

[m}

Returns

104.14.10.6
m]
Returns
104.14.10.7
]
Returns
104.14.10.8
p
m]
Returns
104.14.10.9
m]
Returns
104.14.11

Determines the equality of two ConfigurationPermission objects.
Two ConfigurationPermission objects are equal.

true if objis equivalent to this ConfigurationPermission; false otherwise.

public String getActions()
Returns the canonical string representation of the ConfigurationPermission actions.

Always returns present ConfigurationPermission actions in the following order: "configure”, "tar-
get", "attribute".

Canonical string representation of the ConfigurationPermission actions.

public int hashCode()
Returns the hash code value for this object.

Hash code value for this object.

public boolean implies(Permission p)
The target permission to check.
Determines if a ConfigurationPermission object “implies” the specified permission.

true if the specified permission is implied by this object; false otherwise.

public PermissionCollection newPermissionCollection()
Returns a new PermissionCollection object suitable for storing ConfigurationPermissions.

A new PermissionCollection object.

public interface ConfigurationPlugin
A service interface for processing configuration dictionary before the update.

A bundle registers a ConfigurationPlugin object in order to process configuration updates before
they reach the Managed Service or Managed Service Factory. The Configuration Admin service will
detect registrations of Configuration Plugin services and must call these services every time before
it calls the ManagedService or ManagedServiceFactory updated method. The Configuration Plug-
in service thus has the opportunity to view and modify the properties before they are passed to the
Managed Service or Managed Service Factory.

Configuration Plugin (plugin) services have full read/write access to all configuration information
that passes through them.

The Integerservice.cmRanking registration property may be specified. Not specifying this registra-
tion property, or setting it to something other than an Integer, is the same as setting it to the Inte-
ger zero. The service.cmRanking property determines the order in which plugins are invoked. Low-
er ranked plugins are called before higher ranked ones. In the event of more than one plugin having
the same value of service.cmRanking, then the Configuration Admin service arbitrarily chooses the
order in which they are called.

By convention, plugins with service.cmRanking < o orservice.cmRanking > 1000 should not make
modifications to the properties. Any modifications made by such plugins must be ignored.

The Configuration Admin service has the right to hide properties from plugins, or to ignore some or
all the changes that they make. This might be done for security reasons. Any such behavior is entire-
ly implementation defined.

OSGi Compendium Release 8.1

Page 107

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

Concurrency

104.14.11.1

Since

104.14.11.2

104.14.11.3
reference

properties

104.14.12

A plugin may optionally specify a cm.target registration property whose value is the PID of the
Managed Service or Managed Service Factory whose configuration updates the plugin is intended
to intercept. The plugin will then only be called with configuration updates that are targeted at the
Managed Service or Managed Service Factory with the specified PID. Omitting the cm.target regis-
tration property means that the plugin is called for all configuration updates.

Thread-safe

public static final String CM_RANKING = "service.cmRanking"

A service property to specify the order in which plugins are invoked. This property contains an In-
teger ranking of the plugin. Not specifying this registration property, or setting it to something oth-
er than an Integer, is the same as setting it to the Integer zero. This property determines the order in
which plugins are invoked. Lower ranked plugins are called before higher ranked ones.

1.2

public static final String CM_TARGET = "cm.target"

A service property to limit the Managed Service or Managed Service Factory configuration dictio-
naries a Configuration Plugin service receives. This property contains a String[] of PIDs. A Configu-
ration Admin service must call a Configuration Plugin service only when this property is not set, or
the target service's PID is listed in this property.

public void modifyConfiguration(ServiceReference<?» reference, Dictionary<String, Objects properties)
reference to the Managed Service or Managed Service Factory

The configuration properties. This argument must not contain the "service.bundleLocation" proper-
ty. The value of this property may be obtained from the Configuration.getBundleLocation method.

View and possibly modify the a set of configuration properties before they are sent to the Managed
Service or the Managed Service Factory. The Configuration Plugin services are called in increasing
order of their service.cmRanking property. If this property is undefined or is a non- Integer type, 0 is
used.

This method should not modify the properties unless the service.cmRanking of this plugin is in the
range o <= service.cmRanking <= 1000. Any modification from this plugin is ignored.

If this method throws any Exception, the Configuration Admin service must catch it and should log
it. Any modifications made by the plugin before the exception is thrown are applied.

A Configuration Plugin will only be called for properties from configurations that have a location
for which the Configuration Plugin has permission when security is active. When security is not ac-
tive, no filtering is done.

public interface ManagedService
A service that can receive configuration data from a Configuration Admin service.

A Managed Service is a service that needs configuration data. Such an object should be registered
with the Framework registry with the service.pid property set to some unique identifier called a
PID.

If the Configuration Admin service has a Configuration object corresponding to this PID, it will call-
back the updated() method of the ManagedService object, passing the properties of that Configura-
tion object.

If it has no such Configuration object, then it calls back with a null properties argument. Registering
a Managed Service will always result in a callback to the updated() method provided the Configura-
tion Admin service is, or becomes active. This callback must always be done asynchronously.

Else, every time that either of the updated() methods is called on that Configuration object, the
ManagedService.updated() method with the new properties is called. If the delete() method is

Page 108

OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

called on that Configuration object, ManagedService.updated() is called with a null for the proper-
ties parameter. All these callbacks must be done asynchronously.

The following example shows the code of a serial port that will create a port depending on configu-
ration information.

class SerialPort implements ManagedService {

ServiceRegistration registration;
Hashtable configuration;
CommPortIdentifier id;

synchronized void open(CommPortIdentifier id,
BundleContext context) {
this.id = id;
registration = context.registerService(
ManagedService.class. getName (),
this,
getDefaults()
)
}

Hashtable getDefaults() {
Hashtable defaults = new Hashtable();
defaults.put("port", id.getName());
defaults.put("product”, "unknown");
defaults.put("baud", "9600");
defaults.put(Constants.SERVICE_PID,

“com.acme. serialport.” + id.getName());

return defaults;

}

public synchronized void updated(
Dictionary configuration) {
if (configuration == null)
registration. setProperties(getDefaults());
else {
setSpeed(configuration.get("baud"));
registration.setProperties(configuration);
}
}

}...

Asa convention, it is recommended that when a Managed Service is updated, it should copy all the
properties it does not recognize into the service registration properties. This will allow the Configu-
ration Admin service to set properties on services which can then be used by other applications.

Normally, a single Managed Service for a given PID is given the configuration dictionary, this is the
configuration that is bound to the location of the registering bundle. However, when security is on,
a Managed Service can have Configuration Permission to also be updated for other locations.

If a Managed Service is registered without the service.pid property, it will be ignored.

Concurrency Thread-safe

OSGi Compendium Release 8.1 Page 109

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

104.14.12.1

properties

Throws

Security

104.14.13

public void updated(Dictionary<String, ?> properties) throws ConfigurationException

A copy of the Configuration properties, or null. This argument must not contain the
"service.bundleLocation" property. The value of this property may be obtained from the
Configuration.getBundleLocation method.

Update the configuration for a Managed Service.

When the implementation of updated(Dictionary) detects any kind of error in the configuration
properties, it should create a new ConfigurationException which describes the problem. This can al-
low a management system to provide useful information to a human administrator.

If this method throws any other Exception, the Configuration Admin service must catch it and
should log it.

The Configuration Admin service must call this method asynchronously with the method that ini-
tiated the callback. This implies that implementors of Managed Service can be assured that the call-
back will not take place during registration when they execute the registration in a synchronized
method.

If the location allows multiple managed services to be called back for a single configuration then
the callbacks must occur in service ranking order. Changes in the location must be reflected by
deleting the configuration if the configuration is no longer visible and updating when it becomes
visible.

If no configuration exists for the corresponding PID, or the bundle has no access to the configura-
tion, then the bundle must be called back with a null to signal that CM is active but there is no data.

ConfigurationException—when the update fails

ConfigurationPermission[c.location,TARGET]] — Required by the bundle that registered this service

public interface ManagedServiceFactory

Manage multiple service instances. Bundles registering this interface are giving the Configuration
Admin service the ability to create and configure a number of instances of a service that the imple-
menting bundle can provide. For example, a bundle implementing a DHCP server could be instanti-
ated multiple times for different interfaces using a factory.

Each of these service instances is represented, in the persistent storage of the Configuration Admin
service, by a factory Configuration object that has a PID. When such a Configuration is updated, the
Configuration Admin service calls the ManagedServiceFactory updated method with the new prop-
erties. When updated is called with a new PID, the Managed Service Factory should create a new fac-
tory instance based on these configuration properties. When called with a PID that it has seen be-
fore, it should update that existing service instance with the new configuration information.

