

Copyright 2010-2018 © OSGi Alliance All Rights Reserved 1

Semantic Versioning

Technical Whitepaper

Revision 1.1
January 2019

Copyright 2010-2018 © OSGi Alliance All Rights Reserved 2

Executive Summary 3

Introduction 3

Background 4

Semantic Versions 8

Exporter Policy 11

Importing the Packages You Export 12

Importer Policy 12

Bundles and Fragments 14

Conclusion 14

The OSGi Alliance 14

Copyright 2010-2018 © OSGi Alliance All Rights Reserved 3

Executive Summary

The OSGi Alliance recommends the versioning of exported packages. These versions

should reflect the evolution of these packages. For this reason, a change in the first

(major) part of the version signals backward incompatible changes to the artifacts. That

is, going from version 1.5 to version 2 signals that another artifact compiled against 1.5

up to (but not including) version 2 of that initial artifact is not compatible with the new

version of the initial artifact.

A package can contain an API. There are two types of clients for these API packages:

API consumers and API implementation providers. A change in the second (minor) part

of the version signals that the change is backward compatible with consumers of the

API package but not with the providers of that API. That is, when the API package goes

from version 1.5 to 1.6 it is no longer compatible with a provider of that API but

consumers of that API are backward compatible with that API package.

The third and fourth part of the version (micro and qualifier) signal bug fixes and build

stamp and have no effect on backward compatibility.

Importers of packages know their role (consumer or provider of an API) and can limit

the import range of the package. For the previous example, a consumer would import

[1.5,2) while a provider would import [1.5,1.6).

API designers must carefully evolve an API package, especially when consumers

implement interfaces in this API package. Changes to such interfaces break binary

compatibility for consumers and necessitate a major update of the version.

Introduction

Versioning is one of the unique selling points of OSGi; there are no other execution

environments that have taken the evolution of the artifacts so seriously. In OSGi, all

parts that can evolve over time (packages, bundles, fragments) are versioned. Not only

did the OSGi Alliance provide the mechanisms for versioning, since its beginning, the

OSGi Alliance has used strong semantic versions for all its specified packages.

However, despite this focus on versioning, the Core specification does not mandate a

specific version policy. The Core specification only contains a recommendation of how

to version the artifacts. At the time this recommendation was put in place, there was

Copyright 2010-2018 © OSGi Alliance All Rights Reserved 4

insufficient experience with versions in an environment like OSGi. The different

members of the OSGi ecosystem needed the freedom to version their artifacts as they

wanted and therefore only a recommendation was put in the Core specification.

Over the past 10 years, the OSGi Alliance has used a semantic model for versioning

artifacts. The current OSGi build contains around 130 projects that generate around

1300 bundles. In any release, a large number of disparate teams develop Reference

Implementations and Compliance Tests that are integrated in this build system. Doing

this work for almost ten years with a specification that has undergone significant

enhancements has given the OSGi Alliance abundant experience with semantic

versioning.

This document describes the lessons learned regarding versioning. Though not

mandated by the specifications, it is strongly recommended to follow its guidelines so as

to remain compatible with other parties using OSGi.

Background

The problem that versioning addresses is the independent evolution of dependent

artifacts. In OSGi terms, a bundle can import a package exported by another bundle.

The importer therefore has a dependency on the exporter. An importer will use a

specific exporter during the compilation and build process. Ideally, this same exporter is

used during the deployment process to create fidelity between the build and run time.

This fidelity reduces the number of potential problems because many aspects are

guaranteed to be verified during the build process.

However, in reality, the importer and exporter evolve independently. Creating a

requirement for strict fidelity between importers and exporters requires a coordination

between build and deploy time that is often not feasible in practice. Pure fidelity would

require a complete rebuild of all artifacts when one artifact changes even slightly. This

might be feasible when all software as sourced in-house and built together, but in

today’s world the projects that do not depend on open source projects or external

suppliers are extremely rare. The key problem is that in a large system there will be

many shared dependencies. For example, in a system with three bundles, A, B, and C,

both A and B could depend upon C. See the following figure. With strict fidelity, A and B

must be compiled against the same C to be able to deploy them together. In large

systems with hundreds of bundles, requiring all components to be compiled against the

identical dependency providers quickly becomes infeasible.