In general it is expected that the implementation of this interface will maintain a data structure that
maps PIDs to the factory instances that it has created. The semantics of a factory instance are de-
fined by the Managed Service Factory. However, if the factory instance is registered as a service ob-
ject with the service registry, its PID should match the PID of the corresponding Configuration ob-
ject (but it should not be registered as a Managed Service!).

An example that demonstrates the use of a factory. It will create serial ports under command of the
Configuration Admin service.

class SerialPortFactory
implements ManagedServiceFactory {
ServiceRegistration registration;
Hashtable ports;
void start(BundleContext context) {
Hashtable properties = new Hashtable();
properties.put(Constants.SERVICE PID,

Page 110

OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm

"com.acme. serialportfactory");
registration = context.registerService(
ManagedServiceFactory.class. getName(),
this,
properties

):

public void updated(String pid,

Dictionary properties) {

String portName = (String) properties.get("port");

SerialPortService port =
(SerialPort) ports.get(pid);

if (port == null) {
port = new SerialPortService();
ports.put(pid, port);
port.open();

}

if (port.getPortName().equals(portName))
return;

port.setPortName(portName);

}
public void deleted(String pid) {
SerialPortService port =
(SerialPort) ports.get(pid);
port.close();
ports.remove(pid);

}
.

If aManagedServiceFactory is registered without the service.pid property, it will be ignored.

Concurrency Thread-safe

104.14.13.1 public void deleted(String pid)
pid the PID of the service to be removed

o Remove a factory instance. Remove the factory instance associated with the PID. If the instance was
registered with the service registry, it should be unregistered. The Configuration Admin must call
deleted for each instance it received in updated(String, Dictionary).

If this method throws any Exception, the Configuration Admin service must catch it and should log
it.
The Configuration Admin service must call this method asynchronously.
104.14.13.2 public String getName()
o Return a descriptive name of this factory.

Returns the name for the factory, which might be localized

104.14.13.3 public void updated(String pid, Dictionary<String, ?> properties) throws ConfigurationException
pid The PID for this configuration.

properties A copy of the configuration properties. This argument must not contain the service.bundleLocation"
property. The value of this property may be obtained from the Configuration.getBundleLocation
method.

OSGi Compendium Release 8.1 Page 111

org.osgi.service.cm Configuration Admin Service Specification Version 1.6

[m}

Throws

Security

104.14.14

104.14.14.1

104.14.15

Since

reason

]

Since

Create a new instance, or update the configuration of an existing instance. If the PID of the Config-
uration object is new for the Managed Service Factory, then create a new factory instance, using the
configuration properties provided. Else, update the service instance with the provided properties.

If the factory instance is registered with the Framework, then the configuration properties should
be copied to its registry properties. This is not mandatory and security sensitive properties should
obviously not be copied.

If this method throws any Exception, the Configuration Admin service must catch it and should log
it.

When the implementation of updated detects any kind of error in the configuration properties, it
should create a new ConfigurationException which describes the problem.

The Configuration Admin service must call this method asynchronously. This implies that imple-
mentors of the ManagedServiceFactory class can be assured that the callback will not take place
during registration when they execute the registration in a synchronized method.

If the security allows multiple managed service factories to be called back for a single configuration
then the callbacks must occur in service ranking order.

It is valid to create multiple factory instances that are bound to different locations. Managed Service
Factory services must only be updated with configurations that are bound to their location or that
start with the ? prefix and for which they have permission. Changes in the location must be reflect-
ed by deleting the corresponding configuration if the configuration is no longer visible or updating
when it becomes visible.

ConfigurationException—when the configuration properties are invalid.

ConfigurationPermission[c.location,TARGET]] — Required by the bundle that registered this service

public class ReadOnlyConfigurationException
extends RuntimeException

An Exception class to inform the client of a Configuration about the read only state of a configura-
tion object.

1.6

public ReadOnlyConfigurationException(String reason)
reason for failure

Create aReadOnlyConfigurationException object.

public interface SynchronousConfigurationListener
extends ConfigurationListener

Synchronous Listener for Configuration Events. When a ConfigurationEvent is fired, it is synchro-
nously delivered to all SynchronousConfigurationListeners.

SynchronousConfigurationListener objects are registered with the Framework service registry and
are synchronously notified with a ConfigurationEvent object when an event is fired.

SynchronousConfigurationListener objects can inspect the received ConfigurationEvent object to
determine its type, the PID of the Configuration object with which it is associated, and the Configu-
ration Admin service that fired the event.

Security Considerations. Bundles wishing to synchronously monitor configuration events will re-
quire ServicePermission[SynchronousConfigurationListener,REGISTER] to register a Synchronous-
ConfigurationListener service.

15

Page 112

OSGi Compendium Release 8.1

Configuration Admin Service Specification Version 1.6 org.osgi.service.cm.annotations

Concurrency Thread-safe
104.15 org.osgi.service.cm.annotations

Configuration Admin Annotations Package Version 1.6.

This package contains annotations that can be used to require the Configuration Admin implemen-
tations

Bundles should not normally need to import this package as the annotations are only used at build-

time.
104.15.1 Summary
RequireConfigurationAdmin - This annotation can be used to require the Configuration Admin
implementation.
104.15.2 (®RequireConfigurationAdmin

This annotation can be used to require the Configuration Admin implementation. It can be used di-
rectly, or as a meta-annotation.

Since 1.6
Retention CLASS
Target TYPE,PACKAGE

OSGi Compendium Release 8.1 Page 113

org.osgi.service.cm.annotations Configuration Admin Service Specification Version 1.6

Page 114 OSGi Compendium Release 8.1

Metatype Service Specification Version 1.4 Introduction

105

105.1

105.1.1

Metatype Service Specification

Version 1.4

Introduction

The Metatype specification defines interfaces that allow bundle developers to describe attribute
types in a computer readable form using so-called metadata.

The purpose of this specification is to allow services to specify the type information of data that
they can use as arguments. The data is based on attributes, which are key/value pairs like properties.

A designer in a type-safe language like Java is often confronted with the choice of using the lan-
guage constructs to exchange data or using a technique based on attributes/properties that are based
on key/value pairs. Attributes provide an escape from the rigid type-safety requirements of modern
programming languages.

Type-safety works very well for software development environments in which multiple program-
mers work together on large applications or systems, but often lacks the flexibility needed to receive
structured data from the outside world.

The attribute paradigm has several characteristics that make this approach suitable when data
needs to be communicated between different entities which "speak” different languages. Attribut-
es are uncomplicated, resilient to change, and allow the receiver to dynamically adapt to different
types of data.

As an example, the OSGi framework Specifications define several attribute types which are used in
a Framework implementation, but which are also used and referenced by other OSGi specifications
such as the Configuration Admin Service Specification on page 65. A Configuration Admin service im-
plementation deploys attributes (key/value pairs) as configuration properties.

The Meta Type Service provides a unified access point to the Meta Type information that is associat-
ed with bundles. This Meta Type information can be defined by an XML resource in a bundle (OSGI-
INF/metatype directories must be scanned for any XML resources), it can come from the Meta Type
Provider service, or it can be obtained from Managed Service or Managed Service Factory services.

Essentials

Conceptual model - The specification must have a conceptual model for how classes and attributes
are organized.

Standards - The specification should be aligned with appropriate standards, and explained in situ-
ations where the specification is not aligned with, or cannot be mapped to, standards.

Remote Management - Remote management should be taken into account.
Size- Minimal overhead in size for a bundle using this specification is required.

Localization - It must be possible to use this specification with different languages at the same
time. This ability allows servlets to serve information in the language selected in the browser.
Type information - The definition of an attribute should contain the name (if it is required), the
cardinality, a label, a description, labels for enumerated values, and the Java class that should be
used for the values.

Validation - It should be possible to validate the values of the attributes.

OSGi Compendium Release 8.1 Page 115

Attributes Model Metatype Service Specification Version 1.4

105.1.2 Entities

Meta Type Service - A service that provides a unified access point for meta type information.
Attribute - A key/value pair.

PID- A unique persistent ID, defined in configuration management.

Attribute Definition - Defines a description, name, help text, and type information of an attribute.

« Object Class Definition - Defines the type of a datum. It contains a description and name of the type
plus a set of AttributeDefinition objects.

« Meta Type Provider - Provides access to the object classes that are available for this object. Access
uses the PID and a locale to find the best ObjectClassDefinition object.

« Meta Type Information - Provides meta type information for a bundle.

Figure 105.1 Class Diagram Meta Type Service, org.osgi.service.metatype

Any bundle I Meta Type Client I Any bundle I Any bundle I @
|
|

Managed

Meta Type

Meta Type ; Sony
Provider Service ervice Metatype |
metatype.pid= (Factory) xml resources |
f pid=...
metatype.factory.pid Meta Type |
Servicelmpl 7 -— E
105.1.3 Operation

The Meta Type service defines a rich dynamic typing system for properties. The purpose of the type
system is to allow reasonable User Interfaces to be constructed dynamically.

The type information is normally carried by the bundles themselves. Either by implementing the
MetaTypeProviderinterface on the Managed Service or Managed Service Factory, by carrying one
or more XML resources that define a number of Meta Types in the OSGI-INF/metatype directories,
or registering a Meta Type Provider as a service. Additionally, a Meta Type service could have other
sources that are not defined in this specification.

The Meta Type Service provides unified access to Meta Types that are carried by the resident bun-
dles. The Meta Type Service collects this information from the bundles and provides uniform ac-
cess to it. A client can requests the Meta Type Information associated with a particular bundle. The
MetaTypelnformation object provides a list of ObjectClassDefinition objects for a bundle. These ob-
jects define all the information for a specific object class. An object class is a some descriptive infor-
mation and a set of named attributes (which are key/value pairs).

Access to Object Class Definitions is qualified by a locale and a Persistent IDentity (PID). This speci-
fication does not specify what the PID means. One application is OSGi Configuration Management
where a PID is used by the Managed Service and Managed Service Factory services. In general, a PID
should be regarded as the name of a variable where an Object Class Definition defines its type.

105.2 Attributes Model

The Framework uses the LDAP filter syntax for searching the Framework registry. The usage of the
attributes in this specification and the Framework specification closely resemble the LDAP attribute

Page 116 OSGi Compendium Release 8.1

Metatype Service Specification Version 1.4 Object Class Definition

105.3

105.4

model. Therefore, the names used in this specification have been aligned with LDAP. Consequently,
the interfaces which are defined by this Specification are:

AttributeDefinition
. ObjectClassDefinition
- MetaTypeProvider

These names correspond to the LDAP attribute model. For further information on ASN.1-defined at-
tributes and X.500 object classes and attributes, see [2] Understanding and Deploying LDAP Directory
services.

The LDAP attribute model assumes a global name-space for attributes, and object classes consist of
anumber of attributes. So, if an object class inherits the same attribute from different parents, only
one copy of the attribute must become part of the object class definition. This name-space implies
that a given attribute, for example cn, should always be the common name and the type must al-
ways be a String. An attribute cn cannot be an Integer in another object class definition. In this re-
spect, the OSGi approach towards attribute definitions is comparable with the LDAP attribute mod-
el.

Object Class Definition

The ObjectClassDefinition interface is used to group the attributes which are defined in Attribut-
eDefinition objects.

An ObjectClassDefinition object contains the information about the overall set of attributes and
has the following elements:

A name which can be returned in different locales.
A global name-space in the registry, which is the same condition as LDAP/X.500 object classes.
In these standards the OSI Object Identifier (OID) is used to uniquely identify object classes. If
such an OID exists, (which can be requested at several standard organizations, and many compa-
nies already have a node in the tree) it can be returned here. Otherwise, a unique id should be re-
turned. This id can be a Java class name (reverse domain name) or can be generated with a GUID
algorithm. All LDAP-defined object classes already have an associated OID. It is strongly advised
to define the object classes from existing LDAP schemes which provide many preexisting OIDs.
Many such schemes exist ranging from postal addresses to DHCP parameters.
A human-readable description of the class.

- Alist of attribute definitions which can be filtered as required, or optional. Note that in X.500 the
mandatory or required status of an attribute is part of the object class definition and not of the at-
tribute definition.

Anicon, in different sizes.

Attribute Definition

The AttributeDefinition interface provides the means to describe the data type of attributes.

The AttributeDefinition interface defines the following elements:

Defined names (final ints) for the data types as restricted in the Framework for the attributes,
called the syntax in OSI terms, which can be obtained with the getType() method.

AttributeDefinition objects should use an ID that is similar to the OID as described in the ID field
for ObjectClassDefinition.

A localized name intended to be used in user interfaces.

OSGi Compendium Release 8.1 Page 117

Meta Type Service Metatype Service Specification Version 1.4

« Alocalized description that defines the semantics of the attribute and possible constraints,
which should be usable for tooltips.

- Anindication if this attribute should be stored as a unique value, a List, or an array of values, as
well as the maximum cardinality of the type.

. The data type, as limited by the Framework service registry attribute types.
- Avalidation function to verify if a possible value is correct.

A list of values and a list of localized labels. Intended for popup menus in GUIs, allowing the user
to choose from a set.

A default value (String[]). The return depends on the following cases:
not specified - Return null if this attribute is not specified.
cardinality = 0- Return an array with one element.

otherwise - Return an array with less or equal than the absolute value of cardinality, possibly
empty if the value is an empty string.

105.5 Meta Type Service

The Meta Type Service provides unified access to Meta Type information that is associated with a
Bundle. It can get this information through the following means:

Meta Type Resource- A bundle can provide one or more XML resources that are contained in its
JAR file. These resources contain an XML definition of meta types as well as to what PIDs these
Meta Types apply. These XML resources must reside in the OSGI-INF/metatype directories of the
bundle (including any fragments).

Managed Service [Factory] objects - As defined in the configuration management specification,
ManagedService and ManagedServiceFactory service objects can optionally implement the
MetaTypeProvider interface. The Meta Type Service will only search for ManagedService and
ManagedServiceFactory service objects that implement MetaTypeProvider if no meta type re-
sources are found in the bundle.

Meta Type Provider service - Bundles can register Meta Type Provider services to dynamically pro-
vide meta types for PIDs and factory PIDs.

Figure 105.2 Sources for Meta Types
«services>
Meta Type
Service
«services> cservice»> OSGI-INF/metatype .. alternative
Meta Type Managed Service e meta type
Provider (Factory) sources

This model is depicted in Figure 105.2.

The Meta Type Service can therefore be used to retrieve meta type information for bundles which
contain Meta Type resources or which provide MetaTypeProvider objects and/or services. If multi-
ple sources define the same Object Class Definition, the Meta Type service must select which source
to use. Meta Type Provider services must take precedence over Managed Service [Factory] objects im-
plementing MetaTypeProvider or Meta Type Resources.

The MetaTypeService interface has a single method:

Page 118 OSGi Compendium Release 8.1

Metatype Service Specification Version 1.4 Meta Type Service

. getMetaTypelnformation(Bundle) - Given a bundle, it must return the Meta Type Information
for that bundle, even if there is no meta type information available at the moment of the call.

The returned MetaTypelnformation object maintains a map of PID to ObjectClassDefinition
objects. The map is keyed by locale and PID. The list of maintained PIDs is available from the
MetaTypelnformation object with the following methods:

getPids() - PIDs for which Meta Types are available.
getFactoryPids() - PIDs associated with Managed Service Factory services.

These methods and their interaction with the Meta Type resource are described in Designate Element
on page 124.

The MetaTypelnformation interface extends the MetaTypeProvider interface. The MetaType-
Providerinterface is used to access meta type information. It supports locale dependent information
so that the text used in AttributeDefinition and ObjectClassDefinition objects can be adapted to dif-
ferent locales.

Which locales are supported by the MetaTypeProvider object are defined by the implementer or the
meta type resources. The list of available locales can be obtained from the MetaTypeProvider object.

The MetaTypeProvider interface provides the following methods:

. getObjectClassDefinition(String,String) - Get access to an ObjectClassDefinition object for the
given PID. The second parameter defines the locale.

. getlocales()- List the locales that are available.

Locale objects are represented in String objects because not all profiles support Locale. The String
holds the standard Locale presentation of:

locale = language ('_' country ('_' variation))
language ::= < defined by ISO 3166 >
country < defined by ISO 639 >

]

For example, en,nl_BE,en_CA_posix are valid locales. The use of null for locale indicates that
java.util.Locale.getDefault() must be used.

The Meta Type Service implementation class is the main class. It registers the
org.osgi.service.metatype.MetaTypeService service and has a method to get a MetaTypelnforma-
tion object for a bundle.

Following is some sample code demonstrating how to print out all the Object Class Definitions and
Attribute Definitions contained in a bundle:

void printMetaTypes(MetaTypeService mts,Bundle b) {
MetaTypeInformation mti =
mts. getMetaTypeInformation(b);
String [] pids = mti.getPids();
String [] locales = mti.getlLocales();

for (int locale = 0; locale<locales.length; locale++) {
System.out.println("Locale " + locales[locale]);
for (int i=0; i< pids.length; i++) {
ObjectClassDefinition ocd =
mti.getObjectClassDefinition(pids[i], null);
AttributeDefinition[] ads =
ocd. getAttributeDefinitions (
ObjectClassDefinition.ALL);

OSGi Compendium Release 8.1 Page 119

Meta Type Provider Service Metatype Service Specification Version 1.4

105.6

105.7

for (int j=0; j< ads.length; j++) {
System.out.println("0CD="+ocd. getName ()
+ "AD="+ads[j].getName());

Meta Type Provider Service

A Meta Type Provider service allows third party contributions to the internal Object Class Defini-
tion repository. A Meta Type Provider can contribute multiple PIDs, both factory and singleton PIDs.
A Meta Type Provider service must register with both or one of the following service properties:

METATYPE_PID - (String+) Provides a list of PIDs that this Meta Type Provider can provide Object
Class Definitions for. The listed PIDs are intended to be used as normal singleton PIDs used by
Managed Services.