Copyright 2010-2018 © OSGi Alliance All Rights Reserved 5

Figure 1: Semantic Versioning and shared dependencies in a large system.

Backward compatibility is the lubrication that reduces the friction to make it possible to

run large systems based on disparate bundles that have shared dependencies.

Backward compatibility decouples the importer and exporter by allowing a range of

exporters to satisfy the needs of an importer. This allows an exporter to evolve without

requiring the importer to change, or even to be rebuild, as long as the exporter’s version

remains in range.

Java has well defined binary compatibility rules. The dynamic linking of Java code

permits quite a lot of changes between compilation time and runtime. Classes can

get new fields and methods, the hierarchy can change, order of fields and methods

can change, and more. However, interfaces in Java have very different rules for

binary compatibility between users of an interface and implementers of an

interface. From the perspective of a user, an interface can be changed

significantly. In contrast, almost any change will not be backward compatible for an

implementer of that interface. For example, adding a new method to an interface is

invisible to an importer that uses that interface; such a change is therefore binary

compatible for this user. However, an importer that implements that interface will

be broken by such an addition. The distinction between the different roles to

decide backward compatibility is a crucial one that has implications for the

importers. Users and implementers must specify different version ranges for the

exporters with which they can be compatible. An importer that implements

interfaces from a package will require a much narrower range than an importer

that only uses such interfaces.

Copyright 2010-2018 © OSGi Alliance All Rights Reserved 6

For example, a bundle A exports an API package containing the following

interface:
Bundle A:

 package com.acme.foo;

 public interface Foo {

 void bar();

 }

An implementation bundle B implements this interface:
Bundle B:

 package com.acme.impl.foo;

 import com.acme.foo.*;

 public class FooImpl implements Foo {

 public void bar() {}

 }

And the client bundle C uses the interface:
Bundle C:

 package com.acme.user.foo;

 import com.acme.foo.*;

 public class Client {

 public void foo(Foo foo) {

 foo.bar();

 }

 }

In the next release, the Foo interface exported by bundle A is updated to:
Bundle A:

 package com.acme.foo;

 public interface Foo {

 void bar();

 void baz();

 }

This change is not backward compatible for bundle B but is backward compatible

for bundle C.

There are different types of importers that have different rules around backward

compatibility. What is backward compatible for one importer is backward

incompatible for another. This difference is introduced by the separation of API

and implementation. An API package has two users: the consumers that use the

API and the providers that implement the API.

Though the Java interface crisply demonstrates the issue with different backward

compatibility rules for users and implementers, the model turns out to be simplistic

in practice. In OSGi, the dominant artifact to be shared is a package. A package

should consist of a cohesive set of classes, interfaces, and resources. Broadly

Copyright 2010-2018 © OSGi Alliance All Rights Reserved 7

speaking, there are two types of packages: libraries and API. A library unifies the

API and the provider of this API. For example, a library like ASM1 does not attempt

to separate the concrete implementation classes from their API, the API is the

implementation.

API packages specify an abstract API to be implemented by an unmentioned

provider. API packages are the core of the OSGi service model, whereby the

provider of an API is represented by a service object. For example, the

org.osgi.service.eventadmin package contains the API for an Event Admin

provider. A consumer of Event Admin imports this package and a provider of Event

Admin imports this package as well. Similar to interfaces, API packages have two

types of importers; to distinguish between these roles they are called consumers

and providers.

Figure 2: Consumers and Providers, the two OSGi API Package importers.

Consumers are not always only users of the interfaces in the API packages, nor

are providers always only implementers of such interfaces. A consumer of an API

package can actually be required to implement an interface that is then used by

the provider of the API package. For example, in the Event Admin specification the

Event Listener interface is implemented by the consumer of the Event Admin API

and then used by the provider of the Event Admin API.

1 http://asm.ow2.org/

http://asm.ow2.org/

Copyright 2010-2018 © OSGi Alliance All Rights Reserved 8

Figure 3: The inter-relationships of OSGi API Package consumers and providers.

To prevent confusion, this document always makes it explicit if an interface or

package is discussed. A consumer consumes an API package, a provider provides

an implementation of an API package. An implementer implements an interface

and a user uses an interface. Last but not least, an importer imports a package

and an exporter exports a package. Though this constellation might be confusing,

all combinations of these concepts in real systems are quite common, these are all

orthogonal concepts.

It should be obvious that binary compatibility plays an important role in backward

compatibility. However, backward compatibility is also very dependent on the

semantics. If the responsibility of an interface changes it could still be binary

compatible but no longer be backward compatible.

Semantic Versions

OSGi versions are called semantic because they have meaning. Most versioning

models are based on a gradually increasing version number where the only thing

defined in the syntax was the ordering of version strings. Several package systems

on Unix go a small step further by allowing comparisons to be done numerically or

lexicographically. As a consequence, these version systems leave backward

incompatibility undefined. Any version that is compared higher is assumed to be

compatible, thereby making it impossible to ever introduce a breaking change. In

Copyright 2010-2018 © OSGi Alliance All Rights Reserved 9

reality, not everything can be kept backward compatible. With existing version

systems, the only escape is to rename the artifact.

In the real world, not everything is backward compatible, indicating that a later

version is actually not a suitable choice. The OSGi Framework has the unique

capability that it can actually host different versions of the same package and

correctly handle the dependencies. Without semantic versions, the importer and

exporter of a package have no way of communicating backward compatibility and

incompatibility.

The core mechanisms provided by the OSGi specifications are the version and

version range2. An exported package that can be used by other bundles has a

version. Such an artifact is called an exporter in this document. A bundle that

depends on a package uses a version range to limit the possible candidates. Such

a bundle is called an importer. For example:

 Export-Package: com.acme.foo; version=1.2.3.201003030903

 Import-Package: com.acme.foo; version=“[1.2,2.0)”

A version can consist of maximum 4 parts: major, minor, micro, and qualifier. The

syntax is:

 version ::= <major> [‘.’ <minor> [‘.’ <micro> [‘.’ <qualifier>

]]]

Later parts can be ignored, implying 0 for minor and micro and empty string for

qualifier. A version range has a syntax based on the interval notation from

mathematics:

 range ::= (‘[’ | ‘(’) version ‘,’ version (‘)’ | ‘]’)

Square brackets (‘[’ and ‘]’) indicate inclusive and parentheses (‘(’ and ‘)’)

indicate exclusive. That is, [1.2,2.0) indicates the version range from version 1.2,

including version 1.2, up to but not including version 2.0.

For importer version ranges to work, it is necessary that an exporter changes its

version in a predictable way. This predictability allows an importer to use a range

that matches its expectations of the exporter’s evolution. For example, an importer

could then limit the range it accepts, allowing the exporter to change its version in

2 See sections 3.2.5 and 3.2.6 of the OSGi Core Specification v4.2.

Copyright 2010-2018 © OSGi Alliance All Rights Reserved 10

such a way that it is no longer acceptable to previous importers, thereby signaling

a breaking change.

An attractive solution to this problem would have been to allow the exporter to

have multiple export versions (or an export version range). The exporter is in a

much better position to judge backward compatibility than the importer; no prior

agreement on how to version an artifact would be necessary with such a solution.

If a package evolves, the exporter just lists the versions with which it is backward

compatible. For example, when going from version 1 to version 2, the exporter

would just list both versions in its export clause if the change was backward

compatible.

Unfortunately, this simple and attractive model fails because the goals of all

importers are not equal. Bundles that consume an API package have different

backward compatibility rules than a provider of that API. Any semantic change in

the API package must be handled by a provider to honor the change in the API

contract while many of those changes are backward compatible for consumers. It

is therefore paramount that API consumers and providers can describe their

different import requirements on the exporter in a concise and easy to understand

way. In OSGi, this is achieved by placing semantics on the parts of the version. In

this way, a version acts as a small Domain Specific Language (DSL) that is used

to document the evolution of the exporter. In this model, the exporter encodes its

evolution in its version numbers and importers can then predict which version

numbers are compatible with their needs and declare an appropriate import range.