METATYPE_FACTORY_PID - (String+) Provides a list of factory PIDs that this Meta Type Provider
can provide Object Class Definitions for. The listed PIDs are intended to be used as factory PIDs
used by Managed Service Factories.

The Object Class Definitions must originate from the bundle that registered the Meta Type Provider
service. Third party extenders should therefore use the bundle of their extendee. A Meta Type Ser-
vice must report these Object Class Definitions on the Meta Type Information of the registering
bundle, merged with any other information from that bundle.

The Meta Type Service must track these Meta Type Provider services and make their Meta Types
available as if they were provided on the Managed Service (Factory) services. The Meta Types must
become unavailable when the Meta Type Provider service is unregistered.

Using the Meta Type Resources

A bundle that wants to provide meta type resources must place these resources in the OSGI-INF/
metatype directory. The name of the resource must be a valid bundle entry path. All resources in
that directory must be meta type documents. Resources in that directory that are not valid meta
type documents must be ignored and an error should be logged with the Log Service, if present.
Fragments can contain additional meta type resources in the same directory and they must be taken
into account when the meta type resources are searched. A meta type resource must be encoded in
UTF-8.

The MetaType Service must support localization of the

« name
icon
description
label attributes

The localization mechanism must be identical using the same mechanism as described in the Core
module layer, see Localization, using the same property resource. However, it is possible to override
the property resource in the meta type definition resources with the localization attribute of the
MetaData element.

The Meta Type Service must examine the bundle and its fragments to locate all localization
resources for the localization base name. From that list, the Meta Type Service derives the list

Page 120

OSGi Compendium Release 8.1

Metatype Service Specification Version 1.4 Using the Meta Type Resources

105.7.1

Figure 105.3

of locales which are available for the meta type information. This list can then be returned by
MetaTypelnformation.getLocales method. This list can change at any time because the bundle
could be refreshed. Clients should be prepared that this list changes after they received it.

XML Schema of a Meta Type Resource

This section describes the schema of the meta type resource. This schema is not intended to be used
during runtime for validating meta type resources. The schema is intended to be used by tools and
external management systems.

The XML namespace for meta type documents must be:
http: //www.osgi.org/xmlns/metatype/v1.4.0
The namespace abbreviation should be metatype. That is, the following header should be:

<metatype:MetaData
xmlns:metatype="http: //wwv.o0sgi.org/xmlns/metatype/v1.4.0">

XML Schema Instance Structure (Type name = Element name)

MetaData
1 1
0.n
Designate
1
0..n 1
ocD Object
.
1 - -
0..n 0..n 0..n
Icon AD Attribute
1 A
1 1
0..n 0..n
Option Value

The element structure of the XML file is:

MetaData = OCDx Designatex
0CD = ADx Iconx

AD = Optionx
Designate ::= Object

Object = Attributex
Attribute ::= Valuex

The different elements are described in Table 105.1.

OSGi Compendium Release 8.1 Page 121

Using the Meta Type Resources

Metatype Service Specification Version 1.4

Table 105.1

Attribute Deflt
MetaData
localization

OoCD
name <

description

id <>
Designate

pid <>

factoryPid

bundle

optional false

merge false

XML Schema for Meta Type resources

Type Method

string

string getName()

getDescription()

getID()

string

string

string

boolean

boolean

Description

Top Element

Points to the Properties file that can lo-
calize this XML. See Localization in OSGi
Core Release 8.

Object Class Definition

A human readable name that can be lo-
calized.

A human readable description of the
Object Class Definition that can be lo-
calized.

A unique id, cannot be localized.

An association between one PID and an
Object Class Definition. This element
designates a PID to be of a certain type.
The PID that is associated with an OCD.
This can be a reference to a factory or
singleton configuration object. The PID
can be a Targeted PID, if factoryPid is
not set or empty. Either pid or facto-
ryPid must be specified. See Designate EI-
ement on page 124.

If the factoryPid attribute is set, this
Designate element defines a factory
configuration for the given factory. If it
is not set or empty, it designates a sin-
gleton configuration. The PID can be a
Targeted PID. Either pid or factoryPid
must be specified. See Designate Element
on page 124.

The value is used to set the location of
any configuration created using this
Meta Type resource. This may contain a
bundle location or a multi-location. In a
Meta Type resource, using the wildcard
value (‘' \uoo2A) indicates the bundle
location of the bundle containing the
resource must be used as the location.
See Location Binding on page 71

This is an optional attribute but can be
mandatory in certain usage schemes,
for example the Autoconf Resource
Processor.

If true, then this Designate element is
optional, errors during processing must
be ignored.

If the PID refers to an existing configu-
ration, then merge the properties with
the existing properties if this attribute
istrue. Otherwise, replace the proper-
ties.

Page 122

OSGi Compendium Release 8.1

Metatype Service Specification Version 1.4 Using the Meta Type Resources

Attribute Deflt Type Method Description
AD Attribute Definition

name string getName() Alocalizable name for the Attribute De-
finition. description

description string getDescription() Alocalizable description for the At-
tribute Definition.

id getID() The unique ID of the Attribute Defini-
tion.

type string getType() The type of an attribute is an enumer-

ation of the different scalar types. The
string is mapped to one of the constants
on the AttributeDefinition interface.
Valid values, which are defined in the
Scalar type, are:

String « STRING
Long o~ LONG
Double « DOUBLE
Float < FLOAT
Integer <« INTEGER
Byte « BYTE
Char « CHARACTER
Boolean <« BOOLEAN
Short < SHORT
Password < PASSWORD
cardinality 0 getCardinality() =~ The number of elements an instance

can take. Positive numbers describe
an array ([]) and negative numbers de-
scribe a List object.
min string validate(String) A validation value. This value is not
directly available from the Attribut-
eDefinition interface. However, the
validate(String) method must verify
this. The semantics of this field depend
on the type of this Attribute Definition.
max string validate(String) A validation value. Similar to the min
field. When min or max are numbers,
attribute values with a numeric da-
ta type are valid if min <= value <=
max. Attribute values with a string (or
equivalent) data type are valid if min <=
value.length() <= max.

OSGi Compendium Release 8.1 Page 123

Using the Meta Type Resources Metatype Service Specification Version 1.4

Attribute Deflt Type Method Description

default string getDefaultValue() The default value. A default is an ar-
ray of String objects. The XML attribute
must contain a comma delimited list.
The default value is trimmed and es-
caped in the same way as described in
the validate(String) method. The empty
string is significant and must be seen as
an empty List or array if specified as the
default for an attribute with a cardinal-
ity that is not equal to zero. Default val-
ues must be valid or otherwise ignored.

required true boolean Required attribute. The required at-
tribute indicates whether or not the at-
tribute key must appear within the con-
figuration dictionary to be valid.

Option One option label/value for the options

in an AD. Options are exclusive. The
validate(String) method must verify
that an attribute value matches one of
the option values when present.

label <> string getOptionLabels() The label
value < string getOptionValues() The value
Icon Anicon definition.
resource <> string getlcon(int) The resource is a URL. The base URL is

assumed to be the root of the bundle
containing the XML file. That is, this
URL can reference another resource in
the bundle using a relative URL.

size <> string getlcon(int) The number of pixels of the icon, maps
to the size parameter of the getlcon(int)
method.
Object A definition of an instance.
ocdref <> string A reference to the id attribute of an

OCD element. That is, this attribute de-
fines the OCD type of this object.

Attribute A value for an attribute of an object.
adref <> string A reference to the id of the AD in the
OCD as referenced by the parent Object.
content string The content of the attributes. If this is

an array, the content must be separated
by commas (', \uoo2C). Commas must
be escaped as described at the default at-
tribute of the AD element.

Value Holds a single value. This element can
be repeated multiple times under an At-
tribute

105.7.2 Designate Element

For the MetaType Service, the Designate definition is used to declare the available PIDs and factory
PIDs; the Attribute elements are never used by the MetaType service.

Page 124 OSGi Compendium Release 8.1

Metatype Service Specification Version 1.4 Using the Meta Type Resources

The getPids() method returns an array of PIDs that were specified in the pid attribute of the Object
elements. The getFactoryPids() method returns an array of the factoryPid attributes. For factories,
the related pid attribute is ignored because all instances of a factory must share the same meta type.