The semantics for the version parts are therefore defined as:

1. major — Packages with versions that have different major parts are not

compatible both for providers as well as consumers. For example, 1.2 and

2.3 are completely incompatible.

2. minor — API consumers are compatible with exporters that have the same
major number and an equal or higher minor version. API providers are
compatible with exporters that have the same major and minor version

number. For example, 1.2 is backward compatible with 1.1 for consumers
but for providers it is incompatible. Consumers should therefore import

[1.2,2) and providers should import [1.2,1.3).

3. micro — A difference in the micro part does not signal any backward
compatibility issues. The micro number is used to fix bugs that do not affect
either consumers or providers of the API.

Copyright 2010-2018 © OSGi Alliance All Rights Reserved 11

4. qualifier — The qualifier is usually used to indicate a build identity, for
example a time stamp. Different qualifiers do not signal any backward
compatibility issues.

Assuming an exported version 1.2.3.built, the following ranges provide the given
semantics:

[1.2,2) Consumer importer policy: will not match when exporter goes to version 2 or later.

[1.2,1.3) Provider importer policy: will not match when exporter goes to version 1.3 or later.

[1.2.3,1.2.4) Strict importer policy: only accepts exporter of version 1.2.3.

Exporter Policy

Exporters must carefully version any exported package. It is the experience of the

OSGi Alliance that virtually any change in an API package is not backward

compatible for providers implementing that API. This usually means that any

change causes an increment of the minor version part. In the history of the OSGi

Alliance, there have been no changes in the major versions of its specifications.

The org.osgi.framework package is currently at version 1.5.1, indicating it

underwent 5 modifications that required changes in the framework providers (for

example, Knopflerfish, Felix, Equinox) but so far no modifications that required

changes in consumers of the framework API.

The Java Language Specification defines binary compatibility in chapter 133. Any

semantic changes must be judged by humans. Tools will be able to detect

syntactic violations of the semantic versioning by comparing a previous version

and the new version. However, such tools will not be able to detect semantic

changes in the code.

Exporters of implementation code should treat the versioning of this code as API

packages merged with its provider. There is therefore no concern for providers,

only consumers have to be considered. In practice, this means that such a

package will only undergo major changes.

An interesting problem for exporters is the policy applied to interfaces that are

implemented by the consumers of the API. For example, in the OSGi framework,

the Bundle Activator interface is not implemented by a framework provider but by

consumers of the framework API: bundles. A change in such an interface will not

3 http://java.sun.com/docs/books/jls/second_edition/html/binaryComp.doc.html

http://java.sun.com/docs/books/jls/second_edition/html/binaryComp.doc.html

Copyright 2010-2018 © OSGi Alliance All Rights Reserved 12

be backward compatible with any consumers of the API and therefore requires a

change in the major part of the version. API designers must therefore be acutely

aware of the usage pattern of their interfaces and try to prevent making changes to

interfaces that are implemented by the consumers of the API. Any change in an

interface that is implemented by a consumer of the API breaks backward

compatibility for all consumers. This policy has been strictly followed in the OSGi

specifications. Virtually all consumer implemented interfaces are kept very simple

and, to date, have not been changed.

Importing the Packages You Export

OSGi has always strongly promoted importing the packages you export. The

resulting substitutability can be used by a framework to minimize the number of

different class spaces. There are, however, a number of caveats around this

model. Importing exported packages only works well when the exported packages

are not bound to private packages. Once an exported package uses a private

package, it is not pure API: the package is coupled to implementation packages.

Such exported packages cannot be safely substituted by an import from another

bundle. Good API design, such as the service API in OSGi, ensures that API

packages are not coupled to implementation packages. However, many libraries

have packages that are not that cleanly separated. Bundles containing these

libraries should not import their exported packages.

When exported packages are imported, care must be taken to specify the import

version in the proper way. If an exported package includes the implementation of

the API in the package, then the import of the package must use a version range

that represents the compatibility requirements for providers of an API

implementation.