The following example shows a metatype reference to a singleton configuration and a factory con-
figuration.

<Designate pid="com.acme.designate.1">
<Object ocdref="com.acme.designate"/>

</Designate»
<Designate factoryPid="com.acme.designate. factory"
bundle="x">
<Object ocdref="com.acme.designate"/>
</Designate>

Other schemes can embed the Object element in the Designate element to define actual instances
for the Configuration Admin service. In that case the pid attribute must be used together with the
factoryPid attribute. However, in that case an aliasing model is required because the Configuration
Admin service does not allow the creator to choose the Configuration object's PID.

105.7.3 Example Metadata File

This example defines a meta type file for a Person record, based on ISO attribute types. The ids that
are used are derived from ISO attributes.

<?xml version="1.0" encoding="UTF-8"?>
<MetaData
xmlns="http: //www.o0sgi.org/xmlns/metatype/vl.4.0"
localization="person">
<0CD name="%person" id="2.5.6.6"
description="%person record">
<AD name="Ysex" id="2.5.4.12" type="Integer">
<Option label="%male" value="1"/>
<Option label="%female" value="0"/>
</AD>
<AD name="%sn" id="2.5.4.4" type="String"/»>
<AD name="%cn" id="2.5.4.3" type="String"/>
<AD name="YseeAlso" id="2.5.4.34" type="String"
cardinality="8"
default="http: //www. google. com, http: //www. yahoo.com" />
<AD name="%%telNumber” id="2.5.4.20" type="String"/>
</0CD>»

<Designate pid="com.acme.addressbook">
<Object ocdref="2.5.6.6"/>
</Designate>
</MetaData>

Translations for this file, as indicated by the localization attribute must be stored in the root direc-
tory (e.g. person_du_NL.properties). The default localization base name for the properties is OSGI-
INF/lzon/bundle, but can be overridden by the manifest Bundle-Localization header and the local-
ization attribute of the Meta Data element. The property files have the base name of person. The
Dutch, French and English translations could look like:

person_du_NL.properties:

person=Persoon
person\ record=Persoons beschrijving

OSGi Compendium Release 8.1 Page 125

Meta Type Resource XML Schema Metatype Service Specification Version 1.4

cn=Naam

sn=Voornaam
seeAlso=Zie ook
telNumber=Tel. Nummer
sex=Geslacht
male=Mannelijk
female=Vrouwelijk

person_fr.properties:

person=Personne

person\ record=Description de la personne
cn=Nom

sn=Surnom

seeAlso=Reference

telNumber=Tel.

sex=Sexe

male=Homme

female=Femme

person_en_US.properties:

person=Person

person\ record=Person Record
cn=Name

sn=Sur Name

seeAlso=See Also
telNumber=Tel.

sex=Sex

male=Male

female=Female

105.7.4 Object Element

The OCD element can be used to describe the possible contents of a Dictionary object. In this case,
the attribute name is the key. The Object element can be used to assign a value to a Dictionary ob-
ject.

For example:

<Designate pid="com.acme.b">
<Object ocdref="b">
<Attribute adref="foo" content="Zaphod Beeblebrox"/>
<Attribute adref="bar">
«Value>1</Value>
<Value>2</Value>
<Value>3</Value>
«Value>4</Value>
<«Value>5</Value>
</Attribute>
</0Object>
</Designate>

105.8 Meta Type Resource XML Schema

<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:metatype="http: //www.osgi.org/xmlns/metatype/v1.4.0"

Page 126 OSGi Compendium Release 8.1

Metatype Service Specification Version 1.4 Meta Type Resource XML Schema

targetNamespace="http: //www.o0sgi.org/xmlns/metatype/v1.4.0"
version="1.4.0">

<element name="MetaData" type="metatype:Tmetadata" />

<complexType name="Tmetadata">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="0CD" type="metatype:Tocd" />
<element name="Designate" type="metatype:Tdesignate" />
<!-- Tt is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
to use namespace="##any" below. -->
<any namespace="##other" processContents="lax" />
</choice>
<attribute name="localization" type="string" use="optional" />
<anyAttribute processContents="lax" />
</complexType>

<complexType name="Tocd">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="AD" type="metatype:Tad" />
<element name="Icon" type="metatype:Ticon" />
<!-- Tt is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
to use namespace="##any" below. -->
<any namespace="##other" processContents="lax" />
</choice>
<attribute name="name" type="string" use="required" />
<attribute name="description" type="string" use="optional" />
<attribute name="id" type="string" use="required" />
<anyAttribute processContents="lax" />
</complexType>

<complexType name="Tad">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="Option" type="metatype:Toption" />
<l-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
to use namespace="##any" below. -->
<any namespace="##other" processContents="lax" />
</choice»
<attribute name="name" type="string" use="optional" />
<attribute name="description" type="string" use="optional" />
<attribute name="id" type="string" use="required" /»
<attribute name="type" type="metatype:Tscalar" use="required" />
<attribute name="cardinality" type="int" use="optional"
default="0" />
<attribute name="min" type="string" use="optional" /»
<attribute name="max" type="string" use="optional" />
<attribute name="default" type="string" use="optional" />
<attribute name="required" type="boolean" use="optional"
default="true" />
<anyAttribute processContents="lax" />
</complexType>

<complexType name="Tobject">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="Attribute" type="metatype:Tattribute" />
<l-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
to use namespace="##any" below. -->
<any namespace="##other" processContents="lax" />
</choice»
<attribute name="ocdref" type="string" use="required" />
<anyAttribute processContents="lax" />
</complexType>

<complexType name="Tattribute">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="Value" type="string" />
<!-- It is non-deterministic, per W3C XML Schema 1.0: http://www.w3.org/TR/xmlschema-1/#cos-nonambig
to use namespace="##any" below. -->
<any namespace="##other" processContents="lax" />
</choice>
<attribute name="adref" type="string" use="required" />
<attribute name="content" type="string" use="optional" />
<anyAttribute processContents="lax" />
</complexType>

OSGi Compendium Release 8.1 Page 127

Meta Type Resource XML Schema

Metatype Service Specification Version 1.4

<complexType name="Tdesignate">
<sequence>

<element name="Object" type="metatype:Tobject" minOccurs="1"

maxOccurs="1" />
<any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded" />
</sequence>
<attribute name="pid" type="string" use="optional" /»
<attribute name="factoryPid" type="string" use="optional" /»
<attribute name="bundle" type="string" use="optional" />
<attribute name="optional" type="boolean" default="false"
use="optional" />
<attribute name="merge" type="boolean" default="false"
use="optional" /»
<anyAttribute processContents="lax" /»
</complexType>

<simpleType name="Tscalar">
<restriction base="string">
<enumeration value="String" />
<enumeration value="Long" />
<enumeration value="Double" />
<enumeration value="Float" />
<enumeration value="Integer" />
<enumeration value="Byte" />
<enumeration value="Character" />
<enumeration value="Boolean" />
<enumeration value="Short" />
<enumeration value="Password" />
</restriction>
</simpleType>

<complexType name="Toption">
<sequence>
<any namespace="##any" processContents="lax" minOccurs="0
maxOccurs="unbounded" />
</sequence>
<attribute name="label" type="string" use="required" />
<attribute name="value" type="string" use="required" />
<anyAttribute processContents="lax" />
</complexType>

<complexType name="Ticon">
<sequence>
<any namespace="##any" processContents="lax" minOccurs="0
maxOccurs="unbounded" />
</sequence>
<attribute name="resource" type="string" use="required" />
<attribute name="size" type="positiveInteger" use="required" />
<anyAttribute processContents="lax" />
</complexType>

<attribute name="must-understand" type="boolean">
<annotation»
<documentation xml:lang="en">

This attribute should be used by extensions to documents

to require that the document consumer understand the
extension.
</documentation>
</annotation>
</attribute>

</schema>

Page 128

OSGi Compendium Release 8.1

Metatype Service Specification Version 1.4 Meta Type Annotations

105.9 Meta Type Annotations

A developer can use Meta Type Annotations on a Component Property Type, see Component Proper-
ty Types on page 292, or an interface to define an Object Class Definition in a type safe manner.

The Meta Type Annotations are CLASS retention annotations intended to be used during build time
to generate Meta Type Resources from the Java class files providing a convenient way to create the
Meta Type Resource XML documents.

Tools processing these annotations must always generate valid Meta Type Resource XML docu-
ments. If the Meta Type Annotations are used in a way that is not supported or in error, then the tool
must report the error to enable the developer to take corrective action.

105.9.1 ObjectClassDefinition Annotation

The ObjectClassDefinition annotation can be applied to a Component Property Type or an inter-
face. From that type, tooling can generate an OCD element. When applied to an interface, all the
methods inherited from supertypes are include as Attribute Definitions. The tool processing the an-
notations must be able to examine all the types in the hierarchy of the annotated type to generate
the Meta Type Resource. It is an error if the tool cannot examine a type in the hierarchy.