Importer Policy

Having semantic versions offers the possibility to standardize the usage of

versions. Import versions can be derived from their build time dependency. For

example, if bundle B provides the implementation of an API then it should depend

upon a version range that limits changes to the micro and qualifier only. Such a

rule is a called a version policy.

Copyright 2010-2018 © OSGi Alliance All Rights Reserved 13

For stability reasons, an importer should be bound to the lowest possible version it

can correctly compile against. It is a common misconception that code should be

updated when newer versions of libraries it depends on become available. Not

only would this increase the chores of maintaining versions, it easily causes a

continuous update cycle in deployment. Any change should change the version of

the corresponding package, which requires an update of all the dependencies,

which could trigger more changes. Systems designed that way become very brittle

very quickly.

An organization must decide upon a version policy regarding whether to depend

upon bug fixes or not. Using import version ranges that include the micro part of

the version against which the code is being compiled has the advantage that the

deployment is forced to upgrade to the bug fix. However, this easily increases the

volatility of the deployment. Not including the bug fix in the version range means

that the code will not disrupt the deployment but can run against code that was not

properly tested and may have a bug. This tradeoff decision must be made by the

importer. In the OSGi Alliance build, the micro part is removed from import version

ranges, assuming that the deployer is in charge of maintaining a system with the

latest updated artifacts but not forcing this upgrade when a third artifact just

happened to have been compiled against the fixed component.

Providers implementing an API package must import with a version range that

specifies the floor of the version used for compilation and the ceiling of the next

minor part. For example, when compiled against version 2.1.4, the import version

range for a provider is [2.1,2.2) (assuming bug fixes are ignored).

Consumers of an API package should import with the same floor but can increase

the ceiling to the next major version. For example, when compiled against version

2.1.4, the import version range for a consumer is [2.1,3) (again, assuming bug

fixes are ignored).

There exist tools that can calculate the import ranges based on the export version

and a consumer and provider importer policy.

Copyright 2010-2018 © OSGi Alliance All Rights Reserved 14

Bundles and Fragments

The previous chapters use package imports and exports as examples. The reason

is that the asymmetry between API consumers and providers is very clear with

packages, especially with the OSGi service model where exported packages are

always API. However, some analogies can be made with bundles and fragments.

Requiring another bundle is similar to a short form of importing all the exported

packages of that required bundle. The version of a bundle must therefore

semantically aggregate the semantics of all its constituent packages. If any of

these packages is incompatible with its providers then the bundle version must

increment the minor version. If any of these packages is incompatible with

consumers, the bundle version must increment the major version. It is clear, that

on average, the version of a bundle will be much more volatile than the versions of

its constituent packages, increasing the dependency problems.

Conclusion

Versioning is one of the major chores of software. With systems consisting of

hundreds to thousands of bundles, tooling becomes a necessity to manage

versions. Humans are already incapable of handling version management on the

scale that is required today. Tools need rules and guidelines; rules as laid down in

this document. To allow applications to grow even larger it is paramount that

versions have semantics and are therefore predictive.

The OSGi Alliance

The OSGi Alliance is a worldwide consortium of technology innovators that advances a

proven and mature process to enable the componentization of applications into well-

defined software modules, and ensure interoperability of applications and services over

a broad variety of devices.

The Alliance provides specifications, reference implementations, test suites and

certification to foster a valuable cross-industry ecosystem. OSGi technology is shipping

in millions of units worldwide, and is deployed by Fortune Global 500 companies in

enterprise, desktop, embedded home and telematics markets. Member companies

Copyright 2010-2018 © OSGi Alliance All Rights Reserved 15

collaborate within an egalitarian, equitable and transparent environment and promote

adoption of OSGi technology through business benefits, user experiences and forums.

For more information on the non-profit technology corporation, visit http://www.osgi.org

or contact help@osgi.org.

OSGi is a trademark of the OSGi Alliance in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

All other marks are trademarks of their respective companies.

http://www.osgi.org/
mailto:help@osgi.org