Itis an error to apply the ObjectClassDefinition annotation to concrete and abstract class types. It is
also an error to apply it to an interface if any of the methods of the interface take arguments.

The ObjectClassDefinition annotation can be applied without defining any element values as de-
fault values for the ObjectClassDefinition annotation elements can be generated from the annotat-
ed type. For example:

@0bjectClassDefinition

dinterface Config {
boolean enabled();
String[] names();
String topic();

}

In the following larger example, the ObjectClassDefinition annotation defines the description and
name of the OCD which are to be localized using the specified resource as well as an icon resource.
Also, AttributeDefinition annotations are applied to the methods to supply some non-default values
for the generated AD elements.

a0bjectClassDefinition(localization = "OSGI-INF/110n/member"”,
description = "Jaember.description”,
name = "Yanember.name",
icon = @Icon(resource = "icon/member-32.png", size = 32))
dinterface Member {
@AttributeDefinition(type = AttributeType.PASSWORD,
description = "Jmember.password.description”,
name = "Yamember.password.name")
public String _password();

@AttributeDefinition(options = {
@0ption(label = "kstrategic", value = “"strategic"),
@0ption(label = "kprincipal”, value = "principal"),
@0ption(label = "kcontributing”, value = "contributing")
¥
defaultValue = “"contributing”,
description = "Ymember.membertype.description”,
name = "Yaember.membertype.name")

OSGi Compendium Release 8.1 Page 129

Meta Type Annotations Metatype Service Specification Version 1.4

105.9.2

105.9.3

public String type();
}

AttributeDefinition Annotation

The AttributeDefinition annotation is an optional annotation which can applied to the methods in
a type annotated by ObjectClassDefinition. Each method of the type annotated by ObjectClassDe-
finition is mapped to an AD child element of the OCD element in the generated Meta Type Resource
XML document. The AttributeDefinition annotation only needs to be applied to a method if values
other than the defaults are desired.

The id of the Attribute Definition is generated from the method name as follows:

A single dollar sign ('$' \u0024) is removed unless it is followed by:
Alow line (_" \uoosF) and a dollar sign in which case the three consecutive characters ("$_
$") are converted to a single hyphen-minus (-' \uoo2D).
Another dollar sign in which case the two consecutive dollar signs ("$$") are converted to a
single dollar sign.
A single low line ('_' \uoosF) is converted into a full stop (" \uoo2E) unless is it followed by an-
other low line in which case the two consecutive low lines ("__") are converted to a single low
line.
All other characters are unchanged.

If the type declaring the method also declares a PREFIX_field whose value is a compile-time con-
stant String, then the id is prefixed with the value of the PREFIX_field.

However, if the type annotated by ObjectClassDefinition is a single-element annotation, see 9.7.3 in [3]
The Java Language Specification, Java SE 8 Edition, then the id for the value method is derived from the
name of the annotation type rather than the name of the method. In this case, the simple name of
the annotation type, that is, the name of the class without any package name or outer class name, if
the annotation type is an inner class, must be converted to the value method's id as follows:

- When a lower case character is followed by an upper case character, a full stop (' \uoo2E) isin-
serted between them.

- Each upper case character is converted to lower case.
All other characters are unchanged.

If the annotation type declares a PREFIX_ field whose value is a compile-time constant String,
then the id is prefixed with the value of the PREFIX_field.

The generated id becomes the value of the id attribute of the AD element in the generated Meta Type
Resource XML document.

Designate Annotation

The Designate annotation can be applied to a Declarative Services component class to make the
connection between the pid of the component and an Object Class Definition. This annotation must
be used on a type that is also annotated with the Declarative Services Component annotation. The
component must only have a single PID which is used for the generated Designate element.

In the following example, the Designate annotation is applied to a Declarative Services component
and references the Object Class Definition type.

a0bjectClassDefinition(id="my.config.ocd")
dinterface Config {
boolean enabled() default true;
String[] names() default {"a", "b"};
String topic() default "default/topic";

Page 130

OSGi Compendium Release 8.1

Metatype Service Specification Version 1.4 Limitations

105.10

105.11

105.12

@Component (configurationPid="my. component.pid")
@dDesignate(ocd = Config.class)
public class MyComponent {
static final String DEFAULT_TOPIC_PREFIX = "topic.prefix”;
protected void activate(Config configuration) {
String t = configuration. topic();
}

}

Tools processing these annotations will generate a Designate element in the generated Meta Type
Resource XML document using the PID of the component and the id of the Object Class Definition.
For example:

<Designate pid="my.component.pid">
<Object ocdref="my.config.ocd"/>
</Designate>

Limitations

The OSGi MetaType specification is intended to be used for simple applications. It does not, there-
fore, support recursive data types, mixed types in arrays/lists, or nested arrays/lists.

Related Standards

One of the primary goals of this specification is to make metatype information available at run-
time with minimal overhead. Many related standards are applicable to metatypes; except for Java
beans, however, all other metatype standards are based on document formats (e.g. XML). In the OSGi
framework, document format standards are deemed unsuitable due to the overhead required in the
execution environment (they require a parser during run-time).

Another consideration is the applicability of these standards. Most of these standards were devel-
oped for management systems on platforms where resources are not necessarily a concern. In this
case, a metatype standard is normally used to describe the data structures needed to control some
other computer via a network. This other computer, however, does not require the metatype infor-
mation as it is implementing this information.

In some traditional cases, a management system uses the metatype information to control objects
in an OSGi framework. Therefore, the concepts and the syntax of the metatype information must be
mappable to these popular standards. Clearly, then, these standards must be able to describe objects
in an OSGi framework. This ability is usually not a problem, because the metatype languages used
by current management systems are very powerful.

Capabilities

Implementations of the Metatype Service specification must provide the following capabilities.
A capability in the osgi.implementation namespace declaring a specification implementation
with the name METATYPE_CAPABILITY_NAME. This capability must also declare a uses constraint

for the org.osgi.service.metatype package. For example:

Provide-Capability: osgi.implementation;

OSGi Compendium Release 8.1 Page 131

Security Considerations Metatype Service Specification Version 1.4

105.13

105.14

105.14.1

osgi.implementation="osgi.metatype";
version:Version="1.4";
uses:="org.osgi.service.metatype"

The RequireMetaTypelmplementation annotation can be used to require this capability.

This capability must follow the rules defined for the osgi.implementation Namespace on page
711.

A capability in the osgi.extender namespace declaring an extender with the name
METATYPE_CAPABILITY_NAME. This capability must also declare a uses constraint for the
org.osgi.service.metatype package. For example:

Provide-Capability: osgi.extender;
osgi.extender="osgi.metatype";
version:Version="1.4";
uses:="org.osgi.service.metatype"

The RequireMetaTypeExtender annotation can be used to require this capability.

This capability must follow the rules defined for the osgi.extender Namespace on page 707.

- A capability in the osgi.service namespace representing the MetaTypeService service. This capa-
bility must also declare a uses constraint for the org.osgi.service.metatype package. For exam-
ple:

Provide-Capability: osgi.service;
objectClass:List<String>="org.osgi.service.metatype.MetaTypeService";
uses:="org.osgi.service.metatype"

This capability must follow the rules defined for the osgi.service Namespace on page 711.

Security Considerations

Special security issues are not applicable for this specification.
org.osgi.service.metatype

Metatype Package Version 1.4.

Bundles wishing to use this package must list the package in the Import-Package header of the
bundle's manifest. This package has two types of users: the consumers that use the API in this pack-
age and the providers that implement the API in this package.

Example import for consumers using the API in this package:
Import-Package: org.osgi.service.metatype; version="[1.4,2.0)"
Example import for providers implementing the AP in this package:

Import-Package: org.osgi.service.metatype; version="[1.4,1.5)"
Summary

. AttributeDefinition - An interface to describe an attribute.

MetaTypelnformation - A MetaType Information object is created by the MetaTypeService to re-
turn meta type information for a specific bundle.

MetaTypeProvider - Provides access to metatypes.

Page 132

OSGi Compendium Release 8.1

Metatype Service Specification Version 1.4 org.osgi.service.metatype

105.14.2

Concurrency

105.14.2.1

Deprecated

105.14.2.2

Deprecated

105.14.2.3

105.14.2.4

105.14.2.5

105.14.2.6

105.14.2.7

105.14.2.8

105.14.2.9

105.14.2.10

- MetaTypeService - The MetaType Service can be used to obtain meta type information for a
bundle.

. ObjectClassDefinition - Description for the data type information of an objectclass.
public interface AttributeDefinition
An interface to describe an attribute.

An AttributeDefinition object defines a description of the data type of a property/attribute.
Thread-safe

public static final int BIGDECIMAL = 10

The BIGDECIMAL type. Attributes of this type should be stored as BigDecimal, List<BigDecimal> or
BigDecimal[] objects depending on getCardinality().

Asof 1.1.

public static final int BIGINTEGER = 9

The BIGINTEGER type. Attributes of this type should be stored as Biginteger, List<Biginteger> or
Biginteger[] objects, depending on the getCardinality() value.

Asof 1.1.

public static final int BOOLEAN =11

The BOOLEAN type. Attributes of this type should be stored as Boolean, List<Boolean> or boolean[]
objects depending on getCardinality().

public static final int BYTE= 6

The BYTE type. Attributes of this type should be stored as Byte, List<Byte> or byte[] objects, depend-
ing on the getCardinality() value.

public static final int CHARACTER = 5

The CHARACTER type. Attributes of this type should be stored as Character, List<Character» or
char[] objects, depending on the getCardinality() value.

public static final int DOUBLE = 7

The DOUBLE type. Attributes of this type should be stored as Double, List<Double> or double[] ob-
jects, depending on the getCardinality() value.

public static final int FLOAT = 8

The FLOAT type. Attributes of this type should be stored as Float, List<Float> or float[] objects, de-
pending on the getCardinality() value.

public static final int INTEGER = 3

The INTEGER type. Attributes of this type should be stored as Integer, List<Integer> or int[] objects,
depending on the getCardinality() value.

public static final int LONG = 2

The LONG type. Attributes of this type should be stored as Long, List<Long> or long[] objects, de-
pending on the getCardinality() value.

public static final int PASSWORD = 12

The PASSWORD type. Attributes of this type must be stored as String, List<String> or String[] objects
depending on getCardinality(). APASSWORD must be treated as a string but the type can be used to
disguise the information when displayed to a user to prevent others from seeing it.

OSGi Compendium Release 8.1 Page 133

org.osgi.service.metatype Metatype Service Specification Version 1.4

105.14.2.11

105.14.2.12

105.14.2.13

105.14.2.14

105.14.2.15

105.14.2.16

105.14.2.17

Since

Returns

Returns

Returns

Returns

]

1.2

public static final int SHORT = 4

The SHORT type. Attributes of this type should be stored as Short, List<Short> or short[] objects, de-
pending on the getCardinality() value.

public static final int STRING =1

The STRING type.

Attributes of this type should be stored as String, List<String> or String[] objects, depending on the
getCardinality() value.

public int getCardinality()

Return the cardinality of this attribute. The OSGi environment handles multi valued attributes in
arrays ([]) or in List objects. The return value is defined as follows:

x = Integer.MIN_VALUE no limit, but use List

x <0 -X = max occurrences, store in List

x >0 X = max occurrences, store in array []
x = Integer.MAX_VALUE no limit, but use array []

x =0 1 occurrence required

The cardinality of this attribute.

public String[] getDefaultValue()

Return a default for this attribute. The object must be of the appropriate type as defined by the cardi-
nality and getType(). The return type is a list of String objects that can be converted to the appropri-
ate type. The cardinality of the return array must follow the absolute cardinality of this type. For ex-
ample, if the cardinality = 0, the array must contain 1 element. If the cardinality is 1, it must contain
0 or 1 elements. If it is -5, it must contain from 0 to max 5 elements. Note that the special case ofa 0
cardinality, meaning a single value, does not allow arrays or lists of 0 elements.

Return a default value or null if no default exists.

public String getDescription()

Return a description of this attribute. The description may be localized and must describe the se-
mantics of this type and any constraints.

The localized description of the definition.

public String getID()

Unique identity for this attribute. Attributes share a global namespace in the registry. For example,
an attribute cn or commonName must always be a String and the semantics are always a name of
some object. They share this aspect with LDAP/X.500 attributes. In these standards the OSI Object
Identifier (OID) is used to uniquely identify an attribute. If such an OID exists, (which can be re-
quested at several standard organizations and many companies already have a node in the tree) it
can be returned here. Otherwise, a unique id should be returned which can be a Java class name (re-
verse domain name) or generated with a GUID algorithm. Note that all LDAP defined attributes al-
ready have an OID. It is strongly advised to define the attributes from existing LDAP schemes which
will give the OID. Many such schemes exist ranging from postal addresses to DHCP parameters.

The id or oid

public String getName()

Get the name of the attribute. This name may be localized.

Page 134

OSGi Compendium Release 8.1

Metatype Service Specification Version 1.4 org.osgi.service.metatype

105.14.2.18

105.14.2.19

Returns

Returns

Returns

105.14.2.20

105.14.2.21

Returns

value

Returns

The localized name of the definition.

public String[] getOptionLabels()
Return a list of labels of option values.

The purpose of this method is to allow menus with localized labels. It is associated with getOption-
Values. The labels returned here are ordered in the same way as the values in that method.

If the function returns null, there are no option labels available.

This list must be in the same sequence as the getOptionValues() method. That is, for each index i in
getOptionLabels,iin getOptionValues() should be the associated value.

For example, if an attribute can have the value male, female, unknown, this list can return (for
dutch) new String[] { "Man", "Vrouw", "Onbekend" }.

A list values

public String[] getOptionValues()
Return a list of option values that this attribute can take.
If the function returns null, there are no option values available.

Each value must be acceptable to validate() (return ") and must be a String object that can be con-
verted to the data type defined by getType() for this attribute.

This list must be in the same sequence as getOptionlLabels(). That is, for each index iin getOption-
Values,iin getOptionLabels() should be the label.

For example, if an attribute can have the value male, female, unknown, this list can return new

String[] { "male", "female”, "unknown" }.

A list values

public int getType()
Return the type for this attribute.

Defined in the following constants which map to the appropriate Java type.
STRING,LONG,INTEGER, SHORT, CHARACTER, BYTE,DOUBLE,FLOAT, BOOLEAN, PASSWORD.

The type for this attribute.

public String validate(String value)

The value before turning it into the basic data type. If the cardinality indicates a multi-valued at-
tribute then the given string must be escaped.

Validate an attribute in String form. An attribute might be further constrained in value. This
method will attempt to validate the attribute according to these constraints. It can return three dif-
ferent values:

null No validation present
" No problems detected
A localized description of why the value is wrong

If the cardinality of this attribute is multi-valued then this string must be interpreted as a comma
delimited string. The complete value must be trimmed from white space as well as spaces around
commas. Commas (', \u002C) and spaces (' '\u0020) and backslashes ('\'\u005C) can be escaped
with another backslash. Escaped spaces must not be trimmed. For example:

value=" a\,b,b\,c,\ c\\,d " => ["a,b", "b,c", " c\", "d"]

null, ", or another string

OSGi Compendium Release 8.1 Page 135

org.osgi.service.metatype

Metatype Service Specification Version 1.4

105.14.3

Since
Concurrency

Provider Type

105.14.3.1

Returns

105.14.3.2

Returns

105.14.3.3
m]

Returns

105.14.4

Concurrency

105.14.4.1

Since

105.14.4.2

Since

105.14.4.3

Returns

105.14.4.4

public interface MetaTypelnformation
extends MetaTypeProvider

A MetaType Information object is created by the MetaTypeService to return meta type information
for a specific bundle.

1.1
Thread-safe

Consumers of this API must not implement this type

public Bundle getBundle()
Return the bundle for which this object provides meta type information.

Bundle for which this object provides meta type information.

public String[] getFactoryPids()

Return the Factory PIDs (for ManagedServiceFactories) for which ObjectClassDefinition informa-
tion is available.

Array of Factory PIDs.

public String[] getPids()
Return the PIDs (for ManagedServices) for which ObjectClassDefinition information is available.

Array of PIDs.

public interface MetaTypeProvider

Provides access to metatypes. This interface can be implemented on a Managed Service or Managed
Service Factory as well as registered as a service. When registered as a service, it must be registered
with a METATYPE FACTORY PID or METATYPE PID service property (or both). Any PID men-
tioned in either of these factories must be a valid argument to the getObjectClassDefinition(String,
String) method.

Thread-safe

public static final String METATYPE_FACTORY _PID = "metatype.factory.pid"

Service property to signal that this service has ObjectClassDefinition objects for the given factory
PIDs. The type of this service property is String+.

1.2

public static final String METATYPE_PID = "metatype.pid"

Service property to signal that this service has ObjectClassDefinition objects for the given PIDs. The
type of this service property is String+.

1.2

public String[] getLocales()

Return a list of available locales. The results must be names that consists of language [_country[
variation]] as is customary in the Locale class.

An array of locale strings or null if there is no locale specific localization can be found.

public ObjectClassDefinition getObjectClassDefinition(String id, String locale)

The ID of the requested object class. This can be a pid or factory pid returned by getPids or getFacto-
ryPids.

Page 136

OSGi Compendium Release 8.1

Metatype Service Specification Version 1.4 org.osgi.service.metatype

locale

]

Returns

Throws

105.14.5

Since
Concurrency

Provider Type

105.14.5.1

Since

105.14.5.2

105.14.5.3

Since

105.14.5.4
bundle

]

Returns

105.14.6

Concurrency

The locale of the definition or null for default locale.
Returns an object class definition for the specified id localized to the specified locale.

The locale parameter must be a name that consists of language["_"country[" "variation]]asis cus-
tomary in the Locale class. This Locale class is not used because certain profiles do not contain it.

A ObjectClassDefinition object.

IllegalArgumentException—If the id or locale arguments are not valid

public interface MetaTypeService

The MetaType Service can be used to obtain meta type information for a bundle. The MetaType Ser-
vice will examine the specified bundle for meta type documents to create the returned MetaTypeln-
formation object.

If the specified bundle does not contain any meta type documents, then a MetaTypelnformation ob-
ject will be returned that wrappers any ManagedService or ManagedServiceFactory services regis-
tered by the specified bundle that implement MetaTypeProvider. Thus the MetaType Service can be
used to retrieve meta type information for bundles which contain a meta type documents or which
provide their own MetaTypeProvider objects.

1.1
Thread-safe

Consumers of this API must not implement this type

public static final String METATYPE_CAPABILITY_NAME = "osgi.metatype"
Capability name for meta type document processors.

Used in Provide-Capability and Require-Capability manifest headers with the osgi.extender name-
space. For example:

Require-Capability: osgi.extender;
filter:="(&(osgi.extender=osgi.metatype) (version>=1.4) (! (version»=2.0)))

13

public static final String METATYPE_DOCUMENTS_LOCATION = "OSGI-INF/metatype"

Location of meta type documents. The MetaType Service will process each entry in the meta type
documents directory.

public static final String METATYPE_SPECIFICATION_VERSION = "1.4"
Compile time constant for the Specification Version of MetaType Service.

Used in Version and Requirement annotations. The value of this compile time constant will change
when the specification version of MetaType Service is updated.

1.4

public MetaTypelnformation getMetaTypelnformation(Bundle bundle)
The bundle for which meta type information is requested.
Return the MetaType information for the specified bundle.

A MetaTypelnformation object for the specified bundle.

public interface ObjectClassDefinition
Description for the data type information of an objectclass.

Thread-safe

OSGi Compendium Release 8.1 Page 137

org.osgi.service.metatype Metatype Service Specification Version 1.4

105.14.6.1
105.14.6.2
105.14.6.3
105.14.6.4
filter
m]
Returns
105.14.6.5
m]
Returns
105.14.6.6
size
m]
Returns
Throws
105.14.6.7
m]
Returns
105.14.6.8
m]

public static final int ALL = -1
Argument for getAttributeDefinitions(int).

ALL indicates that all the definitions are returned. The value is -1.

public static final int OPTIONAL = 2
Argument for getAttributeDefinitions(int).

OPTIONAL indicates that only the optional definitions are returned. The value is 2.

public static final int REQUIRED =1
Argument for getAttributeDefinitions(int).

REQUIRED indicates that only the required definitions are returned. The value is 1.

public AttributeDefinition[] getAttributeDefinitions(int filter)
ALL,REQUIRED,OPTIONAL
Return the attribute definitions for this object class.

Return a set of attributes. The filter parameter can distinguish between ALL,REQUIRED or the OP-
TIONAL attributes.

An array of attribute definitions or null if no attributes are selected

public String getDescription()
Return a description of this object class. The description may be localized.

The description of this object class.

public InputStream getlcon(int size) throws IOException
Requested size of an icon. For example, a 16x16 pixel icon has a size of 16
Return an InputStream object that can be used to create an icon from.

Indicate the size and return an InputStream object containing an icon. The returned icon maybe
larger or smaller than the indicated size.

The icon may depend on the localization.
An InputStream representing an icon or null

|OException—If the InputStream cannot be returned.

public String getID()
Return the id of this object class.

ObjectDefintion objects share a global namespace in the registry. They share this aspect with LDAP/
X.500 attributes. In these standards the OSI Object Identifier (OID) is used to uniquely identify ob-
ject classes. If such an OID exists, (which can be requested at several standard organizations and
many companies already have a node in the tree) it can be returned here. Otherwise, a unique id
should be returned which can be a Java class name (reverse domain name) or generated with a GUID
algorithm. Note that all LDAP defined object classes already have an OID associated. It is strongly
advised to define the object classes from existing LDAP schemes which will give the OID for free.
Many such schemes exist ranging from postal addresses to DHCP parameters.

The id of this object class.

public String getName()

Return the name of this object class. The name may be localized.

Page 138

OSGi Compendium Release 8.1

Metatype Service Specification Version 1.4

org.osgi.service.metatype.annotations

Returns The name of this object class.

105.15

105.15.1

105.15.2

org.osgi.service.metatype.annotations

Metatype Annotations Package Version 1.4.

This package is not used at runtime. Annotated classes are processed by tools to generate Meta Type
Resources which are used at runtime.

Summary

AttributeDefinition - AttributeDefinition information for the annotated method.
AttributeType - Attribute types for the AttributeDefinition annotation.

Designate - Generate a Designate element in the Meta Type Resource for an ObjectClassDefini-
tion using the annotated Declarative Services component.

Icon -lcon information for an ObjectClassDefinition.
ObjectClassDefinition - Generate a Meta Type Resource using the annotated type.
Option - Option information for an AttributeDefinition.
- RequireMetaTypeExtender - This annotation can be used to require the Meta Type extender to
process metatype resources.

- RequireMetaTypelmplementation - This annotation can be used to require the Meta Type im-
plementation.

(@AttributeDefinition

AttributeDefinition information for the annotated method.

Each method of a type annotated by ObjectClassDefinition has an implied AttributeDefinition an-
notation. This annotation is only used to specify non-default AttributeDefinition information.

The id of this AttributeDefinition is generated from the name of the annotated method as follows:

A single dollar sign (‘$'\u0024) is removed unless it is followed by:
Alow line (‘_"\u005F) and a dollar sign in which case the three consecutive characters ("$_
$") are changed to a single hyphen-minus ('-' \u002D).
Another dollar sign in which case the two consecutive dollar signs ("$$") are changed to a
single dollar sign.
Alow line ('_"\u005F) is changed to a full stop (. \u002E) unless is it followed by another low
line in which case the two consecutive low lines ("__") are changed to a single low line.
All other characters are unchanged.
If the type declaring the method also declares a PREFIX_field whose value is a compile-time con-
stant String, then the id is prefixed with the value of the PREFIX_ field.

However, if the type annotated by ObjectClassDefinition is a single-element annotation, then the id
for the value method is derived from the name of the annotation type rather than the name of the
method. In this case, the simple name of the annotation type, that is, the name of the class without
any package name or outer class name, if the annotation type is an inner class, must be converted to
the value method's id as follows:

When a lower case character is followed by an upper case character, a full stop (. \u002E) is in-
serted between them.

Each upper case character is converted to lower case.
All other characters are unchanged.

OSGi Compendium Release 8.1

Page 139

org.osgi.service.metatype.annotations

Metatype Service Specification Version 1.4

See Also

Retention

105.15.2.1

105.15.2.2

105.15.2.3

105.15.2.4

Target

See Also

See Also

See Also

. Ifthe annotation type declares a PREFIX_ field whose value is a compile-time constant String,
then the id is prefixed with the value of the PREFIX_field.

This id is the value of the id attribute of the generate AD element and is used as the name of the cor-
responding configuration property.

This annotation is not processed at runtime. It must be processed by tools and used to contribute to
a Meta Type Resource document for the bundle.

The AD element of a Meta Type Resource.
CLASS
METHOD

String name default
The human readable name of this AttributeDefinition.

If not specified, the name of this AttributeDefinition is derived from the name of the annotated
method. For example, low line (_'\u005F), dollar sign ('$'\u0024), and hyphen-minus ('-' \u002D)
are replaced with space (' '\u0020) and space is inserted between camel case words.

If the name begins with the percent sign (‘%' \u0025), the name can be localized.

The name attribute of the AD element of a Meta Type Resource.

String description default
The human readable description of this AttributeDefinition.

If not specified, the description of this AttributeDefinition is the empty string.

If the description begins with the percent sign (‘%' \u0025), the description can be localized.
The description attribute of the AD element of a Meta Type Resource.

AttributeType type default STRING
The type of this AttributeDefinition.
This must be one of the defined attributes types.

If not specified, the type is derived from the return type of the annotated method. Return types of
Class and Enum are mapped to STRING. If the return type is List, Set, Collection, Iterable or some
type which can be determined at annotation processing time to

1. beasubtype of Coll